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Zusammenfassung

Diese Arbeit befasst sich damit, die Forschungen zur Leistungsverbesserung eines konventionellen, nicht-
differenzialen GPS/MEMS IMU eng gekoppeltes Navigationssystems durch Filter-Design darzustellen,
einschließlich nicht-linearer Filtermethoden, der stochastischen Fehlermodellierung für die Inertial-
Sensoren und der Umsetzung der Trägerphase.

Zunächst wird die Leistungsauswertung einer jüngst entwickelten nicht-linearen Filtermethode, dem
Cubature Kalman-Filter (CKF), gemäß der Taylorentwicklung analysiert. Die theoretische Analyse deu-
tet darauf hin, dass die nicht-lineare Filtermethode CKF ihre Vorteile nur dann ausspielt, wenn sie in
einem nicht-linearen System umgesetzt wird. Entsprechend wird ein nicht-linearer Ausdruck für die
Ausrichtung mit Ausrichtungskosinus-Matrix (Direction Cosine Matrix, DCM) in ein eng verknüpftes
Navigationssystem eingebaut, um den Ausrichtungsfehler zwischen dem wahren und geschätzten Navi-
gationsrahmen darzustellen. Die Ergebnisse aus Simulation und Experiment zeigen, dass der CKF eine
bessere Leistung als der Erweiterter Kalman-Filter (EKF) bei nicht beobachtbarem, großem Ausrich-
tungsfehler bietet und auch in Fällen, bei denen das GPS ausfällt und sich Ausrichtungsfehler schnell
ansammeln können, so dass der Ausdruck des Psi-Winkels ungültig wird, wodurch ein gewisses Maß an
Nicht-Linearität zum Ausdruck kommt.

Zum Zweiten präsentiert diese Arbeit die Shaping-Filter-Theorie, um die stochastischen Fehler in den
Inertial-Sensoren eines Navigations-Kalman-Filters zu modellieren. Die Koeffizienten des Rauschens
der Inertial-Sensoren werden aufgrund des Allan-Varianzgraphen bestimmt. Die Transferfunktion des
Shaping-Filters wird aufgrund der Spektralleistungsdichte (Power Spectral Density, PSD) des Rauschens
bei sowohl stationären als auch nicht-stationären Prozessen abgeleitet. Das gesamte farbige Rauschen
wird zusammen in dem Navigations-Kalman-Filter modelliert, gemäß der Äquivalenztheorie. Die Frei-
laufleistung zeigt, dass die Modellierungsmethode auf Grundlage eines Shaping-Filters eine ähnliche und
sogar kleinere Maximaldrift aufweist, als die konventionelle Modellierungsmethode mit Markov-Ketten
erster Ordnung während GPS-Ausfällen; damit deutet sie ihre Wirksamkeit an.

Drittens, gemäß den Methoden, wie mit Mehrdeutigkeiten in der Trägerphase umzugehen ist, werden
eng verknüpfte Navigationssysteme mit Time Differenced Carrier Phase (TDCP) und Total Carrier Phase
(TCP) zur Messung der Kalman-Filter abgeleitet. Die Ergebnisse aus Simulation und Experiment zei-
gen, dass TDCP die Schätzgenauigkeit für die Geschwindigkeit ebenso wie glatte Trajektorien verbessern
kann, aber die Positionsgenauigkeit kann nur das Niveau der Einzelpunktbeschreibung (Single Point
Positioning, SPP) erreichen, sofern das TDCP mit der Pseudo-Entfernung verstärkt wird, während die
Positionsgenauigkeit der TCP-basierten Methode unter einem Meter liegt. Um die Positionsgenauigkeit
der TDCP-basierten Methode weiter zu verbessern, wird ein Partikel-Filter (PF) mit modifizierter TDCP-
Beobachtung innerhalb eines TDCP/IMU eng verknüpften Navigationssystems umgesetzt. Die modifizier-
te TDCP wird als der Unterschied in der Trägerphase zwischen den Referenz- und den Beobachtungs-
Epochen definiert. Die absolute Positionsgenauigkeit wird durch die Positionsgenauigkeit der Referenz
bestimmt. Stammt die Referenzposition aus DGPS, so kann die absolute Positionsgenauigkeit bis unter
einem Meter liegen.

Da die Umsetzung von TCP in dem Navigations-Kalmanfilter dem Zustandsvektor zusätzliche Zustände
zufügt, wird bei TCP/IMU eng verknüpften Navigationssystemen eine hybride CKF+EKF-Filtermethode
vorgeschlagen, bei welcher der CKF nicht-lineare Zustände und der EKF lineare Zustände schätzt, um
die Vorteile des CKFs zu bewahren, aber gleichzeitig die benötigte Rechenleistung zu verringern. Die
Navigationsergebnisse weisen auf die Wirksamkeit der Methode hin.

Nach Anwendung der Verbesserungsmaßnahmen kann die Leistung eines nicht-differenzialen GPS/MEMS
IMU eng verknüpften Navigationssystems stark gesteigert werden.
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Abstract

The endeavours in improving the performance of a conventional non-differential GPS/MEMS IMU
tightly-coupled navigation system through filter design, involving nonlinear filtering methods, inertial
sensors’ stochastic error modelling and the carrier phase implementation, are described and introduced
in this thesis. The main work is summarised as follows.

Firstly, the performance evaluation of a recently developed nonlinear filtering method, the Cubature
Kalman filter (CKF), is analysed based on the Taylor expansion. The theoretical analysis indicates that
the nonlinear filtering method CKF shows its benefits only when implemented in a nonlinear system.
Accordingly, a nonlinear attitude expression with direction cosine matrix (DCM) is introduced to tightly-
coupled navigation system in order to describe the misalignment between the true and the estimated
navigation frames. The simulation and experiment results show that the CKF performs better than
the extended Kalman filter (EKF) in the unobservable, large misalignment and GPS outage cases when
attitude errors accumulate quickly, rendering the psi-angle expression invalid and subsequently showing
certain nonlinearity.

Secondly, the use of shaping filter theory to model the inertial sensors’ stochastic errors in a navigation
Kalman filter is also introduced. The coefficients of the inertial sensors’ noises are determined from the
Allan variance plot. The shaping filter transfer function is deduced from the power spectral density (PSD)
of the noises for both stationary and non-stationary processes. All the coloured noises are modelled
together in the navigation Kalman filter according to equivalence theory. The coasting performance
shows that the shaping filter based modelling method has a similar and even smaller maximum position
drift than the conventional 1st-order Markovian process modelling method during GPS outages, thus
indicating its effectiveness.

Thirdly, according to the methods of dealing with carrier phase ambiguities, tightly-coupled navigation
systems with time differenced carrier phase (TDCP) and total carrier phase (TCP) as Kalman filter mea-
surements are deduced. The simulation and experiment results show that the TDCP can improve the
velocity estimation accuracy and smooth trajectories, but position accuracy can only achieve the single
point positioning (SPP) level if the TDCP is augmented with the pseudo-range, while the TCP based
method’s position accuracy can reach the sub-meter level. In order to further improve the position ac-
curacy of the TDCP based method, a particle filter (PF) with modified TDCP observation is implemented
in the TDCP/IMU tightly-coupled navigation system. The modified TDCP is defined as the carrier phase
difference between the reference and observation epochs. The absolute position accuracy is determined
by the reference position accuracy. If the reference position is taken from DGPS, the absolute position
accuracy can reach the sub-meter level.

For TCP/IMU tightly-coupled navigation systems, because the implementation of TCP in the navigation
Kalman filter introduces additional states to the state vector, a hybrid CKF+EKF filtering method with
the CKF estimating nonlinear states and the EKF estimating linear states, is proposed to maintain the
CKF’s benefits while reducing the computational load. The navigation results indicate the effectiveness
of the method.

After applying the improvements, the performance of a non-differential GPS/MEMS IMU tightly-coupled
navigation system can be greatly improved.
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1 Introduction and background

1.1 Introduction

Owing to the complementary natures of global positioning system (GPS) and inertial measurement unit
(IMU), their integration has been researched for several decades. GPS errors have long-term stability,
which do not diverge unlimitedly over time (Kaplan and Hegarty, 2005). Nonetheless, as a radio navi-
gation system, GPS is easy to be affected by surroundings such as high buildings or forests. IMU errors,
especially for MEMS IMU, usually grow and accumulate very quickly in a stand-alone mode. However,
IMU is not sensitive to surroundings. When the GPS signal is blocked and unavailable, IMU can help
maintain the positioning accuracy and thus serves as a GPS backup in the short term (Titterton and We-
ston, 2004). A GPS/IMU integrated navigation system is proposed based on the error properties of these
two systems (Groves, 2008). In such a system, GPS sensors can bound navigation errors and calibrate
the inertial sensors, while IMU can interpolate the GPS positioning result and consequently improve the
output frequency. Furthermore, the attitude is estimated from the IMU raw data, which is not possible for
a single GPS receiver alone (Farrell, 2008). A GPS/IMU integrated navigation system makes the best use
of the properties of the GPS sensor and the inertial sensors to construct a long-term stable, self-contained
and high output frequency position-velocity-attitude navigation system.

1.1.1 Integration architectures

According to the types of GPS measurements implemented and how a GPS receiver is aided by the
IMU in the integration algorithm, the architectures of GPS/IMU integrated navigation systems can be
divided into loosely-coupled, tightly-coupled and deeply-coupled navigation systems (Groves, 2008).
The definition and properties of each integration strategy can be summarised as below.

1. Loosely-coupled integration

In a GPS/IMU loosely-coupled navigation system, the position and velocity estimated by the GPS receiver
are used as measurements in the integrated navigation Kalman filter. The integration scheme is simpler
than tightly- and deeply- coupled navigation systems and accordingly requires a lower computational
load. However, this kind of integrated navigation system has a cascaded architecture with two separate
Kalman filters. The GPS navigation Kalman filter output errors are time-correlated (Groves, 2008). The
direct implementation of GPS solutions in the IMU navigation Kalman filter may affect the estimation
of IMU errors. The loosely-coupled navigation system works only when the number of observed GPS
satellites is greater than three, which is the basic requirement of the GPS positioning.

2. Tightly-coupled integration

In a GPS/IMU tightly-coupled navigation system, GPS raw observations, such as pseudorange (PR), car-
rier phase and Doppler, will be integrated directly with the inertial navigation system. GPS-related states
are also estimated in the navigation Kalman filter and fed back to correct GPS observations. Tightly-
coupled navigation systems can still work when the number of the observed GPS satellites is less than
four. Full GPS solutions are not necessary, either. The cascaded filtering problem in the loosely-coupled
navigation system is also avoided. Further more, the handover of GNSS positioning and velocity co-
variance, due to satellite geometry and availability, to the integration algorithm is done implicitly in a
tightly-coupled navigation system (Groves, 2008).

3. Deeply-coupled integration
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In a deeply-coupled, also referred to as ultra-tightly coupled, GPS/IMU integrated navigation system,
the GPS receiver accumulated correlator outputs: in-phase sample (Is) and quadraphase samples (Qs),
serve as direct inputs into the integration algorithm. The code and carrier numerical controller oscillator
(NCO) commands are generated using corrected inertial navigation solutions. Since the IMU measure-
ments are not affected by jamming or spoofing, the robustness of the integrated navigation system can
be greatly enhanced. Deep integration enables lower tracking bandwidth and increased noise resistance.
It can work at lower C/N0 levels (Groves, 2008).

1.1.2 Tightly-coupled integration strategies

The loosely-coupled integration is easy to accomplish and has been researched in many works (Godha,
2006; Ramanandan, 2011; Schmidt, 2011). For which reason, it will not be discussed in this thesis.
Deeply-coupled navigation systems are mainly implemented with a software GPS receiver, due to the
hardware limit. The implementation of a GPS/IMU deeply-coupled navigation system has been described
in Sun (2010); Li (2012); Wang et al. (2009). In this work, the research focuses on improving the
performance of a non-differential GPS/MEMS IMU tightly-coupled navigation system. According to GPS
observations implemented in a navigation Kalman filter and how to deal with carrier phase observations,
GPS/IMU tightly-coupled navigation systems can be categorized as:

1. pseudorange+Doppler tightly-coupled navigation system

A pseudorange+Doppler GPS/IMU tightly-coupled navigation represents a conventional strategy. Many
researchers dealing with tightly-coupled navigation systems adapt this integration strategy (Godha,
2006; Angrisano, 2010; Zhou, 2013; Jiang, 2010; Miller et al., 2008; Yi, 2007). This kind of system
is relatively easy to accomplish and can be applied in real time, because there is no need to deal with
the inherent ambiguity problem of carrier phase observations and because there are no requirements for
precise orbit and precise clock, which usually have a time delay. However, this method only achieves
single point positioning (SPP) accuracy.

2. Time differenced carrier phase tightly-coupled navigation system

Due to the difficulty in dealing with carrier phase ambiguities, the time differenced carrier phase (TDCP)
method is proposed to form an observation without GPS carrier phase ambiguity terms through differ-
encing between two GPS epochs. This method is based on a fact that the ambiguity maintains as a
constant while there are no GPS blockages or cycle slips (Moafipoor et al., 2004; Wendel et al., 2006a;
Wendel and Trommer, 2004). The TDCP measurements, derived from GPS carrier phase observations,
can achieve centimeter or even millimeter accuracy, thus leading to an accurate delta-position observa-
tion and further a high accuracy velocity estimation (Serrano et al., 2004; Ding and Wang, 2011; Ding,
2007). The TDCP system is suitable for real-time applications. However, implementing TDCP measure-
ments only in integrated navigation systems will cause large position drift, because of the fast position
error accumulation through the TDCP (Han and Wang, 2012; Ding, 2008). Accordingly, pseudorange
measurements are usually augmented as observations to bound position drift but with SPP accuracy. The
measurement matrix related with TDCP measurements is difficult to compute, since it involves several
matrix adding and multiplying operations (Zhao et al., 2015).

3. Total carrier phase tightly-coupled navigation system

In order to further improve the positioning accuracy of the integrated navigation system, total carrier
phase (TCP) observations can be implemented as measurements in the navigation Kalman filter. The
TCP method estimates carrier phase parameters such as ambiguities in the navigation Kalman filter,
considering them as extra states augmented by a conventional state vector (Zhang and Gao, 2005b,a;
Ascher et al., 2011; Du and Gao, 2010; Du, 2010; Roesler and Martell, 2009; Rabbou and El-Rabbany,
2014b). Applying the TCP in a tightly-coupled navigation system can improve positioning accuracy
to the sub-meter level. However, carrier phase observations must be preprocessed based on precise
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point positioning (PPP) technique, with all possible errors corrected by relevant models before applied
in the integrated navigation system or estimated as extra states in the navigation Kalman filter. The
computational load is greatly increased accordingly. The TCP based tightly-coupled navigation system is
not suitable for real-time applications, due to the requirement for precise orbit and precise clock.

If the reference station is available, the differential GPS positioning technique can also be applied to
correct GPS observations and improve positioning accuracy (Ramanandan, 2011; Karamat, 2014). In this
work, non-differential GPS/IMU tightly-coupled navigation systems are the main concern. Differential
GPS/IMU integration systems will not be discussed any further.

1.2 Previous work

This thesis aims at improving the navigation performance of conventional non-differential GPS/MEMS
IMU tightly-coupled navigation systems. The work mainly concentrates on three aspects: nonlinear filter
application, inertial sensors’ stochastic error modelling and the implementation of the carrier phase as
measurements. The previous work of each aspect is summarized below.

1.2.1 Nonlinear filter application

Estimation techniques are important in the GPS/IMU tightly-coupled navigation system design. A robust,
effective and optimal state estimator is helpful in improving not only navigation accuracy but also fault
detection and integrity monitoring for a time-varying system like a GPS/IMU integrated navigation sys-
tem (Groves, 2008). The artificial neural network (ANN) technique can be implemented in a GPS/IMU
integrated navigation system (Chiang et al., 2003; El-Sheimy et al., 2006; Abdel-Hamid, 2005). ANN
consists of a set of adaptive weights and is capable of approximating non-linear functions of their inputs.

As an optimal, linear and Guassian estimation technique, the Kalman filter has also been widely ap-
plied in tightly-coupled navigation systems. GPS/IMU tightly-coupled navigation systems feature some
nonlinearity in their measurement and state transition functions, so the extended Kalman filter (EKF),
generating a first order Taylor approximation to nonlinear functions, is proposed and applied (Angrisano,
2010; Jiang, 2010). Due to that the higher order terms are neglected, the EKF appears to have a de-
graded computation performance in high nonlinear cases. In order to further improve the navigation
performance, nonlinear Kalman filtering methods, e.g. the sigma-point Kalman filter (SPKF), the Un-
scented Kalman filter (UKF) and the Cubature Kalman filter (CKF), are implemented in integrated
navigation systems, which are expected to show better performance than the EKF and Kalman filter
(Van Der Merwe, 2004; Zhou, 2013; Yi, 2007; Julier et al., 2007). These nonlinear filtering methods are
proposed and categorized according to how to compute the integral of nonlinear function times Gaus-
sian density through some transformations such as Unscented transformation or Cubature transformation
(Julier and Uhlmann, 2004; Arasaratnam, 2009; Arasaratnam and Haykin, 2009). Some researchers im-
plement the particle filter (PF) and its relevant extensions, e.g. the extended particle filter (EPF) and the
Unscented particle filter (UPF), in tightly-coupled navigation systems, because multipath effects behave
like a non-Gaussian noise (Zhou, 2013; Yi, 2007; Georgy et al., 2010). The implementation of nonlinear
filtering methods can also avoid calculating Jacobian matrices.

However, the effectiveness of nonlinear filtering methods in integrated navigation systems is controver-
sial. In some research works, the authors reported that nonlinear filtering methods can improve the
navigation performance (Bistrovs and Kluga, 2013; Wang et al., 2008; Crassidis, 2006; Van Der Merwe,
2004; Julier et al., 2007), while other researchers argue that nonlinear filtering methods are useless in
this regard (Rhudy et al., 2013). The merits of nonlinear filtering methods are shown when the system’s
nonlinearity is high. If nonlinear filtering methods are implemented in a linear system or nonlinear sys-
tem with a linearised state transition function and measurement function, they should have a similar or
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even worse performance than the EKF or Kalman filter, because nonlinear filtering methods themselves
are suboptimal estimators, while the Kalman filter is an optimal estimator.

With regard to the error state space form of a GPS/IMU tightly-coupled navigation system, its nonlin-
earity is not so high when observations are available and all the states are observable under specific
motions (Becker et al., 2010). In these cases, a nonlinear filtering method degrades into a linear method
with a similar and even worse navigation performance than the KF. In other cases, for example, in a
large misalignment or large initialisation position error case when integrated navigation systems present
high nonlinearity, the merits of nonlinear filtering methods can be better shown (Wendel et al., 2005,
2006b; Ali and Ullah Baig Mirza, 2011). Similar nonlinear filtering performance improvements can also
be seen in GPS outages and unobservable cases when observations have no benefits in the state esti-
mation and inertial sensor errors cannot be well compensated or estimated. In an error state Kalman
filter, the error state transition function is valid only when the estimation error is small. For example, the
attitude error should be smaller than 5deg. In large misalignment, GPS outage and unobservable cases,
the large attitude error from the bad attitude initialisation or the fast attitude error accumulation can
render the psi-angle attitude expression invalid. The fact that the small error assumption in a psi-angle
expression cannot hold true leads to the system’s nonlinearity. Nonlinear filtering methods working with
nonlinear attitude error expression are able to overcome this kind of nonlinearity, because they have
no requirements in small attitude error assumption. In Chapter 3, the CKF will be taken as an exam-
ple to further examine the performance of nonlinear filtering methods in integrated navigation systems
through theoretical analysis, simulation and experiment results.

The particle filter is a sampling based filtering method. It uses N independent samples from the a priori
density to approximate the expectation of a system by sample average (Arulampalam et al., 2002). One
of the largest advantages of the particle filter is its capability of dealing with nonlinear and non-Gaussian
problems such as the object-tracking, map-aided navigation, robot applications and so on (Arulampalam
et al., 2002; Okuma et al., 2004; Hafner et al., 2014; Vlassis et al., 2002). The particle filter and its
relative extensions, the EPF, the UPF and the Gaussian sum particle filter (GSPF) have been successfully
applied in GPS/IMU tightly-coupled navigation systems (Yi, 2007; Zhou, 2013; Giremus et al., 2005; Yi
and Grejner-Brzezinska, 2006; Zhou et al., 2011). However, the non-Gaussian property of pseudorange
observations is obvious only in the multipath surroundings such as buildings or forests. Besides this,
most researchers implement Gaussian particle filter in the GPS/IMU tightly-coupled navigation system
on the assumption that all the noises are Gaussian distributed, because of the difficulty of determining
the actual noise distribution of states and observations. So the benefits of the particle filtering methods
in dealing with nonlinear and non-Gaussian problems cannot be fully shown in integrated navigation
systems (Zhou, 2013; Zhou et al., 2011). Actually, the introduction of the particle filter to a Gaussian
system will add extra noise to the estimation results, which seems to be harmful and increases the
computational load.

1.2.2 Inertial sensors’ stochastic error modelling

The inertial sensors’ error can be roughly divided into two parts: deterministic errors and stochastic
errors (Groves, 2008; Yi, 2007). Deterministic errors include scale factor error, constant bias, misalign-
ment effects and so on, which can be reduced or eliminated through calibration. Stochastic errors include
inertial sensors’ random noises, which cannot be reduced or eliminated through calibration (IEEE Std
952TM-1997, 2008). How to calibrate inertial sensors and eliminate deterministic errors has been de-
scribed and introduced in many works (Hall et al., 2000; Buschmann et al., 2001; Syed et al., 2007;
Syed, 2009). This thesis primarily delas with the modelling of inertial sensors’ stochastic errors in the
navigation Kalman filter.

The prerequisite of stochastic error modelling is how to determine the coefficients of inertial sensors’
noises. Considering calculation principles and processes, there are mainly three methods that can be used
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here: Allan variance, power spectral density (PSD) and Wavelet moment (IEEE Std 952TM-1997, 2008;
Zhao et al., 2011; Guerrier, 2013; Stebler, 2013). All the three methods are equivalent in mathematics.
They can be converted into each other through relevant mathematical transformations. For example, as
a time-domain method, the Allan variance can be treated as a Fourier pair of PSD, which is calculated
in the frequency domain. The recently developed Wavelet moment based method creates a relationship
between the stochastic errors’ coefficients and the coefficients of wavelet terms. If a Haar filter is applied,
this method is equivalent to the Allan variance according to Guerrier (2013); Stebler (2013). In other
words, the Allan variance technique can be treated as a special case of the Wavelet moment based
methods. The Allan variance is now the primary method used in determining inertial sensors’ stochastic
errors (IEEE Std 952TM-1997, 2008; Hou, 2004; El-Sheimy et al., 2008) and is also applied in many
other fields such as different GPS positioning methods’ residual analysis and a GPS/IMU integrated
navigation system evaluation (Niu et al., 2014; Zhang et al., 2013a).

The inertial sensors’ noise is usually modelled as a 1st-order Markovian process or a random walk in the
navigation Kalman filter. In Schwarz and Wei (2001); Xing and Gebre-Egziabher (2008), the researchers
apply the Allan variance technique to first sort out and determine the stochastic errors’ coefficients
and then model the inertial sensor noise as a 1st-order Markovian process or a random walk. The
ignoring in other noises determined from the Allan variance plot is not scientific and may produce some
negative effects to the final navigation results, although a simpler implementation can help reduce the
computational load. In order to further improve the modelling accuracy of the inertial sensors’ stochastic
errors, some researchers model the inertial sensors’ noises as high order auto-regressive moving average
(ARMA) processes (Park, 2004; Wang et al., 2012; Park and Gao, 2008). The order and coefficients of
the ARMA processes are determined by applying Yule-Walker or Burger estimation methods (Zelinker
and Taylor, 1994). However, the ARMA process is model sensitive as introduced in IEEE Std 952TM-
1997 (2008). In order to determine the order of the inertial sensors’ ARMA process, Seong et al. (2000)
applies Allan variance technique to identify inertial sensors’ noise types. The order of the ARMA process is
determined according to the combination of different kinds of noise, while the coefficients are estimated
based on the relevant ARMA parameters estimation methods. A differential equation is also used to
model inertial sensors’ stochastic errors. In Han and Wang (2011); Saini et al. (2010); Zhao (2013),
an equivalent differential equation is implemented in the navigation Kalman filter to describe all the
coloured noises. This leads to an improvement in the navigation performance.

1.2.3 Carrier phase application

Implementing carrier phase observations in GPS/IMU tightly-coupled navigation systems brings some
benefits to the navigation results estimation. The TDCP is one of the most popular carrier phase related
observations, which can eliminate the ambiguities through differencing between two GPS epochs. Thus,
there is no need in fixing carrier phase ambiguities. TDCP observations can help improve the relative
positioning accuracy and velocity estimation accuracy (Moafipoor et al., 2004; Wendel et al., 2006a;
Wendel and Trommer, 2004). A conventional pseudorange+TDCP/IMU tightly-coupled navigation sys-
tem can only achieve SPP accuracy. In order to improve the performance of the TDCP based system,
several enhancing methods have been developed. In Tang et al. (2007), a reduced Kalman filter is ap-
plied to a TDCP based integration navigation system and can help reduce the computational load. Han
and Wang (2012) design a dual-rate Kalman filter where pseudorange and TDCP measurements work
in one Kalman filter with different updating rates to reduce the pseudorange but increase the TDCP
effects in the final position estimation, which shows a relatively higher positioning accuracy than the
pseudorange-only method. The idea behind the dual-rate Kalman filter is trying to separate the pseudo-
range observation noise from the TDCP to make use of the TDCP’s higher relative positioning accuracy.
Although a dual-rate or reduced Kalman filter is applied, the reported pseudorange+TDCP positioning
accuracy can only reach SPP accuracy.
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The integration of the TCP observations with low-cost MEMS IMU can improve the positioning accuracy
to the sub-meter level in kinematic cases when the ambiguities are convergent (Ascher et al., 2011; Du
and Gao, 2010; Du, 2010; Roesler and Martell, 2009; Rabbou and El-Rabbany, 2014b). IMU can also
enhance the GPS performance. In Du (2011); Du and Gao (2012), a MEMS IMU is used as an aiding
sensor with wide lane (WL) and extra wide lane (EWL) phase combinations to determine unique cycle
slips in L1 and L2 frequencies. The reported cycle slip detection and PPP re-convergence speed can be
improved by applying IMU aiding. In Karaim et al. (2013); Figueiredo e Silva (2012), inertial sensors
are proved to be useful in real-time cycle slip detection, which is helpful for the carrier phase positioning
technique. However, TCP observations will introduce some GPS related states to the navigation Kalman
filter, which increases the computational burden, especially when implemented with nonlinear filtering
methods.

1.3 Thesis organisation and contribution

1.3.1 Thesis organisation

This thesis mainly introduces the author’s effort in improving the performance of a non-differential
GPS/MEMS IMU tightly-coupled navigation system through nonlinear filtering methods’ application,
inertial sensors’ stochastic modelling and the implementation of carrier phase observations. This thesis
is accordingly divided into eight chapters. The main work of each chapter is summarised as below.

Chapter 1 gives a brief introduction to the integration architectures of GPS/IMU integrated navigation
systems and tightly-coupled strategies. The previous work is then summarised. Finally, this thesis’
organisation and the author’s contribution are presented.

Chapter 2 summarises the working principles and error budgets of GPS and IMU navigation systems
separately. The conventional GPS/IMU tightly-coupled navigation system and its relevant state transi-
tion and measurement functions are also derived. Owing to the high noise level and biases of MEMS
gyroscopes, a brief summary on determining initial yaw angle using aiding information is also provided.

Chapter 3 evaluates the performance of the CKF in a GPS/IMU tightly-coupled navigation system. The
estimation accuracy and working principle of the CKF is firstly analysed through Taylor expansion. A
nonlinear attitude error expression is introduced and implemented in the navigation Kalman filter. The
benefits of the CKF in an integrated navigation system are further examined in the unobservable, large
misalignment and GPS outage cases. The CPF (Cubature Particle Filter) is also derived and tested in this
chapter.

Chapter 4 describes how to use the shaping filter theory to model inertial sensors’ stochastic errors in
the navigation Kalman filter. Shaping filter theory is introduced at first. Each IMU stochastic error’s
shaping filter transfer function is deduced from its relevant PSD. An equivalence theory is proposed to
find an equivalent shaping filter transfer function for all the inertial sensors’ coloured noises. State space
forms are further deduced from the s-domain transfer function using inverse Laplace transformation or Z-
transformation. The simulation and experiment results indicate that this method is helpful in improving
the navigation performance.

Chapter 5 makes a comparison between TDCP and TCP/IMU tightly-coupled navigation systems. Their
relevant measurement functions are derived. The performance comparison is evaluated through the
simulation and experiment.

Chapter 6 describes how to apply the particle filter in a TDCP/IMU tightly-coupled navigation system to
improve the positioning accuracy. A modified TDCP, which is defined as the carrier phase measurements’
difference between reference and current epochs, is proposed to weight the particles. The positioning
accuracy of the PF based TDCP/IMU tightly-coupled navigation system can achieve sub-meter level, if
the initial reference position is determined from the phase DGPS.
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Chapter 7 introduces a CKF+EKF hybrid filtering method to the TCP/IMU tightly-coupled navigation
system, which applies a nonlinear filtering method (the CKF) to the estimated IMU related states, while
a linear filtering method (the EKF) to estimate GPS related states. Proposing this hybrid filtering method
aims at maintaining the advantage of nonlinear filtering methods while reducing the computational
load. The CFK+EKF hybrid filtering method is compared with EKF+EKF, EKF-only and CKF-only methods
through simulation and experiments.

Chapter 8 summarises the author’s work and presents recommended future work.

1.3.2 Contribution

The contribution of this thesis is summarised as below.

1. The performance of a nonlinear filtering method (the CKF) in a GPS/IMU tightly-coupled nav-
igation system is examined and researched in detail. The CKF estimation accuracy is analysed
through Taylor expansion. The mathematical derivation shows that the CKF’s advantage is only
fully presented when the system’s nonlinearity is high. Several simulations and trajectories with
different yaw angle observability are conducted to check the attitude estimation accuracy differ-
ence between the CKF and EKF. When the yaw angle is unobservable in the stationary and constant
velocity cases, the CKF performs better than the EKF. In large misalignment case and GPS outages,
the CKF converges faster than the EKF. If the GPS signal is always available and all the states are
observable, the benefit of the CKF is not obvious.

2. This work introduces and develops the use of a shaping filter to model inertial sensors’ stochastic
errors. The method describes how to implement coloured noise in a navigation Kalman filter after
determining the stochastic errors’ coefficients from the Allan variance plot. The shaping filters for
both stationary and nonstationary processes are deduced and approximated from their PSD. From
the state space form, it can be seen that the differential equation and the ARMA process modelling
methods are mathematically equivalent. They show a similar performance because they can be
derived from the same shaping filter transfer function. The navigation performance can also be
improved with the shaping filter based method.

3. The implementation of the carrier phase in a GPS/IMU tightly-coupled navigation system is in-
troduced. Applying high accuracy carrier phase observations can improve velocity and position
estimation accuracy, whether the carrier phase is implemented as TDCP or TCP. A more accurate
TDCP measurement matrix is deduced in this thesis. The TCP based method can improve the
positioning accuracy of an integrated navigation system to the sub-meter level.

4. A modified TDCP, defined as the carrier phase difference between the reference and observation
epochs, is proposed to bound position drift caused by conventional TDCP measurements. It is
further implemented with the particle filter to improve positioning accuracy, based on the position
uncertainty of pseudorange being larger than the carrier phase. If some particles are generated
around the position estimated by the pseudorange measurements, there is a considerable possibility
that several particles will lie close to the carrier phase position result. A modified TDCP with a
particle filter can lead to sub-meter positioning accuracy, which is impossible for a conventional
KF-based PR+TDCP tightly-coupled strategy.

5. For a TCP/IMU tightly-coupled navigation system, a CKF+EKF hybrid filtering method is proposed
to reduce the computational load. The hybrid filtering method creates a balance between maintain-
ing the advantage of the CKF in dealing with nonlinear problems and reducing the computational
burden. The simulation and experiment results show that the CKF+EKF filtering method per-
forms better than the EKF based methods. Considering the computational load, the hybrid filtering
method is more efficient than the CKF-only method.
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2 Basic concepts of integrated navigation

In this chapter, some basic concepts related to GPS/IMU tightly-coupled navigation systems will be in-
troduced. The GPS and IMU principles and errors are briefly described. The model of the conventional
GPS/IMU tightly-coupled navigation system is deduced subsequently. Several yaw determination meth-
ods are compared regarding their effectiveness in a MEMS IMU application, due to the difficulty in
determining the yaw angle from the MEMS gyroscope outputs.

2.1 GPS principles and errors

2.1.1 GPS system

GPS is an all-weather, passive, worldwide, continuous coverage, satellite-based radio navigation system
(Kaplan and Hegarty, 2005). It consists of three major segments: space, control and user. The space
segment consists of GPS satellites. The control segment mainly monitors the health and status of the
space segment and determines the navigation messages including orbital model and clock correction pa-
rameters for each satellite. The user segment mainly relates to antennas and receivers. For a specific GPS
user, GPS observations and navigation messages are the most important elements for positioning. The
geometric distance between satellite and receiver is contained in GPS observations, while the navigation
messages provide the satellites’ position and velocity (Kaplan and Hegarty, 2005). When the number of
observed satellites and observation time meet positioning requirements, the GPS system can determine
the user’s position through state estimation methods.

1. GPS observations

GPS observations include pseudorange, carrier phase and range rate. Range rate is usually derived
from Doppler, which can be used to estimate the user’s velocity. The user’s position is determined from
pseudorange and carrier phase. pseudorange, carrier phase and range rate observations are expressed
as (Kaplan and Hegarty, 2005)

ρm = rm+ cδt r − cδts,m+ Im+ Tm+ ερ,m

lm = rm+ cδt r − cδts,m− Im+ Tm+λN + εl,m

ρ̇m = ṙm+ cδ ṫ r − cδ ṫs,m+δ f + ερ̇,m

(2.1)

where ρm represents pseudorange from the m-th satellite, lm represents carrier phase expressed in meters
and ρ̇m represents Doppler (or range rate). rm and ṙm are the true range and range rate between the
receiver antenna at receiving time and the m-th GPS satellite at transmission time, δt r is the receiver
clock offset, δts,m is the m-th satellite clock offset, δ ṫ r is the receiver clock drift, δ ṫs,m is the m-th satellite
clock drift. δ f is the frequency correction of the relativistic effects (Xu, 2007). Im is ionospheric delay,
Tm is tropospheric delay, N is the carrier phase ambiguity, which is an unknown constant if there is no
cycle slip. ερ,m, εl,m and ερ̇,m are the errors in pseudorange, carrier phase and Doppler, due to receiver
noise and other errors such as multipath effects and orbit prediction errors.

2. Navigation message

The navigation message provides the necessary information for the position computation. It includes
ephemeris for the calculation of the satellite coordinates, time parameters and clock corrections, satellite
health information and so on. The navigation message is generated in the control segment. The control
segment uploads all the information to the satellites several times every day.
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2.1.2 GPS positioning methods

According to the implemented observations and the availability of base stations, the GPS positioning
techniques can be roughly divided into three categories: single point positioning (SPP), precise point po-
sitioning (PPP), and differential GPS (DGPS). SPP and PPP are non-differential GPS positioning methods
without base stations, while DGPS needs corrections from the base stations to achieve a greater position-
ing accuracy. The properties and working principles of the three positioning methods can be summarised
as below.

1. SPP

The SPP method performs the positioning based on pseudorange observations from a single GPS receiver.
After applying all the relevant corrections to pseudorange observations, the SPP technique is applied to
estimate the receiver position and clock offset with the satellite position calculated from the navigation
message. The positioning accuracy of the SPP method cannot exceed 13 m (95%) horizontally, 22 m
(95%) vertically, which fits a low-accuracy requirement (Kaplan and Hegarty, 2005). Since the SPP
method can resolve position in one epoch, it is suitable for real-time applications.

2. PPP

PPP is a single-receiver GPS positioning method using pseudorange and carrier phase as observations.
PPP utilizes precise obit and precise clock provided by international GNSS service (IGS) to calculate
satellite position and clock offset and then corrects all the possible errors, such as phase center offset,
atmospheric delay, etc., through relevant models or products from IGS for a greater positioning accuracy.
The PPP technique converges more slowly (usually 30 minutes) than the differential GPS positioning
method (Martin, 2013; Carcanague, 2013). When PPP is convergent, its positioning accuracy can reach
to the centimeter level in static cases and the sub-meter level in kinematic cases. The PPP method relies
on the precise orbit published by IGS stations, which features some time delay. PPP is now mainly used
for post-processing (Martin, 2013; Carcanague, 2013). However, with the ultra-rapid (predicted half)
orbit provided by IGS, PPP can perform real-time positioning. Trimble and Fugro begin to provide their
own commercial real-time PPP service like RTX (Real Time eXtended) and Starfix G2 at present.

3. DGPS

In DGPS mode, the roving receiver works with common mode errors (ionospheric delay, tropospheric
delay, satellite ephemeris and clock error) estimated and broadcasted by one base receiver with a fixed
known position to improve positioning accuracy. The rover position is determined relative to the refer-
ence position. If that reference position is known, the absolute position can be computed. The effect of
eliminating the common mode errors is related to the baseline length. Increasing the baseline length will
enlarge positioning error. The pseudorange DGPS positioning accuracy can reach 1 m with a baseline
less than 10 km, while the carrier phase DGPS achieves the centimeter level (Misra and Enge, 2006).
DGPS can meet real-time positioning requirements.

A popular DGPS technique is the real-time kinematic (RTK) positioning method. In RTK mode, the ob-
servations of base stations are transmitted to the rover receiver via radio link in real time. The rover
receiver determines the difference between measurements from the reference receivers in order to elim-
inate measurement errors and thus achieve a greater positioning accuracy. The key to the RTK technique
is fixing carrier phase ambiguities in real time (Ueno et al., 1997). On the fly (OTF) initialization can help
determine ambiguities, which can be initialized in 30-60 seconds. The RTK technique’s static positioning
accuracy is within millimetres, while the kinematic positioning accuracy is within centimetres.

In order to overcome baseline limitations, a network RTK technique is proposed to solve the problem
of RTK positioning accuracy decreasing as baseline increases. In the network RTK technique, several
reference stations need to be established to cover the local area (Han and Rizos, 1996; Rizos, 2003;
Rizos and Han, 2003). During the positioning process, the stations work together to form a virtual
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reference station, which can send corrections to the user’s receiver by radio to improve positioning
accuracy. Applying network RTK technique can extend the baseline to 100 km (Rizos, 2003; Rizos and
Han, 2003).

2.1.3 GPS error sources and properties

GPS observation can be represented as the summation of the geometric range from the GPS antenna to
the satellite and various error terms. According to error properties, GPS errors are generally categorized
into navigation message errors, transmission errors and receiver errors. The first are the parameter
errors from navigation messages including satellite orbit and clock errors. The second set consists of
transmission errors caused by the atmosphere when GPS signals propagate from satellite to receiver, for
example, tropospheric delay and ionospheric delay. The third group is produced by the GPS receiver
when the GPS signal is tracked, consisting of receiver clock offset, multipath effects, receiver noise, etc.

1. Navigation message errors

The navigation message errors contain the satellite calculation-related errors including satellite clock
error and ephemeris error. Satellite clock correction parameters are computed using a curve-fitting
method. Some residual errors arise from predicted estimates of actual satellite clock errors. However,
the range error due to residual clock errors is relatively smaller. It is expected that this kind of error will
continue to decrease as newer satellites are launched with more accurate clocks and improvements on
the control segment side.

The ephemeris error or residual satellite position error represents the position difference between the
true satellite position and the control segment’s best prediction of each satellite’s position. The effective
GPS observation error, due to ephemeris errors, is on the order of 0.8 m (1σ) (Kaplan and Hegarty,
2005). The satellite clock error and ephemeris error have strong spatially correlated characteristics,
which allows them possible to be completely eliminated by applying differential positioning techniques.

2. Transmission errors

During the propagation of GPS signal from satellite to receiver, the atmosphere will slow down the
propagation speed of electromagnetic wave signal when it enters to the Earth atmosphere. Since GPS
works with the speed of light in vacuum, the speed change caused by atmosphere effects adds an extra
delay to the GPS positioning system, specifically tropospheric delay and ionospheric delay.

Tropospheric delay includes both a dry part and a wet part. 90% of the dry part can be corrected using
relevant models such as the Hopfield model, Saastamoinen model and Black model (Kaplan and Hegarty,
2005). The wet part can be estimated as an extra state in the Kalman filter, which is modelled as equal
for all the satellites in the zenith path direction. However, for a low-accuracy application like SPP, the
estimation of the wet tropospheric delay is neither necessary nor required. Tropospheric delay has strong
spatial and temporary correlation properties.

Ionospheric delay is calculated to first-order as

I =
40.3 · T EC

f 2 (2.2)

where T EC is total electron count along the path, and f is the carrier phase frequency. Ionosphere has
opposite effects on the phase and group refractive indices, wherefore phase ionospheric delay acts in the
opposite way than pseudorange ionospheric delay. The two frequency receivers can utilize the frequency
dependence of ionospheric delay to eliminate its effect as shown in equation (2.3). The single frequency
receiver must rely on differential operations or the ionospheric model such as the Klobuchar model, to
correct ionospheric delay (Kaplan and Hegarty, 2005).
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where ρI F and lI F are the ionosphere free pseudorange and carrier phase combinations. ρ1,m and ρ2,m
represent the pseudorange observations of the m-th satellite in L1 and L2 carrier frequencies. l1,m and
l2,m represent the carrier phase observations of the m-th satellite in L1 and L2 carrier frequencies. f1 and
f2 are the L1 and L2 carrier frequencies.

3. Receiver errors

Receiver errors contain receiver noise, multipath effects and receiver clock error. Receiver noise and
multipath effects have different influences on pseudorange and carrier phase observations. Receiver
errors are spatially and temporarily independent.

Receiver noise comes from thermal fluctuations, extraneous RF signals, cross correlation between the
code division multiple access (CDMA) codes, signal quantization and sampling effects. This noise is
usually modelled as white and independent noise between both satellites and channels. The multipath
effects are caused by the satellite signal reaching the receiver antenna via multiple paths due to multiple
signal reflections. The multipath effect is usually modelled as a non-Gaussian noise. According to Misra
and Enge (2006), in the positioning application, the receiver noise will cause a 0.25-0.5 m error to
pseudorange observations and 1-2 mm to carrier phase observations. The multipath effects can cause a
0.5-1 meter error to pseudorange observations and 5-10 mm error to carrier phase observations.

The receiver clock error can be eliminated by introducing a reference satellite. The user equipment bias
introduced by the receiver hardware is often ignored since they are relatively smaller than the other
error sources.

4. Summary

From the analysis above, it can be seen that GPS errors have the following properties: long-term stability,
environment-dependence, strong spatial and temporary correlation.

In long-term observations, unlike self-contained sensors, GPS errors will not grow divergent. So in a
GPS/IMU integrated navigation system, GPS observations or navigation results can help bound IMU
navigation error accumulation.

As a radio signal, the GPS signal can easily be blocked by surroundings such as high buildings or forests.
In heavily reflective environments, the multipath effects will be enlarged. Accordingly, GPS errors have
environment-dependent properties. The integration with an IMU can help reduce the environment de-
pendence errors.

GPS transmission errors also have spatial and temporary correlation characteristics. The correlation
characteristics can be exploited to improve the over-all performance of the GPS system especially in
differential mode, which is helpful in eliminating most of the transmission and common mode errors.

2.2 IMU principle and errors

Inertial navigation is a dead-reckoning navigation system that works by continuously measuring a ve-
hicle’s accelerations and angle rates in its pointing directions to compute navigation solutions through
inertial navigation mechanization. Three orthogonally configured accelerometers and gyroscopes con-
stitute an IMU carrying out navigation tasks. Given the previously known initial position, velocity and
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attitude, the inertial sensors’ output can be integrated to deduce position, velocity and attitude. IMU
principles, related basic concepts and errors will be discussed and analysed as follows.

2.2.1 IMU principles of operation

A strapdown IMU comprises three mutually orthogonal accelerometers and gyroscopes. The accelerom-
eter triad can sense the vehicle’s acceleration, which can be further integrated to compute the velocity
and position. The gyroscope triad can sense the vehicle’s turn rate, including attitude information. An
IMU works in the continuous self-contained mode with high output rates. Unlike radio based positioning
systems, an inertial navigation system does not suffer from signal transmission problems such as signal
blockages, since it does not rely on signal transmission (Titterton and Weston, 2004). Due to the initial
uncertainty and imperfections of inertial sensors, aiding sensors should be applied to correct the inertial
navigation system (INS) state estimation in a complementary filter.

2.2.2 Reference frames

In strapdown mechanizations, the following seven frames are involved: inertial frame, Earth frame,
local-level frame, navigation frame, computer frame, body frame and platform frame. In this section,
the definitions of and the transformation among the frames will be analysed and discussed (Titterton
and Weston, 2004; Groves, 2008; Farrell, 2008).

1. Inertial frame

The inertial frame noted as i-frame, is a non-accelerating and non-rotating reference frame which is at
rest or may be in uniform linear motion. The Newton’s laws of motion are applied to an inertial frame.
The origin of the inertial coordinate system is arbitrary. For discussion convenience, an Earth centred
inertial (ECI) frame is defined with its origin coinciding with the Earth’s center of mass and the x and z
axes pointing toward the vernal equinox and along the Earth’s spin axes in respect. The y-axis is defined
to complete the right-handed coordinate system. The inertial frame is the reference for the strapdown
inertial navigation system.

2. Earth frame

The Earth frame noted as e-frame, originates at the Earth’s center of mass with the x and z axes pointing
toward the Greenwich meridian and in the mean direction of the rotation axis of Earth. The y-axis
completes the right-handed coordinate system. The Earth frame is also called as Earth centred Earth
fixed (ECEF) frame. In an ECEF frame, a point can be expressed both in terms of Cartesian or ellipsoidal
coordinates with longitude, latitude and height (LLH).

3. Local-level frame

The local-level frame noted as l-frame, usually serves as a direct reference to geodetic observations,
which can be defined anywhere on the surface of Earth. The origin of the local-level frame is arbitrary
such that the x axis points to the east, the y axis to the north and the z axis to the up directions. The
east-north-up (ENU) frame is more suitable for vehicle applications, while north-east-down (NED) frame
suits airborne applications.

4. Navigation frame

The navigation frame is usually denoted as n-frame. A navigation frame refers to the coordinate frame
in which the INS is mechanized. In this thesis, the l-frame is chosen as n-frame for the mechanization of
the strapdown INS.

5. Computer frame
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The computer frame noted as c-frame, is a frame which the navigation computer assumes to be the
true frame. The computer frame differs from the true navigation frame in its definition of the attitude
errors. The difference from the platform frame to the true navigation frame is usually defined as φ angle
(Scherzinger, 1996), while the difference from platform frame to computer frame is defined as ψ angle
(Benson, 1975; Pham, 1991). Inertial error state navigation functions can be both expressed in φ and ψ
angles.

6. Platform frame

The platform frame noted as p-frame, is determined by the real physical platform for a platform iner-
tial navigation system. For a strapdown INS, the platform is determined by the direction cosine matrix
(DCM). The origin of p-frame can be anywhere in the platform, while its axes are defined to be mutually
orthogonal and right-handed along the application-dependent directions. In strapdown inertial mecha-
nisation, p-frame always coincides with the navigation frame. In the inertial navigation error analysis,
the difference between p-frame and c-frame or n-frame represents the orientation error. The difference
between p-frame and c-frame is used in this study.

7. Body frame

The body frame noted as b-frame, is rigidly connected with moving objects. The b-frame’s origin is the
mass center of objects. Three axes are defined as the roll axis pointing toward front, the pitch axis
pointing toward right and the yaw axis completing the right-handed coordinates. The transformation
between b-frame and n-frame is usually described by three rotation angles: roll, pitch and yaw.

2.2.3 Inertial navigation error sources and properties

Based on their properties, inertial navigation errors are divided into mathematical model errors, inertial
sensor errors, initialisation errors, computational errors and motion-dependence errors. These errors
will affect strapdown INS performance and should be analysed and discussed in detail before modelling.

1. Mathematical model errors

Mathematical model errors mainly refer to Earth shape and gravitational errors in this study. In order
to determine a position in the Earth surface, it is necessary to know the shape of the Earth, which
is approximated by a reference ellipsoid. Gravity, usually computed from a gravity model, should be
subtracted from specific forces sensed by accelerometers to calculate the acceleration of objects.

World geodetic system 84 (WGS 84) established in 1984 by Defense Mapping Agency, provides an ellip-
soidal model of the Earth shape with two parameters: semimajor axis and eccentricity. WGS 84 is the
coordinate system of reference for GPS. The shape difference between the Earth’s true shape and WGS
84 contributes to the Earth shape error (Torge, 1991). However, for a low-cost MEMS IMU, the effect of
the Earth shape error can be safely neglected.

Normal gravity can be computed using the International Gravity Formula 1980. The formula implies that
normal gravity is determined by local latitude (Torge, 1991; Moritz, 1980). Gravitational errors refer to
the difference between the computed and true gravities. Gravitational errors can be further subdivided
into gravity anomaly and vertical deflection. Gravity anomaly is the difference between observed gravity
and a value predicted from a model, while vertical deflection is a measure of how far the direction of the
local gravity field has been shifted by local anomalies. Gravitational errors will affect final navigation
results especially in high-precision inertial navigation mechanisation, which should be carefully modelled
and calculated. However, for a low-cost MEMS IMU application, the effect of gravitational errors is not
obvious, either.

2. Inertial sensor errors
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Table 2.1: Accelerometer and gyroscope biases for different IMU grades (Groves, 2008)

IMU Grade Accelerometer bias (m/s2) Gyroscope Bias (deg/h)

Marine 10−4 0.001

Aviation 3 · 10−4− 10−3 0.01

Intermediate 10−3− 10−2 0.1

Tactical 10−2− 10−1 1-100

Automotive > 10−1 > 100

Inertial sensor errors are the most significant error sources in inertial navigation systems. Inertial sensor
errors are mainly attributed to imperfections in principle, manufacturing, assembly technique and so on.
Although the accuracy is different, all types of inertial sensors (accelerometers and gyroscopes) exhibit
biases, scale factors, cross-coupling errors and random noise (Groves, 2008). Inertial sensor errors can
be categorized into deterministic and stochastic errors.

Deterministic errors have four components: a fixed contribution, a temperature-dependent variation, a
run-to-run variation and an in-run variation. These mainly include constant bias, scale factor errors,
temperature effects and so on. The effects of systematic errors can be eliminated or reduced through
pre-calibration in the laboratory (Groves, 2008).

Stochastic errors refer to the stochastic aspect of inertial sensor errors including white noise, bias insta-
bility, quantization noise, rate random walk, rate ramp and so on. Stochastic errors can not be eliminated
through calibration. In theory, they can be corrected through integration with other sensors and esti-
mated simultaneously in a navigation Kalman filter (IEEE Std 952TM-1997, 2008).

The typical accelerometer and gyroscope biases for different IMU grades are shown in Table 2.1 (Groves,
2008).

3. Initialisation errors

Initialisation errors include initial position, velocity and alignment errors. A large initialisation error
causes the nonlinearity of the integrated navigation system (Wendel et al., 2005, 2006b; Ali and Ullah
Baig Mirza, 2011). The initial position can be resolved through GPS positioning or surveying techniques.
Initial velocity can always be assumed to be zero, because INS usually navigates from still stand. Initial
position and velocity errors have relatively smaller effects on the final navigation results.

Alignment errors originate from IMU alignment progress, which will affect navigation initialisation time
and accuracy. The alignment process itself can result in the correlation between attitude errors and
sensor biases. IMU alignment can be further divided into stationary alignment and in-motion alignment
according to its motion statues.

In stationary alignment, the initial attitude is calculated from inertial measurements. Roll and pitch (lev-
elling) angles are initialized by outputs of accelerometers. An accurate yaw angle initialisation requires
aviation-grade gyros or even better. For a low-cost MEMS IMU, the initial yaw angle should be deter-
mined using other aiding sensors such as magnetometers, GPS attitude system and transfer alignment.
Sensor biases are the main source of stationary alignment errors.

In-motion alignment is aided by other observations via Kalman filtering. For a MEMS IMU, yaw angle
estimation accuracy can be improved by applying in-motion alignment technique (Kubo et al., 2006;
Shin and El-Sheimy, 2004). In-motion alignment errors come from observation errors aside from sensor
biases.
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4. Computational errors

Computational errors are mainly attributed to bandwidth limitations, truncated mathematical functions
implemented in strapdown navigation algorithms and numerical integration limitations. Due to the
limited sensor bandwidth, the dynamic mismatch between sensors and insufficient computational speed
prevents the systems from interpreting oscillatory motions correctly, giving rise to coning and sculling
errors. Coning and sculling errors can lead to significant navigation errors. They can be compensated
through Miller’s and Savage’s procedures (Miller, 1983; Savage, 1998a,b; Roscoe, 2001). However, with
the performance improvements of modern computer hardware, the effects of coning and sculling errors
on the final navigation results can be ignored as well. The navigation errors arising from computational
imperfections are small compared with the contributions from other errors (Titterton and Weston, 2004).

5. Motion-dependence errors

The strapdown INS performance depends on the motion of the host vehicle. The motion-dependence
error refers to system imperfections caused by vehicle motion. According to motion types, motion-
dependence errors can be further divided into maneuver-dependent and vibration-dependent errors
(Titterton and Weston, 2004). Vehicle maneuvering can trigger a number of error sources within an
on-board strapdown INS such as Schuler pumping and cycling errors. Vibration-dependent errors deal
with the effects of vibratory and oscillatory motions on the strapdown INS performance. A strapdown
INS can not interpret this vibration correctly, due to its high-frequency properties. Vibration-dependent
errors consist of instrument rectification errors, coning errors, sculling errors, size effect errors and
pseudo-motion errors. As discussed in Zhang et al. (2013b), the motion-dependence errors’ contribution
to MEMS IMU navigation accuracy is smaller than inertial sensor and alignment errors.

6. Summary

The analysis above implies that strapdown INS errors mainly stem from inertial sensor and alignment
errors. The INS error propagation of these two errors is briefly summarized as follows (Groves, 2008;
Flenniken et al., 2005).

1) Navigation errors from gyroscope biases: Gyroscope biases will produce a quadratically increasing po-
sition error over time in short-term error propagation. In medium- and long-term error propagation, the
equivalent eastern gyroscope bias will cause a latitude error oscillating around zero-mean over time and
a longitude error oscillating around nonzero-mean over time; the equivalent northern and heading gyro-
scope biases will cause a latitude error oscillating around nonzero-mean over time and a disconvergent
longitude error over time.

2) Navigation errors from accelerometer biases: Accelerometer biases will produce a quadratically in-
creasing position error over time in short-term error propagation. In medium- and long-term error
propagation, the equivalent eastern accelerometer bias will cause a latitude error oscillating around
zero-mean over time and a longitude error oscillating around nonzero-mean over time; the equivalent
northern accelerometer bias will cause a latitude error oscillating around nonzero-mean over time and a
longitude error oscillating around zero-mean over time.

3) Navigation errors from alignment errors: Alignment errors will produce a quadratically increasing
position error over time in short-term error propagation. In medium- and long-term error propagation,
the initial pitch error will cause a latitude and longitude error oscillating round zero-mean over time;
the initial roll and yaw errors will cause a latitude error oscillating around zero-mean over time and a
longitude error oscillating around nonzero-mean over time.

2.3 Pseudorange+Doppler GPS/IMU tightly-coupled navigation system

A GPS/IMU tightly-coupled navigation system outperforms a loosely-coupled navigation system in that
it can work fluently even when the observed GPS satellites’ number is less than four. Besides this,
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there is no need to design two separate Kalman filters for GPS and IMU. The cascaded Kalman filtering
problem in loosely-coupled navigation systems can be avoided. Unlike loosely-coupled navigation using
position and velocity as observations, a tightly-coupled navigation system directly estimates states and
the covariance matrix from GPS raw observations such as pseudorange, carrier phase and Doppler.

The observations of a conventional PR+Doppler GPS/IMU tightly-coupled navigation system are pseu-
dorange and Doppler. The state vector, state transition function and measurement function are given in
the following sections.

2.3.1 State vector and transition function

The state vector of a conventional PR+Doppler GPS/IMU tightly-coupled navigation Kalman filter is

x=
�

δα,δβ ,δγ,δve,δvn,δvu,δλ,δϕ,δh,εx ,εy ,εz,∇x ,∇y ,∇z, cδt, cδ̇t
�T

(2.4)

where δα,δβ ,δγ are attitude errors expressed as Ψ, δve,δvn,δvu are velocity errors expressed as δv
in ENU navigation frame, δλ,δϕ,δh are position errors expressed in longitude, latitude and height,
εx ,εy ,εz are gyroscope biases in body frame, ∇x ,∇y ,∇z are accelerometer biases, and cδt, cδ̇t are
receiver clock offset expressed in meters and drift in m/s.

IMU state transition functions are (Groves, 2008; Titterton and Weston, 2004)
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(2.5)

where ε are gyroscopes’ biases, ∇ are accelerometers’ biases and βε and β∇ are the time constants of
1st-order Markovian processes for gyroscope and accelerometer biases, Rn is the normal radius, Rm is
the median radius. ω̃n

in is the estimated turn rate of navigation frame with respect to inertial frame
expressed in navigation frame, δωn

in is the estimated turn rate error, and Cn
b is the DCM from the body

frame to the navigation frame. fn represents the specific forces in navigation frame, ωn
ie is the turn rate

of the Earth with respect to inertial frame expressed in navigation frame, ωn
en represents the turn rate

of navigation frame with respect to Earth frame expressed in navigation frame, δωn
ie and δωn

en are the
relevant estimation errors defined as ω̃n

ie−ω
n
ie and ω̃n

en−ω
n
en, and δgn represents the gravitational error

expressed in navigation frame. λ,ϕ, h represent Longitude, Latitude and Height.

Equation (2.5) can be further simplified in low-cost MEMS IMU and short distance navigation applica-
tions to save computational time (Zhou, 2013). The gyroscope biases usually significantly exceed the
Earth rate and the accelerometer biases are much larger than the centripetal forces caused by the Earth
rotation. Therefore, the Earth rate and its related terms and gravitational error can be assumed to be
zero. In the short distance navigation applications, the turn rate of the navigation frame with respect to
the Earth frame is negligible. So ωn

en and its related terms can also be assumed to be zero. According the
above analysis, the second term in the first equation and the Coriolis terms (the third and fourth terms)
and the fifth term in the second equation of (2.5) can be eliminated for simplification. In this thesis, this
kind of simplification is not applied.

16



GPS state transition matrix is

TGPS =
�

1 ∆t
0 1

�

(2.6)

where ∆t is the time interval.

The state transition functions will be implemented in a navigation Kalman filter to propagate states and
the covariance matrix.

2.3.2 pseudorange measurement equation

As introduced in Section 2.1.1, the pseudorange for the m-th satellite observed by the GPS receiver is

ρm = rm+ cδt r − cδts,m+ Im+ Tm+ ερ,m (2.7)

The geometric range between the m-th satellite position and the antenna position estimated from IMU is

ρI =
p

(xs,m− x r)2+ (ys,m− yr)2+ (zs,m− zr)2 (2.8)

where ρI is the estimated pseudorange, [xs,m, ys,m, zs,m] is the m-th satellite’s position in the ECEF frame
and [x r , yr , zr] is the antenna position estimated by the IMU. If the true position of antenna is [x , y, z],
the estimated range ρI can be extended to the first-order Taylor term around the true antenna position
[x , y, z], which is

ρI = rm+
∂ ρI

∂ x
δx +

∂ ρI

∂ y
δ y +

∂ ρI

∂ z
δz

= rm+ ex ,mδx + ey,mδ y + ez,mδz
(2.9)

where

ex ,m =
∂ ρI

∂ x
=−

xs,m− x r
p

(xs,m− x r)2+ (ys,m− yr)2+ (zs,m− zr)2

ey,m =
∂ ρI

∂ y
=−

ys,m− yr
p

(xs,m− x r)2+ (ys,m− yr)2+ (zs,m− zr)2

ez,m =
∂ ρI

∂ z
=−

zs,m− zr
p

(xs,m− x r)2+ (ys,m− yr)2+ (zs,m− zr)2

and δx ,δ y,δz is the difference between the true and estimated positions. −→em denotes [ex ,m, ey,m, ez,m].

The difference between the GPS observed pseudorange and the IMU estimated range, after compensating
for the satellite clock offset, tropospheric delay and ionospheric delay, is

δρ = ρm−ρI = cδt r − ex ,mδx − ey,mδ y − ez,mδz+ ερ,m (2.10)

In this thesis, position is expressed in longitude, latitude and height. The measurement matrix should
be converted from the ECEF frame to the LLH frame. When n satellites are observed, the measurement
function is

zρ = Hρx (2.11)
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where

zρ = [δρ1 δρ2 ... δρn]T

Hρ = [0n×6 −−→en ·Ce 0n×6 1n×1 0n×1]

Ce =







−(Rn+ h) cosϕ sinλ −(Rn+ h) sinϕ cosλ cosϕ cosλ
(Rn+ h) cosϕ cosλ −(Rn+ h) sinϕ sinλ cosϕ sinλ

0 [Rn(1− e2) + h] cosϕ sinϕ







and Ce converts the position from ECEF frame to LLH frame, −→en represents the unit line of sight of n
satellites and e is the Earth eccentricity.

2.3.3 Range rate measurement equation

The range rate can be calculated through the time derivative of (2.9) as

ρ̇I = ṙm+ gx ,mδx + g y,mδ y + gz,mδz+ ex ,mδ ẋ + ey,mδ ẏ + ez,mδż (2.12)

where

ṙm = ex ,m( ẋs,m− ẋ) + ey,m( ẏs,m− ẏ) + ez,m(żs,m− ż)

gx ,m =
1

rm
( ẋs,m− ẋ r − ṙmex ,m)

g y,m =
1

rm
( ẏs,m− ẏr − ṙmey,m)

gz,m =
1

rm
(żs,m− żr − ṙmez,m)

where ṙm is the true range rate from the GPS receiver to the m-th satellite, [ ẋ r , ẏr , żr] is the velocity of
the GPS receiver in the ECEF frame, [ ẋs,m, ẏs,m, żs,m] is the GPS satellite velocity, and [δ ẋ ,δ ẏ ,δż] is the
velocity error in ECEF frame. −→gm denotes [gx ,m, g y,m, gz,m].

The pseudorange rate from the GPS antenna to the m-th satellite tracked by the GPS receiver is

ρ̇m = ṙm+ cδ ṫ r − cδ ṫs,m+ ερ̇,m (2.13)

where ρ̇m is the range rate derived from Doppler, δ ṫs,m is the satellite clock drift and δ ṫ r is the receiver
clock drift (Xu, 2007).

For the m-th satellite, the difference between the observed and IMU estimated range rates after correcting
for tropospheric and ionospheric effects is

δρ̇m = ρ̇m− ρ̇I

= cδ ṫ r − gx ,mδx − g y,mδ y − gz,mδz− ex ,mδ ẋ − ey,mδ ẏ − ez,mδż
(2.14)

When n satellites are observed, considering the LLH coordinate system, the range rate measurement
equation is

zρ̇ = Hρ̇x (2.15)
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where

zρ̇ = [δρ̇1 δρ̇2 · · · δρ̇n]T

Hρ̇ = [0n×3 −−→en ·Cn
e − (−→en ·Ca +

−→gn ·Ce) 0n×6 0n×1 1n×1]

Cn
e =







− sinλ − sinϕ cosλ cosϕ cosλ
cosλ − sinϕ sinλ cosϕ sinλ

0 cosϕ sinϕ







Ca =







−ve cos+vn sinϕ sinλ− vu cosϕ sinλ −vn cosϕ cosλ− vu sinϕ cosλ 0
−ve sin−vn sinϕ cosλ+ vu cosϕ cosλ −vn cosϕ sinλ− vu sinϕ sinλ 0

0 −vn sinϕ+ vu cosϕ 0







and Ca is the time derivative of Ce, Cn
e is the transition matrix from ECEF frame to ENU frame.

In PR+Doppler GPS/IMU tightly-coupled navigation systems, the pseudorange is mainly for the position
estimation, while the range rate is mainly for the velocity estimation.

2.3.4 Kalman filter

A Kalman filter is widely applied in sensor fusion problems such as GPS/IMU integrated navigation
systems and multi-sensor applications. In a stochastic process framework, a Kalman filter is an unbiased,
minimum variance and linear stochastic process (Särkkä, 2006). A Kalman filter itself can be derived
as an extension of the weighted least squares approach from linear sets of algebraic to linear systems.
So the Kalman filter works with a system when the process and measurement noises are white and
Gaussian, the initial state is Gaussian and the system is linear. Nonlinear problems can be processed
using the suboptimal nonlinear Kalman filters, for instance, the EKF, the UKF and the CKF, which aim
to compute integrals like nonlinear function times Gaussian density. The PF can be applied to solve
non-Gaussian problems, while the coloured noise can be augmented as extra states in the Kalman filter
though a shaping filter or pre-whitening techniques.

The Kalman filter has the following properties (Farrell, 2008).

1. The Kalman filter estimate is unbiased and the maximum likelihood estimate. It is also the mini-
mum mean-squared error estimate under Gaussian distribution assumptions.

2. The conditional mean is the minimum of any positive definite quadratic error cost function.

3. The Kalman filter is the optimal state estimation algorithm for a linear system, while the nonlinear
Kalman filter is a suboptimal estimator.

4. The Kalman filter residual state error is orthogonal to all previous measurements, because it is an
extension of the least squares method.

5. If a state is controllable and observable, the Kalman filter estimation error dynamics are asymptot-
ically stable, which indicates that initial conditions do not affect the solutions over time. However,
a good state and covariance initialisation is beneficial for filter convergence.

The state transition and measurement functions of a GPS/IMU tightly-coupled navigation system are
nonlinear. As a time-varying system, the nonlinearity of integrated navigation systems changes over
time and under different conditions. So the EKF is applied by linearising relevant state transition and
measurement functions. However, the negligibility in higher-order nonlinear terms sometimes appear to
lead to performance degradation, because the accumulation of estimation errors has the possibility in
rendering the implemented linearised model invalid. In this case, nonlinear filtering methods should be
applied, for instance, the UKF, the CKF and so on.
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2.4 Initial yaw angle determination

It is impossible to determine the initial yaw angle directly from MEMS gyroscopes’ outputs during station-
ary alignment, due to the large noise and bias. Therefore, some aiding sensors or methods are utilized
to calculate the initial yaw angle for MEMS IMU, such as heading from a moving GPS receiver, GPS
heading, magnetometer, transfer alignment and rotation modulation. In this section, all these methods
mentioned above are introduced and compared to determine their effects on estimating the initial yaw
angle.

1. Heading from a moving GPS receiver

This method uses one GPS antenna to determine yaw angle from the north and east velocities, expressed
in the ENU frame as

γ=−arctan(
ve

vn
) (2.16)

This expression works only when the absolute velocity is large enough. On the contrary, a lower velocity
causes a computational problem in the heading calculation. For example, when the vehicle is stationary,
the north and east velocities are zero, and it is impossible to calculate the division mathematically.

2. GPS heading

The GPS heading contains at least two GPS antennas. The yaw angle is accordingly calculated from the
position difference between these two antennas. The attitude accuracy is related to the baseline between
two GPS antennas as

γ= arcsin(
∆e

L
) (2.17)

where L is the baseline length and ∆e is the position difference between two GPS antennas in eastern
direction. From this expression, it can be seen that a longer baseline leads to a better attitude accuracy,
because the position uncertainty is constant for a specific GPS positioning method. However, a GPS
heading system is always far more expensive than the heading system with a single moving GPS receiver.
So when the price is taken into consideration, for example, the low-cost application, the heading from a
moving GPS receiver method is a better choice.

3. Magnetometer

A magnetometer measures the three components of the local magnetic field to calculate the yaw angle.
Unlike GPS based methods, it works fluently even when the GPS signal is blocked, which makes it
suitable for indoor positioning. In the pedestrian dead reckoning (PDR) application, a magnetometer is
usually used to estimate yaw angle (Rahim, 2012). The magnetometer working principle is

γ=−arctan(
Me

Mn
) (2.18)

where Me and Mn are the eastern and northern components of the magnetometer’s output. Although the
magnetometer shows its advantage in GPS denied environments, it is still affected by other disturbances
such as hard iron and soft iron distortions. Hard iron distortions caused by permanent magnets and
magnetized iron or steel in a fixed location on the compass platform, will add a constant magnetic
field component to the true magnetic measurements in each axis of magnetometer. Similarly, soft iron
from materials near the magnetometer distorts the Earth’s magnetic field lines. Unlike hard iron, the
amount of distortion from soft iron depends on the magnetometer orientation, which appears to vary in
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Figure 2.1: Hard iron distortions of a magnetometer

different directions. Hard iron can be calibrated in static case, while the calibration of soft iron is rather
difficult because it varies in different directions. In this section, how to calibrate hard iron distortions in
magnetometers will be introduced in brief.

If there are no hard iron or soft iron distortions, rotating a magnetometer at least one round will result in
a circle centred at (0, 0), when the outputs from the magnetometer are plotted as y-axis vs x-axis. If the
hard iron distortions from surroundings are present, the centre of the circle will have a small offset from
origin. If soft iron distortions are detected, the circle will degrade into an ellipse. The pre-calibration of
the magnetometer is based on this property. With the magnetometer in the MEMS IMU MTi-G-700 as
an example, after rotating the IMU, magnetometer measurements in horizontal plane is shown in Figure
2.1.

It can be seen that hard iron distortions are mainly present on the x-axis and soft iron distortions don’t
exist because the plot is nearly a circle. Hard iron distortions determined from this plot should be
compensated to calculate the yaw angle. The magnetometer distortions are more environment-specific.
For example, there may be some unknown magnetized iron in an unknown environment, which leads to a
change in pre-calibrated hard iron distortions and subsequently affects the yaw angle determination. So
the pre-calibration doesn’t show the best performance in this case. Therefore, the posteriori calibration
is utilized to compensate magnetometer outputs (Rahim, 2012; Ali, 2013).

4. Transfer alignment

Transfer alignment transfers the attitude estimated by a high-graded IMU to a low-cost MEMS IMU.
According to the implemented observations, transfer alignment can be divided into three categories in
general: attitude matching, velocity matching as well as attitude and velocity matching (Titterton and
Weston, 2004). The attitude and velocity matching method is proved to have the best performance. In
this thesis, the attitude from a ring laser gyroscope (RLG) IMU is simply set as the initial attitude of the
MEMS IMU, because the misalignment between them is almost zero.

5. Rotation modulation

Rotation modulation is based on the observability analysis. The observability degree of the yaw angle
is improved when it is experiencing some changes (Rahim, 2012; Du et al., 2014). During the rotation,
neglecting the effects of the inner lever arm, the linear velocity is 0 m/s, which can be implemented as
the observation of the fine alignment Kalman filter to estimate inertial sensor errors (Li et al., 2012b).
For the roll and pitch estimation, rotating an IMU improves the observability of the x/y-accelerometer
biases. According to the roll and pitch estimation accuracy evaluation as shown below (Titterton and
Weston, 2004)
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δα=
∇x

g

δβ =
∇y

g

(2.19)

a higher roll and pitch estimation accuracy can be expected by applying this technique.

Rotation modulation is mainly applied in high accuracy inertial navigation systems. How to apply rota-
tion modulation in MEMS IMU applications to improve the yaw estimation accuracy in PDR and vehicle
navigation systems have been described in Rahim (2012); Du et al. (2014).
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3 Cubature Kalman filter for GPS/IMU tightly-coupled navigation

In a GPS/IMU tightly-coupled navigation system, the EKF is widely used to estimate navigation states,
due to its simpler implementation and lower computational load. However, the EKF is a first order ap-
proximation to the nonlinear system. When the nonlinearity of the system is high, the ignoring in higher
order terms will decrease the estimation accuracy and subsequently result in a suboptimal performance.
So nonlinear filtering methods like the UKF, the PF and their extensions, can be applied in integrated
navigation systems to improve the navigation performance. In this chapter, a recently proposed non-
linear filtering method: the CKF and its related particle filter extension the CPF will be introduced and
analysed. The performance comparison between the CKF and the EKF will be tested and examined in
different scenarios.

3.1 Introduction and background

Since R. E. Kalman proposed his famous recursive method to solve discrete linear filtering problems in
1960 (Kalman, 1960), the Kalman filter has been widely used in many applications. However, the KF’s
basic requirements in linearity and Gaussian-distributed noise are hard to meet in real world implemen-
tations. To make the KF applicable to nonlinear systems, the EKF, based on the first order Taylor term
of nonlinear functions, is proposed. Although the EKF maintains the computationally efficient updated
form of the KF, it suffers some drawbacks, one of which is the degradation in the estimation accuracy,
due to neglecting the higher-order terms of nonlinear system functions (Lee, 2005). The 2nd-order EKF
and iterated EKF (IEKF) can improve the estimation accuracy by considering the higher order terms and
iterative updating. However, the 2nd-order EKF is more complicated, because it requires the higher-
order linearised state space model (Sadeghi and Moshiri, 2007). The IEKF is less effective in real-time
processing because of its requirement in iterative measurement updating (Kerr, 1991; Zhan and Wan,
2007).

Based on the deterministic sampling framework, the UKF and the central difference Kalman filter (CDKF)
use a series of sigma-points to propagate the states and covariance matrix (Julier and Uhlmann, 2004,
1997). The sigma-points are deterministically calculated from the mean and square-root decomposition
of the covariance matrix of the a priori random variable (Van Der Merwe, 2004). Both the UKF and the
CDKF belong to the sigma-point Kalman filter family. The main difference between them is the sigma-
points generation methods (Van Der Merwe, 2004; Julier and Uhlmann, 2002). The UKF generates
sigma-points through the unscented transformation, while the CDKF uses the Stirling’s interpolation
formula to produce sigma-points (Van Der Merwe, 2004). The UKF and the CDKF can be treated as a
second-order approximation to a nonlinear system. So in theory they have higher estimation accuracy
than the EKF. The UKF and the CDKF have been applied in the GPS/IMU integrated navigation system and
perform better than the EKF as introduced in Bistrovs and Kluga (2013); Wang et al. (2008); Crassidis
(2006); Van Der Merwe (2004); Julier et al. (2007).

The CKF is a recently developed nonlinear filtering method based on the spherical-radial Cubature rule,
which is developed to compute integrals like nonlinear function times Gaussian density (Arasaratnam
and Haykin, 2009; Arasaratnam, 2009; Arasaratnam et al., 2010). The CKF can be treated as a second-
order approximation to a nonlinear system. The higher-order CKF is also proposed as a more accurate
approximation to a nonlinear system (Jia et al., 2013; Zhang et al., 2014b). Unlike the UKF using
2n+ 1 unscented points to propagate the state and covariance matrix, the CKF propagates the state and
covariance matrix with 2n Cubature points, due to which the CKF has a relatively lower computational
load than the UKF. Although the Cubature points are applied, the CKF still belongs to the sigma-point
Kalman filter family. The CKF shows better performance than the UKF in stability and accuracy, especially
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when the dimension of the system is higher than three as suggested in Arasaratnam and Haykin (2009);
Arasaratnam (2009); Arasaratnam et al. (2010). The CKF and its extension have been implemented in
many application fields. The CKF is applied to a GNSS/INS tightly-coupled navigation system and the
navigation estimation is enhanced as shown in Liu et al. (2010); Benzerrouk (2014). Li and Jia (2012)
use an interactive multi model- (IMM-)CKF method to estimate the mobile station’s location. In Tang
et al. (2012), a square-root adaptive CKF is applied in the spacecraft attitude estimation. In Chandra
et al. (2014); Zhang et al. (2014a), a Cubature H∞ filter and its square-root version are proposed and
verified in a continuous stirred tank reactor and a permanent magnet synchronous motor as examples.
The CKF can also be applied to the simultaneous localisation and mapping (SLAM) problem as reported
in Chandra et al. (2011).

Compared with deterministic sampling filtering methods, the PF is a sample sequential Monte Carlo
filtering method based on Bayesian state estimation. The PF outperforms the KF in that it can process
non-Guassian and nonlinear problems (Okuma et al., 2004). However, the PF is easy to experience the
curse of dimensionality, which means the number of particles increases exponentially with the number
of states (Okuma et al., 2004). This property will increase the PF computational load significantly. To
avoid the curse of dimensionality, the a posteriori estimation of other filtering methods such as the EKF
and the UKF is commonly used as the importance probability density function of the PF to ensure most
of particles fall in the high likelihood area (Van Der Merwe et al., 2000). Following this logic, the CKF
can be combined with the PF to generate particles. The performance of the CPF will be further tested in
GPS/IMU tightly-coupled navigation systems.

In this chapter, the performance of the CKF and the CPF in GPS/IMU tightly-coupled navigation systems
is the main concern.

3.2 Filtering algorithms

This section briefly introduces the CKF and the CPF algorithms. The conventional EKF filtering method
is implemented as a comparison. Considering a discrete nonlinear system as

xk = f(xk−1) +wk−1

zk = h(xk) + vk
(3.1)

where xk ∈ ℜnx is the system’s state vector at time epoch k, zk ∈ ℜnz are the measurements, wk−1 ∈ ℜnw

and vk ∈ ℜnv represent independent process and measurement Gaussian noise sequences assumed to be
independent, white and with covariance Q and Rk in respect.

3.2.1 Extended Kalman Filter

The EKF solves nonlinear problems by approximating nonlinear functions using the first order Taylor
term. The Jacobian matrices calculated from the nonlinear state transition and measurement func-
tions are implemented in the EKF as state transition and measurement matrices. The EKF algorithm is
summarised as:

i) Time Update

xk|k−1 = Φxk−1|k−1

Pk|k−1 = ΦPk−1|k−1Φ
T +Q

(3.2)

ii) Measurement Update

Kk = Pk|k−1HT (HPk|k−1HT +Rk)
−1

xk|k = xk|k−1+Kk(z−Hxk|k−1)
Pk|k = Pk|k−1−KkHPk|k−1

(3.3)
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where Φ is the state transition matrix, which is the Jacobian matrix of the nonlinear state transition func-
tion f(·), and H is the measurement matrix, which is the Jacobian matrix of the nonlinear measurement
function h(·). Kk is the Kalman gain.

3.2.2 Cubature Kalman Filter

The CKF uses a series of Cubature points to propagate the a priori and a posteriori statistical characteris-
tics. The core of the CKF is the Cubature transformation based on the spherical-radial rule (Arasaratnam
and Haykin, 2009). The CKF algorithm is summarized as:

i) Time Update

Sk−1|k−1 = SV D(Pk−1|k−1)
χk−1|k−1 = Sk−1|k−1ξ+ xk−1|k−1

χ∗k|k−1 = f(χk−1|k−1)

xk|k−1 =
1

m

m
∑

i=1

χ∗i,k|k−1

Pk|k−1 =
1

m

m
∑

i=1

χ∗i,k|k−1χ
∗T
i,k|k−1− xk|k−1xT

k|k−1+Q

(3.4)

ii) Measurement Update

Sk|k−1 = SV D(Pk|k−1)
χk|k−1 = Sk|k−1ξ+ xk|k−1

Zk|k−1 = h(χk|k−1)

zk|k−1 =
1

m

m
∑

i=1

Zi,k|k−1

Pzz,k|k−1 =
1

m

m
∑

i=1

Zi,k|k−1ZT
i,k|k−1− zk|k−1zT

k|k−1+Rk

Pxz,k|k−1 =
1

m

m
∑

i=1

χi,k|k−1ZT
i,k|k−1− xk|k−1zT

k|k−1

Kk = Pxz,k|k−1P−1
zz,k|k−1

xk|k = xk|k−1+Kk(zk − zk|k−1)

Pk|k = Pk|k−1−KkPzz,k|k−1KT
k

(3.5)

where SV D is the matrix singular value decomposition, S is the square-root of the covariance matrix P,
m = 2n, ξ =

p

m
2
[1]i, χi is the Cubature point generated from states and Zi represents the Cubature

point generated from measurements. If n= 2, [1]i represents the following set of points:

��

1
0

�

,
�

0
1

�

,
�

−1
0

�

,
�

0
−1

��

The CKF uses 2n Cubature points to propagate state and covariance matrix. The calculation of the
Jacobian matrix is avoided.
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3.2.3 Cubature Particle Filter

Due to the curse of dimensionality, the number of particles in the PF increases exponentially with the di-
mensionality of states (Bengtsson et al., 2008; Li et al., 2005; Quang et al., 2010). In order to reduce the
amount of particles without degrading the estimation accuracy, the EKF and UKF can be combined with
the PF to form either the EPF or the UPF in respect (Zhou et al., 2011; Yi, 2007; Van Der Merwe et al.,
2000). The a posteriori mean and covariance matrix from the KFs are used to specify the importance
density function to generate particles, ensuring that most of the particles are located in the high likeli-
hood area. The conventional EPF and UPF are time-consuming, because every particle is propagated by
the Kalman filter before the particle filtering algorithm (Lee, 2005). Thus, a bank of KFs (one for each
particle) are implemented for the particles’ propagation. In the CPF, after the CKF measurement update,
the a posteriori covariance matrix is employed as an importance density function to generate particles.
The CKF is executed only once in one filtering loop. Aside from this, particles are regenerated in each
recursion and will not be propagated to the next filtering loop. Therefore, the sample impoverishment
problem can be avoided because of the non-recursive process.

It is usually very hard to correctly obtain the real system’s noise statistics. Therefore, some researchers
proposed the Gaussian particle filter (GPF) as an alternative to the particle filter (Kotecha and Djuric,
2003a,b). The GPF assumes the a posteriori probability distribution and the a priori probability distri-
bution as Gaussian distributed. Although the multipath effects behave like a non-Gaussian noise, it is
difficult to measure its statistics in real time. Therefore, to simplify, the GPF is combined in serial with
the CKF to construct the CPF in this chapter. Following the CKF, the particle filter is implemented as
shown below.

According to the CKF a posteriori estimation xk|k, particles can be generated from the importance density
distribution N(0,Pk|k) as

Xk,i = xk|k +∆xk|k,i,∆xk|k,i ∼ N(0,Pk|k) (3.6)

where i = 1, 2, ...N , and N is the number of particles. This particle generation method ensures most of
the particles fall in the high likelihood area.

The importance weights can be calculated as

w(Xk,i) =
p(zk|Xk,i)N(Xk,i|xk|k−1,Pk|k−1)

N(Xk,i|xk|k,Pk|k)
(3.7)

with

p(zk|Xk,i) =
1

p

(2π)m‖Rk‖
exp(−

[zk − h(Xk,i)]T R−1
k [zk − h(Xk,i)]

2
)

N(Xk,i|xk|k−1,Pk|k−1) =
1

p

(2π)n‖Pk|k−1‖
exp(−

[Xk,i − xk|k−1]T (Pk|k−1)−1[Xk,i − xk|k−1]

2
)

N(Xk,i|xk|k,Pk|k) =
1

p

(2π)n‖Pk|k‖
exp(−

[Xk,i − xk|k]T (Pk|k)−1[Xk,i − xk|k]

2
)

where m and n denote the dimensions of observation vector and state vector. p(zk|Xk,i) is the likelihood
density function. The measurements of the CPF are the same as the CKF when implemented in GPS/IMU
tightly-coupled navigation systems (Zhou et al., 2011; Zhou, 2013). N(Xk,i|xk|k−1,Pk|k−1) is the a priori
density function, which is taken from the CKF prediction. N(Xk,i|xk|k,Pk|k) is the importance density
function taken from the CKF a posteriori estimation.
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The a posteriori mean and covariance matrix can be computed as

x+k|k =
N
∑

i=1

w(Xk,i)Xk,i

P+k|k =
N
∑

i=1

w(Xk,i)[Xk,i − x+k|k][Xk,i − x+k|k]
T

(3.8)

The noise statistics is assumed to be Gaussian distributed, which is an approximation to the real prob-
ability density function. When the statistics of non-Gaussian distributed measurement errors is already
known, they should be implemented in the CPF.

3.3 CKF performance analysis

The links among the EKF, the UKF and the CKF have been demonstrated from the discrete Riccati equa-
tion and the formula on conditional expectations that does not involve an explicit Riccati equation in
Gustafsson and Hendeby (2012). In this section, the CKF estimation accuracy will be evaluated mathe-
matically through Taylor expansion. Using Taylor expansion to evaluate the estimation accuracy of the
sigma-point Kalman filter’s a posteriori mean and covariance matrix has been discussed in Van Der Merwe
(2004). However, the author does not show the other terms’ accuracy of the SPKF such as the Kalman
gain, the a priori estimation, etc. The analysis of these terms is helpful in understanding the working
principle of nonlinear filtering methods. Unlike the analysis in Van Der Merwe (2004), the CKF perfor-
mance is analysed considering all the CKF related terms. The internal relationship between the CKF and
the EKF is also shown in the following analysis.

3.3.1 Analysis of the CKF estimation accuracy

i) Time update

In order to evaluate the estimation accuracy, the CKF is expanded into its related Taylor terms. Consid-
ering a random variable xk−1|k−1 with mean xk−1|k−1 and covariance matrix Pk−1|k−1 obeying a Gaussian
distribution xk−1|k−1 ∼ N(xk−1|k−1,Pk−1|k−1) and defining ∆xk−1|k−1 as xk−1|k−1−xk−1|k−1 with the Gaus-
sian distribution ∆xk−1|k−1 ∼ N(0,Pk−1|k−1), the state transition function f(xk−1|k−1) can be expanded
into a Taylor series around xk−1|k−1 as

f(xk−1|k−1) = f(xk−1|k−1+∆xk−1|k−1)

= f(xk−1|k−1) + D∆xk−1|k−1
f+

D2
∆xk−1|k−1

f

2!
+

D3
∆xk−1|k−1

f

3!
+

D4
∆xk−1|k−1

f

4!
+ ...

(3.9)

where D∆xf= [(∆xT∇)f(x)T]T |x=x and ∇ represents the differential of f(x).

Substituting the Cubature points χi,k−1|k−1 = xk−1|k−1+
p

nPk−1|k−1[1]i into the equation (3.9), the state
transition function’s predicted value of each Cubature point is

χ∗i,k|k−1 = f(χi,k−1|k−1) = f(xk−1|k−1+∆xk−1|k−1)

= f(xk−1|k−1) + D∆xk−1|k−1
f+

D2
∆xk−1|k−1

f

2!
+

D3
∆xk−1|k−1

f

3!
+

D4
∆xk−1|k−1

f

4!
+ ...

(3.10)

The predicted estimation mean is
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xk|k−1 =
1

2n

2n
∑

i=1

χ∗i,k|k−1

=
1

2n

2n
∑

i=1

f(xk−1|k−1+∆xk−1|k−1)

=
1

2n

2n
∑

i=1

(f(xk−1|k−1) + D∆xk−1|k−1
f+

D2
∆xk−1|k−1

f

2!
+

D3
∆xk−1|k−1

f

3!
+

D4
∆xk−1|k−1

f

4!
+ ...)

(3.11)

Considering ∆xk|k−1 is symmetrically distributed, all the odd moments sum up to zero. Therefore, xk|k−1
is computed as

xk|k−1 = f(xk−1|k−1) +
1

2n

2n
∑

i=1

(
D2
∆xk−1|k−1

f

2!
+

D4
∆xk−1|k−1

f

4!
+ ...) (3.12)

It is complex to calculate equation (3.12) directly because of the higher order terms. To simplify, equation
(3.12) is rewritten by keeping the second order term and neglecting higher order terms,

xk|k−1 = f(xk−1|k−1) + E[
D2
∆xk−1|k−1

f

2!
] (3.13)

where
D2
∆xk−1|k−1

f

2!
=

D∆xk−1|k−1
(D∆xk−1|k−1

f)

2!
=
∇T∆xk−1|k−1∆T xk−1|k−1∇

2!
f. According to the definition

of the covariance matrix that E[∆x∆xT] = P, the second order term in the Taylor expansion is

E[
D2
∆xk−1|k−1

f

2!
] =
∇T Pk−1|k−1∇f

2!
(3.14)

The CKF predicted state is

xk|k−1 = f(xk−1|k−1) +
∇T Pk−1|k−1∇f

2!
(3.15)

As shown in the CKF algorithm (3.4), Pk|k−1 is given as

Pk|k−1 = E[(χ∗i,k|k−1− xk|k−1)(χ
∗
i,k|k−1− xk|k−1)

T] +Q (3.16)

After neglecting the terms higher than three, χ∗i,k|k−1− xk|k−1 can be calculated as

χ∗i,k|k−1− xk|k−1 = D∆xk|k−1
f+

D2
∆xk|k−1

f

2!
+

D3
∆xk|k−1

f

3!
− E[

D2
∆xk|k−1

f

2!
] (3.17)

Considering the symmetry of ∆xk|k−1, the mean value of all odd order terms of ∆xk|k−1 equals zero and
the true covariance matrix is
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Pk|k−1 = E[D∆xk|k−1
f(D∆xk|k−1

f)T +
D∆xk|k−1

f(D3
∆xk|k−1

f)T

3!
+

D2
∆xk|k−1

f(D2
∆xk|k−1

f)T

2× 2!

+
D3
∆xk|k−1

f(D∆xk|k−1
f)T

3!
]− E[

D2
∆xk|k−1

f

2!
]E[

D2
∆xk|k−1

f

2!
]T +Q

(3.18)

If the following relationship is valid,

D∆xf= Φ∆x (3.19)

where Φ is the Jacobian matrix of f(·), equation (3.18) can be rewritten as

Pk|k−1 = ΦPk−1|k−1Φ
T + E[

D∆xk−1|k−1
f(D3

∆xk−1|k−1
f)T

3!
+

D2
∆xk−1|k−1

f(D2
∆xk−1|k−1

f)T

2× 2!

+
D3
∆xk−1|k−1

f(D∆xk−1|k−1
f)T

3!
]− [(

∇T Pk−1|k−1∇
2!

)f][(
∇T Pk−1|k−1∇

2!
)f]T +Q

(3.20)

From equations (3.15) and (3.20), it can be found that the CKF can capture and propagate at least the
second order terms of a nonlinear system. However, when applied in a linear or linearised system, the
higher-order terms including the second order terms are zero. As a result, (3.15) and (3.20) will be
identical to the EKF.

ii) Measurement update

Considering the random variable xk|k−1 with mean xk|k−1 and covariance matrix Pk|k−1 of Gaussian dis-
tribution xk|k−1 ∼ N(xk|k−1,Pk|k−1) and define ∆xk|k−1 as xk|k−1 − xk|k−1, with the Gaussian distribution
∆xk|k−1 ∼ N(0,Pk|k−1) as shown in the analysis before, the measurement function h(xk|k−1) can be
expanded into a Taylor series around xk|k−1 as

h(xk|k−1) = h(xk|k−1+∆xk|k−1)

= h(xk|k−1) + D∆xk|k−1
h+

D2
∆xk|k−1

h

2!
+

D3
∆xk|k−1

h

3!
+

D4
∆xk|k−1

h

4!
+ ...

(3.21)

Substituting the Cubature points χi,k|k−1 = xk|k−1+
p

nPk|k−1[1]i into the equation (3.21), the measure-
ment function’s predicted value of each Cubature point is

Zi,k|k−1 = h(χi,k|k−1) = h(xk|k−1+∆xk|k−1)

= h(xk|k−1) + D∆xk|k−1
h+

D2
∆xk|k−1

h

2!
+

D3
∆xk|k−1

h

3!
+

D4
∆xk|k−1

h

2!
+ ...

(3.22)

Like the calculation in predicted value of state transition function, neglecting the higher order terms, the
mean value of measurement Cubature points is

zk|k−1 = h(xk|k−1) +
∇T Pk|k−1∇h

2!
(3.23)

By definition, Pzz,k|k−1 is given as
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Pzz,k|k−1 = E[(Zk|k−1− zk|k−1)(Zk|k−1− zk|k−1)
T] +Rk (3.24)

Zk|k−1− zk|k−1 can be calculated as

Zk|k−1− zk|k−1 = D∆xk|k−1
h+

D2
∆xk|k−1

h

2!
+

D3
∆xk|k−1

h

3!
− E[

D2
∆xk|k−1

h

2!
] (3.25)

Applying the symmetry of ∆xk|k−1, the mean value of all odd order terms of ∆xk|k−1 equals zero and the
covariance matrix is calculated as

Pzz,k|k−1 = E[D∆xk|k−1
h(D∆xk|k−1

h)T +
D∆xk|k−1

h(D3
∆xk|k−1

h)T

3!
+

D2
∆xk|k−1

h(D2
∆xk|k−1

h)T

2× 2!

+
D3
∆xk|k−1

h(D∆xk|k−1
h)T

3!
]− E[

D2
∆xk|k−1

h

2!
]E[

D2
∆xk|k−1

h

2!
]T +Rk

(3.26)

If the following relationship is valid,

D∆xh= H∆x (3.27)

where H is the Jacobian matrix of h(·), equation (3.26) can be rewritten as

Pzz,k|k−1 = HPk|k−1HT + E[
D∆xk|k−1

h(D3
∆xk|k−1

h)T

3!
+

D2
∆xk|k−1

h(D2
∆xk|k−1

h)T

2× 2!

+
D3
∆xk|k−1

h(D∆xk|k−1
h)T

3!
]− E[

∇T Pk|k−1∇
2!

h]E[
∇T Pk|k−1∇

2!
h]T +Rk

(3.28)

By definition, Pxz,k|k−1 is given by

Pxz,k|k−1 = E[(χk|k−1− xk|k−1)(Zk|k−1− zk|k−1)
T]

= E[∆xk|k−1(D∆xk|k−1
h+

D2
∆xk|k−1

h

2!
+

D3
∆xk|k−1

h

3!
)T]

(3.29)

Applying equation (3.27) to equation (3.29), the following equation can be deduced

Pxz,k|k−1 = Pk|k−1HT + E[∆xk|k−1

D3
∆xk|k−1

h

3!
]T (3.30)

The Cubature Kalman gain is then expressed as

Kk =
Pxz,k|k−1

Pzz,k|k−1
(3.31)

The a posteriori state and covariance matrix are calculated as
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xk|k = xk|k−1+Kk(zk − zk|k−1)

Pk|k = Pk|k−1−KkPzz,k|k−1KT
k

(3.32)

From the analysis of the CKF estimation accuracy, it is found that the CKF is not only related to the
first order but also the second (or even higher) order terms of the covariance matrix, showing the CKF’s
ability to capture higher order terms of nonlinear functions. However, if the nonlinearity of the system
is not so high or the system is a linear system, the higher-order terms evaluate to be zero and the CKF
degrades to match the EKF, while the EKF is the same as KF, which is an optimal estimator. As shown in
Li et al. (2006); Yi and Grejner-Brzezinska (2006); Zhou (2013), nonlinear filtering methods like UKF
do not show any estimation accuracy enhancement when applied in a GPS/IMU integrated navigation
system with a linear model, although they mention the improvement in robustness by applying nonlinear
filtering methods. Rhudy et al. (2013) and Rhudy (2013) analyse the sensitivity of the EKF and UKF and
point out that the UKF has a similar estimation accuracy as the EKF. However, the model implemented in
his analysis is linear. Therefore, the linear and nonlinear filtering methods are expected to have a similar
performance. In this thesis, a nonlinear attitude expression will be introduced into the state transition
function to better examine the advantage of the CKF in a tightly-coupled navigation system.

3.3.2 Comparison between the EKF, UKF and CKF

Compared with the EKF, the UKF and CKF can be categorized as deterministic filtering methods using a
series of centrally distributed weighted sampling sigma points to approximate the a posteriori distribution
of nonlinear states.

The UKF is more applicable to lower-dimensional nonlinear systems (n ≤ 3). As indicated in the UKF
algorithm, since the choice of κ in the UKF must satisfy n + κ = 3, if the dimensionality or number
of nonlinear equations is higher than three, κ is negative, which may render the covariance matrix
negative definite. The CKF will not suffer from such a problem because all the weights in the CKF are
positive, guaranteeing the positive definiteness of the covariance matrix. Therefore, the CKF is applicable
to all nonlinear problems, no matter how large the dimensionality is (Arasaratnam and Haykin, 2009;
Arasaratnam, 2009).

Due to the possibility of negative weights, the UKF covariance matrix can not be guaranteed to be
positive-definite, which causes some difficulties in obtaining the square-root of the covariance matrix,
too. So another two parameters α and β are introduced to prevent this from happening. Therefore, a
balance among the three parameters is an art and a science, which also limits the flexibility of the UKF.

When the scale factor κ in the UKF is set to zero, the UKF will have the same form as the CKF. In
this sense, the CKF can be treated as a special case of the UKF with the zero-point weight w0 being
zero. However, according to Arasaratnam and Haykin (2009) and Arasaratnam (2009), the Cubature
transformation is deduced mathematically in theory. On the contrary, the unscented transformation is
based on a certain assumption and is not yet proved mathematically.

The EKF utilizes the first order Taylor term to approximate a nonlinear system. The precise computation
of the Jacobian matrix is not an easy task, and the approximation works under a certain assumption.
For example, the GPS/IMU error state space EKF works when the error is small enough. On the other
hand, both the UKF and the CKF make a second order approximation to a nonlinear system, which can
not only improve the filtering accuracy, but also reduce the effect in computing the Jacobian matrix.

3.4 Application of the CKF in tightly-coupled navigation
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3.4.1 Nonlinear attitude expression

From the estimation accuracy evaluation, it can be found that if a nonlinear filtering method like the
CKF is applied to a linear system, the estimation accuracy will not be improved due to the CKF’s failure
to capture higher order terms of nonlinear functions. According to this, the conventional psi-angle
expression in equation (2.5) is revised by treating the attitude error as the misalignment angle between
the true and estimated frames according to Kong et al. (1999). The direction cosine matrix can then be
applied to describe the misalignment.

Cn
ñ =







cδβ cδγ− sδβsδαsδγ cδβsδγ+ sδβsδαcδγ −sδβ cδα
−cδαsδγ cδαcδγ sδα

sδβ cδγ+ cδβsδαsδγ sδβsδγ− cδβsδαcδγ cδβ cδα






(3.33)

where c, s represent the cos and sin calculations. The expression related to roll and pitch errors in (3.33)
can be further simplified by applying cδβ ≈ 1 and sδβ ≈ δβ . Unlike the yaw angle, roll and pitch angles
are always observable, so the CKF should be expected to have a similar or sometimes even worse roll
and pitch estimation accuracy than the EKF even if implemented with the nonlinear attitude expression
(Farrell, 2008). Considering the different degrees of observability between the yaw angle and roll, pitch
angles, equation (3.33) is implemented with the CKF to show the effects of the observability to the
performance of nonlinear filtering methods.

The psi-angle expression can be approximated as (Groves, 2008)

[Ψ×] = I3×3−Cn
ñ (3.34)

This expression is widely used in solving in-motion alignment problems (Li et al., 2013). The con-
ventional psi-angle approximation works only when the attitude error is small enough (Groves, 2008).
However, when a vehicle is standing still or there are no observations, attitude errors especially yaw an-
gle error accumulate very quickly, since the observations have no benefits in the state estimation (Georgy
et al., 2010). In these cases, the psi-angle expression’s requirement of small attitude errors cannot al-
ways be met, leading to some truncation errors in the attitude estimation. According to the inertial
navigation mechanization, if the attitude is not well estimated, navigation estimations like position and
velocity will be degraded, too. The expression (3.33) transforms the attitude error into a misalignment
direction cosine matrix, which has no the small attitude error requirement. So even if the attitude error
is very large, the expression can still work fluently (Ali and Ullah Baig Mirza, 2011). The state transition
functions of the attitude and velocity errors should be revised as (Kong et al., 1999):

Ψ̇ = (I−Cn
ñ)ω̃

ñ
in+δω

n
in−Cn

bε (3.35)

δv̇n =
�

I−Cn
ñ

�

Cñ
bfb +Cn

b∇− (2δω
n
ie +δω

n
en)× vn− (2ω̃n

ie + ω̃
n
en)×δvn+δgn (3.36)

As shown in equations (3.35) and (3.36), if the attitude error is small enough, the attitude and velocity
error state transition functions are the same as the psi-angle expression in (2.5). For a high-grade
IMU like a RLG IMU with lower gyro drift, the EKF and the CKF can be expected to show a similar
performance.
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Table 3.1: Observability degree of different states under different maneuvering

Observability
linear motion Angular motion Linear and angular motion

Uniform
motion

North
acc.

East
acc.

Roll
axis

Pitch
axis

Yaw
axis

Triaxial
rotation

Tri. rot.+
linear mot.

Uni. cir. mot.

δα Ob Ob Ob Ob Ob Ob Ob Ob Ob

δβ Ob Ob Ob Ob Ob Ob Ob Ob Ob

δγ Un WOb WOb WOb WOb Ob Ob Ob Ob

Ob: Observable; WOb: Weakly Observable; Un: Unobservable
Tri. rot.+ linear mot.: Triaxial rotation and linear motion; Uni. cir. mot.: Uniform circular motion

3.4.2 Observability analysis

As a time varying system, the states of an integrated navigation system have different degrees of observ-
ability under different motion scenarios. Using a complex trajectory to examine the filtering method’s
performance is too general. If states become totally observable in some specific scenarios, it is hard to
point out that nonlinear filtering methods like the CKF must be superior to the EKF even when imple-
mented with a nonlinear model (Yi and Grejner-Brzezinska, 2006; Yi, 2007). So it will be beneficial
and suggestive to compare the filtering methods’ performance under different scenarios according to
observability analysis.

Observability analysis has been discussed in many papers. In Goshen-Meskin and Bar-Itzhack (1992,
1990), the piece wise constant system (PWCS) method is used to analyse the observability of a time
variant system. The global observability is applied to analyse navigation states’ observability of inte-
grated navigation systems (Tang et al., 2009) and non-holonomic constraints (Rothman et al., 2014; Niu
et al., 2012). According to Niu et al. (2012); Hong et al. (2005); Becker et al. (2010), under different
maneuvering, unobservable states will become observable. Li et al. (2012a); Han and Wang (2008) and
Rhee et al. (2004) introduce the concept of degree of observability, which reflects the effect of maneu-
vering to state estimation. According to the navigation states’ degree of observability under different
maneuvering, Table 3.1 is given.

In Table 3.1, Ob represents observable, Un represents unobservable and WOb represents weakly observ-
able. In tri-axial rotation maneuvering, although δγ becomes observable as indicated in Table 3.1, the
yaw observability degree improvement is still smaller than the other states. But compared with the yaw
angle in other scenarios, its observability degree is improved significantly. How to improve the yaw angle
estimation accuracy in unobservable cases is always a hard task because the measurements have no ben-
efits in yaw estimation in such cases. The unobservability will lead to a fast accumulation of estimation
error and make the linear expression become invalid. The nonlinear filtering method can be expected
to have a superior performance to the linear method in such a case. On the contrary, if the states are
always observable, the error accumulation will be slower (the linear psi-angle expression is still valid),
indicating a similar performance of the linear and nonlinear filtering methods. The navigation accuracy
improvement will be zero even if applying nonlinear filtering methods with nonlinear attitude expression
in such scenarios.

3.5 Simulation

In this section, several scenarios are designed with specific maneuvering to examine the performance
difference between the EKF and the CKF under different degrees of observability. Since the position
and velocity of the integrated navigation system are usually determined directly from GPS and they are
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Table 3.2: Attitude comparison between the CKF and the EKF methods in constant velocity simulation

Filtering methods Roll RMS (deg) Pitch RMS (deg)

EKF 0.834 0.927

CKF 0.871 0.947

always observable, the attitude estimation is taken as the main indicator to show the performance differ-
ence between these two filtering methods in different scenarios, including constant velocity, accelerating
and turning.

Some noises are introduced to simulate a low-cost MEMS IMU. It is assumed that the constant bias of
the gyroscopes is 1.146 deg/s, the bias instability is 1.146 deg/s, which is generated by combining two
independent 1st-order Markovian processes, the rate random walk is 0.458 deg/s/

p
s, generated by in-

tegrating a white noise, and the sensor noise is a white noise with standard derivation 1.146 deg/
p

s.
Like a gyroscope, the accelerometers’ bias and noise can be summarized as: constant bias 0.02 m/s2,
bias instability 0.02 m/s2, rate random walk 0.008 m/s2/

p
s and white noise 0.02 m/s/

p
s. When imple-

mented in the Kalman filter, the inertial sensors’ noises are modelled as 1st-order Markovian processes
plus white noise in this chapter.

In order to reduce the effect of parameter tuning on the noise covariance matrices such as P0,Q,R, all
the parameters are identically tuned in all scenarios. The vehicle starts from a stationary state with good
position and attitude initialization. So the initial standard deviation of attitude, position and velocity
can be set to 0. The gyroscope and accelerometer biases are modelled as 1st-order Markovian processes
with a time constant of 40 h. The initial standard deviations of the gyroscope and accelerometer biases
are 10 ′′/s and 2 × 10−4 m/s2. In the simulation, in order to better show the effect of observability
on filtering methods’ performance, the GPS observation is simulated as error free. Considering the
computational error, the measurement standard deviation is assumed as 1 cm/ sin(θele), where θele is
the satellite elevation angle. The system matrix Q is determined from the inertial sensors’ stochastic
errors. The standard deviation related to the gyroscope and accelerometer biases in Q are 1 deg/s and
0.01 m/s2 respectively. The attitude, velocity and position standard deviations are set as 3.6 ′′, 0.03 m/s,
1 m. The position related elements in P0,Q should be converted to the LLH frame.

The simulation is executed 10 times to examine the performance difference between the CKF and the
EKF. The inertial sensors’ noises are regenerated in each simulation run, and the same simulation data
will be implemented with the CKF and the EKF separately. The simulation result is the average of the
absolute estimation errors of the 10 simulation runs. Since the yaw angle’s observability changes under
different scenarios, the yaw estimation error comparison is emphasized. For all the simulations and
experiments in this thesis, the root mean square (RMS) value over the whole trajectory will be used to
indicate the performance of different methods.

1. Constant velocity

In this simulation, after an accelerating period, the vehicle is at a constant velocity without any attitude
change as shown in Figure 3.1. The simulation time is 600 s. During the first 30 s, the vehicle accelerates
from 0 to 30 m/s. And then the velocity will be kept as a constant in the following 570 s. According
to observability analysis, the yaw angle is unobservable in stationary or constant velocity cases (no
acceleration). Since the unobservable yaw angle drifts very quickly over time, especially for the EKF,
only the first 300 seconds’ navigation result is shown. The roll, pitch and yaw estimation errors between
the CKF and the EKF are shown in Figures 3.2, 3.3, 3.4 and Table 3.2.

It can be seen from the figures and table that after applying the CKF and the nonlinear attitude expres-
sion, the yaw angle drift is far slower than the EKF in the constant velocity case. During the acceleration
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Figure 3.1: Trajectory of constant velocity simulation
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Figure 3.2: Roll error of the EKF and the CKF in con-
stant velocity simulation
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Figure 3.3: Pitch error of the EKF and the CKF in con-
stant velocity simulation
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Figure 3.4: Yaw error of the EKF and the CKF in con-
stant velocity simulation

period, the CKF and the EKF have the similar performance, due to the yaw angle becoming weakly ob-
servable. Since the yaw angle drifts very quickly, only the pitch and roll estimation errors are given in
Table 3.2. From Table 3.2, it can be seen that the CKF shows no improvements in the roll and pitch
estimation which are always observable.

2. Accelerating

In the accelerating simulation, the velocity changes as shown in Figure 3.5. The vehicle heads for the
north. There are no attitude and velocity changes in the eastern and up directions in the simulation.
According to the observability analysis, the yaw angle is weakly observable when accelerating. The roll,
pitch and yaw estimation error comparisons between the CKF and the EKF are shown in Figures 3.6, 3.7,
3.8 and Table 3.3.

During the acceleration process, the yaw angle is weakly observable. As shown in Figure 3.8, the yaw
estimation accuracy differences between the CKF and the EKF are much smaller than in the constant
velocity case. However, it still can be seen that the CKF performs better than the EKF in the yaw angle
estimation.

3. Turning
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Figure 3.5: Velocity change of accelerating simulation

0 10 20 30 40 50 60
−0.5

0

0.5

1

1.5

2

Time (s)

R
ol

l d
iff

er
en

ce
 (

de
g)

 

 
EKF
CKF

Figure 3.6: Roll error of the EKF and the CKF in accel-
erating simulation
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Figure 3.7: Pitch error of the EKF and the CKF in accel-
erating simulation
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Figure 3.8: Yaw error of the EKF and the CKF in accel-
erating simulation

Table 3.3: Attitude comparison between the CKF and the EKF in the accelerating simulation

Filtering methods Roll RMS (deg) Pitch RMS (deg) Yaw RMS (deg)

EKF 0.771 0.831 4.401

CKF 0.764 0.839 3.816

In this simulation, the vehicle experiences a turn after a straight acceleration process as shown in Figure
3.9. According to the observability analysis, the yaw angle is observable when undergoing a change. The
roll, pitch and yaw estimation errors between the CKF and the EKF are shown in Figures 3.10, 3.11, 3.12
and Table 3.4. It can be seen that in observable cases, the CKF and the EKF have similar accuracy in the
attitude estimation. However, the benefit of the CKF in the yaw estimation still can be seen as shown in
Figure 3.12.

The attitude comparison of the three simulation scenarios shows that the CKF clearly presents its advan-
tage when the state’s degree of observability is low. When the vehicle is experiencing constant velocity
(no acceleration), the yaw angle is completely unobservable. The observations have no benefits in the
state estimation in such a case. The fast accumulation of the yaw angle error makes the psi-angle ex-
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Figure 3.9: Trajectory of turning simulation

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

3.5

Time (s)

R
ol

l d
iff

er
en

ce
 (

de
g)

 

 
EKF
CKF

Figure 3.10: Roll error of the EKF and the CKF in turn-
ing simulation
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Figure 3.11: Pitch error of the EKF and the CKF in turn-
ing simulation
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Figure 3.12: Yaw error of the EKF and the CKF in turn-
ing simulation

Table 3.4: Attitude comparison between the CKF and the EKF in turning simulation

Filtering methods Roll RMS (deg) Pitch RMS (deg) Yaw RMS (deg)

EKF 0.988 0.982 3.034

CKF 1.018 1.075 2.541

pression invalid. When the CKF with a nonlinear attitude model is applied to the integrated navigation
system, the yaw angle drift in the constant velocity case is smaller than the EKF, because this nonlinear
model has no requirement of small angle approximation and is always valid. When the state’s observ-
ability degree is high such as in turning or acceleration cases, the yaw estimation accuracy improvement
is not as obvious as in the constant velocity case as shown in Figures 3.8 and 3.12. The roll and pitch
have similar performances in all the scenarios, due to always being observable. The attitude estimation
accuracy improvement by applying the CKF varies with the degree of observability, which is shown by
the varying estimation accuracy of the yaw angle and the similar estimation accuracy of roll and pitch
angles in the various scenarios.
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Table 3.5: Specification of the RLG IMU

Gyroscope Accelerometer

Scale factor 5 ppm 100 ppm

Random walk 0.002 deg/
p

h 8 µg/
p

Hz

Bias instability 0.003 deg/h 25 µg

Table 3.6: Attitude comparison between the CKF and the EKF in stationary experiment

Filtering methods Roll RMS (deg) Pitch RMS (deg) Yaw RMS (deg)

EKF 0.047 0.125 8.231

CKF 0.049 0.125 7.669

3.6 Experiments

Due to the high noise and bias of the MEMS gyroscope, the initial yaw angle can not be directly de-
termined from its outputs. As introduced in Chapter 2, there are several methods used to determine
the initial yaw angle. In this section, to simplify, the yaw angle calculated from a RLG IMU is taken as
the initial yaw angle for the MEMS IMU. Due to the low noise and bias of the RLG IMU, its attitude
estimation is much more accurate than the MEMS IMU, which also allows it to be the attitude reference
to the MEMS IMU. The parameters of the RGL IMU are shown in Table 3.5.

3.6.1 Filtering performance comparison under different maneuvering

In this part, several land vehicle tests are designed to test the filtering performance difference between
the CKF and the EKF. The filtering methods’ performance comparison is based on the observability analy-
sis as well. Three experiments including stationary, acceleration and 8 shape figure driving, are designed.
During the experiments, the assumption can not always be kept as true because it is much more difficult
to control a real drive than a simulation. In order to reduce the effect of parameter tuning, all parameters
are tuned identically in all experiments for the EKF and the CKF. The initial attitude standard deviation
is 20 ′′, because the initial attitude is taken from the RLG IMU. Considering vibration, the initial velocity
standard deviation is 1 cm/s, because the vehicle starts from a static state. The initial position is de-
termined from the SPP method, so the initial position standard deviation is 3 m. The initial standard
deviations of the gyroscopes and accelerometers are 1 ′′/s and 0.003 m/s2. The receiver clock offset and
drift standard deviations are 10 m and 1 m/s. In the measurement matrix R, the standard deviations
for the pseudorange and Doppler are set as 3 m/ sin(θele) and 0.1 m/s/ sin(θele). In the system matrix
Q, the standard deviations of the elements related to attitude, velocity, position, gyroscope biases, ac-
celerometer biases, receiver clock offset and drift are set as 3 ′′, 0.14 m/s, 1 m, 10 ′′/s, 0.001 m/s2, 5 m,
0.5 m/s.

1. Stationary case

According to the observability analysis, the yaw angle is completely unobservable in a stationary case.
The simulation results also indicate that yaw errors accumulate very quickly without acceleration. The
experiment trajectory is shown in Figure 3.13, where the moving period is about 2 minutes long and
the subsequent stationary period is about 15 minutes long. The experiment can be used to examine
the filtering performance difference between the EKF and the CKF filtering methods in the unobservable
case. The attitude comparisons are shown in Figures 3.14, 3.15, 3.16 and Table 3.6.
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Figure 3.13: Trajectory of stationary experiment’s mov-
ing period
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Figure 3.14: Roll error of the EKF and the CKF in sta-
tionary experiment
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Figure 3.15: Pitch error of the EKF and the CKF in sta-
tionary experiment
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Figure 3.16: Yaw error of the EKF and the CKF in sta-
tionary experiment

It can be seen that roll and pitch have a similar estimation accuracy by applying the EKF and the CKF
filtering methods due to that they are always observable. For the yaw angle estimation, since it is
unobservable in a stationary case, it drifts much faster than the roll and pitch angles. However, the CKF
still seems to have a lower yaw drift than the EKF, due to its capability of dealing with nonlinear problems
from the yaw angle error accumulation.

2. Accelerating+Turning

According to observability analysis, the yaw angle is weakly observable in the accelerating case and com-
pletely observable when it experiences a change. As shown in the simulation part, the yaw estimated in
this case seems to have a higher estimation accuracy than in the non-accelerating cases. The accuracy
improvement by applying the CKF is also relatively smaller than in non-accelerating cases. The experi-
mental trajectory is shown in Figure 3.17, covering an accelerating process and a turning process. The
attitude comparisons between the CKF and the EKF are shown in Figures 3.18, 3.19, 3.20 and Table 3.7.

It can be seen that the CKF and the EKF have a similar roll, pitch and yaw estimation accuracy in
such a case, since all the attitude components become observable (roll and pitch) or weakly observable
(yaw). The measurements have the capability in bounding estimation error accumulation and reduce
the nonlinearity of the system.
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Figure 3.17: Trajectory of accelerating+turning experi-
ment
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Figure 3.18: Roll error of the EKF and the CKF in accel-
erating+turning experiment
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Figure 3.19: Pitch error of the EKF and the CKF in ac-
celerating+turning experiment
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Figure 3.20: Yaw error of the EKF and the CKF in accel-
erating+turning experiment

Table 3.7: Attitude comparison between the CKF and the EKF in accelerating+turning experiment

Filtering methods Roll RMS (deg) Pitch RMS (deg) Yaw RMS (deg)

EKF 0.244 0.198 0.828

CKF 0.243 0.198 0.824

3. 8 shape figure driving

Observability analysis shows that the change of the yaw angle can make it observable. Therefore, an
8 shape figure driving experiment is constructed to examine the performance difference between the
CKF and the EKF in the observable case. The 8 shape figure driving trajectory is shown in Figure 3.21.
The attitude comparisons between the CKF and the EKF in the 8 shape figure driving case are shown in
Figures 3.22, 3.23, 3.24 and Table 3.8.

It can be seen that when the yaw angle becomes observable, the CKF and the EKF have a similar attitude
estimation accuracy. According to the CKF estimation accuracy evaluation, implementing the CKF in a
linear system will not be productive. In a GPS/IMU tightly-coupled navigation system, if the yaw angle
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Figure 3.21: Trajectory of 8 shape figure driving experi-
ment
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Figure 3.22: Roll error of the EKF and the CKF in 8
shape figure driving experiment
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Figure 3.23: Pitch error of the EKF and the CKF in 8
shape figure driving experiment
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Figure 3.24: Yaw error of the EKF and the CKF in 8
shape figure driving experiment

Table 3.8: Attitude comparison between the CKF and the EKF in 8 shape figure driving experiment

Filtering methods Roll RMS (deg) Pitch RMS (deg) Yaw RMS (deg)

EKF 0.207 0.351 1.550

CKF 0.207 0.351 1.548

is observable, its estimation error accumulates slowly. The linear psi-angle expression is always valid.
Thus, the application of the CKF in the observable cases does not show an accuracy improvement.

From the attitude comparisons between the CKF and the EKF in different scenarios, it can be seen that
the application of the CKF in tightly-coupled navigation system can improve the yaw angle accuracy in
unobservable cases when the prediction accuracy dominates the accuracy of the Kalman filter. According
to observability analysis, the yaw angle’s degree of observability varies in different kinds of motion. The
lower the observability, the more obvious the merit of the CKF is. For example, in a stationary case, the
yaw accuracy improvement is very obvious after applying the CKF. On the contrary, in the 8 shape figure
driving case, the improvement is quite small. Since roll and pitch are always observable, it can be seen
that they have an almost identical estimation accuracy in all the experiments. The application of the
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Figure 3.25: Trajectory of Griesheim airport experiment
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Figure 3.26: Yaw angle comparison between the EKF
and the CKF in large misalignment case

CKF only eliminates the work in deducing the Jacobian matrix. The same trend can also be found in
the simulation results. The nonlinearity of a GPS/IMU tightly-coupled navigation system is also affected
by sensor quality. A lower sensor quality with high noise and bias leads to faster error accumulation in
unobservable cases, which renders the linear psi-angle expression invalid and consequently leads to an
increased degree of nonlinearity in the system.

3.6.2 Filtering performance comparison in a large misalignment case

In the experiments above, the initial yaw angle of the MEMS IMU is assumed to be already known,
as it is taken directly from a high-grade RLG IMU. However, when aiding sensors like magnetometers
and GPS attitude systems are not available, MEMS gyroscopes’ outputs in the stationary case cannot
be used to correctly calculate the initial yaw angle. Therefore, the MEMS IMU experiences a large
misalignment problem, which makes the psi-angle expression invalid and inserts some nonlinearity into
the integrated navigation system according to Crassidis (2006); Rhudy et al. (2013); Li et al. (2013).
Wendel et al. (2006b, 2005) show that a large initial position error, for example 30 km, also causes
some nonlinearity and that the UKF has superior performance to the EKF. So it can be concluded that
a large initialization error (position or attitude) inserts a degree of nonlinearity into the integrated
navigation system. However, unlike the large misalignment problem, the large position error problem
seldom appears in integrated systems because the initial position can be determined by GPS. Considering
this, the filtering methods’ performance comparison is only examined in the large misalignment case.

The experimental trajectory is shown in Figure 3.25. This trajectory is complex and contains several
stationary, straight driving and turning parts, which will also be used to examine the algorithms’ per-
formance in the following sections and chapters. The initial yaw angle is calculated from the MEMS
gyroscopes’ outputs, which is neither accurate nor trustworthy. The large azimuth angle error problem
arises. A large initial attitude standard deviation has the possibility in causing the Kalman filter to be-
come divergent, while a small attitude standard deviation will make the Kalman filter converge to a
wrong value. Considering both the aspects, the initial attitude standard deviations are 5 deg for roll
and pitch angles, 17 deg for the yaw angle. The other parameters are identical to the parameters in the
previous section. The yaw angle comparison is shown in Figure 3.26.

From Figure 3.26, it can be seen that the CKF converges faster than the EKF in the yaw angle estimation
when the initial yaw angle error is very large. When the yaw angle is already convergent, the CKF
estimation error still seems to be smaller than the EKF. A large initial yaw error renders the psi-angle
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Figure 3.27: Horizontal position drift of the EKF and the
CKF in coasting period
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Figure 3.28: Vertical position drift of the EKF and the
CKF in coasting period

expression implemented in the EKF less effective, while the nonlinear attitude expression in the CKF is
still valid. Thus, a faster convergence speed and smaller estimation error can be expected from the CKF.
In the large misalignment case, the CKF is superior to the EKF.

3.6.3 Coasting performance comparison

The coasting performance can also be used to examine the performance difference among various fil-
tering methods. During the coasting periods, the GPS signal is blocked artificially, and the integrated
navigation system turns into the IMU-only navigation. Due to that there is no aiding sensors, the estima-
tion errors accumulate very quickly, rendering small angle approximation invalid as well. The trajectory
of the experiment is shown in Figure 3.25 with initial attitude determined from the RLG IMU. The time
lengths of the first and second coasting periods are 40 s, while the third and fourth coasting periods are
30 s. The horizontal and vertical position drifts during coasting periods are shown in Figures 3.27, 3.28
and Table 3.9.

It can be found that the EKF drifts faster than the CKF in both horizontal and vertical directions. During
the coasting periods, since the observations are unavailable, all the states can accordingly be treated as
unobservable, which leads to the estimation errors accumulating very quickly. According to the inertial
navigation mechanisation, a large attitude error causes a false velocity estimation and subsequently a

Table 3.9: Maximum position drift of the EKF and the CKF in coasting periods

Methods
1st GPS outage 2nd GPS outage

Horizontal drift (m) Vertical drift (m) Horizontal drift (m) Vertical drift (m)

EKF 24.48 0.76 36.76 0.67

CKF 24.41 0.40 36.17 0.22

Methods
3rd GPS outage 4th GPS outage

Horizontal drift (m) Vertical drift (m) Horizontal drift (m) Vertical drift (m)

EKF 6.80 1.88 9.64 2.14

CKF 6.26 1.20 9.63 2.14
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Figure 3.29: Roll error of the CPFs with different num-
bers of particles
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Figure 3.30: Pitch error of the CPFs with different num-
bers of particles
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Figure 3.31: Yaw error of the CPFs with different numbers of particles

large position drift. The nonlinear attitude expression implemented in the CKF can bound the attitude
error accumulation and then lead to a relatively smaller position drift. Considering the maximum hori-
zontal and vertical position drifts, the nonlinear filtering method (the CKF) performs better than the EKF
during coasting periods.

3.6.4 CPF performance

In this section, the CPF performance is examined in a GPS/IMU tightly-coupled navigation system.

1. Effect of the number of particles

The first comparison is the CPF performance with different numbers of particles. The attitude compar-
ison is taken as an indicator to evaluate the CPF filtering methods’ performance. 100, 200, 500, 1000
and 2000 particles are implemented in the CPF. The trajectory is shown in Figure 3.25. The attitude es-
timation accuracy in roll, pitch and yaw angles is shown in Figures 3.29, 3.30 and 3.31. The navigation
results are the average of 10 CPF runs.

It can be seen that the CPF estimation accuracy increases with the number of particles. More particles
show a higher attitude estimation accuracy. On the contrary, less particles reveal the random properties

44



Table 3.10: Attitude comparison of the CPFs with different numbers of particles

Particle number Roll RMS (deg) Pitch RMS (deg) Yaw RMS (deg)

100 0.156 0.232 1.946

200 0.114 0.153 1.252

500 0.093 0.110 0.990

1000 0.088 0.108 1.012

2000 0.089 0.114 0.942
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Figure 3.32: Roll estimation error of the EKF, CKF and
CPF

0 200 400 600 800 1000 1200
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Time (s)

P
itc

h 
di

ffe
re

nc
e 

(d
eg

)

 

 
EKF
CKF
CPF

Figure 3.33: Pitch estimation error of the EKF, CKF and
CPF

Table 3.11: Attitude comparison among the EKF, CKF and CPF

Particle number Roll RMS (deg) Pitch RMS (deg) Yaw RMS (deg)

EKF 0.085 0.117 1.080

CKF 0.085 0.117 1.075

CPF 0.088 0.110 1.001

of particles, as shown by the attitude estimated by the CPF with 100 particles being much worse than
the other CPFs with more particles. In the following comparison, the CPF with 1000 particles will be
implemented for the comparison with the EKF and the CKF filtering methods.

2. Comparison with the CKF and the EKF

In this comparison, the trajectory shown in Figure 3.25 is used to examine the attitude estimation ac-
curacy of the three filtering methods. The roll, pitch and yaw angle comparisons are shown in Figures
3.32, 3.33, 3.34 and Table 3.11. The attitude computed from the CPF is the average of 15 CPF runs.

It can be seen from the comparison that the EKF, CKF and CPF have similar roll and pitch estimation
accuracy. In the yaw estimation, the nonlinear filtering methods (the CKF and the CPF) perform a little
better than the EKF especially when the vehicle is stationary (the vehicle stops for five minutes at the
end of the trajectory). And the CPF seems to have better yaw angle estimation accuracy than the CKF.
However, due to the random properties of the particles, the CPF should be executed several times and the
average of the attitude estimation will be similar to the CKF as suggested in Zhou et al. (2010). A single
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Figure 3.34: Yaw estimation error of the EKF, CKF and CPF

run of the CPF cannot show too much attitude estimation accuracy improvement. Therefore, considering
the attitude comparison and the computational load of the CPF, it can be concluded that the CPF can be
considered as a method when designing a tightly-coupled navigation system, but its benefits in dealing
with nonlinear and non-Gaussian problems may bot be fully shown in an integrated navigation system.

3.7 Conclusion

In this chapter, the performance of the Cubature Kalman filter is evaluated in a conventional GPS/IMU
tightly-coupled navigation system through mathematical derivation, simulation and experiments. The
estimation accuracy of the CKF is examined through a Taylor expansion, proving that the CKF has a
similar estimation accuracy as the EKF, when implemented with linear or linearised systems. Based on
this conclusion, a nonlinear attitude expression is introduced into the navigation system to better show
the CKF’s benefits. The observability of the yaw angle varies under different dynamics. Thus the CKF’s
filtering performance under different maneuvering is further investigated according to the observability
analysis. From the simulation and experiment results, it can be seen that the CKF performs better than
the EKF especially for a low-cost MEMS IMU applied in unobservable cases. The large misalignment and
coasting performance show that the CKF performs better than the EKF and can be treated as a better
choice when designing an integrated navigation system.

A Cubature particle filter based on the CKF is developed. The CKF a posteriori mean and covariance
matrix are applied to generate particles. The CPF performance improves with the increase in the number
of particles, although too many particles will not further improve the estimation accuracy of the CPF.
The attitude comparison among the EKF, CKF and CPF shows that the CPF can not achieve too much
estimation accuracy improvement because the non-Gaussian property of tightly-coupled navigation sys-
tems is weaker, thus also concluding that the CPF and the other related particle filters can be taken into
consideration in designing a GPS/IMU tightly-coupled navigation system, but their benefits cannot be
shown fully in such an integrated navigation system.
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4 Shaping filter modelling of inertial sensors’ stochastic errors

In this chapter, the application of the shaping filter theory to model inertial sensors’ stochastic errors will
be described. The shaping filter theory describes how to use a unit white noise to generate a coloured
noise (also named as 1/ f α noise). According to shaping filter theory, the transfer function of each inertial
sensor’s coloured noise can be deduced from its PSD, which will be converted into the state space form
and then augmented in a GPS/IMU integrated navigation Kalman filter. The shaping filter-based method
will be compared with the conventional 1st-order Markovian process modelling method to determine its
effectiveness through simulation and experiments.

4.1 Introduction and background

A MEMS IMU is more attractive for its low cost, mass and size. However, it also suffers from a higher
error level, which together with the integration of the inertial data very quickly causes the navigation
solution to drift, especially when aiding measurements are unavailable. So the inertial sensors’ errors
modelling is one of the key issues in improving the performance of a GPS/MEMS IMU integrated nav-
igation system. According to the errors’ properties, inertial sensors’ errors can be divided into roughly
two segments: deterministic errors and stochastic errors. Deterministic errors contain scale factor errors,
constant biases, misalignment effects, temperature related variations, nonlinearity errors and so on (Yi,
2007). These errors are normally reduced using prior calibration before operation. The inaccuracies of
deterministic errors can be further estimated using the Kalman filter technique. Stochastic errors include
white noise, quantization noise, rate random walk, rate ramp, bias instability and some other forms of
noise (IEEE Std 952TM-1997, 2008). Stochastic errors cannot be reduced through calibration methods.
But they can be modelled as some random processes and then estimated in the navigation Kalman filter
(Flenniken et al., 2005).

Power spectral density (PSD) and Allan variance (AV) are the two main methods used to identify inertial
sensors’ stochastic errors. They describe a same process from frequency and time domains separately
(IEEE Std 952TM-1997, 2008). Considering the inconsistency of the Allan variance technique, some
researchers proposed a wavelet-based (WV) method in determining stochastic errors, which creates a
connection between the WV coefficients and the stochastic errors’ parameters (Stebler, 2013; Guerrier,
2013; Guerrier et al., 2013).

After determining the coefficients of stochastic errors, it is also important to estimate them in a Kalman
filter. Van Dierendonck et al. (1984) tries to establish a relationship between the Allan variance and
the Kalman filter parameters. Seong et al. (2000) carefully describe the selection of an ARMA process
according to the combination of different stochastic errors. The coefficients of the ARMA process can be
estimated using the prediction error method (PEM), Yule-Walker or Burg estimation methods (Zelinker
and Taylor, 1994). The authors share similar goals but model stochastic errors as an AR(4) process,
which is a fourth order auto-regressive process (Park, 2004; Wang et al., 2012; Park and Gao, 2008).
Guerrier (2013) uses the generalized method of wavelet moments (GMWM) to model the stochastic
errors as a summation of three 1st-order Markovian processes, and each 1st-order Markovian process is
converted to its related ARMA process and estimated separately. The authors also suggest the possibility
of modelling all the three 1st-order Markovian processes together. Unlike with the ARMA process, the
researchers model all the coloured noise of the stochastic errors together using differential equations
with a unit white noise as input (Han and Wang, 2011; Saini et al., 2010; Zhao, 2013). The state space
form is then deduced from modern control theory.

In this chapter, a shaping filter will be used to model inertial sensors’ stochastic errors in the navigation
Kalman filter. The transfer function of the shaping filter is determined from the PSD of relevant stochastic
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errors. The ARMA process and the differential equation are deduced from the shaping filters’ transfer
function using Z-transformation and inverse Laplace transformation separately (Ogata and Yang, 1970).
It can be seen that they are equivalent and describe the same errors using two different expressions. The
ARMA process’ coefficients also can be calculated from the shaping filter without using the ARMA process
coefficients determination methods like the Yule-Walker or Burg estimation methods. The relationship
between the Allan variance and the ARMA process’s coefficients can be established.

4.2 Allan variance

The Allan variance technique was initially developed for studying the frequency stability of precision
oscillators in 1966 by David Allan (Allan, 1966). In the 1990s, the Allan variance method was adapted
by institute of electrical and electronics engineers (IEEE) to estimate stochastic errors of a fibre optic
gyroscope (FOG) (IEEE Std 952TM-1997, 2008). The AV method is also used to evaluate MEMS IMU
stochastic errors as discussed in Hou (2004); El-Sheimy et al. (2008); Zhao et al. (2011). The AV method
can be summarized as follows in brief.

1. Take a long sequence of discrete data Ω(t) with length N and sampling time Ts, and then divide it
into n clusters with duration τ. Integration of Ω(t) in each cluster is

θ(t) =

∫ tk+τ

tk

Ω(t)d t (4.1)

2. Average each cluster over time period τ

Ωk(τ) =
1

τ
θ(t) (4.2)

3. Allan variance is defined as

σ2(τ) =
1

2
〈(Ωk+n(τ)−Ωk(τ))

2〉=
1

2τ2 〈(θk+2n− 2θk+n+ θk)
2〉 (4.3)

where 〈〉 denotes an infinite time average. In practical application, the AV is estimated from a finite
number of samples by

σ2(τ) =
1

2τ2(N − 2n)

N−2n
∑

k=1

(θk+2n− 2θk+n+ θk)
2 (4.4)

The Allan deviation’s characteristic curve of each error term can be derived by a log-log calculation on
the Allan variance equation, which is also called as Allan variance plot. Figure 4.1 is a typical Allan
variance plot, taken from (Stebler, 2013). It can be seen that after applying Allan variance technique,
different stochastic processes appear in different segments of Allan variance plot with different slopes.
The relationship between the Allan deviation of each noise and time is shown in Table 4.1 (IEEE Std
952TM-1997, 2008; Zhang et al., 2008; Vágner et al., 2012; Zhao et al., 2011).

Allan variance is a time domain method widely used to specify and determine the coefficients of the
inertial sensors’ stochastic errors. Unlike Allan variance, the PSD method identifies the inertial sensors’
stochastic errors from the frequency domain. PSD can be treated as a Fourier pair of Allan variance as
shown in equation (4.5) (IEEE Std 952TM-1997, 2008).
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Figure 4.1: A typical Allan variance plot (Stebler, 2013)

σ2(τ) = 4

∫ ∞

0

SΩ( f )
sin4(π f τ)
(π f τ)2

d f (4.5)

where SΩ( f ) is the two-sided PSD of Ω(t).

The recently developed generalized wavelet-based method transfers the coefficients of stochastic errors
to the coefficients of wavelet terms. The stochastic errors’ coefficients are further determined using
least square method. As suggested by the authors, when the Haar filter is chosen as the base function
of the wavelet, the generalized wavelet is the same as Allan variance (Stebler, 2013; Guerrier, 2013;
Guerrier et al., 2013). In this sense, the three methods are equivalent and can change mutually through
relevant mathematical transformation. If all the three methods are applied to determine the coefficients
of stochastic errors, a similar estimation accuracy should be expected in theory.

According to IEEE Std 952TM-1997 (2008), inertial sensors mainly contain five stochastic errors: an-
gle/velocity random walk, quantization noise, rate random walk, rate ramp, and bias instability as shown
in Table 4.2. It can be seen that quantization noise is a high-frequency noise, angle/velocity random walk
is a white noise and the other three stochastic errors are low-frequency noises. Allan variance is applied

Table 4.1: Allan deviation vs time

Stochastic error Relationship Curve slope Coefficient value

Angle/Velocity random walk* log(σ) =− 1
2

log(τ) + log(N) − 1
2

N = σ(1)

Quantization noise log(σ) =− log(τ) + log(
p

3Q) −1 Q = σ(
p

3)

Rate random walk log(σ) = 1
2

log(τ) + log( Kp
3
) 1

2
K = σ(3)

Rate ramp log(σ) = log(τ) + log( Rp
2
) 1 R= σ(

p
2)

Bias instability log(σ) = log(
Æ

2 ln 2
π

B) = log(0.664B) 0 B = σ

0.664

*This kind of stochastic error is not a random walk (or Weiner process). According to IEEE Std 952TM-1997, it
behaves more like a white noise.
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to determine the coefficients of the inertial sensors’ stochastic errors in this thesis. The relevant PSD is
deduced from the Allan variance coefficients according to Table 4.2.

4.3 Shaping filter theory

The Kalman filter is only driven by white noise. Only the angle/velocity random walk can be treated
as a white noise, which can be processed directly without any modelling. In order to compensate for
the effect of the other four stochastic errors, it is necessary to model them using a white noise and
then estimate them as augmented states in the Kalman filter (Bartosch, 2001). Shaping filter theory
introduces a method of how to generate a coloured noise using a unit white noise.

Considering an arbitrary continuous stationary stochastic process x(t) with mean µ, its auto-correlation
function is calculated as

Cx(τ) = E{x(t)x(t −τ)} (4.6)

Its PSD is the Fourier transformation of Cx(τ), which is

Sx(ω) =

∫ ∞

−∞
Cx(τ)exp(− jωτ)dτ (4.7)

If x(t) is non-stationary, its PSD does not exist, but its sampled PSD (or generalized PSD), which is the
spectral estimate with a rectangular window as defined in Kasdin (1995), matches (4.7), too. In the
following analysis, the non-stationary process’ PSD refers to its sampled PSD.

If Sx(ω) is assumed to be real and matches the Paley-Wiener criterion,

∫ ∞

−∞

log(Sx(ω))
1+ω2 dω<∞ (4.8)

which indicates a causal system, Sx(ω) can be factorized as

Sx(ω) = |H( jω)|2 = H( jω)H( jω)∗ (4.9)

Table 4.2: Stochastic errors in inertial sensors

Stochastic error Coefficient Allan Variance Power Spectral Density Noise type

Angle/Velocity random walk N σ2
N (τ) =

N2

τ
SN ( f ) = N2 White noise

Quantization noise Q σ2
Q(τ) =

3Q2

τ2 SQ( f ) = (2π f )2Q2Ts Violet noise

Rate random walk K σ2
K(τ) =

K2τ

3
SK( f ) =

K2

(2π f )2
Red noise

Rate ramp R σ2
R(τ) =

R2τ2

2
SK( f ) =

R2

(2π f )3
Power-law noise

Bias instability B σ2
B(τ) =

2B2 ln2
π

SB( f ) =
B2

2π f
Pink noise
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If the transfer function H( jω) is a rational function, it can be decomposed into the ’zero-poles’ format.
If all the poles are on the left side of the s plane, H( jω) is the transfer function of a stable linear time-
invariant (LTI) system to generate x(t) from a white noise. In this case, a linear time-invariant system
(shaping filter) is constructed to simulate x(t) as

bx(t) = F−1{H( jω)} ∗w(t) +µ (4.10)

where w(t) is a white noise with the following first and second moments as

E{w(t)}= 0

E{w(t)w(t −τ)}= Cw(τ) = δ(τ)
(4.11)

and then bx(t) will have the same mean and PSD as x(t).

4.4 Inertial sensors’ stochastic errors modelling

The derivation above introduces how to generate a coloured noise by inputting a white noise to a shaping
filter. The shaping filter transfer function can be deduced by the factorization of the relevant PSD, see
equation (4.9). The PSD is rewritten by applying ω = 2π f in the following analysis. The transfer
function and modelling of each noise are deduced as shown below.

4.4.1 Bias instability

Bias instability is usually a primary parameter used to classify the gyroscope performance (Schmidt,
2011). The PSD of bias instability is represented as

SB(ω) =
B2

ω
(4.12)

From equations (4.12) and (4.9), the shaping filter transfer function of the bias instability is deduced as

HB( jω) =
B
p

jω
(4.13)

Obviously, HB( jω) is an irrational function, which cannot describe a LTI system directly. So a rational
function should be applied to approximate the irrational function. The PSD of the bias instability indi-
cates that it can be treated as a flicker noise (also named as 1/ f noise or pink noise). In Ninness (1998),
flicker noise is generated using a wavelet-based method, which is only consistent for spectral exponents
γ in the range γ ∈ (0,1). Flicker noise is generated by cascading a pole/zero pair for each decade of the
frequency of interest using white noise as the input in Keshner (1982). In this case, the transfer function
works more like a low-pass filter. Since flicker noise behaves like a low frequency noise, it is possible to
be generated through low-pass filtering. However, the order of the transfer function is very high, which
increases the computational burden when implemented in a Kalman filter.

Flicker noise can also be approximated as a sum of 1st-order Markovian processes. The 1st-order Marko-
vian process is stationary, which can be used to model many stochastic processes and even non-stationary
processes. As mentioned in Stebler et al. (2012), the researchers use three 1st-order Markovian processes
to model IMU stochastic errors. One 1st-order Markovian process plus white noise is also adapted to
model the inertial sensors’ stochastic errors as introduced in Schwarz and Wei (2001); Hammon (1960);
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Xing and Gebre-Egziabher (2008). Pittelkau (2013) has investigated how to model the gyroscope bias
instability using the summation of 1st-order Markovian processes. He models the flicker noise as a sum-
mation of several independent 1st-order Markovian processes. In this thesis, bias instability is modelled
as the summation of several 1st-order Markovian processes with an identical white noise according to
the method introduced in Granger and Morris (1976); Teräsvirta (1977).

The spectrum of flicker noise can be represented as the weighted sum of many exponentially correlated
processes as

∫ ∞

0

2B2

π(ω2+λ2)
dλ=

2B2

πω
tan−1(

λ

ω
)|∞0 =

B2

ω
(4.14)

After applying equation (4.15) to (4.14)

λ= exp(β)⇒
B2

ω
=

∫ ∞

−∞

2B2 exp(β)
π(ω2+ exp(2β))

dβ (4.15)

The integration (4.14) can be approximated as an infinite sum:

B2

ω
= lim
∆β→0

∞
∑

k=−∞

2B2 exp(k∆β)∆β
π(ω2+ exp(2k∆β))

(4.16)

Each component in the summation term corresponds to the spectrum of the following process:

HGM( jω) =
τσGM

τ+ jω
(4.17)

which is the transfer function of the 1st-order Markovian process with time constant τ= exp(k∆β) and

covariance σ2
GM =

B2 exp(−k∆β)∆β
π

.

Therefore, the transfer function of the bias instability can be roughly approximated as a summation of a
series of 1st-order Markovian processes. In this chapter, two 1st-order Markovian processes are used to
model bias instability, which is

yB(t) = F−1{
qc1

Tc1

1+ jωTc1

} ∗w1(t) + F−1{
qc2

Tc2

1+ jωTc2

} ∗w2(t) (4.18)

According to the method introduced in Granger and Morris (1976); Teräsvirta (1977), which describes
how to find an equivalent process for the summation of two AR(1) processes, a transfer function HB( jω)
equivalent to the summation of two independent 1st-order Markovian processes can be determined to
shape a white noise to be yB(t) as

yB(t) = F−1{HB( jω)} ∗w(t) (4.19)

If (τpeak,σpeak) is set as the peak point in the AV plot of the 1st-order Markovian process as shown in
Figure 4.2, qc, Tc in (4.18) are computed as (IEEE Std 952TM-1997, 2008)
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Figure 4.2: Allan variance plot for 1st-order Markovian process (IEEE Std 952TM-1997, 2008)
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Figure 4.3: Using two 1st-order Markovian processes to approximate bias instability

Tc = τpeak/1.89

qc =
σpeak

0.437
p

Tc

(4.20)

However, that does not mean that all the inertial sensors’ bias instability should be modelled as a sum-
mation of two 1st-order Markovian processes. The number of Markovian processes is determined by the
length of the flat segment in the AV plot. If the length of slope 0 is short, only one 1st-order Marko-
vian process is enough to approximate the bias instability, which is widely used in many applications
(Hammon, 1960).

Figure 4.3 shows how a summation of two independent 1st-order Markovian processes approximates the
X-accelerometer’s bias instability. The flat segment in Figure 4.3 is long. So two 1st-order Markovian
processes (red and light blue lines) are utilized to describe bias instability. As shown in the dashed box,
their combination (green line) is quite similar as the measured X-accelerometer’s bias instability (blue
line), which indicates the effectiveness of the method in using several independent 1st-order Marko-
vian processes to approximate bias instability. It is not necessary to use too many 1st-order Markovian
processes for the approximation, as that increases the computational load without too much estimation
accuracy improvement.
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4.4.2 Rate random walk

The PSD of rate random walk is represented as

SK(ω) =
K2

ω2 (4.21)

From equations (4.21) and (4.9), the shaping filter transfer function is deduced as

HK( jω) =
K

jω
(4.22)

This transfer function is rational and it describes an integration process. Some people treat rate random
walk as a Wiener process, because both of them can be generated by integrating a white noise (Stebler,
2013). Wiener process is non-stationary without PSD (Itô, 1974). But its related sampled PSD can be
calculated by applying a window to its auto-correlation function as introduced in Kasdin (1995).

According to the definition of a sampled PSD (or generalized PSD) in Kasdin (1995), the sampled PSD
of Wiener process is calculated as

S(ω) =

∫ 0

−T

[
1

T

∫ t0+T+τ2

t0−
τ
2

R(t,τ)d t]e− jωτdτ

+

∫ T

0

[
1

T

∫ t0+T−τ2

t0+
τ
2

R(t,τ)d t]e− jωτdτ

(4.23)

where R(t,τ) is the auto-correlation function of a non-stationary process. Equation (4.23) is also appli-
cable to stationary processes. The sampled PSD of the stationary processes is the same as its true PSD.
The auto-correlation function of Wiener process is

R(t,τ) = t −
|τ|
2

(4.24)

The PSD of Wiener process cannot be computed directly from (4.24) through a Fourier transformation,
because it is not absolutely integrable which does not meet the Dirichlet condition. The PSD directly
calculated from R(t,τ) using a Fourier transformation has no meaning as such, although it is possible
to use the Fourier transformation table to find a relevant transformation for R(t,τ). In the sense of a
sampled PSD, R(t,τ) becomes absolutely integrable after applying a rectangular window. The spectral
estimate for Wiener process by substituting (4.24) into (4.23), can be further computed as

S(ω) = 2(1+
t0

T
)

1

ω2 − 2(
t0

T
)
cosωT

ω2 −
2

Tω3 sinωT (4.25)

If T is much larger than t0, S(ω) matches the following relationship

S(ω)∝
1

ω2 (4.26)

which is similar to the PSD of rate random walk. In this sense, a rate random walk in the Allan variance
can be represented as a segment of an infinite Wiener process.

54



4.4.3 Rate ramp

Generally speaking, a rate ramp seldom appears in the AV plot of a low-cost MEMS inertial sensor,
since it behaves more like a deterministic error. If a segment with a slope greater than one is found,
the compensation for temperature, stability of power source and readout circuit should be checked to
eliminate their effects. If necessary, the IMU needs to be recalibrated. However, this does not mean that
rate ramp will never appear in an AV plot. So it is still necessary to deduce a transfer function for rate
ramp and compensate it in a navigation Kalman filter in case this error actually occurs.

The PSD of a rate ramp is

SR(ω) =
R2

ω3 (4.27)

The transfer function deduced from the PSD is

HR( jω) =
R

( jω)1.5 (4.28)

Equation (4.28) is an irrational function, which should be approximated using a rational function. A 2nd
order Markovian process can be used to describe rate ramp as

ĤR( jω) =
R

( jω)2+ j
p

2ω0ω+ω2
0

(4.29)

where ω0 is the natural frequency of the 2nd order Markovian process.

The following analysis will state how to roughly determine ω0 in equation (4.29). The magnitude error
between the true and estimated transfer functions can be defined as (Han and Wang, 2011)

εR = 10 · log|
|ĤR( jω)| − |HR( jω)|

|HR( jω)|
|

= 10 · log|

p

ω3

p

ω4+ω4
0

− 1|
(4.30)

Since rate ramp is a low-frequency noise, its frequency range can be set from 0.005 Hz to 0.01 Hz. In
this frequency range, if ω0 = 0.05rad/s, the magnitude error is below -3dB as indicated in Han and
Wang (2011).

4.4.4 Quantisation noise

According to the outputs of inertial sensors, the quantisation noise can be modelled using two different
methods. If the inertial sensor’s output is delta velocity or delta angle, the quantisation noise will not ac-
cumulate and can be modelled as a white noise. In this case, navigation functions should be revised, and
the effects of quantisation noise can be absorbed by enlarging the system noise covariance matrix (Sav-
age, 2002). So even if a segment with slope -2 is detected in an AV plot, this kind of quantisation noise
can be completely and safely neglected. If the output is acceleration or angle rate, the quantisation noise
can be modelled as the differential of a white noise. However, unlike the other four noises, quantisation
noise is a high-frequency noise. Therefore, its effect can be reduced or even eliminated by filtering the
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inertial sensors’ raw data using a low pass filter especially when the vehicle is in a low-dynamic motion
(Hou, 2004). In this case, the effect of the quantisation noise can be ignored as well.

The transfer function of the quantisation noise is

HQ( jω) = jωQ
p

Ts (4.31)

where Ts is sampling interval.

4.5 Equivalence theory

The discussion above indicates that the inertial sensor’s stochastic error modelling is mainly the mod-
elling of coloured noises. After deriving the transfer function of each coloured noise (or 1/ f α noise)
including bias instability, rate random walk and rate ramp, their relevant state space forms can be de-
duced and then implemented separately in a Kalman filter, which is adapted in many applications and
achieves some satisfactory results (Yi, 2007; Guerrier, 2013; Li et al., 2014).

In this thesis, it is investigated whether it is possible to use one single transfer function to model all
coloured noises together. The summation of all the independent noises can eliminate states estimated in
the Kalman filter compared with the independent noise modelling method. The possibility of modelling
two separate ARMA processes together has been discussed in Granger and Morris (1976); Teräsvirta
(1977). In Seong et al. (2000), the researchers introduce the equivalence theory to use one single ARMA
process to model the combination of inertial sensor noise and the coefficients of the relevant ARMA
processes are determined using the PEM method to find the best fit. In Han and Wang (2011); Zhao
(2013), the equivalence theory is deduced from the differential equation aspect. The authors also de-
scribe how to calculate the coefficients of the equivalent differential equation. However, the equivalence
theory deduced in former works is only valid for the stationary processes. For nonstationary processes,
the equivalence theory is not applicable, since their PSDs don’t exist. In this chapter, the equivalence
theory is deduced from the s-domain transfer function aspect. The sampled PSD (or generalized PSD)
will also be introduced to make it suitable for the nonstationary process application.

Notice that the transfer function of each coloured noise only has poles without zeros in the application.
To simplify, the coefficients of the summation of the transfer functions without zeros are determined,
which is sufficient for the stochastic error modelling application.

Considering two independent stochastic processes y1(t), y2(t) shaped by white noises w1(t), w2(t) as

y1(t) = F−1{H1( jω)} ∗w1(t) +µ1

y2(t) = F−1{H2( jω)} ∗w2(t) +µ2
(4.32)

where H1( jω) and H2( jω) are the transfer functions of the relevant shaping filters, which can be repre-
sented as

H1( jω) =
1

a1 · ( jω)m+ a2 · ( jω)m−1+ · · ·+ am+1

H2( jω) =
1

b1 · ( jω)n+ b2 · ( jω)n−1+ · · ·+ bn+1

(4.33)

µ1 and µ2 are the mean values of two stochastic processes. w1(t) and w2(t) are two independent unit
white noises. They meet the following relationship
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E{w1(t)w
∗
1(t)}= δ(t), E{w2(t)w

∗
2(t)}= δ(t)

E{w1(t)w
∗
2(t)}= 0, E{w2(t)w

∗
1(t)}= 0

(4.34)

Considering another stochastic process y ′(t) shaped by a white noise w′(t) as

y ′(t) = F−1{H( jω)} ∗w′(t) +µ1+µ2 (4.35)

where H( jω) = A( jω)
B( jω)

and µ1+µ2 is the mean value of y ′(t).

If y ′(t) and y1(t) + y2(t) are equivalent when implemented in the Kalman filter, they should have the
same mean value and PSD or sampled PSD, which consequently causes a same auto-covariance (Han
and Wang, 2011; Zhao, 2013; Kasdin, 1995; Granger and Morris, 1976; Teräsvirta, 1977). Considering
that E{w1(t)}= 0, E{w2(t)}= 0, E{w′(t)}= 0, it is easy to prove that E{y ′(t)}= E{y1(t) + y2(t)}.

In the following part, the expression of H( jω) will be determined to ensure that y ′(t) and y1(t)+ y2(t)
have a same PSD.

According to equations (4.7), (4.9) and (4.11), if y ′(t) and y1(t) + y2(t) have the same PSD, the
following relationship is established

|H( jω)|2 = |H1( jω)|2+ |H2( jω)|2 (4.36)

According to the amplitude frequency characteristic definition of the transfer function, if B( jω) is written
as

B( jω) = (a1 · ( jω)m+ a2 · ( jω)m−1+ · · ·+ am+1)·
(b1 · ( jω)n+ b2 · ( jω)n−1+ · · ·+ bn+1)

(4.37)

and A( jω) = f1 · ( jω)l + f2 · ( jω)l−1+ · · ·+ fl+1 meets the following relationship

| f1 · ( jω)l + f2 · ( jω)l−1+ · · ·+ fl+1|2 = |a1 · ( jω)m+ a2 · ( jω)m−1+ · · ·+ am+1|2

+|b1 · ( jω)n+ b2 · ( jω)n−1+ · · ·+ bn+1|2
(4.38)

where l ¶ max(n, p), H( jω) has the same amplitude frequency characteristic as H1( jω) + H2( jω). In
other words, if the coefficients fi in A( jω)match equation (4.38) and B( jω) is written as equation (4.37),
y ′(t) and y1(t) + y2(t) will have the same PSD. y ′(t) is equivalent to y1(t) + y2(t) when implemented
in the Kalman filter. This conclusion can be extended to the summation of several shaping filters’ transfer
functions.

After substituting s = jω into equations (4.19), (4.22) and (4.29), according to equations (4.36), (4.37)
and (4.38), the transfer function of coloured noises in s-domain should meet

|Hc(s)|2 = |HB(s)|2+ |HK(s)|2+ |HR(s)|2 (4.39)

which can be written as

Hc(s) =
a1s4+ a2s3+ a3s2+ a4s+ a5

(1+ qc1
Tc1

s)(1+ qc2
Tc2

s)s(s2+
p

2ω0s+ω2
0)

(4.40)
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How to calculate the coefficients ai will be discussed in the following sections.

The transfer function of quantisation noise can be treated as a differentiator. Some people may argue
whether it is possible to model quantisation noise together with the other three coloured noises, although
it is not necessary to model quantisation noise especially for a low-cost MEMS IMU in low-dynamic cases.
According to automatic control theory, a system is causal only when the number of zeros is smaller than
the number of poles in the s-plane, indicating that the current state is only determined by the former
states and will not be affected by future states. If the quantisation noise is modelled together with
the other coloured noise, the number of zeros of the equivalent transfer function will be larger than
that of poles, which does not meet the causality requirement of a LTI system. Therefore, the shaping
filter and equivalence theory method is not applicable to the quantisation noise modelling. However,
the quantisation noise effect can be reduced by enlarging the Q matrix or pre-filtering as explained in
section 4.4.4.

4.6 State space

The s-domain transfer function cannot be implemented directly in the Kalman filter. It should be changed
into a state space form when implemented in a navigation Kalman filter. A state space describes a system
in modern control theory. Unlike the transfer function describing only the external property of a system,
a state space also describes the internal property of a system.

4.6.1 From transfer function to differential equation

The three coloured noises will not always exist at the same time in all inertial sensors. However, in order
to obtain a more general form, all the coloured noises are considered together in the following analysis.
In case that some noise cannot be observed in the AV plot, its relevant coefficient can be set to zero.

The equivalent transfer function of the coloured noises is

Hc(s) =
a1s4+ a2s3+ a3s2+ a4s+ a5

b1s5+ b2s4+ b3s3+ b4s2+ b5s+ b6
(4.41)

where

a2
1 = (qc1

Tc1
Tc2
)2+ (qc2

Tc1
Tc2
)2+ (KTc1

Tc2
)2

a2
2 − 2a1a3 = K2T 2

c1
+ K2T 2

c2
+ R2T 2

c1
T 2

c2
+ T 2

c1
q2

c1
+ T 2

c2
q2

c2

a2
3 + 2a1a5− 2a2a4 = K2T 2

c1
T 2

c2
ω4

0+ K2+ R2T 2
c1
+ R2T 2

c2

+ T 2
c1

T 2
c2

q2
c1
ω4

0+ T 2
c1

T 2
c2

q2
c2
ω4

0

a2
4 − 2a3a5 = K2T 2

c1
ω4

0+ K2T 2
c2
ω4

0+ R2

+ T 2
c1

q2
c1
ω4

0+ T 2
c2

q2
c2
ω4

0

a2
5 = K2ω4

0

b1 = Tc1
Tc2

b2 = Tc1
+ Tc2

+
p

2Tc1
Tc2
ω0

b3 = Tc1
Tc2
ω2

0+
p

2(Tc1
+ Tc2

)ω0+ 1

b4 = (Tc1
+ Tc2

)ω2
0+
p

2ω0

b5 =ω
2
0

b6 = 0

(4.42)

58



From the definition of the transfer function Hc(s) =
Y (s)
X (s)

, the following relationship can be established

b1s5Y (s) + b2s4Y (s) + b3s3Y (s) + b4s2Y (s) + b5sY (s) + b6Y (s)

= a1s4X (s) + a2s3X (s) + a3s2X (s) + a4sX (s) + a5X (s)
(4.43)

After applying an inverse Laplace transformation to equation (4.43), the following differential equation
is derived

b1 y (5)(t) + b2 y (4)(t) + b3 y (3)(t) + b4 y ′′(t) + b5 y ′(t) + b6 y(t)

= a1 x (4)(t) + a2 x (3)(t) + a3 x ′′(t) + a4 x ′(t) + a5 x(t)
(4.44)

According to the definition of the observability canonical form of a system, the system’s state space is
expressed as (Ogata and Yang, 1970):

¨

ż(t) = Fz(t) +Gw(t)
y(t) = Hz(t)

(4.45)

where z(t) is a 5× 1 vector related with the coloured noise, y(t) represents the observation and w(t) is
a unit white noise. F,G,H are defined as

F=





















0 0 0 0 − b6
b1

1 0 0 0 − b5
b1

0 1 0 0 − b4
b1

0 0 1 0 − b3
b1

0 0 0 1 − b2
b1





















,G=



















a5
b1
a4
b1
a3
b1
a2
b1
a1
b1



















,H=















0
0
0
0
1















T

The process covariance matrix Qzz satisfies

Qzzδ(τ) = E{Gw(t)(Gw(t −τ))∗} (4.46)

Substituting G into equation (4.46), Qzz is

Qzz =
1

b2
1















a2
5 a5a4 a5a3 a5a2 a5a1

a4a5 a2
4 a4a3 a4a2 a4a1

a3a5 a3a4 a2
3 a3a2 a3a1

a2a5 a2a4 a2a3 a2
2 a2a1

a1a5 a1a4 a1a3 a1a2 a2
1















(4.47)

The derivation above can be applied to all the six inertial sensors. If all the inertial sensors’ z(t) are
augmented in a navigation Kalman filter’s state vector, the system function is

�

ẋ(t)
ż(t)

�

=
�

Fxx Fxz
0 Fzz

��

x(t)
z(t)

�

+
�

wx(t)
wz(t)

�

(4.48)
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where Fxx is the system matrix of error-state navigation Kalman filter for attitude, velocity and position
errors, Fzz is the same as F, and Fxz is a transfer matrix which converts the coloured noise from the body
frame to the navigation frame, which is

Fxz =







FG yro 0
0 FAcc
0 0






(4.49)

where

FG yro = Cn
b







HG yroX 0 0
0 HG yroY 0
0 0 HG yroZ






,FAcc = Cn

b







HAccX 0 0
0 HAccY 0
0 0 HAccZ







The process noise covariance matrix of the new system function is

Q= E{
�

wx(t)
wz(t)

��

wx(t)
wz(t)

�T

}=
�

Qxx 0
0 Qzz

�

(4.50)

4.6.2 From transfer function to ARMA process

The ARMA process’ Allan Variance has been deduced and discussed in Zhang (2008). In this section, the
Allan variance plot (the shaping filter’s transfer function) will be used to determine the ARMA process’s
coefficients. All the coloured noises are still considered together.

After substituting the zero-order holder s = 1−z−1

Ts
into (4.41) for discretion, its Z-transformation is

Hc(z) =
d1z−4+ d2z−3+ d3z−2+ d4z−1+ d5

e1z−5+ e2z−4+ e3z−3+ e4z−2+ e5z−1+ e6
(4.51)

where
d1 = a1Ts

d2 =−Ts(4a1+ Tsa2)

d3 = Ts(a3T 2
s + 3a2Ts + 6a1)

d4 =−Ts(a4T 3
s + 2a3T 2

s + 3a2Ts + 4a1)

d5 = Ts(a5T 4
s + a4T 3

s + a3T 2
s + a2Ts + a1)

e1 =−b1

e2 = 5b1+ Ts b2

e3 =−(b3T 2
s + 4b2Ts + 10b1)

e4 = b4T 3
s + 3b3T 2

s + 6b2Ts + 10b1

e5 =−(b5T 4
s + 2b4T 3

s − 3b3T 2
s − 4b2Ts − 5b1)

e6 = b6T 5
s + b5T 4

s + b4T 3
s + b3T 2

s + b2Ts + b1

(4.52)

and Ts is the sampling interval.

As a transfer function of a discrete system, Hc(z) is defined as Hc(z) =
Y (z)
X (z)

. Like Hc(s), the following
equation can be deduced as
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e1Y (z)z−5+ e2Y (z)z−4+ e3Y (z)z−3+ e4Y (z)z−2+ e5Y (z)z−1+ e6Y (z)

= d1X (z)z−4+ d2X (z)z−3+ d3X (z)z−2+ d4X (z)z−1+ d5X (z)
(4.53)

If an inverse Z-transform is applied to equation (4.53), the related difference equation is computed as

e1 yk−5+ e2 yk−4+ e3 yk−3+ e4 yk−2+ e5 yk−1+ e6 yk

= d1 xk−4+ d2 xk−3+ d3 xk−2+ d4 xk−1+ d5 xk
(4.54)

After normalizing the coefficient of yk and moving all the other terms except yk to the right side of
(4.54),

yk =−
1

e6
(e1 yk−5+ e2 yk−4+ e3 yk−3+ e4 yk−2+ e5 yk−1

+d1 xk−4+ d2 xk−3+ d3 xk−2+ d4 xk−1+ d5 xk−1)
(4.55)

yk has the form of an ARMA process, which is

X t =
p
∑

i=1

ϕiX t−i +
q
∑

j=0

θ jεt− j +µt (4.56)

In this sense, the relationship between ARMA process and transfer function (Allan variance plot) can be
built. The coefficients of ARMA process are determined from e j and d j.

How to deduce ARMA process’s state space form has been described in detail in Geist and Pietquin
(2011); de Jong and Penzer (2004), which is

¨

zk = Tkzk−1+Gkwk

yk = Hkzk
(4.57)

where zk is a 5× 1 vector. Fk,Gk,Hk are defined as

Tk =



















− e5
e6

1 0 0 0

− e4
e6

0 1 0 0

− e3
e6

0 0 1 0

− e2
e6

0 0 0 1

− e1
e6

0 0 0 0



















,Gk =





















d5
e6
d4
e6
d3
e6
d2
e6
d1
e6





















,Hk =















1
0
0
0
0















T

The process covariance matrix Qzz satisfies

Qzz = E{Gkwk(Gkwk)
∗} (4.58)

Substituting Gk into equation (4.58), Qzz becomes
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Qzz =
1

e2
6















d2
5 d5d4 d5d3 d5d2 d5d1

d4d5 d2
4 d4d3 d4d2 d4d1

d3d5 d3d4 d2
3 d3d2 d3d1

d2d5 d2d4 d2d3 d2
2 d2d1

d1d5 d1d4 d1d3 d1d2 d2
1















(4.59)

However, the direct computation of the coefficients e j and d j is very difficult, especially for higher order
transfer functions, since it involves several adding and multiplying operations. Besides this, due to dis-
cretion, coefficients determined from the shaping filter transfer function sometimes may cause numerical
instability. For example, e6 is not only related to b1, but also affected by the higher order power of Ts.
If Ts is small, e6 is dominated by b1, which eliminates the effect of other coefficients and degrades the
state space estimation accuracy. The direct implementation of the conventional ARMA state space will
introduce some negative effects to the navigation results. Considering the internal relationship among
the coefficients of the ARMA process in the specific application, a modified state space form is introduced
as shown in Appendix, which is

Tk =





















1− b2Ts
b1

Ts 0 0 0

− b3Ts
b1

1 Ts 0 0

− b4Ts
b1

0 1 Ts 0

− b5Ts
b1

0 0 1 Ts

− b6Ts
b1

0 0 0 1





















,Gk =



















a1
b1

Ts
a2
b1

Ts
a3
b1

Ts
a4
b1

Ts
a5
b1

Ts



















,Hk =















1
0
0
0
0















T

The state space from the ARMA process can augment the navigation state vector by

�

xk
zk

�

=
�

Txx Txz
0 Tzz

��

xk−1
zk−1

�

+
�

wx
wz

�

(4.60)

where Txx is transition matrix implemented in error-state navigation Kalman filter, Tzz is the same as Tk,
and Txz is a transfer matrix which converts coloured noise from the body frame to the navigation frame.

4.7 Simulation

In the simulation, the accelerometer’s stochastic errors include two 1st-order Markovian processes (Tc1 =
5.291 s, qc1 = 0.01 m/s3, Tc2 = 21.164 s, qc2 = 0.01 m/s3) approximating bias instability, one rate
random walk (K = 0.008 m/s2/

p
s), a white noise (N = 0.02 m/s/

p
s) and constant bias 0.02 m/s2. As

with the gyroscopes, the constant bias of gyroscope is 1.146 deg/s, the bias instability is 1.146 deg/s,
which will be generated by combining two separate 1st-order Markovian processes, rate random walk
is 0.458 deg/s/

p
s, generated by integrating a unit white noise and white noise with auto-covariance

1.146 deg/
p

s. Since the random ramp seldom appears in the inertial sensors, it is not simulated for
all the inertial sensors. The order of the relevant shaping filters’ transfer functions can then be reduced.
The Allan variance plot of the simulated inertial sensors’ noises is shown in Figures 4.4 and 4.5. All the
elements in P0,Q are set identically to the parameters of the simulation section in Chapter 3, except that
the gyroscope and accelerometer biases of the conventional modelling method are taken from the system
matrix of the shaping filter based method. In the R matrix, the position standard deviation is set to be 1
cm.

The relevant accelerometers’ and gyroscopes’ shaping filter transfer functions are
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Figure 4.4: Simulated accelerometer’s AV plot
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Figure 4.5: Simulated gyroscope’s AV plot
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Figure 4.6: Horizontal position drift in simulation
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Figure 4.7: Vertical position drift in simulation

HAcc(s) =
19.33s2+ 1.241s+ 0.008

1120s3+ 116.4s2+ s

HG yro(s) =
1107.52s2+ 71.104s+ 0.458

1120s3+ 116.4s2+ s

(4.61)

After applying an inverse Laplace transformation and a Z-transformation to the transfer function (4.61),
their related state space forms can be deduced and then implemented in the navigation Kalman filter.
The coasting performance is introduced to indirectly examine the effectiveness of the shaping filter based
method. Due to the random property of the simulated noises, the navigation results shown in Figures
4.6 and 4.7 are the average of 10 filter runs.

From Figures 4.6, 4.7 and Table 4.3, it can be found that the shaping filter based methods (Differen-
tial equation and ARMA process) are effective in estimating IMU stochastic errors in the Kalman filter,
which have similar and even smaller maximum position drifts than the conventional method during GPS
outages. However, the shaping filter based methods introduce additional states to the state vector with
an increased computational burden. When computational efficiency is considered, the conventional 1st-
order Markovian process based method is preferred. As shown in Figures 4.6 and 4.7, after the coasting
period, the position estimation seems to have some jumps when the observation is available. This is due
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Figure 4.8: Allan variance plot of accelerometers
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Figure 4.9: Allan variance plot of gyros

to that the state covariance matrix becomes very large during the coasting period and the navigation
Kalman filter needs some time to become convergent once the observation is available.

4.8 Experiment

The stochastic error modelling method will be further implemented with the real experiment data. Two
experiments including the Allan variance and test experiments are conducted. The Allan variance ex-
periment aims at determining the coefficients of the inertial sensors’ stochastic errors, while the test
experiment is used to examine the performance and effectiveness of the stochastic error modelling
method.

4.8.1 Allan variance experiment

Five hours of raw data is sampled from a stationary MEMS IMU (iMAR VRU) with a sampling rate at
100 Hz. Before sampling, the MEMS IMU was warmed up for 30 minutes. The AV plots of the three
gyroscopes and accelerometers are shown in Figures 4.8 and 4.9.

According to the relationship shown in Table 4.1, the coefficients of the relevant stochastic errors can be
determined using the curve fitting method. The least squares method can also be used to determine the
coefficients of stochastic errors (Quinchia, 2014), while the initial values for the least squares method
are still determined directly from the AV plot (Guerrier, 2013; Guerrier et al., 2013; Quinchia et al.,
2013).

According to the length of the flat segments in the AV plots, two 1st-order Markovian processes are
applied to approximate the bias instabilities of X,Z-accelerometers and X,Y-gyros and one 1st-order
Markovian process to approximate bias instabilities of Y-accelerometer and Z-gyro. The coefficients
of the relevant inertial sensors’ stochastic errors are shown in Table 4.4. The transfer function of each

Table 4.3: Maximum position drift in simulated coasting period

Horizontal drift (m) Vertical drift (m)

Conventional method 25.662 1.475

Differential equation 25.355 1.355

ARMA process 25.355 1.355
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inertial sensor’s coloured noises can be summarized as shown in (4.62). The relevant differential equa-
tion and ARMA process are deduced from (4.62). The inertial sensors’ coloured noises can then be
implemented in the navigation Kalman filter.

HAccX (s) =
3.5729s3+ 0.2533s2+ 0.008948s+ 2.673 · 10−5

1.12× 105s4+ 9082s3+ 363.3s2+ 2.981s+ 0.0025

HAccY (s) =
0.005186s+ 7.415 · 10−6

158.7s2+ s

HAccZ(s) =
4.805s+ 3.963 · 10−3

4.199× 105s2+ 1852s+ 1

HG yroX (s) =
64.17s2+ 0.2155s+ 8.046 · 10−5

1.26× 105s3+ 952.4s2+ s

HG yroY (s) =
26.20s2+ 0.1324s+ 7.509 · 10−5

5.599× 104s3+ 634.9s2+ s

HG yroZ(s) =
0.06466s+ 8.483 · 10−5

264.6s2+ s

(4.62)

4.8.2 Test experiment

The Griesheim airport experiment data shown in Figure 3.25, is used to examine the performance of
the shaping filter based method. The GPS signal is blocked artificially for 30 seconds to observe the
IMU coasting performance. GPS is loosely integrated with IMU in the experiment. During the coasting
periods, there is no aiding information, and IMU is only compensated by the biases estimated before
coasting. If stochastic errors are modelled and estimated accurately, the IMU position drift is smaller,
which can indirectly indicate the effectiveness of stochastic modelling methods (Guerrier, 2013; Guerrier
et al., 2013; Han and Wang, 2011). All the elements in P0,Q are set as the parameters of experiment
section in Chapter 3, except that the gyroscope and accelerometer biases of the conventional modelling
method are taken from the system matrix deduced with the shaping filter based method. The DGPS
position standard deviation is implemented in the R matrix. The coasting performance comparison is
shown in Figures 4.10, 4.11 and Table 4.5.

From Figures 4.10, 4.11 and Table 4.5, it can be found that both the differential equation and ARMA
process modelling methods outperform the conventional 1st-order Markovian process modelling method.

Table 4.4: Coefficients of MEMS IMU stochastic errors

Quantisation noise Angle/Velocity random walk Bias instability Rate random walk Rate ramp

unit Q(m/s) N(m/s/
p

s) B(m/s2) K(m/s2/
p

s) R(m/s2/s)

AccX 2.175 · 10−3 1.799 · 10−3 1.370 · 10−4 N/A 4.107 · 10−8

AccY 1.491 · 10−3 1.432 · 10−3 1.721 · 10−4 9.518 · 10−6 N/A

AccZ 1.724 · 10−3 1.202 · 10−3 0.753 · 10−4 N/A N/A

unit Q(deg) N(deg/
p

s) B(deg/s) K(deg/s/
p

s) R(deg/s/s)

GyroX 0.0491 0.0220 2.528 · 10−3 8.046 · 10−5 N/A

GyroY 0.0426 0.0199 1.896 · 10−3 7.509 · 10−5 N/A

GyroZ 0.0485 0.0211 1.866 · 10−3 8.483 · 10−5 N/A
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Figure 4.10: Horizontal position drift with experimen-
tal data
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Figure 4.11: Vertical position drift with experimental
data

The differential equation and ARMA process both show a similar coasting performance during the GPS
outages, because they are deduced from the same shaping filter’s transfer function and have the same
state space. The comparison also indicates that the maximum position drifts during the four outages
become smaller and smaller over time as the stochastic errors are better estimated. As shown in the
relevant state space, the shaping filter based method introduces additional states to the state vector,
increasing the computational load.

4.9 Conclusion

This chapter introduces how to determine the shaping filter for each inertial sensor’s stochastic error
based on the Allan variance technique. The differential equation and ARMA process of the inertial sen-
sor’s stochastic errors are deduced from the s-domain transfer function by applying an inverse Laplace
transformation and a Z-transformation. The relevant state space forms are also established. The dis-
cussion and derivation show that the differential equation and ARMA process modelling methods are
equivalent, and they describe the same stochastic process from two different aspects. A similar esti-
mation accuracy can be expected from them as indicated in both simulation and experiment results.

Table 4.5: Maximum position drift during coasting periods

Methods
1st GPS outage 2nd GPS outage

Horizontal drift (m) Vertical drift (m) Horizontal drift (m) Vertical drift (m)

Conventional method 78.108 4.658 21.674 3.018

Differential equation 40.485 5.894 21.310 2.202

ARMA process 40.485 5.894 21.310 2.202

Methods
3rd GPS outage 4th GPS outage

Horizontal drift (m) Vertical drift (m) Horizontal drift (m) Vertical drift (m)

Conventional method 18.534 0.290 11.118 0.200

Differential equation 7.031 0.170 4.167 0.169

ARMA process 7.031 0.170 4.167 0.169
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A relationship between the Allan variance and ARMA process is also created, and the coefficients of
ARMA process do not need to be estimated using the Yule-Walker or Burg estimation methods and can
be determined directly from the shaping filter’s transfer function.
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5 Carrier phase implementation in GPS/IMU tightly-coupled navigation system

In a conventional GPS/IMU tightly-coupled navigation system, the GPS pseudorange and Doppler are
usually implemented as observations in the navigation Kalman filter. Since the pseudorange is applied
to absolute positioning, the conventional integrated navigation system can only reach the SPP accuracy.
Compared with the pseudorange, the carrier phase is much more accurate and can achieve centimetre
positioning accuracy, especially when a differential GPS technique is applied. Therefore, the implemen-
tation of the carrier phase in a GPS/IMU tightly-coupled navigation system is beneficial for the position,
velocity and attitude estimation.

However, carrier phase observations always suffer from the problem of fixing ambiguities, which is not
feasible in non-differential mode. To avoid this problem, the TDCP method is proposed to eliminate car-
rier phase ambiguities by differencing between two successive GPS epochs based on GPS carrier phase
ambiguities staying constant when there are no cycle slips. Although the TDCP technique can improve
relative positioning accuracy and smooth trajectory, the absolute positioning accuracy is still determined
by the absolute pseudorange observation in pseudorange+TDCP tightly-coupled navigation systems. In
the TCP based systems, the carrier phase ambiguities are estimated as additional states in the navigation
Kalman filter. The positioning accuracy of integrated navigation systems can be greatly improved com-
pared to the TDCP based methods. This chapter investigates how to implement the GPS carrier phase
in a non-differential GPS/IMU tightly-coupled navigation system. A performance comparison between
these two carrier phase methods is examined through simulation and experiment.

5.1 Time differenced carrier phase

In order to avoid the difficulty of fixing carrier phase ambiguities for a single GPS receiver in non-
differential mode, differencing carrier phase observations between two successive GPS epochs was
proposed to eliminate ambiguities since such carrier phase ambiguities will remain constant if there
are no cycle slips or blockages (Wendel and Trommer, 2004; Wendel et al., 2006a). Fixing carrier phase
ambiguities can then be avoided after applying the TDCP. Since the TDCP is computed directly from
carrier phase observations, its accuracy can reach as high as the centimetre or even millimetre level as
suggested in Ding and Wang (2011); Serrano et al. (2004); Freda et al. (2014) and can be applied in
many fields with satisfactory results. In Soon et al. (2008); Moafipoor et al. (2004); Ding (2007); Stein-
hardt (2014); Han and Wang (2012), the TDCP is implemented in GPS/INS tightly-coupled navigation
systems to improve the navigation performance. The TDCP is also applied to solve the low-cost IMU in-
motion alignment problem because of its higher velocity estimation accuracy in Choi et al. (2014). Aside
from vehicle applications, a TDCP/IMU integrated navigation system is successfully applied to improve
heave compensation as discussed in Blake (2007).

5.1.1 Measurement equation

Compared with Doppler, the TDCP appears to estimate the vehicle’s average velocity between two suc-
cessive GPS epochs (Wendel et al., 2006a). In the following, it will be investigated how to implement
the TDCP observation in a GPS/IMU tightly-coupled navigation system.

As shown in equation (2.1), the carrier phase observation from GPS antenna to the m-th satellite tracked
by GPS receiver is

lm = rm+ cδt r − cδts,m− Im+ Tm+ εl,m+λN (5.1)

where N is the carrier phase ambiguity. When there are no signal blockages or cycle slips, this value is
an unknown constant.
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Figure 5.1: Positions of GPS receiver and one satellite at two epochs in ECEF frame (Han and Wang, 2012)

For two successive measurement time epochs t1 and t2, the TDCP measurement equation is

∆lm =∆rm+ c∆δt r − c∆δts,m−∆Im+∆Tm+∆εδ,m (5.2)

where the ambiguity term in (5.1) is eliminated through differencing. ∆rm represents the change of the
distance from antenna to satellite during t1−t2 period, equally shown by the time difference operator∆·.
After compensating for the ionospheric and tropospheric delays as well as satellite clock error, equation
(5.2) can be revised as

∆lm =∆rm+ c∆δt r +∆εδ,m (5.3)

In equation (5.3), the calculation of ∆rm is one of the key issues in deducing the TDCP measurement
matrix (Wendel and Trommer, 2004; Wendel et al., 2006a; Han and Wang, 2012).

In Figure 5.1, SVm(t1) and SVm(t2) are positions of the m-th satellite tracked by the GPS receiver at
t1 and t2 time epochs.

−→
Rm(t1) and

−→
Rm(t2) are the m-th satellite’s position vectors at different epochs

expressed in ECEF frame.
−→
b (t1) and

−→
b (t2) are the GPS receiver position vectors. −→ρm(t1) and −→ρm(t2)

are the range vectors from the GPS receiver to the m-th satellite. ∆
−→
b is the GPS receiver’s position

change from t1 to t2. From Figure 5.1, ∆rm is calculated as

∆rm =
−→ρm(t2)−

−→ρm(t1)

= (
−→
Rm(t2)−

−→
b (t2))·

−→em(t2)− (
−→
Rm(t1)−

−→
b (t1))·

−→em(t1)
(5.4)

where −→em(t) is the unit vector of the line of sight pointing from the GPS receiver to the m-th satellite.

∆rm can be expanded as

∆rm = (
−→
Rm(t2)

−→em(t2)−
−→
Rm(t1)

−→em(t1))− (
−→
b (t1)

−→em(t2)−
−→
b (t1)

−→em(t1))−∆
−→
b −→em(t2) (5.5)

The first two terms in (5.5) are usually calculated directly from the navigation messages and results. So
both of them can be moved to the left side of equation (5.3), which is

∆l̃m =∆lm− (
−→
Rm(t2)

−→em(t2)−
−→
Rm(t1)

−→em(t1)) + (
−→
b (t1)

−→em(t2)−
−→
b (t1)

−→em(t1))

=−∆
−→
b −→em(t2) + c∆δt r +∆εδ,m

(5.6)
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A new variable is defined as

Y =−−→em(t2)∆
−→
b +∆εδ,m

=−−→em(t2)

∫ t2

t1

vnd t +∆εδ,m

(5.7)

When perturbation is applied to equation (5.7), its error expression is

δY =−−→em(t2)δ∆
−→
b +δ∆εδ,m

=−−→em(t2)

∫ t2

t1

δvnd t +δ∆εδ,m

(5.8)

The first term in equation (5.8) is related to an integration. An integration term cannot be implemented
in the Kalman filter directly, since the measurement function should be of the form as z= Hx+v. There-
fore this integration should be transformed into a linear form through some approximations. According
to the error propagation principle, x(t) can be expressed as

x(t) = Φ(t, t1)Φ(t1, t2)x(t2) (5.9)

where Φ(t i, t j) is the state transition matrix from time epoch t j to t i. Φ is calculated by discretizing the
system matrix F. Φ and F have the following relationship (Wendel and Trommer, 2004)

¨

Φ(t i +δt, t i) = I+ Fδt

Φ(t i −δt, t i) = I− Fδt
(5.10)

where the first equation describes how to use the current state to predict the future state and the second
equation describes how to use the current state to deduce the previous state.

The velocity error at epoch t is

δv= Cv x(t) = CvΦ(t, t1)Φ(t1, t2)x(t2) (5.11)

where Cv is [03×3 I3×3 03×11].

Then the integration in (5.8) can be further expressed as

∫ t2

t1

δvnd t =

∫ t2

t1

CvΦ(t, t1)Φ(t1, t2)x(t2)d t

= Cv

∫ t2

t1

Φ(t, t1)d tΦ(t1, t2)x(t2)

(5.12)

where the two transition matrices related to Φ are calculated as






































∫ t2

t1

Φ(t, t1)d t =
k
∑

i=1

δtΦ(t1+ iδt, t1) = δt
k
∑

i=1

i
∏

j=1

Φ(t1+ jδt, t1+ ( j− 1)δt)

= δt
k
∑

i=1

(I+ Fδt)i ≈ δt
k
∑

i=1

(I+ iFδt) = kδt(I+ Fδt(k+ 1)/2)

Φ(t1, t2) =
k
∏

i=1

Φ(t1+ (i− 1)δt, t1+ iδt) = (I− Fδt)k

(5.13)
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where k = (t2− t1)/δt, F is the system matrix at time epoch t2 and δt is a small sampling period.

The first term in (5.8) can then be rewritten as

∫ t2

t1

δvnd t = Cv (kδt(I+ Fδt(k+ 1)/2))(I− Fδt)kx(t2) (5.14)

So the matrix relevant to the velocity error integration is

Hv = Cv (kδt(I+ Fδt(k+ 1)/2))(I− Fδt)k (5.15)

The measurement function of the TDCP/IMU tightly-coupled navigation Kalman filter is

z= HT DC Px+δ∆εδ,m (5.16)

where
z= [δ∆l1 δ∆l2 · · · δ∆ln]T

HT DC P = [0n×3 −−→en (t2) ∗Cn
e .Hv 0n×9 0n×1 1n×1 ·∆t]

and Cn
e is the transformation matrix from the earth frame to the navigation frame,∆t is the time interval

between t1 and t2, δ∆l = ∆lm −∆lI is the difference between the measured and estimated TDCP, and
δ∆εδ,m is TDCP measurement noise.

5.1.2 Discussion of the velocity error integration measurement matrix

The velocity error integration measurement matrix Hv expressed as equation (5.15) is considered in this
section. If Fδt is small enough, Hv can be expanded as

Hv ≈ Cv kδt(I+ Fδt(k+ 1)/2)(I− kFδt)

= Cv kδt(I− Fδt(k− 1)/2− (Fδt)2k(k+ 1)/2)
(5.17)

If higher order terms in (5.17) are neglected, Hv is

Hv ≈ Cv kδt(I− Fδt(k− 1)/2) (5.18)

From equation (5.18), it can be seen that if the current system matrix is already known, the measurement
matrix can be easily calculated, significantly reducing the computational load, because there is no need
to perform several adding and multiplying operations. This form can be treated as a simplified version
of the TDCP measurement update equation. In Steinhardt (2014), a similar simplified TDCP observation
is adapted to estimate the average velocity between two successive GPS epochs and then implemented
in a tightly-coupled navigation system to improve navigation performance.

In equation (5.15), a constant system matrix F is utilized to calculate the measurement matrix. If the
time interval between two successive GPS epochs is small, a constant F is suitable for calculating the
integration of δvn. However, if the time interval between two successive GPS epochs is very large, a
constant system matrix appears to produce some computation inaccuracy in deducing the former tran-
sition matrices, especially when the vehicle’s states change quickly during this time interval. In order to
improve the filtering performance, it is beneficial to use a changeable system matrix at each time update
instead of a constant one to perform the velocity error integration. Considering that the measurement
update is executed only when the GPS observations are available, the state transition matrix in each
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time update of IMU sampling rate multiplying the IMU sampling period δt I MU can be stored and then
accumulated to calculate the integration of δvn. In this case, there is no need to deduce the former
system matrix from the current system matrix using several multiplying and adding operations, which
also saves some computational time while reaching a higher estimation accuracy. Φ(t, t1) and Φ(t1, t2)
can accordingly be rewritten as



















∫ t2

t1

Φ(t, t1)d t =
k
∑

i=1

δt I MU

i
∏

j=1

(I+ F(t1+ jδt I MU)δt I MU)

Φ(t1, t2) =
k
∏

i=1

(I− F(t1+ iδt I MU)δt I MU)

(5.19)

where F(t1+ iδt I MU) is the system matrix at time epoch t1+ iδt I MU .

In the error-state EKF, the predicted velocity error is zero in each time update. The velocity error integra-
tion will subsequently be zero. However, it is still important to calculate the TDCP measurement matrix,
because it is related to the Kalman gain and a posteriori covariance matrix calculation, which greatly
affects the estimation accuracy.

Implementing TDCP as the only observation in tightly-coupled navigation systems will cause large
position drift especially in high-dynamic and large misalignment cases, which are very common for
GPS/MEMS IMU tightly-coupled navigation applications. In order to bound the position drift, the pseu-
dorange observation is usually introduced for the absolute positioning thus resulting in SPP accuracy.
Hence, some enhanced methods are developed, such as dual-rate Kalman filter (Han and Wang, 2012),
reduced Kalman filter (Tang et al., 2007) and delta position aiding (Ding, 2008), in order to improve
the positioning accuracy of the pseudorange+TDCP GPS/IMU tightly-coupled navigation system. How-
ever, these enhanced methods show limited improvements in the positioning accuracy. Therefore, in
this chapter, the pseudorange observations are directly augmented with the TDCP measurements in the
navigation Kalman filter. The pseudorange+TDCP GPS/IMU tightly-coupled navigation system will be-
have similar as the pseudorange+Doppler GPS/IMU tightly-coupled navigation system. The method of
improving the positioning accuracy of the TDCP based system will be discussed further in Chapter 6.

5.2 Total carrier phase

As a non-differential positioning technique, the PPP uses the measurements from a single GPS receiver
with the improvement from the application of corrections to the observation error sources determined
or estimated as additional unknowns to perform positioning, which is a promising technique for a high-
accuracy single GPS application. The static PPP accuracy can reach the centimetre level, while the
kinematic application can achieve the sub-meter level when the PPP is convergent. The PPP technique is
the basis of a TCP/IMU tightly-coupled navigation system. Unlike conventional PR+Doppler GPS/IMU
tightly-coupled navigation systems, a TCP/IMU tightly-coupled navigation system implements the total
carrier phase as observations in the navigation Kalman filter, which adds more carrier phase related
states to the state vector but can improve positioning accuracy to the sub-meter level. Integrating the PPP
technique with a high-grade IMU through the tightly-coupled strategy has been discussed preliminarily in
Zhang and Gao (2004). The researchers further compare a point positioning based system with a DGPS
based system in Zhang and Gao (2005b,a, 2008). The point positioning GPS/IMU integrated navigation
system can reach a decimetre level positioning accuracy and a similar attitude accuracy as a DGPS/IMU
tightly-coupled navigation system. In Ascher et al. (2011); Du and Gao (2010); Du (2010); Roesler
and Martell (2009); Rabbou and El-Rabbany (2014b), the researchers introduce how to implement the
PPP observation with a low-cost MEMS IMU, and the reported positioning accuracy can reach to the
sub-meter level in kinematic cases when the filter is convergent. In Rabbou and El-Rabbany (2014a);
Rabbou (2014), the researchers implement nonlinear filtering methods to further improve the navigation
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performance of a PPP/MEMS IMU tightly-coupled navigation system during GPS outages and in large
misalignment cases. The integration with an IMU can also enhance the PPP technique. In Du (2011);
Du and Gao (2012), a MEMS IMU is used as an aiding sensor with WL and EWL phase combinations
to uniquely determine cycle slips in the L1 and L2 frequencies. The reported cycle slip detection and
PPP re-convergence speed can be greatly improved by applying this technique. In Karaim et al. (2013);
Figueiredo e Silva (2012), inertial sensors are helpful for real time cycle slip detection. A PPP/IMU
tightly-coupled navigation system has been applied to many applications like land vehicle navigation
(Rabbou and El-Rabbany, 2014b; Ascher et al., 2011), seismic wave motions measurement (Xu et al.,
2013), hydro-graphic surveys (El-Diasty), positioning for visually impaired people (Hafner et al., 2014)
and so on.

The state vector, transition function and measurement equation of a TCP/IMU tightly-coupled navigation
system are deduced as shown in the following sections.

5.2.1 State vector

The state vector of a TCP/IMU tightly-coupled error-state navigation Kalman filter is

x=
�

δα,δβ ,δγ,δve,δvn,δvu,δλ,δϕ,δh,εx ,εy ,εz,∇x ,∇y ,∇z,∆cδt r ,∆cδ ṫ r ,δTzpd ,δλN1 · · ·δλNn

�

(5.20)
where δα,δβ ,δγ are attitude errors, δve,δvn,δvu are velocity errors expressed in ENU navigation
frame, δλ,δϕ,δh are position errors expressed in longitude, latitude and height, εx ,εy ,εz are gyro
biases, ∇x ,∇y ,∇z are accelerometer biases, ∆cδt r ,∆cδ ṫ r are receiver clock offset and drift errors,
δTzpd represents the tropospheric zenith path delay error, and δλN1 · · ·δλNn are ambiguity errors ex-
pressed in meters. Ambiguities are estimated as float values in the system.

As shown in equation (5.20), both IMU and GPS states are expressed as errors, defined as the difference
between the true and estimated navigation states. So after each Kalman filter measurement update, both
GPS and IMU navigation updates should be executed to correct the navigation states by the estimated
errors. IMU related error states will be compensated through inertial navigation mechanization, and GPS
error states will be accumulated to correct GPS related terms like ambiguities. The IMU state transition
function and model have been shown in Chapter 2. The GPS related transition function and error model
can be deduced as below.

5.2.2 GPS error state transition function

GPS error states include additional states such as zenith path delay and ambiguity errors, compared with
a conventional GPS/IMU tightly-coupled navigation system. The GPS error state transition matrix is,
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(5.21)

which is a linear function and can be implemented directly in the Kalman filter.

5.2.3 Measurement equation

The measurement equation difference between the TCP/IMU and the PR+Doppler GPS/IMU tightly-
coupled navigation systems mainly lies in whether they augment the carrier phase as observations.
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The observation equations of the pseudorange, carrier phase and Doppler from the GPS antenna to the
m-th satellite are,

ρm = rm+ cδt r − cδts,m+ Im+ Tm+ ερ,m

lm = rm+ cδt r − cδts,m− Im+ Tm+λN + εl,m

ρ̇m = ṙm+ cδ ṫ r − cδ ṫs,m+ İm+ Ṫm+ ερ̇,m

(5.22)

The ionosphere-free combination is applied to eliminate the ionospheric delay. The dry part of the
tropospheric delay is compensated by the Saastamoinen model. The zenith wet path delay is estimated
as a state in the navigation Kalman Filter. The implemented mapping function is a global mapping
function in this chapter.

After correcting the errors, including phase center offset, phase wind-up, etc., the estimated pseudorange
and carrier phase observations between the satellite position and the estimated receiver position are

ρI =
p

(xs,m− x r)2+ (ys,m− x r)2+ (zs,m− zr)2+ cδt r +mwet Tzpd

lI =
p

(xs,m− x r)2+ (ys,m− x r)2+ (zs,m− zr)2+ cδt r +mwet Tzpd +λI F NI F

(5.23)

where mwet is the mapping function, and Tzpd is the tropospheric zenith path delay.

Equation (5.23) can be linearised by expanding to the first order Taylor term around a true receiver
position [x , y, z] as

ρI = rm+
∂ ρI

∂ x
(x r − x) +

∂ ρI

∂ y
(yr − y) +

∂ ρI

∂ z
(zr − z) + cδt r +mwet Tzpd

lI = rm+
∂ lI

∂ x
(x r − x) +

∂ lI

∂ y
(yr − y) +

∂ lI

∂ z
(zr − z) + cδt r +mwet Tzpd +λI F NI F

(5.24)

where the partial derivatives are

ex ,m =
∂ ρI

∂ x
=
∂ lI

∂ x
=−

xs,m− x r
p

(xs,m− x r)2+ (ys,m− yr)2+ (zs,m− zr)2

ey,m =
∂ ρI

∂ y
=
∂ lI

∂ y
=−

ys,m− yr
p

(xs,m− x r)2+ (ys,m− yr)2+ (zs,m− zr)2

ez,m =
∂ ρI

∂ z
=
∂ lI

∂ z
=−

zs,m− zr
p

(xs,m− x r)2+ (ys,m− yr)2+ (zs,m− zr)2

(5.25)

As introduced in Chapter 2, the range rate ρ̇m from the GPS antenna to the m-th satellite is

ρ̇I = ṙm+ gx ,mδx + g y,mδ y + gz,mδz+ ex ,mδ ẋ + ey,mδ ẏ + ez,mδż+ cδ ṫ r (5.26)

The observation equation of a TCP/IMU tightly-coupled navigation system is

ρm−ρI =∆cδt r +mwetδTzpd − ex ,mδx − ey,mδ y − ez,mδz

lm− lI =∆cδt r +mwetδTzpd +δλN − ex ,mδx − ey,mδ y − ez,mδz

ρ̇m− ρ̇I =∆cδ ṫ r − gx ,mδx − g y,mδ y − gz,mδz− ex ,mδ ẋ − ey,mδ ẏ − ez,mδż
(5.27)

The observation model can be further expressed as z= HT C Px+ v, where

z=
�

δρn×1 δln×1 δρ̇n×1

�T
(5.28)
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Figure 5.2: Eastern position error in the carrier phase
simulation
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Figure 5.3: Northern position error in the carrier phase
simulation

HT C P =









0n×3 0n×3 −−→en ·Ce 0n×6 1n×1 0n×1 mwet,n×1 0n×n

0n×3 0n×3 −−→en ·Ce 0n×6 1n×1 0n×1 mwet,n×1 1n×n

0n×3 −−→en ·Ce
n −(−→en ·Ca +

−→gn ·Ce) 0n×6 0n×1 1n×1 0n×1 0n×n









(5.29)

Position is expressed in longitude, latitude and height in this work. The relevant elements in the mea-
surement matrix should be transferred from the ECEF frame to the LLH frame, while velocity should be
transferred from the ECEF frame to the navigation frame. The transition matrices related to the position
and velocity transformations are defined in Chapter 2.

After deducing the measurement equations of a TDCP/IMU and a TCP/IMU tightly-coupled navigation
system, simulation and experiment data will be applied to check the performance of these two methods.

5.3 Simulation

Only white noise is introduced to the geometric distance between the satellite and receiver positions
to simulate GPS observations: pseudorange and carrier phase. All other errors like tropospheric delay,
ionospheric delay and so on are assumed to be well corrected. The errors of GPS observations are white
noise. Considering the real noise property of the pseudorange and carrier phase observation, white noises
with 3 m and 1 cm standard deviation are added to the true range to separately simulate the pseudorange
and carrier phase observations, which are subsequently implemented in the measurement matrix R. To
better show the carrier phase’s effect in an integrated navigation system, the IMU is simulated as error
free. The elements in P0 and Q are identical to the simulation in Chapter 3. The carrier phase ambiguities’
standard deviation in P0 is set to be 1 cm, since the vehicle starts from an already known position and
the other errors like tropospheric delay, receiver clock offset and so on are neglected. The carrier phase
observations are simulated as cycle slip free. The performance comparison with the constant velocity
simulation data among the pseudorange only, the pseudorange+TDCP and the pseudorange+carrier
phase measurement update methods is shown in Figures 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8 and Table 5.1.

From the position comparison in Figures 5.2, 5.3 and 5.4, it can be seen that the pseudorange+TDCP
measurement update method has a higher positioning accuracy than the pseudorange only method (less
noisy), while the implementation of the total carrier phase in tightly-coupled navigation systems has the
highest positioning accuracy among all the three methods. The less noisy carrier phase observation is
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Figure 5.4: Height error in the carrier phase simulation
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Figure 5.5: Eastern velocity error in the carrier phase
simulation
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Figure 5.6: Northern velocity error in the carrier phase
simulation
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Figure 5.7: Up velocity error in the carrier phase simu-
lation
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Figure 5.8: Yaw comparison in the carrier phase simulation

helpful to smooth the position estimation as shown in the comparison. From the velocity comparison in
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Figures 5.5, 5.6 and 5.7, it can be seen that the TDCP observation can improve the velocity estimation to
the cm/s level, which will consequently enhance the yaw estimation as shown in Figure 5.8. The velocity
and yaw estimation accuracy of the total carrier phase method is also higher than the pseudorange
only and pseudorange+TDCP methods. From the simulation and analysis, it can be concluded that the
implementation of the carrier phase observation is beneficial to a GPS/IMU tightly-coupled navigation
system no matter whether the carrier phase is applied as TDCP or TCP. The total carrier phase method
achieves greater positioning accuracy enhancements than TDCP.

5.4 Experiment

The pseudorange, pseudorange+TDCP and pseudorange+carrier phase methods are implemented with
the Griesheim airport experimental data to examine their position estimation difference. The phase
DGPS is utilized as the position reference. The initial attitude is taken from a RLG IMU. P0 and Q of the
three methods are set as the same as the experiment with good attitude initialisation in Chapter 3, except
that the carrier phase ambiguities’ standard deviation of P0 in the TCP based method is 1 m, because
initial ambiguities are calculated with positioning by executing the PPP during the fine alignment, which
is not yet convergent. The ambiguities’ related parameters in the Q matrix are set to be 0.0001 m. The
TDCP standard deviation is the same as the Doppler observation, because they have similar accuracies.
For the TDCP based method, the relevant observations will be abandoned once cycle slips are detected.
For the TCP based method, ambiguities will be reinitialised for estimation in the Kalman filter when
cycle slips happen. The position comparison is shown in Figures 5.9, 5.10, 5.11 and Table 5.2. From
the position comparison above, it can be seen that the positioning accuracy is improved compared with
the pseudorange only and pseudorange+TDCP methods after applying the total carrier phase in an
integrated navigation system. The position estimated by the pseudorange+TDCP method seems to be
smoother and less noisier than the pseudorange only method, since the TDCP can improve the relative
position and velocity estimation accuracy. However, these two pseudorange based methods achieve
a similar absolute positioning accuracy level. The total carrier phase based system is not convergent
during the initial period, but the positioning accuracy enhancement is still very obvious.

Table 5.1: Performance difference among PR, PR+TDCP and PR+TCP methods in simulation

Methods Position RMS (m) Velocity RMS (m/s) Yaw RMS
(arcsecond)

East North Up East North Up

PR 1.132 1.207 1.667 0.060 0.053 0.078 0.108

PR+TDCP 0.386 0.237 0.564 0.011 0.009 0.017 0.033

PR+TCP 0.009 0.010 0.023 0.0004 0.0005 0.0009 0.001

Table 5.2: Position difference among PR, PR+TDCP and PR+TCP methods in experiment

Methods East RMS (m) North RMS (m) Height RMS (m)

PR 0.55 1.81 2.40

PR+TDCP 0.54 1.59 2.36

PR+TCP 0.53 1.01 0.84
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Figure 5.9: Eastern position comparison in the carrier
phase experiment
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Figure 5.10: Northern position comparison in the car-
rier phase experiment
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Figure 5.11: Height comparison in the carrier phase experiment

5.5 Conclusion

This chapter describes how to implement the GPS carrier phase (TDCP and TCP) in non-differential
GPS/IMU tightly-coupled navigation systems. The TDCP is based on the property of carrier phase ambi-
guity remaining constant over a short period if there are no cycle slips. The TDCP can save the effort of
fixing carrier phase ambiguities. The absolute positioning accuracy of the pseudorange+TDCP method is
still determined by GPS pseudorange observations. The TCP method is based on the PPP technique. Car-
rier phase ambiguities are estimated as additional states in the navigation Kalman filter. The simulation
and experiment results show that the application of the carrier phase observation can improve the posi-
tion, velocity and attitude estimation accuracy compared with the pseudorange only method. The total
carrier phase method shows a higher positioning accuracy than the TDCP method. However, according
to the PPP working principle, the total carrier phase positioning method needs some time to become con-
vergent. The initial positioning accuracy is not comparable to the final positioning accuracy, especially
when the navigation time is short in kinematic cases. Nevertheless, realizing the benefits of carrier phase
as a positioning accuracy improvement can still be expected in a TCP/IMU tightly-coupled navigation
system. The TDCP based system can be applied to the applications when the high accuracy velocity is
required, while the TCP based method is applicable to the high positioning accuracy applications.
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6 Particle filter for TDCP/IMU tightly-coupled navigation

In this chapter, in order to improve the positioning accuracy of a KF-based PR+TDCP GPS/IMU tightly-
coupled navigation system, a particle filter-based TDCP/IMU tightly-coupled strategy is proposed. The
integration strategy includes two parts. The first part is a conventional KF-based PR+Doppler GPS/IMU
tightly-coupled navigation system. The second part is a particle filter with modified TDCP measure-
ments. The modified TDCP measurement is defined as the carrier phase difference between current and
reference GPS time epochs, which can limit position drift caused by conventional TDCP, which is defined
as the carrier phase difference between two successive GPS epochs. The modified TDCP measurement is
then utilized to weight the particles generated from the a posteriori estimation of a KF-based PR+Doppler
tightly-coupled navigation system. The positioning accuracy in both static and kinematic experiments
can be improved to the sub-meter level, if initialised with an accurate reference position.

6.1 Introduction and background

As introduced in Chapter 5, directly implementing the TDCP measurements in a GPS/IMU tightly-
coupled navigation Kalman filter will cause position drift because of the accumulation of position errors
from previous epochs. In order to bound the position drift caused by the TDCP, pseudorange observations
are usually introduced for the absolute position estimation (Han and Wang, 2012). However, due to the
Kalman filter’s working principle, the larger pseudorange noise will affect the TDCP position estimation
through its effects on the measurement covariance matrix and subsequently the Kalman gain. Pseudor-
ange noise will be further introduced to the a posteriori state estimation and covariance matrix. So the
use of the pseudorange+TDCP as a navigation Kalman filter’s measurements can only achieve the SPP
accuracy as shown in Chapter 5.

Conventional Kalman filter-based PR+TDCP/IMU tightly-coupled navigation systems have two draw-
backs: The first is the ignoring of Doppler measurements. Like the TDCP, Doppler is commonly used to
estimate the velocity in conventional PR+Doppler tightly-coupled navigation systems (Yi, 2007; Zhou,
2013). If Doppler is tracked from the GPS receiver phase lock loop, the velocity estimation accuracy via
Doppler should be comparable with the TDCP and with a simpler implementation form (Xu, 2007). The
other is the TDCP measurement matrix computation. The TDCP expression in Chapter 5 is related to the
velocity error integration from the former to the current epochs involving several adding and multiplying
operations. Calculating the velocity error integration in a measurement matrix is time-consuming and
difficult as introduced in Wendel and Trommer (2004); Wendel et al. (2006a); Han and Wang (2012);
Zhao et al. (2015).

In order to improve the TDCP effect on a tightly-coupled navigation system, several enhancing meth-
ods are developed. In Tang et al. (2007), a reduced Kalman filter is applied to a TDCP/IMU integrated
navigation system and provides some computation efficiency improvements. In Han and Wang (2012),
the researchers design a dual-rate Kalman filter where the pseudorange and TDCP measurements work
in one Kalman filter with different updating rates to reduce the pseudorange but improve the TDCP
effects for position estimation, showing a relatively higher positioning accuracy than the pseudorange
only method. The dual-rate Kalman filter tries to isolate the pseudorange observation noise from the
TDCP. The high relative positioning accuracy of the TDCP can be kept by applying this strategy. Accord-
ing to the definition of the TDCP, Ding (2008) proposes the delta position aiding method and designs
a two-step calibration scheme with one Kalman filter working in the inner loop with the TDCP for the
IMU calibration and the other Kalman filter in the outer loop with pseudorange for the position bound-
ing. Despite applying a dual-rate, reduced Kalman filter or two-step calibration scheme, the reported
pseudorange+TDCP based system can only achieve SPP accuracy.
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Figure 6.1: Flow chart of the particle filter based TDCP navigation strategy

In this chapter, the particle filter is implemented in TDCP/IMU tightly-coupled navigation systems to
improve the positioning accuracy. The algorithm is divided into two parts as shown in Figure 6.1. In the
first part, the GPS pseudorange and Doppler are implemented in a conventional GPS/IMU tightly-coupled
navigation system as observations. The Kalman filter is used to estimate the position, velocity and atti-
tude of the integrated navigation system as shown in Chapter 2. The velocity and attitude estimated in
the conventional navigation Kalman filter are treated as the final velocity and attitude estimation and
propagated to the next filtering loop, while the position is further updated with TDCP observations in
the second part. In the second part (dashed box in Figure 6.1), several particles are generated around
the a posteriori position estimated from the conventional navigation Kalman filter. A particle filter frame-
work is then applied to weight these particles based on high-accuracy TDCP observations. Due to the
better isolation between the TDCP and pseduo-range noises, after applying the integration strategy, the
positioning accuracy can be improved greatly.

6.2 Modified TDCP observation

In a PF-based TDCP/IMU tightly-coupled navigation system, the TDCP measurement matrix is not nec-
essary, which can save some efforts in solving the velocity error integration. However, an accurate TDCP
measurement is still required to weight all the position particles. The more accurate the measurement,
the better the positioning achievable accuracy is. In order to improve the effectiveness of the TDCP in
weighting particles, two modifications are applied to the conventional TDCP measurement.

The receiver clock offset cδt r is estimated in the PR+Doppler GPS/IMU tightly-coupled navigation sys-
tem, which appears to introduce some pseudorange noises to the TDCP observation if implemented as
shown in equation (5.3). As a common error for all the observed satellites, the receiver clock offset can
be eliminated by differencing between the carrier phase observations from the observed satellites and
the reference satellite. The pseudorange noise can then be further isolated from the TDCP observation.

The application of the TDCP observation between two successive GPS epochs in weighting particles
causes position drift, because position errors accumulate over time through this measurement. Differ-
encing between two successive GPS epochs is helpful for the velocity estimation, at least the average
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Figure 6.2: Sketch of the position uncertainty comparison between pseudorange and carrier phase positioning
methods

velocity estimation. The velocity is estimated in a conventional Kalman filter with the Doppler observa-
tions in this proposed strategy. It is not necessary to apply the TDCP to estimate velocity again. Therefore,
the TDCP measurement between two successive GPS epochs can be further modified as the TDCP be-
tween the current and the reference GPS epochs. If the reference epoch is initialised with a high accuracy
position, the modified TDCP can help maintain the reference positioning accuracy. The cycle slip should
be carefully detected in the navigation strategy. Once a cycle slip is detected, the current epoch with
the new position estimation will be set as the new reference epoch. By avoiding introducing previous
epochs’ position errors to the current epoch, the position drift can be kept lower than conventional TDCP
measurements. The modified TDCP observation can be expressed as

∆lm = (lm(t2)− l re f (t2))− (lm(t1)− l re f (t1))

= ∆r re f
m +∆εδ,m

(6.1)

where t1 represents the reference time epoch, t2 is the current epoch and re f represents the reference
satellite.

6.3 Particle filter

The particle filter is a sampling-based filtering method. It uses N independent samples from the a priori
density to approximate the expectation of a system by sample average (Arulampalam et al., 2002). One
of the most significant advantages of the particle filter is its capability in dealing with nonlinear and
non-Gaussian problems, for example object-tracking, map-aided navigation, robot applications and so
on (Arulampalam et al., 2002; Okuma et al., 2004; Hafner et al., 2014; Vlassis et al., 2002). However,
the nonlinearity of tightly-coupled navigation systems is not so high, especially when the observation
is always available and all the states become observable. The non-Gaussian property of pseudorange
observations is only obvious in multi-path environments like building or forest surroundings. Besides
this, most researchers implement Gaussian particle filter in GPS/IMU tightly-coupled navigation systems
on the assumption that all the noises are Gaussian-distributed, due to the difficulty in obtaining the noise
statistics of states and observations in real time. Therefore, the benefits of particle filtering methods in
dealing with nonlinear and non-Gaussian problems cannot be fully shown in an integrated navigation
system as shown in Chapter 3.

In this chapter, the sampling property of the particle filter is utilized. The idea is based on the position
uncertainty from pseudorange being larger than carrier phase as illustrated in the sketch of Figure 6.2.
So if some particles are generated around the position determined from pseudorange observations, one
or several particles have the highest probability of being located close to the carrier phase position
estimation. Once these particles are weighted according to the particle filter framework, the position
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estimated by pseudorange will shift close to the carrier phase estimation. The positioning accuracy
can be improved subsequently. There are two problems which need to be solved. The first is how to
find or form a measurement with carrier phase accuracy. This can be accomplished by implementing the
modified TDCP observation introduced in section 6.2. The second is how to generate and weight particles
effectively to improve the positioning accuracy. The solution to the second problem is summarized below:

6.3.1 Particle generation

Based on the a posteriori position pk|k estimated by the conventional PR+Doppler GPS/IMU tightly-
coupled navigation Kalman filter, particles can be generated from the importance density distribution
N(0,Pk|k) as

Xk,i = pk|k +∆pk|k,i,∆pk|k,i ∼ N(0,Pk|k) (6.2)

where i = 1, 2, ...N , and N is the number of particles.

6.3.2 Weighting

Importance weights can be calculated as

w(Xk,i) =
p(zk|Xk,i,Rk)N(Xk,i|pk|k−1,Pk|k−1)

N(Xk,i|pk|k,Pk|k)
(6.3)

with

p(zk|Xk,i,Rk) =
1

p

(2π)m‖Rk‖
exp(−

[zk − h(Xk,i)]T R−1
k [zk − h(Xk,i)]

2
)

N(X+k,i|pk|k−1,Pk|k−1) =
1

p

(2π)n‖Pk|k−1‖
exp(−

[Xk,i − pk|k−1]T (Pk|k−1)−1[Xk,i − pk|k−1]

2
)

N(Xk,i|pk|k,Pk|k) =
1

p

(2π)n‖Pk|k‖
exp(−

[Xk,i − pk|k]T (Pk|k)−1[Xk,i − pk|k]

2
)

where m and n denote the dimensions of the observation and state vectors, pk|k−1 and pk|k are the
a priori and a posteriori positions estimated by the conventional GPS/IMU tightly-coupled navigation
Kalman filter with the covariances Pk|k−1 and Pk|k. zk is the modified TDCP with the covariance matrix
Rk as shown in (6.1), while h(Xk,i) is the estimated TDCP with the position estimation at t1 and the
particles’ position at t2 expressed as (6.4). p(zk|Xk,i,Rk) is the likelihood density function. Unlike the
CPF in Chapter 3, the PF measurement is modified TDCP. The pseudorange and Doppler observations
will not be used twice. N(X+k,i|pk|k−1,Pk|k−1) represents the a priori density function and N(Xk,i|pk|k,Pk|k)
is the importance density function.

h(Xk,i) = (
p

(xs,m(t2)− xk,i)2+ (ys,m(t2)− yk,i)2+ (zs,m(t2)− zk,i)2

−
Æ

(x re f
s (t2)− xk,i)2+ (y

re f
s (t2)− yk,i)2+ (z

re f
s (t2)− zk,i)2)

− (
p

(xs,m(t1)− x(t1))2+ (ys,m(t1)− y(t1))2+ (zs,m(t1)− z(t1))2

−
Æ

(x re f
s (t1)− x(t1))2+ (y

re f
s (t1)− y(t1))2+ (z

re f
s (t1)− z(t1))2)

(6.4)

where Xk,i is a vector expressed in ECEF frame as [xk,i, yk,i, zk,i]T . In equation (6.4), the first term is the
distance between the m-th satellite and the i-th position particle at time epoch t2. The second term is the
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distance between the reference satellite and the KF a posteriori position at time epoch t2. The difference
between the first and second terms eliminates the receiver clock offset at time epoch t2. The third term
is the distance between the m-th satellite and the KF a posteriori position at the reference time epoch
t1. The fourth term is the distance between the reference satellite and the KF a posteriori position at
the reference time epoch t1. The difference between the third and fourth terms eliminates the receiver
clock offset at the reference time epoch t1. As a nonlinear filtering method, there is no need in deriving
Jacobian matrix for the particle filter applications.

The importance weights should be normalized as

w′(Xk,i) =
w(Xk,i)

∑N
i=1 w(Xk,i)

(6.5)

6.3.3 Estimation

The a posteriori mean and covariance matrix can be computed as

p+k|k =
N
∑

i=1

w′(Xk,i)Xk,i

P+k|k =
N
∑

i=1

w′(Xk,i)[Xk,i − pk|k][Xk,i − pk|k]
T

(6.6)

The estimated position and its related covariance matrix will replace the position and covariance matrix
estimated from the navigation Kalman filter and be fed back into the next filtering loop. Since the parti-
cles are regenerated in each filtering loop and will not be reused, there is no particles’ impoverishment.
The particles’ resampling is not necessary, either.

6.4 Experiment

Some experiments are conducted to examine the performance of the PF-based TDCP/IMU tightly-coupled
navigation strategy. A conventional KF-based PR+TDCP tightly-coupled navigation system is also imple-
mented for a comparison. The starting position is initialized with the DGPS positioning result for the
KF-based PR+TDCP integration strategy, which is also taken as the first reference position for the PF-
based method. In order to better show the benefits of the PF-based method, the starting position is
determined by the SPP technique. The parameters of the two systems are identical to those in Chapter 5
experiment, except that the standard deviation of the modified TDCP observation in the PF is 10 cm. A
smaller standard deviation seems to cause the particles’ impoverishment.

6.4.1 Particle propagation

In order to better show the benefits of the PF-based method in improving positioning accuracy, the
particles’ propagation after applying high accuracy TDCP measurements is shown in Figures 6.3 and
6.4. 1000 particles are sampled around the a posteriori position of the KF-based PR+Doppler GPS/IMU
tightly-coupled navigation system. The red cycle is the position estimated in the PR+Doppler integrated
navigation system. The blue points represent particles generated around the position estimated from the
PR+Doppler tightly-coupled navigation system. The red cross is the true position from DGPS, while the
green star is the position estimated after applying the PF-based method.

From Figure 6.3, it can be seen that the position estimated in the PR+Doppler GPS/IMU tightly-coupled
navigation Kalman filter is far off from the true position. Therefore, only a few particles are located
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Figure 6.3: Particle propagation in initial stage
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Figure 6.4: Particle propagation at the tenth GPS epoch

near the true position. However, when the high accuracy modified TDCP observations are applied, these
particles are selected and highly weighted to improve the positioning accuracy. Figure 6.4 shows that
the position estimated by the conventional PR+Doppler integrated navigation system is already close
to the true position. Thus, most of the position particles generated around the estimated position are
distributed around the true position. After applying the TDCP observation to propagate and weight
particles, the position estimated by the particle filter is also near the true position. The high positioning
accuracy of a conventional PR+Doppler GPS/IMU tightly-coupled navigation system benefits from the
particle filter position correction. Actually, if the particle filter part is disabled, the positioning accuracy
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Figure 6.5: Eastern position error of the TDCP+PF
method in static case
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Figure 6.6: Northern position error of the TDCP+PF
method in static case
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Figure 6.7: Height error of the TDCP+PF method in static case

Table 6.1: Position error of the TDCP+PF method in static case

Methods East RMS (m) North RMS (m) Height RMS (m) Horizontal RMS (m) 3D RMS (m)

pseudorange+TDCP 0.89 2.50 3.86 2.65 4.68

Particle filter+TDCP 0.10 0.35 0.33 0.36 0.49

will degrade again to SPP accuracy. From these two figures, it also can be seen that the particle filter-
based method converges very fast, which allows it to be applied in real-time applications requiring high
positioning accuracy without fixing ambiguities.

6.4.2 Static positioning accuracy

The performance comparison between the KF-based PR+TDCP/IMU and the PF-based TDCP/IMU tightly-
coupled navigation systems in the static case is shown in Figures 6.5, 6.6, 6.7 and Table 6.1.

It can be seen that the PR+TDCP GPS/IMU tightly-coupled navigation system only achieves SPP accuracy
in the static case, even if starting from an already known accurate position. The PF-based TDCP/IMU
tightly-coupled navigation system makes use of the high accuracy TDCP observation to weight the par-
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Figure 6.8: Eastern position error of the TDCP+PF
method in kinematic case
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Figure 6.9: Northern position error of the TDCP+PF
method in kinematic case
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Figure 6.10: Height error of the TDCP+PF method in kinematic case

Table 6.2: Position error of the TDCP+PF method in kinematic case

Methods East RMS (m) North RMS (m) Height RMS (m) Horizontal RMS (m) 3D RMS (m)

pseudorange+TDCP 0.54 1.34 2.23 1.44 2.68

Particle filter+TDCP 0.06 0.22 0.30 0.22 0.37

ticles generated around the position estimation of the KF-based PR+Doppler GPS/IMU tightly-coupled
navigation system. The positioning accuracy of the PF-based TDCP/IMU tightly-coupled navigation sys-
tem can achieve the sub-meter level. From the static positioning results comparison, it can be seen that
the PF-based method is helpful for position estimation.

6.4.3 Kinematic positioning accuracy

The trajectory of the kinematic experiment is shown in Figure 3.25. The navigation performance com-
parison between the PR+TDCP/IMU and the PF-based TDCP/IMU tightly-coupled navigation systems in
kinematic case is shown in Figures 6.8, 6.9, 6.10 and Table 6.2.
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It can be seen that the KF-based system can only achieve SPP accuracy in the kinematic case, while the
PF-based system can achieve sub-meter positioning accuracy. The PF-based method can greatly enhance
the positioning accuracy for the following reasons. The cascaded KF and PF working procedure isolates
between the pseudorange and TDCP noises. Thus, the pseudorange noise is not introduced into the
TDCP measurement. Using the KF a posteriori estimation to generate particles leads to most of the
particles falling in the high likelihood area, which eases the curse of dimensionality. The modified TDCP
measurement can bound the position error accumulation and is then used to weight position particles
to achieve a higher positioning accuracy at the sub-meter level. However, this method’s positioning
accuracy is determined by the reference positioning accuracy since the modified TDCP is still a relative
measurement between the current and the reference epochs. If the reference positioning accuracy is low,
the final position result is smoothed with a higher relative positioning accuracy but with a lower absolute
positioning accuracy.

6.5 Conclusion

In this chapter, a method of how to apply a particle filter to improve the positioning accuracy of a TDCP
based GPS/IMU tightly-coupled navigation system is described. This integration strategy can be divided
into two parts. The first part is a KF-based PR+Doppler GPS/IMU tightly-coupled navigation Kalman
filter. The second part is a particle filter with the modified TDCP weighting position particles. This
algorithm utilizes the high relative positioning accuracy property of TDCP measurements. If the initial
reference position is taken from phase DGPS, the positioning accuracy of the tightly-coupled navigation
system can reach sub-meter level as shown in the experimental results.
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7 CKF+EKF hybrid filtering method for TCP/IMU tightly-coupled navigation

How to integrate total carrier phase observations with the IMU has been described in Chapter 5. The
simulation and experiment results indicate that the positioning accuracy can be greatly improved after
implementing GPS total carrier phase observations in the navigation Kalman filter. The total carrier
phase introduces some additional states, such as ambiguities, to the system, which will increase the
computational burden especially when a nonlinear filtering method is applied. In order to reduce the
computational burden of the TCP/IMU tightly-coupled navigation system, one idea is to try to decrease
the GPS time update rate. The GPS sampling rate (1Hz) is much lower than the IMU (100 Hz). Updating
the GPS related states as frequently as the IMU in the Kalman filter time update part is not helpful for
improving the navigation accuracy but can require a lot of computational time. The computational load
can be expected to be reduced after applying multi-updating rates to different sensors in the integrated
navigation system. The other idea to reduce the computational time is trying to use a linear filtering
method to estimate the linear states in the state vector, mainly GPS related states, while a nonlinear
filtering method estimates the nonlinear states like IMU related states. According to the estimation accu-
racy evaluation shown in Chapter 3, the implementation of nonlinear filtering methods in a linear system
does not significantly improve the estimation accuracy because nonlinear filtering methods degrade into
linear methods when implemented with a linear model. Both ideas can be accomplished through a dual
estimation framework.

In a dual estimation framework, the state vector can be divided into two sub-vectors. These two sub-
vectors are estimated separately in two parallel Kalman filters with identical measurements. One of
these two sub-vectors is non-constant, and the other is constant. The non-constant sub-vector varies
with time, usually referred as states, while the constant sub-vector stays as the same over time, usually
referred as parameters. Based on dual estimation framework, it is possible to use different kinds of
Kalman filters or different updating rates to estimate these two sub-vectors in parallel. As for TCP/IMU
tightly-coupled navigation systems, the ambiguity always keeps as a constant if there is no cycle slip.
The zenith path delay stays constant during a short period. Both of them can be treated as parameters.
The others including IMU related states, receiver clock offset and drift change with time and can be
defined as states. The state sub-vector sometimes suffers from nonlinear problems. For example, in
TCP/IMU tightly-coupled navigation systems, the attitude related states are nonlinear as discussed in
Chapter 3. In this chapter, based on the analysis above, a CKF+EKF hybrid filtering method will be
developed by using the CKF to estimate the states (usually nonlinear) while using the EKF to estimate
the parameters (linear) in a TCP/IMU tightly-coupled navigation system. The cross correlation aspect
in a state covariance matrix will be estimated and propagated to improve the convergence speed. The
performance of the hybrid filtering method will be examined through simulation and experiments.

7.1 Introduction and background

Dual estimation methods and related control approaches have been introduced and discussed in Nelson
(2000); Marafioti (2010). In a dual estimation framework, the state vector can be divided into two
sub-vectors (usually states and parameters). These two sub-vectors will be estimated separately in two
parallel Kalman filters. Compared with joint estimation methods, conventional dual estimation methods
do not estimate and propagate the cross correlation aspect of a covariance matrix, which yields some
benefits in state estimation as shown in Nelson (2000); Wan and Nelson (1996); Wan et al. (1999); Wan
and Nelson (1997).

The flow charts of the joint and dual estimation methods are shown in Figures 7.1 and 7.2, where xk, θk
and yk represent the state vector, parameter vector and mixed state/parameter vector.
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Figure 7.1: Flow chart of joint estimation method

Figure 7.2: Flow chart of dual estimation method

From Figures 7.1 and 7.2, it can be seen that the states are augmented by the parameters and then
estimated in the joint Kalman filter, while the state and parameter Kalman filters work in parallel in the
dual estimation framework. The state and covariance matrix from the state Kalman filter are fed back
to the parameter Kalman filter in the dual estimation framework and vice versa. In the dual estimation
framework, it is also possible to use two different time update rates as shown in Figure 7.2.

According to the filter types implemented in the dual estimation framework, conventional dual estima-
tion methods are roughly divided into two groups: dual EKF and dual UKF (Nelson, 2000; Van Der Merwe
and Wan, 2001). The joint estimation method differs from the dual estimation method mainly in the cross
correlation aspect of the covariance matrix with zero in the dual estimation methods and nonzero in the
joint estimation methods (Wan and Nelson, 2001). The difference in the cross covariance matrix esti-
mation will produce a state estimation difference. The application of an adaptive dual CKF to estimate
vehicle states has been discussed in Chen (2012).

However, it is still difficult to state that dual estimation methods outperform the joint estimation meth-
ods, since they are more system specific (Nelson, 2000). For example, in respiratory system modelling
(Saatci and Akan, 2009), autonomous terrain aided navigation system (Paul and Wan, 2005), damaging
structures modelling (Azam, 2012) and hydrological models (Moradkhani et al., 2005), dual estima-
tion methods are reported to provide satisfactory and even better results than joint estimation methods.
Wankerl and Trommer (2014) discuss and evaluate the performance of a segmented filter in a GPS/IMU
tightly-coupled navigation system, which is similar to the dual estimation method. In this work, the
Kalman filter is segmented into two filters: position filter and dynamic filter including velocity, attitude
and GPS related states, and navigation results can be improved after applying the segmentation, espe-
cially when the GPS signal is poor. Wendel et al. (2004) separate the correlated noise vector from the
state vector of the standard Kalman filter in the rapid transfer alignment application. The computational
load is expected to be reduced by applying the symmetry of the cross-correlation matrices.

In the dynamic modelling of neuronal responses in functional magnetic resonance imaging (fMRI)
(Havlicek et al., 2011) and the estimation of biochemical dynamic pathways (Jia and Brownb, 2009),
the researchers report a better performance of joint estimation methods. The performance difference

89



may be due to the correlation between parameters and states. A stronger correlation between states and
parameters will enlarge the effect of parameter noise in the state estimation and vice versa. As men-
tioned in Nelson (2000), the higher sensitivity to inaccuracies in noise variances and model structure
makes joint estimation methods the less robust alternative to dual estimation methods, while joint esti-
mation methods are not seen to suffer from the convergence problem unlike dual estimation methods.
Compared with the joint estimation method, the dual method is more flexible, because it allows differ-
ent updating rates and Kalman filtering methods working simultaneously. In a TCP/IMU tightly-coupled
navigation system, the direct implementation of the dual estimation method without the cross correla-
tion part shows a lower convergence speed than the joint method. So the conventional dual estimation
methods will be modified by estimating the cross covariance matrix simultaneously. The algorithm will
be deduced in the following sections.

7.2 Modified dual estimation method

In order to deduce the dual estimation method by estimating the cross aspect of the covariance matrix,
the working principle of the joint estimation method is investigated at first.

A system’s state vector containing two sub-vectors (for better statement, states and parameters) is con-
sidered as

yk =
�

xk
θk

�

(7.1)

where xk represent states, and θk are parameters

In order to simplify the analysis, the EKF is taken as an example to analyse the effect of the parameters’
estimation on the states’ estimation. The system state space is,

yk = Φyk−1+wk−1

zk = Hyk + vk
(7.2)

where

Φ=
�

A B
0 I

�

,H=
�

C D
�

,Q=
�

Qx 0
0 Qθ

�

and the measurement covariance matrix is Rk.

i) Measurement update

The following part will investigate how the parameters affect the states’ estimation in the EKF measure-
ment update part. Like the augmentation of the state transition matrix Φ and the measurement matrix
H, the Kalman gain and state covariance matrix can be written into block structures (Ljung, 1979, 1977)

K=
�

Kx
Kθ

�

,Pk|k−1 =

�

Pxx,k|k−1 Pxθ ,k|k−1

PT
xθ ,k|k−1 Pθθ ,k|k−1

�

(7.3)

where Kx and Kθ are the states’ and parameters’ Kalman gain. Pxx and Pθθ represent the state and
parameter covariance matrices. Pxθ is the cross correlation part in the covariance matrix.

The a posteriori states and parameters are calculated as,
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xk|k = Axk|k−1+Bθk|k−1+Kx(zk −Hyk)
θk|k = θk|k−1+Kθ (zk −Hyk)

(7.4)

The Kalman gain is

Kx = (APxx,k|k−1CT +BPT
xθ ,k|k−1CT +APT

xθ ,k|k−1DT +BPxθ ,k|k−1DT )S−1

Kθ = (P
T
xθ ,k|k−1CT + PT

θθ ,k|k−1DT )S−1 (7.5)

where

S= CPxx,k|k−1CT +CPxθ ,k|k−1DT +DPT
xθ ,k|k−1CT +DPθθ ,k|k−1DT +Rk (7.6)

From equations (7.5) and (7.6), it can be found that the cross correlation part Pxθ ,k|k−1 affects the
calculation of the state Kalman gain.

The a posteriori covariance matrices are

Pxx,k|k = APxx,k|k−1AT +APxθ ,k|k−1BT +BPT
xθ ,k|k−1AT +BPθθ ,k|k−1BT −KxSKT

x +Qx

Pxθ ,k|k = APxθ ,k|k−1+BPθθ ,k|k−1−KxSKT
θ +Qx

Pθθ ,k|k = Pθθ ,k|k−1−KθSKT
θ +Qθ

(7.7)

After substituting (7.6) into Pxθ ,k|k in equation (7.7), Pxθ ,k|k can be rewritten as

Pxθ ,k|k = (A−KxC)Pxθ ,k|k−1+ (B−KxD)Pθθ ,k|k−1 (7.8)

Equation (7.8) indicates that Pxθ ,k|k−1 is mainly determined by the parameters’ covariance matrix
Pθθ ,k|k−1.

The cross covariance matrix of the conventional dual estimation method is a zero matrix. The a posteriori
state and covariance matrix of the conventional method can be deduced simply by setting the cross
covariance matrices Pxθ ,k|k−1 and Pxθ ,k|k to be zero as shown below.

Kx = APxx,k|k−1CT S−1

Kθ = Pθθ ,k|k−1DT S−1 (7.9)

where

S= CPxx,k|k−1CT +DPθθ ,k|k−1DT +Rk (7.10)

In this case, the a posteriori covariance matrix is

Pxx,k|k = APxx,k|k−1AT +BPθθ ,k|k−1BT −KxSKT
x +Qx

Pθθ ,k|k = Pθθ ,k|k−1−KθSKT
θ +Qθ

(7.11)

91



From equations (7.9) and (7.11), it can be found that the effect of the parameters on the states’ es-
timation in the conventional dual estimation method is less than in the joint method, since the cross
correlation part is neglected. The parameter covariance matrix Pθθ ,k|k−1 in S and Pxx,k|k can be under-
stood as follows: When estimating states, parameters are assumed to be already known in the dual
estimation framework. The parameter noise is introduced to the measurement and system noises re-
sulting in Pθθ ,k|k−1 related terms in equation (7.10). These Pθθ ,k|k−1 related terms are necessary in the
conventional dual estimation method, which not only contributes a more accurate noise model but also
reflects the true system property.

The measurement update part of the modified dual estimation method is the same as the analysis in the
a posteriori estimation of the joint estimation method as shown in equations (7.4), (7.5) and (7.7). The
time update of the modified dual estimation algorithm with the cross covariance matrix estimation is
organised as shown below.

ii) Time update

The predicted states and parameters are

xk|k−1 = Axk−1|k−1+Bθk−1|k−1

θk|k−1 = θk−1|k−1
(7.12)

The predicted covariance matrices are computed as

Pxx,k|k−1 = APxx,k−1|k−1AT +BPT
xθ ,k−1|k−1AT +APxθ ,k−1|k−1BT +BPθθ ,k−1|k−1BT +Qx

Pxθ ,k|k−1 = APxθ ,k−1|k−1+BPθθ ,k−1|k−1

Pθθ ,k|k−1 = Pθθ ,k−1|k−1+Qθ

(7.13)

In the time update part, parameters and states can work with two different updating rates. For example,
GPS time updates with the GPS sampling rate and IMU time updates with the IMU sampling rate. In
this case, parameters (GPS carrier phase ambiguities and zenith path delay) do not need to be updated
as frequently as states (mainly IMU related states), saving some computational time. In this chapter, the
modified dual EKF estimation method refers to the EKF+EKF filtering method, which uses two EKFs in
parallel with one EKF estimating states and the other EKF estimating parameters.

7.3 CKF+EKF hybrid filtering method

As mentioned, the state vector of a TCP/IMU tightly-coupled navigation system is a mixture of states and
parameters. The states, especially the IMU related states, show high nonlinearity in cases of unobserv-
able, large misalignment and GPS outage, while the parameters are usually linear. The CKF is a second
order approximation to a nonlinear system. According to the CKF working principle, the larger the state
vector is, the more Cubature points are required to propagate states and covariance matrix. Therefore,
the direct implementation of the CKF in a TCP/IMU tightly-coupled navigation system greatly increases
the computational load. The increase in the computational load does not improve the estimation accu-
racy very much for the linear states’ estimation, since the CKF degrades into the EKF when implemented
with a linear system as suggested in Chapter 3. Based on the dual estimation framework, the CKF+EKF
hybrid filtering method is proposed by applying the CKF to estimate the nonlinear states and the EKF for
the linear parameters in parallel. The CKF+EKF can maintain the benefits of the CKF in nonlinear states’
estimation without increasing the computational load, creating a balance between the computational
load and the estimation accuracy. The algorithm of the CKF+EKF hybrid filtering method is summarized
below.

Considering a system with a mixed state/parameter vector and a linear observation equation, which is
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xk = f(xk−1) +Bθk−1+wx,k−1

θk = θk−1+wθ ,k−1

zk = Cxk +Dθk + vk

(7.14)

where xk is the state vector with the covariance matrix Pxx,k and nonlinear state transition function f.
θk is the parameter vector with the covariance matrix Pθθ ,k, w and v are Gaussian white noise with the
covariance matrices Q and R. A is defined as the first order Taylor term of the nonlinear function f, which
will be used to predict and propagate the cross covariance matrix Pxθ ,k.

According to the modified dual EKF estimation framework, the CKF+EKF hybrid filtering method is
deduced as shown below.

7.3.1 State estimation

The CKF, a second order approximation to a nonlinear system, is implemented in the hybrid filtering
method to estimate nonlinear states. In the CKF time update part, 2n Cubature points are calculated as

Sk−1|k−1 = SV D(Pxx,k−1|k−1)
χk−1|k−1 = Sk−1|k−1ξ+ xk−1|k−1

(7.15)

where n is the dimensionality of the state vector, SV D is the singular value matrix decomposition method.

After applying a nonlinear state transition function to propagate the Cubature points, the predicted
Cubature points are

χ∗k|k−1 = f(χk−1|k−1) (7.16)

According to the CKF algorithm, the predicted state and relevant covariance matrix are calculated as

xk|k−1 =
1

m

m
∑

i=1

χ∗i,k|k−1

Pxx,k|k−1 =
1

m

m
∑

i=1

χ∗i,k|k−1χ
∗T
i,k|k−1− xk|k−1xT

k|k−1+BPT
xθ ,k−1|k−1AT +APxθ ,k−1|k−1BT +BPθθ ,k−1|k−1BT +Qx

(7.17)

In the state covariance matrix prediction of equation (7.17), the linear parameters’ covariance matrix is
included to enlarge the states’ system noise covariance matrix Qx, because when states are estimated,
parameters are assumed as known and their noise covariance matrix affects the system noise of states
through the cross covariance matrix and the state transition matrix. This covariance matrix expression
in equation (7.17) is a more general case, while in a TCP/IMU tightly-coupled navigation system, the
state transition matrix B is a zero matrix. Therefore, equation (7.17) can be further simplified as

Pxx,k|k−1 =
1

m

m
∑

i=1

χ∗i,k|k−1χ
∗T
i,k|k−1− xk|k−1xT

k|k−1+Qx (7.18)

In the measurement update part, the Cubature points are regenerated using the predicted xk|k−1 and
Pxx,k|k−1 as
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Sk|k−1 = SV D(Pxx,k|k−1)
χk|k−1 = Sk|k−1ξ+ xk|k−1

(7.19)

The predicted observations calculated with the Cubature points are

Zk|k−1 = Cχk|k−1

zk|k−1 =
1

m

m
∑

i=1

Zi,k|k−1
(7.20)

When only states are estimated, parameters are assumed as already known. Therefore, the measurement
equation can be revised as

zk −Dθk|k−1 = Cxk|k−1+ vk (7.21)

After modifying the measurement equation, the estimation error θ̃ of θk|k−1 is introduced to be measure-
ment noise. For a white noise, the following correlation equations are valid.

E{vkθ̃
T}= 0

E{θ̃vT
k }= 0

(7.22)

The measurement covariance matrix of the new measurement equation (7.21) is

Rk,x = E{(Dθ̃ + vk) ∗ (Dθ̃ + vk)
T}

= E{Dθ̃ θ̃ T DT}+ E{vkvT
k }

= DPθθ ,k|k−1DT +Rk

(7.23)

This modified measurement equation is important for the hybrid filtering method, which significantly
influences the estimation accuracy and convergence speed. Comparing equation (7.6) with equation
(7.23), it is easy to find that if the cross correlation Pxθ is a zero matrix, without considering the state co-
variance matrix Pxx, these two equations have a same expression, indicating that it is correct to introduce
the already known states’ noise into the system and the measurement covariance matrices.

According to equation (7.5), the state Kalman gain is calculated as

Pzz,k|k−1 =
1

m

m
∑

i=1

Zi,k|k−1ZT
i,k|k−1− zk|k−1zT

k|k−1+Rk,x+CPxθ ,k|k−1DT +DPT
xθ ,k|k−1CT

Pxz,k|k−1 =
1

m

m
∑

i=1

χi,k|k−1ZT
i,k|k−1− xk|k−1zT

k|k−1+BPT
xθ ,k|k−1CT +APT

xθ ,k|k−1DT +BPxθ ,k|k−1DT

Kx = Pxz,k|k−1P−1
zz,k|k−1

(7.24)

The a posteriori state and covariance matrix are estimated as

xk|k = xk|k−1+Kx(zk −Dθk|k−1− zk|k−1)

Pxx,k|k = Pxx,k|k−1−KxPzz,k|k−1KT
x

(7.25)
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7.3.2 Parameter estimation

The EKF is implemented to estimate the parameter sub-vector. The state sub-vector is assumed as already
known. The parameters and covariance matrix predicted by the EKF are

θk|k−1 = Axk−1|k−1+Bθk−1|k−1

Pθθ ,k|k−1 = BPθθ ,k−1|k−1BT +APxx,k−1|k−1AT +Qθ
(7.26)

The a priori states xk−1|k−1 and covariance matrix Pxx,k−1|k−1 are utilized to predict parameters. The
states’ estimation error affects the prediction of parameters and the relevant covariance matrix as shown
in equation (7.26). Like states, the parameters’ measurement equation is revised as

zk −Cxk|k−1 = Dθk|k−1+ vk (7.27)

The measurement covariance matrix is calculated as

Rk,θ = E{(Cx̃k|k−1+ vk) ∗ (Cx̃k|k−1+ vk)
T}

= E{Cx̃k|k−1x̃T
k|k−1CT}+ E{vkvT

k }

= CPxx,k|k−1CT +Rk

(7.28)

The Kalman gain, parameters and covariance matrix in the measurement update are calculated as

S= DPθθ ,k|k−1DT +CPxθ ,k|k−1DT +DPT
xθ ,k|k−1CT +Rk,θ

Kθ = (P
T
xθ ,k|k−1CT + Pθθ ,k|k−1DT )/S

θk|k = θk|k−1+Kθ (zk −Cxk|k −Dθk|k−1)
Pθθ ,k|k = Pθθ ,k|k−1−KθDPθθ ,k|k−1

(7.29)

where CPxx,k|k−1CT is the measurement covariance matrix introduced by states’ estimation error.

7.3.3 Cross covariance matrix estimation

Predicting and updating the cross covariance matrix is relatively simpler than the states’ and parameters’
estimation. The cross covariance matrix in the CKF is computed as

Pxθ =
1

m

m
∑

i=1

(χi − x)(Θi − θ)T (7.30)

The calculation of the cross covariance matrix using Cubature points also introduces an additional com-
putational load. To further improve the filtering method’s efficiency, in the CKF+EKF hybrid filtering
method, the EKF is used to propagate the cross covariance matrix, consequently resulting in a subopti-
mal estimation.

The prediction of the cross covariance matrix is

Pxθ ,k|k−1 = APxθ ,k−1|k−1+BPθθ ,k−1|k−1 (7.31)
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Figure 7.3: Yaw comparison of dual estimation methods in constant velocity simulation

The a posteriori cross covariance matrix is

Pxθ ,k|k = (A−KxC)Pxθ ,k|k−1+ (B−KxD)Pθθ ,k|k−1 (7.32)

From equations (7.31) and (7.32), it can be found that the cross covariance matrix is mainly related to
the parameter covariance matrix in the model (7.14). The parameter covariance matrix Pθθ affects the
cross covariance matrix Pxθ and then affects the calculation of Kalman gain. Therefore, in a TCP/IMU
tightly-coupled navigation system, the ignoring in the cross covariance matrix causes a smaller Kalman
gain resulting in a slower convergence speed.

The CKF+EKF hybrid filtering method is a special case of the dual estimation methods, because it incor-
porates two different filtering methods for different states’ estimation. From the hybrid filtering method,
it can be seen that the dual estimation framework is much more flexible than the joint framework in that
it allows multi-updating rates and different filtering methods for the estimation of different states, which
not only can keep the estimation accuracy but also reduces the computational load. For example, accord-
ing to the Cubature points generation, in a TCP/IMU tightly-coupled navigation system, 2× (17+1+8)
Cubature points are needed to propagate states and the covariance matrix, assuming that 8 satellites are
available by applying the joint CKF and each Cubature point should be propagated by the nonlinear state
transition function once. In the hybrid filtering method, the number of Cubature points is 2× 17. The
extra Cubature points introduced by the linear states will not be used to propagate nonlinear states and
the covariance matrix, meaning that the nonlinear state transition function is not executed as often as
the joint CKF, which is helpful to reduce the computational burden.

7.4 Simulation

From the filtering performance comparison in Chapter 3, it has been shown that nonlinear filtering
methods only show benefits when the nonlinearity of the system is high. For example, in non-accelerating
cases when the yaw angle is totally unobservable, the CKF shows a slower yaw drift than the EKF.
According to this property, to better compare and examine the performance differences among the EKF,
CKF, EKF+EKF and CKF+EKF filtering methods, all four filtering methods are implemented with the
constant velocity simulation data. The parameters are set identically to those in the constant velocity
simulation in Chapter 3. The yaw angle comparison among the four methods is shown in Figure 7.3,
which is the average of 20 filter runs’ absolute error for each filtering method.
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Figure 7.4: Eastern position error of dual estimation
methods in stationary case
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Figure 7.5: Northern position error of dual estimation
methods in stationary case

From Figure 7.3, it can be seen that during a constant velocity period, the yaw estimation from the
EKF based methods (EKF, EKF+EKF) drift much faster than the CKF based methods (CKF, CKF+EKF). In
the accelerating stage, the four filtering methods show a similar performance because the acceleration
renders the yaw angle observable. The nonlinearity of the system is accordingly reduced. In the constant
velocity stage, the EKF+EKF has an identical performance to the EKF due to their being implemented
with the same psi-angle expression, which yields invalid when the yaw angle error accumulates very
quickly. The CKF+EKF can maintain the CKF’s benefits in bounding the yaw angle drift better. But its
yaw drift is larger than the CKF. When the computational load is considered, the CKF+EKF is superior
to the CKF, since it needs less Cubature points to propagate the states and covariance matrix. So the
CKF+EKF hybrid filtering method can balance computational load and estimation accuracy.

7.5 Experiments

In all the experiments, the EKF, CKF, EKF+EKF and CKF+EKF filtering methods are applied to a TCP/IMU
tightly-coupled navigation system. A RLG IMU is used as the attitude reference, and the phase DGPS
is the position reference. According to the filtering methods’ comparison in Chapter 3, it is easy to find
that the CKF outperforms the EKF, for example, in the unobservable case, large misalignment case and
GPS outages. So the performance difference among the four filtering methods is only examined in these
three cases.

7.5.1 Stationary case

In the stationary case, the yaw angle is totally unobservable. The observations have no benefits in
the state estimation. The yaw error will accumulate very quickly in such a case, which causes the
conventional psi-angle expression to become invalid and then introduces some nonlinearity to the tightly-
coupled navigation system. And the CKF has a slower yaw drift than the EKF as shown in Chapter 3.
To better show the performance difference among the four filtering methods in the stationary case, a
good position and attitude initialisation is applied. The initial position is taken from the phase DGPS.
The initial yaw angle is transferred from the RLG IMU. The initial ambiguities’ standard deviation in P0
is set as 0.1 m due to the good position initialisation. The ambiguities’ related parameters in Q are set
to 1 · 10−4 m to limit its change. The parameter setting helps maintaining initial positioning accuracy.
The other parameters are the same as those in Chapter 5. The trajectory is shown in Figure 3.13. The
position and yaw comparison are shown in Figures 7.4, 7.5, 7.6, 7.7 and Table 7.1.
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Figure 7.6: Height error of dual estimation methods in
stationary case
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Figure 7.7: Yaw error of dual estimation methods in sta-
tionary case

Table 7.1: Position and attitude comparison of dual estimation methods in stationary case

Filtering methods East RMS (m) North RMS (m) Height RMS (m) Yaw RMS (deg)

EKF 0.142 0.074 0.184 4.886

CKF 0.142 0.081 0.176 4.330

EKF+EKF 0.142 0.074 0.184 4.887

CKF+EKF 0.143 0.075 0.183 4.540

From the position comparison as shown in Figures 7.4, 7.5 and 7.6, it can be seen that the positioning
accuracy can reach the sub-meter level by applying the TCP in the integrated navigation system with a
very accurate initial position. All four filtering methods show quite similar position estimation accuracy
in the stationary case because position errors are always observable and can be determined directly from
GPS observations. The CKF based methods (CKF and CKF+EKF) seem to have a relatively slower yaw
drift than the EKF based methods as shown in Figure 7.7, due to the application of the nonlinear attitude
error expression. Although it is difficult to get a very accurate initial position in a real application, it
can be seen that using the carrier phase as observations in the Kalman filter can help to maintain initial
positioning accuracy, which is impossible for a PR+Doppler tightly-coupled navigation system.

7.5.2 Large misalignment case

In the large misalignment case, a large initial yaw angle error renders the psi-angle expression imple-
mented in the EKF invalid. As shown in Chapter 3, with the CKF, the nonlinear attitude error expression
(3.33) can improve the convergence speed and the yaw estimation accuracy.

The trajectory is shown in Figure 3.25. The initial position is determined from the SPP method, whose
positioning accuracy can only reach 3 m. Because of the high noise and bias of MEMS gyroscopes, if there
are no other aiding sensors like magnetometers or GPS attitude systems, the initial yaw angle cannot be
determined from MEMS gyroscope outputs during the fine alignment phase. The yaw angle calculated
from the MEMS gyroscope outputs is arbitrary. The large misalignment problem occurs very easily in
MEMS IMU applications, which can also be further used to examine the filtering methods’ performance
difference. The initial attitude standard deviations are set to 5 deg for roll and pitch, 17 deg for yaw
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Figure 7.8: Eastern position error of dual estimation
methods in large misalignment case
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Figure 7.9: Northern position error of dual estimation
methods in large misalignment case
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Figure 7.10: Height error of dual estimation methods in
large misalignment case
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Figure 7.11: Yaw error of dual estimation methods in
large misalignment case

as explained in Chapter 3. The other parameters are kept as same as the experiment in Chapter 5. The
position and yaw comparisons are shown in Figures 7.8, 7.9, 7.10 and 7.11.

As presented in these figures, the four filtering methods (EKF, CKF, EKF+EKF, CKF+EKF) have similar
positioning accuracy in eastern, northern and up directions. For the yaw angle estimation, due to the
implementation of the nonlinear attitude expression, it can be seen that the CKF based methods have
a higher estimation accuracy and faster convergence speed than the EKF based methods in the large
misalignment case. The CKF also converges faster than the CKF+EKF filtering method. However, con-
sidering the computational load, dual estimation methods are superior to joint methods. For example,
in the EKF+EKF filtering method, GPS related states do not need to be updated as frequently as IMU
states, while in the CKF+EKF filtering method, linear GPS related states can be estimated using the EKF
at a lower time updating rate and the number of Cubature points can also be reduced, indicating that
the nonlinear state transition function does not need to be computed as frequently as the CKF. Thus, a
decrease in the computational load can be expected with respect to the CKF. Due to the application of
the carrier phase, the system positioning accuracy is much higher than the pseudorange based method,
even though the carrier phase prolongs the convergence period.

99



0 200 400 600 800 1000 1200
0

10

20

30

40

50

60

70

80

90

100

Time (s)

H
or

iz
on

ta
l d

iff
er

en
ce

 (
m

)

 

 
EKF
CKF
EKF+EKF
CKF+EKF

Figure 7.12: Horizontal position drift of dual estimation
methods in coasting period
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Figure 7.13: Vertical position drift of dual estimation
methods in coasting period

7.5.3 Coasting performance

The filtering methods’ performance comparison in Chapter 3 indicates that the GPS outages introduce
nonlinearity to tightly-coupled navigation systems. To further examine the performance differences
among the four filtering methods, four GPS outages are introduced by artificially blocking the GPS
signal. During the coasting periods, the integrated navigation system performs IMU-only navigation. A
low-cost MEMS IMU drifts very quickly without any aiding sensors. The CKF can help bound the position
drift during GPS outages. The initial yaw angle is not well determined as well. Therefore, the integrated
navigation system experiences a large misalignment problem. P0, Q and R are set to be the same as the
values in the large misalignment case. The coasting performance comparisons among the four filtering
methods are shown in Figures 7.12, 7.13 and Table 7.2.

It can be seen that the position drift in the first two coasting periods is much larger than the third and
fourth coasting periods. The first two coasting periods are not only affected by GPS blockages but also

Table 7.2: Maximum position drift of dual estimation methods

Filters
1st GPS outage 2nd GPS outage

Horizontal drift (m) Vertical drift (m) Horizontal drift (m) Vertical drift (m)

EKF 54.09 1.29 98.71 0.90

CKF 10.97 0.05 36.41 0.81

EKF+EKF 50.35 1.21 95.52 0.90

CKF+EKF 23.05 0.65 56.65 0.81

Filters
3rd GPS outage 4th GPS outage

Horizontal drift (m) Vertical drift (m) Horizontal drift (m) Vertical drift (m)

EKF 19.60 0.18 2.97 0.51

CKF 8.16 0.12 2.92 0.21

EKF+EKF 18.66 0.17 2.91 0.50

CKF+EKF 10.21 0.25 3.02 0.22
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Figure 7.14: Trajectory of complex GPS case
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Figure 7.15: Satellite number change during experi-
ment

the large misalignment, both of which contribute to the large position drift. During the third and fourth
coasting periods, the yaw angle is already convergent and the position drift is only affected by the GPS
blockage. Therefore, the position drift is much smaller. However, the CKF and CKF+EKF seem to drift
more slowly than the EKF and EKF+EKF, because the nonlinear attitude expression implemented with
these two filtering methods can deal with the large yaw angle error better and consequently bound the
position drift.

The CKF has the smallest position drift among the four filtering methods. Compared with the CKF,
the CKF+EKF filtering method maintains the CKF’s benefits of a smaller position drift and reduces the
computational load. However, the maximum position drift of the hybrid filtering method is still larger
than the CKF, due to that the hybrid filtering framework reduces the effects of the cross correlation part
to the state estimation. Since the EKF+EKF filtering method works in a dual framework, the IMU state
and covariance matrix are directly fed back to the GPS related state and covariance matrix estimation,
which can slightly bound the position drift. The EKF+EKF filtering method always seems to drift a little
more slowly than the EKF during the four GPS outages with a smaller computational load.

7.5.4 Complex GPS case

The trajectory of the complex GPS environment trajectory is shown in Figure 7.14. The GPS signal is
blocked by high buildings and trees from time to time. The satellite number change is shown in Figure
7.15. The performance of a TCP/IMU tightly-coupled navigation system with different filtering methods
can be further examined in this case. The starting position is initialised with the DGPS result. The
initial yaw angle is roughly determined from MEMS gyroscopes, again causing a large misalignment
problem for the integrated navigation system. P0, Q and R are set to identical to the large misalignment
case, except that the initial ambiguity standard devitation is set as 10 cm. The position and yaw angle
comparisons are shown in Figures 7.16, 7.17, 7.18, 7.19 and Table 7.3.

From the figures and table, it can be seen that in a complex GPS environment when the GPS signal is
blocked frequently, a TCP based integration strategy can only achieve SPP accuracy. On the contrary,
during initial phase of the experiment when there are no GPS outages or satellite changes, the posi-
tioning accuracy of the TCP/IMU tightly-coupled navigation system is still much higher than that of the
PR+Doppler GPS/IMU tightly-coupled navigation system. When the GPS signal meets the positioning
requirements, the four filtering methods have a similar position estimation accuracy because the position
is always observable and determined directly from GPS observations in the integrated navigation system.
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Figure 7.16: Eastern position error of dual estimation
methods in complex GPS case
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Figure 7.17: Northern position error of dual estimation
methods in complex GPS case
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Figure 7.18: Height error of dual estimation methods in
complex GPS case
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Figure 7.19: Yaw error of dual estimation methods in
complex GPS case

Table 7.3: Performance comparison of dual estimation methods in complex GPS case

Filtering methods East RMS (m) North RMS (m) Height RMS (m) Yaw RMS (deg)

EKF 0.45 1.86 1.74 0.96

CKF 0.39 1.65 1.36 0.72

EKF+EKF 0.48 1.88 1.69 0.95

CKF+EKF 0.37 1.80 1.51 0.72

During GPS outages, the CKF based methods perform better than the EKF based methods with relatively
smaller position drifts, coming to a similar conclusion as the coasting performance comparison.

From the yaw angle comparison shown in Figure 7.19, it can be seen that the CKF based methods con-
verge faster than the EKF based methods in the large misalignment case, since the nonlinear attitude
expression implemented with the CKF based methods can better deal with the large misalignment prob-
lem. Considering the CKF based methods only, the CKF converges faster than the CKF+EKF hybrid
filtering method. However, the CKF+EKF has a lower computational load than the CKF. According to the
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CKF working principle, the number of Cubature points is directly determined by the dimension of the
state vector. The larger the state vector, the more Cubature points should be generated to propagate the
states and covariance matrix. The CKF+EKF filtering method can help reduce the number of Cubture
points required in the CKF, which consequently reduces the computational load.

7.6 Conclusion

In this chapter, according to the state vector property, a hybrid filtering method CKF+EKF is developed
and implemented in a TCP/IMU tightly-coupled navigation system based on the dual estimation frame-
work. From the attitude and position comparison, it can be seen that the hybrid filtering method has a
superior performance to the EKF based methods such as the EKF and the EKF+EKF, with relatively lower
computational load than the CKF, due to the application of the EKF to estimate linear states for mixed
nonlinear/linear systems. The CKF+EKF filtering method can maintain the benefits of the CKF with a
slower yaw drift than the EKF based methods in the stationary case, faster convergence speed in the
large misalignment case and a smaller position drift during GPS outages as shown in the experiments.
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8 Conclusion and future work

8.1 Summary and conclusion

8.1.1 Summary

This thesis investigates the methods of improving the navigation performance of a conventional non-
differential GPS/MEMS IMU tightly-coupled navigation system from the viewpoint of filter design in-
volving nonlinear filtering method application, stochastic error modelling and the implementation of
GPS carrier phase observations. The Cubature Kalman filter is taken as an example to show the bene-
fits of nonlinear filtering methods in a tightly-coupled navigation system. The CKF estimation accuracy
is evaluated via the Taylor expansion at first, which proves that nonlinear filtering methods like the
CKF show their own benefits only when implemented with a nonlinear system. In linear or linearised
systems, the CKF will have similar or even worse estimation accuracy than the KF, because nonlinear
filtering methods are suboptimal estimators. In order to better show the advantage of nonlinear filtering
methods in integrated navigation systems, a nonlinear attitude expression using the direction cosine ma-
trix to describe the misalignment between the true and estimated navigation frames, is described, which
does not require any small attitude error approximation and is always valid.

According to observability analysis, the CKF’s performance is further examined under different maneu-
vering with different degrees of observability. Simulation and experiment results show that the CKF has
higher yaw angle accuracy than the EKF in unobservable cases such as constant velocity and stationary
cases. In totally or weakly observable cases, the CKF has a similar estimation accuracy as the EKF. The
CKF performance is further examined in large misalignment and GPS outage cases. Navigation results
show that the CKF performs better than the EKF when the integrated navigation system shows some non-
linearity and the conventional psi-angle expression becomes invalid because of the large initial attitude
error and the fast attitude error accumulation. Like the EPF and UPF, the CKF’s a posteriori estimation
and covariance matrix can also be implemented as the importance density function to generate parti-
cles for the particle filter. However, the non-Gaussian property of GPS observations is not so obvious.
Although multipath effects can be treated as a non-Gaussian noise, its statistical property is difficult to
describe. So the CPF and other particle filter extensions may not be the best choice for a GPS/IMU
tightly-coupled navigation system design as shown in the comparison of the navigation results.

Accurately modelling the inertial sensors’ stochastic errors in a navigation Kalman filter is helpful to
improve the performance of an integrated navigation system. The coefficients of the inertial sensors’
stochastic errors can be detected and then determined by an Allan variance plot. According to shaping
filter theory, a stationary process can be generated by inputting a unit white noise to a system with the
transfer function derived from its related PSD. For nonstationary processes, their shaping filter trans-
fer functions should be approximated using mathematical methods. For example, bias instability, usually
treated as a flicker noise, should be approximated as the summation of two independent 1st-order Marko-
vian processes. Rate random walk behaving more like a Wiener process, can be generated by integrating
a white noise, according to its sampled or generalized PSD analysis. Rate ramp is approximated as a
2nd-order Markovian process as shown in Chapter 4. The inertial sensors’ coloured noises including bias
instability, rate random walk and rate ramp, can be modelled together using one equivalent transfer func-
tion according to the equivalence theory. The state space of coloured noises in differential and difference
equations are derived from the shaping filter transfer function through an inverse Laplace transforma-
tion or Z-transformation. The coasting performance comparison with the simulation and experiment
data shows the effectiveness of the shaping filter based method, which has a similar or even smaller
maximum position drift than conventional 1st-order Markovian process method during GPS outages.
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The carrier phase observation is far more accurate than the pseudorange. The implementation of carrier
phases as observations in a tightly-coupled navigation system is also beneficial for improving the nav-
igation performance. Considering the difference in dealing with carrier phase ambiguities, the carrier
phase related observations can be divided into TDCP and TCP. The TDCP method is based on carrier
phase ambiguities staying constant if there is no cycle slip or GPS blockage, which makes it possible
to eliminate carrier phase ambiguities by differencing between two GPS epochs, while the TCP method
estimates the carrier phase ambiguities as extra states in a navigation Kalman filter. Due to the loss of po-
sitioning information, a KF-based PR+TDCP GPS/IMU tightly-coupled navigation system can only reach
SPP accuracy. On the contrary, a TCP/IMU tightly-coupled navigation system can achieve sub-meter level
positioning accuracy if it is convergent.

Based on the position uncertainty difference between pseudorange and carrier phase observations, a
PF-based TDCP/IMU tightly-coupled integration strategy is proposed to achieve sub-meter positioning
accuracy with an accurate reference position. A modified TDCP measurement, defined as difference be-
tween the reference and observation epochs with respect to the reference satellite, can further isolate the
pseudorange noise from the carrier phase observation. Since position error accumulation is avoided, this
measurement can bound the position drift caused by the TDCP. The modified TDCP is then implemented
in the particle filter measurement update to weight particles generated from the a posteriori position of
a conventional PR+Doppler GPS/IMU tightly-coupled navigation system. However, because the mod-
ified TDCP is a relative positioning measurement, the absolute positioning accuracy of this strategy is
determined by the reference position. If the reference position is taken from, for example, DGPS, the
positioning accuracy can reach the sub-meter level as shown in experiments. If the reference position is
determined from SPP, the absolute position result will have a constant bias compared with the true posi-
tion. But the position will be smoother than the KF-based PR+TDCP method, indicating a high relative
accuracy.

Due to the introduction of carrier phase related states to the integrated navigation Kalman filter, the
computational load of the TCP based tightly-coupled navigation system increases, especially when im-
plemented with nonlinear filtering methods such as the CKF. The number of Cubature points required
in the CKF increases with the size of the state vector according to the CKF working principle. However,
the CKF shows no benefits when implemented with linear systems as indicated in the CKF theoretical
analysis. Accordingly, applying the CKF in a linear system will only improve the computational bur-
den without any accuracy enhancement. In order to reduce the computational load while maintaining
the CKF’s benefits, a CKF+EKF hybrid filtering method based on a dual estimation framework is intro-
duced to the TCP/IMU tightly-coupled navigation system. In this method, the state vector is divided into
nonlinear and linear states. The nonlinear states are estimated by the CKF, while the linear states are
estimated by the EKF. The simulation and experiment results show that the CKF+EKF hybrid filtering
method shows a better performance than the EKF filtering methods, i.e. the EKF and EKF+EKF meth-
ods, in the highly nonlinear cases. Compared with the CKF-only method, the hybrid filtering method
can reduce the amount of Cubature points required in the CKF, which is also beneficial to improving
the computational efficiency. So the CKF+EKF hybrid filtering method can keep the CKF’s benefits but
reduce the computational load as shown in experiment results.

8.1.2 Conclusion

From the summary above, the following conclusions can be drawn:

1. Implementing nonlinear filtering methods directly in a PR+Doppler GPS/IMU tightly-coupled nav-
igation system in observable cases does not assist in improving attitude estimation accuracy even
if a nonlinear attitude expression is applied.

2. The nonlinearity of tightly-coupled navigation systems is higher in the unobservable, large mis-
alignment and GPS outage cases. The nonlinearity of integrated navigation systems is due to the
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fast attitude error accumulation or large initial attitude error, which renders conventional psi-angle
expression implemented in the EKF invalid. The CKF has no small attitude error requirement.

3. The particle filter and its extensions can be considered as a choice in designing integrated navi-
gation systems, but its advantage in dealing with non-Gaussian noise cannot be fully shown in a
conventional PR+Doppler GPS/IMU tightly-coupled navigation system.

4. The shaping filter theory is effective in modelling the inertial sensors’ stochastic errors in a naviga-
tion Kalman filter. It has a similar or even better performance than the 1st-order Markovian process
modelling method. All the coloured noises, including bias instability, rate random walk and rate
ramp, can be modelled together as a single transfer function according to equivalence theory.

5. The non-stationary process can be approximated by stationary processes through certain mathe-
matical transformations.

6. Both the differential equation and ARMA process can be deduced from the shaping filter transfer
function. These two methods are equivalent in theory, and the simulation and experiment results
show that they have a similar coasting performance during GPS outages.

7. The TDCP measurement does not help in improving the absolute positioning accuracy of a tightly-
coupled navigation system, while the TCP based method can improve positioning accuracy to the
sub-meter level.

8. The PF-based TDCP/IMU tightly-coupled strategy can improve the positioning accuracy to the sub-
meter level if initialised with a high-accuracy position.

9. The CKF+EKF hybrid filtering method can help reduce the computational load of a TCP/IMU
tightly-coupled navigation system but maintain the CKF’s benefits in processing nonlinear prob-
lems. The hybrid filtering method can also be applied in other systems with mixed nonlinear/linear
states.

8.2 Future work

In order to explore the full potential of GPS/IMU tightly-coupled navigation systems, some recommended
future work is mentioned below.

1. The final target of this thesis is to use the techniques developed to construct a high-accuracy, robust
and high-efficiency GPS/IMU tightly-coupled navigation system. For example, when the nonlin-
earity of the integrated navigation system is high, the nonlinear filtering methods and stochastic
modelling method can be applied to improve the navigation performance. Otherwise, the linear
filtering method should be implemented to keep the computation efficiency. During the fine align-
ment period, the TCP/IMU tightly-coupled navigation system can be executed to reach a higher
initial positioning accuracy. The modified TDCP based navigation strategy can then be applied
to keep the high initial positioning accuracy without solving ambiguities. A context-aware and
adaptive strategy will be helpful for the changing-over among different navigation strategies.

2. Using the Allan variance technique to determine the stochastic errors’ coefficients is time-
consuming. Finding ways to reduce the sampling time will be beneficial in improving compu-
tational efficiency. Besides this, the stochastic errors’ coefficients may change during different
dynamics. The best way in modelling the inertial sensors’ noise accurately is trying to determine
and detect the relevant noise components in real time. Navigation performance can be improved
if a real-time stochastic errors’ coefficients determination technique is developed and applied.

3. The total carrier phase based method needs a relatively longer convergence time. Improving con-
vergence speed is helpful to make this technique useful for real-time application when with the
real-time precise orbit products from IGS.
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4. For TDCP based methods, it is also worth researching how to make the best use of higher relative
positioning accuracy to improve absolute positioning accuracy.

5. The CKF+EKF hybrid filtering method only roughly divides the state vector into IMU and GPS
states. IMU states can be further divided, as for example, position states are linear. It is expected
that the division will further help reduce the computational load.

6. In this thesis, only the GPS/IMU tightly-coupled navigation system is discussed. The integration
with the other satellite navigation systems such as Glonass, Beidou and Galileo, will be also helpful
for the navigation performance improvement. How to construct a multi-GNSS/IMU tightly-coupled
navigation system is one of the main future works.
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Appendix

The direct implementation of conventional ARMA process state space form in Kalman filter sometimes
causes a degraded performance and even numerical instability, due to that the discretion introduces an
inconsistency between continuous and discrete transfer functions as shown in Figure A.1.

From Figure A.1, it can be found that the continuous and discrete transfer functions’ magnitude fre-
quency characteristic properties differ mainly in the very low frequency domain. The coefficients of
ARMA process deduced from shaping filter transfer function are related with the power of time interval
Ts, for example e6. If time interval is very small, the contribution of other coefficients like b6, b5, b4, b3
to e6 is also limited, and e6 will be dominated by b1, b2. This property is the main reason of the in-
consistency between continuous and discrete transfer functions, which further degrades the filtering
performance when implemented in navigation Kalman filter. To avoid this, in this part, a modified state
space of ARMA process is introduced according to the internal relationship between its coefficients in
the specific application.
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Constructing the following states as
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(A.1)

Equation (A.1) is deduced from Z-transformation of shaping filter transfer function. The first term of

the last equation of (A.1) can be calculated from (1−z−1)
T4

s
Y (z) using inverse Z transformation.

If zi,k is differenced as
zi,k−zi,k−1

Ts
, the relationship in equation (A.2) meets. Substituting zi,k into zi+1,k

and computing it iteratively, the final coefficients of this expression is same as ARMA process equation
(4.54). So in this sense, the expression is equivalent to the conventional one.
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(A.2)

If zk =
�

z5,k z4,k z3,k z2,k z1,k

�T
, the following state space form can be constructed for ARMA

process according to the relationship (A.2)

¨

zk = Tkzk−1+Gkwk

yk = Hkzk
(A.3)
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where

Tk =
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T

This state space is applicable to the specific application only when the internal relationship of ARMA
process’s coefficients are very clear. Due to avoiding to use discrete coefficients directly, the numerical
instability problem will not happen. So compared with conventional expression, this state space is more
robust. This state space can also be treated as the discretion of continuous state space. The differential
equation and ARMA process expression are equivalent by using the modified state space.
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