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ABSTRACT

One of the fundamental requirements of a persistently Autonomous Underwater Vehicle

(AUV) is a robust navigation system. The success of most complex robotic tasks depends

on the accuracy of a vehicle’s navigation system. In a basic form, an AUV estimates its po-

sition using an on-board navigation sensors through Dead-Reckoning (DR). However DR

navigation systems tends to drift in the long run due to accumulated measurement errors.

One way of mitigating this problem require the use of Simultaneous Localization and Map-

ping (SLAM) by concurrently mapping external environment features. The performance

of a SLAM navigation system depends on the availability of enough good features in the

environment. On the contrary, a typical underwater structured environment (harbour, pier

or oil field) has a limited amount of sonar features in a limited locations, hence exploitation

of good features is a key for effective underwater SLAM.

This thesis develops a novel attentive sonar line feature based SLAM framework that im-

proves the performance of a SLAM navigation by steering a multibeam sonar sensor, which

is mounted on a pan and tilt unit, towards feature-rich regions of the environment. A sonar

salience map is generated at each vehicle pose to identify highly informative and stable

regions of the environment. Results from a simulated test and real AUV experiment show

an attentive SLAM performs better than a passive counterpart by repeatedly visiting good

sonar landmarks.
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Chapter 1

Introduction

Today the demand for sea exploration is increasing. Commercial companies are making

substantial investments for surveying, running and maintain offshore structures. Govern-

ments spend a significant portion of their budget to safeguard their sea territory or protect

harbours. Scientists are putting a huge effort in researching the open water which covers

three quarter of the earth’s surface, shelters enormous biodiversity, and affects the whole life

on earth directly or indirectly. Some of these tasks require reaching inaccessible locations

or dangerous areas for human divers. Additionally, some tasks require frequent attendance

which make them cumbersome. Remotely Operated Vehicles (ROVs) can be used to allevi-

ate this problem and limit human involvement in order to avoid substantial risk. However,

ROVs lack autonomy, requiring human pilots at all times and they are physically con-

strained within the proximity of a support vessel which provides power and control through

a cable. Typically the length of the linking cable dictates the operation area within a close

range of the connected vessel. This lack of flexibility and autonomy in ROVs together with

the recent progress in the technology is making Autonomous Underwater Vehicles (AUVs)

a more favourable alternative.

Lately, AUVs are being used for various underwater applications at different scales.

There have been reports of AUVs being used for seabed mapping, environmental monitor-

ing and assessment, mine counter measure, underwater search and rescue, and many other

applications. AUVs have taken charge of most tasks that used to be executed by human

operators and ROVs. In addition to reducing human involvement, AUVs are more effi-

cient when surveying or periodically inspecting underwater structures like harbours, dams

and offshore structures. However achieving a true persistent autonomy is still a challenge
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that requires further research, hence it became the main agenda of an EU FP7 PANDORA

project [1]. The project aimed to achieve persistent autonomy of AUVs for tasks such as:

inspection, cleaning and intervention. The success of these tasks is highly dependent on the

accuracy and robustness of the core vehicle navigation system.

In comparison to land robot navigation, underwater navigation is far more challenging

due to the limitation that arises on certain types of sensors due to the environment. For

instance, the visibility for optical cameras is very poor in underwater as a result they can

be used only for close range applications. Similarly receiving a GPS signal is only pos-

sible when a vehicle is close to the surface which, for most applications, is out of the

vehicle’s workspace. As a result most traditional AUVs get their position estimation from

an on-board sensors. Although such systems are capable of executing short missions their

long term autonomy is significantly affected by a measurement drift arising from associ-

ated sensors. This led to the growing interest in underwater Simultaneous Localization and

Mapping (SLAM) using acoustic sensors. There has been various implementations of un-

derwater SLAM algorithms to assist underwater navigation (more discussion on this will

be presented in Chapter 2). A SLAM based navigation system has to address three main

challenges for underwater applications: sensor restriction, scarcity of landmark and limited

resource.

The limitation on the choice of sensor makes it impossible to use those sensors that

can provide high quality measurement or good amount of features. As a result an under-

water SLAM system has to relay on relatively noisy measurements coming out of acoustic

sensors. To make things worse, in a typical underwater environment the number of acoustic

landmarks available is limited which in turn restricts the amount of SLAM feature that can

be gathered. Hence a good underwater navigation systems need to exploit these limited

landmarks. Lastly, for a typical AUV, there is a hard-line restriction on the amount of avail-

able resource. Everything including batteries need fit into a small watertight capsule which

typically lack a dedicated cooling mechanism or a powerful computer. Therefore, in order

to achieve persistent autonomy navigation systems need to use light weighted algorithms

and make the best out of the limited landmark features available in underwater environment

using noisy measurement coming from acoustic sensors.

This thesis is intended to explore the possibility to turn available light weighed SLAM

algorithms into a robust active navigation systems. To achieve this goal we will introduce a
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focus of attention mechanism to the underwater domain by devising a sonar based salience

map that allows for efficient utilization of limited landmark features.

1.1 Problem Statements and Thesis Aim

1.1.1 Problem Statements

The work in this thesis explores methodologies that address the problem in improving ro-

bustness of underwater SLAM navigation systems in the absence of abundance sonar land-

marks. We aim to address the most sensitive parts of a feature based underwater SLAM

algorithm that need to be handled carefully in order to improve the localization perform-

ance. In this work three stages of SLAM implementations are identified as the main source

of failure in underwater SLAM implementations: poor sensor set-up, inaccurate feature

extraction and unreliable measurement model.

A typical feature acquisition require the use of mechanically fixed sonar sensor to ob-

serve underwater landmarks that fall into its field of view. However landmarks do not

always lie in front of such sensors hence an effective utilization of available environmental

features requires an active sensor set-up. In addition to proposing a focus of attention based

active sensor set-up this work presents an efficient feature extraction technique that uses the

full sensor information for accurate identification of landmarks. The third stage of failure

is the measurement model used for a line feature based SLAM. Currently, there is a dis-

crepancy among the literature in how the measurement model for 2D line segment should

be represented. For instance, Ribas et al. [2] propose a generic single model while in case

of Garulli et al. [3] two distinct motion models are suggested where the choice is made

based on the line segment position relative to the current vehicle pose and the map origin.

This discrepancy is addressed aiming to avoid the resulting localization error from a wrong

measurement model.

1.1.2 Thesis Aims and Objectives

As it is going to be discussed in the next chapter, most attentive systems or active vision

schemes are developed for non acoustic applications; depriving underwater researchers the

possible benefit of such systems. The aim of this thesis is to adapt the principle of act-
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ive vision and localization for underwater environment by developing a persistent active

localization and mapping technique for structured underwater environment. The proposed

system can extract useful landmark information from the surroundings efficiently using

actively steerable sonar sensor which facilitates the convergence of sonar based SLAM

navigation system. It also aims to explore the benefits of the Probability Hypothesis Dens-

ity (PHD) filter for underwater sonar based SLAM. In this work we intend to achieve the

following objectives:

• asses techniques for representing sonar salient features and review systems for un-

derwater navigation.

• devise a mechanism for generating sonar based salience map to dictate the collection

of sonar data from areas rich with informative features.

• propose an active Simultaneous localization and mapping (SLAM) technique that

could re-detect available landmarks and track them for an improved navigation.

1.1.3 Evaluation Metrics

The overall performance of the proposed system is measured in terms of the reduction on

the localization error relative to conventional SLAM algorithms. These errors are computed

as X-Y position RMSE (Root-Mean-Square Error) values between estimated robot poses

and ground truth. Initially, simulated tests are used to asses the performance boost that

each individual changes can introduce to a feature based underwater SLAM algorithm.

Later tests in an indoor tank are executed to confirm these results.

Euclidean distance measure is adopted to estimate the distance between two robot po-

sitions. However, other metrics are used to compare distance between line segments and

uncertainty in Chapter 3.

1.2 Platform and Test Environments

Before going any further, lets introduce some of the test facilities that are used to test and

validate the proposed techniques.
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Figure 1.1: Nessie VII Ocean Systems Laboratory (OSL) main research AUV with pan and
tilt sonar underneath for steering multibeam sonar.

1.2.1 UWSim Simulator

UWSim is an underwater simulator developed for assisting marine robotics research and de-

velopment [4]. It allows creation of virtual 3D underwater scenarios using standard model-

ling software to test underwater vehicles. Vehicles can be equipped with simulated sensors

including a simulated multi beam sonar profiler. This will allow multiple controlled tests to

be done before actual runs and it will also avoid unnecessary costs arising from expensive

sea trails.

1.2.2 Nessie VII AUV

Simulated tests as well as tank experiments are devised based one of Ocean System Lab’s

(OSL) AUV called Nessie VII. Nessie VII is equipped with on board navigation sensors

including: Teledyne Explorer PA DVL and A TCM 6 compass. Additionally, two type

of sonars can be attached to a pan and tilt unit to provide sonar observations as shown

in Figure 1.1. Further details on general navigation sensors and those on Nessie VII is

presented in Chapter 2.
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Figure 1.2: Ocean system lab indoor test tank and Cartesian robot.

1.2.3 OSL Cartesian Robot and Indoor Tank

The ocean Systems Laboratory (OSL) has an indoor tank facility which has a 3-axis (X-Y-

Z) Cartesian robot built to it, see Figure 1.2. The Cartesian robot provides an alternative

test platform with three degrees of freedom. Test can be run by attaching a pan and tilt unit

to the base of the unit. The ROS (Robot Operating System) driver for the Cartesian robot

can return the status of the robot in the three major axes. This can be used as a ground truth

while generating noisy trajectories out of it. This tank is 4 m long, 3 m wide and 2 m deep.

The test tank is used for validating feature extraction techniques as well as the proposed

navigation system while the robot emulates the characteristics of Nessie VII.

1.2.4 HWU Wave-tank

Some of the tests require a bigger test arena and for that the HWU wave-tank provides a

good option. It is a testing facility with in the School of Built Environment, Heriot-Watt

university. It covers an area of 12 m by 10 m while the depth varies from 2 m around the

edges to 4 m in the centre of the pool. In addition to having artificial beach in one side, this

facility provides a means to simulate a rough sea condition by generating various types of

waves as show in Figure 1.3.
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Figure 1.3: HWU wave-tank used for testing attentive SLAM on Nessie VII.

1.3 Thesis Layout

The thesis structure is shown in Figure 1.4 over the proposed system architecture. Hard-

ware requirement of the proposed system include a vehicle with basic navigation sensors

(i.e.DVL, Depth sensor. . . more on this in Chapter 2), a multibeam sonar sensor and a

pan & tilt unit to steer the sonar around. On top of this lie a feature extraction module

that feeds a feature based underwater SLAM algorithm with landmark features which are

picked based on the decision made by a focus of attention mechanism. The remainder of

this thesis is organised as follows: In Chapter 2 we provide a brief background on vari-

ous components of a feature based underwater navigation system in relation to the three

problem mentioned in previous section. The chapter begins by reviewing state-of-the-art

in underwater sensing and navigation then we discuses the advantages of using a focus of

attention based active vision for mobile robotics. The review in this chapter provides the

foundation for the subsequent three chapter.

In Chapter 3 the characteristics of multibeam sonar images are studied. The outcome

of this study is used to build a realistic multibeam sonar simulator as well as assisting the

understanding of a feature extraction process. The sonar simulator becomes an important

tool in the evaluation of both the feature extraction and localization process.

Chapter 4 discuses two of the most widely used light weighted SLAM filters: EKF

(Extended Kalman Filter) and UKF (Unscented Kalman Filter). This filters are compared

using sonar line features extracted using technique proposed in Chapter 3. The main focus
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Figure 1.4: Thesis layout and proposed system architecture.

of this chapter is solving the problem associated with peaking the right measurement model

for line feature based SLAM. Then Chapter 5, being the main contribution of this thesis,

present a novel technique for computing sonar salience and improving a passive SLAM

navigation by actively steering a sonar head mounted on a pan and tilt unit. We demon-

strate how the use of focus of attention improves the frequency of landmark sighting which

directly affect the performance of a feature based SLAM algorithm. Finally, Chapter 6 con-

cludes the thesis by providing a summary of accomplished tasks and giving a direction for

future improvements.

8



Chapter 2

Literature Review

In this chapter, we first provide a short background on currently available underwater nav-

igation systems and sensors that they use. Then we discuses how these systems benefited

from an underwater Simultaneous Localization and Mapping (SLAM) followed by a review

on sonar feature extraction techniques in an underwater structured environment. Later in

the chapter, a brief overview on the principle and applications of active vision in the context

of robotics is presented. Then a background on focus of attention, as a type of active vision

technique, is presented through a discussion on its importance for achieving primate like

active perception. Finally, milestone works in attentive vision for robotic application are

briefly presented.

2.1 Underwater Navigation

More than seventy percent of the earth’s surface is covered by water, hence a lot has to be

done to facilitate the exploitation and study of the deep ocean. Advances in technology have

brought vehicles which can reduce the cost of surveying seabed or reduce the complexity of

underwater structure inspection [5, 6]. Yet, Autonomous Underwater Vehicles (AUVs) re-

quire human intervention in order to accomplish persistent autonomy. One of the core tasks

in underwater vehicles that requires such intervention is navigation. Unlike human coun-

terpart, autonomous robots are not accurate enough in navigating through a new environ-

ment, mainly due to inevitable sensor limitations and measurement drifts. In a basic form,

AUVs use on-board sensors to estimate the position of a vehicle. However, a more accurate

navigation is achieved by incorporating external clues through other scientific sensors and
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informations from dynamic and kinematic models [5]. According to Kinesey et al. , cur-

rent AUVs are able to use closed-loop feedback control system and provide a more detailed

survey information as a result of improved precision and high update rate of navigation [5].

2.1.1 Common Underwater Navigation Sensors

AUVs use various sensors for providing navigation data. There is a variation in terms of

the type and number of sensors that researchers mount on their vehicle. However, there are

certain basic sensors which are common to most AUVs including Nessie VII (see Section

1.2). In this section we will discuss some of these sensors and their performance. Ulti-

mately, this clarifies the review on navigation systems and the demand for further research

on improving underwater navigation precision.

A. Depth Sensor

Depth sensors, also known as pressure sensors, compute the distance of a vehicle from the

water surface using the ambient water pressure. There are two main categories of depth

sensors: strain gauges and quartz crystals. Strain gauges based sensors use metallic al-

loys on an elastic pressure diaphragm in a Wheatstone Bridge while quartz crystal pressure

sensors, as the name implies, utilize quartz crystals. The presence of ambient ocean pres-

sure changes the resistance of the metallic alloy or causes a stress on quartz crystal which

is translated into the strength of the water pressure. For both types of sensors the sensor ac-

curacy can be improved by proper calibration and compensations for thermal variations and

offset. In general quartz crystal based sensors are 10 times more accurate than that of strain

gauge based sensors for full-scale [5]. A Keller Series 33X depth sensor on Nessie VII,

which uses a piezoresistive transducer, has an absolute accuracy of 0.005 bar at fullscale,

equivalent to 0.05 m, over a temperature range +10 to +40 ◦C and 0.01 bar for a temperature

between −10 and +80 ◦C.

B. Magnetic Sensor - Compass

Two-axis and three-axis magnetic sensors are widely employed for measuring vehicle ori-

entation. The technique employed in these sensors include flux-gate, magneto-inductive

and magneto-resistive magnetic sensing methods. These methods use the presence of mag-

netic anomaly in order to determine the local north. Properly calibrated magnetic com-

passes can provide an accuracy on the order of 1◦. According to the datasheet a TCM 3
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compass on our vehicle has 0.5◦ heading accuracy for a tilt angle below 70◦. Yet Kin-

esey et al. claim magnetic heading sensors are the main error sources in an overall naviga-

tion solutions [5]. This is mainly due to

• the magnetic disturbance from the vehicle,

• effect of vehicle acceleration on gravity based roll-pitch compensation methods,

• local magnetic and geographic anomalies, and

• poor alignment or mounting of the sensor on the vehicle.

C. Doppler Velocity Log (DVL) sensor

Doppler Velocity Log (DVL) sensors use beams of sonar pings to estimate 3D vehicle ve-

locities based on frequency or Doppler shift. These velocities are normally taken relative

to the reflection point on the bottom surface; however, most new generation sensors em-

ploy water-lock Doppler tracking when the vehicle altitude is out of the bottom-lock range.

Teledyne Explorer DVL on our vehicle has a run time accuracy of 0.2 cm/sec or a relat-

ive accuracy of 0.4%. Like the angular rate sensor, DVL sensor accumulates velocities to

estimate position and it require other sensors for estimating initial vehicle condition. Any

error in these values or a wrong alignment between the DVL and the attitude sensor will

result in poor absolute position estimation. Additionally, the position uncertainty of DVL

dead reckoning navigation grows without bound in a long duration missions.

D. Inertial Measurement Unit (IMU)

Inertial Measurement Units (IMUs) are self-contained navigation systems that measure lin-

ear and angular vehicle motion with a triad of gyroscopes and triad of accelerometers (dis-

cussed below). The resulting velocities and accelerations are integrated to yield a dead

reckoning position. Since these sensors use inertia of an inertial reference mass they are

also known as inertial sensors. There are two types of IMUs: inertial-frame and strap-

down. In inertial-frame IMUs both the gyroscope and the accelerometers are mechanically

integrated. However, in case of strap-down IMUs the two sensors are directly attached to

the vehicle and the information is integrated using microprocessors. The main drawback of

IMUs is their power consumption. Their market price is also another challenge that limits

their widespread use. Additionally, IMUs suffer from a growing and unbounded position
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error, hence in most applications these sensors are complemented using DVL or acoustic

navigation sensors.

E. Gyroscope

Gyroscope is another important navigation sensor used for estimating orientation rate and

this can be integrated to measure the robot orientation indirectly. First-generation gyro-

scopes were too expensive to be deployed on standard AUVs. Later vibrating mechanical

gyroscopes become cheaply available though these sensors are less accurate (of the order

of 1◦-5◦ per second) to be used for orientation angle estimation. On the other hand, optical

gyroscopes, though they are expensive, can provide a much better precision for orientation

estimation. Fiber-optic gyroscope (FOG) and ring-laser gyroscope can detect an orienta-

tion rate in the order of 0.1◦-10◦ per hour. In an optimal condition the uncertainty of KVH

DSP-300 FOG on Nessie VII can be under 5◦ per hour. However this accuracy can be

degraded by improper mounting on the vehicle like most other orientation sensors. Addi-

tionally, since gyroscopes are an incremental orientation sensors we need to provide initial

estimation for an absolute angular measurement. This is achieved using a compass based

initialization on Nessie VII.

F. Accelerometer

An accelerometer is used to measure the translational acceleration in the inertial frame

of the sensor. It uses a mass attached to a spring to sense any acceleration which causes a

displacement of the mass. Typical high end standalone underwater accelerometer can detect

an acceleration up to ±500 g where 1 g = 9.81 m/s² while low cost devices can measure

acceleration with in the range of ±50 g with a sensitivity range 10 to 100 mV/g.

G. Time of Flight Acoustic Navigation Sensors

Sensors in this category use acoustic communication between the vehicle and sets of transpon-

ders in order to estimate the vehicle position. Early time of flight acoustic based navig-

ation like Long Baseline (LBL) positioning systems employ acoustic transducer/rangers

anchored to the seafloor (see Figure 2.1 on page 14) to compute the relative position of the

AUV by triangulation. High frequency (around 300 KHz) LBL systems can achieve sub-

centimetre XY positioning; however, these sensors have a very limited maximum network
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range. Standard LBL systems at 12 KHz are reported to work in 10 Km range with a preci-

sion in the order of 1-10 m. Most LBL system use transducers moored on the seafloor, yet

there are reports of transducer on the hull of a surface vehicle, sea ice or global position-

ing system (GPS) equipped surface buoys [5]. An alternative set-up that uses two or more

closely positioned transponders is called Short Baseline(SBL) positioning system where

the baseline distance ranges between 20 and 50 m. In case of SBL system the receiving

hydrophones are usually mounted under a vessel floating on the surface hence the measure-

ment accuracy is affected by the stability of the vessel. Further down when the system uses

a precisely localised single hydrophones separated by an order less than 10 cm such system

is called Ultra-Short Baseline (USBL) positioning system. Unlike LBL and SBL, USBL

system uses signal run time and the phase shift of the reply signal to determine the distance

and direction of the vehicle. USBL system can be deployed with a single transducer array

on a surface vessel; however, its accuracy is an order of magnitude smaller than LBL system

([7] report 1 sigma circular positioning accuracy of 2.7-5.3 m). The main source of error

in acoustic time of flight navigation sensors is imprecise transducer placement. Accurate

knowledge of the sound velocity at different levels, ambient water temperature and density

is also another source of error [5]. Another significant drawback of acoustic positioning

system is their restriction of autonomy since the vehicle has to remain in an area covered

by transponder network. Additionally, such systems are affected by multipath reflections,

occlusion, interference from other beacons in the area, and physical phenomenon such as

air bubbles due to USBL mounting ship’s movement.

H. Scientific Sensors

Sensors in this category, also known as geophysical sensors, include visual cameras, sonar

sensors (Section 2.3 discuss sonar sensors in detail) and magnetometers. These sensors are

used to make an absolute observation of the external underwater environment. Geophysical

sensors are capable of detecting, identifying and classifying environment features. Typic-

ally, the information from these sensors is used to correct navigation drift that arise through

dead reckoning. These sensors can be integrated with other sensors in robot state estimators

(more on this in Section 2.2).

A form of navigation where a vehicle uses only on-board sensors is called dead reck-

oning (DR). DR navigation systems integrate acceleration and velocity measurements to

advance the vehicle position in a given orientation. DR navigations systems mostly use
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(a) LBL acoustic navigation system. (b) USBL navigation system.

Figure 2.1: Time of flight acoustic navigation sensors. Dark solid lines show commu-
nication between the transponders and the AUV. In LBL system (a) full deployment of
transponder on the sea floor is required, while on (b) a USBL navigation system uses
transponder attached to a ship.

sensors which complement one another in order to compute the full or partial vehicle

pose [8]. Though this is the most widely used navigation system in AUVs, it suffers from

a cumulative navigation drift through time or distance travelled [6]. Integration of expens-

ive IMUs into DR navigation systems can mitigate this drift for a short or medium range

expenditure; however, on the long run even these systems start drifting. An alternative

approach for a more accurate navigation requires the use of vehicle kinematic or dynamic

models in addition to information from some of the sensors mentioned above through ana-

lytical state estimation techniques. Some of these techniques will be discussed next.

2.1.2 Navigation and Localization Through State Estimation

Before we go any further, we would like to clarify the distinction between navigation and

localization. When we talk about navigation it is all about how a vehicle can get from

point A to point B. While localization involve localizing an AUV in a map. When the

map is not available the problem turns into a SLAM, where the system construct a map
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while localizing itself in this map simultaneously. In this work we use the term navigation

and localization interchangeably and our intention is to determine the robot position with

respect to the starting point.

Most of the navigation sensors mentioned in previous section have limitations. The

acceptability of their measurement depends on the application and duration of given AUV

mission. A better navigation performance is achieved through the use of deterministic

or stochastic state estimators which integrate these measurements with other knowledges

about the robot or the surrounding environment.

Deterministic State Estimators

Deterministic state estimators use an exact model of the AUV and measurement models

for computing the robot pose [5]. In [9], Jouffroy used contraction mapping for vehicle

velocity tracking using an exact non linear vehicle dynamic model. Contraction theory is

a non-linear analysis for studying the stability of non-linear systems which will result in a

simpler observer design or tracking system [9]. Kinesey et al. also report a deterministic

single degree-of-freedom (DOF) Remotely Operated Vehicle (ROV), that integrates high

precision LBL position measurement with exact knowledge of the vehicle’s dynamics, the

force and moment acting on the vehicle [5]. Accordingly, the observer can provide a posi-

tion estimation that can only be achieved using a high-end low frequency LBL system. Note

that the requirement of an accurate observer is not limited to AUVs, it is also required for

executing high precision tasks in ROV that require station keeping. In [7], a deterministic

USBL based observer is used to provide a good enough accuracy for closed-loop control.

This kinematic estimator has two stages of operation. First the DVL velocity measurement

is integrated to yield a high frequency position estimation. Once in awhile this estimation

is corrected using USBL position measurement. This estimator uses an Euclidean distance

based outlier rejection technique to avoid erroneous USBL updates.

A principal drawback of deterministic state estimators is the lack of probabilistic concept

when integrating noisy measurement. These techniques do not provide analytical methods

for selecting the optimal gain, they rather use heuristic and simulation based techniques [7].
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Stochastic State Estimators

By far the most common state estimation techniques in use are stochastic in nature which

integrate noisy sensor measurements with dynamics and kinematics of the robot. Most

stochastic state estimators do also integrate measurements from scientific sensors in order

to provide a robust and a more reliable navigation information based on external features.

Though the use of such sensors is optional in majority of such systems, Stutters et al. claim

an accurate long mission navigation can only be achieved through the use of external refer-

ences for resetting possible sensor drift [10]. The main advantage of stochastic techniques

over deterministic state estimations is the possibility of quantifying the level of trust in each

measurement or process model in order to provide an optimal gain.

The simplest form of stochastic estimator to-date is Kalman Filter (KF), which is one

solution of a Bayesian filter (to be discussed in Chapter 4) [10, 11, 12]. The KF is a

recursive two stage filter based on kinematic and measurement models. The kinematic

model describe the vehicle state transition and in KF it is assumed to be linear while the

observation model defines the relationship between the robot state and the measurement. In

a KF both the state transition and the measurement models are supposed to be linear with

an additive Gaussian noise for optimal performance. In [13], an aided Inertial Navigation

System (INS) is develop using IMU and DVL water-track and DVL bottom-track velocity

measurements. In an initial set-up they have only used DVL watar-track aided INS, later

a complementary bottom-track DVL measurement is added. Having water-track mode in

addition to the bottom-track DVL measurement makes their navigation more stable in a

mid-water mission. Their Navigation system uses KF to fuse measurements from depth

sensor, IMU, and DVL. Jalving et al. developed DVL aided INS that can integrate position

estimations from various measurements [12]. Their core DVL aided INS consists DVL,

IMU and kinematic model of the vehicle. Additional position estimations are obtained

from the pressure sensor, optional compass sensor, GPS surface fix, acoustic navigation

system and bathymetric terrain navigation system. Their bathymetric terrain navigation

system uses a multibeam echo sounder to determine vehicle position over a bathymetric

map. Some of these measurements are redundant which makes the KF estimation more

robust.

Since almost all kinematic or observation models of AUVs are highly non-linear, most

underwater navigation systems employ a non-linear variant of KF. An Extended Kalman
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Filter (EKF) is the most successful variant of KF where non-linear process and observation

models are linearized using first-order Taylor series approximation [6, 10, 14]. This ap-

proximation is handled using Jacobian matrices whose derivation is non trivial that makes

the implementation complex compared to KF. In most EKF based navigations systems,

the filter is used to fuse information coming from INS with DVL and/or GPS fixes. For

instance, in [15] an EKF filter is used for GPS/INS integration, where a cheap IMU and

GPS sensors are used to provide a reasonable position estimation. Their filter state rep-

resentation is designed so that they can apply correction to the vehicle’s full state and the

IMU errors. Hence accelerometer bias, gyro drifts, GPS clock time and frequency bias are

also compensated on the fly. Additionally, they have also done a comprehensive analysis on

the noise representation and they recommend the use of small initial noise covariance for a

slow but less noisy convergence. In [16] an EKF technique integrates a GPS receiver, strap

down INS and DVL to achieve a high position accuracy of the order of 1 m, which increases

to 3 m in the absence of the GPS. In another aided-INS work, Mongado et al. simulated an

integration of USBL into a strap down INS system using EKF which allows a stochastic

characterization of a round trip sound travel time [17]. They have compared their result

with a typical loosely-coupled set-up, where triangulation and sensor fusion are handled

separately. Accordingly, their system can provide a better estimation of vehicle position

and orientation as well as sensor biases estimations.

Not all navigation problems can be solved using EKF. Some of the main shortcomings

of EKF include its large estimation error when applied to strongly non linear systems which

is expected as EKF is a first order approximation of Taylor series. An EKF filter also

requires a very good initial position estimation for optimal performance and a poor dynamic

and observation models might cause the filter to diverge quickly [18].

For applications which involve higher order kinematic models an Unscented Kalman

Filter (UKF) is found to be much more robust than EKF for a slight degradation on com-

putational performance. UKF uses unscented transform which approximates a distribution

using few statistical sigma points [18]. These sigma points, which are typically distributed

around the mean along the major and minor axis, can capture second and third order terms

of Taylor expansions for non-linear models accurately [18]. The absence of Jacobians in

UKF means it can be used for systems whose Jacobian is difficult to compute [18, 19].

Zhang et al. use an UKF to integrate strap-down IMU, inexpensive single GPS, and digital
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compass for autonomous ground vehicle navigation [20]. Their two stage implementation

consists of establishing the complex vehicle dynamics while considering the earth’s self

orientation, sensor bias and system noise. In the second stage they use UKF for system

state estimation. In [21], a comparison between EKF and UKF on a data collected using

Typhoon-class AUVs shows that UKF filter performs better on compensating sensor drift.

In their first experiment their AUV was equipped with IMU, pressure sensor, DVL and a

GPS which was available at the starting and ending point of a mission. In their second ex-

periment, they compared their result with a USBL navigation data which again shows the

superiority UKF by providing a better mission trajectory.

In their basic form, these variants of KF use a prior knowledge of the system to model

the system and measurement noise. Hence any error in this initial model or any subsequent

change in this error noise estimations can highly degrade the performance of the filter.

According to Chen et al. , it is common to experience a change in a system during a mis-

sion which could be caused by external force or sensor failures; hence, basic filters tend

to diverge when the actual covariance is quite far from the initial estimate [18, 22]. An

alternative solution requires the use of an adaptive Kalman filter where the process and

measurement noise covariances are adaptively adjusted over the time span of a mission.

Chen et al. classify adaptive Kalman filters in to two, multiple model adaptive estimation

(MMAE) and innovation adaptive estimation (IAE) [18]. Techniques in both categories are

based on an innovation sequence, which is the difference between the actual measurement

and the filter prediction. MMAE based systems use a bank of linear Kalman filters that run

in parallel with different models [18]. The final estimation is computed through a weighted

sum based on the innovation in each filter. MMAE based terrain reference navigation has

been successfully tested in a simulated underwater environment in [23]. The IAE approach

uses a single filter where the noise covariance matrices are continuously adjusted based on

the innovation sequence [18]. Tao et al. uses a time-varying noise estimation recursively to

estimate the measurement noise based on the innovation [24]. Their simulated implement-

ation of UD factorization-based adaptive Kalman filter integrates measurement from strap-

down IMU, magnetic compass, DVL, depth sensor and underwater terrain map. However

their result being a comparison of conventional Kalman filter and an adaptive UD factorized

Kalman filter, it does not clearly show the contribution of the adaptive noise computation

since the factorization has a part to play. Similarly Sun et al. used an adaptive Kalman filter
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for improving an integrated dead reckoning (DR) navigation system [25]. They integrated

DVL, FOG, depth sensor, USBL, and GPS sensors into an adaptive Kalman filter based

navigation system. Their limited knowledge of the system makes it difficult to model the

noise a priori; hence, they used an adaptive Kalman filter that reduces the model error and

subsequently suppresses filter divergence.

The recent advances in scan matching techniques for point cloud based ground vehicle

localization has attracted some underwater researchers for a sonar aided localization [26].

Scan matching techniques estimate the relative displacement of a vehicle by maximizing

the overlap between multiple range scans gathered either by a laser or a sonar sensor [26].

The most successful scan matching technique to-date is Iterative Closet Point (ICP) tech-

nique which minimizes the sum of the square error between corresponding points. Hernan-

dez et al. used a probabilistic Iterative Correspondence (pIC) which takes in to account the

sensor and displacement uncertainties [26]. In their implementation, an EKF filter is em-

ployed to provide an initial estimate of DVL-based navigation which is refined using pIC.

This work has been extended to solve a full SLAM problem by Mallios et al. in [27] where

locally an EKF filter is used to deal with motion-distortion that arise while completing scan

formation from individual beams of a Mechanically Scanned Imaging Sonar (MSIS). This

filter uses constant velocity model based on velocities coming from a DVL and heading

from an attitude and heading reference system to provide an initial estimate for the state

change which is used to undistorted the scan. Later a global trajectory of the vehicle is

estimated using an augmented state EKF SLAM where a modified pIC algorithm is used

to register each new scan with respect to all previous scans that are in the range. A similar

technique is used by Burguera et al. for AUV self-localization through a probabilistic data

assassination using an MSIS [28]. Their comparison with a non-probabilistic ICP shows

the importance of stochastic characterization for reducing the average drift.

Most of the techniques discussed so far under a stochastic state estimation are lim-

ited to solving a localization problem without taking the demand to mapping into account.

However, a proper autonomous vehicles need to understand its surroundings for effective

navigation or any subsequent path planning requirement. Therefore, it is a common prac-

tice to handle the mapping as well as the localization problem at once in a technique called

Simultaneous Localization and Mapping (SLAM). The SLAM algorithms allow an AUV to

navigate through an unknown environment while incrementally building a map using sci-
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entific sensors and localizing itself within this map. Next, we discuses more about SLAM

techniques for underwater applications which will be followed by a detailed discussion

on sonar sensors in Section 2.3 as sonar sensors are the main data acquisition sensors for

underwater SLAM applications.

2.2 Underwater SLAM

Ever since the introduction of SLAM technique by Hugh Durrant-Whyte and John J. Le-

onard [29] based on earlier work by Smith, Self and Cheeseman [30], several techniques

has been proposed as a robust alternative for autonomous navigation. These techniques

mainly vary based on the approach taken in modelling the motion as well as observation of

features. Additionally, SLAM techniques also vary on how the system perceives environ-

mental features or simply the type of the environment. Based on the navigation environ-

ment, underwater SLAM is a category of SLAM technique used by AUVs to concurrently

map underwater feature while localizing the robot within this map.

Underwater SLAM is a challenging research topic for two main reasons. First, there is

limitation on the type of localization sensors that can be used in underwater. As a result

most of the high precision sensors, such as GPS, laser, do not function well in underwa-

ter environment, as discussed in Section 2.1.1. Second, commercially available AUVs use

computationally limited processors inside a sealed compartment which needs to satisfy

minimum heat exhaust requirement. Therefore a good underwater SLAM algorithm has to

employ an acoustic sensor and should not consume much of the limited processing cap-

ability of the robot. In this section we present a review of the most influential underwater

SLAM works.

2.2.1 State of the Art of Underwater SLAM

One of the earliest probabilistic SLAM algorithm proposed by Leonard et al. uses forward-

looking sonar to complement navigation information from an INS and a DVL [31]. In this

work they devised an off-line stochastic SLAM algorithm for post processing a forward-

looking sonar dataset collected by Naval Undersea Warfare Center (NUWC) and Groupe

d’Etudes Sous-Marines de l’Atlantique in Narragansett Bay area around NUWC. A single

state vector is used to carry the both the vehicle state and the map features jointly. Con-
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Figure 2.2: Underwater SLAM with MHTF data association. (Reproduced from [32])

trol commands are obtained out of INS readings by computing the velocity and orientation

changes required to move the vehicle from a position in previous time to a new pose. Addi-

tionally, they used a logic-based track initiation and deletion strategy to address new feature

appearances or clutter drop-outs. Assuming sonar returns originate from a single feature in

a given area, before applying this logical decision any new measurements are compared to

map features using nearest neighbour data association.

Underwater SLAM researchers have introduced improvements in various aspects of

probabilistic SLAM for the past fifteen years. One of these improvements involve the use

of a more robust data association as an alternative to an association merely based on fea-

ture location proximity. Rueiz et al. suggested the use of use of a point feature descriptors

(see Section 2.3) through Multiple Hypothesis Tracking Filter (MHTF) to facilitate data

association [32]. MHTF is one of the earliest visual tracking algorithm where a tree of

potential track hypothesis is built for each candidate target. The likelihood of each track

is used to determine the most likely combination of tracks, thereby solving the data as-

sociation problem. As shown in Figure 2.2, an initial sonar data from SeaBat 6012 echo

sounder is pre-processed and targets are extracted using a segmentation process. This tar-

gets are represented with geometric descriptors that are fed to the MHTF data association

algorithm for computing track likelihoods. The Ocean System Lab (OSL) indoor tank and

field experiments demonstrate the filter consistency and boundedness though there was no

ground truth data available for the field experiment. Even though no computational report

has been provided, having MHTF data association on top of an EKF-SLAM algorithm does

not make it any simpler.

In another work Ruiz et al. proposed the use of SLAM for offline mosaicing sidescan

sonar images [33]. In an initial attempt a forward-looking sonar is replaced by side scan

sonar in EKF-SLAM navigation system. However, such a direct swap neglects the physical

difference between forward-looking and sidescan sonars. The main reason behind this dif-

ference is lack of continuous target re-observation in sidescan sonar, unlike forward-looking
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sonar. Targets are observed again only when the AUV returns on an adjacent parallel track

which results jerks in the trajectory due to delayed correction. In order to address this

problem, they proposed the use of a smoothing post-process. Smoothing is a post-process

operation where previous and future measurements are used to estimate the state of a sys-

tem, while estimation is an on-line operation where a filter uses all previous information

for determining the system state. Hence the addition of a smoothing backward filter will

avoid jerks in trajectory through gradual and smooth application of measurement correc-

tions earlier than an actual re-observation. However, unlike their previous work in [32],

this technique relies on operators for selecting recognizable landmarks as well as matching

landmarks for data-association.

One of the challenge in underwater SLAM is the transition from indoor tank based

experiments to a real world application. Large scale SLAM researches are intended to fill

this gap and any associated additional complexity arising from this transition as will be

discussed next.

2.2.2 Large Scale Underwater SLAM

One way to handle the computational cost of large scale SLAM is through dividing the

SLAM problem into clusters based on location. Aulinas et al. propose the use of independ-

ent local maps to bring down the complexity of EKF SLAM from O(n2), where n is the

number of landmarks [34]. However, such a decision comes at the expense of losing map

consistency through landmark correlation. In order to avoid this, they proposed updates

on old local maps whenever there is a possible loop closure. An EKF-SLAM algorithm is

used to fuse measurements from DVL, IMU and salient features extracted from side-scan

sonar. They used landmarks including objects, rocks and other detectable environmental

features. The reference frame for a new local map is considered as the final robot pose in

the previous map. Then, a global topological map is generated using this relation where

edges are labelled with the relative transformation between maps. Information from this

global map is used for verifying loop closures. Additionally, maps that share enough fea-

tures are fused together to provide a better update. The size of the sub map is fixed based on

maximum number of features and decided based on the computational requirement. Exper-

iment on a REMUS-100 AUV demonstrates that sub-maps of size between ten and fifteen

number of features provide a good compromise between computational cost and overall
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Figure 2.3: Underwater SLAM algorithm Ribas et al. [2].

map consistency.

In a work close to ours, Ribas et al. propose a SLAM solution for solving the navigation

problem around structured environments [2]. Accordingly, landmarks around structures

such as dams, harbours, marinas, and marine platforms are better represented using line

features. A sonar based 4D EKF-SLAM algorithm is used to improve a DR navigation

system composed of compass and DVL (see Figure 2.3). They use a novel sonar feature

extraction technique (see Section 2.3.1) to detect walls using MSIS sonar. The robot state

is composed of 3D position, horizontal heading angle and the rate of change in all the four

dimensions. Every time a new line is detected it is augmented into the state to form a feature

map. Separate updates are used each time a new measurement comes out of either DVL,

compass or line extractor. The use of line based feature representations are attractive for

reasons discussed Section 2.3.1. However, the downfall in using line features is a strong

non-linearity of the observation model. In order to tackle this problem, they proposed the

use of sub-map which, in the mean time, can enhance the capability of the system to handle

long run missions. Unfortunately, there is a limited discussion on the choice of sub-map

size which is critical in sub-map based SLAM. If a local map size is large, then the very

purpose of using a sub-map is undermined. On the other hand, when a map is too small it

will lead to loss of correlation among map features and lack of global landmark integrity.

The later is caused mainly due to lack of enough transparency among sub-maps. From

the result and discussion new sub-maps are initialized once the robot gets out of a circular

region defined by maximum sub-map range, this robot pose is used as an initial position

for the new map through which the two adjacent sub-maps are connected. However, after

leaving the territory if the root comes back there is no means to alter the old map which

contradicts with the concept of loop closure.
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Underwater SLAM can also be used to assist mapping sea beds. In [35], Roman and

Singh proposed SLAM methodology to improve sub-sea acoustic multibeam bottom map-

ping. They use a SLAM framework to associate sub-maps of point clouds generated from

downward-looking multibeam sonar. The robot uses DR navigation based on FOG, depth

sensor and DVL to generate sub-maps in a short time period. Each map has its own co-

ordinate system at its centroid through which the sub-map is represented in the overall state

vector. The size of these sub-maps, which directly affect the computational efficiency of

the system, is determined based on two conditions. First, they have to be small enough to

limit the over all DR drift. This is determined by comparing the growing uncertainty of

the vehicle DR pose with an empirically determined threshold. Second, sub-maps need to

be large enough to contain enough 3D information so that it can be registered with another

sub-map. The information content of sub-map is measured using the Eigen structure of

the principal component matrix. Hence, as a minimum sub-map size criteria a threshold is

compared to the condition number of this matrix. Closure of sub-map is followed by a two

step registration process so that the link between the current sub-map and other sub-map

neighbours is generated and registered. The first step require a coarse alignment where

overlapping maps are transformed into a common coordinate frames and then point clouds

are matched using a 2D correlation algorithm. After applying this initial correction a fine

tuning is achieved through Iterative Closest Point (ICP). To evaluate the method, an LBL

ground truth navigation data is compared with the proposed technique which shows a better

alignment in the later. The main challenge with such a proposal remain to be the computa-

tional cost, yet it is a suitable solution for offline data processing.

2.2.3 Robust SLAM and Outlier Rejection

Our main interest is to introduce focus of attention to the underwater domain; hence, the

choice of SLAM framework is soley based on simplicity for implementation. However, we

also want to try out a methodology which is becoming the dominant mathematical frame-

work within the sensor fusion community for developing multi-target tracking algorithm:

FInite Set STatistics (FISST) based multi-sensor multi-target filter [36]. These techniques

provide a unified probabilistic framework to handle multiple moving targets in a highly

cluttered environment. We will have more about these techniques especially on Probability

Hypothesis Density (PHD) filter in Section 4.5. However, PHD-SLAM or FISST is not the
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only framework which can handle outliers in SLAM data association, in the remainder of

this section we will briefly discuses some of the most widely used robust SLAM algorithms.

Currently graph-based SLAM is accepted as one of the state-of-the-art techniques and

there is a growing trend to robustify its backend optimization [37, 38, 39, 40, 41, 42, 43].

Robust graph optimization or inference methods can be categorized in to two [38]. Re-

searches in the first category are aimed to discount inconsistent graph constraints while

those in the second allow multiple components per constraints [38]. Pfingthorn and Birk

also propose a generalized graph SLAM framework that can handle arbitrary forms of out-

liers both locally (those that arise through sensor registration or odometry error) or globally

(error due to wrong loop closures) [38]. They modelled uncertain loop closures using hyper

edges while as in their previous work [37] they used a mixture of Gaussian to model con-

straints. This generalized graph SLAM introduces an intermediate stage between classical

fronted and backend which makes the implementation efficient and robust against various

noise in underwater visual SLAM.

An alternative way to handle outliers in pose-graph SLAM is presented in [39], which

uses dynamic covariance scaling based backend for map optimization. This work is an ex-

tension of [44] which uses separate computations for determining switch status for switch-

able constraints. The main improvement is the ability to dynamically scale the covariance

while keeping the computation burden down.

Classical graph SLAM algorithms avoid wrong data-association through the use of

powerful frontend place recognition system. However, even for human beings there exist

some environments where perceptual aliasing is almost impossible to avoid. Latif et al. through

their work on robust SLAM propose a way of identifying outliers through general consensus

of graph constraints [40]. Any constraint that a significant increase in the residual error is

removed together with the associated link. Here, unlike switchable constraints in [39], indi-

vidual loop closure assessment is not required rather a cluster based consensus test is used

to identify wrong loop closures.

An alternative to categorizing loop closures as right and wrong is proposed by Olson

and Agarwal in [41]. Loop closure errors are characterized in a more expressive manner

that account for non Gaussian behaviours using a max-mixture of Gaussian error. Accord-

ingly, a ‘slip or grip’ odometry error is represented by a multi-modal distribution while

loop closures are accompanied by a ‘null’ hypothesis. As a main distinction from [40], this
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approach does not require approximating sum-mixture by identifying clusters of mutually

consistent loop closures.

2.3 Sonar Sensors and Feature Extraction

Underwater transmission of high frequency electromagnetic spectrum suffers from high

attenuation which limits the working range of most popular sensors such as optical cameras

and lasers. However, these sensors are still in use for applications that are bounded within

a smaller workspace. On the other hand sound, being a mechanical wave, propagates better

in water than in air.

Sonar, which is an acronym for SOund Navigation And Ranging, is a principal data

acquisition sensor in underwater. Though, the main purpose of sonar is for data collection,

it can also be used as a navigation sensor which can be used to observe environmental land-

mark features. Broadly speaking there are two main category of sonar: passive and active

sonars. Passive sonars are able to sense an acoustic energy originating from targets in deep

water. Hence, they are mainly used for military applications. Active sonars, on the other

hand, sense the environment by sending out pulses of acoustic signals and recording part

of a reflected signal coming back to the sensor head. Active sonars are widely available for

both military and civil use and they are our main interest in this section and the remainder

of the thesis.

Passive sonar sensors return a huge amount of information as a sonar image. In order to

extract useful features out of this information the image has to go through a feature extrac-

tion process. There are various techniques which can be used for image feature extraction

across multiple domains. Next we will discuss some of the research work in this area.

2.3.1 Feature Extraction

Feature extraction is a well known concept in pattern recognition, machine learning or ro-

botics. It can be considered as an important prepossessing stage which can bring a dimen-

sionality reduction with the very minimal loss of useful information. These features could

be global as in image retrieval applications where colour histograms and variations are used

to represent an image, or local which could discriminate portion of an image from the rest.

In this section our interest is limited to those local features which are introduced due to the
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appearance or absence of a physical structure in underwater environment. Generally these

physical changes introduce a change in properties of the image such as: shape, texture etc.

A typical feature extractor (also called detector) take a measurement from an image region

as a descriptor. In the simplest form such a descriptor might carry the intensity of some

bright pixels and/or their location in the image.

A feature can represent a set of well localized anchor points, which can be used to

match consecutive images. In such set-up, it is not important to know what these features

represent. However, image or object representation requires a feature that can assist in

understanding the scene or recognition of an object. Ideally, a good feature corresponds

to a semantically meaningful object part, is this all of the conditions for a good feature?

Tuytelaars and Mikolajczyk devised six criteria that an ideal local feature descriptor need

to satisfy [45].

Properties of a good local feature

According to Tuytelaars and Mikolajczyk, a good feature should have to satisfy:

a) Repeatability: most of the image processing applications in robotics involve match-

ing a regions in consecutive frames. Additionally, frames taken from similar pos-

ition are supposed to match closely in the absence of a moving object. However,

for successful matching of two related frames, enough similar features must exist in

both. This will only happen if we have an overlap among the frames, and the feature

extractor manages to get similar descriptors in the overlapped regions. Challenges

for feature repeatability include: presence of deformation, scaling, affine transform,

noise and moving object.

b) Distinctiveness: features from different objects should be possible to distinguish and

match, hence descriptors need to carry unique feature of a given object.

c) Locality: should be local in order to get persistent features even when there is a view

point changes. Global features are most likely to be affected by occlusion.

d) Quantity: the number of detected features should satisfy the subsequent usage; it

shouldn’t be too small missing out some part of the scene, or too large which might

make any subsequent task computationally expensive. Too many features is undesir-
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able in our application of sonar based SLAM due to additional update and data asso-

ciation requirements.

e) Accuracy: accurate localization of features in an image is another important factor

which translates into proper localization of targeted object or external landmark.

f) Efficiency: most robotic applications are time-critical; therefore, efficiency of feature

extraction remains to be very important.

Currently available feature descriptors are able to satisfy one or more of these criteria.

However, when we are dealing with sonar image, for instance images form forward looking

sonar (FLS), the problem of feature extraction gets more complicated. This is mainly

due to the lack of good spatial resolution in sonar images. Additionally, the low signal

to noise ratio makes it difficult to use typical feature extractors that are used for visual

images. Therefore there is a very limited range of choices when it comes to sonar feature

extraction which are mainly based on segmentation and thresholding process. Some of the

most commonly used feature representation in the literature include point, lines, blobs, and

regions.

Types of feature representation

As we have mentioned it before, feature representation is a vast area of research across

various disciplines; however in this section we will limit the review on techniques that can

be applied on sonar images. These features mainly arise from intensity, since we don’t have

colour information in sonar images. Additionally, as we have discussed sonar images are

highly corrupted by noise affecting the required feature accuracy prematurely. Yet it is sill

possible to extract features from sonars. Next we will present some of these sonar feature

extraction techniques.

A. Point and blob features

The most common point feature in use is corner. Corners can easily, and accurately be

localized making them attractive sonar features. One of the early work by Wang et al. put

corner detection techniques in to two classes: template based and geometry based [46].

Template based corner detection uses designed templates of a corners. Then a correlation

measure is taken by moving the template window throughout an image to get areas where
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a corner exists. The main drawback of this method is the requirement of proper models of

each and every type of corners that might exist in an image [46]. Geometry based corner

detection depends on measuring the differential geometry features of corner points. Some

methods in this category are called gradient based corner detection where corner point is

defined as the junction of two or more edge lines which can be identified using gradients.

There is also a second group of methods called topology corner detection which assumes

a corner as the interior geometric feature of an image surface. The third category is auto-

correlation based corner detection. An auto-correlation corner detection considers a local

window in an image and shifts the window by a small amount in various directions. Then a

decision on corner detection is given in places where there is a huge change in intensity.

One of most commonly exploited point feature descriptors is Harris corner [47]; it is

also the most accurate corner detector [45]. Harris and Stephens, in [47], managed to

represent an intensity variance within an image analytically using second moment (also

called auto-correlation) matrixM . This is obtained by applying Sobel operator as a gradient

function on an image I smoothed by Gaussian kernel g(σ) as,

M = σ2
Dg(σI) ∗

 I2x(x, σD) Ix(x, σD)Iy(x, σD)

Ix(x, σD)Iy(x, σD) I2y (x, σD)

 , (2.1)

where

Ix(x, σD) =
∂

∂x
g (σD) ∗ I (x) , (2.2)

g(σ) =
1

2πσ2
exp

(
−x

2 + y2

2σ2

)
. (2.3)

The eigenvalues of this matrix represent the amount of signal change in the two principal

axes. Since corners raise a significant number of variations in both directions which account

for image location where both eigenvalues are large. Additionally, Harris in [47] proposes

a cornerness measure R that is computed by,

R = det(M)− λ · trace(M), (2.4)

where typical value of λ range between 0.04 and 0.06. It also possible to follow this de-

tection by local maximum suppression or achieve sup-pixel localization of corner. Harris
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corner descriptors are invariant to translation and rotation. However, it was Mikolajczyk

and Schmid who introduced a scale invariant version called Harris-Laplace/Affine [48].

An other type corner or blob detector is Hessian matrix H . It is derived from Tylor

expansion of an image intensity function I(x)[48]. The Hessian matrix is given by

H =

 Ixx(x, σD) Ixy(x, σD)

Ixy(x, σD) Iyy(x, σD)

 , (2.5)

where Iij is second-order derivative of Gaussian smoothed image. The local maximum of

the determinant and trace of Hessian matrix represent a blob like structure in an image.

This determinant is also the core of well know Speeded Up Robust Features (SURF) [49].

The famous Scale-invariant Feature Transform (SIFT) is also an other blob detector [50].

It is based on an approximated Laplacean of Gaussian filter called Difference of Gaussian

(DOG) filter. Additionally, it uses a pyramid of images to handle scale variations.

These point feature representation techniques are highly used in most image processing

task mainly due to their accuracy. Moreover feature descriptors like SIFT and SURF are

found to be rotation, translation as well as scale invariant and they can be extracted effi-

ciently for real time applications. However, these features require the image to be rich in

intensity variation which unfortunately is not the reality in sonar images.

An alternative convolution based feature descriptor called Haar feature, which is suc-

cessfully used to represent facial features [51]. This involve the use of a cascade of rectan-

gular Haar-like features to move around the image and compute the response. This response

is encoded as the orientated contrast between regions in the image. Its simplicity and a pos-

sible fast integral image based implementation makes it attractive. Sawas et al. [52] suc-

cessfully used these features for detection and classification of objects in side scan sonar.

They use boosted classifier based on the work of the Viola and Jones, which learns the tar-

get and the noise classifier beforehand [51]. The major draw back of such system is their

lack of adaptation to a new environment as it requires initial extensive training phase. Later

Aulinas et al. also used similar features in their implementation of side scan sonar based

simultaneous localization mapping (SLAM) [53]. The main reason for this success relies

on the fact that objects in side scan sonar appear as a bright spot followed by a shadow,

which makes them very effectively recognizable through Haar detector. However, in the

case of forward looking sonar this advantage is lost since shadows in forward looking sonar
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(a) Side-scan sonar→ Harr-like feature [53]. (b) Object in typical FLS image.

Figure 2.4: Shadows in sidescan sonar and forward looking sonar images. a) Shadows in
side scan sonar has a Haar-like structure with a portion of beright patch followed by a dark
shadow. b) There is no direct association between a bright patch and a shadow in Forward
looking sonar mainly due to the horizontal sonar set-up.

doesn’t necessarily describe the type of object they are generated from (see Figure 2.4).

Even though the above mentioned feature descriptors are accurate and efficient in visual

image processing, sonar images are too noisy and less rich with point features that can be

localized accurately. From the trend most researchers in the field prefer to use segmentation

to localize interesting features [32, 54, 55, 56]. These techniques describe a segmented

image using its geometrical and intensity characteristics of segmented regions.

Tena et al., in their early study to evaluate robustness of inter frame features aim to

identify man-made objects consistently in a sequence of sonar images [55]. An input sonar

image is initially smoothed using median filter which then passes through two levels of

thresholding. The output of the second stage is used as a seed for region growing. They

evaluate feature’s robustness using a classifier that can identify objects based on their local

features. Among the features that they used include: area A, perimeter P , compactness

C, major-axis length, mean intensity, variance, contrast, first and second moment. These

features are computed either from the geometry of segmented area image or from the in-

tensity of input image masked by the segmentation output. Similarly, Ruiz et al. , in their

underwater SLAM algorithm, use multiple stage segmentation statistics as their feature

descriptors [32]. They have used adaptive double thresholding which is adapted from [56].

The first layer of segmentation is used to identify areas of the image with a potential target.

This requires smoothing followed by adaptive thresholding based on intensity histogram.

We have got an especial interest in such type of hierarchical ROI selectional mechanism,

which is commonly known as focus of attention (to be discuss further in Section 2.4),
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mainly because it can reduce the required computational burden for executing the feature

extraction task. The second layer requires segmentation with in the area of interest. A

smart system in [56] predicts the location of these ROIs in subsequent frames using Kal-

man Filter. Finally, features are represented by the relative distance of centre of mass with

respect to the vehicle, the areas of the segment, and the first invariant moment. Most of

the these, a decade old and fundamental segmentation based techniques are still in use; for

instance, a recent work from Aykin and Negahdaripour, in [54], uses k-means clustering to

segment part of the sonar image which includes 1-2 % of the highest intensity pixels. The

algorithm iteratively compute the value of k using a threshold on the minimum distance

between cluster and minimum standard deviation with in a cluster.

There have been different application specific evaluation techniques to identify best

corner, blob or region detectors. Tuytelaars and Mikolajczyk [45] talks about some of

these technique. But the most common evaluation technique is a comparison of synthetic

image with one perturbed in noise, varying angle, length, contrast, noise, blur etc. [45]. An

alternative technique involves developing a ground truth metric representation of a scene

before processing.

Gradient based techniques fail to provide meaningful features on forward-looking sonar

images, mainly due to lack of enough sonar features from the open sea. Additionally, fea-

tures from actual structures tend to vary tremendously with a slight change of view. When

it comes to segmentation based features the major challenge tends to be their computational

greediness. Practically speaking, in structured environment most of the visible feature in the

acoustic image tend to be straight line which can be better expressed using line segments.

Hence we have the other major category of sonar image feature, line features.

B. Line feature

Lines are the most apparent features in sonar images taken from man-made structure dom-

inated environment. Ribas et al. uses a voting scheme to identify walls in a structured

environment [2, 14, 57, 58]. A continuous beam of sonar data from a mechanically scanned

imaging sonars (MSIS) first preprocessed, then part of each beams with echo-information

is segmented. This is done by thresholding each beam followed by a min-max suppres-

sion around peaks. These pixels are assumed to be a representative part of an object in the

scene. They use a model where a pixel in polar coordinate represents an arc in Cartesian

coordinate system defined by angle and range resolution of the sonar. Figure 2.5 shows
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Figure 2.5: Model of line feature in forward-looking sonar images [2]. Features are ex-
tracted relative to base frame B, while measurements are taken relative to sonar frame s.
α represents the beam resolution, β represents possible incidence angle range of the line
feature.

this model where line features are represented with respect to base frame B as the distance

to the line and orientation (ρBk , θ
B
k ), which is similar to (ρ

Sj
k , θ

Sj
k ) in the sonar frame S. A

measurement is modelled by an arc of beam width α at an angle θBS and distance ρS . How-

ever in addition to the line tangent to the arc all lines with a significant incidence β can

contribute to this measurement. Therefore, a point in a sonar image contributes to the vote

of all lines passing through the shaded region in Figure 2.5. This requires an adaptation

of the Hough transform, which makes it slower for on-line applications. Ribas et al. also

proposed a technique for estimating line uncertainty based on the thresholding confidence

and the distributions of votes close to the line in the Hough space [2].

Ribas et al. also proposed a new voting based uncertainty computation method. One

advantage of this covariance estimation technique is that it can adapt to image types without

requiring change in parameters after initial set-up. This technique is discussed in depth in

Section 3.2.3.

C. Other features

When it comes to working with 3D sonar data a much better compression can be achieved

through the use of planes. Pathak et al. , in [59], uses a plane-based registration for under-

water 3D mapping using sonar data. They use a minimum uncertainty maximum consensus

plane matching technique presented in their previous work [60], which applies the tech-
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nique for mapping indoor environments using land robot. Accordingly, two planes which

are extracted from overlapping 3D point clouds are matched by maximizing the overall geo-

metric consistency. The method computes the rotational and translational scan pose drift

as well as providing the uncertainty of this pose-registration. Based on their result, this

approach is reliable and fast for mapping underwater structures from sonar data.

Buelow and Birk claim the use of 3D mapping is a necessity for intelligent operation of

AUVs in an environment full of complicated man-made structures [61]. It can also make pi-

loting task easier for ROV operators in such environment. Three commonly used 3D map-

ping techniques (ICP, plane-based registration and spectral registration) are compared in

their experiments. Their proposed spectral registration technique, which is based on phase

only matched filtering, is fully implemented using Fourier transform. The method make

use of the fact that two shifted signals share the same spectrum magnitude while the shift is

carried through their phase difference. A simulated test and a run on real dataset collected

from a flood gate lock structure in the river Lesum shows the superiority of spectral regis-

tration technique even in the presence of high noise or large spatial distance between scan

positions [61]. Similarly, Hurtos et al. propose the use of Fourier-based registration tech-

nique for underwater mosaicing and motion estimation using forward-looking sonar [62].

Accordingly, the use of Fourier-based technique provides an improved performance in the

alignment of both consecutive and non-consecutive views relative to state-of-the-art region

based approaches [62]. Additionally, unlike most other registration methods Fourier-based

sonar registration is capable of providing a good estimation around featureless regions of an

environment. This technique uses Fourier-based image registration to determine local sonar

movement in 2D plane which is used to generate a pose graph for global pose alignment

and subsequent mosaicing. Hurtos et al. also propose an improved uncertainty estimation

technique based on the work in [61] which makes convenient for use in a SLAM framework.

Among the techniques presented so far, line feature based techniques stands out for rep-

resenting man-made structure from forward-looking or micro-bathymetry imaging sonar.

When using such type of sensor around man-made structure one of the most visible features

is the line feature. However, researches on range scan has shown the limitation of Hough

transform when it comes to extraction speed [63]. Additionally, a voting based uncertainty

computation could further add computational complexity making the system an unusable

for online SLAM based navigation application. In Chapter 3 we will discuses more about
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alternative feature extraction techniques and do a comparison among these methods.

2.4 Active Vision

In addition to having a robust feature extraction technique, for a good SLAM naviga-

tion capability, a vehicle needs to observe those feature rich landmarks continuously. In

all SLAM applications discussed previously the sensor configuration is passive where the

vehicle observes anything that happens to land with in its field of view. However a good

SLAM based navigation system need to deliberately look for those good features using

active vision in order to achieve improved SLAM performance. Bajcsy [64], being one of

the early researcher in the field, defined active vision as “a study of modelling and con-

trol strategies of perception.” Accordingly, it is an application of intelligent control theory

which includes reasoning, decision making and control. While Chen et al. [65] consider

active vision as planned sensing or acquisition of perception on the operating environment,

which requires strategies of sensor placement and sensor configuration.

One typical ambiguity that needs to be clarified before moving any further is the differ-

ence between active sensors and active sensing. An active sensor is a sensor that transmits,

mostly electromagnetic radiation or sound wave, in to the surrounding and listen to a reflec-

tion to determine the proximity of obstacles in the environment[64], e.g radar, or microwave

based sensors. On the other hand, active sensing tries to adjust sensor’s state and parameters

according to sensing strategies, and it doesn’t necessarily require active sensor.

Typical image processing tasks (e.g. object recognition, multidimensional segmenta-

tion) can be improved by using images acquired from different vantage points. Robots with

an active vision system are able to actively place sensors at several strategic viewpoints,

yet the challenge becomes the decision on where to place them [65]. For instance in [64],

efficient sensor placement reduces the number of range images required to reconstruct a 3D

object from seventy down to ten. Additionally, problems that are ill-posed, non linear or

unstable for a passive observer become well-posed, linear and stable for an active observer.

Furthermore, the requirement for multiple views can be avoided by having some special

view points as discussed in [65]. Chen et al. [65] provide an extensive survey on active

vision covering the different methods and possible applications. Next we briefly discuss

the various active vision applications in robotics and the main techniques available in the
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literature.

2.4.1 Applications of Active Vision

As mentioned in [64] early active vision works were targeted to find a better way of resolv-

ing typical computer vision challenges: shape from shading, shape from contour, shape

from texture, structure from motion and optical flow. These works were only benefiting

from plenty of data arriving from multiple views. Chen et al. [65] gives a good classifica-

tion of contemporary active vision systems based on their application. We will use a similar

approach and present the works done in application areas relevant to our proposed system:

purposive sensing, robot localization mapping, navigation, exploration or tracking [65].

Purposive sensing and object modelling

One area of active vision application is purposive sensing which is the acquisition of image

for better robot understanding. Robots understanding of an object could be improved by

having more images of the object; however, a non complementary image addition will

result in unnecessary redundant information which will only add computational burden.

Therefore, a choice has to be made on the type of new image and a decision to stop after

collecting enough number of images.

Li and Liu [66] propose an active vision system that can determine a good image ac-

quisition point for efficient measurement and reconstruction where the result can be used

for reverse engineering of CAD models from existing objects, computer animation and vir-

tual and augmented reality. On the other hand, Tsai and Fan [67], used a CCD camera with

zoom control and a line laser in order to measure a large surface or local steep profile. The

camera zoom is actively controlled according to the slope distribution of the object. In [68],

a study on the number of possible vintage points of image acquisition for 3D reconstruction

demonstrated that there are some specific viewpoints which gives a better reconstruction.

Additionally, it is shown that regions close to these points give similar performance. A non

model-based system by Jonnalagadda et al. [69] defined four stages for viewpoint selec-

tion for 3D reconstructions: local surface feature extraction, shape classification, viewpoint

selection and global reconstruction. Accordingly, an active vision system called biclops

with two cameras mounted on independent pan & tilt unit is used to extract 2D and 3D

features. These features are assembled in to a geometrical primitives, which are classified
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in to local shapes and later used to develop a hypothesis for the global shape of the ob-

ject. Then the next view point is selected to verify this hypothesis and if successful, the

information about the global shape is saved otherwise a new hypothesis is generated from

old data. As stated in [65] non-model based 3D reconstructions are automated using incre-

mental model of the object. An optimization strategy is applied on such models to select

the best scanning viewpoints and generate collision-free scanning trajectories[65]. Most

non model based 3D reconstruction systems are a result of multiple partial models, and

the combination does require a registration which is mostly done offline[65]. Therefore,

this causes missing information that in turn creates a hole on the reconstructed object[65].

Some of the works, including one by Chang and Park [70], are intended to determine the

additional scanning orientation which covers the missing areas of the 3D object.

Imaging systems for purposive-sensing are mostly formed from multiple types of cam-

era system for instance, MacKinnon et al. [71] uses a camera composed of touch probes

and laser scanner for photogrammetry, while Huang and Qian [72] used tactile point sensor

instead of touch probes to improve the measurement speed and efficiency. Treuillent et al. [68]

combined structural geometry and texture for 3D reconstruction.

Hollinger et al. [73] uses a sonar based active view planning in underwater environ-

ment. Their work aims to adaptively plan views of an AUV to improve the quality of object

inspection rather than maximizing the accuracy of a given data stream as in most active

vision systems.

In summary, purposive sensing, which provides view points that complement and com-

plete the view, is less applicable for a SLAM navigation system that does not require to

explore the surrounding. However, in cases where the outcomes of the SLAM map is sig-

nificant it can provide a complete map for other robotic tasks.

Site modelling

Site modelling is an other application area of active vision where the goal is to minimize

unobserved part of an environment [65]. Static scenes are handled using perception/action

cycle which involves outlining perception strategies for scene exploration and generation of

camera motion using visual servoing [65]. Se and Jasiobedzki [74] devised a system called

Instant Scene Modeller (iSM) for creating photo realistic 3D models of environments using

stereo pairs. It uses an iterative sensor planning and sensor redundancy to enable robots to
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efficiently position their cameras with respect to task [65, 74].

Site modelling is ideal when a complete exploration of a site is required. The com-

plexity of site modelling grows as the size of the site, which makes it difficult to employ

these techniques for a large underwater environments without a prior knowledge about the

environment. Additionally, to employ an active site modeller for navigation the goal has to

be modified to improved navigation instead of covering the whole area.

Object search

In object search, it could also be landmark search, the task is to find an object in a known

or an unknown environment under partial or full model based vision framework [65]. This

operation mostly arises in order to assist other applications, for instance, in site modelling

to fill a missing part of a site it might be handily to search for some feature which is in prox-

imity that part of the environment. Shubina and Tsotsos [75] argue attentive systems (to be

discussed later in the chapter) require the search for object/features in order to accomplish

top-down attention. They address the problem of finding objects in an unknown space as an

optimization problem. They optimize the probability of finding the object at a fixed cost of

total number of robot actions required using the joint probability of object detection given

an operation, and the probability of target distribution thought the whole region.

Object tracking

Active tracking requires continuous adjustment of visual systems in order to obtain extra

information or be able to perform tasks efficiently [65, 76]. The main task of most active

tracking systems is fixation, where gaze of vision system is dictated in a way that can keep

a target in field of view as long as possible. Barreto et al. [77] used an active stereo rig

to simultaneously track multiple moving targets (up to 3 targets). Their system managed

to track points with unconstrained motion in a plane by adjusting the camera setting using

consistent homography between stereo images. A fixed homography is specified during the

hardware design, and later this 4 Degrees of freedom (DoF) camera rig is adjusted to keep

this value. Similarly Zhou and Sakane [78] defined the baseline of the stereo rig based on

the target size and the distance at which the object of interest is existing. Chen et al. [65]

also mention works that managed to move an imaging system in proportion to an object

moving at linear velocity, keeping a fixed distance between the observer and the target. In
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some other works, the task of active tracking in an unknown environment involve: selecting

the object of interest, building a 3D model and using the model to track the object [65].

Mobile robotics

The last active vision application area that we want to discuss here is mobile robotics. Mo-

bile robotics requires the deployment of autonomous robots in to partially or fully unknown

environment, where a robust navigation system is crucial. Mobile robots are equipped with

various localization sensors, however, these sensors might not be accurate enough or effi-

cient in all time and in every condition. To alleviate this problem most navigation systems

are coupled with vision system and active vision can add more autonomy to this systems

and the robots.

One of the fundamental problem in mobile robotics, as discussed in Section 2.2, is

localization and mapping. It involves determining the position of the robot and/or objects

in the environment based on sensor data. Other robot actions are planned according to this

location. Typical localization and mapping systems do not integrate sensor alignment or

placement to improve the efficiency of the system or provide an accurate map. To fill this

gap Gonzalez-Banos and Latombe [79] managed to include a scheme for driving the robot

in to the next good position based on the expected amount and quality of information to be

revealed in each new location. Their work is intended on improving the quality of a global

map generated from a local measurement using modified SLAM algorithm. In particular

the selection of the next good robot pose requires addressing the concept of safe regions

(to identify regions free from any obstacle based on historic sensor reading) and sufficient

overlap among successive local models (in order to allow registration of successive views

under position uncertainties). Not all active explorations are efficient, a brute force way

of improving a map requires an extensive exploration following paths as simple as lawn

mower patterns. However the rate of convergence of a map is highly dependent on the

order of the observation [80]. Sim and Roy [80] argue that conventional Kalman filter

based SLAM converges in the limit of infinite time and data. They proposed a technique

that can lead to global optimization in a way that results in a more accurate map. The

global planning strategy that they use tries to enforce a loop closure whenever required

resulting in faster convergence to the correct map [80]. Chen et al. [65] mention some of

the works that generate semantic maps of an environment using active vision based SLAM.
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Leuang et al. [81] use trajectory planning Smooth and Mapping (SAM) based SLAM,

in order to minimize uncertainty of map estimate and to maximize coverage. Similarly,

Zhang et al. [82] criticize most robot path planning techniques for just being a problem

of minimum distance optimization, even though the primary objective of exploration is

gathering as much information as possible. These are just few of the works that employ

active vision for mobile robotics. Later we will discuses some more works that employ a

specific type of active vision technique called focus of attention but first let us introduce

some of the most widely used active vision techniques.

2.4.2 Techniques of Active Vision

There are a wide range of active vision techniques in the literature ranging from statistical

approach to constraint based viewpoint selection. Some are general while other are tailored

for the specific application. Here we discuss some of the basic approaches in active sensing.

Expected model based approaches

Techniques in this category try to develop an expected geometrical model of a scene to

decide on the next best view. As in [65], the first step is 2D or 3D surface feature ex-

traction which is assembled in to geometric primitives. Then local geometries are used

for shape classification which is later used to determine viewpoints based on a hypothes-

ized model. Once the model generation is complete the next best view is determined using

a visibility map. It describes the possible set of global visible view directions for a sur-

face [65]. Liu et al. [83] treats the problem of building visibility map as an inverse of

hidden surface/line removal problem, where the later is given a view direction finding the

set of geometric primitives visible along that direction. Hence, the visibility map problem

is defined as given an entity in the scene it is finding the set of viewpoints from where the

given entity is completely visible [83]. A projection of this viewing direction on the surface

of a unit sphere is called global visibility map (GVM).

An other way of solving model-based view planning involves formulations developed

for “minimum wall guard problem” [65]. In this definition, the problem is finding the

minimum set of points on a plane, so that every wall is guarded (satisfying the constraint

of visibility, resolution and field of view) at least by one of these points in the presence of

an obstacle. Generally, to solve the minimum wall guard problem a first candidate guard
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set S are identified. Then the number of walls that can be guarded using a subset of guard

points s ∈ S is determined. The final decision is to determine the minimum subset of S,

that satisfies the three main constraints mentioned above [65].

Yet another model-based approach uses spatial tessellation around an object [65]. A

spherical or cylindrical region around the object is tessellated and each grid point is con-

sidered as a possible sensor pose for viewing the object. Then these grid points are classified

as either viewing or void volume.

A model based approach can be a good alternative in environment where there exist

a prior knowledge on the type of object available. Additionally, the goal of model based

active vision is to provide a full account of an object rather than selecting a view for a high

quality information that can improve SLAM navigation, for instance.

Graph based approach

An alternative technique for sensor placement uses graph theory in a scenario where an ob-

ject’s size and distance are previously unknown or variable [65]. In such method viewpoints

are computed based on visibility and reliability according to an offline process on features

extracted from object [65]. Accordingly, this viewpoints are connected using the shortest

path computed using techniques that solve the travelling salesman problem as shown in

Figure 2.6. As discussed in [84], a graph G = (V (G), E(G), wE), is constricted using

viewpoints Vi, shortest path Eij , with a weight wij proportional to its length. Hence, such

sensor placement plan provides possible viewpoints and all the minimum cost collision free

paths among this viewpoints. Finally, the objective is to achieve the lowest travelling cost

Tcost, required to complete the whole procedure of planning, and execution of robot action.

Such offline pre-processing is undesirable in application such as ours which requires an

online reactive planning.

Statistical approaches

A wider range of recent active vision systems are developed based on statistical techniques,

this goes in parallel with other robotic interests including localization and mapping. Far-

shidi et al. [85] approach the object recognition problem using an active sensing camera

set-up. They consider the task of object recognition as state estimation, where the identity

and pose of the object is the unknown states. Hence, they manage to define active object
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Figure 2.6: Sensor placement graph [84].

recognition in a probabilistic framework under the assumption of Markov processes. This

framework allows the incorporation of uncertainty arising from the camera noise, illumin-

ation variations, object and camera position [85]. Such a system uses observations g0,1,...,n

and sensor parameters a0,1,...,n up to the current time in order to estimate the unknown

state sn using Bayes’ formula as:

p(sn | gn, an, . . . , g0, a0) =
p(gn | sn, an)p(sn | gn−1, an−1, . . . , g0, a0)

p(gn | an, gn−1, an−1, . . . , g0, a0)
. (2.6)

The state sni,j,k,l is composed of object class oni , object pose number ϕnj , kth occlusion level

in the view of camera-1 ξ1nk and that of camera-2 ξ2nl . The first two are time-invariant i.e.,

no transition occurs between states with different object class and/or pose. The observa-

tion vector g is formed using coefficients extracted by application of principle component

analysis (PCA) on the images from both camera. The camera control vector a is defined as

a = [θ1, γ1, θ2], where θ and γ are the pan and tilt for either camera. The key part of such

type of active sensing is the evaluation measure employed to select the sensor control com-

mand. Farshidi et al. [85] discuss two indices of observation quality metrics to determine

the next best view, Mutual Information (MI) and Cramer-Rao Lower Bound (CRLB). MI is

a measure of the reduction in uncertainty in sn due to the observation g and maximizing its

value yields a good camera position. On the other hand, CRLB is a measure for estimation

variance which is minimized to provide a good quality observation.

Constraint based cost function

Constraint based cost functions are one of the early techniques used for active vision where

the aim is to satisfy constraints like focus, resolution field of view, visibility etc. Chen and

Li [84] in their proposal for automatic sensor placement in model-based robot vision, they
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summarized and analysed these constraints. Accordingly, constraints can be categorized in

to geometrical, optical, re-constructive and environmental constraints. In this set up each

constraint limit the viewpoint space to some smaller region, and a combination of multiple

constraint give rise to an intersection of this regions. As in [65] a good sensor placement

space that satisfy visibility (g1), viewing angle (g2), field of view (g3) and resolution (g4)

constraints is given as:

Vplacement = Vg1
⋂
Vg2
⋂
Vg3
⋂
Vg4 , (2.7)

where, Vgi is a volume of the space that satisfy the criteria gi ≥ 0, which is mostly a

Boolean function; for instance, the visibility of a point on an object depends on incidence

and the surface normal and can be defined as Boolean function by putting some threshold

on these measures. The aim of such techniques is to maximize an optimization function

formed from these constraints (as in equation 2.8), or to minimize a cost function involving

the cost of sensor movement. One of the cost functions mentioned in [65], to determine

the next best view, tries to minimize a cost by reducing the total area observed or camera

displacement while avoiding unreachable viewpoints.

h = max(α1g1 + α2g2 + α3g3). (2.8)

In an other model based approach, Chen and Li [84] defined their model-based sensor

path planning using the following procedures:

• generate a number of viewpoints;

• reduce redundant viewpoints, which involve discarding viewpoints with no extra in-

formation;

• if the placement constraints are not satisfied, increase the number of viewpoints;

• construct a graph corresponding to the space distribution of the viewpoints; then

• find a shortest path to optimize robot operations.

Yet another category of active vision technique is focus of attention which is motivated

from primates cognitive based vision system. Due to our special interest, a more detailed

review of these techniques is presented next.
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2.5 Focus of Attention

An information management behaviour of primates that gives them the capability to fo-

cus on the most relevant pieces of an information is called attention [86]. Even though

attention could be associated with different sense organs, here it means visual attention and

its counter part image based robotic visual1 attention. Researchers in this field are mo-

tivated by either the need to understand and hypothesize the principle for this behaviour

in human, and later test this hypothesis, or the potential application of this behaviour in

artificial systems [86]. We belong to the second category, we intend to introduce similar

capability in underwater robotics. In this section of our review, we cover some the corner-

stone techniques and applications of visual attention starting with a brief explanation on the

different categories of attention, followed by an explanation on the approach that research-

ers from different disciplines (psychology, computational neuroscience or computer vision)

take towards the subject. Then we base our discussion on a commonly accepted structure of

attentive system and some of the works that use attention for mobile robotics applications.

2.5.1 Categories of Attention

Human visual attention mechanisms can take either a bottom-up or top-down approach,

and these dictate trends in computational models of attention. Similarly the concept of

overt and covert attention is another key based on which computational models can be

categorized. Understanding the distinction among this categories is key for identifying the

possible technique for a given application.

Bottom-up vs top-down attention

Bottom-up attention refers to an attention triggered by stimuli in a visual field, a salient

feature attract our attention for further inspection. On the other hand, top-down attention is

started with a prior know-how on the object that we are looking for, this could be a know-

ledge on it’s position, characteristic feature etc. The former is like searching for something

surprising, without having a defined description of the target. However, the latter is like

searching for a phone in a messy tabletop.

1The term visual is used to describe image based sensing, either from visual camera or sonar sensor.
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Overt vs covert attention

A control mechanism of an attentive system can be either overt or covert. Overt visual atten-

tion is common interpretation of attention in primates, and it involve a physical movement

of the imaging system; for instance, in humans it involves the movement of eye, head and/or

body. Covert visual attention, however, require mentally focusing attention on a particular

stimulus in a scene. Most artificial attentive systems reside in the later category, where their

main purpose is similar to selecting a region of interest (ROI) in a given scene [86]. This

is mainly due to the additional challenge that an overt attention introduces in construction

of a salience map. As discussed in [86] this includes change of reference due to a moving

camera which forces a fresh salience computation after each camera movement, complexity

of bookkeeping of previously attended subjects giving a room for new stimuli, and handling

a complete or partial disappearance of objects caused by camera movement.

Space vs object based salience

A key element of most attentive systems, whether behavioural or computational, is the

salience map. A salience map defines the level of focus a region or an object require. The

former imply each space in a scene is assigned specific salience which is effective in static

environment. However, in case of a dynamic scene this will not work since movement

of an object might alter salience of a given space. Yu et al. [87] argue that object-based

salience is much more robust due to the contribution of each component in an object. It also

mention that information regarding an object (e.g., size, shape) are more likely to appear in

an object-based attention than space-based attention. Additionally, hierarchical selectivity

of attention in the presence of structured object, groups of objects or overlapped objects is

better handled using object-based attention [88]. On the other hand, object based salience

becomes challenging when there exist multiple objects with similar salience causing an

oscillation [65]. Therefore, a good salience map need to balance between both space and

object based representations.

2.5.2 Computational Models of Visual Attention

Begum and Karray, in their comprehensive survey on Visual Attention for Robotic Cog-

nition [86], suggested a common model of visual attention architecture as shown in Fig-
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Figure 2.7: General architecture of visual attention models in computer vision [86].

ure 2.7. Variations among techniques arise either by addressing individual components

using different models or excluding some of the components. The diagram also show two

sub sections, first visual search which is activated in case of top-down attention, and then

visual exploration which is a bottom-up attention. This later section is responsible for de-

veloping either an object or a space based salience map in most applications.

Even though there exist a tremendous variation on the implementations, there are some

milestone computational models such as feature integration theory [89], neuromorphic vis-

ion toolkit (NVT) [90], and visual object detection with a computational attention system

(VOCUS) [91]. These models are considered as the most influential models and are incor-

porated as part of most other models. Next a brief discussion on these basic technique is

presented.

Feature integration theory [89]

Koch and Ullman explained the psychology of human perception and cognition using a

feature integration theory, where perception of feature is necessary condition to perceive

an object [89]. A recent work by Kootstra [92] adopted this technique for artificial visual

attention, where features (see Figure 2.8) including colour, shape, orientation and direc-

tion of motion register their salience in separate feature maps. These feature maps include

the physical location of features representing objects. Individual feature maps are super-

imposed to from a single master map, where attention is directed to the physical location

with a higher salience using a winner-takes-all (WTA) criteria. Though progress has been
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Figure 2.8: A list of basic feature. From top-left to right-bottom: colour, intensity, orienta-
tion, motion, and shape feature inconsistencies popping out for focus attention [92].

made in feature based attentive system, it is predominately confined to systems that use a

bottom-up approach. Yet, an alternative top-down attention model, guided search, has been

found to be effective to explain visual search [86].

Neuromorphic vision toolkit (NVT) [90]

Itti et al. [90] introduce one of the widely used bottom-up computational model Neur-

omorphic vision toolkit (NVT), which is an extension of Koch and Ullman’s [89] feature

based approach. One of the main reasons for their wide acceptance is their proposed simple

and elegant way of computing salience which they made it available for testing and reuse.

Figure 2.9 shows the structure of this model. An intensity normalization is applied on each

of the three colour channels of input image to decouple it from intensity, resulting in four

tuned colour channels: red, green, blue and yellow. A dyadic Gaussian pyramid is generated

for each of these channels. They managed to incorporate a primate like cognition, centre-

surrounded differences between a ‘centre’ fine scale and a ‘surrounded’ coarser scale, to

generate intensity based feature maps. This is similar to the way ganglion cells in the visual

receptive of human visual system respond. Additionally, colour feature maps are created

by applying chromatic opponency to excite one colour by inhibiting an other, while an ori-

ented Gabor pyramid is used to determine local orientation information in orientation based

feature map. This map representation result in 42 feature maps: 6 intensity, 12 colour, and
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Figure 2.9: Architecture of the Neuromorphic Vision Toolkit (NVT) [90]. Multi-scale rep-
resentation of three features maps are linearly combined to form a salience map which
determines the focus of attention.

24 orientation. Then feature maps are normalized in order to compensate amplitude differ-

ences among different modalities. This normalized pyramid of feature maps are scaled in

to an intermediate level of the pyramid then superposed to form three “conspicuous maps”,

each for intensity, colour and orientation. Finally, these three maps are normalized to the

same range and linearly added together to form the salience map.

Commonly, after developing a salience map the most salient location is determined

using a strategy known as winner takes all. Then the focus is shifted towards this maximum

salience location. In order to avoid a refocus on the same space, this location is inhibited for

a while using a technique called inhibition of return (IoR). This gives the system a chance

to attend a new silence point.

NVT architecture is strongly influenced by primates early vision which makes it a good

model as to understand attention in primates. Therefore when used as a computational

model it lacks robustness in practical environment as most of the component modules were

selected for mere computational efficiency. Though NVT still acts as a major breakthrough

as a computational attention model many drawbacks have been picked out by different au-

thors. Among these, Draper and Lionelle [93] argue that NVT lacks robustness to handle
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(a) NVT first focus of attention. (b) VOCUS first focus of attention.

Figure 2.10: A separate on-center and off-center differences in VOCUS result in human
like pop out effect, which is difficult to replicate using NVT’s single center-surrounding
model (Image source [91]).

2D similarity transformations like translation, rotation, and reflection. They blamed the

implementation rather than the architecture, proposing an improved system for such scen-

ario which favours precision against speed of computation. However, it is still a fact that

the efficiency of this technique has made possible systems such as attention based object

grasping system proposed by Rasolzadeh et al. [94]. Miau et al. [95] combine NVT with

support vector machine based object recognition to form biologically-inspired recognition

system. They argue their set-up can speed up recognition while preserving the detection

rate. Walter et al. [96] uses NVT to demonstrate how attentional region selection can

improve the robustness of Lowe’s scale-invariant feature transform (SIFT) based object

recognition [50]. On their other work [97], they demonstrated the successful integration

of NVT based attention system in assisting manual annotation of underwater video images

for objects with a potential interest for human annotator. Some of the NVT implement-

ation expanded the type of feature that can be used for computing salience; for instance

Lee et al. [98] uses aspect ratio and symmetry together with colour to generate feature

maps. Since the work in [98] involves direction of attention towards human faces, they

suggested aspect ratio of face and ellipse map formed from outer contour of faces as a good

feature to pop-out faces in an image. This indicates that the type of feature map is mainly

dependent on the application of an attentive system.
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Visual object detection with a computational attention system (VOCUS) [91]

Frintrop [91] proposed an extension on NVT architecture that has an additional feature to

include a top-down attention, known as Visual Object detection with a Computational at-

tention System (VOCUS). VOCUS improves some of the structural design components and

implementation details of NVT. VOCUS as in NVT uses a Gaussian pyramid to compute

feature maps at different scale. It also employs centre-surround algorithm for computing

intensity scale maps and across scale addition for generating feature map. However, the

map reduction is done at higher scale than NVT which prevents the loss of information.

Unlike NVT, VOCUS computes both on-centre and off-centre differences separately which

guarantee a pop out of single white object in the middle of multiple black object on a grey

background as shown in Figure 2.10. This also has a similar advantage on the top-down

extension, making it possible to find either dark-on-bright or bright-on-dark object. Addi-

tionally, VOCUS implementation showed the use of CIE-LAB colour space instead of HSV

colour space can improve the performance.

In fusing maps, VOCUS introduced the use of uniqueness weight before summation.

Uniqueness weight determines the influence that a given map can have in the combined

map. Maps with one strong peak are emphasized while those with multiple equivalent

peaks are suppressed. An alternative weight determination technique called Composite Sa-

liency Indicator (CSI) is proposed in [99]. CSI measure the contribution of each feature

map to a salient region based on spatial compactness of saliency and salience density. Fol-

lowing weight normalization all feature maps of a given class are combined to give three

conspicuous maps; each for: colour, intensity and orientation. These maps are weighted and

normalized before a final summation to create salience map, which conclude the bottom-up

attention of VOCUS. Frintrop also proved that as long as the difference between salience

values is high enough, the focus of attention is not affected by translation, rotation or scale

variations.

Figure 2.11 shows an extension of bottom up attention for visual search application.

This extension includes two new maps: excitation and inhibition maps. These maps play

a roll in creating a top-down salience map, which competes with the bottom-up attention

salience in the formation of final map. An excitation map is weighted sum of all feature and

conspicuity maps which are important constituent of the target feature, while inhibition map

is formed from those maps which have weight smaller than one [91]. The global salience S
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Figure 2.11: An extension of NVT based bottom-up attention architecture with a competit-
ive top-down attention for visual search in VOCUS [91].

is computed as a weighted sum of top-down salience Std and bottom-up salience Sbu. For a

weight k determining the importance of these two maps the global salience is give by:

S = (1− k) ∗ Sbu + k ∗ Std. (2.9)

Both NVT and VOCUS are used as a building blocks in most other attentive systems

with a little modification on the implementation detail. Kootstra et al. [100] argue the use

of local symmetry for salience map synthesis is an important part of human gaze control.

Hence, they tested the benefit of such feature in artificial attention. As a result they proposed

MUlti-scale Symmetry Transform (MUST) to detect symmetrical interest points and Sym-

metrical Region-of-Interest Detector (SymRoID) to detect symmetrical regions of interest.

An other improvement over VOCUS is brought up by Rasolzadeh et al. [94] using Artifi-

cial Neural Network (ANN) for their dynamic bottom-up and top-down attentive grasping

system. Their architecture, shown in Figure 2.12, uses an interactive spiking Neural Net-

work (NN) to bias the bottom-up processing towards a task. In top-down attention context

and task dependent, optimal set of weights are learned through NN.

Yu et al. [101, 102] proposed a combined bottom-up and top-down object based at-

tention mechanism to introduce goal directed behaviour to control gaze based on current
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Figure 2.12: Rasolzadeh et al. model of combined bottom-up and top-down attention, with
top-down task and context dependent weight [94].

task and learned knowledge. The bottom-up attention is based on NVT for automatic de-

tection of unexpected or unusual situations while the top-down attention is done in three

stages: pre-attentive segmentation, top-down attention selection, post-attentive perception.

The use pre-attentive segmentation leads to proto-objects which are formed by clustering

similar features as a possible components of objects or group of objects. In the top-down

attentional selection stage, task relevant objects (objects that are useful to accomplish a

given task) are determined based on long term memory (LTM) task representation which

is used to deduce task-relevant features for building attentional template in the working

memory (WM). Finally a probabilistic location-based salience map is estimated by com-

paring attentional template and pre-attentive feature. The third stage (post-attentive percep-

tion) involves detailed interpretation of attended object, in order to produce an appropriate

action and learn LTM task representation for guiding subsequent attention. The top-down

section of their architecture is shown in Figure 2.13.

A distinct behaviour of object-based saliency requires the use of segmentation or group-

ing mechanism to identify possible object structure [101, 102]. Though this might add

computational burden for an online application, Yu et al. claim that it is more robust than

space based saliency. Additionally, in applications that can use object template information

for other robotic tasks, the computational burden can be ignored.

2.5.3 Focus of Attention for Mobile Robotics

Our interest here is to use focus of attention for the benefit of SLAM navigation. Prob-

ably a closely related work available in literature is the one by Frintop and Jenseflt [103]
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Figure 2.13: A goal-directed visual attention based on object-based salience [101].

which uses a visual attention scheme to assist their simultaneous localization and mapping

algorithm. Figure 2.14 shows this architecture where VOCUS is used to select the most dis-

criminative region of an image. Accordingly, the repeatability that can be obtained using

attention-driven ROIs is much better than that from non-salient region or feature selected by

conventional detectors like SIFT [50] and Harris corner detector [47]. Predicted landmarks

from SLAM system initializes a top-down attention for either loop closure or exploration,

while any surprising new landmark is used to dictate the bottom-up attention. One advant-

age of using VOCUS in this type of framework is its computational simplicity which does

not add much on the overall SLAM performance.

Another application of attention for mobile robotics is shown in [104] which proposed

attention-driven feature selection for obstacle avoidance and navigation. Einhorn et al. [104]

were inspired by looking in at primates obstacle perception where animals usually turn their

gaze toward areas of possible obstacle. In their architecture, see Figure 2.15, new features

are selected in an image areas which are more relevant for obstacle detection and preventing

collision. Rectangular regions of interest R are determined by maximizing a weighted sum

of objective function oi thought an image Io as:
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Figure 2.14: Attention driven active visual SLAM system. VOCUS [91] is used to decide
on “where to gaze at?” (image source [103]).

R = arg max
R′⊂I0

∑
x′∈R′

a(x′), (2.10)

a(x′) =
∑

(wioi(x
′))

i

, (2.11)

where x′ is pixel location, while a(x′) is attention value computed from objective function.

These objective functions are similar to saliency maps; however, unlike a salience map their

computation is based on obstacle uncertainty objective and an inhibitory objective function.

The obstacle uncertainty objective is used to direct the focus in to areas where the presence

of obstacle is unclear based on entropy of voxels in 3D grid map. An ambiguous voxel

with an occupancy of 0.5 gets the maximum entropy while a free or occupied voxel gets

the lowest entropy. While inhibition of return objective carries previous region of interests

with a decaying coefficient.

A more recent work by Kim et al. might also require a mention here since it uses visual

salience for underwater hull inspection [105]. However, their use of salience is slightly dif-

ferent from the goal of a typical computational visual salience map. The salience map is not

used to direct attention rather it is used for measuring the registration utility of a key-frame

in graph based SLAM. Accordingly, image registration refers to feature richness of an im-

age which can be used to generate nodes in graph SLAM. Through the use of salience,
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Figure 2.15: Architecture of attention-derived feature based obstacle avoidance and navig-
ation (source [104]).

uninformative key-frames are removed to sparsify the pose-graph for computational effi-

ciency. Additionally, as demonstrated in their other work [106], global salience value can

be used to direct an AUV towards distinct region in search of loop-closure while exploring

an area.

Sonar images are limited to intensity based features, making it impossible to gain most

of the benefit that could be obtained using colour image in feature map computation. Ad-

ditionally, the noisiness of sonar images can possibly make it difficult to synthesize any

biologically inspired orientation maps. Hence, generation of sonar salience has to address

these problems without introducing significant computational complexity. It also has to

align properly with the line feature based sonar underwater SLAM algorithm that we are

proposing in Chapter 4.

2.6 Summary

In this chapter we have provided a background information on commonly used underwater

navigation sensors and their limitation included. This discussion included scientific sensors

which make use of environmental landmarks for an absolute referencing. A robust under-

water navigation system is developed by fusing sensor measurements with a kinematic or

dynamic model of a vehicle involved. As we have discussed this can be achieved either

using a deterministic model or stochastic state estimation technique where the later is pre-

ferred due to its probabilistic concepts for incorporating measurement noises.

SLAM is one type of stochastic state estimator which uses information coming form

the surrounding environment on top of dead reckoning to generate a navigation map with

in which the vehicle is localized. Among the various SLAM feature choices, we shared the
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success of line feature based techniques in underwater structured environments.

In the last sections of the chapter, we discussed the rising interest in using active vision

for various robotic applications. This discussion later narrowed down on focus of attention

which is a reactive process for selecting the most informative pieces of information. It uses

a salience map to measure the importance of features in an environment.

Based on the background information as well as the literature review provided in this

chapter, subsequent chapters will describe the various stages involved in devising a sonar

salience based top-down over attentive SLAM navigation system. First lets start by a de-

tailed discussion on sonar feature extraction in the next chapter.
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Chapter 3

Sonar Feature Extraction

This chapter presents three types of line feature extraction techniques: Hough line extrac-

tion, split & merge and incremental line fitting. These techniques are mostly used for

extracting lines from range measurements using laser scanners [63], however some of the

works that we mentioned in Chapter 2.3.1 directly use these techniques on sonar images.

However, such a direct usage of these techniques on sonar images does result in poor fea-

tures, as partially demonstrated by Ribas et al. [57], which then hamper the success of fea-

ture matching procedure in SLAM algorithm. Here, further adaptation of these techniques

for multibeam sonar will be discussed with the intention of improving the sonar feature

quality taking the real-time requirement into consideration. The chapter also compare the

slow Hough accumulator based uncertainty estimation technique, proposed in [57], with a

traditional approach which assumes a constant deviation in each measurement direction.

3.1 Multibeam Sonar Characteristics and Simulation

Multibeam sonar is a type of sonar where multiple transducers are used to send out a

series of sonar beams and receive any incoming reflection. Each acoustic beam propag-

ates through the environment until it hits an object surface, then part of this signal is echoed

back to multiple transducers. As in most time-of-flight systems, the time it takes to receive

the signal is used to compute the range of the object based on the speed of sound in the

water. The transducers wait until all possible echoes are heard before sending out the next

acoustic signal which limits the overall speed of such sensor. These signals produce not

just one but a series of periodic echoes each one is called sonar bin. An array of bins res-
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ulting from a single acoustic signal forms a sonar beam. Typically, a beam is fan shaped

with a vertical beam width and a multiple of such beams are arranged horizontally to form

a wedge that define the sonar field of view. For this work, we use two types of multibeam

sonar sensors: BlueView P900-2250 dual frequency imaging sonar and MB2250 multibeam

profiler (see Figure 3.1).

3.1.1 BlueView Multibeam Sonars

The P900-2250 is a dual frequency imaging sonar where a 900 KHz head provides a me-

dium range capability while a short range head operating at 2.25 MHz provides a detailed

view. The second sensor, MB2250, is a micro-bathymetry multibeam profiler which works

only at 2.25 MHz with a short range response similar to a typical laser scanner. Detailed

specifications of these two sensors is presented in Table 3.1. As shown in the table, there

are few important differences between the two sensors. First the P900-2250 has a narrow

field of view, which is limited to 45◦, while MB2250 has 90◦horizontal field of view. The

P900-2250 has a much wider vertical beam width, 20◦, making it slightly ambiguous to

determine the vertical position of targets in an image. Another, yet less important, advant-

age of MB2250 over P900-2250 is the update rate, but due to the processing load on the

driver typical sonar rates are way below 40 Hz. One key benefit of using P900-2550 is that

it provides an option to switch between the long range head for coarse view and a short

range head for detailed inspection.

Other than these differences, however, the two sonars work based on the same principle

resulting in closely related images as show in Figure 3.2. Both images are taken in under-

water tank where the sonar is facing the tank wall. However, image from MB2250 is more

sharp and have a wider horizontal span due to its narrow beam width and wide field of view.

The significance of these differences is studied in the next section while investigating the

formation of sonar image for simulating these sensors.

3.1.2 Characteristics of Sonar Images

The performance of the proposed system in this document is required to be tested using

a simulated environment, which involve the use of simulated sonar. This simulated sonar

needs to have a very good resemblance with the actual sensor to achieve a smooth transition
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(a) (b)

Figure 3.1: BlueView multibeam sonar sensors: (a) BlueView P900-2250 forward looking
sonar, (b) BlueView MB2250 multibeam profiler.

Specifications P900-2250 MB2250
900KHz head 2.25MHz head

Frequency 900 KHz 2.25 MHz 2.25 MHz
Field of view 45◦ × 20◦ 45◦ × 20◦ 90◦ × 1◦

Max range 100 m 8 m 10 m
Beam width 1◦ × 20◦ 1◦ × 20◦ 1◦ × 1◦

Number of beams 256 256 512
Beam spacing 0.18◦ 0.18◦ 0.18◦

Range resolution 0.025 m 0.01 m 0.01 m
Max update rate 15 Hz 15 Hz 40 Hz

Table 3.1: BlueView Multibeam sonar specifications [107].

59



−20 −10 0 10 20

Theta ( ◦ )

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

R
a
n

g
e
 (
m

)

(a)

−30 −20 −10 0 10 20 30

Theta ( ◦ )

(b)

Figure 3.2: BlueView multibeam example polar images. (a) image from P900-2250 sensor
(setting: field of view 42◦, maximum range 4 m), (b) polar image from MB2250 (setting:
field of view 77◦, maximum range 4 m). Both images are taken in underwater tank where
the sensor is facing a wall from 1.5 m range.
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from simulation to an actual real world application. Here lets characterize the actual sonar

images which in turn will make the simulation realistic.

The strength of beam reflection from a given ensonified surface depends on the sur-

face’s reflection coefficient which characterizes acoustic impedance difference between the

water column and the surface. This is the reason why the visibility of underwater objects

vary according to the material they are made of, which can be exploited for target detection.

Furthermore echo strength is also affected by surface roughness as a function of acoustic

wavelength. Hence the intensity of sonar reflection depends on the incidence angle of an

acoustic signal where a high intensity is achieved when the signal has a normal incidence.

For an ideally smooth surface a slight deviation from the normal orientation would result all

the signal to be reflected away from the transducer; however, typical underwater structures

have a significant surface roughness which makes them visible for wider range of incidence

angles. An other factor that affects the acoustic backscatter is the volume of reverberation

as a function of signal wavelength. Additionally, as in most time-of-flight cameras it is af-

fected by the range of reflection due to signal attenuation; however, this is less of a problem

while operating with in the optimal sensor range. Lastly, even though beams in multibeam

sonar are supposed to be independent, it is important to note that in most practical situations

they are actually correlated due to beam overlap.

In order to demonstrate the effect of these factors in sonar image formation a series of

tests were executed. In each test either of the sonar (i.e. P900-2250 or MB2250) is set-

up facing a wall at a right angle and a sequence of images are taken, the number varying

between 10 and 50. These sequences of sonar frames are then averaged to remove salt

and pepper noise and the processes results in a mean image. Then individual beams are

characterized and modelled for simulation. One example of such an average image is shown

in Figure 3.3. In this case MB2250 sonar is set-up to face the wall at normal angle and 10

subsequent images are taken from a single sensor position. The mean of these 10 sonar

frames is shown in Figure 3.3 (a). This image shows an abundant amount of low intensity

sensor noise throughout and particularly around the actual wall. Such type of noise can

be removed using an initial preprocessing step which involve thresholding and low pass

filtering. For this particular test, initially the image is smoothed using a Gaussian filter with

a window size of 3, then intensity values below 0.01 are suppressed.

Another important feature to notice is the presence of features coming from a ghost
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Figure 3.3: Average MB2250 sonar image and intensity profile in selected beams. In a)
average MB2250 sonar image, with max-range 10 m and FoV 76.8◦, and b) intensity profile
of selected beams and Gaussian model fitting on the main peak.

reflection. A ghost reflection happen when operating in a confined environment where a

sound wave reflects of multiple surfaces and then returns to the transducer giving a false

impression regarding object of reflection. For instance, the bright sport at the top of the

image is the sonar sensor itself seen after a multiple reflection between the front and back

walls. To avoid confusions arising from such features only the first peaks of each beams

are considered for feature extraction as well as sensor simulation.

Lastly, if we ignore the discontinuity of the wall intensity due to dark spots while tra-

versing across the beams, there is a trend on the variation of the peak intensity and the

corresponding peak width. The wall appears to be more bright at the centre of the image

with a narrower peak width than at the edges. This can be seen more clearly by analysing

the profile of selected beams shown in Figure 3.3 (b). The figure shows three smoothed

beams with orientations angles 0.08◦, 14.67◦ and 29.71◦. As shown in the figure the height
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Beam Angle (◦) Intensity (0-1) Mean (m) STD (cm)
0.08 0.72 1.62 2.4

14.67 0.50 1.69 2.57
29.71 0.20 1.88 2.94

Table 3.2: Model parameter for sonar beams shown in Figure 3.3b.

of the peak intensity is inversely proportionally to the beam orientation. Additionally, it can

be seen that at 0.08◦ the sonar beam has two peaks where the second one is a ghost reflec-

tion and we will ignore it in our sonar simulation. However, the change in peak width with

respect to beam orientation is difficult to notice from the figure. It will become apparent

next when modelling each peak with a normal distribution.

In order to simulate each beam more realistically, bins within 10 pixel distance from the

first peak are used to fit the actual sonar beam intensity profile with a normal distribution.

The mathematical representation of this model for the jth sonar beam intensity Ij (ρ) is

given by

Ij (ρ) = A exp

(
−(ρ− ρpeak)2

σ2

)
, (3.1)

where ρ is range and ρpeak range of maximum reflection for model parameters: scaleA and

standard deviation σ. For each beam the model parameters are computed by minimizing

the sum-of-squared-error over the actual sonar peak profile. The resulting parameters for

the three selected beams in Figure 3.3 are presented in Table 3.2. Accordingly, the model

standard deviation increases with an increasing angle of beam orientation, which in this set-

up is equivalent to sonar angle of incidence β, while model scaleA is inversely proportional

to beam orientation angle. A similar test on P900-2250 is shown in Figure 3.4, which shows

only the right section of an average sonar image. The images are taken from 2.9 m range

while the sonar is facing the wall at normal angle. As in MB2250 two representative beams

are selected in the figure with beam orientation 1.4◦ and 18.37◦. The peak intensity is higher

for beam with lower angle of incidence, while the peak is widely spread for beams with a

higher angle of beam orientation.

Comparing Figure 3.3 and 3.4 we can see the peaks in P900-2250 are more spread than

that of MB2250 this is mainly due to the difference in the vertical beam width. On the other

hand, there are regular darker spots across the wall profile in both images, this is mainly due
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Figure 3.4: Average P900-2250 image and selected beam intensity profile (only the right
half of the sonar image is used). In a) average P900-2250 sonar image, with max-range
10 m and FoV 42.0◦, and b) intensity profile of selected beams and Gaussian model fitting
on the main peak.

to the roughness of the wall surface which inevitably has small patches which refract the

signal away from the transducer. This will be more clear in the next section, as the concept

of sonar characterization is used to sensitize sonar beams that matches the average sonar

image.

3.1.3 Simulation of Sonar Images

The simplest way to simulate a multibeam sonar is through the use of a ray casting tech-

nique. Ray casting is a range estimation technique where the range of object of reflection is

obtained by determining the intersection distance of a ray with object’s boundary. In case

of multibeam sonar each beam is represented by individual ray. A similar set-up is used for

simulating multibeam sonar sensor in UWSim simulator through a multiple range sensors

arranged with a given beam spacing [4]. The raw output of a ray casting based sensor is

a list of ranges in each beam corresponding to points of reflection which, if converted into

an image, will have a single pixel peak corresponding to every response. However, without

further processing this data is a bit unrealistic lacking most of the sonar characteristics

mentioned in previous section. From the previous discussion, a real beam profile is more
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realistically represented using a normally distributed signal around each peaks.

A better sonar simulation requires a ray casting operation to be followed by a model

fitting process where every peak is replaced by a Gaussian model using Equation 3.1. As

discussed before the scale and standard deviation of each peaks in every beam are dependent

on the angle of incidence β. Here other factors are not considered because either their

impact is insignificant or their inclusion will make the simulation process unnecessarily

complex. Now it is important to introduce a mathematical expression that relates the model

parameters in each beam with their corresponding angle of incidence. In order to determine

this expression, next we will further study the average images shown in Figure 3.3 (a) and

Figure 3.4 (a).

Figure 3.5 show the relationship between the peak intensity and angle of incidence for

both sonar sensors. Considering the left and right half of the average images, the incidence

angle is symmetric and repetitive. The plots in the figure show the average peak intensity for

every incidence angle. Ideally the sonar reflection is assumed to follow Lambert’s cosine

law where the ratio of transmitted sonar intensity to the received sonar intensity is given by

the cosine of angle of incidence. However, in practical applications this doesn’t hold mainly

due to a significant contribution from a specular reflection in addition to isotropic diffusion

that a Lambertian surface assumption requires. This is clearly seen in Figure 3.5 where

a least square minimization of a Lambertian model is far from the actual measurement.

It is rather more convincing to approximate the relationship using a linear model A =

mAβ + bA. Furthermore, the use of a simple linear model will make the simulation faster.

Both sensors are better approximated using a linear model with a negative slope yet the

P900-2250 image has a steeper slope with a lower intensity value for a given incidence

angle compared to image from MB2250 sonar.

Similarly, the relationship between peak standard deviation and angle of incidence is

approximated using linear model σ = mσβ + bσ as shown in Figure 3.6. In this case the

slope is positive and higher for images taken by the P900-2250 sonar sensor.

As a result of this realization, an output of ray casting technique can be converted into

a more realistic sonar image as shown in Figure 3.7. In Figure 3.7 (a), a polar image gen-

erated from a row range measurement obtained from a ray casting technique. The high

peaks in each beam are one pixel wide and their position is determined by discretizing

the range corresponding to each beam based on a given range resolution (0.62 cm/pixel is
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used for this example). The next stage of this simulation is controlled by four simulation

parameters: peak intensity slope mA, peak intercept bA, peak standard deviation slope mσ,

and peak deviation intercept bσ. For instance, the simulation of MB2250 sonar image in

Figure 3.7 (b) is achieved using the following sets of parameters [−0.01, 0.65, 0.02, 2.17]

respectively. However changing the parameter values to [−0.013, 0.5, 0.07, 1.81] produce a

simulated image that resembles image from P900-2250 sonar (see Figure 3.7 (c)).

A ray casting based sonar simulation is simple and computationally efficient. Addi-

tionally the technique can be used in virtual environment where long missions are executed

while testing a navigation system. However, the method does not provide any control over
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(a) (b) (c)

Figure 3.7: A ray casting based sonar image simulation. In (a) a row ray casting range
measurement turned into a polar image, (b) simulation of MB2250 sonar, (c) simulation of
P900-2250 sonar.

the uncertainty associated with lines which are later extracted from the simulated sonar

image. The knowledge of the noise level is highly essential in order to compare line fea-

ture extraction algorithms. Hence an alternative Hough space based simulation technique

is adopted from the work of Ribas et al. [57].

The process of turning a given line segment into a sonar image starts by creating a set

of ρ-θ pairs based on the line parameters and a corresponding Gaussian noise covariance

matrix. Then these lines, represented by their ρ-θ pairs, are projected over a polar image

using a predefined sonar sensor parameters (for this illustration we used the parameters of

the sonar image shown in Figure 3.3). Echo intensity of an image pixel is determined by

the number of lines that gets projected over that pixel. This procedure is show in Figure 3.8

where a line with parameters ρ = 1.5 m and θ = 22.5◦ is projected over a sonar image. In

Figure 3.8 (a) set of ρ-θ pairs are generated around the line based on a covariance matrix

whose 3-σ limit is shown by the bounding ellipse. Some of the lines represented by these

parameters are shown in Figure 3.8 (b).
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Figure 3.8: Sonar line segment simulation. (a) a set of ρ-θ pairs generated around the actual
line based on the covariance matrix shown by the ellipse. (b) sample line whose parameters
are displayed in (a). (c) polar image of a simulated line.

3.2 Sonar Line Feature Extraction

The aim of using a sonar sensor in this application is to capture a target’s position informa-

tion so that it can be considered as a landmark in order to enhance the accuracy of the AUV

navigation system. As mentioned in Chapter 2, the most significant information in a sonar

image is extracted as a feature. Additionally, the chapter also discussed sonar features in

man made environments are better described using line segments. The next key questions

that need to be addressed are: how to represent these line features? what is the best tech-

nique to extract features accurately with less computational cost? and how to determine the

uncertainty of these line features? These three questions are discussed in the remainder of

this section.

3.2.1 Line Features Representation

Line segments in a 2D plan can be represented in various ways, all with their pros and

cons. For instance, a line segment, whose endpoints are at P0 = (x0, y0) and P1 = (x1, y1),

can be defined using a slope intercept form as y = m · x + b, where the parameters of

the line segments are the slope m, the y-intercept b and either the x or y co-ordinates of

the endpoints as a limit (i.e. [x0, x1] or [y0, y1] respectively). However, such type of line
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representation fails for a vertical line where the slope becomes infinity. In order to avoid

such kind of singularity, a vectorial representation of a line segment can be used as P (s) =

P0 + s · ~u, where ~u is a line direction vector which is given by ~u = P1 − P0, and s is a

real number between 0 and 1. Alternatively, the four parameters of the two endpoints can

be used to avoid the singularity in slope intercept form. However, both of these techniques

lack feature compression capability because the line segment does not give any meaning in

the absence of two of the four parameters. Additionally, an endpoint based representation

will make it difficult to identifying colinear line which might need to be joined after a

multiple view of a line. A much better option for our work is a Hessian normal form of a

line segment, which is discussed next.

In a typical man-made structure, there is a redundancy of features mainly due to the

symmetrical and parallel nature of the environment. As a result of this colinear lines are a

common occurrence. This can happen either from an interrupted view of a continuous wall

or viewing a wall with opening or due to two separate structures put over the same line.

To use the feature compression effectively, such types of line segments can be represented

using a single pair of line parameters and an additional pairs of parameters to indicate the

starting and ending point of each individual line segment. Hessian normal form of a line

segment can provide this; the first two parameters are used to identify the line vector while

the last two indicate the position of the two end points on this line. Given the two endpoints

of the line segment p0 and p1, Hessian normal form of a line segment is given by: its

normal distance from the origin ρ, the orientation of the line normal θ, the length of the

line segment l, and the distance from the centre of the line segment to a point on the line

where the line intersect its normal passing through the origin d as shown in Figure 3.9. The

figure also shows equations for computing the four parameters given the two endpoints of

the line segment. Both the measurement and its uncertainties are computed per line rather

than every line segment, while the remaining two parameters are carried aside while doing

SLAM (see Chapter 4). The covariance matrix of a line is given by,

R =

 σ2
ρ σρθ

σρθ σ2
θ

 , (3.2)

where σ2
ρ and σ2

θ are the covariance in ρ and θ respectively, while σρθ is their cross covari-

ance.
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Figure 3.9: Hessian-normal form of a 2D line segment. The four parameters can be com-
puted from the endpoints of the line segment.

3.2.2 Sonar Image Processing

Both MB2250 and P900-2250 are shipped with a common SDK (Software Development

Kit). For this work, this SDK is warped into a ROS device driver that publish sonar images

with their corresponding parameters. This list of parameters include: image dimension,

minimum and maximum range, and Field of View (FoV) limits. Though the driver can

provide an image in Cartesian (X-Y ) co-ordinate, polar (ρ-θ) images are preferred in order

to avoid the computational burden of a full image co-ordinate transform, then an X-Y

points can be generated using a lookup table whenever needed.

Up on receiving a sonar image, the feature extraction node first applies a Gaussian filter

over the image to remove salt and pepper noises. After this an empirically defined threshold

is used to reset those pixels with a lower intensity value which are not associated with any

physical feature in the environment. Then from each beam all the ghost reflections are

removed based on their distance from the first peak in that beam. The resulting set of ρ-θ

points are processed using a line feature extraction algorithm in order to identify the line

segments in the image with their corresponding covariance relative to the sonar frame.

Most line extraction algorithms, including those techniques discussed in [63], are de-

veloped for 2D laser scan data. Even though these techniques can directly be applied for

sonar data, this will not provide the optimal functionality. Mainly because none of these
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techniques make use of the intensity value which might improve the accuracy of the line

extraction process. Hence our proposed line extraction algorithms use both the location

and intensity of peaks in each beam. However, choosing the best line extraction algorithm

is puzzling and this choice varies according to the required accuracy and computational

speed. Therefore, in the next sections we will discuses three well-known line extraction

algorithms and their adaptation for sonar data.

3.2.3 Hough-Transform Line Extraction

Hough-transform is a mapping of pixels from an image plane to a curve in a Hough-space.

The Hough-space is an accumulator grid where each cell corresponds to a discrete ρ-θ pair.

The resulting curve defines the set of all possible line parameter pairs representing line

segments passing through the point in the image. The standard Hough-transform requires

the use of X-Y points, however, using the polar points directly from the sonar image can

avoid unnecessary computational burden. Hence the proposed technique directly uses the

polar image for filling the Hough accumulator.

Given a pre-processed sonar point P = (ρi, θi), there are possibly infinite number of

lines that can pass through this point (see Figure 3.10). However, assuming a discrete line

orientation and a maximum angle of sonar beam incidence to be βmax, the parameters of

possible lines can be determined. Based on the second condition the orientation θij of a line

through P , with incidence angle βj , should satisfy the following criteria,

θi − βmax ≤ θij ≤ θi + βmax. (3.3)

The parameters of this line are computed as,

θij = θi + βj, (3.4)

ρij = ρi · cos (θi − θij) . (3.5)

The result from Equation 3.4 and 3.5 are binned to the nearest Hough-accumulator cells.

Then these cells are incremented: normally by constant value which is one; however, in

our implementation the intensity of pixel P is used instead. The effect of this change is

discussed later in Section 3.4. Figure 3.10 shows the procedure of mapping a single sonar
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Figure 3.10: Hough-transform of a polar point in to Hough-space. In (a) a point P is
shown together with a shaded region representing all possible lines that passes through
the point, these lines have an angle of incidence below βmax. (b) an example line with
parameters (ρij, θij) is mapped into the Hough-space.

image pixel into the parameter space. This procedure is repeated for every pixel which

passed the pre-processing stage discussed in Section 3.2.2. A cell with a sufficient amount

of vote is considered as a winner and the cell parameter values are considered as the mean ρ-

θ values of the line. Before searching for the next line, every vote that correspond to the

first line is masked in order to avoid detection of the same line multiple times. This is done

by resetting cells neighbour to the winning cell. Then a similar procedure is followed until

all the lines with a significant vote are extracted or a maximum number of line features are

obtained.

The first step of Hough transform does only provide the two basic line parameters of

each line segments. Then for each line segment its length and mid point parameter d are

determined using the input polar point distribution. This procedure is started by classifying

each point to the nearest line. Then in each set points which are far from the line represented

by the peak are removed while the remaining points are projected over the line. Next this

points are sorted and traversed from one end to the other looking for a gap between point

distributions. When a gap arises a line segment is returned with all the four parameters if it

satisfy minimum segment length criteria. The process continues with the remaining set of

points.
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3.2.4 Incremental Line Fitting

Incremental line fitting technique is one of the fastest line extraction algorithm for ordered

set of points, as demonstrated in [108]. Typically such a technique starts from two adjacent

points and keeps on adding one or more adjacent points at a time based on a distance

criteria. According to this criteria, a new point has to be close to a point already in the

line set and the distance from the point the line has to be below a maximum threshold dl.

This is demonstrated in Algorithm 3.1. In our implementation the presence of noisy point

is considered. Hence line 10 is modified with a counter that tells how many times the

condition in line 7 fails, if it fails above certain number of times then it is executed otherwise

the new point is skipped and the process continue from line 4.

Algorithm 3.1 Incremental line fitting algorithm.
1: start with point sets S
2: while S not empty do
3: initialize a line l with 2 points from S
4: for a new point pj form S do
5: compute distance dl to l
6: compute distance dp to closest point in l
7: if dl and dp satsfiy minimum condition then
8: go to 4
9: else

10: go to 3
11: return all the line segments

Incremental line fitting is probably the simplest line extraction algorithm available, how-

ever adding a point a time is time consuming. As an alternative multiple points can be added

at a time, making the implementation slightly complex and forcing a back and forth execu-

tion whenever the new set of point fails to match with a given line.

3.2.5 Split and Merge Line Fitting

By far the most widely used line feature extraction technique is called split and merge

line fitting. Split and merge is also shown to be the fastest algorithm for 2D laser scan

data fitting [108]. There are various implementations of this technique, the first being an

iterative-end-point-fit, which uses the first and the last points of a set to fit a line. Most

of the other split and merge implementations make use of the whole points in a set to fit a

line which makes them significantly slower. Additionally, unless an extra validation step is
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incorporated, in these case the splitting point can end up to be at either end of the point set.

One down side, iterative-end-point-fit depends only on the two end points of a set making

the final line segment less optimal in terms of minimizing error.

The split and merge technique assumes an ordered point distribution for efficient im-

plementation; hence, in our implementation an initial line segment identification procedure

uses only the peak intensity points of each beam from the pre-processed image. Then the

remaining points are classified in to one of these line segments. In order to increase the

accuracy of the fit, the final line parameters are determined using a weighted least square

technique. This process is shown in Algorithm 3.2. The advantage of using all the points

in an image together with their intensity weight will be further discussed in Section 3.4.

3.2.6 Least Square Line Fitting

Although the initial split and merge line fitting operation can be done using end-point-

iterative technique, the final refinement or parameter fitting for incremental line extraction

technique require the use of least square approximation. The least square technique minim-

izes the sum of square difference between each point and the nearest point on the line. For

a set of points [xi, yi] and their corresponding intensity weight wi, the line parameters [ρ, θ]

are computed by minimizing,

min
∑

r2i = min
∑

(ρ− (xi cos (θ) + yi sin (θ)))2 · wi. (3.6)

The minimization of Equation 3.6 can be done either using linear algebra or closed form

statistical expression. The later is recommended whenever the number of points involved

is higher. As it will be shown in Section 3.4, the line parameters obtained using least

square minimization are much closer to a point distribution than that of end point fitting

with significantly higher computational cost. Hence, this work introduces a two stage split

and merge technique which uses iterative end-point fitting for initial rough estimate which

is then refined using a weighted least square.
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Algorithm 3.2 Split and merge line fitting algorithm.
1: start with all pre-processed point set Sall = {Pi| 0 ≤ i < N}

and corresponding intensity W = {I (Pi)}
2: Generate list of peak intensity points

Speak = {Pj| 0 ≤ j < M,Pj ∈ Sall, I (Pj)⇒ max. intesnity of the jth beam}
assuming M number of beams

split based on continuity

3: dp = {‖Pj+1 − Pj ‖ where 0 ≤ j < M − 1} . distance between adjacent points
4: Smooth the list of distance dp . using a moving average filter
5: Split Speak into a set of {Sk} for every dp > threshold . split based on continuity

Iterative-end-point-fit

6: for Sk in Speak do
7: Determine the line Lk using iterative-end-point-fit . use first and last points
8: Compute dl distance between points in Sk and Lk
9: Detect a point with a maximum dl

10: if max dl > threshold then
11: Split the segment into Sk1, and Sk2
12: append Sk1, and Sk2 to Speak = {Sk}
13: go to 6
14: When all sets in Speak are checked return {Lk}

Classification of points

15: For all Pi ∈ Sall compute the distance to the lines in {Lk}
16: Cluster the points in Sall as well as their intensity W to the nearest line
17: return {Si}, {Li}, {Wi}

Refine line parameters

18: for Si in {Si} do
19: Li ← weighted_least_square (Si,Wi)
20: complete the line segment parameter by calculating [l, d] parameter

Merging and covariance computation

21: Merge colinear lines
22: Compute the covariance of each line segment
23: return all the line segments parameters and thier covariance
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3.3 Uncertainty Estimation

Most line feature extraction implementations assume constant radial and angular deviations

for representing feature uncertainty. This makes the feature extraction process easier with

less computation burden. On the other hand, as shown in [57] a Hough accumulator can be

used to determine the uncertainty of lines, in addition to their parameters.

Hough-line Uncertainty

Depending on the voting-space parameter, the vote for a given line is distributed across

multiple cells around a peak. Identifying these cells can help to estimate the confidence

level of a given line. As discussed in Section 3.1.3 (specifically in Figure 3.8), once the ρ-θ

distribution is found, it is even possible to recover the sonar image. Hence, the first step

in computing the line uncertainty is the search for these neighbouring line parameters. For

this search, the winning line is considered as seed for a 4-connected neighbourhood region

growing. One possible criteria for region growing is the use of overlap ratio as proposed by

Ribas et al. in [57]. The overlap ratio is a measure of similarity between the sonar image

and a line parameter. For a line (ρi, θi), the overlap ratio is computed first by projecting the

line over a pre-processed (segmented) sonar image for all possible sonar beam angles. Then

the overlap ratio ηi is given by the number of projections that overlap with a non-zero echo

intensity divided by the total number of projections which is equivalent to the sonar image

width. Next this ratio is compared to that of the winning line, if it is above a threshold

then the line parameter is added to the line neighbour set and the process continue until all

possible neighbours are visited. Finally the line uncertainty is given by the covariance of

this neighbouring line parameter sets (ρi, θi) as,

R = s ·

 E [(ρi − E (ρi)) (ρi − E (ρi))] E [(ρi − E (ρi)) (θi − E (θi))]

E [(ρi − E (ρi)) (θi − E (θi))] E [(θi − E (θi)) (θi − E (θi))]

 (3.7)

where s is a scale factor to account for the change due to a pre-processing threshold value.

Hough based line extraction does not require an ordered point distribution which is one

of the main advantage. However this is less significant for sonar images where points are

ordered according to their beam orientation anyway. Additionally, filling an accumulator
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and searching for a peak is a time consuming process. This gets even worse when consid-

ering the uncertainty estimation, yet we will examine the performance of this system since

it is the only non-empirical and unsupervised way of computing line uncertainty to date.

3.4 Comparison of Line Extraction Algorithms

The extraction of good features is a multiple stage process that requires the use of a good

sensor together with a robust feature extraction technique. However, there are certain con-

straints, such as time and computational power, that restricts the selection of some tech-

niques. In a more relaxed application, for instance in our work of evaluating a sonar servo

control system we found out that a Random Sample Consensus (RANSAC) algorithm does

provide a more accurate and stable wall line estimation [109]. However, in this application

it is known before hand that the number of line segment involved is just one making the

whole process computationally less expensive. Such assumption does not fit a typical un-

derwater navigation scenario where the number of line segments can be significantly higher.

Hence computational cost becomes an important criteria together with the accuracy of the

line extraction. In this section we compare the performance of the three line extraction

algorithms discussed so far.

3.4.1 Experiment Set-up

Performance comparison of the three line extraction algorithms is done using simulated

environments show in Figure 3.11. Each test arena is filled with lines representing either

walls or edges of columns with some extra random lines representing abandoned structures

or floating objects. All the arenas are confined with in 10m× 10m area through which a

robot navigates to collect sonar measurements. The solid coloured lines in the maps indicate

walls while the black dotted lines are robot trajectories from where the sonar measurements

are taken. This robot paths are generated manually by tracing a mouse movement over

each map. The test environment is used to validate two things: the first is the accuracy and

performance of line extraction techniques while the second test compares the performance

of covariance estimation.
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Figure 3.11: Simulated maps for line extraction comparison.

Setting up the sonar for Test-1

In order to simulate the sonar at each position, first the global map is transformed into a

local version. Then, using a ray casting technique, a trace of the closest reflection points

are generated through the full FoV of the sonar. Each ray intersection point is assigned an

incidence angle which is the angle between the ray and normal of the reflection line. Rays

represent sonar beams and intersection points are assumed to be peaks of a particular beam.

Hence using the incidence angle and range of the intersection point a sonar profile of every

beam is generated using the method described in Section 3.1.3. On each map on average

1000 robot positions are considered from which a total of 5340 line observation are made.

A line is said to be observed if there exists an overlap between the line segment and the

sonar. However, not all these observed lines are supposed to be detected, since some of the

line segments are very short to pass the minimum line length requirement.

Setting up the sonar for Test-2

This set-up is intended to compare the two uncertainty assignment methods discuses in Sec-

tion 3.3, where one is assigning a constant deviation in ρ and θ, while the second option is to

use Hough accumulator based uncertainty. In this case, before detecting sonar intersection

points all the visible lines are replaced by a hundred other lines which are generated using

an assumed covariance and the initial line using random normal 2D distribution. Then an

image is generated using all the intersection points between multiple lines and sonar rays.

To allow the change in sonar uncertainty from one image to another, the assumed uncer-

tainty is randomly chosen between extreme bounds. Accordingly the deviations in ρ and θ

are chosen between σρρ=[2 cm, 10 cm] and σθθ = [0.3◦, 1.5◦]. The Hough accumulator sim-
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ilarity measure is set at 0.52. This value is determined by manually matching a single line

uncertainty with a training example line. A higher value can result with empty neighbour-

ing cell sets, hence it is better not to narrow the neighbourhood size too much though this

might improve the computation efficiency.

Line extraction parameter assignment

Choosing the right parameter for comparing the three line extraction techniques discussed

is not straight forward. As much as possible similar parameters are used whenever the three

techniques share a parameter. For instance, the minimum length of a line segment dl is set

to be 10 cm, where the minimum number of points in a segment Np is 10 and the maximum

distance between to adjacent points within a segment dp is 10 cm. The Hough accumu-

lator space is set up so that each cell is spaced 15 cm by 2◦ and the minimum distance

allowed between two Hough peaks is 1 m and 20◦. For each line extraction technique, three

categories are considered based on the type of sonar points used for line extraction:

a) In this type of experiment only one pixel per beam is used to extract the line, the pixel

corresponds to the first maximum intensity above a threshold in a given beam. Hence

for a simulated MB2250 sonar image only 512 pixels are used for line extraction.

b) In this case all the points around a maximum peak with intensity above a threshold

are used for incremental line fitting and Hough line extraction while in case of our

split and merge implementation the initial line estimate is always determined using

the high intensity pixels however for this category the final refinement will use all the

points.

c) In this final category all lines are used together with their corresponding intensity

weight, i.e.Hough accumulation is incremented by the actual intensity instead of

a constant, while standard least square refinements are replaced by weighted least

square approximation as given by 3.6.

The number of points and the values of votes in the Hough accumulator will vary ac-

cording to the category. Hence the threshold for maximum peaks are 80, 1900 and 600 for

category a, b, and c respectively.
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3.4.2 Result and Discussion

Result for Test-1

Quantitative comparison of the three line extraction methods and the three different cat-

egory of point selection is show in Table 3.3. One of the criteria for the best line fit is the

distance of the line [ρi,θi] from a matched ground truth line [ρT i, θT i]. This distance is com-

puted as a normalized Euclidean distance dh (as proposed by Lakaemper in [110]), which

is given by,

dh =

√
(ρi − ρT i)2 +

(
min (|θi − θTi|, |θi − θT i| ± 360◦)

h

)2

. (3.8)

Where the normalization factor h is assumed so that a 25 degree difference in angle cor-

responds to 1 m distance. As a quality measure, a good technique is supposed to extract a

maximum number of true lines with a minimum number of segments, i.e. extracting all pos-

sible lines intact. The accuracy of the line extraction is measured using Root Mean Square

Error (RMSE) which, for N number of distance di, is given by,

RMSE =

√∑n
i=0 (di)

2

n
, (3.9)

where di corresponds to either dh or error in range ∆ρ = ρi − ρT i or error in angle ∆θ =

θi − θT i as shown in the table. The precision is measured with the corresponding standard

deviation (STD).

The computational comparison is done on a laptop with processor Intel® Core™ i5-

3360M CPU @ 2.80GHz × 4 and 6GB RAM. Split-and-Merge line fitting is unarguably the

fastest at 1180 Hz, which runs slightly slower when all the points are used rather than peaks

of each sonar beam. On the other hand, Incremental line fitting ended up being the slowest.

This is due to python’s slow looping where the technique has to loop over every point.

Additionally, Incremental line fitting uses least square approximation to update the line

parameter after each new point addition unlike that of our Split and Merge implementation

which uses end point based fitting until the final refinement. In case of Split and Merge

technique lines are divided to a fewer number of small segments compared to the output

from Incremental line-fitting, hence it is considered as a better detector for complete lines.

The accuracy and precision of Incremental line fitting is much better than the other two
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Method &
Category

Speed
Hz

No. of
segm.

No. of
lines

Matched
lines (%)

RMSE (cm/deg) STD (cm/deg)
dh ∆ρ ∆θ dh ∆ρ ∆θ

HL
a 106 10265 4189 77.58 17.77 3.50 9.46 10.91 9.14 3.50
b 12 6052 4335 80.89 16.76 3.11 10.33 11.22 9.95 3.11
c 11 8039 4405 82.13 16.70 3.12 10.26 11.08 9.74 3.12

INC
a 11 6191 4822 86.15 10.65 1.82 6.70 7.74 6.61 1.82
b 11 6207 4792 84.92 10.20 1.92 8.48 6.65 6.61 1.91
c 11 6207 4791 84.98 10.07 1.90 8.61 6.55 6.47 1.89

SM
a 1180 5466 4813 86.07 9.95 1.66 5.77 7.39 6.09 1.66
b 481 5465 4843 87.25 7.97 1.54 6.48 5.01 4.98 1.54
c 475 5465 4841 87.18 7.77 1.55 6.52 4.63 4.58 1.54

a, b and c are categories in terms of the points used as discussed in Section 3.4.1
HL-Hough line fitting, INC-Incremental line fitting, SM-Split and merge line fitting

Table 3.3: Results of line extraction validation experiment.

and it improves with the use off all the sonar points above a threshold. In actual sonar

implementation the rate of sonar acquisition is under 30 Hz, hence an extraction as high as

400 Hz does not constrain the overall performance of the navigation system. However, it

is important to note that the performance of all the three methods increase with the use of

sonar intensity weight without causing too much degradation on the computational speed.

Result for Test-2

For comparison of techniques for assigning line uncertainty to measurement two metrics

are used. The first is the Frobenius norm where the sum of the square difference of an

estimated covariance Pi and the corresponding ground truth covariance PT i. As in Test-

1 the discrepancy between angle and range is normalized using a factor h. Hence the

Frobenius distance dF between Pi and PT i is given by,

dF =

√√√√((Pd (0, 0))2 +

(
(Pd (0, 1) + Pd (1, 0))

h

)2

+

(
Pd (1, 1)

h2

)2
)

(3.10)

where Pd = Pi − PT i. The second metric used is Bhattacharyya distance dB which is

normally used to determine the similarity between two discrete or continuous probability

distributions. In this case to facilitate a pure covariance comparison the mean of the lines

assumed to be the same, hence the a simplified version of the general Bhattacharyya dis-
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Method &
Category

RMSE STD
dF (m) dB dF (m) dB

Hough
uncertainty

a 0.007680 0.263300 0.004812 0.173254
b,c 0.011031 0.286885 0.002429 0.148899

Constant a,b,c 0.002867 0.165336 0.001042 0.117617

Table 3.4: Uncertainty estimation technique comparison.

tance is used as,

dB =
1

2
ln

(
detP

detPi · detPT i

)
where P = (Pi+PTi)/2 for estimated covariance Pi and ground truth PT i. Based on these

measures the accuracy and precision of the two uncertainty estimation techniques for vari-

ous method categories is shown in Table 3.4. Both the Frobenius distance and Bhat-

tacharyya similarity indicate a good constant uncertainty provide a better covariance es-

timation. From the table, it is clear that the addition of more points does not help the

performance of Hough uncertainty. Additionally, a Hough based uncertainty has an added

computational cost more than tenth of a second, unlike a constant deviation assignment

which does not add anything. Hence, though the initial tuning of a constant deviation un-

certainty assignment is complex, it is a better option for an online estimation.

3.5 Summary

In this chapter we presented details of the two main sonar sensors that we intend to use for

the rest of this work. Then we proposed two ways of simulating these sonar sensors for

validating the proposed line extraction algorithms and latter for navigation. One approach

is to fit every beam with normal distribution while the second is to use a line uncertainty

estimate to compute multiple line parameters and their corresponding sonar return points.

Later we presented three well known line extraction algorithms together with a novel ap-

proach to add a sonar intensity weight for a more accurate line extraction. The experimental

results show that a Split and Merge line fitting technique with an initial end-point fitting and

a final weighted least square refinement has a superior speed and accuracy. The weights are

obtained from raw sonar intensities which are typically discarded in similar applications. A

constant covariance assignment does not only avoid adding a computational burden, it can

also provide a good estimate of line uncertainty.
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Chapter 4

Underwater SLAM Navigation

This chapter address the problem of underwater SLAM. Solving the SLAM problem in-

volves the use of vehicle control commands and landmark feature based measurements to

concurrently localise an AUV while generating an environmental map which subsequently

can be used for localization. We have already established that line features are good for rep-

resenting landmarks in a man made underwater structures. This chapter focuses on two of

the most commonly used SLAM filters which are simple to implement: Extended Kalman

Filter (EKF) and Unscented Kalman Filter (UKF). Later we will discuses the possible use

of FInite Set STatistics (FISST) for representation of sonar measurement through Probabil-

ity Hypothesis Density (PHD) filter. This chapter is a foundation for the next chapter which

propose an attentive active SLAM for improved underwater navigation. This novel attent-

ive active vision system is an added functionality on top of SLAM and can be integrated

with any type of SLAM algorithm.

4.1 Bayesian Framework of SLAM

There are two main forms of SLAM: online and full SLAM. In an online SLAM a moment-

ary estimation of the vehicle pose and map feature position is developed using a history of

control commands and measurements up until that moment. A full SLAM problem, on the

other hand, requires the estimation of posterior over the entire robot trajectory. However, in

this work we are interested in the former which can be used to improve the vehicle naviga-

tion using external landmark features. Additionally, since most of the dead-reckoning drift

in a typical AUV mission is constrained within the horizontal plane, we concentrate our
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effort on improving the 3 Degrees of freedom (DoF) robot state, X-Y position and heading.

This simplification is brought by the level of accuracy that an altimeter or pressure sensor

provide for depth estimation and the fact that in most applications the vehicle neither rolls

nor pitches.

4.1.1 State Representation

Before going any further lets introduce the state representation adopted here and in sub-

sequent chapters. At a time step k the robot state Xk is composed of the two-dimensional

vehicle state Xv and line feature map M . The AUV state is given by positions (x, y) and

heading ψ; hence

Xv = [x, y, ψ]ᵀ , (4.1)

while the map comprises a set of N line features

M = [ρ0, θ0, . . . , ρN−1, θN−1]
ᵀ , (4.2)

where (ρi, θi) is the i{th} line feature with respect to the map origin {W} which we assume

to be the initial vehicle position. Hence the overall state is given as,

Xk = [Xv,M ] . (4.3)

The corresponding state uncertainty is given by a covariance matrix Pk which comprises

covariance of the vehicle Pv and map features Pm as well as the cross covariance between

them Pvm:

Pk =

 Pv Pvm

Pᵀ
vm Pm

 . (4.4)

4.1.2 Probabilistic SLAM Recursion

The propagation of robot state or new measurement acquisition is governed by probabilistic

laws [19]. From the AUV point of view neither of these are deterministic, hence both

measurements and location are represented using a stochastic distribution. The probabilistic
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definition of SLAM is represented as,

p (Xk|z1:k, u1:k) = p (Xv,m|z1:k, u1:k) , (4.5)

which is a joint probability density of vehicle poseXv and landmark locationsm for a given

history of measurements z1:k and control command sequences u1:k. In Bayesian representa-

tion the SLAM problem is solved in a two stage recursion: motion prediction and measure-

ment update. In the prediction step a motion model p (Xk|Xk−1, uk) is used to estimate the

position of vehicle based on applied control uk and previous state p (Xk−1|z1:k−1, u1:k−1).

Hence the predicted robot state density is given by,

p (Xk|z1:k−1, u1:k) =

ˆ
p (Xk|Xk−1, uk)× p (Xk−1|z1:k−1, u1:k−1) dxk−1

. (4.6)

On the other hand, the update step is used to correct any drift from this prediction pos-

terior using new measurement zk based on a measurement model P (zk|Xk). The corrected

vehicle position is given by,

p (Xk|z1:k, u1:k) =
p (zk|Xk)× p (Xk,m|z1:k−1, u1:k)

p(zk|z1:k−1, u1:k)
. (4.7)

A close form solution for these recursive formulae were proposed by applying vari-

ous approximations. For instance, in one of the earliest probabilistic SLAM solution by

Durrant-Whyte and Leonard [29] an EKF filter is used with a strong linearity assumption.

Subsequent research in the area have introduced various techniques which can perform well

in a more non linear systems. However, this comes with an added computation complexity,

which makes them less attractive for applications where the robot has a limited resource as

in most AUVs. Hence selecting the right technique is a key in developing practical under-

water SLAM algorithm. The remainder of this chapter presents some of the works we have

done using various SLAM algorithms.

4.2 Extended Kalman Filter SLAM

The earliest SLAM algorithm [111] uses extended Kalman filter (EKF) which is based on

a non-linear extension of Kalman filter. An EKF-SLAM is a closed form SLAM solution
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where the a state transition and measurement models are approximated using a first order

Tylor expansions. To simplify the discussion on EKF-SLAM lets put an alternative repres-

entation of the motion and observation models, discussed in 4.1.2, using two function f(·)
and h(·) which represent vehicle kinematics and geometry of observation, respectively. In

the derivation of EKF-SLAM algorithm these two functions are assumed to be slightly non-

linear which could easily be approximated using first order Taylor expansions. Using these

two functions the state transition and measurements can be re-written as

Xk = f (Xk−1, uk + wk) , (4.8)

zk = h (Xv,m) + vk, (4.9)

wherewk is Gaussian additive velocity noise with zero mean and a covariance ofQk, and vk

is zero mean Gaussian observation error with a covariance of Rk. Assumptions of linearity

and additive Gaussian noise are key in EKF-SLAM which uses a normal distribution to

approximate the probability densities in Equation (4.6) and Equation (4.7). One advantage

of a normal distribution is it can be easily represented using two variables the mean and the

variance as long as the system is linear or in this case turned in to a linear one. Therefore,

in an EKF-SLAM the vehicle state is represented as a normal distribution N
(

; X̂k, Pk

)
where only the mean X̂k and the system covariance Pk are propagated through time. Hence

the standard EKF-SLAM recursion can be defined as follow:

a) Filter initialization

The SLAM recursion is started by assuming the initial vehicle position to be the map origin.

At this stage the vehicle position is assumed to be well known with zero uncertainty, or

practically with a small non zero uncertainty for a reason to be discussed in Section 4.3.

Initial robot state X̂0 and P0 are given by:

X̂0 =


0

0

0

 ;P0 =


1. 0 0

0 1. 0

0 0 1.

 ∗ ε

where ε is a small uncertainty (i.e. ε = 1e− 4).

b) EKF-SLAM time update
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After an initial pose assignment, consecutive vehicle states are predicted using previous

robot state and current control command as:

X̂k|k−1 = f
(
X̂k−1, uk

)
+ wk, (4.10)

Pk|k−1 = FxPk−1F
ᵀ
x + FwQkF

ᵀ
w, (4.11)

where Fx and Fw are Jacobians of f (·) with respect to the state and the velocity noise

evaluated at the estimated state X̂k|k−1.

c) EKF-SLAM measurement update

For a given line measurement zk and its corresponding ith map feature observation hi
(
X̂k|k−1

)
the SLAM update is given by,

X̂k = X̂k|k−1 +Kkvk, (4.12)

Pk = [I −KkHk]Pk|k−1, (4.13)

for an innovation vector vk and its covariance Sk with a Kalman gain Kk which are given

by,

vk = zk − hi
(
X̂k|k−1

)
, (4.14)

Sk = HkPk|k−1H
ᵀ
k +Rk, (4.15)

Kk = Pk|k−1H
ᵀ
kS
−1

k , (4.16)

here Hk is the Jacobian of hi (·) evaluated at the estimated state X̂k|k−1.

A line feature from a sonar measurement can be either an introduction of a new land-

mark or a revisit for an older one or even a noise. This identification and determining

matching landmarks across a given mission is handled by a process called data associ-

ation. There are various techniques for solving the data association problem, however here

a simple nearest neighbour (NN) criteria is used to determine the correspondence. Such

technique is sufficient as long as the line features are well apart to avoid confusion between

two different landmarks. After identifying the correspondence, it is validated by individual
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compatibility (IC) test using the Mahalanobis distance as

D2
ij = vᵀk (Sk)

−1 vk < χ2
α (4.17)

where α is the desired confidence level for 2-DoF Chi-squared statistics.

d) EKF-SLAM state augmentation

Any measurement that fails to satisfy the criteria in Equation 4.17 is considered as a new

feature and appended to the current vehicle state. However since a new measurement zk =

[ρ, θ]Xv is given in the robot frame, first it need to be transformed to map frame before

adding it to the current state. The transformation of line feature from robot frame to map

frame is done using the function g (·), which at zk is given by,

g (zk) =

 ρ+ x cos (θ + ψ) + y sin (θ + ψ)

θ + ψ

 . (4.18)

After appending this transformed feature into the state the new state covariance becomes,

Pk =

 Pk|k−1
(
GxPk|k−1

)ᵀ
GxPk|k−1 GxPk|k−1Gᵀ

x +GzRG
ᵀ
z

 (4.19)

where Gx and Gz are the Jacobian of the transformation function g (·) with respect to the

robot state and the new measurement respectively.

4.2.1 State Transition Model

The control command u is obtained from a DVL and FOG/compass reading. It is composed

of forward velocity vx, lateral velocity vy and rate of rotation ω which, in case of compass,

is calculated based on the rate of heading change between two consecutive acquisition.

These velocities are assumed to have added white Gaussian noise with a covariance Q.

Using these velocities the motion model f
(
X̂k−1, uk

)
can be represented by a 2D constant
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velocity model as:



x

y

ψ

ρi

θi


k|k−1

=



x+ vx
ω

(sin (ψ + ωT )− sin (ψ)) + vy
ω

(cos (ψ + ωT )− cos (ψ))

y + vx
ω

(cos (ψ)− cos (ψ + ωT )) + vy
ω

(sin (ψ + ωT )− sin (ψ))

ψ + ωT

ρi + 0

θi + 0


k−1

(4.20)

and as ω → 0 Equation (4.20) becomes,



x

y

ψ

ρi

θi


k|k−1

=



x+ vxT cos (ψ)− vyT sin (ψ)

y + vxT sin (ψ) + vyT cos (ψ)

ψ + ωT

ρi + 0

θi + 0


k−1

. (4.21)

The difference between Equation (4.20) and (4.21) is limited for cases where the time step T

is small given a typical maximum AUV velocity is under 0.5 m/sec. In a typical SLAM

missions Equation (4.21) is good enough because most of the discrepancy between the

two models can be corrected in the EKF-SLAM update stage. However in the absence of

measurements, we stick with the motion model in Equation (4.20) for subsequent prediction

to avoid any accumulation of drift.

4.2.2 Sonar Observation Model

An important element of SLAM algorithm is the measurement update which adjusts navig-

ation drift based on landmark error. This correction is done based on an observation model.

In order for the SLAM algorithm to succeed the observation model needs to be as accurate

as possible. In this section we discuss a piecewise-defined observation model for a line

segment feature based sonar measurement.

In Section 3.2.1 a Hessian normal form of a line segment is proposed as the best altern-

ative for representing sonar line features. Since angles are periodic in polar representation,

a single line can be expressed in multiple forms. For instance, a polar line given by (ρ, θ)

can also be represented as(−ρ, θ+π). For much of the SLAM algorithm this does not cause
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problem or can be controlled; however, when it comes to computing innovation vector, this

can make filters diverge. Hence, as discussed in [3] line segment observation requires two

models. For the ith map line mi = [ρi, θi], the two observation model are given by,

h (x̂k,mi) =

 ρi − x cos θi − y sin θi

θi − ψ

 (4.22)

and

h (x̂k,mi) =

 −ρi + x cos θi + y sin θi

θi − ψ + π

 . (4.23)

Probably the most important question now is how to choose between Equation (4.22) and

Equation (4.23). In [3], this choice is made based on whether the line segment joining

current robot position with the map origin intersect with the line mi or not. On the other

hand, in [2] only Equation (4.22) is used and all the problems with the observation model

are claimed to be attributed to the increasing non linearity of the model as the robot goes far

out from the map origin. Obviously, both the non linearity as well as a wrong observation

model play a role for degrading the performance of SLAM navigation, yet it is important

to identify which issue is causing a particular error.

A wrong observation model can easily cause filter divergence which is caused by an

exaggerated innovation in Equation 4.12. However, the innovation vector can also go wrong

if the sonar measurement is given in a wrong polar form. For clear understanding of the

problem consider the example shown in Figure 4.1. A line is observed from different AUV

positions {Ak} at time k, based on the position of measurement line zk and map line mi

with respect to the map origin {W} and {Ak} there are four possible scenarios.

Scenario 1: This the most common robot pose configuration which is applicable for most

indoor robotics where a vehicle does not go past a boundary line. In such configur-

ation the line joining current robot pose with the map origin does not intersect with

either the new measurement line zk or the associated map feature mi as shown in

Figure 4.1a. In this case the observation model in Equation 4.22 is sufficient.

Scenario 2: This is less common robot pose configuration which typically happens when

the AUV observes a line which is close to it or when the vehicle pass by a convex

corner. In such scenario, although the measurement line zk lie on one side of both the
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(a) (b)

(c) (d)

Figure 4.1: Possible arrangements of measurement line zk and ith map feature mi with
respect to the global frame {W} and robot frame {Ak}. Lines are represented using polar
form [ρ, θ] with respect to either {W} or {Ak} at time k.

robot and the map origin, the associated linemi lie between the two (see Figure 4.1b).

For such robot pose configuration a correct observation can be obtained by using

Equation 4.23.

Scenario 3: Opposite to scenario 2 in this scenario the measurement line is between {W}
and {Ak}, while the observed map feature does not (see Figure 4.1c). For a robot in

such configuration both Equation 4.22 and 4.23 will cause divergence. In stead first

the measurement line need to be inverted, i.e., [ρz, θz] becomes [−ρz, θz + π], then

Equation 4.22 can be used.

Scenario 4: In the last scenario (see Figure 4.1d) both the observed feature and the meas-

urement line intersect with the line segment joining {W} and {Ak}. Here the meas-

urement vector need to be inverted then Equation 4.23 can be used for correct innov-
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ation vector computation.

In a typical run the observed feature and measurement pairs alternate among the four pos-

sible configuration. Just modifying the observation model does not guarantee a correct in-

novation computation for all possible scenarios, even though it is possible to get a successful

result for most of the time in a typical trail. For a complete remedy both the observation

and the map feature need to be checked and modified accordingly.

The next question will be how to make this checks. For instance in Figure 4.2, to

determine if the line l{Ak} = [ρ, θ] intersect with the line segment joining {W} to the

current robot pose {Ak} = [x, y, φ]{W}, consider a point p on the line l which is a new

frame on the line where the parallel component is along the line while the perpendicular

component is along the line normal ln. From this new co-ordinate frame the robot pose and

the map origin are given by ppA and pp0 respectively. The projection of these two vectors

on the line normal gives ppA⊥ and pp0⊥ which mathematically can be expressed as,

pp0⊥ = ρ+ x cos (θ − ψ) + y sin (θ − ψ), (4.24)

ppA⊥ = ρ. (4.25)

For the line to intersect the line segment joining the map origin with the robot origin the sign

of the two projection has to be different. This check is done both for the measurement and

observed line, adding a slight computation cost on the overall SLAM performance which

will tackle a possible filter divergence arising from wrong innovation vector as it will be

illustrated in Section 4.4.

4.3 Unscented Kalman Filter SLAM

As long as an AUV navigates along a straight path and it remains close to the starting

position an EKF-SLAM can provide an optimal navigation performance. However, any

vehicle rotation or an observation of a line segment far from the starting position will intro-

duce a higher non-linearity to the motion model and observation model respectively. This

strong non-linearity will eventually degrade the performance of an EKF based SLAM al-

gorithm. The magnitude of this degradation depends on the angular speed of the rotation

or the distance from the starting position to observation pose. As some of the works dis-
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Figure 4.2: Intersection between a line and a line segment joining the map origin with
current robot frame, which is used to determine the correct innovation distance.

cussed in Chapter 2 proposed, in applications where the vehicle covers a large area the use

of sub-map is one option, yet care has to be taken to avoid a disconnection of adjacent or

overlapping maps which result in missing loop-closure opportunities. This will be further

demonstrated using an example in Section 4.4 while recreating Ribas et al. [2] result on

abandoned marina dataset from St. Pere Pescador, Spain. Another option to resolve the

shortcoming of EKF-SLAM is to use an alternative filter. One alternative would be using

Unscented Kalman Filter (UKF). In this section, the theory and the implantation detail of

UKF-SLAM is discussed with respect to our previous description of an EKF-SLAM.

As noted earlier, an extended Kalman filter propagates the robot state posterior, which

is approximated by the mean and covariance of Gaussian probability distribution, using

linear models. The UKF uses the original non-linear state transition or observation model

to propagate multiple points in addition to the mean and covariance. These multiple points

are generated through unscented transform using the posterior mean and covariance. Basic

implementation of UKF has a slightly higher computational complexity than EKF, however

recent work in [112] propose a square root UKF with complexityO (N2) as in EKF. Hence,

the computational cost of UKF-SLAM can be be considered as that of EKF based SLAM.
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4.3.1 Unscented Transform and Sigma Points

Unscented transform is a method that approximates a random variable for a non linear trans-

formation. The notion behind unscented transform lies on approximation of a distribution

with more than one deterministic sample points, instead of approximating the non linear

transformation function as in EKF. These 2N + 1 sample points of a random variable with

dimension N are called sigma points. For instance, if the state of the vehicle at time k is

given by a mean X̂k and covariance Pk, then the sigma points Xs are generated as follow:

Xs0 = X̂k (4.26)

Xsi = X̂k +
√
λ+NPsi, i = 1, . . . , N (4.27)

Xsi = X̂k −
√
λ+NPsi−N , i = N + 1, . . . , 2N (4.28)

where corresponding weights are computed as,

Wm
0 = λ/(λ+N) (4.29)

W c
0 = λ/(λ+N) +

(
1− α2 + β

)
(4.30)

Wm
i = W c

i
= 1/2·(λ+N), i=1,...,2N (4.31)

here Psi is the ith row of the covariance square root (Pk = PsᵀPs), λ = α2 (κ+N)−N is

a scaling parameter to match the third and higher order terms with α determining the spread

of sigma points around the mean while κ is an additional scale factor which in most cases

can be set to zero. β is factor that depends on the distribution type and it is optimal value

is 2 for Gaussian distribution, while setting (λ+ n) = 3 for such distribution can result in

matching the fourth order terms [113].

4.3.2 UKF-SLAM Recursion

UKF-SLAM algorithm uses unscented transform for state prediction and measurement up-

date. Since unscented transform uses square root covariance, an initial covariance has to

be positive definite, this can be achieve by assigning a small non zero value to the diag-

onal elements of the initial covariance Po, the initial robot pose is assumed to be the map

origin as discussed in Section 4.2. As in EKF-SLAM subsequent robot states are determ-

ined using previous robot state and new measurements both for control and map feature. A
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UKF-SLAM recursion include a prediction and update stages just like EKF-SLAM.

a) UKF-SLAM prediction

One way to propagate the robot state is by appending the control command into the robot

state, i.e. the current control uk is appended to X̂k−1 to give X̄k−1 =
[
X̂k−1, uk

]ᵀ
, where as

the corresponding covariance Q is appended to state covariance to give new matrix P̄k−1 =

diag
(
P̂k−1, Q

)
. Based on this new state and variance using Equations 4.26-4.31.

Xs,Wm,W c ← sigma_points
(
X̄k−1, P̄k−1, α, β, κ

)
. (4.32)

Then these sigma points are transformed by using the state transition equation shown

in Equation 4.20 or 4.21, the only difference here is that the control command is retrieved

from the state and truncated from the output. Finally the predicted state and covariance are

determined as follow,

Ys = f (Xs) , (4.33)

X̂k|k−1 =
2N∑
i=0

Wm
i Ysi, (4.34)

Pk|k−1 =
2N∑
i=0

W c
i

(
Ysi − X̂k|k−1

)(
Ysi − X̂k|k−1

)ᵀ
. (4.35)

c) UKF-SLAM update

As in EKF-SLAM the data association is done using nearest neighbour classification and

individual compatibility test. In this process, a new sonar measurement is either associated

with a landmark in the sonar map or represented as a new map feature hence a UKF-SLAM

update can either be an update or augmentation. First consider an update of the ith landmark

using a new sonar measurement zk with covariance R. This starts by generating the sigma

points and the corresponding weights from X̂k|k−1 and Pk|k−1. Then using the observation

95



model for ith landmark hi (·) in Equation 4.22, a UKF-SLAM update is done as follows:

Zs = hi (Xs) , (4.36)

Z̄ =
2N∑
i=0

Wm
i Zsi, (4.37)

Pzz =
2N∑
i=0

W c
i

(
Zsi − Z̄

) (
Zsi − Z̄

)ᵀ
+R, (4.38)

Pxz =
2N∑
i=0

W c
i

(
Xsi − X̂k|k−1

)(
Xsi − X̂k|k−1

)ᵀ
, (4.39)

then using this intermediate values, the measurement innovation vk and filter gain Kk are

computed, followed by the updated mean and covariance of the vehicle state.

vk = zk − Z̄ , (4.40)

Kk = PxzP
T
zz, (4.41)

X̂k = X̂k|k−1 +Kkvk, (4.42)

Pk = Pk|k−1 −KkPxzKᵀ
k. (4.43)

On the other hand, if this is a new measurement, it needs to be transformed to the

map frame and get augmented into the robot state. The procedure starts by appending

the new measurement into predicted robot pose as X̄k|k−1 =
[
X̂k|k−1, zk

]ᵀ
and P̄k|k−1 =

diag
(
P̂k|k−1, R

)
, then sigma points are generated which are then propagated using a trans-

formation function g (·) shown in Equation 4.18. The robot state after the augmentation is

computed as,

Ys = g (Xs) , (4.44)

X̂k =
2N∑
i=0

Wm
i Ysi, (4.45)

Pk =
2N∑
i=0

W c
i

(
Ysi − X̂k

)(
Ysi − X̂k

)ᵀ
. (4.46)

One of the key things to consider in the above computation is the fact that angle difference

or averaging follows a special rule. For instance the difference between 180◦ and −180◦ is
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zero rather than 360◦, hence care must be given to avoid wrong computation.

4.4 SLAM Experiment and Results

In this section the performance of EKF and UKF SLAM algorithms for sonar line feature

based navigation is tested; first using a simulated environment then a real marina dataset.

4.4.1 Simulated SLAM Test

The simulated test environment used is shown in Figure 4.3, which covers an area of 224 m2.

The simulated vehicle has a sonar sensor similar to the one discussed in Section 3.1.3 and

a compass for heading measurement and DVL for forward and lateral velocity measure-

ment. The compass measurement provides an angular rotation with an added white Gaus-

sian noise of 1.15 ◦/sec STD while the DVL error on the forward and lateral velocities is

set to 5 cm/sec. The simulated multibeam sonar has a maximum range of 10 m with 90 ◦

field of view like the Blueview MB2250 short range head. The lines are extracted using

Split and Merge line fitting technique discussed in Section 3.2.5. For this test, the vehicle

starts from the origin with a straight section until it starts turning to the left. Then it goes

through a serious of straight and circular sections to get back to the starting position. The

forward velocity is kept at 0.5 m/s while the rotational speed varies from 0.5 ◦/sec in the

straight sections to 8 ◦/sec for the major turns. These significantly high speed rotations are

intended to test the capability of filters in dealing with strongly non linear state transitions.

As shown in Figure 4.3 the dead reckoning path has diverged from the ground truth just

after the first turn and the final pose is quite far from the starting position. On the other

hand the EKF-SLAM does well until the major turn in the right side of the figure, where it

miss the actual trajectory of the vehicle. The error in the EKF-SLAM is highly associated

with the non linearity of the motion model in the circular section of the path. This error ulti-

mately lead to a disorientation of the map. In comparison the UKF-SLAM performed better

in all circumstances which is also accompanied by a better map representation. Figure 4.4

show the comparison of accumulated X-Y position error for DR, EKF and UKF SLAM.

Errors are computed using Euclidean distance between estimated vehicle pose and ground

truth at each time step. The DR error start diverging quite early while the EKF SLAM

deviates only when the vehicle start turning. From the last section it is clear that an EKF
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Figure 4.3: Map of simulated environment and estimated vehicle trajectory using DR (dead
reckoning) EKF and UKF SLAM against the ground truth. The figure also show the estim-
ated map boundaries.

SLAM converges back to the correct value when the vehicle re-observes old landmarks. In

comparison, UKF -SLAM provides a better estimate throughout the trajectory. This can be

further demonstrated using 2σ error plot as shown in Figure 4.5 for individual vehicle state

dimensions. There are two important details to note from these plots:

• Uncertainty estimation of EKF is too optimistic, means at times filter estimation can

get well outside the 2σ error bound, this will result in overconfidence that can cause

wrong data association or new landmark initialization.

• AN EKF-SLAM provides a lower angular orientation estimation for the last section

of the trajectory which in this case brought the vehicle back to the starting position

but in the long run will lead to deviation from the actual trajectory.

Overall both EKF and UKF filter perform well in the straight section of the vehicle tra-

jectory; however, the performance of EKF degrades as soon as the vehicle starts turning

sharply.
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Figure 4.4: Simulated SLAM test accumulated position error comparison between DR,
EKF-SLAM and UKF SLAM.

4.4.2 Marina Dataset

To test the performance of the proposed SLAM algorithms on a real dataset we choose

the St. Pere Pescador, Spain abandoned marina dataset1. The dataset is collected using a

Mechanically Scanned Imaging Sonar (MSIS) with a maximum range of 50 m, and beam

resolution 0.1 m by 1.8 ◦. The vehicle covers a distance of 600 m moving at a maximum

speed of 0.2 m/s for 50 min. The vehicle trajectory can be seen in Figure 4.7 where after

an initial loop in the first section of the trajectory the vehicle take a long straight route to

reach the final destination. The vehicle was operating close to the surface in order to take

a ground truth GPS measurements at a rate of 14.5 hz, sonar line features are generated at

a much slower pace at every 6 sec. To facilitate the comparison the line extraction is done

before hand using the sonar measurement.

In addition to comparing EKF and UKF based SLAM, this test is intended to compare

the performance of sub-map based EKF-SLAM proposed in [14] with the proposed single

map SLAM framework with the right observation model. Our aim in this comparison is

to show how considering the four possible observation scenarios can prevent divergence

which might necessitate the use of small sub-maps. However it is important to mention that

the authors in their recent works proposed a better performing SLAM techniques (see [27,

114]). Figure 4.7 show the performance of these techniques using vehicle trajectories. The
1http://cres.usc.edu/radishrepository/view-one.php?name=abandoned_

marina
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Figure 4.5: A comparison of AUV pose error plots (2σ bounds) for the resulting estimated
trajectory. EKF-SLAM (orange) and UKF-SLAM (Blue) for the three axis (X , Y , and ψ).

trajectory from Ribas et al. EKF-SLAM misses the possible loop closure when the vehicle

comes back to the starting position in the initial section. In this configuration the system

uses two maps for going up and coming back. Even though the vehicle leaves the range

of the first sub-map just briefly, there is no mechanism to pick up from where it left in

the old map when it comes back again. Hence the overlap between the two sub-maps is

ignored which caused the error in Ribas et al. trajectory to be higher than the proposed

EKF and UKF SLAM filters for the section where the vehicle makes a return journey to the

starting position. On the other hand, UKF-SLAM performs better in the final section of the

trajectory where the measurement becomes unavoidably non-linear.

Figure 4.6 shows X-Y position error for St. Pere Pescador SLAM experiment. Errors

are computed at each filter update stage based on an interpolated GPS measurement. Ob-

viously, the use of a filter improved the result quite a lot. In comparison, the proposed

filters with a single map performed better than that of a sub-map based SLAM. As stated

before UKF-SLAM performs well in the later stage of the trajectory where there is a strong

measurement non-linearity.
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4.5 Probability Hypothesis Density Filter

One of the goals for this work (as mentioned in Chapter 1) is to explore the possible use of

Probability Hypothesis Density (PHD) filter in SLAM framework. Recently there has been

a lot of research outputs that propose PHD filter for various tracking applications. Most

of the available SLAM techniques use filters that stem from single target Bayesian filter.

These filters are extended using multi-target Bayes filter in applications where there exist

static or dynamic multiple targets [115]. However, these filters become computationally

intractable when the number of targets is very high or the measurement is extremely noisy.

These problems led to the birth of FInite Set STatistics (FISST) based multi-sensor multi-

target filter which represents observation and state using Random Finite Sets (RFSs) [116].

A closed form approximated filter recursion is provided by propagating Probability Hypo-

thesis Density (PHD) of the posterior multi-object state, hence the name PHD filter. PHD

filter propagates only the first order moment or intensity of the multi-target probability

density in a similar fashion that Kalman filter uses the mean of the posterior single-object

state.

Two types of PHD filter implementation are widely available one based on Sequen-

tial Monte Carlo (SCM) and the other using Gaussian mixture (GM) which outperformed

most traditional multi-target tracking filters [117, 118]. Recently, Mullane et al. [119] and

Lee et al. [115] have introduced PHD filter for solving the SLAM problem in cluttered

environment. In a typical PHD filter based SLAM framework the vehicle can be modelled

as a random variable while the RFSs assumption is restricted to the landmarks which will

reduce the complexity. These works claim that the PHD filter based SLAM technique has

the following advantages:

• An RFSs based representation provides a way to handle uncertainties on the number

and state of environmental features.

• A PHD filter is robust particularly in the presence of large data association uncertainty

and measurement clutter.

• A PHD filter SLAM filter does not require a special data association procedure.

In this framework landmarks are assumed to be born (as they appear the first time) then

get mature (when observed multiple times) then die (as they disappear). This will provide
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an efficient filter dimension management when dealing with moving objects. However in

our application the targeted environments are less likely to suffer from such problem. It

is rather important to keep old landmarks in memory so that a successful loop closure can

be achieved at later stage when the same landmark reappears. Besides, the use of line

features in stead of point features already provides a good amount of feature compression.

The robustness regarding measurement clutter is not that important here because the noise

level in current multibeam sonars is manageable. Hence, the only plausible reason to use

FISST for our SLAM based navigation system will be to avoid complications arising from

data association. Of course, it is also important to see if there is anything that gets lost by

using PHD-SLAM, which could be either in accuracy of landmark representation or speed

of computation. In the remainder of this Section, we will briefly demonstrate the work

done to validate the performance of GM-PHD filter for sonar based mapping (for details

see Abdella et al. [120]).

4.5.1 Gaussian Mixture-PHD Filter

One way of implementing PHD filter is using Gaussian mixtures (GM) which can be taken

as a direct counter part for EKF in single target tracking. Vo and Ma [118] first proposed

a GM-PHD filter for tracking multiple targets with linear Gaussian dynamics and Gaussian

birth models. These assumptions are strongly sensible in our application since features are

coming from stationary structures and noise in multibeam sonar sensors can be assumed to

be Gaussian as demonstrated in Chapter 3.

When using FISST for solving the SLAM problem it is customary to represent the robot

state using random vector since there is no ambiguity about the number of vehicles in the

mission. This will also simplify the overall complexity of the system. Since the vehicle is

represented in a similar approach as in EKF-SLAM discussed in Section 4.2, if there is a

difference it has to be mostly through the map representation. Hence instead of comparing

a complete SLAM technique it is more apparent to compare a PHD filter based mapping

technique with a mapping technique that uses an EKF. Hence the vehicle state Xv (shown

in Equation 4.1) assumed to be accurate and the filters are compared based on their feature

representation accuracy.

The state Xk at time k is composed of the map features which are composed of a RFS

that represent the location of line features in the space X ∈ Rnx . Similarly, sonar measure-
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ment Zk is modelled using a RFS which are sampled from a measurement space Z ⊆ Rnz .

The state and measurement at time k is given as,

Xk = {mk,1,mk,2, . . . ,mk,Nk} ∈ F (X ), (4.47)

Zk =
{
zk,1, zk,2, . . . , zk,n(k)

}
∈ F (Z) , (4.48)

where F (X ) and F (Z) are sets of respective collections of all finite subsets of X and Z
while mk,i = [ρi, θi]

ᵀ, Nk is number of map features in the state. Measurements in Equa-

tion 4.48 are given with respect to the map origin as (ρ, θ) pairs.

The filter recursion starts using previous time posterior GM intensities which can also

be used to represent zero initial intensity,

υk−1(x) =

Jk−1∑
i=1

wik−1N (x;mi
k−1, P

i
k−1), (4.49)

where wik−1, mi
k−1,P

i
k−1 are the weight, mean and covariance of the ith Gaussian compon-

ent. Part of this intensity will survive in the next stage based on a survival probability pS(xk)

which is assumed to be independent of the sate in the derivation of the filter. The rest of the

intensity introduced through an adaptive Gaussian mixture birth intensity γk(x), which is

driven by the measurement.

γ =

Jγ,k∑
i=1

wiγ,kN (x;mi
γ,k, P

i
γ,k), (4.50)

where mi
γ,k and P i

γ,k are the location and uncertainties of new born intensities, respectively.

Hence the PHD prediction is given by,

υk|k−1(x) = pS(xk−1)υk−1(x) + γk(x). (4.51)

However, the sum of two GM is another GM which can be rewritten as,

υk|k−1(x) =

Jk|k−1∑
i=1

wik|k−1N (x;mi
k|k−1, P

i
k|k−1). (4.52)

If Nk−1 is the number of feature from previous step the new number of feature after predic-
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tion Nk|k−1 becomes,

Nk|k−1 = Nk−1 · pS(xk) +

Jγ,k∑
i=1

wiγ,k. (4.53)

The next stage requires updating these intensities using the new measurement. Unlike

single target EKF update, PHD filter update takes into account the possibility of missing

a map feature in the current field of view from a new measurement which is determined

by probability of detection pD(xk). Assuming pD(xk) to be constant thorough, the PHD

update is given by,

υk (x) = [1− pD (x)] υk|k−1 (x) +
∑
z∈Zk

υD,k (x; z) , (4.54)

where

υD,k(x; z) =

Jk|k−1∑
j=1

wjk (z)N
(
x;m

j(z)
k|k , P

j
k|k

)
(4.55)

wjk(z) =
pD (x)wjk|k−1q

j
k (z)

κk(z) + pD (x)
∑Jk|k−1

l=1 w
(l)
k|k−1q

(l)
k (z)

, (4.56)

qjk(z) = N
(
z;Hkm

j
k|k−1, Rk +HkP

j
k|k−1H

T
k

)
, (4.57)

mj
k|k(z) = mj

k|k−1 +Kjk
(
z −Hkm

j
k|k−1

)
, (4.58)

P j
k|k =

[
I −Kj

kHk

]
P j
k|k−1, (4.59)

Kjk = P j
k|k−1H

T
k

(
HkP

j
k|k−1H

T
k +Rk

)−1
. (4.60)

As in Equation 4.52 this can be rewritten as a single GM as,

υk(x) =

Jk∑
i=1

wikN (x;mi
k, P

i
k), (4.61)

where the total number of posterior targets is given by,

Nk = Nk|k−1 [1− pD(xk)] +
∑
z∈Zk

Jk|k−1∑
j=1

wjk(z). (4.62)

Form Equation 4.54 it is important to note the exponential growth of the number of

intensities based on the measurements. Each predicted intensity is propagated by every

measurement where only those matching intensities result in a significant intensity weight.
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However, this process will add a computational burden on the filter as well as introducing

too many insignificant intensities. The intensity expansion can be limited by using tar-

get management schemes where after an update closely spaced intensities are merged and

only Nk number of intensities with the highest weights are propagated for the next stage.

The mean of these Nk number of intensities gives the new map posteriori Xk.

4.5.2 PHD Filter vs KF for Sonar Based Mapping

In order to check for any improvement that can be achieved through the use of FISST based

representation of sonar line feature measurement, here a comparison is made between KF

and PHD filter based sonar mapping. The Kalman Filter (KF) implementation is similar to

the EKF filter discussed in Section 4.2, except here the filter has just an update step where

the state is explicitly the map state, and measurements are given with respect to the map

origin. The later choice turn the observation Jacobian in to identity.

For this comparison a simulated arena shown in Figure 4.8 is used, where the test en-

vironment is composed of five walls. Among the walls, landmark 5 is a circular arc centred

at (3, 0), while the rest are a straight walls. The vehicle path is shown in the centre where for

each run the vehicle starts at (0, 0) with random orientation. Then after ten steps forward

with random steering the vehicle goes back to the origin and repeat the process multiple

times. At each step sonar measurements are taken then transformed to map origin using

true vehicle pose and transformation function g (·)(see Equation 4.18). Once transformed

the measurements are altered using white additive Gaussian noise which is then fed to either

of the two filters for mapping.

The constant probability of survival and detection are set at pS(xk) = 0.97 and pD(xk) =

0.99, assuming a significant survival chance and a very strong detection probability once

the landmark is in the line of sight. For an initial test the sonar measurement noise is set

to [0.15m, 2◦] STD, which is later increased to demonstrate the power of PHD to tackle

cluttered measurement. The result of the first experiment is shown in Figure 4.9 where

the final KF map state and the state of PHD filter throughout the run are shown over the

measurements and the true position of the test arena walls. The circular section of the arena

is represented using multiple tangent lines, hence the correctness of any line around land-

mark 5 is determined using the closest possible tangent. The map features from the KF are

very close to the ground truth where the right side arc is represented using two lines. From
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74.

the result, map features in PHD filter based mapping run back and forth around the actual

ground truth in stead of converging on a single value as in KF. In case of the PHD filter all
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Figure 4.9: A comparison of PHD filter and KF based sonar mapping, map features are
shown in parameter space against the measurement and ground truth.

the map features at different time steps are shown in the figure where the size of the marker

indicates the magnitude of the corresponding intensity weight. This is mainly due to the

fact that intestines in PHD filter can diminish unless there exists an extra map management

system (which is not considered here). Representation of map feature in PHD filter can be
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demonstrated using visibility map in Figure 4.10. As show in the figure, features in KF

mapping remain with in the filter once they are initialized even though the vehicle does not

visit them in subsequent steps. However, in case of PHD mapping when intensities disap-

pear from the view for a while their weight diminishes which eventually cause the intensity

to die. For instance, landmark 1 is first introduced after the 10th iteration then it disappears

a little before the 30th iteration. Then the same landmark is re-introduced after the 40th

iteration as a new landmark. This might not be a problem in case of target tracking or in the

presence of plenty of landmark feature, in stead it will provide filter dimension reduction

capability. However, in a line feature based representation the feature reduction has already

been achieved and further reduction on the feature dimension in SLAM application will

cause loop closure to fail.
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Figure 4.10: Comparison of map landmark visibility between KF and PHD filter based
mapping. In PHD filter based sonar mapping landmarks can die and re-born. KF map
features remains in the map once introduced.

To compare the performance of the two filters the landmark accuracy is measured at

each time step. For comparing map features with the ground truth a distance measure dh

(see Equation 3.8) used where h = 10◦. Figure 4.11 show the RMSE landmark error at each

time step for the same experiment where landmarks are associated to the closest ground

truth lines. KF mapping shows an improved landmark accuracy as they are observed more

and more except for the slight increase in the total error as new landmark features are

added into the filter. However, the same can not be said about PHD filter based mapping

which generally has a higher error at all time in comparison. Specifically there are a couple
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of instances where the landmark error gets extremely high (around 24th and 48th iteration).

This is due to artificial landmarks that are generated from a combination of two independent

Gaussian kernels. Two of these artificial landmarks are shown in Figure 4.9, were these

landmarks are generated by a combination of landmark 1 and 4 (top and bottom border

walls). The Gaussian kernels of these two landmarks are overlapping and causing a third

ghost landmark to appear between the two landmarks, which is associated with either of

the two landmarks when computing the error and this will give rise to the occasional high

peak in the total RMSE.
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Figure 4.11: PHD filter vs KF based sonar mapping comparison of landmark RMSE error
at each time step. Weighted euclidean distance is used to estimate the closeness between
map feature and the closest ground truth line.

The real success of PHD filter can only be appreciated in the presence of stronger meas-

urement noise in a more cluttered environment. In a later test the measurement noise is

increased to [0.5m, 5◦] STD and after each feature extraction stage random lines are ad-

ded into the measurement to emulate excess measurement clutter. The result is show in

Figure 4.12 where except for landmark 4 all the other landmarks have stood out from the

extreme measurement clutter. However, in a typical application, features from actual mult-

ibeam sonar are much less noisy. Hence, the use of such powerful filter in addition to being

over engineering can result in a lower performance as demonstrated.
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Figure 4.12: PHD filter based sonar mapping with a strong measurement error and clutter.

4.6 Summary

The chapter has presented underwater SLAM techniques using sonar based line features.

It claims that the two main challenges in line feature based EKF-SLAM techniques are the

use of correct observation model and dealing with strong non linearity either on the motion

model or the observation. For the earlier, a piecewise observation function is provided

where the choice depends on the position of the vehicle with respect to an observation,

its associated feature in the map and the map origin. In the case of strong non-linearity

UKF-SLAM is shown to out perform EKF-SLAM. On the other hand, the test on St. Pere

Pescador marina dataset proved that the use of sub-map is not an ideal solution for a test

environment under 300 m by 200 m. The final section of the chapter presented a PHD filter

based sonar mapping as an alternative framework for highly cluttered measurement with

huge uncertainty. However, having a multibeam sonars (BlueView P900-2250 and MB2250

see Chapter 3) with significantly smaller noise and gaining a good feature compression

from a line segment based representation, the need for alternative framework is limited.

Besides, for a typical low noise sonar measurement a standard Kalman Filter based mapping

performs better than GM-PHD filter based sonar mapping. In the next chapter, the SLAM

systems discussed here are integrated into a novel attentive navigation system.
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Chapter 5

Focus of Attention for Underwater

Navigation

In the preceding chapter, a sonar line feature based SLAM algorithm has been presented

with a notion of passive sensing; hence, all the experiments and the evaluations involving

multibeam sonar were performed by mounting an imaging sonar at a fixed angle relat-

ive to the vehicle (typically looking forward unless otherwise mentioned). In this chapter,

these results are further extended using an active sensor set-up based on sonar focus of

attention (SFoA). In addition to proposing a novel acoustic range measurement based sa-

liency map generation technique, this chapter presents a comparison between passive and

active/attentive underwater navigation.

5.1 Sonar Based Salience Map

As discussed in Chapter 2, computational attention researches so far base their perception

of environment on visual images as in most primates. Hence, there has been no significant

contribution of attention based sensing in the underwater environment where the predom-

inant observation sensors are acoustic. Hereby, a first step towards filling this gap, we

introduce a novel top-down acoustic salience map. A top-down salience map uses previous

experience, deliberate plans or current goal in hand to determine the next best view ori-

entation. The neurophysiological principle behind a top-down attention mechanism is less

understood. Yet it is clear that top-down salience directs and focuses resources and neural

activity to a particular location, feature or object of interest. Obviously, such type of de-

112



(a) (b)

Figure 5.1: Where to direct a sonar for a better feature? In (a) the choice is between getting
a feature or looking towards an empty space; however, in (b) the choice among multiple
features around the robot which require salience map.

cision is easier when the choice is whether to look towards a wall or an empty environment

(as shown in Figure 5.1). However it requires further analysis and the use of evaluation

metrics when the decision involve choosing among the different walls or pillars. In such

circumstances the decision metric is prepared as a salience map either as space based or ob-

ject based salience (see discussion in Chapter 2). The first measures the salience of region

around an observer while the later one uses the salience of nearby objects for determining

the best object to look into. For our navigation application, a space based salience is more

suitable which gives higher priority to good sonar features rather than a segmented or clas-

sified underwater objects. Besides, the most salient set of features can arise from multiple

objects, further supporting the choice of space based salience.

For range based measurement, as in sonar sensing, a good alternative for synthesizing

a salience map is the use of measurement constraints rather than features present within

measurements. Hence, the next stage requires using sonar characteristics for formulating

salience metrics which then leads to identifying the best features. From the discussion in

Chapter 3, one of the key factors for obtaining a good beam reflection is to have a zero

angle of incidence. In case of multibeam, the reference beam for angle of incidence is set

at the middle because if the central beam is normal to a surface then the other beams will

have at most an incidence angle equivalent to half the FoV of the sonar. Another factor to

consider is the overlap between a feature and the sonar view range, a good feature is only

good if it can be reached by rotating the sonar pan and tilt unit. The proposed salience
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metrics is based on such type of fundamental measurement constraints taken partly from

the work of Chen and Li [84]. However a complete evaluation of these metrics require two

other key ingredients: knowledge of features surrounding the vehicle, and as this is a space

based salience map it also requires the representation of certain points around the vehicle

for computing the salience value for. The knowledge of environmental features is obtained

from a local map which is a transformation of the current SLAM map into predicted robot

pose. In areas where there exist unknown sections of the environment around an AUV, a

deliberate full scan is accomplished to enrich this map. At this stage, in order to reduce

the computational complexity only those features which are close enough to the vehicle are

considered to generate local map. This is achieved by first computing the distance from

the current vehicle position to each line segments and their end points. Then a segment is

removed if all the three distances are above the maximum sonar range. When it comes to

salience computation points, 2D virtual grid points are generated all around the robot using

empirically defined grid spacing gs. These grid points are confined with in a circle of radius

equal to the maximum sonar range. The grid spacing gs is determined by the precision of

the scanning device and the level of detail required for the final salience map. A very

small gs makes it difficult for the pan and tilt unit to differentiate between adjacent grid

points while large gs results in a reduced focusing capability (we will have more discussion

on grid spacing in Section 5.4). Finally these grid points are assigned salience weight

based on their relationship with line segments in the local map. The final salience weight is

mainly a combination of three weights computed at each grid point per line segment: angle

of incidence weight, overlap weight and distance weight.

5.1.1 Grid Point Generation

In an initial set-up, grid points are spread across a square area around the vehicle with

dimension twice the maximum sonar range. The first grid point is put at top-left corner

of this square then subsequent grid points are determined based on the grid spacing to

result in grid point distribution as shown in Figure 5.2 (a). Alternately, the grid points can

be generated in spiral order using gs as the average distance between layers of the spiral as

well as the distance between two constitutive grid points as shown in Figure 5.2 (b). Spirally

generated grid points have a much broader range and orientation spectrum compared to a

square grid points. In this configuration no two grid points lie at exactly the same distance
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Figure 5.2: Attention grid types (gs = 1.4 & maximum sonar range is 5m). a) square grid,
grid points share common orientation and range b) alternative spiral grid

from the vehicle though there might arise an occasional overlap in their orientation.

5.1.2 Angle of Incidence Weight

Angle of incidence weight Ga measures the quality of the sonar reflection for particular

ensonified line feature when looking through a grid point. Sonar return is maximum when

a sonar beam hits a flat structure at normal angle. In Figure 5.3, for line Li the angle

weight distance dia at a grid point P2 is given by the angle between the line normal and

the orientation angle of the grid point P2 (i.e. dia = θg − θi, where θg is the orientation of

the grid point while θi is orientation of the ith line segment). The corresponding angle of

incidence Gaussian weight for NL local lines is given as

Ga =
1

NL

NL−1∑
i=0

ηaN
(
dia;µa, σ

2
a

)
, (5.1)

where ηa is a normalization factor, µa = 0 and σa is set to π/6 so that the weight becomes

very insignificant as the incidence angles approach to π/2. One things to notice from the

figure, there are certain grid points thorough which we can possibly see multiple line seg-

ments including grid point P 2. However, grid points P1 and P3 will only allow Li to be

seen and between them P3 will make it possible for most of the sonar beams to hit the line

close to a normal angle.
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Figure 5.3: Angle of incidence attention weight, maximum for low incidence angle.

5.1.3 Overlap Weight

Overlap weightGo signifies the section of a line segment that can be seen when pointing the

sonar in the direction of a grid point. For instance in Figure 5.4 (a), the sonar points towards

grid point P1 with a sonar field of view SFoV and the reachable span of line segment Li

represented as a triangular span lispan for i = {1, 2, 3}. The overlap distance is computed as

range of angle where the sonar SFoV and lispan overlap, and the maximum overlap distance

is SFoV . Hence, for a grid point P = (ρg, θg) and a line segment Li = (ρi, θi), the overlap

distance dio is given by

dio = −|θg − θi|+
(
SFoV + lispan

)
2

,

where angle difference |θg−θi| is wrapped between−π and π. After computing the overlap

distance the overlap Gaussian weight at each grid point for NL number of local map lines

is given by

Go =
1

NL

NL−1∑
i=0

ηoN
(
dio;µo, σ

2
o

)
, (5.2)

where ηo is an overlap weight normalization factor, and the mean and standard deviation

are set as µo = SFoV and σo = SFoV/2 so that the weight diminishes slowly for an overlap

distance below half the sonar view angle. Figure 5.4 (b) shows two grid points P1 and P2,

through which either L1 or L2 can be seen. Even though both line segments have equal

length, L2 has a better overlap with the sonar FoV than L1. As a result grid point P2 has a
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(a) (b)

Figure 5.4: Overlap attention weight. (a) lines contributing for an attention weight at a grid
point P1, (b) two equal length line segments providing different weight for two attention
points, maximum Go from a line is obtained when it is with in a reachable distance.

greater salience than P1 based on overlap weight.

5.1.4 Distance Weight

Distance weight Gd is an other weight which is incorporated to add temporal stability to

the salience map. In Figure 5.5 (a) both grid points P1 and P2 have the same Go and Ga

for L2 or L3. Additionally, two grid points are more likely to have a higher overall salience

since they are in the direction of an actual corner. Imagine the outcome if the robot moves

slightly without updating the salience map as shown in Figure 5.5 (b). Looking through

the grid point which is far from the line segments (in this case P1) results a huge deviation

from the actual corner for a slight robot position change. This will make the salience map

temporally unusable. Hence Gd is introduced to encourage the selection of P2 from P1.

The distance metric did is computed as the distance between a grid point Pg and a point Pi

which is an intersection point between the line segment Li and the line connecting the sonar

origin to the grid point, or one of the line end point in case the intersection is outside the

line segment, did =‖ Pg − Pi ‖. Hence the corresponding distance weight for a sonar with

maximum sonar range Sr_max is

Gd =
1

NL

NL−1∑
i=0

ηdN
(
did;µd, σ

2
d

)
, (5.3)

where ηd is a normalization factor, µd = 0 and σd = Sr_max/6.
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(a) (b)

Figure 5.5: Attention distance weight. a) P1 and P2 have the same Go and Ga, but P2 has a
better Gd, (b) using an old grid points after a small AUV movement.

5.1.5 Combined Sonar Salience

A scaled sum of the three salience weights gives an initial combined salience map Scomb,

Scomb = αoGo + αaGa + αdGd, (5.4)

where αa, αo, and αd are empirically defined parameters between [0, 1] and the sum of the

three weight remains to be one. The choice of good scaling parameters depends at least on

the type of sonar sensor. For instance, angle of incidence weight is higher for P900-2250

compared to MB2250 due to a higher variation of intensity based on beam incidence angle.

The best way to learn these weight factors is by plotting an attention flow diagram which

is a map that shows the possible focus of attention (FoA) direction at different places of

a given environment. The attention flow diagram shown in Figure 5.6 a) is obtained by

setting the weight factors as αa = 0.24, αo = 0.51, and αd = 0.25, where the maximum sonar

range is set at 8 m. As shown in the figure the salience map has managed to pick out corner

points as a more informative features for SLAM navigation which is a desirable outcome

since they can provide correction in 2-DoF. However, changing these parameters to 0.85,

0.1 and 0.05 respectively causes the FoA system to lose some of these corners as shown in

Figure 5.6 b).
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Figure 5.6: Tuning FoA parameters. a) acceptable combination of parameters (b) wrong
parameters

5.2 Sonar Focus of Attention (SFoA)

Typically attention systems include Inhibition of Return (IoR) which is a disengagement

mechanism which shifts attention from the current view to the next conspicuous location.

However, the benefit of IoR is limited when the sensor directing unit is very slow and

the environment through which the vehicle navigates does change often. In these type of

situations it is rather preferable to avoid a pan and tilt unit oscillation or large changes

of FoA orientation. Too much rotation will cause perception instability where the sensor,

instead of keeping good features in sonar view, jumps from one to another before getting a

firm grip of old landmark. Additionally, since ROS PT-10-FB RS-485 pan and tilt unit is

mechanically limited between −π and π, if the previous pan orientation is −π + ε (for a

small positive angle ε) and a new FoA request is π, then the device has to make a full 2π

counter clockwise rotation. This will take a while and by the time the sensor complete

this large rotation, the vehicle might shift backward requiring a reverse rotation. Hence,

it is rather preferable to keep the unit where it was, which is not far from the requested

orientation in this particular case. In order to satisfy this requirement an additional map is

proposed as Inhibition of Large Rotation (IoLR).
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5.2.1 Inhibition of Large Rotation (IoLR)

Inhibition of Large Rotation (IoLR) is an inhibition map which is used to avoid large rota-

tion of the sonar mounting device. This map is added as an additional sensor constraint map

where at each grid point a weight is computed based on the previous time FoA orientation

angle θFoA. For instance, the change of angle required to move the pan and tilt unit from the

previous attention angle to the ith grid point orientation θi is given by dIoLR = θi − θFoA.

Then the IoLR weight of this grid point is given by

SiIoLR = ηIoLRN
(
θi − θFoA;µIoLR, σ

2
IoLR

)
, (5.5)

where µIoLR = 0, σIoLR = π/2 while ηIOLR is a normalization factor.

5.2.2 Attention Salience Map

In order to determine the final sonar sensor focus orientation, first the initial salience map

is fused with IoLR map to generate the final sonar salience map Smap. The level of contri-

bution from either of this two maps is determined by a constant k ∈ [0 . . . 1]:

Smap = k ∗ Scomb + (1− k) ∗ SIoLR. (5.6)

Finally, the FoA angle is determined by winner-take-all (WTA) technique where a grid

point with the maximum salience value indicate the most salient location in space. The full

procedure of our sonar salience map building and FoA generation technique is summarized

in Figure 5.7. The vehicle is centred at the origin of a local map, from this position all the

map wall line segments, except L1 and L4, are partially reachable. The dotted circle on the

local map shows the possible sonar range for different sonar orientations while the previous

sonar orientation is indicated as a shaded sector. The angle of incidence weight is pointing

down word whereL6 andL7 combine to provide a strong weight. However, both the overlap

and distance weight picked the corner between L2 and L3 which is also the brightest spot

on the initial salience map. The main difference between the initial salience map and the

final salience map is the bottom left corner which appear more bright initially but fades due

to an inhibition from IoLR map. Using WTA strategy the final focus orientation will be

around 45◦ counter-clockwise from the vehicle heading.
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Figure 5.7: Top-down sonar salience computation using line segment based local map and
sensor parameters.
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5.3 Attention Based Active SLAM

The main aim of this thesis is to devise a system that uses sonar salience map for improving

underwater navigation (shown in the thesis outline Figure 1.4). In order to achieve Hence

the last stage of this work requires substituting the passive SLAM discussed in Chapter 4

by an active FoA based SLAM algorithm. This is done by adding the FoA mechanism

just before each observation to acquire features that can maximize measurement overlap

between consecutive vehicle position or identify the best feature possible for a robust land-

mark mapping. Even though we have already established that UKF-SLAM can be far more

superior than EKF-SLAM in various circumstances, here both filters are used to validate

the proposed attentive system. The proposed FoA based system is filter independent and

can be used on top of most SLAM algorithms as long as feature quality and quantity affects

the performance of these systems. In the next section the proposed attentive navigation

technique is first validated using simulation tests then in a real underwater environment.

5.4 Experimental Results

Testing the validity of the proposed system is done in two stages. First the algorithm is

tested rigorously in a simulated environment. These tests provide the overall performance

of the complete navigation system in comparison to a passive SLAM navigation. Addition-

ally, the simulated tests are intended to determine the significance and importance of each

parameters involved in the proposed system. The second stage of this test involve a real

vehicle and/or a real multibeam sonar sensor test in the OSL tank and Wave tank (detail of

these test facilities is provided in Section 1.2).

5.4.1 Simulated Tests

Before embarking on a real underwater test, it is important to determine the importance

of each parameters introduced in the formulation of sonar salience map. A simulated

test can also provide a controlled ground truth to compare the proposed attentive SLAM

with an equivalent passive sensor based SLAM technique. Test environments are built for

UWsim [4] through which a vehicle is driven for collecting sonar data as well as vehicle

trajectory. Typical test environments include those shown in Figure 5.8. The figure shows
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(a) Fort William underwater centre pier.

(b) Wave tank indoor test facility.

Figure 5.8: UWsim simulation of real world environment for initial testing. Actual images
(left), and UWsim simulated images (right).

simulation of pillars and cross beams of Fort William underwater centre as well as walls

and artificial beach of wave tank indoor test environment. However, in the some of the tests

presented here, the wave tank structure is modified to match Figure 4.3 for extra complexity.

The sonar sensors for the test is devised based on the procedure discussed in Chapter 3.

In all these tests a simulated Blueview MB2250 (see Figure 3.1) sonar sensor is used, al-

though a similar result can be achieved by using P900-2250 sonar sensor with a different

image pre-processing set-up. The simulated vehicle returns an integrated 2D velocity and

position information for the test, where the positions are used for generating sonar meas-

urements as well as a ground truth while the velocity sequences are used to generate noisy

control commands. Next, the detail for the test arena set-up for all the simulated test is

presented.

Simulation test arenas

Three test environments are used for validating the proposed algorithm and the different

parameters. Before discussing the result from these tests, here are the details of each test

set-ups with the corresponding arenas and motion trajectories.
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Figure 5.9: Test type-A and type-B map of simulated environment and trajectory. Thick
lines indicate tank boundaries, while trajectory A and B are vehicle paths for test type-A
and type-B respectively. In both trajectories the vehicle start from the map origin and return
to a nearby point.

Test type-A : The environment for tests ;under this category is shown in Figure 5.9 where

the ground truth trajectory of the vehicle is designated as A. In this run the vehicle

starts from the bottom left corner of the test arena and moves to the right, then half

way through the map it switches to the top section of the map. The vehicle has a

constant surge velocity with a set of angular rotation to choose from to generated the

desired trajectory.

Test type-B : This type of tests use the same arena as test type-A yet the vehicle in this case

follows trajectory B, as shown in Figure 5.9. For this run the trajectory is generated

manually using joystick by driving the vehicle next to the wall throughout the full

mission. The use of joystick makes the trajectory more rough with variable velocities

in forward later direction as well as variable angular rotation.

Test type-C : The arena and the corresponding trajectory for this test type are shown in

Figure 5.10. This type of tests are added to provide a slightly different scenario for

validating system parameters. The addition of pillar like structures and grooves is

intended to simulate real life pier environments.

Test type-D : This is by far the largest arena for testing the performance of attentive nav-

igation in long missions. The test arena, shown in Figure 5.8, is built based on the

Fort William underwater centre pier. The structure is composed of a set of pillars
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Figure 5.10: Test type-C map of simulated pier environment and trajectory. Thick lines
indicate pillar and harbour boundaries. The vehicle path is shown as trajectory C, which
starts from the map origin on the left then goes all the way to the right and returns to a point
6 m off the origin.

and cross beams connecting these pillars. In this test type the vehicle makes 300 m

trajectory, starting from the left side of the structure and finishing at a nearby point

after visiting significant portion of the pier.

In all of these simulated tests, the indicated trajectories are used as a ground truth. For each

test type a noisy version of their corresponding trajectory is generated by adding zero mean

velocity noises with standard deviation given by 10 % of the maximum velocity in each

direction. The rate of pose update is 2 hz except for test type-A which runs at 1 hz, which

is in synch with sonar measurement while the other get sonar measurement at every other

control update. The sonar sensor is simulated using the procedure discussed in Section 3.1.3

where the line segment deviations in ρ and θ are set as σρρ=2 cm and σθθ = 1.0◦. Next the

result from simulated experiments is presented where some of these tests are intended to

tune parameters of attentive SLAM.

Tuning grid spacing gs

In order to determine the effect of changing grid spacing an attentive SLAM test is set-up by

varying the grid spacing for each run. During these runs, all the other parameters, including

the odometry noise per batch, are kept constant. Individual runs are compared using the

mean X-Y RMSE position error for EKF-SLAM and UKF-SLAM. This process is repeated
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Figure 5.11: Test type-D map of simulated Fort William pier and AUV trajectory. Thick
grey lines indicate pillars and beams while the vehicle path is shown by trajectory D. The
map origin is assumed to be the starting position, then the vehicle moves to the right making
an intertwined loops covering a total of 300 m before coming back to the starting area.

ten times to get the mean position error for each grid spacing as show in Figure 5.12.

Figure 5.12 shows the result for tests runs using test type-A, type-B and type-C. A first

look at the results in the figure indicates that a smaller grid spacing lowers the mean RMSE

position error. However, there is a minimum grid spacing below which the change in grid

spacing is less significant. In this particular case the limit is 2.4 m for a sonar sensor with

maximum range of 4 m, below which the error is roughly constant with occasional peaks.

The lower limit of this result is set by hardware constraint, the pan and tilt unit has a

minimum resolution of 2 ◦, finer grid spacing will not introduce any new possible sensor

orientation. Occasional dips in the error, especially between gs = 1.0 m and gs = 2.4 m

for test type-C (see Figure 5.12 (c)), this may indicate the presence of important sensor

orientations throughout the mission that can be introduced through the use of certain grid

spacing. Note that these fluctuations are less apparent for test type-A and type-B which

share the same test arena. The best grid spacing can only be identified based on actual

test environment. In real sonar experiment grid spacings which result in a minimum mean

position error are identified by manually tuning the grid spacing in a simulated environment.

Generally, when grid spacing is too high it results in a significant increase on the mean

position error, which in extreme case accompanied by filter divergence as shown in Fig-

ure 5.12 (b) UKF-SLAM or Figure 5.12 (c) EKF-SLAM both at gs = 3.6m. For such
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(a) Test type-A X-Y position error vs grid spacing.
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(b) Test type-B X-Y position error vs grid spacing.
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(c) Test type-C X-Y position error vs grid spacing.

Figure 5.12: Attentive SLAM X-Y position error for variable grid spacing using three
different simulation set-ups.
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Figure 5.13: Effect of changing grid spacing gs on the computational cost of sonar focus of
attention. The average single step SLAM computational time is also included for EKF and
UKF based implementations.

high grid spacing the number of salience points around the vehicle is limited which intern

narrows the choice of orientation for sonar image acquisition. This problem is exacerbated

when some of these limited grid points lie outside the vicinity of the surrounding landmark

features.

Another important factor to consider when choosing grid spacing is the computational

cost. The relationship between the number of grid points and grid spacing is governed by

inverse square law, i.e. no. grids ∝ 1/g2s (excluding those unreachable grid points within

a square area). Hence a lower grid space means an exponential increase on the computa-

tional cost of attention weight estimation. Figure 5.13 show this relationship between the

computational cost of computing sonar attention weights and the size of grid spacing. For

a reference the average SLAM prediction and update time is given for both EKF and UKF

filter. Accordingly, a single pair of SLAM prediction and update takes about 2.5 ms for

EKF and 3.8 ms for UKF, excluding feature extraction. The corresponding computational

cost for computing sonar salience varies between 2.0 ms and 6.6 ms for a grid spacing gs

of 1.0 m and 0.1 m respectively. In conclusion, the grid spacing has to be small enough to

provide enough detail yet large enough to avoid unnecessary computational cost without

compromising the upper limit to obtain enough salience points.
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Tuning scale parameters (αa, αo , αd)

The other import parameters in the proposed attentive SLAM technique are the scale factors

used for combining the three types of attention weights (see Equation 5.4). In order to de-

termine the behaviour of the system with these parameters a brute force approach is em-

ployed where each type of scale is varied between 0 and 1 with a step of 0.1. Then for each

valid combination of scales (i.e.the sum of the three scale has to be one), a SLAM test is

executed using test type-A, B, and C. Figures through 5.14 to 5.17 show results from these

experiments. In Figure 5.14 EKF and UKF-SLAM position errors are displayed against αo

and αd which is intended to identify regions in the parameter space that can lead to a re-

duced position error. One thing that sticks out among all the test types is the fact that a

pure angle of incidence weight based salience results in poor SLAM performance. This can

be explained looking back on how the angle of incidence constraint weight defined in Sec-

tion 5.1.2, which does not account the actual overlap between the line segment and the sonar

measurement. Hence, lines with an optimal orientation will result in a higher angle weight

even if the segment might be out of the sonar field of view. On the contrary, the other two

weights take proximity of the grid point to the segment in to account as a result the posi-

tion error for αo = 1 or αd = 1 is relatively small. Finding the best combination of scale

parameters is a difficult task which depends on the type of route and environment involved,

yet safe zones can be suggested based on the result. Generally, a smaller angle of incidence

scale (αa ≈ 0.1) and similar overlap and distance scales results in acceptable level of mean

RMSE SLAM position error. Individual relationship between scale parameter and position

error are presented in Figure 5.15-5.17. These results also include special SFoA runs where

the final attention orientation is determined by the mean of n-past attention orientations.

This provides a smooth transition from one orientation to the other reducing the load on

the pan and tilt unit as well as minimizing unaccounted vehicle dynamics disturbance. In-

cluding a smoothing factor in simulation mostly results in a slightly higher position error,

unless this procedure happen to avoid any oscillation in attention angle for a particular test

run. However, this rise is less significant compared to how much an attentive navigation

improve DR navigation system. Additionally, the individual parameter test confirms the

recommendation for smaller angle of incidence weight scale.
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(a) Test type-A EKF SLAM (b) Test type-A UKF SLAM

(c) Test type-B EKF SLAM (d) Test type-B UKF SLAM

(e) Test type-C EKF SLAM (f) Test type-C UKF SLAM

Figure 5.14: Tuning salience scaling parameters using EKF and UKF SLAM position er-
rors. Axis in each image correspond to the scale αo and αd, while αa runs diagonally where
it is maximum at the origin; Colour represent position error (dark blue:min - brown:max).
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Figure 5.15: Test type-A relationship between individual attention scale parameters and
SLAM X-Y position error. (a-c) show test results for αo , αd and αa respectively with
just IoLR. (d-f) show similar experiment with temporally smoothed attention orientations
which is given by the mean of the last five attended angles.
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Figure 5.16: Test type-B relationship between attention scale parameters (αo , αd and αa)
and SLAM position error. (a-c) result without temporal smoothing of attention angles,
while (d-f) show the effect of using temporally smoothed attention orientation with a win-
dow size of five steps.
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Figure 5.17: Test type-C relationship between attention scale parameters (αo , αd, and
αa) and SLAM position error. (a-c) result without temporal smoothing of attention angles,
while (d-f) show the effect of using temporally smoothed attention orientation with a win-
dow size of five steps.
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Fort William pier simulation

Navigation challenges faced in a small confined environments do not fully account prob-

lems faced in real life long mission navigations. To successfully address long mission

challenges a final simulation test is done using a mock-up of Fort William pier as shown in

Figure 5.11. The resulting position errors using a passive SLAM navigation are presented

in Figure 5.18. In this test the sonar sensor is mounted looking forward in the direction of

motion. The result demonstrates that even through a passive SLAM can reduce the overall

navigation drift, especially with a more non-linear UKF-SLAM, for much of the first sec-

tion of the trajectory the SLAM errors are comparable to that of DR position error. On the

other hand, Figure 5.20 shows a position error for a test using an attentive SLAM technique

where the sonar heading at each measurement pose is determined based on the output of an

SFoA system. This will cause the sonar to point upward in the first section of the trajectory

where there is a cross beam to provide a sonar feature. As a result the position error for

both types of SLAM is lower than their passive equivalent.

From Figure 5.18 and Figure 5.20 it can be seen around 362 sec the dead reckoning

error is much better than the SLAM error. At this time of the mission the vehicle is around

x = 68.8 m and y = −1.94 m. This position is magnified in the corresponding trajectories

shown in Figure 5.19 and Figure 5.21. The dead reckoning path momentarily get very

close to the ground truth X-Y position even thought there exist a significant drift in the

corresponding heading which ultimately cause the trajectory to deviate. This is merely due

to the shape of the test trajectory and sequence of trajectory errors for the particular run.

Table 5.1 summarise the comparison between passive and active SLAM navigation us-

ing Fort William pier simulation. Based on the result, the improvement introduced by using

a SFoA is independent of the type of SLAM filter yet an attentive UKF-SLAM provide the

lowest mean X-Y position error (1.06 m down from 9.82 m for DR) and the smallest max-

imum position error (2.18 m down from 26.14 m for DR).

5.4.2 OSL tank experiment

This test was carried out in OSL test facility (see Section 1.2). A BlueView MB2250 sonar

is mounted on the Cartesian robot using a pan and tilt unit. Though the Cartesian robot has

3-DoF for this test only the X and Y axis are used yet the vehicle model is kept as it was
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Figure 5.18: Fort William pier simulated SLAM test X-Y position error for DR as well as
EKF and UKF SLAM with the sonar mounted facing the direction of motion.
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Figure 5.19: Fort William pier simulated passive SLAM test vehicle trajectory and the
corresponding ground truth and dead reckoning path. The markers with in the magnified
section indicate the vehicle position at t = 362 sec.
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Figure 5.20: Fort William pier simulated SLAM test where a SFoA is used to determine
sonar heading before every image acquisitions. X-Y position errors are shown for DR and
SLAM navigations using EKF and UKF filter.

0 20 40 60 80 100

X-axis(m)

−20

−10

0

10

20

30

40

Y
-a

x
is

(m
)

GT

DR

EKF SLAM

UKF SLAM

Figure 5.21: Fort William pier simulated FoA based SLAM test trajectories for EKF-
SLAM, UKF-SLAM, dead reckoning and ground truth. The markers with in the magnified
section indicate the vehicle position at t = 362 sec.
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Sensor
mean STD max

DR EKF UKF DR EKF UKF DR EKF UKF
Passive 9.82 6.49 3.90 8.19 4.11 2.67 26.14 14.89 8.86
Active 9.82 5.37 1.06 8.19 3.30 0.77 26.14 12.49 2.18

Table 5.1: Fort William pier simulation experiment comparison between passive and attent-
ive SLAM using EKF and UKF filters. The mean, STD and maximum X-Y position errors
are shown in m.

discussed in Chapter 4. The pan and tilt unit is restricted with in the horizontal axis where

it can be steered left and right without changing the vertical alignment. The sonar sensor is

set to have 77◦ FoV and a maximum range of 4 m. The sonar sensor is publishing images

every 2 sec while the Cartesian robot provide a ground truth at the rate of 10 hz. For this

test three types of motion trajectories are devised which results in tests type-I, type-II and

type-III.

Test type-I : Figure 5.22a shows the trajectory for this test type, where the robot moves

from a corner to opposite corner then shifts to the next corner and repeat the process.

The challenge in this type of trajectory arises when the robot makes those long diag-

onal moves. In such circumstance features might not be available in the direction of

motion hence typical sensor configuration is bound to fail.

Test type-II : Lawn-mower pattern is a very common exploration trajectory in most ro-

botic applications. Figure 5.22b shows such type of mission set-up where the vehicle

makes three small loops. The longest sides walls are reachable from most part of the

trajectory but a better landmark grip can be obtained by incorporating the two other

ends of the tank.

Test type-III : Figure 5.22c shows a vehicle trajectory where the robot is always next to a

wall. These type of trajectories are common in a mission involving visual servoing.

In these applications the vehicle is initially pre-programmed to face the direction of

feature which does not account any other robotic requirement i.e. ease of movement

or change in the environment. This test is intended to show the capability of attentive

navigation to fill these shortcomings.

The starting position in all the three types of motion trajectories is indicated as O which is

also the map origin. The section of the trajectory starting from point A is repeated twice
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for all test types. These trajectories are then loaded to the robot as a sequence of two linear

velocities in the X and Y direction. A noisy version of these velocities are used as odometry

input with a linear and angular velocity noises having standard deviation of 0.005 m/s and

0.02 DEG/sec respectively. The simplicity of the motion model together with the smallness

of the confined test environment limits the non-linearity of the system, hence the test results

will be presented using a UKF filter based SLAM as changing the filter does not have any

effect.

With regards to sensor configuration five different set-ups are considered, out of which

two are based on SFoA. These sensor configurations are:

P1 : passive sensor configuration where the sonar is always looking in the direction of

positive X-axis (relative to the map frame).

P2 : passive sensor set-up where the sensor is always pointing in the direction of motion.

This is the most common sensor configuration when using forward-looking sonar.

P3 : this set-up is an intermediate between passive and active sensor set-up where the

sonar sensor continuously moves right and left where the speed of rotation is set

as 10 DEG/sec. There is no synchronization between the landmark feature appear-

ance and sensor orientation hence labelled as passive.

A1 : this one is an active attentive sensor configuration where the sonar is directed towards

the instantaneous maximum attention grid point.

A2 : this configuration provide an active sensing with inhibition of large rotation (IoLR)

(see Section 5.2.1) which helps to avoid abrupt sensor movement as well as unneces-

sary brief oscillations due to landmarks that disappear before the sensor makes full

rotation.

Next for each test type a SLAM run is executed using the five possible sensor config-

urations. The performance of a UKF-SLAM algorithm in this five sensor configurations

is compared in each test set-up. In order to increase the validity of this comparison the

odometry noise sequence is kept the same for all possible sensor configurations of a given

test run. For instance, the result shown in Figure 5.23-5.25 are obtained using the same

sequence of velocity noises where the trajectory is that of test type-I. Figure 5.23 shows the

resulting UKF-SLAM trajectory and map for the three passive sensor configurations (P1,
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(a) OSL-tank test-I trajectory.
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(b) OSL-tank test-II trajectory.
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(c) OSL-tank test-III trajectory.

Figure 5.22: OSL-tank test trajectories. Vehicle start position is indicated as O where the
section starting from A is repeated twice for the mission.
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P2, P3) for test type-I while that of the two active sensor configuration (A1, A2) is shown in

Figure 5.24. Although the odometry noise sequence for all the five tests is kept similar, the

measurements differ as a result of the difference in sensor orientations. Each of these fig-

ures also display the expected DR trajectory as well as the ground truth trajectory and map.

In order to generate the ground truth map the true position of the robot is used to transform

all the sonar measurements into the map frame from this the four lines are determined using

k-mean clustering algorithm.

For test type-I, P1 is the most restrictive sensor configuration where the vehicle is only

able to pick measurement when it is close to the right hand side wall. As a result the

UKF-SLAM trajectory for this run is barely differ from that of a DR trajectory. However

the result for P2 and P3 is significantly better where for most part of the trajectory the

vehicle manages to detect sides of the tank. The SLAM run for the forward looking sensor

configuration, P2, has especially managed to provide a better trajectory in the second loop

of the trajectory. This is actually expected as the vehicle for this test type is heading in the

direction of corners for most part of the trajectory. When it comes to sensor configuration

P3, the possibility of getting a good measurement in a run depends on relationship between

sections of the environment and order of rotations where a good synchronization results

in a reduced SLAM position error. On the other hand, attentive sensor configurations A1

and A2 result in a better SLAM runs using landmarks from various corner points of the

arena at different stages of the trajectory. Although for most part of the trajectory the

sensor orientation in A1 and A2 are similar, there is a noticeable difference at the top left

corner of the tank. At this corner, as the robot comes up and turn right, the configuration

A2 initially restrict the sensor from making a full rotation to direct the sonar towards the

corner, even though ultimately it makes the rotation as a result of persistent request. It is

important to see the effect of such change through a comparison of SLAM position error

estimate. Additionally, although the five trajectory plots can show individual performance

and corresponding sensor orientations, it is difficult to make comparisons among the five

sensor configurations. Hence Figure 5.25 shows the behaviour of the UKF-SLAM position

error through time for the five possible sensor configurations. As expected, the SLAM

error for P1 sensor configuration is in general divergent while that of all the other sensor

configuration shows a reduction in the later section of the trajectory due to a possible loop

closure through revisiting landmarks. The error in attentive SLAM navigation is generally
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lower than that of passive configuration. However P2 sensor configuration performing as

good in the last section of the trajectory. This is mainly due to the synchronization that

appear to happen between the sensor rotation and part of the tank for that section. This

synchronization can be lost in the long run or with the change on the type of trajectory as it

will be seen for test type-III later.

A similar sequence of experimental results for test type-II are shown in Figure 5.26-

5.28. As in the previous test, the trajectory for sensor configuration P1 is very close to

the DR trajectory as shown in Figure 5.26 a where the sensor is always pointing in the

direction of the right-hand side wall. In Figure 5.26 b the result for P2 sensor configuration

is shown. Although the sensor is intended to mimic forward looking sonar configuration,

the hardware limitations make it difficult to follow the sudden changes in the direction of

motion through the trajectory. For most part of the trajectory the sensor is looking inward

instead of the wall as result the trajectory is significantly off from the ground truth. The

result for configuration P3 is relatively good where the trajectories for the first and the

second half are overlapping as a result of loop closure. Additionally, the sensor is getting

enough sonar acquisitions of the walls even though the same cannot be said regarding the

corners.

Attentive sensor configurations appear to direct the sonar in the direction of corners

whenever possible as shown in Figure 5.27. Additionally for these two sensor configur-

ations the amount of sonar measurement is higher, this is reflected on the coverage of the

final SLAM map. A direct comparison of the performance in all five sensor configuration is

presented in Figure 5.28 in the form of position error throughout the full period of mission.

The SLAM result for P1 is very close to the DR navigation error as in case of test type-I.

Among the rest, sensor configuration P2 resulted in a distinctively lower SLAM perform-

ance. This is due the reduction in the number of landmark sighting as depicted by the final

SLAM map in Figure 5.26 b. The choice among the other three type of sensor configuration

is slightly vague for this test type.

Lastly, the performance of the five sensor configurations is compared using test type-III

as shown in Figure 5.29, Figure 5.30 and Figure 5.31. As in previous test, the sensor in P1

configuration only managed to pick up the right hand side wall which leads to a poor SLAM

performance. In case of P2, even though the sensor managed to get a better sighting of the
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(a) P1: sensor directed towards +ve x-axis.
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(b) P2: sensor looking forward.
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(c) P3: sensor rotating continuously.

Figure 5.23: OSL tank test type-I SLAM trajectories for passive sensor configurations.
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(a) A2: attentive sensor configuration using instantaneous value.
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(b) A2: attentive sensor configuration with IoLR.

Figure 5.24: OSL tank test type-I SLAM trajectories for attentive sensor configurations.
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Figure 5.25: OSL tank test type-I UKF-SLAM XY position error for different sensor con-
figurations.
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(a) P1: sensor directed towards +ve x-axis.
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(b) P2: sensor looking forward.
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(c) P3: sensor rotating continuously.

Figure 5.26: OSL tank test type-II SLAM trajectories for passive sensor configurations.
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(a) A2: attentive sensor configuration using instantaneous value.
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(b) A2: attentive sensor configuration with IoLR.

Figure 5.27: OSL tank test type-II SLAM trajectories for attentive sensor configurations.
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Figure 5.28: OSL tank test type-II UKF-SLAM XY position errors for different sensor
configurations.
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walls, the SLAM trajectory (see Figure 5.29 b) is significantly off the ground truth. This can

be due to the high incidence angle when making sonar acquisitions while moving parallel

to walls. Unlike previous test types, this trajectory expose the pitfall of configuration P3.

In the previous two test types a contentious rotation is able to provide acceptable level of

sonar measurement; however, for test type-III it is rather important to keep the sonar sensor

orientation steady in the right direction. This is what both attentive sensor configurations

(A1 and A2) managed to achieve using the decision from an FoA system. The sensor ori-

entations in Figure 5.30 are noticeably stable for the long straight sections of the trajectory

where the sonar is directed towards wall features. A direct comparison of the SLAM posi-

tion error resulting from the five sensor configuration is shown in Figure 5.31. As expected

the two attentive sensor orientations provide the best UKF-SLAM performance except for

the first few seconds. During this period the robot moves from the starting position to the

beginning of the loop where the sonar started. Lack of measurement early on causes a bias

on the overall vehicle position leading to slightly shifted map.

All the OSL tank test results discussed so far based on a single run per test type and

sensor configuration. However, before making any generalization it is important to see the

repeatability of these tests. Obliviously, it is difficult to repeat the full test multiple times,

hence for the next result the initial data is altered using a new sets of odometry noises to

generate 100 distinct SLAM runs per test type per sensor configuration. The mean, STD

and maximum X-Y position errors from these 100 runs are presented in Table 5.2-5.4.

Table 5.2 and Table 5.3 show the summary of SLAM position error for test type-I and test

type-II using the five sensor configurations. For these trajectories the best non attentive

sensor configuration is P3 where the sensor is continuously moving. The movement of

sensor for this test type seems important even for attentive sensing where sensor configur-

ation A1 provides a much lower mean position error than A2. However for test type-III

(see Table 5.4) the best non attentive sensor configuration is P2 where the sonar is looking

forward. As it has been presented in Figure 5.29 for this test type even if the forward-

looking sonar cannot get a strong sonar measurement looking directly into the walls for

most part there is a small fraction of the sonar beam that hits the nearby boundary which

leads to a relatively better performance. However, when it comes to attentive sensing still

A1 provides the lowest navigation error yet this difference is less significant in case of test
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(a) P1: sensor directed towards +ve x-axis.
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(b) P2: sensor looking forward.
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(c) P3: sensor rotating continuously.

Figure 5.29: OSL tank test type-III SLAM trajectories for passive sensor configurations.
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(a) A2: attentive sensor configuration using instantaneous value.
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(b) A2: attentive sensor configuration with IoLR.

Figure 5.30: OSL tank test type-III SLAM trajectories for attentive sensor configurations.
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Figure 5.31: OSL tank test type-III UKF-SLAM XY position errors for different sensor
configurations.
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Sensor
mean STD max

DR UKF DR UKF DR UKF
P1 0.300 0.229 0.049 0.060 0.486 0.387
P2 0.300 0.190 0.049 0.063 0.484 0.342
P3 0.301 0.151 0.049 0.056 0.490 0.297
A1 0.301 0.094 0.049 0.028 0.485 0.160
A2 0.300 0.116 0.049 0.038 0.483 0.206

Table 5.2: OSL tank SLAM test type-I result for different sensor configurations (P-passive,
A-attentive).

Sensor
mean STD max

DR UKF DR UKF DR UKF
P1 0.303 0.262 0.051 0.053 0.497 0.410
P2 0.303 0.261 0.051 0.061 0.497 0.424
P3 0.303 0.189 0.051 0.070 0.496 0.404
A1 0.302 0.124 0.051 0.041 0.494 0.257
A2 0.303 0.172 0.051 0.069 0.492 0.384

Table 5.3: OSL tank SLAM test type-II result for different sensor configurations (P-passive,
A-attentive).

type-III which require minimum number of changes in attention angles anyway. To appre-

ciate the advantage of attentive navigation see the SLAM performance for the run with the

maximum DR navigation error. For instance for test type-I (see Table 5.2), the maximum

RMS DR error is close to half a meter. Using the best passive sensor configuration it is only

possible to achieve a minimum RMS SLAM error of 0.3 m which is almost double that of

the equivalent RMS SLAM error for sensor configuration A1.

Here we want to underline the fact that SLAM error is not the only criterion of import-

ance. It is important to considering the reduction in sensor movement and power consump-

tion, as a result. These are two factors are essential for achieving persistence in a real AUV

experiment. The next experiment present a comparison between attentive SLAM with IoLR

and passive forward looking sensor configuration on Nessie VII.

5.4.3 Wave-tank test

This final experiment was performed in Heriot-Watt University wave tank facility (see Sec-

tion 1.2) using MB2250 sonar mounted under Nessie VII as shown in Figure 5.32. Addi-

tional environmental features are added to the tank by hanging two L-shaped aluminium

metallic frames as shown in Figure 5.32 (b). We found out that a thin aluminium plate
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Sensor
mean STD max

DR UKF DR UKF DR UKF
P1 0.295 0.227 0.044 0.059 0.456 0.375
P2 0.295 0.207 0.044 0.053 0.454 0.332
P3 0.296 0.220 0.044 0.043 0.457 0.344
A1 0.296 0.160 0.044 0.044 0.461 0.277
A2 0.296 0.171 0.044 0.047 0.457 0.304

Table 5.4: OSL tank SLAM test type-III result for different sensor configurations (P-
passive, A-attentive).

(a) Nessie VII and HWU wave tank. (b) Additional sonar structure.

Figure 5.32: Heriot-Watt university Wave tank test set-up. a) HWU indoor test environment
(8m × 10m) and Nessie VII AUV with ROS PT-10-FB RS-485 pan and tilt unit underneath.
b) Two metallic L shaped targets that are hanged in the middle of the tank to create addi-
tional features.

is invisible to sonar, hence the surface is decorated using a duck tape to provide surface

roughness for sonar reflection.

A similar sequence of velocities are sent out for two separate runs yet there is no ground

truth for these trajectories to asses the performance numerically. Throughout the experi-

ment the forward velocity is kept under 0.22 m/sec while the maximum angular rotation

is 15 DEG/sec. These velocities are assumed to be altered by a white Gaussian noise with

STD 0.075 m/sec and 5 DEG/sec respectively. Clearly the output from a DVL sensor is

much more accurate than that of a compass in a tank where there are significant amount

metallic structures that affect the measurement. The starting position, which is also the

map origin, is manually determined by aligning the vehicle perpendicular to one face of

the metallic structure. Some example images for this experiment are shown in Figure 5.33,

accordingly frames of the metallic structure result in bright sonar reflection and extra noise

depending on the viewing angle. However sonar images from the wall and the artificial

beach are less noisy and provide a smooth sonar line feature.
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Figure 5.33: Example sonar images from HWU wave tank experiment. a) sonar reflection
from the metallic structure, bright noisy spots arise from the frames. b) typical image view
of concrete tank wall. c) sonar image of the artificial beach.

Figure 5.34 shows the result of a passive SLAM run where the sonar is mounted look-

ing forward. In this configuration the robot does not manage to collect enough features

to properly correct the navigation route. This mission lasted for 89 sec where the vehicle

covers 15 m, yet 36% of the time the sonar sensor was looking away from any possible land-

mark. However, an attentive sonar salience based SLAM provide features 94% of the time

as shown in Figure 5.35. In this case an SFoA-SLAM is used for determining sensor ori-

entation according to Equation 5.6 where the scale parameter k = 0.9. Though there is no

ground truth, the smooth robot path and structured map lines indicate the improvement in

the robot localization and mapping by using attentive sensing. This is further strengthened

by analysing the number and frequency of landmark features that are employed by the

SLAM algorithm. As can be seen in Figure 5.36 an attentive SLAM provides many more

features where individual landmark features appear across significant number of sonar ac-

quisitions. Note that some of these lines features with appearance frequency less than 15

are not show in Figure 5.34 and 5.35 to avoid unnecessary clutter from the result. Most of

these clutters are caused by the sonar noise arising from the metallic frame around corners

of the metallic structure.
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Figure 5.34: HWU Wave-tank passive SLAM test robot path, SLAM map and sonar orient-
ation using EKF and UKF.

−12 −10 −8 −6 −4 −2 0 2

X-axis(m)

−6

−4

−2

0

2

4

Y
-a

x
is

(m
)

EKF path

UKF path

EKF map

UKF map

Figure 5.35: HWU wave-tank attentive EKF and UKF SLAM test. Arrows indicate sonar
heading determined using SFoA while solid lines indicate final SLAM maps.
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Figure 5.36: SLAM line features and frequency of their visibility throughout a mission.

5.5 Summary

This chapter has introduced an attentive sonar salience based focus of attention for SLAM

navigation. Earlier in the chapter a novel technique for sonar salience computation is pro-

posed using three sonar constraint based weights: angle of incidence, feature distance and

overlap on the sonar field of view. The remainder of the chapter demonstrated the perform-

ance of an attentive SLAM algorithm that uses SFoA for sensor orientation. Based on sim-

ulated experiment, a guideline is suggested for choosing acceptable parameter values yet

the best parameter combinations depend on the actual vehicle trajectory and environment.

Various tests done in OSL tank using precise Cartesian robot and real sonar sensor provide

the level of improvement that an attentive SLAM can bring into a passive equivalent. Based

on a final experiment performed in HWU wave-tank using Nessie VII AUV, SFoA is found

out to provide more features where most of the features are frequently viewed throughout a

mission to provide landmark based navigation correction. This in turn improves the quality

of the SLAM algorithm as demonstrated using the final estimated map.
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Chapter 6

Conclusion

Navigation being one of the critical problems in underwater AUV applications, this thesis

propose a novel attentive SLAM based navigation system. Among the various navigation

techniques available, there is a growing interest towards SLAM techniques, for their ability

to make the most out of environmental landmarks. However, in an environment where

the availability of landmark features is scarce the proper use of these landmarks is very

important for achieving high quality navigation. The work in this thesis propose a sonar

focus of attention system for online sensor planning to improve a robust underwater SLAM

based navigation. In this chapter a summary of this work is presented along a list of main

contributions. Then the chapter is concluded by discussing future research directions.

6.1 Summary and Contributions

After a brief introduction, the thesis provides an overall background on topics related to

underwater navigation in Chapter 2. The chapter begins by discussing state-of-the-art un-

derwater navigation techniques and sensors used for navigation purpose. This discussion

indicates that for a robust navigation an AUV need to understand the surrounding environ-

ment rather than relying fully on on-board sensors which can easily be affected by meas-

urement drifts. Hence it was shown that for most real underwater applications SLAM based

navigation techniques are the best options. The chapter also presents a review on sonar un-

derwater feature representation and extraction. Later on the chapter the importance of active

sensing for navigation is highlighted putting emphasis on focus of attention to improve the

quality and quantity of sonar information for SLAM based navigation.
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Chapter 3 focuses on sonar feature extraction. In this chapter two BlueView multi-

beam sonar sensors are characterised and then simulated using two approaches. In the

first approach each sonar beam is considered as independent range measurement which are

modelled as 1-D Gaussian distribution. In the later case, a sonar image representation of a

line is formed using multiple line segments generated based on the line’s uncertainty. The

chapter compares three widely used line extraction techniques using simulation and real

sonar images. The validation tests confirm split-and-merge technique is relatively faster

and can provide a precise estimation of line segments. Further improvement on line ex-

traction can be achieved by using intensity weights in the final refinement stage where the

location as well as intensity of sonar beam peaks are used in a weighted least square fitting.

Chapter 4 presents a SLAM framework using sonar line features. Although EKF filter

is one of the most commonly used SLAM filter, it can easily diverge due to either poor

implementation or strong non-linearity. One of the common problem in line feature based

SLAM is the use of single observation model which in certain scenario leads to divergence.

On the other hand, an EKF based SLAM fails to cope with a strong non linearity arising

from high angular rotation or an observation of line feature far out from the map origin. In

these situations better result can be achieved by using a UKF filter, which can be imple-

mented at similar computation complexity as an EKF-SLAM as shown in [112]. The use

of FISST for solving the SLAM problem is rising trend yet as discussed in the chapter the

real time application of GM-PHD SLAM still require further technological advancement.

Finally, in Chapter 5 we introduced a novel sensor constraint based sonar salience map

computation technique. The result from an extensive simulated and real AUV tests demon-

strate that the use of SFoA can improve the accuracy of a SLAM underwater navigation by

selecting informative features with in the reach of the sonar sensor using a pan and tilt unit.

Comparisons are provided between various sensor configurations both in passive and active

mode.

6.2 Review of Contributions

The main contributions presented in this work are listed as follows:

• An improved ray casting based multibeam sonar simulation which uses characterisa-

tion of real sonar sensor for beam simulation.
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• In addition to the position of sonar peaks in an image, the intensity value is also used

for weighted least square line extraction which improves the accuracy of the process.

The use of weight is also adapted to Hough-transform based line extraction.

• When it comes to filter divergence in line feature based EKF SLAM non-linearity

is not the only challenge. In this work we highlight the importance of having two

complementary observation models to avoids error arising due to polar line repres-

entation.

• In tackling a strong non-linearity either in motion or observation we showed the cap-

ability of UKF based SLAM over the most commonly used EKF-SLAM.

• The most important contribution of this thesis is the introduction of sonar based focus

of attention system which uses sensor constraints to compute sonar salience map.

This SFoA system is integrated inside an attentive SLAM framework to provide a

robust underwater navigation system in structured environments.

6.3 Future Work

There are various areas where the research presented can be extended. Next, we address

some of this possible extenuations:

Alternative technique for WTA: In the proposed SFoA based sensor planning, the de-

cision of the final orientation is made using winner-takes-all (WTA) rule which is the most

common strategy in most computational attention mechanisms. A decision made solely

on WTA strategy can result in a huge transition gap between two consecutive measure-

ment poses which put a pan and tilt unit under constant load. As a remedy for such prob-

lems, temporal smoothing is suggested where the instantaneous WTA values for the past

n-measurement poses are averaged to determine the final orientation of the sensor. How-

ever, these WTA attention points are a result of actual landmarks which actually appear

gradually. Hence, we believe the use of second and higher order maxima in the initial

decision can provide a prediction capability and a smooth attention transition.

Salience map for loop-closer: As shown in this work one application of sonar salience map

is to determine sensor orientation while traversing a pre-defined navigation route. However,

some of the work on active navigation presented in Chapter 2 indicates the importance of

156



combining path planning and navigation. In order to maximize landmark based navigation

correction, navigation routes need to satisfy sensor requirement on top of other compulsory

mission objectives. If the full vehicle trajectory or map is inaccessible before a mission,

deliberate loop-closer can be applied to avoid accumulation of measurement drift by going

back to past vehicle poses with strong global sonar salience.

Salience map for other feature types: One way of extending the proposed sonar salience

map computation technique require adaptation of the method to features other than line

segments. Although line features are found to be sufficient for representation of most man

made structures, other types of features are imminent when working in an open sea where

landmarks are natural sea bed structures. Additionally, for some applications the dimension

of the SLAM operation might require an expansion in to 3D. In such scenario the salience

map has to be defined using 3D space which then can be achieved through the use of the full

pan and tilt unit capability. The challenge in such set-up would increase the computational

complexity.
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