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Abstract 

A cooperative project between the Universities of Plymouth and Cranfield was aimed 
at designing and developing an autonomous underwater vehicle named Hammerhead. 
The work presented herein is to formulate an advance guidance and control system 
and to implement it in the Hammerhead. This involves the description of Hammer
head hardware from a control system perspective. In addition to the control system, 
an intelligent navigation scheme and a state of the art vision system is also developed. 
However, the development of these submodules is out of the scope of this thesis. 

To model an underwater vehicle, the traditional way is to acquire painstaking mathe
matical models based on laws of physics and then simplify and linearise the models to 
some operating point. One of the principal novelties of this research is the use of sys
tem identification techniques on actual vehicle data obtained from full scale in water 
experiments. Two new guidance mechanisms have also been formulated for cruising 
type vehicles. The first is a modification of the proportional navigation guidance for 
missiles whilst the other is a hybrid law which is a combination of several guidance 
strategies employed during different phases of the Right. 

In addition to the modelling process and guidance systems, a number of robust con
trol methodologies have been conceived for Hammerhead. A discrete time linear 
quadratic Gaussian with loop transfer recovery based autopilot is formulated and in
tegrated with the conventional and more advance guidance laws proposed. A model 
predictive controller (MPC) has also been devised which is constructed using artifi
cial intelligence techniques such as genetic algorithms (GA) and fuzzy logic. A GA 
is employed as an online optimization routine whilst fuzzy logic has been exploited 
as an objective function in an MPC framework. The GA-MPC autopilot has been 
implemented in Hammerhead in real time and results demonstrate excellent robust
ness despite the presence of disturbances and ever present modelling uncertainty. To 
the author's knowledge, this is the first successful application of a GA in real time 
optimization for controller tuning in the marine sector and thus the thesis makes an 
extremely novel and useful contribution to control system design in general. The 
controllers are also integrated with the proposed guidance laws and is also considered 
to be an invaluable contribution to knowledge. Moreover, the autopilots are used in 
conjunction with a vision based altitude information sensor and simulation results 
demonstrate the efficacy of the controllers to cope with uncertain altitude demands. 



Acknowledgements 

In the beginning, I must thank Allah, the Almighty and the Most Merciful for His 
blessings throughout my life in general and in the course of this thesis in particular. 

I am deeply indebted to my Director of Studies, Prof. Robert Sutton, who gave 
me the opportunity to pursue my research work within his group. His help and 
encouragement throughout my course made me feel not far away from home. His 
constant support and guidance assisted me in improving many of my shortcomings 
and of course his red pen provided great help in ameliorating my technical report 
writing skills. 

I would also like to express my gratitude to my eo-supervisor Dr John Chudley whose 
friendly character always encouraged me to speak out. There are a great many people 
here in Plymouth which I would like to thank for all their support throughout my 
PhD and to make my stay here a memorable one. First of all, my colleague and 
project mate, Dedy Loebis, whose seriousness and devotion to work is undoubtful. A 
big thanks to Mike Sloman, the mechanical engineering department technician, for 
fabricating the test rig and providing a helping hand during the Hamme1·head trials. 
I am also extremely thankful to Barbara Fuller who took the pain to help me sort 
out the departmental matters, and my adventuresome journeys to some local and 
overseas conferences. Thanks are extended to Dr Steve Tetlow and Fraser Dalgleish 
at the Offshore Technology Centre, Cranfield University, for their utmost cooperation 
in conducting trials with the Hammerhead AUV. Thanks are also due to EPSRC for 
the overall funding of this project. 

I would like to pay a high tribute to my family, including my parents, brother, sis
ter, brother-in-law and sister-in-law, for their continuing love, support and sacrifices 
throughout my career. Special thanks goes to my fiancee, Amara, for her love and pa
tience; we are going to be together very soon. Finally thanks goes to the unwavering 
accompaniment of my uncle and aunt here in the UK. 

Last but not the least, I am very thankful to all my friends I made here in Plymouth 
for their outstanding support throughout the duration of my research work. I am 
truly indebted to all of them. 

11 



Declaration 

This is to certify that 

• the thesis comprises only my original work towards the PhD, 

• due acknowledgement has been made in the text to all other material used, 

• during the candidature, I have not been registered for any other award at any 
other institution, 

• this study was financed with the aid of a studentship from the Engineering and 
Physical Sciences Research Council, UK, 

• relevant scientific seminars and conferences were regularly attended at which 
work was often presnted; external institutions were visited for consultation pur
poses and several papers prepared for publication, 

• the thesis is 49,995 words in length, exclusive of tables, bibliographies and 
appendices. 

Wasif Naeem 
15th September 2004 

i i i 



Table of Contents 

Abstract ..... . 
Acknowledgements 
List of Figures . 
List of Tables 
Nomenclature . 

1 Introduction 
1.1 Motivation ................ . 

1.1.1 Hammerhead project objectives . 
1.1.2 Navigation, guidance and control 

1.2 Aim and Objectives of the Research . 
1.3 Thesis Overview ............. . 

ii 
vii 
XV 

xvii 

1 
1 
4 
5 
6 
7 

2 A Review of Guidance Laws Applicable to Unmanned Underwater 
Vehicles 10 
2.1 Guidance . . . . . . 10 
2.2 Missile Guidance .. 

2.2.1 LOS guidance 
2.2.2 PNG and its variants . 
2.2.3 Optimal guidance law 

2.3 Guidance Laws for AUVs ... 
2.3.1 Waypoint guidance by LOS 
2.3.2 Vision based guidance . . . 
2.3.3 Lyapunov based guidance . 
2.3.4 Guidance with chemical signals 
2.3.5 Proportional navigation guidance for AUVs 
2.3.6 Guidance using magnetometers for cable tracking 
2.3.7 Electromagnetic guidance for AUV docking ... 
2.3.8 Guidance using long baseline and short baseline 
2.3.9 Fuel optimal guidance 

2.4 Concluding Remarks ......... . 

3 Hammerhead and Its Hardware Setup 
3.1 Deep Mobile Target (DMT5) .... 

3.1.1 Transformation to an AUV. 
3.2 Control of Onboard Actuators 

iv 

11 
12 
13 
14 
14 
15 
17 
20 
21 
22 
23 
24 
24 
25 
25 

26 
26 
27 
30 



3.2.1 Proximity sensors ..... 
3.3 Hammerhead Navigational Suite . 

3.3.1 Sensor strings 
3.4 Concluding Remarks . . . . . . . 

4 System Identification and Modelling 
4.1 System Modelling . . . . . . . . . . . 

4.1.1 Mathematical modelling of an AUV . 
4.2 System Identification . . . . . . . . . . . . 

4.2.1 General considerations for SI trials 
4.2.2 HammeThead trials setup for SI 

4.3 Identification Results . . . 
4.4 Rudder-Yaw Channel . . . . . . . . . . 

4.4.1 Yaw data analysis ....... . 
4.4.2 Modelling of rudder-yaw channel 
4.4.3 Model validation . . 
4.4.4 Model analysis . . . 

4.5 Hydroplane-Depth Channel 
4.5.1 Depth data analysis . 
4.5.2 Modelling of hydroplane-depth channel 
4.5.3 Model validation 
4.5.4 Model analysis 

4.6 Disturbance Modelling 
4. 7 Concluding Remarks 

5 Guidance System 
5.1 Pure Pursuit Guidance 

5.1.1 Sonars . . . . . 
5.1.2 Problem definition 
5.1.3 Proportional navigation guidance law 
5.1.4 Guidance law application . 
5.1.5 Simulation results . . 

5.2 A Hybrid Guidance Law .. 
5.2.1 Problem formulation 
5.2.2 Simulation results . 

5.3 Concluding Remarks .... 

32 
33 
35 
37 

38 
38 
39 
42 
45 
46 
50 
50 
51 
56 
58 
60 
61 
63 
67 
68 
70 
72 
73 

74 
74 
75 
76 
77 
78 
79 
82 
83 
85 
88 

6 Linear Quadratic Gaussian Controller with Loop Transfer Recovery 89 
6.1 Introduction . . . . . . . . . . . . . . 89 
6.2 Motivation of Using Optimal Control . 
6.3 Linear Quadratic Regulator Design . . 

6.3.1 Selection of weighting matrices 
6.3.2 Reference input tracking ... . 

6.4 Kalman Filter ............. . 
6.4.1 Selection of noise covariance matrices 

V 

91 
93 
96 
98 
99 

102 



6.5 Linear Quadratic Gaussian Controller (LQG) 
6.6 LQG with Loop Transfer Recovery 
6.7 Simulation Results .. 

6.7.1 Heading control 
6.7.2 Depth control 

6.8 Concluding Remarks 

7 Model Predictive Control of Hammerhead 
7.1 Introduction . . . . . . . . . . . . . . . 
7.2 Conventional Model Predictive Control 
7.3 Genetic Algorithms . . . . . . . . . . 
7.4 GA-Based Model Predictive Control. 

7.4.1 Constraints formulation 
7.5 Simulation Results .. 

7.5.1 Heading control . . . . . 
7.5.2 Depth control . . . . . . 

7.6 GA-MPC Using FUzzy Objective FUnction 
7.6.1 FUzzy objective function and constraints 
7.6.2 Aggregation operator . 

7.7 Simulation Results .. 
7.7.1 Heading control 
7.7.2 Depth control 

7.8 Concluding Remarks 

8 Experimentation with the Hammerhead AUV 
8.1 Introduction . . . . . . . . . . . . . . . . . . . 
8.2 Hammerhead Setup for Control System Trials 
8.3 Experimental Results . . . . . . . 

8.3.1 GA-MPC autopilot results 
8.4 Concluding Remarks ....... 

9 Summary, Conclusions and Recommendations for Further Work 
9.1 Summary •••••••• 0 ••••• 

9.2 Conclusions ............. 
9.3 Recommendations for FUture Work 

References 

A Hammerhead Electronics Schematic and Assembly Code 
A.1 Assembly Code for the Stepper Motor Controller ..... . 

103 
104 
105 
108 
130 
139 

141 
141 
143 
146 
148 
151 
152 
152 
169 
174 
177 
180 
181 
181 
195 
198 

201 
201 
203 
208 
208 
215 

217 
217 
219 
221 

223 

234 
236 

B Stability Characteristics 241 

C Reference Input Tracking for a State Feedback Controller 243 

D Publications 245 

VI 

-----------



List of Figures 

Chapter 1 1 
1.1 Jason Jr. underwater vehicle peers into a window on Titanic (courtesy 

of WHOI website www. whoi. edu/home) (Carlowicz, 2003) . . . . . . . 2 
1.2 The torpedo shaped Hammerhead AUV during a test trial at Roadford 

Reservoir, Devon, UK. . . . . . . . . . . . . . 3 
1.3 Navigation, guidance and control for a vehicle 5 

Chapter 2 10 
2.1 Proportional navigation guidance for a missile system . . . . . . . . . 13 
2.2 WayPoint guidance by LOS . . . . . . . . . . . . . . . . . . . . . . . 16 
2.3 LOS guidance with reference heading correction (Bakaric et al., 2004) 17 
2.4 Vision based guidance System for the Kambam AUV . . . 19 
2.5 Vision based guidance System for the Twin-Burger 2 AUV 19 
2.6 Medium range manoeuvring guidance law 21 
2. 7 Proportional navigation guidance loop 23 

Chapter 3 26 
3.1 Rear rudder and hydroplanes on the original DMT and the new stepper 

motors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 
3.2 DMT5 being launched from a platform into the sea . . . . . . . . . . 28 
3.3 Front hydroplanes and the camera slot on an extra section next to the 

nose of Hammerhead . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 
3.4 Sectional view of Hammerhead showing the umbilical and onboard sen-

sor locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 
3.5 Information byte send by the control computer to the actuator interface 

board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 
3.6 A typical stepper motor driving sequence . . . . . . . . . . . . . . . . 32 
3. 7 Test rig developed to calibrate the mission programs for in water ex

periments showing a stepper motor, control board and proximity sensor 33 
3.8 Flow diagram of a navigation, guidance and control system showing 

all the sensors on the Hammerhead AUV . . . . . . . . . . . . . . . . 35 

Vll 



Chapter 4 38 
4.1 Earth-fixed and body-fixed reference frames 41 
4.2 The overall system identification procedure . 44 
4.3 32 length PRBS input for system identification . 47 
4.4 Multistep input for system identification . . . . 47 
4.5 Doublet input for system identification . . . . . 48 
4.6 Reconstruction of the missing data (a) Original data set and {b) Inter-

polated data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 
4.7 Single input single output block diagram of the rudder-yaw channel 

model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 
4.8 Heading response of Hammerhead to a PRBS signal applied to the 

rudder (a) Hammerhead heading and (b) Rudder deflections . . . . . 51 
4.9 Arc length as a function of radius and angle . . . . . . . . . . . . . . 52 
4.10 Roll and pitch response of Hammerhead to a PRBS signal applied to 

the rudder (a) Roll angle and (b) Pitch angle. . . . . . . . . . . . . . 53 
4.11 Heacting response of Hammerhead to a uniformly distributed random 

signal applied to the rudder (a) Hammerhead heading and {b) Rudder 
deflections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 

4.12 Roll and pitch response of Hammerhead to a uniformly distributed 
random signal applied to the rudder (a) Roll angle and (b) Pitch angle 54 

4.13 Heading response of Hammerhead to a multistep input applied to the 
rudder (a) Hammerhead heading and (b) Rudder deflections . . . . . 55 

4.14 Roll and pitch response of Hammerhead to a multistep input applied 
to the rudder (a) Roll angle and (b) Pitch angle . . . . . . . . . . . . 56 

4.15 FPE versus model order for the selection of the rudder-yaw channel 
model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 

4.16 Correlation tests for rudder-yaw channel model (a) Autocorrelation of 
residuals and (b) Cross correlation of residuals and the input . 58 

4.17 Cross validation test for rudder-yaw channel . . . . . 59 
4.18 Another cross validation test for rudder-yaw channel 59 
4.19 Pole zero plot for the rudder-yaw channel model . . . 60 
4.20 Step response of the rudder-yaw channel model . . . 61 
4.21 SISO block diagram of the Hammerhead hydroplane-depth channel 62 
4.22 Hammerhead depth channel identification trials at Roadford Reservoir, 

showing the pursuit boat and the umbilical . . . . . . . . . . . . . . . 63 
4.23 Depth response of Hammer·head to a mulistep input (a) Hammer-

head depth and (b) Input hydroplane deflections . . . . . . . . . . . . 64 
4.24 Euler angle responses of Hammerhead to a multistep input applied to 

the hydroplanes (a} Hammel'ltead heading (b) Pitch angle and (c) Roll 
angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 

4.25 Depth response of Hammerhead to a mulistep input (a) Hammer-
head depth and (b) Input hydroplane deflections . . . . . . . . . . . . 66 

4.26 Euler angle responses of Hammerhead to a multistep input applied to 
the hydroplanes (a) Hammer·head heading (b) Pitch angle and (c) Roll 
angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 

viii 



4.27 FPE versus model order for the selection of the hydroplane-depth chan-
nel model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 

4.28 Correlation tests for hydroplane-depth channel model (a) Autocorre-
lation of residuals and (b) Cross correlation of residuals and the input 69 

4.29 Cross validation test. for- hydroplane-depth channel model . . . ·. . 69 
4.30 Another cross validation test for hydroplane-depth channel model 70 
4.31 Pole zero plot for the hydroplane-depth channel model 71 
4.32 Step response of the hydroplane-depth channel model 71 

Chapter 5 74 
5.1 AUV-target engagement geometry . . . . . . . . . . . . . . . . . . . . 76 
5.2 Pure pursuit guidance system block diagram in Matlab/Simulink . . . 80 
5.3 Coordinates of AUV and pipeline generated by the pure pursuit guid-

ance system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 
5.4 Heading angle to be followed for cable tracking . . . . . . . . . . . . . 82 
5.5 Planar view of the four phases of flight for cable tracking problem of 

an AUV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 
5.6 Hybrid guidance system block diagram in Matlab/Simulink . 86 
5. 7 Hybrid guidance system block diagram . . . . . . . . . . . . 86 
5.8 XY Trajectory generated by the hybrid guidance system . . 87 
5.9 Heading angle generated by the the hybrid guidance system to be fol-

lowed by the AUV . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 

c-~r6 89 
6.1 LQR control of a process . . . . . . . . . . . . . . . . 94 
6.2 LQR control of a process for reference input tracking 98 
6.3 Kalman filter loop . . . . . . . . . . . . . . . . . . . 100 
6.4 LQG controller showing LQR gain and state estimator 103 
6.5 Representation of shortest path on a polar plot . . . . 107 
6.6 LQR heading control of Hammerhead showing the effects of changing 

R on the heading response . . . . . . . . . . . . . . . . . . . . . . . . 109 
6.7 LQR heading control of Hammerhead showing the effects of changing 

R on the control input . . . . . . . . . . . . . . . . . . . . . . . . . . 109 
6.8 Bode plot ofthe open loop return ratio 'P(z) (desired frequency domain 

specifications) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . llO 
6.9 Effect of changing R on the closed loop step response of the LQG/LTR 

controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 
6.10 Bode plot of the loop transfer function showing degraded stability mar-

gins due to deviation from nominal values . . . . . . . . . . . . . . . 112 
6.ll Simulink block diagram of the LQG/LTR heading controller for the 

Hamme1·head AUV . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 
6.12 LQG/LTR control of Hammerhead showing LOS tracking. . . . . . . ll3 
6.13 Rudder deflections generated by the LQG /LTR controller to control 

the Hammerhead heading . . . . . . . . . . . . . . . . . . . . . 114 

IX 



6.14 LQG/LTR control of Hammerhead AUV showing large settling time 
due to the increase in the magnitude of R . . . . . . . . . . . . . . . 115 

6.15 Stability characteristics of LQG/LTR controller showing deviation from 
the desired values due to increase in the magnitude of R . . . . . . . 115 

6.16 LQG/):,TR control of Hammerhead heading showing AUV trajectory 
and waypoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 

6.17 LQG/LTR control of Hammerhead heading showing control actions 
required to follow the selected waypoints . . . . . . . . . . . . . . . . 117 

6.18 LQG/LTR control of Hammerhead heading showing the AUV is closely 
following the desired LOS angles . . . . . . . . . . . . . . . . . . . . . 118 

6.19 LQG/LTR control of Hammerhead heading showing AUV trajectory 
and waypoints with a sea current in the positive y-direction . . . . . 119 

6.20 LQG/LTR control of Hammerhead heading showing control action re
quired to follow the selected waypoints with a sea current in the positive 
y-direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 

6.21 LQG/LTR control of Hammerhead for waypoint following showing the 
AUV is closely following the desired LOS angles with a sea current in 
the positive y-direction . . . . . . . . . . . . . . . . . . . . . . . . . . 120 

6.22 Flow chart of the integration of LQG/LTR and PNG systems developed 
in Matlab/Simulink environment . . . . . . . . . . . . . . . . . . . . 121 

6.23 AUV and target position coordinates where the AUV is tracking the 
cable at a specified height . . . . . . . . . . . . . . . . . . . . . . . . 122 

6.24 AUV heading controlled by the LQG/LTR autopilot and is shown to 
be closely following the guidance commands generated by the PNG . 123 

6.25 Rudder deflections evaluated by the LQG/LTR controller needed to 
track the reference trajectory generated by the PNG law . . . . . . . 123 

6.26 Bode plot of the target's filter open-loop return ratio . . . . . . . . . 126 
6.27 Bode plots of the filter's open-loop return ratio and recovered loop 

transfer function for nominal Q (full recovery) . . . . . . . . . . . . . 126 
6.28 Step response of the closed loop depth autopilot for different values of 

the input weighting matrix R . . . . . . . . . . . . . . . . . . . . . . 127 
6.29 Bode plots of the filter's open-loop return ratio (solid line) and recov-

ered loop transfer function (dashed line) with added damping (reduced 
stability margins) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 

6.30 Cable tracking mission from launching to tracking, variable speed vs. 
fixed speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 

6.31 Rudder deflections generated by the LQG/LTR controller for Q = 
er C and R :::::: 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 

6.32 Rudder deflections generated by the LQG/LTR controller for modified 
Q and R :::::: 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 

6.33 Bode plot of the open loop return ratio and loop transfer function of 
the depth autopilot showing amount of recovery achieved . . . . . 131 

6.34 Unit step response of the LQG/LTR depth controller . . . . . . . 132 
6.35 Simulink block diagram for the LQG/LTR based depth autopilot 132 

X 



6.36 Depth control of Hammerhead vehicle using the LQG/LTR controller 
showing a step change in depth . . . . . . . . . . . . . . . . . . . . . 133 

6.37 Hydroplane deflections required to achieve the specified depth . . . . 134 
6.38 LQG/LTR depth control of Hammerhead vehicle showing multiple 

changes in depth command . . .. ·. . . . . . . . . . . . . . . . . . . . 135 
6.39 LQG/LTR depth control of the Hammerhead AUV showing control 

surface deflections needed to maintain the specified depth demands . 135 
6.40 LQG/LTR depth control of Hammerhead using the altitude informa-

tion when integrated with an onboard vision system . . . . . . . . . . 136 
6.41 Hydroplane deflections needed to follow the desired depth when the 

vision system is integrated with the depth autopilot . . . . . . . . . . 137 
6.42 Bode plot showing the effect of changing R on depth controller perfor-

mance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 
6.43 Depth control of Hammerhead AUV when the vision system is inte

grated with the autopilot and magnitude of R is increased . . . . . . 138 
6.44 Reduced hydroplane deflections needed to track the specified depth 

(altitude) commands from the vision system . . . . . . . . . . . . . . 139 

Chapter 7 141 
7.1 Structure of a conventional model predictive controller . . . . . . . . 144 
7.2 Predicted output and the corresponding optimum input over a hori-

zon HP, where u(k) is the optimum input, y(k) represents the model 
prediction, and y(k) is the process output . . . . . 145 

7.3 Flow chart of a simple genetic algorithm . . . . . . 147 
7.4 Genetic algorithm based model predictive controller 149 
7.5 Flow chart of the GA-based MPC . . . . . . . . . . 150 
7.6 Hammerhead AUV closely following the LOS angle using a GA-MPC 

heading autopilot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 
7.7 Input rudder deflections generated by the GA-MPC autopilot to follow 

the LOS angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 
7.8 Hammerhead vehicle following the change in LOS guidance commands 155 
7.9 Optimal rudder deflections generated by the GA-MPC controller for 

several LOS angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 
7.10 Flow chart of the integration of MPC and PNG systems developed in 

Matlab/Simulink environment . . . . . . . . . . . . . . . . . . . . . . 157 
7.11 AUV and target position coordinates generated by the GA-MPC au

topilot where the AUV is tracking the cable at a specified height . . . 158 
7.12 AUV heading controlled by the GA-MPC following closely the guidance 

commands generated by the PNG . . . . . . . . . . . . . . . . . . . . 159 
7.13 Rudder deflections evaluated by the GA-MPC controller needed to 

track the reference trajectory generated by the PNG . . . . . . . . . 159 
7.14 GA-MPC control of Hammerhead for waypoint following showing AUV 

and target position coordinates without sea current disturbance . . . 161 

xi 



7.15 Rudder deflections generated by the GA-MPC autopilot needed to 
track the waypoints without sea current disturbance . . . . . . . . . . 162 

7.16 GA-MPC control of Hammerhead showing the vehicle heading and 
the corresponding LOS angles in waypoint following without any sea 
current disturbances · . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 

7.17 GA-MPC control of Hammerhead for waypoint following showing the 
AUV and target position coordinates with sea currents in the positive 
y-direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 

7.18 Rudder deflections generated by the GA-MPC autopilot needed to 
track the waypoints with sea currents in the positive y-direction . . . 164 

7.19 AUV heading angle and the corresponding LOS angles in a waypoint 
following mission with sea current in the positive y-direction . . . . . 165 

7.20 Simulation of the hybrid guidance law showing the AUV coordinates 
for fixed and variables speeds . . . . . . . . . . . . . . . . . . . . . . 167 

7.21 Simulation of the hybrid guidance law integrated with a GA-MPC 
autopilot showing the affects of changing the vehicle speed on heading 
angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 

7.22 Rudder deflections generated by the GA-MPC controller with the ve-
hicle velocity changing according to the hybrid guidance strategy 168 

7.23 Rudder deflections generated by the GA-MPC autopilot with the ve-
hicle manoeuvring at a constant velocity . . . . . . . . . . . . . . . . 169 

7.24 Hammerhead step response for a change in depth obtained by employ-
ing a GA-MPC depth autopilot . . . . . . . . . . . . . . . . . . . . . 171 

7.25 Hydroplane deflections generated by the controller to attain the desired 
step change in depth . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 

7.26 Hammerhead response to several step changes in depth command using 
a GA-MPC autopilot . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 

7.27 Hydroplane deflections generated by the GA-MPC depth controller for 
several changes in depth demand . . . . . . . . . . . . . . . . . . . . 173 

7.28 GA-MPC control of Hammerhead depth (altitude) where the guidance 
commands are generated by an onboard vision system . . . . . . . . . 175 

7.29 Control surface movements generated by the GA-MPC depth autopilot 
to track the guidance commands from an onboard vision system . . . 175 

7.30 Voltage across a resistor represented as a fuzzy membership function . 177 
7.31 Output error membership function . . . . . . . . . . . . . . . . . . . 179 
7.32 Trapezoidal membership function for input variable . . . . . . . . . . 180 
7.33 Step change in heading response of the GA-MPC controller with fuzzy 

objective function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 
7.34 Optimal rudder deflections generated by the GA-MPC controller with 

fuzzy objective function . . . . . . . . . . . . . . . . . . . . . . . . . 184 
7.35 AUV trajectory and target position coordinates in a way point tracking 

mission without any disturbances using a GA-MPC controller with a 
fuzzy cost function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 

Xll 



7036 Rudder deflections generated by the controller needed to track the 
waypoints without any disturbance using a GA-MPC controller with 
a fuzzy cost function 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 186 

7037 Desired yaw and vehicle heading angles in case of a fuzzy cost function 
in a waypoint mission scenario without any disturbance 0 0 0 0 0 0 0 ° 187 

7038 AUV trajectory and target position coordinates in case of a fuzzy cost 
function in waypoint following with a sea current of Oo5m/ s in the 
positive y-direction 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 188 

7039 Rudder deflections generated by the controller with a fuzzy cost func-
tion needed to track the waypoints with sea current disturbance in the 
positive y-direction 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 188 

7.40 Desired yaw and AUV heading angle in a waypoint following mission 
showing the affects of sea current disturbance 0 0 0 0 0 0 0 0 0 0 0 0 0 189 

7.41 AUV trajectory at fix and variable velocities in a hybrid guidance strat-
egy integrated with a GA-MPC controller with a fuzzy cost function 0 190 

7.42 AUV heading at fix and variable velocities in a hybrid guidance strat-
egy integrated with a GA-MPC controller with a fuzzy cost function 0 191 

7.43 Rudder deflections at variable velocities in a hybrid guidance strategy 
integrated with a GA-MPC controller with a fuzzy cost function 0 0 0 191 

7.44 Rudder deflections at a fix velocity in a hybrid guidance strategy inte-
grated with a GA-MPC controller with a fuzzy cost function 0 0 0 0 0 192 

7.45 AUV trajectory showing excellent cable tracking response using a PNG 
strategy integrated with a GA-MPC with a fuzzy cost function 0 0 0 0 193 

7.46 Hammerhead heading response closely following the guidance com
mands in a PNG strategy integrated with a GA-MPC controller with 
a fuzzy cost function 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 194 

7.47 Rudder deflections needed to track the cable in a PNG strategy inte-
grated with a GA-MPC controller with a fuzzy cost function 0 0 0 0 0 194 

7048 Depth response of Hammerhead to a step input using a GA-MPC con-
troller with fuzzy objective function 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 196 

7.49 Control surface deflections generated by the GA-MPC controller for a 
depth control mission using fuzzy objective function 0 0 0 0 0 0 0 0 0 . 0 196 

7°50 GA-MPC autopilot with fuzzy cost function integrated with an on
board vision system showing that the vehicle is closely following the 
desired depth (altitude) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 197 

7051 Hydroplane deflections generated by the GA-MPC autopilot with fuzzy 
cost function to track the desired depth (altitude) demands generated 
by an onboard vision system 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 198 

Chapter 8 
801 Information flow in Hammerhead AUV 
8.2 Screenshot of a Labview visual interface developed at Offshore Tech-

201 
204 

nology Centre, Cranfield University 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 205 

xiii 



803 Information flow between onboard computers in Hamme1ohead AUV 
from a control system perspective 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 207 

8.4 GA-MPC simulation results (a) Rudder deflections generated by the 
controller and (b) AUV heading 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 210 

8°5 Controller trial results data set 1 with umbilical (a) Rudder deflections 
generated by the GA-MPC (b) Hammerhead heading obtained from an 
onboard IMU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 211 

806 Controller trial results data set 2 with umbilical (a) Rudder deflections 
generated by the GA-MPC and (b) Hammerhead heading obtained 
from an onboard IMU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 212 

807 First autonomous Hammerhead trial results using GA-MPC autopilot 
without umbilical (a) Rudder deflections generated by the controller 
(b) AUV heading 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 213 

808 First autonomous Hammerhead trial results using GA-MPC autopilot 
without umbilical showing (a) Depth (b) Pitch and (c) Roll 0 0 0 0 0 214 

809 GPS data acquired during the first autonomous autopilot run showing 
Hammerhead trajectory in body coordinate frame in a LOS tracking 
mission 0 

••••••• 0 •••••• 0 •••• 0 ••••••• 0 •••••• 

Appendix A 
Ao1 Schematic of Hammerhead actuator controller card 

Appendix B 
801 Definition of stability margins on a Bode plot 

XIV 

215 

234 
235 

241 
242 



List of Tables 

Chapter 3 
3.1 IMU string parameters 

•• 0 ••••••••• 0 0 • 0 0 •••••••• 0 

26 
36 

Chapter 6 89 
6.1 Selected mission waypoints . . . . . . . . . . . . . . . . . . 116 
6.2 LQG/LTR controller parameters for various speed models 125 

Chapter 7 141 
7.1 GA-MPC tuning parameters and weighting matrices for single and 

multiple LOS tracking missions . . . . . . . . . . . . . . . . . . . . . 153 
7.2 GA-MPC tuning parameters for a cable tracking mission using a PNG 

law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 
7.3 GA-MPC tuning parameters for waypoint following with and without 

sea current disturbances . . . . . . . . . . . . . . . . . . . . . . . . . 160 
7.4 GA-MPC tuning parameters for fixed and variable vehicle velocities in 

a hybrid guidance law . . . . . . . . . . . . . . . . . . . . . . . . . . 166 
7.5 GA-MPC tuning parameters for depth step response simulations . . . 170 
7.6 GA-MPC tuning parameters using a fuzzy decision function for heading 

control (step response) . . . . . . . . . . . . . . . . . . . . . . . . . . 182 
7. 7 GA-MPC tuning parameters using a fuzzy decision function for heading 

control (waypoint following) . . . . . . . . . . . . . . . . . . . . . . . 185 
7.8 GA-MPC controller parameters to minimise the fuzzy objective func-

tion and integrated with a hybrid guidance strategy . . . . . . . . . . 190 
7.9 GA-MPC tuning parameters using a fuzzy decision function and inte

grated with a PNG guidance system . . . . . . . . . . . . . . . . . . 193 
7.10 GA-MPC tuning parameters using a fuzzy decision function for depth 

control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 
7.11 Quantitative comparison of the Hammerhead autopilots developed in 

Chapters 6 and 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 

Chapter 8 201 
8.1 Onboard computer specifications . . . . . . . 204 
8.2 GA-MPC tuning parameters for LOS tracking 209 

XV 



I. 
I 
I 

I 

I 

I' 

I 

'-' 

8:3: .GA~MPC: tuning para,metfjrs:{qr JiGS tra.Cking during the :first •auc 
:tonOffi(:>US •f.Ull' .••••••. ,_,, .; 

• • ._ ~ ~-· :•' .-; 0 • .; • .; : 0 ', ;. • .; ~: -.. -. • .- :. ' • • • • 0 i•: • 213 

)(VI 



Nomenclature 

Abbreviations 

ACF Autocorrelation function 

AI Artificial intelligence 

ARMAX Auto-regressive moving average with exogeneous input 

ARX 

AUV 

CCF 

COA 

DAQ 

DMT 

DOF 

DVL 

FOV 

FPE 

GM 

GPS 

IMU 

KMN 

LBL 

LOS 

LQG 

Auto-regressive with exogeneous input 

Autonomous underwater vehicle 

Cross correlation function 

Circle of acceptance 

Data acquisition 

Deep mobile target 

Degrees of freedom 

Doppler velocity log 

Field of view 

Final prediction error 

Gain margin 

Global positioning system 

Inertial measurement unit 

Moments about the x, y and z directions respectively 

Long base line 

Line of sight 

Linear quadratic Gaussian 

xvii 



LQR 

LTR 

MPC 

MSDF 

MSE 

NGC 

PID 

PM 

PNG 

PRBS 

QP 

ROV 

SBL 

SISO 

STD 

uuv 

XYZ 

Symbols 

Linear quadratic regulator 

Loop transfer recovery 

Model predictive control 

Multisensor data fusion 

Mean square error 

Navigation, guidance and control 

Proportional integral and derivative 

Phase margin 

Proportional navigation guidance 

Pseudo random binary sequence 

Quadratic programming 

Remotely operated vehicles 

Short base line 

Single input single output 

Standard deviation 

U nmanned underwater vehicle 

Forces in the x, y and z directions respectively 

o: Course change of the vehicle in a given time (deg) 

o Impulse function 

A Line of sight angle rate ( deg j s) 

TJ Vector of position and Euler angles 

TJc Missile acceleration (m/ s 2) 

[' Model coefficients 

y Model output 

A Line of sight angle ( deg) 

T Transformation matrix 

xviii 



T Forces and moments acting on the vehicle in the body-fixed coordinate 
system 

D(v) 

Q 

R, 

R, 

V 

p 

Po 

(} 

g 

Environmental forces and moments acting on the vehicle 

Hydrodynamic forces and moments acting on the vehicle 

Vector of external forces and moments about the origin acting as an input 
to the rigid body 

Coriolis and centripetal effects due to added mass 

Coriolis and centripetal forces acting on the rigid body 

Hydrodynamic damping matrix 

Added mass matrix 

Rigid body inertia matrix 

State weighting matrix 

Measurement noise covariance matrix 

Process noise covariance matrix 

Vector of linear and angular velocities 

Roll of the vehicle in earth fixed reference frame ( deg) 

Yaw or heading of the vehicle in earth fixed reference frame (deg) 

Distance of vehicle from the waypoint (m) 

Radius of the circle of acceptance (m) 

Pitch of the vehicle in earth-fixed reference frame (deg) 

Residuals 

Number of data points in nth data set 

Vector of gravitational and buoyant generalised forces 

Moment of inertia about the x-axis 

Moment of inertia about the y-axis 

Moment of inertia about the z-axis 

Product of the inertia about x and y-axis 

Product of the inertia about x and z-axis 

XIX 



lyz Product of the inertia about y and z-axis 

J Performance index 

Kc LQR state feedback gain matrix 

K 1 Kalman filter gain matrix 

L Straight line distance travelled by the vehicle (m) 

m Mass of the vehicle (kg) 

N' Navigation ratio 

p Angular velocity in the x-direction ( deg / s) 

q Angular velocity in the y-direction ( deg / s) 

R Input weighting matrix 

r Angular velocity in the z-direction ( deg / s) 

Ta Turning radius of the vehicle (m) 

S Arc length or surface distance of a circle (m) 

t 1 Interception time ( s) 

u Linear velocity in the x-direction (m/ s) 

v Linear velocity in the y-direction (m/ s) 

Vc Closing velocity (m/s) 

w Linear velocity in the z-direction (m/ s) 

xa x-coordinate of the centre of gravity of the vehicle (m) 

Ye y-coordinate of the centre of gravity of the vehicle (m) 

Yn Measurement of the nth data set 

zc z-coordinate of the centre of gravity of the vehicle (m) 

XX 



Chapter 1 

Introduction 

1.1 Motivation 

The advancement of technology, like population growth has been proceeding exponen

tially. A major source of incentive for technological development lies in the demands 

of time. Systems are getting much more complex and the applications are also diversi

fied. This rapidly changing environment provides the technologist with a multifaceted 

task to excel and find feasible solutions to a problem at hand. Underwater vehicle 

technology is no exception. 

Designing underwater vehicles present enormous challenges to engineers. This is 

mainly due to the hostile underwater environment and the degrees of freedom of the 

vehicle movement. The last decade has seen a tremendous boost in the underwater 

vehicle development for exploring the rich and untapped underwater world containing 

a huge number of natural resources. As the oceanographer, James Gardner says as 

quoted by Barber (2001) 

"We know what the surface of the moon is better than we know what the 
surface of the sea floor· is." 

Clearly this gives a hint that there is still a considerable amount of research work to 

be done in order to explore deep oceans which cover more than 70% of the Earth. 

The main hurdle in deep sea exploration is the inability of human divers to reach 

those places. Underwater vehicles are thought to be a true replacement of deep 

sea divers for ocean surveying. In addition, they are being used in covert missions 

and for mine clearing operations as the world has recently witnessed by the use of 

1 
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Hydroid's REMUS (Remote Environmental Monitoring Unit) underwater vehicle in 

the Iraqi conflict of 2003 (Jordan, 2003). Perhaps one of the main impetus for the 

design of state of the art underwater vehicles evolved in 1986 after the discovery of 

the Titanic wreckage when. the Woods Hole Oceanographic Institution's (WHOI's) 

Jason Jr. underwater vehicle was seen at the wreck site shown in Figure 1.1 probing 

into and taking photographs from inside the ship (Carlowicz, 2003). 

Figure 1.1: Jason Jr. underwater vehicle peers into a window on Titanic (courtesy 

of WHOI website www. whoi. edu/home) (Carlowicz, 2003) 

To date, a significant amount of work has already been undertaken by different 

research groups around the world on underwater vehicle design and there exists a 

plethora of configurations and several navigation, guidance and control (NGC) laws 

governing their operation. Underwater vehicles are generally classified into two types, 

namely, remotely operated vehicles (ROVs) and autonomous underwater vehicles 

(AUVs). Common to these two types of vehicle is the fact that both ROVs and 

AUVs are unmanned i.e. t hey do not take any human onboard but instead are a 

collection of sensors, actuators and thrusters. Therefore, they can operate in deep 

oceans and in hazardous areas such as near underwater volcanoes or in a mine hunting 

mission without jeopardising human life which is a primary source of inducement for 

Lhcir use. Thus relieving all those involved from the liability of e},··posing humans to 

undersea hazards. 
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An AUV has an onboard navigation, guidance and control system and it only requires 

time to time monitoring and supervision or no supervision at all. On the other hand, 

an ROV is attached through a data and power tether to a support platform on the 

surface where a ·human operator constantly monitors its state and manoeuvres it 

accordingly. ROVs are generally equipped with a control system such as the Falcon 

by Seaeye Marine Ltd. (Seaeye, 2004), however, they rely heavily on the human 

operator guidance. It is obvious that the ROV mission duration is limited by the 

length of the tethered cable and the cost of a mission is high due to the requirement 

of a trained ROV operator and a surface support platform. On the contrary, the AUV 

mission duration is only confined by the onboard power generating system. 

Following a succinct overview of AUVs and ROVs, the aim of this thesis alone is to de

sign an advance guidance and control system of an AUV named Hammerhead shown 

in Figure 1.2 developed as ajoint effort by the Universities of P lymouth and Cranfield. 

The name Hammerhead was assumed from the fact that the nose of the vehicle resem

bles to that of a Hammerhead Shark because of the installation of front hydroplanes 

in addition to the camera (vision system) mounted near to them. 

Figure 1.2: The torpedo shaped Hammerhead AUV during a test trial at Roadford 

Reservoir, Devon, UK 
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A multisensor data fusion (MSDF) based navigation module and a state of the art 

vision system is also conceived for the Hammerhead. However, the development of 

these submodules is out of the scope of this thesis. Some generic objectives of the 

Hammerhead project are provided below." 

1.1.1 Hammerhead project objectives 

Enlisting another AUV. An obvious outcome of the Hammerhead project is the 

enlisting of another AUV under UK's name. To date, the AUV market in the 

UK has grown significantly with several AUVs on the horizon such as the AU

DOS AUV for tracking deep-sea scavenging fish by the University of Aberdeen 

(Jones et al., 2004) and the multi-purpose RAUVER vehicle (Hamilton, 2004) 

and AUTOTRACKER (Ruiz, 2004) for cable/pipeline inspection by the Heriot 

Watt University. However, the two main noticeable AUV programmes in the UK 

are the Natural Environmental Research Council's (NERC) A UTOSUB project 

based at the Southampton's Oceanography Centre (Millard et al., 1998) and 

the Marlin AUV (Tonge, 2000) developed by BAE systems for QinetiQ (for

merly DERA). Developing Hammerhead provides Plymouth and Cranfield with 

a competitive edge over other underwater research groups within the UK and 

around the world. 

Low cost factor. Both AUTOSUB and Marlin AUVs incurred very high cost with 

Marlin cost around £1.0 million (Wilks, 2000) and A UTOSUB stands at £5.30 

million to bring it to its 1997 specification (Millard et al., 1998). One of the 

aims of this project is to deliver a low cost AUV facility in the UK that is almost 

equally capable or even better than other vehicles of similar configuration. 

Providing a test bed for other researchers. The fact that the Marlin AUV was 

developed for military purpose leaves AUTOSUB and others to serve the sci

entific underwater research community. Therefore, there is a strong urge to 

develop AUVs within the UK which are easily deployable and can accommo

date various requirements without varying the existing payload on them. The 

Hammerhead vehicle fulfills this by having various commercial off the shelf nav

igational sensors onboard and a state of the art vision system, a forward looking 

sonar and control computers. Thus offering a practical solution in the form of 

a test bed for academic research. 
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1.1.2 Navigation, guidance and control 

Guidance plays the key role in bringing autonomy to a system. The guidance system 

manipulates the sensor ou~puts and by utilising some guidance law generates suit

able trajectories to be followed by the vehicle. This takes into account the target 

and any obstacles that may be encountered during the course of a flight. Once a 

trajectory has been decided, the control system takes charge and steers the vehicle in 

the appropriate direction by sending commands to the actuators. The control system 

must be robust enough to deal with unknown or unmeasured disturbances such as 

sea currents, sensors noise and model uncertainty. 

In addition to the guidance and control system, a reliable navigation system is also 

imperative for true autonomous operation. A simple block diagram of an integrated 

NGC system is depicted in Figure 1.3. 

position Guidance ~ Controller 
Vehicle 

System Dynamics coordinates n 
. 

Navigational 
Sensors 

Figure 1.3: Navigation, guidance and control for a vehicle 

vehi1 
posifi, 

cle 
on 

The navigation system is responsible for accurate positioning of the AUV on the 

surface and in the water. By reliable, it means that it should be able to cope with 

any kind of sensor noise and also in cases where a fault occurs in one or more sensors. 

For this purpose, an MSDF algorithm is used which combines data coming from 

various onboard sensors and provides the best estimate of the actual state of the AUV. 

A good account of several data fusion techniques has been documented by Loebis 

et al. (2002). For the Hammerhead, an intelligent MSDF technique based on fuzzy 

logic and a multiobjective genetic algorithm has been proposed (Loebis et al., 2004) 

and developed at the University of Plymouth. The MSDF based navigation system 

provides estimate of the vehicle position using a global positioning system (GPS) on 

the surface and dead reckoning while submerged. A laser stripe illumination based 

vision system is also developed by Dalgleish et al. (2002) for Hammerhead at Cranfield 
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University to further enhance the navigation system. The vision system is dominant 

and will become the primary guidance system when the object to be tracked is in the 

field of view (FOV) of the camera. However, if the vision system loses the subject or 

the water is' too murky, then the guidance system relies heavily on the dead reckoning 

position estimates. 

1.2 Aim and Objectives of the Research 

The overall aim of this thesis is to develop an integrated guidance and control sys

tem for the Hammerhead vehicle. This would also entail the implementation of the 

controllers in real time. Broken down as submodules, the objectives of this research 

are provided as follows 

a. To review various guidance laws for unmanned systems including missiles with 

an emphasis on underwater vehicles and to investigate the feasibility of guidance 

technology transfer from airborne vehicles to underwater robotic systems. 

b. One of the mission objectives of the Hammerhead AUV is to follow a ca

ble/pipeline for inspection purpose. Therefore development of several guidance 

algorithms to achieve this task will be undertaken. 

c. To design and conduct experiments to produce data sets for yaw and depth 

channels suitable for Hammerhead model identification. 

d. To develop linear transfer function and state space models for the yaw and 

depth channels using system identification techniques on the trials data for 

control systems design. 

e. To investigate the cross coupling effects among different channels of Hammer

head such as yaw and roll. 

f. To develop various optimal control laws and assess their performance on Ham

merhead AUV in simulations for various mission scenarios. 

g. To design and conduct the necessary experiments to evaluate the performance 

of controllers in full scale trials. 
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1.3 Thesis Overview 

In recent years, control systems have assumed an increasingly important role in the 

development and adva~cement of modern civilisation and technology. In particular, 

the burgeoning in the field of NGC systems, spurred on mainly by the challenges of 

unsolved aerospace problems, contributed significantly to progress achieved in the de

velopment of modern systems and control theories. The success of the Soviet Union's 

satellite technology in the 1950s stimulated the United States to develop their own 

aerospace technology thus creating between the two·of them new concepts in the field 

of control system design. The Apollo programme in the 1960s is a classical example 

of the translation of various NGC concepts into working modules. The early success 

of NGC systems soon led to advances in such diverse areas as industrial manufactur

ing, energy management (Lin, 1991) and underwater vehicles. Although applications 

of NGC in these areas have shown a profound impact in control theory in general, 

the majority of research and development in NGC continues to find its main applica

tion in the aerospace industry. Navigation, guidance and control of airborne systems 

have been reported extensively in the literature (Lin, 1991; Cloutier et al., 1989; Lin 

and Su, 2000), however, little attention has been paid to the issue of guidance of 

unmanned underwater vehicles (UUVs). 

A comprehensive review of the current scene on guidance of UUVs has thus been 

undertaken by Naeem et al. {2003d). Chapter 2 is the extract of this paper and 

presents some, if not all, of the guidance laws found in the Literature. Missile system 

guidance is briefly reviewed followed by some well known guidance techniques used 

for l1UVs such as waypoint following and vision based guidance for object tracking. 

The chapter also covers guidance technology transferred from airborne systems to 

underwater vehicles. 

Since there is no previous hardware details of Hammer·head in the literature, it was 

deemed necessary to disseminate this information in Chapter 3. This includes the 

Hammerhead navigational suite, placement of sensors and the hardware/software that 

has been developed at Plymouth. The chapter also elaborates on how the Hammer

head hardware setup has evolved from an ROV type configuration (communicating 

through an umbilical) to an autonomous conformation. 

Equipped with the knowledge of Hammerhead hardware, Chapter 4 describes the 
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modelling process. It is shown that system identification (SI) techniques gives rea

sonably accurate models in a short period of time in contrast to painstaking math

ematical modelling involving differential equations and requiring tank tests to find 

hydrodynamic coefficients which are expensive and not available everywhere. Sep

arate models for yaw and depth channels are obtained using SI on trials data and 

simulation results are presented for model validation. 

Chapter 5 proposes two guidance laws for cable/pipeline tracking problem. The 

first one called the pure pursuit guidance has been derived from the well known 

proportional navigation guidance law for missile systems. The next is a hybrid law 

which utilises the vehicle's speed as a means to formulate the guidance strategy. It is 

shown that the line of sight (LOS) guidance is the key ingredient of all guidance laws. 

Simulation results are presented to demonstrate the trajectory planning capabilities 

of the proposed guidance strategies. 

Having decided on the model of the Hammerhead and guidance system, attention is 

turned towards the design of a suitable controller. Chapter 6 explains the development 

of a linear quadratic Gaussian controller with loop transfer recovery (LQG/LTR) for 

the Hammerhead yaw and depth channels. The LQG/LTR controller is selected owing 

to its robustness and stability properties. Simulation results are presented for simple 

waypoint following including effects of sea currents, depth control and cable tracking 

mission by integrating it with the proposed guidance laws in Chapter 5. A vision 

based altitude information sensor is also integrated and results are shown for the case 

when the guidance commands are uncertain. 

Extending the controller design of Hammerhead, Chapter 7 develops a model pre

dictive controller (MPC) optimized using a genetic algorithm (CA). Two forms are 

proposed and developed for this class of controller. The first is using the conventional 

quadratic objective function whilst the other uses a fuzzy cost function. Simulation 

results are shown for both type of autopilots. By integrating the MPC with the pure 

pursuit guidance and hybrid guidance law from Chapter 5, cable tracking missions 

are performed in simulations and results are illustrated. The effect of sea currents on 

waypoint following is also investigated. Finally, simulation results are shown for an 

altitude control system when the sensor data is uncertain or noisy. 

Chapter 8 covers experimental results from various Hammerhead trials during the 
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course of its development. In addition, the current hardware and software configu

ration of the vehicle is also elucidated. The results mainly consists of LOS tracking 

mission using the GA-MPC autopilot with and without the presence of the umbilical. 

The GA is shown to be running in real-time which to the author's knowledge has not 

been tested in the marine sector before. It is demonstrated that the controller per

forms remarkably well in real time environment despite the existence of disturbances 

and ever present modelling uncertainty. 

Finally Chapter 9 contains the summary, conclusions of the work presented within 

this thesis and recommendations for any further work. 



Chapter 2 

A Review of Guidance Laws 

Applicable to Unmanned 

Underwater Vehicles 

This chapter reviews a number of guidance laws, which have been adopted for the 

guidance of air and sea vehicles with an emphasis on UUVs. Guidance laws for the 

airborne missile systems are presented first followed by a detailed description of UUV 

guidance. In addition, the chapter explores ways and means of employing successful 

guidance strategies of air based systems to underwater vehicles. This would also entail 

certain modifications to suit the underwater mission requirement. It should be noted 

that this chapter is a modified version of the paper by Naeem et al. (2003d} which is 

provided in Appendix D. 

2.1 Guidance 

All autonomous vehicles must have onboard NGC systems, which should work in 

accord with each other for proper operation. Imperfections in one system degrade 

the efficiency of the other. The navigation system provides information related to 

the target, which is processed by the guidance system to generate reference headings. 

The control system is responsible for keeping the vehicle on course as specified by the 

guidance processor. In remotely operated systems, guidance commands are sent from 

a ground station by a trained human operator whilst autonomous vehicles have an 

onboard guidance processor. With regard to this, a guidance system plays the vital 

role in bringing autonomy to the system. Some definitions and a brief description of 

10 
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the elements of a guidance system are now presented as follows 

"guidance is the action of determining the course, attitude and speed of 
the vehicle, relative to some reference frame, to be followed by the vehi
cle' (Fossen, 1994). 

From the perspective of a control system, 

"guidance is a matter of finding the appropriate compensation network to 
place in series with the plant in order to accomplish an intercept' (Lin, 
1991). 

11 

The guidance system decides the best trajectory (physical action) to be followed by 

a vehicle based on target location and vehicle capability. The primary function of 

the elements that constitute a guidance system are sensing, information processing 

and correction. Guidance issues are mainly determined by the nature and location of 

the target and the environmental conditions. The nature of the target corresponds to 

the condition as to whether or not the target is stationary, moving, or manoeuvring. 

The target location is also imperative as it determines the heading and depth to be 

followed by the vehicle, however, the accuracy of the system depends on the envi

ronmental conditions. The guidance problem is also related closely to the bandwidth 

of the system. It is often assumed while formulating the problem that the controller 

has a sufficiently large bandwidth to track the commands from the guidance sub

system (Sutton et al., 2000), however, in practice, true vehicle capability can only 

be measured in the presence of constraints such as system dynamics and actuator 

limitations. 

The definitions and elements of a guidance loop discussed above are quite generic and 

refer to all guidance mechanisms. Although widely employed in the aerospace and 

land vehicles, it is equally valid for underwater vehicles. 

2.2 Missile Guidance 

The guidance technology of missiles is a mature field with an abundance of guid

ance laws already implemented in real systems. Many different guidance laws have 

been employed exploiting various design concepts over the years. Currently, the 

popular terminal guidance laws involve line of sight (LOS) guidance, LOS rate guid

ance, command-to-line-of-sight guidance, proportional navigation guidance (PNG) 
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(Locke, 1955), augmented PNG (APNG) (Zarchan, 1994) and optimal guidance law 

based on linear quadratic regulator theory, linear quadratic Gaussian theory or lin

ear quadratic exponential Gaussian theory (Lin and Su, 2000). Among the current 

techniques, guidance commands proportional to the LOS angle rat.e are generally 

used by most high-speed missiles today to correct the missile course in the guidance 

loop. Recently, many advanced strategies have been implemented to generate differ

ent guidance laws. For instance, Rajasekhar and Sreenatha (2000) employed fuzzy 

logic to implement PNG law. The fuzzy law generates acceleration commands for 

the missile using closing velocity and LOS rate as input variables. The input data is 

fuzzified and their degree of membership to the output fuzzy sets is evaluated which 

is then defuzzified to get the acceleration command. A fuzzy based guidance law for 

missiles has also been proposed by Creaser et al. (1998) using an evolutionary com

puting based approach. The proposed law uses a genetic algorithm to generate a set 

of rules for the missile guidance law. Menon and Iragavarapu (1998) uses fuzzy logic 

weightings to blend three well-known guidance laws to obtain enhanced homing per

formance. The composite law evaluates the weights on each of the guidance systems 

to obtain a blended guidance command for the missile. Yang and Chen (2001) have 

implemented an Hoo based guidance strategy. Unlike other guidance laws, it does not 

require the information of target acceleration, while ensuring acceptable interceptive 

performance for an arbitrary target with finite acceleration. 

2.2.1 LOS guidance 

LOS is the most widely used guidance strategy to date. In fact, almost all guidance 

laws in use today have some form of LOS guidance because of its simplicity and ease 

of implementation. The LOS guidance employs the line of sight angle A between the 

vehicle and the target which can easily be evaluated using Equation 2.1. 

(2.1) 

where (xt, yt), (x2 , y2) are the missile and target position coordinates respectively. 

The objective of the guidance system is to constrain the missile to lie as nearly as 

possible on the LOS. Since the missile ideally always lies on the line joining it to the 

target, the flight path will be a curved one. LOS guidance does not work well with 

manoeuvring targets. Moreover, the interception time is high which can be abridged 

using different strategies as discussed in the following sections. 
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2.2.2 PNG and its variants 

The Lark missile that was tested in 1950 was the first missile to use PNG. Since then 

the PNG law has been used virtually in all of the world's tactical radar, infra-red 

and TV guided missiles (Rajasekhar and Sreenatha, ."2000). It is the most common 

and effective methodology in case of non-manoeuvring targets that seeks to nullify 

the angular velocity of the LOS angle. In this technique, the missile heading rate is 

made proportional to the LOS rate from the missile to the target. The rotation of 

the LOS is measured by a sensor (either onboard or from a ground station), which 

causes commands to be generated to turn the missile in the direction of the target. 

Mathematically, the PNG law can be stated as 

"le= N'Vc), (2.2) 

where "'e is the acceleration command, N' is the navigation ratio, Ve is the closing 

velocity and A is the LOS.angie rate. The advantage of using PNG over LOS guidance 

is that the interception time can be greatly reduced by adjusting the navigation 

constant as shown in Figure 2.1 for the case of N' = 1 and N' = 4. In the latter case, 

the missile steering commands are four times as great, As a result the missile veers 

off much more to the left resulting in engagement. 

y 

N'= 1 N' =4 

1C 

Figure 2.1: Proportional navigation guidance for a missile system 
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PNG Like LOS guidance does not work well in the case of non-manoeuvring targets. 

However, the interception time is reduced. APNG is a modified form of PNG to deal 

with target manoeuvres. 

Other forms of PNG are velocity compensated PNG, pursuit plus PNG, and dynamic 

lead guidance (Lin, 1991}. 

2.2.3 Optimal guidance law 

Recently, great interest has been shown in using optimal control theory in the missile 

guidance problem. The two important mission parameters i.e. missile target engage

ment time and the energy needed can be reduced by utilising optimal control. Tsao 

and Lin (2000} proposed an optimal guidance law for short-range homing missiles to 

intercept highly manoeuvrable targets. The guidance problem that needs to be solved 

for the interception is to find the optimal missile trajectory such that the total time 

for the interception is minimised. The performance index J used in the proposed 

optimal law is 

(2.3} 

where t 1 is the interception time. 

The proposed guidance law achieves the best performance in terms of the miss distance 

and interception time in comparison to the true PNG and APNG. However, a major 

disadvantage of this law is that the target's future trajectory must be known in 

advance which is impossible to evaluate in a realistic environment (Tsao and Lin, 

2000}. A comprehensive review of optimal guidance laws is documented by Lin (1991}. 

2.3 Guidance Laws for AUVs 

The classical autopilots for AUVs are designed by controlling the heading or course 

angle in the control loop. By including an additional loop in the control system with 

position feedback from the sensors, an AUV guidance system can be designed. The 

guidance system generates reference trajectories to be followed by the vehicle utilising 

the data obtained by the navigation system. 

The following section presents some important guidance laws found in the literature 
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which have been proposed or implemented in UUVs and are enlisted below. 

• Waypoint guidance by LOS 

• Vision based guidari:ce 

• Lyapunov based guidance 

• Guidance using chemical signals 

• Proportional navigation guidance for AUVs 

• Guidance using magnetometers for cable tracking 

• Electromagnetic guidance 

• Guidance using long baseline and short baseline 

• Fuel optimal guidance 

2.3.1 Waypoint guidance by LOS 

Waypoint guidance is the most widely used scheme in the field of AUVs. In the 

key paper by Healey and Lienard (1993), guidance is achieved between two points 

[xd(to),yd(to)] and [xd(t,),yd(t,)] by splitting the path between them into a number 

of waypoints [xd(k), Yd(k)] for k = 1, 2, · · · , N as shown in Figure 2.2. It is assumed 

that the vehicle is moving forward with speed U, then the LOS in terms of desired 

heading angle A can be defined as 

A= tan-t [Yd(k)- y(t)] 
xd(k)- x(t) 

(2.4) 

where [x(t), y(t)] is the current location of the vehicle. Care must be exercised to 

ensure that the heading angle A is in the proper quadrant. When the vehicle reaches 

in the vicinity of the waypoint which is determined by checking if the AUV lies within 

a circle of acceptance (COA) of radius Po around the waypoint [xd(k), Yd(k)] and if 

the vehicle's current location [x(t), y(t)] satisfies 

(2.5) 

the next waypoint [xd(k + 1), Yd(k + 1)] is selected. The circle of acceptance could 

be taken as two times the length of the vehicle (Healey and Lienard, 1993). 

If on the other hand, dpjdt goes from negative to positive without the above condition 
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being met, than the waypoint has not reached. At this point, the guidance law must 

decide whether to keep the same destination waypoint and directing the vehicle to its 

COA or choose the next depending on a mission planning decision. A major disad

vantage ofthe·waypoint guidance is that, undesirable control energy consumption due 

to overshoot can be made during the change of trajectory. Therefore, selection of the 

reference trajectory for tracking is important to reduce the overshoot width of path 

and thus to decrease the control energy consumption. Yeo {1999) employed turning 

simulation to determine modified waypoints to avoid overshoot. Aguiar and Pascoal 

{1997) and Aguiar et al. {1998) proposed a modification in the waypoint guidance to 

deal with the presence of ocean currents. A current compensation for the heading 

autopilot has been developed which aligns the total vehicle velocity direction with 

the heading command. 

Figure 2.2: WayPoint guidance by LOS 

Another LOS guidance scheme has recently been devised by Bakaric et al. (2004). The 

authors have provided an improved waypoint guidance scheme by adding a correction 

angle term to the desired heading of the vehicle to the next waypoint. This scheme 

aims at providing a smooth trajectory when transiting from one waypoint to another. 

This is depicted in Figure 2.3 where the desired heading is represented by 'tPro and 
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correction is given by 1/Jc· The correction angle is determined by incorporating the 

knowledge of the vehicle position, current waypoint, ~and the next waypoint, ~+1· 

The term p0 represents the COA as defined before. The algorithm also allows for 

.the compensation of sea current influence on the vehicle's motion, however, this is 

applicable when the current intensity is less than the vehicle's velocity. 

Figure 2.3: LOS guidance with reference heading correction (Bakaric et al., 2004) 

2.3.2 Vision based guidance 

The vision based guidance technique has been inspired from the work of ROV oper

ators, which utilise or rely on the visual information to perform tasks thus making a 

strong argument that visual imagery could be used to guide an underwater vehicle. 

Vision based guidance has been mainly employed for cable tracking and docking prob

lems (Wettergreen et al., 1999; Balasuriya and Ura, 1998; Briest et al., 1997; Rock 

et al., 1992). Balasuriya and Ura (1998) developed an optical terminal guidance 

scheme and suggested its use for the docking of an AUV using a beacon. The bea

con could be a light emitting device, which can be identified using photo detectors 

onboard the AUV. This scheme is analogous to a heat seeking air-to-air missile when 

locked on to its target. The disadvantage of using a beacon is that in shallow waters 

especially during the daylight, the photo detectors could be locked on to the sunlight. 
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A potential remedy is to adjust the frequency of the light emitted by the beacon. 

Wettergreen et al. (1999) proposed vision based guidance for an AUV named Kambam 

using two cameras. The· authors demonstrated that guidance can be achieved by a 

feature tracker algorithm which requires two correlation operations within the feature 

tracker as shown in Figure 2.4. The feature motion tracker follows each feature 

between previous and current images from a single camera whilst the feature range 

estimator correlates between the left and right camera images. The feature motion 

tracker correlates stored feature templates to determine the image location and thus 

direction to each feature. Range is determined by correlating the features in both 

images to find their pixel disparity. This pixel disparity is related to an absolute range 

using camera extrinsic and intrinsic parameters, which are determined by calibration. 

The direction and range to each feature is then fed to the controller which determines a 

set of thruster commands. To guide the AUV, thruster commands become a function 

of the position of visual features. A major drawback of using visual systems in 

underwater guidance is that the performance degrades in case of turbid water or 

when a cable is hurried or there might be other similar cables appearing in the image. 

For such cases, a multisensor fusion technique has been proposed (Balasuriya and 

Ura, 1999a; Balasuriya and Ura, 1999b; Balasuriya and Ura, 2000; Balasuriya and Ura, 

2001). The proposed sensor fusion technique uses deadreckoning position uncertainty 

with a 20-position model of the cable to predict the region of interest in the image 

captured by a camera mounted on an AUV. The 20 position model of the layout 

of the cable is generated by taking the position coordinates (x;, y;) of a few points 

along the cable which is then used to predict the most likely region of the cable in 

the image. 

As opposed to two cameras, Balasuriya and Ura (1998) proposed a vision based 

guidance law using a single camera. The technique has been implemented in a test 

bed underwater robot, Twin-Burger 2, at the University of Tokyo for cable tracking 

and a moving object. The basic idea underlying this scheme is that, the feature to be 

tracked introduces a particular geometric feature in the image captured by the CCO 

camera. The vision processor than label these features, extract their location in the 

image and interpret the appearance into a guidance parameter as shown in Figure 

2.5. For example, an underwater cable introduces a line feature in the image and the 

edges of a cylinder introduce a rectangle. The vision processor derives the equation 

of the line representing the cable in the image plane given by Equation 2.6, which 
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Figure 2.5: Vision based guidance System for the Twin-Burge1· 2 AUV 
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gives the direction q and position r parameters. 

r = xcos(q) + y sin(q) (2.6) 

where (x, y) are the coordinates of the straight line equation. In the case of a cylindri

cal object, the coordinates of the centroid of the object (rectangle) in the image plane 

and the area covered by the object are derived. These parameters are then fused 

with other sensory parameters to determine the control references for the underwater 

vehicle. 

Rock et al. (1992) devised a vision based system to track a dot of light generated by 

a laser. The hardware is comprised of two cameras, one of which is used to locate the 

target. The vision system works by scanning the image from the last known location 

of the target, or from the centre of the screen if the target was not previously in 

view. The pixels are examined row by row, expanding outward towards the edge. If 

a target is found, its angle and elevation with respect to the centre of the image is 

evaluated and transmitted to the vision processor, whereas the range is determined 

using successive images from both cameras. The proposed law has been proved to be 

valid only in the case of a single distinguishable target. 

2.3.3 Lyapunov based guidance 

A Lyapunov function can be considered as a generalisation of the concept of distance 

or energy. The Lyapunov theorem states that if the distance of the state along any 

trajectory of :X = Ax decreases with time, then x(t) must tend to 0 as t ----. oo 

(Chen, 1984). Caccia et al. (2000) uses the concept to develop a new guidance law 

for UUVs and tested on a prototype ROV called Romeo." This law is termed as the 

medium range manoeuvring guidance law. In this law, the vehicle is allowed to move 

from point (x, y) to (xd, Yd) with a desired orientation 'lj;d as shown in Figure 2.6. By 

choosing the desired vehicle speeds 

Ud = 

Vd 

Td = 

(ecosa 

0 

cos a sin a ( 1 B) 
Ita+( a+ t 

a 

(2. 7) 

(2.8) 

(2.9) 

where (, /t, and h are the tuning parameters, a Lyapunov function is suggested given 

by Equation 2.10, which makes the distance e between the two points converges to 
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zero for increasing time 

where 

e - /(xd- x)2 + (Yd- y)2 

() - , -1/Jd 

0: ,-.,p 
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(2.10) 

(2.11) 

(2.12) 

(2.13) 

ud, Vd and Td are the desired vehicle's surge, sway and yaw velocities respectively. If an 

obstacle is detected along the way by the sensors with some orientation 8 and range 

d from the robot, the vehicle follows its profile until a suitable detaching condition 

is verified and the vehicle then continues its free space manoeuvring. For feature 

following, the proposed law does not require the control of the vehicle sway velocity 

while controlling the surge and yaw velocities. 

L 
y 

V 

Figure 2.6: Medium range manoeuvring guidance law 

2.3.4 Guidance with chemical signals 

Using the fact that marine animals make extensive use of underwater chemical signals 

to avoid predators and to locate food sources etc., an interesting guidance scheme for 

AUVs using chemical signals has been proposed by Consi et al. (1994). The authors 

have built a small underwater robot, which mimics the chemical sensing abilities 

of a lobster. This class of robots is named as biomimics, which are designed to 

mimic certain features of animals and act as animal substitutes in behavioral and 



2.3. GUIDANCE LAWS FOR AUVS 22 

neurobiological studies. 

The goal of the paper is to use the information in chemical signals to locate the source 

of a chemical discharge. In this respect, it has a number of scientific, environmental, 

commercial and defence related applications. The sensors used in the biomimic are 

the conductivity sensors which are used to enable the AUV to follow a plume of 

saltwater in a freshwater flow-through flume. Simple gradient following algorithm is 

implemented to locate the source of discharge, which has the obvious disadvantage of 

getting trapped in local concentration minima and maxima. 

Grasso (2001) documented a review on various chemoreceptors used by invertebrates 

to track the source of discharge for foraging or hunting purpose. A comparison is made 

between artificial sensors and sensors used by invertebrates under similar environmen

tal conditions. A biomimetic robot was designed based on a Lobster's behaviour of 

chemical sensing and tracking. The robot receives guidance commands from an on

board gyro that provides a frame of reference to simulate estimation of flow direction. 

Three chemical detectors provide indications of plume extent in the boundary and 

viscous sublayers. The left and right sensors are used to detect the plume whilst the 

bottom sensor pointed towards the flume floor is intended to partially fulfill the role 

of the sensors on the legs of real lobsters. 

2.3.5 Proportional navigation guidance for AUVs 

Although PNG is widely used for missile guidance systems but Ahmad et al. (2003) 

demonstrated that it can be tailored to work for AUVs as well. The authors proposed 

a two-stage problem formulation to retrieve a returning AUV to the mother subma

rine. In the first stage, interception of the target (mother submarine) by the AUV is 

considered using PNG law, which is the theme of the paper. In the second stage, the 

docking of the AUV is considered when in close proximity to the mother submarine 

and is an area of current investigation. The idea behind using PNG is that if the 

AUV is made to lie on the LOS and hold it there as well, a constant relative bearing 

between the AUV and target is ensured i.e., the LOS does not rotate and interception 

will occur. The PNG law can be stated as 

(2.14) 

(2.15) 
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where k is the navigation constant, >. is the LOS angle and Uc is the command input, 

therefore 

Uc = NV,), (2.16) 

where V, is the closing velocity and N is an important tuning parameter. The block 

diagram of the proposed guidance and control system is shown in Figure 2. 7 where 

the guidance system used is PNG, which generate commands for the control system. 

Different engagement scenarios have been considered in this paper. For stationary tar

gets, the scheme is analogous to the waypoint guidance. For mobile targets, the PNG 

law generates suitable trajectories to be followed by the AUV for docking purposes. 

Guidance 

h 
f/r Planllautopllol 

Kinematics 

Figure 2.7: Proportional navigation guidance loop 

2.3.6 Guidance using magnetometers for cable tracking 

The underwater cable network and its capacity are expanding very rapidly, and its 

installation and maintenance becoming more important. AUVs could be a poten

tial tool for underwater cable tracking for inspection purpose especially in case of 

deep waters where human intervention is not possible. Different schemes have been 

proposed for underwater cable tracking. Balasuriya and Ura (1998), proposed vision 

based guidance for cable/pipeline tracking as outlined in Section 2.3.2, but in the case 

of shallow waters, where cables are buried to avoid being damaged by fishing gears 

or anchors, the performance degrades. For buried electrical or telecommunications 

cables, the remedy is to use onboard magnetometers, which can detect the magnetic 

field induced from the current flowing in the cable. The data from the magnetometer 

is fed to a cable locator which estimates the direction, burial depth and the distance 

of the vehicle from the cable. The data from the cable locator is then used to guide 

the vehicle. The Aqua Explorer 1000 is an example of a successful implementation of 

magnetometer based guidance for underwater cable tracking (Asakawa et al., 1996; Ito 
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et al., 1994a; Kato et al., 1994a). Guidance using magnetometers has limited appli

cations as it can only be used to guide the vehicle towards the source of the magnetic 

field. 

2.3. 7 Electromagnetic guidance for AUV docking 

A major disadvantage of using optical or visual guidance systems is that the re

sponse is only good in nonturbid, clear environments and it is limited over a wide 

range of background lighting and water turbidity conditions. In addition, the AUV 

must lie within the field of light emitted by the beacon on the cable or dock and 

should be oriented in such a way so that the optical sensors eau detect the light. 

Feezor et al. (2001) employed an electromagnetic guidance (EM) technique during 

the homing/docking mode of an AUV. The EM guidance system uses a magnetic 

field generated by the coils on the dock which is sensed by the coils in the AUV. The 

guidance system provides to the AUV not only the bearing to the dock, but also the 

angle of the AUV relative to the field lines and thus the angle relative to the dock 

entrance. The accuracy of the proposed system is less than 20cm but the range is 

limited to 25- 30m. The proposed system is shown to be quite robust under almost 

all oceanographic phenomena. 

2.3.8 Guidance using long baseline and short baseline 

This guidance scheme is classified into two parts, the homing phase and the docking 

phase (Oh et al., 2002). In the homing phase, a long baseline type sensor is used 

to estimate the position information whereas short baseline type sensor and a CCD 

camera is used during the docking part of the problem. Homing requires the path to 

· the launcher to be generated by a cubic spline function which utilises the information 

related to the radius of curvature and path length. Assuming that the launcher is not 

stationary, an accurate path is derived by anticipating the position of the launcher 

(docking point). This is achieved by obtaining the information about velocities and 

positions of the AUV and the launcher and then generate an exact path by iteration. 

Since the launcher is continuously changing its position due to sea currents, therefore 

the path needs to be updated based on the new launcher position. 
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2.3.9 Fuel optimal guidance 

A major problem all AUVs suffer is of limited onboard power. Most AUVs run 

off onboard lead acid batteries or fuel cells that have fixed capacities and therefore 

the range of mission gets confined. Kim and Ura (2003) addresSed this problem 

by designing a fuel optimal guidance and tracking controller of AUV under current 

interaction. The total amount of fuel consumption to reach the terminal position 

is considered as the performance index to be minimised. The algorithm has been 

applied to the navigation of an AUV named R-One Robot developed at the University 

of Tokyo. The results illustrate apparent savings of fuel consumption, when the local 

distribution of sea current becomes more complicated and irregular. 

2.4 Concluding Remarks 

This chapter presents several guidance laws for unmanned vehicles with emphasis 

on UUVs. Guidance laws for airborne missile systems are also explored. It has been 

shown that the guidance system plays the vital role in bringing autonomy to the whole 

system. Moreover, it is observed that most of the current AUV systems employ either 

the classical waypoint guidance to reach a target area or the more advanced vision 

based guidance for cable/pipeline or object tracking. As a matter of fact, the LOS 

guidance is the key element of all guidance systems. Electromagnetic guidance was 

shown to have advantages over vision based methods but the applications are only 

limited to places where magnetic field is present. The discussion presented in this 

chapter provoked the formulation of two guidance laws in Chapter 5 for cruising 

type vehicles similar to Hammerhead for cable tracking missions. The first strategy 

suggested is another form of PNG which is termed as the pure pursuit guidance. The 

other system is a hybrid law combining several guidance schemes in different phases 

of the mission. The next chapter elaborates on Hammerhead hardware, its onboard 

sensors and the actuater control system followed by some trial results for system 

identification to obtain vehicle dynamics for controller design in Chapter 4. 



Chapter 3 

Hammerhead and Its Hardware 

Setup 

In this chapter, details concerning the hardware of Hammerhead is presented. It is 

shown how the Hammerhead configuration has evolved from an ROV type to fully au

tonoumous. The hardware developed at Plymouth and accompanying software is also 

reviewed. In particular, a description of the actuator controller card designed indige

nously at Plymouth, the proximity sensors and a test rig to calibrate the programs 

for real time is explored along with the Hamrne1·head navigational suite. 

3.1 Deep Mobile Target (DMT5) 

Before being commissioned as an AUV, the Hammerhead used to be a deep mo

bile target (DMT) operated by the Royal Navy to simulate a submarine in training 

exercises. The vehicle was developed during the 1960s and acquired in the 1990s 

by the Offshore Technology Centre, Cranfield University. Since then, a number of 

modifications have been made to its original design and some new sections added to 

accommodate various sensors. In particular, the out of date electronics were stripped 

off and replaced by some state of the art sensors and actuators. The number 5 has 

been retained on the hull as shown in Figure 1.2 for historical purposes. 

Dimensionally, the vehicle at present is approximately three and a half metres long 

and about one-third of a metre in diameter. The hull is made up of aluminum 

and divided into several sections with conventional '0' ring seals which allows easy 

breakdown of the vehicle and the addition of extra modules. A counter-rotating 

electric motor drives the two propellers shown in Figure 3.l(a) at the rear end of the 
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vehicle. Also depicted in Figure 3.1(a) are the pair of rudders and hydroplanes for 

horizontal and vertical motion respectively. In the original DMT, the drive to the 

control surfaces was clutched from the main propulsion train. Each control surface 

had two clutches and the necessary positi0n transducer to give control surface a.Iigle 

(Tetlow, 2001). This system has now been replaced with conventional stepper motors 

shown in Figure 3.1(b) that allow easy digital control and ideally do not require 

any feedback. However, a position feedback mechanism was later added for resetting 

purposes and will be discussed in the forthcoming sections. 

(a) Rear rudder and sternplanes along with the {b) The rear stepper motors inside the Hammer-
counter-rotating propellers head hull 

Figure 3.1: Rear rudder and hydroplanes on the original DMT and the new stepper 
motors 

3.1.1 Transformation to an AUV 

The DMT5 has a pair of hydroplanes at the rear end of the vehicle for diving. During 

the initial wet trials of Hammerhead, it was observed that the vehicle could not dive 

using the existing hydroplanes. This was due to the fact that the DMT5 was originally 

designed in such a way that it needs to be launched from a specially built platform to 

get it into the water. Such an arrangement is shown in Figure 3.2. Once the vehicle 

is submerged the sternplanes are responsible to control the depth. 

This motivates the use of front hydroplanes or bowplanes on the Hammerhead. The 

planes were installed in an additional section together with the camera adjacent to 

the nose of the vehicle as shown in Figures 3.3(a) and 3.3(b). This is one of the 

stimulus of the name Hammerhead as the bowplanes give the vehicle a Hammerhead 

Shark like feature. 
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Launch platform 

Sea Surface 

Figure 3.2: DMT5 being launched from a platform into the sea 

(a) P hysical layout of the front hydroplanes (b) Front hydroplanes added to an extra sec-

showing the stepper motor and camera section t ion on Hammerhead 

Figure 3.3: Front hydroplanes and the camera slot on an extra section next to the 

nose of Hammerhead 

After careful trimming and repeated tank t ests, the vehicle was kept slightly positively 

buoyant for ease of recovery. Test trials revealed that the vehicle was able to dive with 

the new hydroplanes. No physical constraints are imposed on the bowplanes, however, 

it is restr icted to ±25° t hrough software which was deemed adequate for diving and 

controlling depth and was obtained through a series of experiments. The sternplanes 

were secured and may be uti lised in the future together with the bowplanes1 for depth 

1 unless otherwise stated, t he front hydroplanes or bowplanes are referred to by hydroplanes in 
general throughout the thesis 
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control. 

The vehicle is powered from four onboard lead acid car batteries and are placed in 

the middle section as shown in the sectional view of Hammerhead in Figure 3.4. Also 

depicted are the sensor locations and an umbilical to communicate with the vehicle 

during preliminary testing. Since no power was being supplied externally, a very thin 

cable was used that could help minimise the drag effects. One end of the umbilical 

inside the vehicle was linked to all onboard sensors and to the actuator controller. 

Mission commands were being sent through the serial port of a laptop connected to 

the other end of the cable. This demonstrates an ROV-type configuration except that 

the power supply was internal. 

COnlrol 
Boenls. 
GPSond 
Pre.uwe 
sen-

laak 
OniOif detector 

s.r~a1EII~ 
Ports 

---
Wolghl 

ejection 
syslem 

Front 
Hyd<oplanes 

Figure 3.4: Sectional view of Hammerhead showing the umbilical and onboard sensor 

locations 

The Matlab environment was used for all preliminary trials to obtain vehicle dynam

ics for system identification. However, t he platform was subsequently modified to an 

integrated Matlab-Labview environment where Labview performs the data acquisi

t ion (DAQ) and vision system processing and Matlab computes t he navigation and 

controller parameters. The Hammerhead is also equipped with two separate comput

ers to deal with different software environments and the necessary DAQ hardware to 

interface with the sensors. T he computers communicate with each other through a 

serial link at 9600 bits per second (bps). One serial port of the Matlab computer is 

used to query the Labview machine if there is any data string available whilst the 
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other port is directly communicating with the control surface actuators. It should be 

emphasised here that the Hammerhead is developed as an easy to use platform for 

the underwater research community for experimenting their NGC algorithms. The 

use of Matlab in this thesis is an example of the ease of developing the NGC software 

to be directly implemented on Hammerhead which offers an attractive feature to the 

underwater research groups where Matlab is generally used for system design and 

simulation. 

It was noticed during the preliminary identification trials that the umbilical creates 

a severe amount of drag and the weight of the cable itself was affecting the vehicles 

movement. In addition, during another series of wet trials at Roadford Reservoir, 

Devon, the cable was chopped off by the propeller and the mission had to be aborted 

prematurely costing time and money. These factors influenced the choice of devel

oping a wireless ethernet connection to communicate with the vehicle for all future 

missions. The front end of the communication software was designed and developed 

at Cranfield University in the Labview environment and is used for initialisation, re

laying mission parameters, viewing the state of the vehicle through the camera in 

real time and to interrupt the mission in case of an unlikely event. In this way, the 

vehicle was executed autonomously with little human supervision. A number of pre

cautions were implemented in order not to lose the vehicle in the early stages of its 

development during autonomous runs. The weight ejection system in the nose of the 

vehicle, also shown in Figure 3.4, is one of several precautions and is activated when 

the vehicle goes beyond a specified depth, thereby, increasing its buoyancy to recover 

it on the surface. Since the Hammerhead is kept slightly positively buoyant, turning 

off the main thruster could also help in recovery in case of an unwanted scenario. 

The forthcoming sections detail the Hammerhead hardware, in particular, the actu

ator controller and the navigational sensors. 

3.2 Control of Onboard Actuators 

As mentioned above, the rear rudder and front hydroplanes are controlled by two 

onboard stepper motors. The major advantage of using stepper motors is that direct 

digital control is possible and it does not require any feedback mechanism besides be

ing able to control its movement precisely. For this purpose, an interface was sought 

which could receive an input from the onboard control computer and converts it into 
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the stepper motor driving pulses. Several such type of interface units are available 

off-the-shelve, however, it was decided to design it indigenously at Plymouth for var

ious reasons such as ease of modification, duplication in case of failure, custom made 

design to accommodate it in the vehicle etc. A microcontroller based board was thus 

developed as opposed to using the traditional stepper motor driving chips such as 

SAA1027. The microcontroller used is an Atmel 89C2051 with an on chip serial port 

which can communicate with the control computer thus providing a simple digital in

terface. The AT89C2051 has an 8 bit port which is programmed to drive the stepper 

motors. Auxilliary transistors are added in between to increase the driving current to 

the motors. The top 4 bits of the port are connected to the hydroplanes whereas the 

lower part generate the driving pulses for the rudder actuator. The microcontroller 

receives one byte of information from the control computer and translates it into nec

essary driving pulses for the rudder or hydroplanes. The assembly code and schematic 

are provided in Appendix A and the information code is illustrated in Figure 3.5. 

Rudder/ 
Hydroplane 

7 

I 

6 5 4 3 2 1 0 

\..____ ___________ ....--------" 

Clockwise/ 
Counlerclockwise 

Number of pulses 

Figure 3.5: Information byte send by the control computer to the actuator interface 

board 

As shown, the most significant bit 7 is used to identify if the command is for the 

rudder or hydroplane where a '1' indicates rudder and a '0' represents hydroplane. 

Bit 6 is for the direction i.e. clockwise or counterclockwise. This translates into 

appropriate command for rudder (LEFT or RIGHT) and hydroplane (UP or DOWN). 

The last 6 bits are the number of pulses such that for every received pulse, the motor 

turns its minimum step angle. A typical stepper motor driving sequence is shown in 

Figure 3.6. This gives the pulses represented by an A followed by 9, 5 and 6. To 

change the direction, this sequence is simply reversed. 
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Figure 3.6: A typical stepper motor driving sequence 

3.2.1 Proximity sensors 
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The proximity sensor can help provide the exact location of the control surfaces during 

any phase of the mission. These are used as feedback to the actuator controller to 

correct for the demanded position and to reset the control surfaces at the beginning of 

every mission. In addition, sometimes there is a need to abort the mission prematurely 

resulting in the control surfaces position being unknown. This costs a considerable 

amount of effort and time to reset the planes manually by observation. Two simple 

potentiometers were therefore installed each for the rudder and hydroplane actuator 

which provides position of the control surface in terms of voltage. This· voltage is used 

as a feedback to correct the deflection angle and to re-initialise the control surfaces 

before commencing any mission. 

A test rig was developed to debug the source code and to calibrate the mission 

parameters for real time. The test rig included a stepper motor and a controller 

assembled in a similar fashion as in the vehicle and is shown in Figure 3. 7. A proximity 

sensor is also connected for position feedback which is visible and attached to one end 

of the shaft whose other end is tied to the control surface. 
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Figure 3.7: Test rig developed to calibrate the mission programs for in water experi

ments showing a stepper motor, control board and proximity sensor 

3.3 Hammerhead Navigational Suite 

Navigation is a key element in an NGC strategy that determines the location of the 

vehicle and target. A reliable navigation system is required which provides accurate 

information about the vehicle state and ideally must be error free. A fault in the 

navigation system will reflect directly on the control system performance. 

Generally, a global positioning system (GPS) is employed to pinpoint any location 

on the surface whilst dead reckoning is the method of establishing the position un

derwater. Some other forms of acoustic navigation techniques to provide positional 

information are long base line (LBL), short base line (SBL), Doppler velocity log 

(DVL) to name but a few. Reader is referred to Loebis et al. (2002) for a compre

hensive review of various AUV navigation techniques. 

The manufacturing cost of an AUV largely depends on the sensor pay load on it and 

can be kept minimum by careful selection of reasonably accurate low cost sensors. The 

Hammerhead sensor suite was procured under these limitations since it was designated 

as a low cost AUV (see Chapter 1). The requirements of a simple heading and depth 
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control mission is a compass and a depth sensor. For waypoint following, the position 

information is also needed which can be estimated using an inertial measurement unit 

(IMU)(underwater and on surface) or a GPS (surface only). To track an object or 

for obstacle avoidance purpose, a sonar or vision system is usually employed. Clearly, 

the choice of an AUV navigation suite depends on the type of mission. It is also very 

common that a sensor gives erroneous measurements during a mission which can lead 

to an overall performance degradation. To eradicate this problem, redundant data is 

needed and an MSDF technique (Loebis et al., 2002) is exploited to deal with faulty 

sensors. 

At present, the Hamme1·head is equipped with all basic navigation sensors such as a 

Garmin GPS to provide latitude and longitude, a precision navigation TCM2 elec

tronically gimballed compass for the Euler angles (yaw, pitch and roll), an IMU by 

Watson Industries that gives linear accelerations, angular rates and Euler angles and 

a pressure transducer that provides the depth of the vehicle. 

The latitude and longitude from a GPS receiver can be converted to world coordi

nates for positioning on the surface and dead reckoning can be performed using IMU 

measurements underwater. Since the IMU generally provides accelerations therefore 

it has to be double integrated to get the position information. Unfortunately, dead 

reckoning technique accumulates an error over time therefore a surface fix is needed 

from the GPS. A vision system is also installed on the vehicle which is very use

ful for tracking an object on the seabed and for positional and velocity information 

(Dalgleish et al., 2003; Loebis et al., 2003) when the seabed is in the field of view 

of the camera. In addition to all this, the Hammerhead is equipped with a forward 

looking sonar which could be an alternate and an invaluable source of information for 

objects underwater even if the water is not clear. Moreover, it serves as a viable tool 

for obstacle avoidance purpose and ocean surveying to create seabed maps. An ob

stacle detection and avoidance system is being developed at Plymouth and is an area 

of ongoing research (Tan et al., 2003a; Tan et al., 2003b; Tan et al., 2004). Figure 3.8 

shows the flow of the navigational information from the sensors to the navigation 

subsystem which is subsequently integrated with the guidance and control system. 
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Figure 3.8: Flow diagram of a navigation, guidance and control system showing all 
the sensors on the Hammerhead AUV 

3.3.1 Sensor strings 

All sensors output data is in the form of strings. The strings can be read from the 

analogue output of the instrument or directly be imported into a computer through 

a serial interface. Some sensors provide additional data that is not essential for the 

navigation system, therefore the summary below provides only the main parameters 

of the strings. 

TCM2 Electronic Compass 

A typical TCM2 string is given by 

$Cl02.1P2.1Rl0.8 

Here, $ marks the beginning of string, C represents the heading angle with respect 

to the magnetic north in degrees and it ranges from 0 to 360°. P provides the pitch 

angle in the limit ±20° while R is the roll angle in degrees and saturates at ±20°. 

Inertial Measurement Unit 

The IMU can be configured to give several outputs including accelerations and Euler 

angles. A typical output from IMU may look like this 
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I +179.1 -01.0 250.0-0.01 -0.01 +1.00 -0.00 · · · 

The I in the beginning is the initialisation of the string. The rest of the string is 

user programmable. Some of the several outputs which the Hammerhead IMU can 

provide are listed in Table 3.1 below. 

Parameters 

<> Euler angles i.e. roll, pitch and yaw of the vehicle 
<> Accelerations along the x, y and z-axis in body coordinate frames 
<> Forward, lateral and vertical accelerations in earth coordinate frames 
<> Angular rate along the x, y and z-axis 
<> Heading angle rate 

Table 3.1: IMU string parameters 

Global Positioning System 

Each output string of a GPS is called a sentence which can be configured using 

vendor software. The GPS sentence usually starts with a '$' sign followed by the 

sentence name such as 'GPGGA' or 'GPRMC' followed by a list of available data. 

An archetypal GPS sentence is shown below starting with a GPGGA 

$G PGGA, 130432,5204.3658,N ,00037.6113, W,O,OO,,M,M, , 

The parameters required from the GPS are latitude and longitude which can be 

transformed into world coordinates, thereby, providing position information. The 

vehicle forward velocity is also available from the GPS receiver which can be fused 

with other velocity outputs from the IMU. 

Pressure Transducer 

The pressure transducer converts pressure exerted by water to an equivalent analogue 

voltage. This voltage can be fed directly to any analogue channel on a DAQ board 

or can be converted to digital signals using an analogue to digital converter (ADC), 

which can then be read through the serial port of a computer. This voltage is finally 

converted into equivalent pressure and thus depth of the vehicle is obtained. 
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3.4 Concluding Remarks 

This chapter has provided a detailed description of the Hammerhead hardware. It 

has been shown how the Hammerhead configuration has changed, initially based on 

an umbilical, to a wireless communication based system. Details on the act.uator 

controller card and associated hardware and software is also elaborated. Finally, 

the navigational sensors and the data available to the MSDF algorithm is reviewed. 

Chapter 4 provides additional and in depth knowledge on the working of Hammer

head hardware during the preliminary system identification experiments. 



Chapter 4 

System Identification and 

Modelling 

This chapter aims at developing a model of the Hammerhead AUV for controller 

design. A brief description of the mathematical modelling technique is presented 

followed by system identification (SI) theory and its application to Hammerhead. 

Experimental data collected for SI is reviewed and results obtained by applying SI 

to the data are shown. The algorithm developed for data acquisition experiments is 

also explained. Separate models for the rudder-yaw and hydroplane-depth channels 

are estimated. 

4.1 System Modelling 

All controller designs are based on a model of the physical system to be controlled. 

This gives the modelling process utmost importance before any real time controller 

can be developed. It is imperative that the designer gain significant depth into system 

behaviour via extensive simulations using a model of the process as an alternative to 

the physical system. Clearly, this requires a model that can replicate the systems 

dynamic behaviour as closely as possible. 

Modelling an underwater vehicle is a complex task because of the nonlinear nature of 

the vehicle dynamics and the degrees of freedom of vehicle movement. In addition, 

cross coupling effects make the controller design even more intricate. Fortunately, 

there is a plentiful amount of literature available on the mathematical modelling of 

underwater vehicles and it is generally applicable to all types of underwater vessels. 

However, a major difficulty in using these generalised models is the evaluation of 

38 
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hydrodynamic coefficients which require tank tests on a full scale physical model of 

the vehicle provided the test facility is available. The Subzero-Ill vehicle based at 

The Institute for Sound and Vibration Research, University of Southampton, UK, 

for instance, has over 70 rigid body and hydrodynamic coefficients to be estimated. 

Twelve of these were obtained by calculation or experiments. Lack of tank test 

facilities reduce the evaluation of the coefficients to only four whereas the remaining 

coefficients used were scaled down versions of the Ocean Voyager vehicle, which is 

similar in shape to Subzero-Ill (Ahmad and Sutton, 2003). 

An alternate route to modelling an AUV is thus suggested and used in this thesis 

using SI techniques on observed data obtained from test trials. More will be said 

about SI in the next section. In the following, some generic equations used in the 

mathematical modelling of an underwater vehicle are elaborated. 

4.1.1 Mathematical modelling of an AUV 

The generalised six degree of freedom (DOF) rigid body equations of motion of an 

AUV are given by Fossen (1994) as 

(4.1) 

here v = [u v w p q r]T represents the linear and rotational motions of the rigid body 

in body-fixed coordinate system. MRB is the rigid body inertia matrix satisfying 

and the matrix CRB correspond to the Coriolis and centripetal forces that can be 

parameterised to a skew symmetric matrix i.e. 

TRB = [X Y Z KM N]T is a generalised vector of external forces and moments about 

the origin acting as an input to the system. More precisely, TRB can be written as 

TRB = Tff + TE + T 

where Tfl includes the hydrodynamic forces and moments. TE describes the environ

mental forces and moments acting on the vehicle and T is the propulsion forces and 
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moments. Hence Equation 4.1 can be written as 

In this equation, 

Mti + C(v)v + D(v)v + g(1J) = T 

M - MRB+MA 
C(v) - CRB(v) + CA(v) 

40 

(4.2) 

here MA is the added mass matrix, CA is the Coriolis and centripetal effects due to 

added mass, D(v) is the hydrodynamic damping matrix, g is the vector of gravita

tional and buoyant generalised forces, T represents the forces and moments acting on 

the vehicle in the body-fixed coordinate system and 1J = [x y z <P (} '1/1] is a vector of 

position and Euler angles in earth-fixed frame of reference. Expanding Equation 4.1 

gives 

m [it- vr + wq- xa(q2 + r 2
) + Ya(pq- r + zc(pr + q))] 

m [v- wp + ur- Ya(r2 + p2
) + za(qr- p + xa(qp + r))] 

m [w- uq + vp- za(p2 + q2
) + xa(rp- q + Ya(rq + p))] 

fxP +(I.- fy)qr (r + pq)fxz + (r2
- q2 )fyz + (pr- q)lxy 

+ m [ya(w- uq + vp)- za(v- wp + ur)] 

lyq +(IX- I.)Tp (p + qr)Ixy + (p2
- 1"

2 )Izx + (qp- r)Iyz 

+ m [za(it- vr + wq)- xa(w- uq + vp)] 

I.r + (Iy- lx)pq (q + rp)lyz + (q2
- p2 )lxy + (rq- p)lzx 

+ m [xa(v- wp + ur)- Ye( it- vr + wq)] 

- X (4.3) 

y (4.4) 

z (4.5) 

K (4.6) 

M (4.7) 

N (4.8) 

(Please refer to the nomenclature in the beginning of the thesis for a description of 

notation used). The first three equations represent the translational motion while the 

last three equations represent the rotational motion of the AUV. Figure 4.1 depicts 

these quantities and the coordinate reference frames. The centre of gravity of the 

vehicle is assumed to be at (xa, Ye, za ). By coinciding the centre of gravity with the 

origin 0, the above equations can be greatly simplified. It should also be noted that 

the velocity vector v in body coordinate frame cannot be directly integrated to obtain 

the position coordinates in earth-fixed reference frame, rather, they are related by the 

transformation matrix T(17) given by (please refer Kuipers (1999) for a derivation) 
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x. 

v. 
w(hoovo) z. 

Figure 4.1: Earth-fixed and body-fixed reference frames 

where 
-s'f/Jcrp + c'f/JsOsrjJ s'f/Jsrp + c'f/JcrjJs(} l 
c'f/Jcrp + srjJsOs'!jJ -c'f/Jsrp + sOs'f/Jcrp 

eO srp c9crp 

and 

In the above transformations, s ·=sin(·), c ·=cos(·), t ·=tan(·) and 03x3 is a null 

matrix. This gives the vector r, 
r, = T(TJ)V (4.9) 

which can be integrated to get the position coordinates in earth-fixed frame of ref

erence. Please note that the model obtained using this method is nonlinear which 

for controller design purposes, linearised to some operating point. However, the SI 

technique generally provides a linear model which is valid only for a given opera

tional conditions. The next section discusses SI in the context of underwater vehicles 

followed by its application to Hammerhead. 
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4.2 System Identification 

SI offers an alternate route to model an underwater vehicle in contrast to a painstak

ing math~matical modelling technique. This approach is quite useful in providing 

reliable and accurate models in a short time using only input/output data and with

out the need to estimate the hydrodynamic coefficients requiring tank tests. This 

feature, therefore, is attractive for the underwater vehicle manufacturers, where a 

vehicle configuration changes frequently to suit the mission requirements. Moreover, 

by experimenting with the vehicle to obtain the data, significant insight about the 

vehicle dynamics can be gained thereby assisting in model development. AUV mod

elling using SI approaches have been investigated before (Tinker et al., 1979; lppoliti 

et al., 2001; Goheen and Jefferys, 1990; Ahmad and Sutton, 2003; Bossley et al., 1999), 

but most of the work involved has been undertaken on identifying a model by gener

ating data from a 6 DOF mathematical model of the vehicle. However, in this thesis, 

the SI is performed on actual AUV input/output data obtained from test trials and 

is explained in the next section. 

The SI of a dynamical system generally consists of the following four steps 

1. Data acquisition (DAQ) 

2. Characterisation 

3. Identification/estimation 

4. Verification 

The first and most important step is to acquire the input/output data of the system 

to be identified. Acquiring data is not trivial and can be very laborious and expensive. 

This involves careful planning of the inputs to be applied so that sufficient information 

about the system dynamics is obtained. If the inputs are not well designed, then it 

could lead to insufficient or even useless data. Other factors that could degrade the 

data quality includes the DAQ hardware involved and sampling rate. These will be 

discussed in detail in the following section. 

The second step defines the structure of the system to be identified, for example, type 

and order of the differential equation relating the input to the output. This means 

selection of a suitable model structure, e.g. auto-regressive with exogeneous input 

(ARX), auto-regressive moving average with exogeneous input (ARMAX), output 
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error etc. If there is significant amount of noise in the data then it could be modelled 

separately by specifying an appropriate model type. A generic input-output linear 

model for a single output system can be written as (Ljung, 2001} 

_1 nu [B;{q-1}] [C{q-1)] 
A(q )y(t) = ~ F;(q- 1) u;(t- nk;) + D(q-1) e(t) {4.10) 

where u and y are the input and output respectively and U; represents the ith input. 

A, B;, C, D and F; are polynomial in the delay operator q-1
, nk denotes the time 

delay in the system and e is the disturbance. All the above mentioned models can be 

obtained from the generic model structure by substituting the appropriate values of 

the polynomials. 

The third step is identification/estimation, which involves determining the numeri

cal values of the structural parameters, which minimise the error between the sys

tem to be identified, and its model. Common estimation methods are least squares 

{LS}, instrumental-variable (IV), maximum-likelihood (MLE) and the prediction

error method (PEM). A common criterion used in most optimization methods is 

the quadratic error function given by 

N 

min J = _!_ "(y(k)- Y? 
r N L...., 

i=1 

(4.11) 

where y is the predicted output from the model, y represents the actual output, N 

denotes the number of data points and r contains the coefficients to be estimated in 

a given model structure. 

The final step, verification, consists of relating the system to the identified model 

responses in time or frequency domain to instil confidence in the obtained model. 

Residual (correlation} analysis and cross-validation tests are generally employed for 

model validation. The residuals E are defined as the difference between the model 

output and measured output. For a perfect model, the residuals should reduce to an 

uncorrelated sequence e with zero mean and finite variance. Correlation based tests 

are employed to verify if 

e(t) = c(t) (4.12} 
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This is achieved by verifying if the correlation functions are within the confidence 

intervals i.e. 

</J,,(K) E [£(t- K}£(t)J = o(K) 

<PUE(K) - E [u(t- K}£(t)J = 0 

{4.13} 

( 4.14) 

where </J .. and </JU£ represents the autocorrelation of residuals and cross correlation of 

residuals and input respectively. u is the excitation signal to the system and o is the 

dirac delta function defined as 

if K =f. 0 

if K = 0 

If the cross correlation test in Equation 4.14 is not verified, this means that there 

is something in the residuals which is originating from the input and has not been 

properly taken care of by the model and thus the model needs further tuning. 

The above-mentioned features of SI are symbolically indicated in Figure 4.2 where 

d(t) is the external noise or disturbance to the plant. SI theory is well established 

and the reader is referred to Ljung {1999) for a comprehensive treatment. 

u(t) + 
Plant 

Model 

d(t) 

+ 

1\ 

y(t) 

Estimation 
Algorithm 

y(t) 

+ 

Figure 4.2: The overall system identification procedure 
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4.2.1 General considerations for SI trials 

As explained in Chapter 3, for the preliminary identification trials, an umbilical was 

useq to send and receive signals from the vehicle connected to a laptop computer on 

a pursuing boat. Although, the effect of the umbilical was quite severe, in particular, 

on the depth dynamics, it was decided to carry out the experiments with the existing 

setup. The cable was later removed and some additional tests were performed to im

prove the model quality. The cable drag was not modelled separately and is considered 

as an integral part of the vehicle dynamics. It will be shown in subsequent chapters 

that the initial in-water controller tests were performed using the same arrangement 

including the cable, thereby, not affecting the overall dynamics. 

There were, however, a few considerations in designing the experiments for SI of 

Hammerhead, in particular, with regard to the input signal type, the sampling period 

and the length of experiments. Most of the rudder-yaw channel identification trials 

were performed just under the surface. In this case, therefore, ideally any type of input 

sequence can be designed to excite the system and can be extended to any duration 

as long as the vehicle is away from the shore. The hydroplane-depth channel was 

rather tricky and involved careful planning of the input signal and the duration of 

experiment. The length of experiments in this case had to be constrained because 

(a) the cable length was finite and (b) long duration missions would risk the vehicle 

hitting on the seabed or bottom of the reservoir without the depth autopilot in the 

loop resulting in catastrophy. 

Another factor that influences the observed data quality is the sampling rate. This is 

system dependent and the designer should select it carefully based on his observation 

and experience before identifying a model. Too low sampling rate could result in little 

or incomplete information about the system dynamics. This is because important 

trends in the system output could be missed out due to undersampling. On the other 

hand, if the system is sampled too rapidly, a low signal-to-noise-ratio (SNR) results 

and the noise dynamics dominate the actual behaviour of the system, thus affecting 

the overall data quality. An alternate way to check the sampling rate is to analyse 

the pole-zero plot of the estimated model. If the poles and zeros are clustered tightly 

around the origin, the system has been sampled too slowly, however, if the poles and 

zeros are packed around the unit circle (lzl = 1), the system is sampled too fast. A 

reasonable spread of pole-zero plot locations is thus desired in the z-plane within the 

unit circle. 
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In case of Hammerhead , the sampling frequency need not necessarily be too high 

because of the slow dynamics of the vehicle. Too high sampling rate will not provide 

any additional information but could lead to more noise in the data which needs to be 

filtered out or modelled separately. The input frequency should also be constrained 

and should not be more than a specified value which can be obtained iteratively 

based on experience and observation. Higher input frequency ranges will provide no 

information about the system dynamics as the vehicle will not respond to these high 

frequency input variation. 

4.2.2 Hammerhead trials setup for SI 

In light of the discussion in the previous section, experiments were designed that could 

obtain the best possible data for model development. Ideally, the requirement is to 

have a completely noise free data which is impossible in a real world environment. 

The Hammerhead is a low speed AUV that swims at about 2 knots. This gives 

some insight about the sampling period to be chosen. Clearly, too high sampling 

rate in this case will give no advantage whatsoever. A sampling rate of 1 Hz is thus 

chosen iteratively which is adequate to obtain ample dynamical information about 

the system. By the same token, the frequency for the input signal is chosen as 0.1 Hz 

which was deemed sufficient to excite the interesting modes of the system. 

Some common type of excitation signals used in this thesis are uniformly distrib

uted random numbers, pseudo random binary sequence (PRBS), Figure 4.3, and its 

variants such as multistep, Figure 4.4, and doublet input, Figure 4.5. The multistep 

inputs are suitable to obtain the step response of the vehicle with various levels of 

input amplitude. On the other hand, PRBS signal excites the system within a range 

of frequencies. Additionally, it is easy to repeat to ensure data consistency or for 

averaging purposes. For depth dynamics, only short duration multistep inputs were 

used due to the reasons mentioned above. Several experiments had been carried out 

with a different multistep signal each time, similar to Figure 4.4, applied to the hy

droplane. The data obtained from these trials was merged later for model estimation 

using the SI toolbox in Matlab. The response of the vehicle to these excitation sig

nals will be discussed in the subsequent sections. It should be re-emphasised here 

that the Matlab environment was used for DAQ during all SI trials. However, since 

Matlab DAQ abilities are limited, a sequential algorithm was developed that acquire 

data from various onboard sensors progressively rather than simultaneously. The al-
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gorithm is listed below showing the order in which identification data was obtained 

and is explained as follows. 

Step 1. send input to the control surface 
Step 2. while time < specified duration 

read depth sensor 
read TCM2 compass 
read IMU 

end 
Step 3. read shaft speed 

read GPS 
goto step 1. 

Each of the excitation signal was applied for a specified duration during which sensors 

data was collected. For the rudder-yaw channel identification trials, data was acquired 

from TCM2, IMU, depth sensor, GPS and a shaft speed encoder. Depth channel trials 

uses the same algorithm except that the G PS data was not monitored. Please note 

that the GPS and shaft speed encoder have been kept outside of the main loop. This 

is because the GPS samples at a much slower rate as compared to other sensors 

and therefore would reduce the overall sampling rate if it was placed inside the loop. 

The shaft speed encoder was employed here to check the data validity and to make 
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sure that the vehicle is not slowing down due to low battery power which implies a 

change in operating condition. The data obtained during this period was therefore 

successfully separated using the information from the shaft speed encoder and was 

not used in model identification. 

With this configuration, the sampling frequency obtained was BH z. The data was 

resampled afterwards at 1Hz since this frequency was found adequate to control 

Hammerhead. Moreover, it also helps to smooth the data i.e. it acts as a low pass 

filter. It was observed that during the transmission phase to the onboard actuators, 

no data could be acquired. This is due to the limitations of Matlab. This problem 

was circumvented by leaving holes during that interval which represents the missing 

data. In addition, since there was no feedback from the control surfaces, the transition 

from one input to the other is approximated as a ramp and appropriate values were 

inserted. The whole input/output data was later processed and the missing data was 

interpolated. Figure 4.6(a) shows data set with holes and Figure 4.6(b) depicts the 

processed data. 
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Figure 4.6: Reconstruction of the missing data (a) Original data set and (b) Interpo
lated data set 
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4.3 Identification Results 

The procedure detailed in Section 4.2.2 was employed to acquire the input/output 

data from Hammerhead necessary for SI. Trials have been performed at South West 

Water's Roadford Reservoir, Devon, and at Willen Lake in Milton Keynes. Most 

of the preliminary yaw channel identification trials were conducted at Willen Lake, 

while additional tests including depth channel analysis was carried out at Roadford 

Reservoir. The following subsections discuss Hammerhead responses to various ex

citation signals and present SI results when applied to the test trials data (Naeem 

et al., 2003b). As discussed earlier, the yaw clmtmel identification trials were per

formed just under the surface using a PRBS signal, uniformly distributed random 

input and various short duration multistep signals whereas only multistep input se

quences were used for depth channel which were later merged for SI. Single input 

single output (SISO) models were developed for both channels. Some cross coupling 

effects were observed specifically in the depth channel and will be discussed. 

4.4 Rudder-Yaw Channel 

The input to this channel is the rudder deflections and the output is the vehicle's yaw 

or heading angle. The heading information is available from the TCM2 and IMU, 

however, the results presented here are the responses obtained from TCM2 only. In 

addition, the data sets shown are the original measurements at 8 Hz and have not 

been filtered or resampled. Three trial results are shown for this channel each with a 

different input and the responses are the heading, roll and pitch angle. Since the trials 

for this channel were performed near the surface with the vehicle fully submerged and 

because there was no cross coupling effects observed in the depth with respect to the 

change in heading, therefore, the depth data is not shown for this case. A SISO 

model is developed for this channel shown in the block diagram of Figure 4.7, where 

ul represents the input rudder deflections, the SISO transfer function is given by Gll 

and the output or heading angle is represented by yl. 

u1 1------· y1 
AUV 

dellecllons Heading 

Figure 4.7: Single input single output block diagram of the rudder-yaw channel model 
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4.4.1 Yaw data analysis 

The yaw response of Hammerhead to various excitation signals such as PRBS and 

multistep inputs is presented in this section. Some useful findings from these data 

sets are also elaborated. 

PRBS input 

A 32 length PRBS sequence is shown in Figure 4.8(a) . The response of Hammer

head to this input is also depicted in Figure 4.8(b). Very useful information can be 

extracted from the heading data. The negative rudder deflection as seen from the 

figure causes the vehicle to turn clockwise whilst the AUV direction is opposite in case 

of a positive rudder angle. The turning radius of the Hammerhead is an important 

specification and can be estimated using this data set. 
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Figure 4.8: Heading response of Hammer·head to a PRBS signal applied to the rudder 

(a) Hammerhead heading and (b) Rudder deflections 

Let L be the straight line distance travelled by the vehicle in t seconds. If the vehicle 

velocity is v, then 

L = vt (4.15) 
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Assume that the vehicle course change in t seconds is a degrees, then the arc length S 

relating the turning radius of the circle ra and heading change a, shown in Figure 4.9, 

is given by 

(4.16) 

where a is in radians. 

Figure 4.9: Arc length as a function of radius and angle 

The arc length 8 can also be defined in terms of the straight line distance L (Wattenburg, 

1996), 

8 = 2ra sin-1 (}:_) 
2ra 

( 4.17) 

substituting the value of ra from Equation 4.16 in Equation 4.17 gives 

. _ 1 (La) raa = 2ra Sill 
28 

. (a) La 
Sill 2 = 28 

8 L 

a 2sin (~) 

L 
( 4.18) 

Ta = 2sin (~) 

Hence the turning radius of the vehicle can be estimated if the straight line distance 

L and angle spanned by the vehicle in a specified interval are known. In case of 

Hammerhead, the turning radius with an input of 20 degrees to the rudder is found 

to be approximately 28 metres. However, the full rudder deflection was not utilised 

in this case, therefore the minimum turning radius should be less than 28 metres. An 
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earlier study by Dalgleish {2001) on Hamme1·head predicted the turning radius to be 

about 22 metres based on observation. 

The roll and pitch of the vehicle in. Figure 4.10 seems unchanged with respect to the 

change in heading. The magnitude of the variations in roll and pitch response for this 

channel is very small and hence could be neglected. 
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Figure 4.10: Roll and pitch response of Hammerhead to a PRBS signal applied to 

t he rudder (a) Roll angle and {b) Pitch angle 

Uniformly d istributed random input 

The excitation signal and the vehicle's response is depicted in Figure 4.11. This 

provides several st ep responses of the Hammerhead for various levels of input. Looking 

closely at the response plot, the vehicle course changes for a zero rudder deflection. 

There could be at least two possible reasons for this type of behaviour. Firstly, the 

surface currents can push the vehicle without any current compensation or closed 

loop control. Secondly, since the proximity sensors were not installed at the t ime 

of the experiments, the rudder was being initialised by observation and hence the 

exact posit ion of the rudder was uncertain. The roll and pitch in Figure 4.12 remains 

unaltered as before with respect to the heading and therefore were not considered in 
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the modelling process. 
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Figure 4.11: Heading response of Hammerhead to a uniformly distributed random 

signal applied to the rudder (a) Hammerhead heading and (b) Rudder deflections 
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Figure 4.12: Roll and pitch response of HammeT!tead to a uniformly distributed 

random signal applied to the rudder (a) Roll angle and (b) Pitch angle 
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Multistep input 

Finally, the multistep input in Figure 4.13(a) was used to excite the Hammerhead dy

namics and the response was recorded in Fil'iille 4.13(b). Again the vehicle heading 

clianges for zero rudder deflection for the first 15 seconds followed by a change of 

heading angle in response to two successive positive rudder inputs of magnitude 5 

and 15 degrees. A negative input was then applied to the rudder causing the vehicle 

to turn closkwise. Similar observations could be made in the last 15 seconds when the 

rudder angle is zero, however, the vehicle is not moving in a straight line as discussed 

earlier. 
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Figure 4.13: Heading response of Hammerhead to a multistep input applied to the 

rudder (a) Hammerhead heading and (b) Rudder deflections 

Figure 4.14 depicts the roll and pitch movements of the vehicle for the multistep input 

experiment and observed to be unaffected. 
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Figure 4.14: Roll and pitch response of Hammerhead to a multistep input applied to 
the rudder (a) Roll angle and (b) Pitch angle 

4.4.2 Modelling of rudder-yaw channel 

Once suitable data sets were selected, attention was turned towards est imating a 

model that could best replicate t he systems dynamic behaviour. All available mea

surements were pre-filtered and resampled at 1 Hz before any model parameters could 

be identified. Due to this, most of the high frequency contamination was eliminated 

and hence it was decided to extract an ARX or state space model without modelling 

t he noise separately. For model order selection, an approach called Akaike's final pre

diction error (FPE) has been adopted (Ljung, 1999) . According to Akaikes theory, in 

a collection of different models, choose the one with the smallest FPE. A plot of the 

FPE versus the model order is depicted in Figure 4.15 for the yaw channel. Clearly, 

the FPE is minimum for a third order model, however, t he validation tests suggest a 

minor increase in data fi t as compared to a second order model. An ARX(221) model 

has thus been extracted and is given by Equat ion 4. 19 

G( ) = - 0.04226q- t + 0.003435q- 2 

q 1 - 1.765q- l + 0.765q- 2 
( 4. 19) 
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where q- 1 is the delay operator. The state space equivalent of this model is 

x - Ax+Bu 

y Cx+Du 

(4.20) 

( 4.21) 

where x is a state vector, u represents the input and y is the output which in 

this case are the rudder deflections and vehicle heading respectively. The matrices 

A, B, C and D are given by 

A [ 1.76~ -0.76~ l 
B [~] 
C [ -0.04226 0.003435 ] and 

D - 0 
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4.4.3 Model validation 

Validation of the estimated model is the final step in an SI process. Various techniques 

~e employed to measure the model quality and its capability to predict accurately 

the measured response. Correlation tests are performed to validate if all the inter

esting vehicle dynamics have been captured by the model. On the other hand, cross 

validation test is performed to gauge the predicting capacity of the model. In this 

test, data not used for SI is applied to the model and the simulated output is com

pared with the observed response. The correlation tests of the rudder-yaw channel 

model were performed and the results are shown in Figure 4.16. 
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Figure 4.16: Correlation tests for rudder-yaw channel model (a) Autocorrelation of 
residuals and (b) Cross correlation of residuals and the input 

Clearly, the auto and cross correlation functions are within the confidence bands 

indicating that the extracted model fits well with the measured data and thus deemed 

adequate for further analysis. Two cross validation tests are next performed for this 

channel and are shown in Figures 4.17 and 4.18. The simulated outputs as seen 

from the figures match reasonably well with the measured outputs. There are some 

discrepancies though evident from the figures clue to the effect of surface currents on 

different data sets during the trials. A higher order model will not give any significant 

improvement over the estimated model and therefore robust controllers need to be 
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developed for this model which should be able to cope with any discrepancies and 

disturbances. 
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Figure 4.17: Cross validation test for rudder-yaw channel 
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Figure 4.18: Another cross validation test for rudder-yaw channel 
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4.4.4 Model analysis 

The SI approach is a black box modelling technique meaning that no physical quan

tities are directly involved in this process in contrast to mathematical modelling. All 

that is of interest is the cause and effect phenomena and then identifying the black 

box in between (see Figure 4.7), that can reproduce the measured system output as 

closely as possible for the same input. Some insight can be gained into systems be

haviour by analysing the estimated model. The coefficients of the model, though, do 

not have any direct physical interpretation but they are vital in studying the nature 

of the system. The numerator coefficients, for instance, provide the zeros of the plant. 

For many applications, the plant needs to be minimum phase i.e. all zeros must lie 

within the unit circle. The denominator coefficients, on the other hand, determine 

the pole locations in the z-plane. A pole outside the unit circle indicates an unsta

ble system, therefore the system needs to be stabilised through closed loop control. 

Clearly, a non-minimum phase plant, when inversed, will swap the location of poles 

and zeros, in which case, the non-minimum phase zeros will become the undesirable 

unstable poles. 

The pole zero plot of the rudder-yaw channel is shown in Figure 4.19, which clearly 

shows that this is a minimum phase system. However, the plant is type 1 or marginally 

stable due to the presence of a pole on the unit circle. 
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Figure 4.19: Pole zero plot for the rudder-yaw channel model 
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The step response in Figure 4.20 also reveals the occurrence of that pole which pro

vides an integrator type output to the overall system. The stair like effect in the step 

response plot indicates a discrete time plant with a sampling period of 1 second . 
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Figure 4.20: Step response of the rudder-yaw channel model 

4.5 Hydroplane-Depth Channel 

In this section, the Hammerhead hydroplane-depth channel is modelled. Data sets 

were presented and scrutinized that were acquired during the trials at Roadford Reser

voir. It has been found that experimenting with the Hammerhead depth dynamics 

was much more involved as compared to the rudder-yaw channel. One of the major 

difficulties is that the umbilical, which was used as a means of communication with 

the vehicle, was observed to be affecting its motion considerably. The cable itself was 

negatively buoyant and a significant amount of length in the water meant too much 

weight causing the vehicle to sink. Moreover, during the preliminary depth channel 

identification trials, a leak was found apparently at the point where the cable was 

attached through a gland connector near the tail of Hammerhead. Fortunately, a leak 

detector was installed on the Hamme1·head which precludes any further damage to 

the vehicle and was safely recovered. The worst scenario occurred when the cable 

was completely severed by the propeller resulting in the trials being aborted. Luckily, 

the vehicle was recovered again, thanks to the fresh water reservoir that prevents any 

conducive action on the exposed contacts of the switch of the main thruster. A new 
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cable was then procured, installed and depth trials were performed at a later date. 

The input to this channel is the hydroplane deflections while the output is the depth 

of the vehicle taken from a pressure transducer. The transfer function block diagram 

is shown in Figure 4.21, where G22 is a transfer function that maps the input (control 

surface angle) to the output space (depth). 

~--------~·IL __ £2 __ 2_2 __ ~--------~u~ 
Figure 4.21: SISO block diagram of the Hammerhead hydroplane-depth channel 

Only multistep inputs were employed to excite the depth dynamics of the vehicle 

due to the reasons mentioned before. The GPS data was not monitored since the 

GPS signal gets attenuated under water due to scattering and thus cannot provide 

any useful information. In addition, since the vehicle goes out of sight when in deep 

water, it is difficult to follow on a pursuit boat. For this reason, the depth and heading 

data was being continuously monitored. A hand held GPS on the surface provided 

the heading angle and was compared with the vehicles heading. This information was 

proved to be viable for following the vehicle during submerged operations. 

Figure 4.22 depicts the depth trials of Hammerhead vehicle at Roadford Reservoir. 

The umbilical cable and the pursuit boat can also be seen in the figure. The vehicle 

was allowed to swim freely in 6 DOF, however, only a single input (hydroplane) was 

manipulated and the heading, depth, roll and pitch data were analysed and recorded. 
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Figure 4.22: Hammerhead depth channel identification trials at Roadford Reservoir, 

showing the pursuit boat and the umbilical 

4.5.1 Depth data analysis 

For each multistep input, the experiment was repeated at least three times and data 

acquired was averaged and resampled at 1Hz. Inconsistent data sets were rejected 

and were not used in model estimation. Figure 4.23(a) shows one of the several 

multistep inputs and the depth response is presented in Figure 4.23(b). For zero 

control surface deflection, the vehicle swims on the surface and dives with a positive 

deflection angle applied to the hydroplane. The vehicle goes down to 1 metre of 

depth before the control surface position was switched to the negative side causing 

the vehicle to resurface. A positive excitation input again with an increased duration 

than the first pushed the vehicle down to approximately 6 metres. Finally, a negative 

input of a smaller magnitude and longer duration helped Hammerhead to recover 

on the surface. It should be noted in the response plots that there is a small delay 

between the input and output response times. This is because the pressure sensor 

is installed on the back side near the tail of the vehicle. ·with the same magnitude 

of positive and negative inputs to the hydroplane, it is evident from the response 

plot that the Hamme1'head diving rate is much faster than the surfacing rate. For 

instance, the diving rate with an input magnitude of + 15 degrees is approximately 

0.6 metres per second, while the vehicle surfaces with the same level of input signal 
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at a rate of about 0.2 metres per second. This behaviour enlightens the slow dynamic 

characteristics of Hammerhead and signifies the effect of the umbilical on the vehicle 

dynamics. In this case, the vehicle had to carry the weight of the negatively buoyant 

cable thus influencing the depth data quality. 

~ 15 
.2 
~ 10 
i , ~ 
• : 5 
c: • 
IJ ... 

Ci.~o 
O-o i'-' 
s:. -5 ... 
c: 
0 ... - 10 u. 0 

- 1 

0 

s:. 
Q.g; 2 •• 0 .. 
>li3 
::>E 
~~ 

4 

5 

6 
0 

10 

10 

20 30 40 50 60 
(a) 

20 30 40 50 60 
Time (seconds) 

(b) 

Figure 4.23: Depth response of Hammerhead to 

head depth and (b) Input hydroplane deflections 
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The heading plot in Figure 4.24(a) reveals interesting dynamics of the vehicle as the 

heading angle changes abruptly during the init ial diving phase. However, it is much 

more stable when the vehicle is fully submerged. The cause of this phenomenon was 

unknown at that point and t he umbilical was thought to be the source of tlus erratic 

behaviour. The pitch angle is also shown in Figure 4.24(b) indicating decreasing 

pitch angles for diving and opposite for surfacing. The maximum pitching angle of 

Hammer·head in this response plot is approximately -20 degrees. The roll in Figure 

4.24(c) varies between 0 and -1 degrees during the whole mission duration. The 

magnitude of roll variations is deemed negligible and thus will not be considered any 

further. 
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Figure 4.24: Euler angle responses of Hammerhead to a multistep input applied to 

the hydroplanes (a) Hammerhead heading (b) Pitch angle and (c) Roll angle 

Another multistep input and the Hammeheaddepth response is shown in Figure 4.25(a) 

and 4.25(b) respectively. The response is similar to the previous one except that there 

are now three positive step signals applied to the control surface and the vehicle made 

diving manoeuvres in response to the inputs while submerged at a depth of about 

10 metres. The vehicle resurfaces finally at the end of the run. The heading plot 

shown in Figure 4.26(a) bears similar abrupt characteristics at approximately 15 sec

onds when diving. The vehicles pit~h angle in Figure 4.26(b) saturates at -20 degrees 

since this is the maximum output from the TCM2. The maximum positive pitch in 

this case is about 10 degrees. The roll data in Figure 4.26(c) shows some change 

during the diving manoeuvre. However, it is nearly uniform when the vehicle is fully 

submerged. 
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Figure 4.25: Depth response of Hammerhead to a rnulistep input (a) Hammer
head depth and (b) Input hydroplane deflections 
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4.5.2 Modelling of hydroplane-depth channel 

The Hammerhead data obtained from the depth trials reveal some cross coupling 

effects between the depth and heading angle. A multivariable model t herefore should 

be the ideal choice. However, exploiting the fact that the heading angle does not 

vary significantly when the vehicle is fully submerged, a SISO model involving only 

hydroplane deflections and depth has been developed. Several data sets containing 

these parameters were collected and suitable data were averaged, resampled and t hen 

merged to estimate the model coefficients. The performance index J in this case for 

the merged data sets is taken as the sum of square of the difference between the model 

output and individual data sets. This is given by Ljung (1999) as 

where Yn represents the measurements from the nth data set, r is a vector containing 

model coefficients and Dn is the number of points in the nth data set. For model 

order selection, a plot of FPE versus model order for the dept h channel is shown in 

Figure 4.27. 

0 .042.------.-----.-----.---....----.-----.-----.----, 

0.036 

w 
0.. 0.034 
IL 

0.032 

0.03 

0.028 

0.026 
2 3 4 5 6 7 B 9 10 

Model Order 

Figure 4.27: FPE versus model order for the selection of the hydroplane-depth channel 

model 
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A third order model seems to be the ideal choice since the FPE is minimum at this 

value. However, a fourth order ARX model was chosen iteratively which gives the best 

fit between measured and model predicted outputs. Equation 4.23 below presents the 

ARX(441) model of the depth dynamics of Hammerhead 

G(q) = 0.002681q-1
- 0.00327q- 2

- 0.0007087q- 3 + 0.001322q-4 

1 - 3.6773q-l + 5.0839q-2 - 3.1348q-3 + 0. 72826q-4 
(4.23) 

The state space equivalent of the above model is given by Equations 4.20 and 4.21 

where the matrices A , B , C and D are given by 

0 1 0 0 

A 
0 0 1 0 

0 0 0 1 

-0.72826 3.1348 -5.0839 3.6773 

B - [ 0.0026807 0.0065881 0.009889 0.012597 ]T 

c [ 1 0 0 0 J and 

D = 0 

where u is the hydroplane deflections and y represents the depth of the vehicle. 

4.5.3 Model validation 

The model was verified by analysing the correlation tests and time domain cross 

validation. The ACF and CCF are depicted in Figure 4.28(a) and 4.28(b) respectively. 

Both functions are well within the confidence intervals and hence verify the criteria 

in Equations 4. 13 and 4.14. Two data sets were then chosen for cross validation test 

which were not used for parameter estimation. The results of t hese tests are shown in 

Figures 4.29 and 4.30. Clearly, the measured and simulated outputs are in harmony 

i.e. the model output is closely following the measured response. This model of 

Hammerhead will be used to develop depth controllers in simulations and real time 

in the forthcoming chapters. 
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Figure 4.28: Correlation tests for hydroplane-depth channel model (a) Autocorrela
tion of residuals and (b) Cross correlation of residuals and the input 
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Figure 4.29: Cross validation test for hydroplane-depth channel model 
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Figure 4.30: Another cross validation test for hydroplane-depth channel model 

4.5.4 Model analysis 

The model is analysed finally to gain some depth into systems behaviour without 

having to consider the physical parameters of the vehicle. Similar to rudder-yaw 

channel, the model is studied for any particular pole zero locations that might reveal 

some of the system characteristics. Factoring the numerator and denominator of the 

transfer function model in Equation 4.23 gives 

G( ) = 0.0064295q-1(1- 0.9457q-1 )(1 + 0.5561q- 1 )(1- 0.09531) 
q (1 + 0.7192q- l )(1 - 0.8048q- 1 )(1 - 0.9517q- 1 )(1 - 0.9975q-1) 

(4.24) 

which clearly shows the location of poles and zeros in the z-plane. Figure 4.31 depicts 

the pole zero plot with circles representing the zero locations and poles locations are 

marked by a cross. Since all the zeros are residing within the unit circle, t he system 

is minimum phase. There is a pole location near to boundary lzl = 1 indicating that 

this is very close to a marginally stable system with very slow dynamics and a step 

response that resembles that of an integrator type for small step durations as shown 

in Figure 4.32. Additionally, no oscillatory (complex conjugate) poles are contained 
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in the model, however, there is an almost overlap of a pole and zero locations apparent 

in Figure 4.31 which if ignored would not give satisfactory performance. 
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Figure 4.32: Step response of the hydroplane-depth channel model 
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4.6 Disturbance Modelling 

So far the plant considered is completely noise free i.e. no disturbance or noise is 

taken into acco~t or has been modelled. The high fre.quency noise present in the 

data was filtered out before model estimation. However, a controller performance can 

truly be gauged in presence of external disturbances. In case of underwater vehicles, 

environmental forces acting on the vehicle tends to vary vehicle's orientation, position 

and velocity. These include wave disturbances, surface currents and winds with low 

and high frequency content. The nature of these unwanted forces acting on the 

vehicle could be both additive and multiplicative. However, for most marine control 

applications, the disturbances effect can be approximated as additive to the dynamics 

(Fossen, 1994). In general, there are two types of contaminations considered in an 

underwater vehicle autopilot design. 

High frequency noise which is produced by the sensors and affecting almost every 

data sample. The data acquired for SI shown in this chapter has this phenom

enon quite evident. It is clear that when this noisy data is used as a feedback to 

the controller, it can cause high frequency control surface movements. To avoid 

this, the data is treated by a low pass filter before it is passed to the controller. 

Low frequency disturbances such as wind, waves generated by wind and ocean 

current. These cannot be rejected as before therefore the controller design 

should include the effects of these disturbances. The modelling is therefore im

perative to simulate their effect on the overall performance. A sea current model 

has been devised by Marshfield (1992) and is calculated along the translational 

axes as follows 

X current Xvelocity [cos( V;) cos(O)) +¥velocity[- sin( V;) cos(O)J 

+ Zvelocity (sin(O)J 

Ycurrent Xvelocity [-sin( V;) cos(cjJ) +cos( V;) sin(O) sin(cjJ)} 

+ Yvelocity [- cos('lj;) cos(cjJ) - sin(w) sin(O) sin(c/J)] 

+ Zvelocity [- cos(O) cos(ciJ)) 

Zcurrent Xvelocity (sin('l/J) sin(cjJ) + cos('lj;) sin(O) cos(ciJ)] 

+ Yvelocity (cos( 7/J) sin( cP) - sin( 7/J) sin( 0) cos( cP)) 

+ Zvelocity [- cos(O) cos(cjJ)] 

(4.25) 

where X current> Ycurrent and Zcurrent are the components of current in x , y and z 

directions respectively and c/J, 0 and 1/J represents the Euler angles or orientation 
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of the vehicle in earth-fixed frame. 

Herein the sea currents are considered only and a two--dimensional model described 

in terms of the average current velocity ~current and direction of current {3 is given by 

Fossen (1994) as 

X current 

Ycurrent 

V current cos({3 - 'If;) 

V current sin({3 - 'If; ) 

(4.26) 

(4.27) 

where Xcurrent and Ycurrent are with respect to earth fixed reference frame. The above 

equations can be directly integrated to estimate the position coordinates which can 

then be added to the actual vehicle coordinates to simulate the effect of currents. 

4. 7 Concluding Remarks 

This chapter elaborates two different and practical ways of underwater vehicle mod

elling. The convent ional way is to study the physics of the system and build a model 

around it . Some generic equations are presented that can be used to model all under

water vehicles. However this process is laborious and requires experimental data to 

determine the hydrodynamic coefficients which is not always available. An alternate 

route using SI is suggested that can exploit the dat a collected from the vehicle during 

free running experiments. Interesting characteristics about system dynamics have 

been explored that aided in developing the model. Finally SI on Hammerhead data 

was applied and models for both rudder-yaw and hydroplane--depth channel were es

timated. Problems encountered during the SI experiments were also explained specif

ically in t he depth channel identification trials. Moreover , some cross coupling effects 

were observed in the depth and heading channels but were ignored for simplicity. 

In the forthcoming chapters, guidance systems specifically for cable tracking mission 

and controllers are designed for the models developed herein. It will be shown how 

t he controllers cope with model uncertainties and external disturbances. T his will be 

preceded by simulation results and then followed by some actual in water controller 

experimental results. 



Chapter 5 

Guidance System 

The Hammerhead vehicle is a torpedo shaped vessel with very limited manoeuvri

bility. Missions such as cable following, object tracking, darns inspection and site 

surveying are all well suited to this class of vehicle where precise motion and hovering 

requirement is not an issue. T hus one of the main mission objectives set for Hammer

head is to track a cable/pipeline for inspection purpose. This chapter highlights two 

guidance laws which are designed to perform the said objective. The pure pursuit 

guidance is an extension of the work by Ahmad et al. (2003) and is employed here 

together with an onboard sonar for cable detection and following. A hybrid guidance 

law (Naeem et al., 2003a) is also developed and explored which exploits and combines 

various features from several guidance systems for airborne vehicles. Simulation re

sults are shown to demonstrate the trajectory planning capabilities of t he proposed 

guidance strategies. 

5.1 Pure Pursuit Guidance 

A variety of methodologies and concepts have been devised to perform object tracking 

by an underwater vehicle. An account of various AUV guidance schemes has been 

documented by Naeem et al. (2003d) and is reported in Chapter 2. Cable tracking 

missions generally make use of an onboard vision system for detection purposes. The 

coordinates of the cable can be evaluated based on the position of the object in the 

field of view of the camera. For electrical or telecommunications cable, an onboard 

magnetometer can also be uti lised for detection. The contemporary method to detect 

Linear subsea objects is through active magnetic, passive magnetic or electromag

netic detectors mounted on an underwater vehicle (Bjerrum and Slater, 2001). These 

sensors provide lateral and longitudinal displacement of the vehicle from the target 

74 
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pipeline, but no target direction. An additional sensor is needed to measure the tar

get orientation. This information is then used by the autopilot to steer the vehicle 

over the pipeline. The work herein assumes an onboard sonar that provides target 

orientation and direction. A modified PNG law is proposed for tracking underwater 

cables/pipelines (Naeem et al. , 2003c; Naeem et al., 2004b) which is an enhancement 

of the work undertaken by Ahmad et al. (2003). 

The intent is to demonstrate the suitability of the proposed guidance scheme for de

tecting and tracking an undersea object, in this instance a pipeline, via simulation. 

The tracking of a pipeline by an AUV is first posed as an AUV-target interception 

problem. The classical PN G law is employed to generate the guidance command sig

nals to the AUV. Subsequently this is modified to achieve the desired target tracking 

trajectory objective. A brief summary of the advantages of the use of sonar over other 

methods is as follows. 

5.1.1 Sonars 

Recent advances in sonar technology provides a sophisticated means of finding fibre 

optic cable, plastic, metal and other materials suspended in mid-ocean or buried in a 

sea bed (Bannon, 1998). This strategy entails use of an active sonar system for target 

(pipeline) detection. Active sonars employ echo ranging to detect an object whereas 

passive sonars pick-up acoustic radiation of ships, submarines etc, by an array of 

hydrophones. Some of the several other factors that influence this choice are: 

1. Active sonars echo-range and therefore are capable of detecting even a sub

merged pipeline in the background of clutter i.e., reverberations, in which it 

appears. Vision based systems will have severe limitations in such a scenario 

which is very likely to occur at seabed due to underwater current and various 

other natural disturbances. 

2. They can provide both range and orientation of the target, unlike magnetome

ters, which are non-directional and can easily mislead the AUV in presence of 

subsea ferrous deposits. 

3. An onboard active sonar can also be employed for retrieval of an AUV back to 

the mother ship once mission is accomplished. This has been investigated by 

Ahmad et al. (2003) and is an area of ongoing research. 
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4. Sonic signals are the only practical and efficient way of long range undersea 

communication, for instance between the mother ship and the AUV (Whitcomb, 

2000) . 

5.1.2 Problem definition 

The following assumptions are made in order to formulate the guidance problem: 

1. The AUV-target engagement is planar i.e. in the same plane. 

2. Although the pipeline is a continuous object, it is convenient to assume it as a 

point mass moving with a constant velocity. This condition can be ensured by 

considering only the latest value of echoed ping received by an onboard AUV 

sonar. The AUV is also considered as a constant velocity point mass moving 

with a certain velocity. 

3. Complete navigational information of the target is available to the AUV. 

Consider a two-dimensional engagement geometry in which the A UV and target are 

closing on each other at constant velocities VP and Ve respectively as shown in Fig

ure 5.1. The imaginary line joining the AUV and target is the LOS which forms an 

angle >. with the fixed reference. From the geometry of the figure the LOS angle is 

given by, 

y 

h >. = tan- 1 -
r 

target 

............... ········-·················..r~t.~.r.~.o.9~L ....... . 
AUV 

r 

h 

~--------------------------------~~X 

Figure 5.1: AUV-target engagement geometry 

(5.1) 
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where, hand rare the relative separation between the AUV and target perpendicular 

and parallel to the fixed reference respectively. The relative movement between the 

AUV and target causes the LOS to rotate through a small angle >., indicating a 

displacement h between AUV and target perpendicular to the fixed reference. The 

length of LOS is a range RLos and represents the initial AUV-target distance. The 

problem is then to develop a guidance system that will make the initial range RLos 

between the AUV and target as small as possible at the end of expected intercept 

time. It will be shown later in simulations that it is a good starting point for achieving 

the desired tracking objective, without actually intercepting the target. 

5.1.3 Proportional navigation guidance law 

The input to the guidance system are the sensor measurements. Information from the 

sensors is fused together and provided to the guidance system, which calculates the 

trajectory to be followed by the AUV. The objective of the guidance law is to generate 

commands for the control system to steer the AUV so that it will chase a target using 

a constant AUV velocity V, and a controllable heading angle '1/Jp· For cable following, 

the first stage of the tracking problem will be regarded as an AUV -target interception 

problem which is subsequently modified to realise the desired tail-chase type AUV 

trajectory. The tail-chase type trajectory of interest is akin to that formed when 

a dog is chasing a cat. This type of trajectory will ensure that the AUV is always 

trailing behind the target and thus continuously monitor it at a close length. From 

the discussion of Section 5.1.2, it is intuitive that if the AUV is made to lie on the LOS 

and hold it there as well, a constant relative bearing between the AUV and target is 

ensured that is, the LOS of sight does not rotate, and interception will occur. This 

mechanisation can be realised using a PNG law. 

Proportional navigation is a method of guidance, which generates command signals 

uc, proportional to the LOS angle >., so that the pursuing vehicle remains on the LOS. 

This can be mathematically stated as: 

k>. 

(5.2) 

(5.3) 

Where, k is called the navigation constant and is an important design parameter. A 

judicious choice of k will ensure that the LOS does not rotate and hence no further 

input command is required. Thus, it influences both, the engagement trajectory as 
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well as the command input. The PNG scheme is illustrated in Figure 2. 7 and a good 

description on PNG can be found in Garnell (1980). 

5.1.4 Guidance law application 

For implementing the guidance law of Equation 5.3, it is necessary to compute the 

LOS angle A. This requires relative positions of the AUV and target in both the 

coordinates i.e., 

h 

r 

(5.4) 

(5.5) 

where (xp, yp), (xe, Ye) are the AUV and target positions respectively in earth fixed 

reference frame. Hence, 

The components of the AUV velocity in t he (x, y) plane can be stated as, 

VP cos('l/Jp) 

Vp sin('I/Jp) 

(5.6) 

(5.7) 

(5.8) 

Hence, the differential equation for the components of the AUV position can be 

expressed as: 

(5.9) 

(5.10) 

It is assumed that the AUV speed \~ and heading angle '1/Jp are available to the 

guidance logic from an onboard speed log and gyro compass respectively. In certain 

cases both components of the AUV speed i.e. , Equations 5.9 and 5. 10 can be obtained 

direct ly from a Doppler log. 

By integrating the above velocity component equations, the AUV position coordinates 

(xp, yp) in the earth fixed reference h·ame can be found. Integrating Equations 5.9 

and 5.10 from timet = 0 tot= t1, and zero initial condi t ion , that is, xp(O) = 0 and 
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and yp(O) = 0 will give: 

Xp - 1tf Vp cos '1/;pdt 

Yp - 1t1 
VP sin '1/;pdt 

where t 1 is time until intercept. 
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(5.11) 

(5.12) 

Similarly, it is simple to evaluate the target positions (xe, Ye) in the earth-fixed frame. 

It is assumed that the target velocity Ve and orientation '1/Je is known as a function 

of time. These quantities can be either measured or estimated. Therefore, target 

positions are given by 

Xe Xe(O) + 1tf "Ve COS '1/Jedt 

Ye = Ye(O) + 1t1 

Ve sin '1/Jedt 

(5.13) 

(5.14) 

Thus, by substituting Equations 5.11-5.14, in Equation 5.6, the LOS angle >. can 

be determined which on substitution in Equation 5.3 would generate appropriate 

guidance commands. This completes the guidance law mechanisation. The next 

section present simulation results to assess the performance of the proposed guidance 

system. 

5.1.5 Simulation results 

The ultimate objective of the work presented herein is the development and simula

tion of a guidance system for an AUV to follow a subsea cable/pipeHne for inspection 

purpose. The guidance law is developed in the Matlab/Sirnulink environment and is 

shown in Figure 5.2. For guidance system simulation, the blocks denoted by "theta1" 

and "auv J1eading" are hooked up together thus completing the guidance loop. It 

was mentioned in Section 5.1.2 that the AUV and pipeline are considered as point 

masses moving with constant velocities. It is also assumed that the AUV and target 

are moving at t he same speed i.e., 

(5. 15) 
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Figure 5.2: Pure pursuit guidance system block diagram in Matlab/Simulink 

The target frame of coordinate (FOC) with respect to the AUV is (0 , 10) representing 

the seabed whereas, the initial AUV coordinates in the inertial 2-dimensional frame 

of reference (x, y) plane are (0, 200) with respect to the target FOC. Further, it is as

sumed t hat the target obeys Equation 5.16, and is heading eastwards from the initial 

FOC. 

x(t) 

y(t) 
xo +Vet 
h 

(5.16) 

Ve and h begin fixed. The target , a "fleeing" pipeline is travelling at a constant 

distance h from the AUV's inertial FOC. The AUV is to be launched from a mother 

ship in the vicinity (0, 200) of the target to intercept it. This completes the tail-chase 

problem definition. A navigation constant of k = 1 has been chosen since for this 

value, the AUV trajectory changes at the same rate as the imaginary LOS joining the 

target and the AUV. This type of flight profile is often referred as "pursuit course" 

and the corresponding guidance law as pure pursuit. The trajectory is similar to that 

formed by a predator when pursuing a prey, for instance, a dog-cat or hound-hare 

pursuit. The predator always prefers to tail chase a target rather than intercept it 

by establishing a lead angle. This characteristic is exploited herein to achieve the 
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pipeline-tracking objective and is discussed below. 

Since it is desired t o follow rather than intercept the target, a bias is introduced to 

Equation 5.4, which in effect alters the guidance signal issued by the PNG law of 

Equation 5.3. This essent ially prevents the value of h in Equation 5.4 from reducing 

to zero thus precludes the AUV from intercepting the t arget . The value and time of 

introduction of the bias would be user defined, depending on at what depth above 

the target (pipeline) the AUV is expected to operate. In this case, a bias of 10 metres 

is introduced after 40 sample times of the simulation run. In a real syst em, this 

value could be introduced by a pressure-depth sensor or altimeter on an AUV, after 

descending to a dept h of 10 meters above the seabed. The simulation is run for 300 

samples and the result is depicted in Figure 5.3. The AUV heading generated by the 

guidance system is also shown in Figure 5.4. The AUV charts out a pursuit course for 

the first 150 metres of dist ance travelled. With t he introduction of a 10 metre bias 

signal at the end of 150 metres, the vehicle maintains a desired longit udinal position h, 

while t racking the cable laterally wit hout ever intercepting it. The transient behaviour 

in Figure 5.4 at approximately 40 sample times is due to the addition of the biasing 

signal which alters the heading angle to be followed by the AUV for the rest of the 

mission duration. 

250 r--- -.---.---.---,---.--- .---;::::=========;-J 

1
- AUV Coordinates I 
• - • Cable/pipeline Coordinates 

200 

50 
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x distance travelled - metres 

Figure 5.3: Coordinates of AUV and pipeline generated by the pure pursuit guidance 

system 
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Figure 5.4: Heading angle to be followed for cable tracking 

5.2 A Hybrid Guidance Law 
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300 

From Chapter 2, it is evident that LOS is the key element of all guidance systems and 

therefore a guidance law could not be realised without employing LOS. The previous 

section proposed a new guidance strategy for cable tracking which is a derivative of the 

basic PNG law of airborne systems. This section presents another guidance scheme 

for underwater vehicles combining several features of the airborne and underwater 

vehicle guidance systems. To re-emphasise, the objective of any guidance law is to 

steer the AUV so that it intercepts the target in minimum time and with maximum 

accuracy. Fundamentally, the guidance law presented herein utilises AUV speed as a 

means to formulate the problem. The vehicle is launched from a mothership at its 

top speed which is gradually decreased when in close proximity of the target. Clearly 

this requires a nonlinear controller or several linear controllers designed at various 

speeds that covers the entire range of operating conditions. Behaviourial studies of 

aquatic animals reveal that they bear similar switching characteristics when in search 

of prey. An animal may show variations in speed or direction that are characteristic 

of a specific phase of tracking behaviour during the course of a successful track. For 

instance, lobsters show an initial increase in speed, followed by a steady speed phase, 
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and a final decrease, as they progress towards the forage or source of a chemical 

discharge (Grasso, 2001). This is similar to the AUV guidance scheme presented in 

this section. 

5.2.1 Problem formulation 

In order to formulate the hybrid guidance law, the following assumptions are taken: 

i. The AUV and target are in the same plane 

ii. Complete navigational information is available through onboard sensors 

111. A complete knowledge of the target's motion is available to the AUV 

IV. The AUV is equipped with a vision system that generates the coordinates of 

the points on the cable to be tracked 

v. The initial target coordinates (one end of the cable) are known prior to the 

mission 

The first assumption of a twcrdimensional engagement is taken for simplicity, how

ever, the concept can easily be extended to multi-dimensional geometry. Moreover, 

the AUV is assumed to be equipped with all necessary navigational sensors which 

can estimate the vehicle's velocity, orientation and direction. The third and fourth 

assumptions are relat ed and assumes the target (cable) as a point mass moving with 

a constant velocity whose coordinates can be derived using an onboard vision sys

tem. The last assumption provides the desired initial orientation (LOS angle) of the 

vehicle. 

For the hybrid guidance system, the complete mission scenario is classified into four 

different phases mainly derived from airborne systems which utilises various guidance 

laws as shown in Figure 5.5 and are explained below 

Launch Phase In the first phase called the launch phase or boost phase, the vehicle 

is launched from a submarine or a mothership in the vicinity of the target 

with an arbitrary orientation and is guided in the direction of the LOS with 

maximwn speed. This phase of t he mission requires the AUV to lock on to the 

LOS angle A where the LOS is measured with respect to the known end of the 

cable. Thus the guidance law employed here is a simple LOS guidance given by 

Equation 5.1. Please note that a two-dimensional geometry is considered here 

for simplicity. 
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Figure 5.5: Planar view of the four phases of flight for cable tracking problem of an 
AUV 

Midcourse Phase In the second part of the mission also called the midcourse phase, 

the vehicle follows the LOS as closely as possible. In the midcourse phase, the 

vehicle follows the LOS angle with maximum speed using waypoint guidance, 

(Healey and Lienard, 1993). During this part of the flight , changes may be 

required to bring the vehicle on to the desired course and to make certain that 

it stays on that course. The midcourse guidance system places the vehicle near 

the target area, where the system to be used in the final phase of guidance can 

take over. It should be noted that there is no need for the vehicle to submerge at 

this stage (except for surveillance operations), as the objective is to approach 

the target area with maximum accuracy regardless of the orientation of the 

vehicle with respect to the cable. Staying on the surface means that the vehicle 

can get GPS fixes throughout thereby reducing the probability of missing the 

target. 

Terminal Phase When the vehicle reaches within the COA, the third phase called 

the terminal phase is invoked. During this phase the vehicle must be slowed 

down and submerged in order to line up with the cable/pipeline as shown in 

Figure 5.5. The COA in this case as opposed to Healey and Lienard (1993) , 

should be taken at least the minimum turning radius of the vehicle in order to 

avoid an overshoot. At the end of the terminal phase, the vehicle must have 
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detected the cable in order for the tracking phase to take over. However, if 

the cable was passed undetected by the onboard sensors whilst the AUV made 

contact with the known coordinates of the cable successfully, the entire terminal 

phase h~ to be repeated and the AUV is directed again towards the known end 

of the cable. 

Tracking Phase Finally, when the vehicle enters the waypoint, the fourth phase 

called the tracking phase is called up utilising any existing guidance law with 

the vehicle speed reduced to its minimum value. If the vehicle is equipped 

with a vision system, the cable coordinates can be evaluated by transform

ing the cable position in the field of view of the camera to earth coordinates. 

The vehicle coordinates are available through dead reckoning using an inertial 

navigation system. Thus the AUV can track the established LOS angle be

tween the current AUV and cable positions with a bias in the vehicle y-position 

to avoid an intercept. On the other hand, if the cable to be followed is an 

electrical/communication cable, then magnetometers could be used to detect 

the radiation from the cable and guide the vehicle in the appropriate direction 

(Naeem et al., 2003d). 

After acquiring the necessary information from the cable inspection mission, the AUV 

returns to dock at its launching position for recharging and data downloading. The 

vehicle can then be reprogrammed for a new mission. 

5.2.2 Simulation results 

Since the hybrid guidance law presented exploits several vehicle speeds during differ

ent phases of the mission, therefore it is not applicable to Hammerhead at present. 

This is because the Hammerhead model is only available at one speed and is an area 

of further research. Thus a model has been chosen from literature to demonstrate the 

suitability of the proposed algorithm and will be applied to the Hammerhead in the 

future. The results presented in this chapter only depict the trajectory generated by 

the guidance system without considering any dynamics. However, the performance of 

the guidance system can truly be evaluated when vehicle dynamics at various speeds 

are taken into consideration and is the topic of Chapter 6. 

To implement the guidance law, it is necessary to compute the LOS angle ,\ given 

by Equation 5.1. In addition to the LOS angle from the vehicle to the target, the 

guidance system also generates the range (distance) of the AUV from the target. The 
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range measure is used to switch between different pre-tuned controllers. The guidance 

system is developed in Matlab/Simulink environment and is depicted in Figure 5.6. 

As shown, the input to the guidance block is the vehicle speed and heading. The 

_guidance system generates the rangeR and LOS angle .A which must be followed to 

track the cable. The guidance block is further elaborated in Figure 5. 7 where the 

vehicle x and y coordinates are compared with the target coordinates in earth-fixed 

frame of reference to estimate the LOS angle and range measure. 

heading(rad) 

X 

y 
guidance system 

Figure 5.6: Hybrid guidance system block diagram in Matlab/Simulink 
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Figure 5. 7: Hybrid guidance system block diagram 

In the end, Figure 5.8 present simulation results of the proposed guidance system. 

The vehicle was launched in the vicinity of (100, 100) representing the docking point. 

The known end of the cable was at (200, 50) in earth coordinates. The vehicle initially 

followed the LOS at its maximum velocity and switched to a moderate speed when 
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within the COA, which in this case was about 25 metres representing the minimum 

turning radius of the vehicle. Finally, when the vehicle entered the waypoint, the 

radius of which was adjusted heuristically, the AUV slowed down once more for the 

final tracking phase to commence. The onboard vision system can then take over 

to follow the cable. The trajectory generated by the guidance system as shown is 

closely following the cable without intercepting it. It will be shown in Chapter 6 that 

if the vehicle speed is kept constant, this can produce an overshoot on turning and 

the trajectory will not be a smooth one. Figure 5.9 depicts the heading angle to be 

followed by the vehicle that has been generated by the hybrid guidance system. The 

initial heading is arbitrary while the heading angle generated during the midcourse 

phase is the LOS angle which is fixed at -26.56 degrees for the duration of the 

midcourse guidance phase. The heading trajectory then changes during the final 

terminal and tracking phases. Since the cable was assumed to be laid eastwards 

therefore the final heading angle to be followed is 0 degrees. 
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Figure 5.9: Heading angle generated by the the hybrid guidance system to be followed 

by the AUV 

5.3 Concluding Remarks 

Guidance is imperative for any autonomous vehicle for successful target interception. 

This chapter presents two guidance laws for the cable tracking problem. The pure 

pursuit guidance is a derivative of PNG for airborne missiles while the hybrid law 

is a switching guidance technique exploiting several exist ing methodologies from the 

literature. The guidance system simulation models have been developed in the Mat

lab/Simulink environment and the relevant Simulink blocks are also shown. Finally, 

simulation results are presented to demonstrate the trajectory planning capability of 

the proposed guidance systems. This will subsequently be applied to the Hammer

head AUV to gauge their performance. It must be pointed out here that the broader 

aim of the work presented is to render an underwater vehicle t ruly autonomous, in

corporating features such as smart launch, midcourse guidance, target tracking, area 

search and finally, return and dock to the mother ship autonomously on completion of 

a given task. The next chapters aim at developing control laws for Hammerhead AUV 

along with the integration of the proposed guidance and control systems. 



Chapter 6 

Linear Quadratic Gaussian 

Controller with Loop Transfer 

Recovery 

Development of an autopilot for the Hammerhead AUV is of vital importance to the 

absolute design stage. This chapter is the first of two to present controller design and 

results as applied to the Hammerhead AUV models identified in Chapter 4. Herein, 

a linear quadratic Gaussian (LQG) controller with loop transfer recovery (LTR) is 

developed for Hammerhead to control the vehicle's horizontal and vertical motions. 

The guidance laws proposed in Chapter 5 are also integrated with the control system 

and simulation results are shown for various scenarios. A linear quadratic regulator 

(LQR) is developed first assuming full state availability. The shortcomings of LQR 

are addressed and an LQG controller is formulated by combining the LQR with 

a Kalman filter. Finally the robustness of the LQG controller is recovered in an 

LQG/LTR combination. 

6.1 Introduction 

So far in this thesis, the development of the Hammerhead AUV has been described 

in great depth. The hardware, software and the navigational suite are described 

in Chapter 3 and the trial results have been presented which were performed for 

SI. A great deal of Hammerhead yaw and depth dynamics have been explored and 

SISO models were extracted in Chapter 4 using SI techniques on actual vehicle data. 

Chapter 2 reviewed several guidance laws for underwater and aerial vehicles and 

89 
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the last chapter proposed some guidance laws which are to be implemented in the 

Hammerhead. The final and most crucial requirement is to design a control system 

that will render the vehicle truly autonomous provided that the navigation system 

is accurate enough. This chapter is the first of two in a series in developing control 

systems for Hammerhead AUV. It should be noted that there is a plethora of control 

systems available and a comprehensive review has been undertaken by Craven et al. 

(1998). However, the selection of a particular controller for an AUV is attributed to 

several factors. Some of them arc 

• Robustness to modelling errors (plant parameter variations) 

• Disturbance handling characteristics 

• Set point tracking and trajectory following 

• Stability characteristics 

• Application to linear and nonlinear plants 

Recently, control strategies based on artificial intelligence (AI) have gained consid

erable interest in the underwater research community. Several autopilots have been 

designed based on AI theory alone and also combined as hybrid systems with the 

existing successful control schemes to improve the closed loop performance. For in

stance, Kwiesiclcwicz et al. (2001) developed a PD gain schedulcr based on a fuzzy 

expert system of an AUV and compared its performance with a PD and standard 

model predictive controller (MPC). Results show that the fuzzy based PD controller 

outperforms the conventional MPC and PD autopilot. A similar approach has been 

adopted by Akkizidis et al. (2003) based on the combination of a fuzzy logic and 

a PD controller. Data from actual experiments has been presented and analysed 

extensively. 

Sutton et al. {2000) employed two AI techniques, namely, an adaptive network-based 

fuzzy inference system (ANFIS) and a simulated annealing-tuned control algorithm. 

A PD controller is again used as a benchmark autopilot and results demonstrate 

the superiority of the ANFIS approach. A multivariable ncurofuzzy autopilot for an 

AUV has been devised by Craven et al. (1999) employing full nonlinear six degrees 

of freedom model. The controller accounts for cross coupling effects among various 

channels. Another neural net based nonlinear adaptive control for an AUV has been 

developed by Li et al. (2002). The algorithm employs a linearly parameterised neural 
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network to approximate the uncertainties of the AUV dynamics. Guo et at {2003) 

constructed a sliding mode fuzzy control for an underwater vehicle, A UV-HMJ de

veloped at National Taiwan University. The controller is shown to be guaranteed 

stable for selected shrinking and dilating factors of the fuzzy membership functions. 

Experimental results are shown indicating the effectiveness of the proposed approach 

in dealing with modelling Uncertainties, nonlinearity and environmental disturbances. 

Based on the above information and, controller characteristics, two robust optimal con

trol strategies and their variants have been selected as the candidate control schemes 

for the Hammerhead vehicle. The linear quadratic Gaussian (LQG) controller with 

loop transfer recovery (LTR), which is developed in this chapter and the model pre

dictive controller which has been modified to accommodate various AI techniques for 

improved performance. This subject will be dealt with in detail in Chapter 7.. The 

next section highlights optimal control in general followed by an overview of LQR and 

and Kalman filter which serves as an observer. The discrete time LQG formulation is 

explained in Section 6.5 whilst the LTR is covered in Section 6.6. Finally simulation 

results of the application of the LQG/tTR controller to the Hammerhead vehicle 

models in the horizontal and vertical planes are presented in Section 6,7. An in

tegrated guidance and control system is also developed based on the guidance laws 

proposed in Chapter 5. 

6.2 Motivation of Using Optimal Control 

To date optimal control theory has been extensively used to solve various control 

engineering problems. Especially with the advent of powerful digital computers, the 

computation time is curtailed to a considerable extent which is normally required to 

solve an online .optimization problem. The optimal control is simply a minimisation 

or maximisation problem for which an objective function is.defined that could involve 

different design parameters or states to optimize. A general requirement for the 

seiection of a suitable objective function is (Bud, 1999) (1) it should accurately reflect 

the designer's concept of good performance and {2) the control moves should be 

computed with a reasonable amount of effort. The later requirement is of little 

significance these days due to the availability of highly sophisticated, powerful and 

cheap computing power. 

The traditional pole placement technique works by placing the poles at designer's 
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chosen location to attain some design specifications such as overshoot, settling time, 

rise time or bandwidth. However, a major disadvantage of using this technique is that 

the pole locations must be worked out in advance. Moreover, the controller obtained 

by this method is not always optimal and a trial and error procedure is adopted until 

the system performance coincides with the desired specifications. Optimal control 

theory suggests to place the poles at points such that the resulting controller is optimal 

in some sense. The designer does not need to know the pole locations prior to the 

design. All that is required to specify is the design specifications in the form of an 

objective (cost) function or performance index and iet the algorithm decide the best 

pole locations to achieve the desired response. 

A substantial amount of material is available on the state feedback LQR, which is 

an integral part of the LQG (see for example, Franklin et al. (1998) and D'Azzo and 

Houpis (1995)), therefore only the important aspects of the controller will be outlined 

herein. The LQR applies to linear systems whereas the cost function optimized is 

quadratic hence the term "linear quadratic". The LQR assumes full state feedback 

which is not always available. For this purpose, a Kalman filter is employed to 

reconstruct all the unavailable and noisy states. The resulting controller is termed as 

LQG since it is optimal for processes contaminated with Gaussian noise. Augmenting 

a Kalman filter for state estimation seriously degrades the excellent stability margins 

available for an LQR controller. To recover the gain and phase margins or in other 

words to approximate the LQG to an LQR controller, a procedure called loop transfer 

recovery (LTR) is often adopted. 

The LQG is a robust and optimal control methodology which has been used in solving 

numerous control related problems. It has gained a widespread interest to be used as 

an autopilot for underwater as well as aerial vehicles. For example, Brown et al. (1994) 

documents a successful design of an LQG/LTR control strategy for a non-minimum 

phase tail controlled missile system. The algorithm reassigns the eigenstructure of the 

plant including pole locations and components of the eigenvectors. An F-16 lateral 

autopilot based on LQG/LTR paradigm has been devised by Lin et al. (1997) using 

both feedforward and feedback controllers. The algorithm is shown to be robust to 

measurement noise and more suitable in practical applications. An LQG adaptive 

control for an underwater vehicle has been developed by Tabaii et al. (1994) which 

takes into account the parametric uncertainties. Chen and Chung (1994) presents 

submarine depth control using an LQG control approach. The algorithm uses a Lu-
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enberger observer to estimate the disturbances due to large waves. Results report 

significant improvement in the vertical plane movement of the submarine near the 

surface of a choppy sea. LQG/LTR control of an underwater vehicle has also been 

reported by Juul et al. (1994), and Triantafyllou and Grosenbaugh (1991). However,. 

most of these papers deal with multivariable continuous time control of a vehicle as

suming that the guidance commands are available. Herein, a discrete-time LQG/LTR 

controller is developed which is more realistic from an implementation aspect. A sim

ple weight selection procedure is adopted that will reduce the tuning complexity of 

the robust controller. The next two sections elaborate on the individual components 

of an LQG control problem, i.e. LQR and Kalman filter which are combined on the 

basis of the separation principle. 

6.3 Linear Quadratic Regulator Design 

The LQR is an optimal controller which is derived on the basis of a linear model and 

quadratic cost function. In its original form, the LQR forces all the states to go to 

zero hence the term 'regulator'. For set point tracking or trajectory following, some 

modifications could be made as will be discussed later in this section. The major 

characteristics of an LQR control scheme are given below and the block diagram of 

the controller is illustrated in Figure 6.1. 

Excellent stability margins The LQR controller is known to have excellent sta

bility characteristics with gain margin (GM) up to infinity and over 60° phase 

margin (PM) (Burl, 1999). This means that the controller is guaranteed sta

ble for all magnitude of disturbances. Some important measures of the stability 

characteristics of a system obtained from a Bode plot are defined in Appendix B. 

Optimality Unlike the pole placement approach where the designer must specify the 

pole locations in advance, the LQR does not require this information. Moreover, 

since the closed loop eigenvalues are found by minimisation of a cost function, 

therefore the resulting controller is optimal. 

Unique analytical solution As will be shown, the LQR problem can be solved 

analytically and the solution is unique provided that the process is linear. 

Application to multivariable systems The LQR methodology is inherently a mul

ti variable technique therefore extension from SISO to MIMO design is rather 

straightforward. 
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Full state feedback The major disadvantage of an LQR controller is that it requires 

full state feedback which is often not available. This is because either there is 

no available sensor to measure that state or the state is too noisy. This problem 

is generally circumvented by employing a state estimator which will be dealt 

with in Section 6.4. 

Controllability Another requirement of the LQR controller is that the concerned 

plant must be controllable. This requirement can be mathematically stated in 

terms of the state transfer and control input matrices. 

LQR 
Contr ne 0 r 

·K u Process X (Vehicle slat 
c Model 

os) 

Figure 6.1: LQR control of a process 

At its heart is a cost function which is the most vital element in all optimal con

trol strategies. In LQR, a simple quadratic objective function is employed which is 

optimized to determine the optimum control moves and is shown below 

N 

J = ~ L [xT(k)Qx(k) + uT(k)Ru(k)] 
k=O 

(6.1) 

where Q and R are weights on process states and control input respectively. The role 

of Q and R will be further elaborated in the next subsection. The plant model in Fig

ure 6.1 above is generally represented in state space format as given by Equation 6.2 

where, 

x(k + 1) 

y(k) 

x n-dimensional state vector 

Ax(k) + Bu(k) 

Cx(k) 

u m-dimensional control input vector 

(6.2) 
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y p-dimensional system output vector 

A n x n matrix 

B n x m matrix 

C p x n matrix 

A definite requirement of the LQR controller is that the plant given by Equation 6.2 

must be completely controllable and that the matrix A is nonsingular. When this is 

true then there exists a constant feedback gain matrix Kc that allows the eigenvalues 

of the closed loop system to be assigned arbitrarily. This is mathematically stated by 

forming a controllability matrix S in terms of the matrices A and B given by 

(6.3) 

Then the system is said to be completely state controllable if the matrix S has rank 

n. The control law of an LQR controller is then evaluated from Figure 6.1 as 

u(k) = -Kcx(k) (6.4) 

It is now required to evaluate the contents of Kc or in other words, the state feedback 

gain, such that a performance index is minimised given by Equation 6.1 subject to 

x(k + 1) = Ax(k) + Bu(k) (6.5) 

where the dimension of Kc is m x n. It should be observed that the state vector 

sequence x(k) and the input sequence u(k) are not independent variables that can 

be arbitrarily chosen to minimise J. In this case, the minimum of Equation 6.1 is 

obtained by substituting zero for both x and u which has no physical meaning. These 

quantities are related through Equation 6.5 which evidently produces a nonzero value 

for any nonzero x(k) even if the input sequence is fix at zero. 

Minimisation of Equation 6.1 leads to a unique solution of the state feedback gain 

matrix given by 

(6.6) 

where the matrix P is the positive definite solution of the discrete algebraic Riccatti 

equation shown below 

(6.7) 
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and P is a symmetric semi positive definite matrix i.e., 

p = pT ~ 0 (6.8) 

given P and R, the problem is then to find the gain matrix, Kc using Equation 6.6 

which on substitution in Equation 6.4 provides the required control effort. 

To evaluate the eigenvalues, .A of the feedback control system, Equation 6.4 is substi

tuted in Equation 6.2 that gives 

x(k + 1) Ax(k)- BKcx(k) 

x(k + 1) = (A- BKc) x(k) 

(6.9) 

(6.10) 

From the above equation, the state transfer matrix of the resulting closed loop system 

is found to be (A- BKc) and the characteristic equation is readily evaluated by using 

IAI- (A- BKc) I = 0 (6.11) 

where I is an identity matrix of order n x n. The LQR evolves a controller that is 

guaranteed stable and therefore all the eigenvalues of the closed loop system should 

lie within the unit circle. 

6.3.1 Selection of weighting matrices 

Control systems are often designed to specifications that involve the settling time, 

damping ratio and bandwidth constraint. Control systems may also be subject to 

constraints on the maximum output error and the maximum control input. These 

specifications can typically be met using the LQR after trial and error selection of the 

weighting matrices Q and R in the objective function defined in Equation 6.1. For 

example, the size of the control weighting matrix R can be altered until the maximum 

required control input, in a worst case scenario, is just under a bound imposed by 

the actuator. The size of the weighting matrices can also be altered to yield a desired 

settling time or other performance criteria. They can be used to provide tradeoff 

between speed of response and control effort. A higher magnitude of R with respect 

to Q reduces the amount of control eft"ort required but at the cost of a large settling 

time. Conversely, a low value of R can reduce the settling time but at the expense of 

large control effort or even actuator saturation. 
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A good starting point for trial and error selection of the state weighting matrix is 

to set the various state contributions approximately equal. For instance, consider a 

system where the state consists of position and velocity of a vehicle. The magnitude 

of the velocity is on the order of 1/10 times the magnitude of the position in normal 

operation. A reasonable state weighting matrix has the weighting on the velocity 

102 times the weighting on the position. This results in the contribution of each 

state being roughly equal. Initial control weighting matrix can also be selected in 

this manner. A simple weight selection procedure has been devised by Bryson and 

Ho (1975) which suggests to replace Q by CTQC and select Q and R as diagonal 

matrices. The elements of matrix Q are assumed to be the reciprocal of the square of 

the maximum value of the states. Therefore if Stm.,, s2m.,, · · · , Snma" are the maximum 

state contributions of an nth order process, then 

1 
0 ;r-

lrnaz 
1 

0 
s2 Q= 2rnax 

0 

0 

0 0 
1 

Similarly, for R, the diagonal matrix is selected as 

1 
~ 

0 
lmo:z: 

1 
0 u2 R= 2moz 

0 

0 

0 0 
1 

where it is assumed that there are m inputs and UJm.,, U2m••, · · · , Umma" represents 

the maximum allowable magnitude of the control inputs. 

The final selection of weighting matrices often proceeds by trial and error, after ini

tially incorporating all a priori information concerning weighting matrix selection. 

The designer first specifies which outputs are important to drive to zero and incorpo

rates any physical insight available concerning to relative weighting of the terms. The 

feedback gains are then generated and the system is simulated and its performance 

is analysed. The parameters selected are adjusted again to improve the performance 
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which is re-evaluated and further modifications are made until an acceptable design 

is obtained. 

6.3.2. Reference input tracking 

It was mentioned earlier that the LQR is designed to regulate all states to zero. In case 

of set point tracking and to obtain zero steady state error, some simple modifications 

are required before proceeding any further. A simple way of accomplishing this has 

been derived by Franklin et al. (1998) and is depicted in Figure 6.2. 

Set 
Point 

r 

+ 
u Process 

Model 

X 

Figure 6.2: LQR control of a process for reference input tracking 

The feedforward block Nu is used here to compensate the input for any steady state 

errors. However, the feedforward strategy is known to produce instability in the sys

tem. An integral control would be a better choice to get rid of any steady state output 

errors. This is true for type 0 systems, however, for type 1 or higher order processes, 

there are no steady state errors and therefore a zero magnitude will be obtained for 

the feedforward block. Fortw1ately, the Hammerhead yaw and depth models obtained 

in Chapter 4 are both type 1 and this technique would therefore provide adequate 

performance. The block N, denotes the forward block which transforms the reference 

input r to a reference state Xr that is an equilibrium one for that r. The requirement 

is therefore to find the contents of matrices Nu and N,. A derivation has been carried 

out in Appendix C and the final result is presented in Equation 6.12 below. 

(6.12) 
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6.4 Kalman Filter 

A serious drawback of the LQR controller is that it assumes full state availability. 

However, this is often not the case because (a) there are no sensors installed on the 

plant to measure that state due to the unavailability or cost of the measuring de

vice, and (b) the measured states are usually corrupted with such noise levels that 

the required information cannot be extracted without proper treatment of the sensor 

readings. The Kalman filter serves both purposes by providing the estimate of unmea

sured states and filters the contaminated measurements. Owing to its functionality 

the Kalman filter has great importance in many signal processing and control appli

cations. In this section, the Kalman filter will be discussed as it is used in an LQG 

paradigm. Several text books are available on the theory and applications of Kalman 

filter. The reader is referred to for example Franklin et al. (1998) and Santina et al. 

(1994) for a comprehensive treatment on discrete time Kalman filter design. 

The Kalman filter, when combined with the LQR forms a robust controller well 

known as LQG. It serves to provide the estimate of the unmeasured states to the 

LQR controller. However, the dynamics of the filter degrades the stability margins 

of the LQR which is recovered by constructing a fast Kalman filter. This subject will 

be covered in the forthcoming section on loop transfer recovery. A prerequisite of 

using a Kalman filter is that the system in question must be completely observable. 

This is true if every state variable of the system affects some of the outputs. This 

condition can be verified mathematically by forming an observability matrix 0 using 

the matrices A and C from Equation 6.2 

0 = [ C CA CA2 (6.13) 

Then the system is said to be completely observable if the matrix 0 has rank n. In 

particular, if 0 is a square matrix, then the system is completely observable if the 

matrix 0 is nonsingular. 

Suppose x is a vector representing the estimate of the states produced by the Kalman 

filter then the state vector x in Equation 6.4 is replaced by x. In practice, x will not 

equal x because the model is not perfect and there are unmoclelled disturbances and 

the sensors have some errors and added noise. A Kalman state estimator can be 

constructed in the following two ways i.e., 
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• Predictor estimator 

• Current estimator 

For systems, where the calculation time of a control move is greater than the sampling 

period, predictors are generally employed. A predictor estimator uses the past mea

surements of the state to update its estimate. On the other hand, a current estimator 

is employed where the computation time is low as compared to the sampling time. 

The current estimator provides the estimate of the states based on current output 

measurements. A predictor estimator would be inappropriate in this case since the 

delay of almost a cycle between the measurement and the proper time to apply the 

resulting control calculation represents an unnecessary waste. The flow chart of the 

Kalman filter loop is depicted in Figure 6.3 and the update equations are given below 

(Brown and Hwang, 1997) 

Generate the 
updated state 

estimate 

Eri!er prtor osllmOto and 

fla enor covartance 

Compute Kalman gain 

Compute error covarlance ~-.--
for updated estimate 

Figure 6.3: Kalman filter loop 

Kalman filter gain: 

Measuraments 

Update 
estimate with 
measurements 

State esllmates 

K1(k) - P- (k)CT(k) ( C(k)P- (k)CT(k) + R,(k)) -\6.14) 

State estimate: 

x(k)- x-(k)+K1(k)(z(k)-C(k)x-(k)) (6.15) 

Error covariance matrix: 

P(k) - (I- K1(k)C(kH P- (k) (6.16) 
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Updated state estimate: 

x-{k+1)- A{k)x(k) 
p- (k + 1) = A(k)P(k)AT(k) + R,(k) 

where 

K1('k) Kalman filter gain 

P(k) Error covariance matrix 

R, Measurement noise covariance matrix 

and 

R, Process noise covariance matrix 
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(6.17) 

In practice, a time varying Kalman filter requires the Kalman filter equations, the 

Kalman gain equations, a state space model of the plant, an initial state estimate, an 

initial estimation error covariance matrix, a measurement noise·covariance matrix and 

a plant noise covariance matrix. For processes that are to operate for long periods of 

time, it is reasonable to use a steady state Kalman filter having a fixed Kalman gain. 

This prevents the computation of the Kalman gain online at each sampling interval 

thus saving precious processing time. This constant gain is generally used in an LQG 

control strategy. 

Let the system be as described by the model given by Equation 6.2. The deSign 

objective is to find the Kalman gain K 1 so that the estimate of x(k) is optimal. 

The solution to this problem is given by the discrete steady state Kalman filter gain 

equation given by Franklin et al. (1998) and Maciejowski (1985) as 

where P is the steady state error covariance matrix given by the solution of a discrete 

steady state Riccatti equation, (Maciejowski, 1985) 

(6.19) 

The parameters R, and R, are tuned until the desired specifications are met. This 

is further elaborated in the following section. 
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6.4.1 Selection of noise covariance matrices 

The parameters to evaluate the constant gain Kalman filter are the process noise 

and measurement noise covariance matrices Rw and Rv. These are symmetric and 

positive semidefinite matrices which can be mathematically expressed as 

Rw - E[w(k)wr(k)] ~ 0 

Rv E[v(k)vr(k)] ~ 0 

(6.20) 

(6.21) 

The two noise sequences are assumed to be zero mean and uncorrelated with one 

another i.e., 

E[w(k)] - 0 (6.22) 

E[v(k)] 0 (6.23) 

and 

E[v(j)w(k)] = 0, V j and k (6.24) 

If there is more than one process or measurement noise components, there is usually 

no information on the cross correlation of the noise elements and hence Rw and Rv 
are selected as diagonal matrices. The magnitude of the diagonal elements are taken 

as the variances of the individual noise components. 

The effect of varying the process and measurement noise covariance matrices can be 

explained by considering the Kalman filter as integrated with an LQR to form an 

LQG controller. Keeping the state and control weighting matrices Q and R of the 

LQR controller fixed, the noise covariances are varied and the effects are examined. 

Suppose the process noise covariance of the plant Rw is increased. In this case, the 

Kalman gains are larger and approach steady state more rapidly, whilst the state 

feedback gains remain the same. The larger Kalman gains make the estimator faster, 

but the larger plant noise means that the estimates are less accurate. The control 

input also increases due to the larger gains and increased plant noise. Next the 

spectral density of the measurement noise has increased keeping the state feedback 

gain matrix constant. In this case, the Kalman gains are smaller and approach steady 

state more slowly. The smaller Kalman gains make the estimator slower, and the 

larger measurement noise makes the estimates less accurate. The error becomes larger 

due to the increased measurement noise, and this will translate into an increase in 
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the control input (Burl, 1999). 

From the above discussion, it is concluded that small magnitudes of measurement 

noise covariance would provide an adequate performance. The process noise could 

then be tuned to further improve the performance of the closed loop system. Simu

lation results will provide some more insight on the behaviour of the Kalman filter 

with respect to the change in magnitude of the noise covariance matrices. 

6.5 Linear Quadratic Gaussian Controller (LQG) 

In the preceding sections, the LQR controller and Kalman filter have been developed, 

therefore attention is now focused on combining them to form what is called an LQG 

controller. The LQG is an optimal controller whose name is derived from the fact that 

it assumes a linear system, quadratic cost function and Gaussian noise. The concept 

of LQG, in general, is quite similar to an LQR controller which is solved assuming 

that all states are available for feedback. This is not always true and a Kalman filter 

as an observer provides an estimate of the unmeasured and noisy states. The LQR 

and Kalman filter are designed independently and then fused together to form an 

LQG controller, a fact known as the separation principle. An LQG controller for set 

point tracking is shown in Figure 6.4. 

Set 
Point 

r 
u 

A 

X 

AUV 

Kalman 
State 

Estimator 

y 

Vehicle 
Position 

Figure 6.4: LQG controller showing LQR gain and state estimator 

The state vector x in the LQR control law in Equation 6.4 is now replaced by the 

estimate of the states provided by the Kalman filter. 

u(k) = -Kcx(k), for r = 0 (6.25) 
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where x is the state estimate and u is the control action. A feedback compensator 

is finally synthesised as a series connection of the Kalman filter and the optimal 

state-feedback controller given by Maciejowski (1985) as 

(6.26) 

where e = r - x, is the error between a reference signal r and plant states x. 

6.6 LQG with Loop Transfer Recovery 

Loop transfer recovery (LTR) is a method of reviving the stability margins of an LQR 

controller which are degraded by the augmentation of a Kalman filter. The LTR 

technique works by making the Kalman filter sufficiently fast so that its dynamics 

can be ignored. In addition, by cutting the control input path to the Kalman filter, 

asymptotic recovery of the stability margins is achieved, given that the plant obeys 

some specific characteristics. 

The dependence of the control input to the Kalman filter can be relaxed by adding 

fictitious noise to the process input. This noise can remove the dependence of the 

control input in addition to making the Kalman filter fast enough by effectively can

celling some of the plant zeros and possibly some of the stable poles and inserts the 

estimator's zeros (Maciejowski, 1985; Skogestad and Postlethwaite, 1996). One of the 

main limitations of LTR strategy is that it is applicable to minimum phase systems 

since cancelling a zero outside the unit circle produces an unstable estimator which 

is highly undesirable. Please note that the fictitious noise is only added during the 

design stage and is not actually used during the implementation. 

In this section, a discrete time LQG/LTR design is presented motivated from the work 

of Maciejowski (1985). The Kalman gain is first evaluated by using Equations 6.18 

and 6.19. The parameters R.v and R, are then tuned until the desired filter's open

loop return ratio ell( z) specifications are met which is shown below 

«P(z) = C (zi- A)-1 A* K1 (6.27) 

Once the desired open loop specifications are met, an LQR controller is designed 



6. 7. SIMULATION RESULTS 105 

based on an automatic procedure given by Maciejowski {1985). This method aims 

at reducing the time required to tune an LQG/LTR controller. Given the plant is 

minimum phase and that det(eB) -j. 0, the matrices Q and R to evaluate the state 

feedback gain matrix Kc are chosen as 

Q= ere, and 

R~o 

{6.28) 

{6.29) 

These values provide asymptotic recovery of the stability margins provided that the 

above conditions are true. The state feedback matrix Kc is obtained by solving equa

tions dual to Equations 6.18 and 6.19, and is used to generate the control according 

to 

u(k) = -Kcx(k) {6.30) 

A closed form solution of Kc for the nominal values of weighting matrices Q and R 

in Equation 6.28 and 6.29 respectively is also given by Maciejowski (1985) as 

{6.31) 

Let G{z) be the transfer function of the system defined by Equation 6.2 and H(z) 

be the compensator transfer function. If the plant G(z) is minimum phase and 

det(eB) -j. 0, then full recovery is achieved if 

G(z)H(z) = «P(z) (6.32) 

where G(z)H(z) is called the loop transfer function. 

6. 7 Simulation Results 

Simulation results are now presented of the development and implementation of an 

LQG/LTR controller to the Hammerhead vehicle. Several results of the application 

of the said controller to the yaw and depth dynamics will be explored. The Ham

merhead yaw and depth dynamic models have been identified in Chapter 4 using SI 

techniques on actual AUV input-output data. The models have been represented 

both in transfer function and state space formats, however, the LQG/LTR requires a 

state space version to estimate the states and evaluate the state feedback gain matrix. 
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The following is a list of ingredients which are required to blend to form an LQG /LTR 

controller. 

1. a state space model of the plant 

2. a measurement noise covariance matrix R, 

3. a process noise covariance matrix R, 

4. a state weighting matrix Q 

5. a control input weighting matrix R 

Requirements 1, 4 and 5 are for the design of an LQR controller whereas 1, 2 and 3 

are used to develop a Kalman filter. The selection of these weighting matrices having 

been discussed in the preceding sections. 

It should be pointed out here that the Hammerhead onboard sensors provide bearing 

range of 0 to 360°. This is not an issue in simulations, however in practice, it presents 

severe problems as there is always a transient like effect in the output response when 

the vehicle crosses the magnetic north boundary from either clockwise or counter 

clockwise direction. 

The simplest way to rectify this problem is to unwrap the heading angle through 

software so that the vehicle heading seems continuous to the controller. Another 

remedy is to measure the difference between the initial and desired yaw and the 

decision is made based on the minimal path length. If the shortest path suggests 

crossing the magnetic north, the 0 to 360° range is split up into 0 to ±180° and the 

AUV manoeuvres as normal following the shortest route. For instance, let the start 

heading angle be 20° measured with respect to the north and the desired orientation 

is 300° or -60°. Then the shortest path is counter clockwise from 20° to -60° (80° 

heading change) as compared to the clockwise path which has a span of 280° as 

illustrated on a polar plot in Figure 6.5. 
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N 

Figure 6.5: Representation of shortest path on a polar plot 

The first step in an LQG/LTR control problem is to design the target filter's open

loop return ratio «<l(z) given by Equation 6.27, which requires the Kalman gain to 

be evaluated. By manipulating the spectral density matrices R.., and R., in Equa

tions 6.18 and 6.19, the Kalman filter can be designed and hence the target filter's 

open-loop return ratio, «<l(z). Herein, the procedure adopted by Weerasooriya and 

Phan (1995) is followed. In this method, the measurement noise spectral density R., 

is kept fixed at unity and the process noise spectral density is varied until the desired 

frequency domain specifications are met. These specifications can be evaluated by 

generating the Bode plot of the open loop return ratio «P(z) of the plant. 

Two independent LQG/LTR controllers each for the Hammerhead yaw and depth 

dynamics are developed using the above mentioned methodology. For the integrated 

hybrid guidance and control systems simulations, since the vehicle speed plays the 

vital role in the guidance law formulation, therefore LQG/LTR controllers need to be 

developed for the models at several vehicle velocities. Please note that the Hammer

head model cannot be used for the hybrid guidance and control simulations since it 

is only available at a fix speed. A model has thus been borrowed from the literature 

which is represented in terms of vehicle velocity. The following generic assumptions 

are taken in all simulation results shown in this chapter. 

• The AUV and target are in the same plane. 

• Complete navigational information is available through onboard sensors. 
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6.7.1 Heading control 

Since the heading of the AUV corrupted by noise is the only measured variable, 

the remaining states have to be measured through a state estimator prior to control 

calculations. A current estimator is used throughout since the estimate is based on the 

current measurement. This is because the processing time required to compute each 

control signal is small in contrast to the sampling time. In addition, this scheme gives 

more accurate results as compared to a prediction estimator (Franklin et al., 1998). 

Simulation results are first shown for a simple LQR state-feedback control of Ham

merhead heading assuming that all states are available. The design of an LQG/LTR 

controller for Hammerhead yaw dynamical model is followed. The PNG law and hy

brid guidance system proposed in Chapter 5 for cable tracking are then integrated 

with the controller and simulation results are illustrated with and without the pres

ence of sea current disturbances. 

LOS tracking using LQR 

A simple LQR heading controller is shown here as an example of the effects of changing 

the weighting matrices on the output response. The Hammerhead yaw dynamic model 

has been used to demonstrate this phenomenon. The state weighting matrix Q is 

chosen unity while the input weighting matrix R is varied. Simulation results are 

depicted in Figures 6.6 and 6.7 for four different magnitudes of R. The plots clearly 

indicates the effect of changing R on the control input in Figure 6. 7. Increasing the 

magnitude of R prevents excessive movements of the rudder. However, the output 

response (heading of the vehicle) becomes sluggish. Moreover, it is noticed that for 

small values of R, the rudder movement is way outside the actuator saturation limits 

of ±22°. A simple remedy is to further increase the magnitude of R until the rudder 

movement confines just under the specified actuator bounds, however, the settling 

time of the heading response will become even slower. Another solution is to add 

a saturation block in series with the controller which will essentially clip the large 

rudder movements to the constrained boundaries. Herein, a saturation block is used as 

depicted in Figure 6.4 for the LQG/LTR controller and the constrained limits are set 

to ±20°. An LQG/LTR controller will now be developed for the Hammerhead vehicle 

in the horizontal plane followed by simulation results for various situations. 
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Figure 6.6: LQR heading control of Hammerhead showing the effects of changing R 
on the heading response 
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LQG/LTR Controller Design Specifications 

The LQG /LTR is a frequency domain technique and a Bode plot is normally used to 

determine the controller characteristics. The frequency domain parameters have been 

discussed previously which includes the GM and PM. An acceptable controller design 

usually is one that attains both a GM 2': 3 dB and PM 2': 30°, (Wolovich, 1994). 

The desired GM to achieve in this case is set at 12 dB while the PM at 58° which 

are well above the nominal values. Based on these specifications, and following the 

tuning methodology outlined previously, an LQG /LTR controller is designed for the 

Hammerhead yaw rudder channel. The measurement noise eo variance matrix Rv 
is assumed unity while the process noise covariance matrix Rw is adjusted to 3012 

(where I2 is a 2 x 2 identity matrix) to achieve the desired response. The frequency 

characteristics ofthe target's filter open loop return ratio <P(z) is plotted in Figure 6.8. 
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Figure 6.8: Bode plot of the open loop return ratio <P(z) (desired frequency domain 

specifications) 

The stability margins can be readily obtained from the plot which are quite close to 

the desired specifications. The LQR controller is then designed using the nominal 

values by noting that (CB) =J 0 and that the plant is minimum phase. A feedback 

compensator is finally synthesised using Equation 6.26. The Bode plot of the loop 

transfer function G(z)H(z), also shown in Figure 6.8, is superimposed on the filter 's 
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open loop return ratio which shows excellent recovery achieved thus validating Equa

tion 6.32. The unit step response of the closed loop system, depicted in Figure 6.9(a) , 

bears an overshoot which needs to be minimised by increasing the weight on control 

inpu~. 'r:he step response is again plotted in Figure 6.9(b) with acceptable levels of 

overshoot and settling time. This reduction in overshoot comes at the cost of re

duced stability margins as shown in Figure 6.10. However, the stability values are 

deemed adequate for controller testing purpose. Figure 6.11 depicts controller block 

diagram constructed in Simulink where the variable "reLheading" is a mission para

meter defined by the operator or obtained from the guidance system. The variable 

"auv ..heading" is the feedback to the controller in radians. 
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LQG/ LTR controller with nominal R an LQG/LTR controller with modified R 

Figure 6.9: Effect of changing R on the closed loop step response of the LQG/ LTR 

controller 
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Figure 6.10: Bode plot of the loop transfer function showing degraded stability mar

gins due to deviation from nominal values 

M(3) 

s1ates 

Figure 6.11: Simulink block diagram of t he LQG/LTR heading controller for the 

Hammerhead A UV 
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The Hammerhead heading controller design is now complete and is next tested in 

simulations for various settings. First, simulation results are shown for LOS tracking. 

This is followed by LQG /LTR controller integrated with waypoint guidance which 

is essentially equivalent to multiple LOS trackings. Results will be shown with and 

without the presence of sea current disturbances to demonstrate the efficacy of the 

approach. Finally, the guidance laws proposed in Chapter 5 for cable following are 

integrated with the LQG /LTR based autopilot and simulation results are shown to 

demonstrate the cable tracking capabilities of the integrated system. 

LOS following 

The algorithm is first simulated to track a specified LOS angle. The vehicle is assumed 

to be pointing in an arbitrary direction and is required to follow a certain heading 

angle closely without much control effort. A saturation block is inserted in series with 

the controller with cutoff limits of ±20°. A heading angle of 100° is chosen with the 

vehicle initiating close to 0°. Nominal values are chosen for the LQR controller design 

whilst the measurement and process noise covariance matrices are adjusted as dis

cussed in the preceding section to achieve the desired closed loop frequency response. 

The algorithm is simulated and the output response is depicted in Figure 6.12. 
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Figure 6.12: LQG/LTR control of Hammerhead showing LOS tracking 
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Similar results have also been reported in Naeem et al. (2003b) . The AUV heading 

bears a negligible overshoot and the settling time is less than 40 samples1
. However, 

the price to pay for this settling time is that the actuator saturation constraints 

become active for about 35 samples in the beginning of the simulation run when the 

vehicle was making a turn as depicted in Figure 6.13. The rudder response achieves 

t he steady state value of 0° as t he vehicle follows the desired heading angle of 100°. 

Increasing the control input weighting matrix R can help Limit the rudder movement 

within the constrained boundaries and avoid this saturation but at the cost of large 

settling times as shown in Figure 6.14. In addition, the stability margins vary con

siderably. In this case, however, the GM and PM has increased but at the cost of 

reduced crossover frequencies of the closed loop system as shown in Figure 6.15. 
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Figure 6.13: Rudder deflections generated by the LQG/ LTR controller to control the 

Hammerhead heading 

1since T s = 1, therefore 1 sample time corresponds to 1 second 
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Figure 6.14: LQG/LTR control of Hammerhead AUV showing large settling time due 
to the increase in the magnitude of R 
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W aypoint following 

Healey and Lienard {1993) proposed a guidance mechanism well known as waypoint 

following in the underwater research community. This has been discussed in detail in 

Chapter 2 and a short summary follows. In this method, the vehicle is required to 

follow several waypoints to arrive at the destination. A COA is defined around the 

waypoint so that when the AUV enters this region, the next waypoint is selected. This 

section presents the integration of LQG/LTR controller with the waypoint following 

scheme. As will be shown the waypoint following is essentially equivalent to multiple 

LOS trackings with the LOS angle calculated between any two given waypoints using 

Equation 5.1. There are four waypoints selected to perform the simulations which 

are provided in Table 6.1 below. 

x(m) 100 300 500 500 

y(m) 50 50 150 250 

Table 6.1: Selected mission waypoints 

In practice, the mission waypoint coordinates pre-stored in an onboard computer are 

compared with the coordinates of the vehicle obtained using a GPS provided that the 

vehicle is on the surface. For simulation purposes, no disturbances are assumed to 

be acting on the vehicle. The vehicle was launched at the point {0, 10) and it quickly 

establishes a LOS angle between its launching position and first waypoint at {lOO, 50). 

When the vehicle enters the COA, which in this case has a radius of 10m, the second 

waypoint is selected. The LOS angle is now computed between the updated and 

last waypoints. Figure 6.16 depicts the vehicle trajectory and the mission waypoints. 

The AUV seems to be closely following the ideal track, however, the dynamics of the 

vehicle could be observed from the figure especially during turning manoeuvres. The 

rudder deflections required to achieve the waypoiht following is sho-wn in Figure 6.17. 

There is some rudder activity observed when .the vehicle is manoeuvring for next way 

point. The standard deviation {STD) of the rudder movement is approximately 6° 

while the mean square error (MSE) between actual and ideal vehicle coordinates is 

9.6m2 • Finally the Hammerhead heading angle is illustrated in Figure 6.18 which 

provides evidence of the fact that the waypoint following is equivalent to multiple 

LOS tracking which are switched on the basis of COA. 
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Figure 6.16: LQG/LTR control of Hammerhead heading showing AUV trajectory 
and waypoints 
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Figure 6.17: LQG/LTR control of Hammerhead heading showing control actions 
required to follow the selected waypoints 
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Figure 6.18: LQG/LTR control of Hammerhead heading showing the AUV is closely 

following the desired LOS angles 

Next, the LQG/LTR based autopilot for Hammerhead AUV is simulated for way

point following when there is a strong current acting on the vehicle in the positive 

y-direction. The current velocity is assumed to be 0.5m/ s which is half the AUV 

velocity. The magnitude of the current velocity assumed is found to be adequate 

to determine the robustness of the controller since typical values encountered on a 

calm day are between 0.2- 0.3m/s (Taylor, 2000). The vehicle's trajectory is de

picted in Figure 6.19 showing the effects of current on the vehicle motion. Clearly, 

the disturbance is forcing the vehicle off the desired track, however, the AUV man

ages to reach within the COA of all the waypoints. The disturbance is observed 

to have a strong impact on the vehicle's movement especially when manouevring in 

the positive x-direction. A maximum deviation of approximately 80m is observed in 

this particular case. The MSE between the actual and ideal vehicle coordinates is 

approximately 698m2
. The STD of the rudder movement is estimated at 9° which 

is depicted in Figure 6.20 showing that the autopilot is generating vigorous control 

actions to keep the vehicle on course. A heading plot of the AUV motion is illustrated 

in Figure 6.21 where the LOS angle is changing continuously due to the addition of 

currents. However, the vehicle follows the desired LOS closely and hence reaches all 

the target waypoints. 
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Figure 6.19: LQG/LTR control of Hammerhead heading showing AUV trajectory 
and waypoints with a sea current in the positive y-direction 
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Figure 6.20: LQG/LTR control of Hammerhead heading showing control action re
quired to follow the selected waypoints with a sea current in the positive y-direction 
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Figure 6.21: LQG/LTR control of Hammerhead for waypoint following showing the 

AUV is closely following the desired LOS angles with a sea current in the positive 

y-direction 

Proportional navigation guidance 

Chapter 5 proposed two guidance laws to provide commands for underwater tracking 

of a cable/pipeline. Simulation results were also shown in both cases which were 

obtained without considering the vehicle dynamics. In this section, the first of the two 

guidance strategies, namely, the PNG law is integrated with the LQG/LTR heading 

controller developed for the Hammerhead vehicle model given by Equation 4.19. The 

guidance law generate commands that are proportional to the LOS angle. The AUV 

and cable were assumed to be point masses moving with a constant velocity and 

an onboard active sonar picks the cable position even if it is buried. The AUV and 

cable position coordinates are then used to evaluate the LOS angle which is eventually 

utilised by the guidance law. The Simulink block diagram of the PNG system is shown 

in Figure 5.2. The input to the controller is the LOS angle represented as "thetal" 

and the variable "auvJ1eading" denotes the vehicle heading which is used along with 

the vehicle velocity to update guidance commands. The scenario considered here is 

similar to the one presented in Section 5.1.5 except that now the vehicle dynamics are 
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involved. The guidance system has been designed in Simulink whereas the controller 

is developed in Matlab which are then combined to form an integrated guidance and 

control system as shown in Figure 6.22. 

START 

Apply l.QQ/l.TR to 
AJN to trd the --

STOP 

Figure 6.22: Flow chart of the integration of LQG/LTR and PNG systems developed 

in Matlab/Simulink environment 

The AUV coordinates in the inertial two-dimensional frame of reference (x, y) plane 

are (0, 200) with respect to the target FOC which is (0, 10) representing the seabed. 

A bias is introduced after descending to a depth of lOm above the sea bed2
. 

The result of the cable tracking mission is depicted in Figure 6.23 showing the effect 

of adding vehicle dynamics in the loop in comparison with Figure 5.3. The vehicle 

after launching from a mothership starts following the cable as soon as the onboard 

sonar receives the first echoed ping. By adding the lOm bias in the y-coordinate, the 

vehicle follows the cable at a fixed height without ever intercepting it thus providing 

an invaluable tool for cable/pipeline inspection purposes. 

2 10m is quite high for real time applications but it was assumed here to validate the concept 
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Figure 6.23: AUV and target position coordinates where the AUV is tracking the 

cable at a specified height 

The PNG law updates the LOS angle at every sample time, and this is reflected in 

the plot shown in Figure 6.24 for the desired yaw and vehicle heading. Since the 

vehicle launching coordinates were (0, 200) whilst the inspection site began at (0, 10), 

therefore the initial desired heading angle when the vehicle was launched is -90° as 

shown in Figure 6.24 which is subsequently updated as the vehicle approaches the 

cable. The optimal control surface deflections are also shown in Figure 6.25 and are 

within the specified actuator constraints. The positive actuator constraint is active 

during the first 10 samples times when the vehicle was making a turn followed by a 

spike from 20° to -20°. 
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Figure 6.24: AUV heading controlled by the LQG/LTR autopilot and is shown to be 
closely following the guidance commands generated by the PNG 
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Figure 6.25: Rudder deflections evaluated by the LQG/LTR controller needed to 
track the reference trajectory generated by the PNG law 
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Integrated hybrid guidance and control system 

A hybrid guidance law was proposed in Chapter 5, which was formulated on the 

basis of vehicle speed and distance from the target. The guidance law is specifically 

designed for cable tracking purposes and the trajectory generated to be followed by 

the AUV was shown in Figure 5.8. The following assumptions are taken for hybrid 

system simulation in addition to the two given at the beginning of Section 6. 7 

• The AUV is equipped with a vision system that generates the coordinates of 

the points on the cable to be tracked. 

• The initial target coordinates (one end of the cable) are known prior to the 

mission. 

The results presented herein have been published by Naeem et al. (2003a). The un

derlying idea of the hybrid guidance system is to reduce the vehicle velocity gradually 

as it approaches the target. This helps in reducing the overshoot and smoothes the 

AUV trajectory. An onboard vision system then takes over that provides the ca

ble position coordinates in the final tracking phase of the mission. The complete 

problem formulation can be found in Section 5.2. It was mentioned that since the 

Hammerhead model is not available at different speeds, therefore an AUV model has 

been borrowed from the literature for simulation purposes whose parameters can be 

obtained at various velocities for a proof of concept study. The AUV test model is 

that used by Kwiesielewicz et al. (2001), where the model parameters are given in 

terms of vehicle speed. The SISO vehicle model for a given vehicle velocity can be 

described by the following transfer function, 

Gs _ as+b 
( ) - s( s2 + cs + d) (6.33) 

where the coefficients a, b, c and d are defined based on vehicle speed v in knots. 

a= 0.05803v2
, 

c = 0.25963v, 

b = 0.00449v3 

d = 0.00856v2 

The input to the AUV are the rudder deflections whereas the output is the heading 

of the vehicle. The model parameters are calculated at three different vehicle speeds 

i.e. 5, 7.5 and 10 knots and the resulting continuous time model is discretised at a 

sampling rate of lOH z. The AUV model is assumed to have a turning radius of 25m 

and the constraints on the rudder actuator are 25° in either left or right direction. The 
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AUV model contains a pole on the unit circle i.e., type 1 system, hence the contents of 

the feedforward block Nu will be zero. Separate controllers are developed one for each 

vehicle speed model and switched on the basis of vehicle distance from the waypoint 

. which in this case is the known end of the cable. Herein, the COA is assumed to be at 

least the minimum turning radius of the vehicle while the circle around the waypoint 

has a radius chosen to be at least twice the length of the vehicle. The vehicle speed 

is reduced as it crosses each circle boundary from midcourse to terminal and from 

terminal to tracking phase. 

The desired controller specifications for this AUV model are chosen as 12 dB for the 

GM and 58° for the PM. The controller parameters are tuned separately for all the 

models to obtain the same desired response for each autopilot and are provided in 

Table 6.2. Only Rw is varied to achieve the desired frequency domain characteristics 

whereas optimal values are chosen for the remaining parameters. 

Controller Vehicle speed 

Parameters 5 knots 7.5 knots 10 knots 

R,., 16912 39.212 14.512 

Rv 1 1 1 

Q ere ere ere 
R ~o ~o ~o 

Table 6.2: LQG/LTR controller parameters for various speed models 

The Bode plot of the desired filter's open-loop return ratio for the 10 knots speed 

model of the vehicle is shown in Figure 6.26. The GM, PM and gcf can be readily 

evaluated from the plot. The next step is to calculate the feedback gains using the 

optimal Q and R in Equations 6.28 and 6.29 respectively and finally develop the 

LQG/LTR compensator using Equation 6.26. The loop transfer function G(z)H(z) 

is also evaluated and the Bode plot superimposed on the Bode plot of the open-loop 

return ratio in Figure 6.27 shows the amount of recovery achieved. In this case, full 

recovery is achieved as the two plots coincide with each other. Figure 6.28(a) presents 

the step response of the closed loop feedback system showing a large overshoot. This 

can be reduced by adding more damping to the system by introducing a weighting 

factor on the diagonal term of Q corresponding to the velocity state. This is equivalent 

to using rate feedback for improving damping from a conventional sense (Weerasooriya 
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Figure 6.26: Bode plot of the target's filter open-loop return ratio 
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Figure 6.27: Bode plots of the filter's open-loop return ratio and recovered loop 
transfer function for nominal Q (full recovery) 
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and Phan, 1995). Figure 6.28(b) depicts the step response of the closed loop system 

with modified Q and Figure 6.29 presents the Bode plot of the loop transfer function. 

u 
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(a) Step response of the closed loop system for (b) Step response of the closed loop system for 

Q = eT C and R ~ 0 modified Q and R ~ 0 

Figure 6.28: Step response of the closed loop depth autopilot for different values of 

the input weighting matrix R 
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Figure 6.29: Bode plots of the filter's open-loop return ratio (solid line) and recovered 

loop transfer function (dashed line) with added damping (reduced stability margins) 
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Although overshoot has subsided it has been achieved at the cost of reduced stability 

margins due to the deviation from the optimal values. The same procedure has been 

adopted for all vehicle models at various speeds and compensators are developed. 

Finally guidance and control system integration is performed and the simulation re

sults are shown in Figure 6.30 for a cable tracking mission, which clearly shows good 

tracking behaviour using the proposed guidance algorithm. The figure compares the 

vehicle trajectory when the speed is constant to the vehicle's path when the speed is 

varied based on the range from the cable. The result undoubtedly shows that the ve

hicle's trajectory becomes quite smooth using the hybrid guidance system and settles 

down quickly. Conversely, keeping the velocity at a fixed value is disadvantageous as 

there is plenty of manoeuvring involved before the vehicle started to track the cable 

which represents a waste of control energy. 

140 

120 

fix speed 
vehicle coordinates variable speed 

vehicle coordinates 

Cable 

-20~------~---------J---------L--------~--------~ 
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x distance travelled - metres 

Figure 6.30: Cable tracking mission from launching to tracking, variable speed vs. 

fixed speed 

The control surface deflections generated by the autopilot is depicted in Figures 6.31 

and 6.32 for the case of optimal and modified Q respectively. Clearly, the modified 

Q with additional damping causes less variation in the control input as compared 

to optimal Q but at the cost of reduced stability margins. However, both figures 

suggest that the deflections are within the constrained actuator limits imposed by 

the saturation block. 
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Figure 6.31: Rudder deflections generated by the LQG/LTR controller for Q =ere 
and R :=::: 0 
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Figure 6.32: Rudder deflections generated by the LQG/LTR controller for modified 
Q and R::::: 0 
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6. 7.2 Depth control 

The preceding section explored a great deal of Hammerhead yaw dynamics. Several 

simulation results are presented to gauge the model or in other words, the Hammer

head response in the horizontal plane. The LQG/LTR controller was rigorously tested 

in simulations and was shown to be quite robust in the presence of disturbances and 

the performance was found to be adequate for a diverse range of situations. 

Consideration is now been given to the development of a depth autopilot for the 

Hammerhead AUV. The depth dynamic model extracted in Chapter 4 using SI is 

used to tune the controller parameters. Again, the state space version of the model 

is employed owing to the requirement of the state feedback controller and Kalman 

filter. The model has a pole on t he unit circle and exhibits a ramp output in response 

to a step input. The Hammerhead AUV speed is approximately 2 knots and the 

overall nature of the response is rather slow. Therefore large settling t imes are likely 

to be observed in the depth plots. Moreover, the vehicle is slightly positively buoyant 

which could be overcome by applying large amount of force in order to submerge. 

By the same token, resurfacing or upward manouevring should require less force for 

zero pitch angle. The force applied is through the front canards so a larger force 

means large deflection angle and vice versa. The maximum deflection angle of the 

hydroplanes is ±25° where positive angle is for diving and negative for resurfacing. 

After the controller design is complete, its performance will be assessed in simulations 

for two simple cases. The first is a diving manoeuvre where the vehicle is initially 

assumed to be on the surface and is required to reach and maintain a certain depth 

specified as a mission parameter. Multiple depth commands will then be issued 

one after another when the· vehicle is already at a certain depth and is required 

to move up and down to some specified depth levels. It is shown that the same 

depth autopilot could also be used to maintain a certain altitude which is validated 

by simulation results when a vision based guidance system provides the necessary 

alt it ude information. 

D epth controller specifications 

The methodology adopted for the depth controller design is similar to the way the 

heading autopilot was developed. All that is needed to specify is the GM and PM of 

the system. The process noise covariance matrix R w is then tuned to achieve the de-
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sired response assuming nominal values for other parameters as discussed previously. 

The desired open loop frequency domain specifications are given as 18 dB and 60° for 

the GM and PM respectively. 

To attain the specified response characteristics, R, is adjusted to 7514, where 14 is a 

4 x 4 identity matrix. The Bode plot of the open loop return ratio 4'(z) is shown in 

Figure 6.33 which depicts these quantities. The LQR weighting matrices Q and Rare 

then chosen according to Equations 6.28 and 6.29 and the frequency characteristics of 

the loop transfer function G(z)H(z) is also drawn on. the same plot in Figure 6.33. It 

is clear that full recovery is achieved as the two plots overlap each other. The feedback 

controller is finally formed and the unit step response is illustrated in Figure 6.34 . 

a; 
CD 
:!!. 
CD ., .. .c 
D. 

. . . .. . .. . ·- ....... - ..... - .. -.-- ·- --- ... . 
- ' ' 

... ·- -·- ....... -.. -- .. -- -- . ·- .. . -... ..., -- ...... . 
- ' 

' ' ' 

~L-~~~~L_~~~~~~~~~~--~~~~--~~ 

0~~~~~--~~~~~~~~~~~~~~~, 

-45 

-90 

-135 ....... 

...... . . . . .. . 
·-·· 

- . . . ........ -- ·-- ··-. . . . . ....... ·-- -- ........ - ... -.. 

........ ........ 

. . - .... . 
-190~--~-~-~--~--~--~-~-~-~~~~~~~~~~~~~-~-~~~~~~ 

1~ 1~ ~ ~ 1i 

Frequency (rad/sec) 

Figure 6.33: Bode plot of the open loop return ratio and loop transfer function of the 

depth autopilot showing amount of recovery achieved 
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Figure 6.34: Unit step response of the LQG/LTR depth controller 

132 

There is a small overshoot of less than 5% which was deemed adequate for controller 

testing and the settling time is less than 20 seconds. The Simulink block diagram of 

the LQG / LTR controller is depicted in Figure 6.35, where "reLdepth, is a mission 

parameter supplied by the operator or the guidance system. 

Figure 6.35: Simulink block diagram for the LQG/ LTR based depth autopilot 
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The vehicle is launched on the surface and the task is to follow a depth of 3m below the 

sea surface. The simulation is run for 100 sample times and the Hammerhead response 

is depicted in Figure 6.36. With a small overshoot of less than 5% and settling time 

approximately 15 samples, the vehicle successfully follows the desired depth and stays 

on course throughout the rest of the mission duration. The control effort is also shown 

in Figure 6.37 which attains its steady state value of 0° in less than 20 samples. The 

positive constraint is active in the beginning for approximately 5 samples when the 

vehicle was diving and when the vehicle recovers from the overshoot. This could 

easily be avoided by increasing the magnitude of the control weighting matrix but at 

the cost of reduced stability margins. 
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Figure 6.36: Depth control of Hammer-head vehicle using the LQG/LTR controller 

showing a step change in depth 

The controller performance is now gauged for multiple depth command tracking. 

As before, the vehicle is launched on the surface and is required to undergo several 

changes in its depth. The "reLdepth" vector is now [3 5 4 2 5]m which means that 

the vehicle will have to perform diving and surfacing manoeuvres. Each of the de

sired depth is kept for 50 sample times followed by another step change. The output 

response is depicted in Figure 6.38 which shows excellent controller performance to 
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Figure 6.37: Hydroplane deflections required to achieve the specified depth 

track multiple set point changes in depth. The small overshoot is evident from the 

figure which has been discussed before. The controller output response or the hy

droplane deflections are plotted in Figure 6.39 showing that the vehicle is undergoing 

changes in its depth. The constraints are active when the AUV manoeuvres for each 

depth change. However, as mentioned previously, the vehicle requires relatively small 

amount of force for resurfacing as compared to diving. This can be observed from 

the deflection plot at approximately 50 and 150 sample times when the vehicle depth 

change is 2m from 3 to 5m and from 4 to 2m respectively. 

Altitude control 

The altitude control is a corollary to the depth control and is therefore included in 

the same section. The Hammerhead AUV currently has an onboard pressure sensor 

to measure the depth of the vehicle below the sea surface. A laser stripe illumination 

based vision system is also installed on the vehicle which has been developed at 

Cranfield University. In addition to the other parameters such as velocity and images, 

the vision system provides the altitude of the vehicle above the sea bed. An altitude 

sonar is also procured whose output is used to assess the vision system performance. 
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Figure 6.38: LQG/LTR depth control of Hammerhead vehicle showing multiple 
changes in depth command 
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Figure 6.39: LQG/LTR depth control of the Hammerhead AUV showing control 
surface deflections needed to maintain the specified depth demands 
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There are several cases when there is a need to follow a certain altitude rather than 

depth. For instance, to maintain a certain image quality under water, the vision 

system may ask the control system to manoeuvre the vehicle in the vertical plane. 

In this section, it is shown that the same depth autopilot developed in the preceding 

subsection can be used as an altitude controller. For this purpose, the depth and 

altitude of the vehicle obtained from the pressure sensor and vision system respectively 

are added to get an estimate of the depth of the sea bed. The demanded altitude is 

then subtracted from the sea depth to evaluate t he desired depth which acts as an 

input to the feedback controller. It is also assumed that the vision guidance system 

is not perfect and there are errors in the altitude information which t ranslates into 

uncertain depth demands. For simulation purposes, it is presumed that the sea depth 

and altitude information are available which on subtraction provides the required 

depth. A normally distributed random noise of zero mean and variance 0.001 is 

added to the depth (altitude) commands to simulate the uncertainty in the vision 

system output. The depth controller is simulated with the same parameters and the 

result is shown in Figure 6.40. 
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Figure 6.40: LQG/ LTR depth control of Hammerhead using the altitude information 

when integrated with an onboard vision system 
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Due to the noise in the guidance input, the depth demand is changing at every 

sampling instant, however, the vehicle is closely following all variations in the guid

ance input. In practice, this is not desirable as the control energy is being wasted 

as depicted. in Figure 6.41 showing vigorous control effort to maintain the specified 

altitude (depth). The standard deviation of 12.4° clearly tells the story which des

perately needs to be reduced. One way is to add a low pass filter in series with the 

vision system output. Another simple remedy is to increase the magnitude of R which 

is adopted here. However, the increase in R lowers the st ability margins shown in 

Figure 6.42 and a low pass filter would probably be a better choice in this case. 
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Figure 6.41: Hydroplane deflections needed to follow the desired depth when the 

vision system is integrated with the depth autopilot 

Finally, the depth response of Hammerhead vehicle when the magnitude of R has 

increased is shown in Figure 6.43. The response is much smoother as compared to 

the previous case. The hydroplane deflections plotted in Figure 6.44 are quite less 

vigorous and has a standard deviation of less than 6° which is nearly half of the 

previous case. There is one peak control surface movement at approximately 200 

sample times when the vehicle is changing its depth from 5.5 to 4m. 



6. 7. SIMULATION RESULTS 

50 -----.- · - .• --. ·····-·· .••. ·-.- •. 

. . . .... . 
40 ; - :··--: .. ~·:: ·::::- ---~_ .. :.:_~_ 'j ·_ ... ,:_: ~ -.-.. . . . . . ... . . ..... al :JO --- ; .. ; .. :.-:;.:.::-: . -~ . -.-... -... ·- .; ... ; .;.;.;;;;; .... , ... _ ·····-···· 

'C : :::::::: : ::::::::-- ..... . ::::::: : : : 
;- 20 - .. -~ . • ·:· ·:· ·:· ~ ·:·:·:·:· • •. . ·:·. -~. ·:· ·: ·-:· ~ ~ ~~ ... . : ~. ~ :~ :· -:.:-:·:·:· .... ·:· . . ~. ·:· -:-~ ~ ·:·:·: ...•. ~ ... · . ~ -~ ·:·:· ~: 
-g 10 .... ; ... :.: .. :.:.:.:.:.: ...... : ... ;.~.;.:.;::; ..... ; ... :..;.>:-..:::- ---:---;- :--:<ii-:i·----> -;-;-:-:-;: 
:t:: : : ::::::: : : ::::: :: : . ::: ::::· ..... . ...... : : ::::::: : 
~ 0 ---- ;--:--:--:-:-:-;-:-:----· :--·:--:-:-:-::::-- -- :---;--:-:--:-:-:-::--· ->< <::-::-----:--- -: :-:-:-:: 
'"' . . . . . . ... . . . . . . ... . . . . . . ... . .. · ...... . . . . . 

:=: -10 ----~---~--~--~-= ~-r-~ --· -~---~--~-: ~ ~:::---- · :---~--~-~ ~-~- ~-~-~- ----~---: -:--~-:~: ;.; ""'!"' -:-:·:-:-:. 
-20 ---:-.:- ·: ·:-: :-::-:· ..• ·:-- ·:- :·:-:: :::···- - : ---:--:-::-:-:::- ... - ·:-- ·:--:-:-: ·:::' , -- -:- - . : ·:-.-::. 

: : : : : : ::: : : : :::::: : : :::: ::: : ::: ·::: ·, : 
-30 ---:--:--------------- :--·:··--·· ···------: --~--:-::-::::-- --: .. --- ·····- : - · 

-45 

i 
"C 
'4;" -90 
Ill 
Ill .r:. 
11. 

- 135 

. . . . . . . . . .... . . . . . . . . . .... . 

····'··~"····-··················· 
..... ,,,,,./',,,, ..... . . . . . . .... . . . . . .... . 

........ · .. , .. ... , . ........ 

....... 
... ·: .. :· ·: .. :· :·:-::·:· ... :· ·:. ;· ~ : ::: ..... : .. ·:·. ·: :·:·::: .... ··: ... : . ·:· ~~ ~::: .. 

. . . . . . . . . . 
- - . . : ' : :: 

: ~..: . / ..... . 

138 

Figure 6.42: Bode plot showing the effect of changing R on depth controller perfor
mance 
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Figure 6.43: Depth control of Hammerhead AUV when the vision system is integrated 
with the autopilot and magnitude of R is increased 
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Figure 6.44: Reduced hydroplane deflections needed to track the specified depth 
(altitude) commands from the vision system 

6.8 Concluding Remarks 

The control of an underwater vehicle has always been a challenging task and is cer

tainly an important and necessary feature of any underwater vehicle. The controller 

is responsible to keep the vehicle on specified course where t he input to the autopilot 

is obtained from the onboard guidance system which generate suitable trajectories 

to be followed by the vehicle. This chapter has developed a discrete-time LQG/LTR 

based autopilot for the Hammerhead AUV. The controller has been designed using 

the yaw and depth channel models identified in Chapter 4. In addition, a model has 

been borrowed from literature to simulate the hybrid guidance and control system. 

The LQG /LTR is a robust optimal control methodology which is a combination of 

an LQR state feedback regulator and Kalman filter. The Kalman filter acts as an 

observer and provide estimates of the unrneasured and noisy states to the LQR as if 

the states are actually available. 

A number of simulation results are presented in this chapter based on simple guidance 

schemes such as LOS and waypoint following. The performance of the control sys

tem is evaluated with and without the presence of disturbances. It is demonstrated 
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through simulations that the controller is quite robust for a diverse range of situ

ations. Novel integrated guidance and control systems are developed based on the 

guidance laws proposed in Chapter 5. The results are found to be quite promising 

and are expected to add a fresh contribution to the underwater research literature. A 

depth autopilot is also developed and validated through simulation results. Finally, 

the depth controller has been shown to provide exceptional control of vehicle alti

tude even if the guidance commands are uncertain. The next chapter presents the 

formulation of a model based predictive controller combined with AI techniques such 

as genetic algorithms and fuzzy logic. The controller performance will be assessed 

against the LQG/LTR controller developed in this chapter. 



Chapter 7 

Model Predictive Control of 

Hammerhead 

The main focus of this chapter is to develop a model predictive controller (MPC) for 

the Hammerhead AUV. MPC can provide robust control for processes with variable 

gain dynamics, multivariable interaction and constraints. The conventional MPC 

assumes a quadratic cost function and an optimization method such as quadratic 

programming (QP) to determine the optimum input to the process. Two variations 

are considered to the standard MPC problem for implementing in Hammerhead. In 

the first approach, genetic algorithms (GAs) are employed to find the optimal input 

by minimising the traditional quadratic cost error function. Next, the quadratic 

objective function is replaced by a performance index based on fuzzy membership 

functions. The advantages of both schemes are outlined and simulation results are 

presented to evaluate the performance of the proposed techniques. 

7.1 Introduction 

The proportional integral and derivative (PID) controller has been the workhorse in 

the process industry for over forty years. PID-type controllers are routinely used in 

SISO applications with good results, however, success with this type of controller 

for multivariable systems has been limited. It is now recognised that the limitations 

of the PID-type controller can be traced to its characteristics since it came into 

existence on the basis of hardware realisability (Deshpande, 1989). With the evolution 

of digital computers, much better designs can be produced without any hardware 

considerations. This, in part, has spurred research and development to evolve better 

control strategies for process systems. 

141 
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Another source of incentive for the development of better control system design pro

cedures lies in the demand of the times. Processes today are much more complex, 

requiring high level of steady state optimization and good closed-loop control. A ma

jor source of complexity in process plants is the existence of interacting multivariable 

systems and the presence of constraints. In order to be successful, any control system 

must anticipate constraint violations and correct for them in an efficient way. The 

usual practice in process control is to ignore the constraint issue at the design stage 

and then handle it in an ad hoc way during the implementation. MPC provides the 

only methodology to handle constraints in a systematic way during the design and 

implementation of the controller. Moreover, in its general form MPC is not restricted 

in terms of the model type and order, objective function and constraint functionality. 

For these reasons, it is the only technique that currently can reflect most directly the 

many performance criteria of relevance to the process industry hence claiming over 

4600 successful applications to date in the industry (Lennox et al., 2004}. 

The computation of control moves in MPC involves the solution of a constrained 

optimization problem where analytical solution is usually not available. These com

putations are obtained using numerical solution of the optimization problem at each 

sampling time, which necessitates the use of efficient optimization techniques. QP is 

generally used to solve the MPC online optimization problem. Herein, two modifi

cations to the standard predictive control problem have been considered. The first 

scheme replaces the conventional optimizer by a GA. The proposed technique has 

proven to be a robust search methodology that requires little information to explore 

effectively in a large or poorly understood search space. A genetic search progresses 

through a population of points in contrast to the single point of focus of most opti

mization algorithms. In addition, the ~se of GAs allow the utilisation of any type of 

objective function and also has the capability to deal with any type of plant model 

and process constraints thereby generalising a range of MPC technologies which are 

distinguished on the basis of a process model and an objective function. The second 

modification proposed in an MPC control problem is to replace the quadratic cost 

function with a fuzzy objective function and a GA is employed to solve the resulting 

nonlinear optimization problem. The fuzzy objective function is intuitive because of 

its resemblance with human decision making by exploiting expertise knowledge. Ad

ditionally, the soft and hard constraints are automatically implemented in the fuzzy 

membership functions and no weighting matrices are needed to scale the various cost 

function parameters. 
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The next section describes the traditional predictive control problem followed by 

a succinct discussion on GAs in Section 7.3. Whilst section 7.4 outlines the GA

based predictive control problem formulation using a quadratic objective function 

and presents simulation results on Hammerhead yaw and depth control. Finally, 

the fuzzy GA-MPC problem is formulated in Section 7.6 and simulation results are 

illustrated pertaining to Hammerhead control in the horizontal and vertical planes to 

validate the concept. 

7.2 Conventional Model Predictive Control 

MPC refers to a class of algorithms that compute a sequence of manipulated variable 

adjustments in order to optimize the future behaviour of a plant. Originally developed 

to meet the specialised control needs of power plants and petroleum refineries, MPC 

technology can now be found in a wide variety of application areas including chemicals, 

food processing, automotive, aerospace and metallurgy (Qin and Badgewell, 2000), 

to name but a few. 

The development of MPC can be traced back to 1978 after the publication of the 

paper by Richalet et al. (1978). They named their algorithm model predictive heuris

tic control (MPHC} and it was successfully applied to a fluid catalytic cracking unit 

main fractionator column, a power plant steam generator and a poly-vinyl chloride 

plant. Then Cutler and Ramaker from Shell Oil Company in 1979 and 1980 devel

oped their own independent MPC technology referred to as dynamic matrix control 

(DMC) (Cutler and Ramaker, 1980}. Simulation results are shown from a furnace 

temperature control application to demonstrate improved control quality. However, 

another form of MPC called generalised predictive control (GPC) devised by Clarke 

et al. (1987a}, Clarke et al. (1987b}, is employed in this paper. The fundamental dif

ference between all these techniques is the type of model used and the cost function 

being optimized. 

As noted above, the success MPC is enjoying is attributed to the fact that it was 

developed in an industry, by the industry and for the industry. A good account of 

MPC technology from the past to the future has been reviewed by Morari and Lee 

(1999}, while a comparison between both theoretical and practical aspects of MPC 

has been undertaken by Carlos et al. (1989}. For the interested reader, several other 
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useful references on MPC can be found (Soeterboek, 1992; Richalet, 1993; Clarke, 

1994; Rawlings, 2000; Maciejowski, 2002) . 

The process output is predicted by using a model of the process to be controlled. Any 

model that describes the relationship between the input and the output of the process 

can be used. Furthermore, if the plant is subject to disturbances, a disturbance or 

noise model can be added to the process model. In order to define how well the 

predicted process output tracks the reference trajectory, a criterion function is used. 

Typically the criterion is the difference between the predicted process output and the 

desired reference trajectory. A simple error criterion function is given by Equation 7.1 

as 
Hp 

J = ~)y(k + i) - w(k + iW (7.1) 
i=l 

where y is the predicted process output, w is the reference trajectory, and HP is the 

prediction horizon or output horizon. The structure of a standard MPC problem is 

depicted in Figure 7.1. 

set 
point 

w(k+l) 

Model Predictive 
............ ~9!1.lr9!1~.r ....... . 

u(k-d) : y(k) 
Process 

• 
Model k+l) : 

Figure 7.1: Structure of a conventional model predictive controller 

As can be seen, the feedback mechanism is different from most standard control 

techniques. The model of the process is updated with actual measurements from 

the plant and the error e between the predicted model output and reference w is 

minimised by the optimizer over HP. If there is no model mismatch i.e. the model 

is identical to the process and there are no disturbances and constraints, the process 
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will track the reference trajectory exactly on the sampling instants. 

The MPC algorithm consists of the following three steps. 

1. Explicit use of a model to predict the process output along a future time.horizon 

(Prediction Horizon). 

2. Calculation of a control sequence along a future time horizon (Control Horizon, 

He), to optimize a performance index. 

3. A receding horizon strategy so that at each instant the horizon is moved to

wards the future, which involves the application of the first control signal of 

the sequence calculated at each step. The strategy is illustrated as shown in 

Figure 7.2. 

Past Future 

Reference 

y(k) 

\ ________ 

u(k+HJ 

k k+1 k+2 k+H P 

control horizon H 
~----------~c------------~ 

prediction horizon ( HP) 

Figure 7.2: Predicted output and the corresponding optimum input over a horizon 

HP , where u(k) is the optimum input , y(k) represents the model prediction, and y(k) 

is the process output 

The selection of MPC to control an AUV is attributed to several factors. Some of 

them are listed below. 
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• The concept is equally applicable to SISO as well as multi-input, multi-output 

systems (MIMO). 

• MPC can be applied to linear and nonlinear systems. 

• It can handle constraints in a systematic way during the controller design. 

• The controller is not fixed and is designed at every sampling instant based on ac

tual sensor measurements so disturbances can easily be dealt with as compared 

to fixed gain controllers. 

• The MPC success in the process industry provides a major impetus to transfer 

this technology into the marine sector. To the author's knowledge, there is no 

reported application of MPC in a marine vehicle (underwater and surface alike) 

to date thus providing sound motivation to experiment the technology in an 

AUV. 

The next section describes a simple GA which is employed here to optimize the 

performance index. 

7.3 Genetic Algorithms 

GAs inspired by Darwinian theory, are powerful non-deterministic iterative search 

heuristics. GAs operate on a population consisting of encoded strings where each 

string represents a solution. The crossover operator is used on these strings to obtain 

new solutions, which inherits the good and bad properties of their parent solutions. 

Each solution has a fitness value and solutions having higher fitness values are most 

likely to survive for the next generation. The mutation operator is applied to produce 

new characteristics, which are not present in the parent solutions. The whole pro

cedure is repeated until no further improvement is observed or run time exceeds to 

some threshold, (Sait and Youssef, 1999). The flowchart of a simple GA is depicted 

in Figure 7.3 and the operation of the GA is explained as follows. 

To start the optimization, GAs use randomly produced initial solut ions. This method 

is preferred when a priori knowledge about the problem is not available. After ran

domly generating the initial population of say N solutions, the GA uses the three 

genetic operators to yield N new solutions at each iteration. In the selection op

eration, each solut ion of the current population is evaluated by its fitness normally 
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represented by the value of some objective function and individuals with higher fit

ness value are selected in a probabilistic manner. Different selection methods such as 

roulette wheel selection and stochastic universal sampling can be used. The crossover 

operator works on pairs of selected solutions wit~ certain crossover rate which is de

fined as the probability of applying crossover to a pair of selected solutions. There 

are many ways of defining this operator such as single point crossover, double point 

crossover, multi-point crossover etc. For example the single point crossover works on 

a binary string by determining a point randomly in the two strings and corresponding 

b!ts are swapped to generate two new solutions. 

Create Initial 

No 

t = t+1 

Figure 7.3: Flow chart of a simple genetic algorithm 

Mutation is a random alteration with a small probability of the binary value of a 

string position. This operator prevents the GA from being trapped in local minima. 

The fitness evaluation unit in a GA acts as an interface between t he GA and the 
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optimization problem. Information generated by t his unit about the quality of differ

ent solutions is used by the selection operation in the GA. Next the stopping criteria 

must be decided. This may be the case when there is no significant improvement in 

maximum fitness or the maximu~ allowable time (number of iterations) is passed. 

At t he end of the algorithm, the best solution found so far is returned. 

The key advantages of using a G A in an MPC framework is its ability to handle 

various forms of objective functions, process models, and the ease through which 

constraints are implemented. Both linear and nonlinear models can be used with 

this approach without having to consider the local minima problem as is normally 

encountered in most linear optimization routines. 

Section 7.4 outlines problem formulation of MPC when GA is employed as an opti

mization technique. 

7.4 GA-Based Model Predictive Control 

The genetic-based control algorithm for an AUV model is depicted in Figure 7.4. T he 

algorithm proposed by Duwaish and Naeem (2001) was successfully simulated on a 

control valve and a heat exchanger processes which have been identified as nonlinear 

8180 Wiener and Hammerstein models respectively. The GA-based controller uses 

the process model to search for the control moves, which satisfy the process constraints 

and optimizes a cost function. One of the distinct advantages of using GA is the 

possibility of employing various objective functions and the ability to deal with any 

type of process model and constraints, thus generalising a range of MPC technologies 

where each of them is defined on a fixed set of process model and objective function. In 

this section, the conventional quadratic objective function is minimised to evaluate the 

control inputs necessary to track a reference t rajectory and is given by Equation 7.2. 

Hp He 

J = l: e(k+ifQe(k +i) + L~u(k+i)TR~u(k+i) 
i = l i= l 

Hp 

+ L u(k + ifSu(k + i) (7.2) 
i= l 
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Figure 7.4: Genetic algorithm based model predictive controller 
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where the positive and negative signs represent the upper and lower constrained Limits 

respectively. Q is t he weighting scalar on the prediction error given by 

e(k) = f}(k)- w(k) (7.3) 

where w(k) is the reference or the desired setpoint. Rand S are weights on the change 

in input ~u and magnitude of input u respect ively. The following steps describe the 

operation of the GA-based MPC algorithm and the flow chart of the algorithm is 

shown in Figure 7.5. At every sample time k 

1. Evaluate process outputs using the process model. 

2. Use a GA search to find the optimal control moves which optimize the cost 

function and satisfy process constraints. This can be accomplished as follows. 

(a) generate a set of random possible control moves. The control moves or 

population consists of real values which is reasonable in a real world en

vironment. The width of the population represents Hp and is doubled for 

every input added to the process. 
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Figure 7.5: Flow chart of the GA-based MPC 

150 



7.4. CA-BASED MODEL PREDICTIVE CONTROL 151 

{b) find the corresponding process outputs for all possible control moves using 

the process model over Hp· 

(c) evaluate the fitness of each solution using the cost function and the process 

constraints. The fitness function used here is given by 

f
. 1 
ztness = --

1+J 

where J is the cost function given by Equation 7.2. 

{7.4) 

{d) apply the genetic operators (selection, crossover and mutation) to pro

duce new generation of possible solutions. Herein, single point crossover 

is used for parents mating whereas roulette wheel and stochastic universal 

sampling are employed for selection procedure. 

(e) repeat until predefined number of generations is reached and thus the op

timal control moves are determined. 

3. Apply the optimal control moves generated in step 2 to the process. 

4. Repeat steps 1 to 3 for time step k + 1. 

7 .4.1 Constraints formulation 

Constraints represent limitations on different physical quantities involved in a process. 

For instance, the input or output of a certain process is restricted beyond a specified 

value due to economical or environmental reasons or the input cannot be changed 

abruptly due to the hardware dynamics. One of the most powerful and distinguish

ing features of MPC is its ability to handle constraints in a natural way during the 

controller design at every sample time. Generally, two types of constraints are con

sidered in controller design. Soft constraints are employed in the cost function as a 

penalty factor and can be violated to fulfil some other criteria. On the other hand, 

hard constraints represent physical limitations on actuators and cannot be violated. 

Here, hard constraints are placed on the input and rate of change of input variables. 

In this case, since the population in a GA represents the input variable, therefore, 

constraints are implemented by generating random initial population in the desired 

range i.e., 

- < < + uconstraint - 1.L - ttconstraint 
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where the superscripts - and + represents the lower and upper constraint limits 

respectively. Soft constraints on the input and rate of change of input are realised 

as penalty factors in the objective function in Equation 7.2. To implement the hard 

rate constraints, input for current time instant, k is compared with the input of the 

previous time instant, k - 1. If the difference ~u of the two inputs is violating the 

constraint, i.e., if it is higher or lower than the desired range, it is adjusted to the lim

iting value accordingly by manipulating the input at the current time instant, k. Thus 

not allowing the rate of change of inputs to violate the constraint. Mathematically, 

it can be stated as 

u(k) = u(k- 1) + ~U~straint if u(k)- u(k- 1) < ~U~straint 

u(k) = u(k- 1) + ~u~straint if u(k)- u(k- 1) > ~u!mstraint 

7.5 Simulation Results 

In this section, the performance of the GA-MPC controller is evaluated using the 

Hammerhead models identified in Chapter 4. Likewise LQG/LTR controller expli

cated in Chapter 6, separate controllers are designed for the yaw and depth channels 

and various scenarios are assumed in simulation. The integration of guidance and 

control systems has also been undertaken where the guidance laws considered are the 

simple LOS guidance and waypoint following. In addition, guidance systems devel

oped in Chapter 5 for cable tracking are also integrated with the GA-MPC autopilot. 

Simulation results are presented and the performance is compared with the LQG/LTR 

autopilot. 

7 .5.1 Heading control 

The rudder-yaw channel of Hammerhead AUV has been extracted using SI techniques 

on trials data and is given by Equation 4.19. The input to this channel are the rudder 

deflections and output is the AUV heading angle. This model has a sampling period of 

1 second and contains a pole on the unit circle which simulates a ramp response for a 

step input. There are physical limitations of ±22.5° on the rudder actuator, however, 

hard constraints of ±20° are imposed on the rudder movement through software in all 

simulations in order to avoid actuator saturation and hence any nonlinear behaviour. 

Initiating from an arbitrary angle, the goal is to attain a certain yaw angle with 

minimum control energy expense and maximum accuracy. The GA-MPC algorithm 
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is first simulated for a simple LOS guidance system where the vehicle is required to 

follow a LOS angle>. between two points (xt. y1) and (x2, y2 ) and is given by 

>.=tan-! (Y2- Y1) 
X2- Xi 

(7.5) 

The LOS angle to be followed is 200° measured with respect to the magnetic north 

whereas the initial vehicle orientation is arbitrary and assumed to be 50°. The weight

ing matrices and controller parameters used in the simulation for set point tracking 

are provided in Table 7.1. 

Controller Parameters Single set point Multiple set points 
tracking tracking 

Q 1 1 
R 0.0 0.0 
s 0.0 0.0 
Hp 10 10 
He 1 1 
Mutation prob. 0.005 0.008 
Crossover prob. 0.2 0.1 
No. of generations 1 10 
Population size 100 100 
Insertion rate 0.4 0.25 

Table 7.1: GA-MPC tuning parameters and weighting matrices for single and multiple 

LOS tracking missions 

The resulting closed loop performance for a step change in AUV heading angle is 

depicted in Figure 7.6 showing that the vehicle is closely following the LOS with zero 

steady state error and minimum overshoot. The vehicle approaches the LOS angle 

swiftly and smoothly with a settling time of approximately 40 samples. The input 

rudder deflections are also shown in Figure 7. 7. There are no hard rate constraints 

for this simulation therefore some large movements could be expected in the input. 

Clearly, the rudder movement stays within the specified boundaries and control energy 

expenditure is minimum. Comparing the performance with the LQG/LTR, the rate of 

change of vehicle's heading is approximately the same, however, the rudder movement 

is less active in this case. 
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Figure 7.6: Hammerhead AUV closely following the LOS angle using a GA-MPC 
heading autopilot 
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Figure 7.7: Input rudder deflections generated by the GA-MPC autopilot to follow 
the LOS angle 
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Please note that in practice, the Hammerhead rudder movement could not be con

trolled precisely. This is because the mechanical assembly in the vehicle has been 

retained from a 1960s made DMT. A minimum rate of change of input constraint 

has thus been imposed on the rudder movement for real time implementation of the 

controller in Chapter 8 and a feedback mechanism is also added for resetting purpose. 

Next, the algorithm is simulated to track several LOS angles during the course of a 

mission which is a typical case in a way point following scenario. Four step changes 

in heading angle are introduced at multiples of 75 sample times where the desired 

headings are 50°, 335°, 25° and 100°. The step change in heading from 50° to 335o {or 

-25°} has been chosen deliberately to show that the vehicle follows only the shortest 

path towards the desired heading as depicted in Figure 6.5. 

The GA tuning parameters and weighting matrices for the objective function are also 

listed in Table 7.1. The vehicle as seen from Figure 7.8 detects all set point changes 

from the guidance system and tracks the desired heading angles closely with small 

overshoot and no steady state error. Again, the rudder movement shown in Figure 7.9 

is within the specified constraints and indicate the presence of change in the output 

regime at multiple of 75 sample times. 
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Figure 7.8: Hammerhead vehicle following the change in LOS guidance commands 
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Figure 7.9: Optimal rudder deflections generated by the GA-MPC controller for 

several LOS angles 

Proportional navigation guidance 

The PNG law outlined in Chapter 5 is simulated here with an MPC controller in the 

loop. The results of the proposed algorithm have already been reported in a paper by 

Naeem et al. (2004b) based on AUTOSUB vehicle yaw dynamics. Herein, simulation 

results for a cable tracking mission are presented employing a Hammerhead rudder

yaw channel model given by Equation 4.19. An integration of the PNG law with 

LQG/LTR controller has been undertaken in Chapter 6 based on Hammerhead yaw 

dynamics and results demonstrate excellent cable tracking characteristics. Details of 

the proposed guidance law can be obtained from Chapter 5. In short, the proposed 

guidance law generate commands that are proportional to the LOS angle. Figure 5.2 

depicted the Simulink block diagram of the proposed guidance system. The variable 

"thetal" represents the LOS angle which acts as an input to the control system. The 

AUV heading response denoted by "auv _heading" is used by the guidance system 

along with the vehicle velocity to update the desired LOS angle. The design of 

guidance and control systems has been taken on in Simulink and Matlab respectively 

and the information flow between them is shown in Figure 7.10. 
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Figure 7.10: Flow chart of the integration of MPC and PNG systems developed in 

Matlab/Simulink environment 

The mission parameters are assumed to be the same as for the LQG/LTR autopilot. 

The vehicle is launched in the vicinity of (0, 200) whereas the target FOC is (0, 10) 

representing the seabed. A bias is introduced, as the guidance system suggests, after 

descending to a depth of lOm above the sea bed. The controller parameters used in 

the simulation are summarised in Table 7.2. 

Controller Parameters j Value 

Q 1 

R 0.0 

s 0.0 

Hp 7 

He 1 

Mutation prob. 0.005 

Crossover prob. 0.7 

No. of generations 10 

Population size 100 

Insertion rate 0.2 

Table 7.2: GA-MPC tuning parameters for a cable tracking mission using a PNG law 



7.5. SIMULATION RESl!JLTS 158 

Figure 7.11 depicts simulated tracking of an underwater cable using the integration of 

the proposed PNG and GA-MPC systems. The onboard sonar provides the necessary 

cable position information which is utilised by the guidance system to estimate the 

LOS angle which is to be followed. The introduction of 10m bias in t~e V!Jhicle y

coordinate prevents the Al!JV to actually intercept the cable and hence monitor it at 

a close length. The Hammerhead trajectory obtained with an LQG/LTR controller 

is quite similar to the one generated with an MPC. The difference could however be 

observed from the heading plot in Figure 7.12. In this case, the vehicle dynamics are 

more obvious and there is a small lag between the desired and vehicle's heading in 

contrast to Figure 6.24. Moreover, the rudder deflections shown in Figure 7.13:are less 

aggressive than in Figure 6.25 for the LQG/LTR case where the rudder has a large 

spike from the positive to negative side which is absent here. Figure 7.13 suggests 

that the positive constraint is active for the first 20 samples when the vehicle was 

making a turn. However, the GA based controller is aware of this and hence never 

violated the actuator's physical saturation limits: 
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Figure 7.11: AUV and target position coordinates generated by the GA-MPC autopi

lot where the AUV is tracking the cable at a specified height 
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Figure 7.12: AUV heading controlled by the GA-MPC following closely the guidance 
commands generated by the PNG 
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Figure 7.13: Rudder deflections evaluated by the GA-MPC controller needed to track 
the reference trajectory generated by the PNG 
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W aypoint following 

Waypoint guidance scheme proposed by Healey and Lienard (1993) and reviewed in 

Chapter 2 has been simulated here with a GA-based MPC. The guidance law suggests 

to employ waypoints between the target and launching positions and to follow them 

to reach the destination. A COA is defined around the waypoint so that when the 

AUV enters this circle, the next waypoint is selected. The radius of the COA is 

recommended by Healey and Lienard (1993) to be at least twice the length of the 

vehicle. 

In this section, the GA-MPC controller is simulated for waypoint following for the 

same cases considered in Chapter 6. The AUV is assumed to be manoeuvring near to 

the surface so that an onboard GPS provides the vehicle position coordinates in the 

earth-fixed frame of reference. The vehicle launching coordinates are (0, 20) whereas 

the waypoints in the (x, y) plane are assumed to be those provided in Table 6.1. The 

next position is selected when the vehicle enters the COA of any given waypoint. The 

Hammerhead length is approximately three and a half metres therefore the radius of 

COA is taken to be lOm which is more than half of the AUV length. Table 7.3 

provides the controller parameters used in the simulations. 

Controller Parameters I Value 

Q 1 

R 0.0 

s 0.0 

HP 7 

He 1 

Mutation prob. 0.05 
Crossover prob. 0.1 

No. of generations 10 
Population size 100 
Insertion rate 0.5 

Table 7.3: GA-MPC tuning parameters for waypoint following with and without sea 

current disturbances 

The algorithm is first simulated without considering any disturbances and the result 

is unveiled in Figure 7.14 showing the vehicle trajectory through the waypoints. The 
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affect of vehicle dynamics is evident from the figure, in particular, during turning 

manoeuvres. The AUV closely follows the ideal trajectory, however, it is much more 

vulnerable to sea current disturbances having a higher magnitude because of its slow 

dynamics. The MSE betwe!)n the actual and ideal AW trajectories is approximately 

1.96m2 • This was estimated at approximately 9.6m2 when LQG/LTR was used as 

an autopilot in Chapter 6. The rudder deflections generated by the controller is also 

shown in Figure 7.15 marking the waypoint changes since the vehicle has to manoeuvre 

in order to follow the updated waypoints. However, the controller never violates the 

actuator constraints. The vehicle heading angle is illustrated in Figure 7.16 showing 

the various LOS angles the AUV had to follow during the course of its mission between 

different waypoints. 
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Figure 7.14: GA-MPC control of Hammerhead for waypoint following showing AUV 

and target position coordinates without sea current disturbance 
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Figure 7.15: Rudder deflections generated by the GA-MPC autopilot needed to track 
the waypoints without sea current disturbance 
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Figure 7.16: GA-MPC control of Hammerhead showing the vehicle heading and the 
corresponding LOS angles in waypoint following without any sea current disturbances 



7.5. SIMULATION RESULTS 163 

Finally, the controller is tested in the presence of sea currents where the disturbance 

model used is given by Equations 4.26 and 4.27. A sea current of 0.5 m/ s (half the 

vehicle velocity) is assumed to be acting on the vehicle in the direction of positive 

y:-axis as in Chapter 6. The response of Hammerhead by the addition of sea currents 

on waypoint following is shown in Figure 7.17. The disturbance is trying to force 

the vehicle off the track, but the controller is still able to cope with it and reaches 

the target waypoints. A maximum deviation of less than 50m is recorded when the 

vehicle is travelling in the positive x-direction. The sea currents favour the vehicle 

motion when moving in the direction of current from (500, 150) to (500, 250). The 

MSE is about 1049m2 , much larger than the no disturbance case albeit the vehicle 

follows all the waypoints even in the worst case scenario of the sea current direction. 

The MSE in this case is quite high as compared to the one obtained using LQG/LTR. 

The rudder movement depicted in Figure 7.18 is also confined within the specified 

limits, however, it is lot more aggressive as compared to the no disturbance case. 

A statistical analysis reveals that the STD of rudder deflections in the presence of 

wave disturbance is about go while it is approximately half that value without any 

disturbance. Similar values were obtained in Chapter 6, when LQG/LTR controller 

was employed. 
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Figure 7.17: GA-MPC control of Hammerhead for waypoint following showing the 

AUV and target position coordinates with sea currents in the positive y-direction 
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Figure 7.18: Rudder deflections generated by the GA-MPC autopilot needed to track 

the waypoints with sea currents in the positive y-direction 

Figure 7.19 illustrates the impact of sea currents on the LOS angle. Since the vehicle 

position is continuously changing due to surface current forces, therefore the LOS 

angle is not constant as in no disturbance case. However, equipped with the GA-MPC 

controller, the vehicle is capable of following the desired yaw despite the presence of 

disturbances. 
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Figure 7.19: AUV heading angle and the corresponding LOS angles in a waypoint 

following mission with sea current in the positive y-direction 

Hybrid guidance law 

The hybrid guidance law proposed in Chapter 5 is integrated in this section with the 

GA-MPC autopilot. The hybrid guidance algorithm involves changing vehicle speed 

depending on the distance from the target. The complete problem formulation can 

be found in Section 5.2. Since the Hammerhead model cannot be used here, therefore 

an AUV model has been borrowed from literature which is represented in terms of 

vehicle velocity. The details of the model are given in Chapter 6, Section 6.7.1. Three 

separate models are obtained at velocities of 5, 7.5 and 10 knots and the resulting 

continuous time model is discretised at a sampling rate of 10Hz. The model AUV is 

assumed to have a turning radius of 25m and the constraints on the rudder actuator 

are ±25°. Controllers are developed one for each speed model which are switched 

on the basis of vehicle distance from the waypoint i.e., the known end of the cable. 

The mission parameters are the same as were assumed in Chapter 6 for the hybrid 

guidance simulation. There are four phases of the mission during which the vehicle 

speed is reduced as it crosses each phase boundary from midcourse to terminal and 

from terminal to tracking phase. The controller parameters tuned at three vehicle 
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velocities turns out to be the same for optimum performance and are supplied in 

Table 7.4. 

Controller Parameters I Value 

Q 1 
ll 0.0 
s 0.0 
HP 15 
He 1 
Mutation prob. 0.008 
Crossover prob. 0.1 
No. of generations 10 
Population size 75 
Insertion rate 0.25 

Table 7.4: GA-MPC tuning parameters for fixed and variable vehicle velocities in a 
hybrid guidance law 

The closed loop response of the control system is illustrated in Figure 7.20 where the 

vehicle trajectory at a fixed speed is compared with the vehicle position at varying 

velocities. During the launching and midcourse phases, the vehicle was running at 10 

knots (top speed) which was reduced to 7.5 knots on entering the COA during the 

terminal phase. Finally, the vehicle is slowed further down to 5 knots when within 

close proximity of the cable. The speed is then maintained at 5 knots throughout the 

tracking phase. Clearly, the vehicle trajectory at fixed speed has some oscillations 

before it runs in parallel with the cable. On the other hand, the trajectory is quite 

smooth when the vehicle velocity is varied and there are no oscillations present. 

A comparison of Figure 7.20 with Figure 6.30 reveals that the GA-MPC controller 

outperforms the LQG/LTR based autopilot. The vehicle's trajectory even at a fixed 

speed as shown is rather smooth as compared with Figtue 6.30 which shows excessive 

and unwanted vehicle manoeuvres. 
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Figure 7.20: Simulation of the hybrid guidance law showing the AUV coordinates for 

fixed and variables speeds 

The affect of changing vehicle velocity is more obvious from Figure 7.21 which shows 

the AUV heading angle for both cases. The vehicle orientation is fixed throughout 

the midcourse phase at -29° and varies during the terminal and tracking phases. 

By reducing the velocity, the overshoots and oscillations can be greatly avoided as 

evident from the figure. The control surface deflection in a hybrid guidance strategy 

depicted in Figure 7.22 is slightly more aggressive than in normal mode as shown in 

Figure 7.23. However, it is contained within the specified constraints at all times. 

Again a comparison of the rudder movements between MPC and LQG/LTR clearly 

reveals that the performance of GA-MPC is outstanding. The peak rudder move

ment is not more than 10° as Figure 7.23 suggests whereas actuator saturation was 

frequently encountered in case of LQG/LTR. 
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Figure 7.21: Simulation of the hybrid guidance law integrated with a GA-MPC au
topilot showing the affects of changing the vehicle speed on heading angle 
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Figure 7.22: Rudder deflections generated by the GA-MPC controller with the vehicle 
velocity changing according to the hybrid guidance strategy 
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Figure 7.23: Rudder deflections generated by the GA-MPC autopilot with the vehicle 

manoeuvring at a constant velocity 

7.5.2 Depth control 

Having designed a GA-based MPC heading controller for Hammerhead using a quadr

atic objective function, attention is focused on developing a depth autopilot. The 

model used for controller design is given by Equation 4.23 with a sampling time of 1 

second and identified from trials data using SI techniques. As addressed in Chapter 4, 

the vehicle shows cross coupling between the depth and yaw channels. However, since 

the umbilical was thought to be the most probable cause of this phenomenon which 

has been replaced by a wireless link, therefore it is envisaged that separate heading 

and depth models would be adequate for control purposes. Moreover, there is a strong 

cross coupling observed between the pitch and depth channels which is ignored for 

simplicity and for the sake of preliminary control system design and testing. 

Similar to rudder-yaw channel model, the depth dynamics has a pole at the unit 

circle indicating a ramp output in response to a step input. In practice, the depth 

data is obtained either directly from a pressure transducer or from an inertial sensor 

onboard the AUV which provides acceleration in x, y and z dimensions and hence 
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can be integrated to obtained the position information in the dive plane. The Ham

merhead AUV is kept slightly positively buoyant for ease of recovery, therefore it 

requires relatively large force from the control surfaces to dive which is generated by 

a positive hydroplane deflection of a greater magnitude. Once the vehicle completely 

submerges, small deflections are sufficient to control the depth. 

The intent is to design a controller that is able to control the depth of the AUV as 

closely as possible despite the presence of external disturbances and modelling errors. 

The performance of the control strategy developed herein will eventually be assessed 

on the Hammerhead vehicle. The response to a step change in depth while the 

vehicle is on the surface is evaluated first. The next step is to simulate the response 

of Hammerhead for multiple step changes when the vehicle is at a certain depth level. 

The controller parameters including the weighting matrices, prediction and control 

horizons and GA variables are provided in Table 7.5. 

Controller Parameters Step response Multistep response 

Q 1 1 

R 0.0 0.07 

s 0.0 0.0 

Hp 10 20 

He 1 1 

Mutation prob. 0.005 0.005 

Crossover prob. 0.2 0.3 

No. of generations 15 10 

Population size 100 100 

Insertion rate 0.5 0.5 

Table 7.5: GA-MPC tuning parameters for depth step response simulations 

The front canards movement is restricted to ±25° which was thought to be adequate 

to control the vehicle in the vertical plane and was obtained through a series of 

rigorous in water experiments. Please note that there is no weight on the rate of 

change of input parameter in the objective function for the step response simulation. 

It is assumed that the vehicle is manouevring near the surface (zero depth) and is 

subjected to a depth command of 3m. The Hammerhead response to a step change 

in depth when diving from the sea surface is shown in Figure 7.24. 
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Figure 7.24: Hammerhead step response for a change in depth obtained by employing 
a GA-MPC depth autopilot 

It took less than 25 sample times for the vehicle to attain the desired 3m of depth 

with little overshoot and no steady state error. The diving rate stays uniform as the 

vehicle approaches the desired level with precision. A quick comparison of results in 

Figure 7.24 and Figure 6.36 reveals that the LQG/LTR controller performance is bet

ter for depth control. The vehicle response in Figure 6.36 is rather quick with settling 

time less than 15 samples in contrast to 25 samples in this case. The disagreement 

can be explained by looking at the hydroplane deflection plot in Figure 7.25 and a 

comparison is made with Figure 6.37. The maximum control surface movement for 

the GA-MPC is approximately 13° as compared to ±25° for the LQG/LTR which 

explains the slower response time. 

The simulations are carried out next for multiple step changes in depth initiating 

from the surface and when submerged. The vehicle response is also evaluated for a 

depth command in the upward direction which is facilitated by the positive vehicle 

buoyancy. In this case, the control effort required should be lower than needed for a 

depth demand towards the sea bed. The controller parameters are given in Table 7.5 

where it should be noticed that there is a weighting factor introduced for the rate of 
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Figure 7.25: Hydroplane deflections generated by the controller to attain the desired 
step change in depth 

change of control surface movement. The response of the closed loop system for a 

depth manifold is depicted in Figure 7.26. The Hammerhead response is nearly the 

same for a depth change of 3, 6 and 8 metres. This is followed by a set point change 

from 8 to 5 metres and it is apparent that the closed loop vehicle response is excellent 

without any overshoot and no steady state errors. The difference could however be 

noticed in Figure 7.27 showing the control demands required to attain and maintain 

a specified depth. The maximum positive deflection is 8 degrees which is lower than 

the previous case because of the rate of input weighting. A negative hydroplane 

movement of about 13 degrees is also observed when the vehicle is manouevring 

towards the sea surface. However, the control effort required is clearly quite low and 

stays within the specified constraints at all times. Similar reasoning could be made as 

mentioned before when the performance is compared with the LQG/LTR controller 

for a multistep response. 
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Figure 7.26: Hammerhead response to several step changes in depth command using 
a GA-MPC autopilot 
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Figure 7.27: Hydroplane deflections generated by the GA-MPC depth controller for 
several changes in depth demand 
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Altitude control 

Simulation results are now presented when the Hammerhead control system developed 

in this chapter is assumed to be integrated with an onboard vision system. Details of 

the integration can be found in Chapter 6. In short, the vision system could demands 

a specific altitude to maintain a certain image quality. The altitude information 

is then converted into desired depth data and the autopilot is simulated to control 

the depth of the vehicle. The results shown in this section have been published 

by Dalgleish et al. (2004). A normally distributed random noise of zero mean and 

variance 0.001 is added to the vision system output to simulate the uncertainty in the 

guidance commands. The Hammerhead heading is shown in Figure 7.28 illustrating 

the actual and desired AUV depths. It is obvious that the performance of the GA

MPC autopilot is far better than the LQG/LTR when a comparison is made with 

Figure 6.40. The result demonstrates excellent disturbance rejection properties of the 

controller as it tracks the desired set points while at the same time, ignoring the high 

frequency contaminations contained in the guidance signal. On the other hand, the 

LQG/LTR controller was tracking all the unwanted noisy movements in the input 

thus wasting precious control energy. Figure 7.29 depicts the hydroplane deflections 

which are rather small as compared to Figure 6.41 which shows excessive amount of 

energy being wasted. The plot in Figure 6.44 has smaller control surface deflections 

due to the increase in the magnitude of control weighting matrix R. However, the 

GA-MPC performance is still far more superior than the LQG/LTR autopilot. 

7.6 GA-MPC Using Fuzzy Objective Function 

So far in this chapter, a model based predictive controller has been explored employing 

a quadratic objective function. The resulting optimization problem was solved using 

a GA and simulation results for an AUV heading and depth control were presented 

for various scenarios to demonstrate the efficacy of the approach. The advantages 

of using a GA is its potential of solving complex nonlinear or constrained linear 

problems. In particular, in a GA-MPC framework, any type of linear and nonlinear 

models can be employed with or without the presence of constraints. Furthermore, 

the algorithm is generalised to take advantage of various other forms of objective 

functions and process constraints. The algorithm was shown to be simulated only for 

linear constrained systems, however, it is equally applicable to nonlinear, non-convex 

constrained plants. 
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Figure 7.28: GA-MPC control of Hamme1·head depth (altitude) where the guidance 
commands are generated by an onboard vision system 
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Figure 7.29: Control surface movements generated by the GA-MPC depth autopilot 
to track the guidance commands from an onboard vision system 
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At present, only linear models of Hammerhead vehicle are available in the horizontal 

and vertical planes and a further study would concentrate on developing nonlinear 

models of Hammerhead and thus able to exploit the true potential of the proposed 

approach. In this section, the MPC algorithm is further expanded to include nonlinear 

fuzzy objective functions. The fuzzy logic technique first proposed in a landmark 

paper by Zadeh (1965) is based on emulating human logic. The word fuzzy itself as is 

most commonly used is to describe terms which are somewhere between TRUE and 

NOT TRUE. The concept was later extended by Mamdani and Assilian (1975) who 

realised the concept of fuzzy logic control thereby developing a whole new breed of 

control algorithms which resembles more closely to the human decision making rather 

than traditional HIGH or LOW (crisp) logic. Since then, a number of applications 

based on Mamdani fuzzy control concept have emerged and is therefore considered 

to be one of the most powerful tools in contemporary control theory. 

The traditional if-then rules, defining the fuzzy rule base to create the control logic, 

can be transformed into design specifications using fuzzy sets which are based on 

human knowledge of the problem. These fuzzy sets can be delineated to specify the 

objectives and constraints imposed by any system which can take the form of a cost 

function or performance index. The fuzzy sets are generally defined by membership 

functions that transform crisp values into a [0- 1] interval. For instance, consider the 

membership function shown in Figure 7.30 representing the voltage across a resistor. 

This membership function has resistor voltage as the x-axis variable whereas they-axis 

represents the degree of membership to a given voltage. The traditional "YES NO" 

logic will tell if the voltage is high or low depending on a crisp boundary. However, 

from a human perspective, the high and low notions are not clear cut and will therefore 

be responded by any of the high, not quite high, not quite low or low statements. In 

this case, therefore, a voltage of say 3.6 volts is high but not quite high and hence 

deserves a membership degree of just over 0. 7. 
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Figure 7.30: Voltage across a resistor represented as a fuzzy membership function 

This fact can be exploited by using fuzzy membership functions to represent the goals 

and constraints of a problem at hand. For example the output error to be minimised 

in a given problem can be represented by an exponential membership function or other 

similar functions such as a bell shaped Gaussian function. Sousa and Kaymak (2001) 

were quick to realise this potential and employed a fuzzy cost function in an MPC 

framework where branch and bound (B&B) algorithm was used to solve the resulting 

non-convex nonlinear constrained optimization problem. The algorithm is shown 

to be successfully simulated on an air conditioning system which has been modelled 

using fuzzy techniques. Herein, the solution to the constrained nonlinear optimization 

problem is found using a GA (Naeem et al., 2004a). The following section elaborates 

on the merits of using a fuzzy performance index followed by the choice of fuzzy. 

membership functions and aggregation operator. Finally, the performance of the 

proposed control law is demonstrated on Hammerhead vehicle in the horizontal and 

vertical planes and simulations are carried out for various settings. 

7.6.1 Fuzzy objective function and constraints 

The fuzzy logic traditionally used as if-then rules can be translated to some design 

specifications using human expertise. These design specifications are represented in 

terms of an objective function which is more intuitive than the conventional cost 

function. There are several other reasons to choose fuzzy membership values as an 
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objective function to be optimized in a predictive control problem. Some of them are 

listed below. 

Intuitiveness Fuzzy logic is derived from human expertise based on simple if-then 

statements thus making it extremely easy to comprehend. 

Soft and hard constraints As opposed to traditional cost function where only soft 

constraint is implemented and hard constraints are dealt with separately, fuzzy 

objective function provides a way to realise soft and hard constraints using a 

single membership function which is a part of the performance index. 

Normalisation The weighting matrices in a quadratic cost function are adjusted in 

a way so as to equalise the effect of different variables which is often performed 

heuristically. Employing fuzzy membership functions unravel this problem as 

the membership functions automatically maps the input space to a (D-1] inter

val. 

Parameter tuning As will be shown, the weighting matrices for individual terms 

(membership functions) are not needed thus makes it easier to tune to any given 

problem. 

Aggregation operator Selection of a suitable aggregation operator even reduces 

the tuning time further since it normally requires only a single tuning parameter 

for all the terms as will be illustrated later in this section. 

Similar to the quadratic performance index, two variables are considered in the fuzzy 

objective function. The prediction error e, which is the difference between the pre

dicted process output (in this case the vehicle heading) and reference heading, and 

the input variable which is the rudder angle. Separate membership. functions are 

taken into account for the said variables which are combined together to form the 

objective function. For the prediction or output error, a symmetrical exponential 

membership function has been elected which is centred at the origin and is depicted 

in Figure 7.31. This means that a zero error is given a maximum membership /le of 

one while nonzero values are mapped to a positive or negative value depending on 

the position and magnitude of error. A nice property of exponential function is that 

it never decays to zero even for a significantly large error thus always providing a 

nonzero value. 
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Figure 7.31: Output error membership function 

Mathematically, an exponential function centred at origin is given by Equation 7.6. 

(
e(k+i)) exp S , 

e 
-oo < e(k + i) < o 

/-Le= (7.6) 

( 
e(k+i)) exp - s+ , 

e 
o ::; e(k + i) < oo 

where e is the prediction error and s~ represents the steepness of the exponential 

function. This is problem dependent and is an important tuning parameter. However, 

if one can identify typical error values encountered in any given problem then its quite 

straightforward to adjust s;. Please note that it is not necessary for this function to 

be symmetrical, however, in an AUV heading control, for example, the positive and 

negative errors are equally probable to occur with similar magnitude scales, hence 

justifies the use of a symmetric function. 

For the input variable, a symmetrical trapezoidal membership function which is also 

centred at the origin has been chosen as shown in Figure 7.32. One of the main 

advantages of using a trapezoidal membership function for input variable is that 

it automatically implements the soft and hard constraints, where Umax represents 

the maximum allowable input and (umax - Uconstraint) is the input bound which is 

allowed but not desired. Clearly, the input u is allowed to move freely within the 

range ( u;onstraint - u;onstraint) by assigning a membership value of one. However, the 
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interval ( u;ax- u!...traint) is restricted by giving less weight to it thus precluding the 

control input selection within that region except for the satisfaction of some other 

criteria. 

u·mu u·~ 0 

Figure 7.32: Trapezoidal membership function for input variable 

Equation 7. 7 provides a trapezoidal membership function in mathematical form. 

1 - < < + , uconstraint - u - uconstraint 

u(k + i) -ut..,., 
flu= 

u+ < u _< u~~-' constraint .. ~ (7.7) 

u(k + i)- u;:;;a:r: 
, u~slraint < u ::; u~:r: 

Again, as in the output error membership function, the trapezoidal function needs 

not be symmetric, however, similar arguments as in the case of error variable leads 

to the justification of using an even membership function. 

7.6.2 Aggregation operator 

Having decided upon the membership functions for available system variables, the 

final step is to combine all the criteria to evaluate the cost. A decision function is 

required which allows for interaction amongst different criteria in the objective func

tion. A variety of aggregation operators can be chosen to be used in fuzzy predictive 

control such as min and product t-norm. A good account of various aggregation op

erators and the advantages and disadvantages of their use in predictive control has 

been documented (Sousa and Kaymak, 2001). 
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Herein, the Yager t-norm has been chosen as the decision function since it uses only 

one parameter to tune the objective function and hence interact amongst different 

criteria. Moreover, this operator covers the entire range of t-norms, i.e., it goes from 

the drastic intersection to the minimum operator (Sousa and Kaymak, 2001). The 

fuzzy cost function and Yager t-norm are given by Equations 7.8 and 7.9 respectively. 

Hp He 

flc - L(fl.(e(k + i)))wy + L(flu(u(k + i)))wy (7.8) 
i=l j=l 

(7.9) 

where fl = 1- J-L and wy > 0 is the tuning parameter. Please note that there is only 

one tuning variable involved in the objective function in contrast to the traditional 

cost function where the number of parameters to be adjusted depend on the number 

of variables in the cost function. 

7. 7 Simulation Results 

The control algorithm is now tested in simulations and the performance is evaluated 

based on the guidance laws developed in Chapter 5 and integrated with other con

trollers. It is shown that the control system is capable of producing fine results by 

incorporating knowledge of human expertise in the form of an objective function. 

The implementation methodology of hard constraints is also shown to be quite ef

fective in that the controller never violates the actuator constraints. Several results 

are illustrated to assess the heading and depth autopilots performance. An altitude 

controller is also formulated to maintain the demanded altitude where the guidance 

commands are assumed to be issued by an onboard vision system. 

7. 7.1 Heading control 

The proposed control algorithm is simulated in this section for several situations. A 

fair comparison of the control scheme using fuzzy decision function with the one min

imising a quadratic performance index would require the response to be evaluated 

for the same scenarios. A simple heading step response of the closed loop system is 

evaluated to start off followed by waypoint tracking with and without considering sea 

currents. The hybrid and PNG guidance schemes are then integrated to demonstrate 

the tracking capabilities of the proposed controller. In this case, the weighting ma-
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trices Q and R in the quadratic objective function are replaced by the parameters Se 

and Wy in a fuzzy performance index. The hard constraints on the rudder are moved 

to the full ±22° therefore u;;;., and u~ in Figure 7.32 are taken as -22° and +22° 

respectively. However, the control is only allowed to move freely within the range 

±20° to avoid saturation and hence any nonlinear behaviour. Therefore, u!mstraint in 

Figure 7.32 is set equal to ±20°. 

Simulations are carried out first for a step change in heading. The vehicle is launched 

with an arbitrary orientation and is required to follow a specified heading. The 

parameters S. and Wy are chosen as 0.5 and 2 respectively whereas the GA parameters 

are provided in Table 7.6 and are selected to minimise the control effort and increase 

the speed of response. It should be noted that the parameter s. is selected based on 

Controller Parameters I Step response 

HP 20 
He 1 
Mutation prob. 0.005 
Crossover prob. 0.1 
No. of generations 10 
Population size 100 
Insertion rate 0.5 

Table 7.6: GA-MPC tuning parameters using a fuzzy decision function for heading 
control (step response) 

the measurement of expected error in the output response, which is the AUV heading 

in this case. Consider the worst case scenario of vehicle pointing somewhere close to 

0°, whereas the desired heading is around 360° which is tantamount to 27f radians. 

This gives a maximum initial error of approximately 6.28 radians (2 * 1r) moving in 

a clockwise direction. Therefore, a selection of Se beyond this value is not justified 

since this initial error value is always going to decrease no matter in which direction 

the vehicle manoeuvres. Additionally, since the GA is designed to minimise whereas 

the fuzzy performance index represents the membership value of the given variables 

which is to be maximised. Therefore, this needs to be transformed into a minimisation 

problem for the GA to optimize it properly. This could be done in several ways such as 

changing the sign of the cost function or taking its reciprocal. Herein, the reciprocal 

technique is used given by Equation 7.10, since it has an additional advantage of 

mapping the objective function values into a [0- 1] space. 
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J=-1-
1+JL 
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(7.10) 

The step response of the closed loop system is depicted in Figure 7.33 showi~g that 

the vehicle is closely following the set point with little overshoot and zero steady 

state error. The response is quite similar to the one in Figure 7.6 obtained by the 

minimisation of a quadratic performance index. In fact the settling time for both 

controllers is approximately the same except for the small overshoot present in the 

former case. The canard demand is also shown in Figure 7.34 requiring minimum 

control effort and stays within the specified constraint of ±22°. However, the bulk of 

the rudder movement is restricted to ±20° as imposed by the u!...straint variable in 

the input membership function. 

Jror--------------.--------------.---~=~~~7=~ 

1
- AUV Heading J 

. ·-·LOS . 

50 100 150 
Time (samples) 

Figure 7.33: Step change in heading response of the GA-MPC controller with fuzzy 

objective function 
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Figure 7.34: Optimal rudder deflections generated by the GA-MPC controller with 

fuzzy objective function 

W aypoint following 

Next, the control law is simulated for waypoint following where the intent is to track 

all the specified waypoints stored in the vehicle mission planner. The affect of sea 

currents on vehicle's trajectory is also investigated and compared with the AUV's 

course when quadratic cost function was used as the performance index. Simulation 

is carried out first for waypoint following without any currents and is subsequently 

modified to include the effect of disturbances. The initial AUV coordinates in the 

two-dimensional frame of reference are (0, 10) whilst the stored waypoints are as given 

in Table 6.1. The next waypoint is selected when the vehicle enters a COA around 

the waypoint of radius lOm. The GA parameters for waypoint following are provided 

in Table 7. 7 whereas S. and wy are selected as 1.5 and 1.8 respectively. 
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Controller Parameters Waypoint 

following 

Hp 20 

He . 1 

Mutation prob. 0.008 

Crossover prob. 0.1 

No. of generations 3 

Population size 250 

Insertion rate 0.1 

Table 7.7: GA-MPC tuning parameters using a fuzzy decision function for heading 

control ( waypoint following) 

The resulting AUV trajectory is illustrated in Figure 7.35 showing in addition, the 

waypoints and the trajectory without any dynamics. 
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Figure 7.35: AUV trajectory and target position coordinates in a way point track

ing mission without any disturbances using a GA-MPC controller with a fuzzy cost 

function 

As shown, the response is slightly sluggish as compared to the former case where 
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the ideal and AUV trajectories almost super impose on each other. However, the 

vehicle successfully passes through all the waypoints. The control surface deflections 

are also depicted in Figure 7.36 where the maximum deflection observed is less than 

the previous case which explains the sluggishness of the response. This is because the 

input variable is heavily penalised which restricts its movement within the constraints. 

Further tuning of the wy variable in the objective function could help reduce this 

discrepancy. 
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Figure 7.36: Rudder deflections generated by the controller needed to track the way

points without any disturbance using a GA-MPC controller with a fuzzy cost function 

The vehicle heading angle shown in Figure 7.37 is also closely following the desired 

LOS angles between any two successive way points. The settling time is distinctly 

higher than the previous case due to above mentioned reasons. Please note that the 

MSE of the vehicle's trajectory is approximately 9m2 which is quite high as compared 

the former case. This disagreement could be explained by estimating the standard 

deviation of rudder deflections which turns out to be 3.5°. Clearly, the control effort 

in this case is less by 1.5° that made the response slightly slower but still adequate 

for testing purposes. 
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Figure 7.37: Desired yaw and vehicle heading angles in case of a fuzzy cost function 

in a waypoint mission scenario without any disturbance 

Finally, a sea current is assumed to be acting on the vehicle in the positive y-direction 

having a magnitude of 0.5m/ s. The resulting closed loop performance is illustrated 

in Figure 7.38 showing the affects of sea currents on vehicle's trajectory. The distur

bance is striving to push the AUV off the track in the direction of current, however, 

the controller keeps the vehicle on the desired course. The control effort is depicted 

in Figure 7.39 showing vigorous rudder movements in response to the change in vehi

cle's heading due to sea currents, however, it never violates the imposed constraints. 

The desired heading or LOS angle between actual AUV position and the waypoints 

is plotted in Figure 7.40 which is varying continuously because of the addition of 

disturbances, however, the vehicle is closely tracking the required heading angles. A 

MSE of 1390m2 is obtained which is again much higher than the previous case when 

the disturbance was included. The standard deviation of rudder deflections, however, 

is approximately the same. 
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Figure 7.38: AUV trajectory and target position coordinates in case of a fuzzy cost 
function in waypoint following with a sea current of 0.5m/ s in the positive y-direction 
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Figure 7.39: Rudder deflections generated by the controller with a fuzzy cost function 
needed to track the waypoints with sea current disturbance in the positive y-direction 
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Figure 7.40: Desired yaw and AUV heading angle in a waypoint following mission 

showing the affects of sea current disturbance 

Hybrid guidance law 

The proposed hybrid guidance law presented in Chapter 5 and simulated with an 

LQG/LTR autopilot and GA-MPC using quadratic performance index is finally tested 

with a GA-MPC employing a fuzzy objective function. Controllers are developed for 

each speed model all of whose parameters turned out to be the same for optimal 

performance. Table 7.8 summarises the GA variables whilst the fuzzy objective func

tion parameters Se and wy are selected as 1.5 and 1.8 respectively. The result of the 

integrated hybrid guidance and control simulation is depicted in Figure 7.41. The 

cable tracking response of the controller resembles with the GA-MPC output when 

conventional cost function was employed with a smooth output for varying speeds 

and overshoot and oscillations at a fix velocity. However, as in the former case, the 

controller clearly outperforms the LQG/LTR autopilot controller which provides a 

poor response during turning manoeuvres at fix speed. 

The heading plot shown in Figure 7.42 bears similar characteristics as in Figure 7.21 

for the case of quadratic objective function. The LOS is constant at approximately 
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Controller Parameters 

Hp 
He 
Mutation prob. 
Crossover prob. 
No. of generations 
Population size 
Insertion rate 

Cable tracking using 
hybrid guidance 

15 
1 

0.005 
0.1 
10 
100 
0.4 

190 

Table 7.8: GA-MPC controller parameters to minimise the fuzzy objective function 
and integrated with a hybrid guidance strategy 

-29° during the launching and midcourse phase. By reducing the vehicle velocity in 

the terminal and tracking phases, the oscillations are avoided in the heading output. 

Finally, the control surface deflections in Figures 7.43 and 7.44 for both variable 

and fix speed cases shows slightly higher movements at lower velocity whereas the 

magnitude is quite small at a fix velocity. 
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Figure 7.41: AUV trajectory at fix and val'iable velocities in a hybrid guidance strat

egy integrated with a GA-MPC controller with a fuzzy cost function 
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Figure 7.42: AUV heading at fix and variable velocities in a hybrid guidance strategy 
integrated with a GA-MPC controller with a fuzzy cost function 
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Figure 7.43: Rudder deflections at variable velocities in a hybrid guidance strategy 
integrated with a GA-MPC controller with a fuzzy cost function 
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Figure 7.44: Rudder deflections at a fix velocity in a hybrid guidance strategy inte

grated with a GA-MPC controller with a fuzzy cost function 

Proportional navigation guidance 

A GA-MPC heading controller using fuzzy objective function is finally integrated 

with the PNG system developed in Chapter 5. Simulation results are presented here 

and compared with the other controllers developed antecedently. A description of the 

proposed integrated system has been outlined before. The controller parameters are 

provided in Table 7.9 whereas Se and wy are chosen as 0.5 and 2 respectively. 

The performance of the guidance and control system is depicted in Figure 7.45 showing 

excellent cable tracking characteristics. The response, however, is similar to the 

previous cases and no further improvement is observed. The heading angle is also 

plotted in Figure 7.46 including the PNG guidance commands. The vehicle's initial 

heading is arbitrary and assumed to be 0° whilst the first guidance command issued 

is -90°. The control surface deflections shown in Figure 7.47 are also within the 

constrained limits of ±20° and constitute minimum control energy expense. 
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Controller Parameters 

Hp 
He 
Mutation prob. 
Crossover prob. 
No. of generations 
Population size 
Insertion rate 

Cable tracking using 
PNG guidance 

10 
1 

0.005 
0.7 
20 
100 
0.5 

193 

Table 7.9: GA-MPC tuning parameters using a fuzzy decision function and integrated 
with a PNG guidance system 
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Figure 7.45: AUV trajectory showing excellent cable tracking response using a PNG 

strategy integrated with a GA-MPC with a fuzzy cost function 
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Figure 7.46: Hammerhead heading response closely following the guidance commands 
in a PNG strategy integrated with a GA-MPC controller with a fuzzy cost function 

Figure 7.47: Rudder deflections needed to track the cable in a PNG strategy inte
grated with a GA-MPC controller with a fuzzy cost function 
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7.7.2 Depth control 

Lastly, the GA-MPC algorithm using a fuzzy objective function is simulated for Ham

merhead depth control. The depth dynamic model in Equation 4.23 serves the pur

pose of simulating the depth response to validate the proposed control law. A step 

change in depth is demanded when the vehicle is on the surface. The input mem

bership function variables are selected as ±25° for u;.,., and ±22° for u!mstraint· s. 
and wy are both adjusted to 1.2 whereas the other controller parameters are given in 

Table 7.10. 

Controller Parameters 

Hp 
He 
Mutation prob. 
Crossover prob. 
No. of generations 
Population size 
Insertion rate 

Depth 
Step response 

20 
1 

0.005 
0.1 
10 
100 
0.5 

Table 7.10: GA-MPC tuning parameters using a fuzzy decision function for depth 
control 

The Hammerhead depth response to a step input of 3m is depicted in Figure 7.48. 

Clearly, the vehicle approaches the desired depth steadily without any overshoot 

and no steady state error. In this case, the settling time is slightly higher than the 

previous case because of the weighting on control input shown in Figure 7.49. The 

maximum deflection observed here is approximately 11 while it was around 10° in the 

previous case. Adjusting the tuning parameter Wy can reduce this disagreement or 

even improve the performance of the control algorithm. 
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Figure 7.48: Depth response of Hammerhead to a step input using a GA-MPC con
troller with fuzzy objective function 
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Figure 7.49: Control surface deflections generated by the GA-MPC controller for a 
depth control mission using fuzzy objective function 
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Altitude control 

The mission scenario of altitude control has been explained before. Herein, simu

lation results are illustrated and the performance is compared with the LQG/LTR 

controller and GA-MPC autopilot employing a quadratic cost function. The same 

depth controller is used here as developed in the preceding subsection. The depth 

controller is assumed to be integrated with an onboard vision system which provide 

guidance commands to be followed. The guidance system generates altitude informa

tion which is converted into desired depth demands and hence followed by the depth 

autopilot. A normally distributed noise is also added to simulate the uncertainty 

in the guidance input. The plot in Figure 7.50 evidently shows the noisy guidance 

input and vehicle heading. The response show excellent disturbance rejection char

acteristics of the controller as compared to the LQG/LTR output which tracks all 

the noisy input commands and constitute a tremendous waste of control energy. The 

heading response is slightly slower than the conventional cost function case due to 

weight on control input. Figure 7.51 depict the control surface movements needed to 

track the desired depth which are well within the constrained limits with minimum 

control energy expense. 
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Figure 7.50: GA-MPC autopilot with fuzzy cost function integrated with an onboard 

vision system showing that the vehicle is closely following the desired depth {altitude) 
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Figure 7.51: Hydroplane deflections generated by the GA-MPC autopilot with fuzzy 

cost function to track the desired depth (altitude) demands generated by an onboard 

vision system 

7.8 Concluding Remarks 

This chapter introduced a novel and robust control methodology for underwater ve

hicle control. A model based predictive controller is considered which has gained a 

widespread interest in numerous controller applications owing to its success in the 

process industry. Two modifications to the standard MPC problem are suggested to 

be implemented in the Hammerhead AUV and simulation results were illustrated in 

the horizontal and dive planes to exemplify the efficacy of the proposed techniques. 

It should be stressed here that the presented approaches are fairly original to the 

underwater research field. The MPC has been quite successful in the process indus

try however, the application in other areas is still limited. It is one of the aims here 

to introduce another robust control methodology to the field of underwater robotics. 

The models used for simulation are the ones extracted from test trials data using SI 

in Chapter 4. In addition, for the hybrid guidance law simulation, an AUV model 

has been borrowed from literature which is presented in terms of vehicle velocity. 
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The first approach unveiled was the application of GA to optimize the traditional 

quadratic cost function in a predictive control frame work. The algorithm was simu

lated for different settings such as tracking LOS angles, waypoint following and cable 

tracking missions. In the other proposed strategy, the standard error cost function 

in the MPC is replaced by a fuzzy performance index which represents the goals and 

constraints of the problem and a GA is employed for optimization. Simulation re

sults are also shown in this case for set point tracking in both planes including way 

point following with and without taking into account the sea current disturbances. 

The performances of the proposed control schemes were assessed and a qualitative and 

quantitative comparison is made with an LQG/LTR autopilot developed in Chapter 6 

which is summarised in Table 7.11 below. 

LQG/LTR GA-MPC Controller 

Controller Conventional Fuzzy 

objective function objective functio n 

MSE STD MSE STD MSE STD 

(m2) (0) (m2) (0) (m2) (0) 

without sea currents 9.6 6 1.96 5 9 3.5 

with sea currents 698 9 1049 9 1390 9 

Table 7.11: Quantitative comparison of the Hammerhead autopilots developed in 

Chapters 6 and 7 

The table shows the STD of the rudder deflections and the MSE between ideal and 

actual AUV trajectories with and without the presence of disturbances. The GA-MPC 

with the quadratic objective function appears to be the best candidate in the absence 

of sea currents with minimum MSE and STD. The MSE of the remaining controllers is 

however the same with a higher STD for the LQG/LTR autopilot. A similar analysis 

when the effects of sea currents was included reveals that with the same STD of rudder 

deflections, the LQG/LTR controller outperforms the other autopilots in mimmum 

MSE sense for this scenario only. However, the overall performance of the GA-MPC 

with or without standard cost function is much better than LQG/LTR controller 

in terms of generating optimum rudder deflections. This is confirmed by comparing 

Figure 6.30 with Figure 7.20 for the hybrid guidance simulation, where the LQG/LTR 

performance is worse at fixed vehicle velocity. The GA-MPC on the other hand is far 

superior than LQG/LTR at both fixed and variable speeds. In addition, for the pure 

pursuit guidance scenario, although the tracking performances are similar, there is a 
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peak rudder deflection from positive to negative side in Figure 6.25 which is absent 

in Figure 7.13 and very small in Figure 7.47. The results produced by both the 

GA-MPC autopilots in all situations are much more realistic from an implementation 

perspective. 

The next chapter concentrates on the application of the proposed controllers in real 

time in the Hammerhead vehicle. Problems encountered during the experiments are 

described and discrepancies in simulation and real time results are elucidated. 



Chapter 8 

Experimentation with the 

Hammerhead AUV 

The ultimate step in a controller design is to evaluate its performance in a real time 

environment. This final chapter on control system design deals with experiment

ing the autopilot developed in the previous chapter on the Hammerhead AUV. The 

controllers were tuned using a model of the actual physical system and will now be 

tested to gauge their capabilities. Results are shown here for the GA-MPC autopilot 

only. This is because the trials could not be conducted for the other controllers due 

to the lack of time and therefore will not be included in this thesis. It is demon

strated through results that the controller is quite robust under different operating 

conditions and modelling uncertainty. To the author's knowledge, this is the first 

successful application of a GA in real time optimization for controller tuning in the 

marine sector and thus this thesis makes an extremely novel and useful contribution 

to control system design in general. 

8.1 Introduction 

The primary aim of developing the Hammerhead AUV is to provide an easy to use 

test platform for other underwater research groups within the UK to test their NGC 

algorithms. Hence, the vehicle command and control system must be flexible enough 

to accommodate various requirements set by the user. In this penultimate chapter, the 

current hardware and software setup is explored. Flow charts depicting the mission 

sequence are presented involving communication between onboard sensors, actuators 

and the control computer. The results of the autopilot implementation are then 

presented which has been developed previously. 

201 
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There is a distinct lack of experimental results sensed in the available material for 

underwater research where the majority of work is based around controller testing in 

simulations with very little or no emphasis on its real-time counterpart. It is also the 

aim of this thesis to provide real-time results based on contemporary control theory 

and thus makes an invaluable contribution to the underwater research literature. 

Moreover, it should be stressed here that the autopilots which are to be implemented 

in the Hammerhead vehicle are based on advanced control concepts which to the 

author's knowledge have not yet been exhaustively tested in the marine sector. For 

an interested reader, Lea (1998) reviewed various control systems for AUVs presenting 

experimental comparative tests, whilst Craven et al. (1998) report their findings on 

classical and advance controllers for AUVs. 

It has been observed that for practical applications, the majority of AUVs around the 

world employ simple control algorithms such as the proportional, integral and deriv

ative (PID) controller. Clearly, this strategy is useful in commercialising the product 

in a short time by employing not so easy to tune controller which can be realised 

in hardware in a straightforward manner. For instance, the Natural Environmental 

Research Council's AUTOS UB vehicle based at the Southampton Oceanography Cen

tre, UK, uses PD controllers to control the vehicle position, depth and altitude which 

is shown to be adequate (McPhail and Pebody, 1998). The underlying philosophy 

for selecting the PD controller is "keep it simple" for the delivery of a reliable and 

maintainable system. However, it is shown that the controller could not cope with 

changes in water density (resulting from a combination of fresh and saline water), 

which results in the loss of vehicle buoyancy causing it to sink (Millard et al., 1998). 

Similary, the AQUA Explorer (Asakawa et al., 1996) developed by KDD R&D Lab

oratories, Japan, and the Twin Burger (Balasuriya and Ura, 1998) vehicle based at 

the University of Tokyo, employed PID and PD control algorithms for attitude con

trol. This does not prevent researchers from developing a new breed of control laws 

suitable for underwater environment which are robust and overcome many difficulties 

inherent in PID controllers. For example, in addition to the PID, a fuzzy control law 

is developed for the AQUA Explorer and experimental results for the case of a cable 

tracking mission are reported (Ito et al., 1994b; Kato et al., 1994b). A neural net

work based control system has also been implemented successfully in the Twin Burger 

vehicle (Ishii et al., 1995), however, the online implementation entails high comput

ing power or parallel processing to obtain the controller parameters in real time. 

Aguiar and others (Oliveira et al., 1998; Aguiar and Pascoal, 1997) have realised a 
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sliding mode controller in the SIRENE underwater vehicle based at Instituto Supe

rior Tecnico, Portugal. The controller provides good robustness to modelling errors 

and has essentially a PID type structure with additional nonlinear terms to account 

for vehicle parametric uncertainty. Another s~iding mode control methodology was 

developed by Healey and Lienard (1993) at the Naval Post Graduate School (NPS), 

Monterey, CA. The NPS ARIES AUV is a successful example of the implementation 

of sliding mode technique to control the vehicle in the horizontal and vertical planes 

(Healey and Marco, 2001). 

The next section elaborates on the hardware and software setup used for control 

system trials followed by the experimental results. 

8.2 Hammerhead Setup for Control System Trials 

Most of the initial Hammerhead testing has been performed by communicating with 

the vehicle through an umbilical attached to the rear end of the AUV. This is depicted 

in Figure 3.4 where it is shown that the umbilical is employed for sending command 

and control signals from a surface laptop which is communicating directly with the 

onboard sensors. In addition, a safety switch to turn the thruster on/off and a leak 

detector is also attached to the surface end of the cable which was being operated 

manually. A series of trials to identify the dynamic model of the vehicle for controller 

design evidently proved that the umbilical was causing significant amount of drag and 

extra weight on the AUV. In addition, the umbilical limits the vehicle operation since 

a surface platform was required to move along with the vehicle because of a finite 

cable length. This is similar to an ROV type setup except that the Hammerhead is 

powered from onboard batteries rather than the power being sent down via the um

bilical. Hence the need to replace the cable is of paramount importance to test the 

autonomy of the whole system. A wireless ethernet link has thus been established 

between a surface laptop and an onboard host computer. The host computer runs a 

Labview visual interface which is used to gather all the sensory information and is 

then transmitted to an onboard controller machine when demanded. The controller 

is running in the Matlab/Simulink environment where an interface program decides 

which mission to execute based on the data string prefix. Both onboard CPUs are 

running Windows 2000 and the specifications are provided in Table 8.1. 
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Host Computer Controller Machine 

Model Pentium 4, 2.4 GHz Pentium 4, 2.4 GHz 

Memory 512MB 512MB 

Storage 120GB 40GB 

Operating System Windows 2000 Windows 2000 

Software NI Labview Matlab/Simulink 

Other Hardware NI DAQ and frame grabber card USB to serial converters 

Table 8.1: Onboard computer specifications 

The use of image processing techniques in the host computer to obtain navigation 

information explains the high storage capacity required by the host CPU. A block di

agram of the hardware setup within the Hammerhead AUV is depicted in Figure 8.1. 

This provides information on the flow of data between the onboard computers, actu

ators, sensors and the surface laptop. 
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Figure 8.1: Information flow in Hammerhead AUV 
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As shown, the host computer transmits the sensor data in the form of a string to the 

Matlab machine. The controller CPU is directly manipulating the control surfaces 

through its own serial port. In addition to the sensors data, the string provides 

information on ~he mission type, the desired heading . and depth to follow and a 

counter so that the Matlab data could be synchronised with the Labview data. A 

screenshot of the Labview visual interface running on the host machine which was 

developed at Cranfield University is depicted in Figure 8.2. 

Figure 8.2: Screenshot of a Labview visual interface developed at Offshore Technology 

Centre, Cranfield University 

All the sensors data can be seen in the figure including the desired heading and depth. 

In addition, the run type prefix can also be altered during a mission should there arise 

a need to terminate a mission prematurely. The controller CPU waits for an input 

command from the host computer. An TO string prefix establishes the commw1ication 

between the two onboard machines and initialises the control planes. Another string 

prefix then dictates the mission to be executed. The data string received by the 

controller machine is of the following form 

r X & IMU data & TCM2 data & GPS data & Hydoplane position & Rudder position 
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& Depth data & Counter & Desired heading & Desired depth 

A sample string is also shown below 

Sample String 

206 

r1 & I +001.7 -13.6 185.7 -0.23 -0.02 -0.97 -0.00 -0.00 · · · & $C183.1P-13.7Rl.8 & -. 
$GPGGA, 162000, 5204.3658, N, 00037.6113, W, 0, · · · & 2.465820 & 1.469727 & 

0.100000 & 250.000000 & 150.00 & 5.00 

where r X dictates a mission to be executed followed by sensor strings and some other 

parameters to be used by the controller. Having decided a certain mission type, it 

is then executed while receiving feedback from onboard sensors. The host CPU now 

continuously transmits the data string with the same prefix. Figure 8.3 depicts the 

flowchart of the Matlab interface program. During each iteration of a specific mission 

run, certain checks are made to ensure safe operation. There are several conditions 

during the course of any mission, as shown in the flowchart, based on which a mission 

could be aborted. These are described below 

If the run type is rO This could be the case when the vehicle runs out of space 

or the data collected is assumed to be sufficient enough for further analysis. 

Operator intervention is required for this condition as currently there is no 

obstacle detection and avoidance module installed in the vehicle. 

If the vehicle goes beyond a specified depth There are two different scenarios 

for this condition. For near surface missions where there is a need for a G PS 

fix, if the vehicle goes down below a prescribed depth due to some bow wave 

or some other malfunctioning, the mission controller terminates the program, 

shuts down the thruster and initialises the control surfaces so that the same 

mission could be re-executed, if needed. For underwater missions, if the vehicle 

goes beyond its maximum operating depth, then the same set of commands are 

issued as before. Owing to the positive buoyancy, the vehicle pops up on the 

surface in both cases. 

Mission time is greater than the maximum allowable time This is directly re

lated to the endurance of the Hammerhead vehicle. With all the sensors, com

puters and laser system onboard and running, it is envisaged that the maximum 

endurance of Hammerhead is approximately two hours. The maximum allow

able mission time must therefore be less than the maximum endurance. 

In the end, the program waits for the next mission type. 
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Figure 8.3: Information flow between onboard computers in Hammerhead AUV from 
a control system perspective 
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8.3 Experimental Results 

Results are now presented of the application of a GA-MPC autopilot in the Ham

merhead. As mentioned before, the SI trials have been conducted in Willen Lake, 

Milton Keynes for near surface work whilst the depth channel and controller trials 

were carried out at Roadford Reservoir, Devon. It is also important to point out the 

fact that the controllers were being tested on a 1960s made vehicle hull with the bulk 

of the existing electronics specifically the motors and their mechanical assembly being 

retained. Due to this, the rudder movement could not be controlled precisely and the 

minimum deflection observed was 2o. For this reason, a minimum rate of change of 

input constraint was imposed on the rudder which could lead to chattering effects 

in the rudder movement. The front hydroplanes which produces vertical motion are 

however new and there is no minimum rate constraint enforced on their movement. 

8.3.1 GA-MPC autopilot results 

For the application of this type of controller, there are two sets of trial results which 

need to be discussed. It was mentioned previously that the umbilical which was being 

used for communication purposes has been replaced by a wireless ethernet connection 

between an onboard host computer and a surface laptop. It is shown here that the 

controller is quite robust to cope with changes in vehicle dynamics resulting from 

the detachment of the umbilical. Simulation results for a step change in heading are 

first presented involving the 2° rate constraint. The output is then compared with the 

experimental data and some discussion is followed. Some of these results have already 

been published by the author (Naeem et al., 2004c). The same model obtained from 

the umbilical based vehicle is then used to control the vehicle in the absence of the 

cable and results are shown to verify the robustness of the GA-MPC autopilot. 

To simulate the controller, it is assumed that there is no plant/model mismatch. The 

constraints on the rudder were ±20° while the minimum allowed deflection is 2° as 

discussed in the previous section. The weighting matrices were adjusted heuristically 

and the prediction and control horizons of MPC were set to minimise the control 

effort and to increase the speed of response. The tuning variables along with GA 

parameters used in the simulation are provided in Table 8.2. 
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Controller Parameters I Value 

Q 1 

R 0.5 

s 0.0 

Hp 7 

He 1 

Mutation prob. 0.005 

Crossover prob. 0.7 

No. of generations 10 

Population size 100 

Insertion rate 1 

Table 8.2: GA-MPC tuning parameters for LOS tracking 

The controller was simulated for a step change in heading and the result is depicted 

in Figure 8.4. Without taking any disturbance into account, the vehicle seems to be 

following the desired course closely after initiating from an arbitrary direction. The 

response in Figure 8.4{b) bears a small overshoot which can be minimised by adjusting 

the weighting matrices but at the cost of slower response time. The rudder deflections 

generated by the GA-based controller are also shown in Fig. 8.4(a) requiring minimum 

control effort and stays within the specified bounds. There is a large movement in 

the rudder position around t = 50sec yet this does not affect the vehicle's motion 

because of its slow dynamics. The spike is due to the probabilistic nature of GA which 

produces such results unless accounted for in the code but has not been implemented 

herein owing to the extra computational burden that it imposes. The chattering 

phenomena can also be observed from this plot because of the 2° rate constraint. 

However, the effect of this is almost negligible on the vehicle's movement. 
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Figure 8.4: GA-MPC simulation results (a) Rudder deflections generated by the 

controller and (b) AUV heading 

Next, the heading controller was tested in Hammerhead. The parameters used in these 

trials were kept the same as in the simulation studies for a fair comparison. The test 

was carried out for a step change in heading. The initial and desired headings were 

kept t he same and the vehicle was allowed to swim freely. The result from the first in 

water test is depicted in Figure 8.5. As shown, the test could not be completed as the 

vehicle ran out of space and the mission had_ to be aborted. Although incomplete, the 

vehicle seems to be locked up onto the desired target, Figure 8.5(b). However, the 

run t ime was not enough to examine the effects of model discrepancies which could 

show up as an offset to the desired heading or no tracking at all. The control surface 

as seen in Figure 8.5(a) is also settling down to its steady state value as the vehicle 

continue its tracking mission. 
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Figure 8.5: Controller tria l results data set 1 with umbilical (a) Rudder deflections 

generated by the GA-MPC (b) Hammerhead heading obtained from an onboard IMU 

The same experiment was then recapitulated for a longer duration and the results 

are shown in Figure 8.6. It is evident from Figure 8.6(b) that the GA-MPC was 

able to track the desired heading without any offset despite the presence of always 

existing model uncertainty and external disturbances. There is an overshoot though 

which could be blamed on the surface currents. Looking at the rudder deflect ions 

in Figure 8.6(a), again then~ is some expected chattering present. However , the 

rudder movement always remains within the specified constraints. There is a large 

spike followed by fluctuations in rudder movement at approximately 125 seconds in 

response to the change in vehicle's heading due to surface currents. However, the 

controller is robust enough to cope with it and attains t he steady state input and 

output values in approximately 50 seconds. A statistical analysis reveals that the 

standard deviation of rudder deflections in experimental data is approximately 11 o , 

while it is quite high (8°) in the simulation (even without any disturbance), possibly 

because of the chattering phenomena. 

It is interesting to note that the rise time in the experimental data is much smaller 
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(24 sec) than in the simulation (38 sec). One reason for this is the effect of surface 

currents pushing the vehicle unwantingly and causing even a higher overshoot as 

compared to the simulated response. Model/plant mismatch could also be another 

source of this problem. 
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Figure 8.6: Controller trial results data set 2 with umbilical (a) Rudder deflections 
generated by the GA-MPC and (b) Hammerhead heading obtained from an onboard 
IMU 

Experiments were next performed with an umbilical free vehicle hence could be termed 

as one of the first autonomous runs of Hammerhead AUV. The surface laptop was 

only used to initiate a mission onboard the host computer through a wireless connec

tion and then let the vehicle swim on its own to complete the task. The controller 

parameters including the GA variables are provided in Table 8.3. 

The result of a LOS tracking mission is depicted in Figure 8.7(a). The vehicle init ial 

heading is arbitrary whereas the heading to be attained was selected as 150°. This 

time the vehicle takes the shortest path in the counter clockwise direction. Clearly, 

the length of the experiment is again not sufficient enough to gauge the tracking 

capabilities and the effect of disturbances on the AUV motion. However , the results 

provide evidence that the GA-MPC is quite robust in tackling t he modelling uncer-
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Controller Parameters I Value 

Q 1 
ll 0.5 
s 0.0 
HP 7 
He 1 
Crossover prob. 0.7 
No. of generations 10 
Population size 100 
Insertion rate 1 

Table 8.3: GA-MPC tuning parameters for LOS tracking during the first autonomous 
run 

tainty introduced by the absence of the umbilical. The vehicle seems to be following 

the desired heading closely without an overshoot and offset. Moreover, the settling 

time is approximately 65 seconds which is also quite close to the previous case. A 

plot of the rudder deflections generated by the GA-MPC autopilot is also depicted in 

Figure 8.7(b). 
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Figure 8.7: First autonomous Hammerhead trial results using GA-MPC autopilot 

without umbilical (a) Rudder deflections generated by the controller (b) AUV heading 
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The 2° chattering effect is evident, however, the rudder movement is a t all times stays 

within the specified actuator limits and attains its steady state value as the vehicle 

approaches the desired LOS. Figure 8.8 unveils other sensory information obtained 

from an onboard IMU and pressure sensor. All three plots show transie~t behaviour 

in the beginning when the thruster started and then settled to their steady state 

values after some time. The trials were performed near to the surface hence t he 

depth output stays close to zero throughout. Since no vertical motion was produced 

by the AUV, therefore the pitch remains at 0°. There is some movement observed 

in the roll data which is · due to the presence of strong surface currents generated by 

strong winds on that particular day. However, this does not influenced the heading 

data significantly. 
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Figure 8.8: First autonomous HammeThead trial results using GA-MPC autopilot 

without umbilical showing (a) Depth (b) Pitch and (c) Roll 

Finally, the Hammerhead trajectory is shown in Figure 8.9 during the first au

tonomous run. The longitude and latitude data has been obtained from an onboard 

G PS and converted into position coordinates in body fixed frame of reference. The 

vehicle was launched from the origin and it covers a maximum displacement of ap

proximately 30 and 6 metres in the x and y directions respectively. The AUV initial 
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trajectory is a straight line in the negative x-direction for the first few metres. This is 

because the autopilot was gathering the data and initialising the variables for future 

calculations and hence no input was applied to the rudder during this time. The 

vehicle first made a turn in the negative y-direction an~ travelled about 10 metres 

before making a right turn in the positive y-direction. The kinks evident in the plot 

are possibly due to the missing data or it could be because of the inaccuracy of the 

GPS sensor. 
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Figure 8.9: GPS data acquired during the first autonomous autopilot run showing 
Hammerhead trajectory in body coordinate frame in a LOS tracking mission 

8.4 Concluding Remarks 

The final logical step in a control system development is to gauge the capabilities of 

the controller in real time. Simulations can provide a good insight into the vehicle's 

behaviour, however, the true potential can only be judged through experimentation. 

In this cha pter, results of the application of a GA-MPC autopilot in the Hammer

head AUV have been revealed. It is shown that the controller is capable of pro

ducing outstanding result s given different vehicle configurations (with and wit hout 

umbilical) , albeit the model was extracted using the data obtained from an umbilical 
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based AUV. The results demonstrated the robustness of the GA-MPC autopilot under 

varying conditions such as environmental effects and it cope well with the modelling 

uncertainty. 

Unfortunately, the experiments involving the LQG/LTR and MPC with a fuzzy ob

jective function could not be commissioned within due time and hence the results 

were not available by the time of the completion of this thesis. It is envisaged that 

given the robustness of these controllers in simulation environment, they will perform 

well in real time in the Hammerhead AUV. 



Chapter 9 

Summary, Conclusions and 

Recommendations for Further 

Work 

This closing chapter contains the summary of the work presented within the thesis, 

conclusions and recommendations for further work. This includes a brief summary of 

each of the chapters followed by conclusions drawn which are with respect to what 

was anticipated and what has been achieved in terms of the aim and objectives of the 

research programme. Lastly, recommendations for the future work are provided that 

could stimulate further research projects in this field of study. 

9.1 Summary 

AUV research and development is on the verge of reaching maturity yet applications 

are very few. The cost associated with an AUV development particularly of the on

board sensors, power requirements and underwater testing have imposed a significant 

constraint on its development. Numerous ideas regarding underwater vehicle control 

have been proposed in the literature however the lack of test equipment confines one 

to simulations only. The aim of this project as defined in Chapter 1 was to produce a 

low cost prototype AUV which could be exploited as a testbed by other underwater 

research groups within the UK. To satisfy this requirement, the vehicle command and 

control system should be flexible enough to accommodate various requirements set 

by the user. 
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The vehicle named Hammerhead has been commissioned as a cooperative project by 

the Universities of Plymouth and Cranfield. In addition to the control system, an 

MSDF based navigation algorithm has also been formulated at Plymouth which is 

based on AI ~echniques such as fuzzy logic and genetic algorithms. To enhance the 

capability of the navigation system and hence the MSDF, a laser stripe illumination 

based vision system was developed at Cranfield which provides accurate altitude and 

velocity information using a combination of an onboard camera and laser stripe. A 

signal processing algorithm is then employed to extract the necessary information. 

This thesis presents several aspects of an underwater vehicle design from the labora

tory stage to operation under water. Overall, the thesis has contributed significantly 

to the underwater research literature by disseminating the research work carried out 

within. In summary, the primary aim of this research alone was to develop guidance 

and control laws based on advance control concepts which are suitable for underwater 

operation. The implementation of these controllers in Hammerhead was imperative to 

gauge their robustness and hence render the vehicle fully autonomous. Experiments 

have been carried out to obtain data sets whereby SI techniques were suggested and 

applied to model the Hammerhead yaw and depth channel dynamics. Two novel form 

of guidance laws were also proposed which are designed for cruising type vehicles like 

Hammerhead. The control systems developed in this thesis are a combination of op

timal control and Al. The LQG/LTR controller is selected because of its remarkable 

stability and robustness properties whereas the MPC autopilot has been developed 

because of its strong robustness and constraint handling characteristics. Simulation 

results were shown in Chapters 6 and 7 for several scenarios. The guidance laws 

proposed in Chapter 5 were integrated with the autopilots and the results have been 

compared. In addition, simple guidance strategies such as LOS and waypoint follow

ing schemes were also integrated with the proposed controllers and results have been 

demonstrated for various settings. Moreover, the control systems were simulated in 

conjunction with a vision based altitude information sensor and results demonstrate 

excellent robustness and disturbance rejection characteristics. The thesis also reports 

original results on the implementation of an online GA to control the yaw angle of 

the Hammerhead in Chapter 8. These results are significant since to the author's 

knowledge, this is the first known application of an online GA in the marine sector. 

The next section provides a brief summary of the individual chapters, work carried 

out therein and the conclusions drawn. 
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9.2 Conclusions 

Chapter 2 provided comprehensive background material on guidance systems design 

for autonomous vehicles with an emphasis on UUVs. Firstly, missile guidance laws 

were explored which was then followed by guidance strategies for underwater vehicles. 

It was noticed that a majority of AUVs focus on vision based guidance, however, 

the performance of these types of system degrade when subjected to high water 

turbidity and low light conditions. Electromagnetic guidance is more efficient but 

the applications are quite limited. Another alternative is the use of a sonar which 

is unaffected by the above mentioned problems. In summary, it was concluded from 

the discussion presented that the LOS guidance in one form or the other is the key 

constituent of most guidance strategies. It should be noted that the material forming 

this chapter has been disseminated as a review paper (Naeem et al., 2003d}. 

The Hammerhead hardware configuration was next detailed in Chapter 3. The chap

ter demonstrated the overall physical structure of the Hammerhead vehicle as it 

evolved from an ROV type setup i.e., communicating via an umbilical, to its fully 

autonomous conformation. The navigation sensors were briefly reviewed and actuator 

control design was explicated along with its hardware and software which is currently 

being used in the Hammerhead. This was designed in a flexible way so that a user 

familiar with any software language with a serial interface could take advantage of it. 

Chapter 4 explored the dynamic characteristics of the Hammerhead vehicle itself. A 

general description of the mathematical modelling techniques was presented followed 

by a terse review on SI. Trials were carried out to collect data sets for the purpose of 

extracting yaw and depth channel models of the AUV using SI. The dynamic models 

were verified by independent data sets and results were shown extensively. It has been 

demonstrated that the models obtained using SI are adequate for controller design 

purposes and avoids painstaking mathematical modelling which involves tank tests 

to estimate the hydrodynamic coefficients. 

Some new guidance strategies for Hammerhead vehicle have been proposed in Chap

ter 5. The guidance laws were specifically designed for underwater cable inspection 

tasks for cruising type vehicles. The first guidance strategy presented has evolved from 

airborne systems and was termed as pure pursuit guidance. In the other guidance 

law, the vehicle speed has been used as a means to formulate the guidance scheme. 
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This was called a hybrid guidance system since it utilises various existing guidance 

laws during different phases of the mission. Simulation results were shown for both 

guidance strategies and the performances were evaluated. From an implementation 

perspective, it is currently not possible to test the hybrid guidance law in Hammer

head since its dynamic model is only available at one fix speed. However, the concept 

has been verified by utilising an AUV dynamic model from the literature which is 

represented in terms of vehicle velocity. It was shown that both guidance systems 

are capable of producing suitable reference trajectories to be followed by the vehicle 

in order to accomplish a cable tracking objective. Literature have been published by 

incorporating the pure pursuit guidance and hybrid law with a GA-MPC autopilot 

developed in Chapter 7 (Naeem et al., 2004b) and LQG/LTR controller in Chapter 6 

(Naeem et al., 2003a) respectively. 

A discrete-time LQG/LTR controller was formulated next in Chapter 6 for Hammer

head vehicle models in the lateral and dive planes. The LQG/LTR autopilot was 

integrated with basic guidance laws such as LOS, waypoint guidance and more ad

vanced strategies proposed in Chapter 5. Simulation results for all cases were shown 

including the effects of sea current disturbances. A vision based altitude information 

system has also been integrated with the controller and results showed excellent track

ing behaviour and robustness in the presence of disturbances and uncertainties in the 

input demand. The LQG/LTR was proved to be quite robust under different operat

ing conditions. However, a major disadvantage is that several parameters need to be 

tuned and a tedious frequency domain analysis has to be carried out before an accept

able design could be obtained. Part of the material in this chapter has been utilised 

to publish a paper by applying the LQG/LTR autopilot to the Hammerhead models 

extracted in Chapter 4 (Naeem et al., 2003b). 

Chapter 7 demonstrated successful controller design based on an MPC control strat

egy integrated with a GA and fuzzy logic. Two modifications have been suggested 

to the standard predictive control problem. The first technique replaced the conven

tional optimizer with a GA which has the advantage of generalising the MPC to use 

any type of process model and cost function. The second modification was to replace 

the conventional quadratic cost function with a fuzzy performance index. A GA being 

employed again as an optimization tool. The fuzzy cost function was shown to be 

more intuitive than a quadratic cost function. Other advantages of using fuzzy logic 

is the automatic implementation of hard and soft constraints, normalisation and ease 



9.3. RECOMMENDATIONS FOR FUTURE WORK 221 

of tuning. Integration of both type of controllers with the standard and proposed 

guidance systems were illustrated. Simulation results demonstrated the efficacy of 

the proposed techniques in the presence of sea currents and when the input demand 

from the guidance system is uncertain. Overall, the proposed autopilots were proved 

to be quite efficient as compared to the LQG/LTR controller. In addition, for the 

hybrid guidance system, a single GA-MPC controller was tuned which was employed 

for all models and results were shown to be much more improved than obtained using 

the LQG/LTR control strategy. The work involving GA-MPC to control an AUV 

has been disseminated by the author (Naeem, 2002; Naeem et al., 2004b; Naeem 

et al., 2003c; Dalgleish et al., 2004) whereas the results involving the use of fuzzy 

logic in an MPC framework Was published in Naeem et al. (2004a). 

Finally, the implementation of one of the proposed autopilots, namely the GA-MPC 

in Hammerhead has been undertaken in Chapter 8. This is considered to be one of the 

principal novelties of this research where an online GA is employed for optimization 

in an MPC framework. Results from actual in water experiments were demonstrated 

and the performance was compared with simulation examples. It was shown that 

the controller is quite robust under a varying set of conditions and it is capable of 

dealing with the ever present modelling uncertainty resulting from the removal of the 

umbilical. Unfortunately, the implementation of the remaining autopilots could not 

be carried out and hence no results were available by the time of the completion of 

this thesis. 

9.3 Recommendations for Future Work 

The research work presented within this thesis has the honour to qe the first re

ported study of the Hammerhead AUV dynamics and controller design. A number of 

achievements have been made throughout the course of this thesis, However, scien

tific research is an ongoing process and clearly there are numerous avenues for future 

research and development involving Hammerhead. Some of the work is quite percep

tible and could not be accomplished because of the lack of time. A list of potential 

follow ups based on this work are provided below. 

• The first and most obvious future work to be followed is to carry out further 

experimentation involving the remaining autopilots which have not yet been 

tested in the Hammerhead. F\1rthermore, for the GA-MPC controller, the depth 

control experiments could not be accomplished in addition to the integration 
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with other guidance strategies such as waypoint following. Similar trials for the 

LQG/LTR and MPC using fuzzy cost function could also be conducted and a 

qualitative and quantitative comparison should be made. 

• The generic AUV control design approach is to use mathematical modelling to 

generate a nonlinear six DOF model of the vehicle which is then linearised 

around some operating point. However, in this thesis, open loop SI tech

niques have been applied to extract the linear dynamic models of the Hammer

head AUV. Further studies of Hammerhead could involve developing a math

ematical model of the vehicle based on laws of physics. The linearised models 

could then be compared with the models obtained using SI. Another approach 

is to employ closed loop SI, in particular, to the depth dynamics where open 

loop experiments are not adequate to obtain ample dynamical information and 

multiple experiments need to be carried out. The same data pairs obtained for 

SI could also be utilised to estimate a nonlinear model of the vehicle. Neural 

networks are a potential tool for a nonlinear model development using the ex

isting Hammerhead data. It was mentioned in Chapter 7 that the GA-MPC 

autopilot can handle any type of process model and thus the true potential of 

the proposed algorithm could then be exploited. 

• The models and controllers developed in this thesis are SISO assuming that 

there is no strong cross coupling present between various channels. However, it 

is worth formulating a linear or nonlinear MIMO model and hence a MIMO au

topilot and compare the performance with the SISO controllers. The LQG/LTR 

and GA-MPC autopilots developed in this thesis have a distinct advantage of 

producing MIMO controllers as they are inherently multivariable. Hence the 

extension from SISO to MIMO is rather straightforward. 

• It was mentioned in Chapter 4 that some cross-coupling has been observed 

between different channels. In particular, the depth and pitch channel shows 

the strongest coupling. Attention could be focussed on developing a model of 

the AUV that takes into account this cross coupling effect. An autopilot could 

then be developed to maintain the depth by controlling the pitch of the vehicle. 

This could be achieved by introducing a positive pitch angle until the vehicle 

approaches the specified depth. The pitch is then gradually decreased so that 

the AUV lines up with the desired depth and maintains the level at zero pitch 

angle. 
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Appendix A 

Hammerhead Electronics 

Schematic and Assembly Code 

This appendix provides the schematic of a microcontroller based stepper motor con

troller card designed indigenously at the University of Plymouth. This circuit is 

currently being used in the Hammerhead AUV to control the onboard actuators. In 

addition, the assembly code based on Intel8051 instruction set for the Atmel89C2051 

microcontroller used in the circuit is also given herein. 
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A.l Assembly Code for the Stepper Motor Con
troller 

************************************************************************* 
Stepper Motor Controller by Wasif Naeem 11/06/2002 
based on 8051 Instruction Set 
************************************************************************* 
This program receive inputs from the serial port of the microcontroller connected to 
the serial port of the computer. The inputs transmitted to the controller consists of 
information on 

• which stepper motor to turn 

• whether to rotate clockwise or counterclockwise 

• the number of pulses to be transmitted to the stepper motor 

************************************************************************* 
main program starts here 

ORG 0 
SJMP START 
ORG 20H 

START: MOV SCON,#52H 
MOV PCON,#OH 
MOV THl,#OFDH ;set the baud rate to 9600 
MOV TMOD,#20H 
SETB TRl 
MOV Pl,#OH 

;****************************************************************** 
;Receive the information byte containing the inputs mentioned above 
;****************************************************************** 

SETB P3.0 

MAIN: CLR P3.7 
CLR P3.4 
CLR P3.5 

RXBUF: JNB RI , RXBUF 
CLR RI 
MOV A,SBUF ;received data from the serial buffer 

;****************************************************************** 
;Initialise counters and ports 
;****************************************************************** 
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MOV R3,#0H 
MOV R4,#0H 
MOV RO,#OH 
MOV Pl,#OH ;2 cycles 

;****************************************************************** 
;Set Port 3 Bit 0 as an input port 
;****************************************************************** 

MOV R4,A 
ANL A,#00111111B 
SETB P3.4 

;****************************************************************** 
;Check if the no. of pulses are zero, in which case, terminate 
;the program, otherwise continue 
;****************************************************************** 

TEMP: 
CONT: 

JNZ CONT 
LJMP FINISH 
MOV A,R4 
POP A 

;****************************************************************** 
;Check if the command is for the rudder or hydroplane 
;****************************************************************** 

SETB P3.5 
JB ACC.7,RUDDER 
JNB ACC.7,HYDRO 

;****************************************************************** 
;Check to see if the command is for Rudder clockwise 
;or anticlockwise motion 

;****************************************************************** 

RUDDER: JB ACC.6,RCLOCK 
JNB ACC.6,RACLOCK 

RCLOCK: CLR ACC.7 ;clear the mode bit in the accumulator 
CLR ACC.6 
MOV RO,A 
MOV Pl,#OAH 
ACALL DELAYM 
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MOV P1,#09H 
A CALL DELA YM 
MOV P1,#05H 
ACALL DELAYM 
MOV P1,#06H 
ACALL DELAYM 
DEC RO ;1 cycle 
MOV A,RO 
JZ FINISH ;check if accumulator is zero 
SJMP RCLOCK ;2 cycles 

RACLOCK:CLR ACC.7 
CLR ACC.6 
MOV RO,A 
MOV P1,#06H 
ACALL DELAYM 
MDV P1,#05H 
A CALL DELA YM 
MDV P1,#09H 
ACALL DELAYM 
MOV P1,#0AH 
ACALL DELAYM 
DEC RO ;1 cycle 
MDV A,RO 
JZ FINISH ;check if accumulator is zero 
SJMP RACLOCK ;2 cycles 

;****************************************************************** 
;Check if the command is for Hydroplane clockwise 
;or anticlockwise motion 
;****************************************************************** 

HYDRO: SETB P3.7 
JB ACC.6,HCLOCK 
JNB ACC.6,HACLOCK 

HCLOCK: CLR P3.2 ;for debugging purpose, normally high and should be 
cleared 

CLR ACC.7 ;clear the mode bit in the accumulator 
CLR ACC.6 
MOV RO,A 
MDV Pl, #OAOH 
ACALL DELAYM 
MDV P1,#90H 
ACALL DELAYM 
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MOV P1,#50H 
A CALL DELA YM 
MOV P1,#60H 
A CALL DELA YM 
DEC RO ; 1 cycle 
MOV A,RO 
JZ FINISH ;check if accumulator is zero 
SJMP HCLOCK ;2 cycles 

HACLOCK:CLR P3.3 ;for debugging purpose, normally high and should be 
cleared 

CLR ACC.7 
CLR ACC.6 
MOV RO,A 
MOV P1,#60H 
A CALL DELA YM 
MOV P1,#50H 
ACALL DELAYM 
MOV P1,#90H 
A CALL DELA YM 
MOV P1,#0AOH 
ACALL DELAYM 
DEC RO ; 1 cycle 
MOV A,RO 
JZ FINISH ;check if accumulator is zero 
SJMP HACLOCK ;2 cycles 

;****************************************************************** 
;Delay in sending two consecutive pulses or Pulse duration 
;****************************************************************** 

DELAYM: 

TAKEM1: 
TAKEM: 

MOV R2,#06H ;1 cycle 4 
;(1+1+255*2+2+1+255*2+2+1+255*2+2+1+255*2+2)*1e-6 = 0.0021s 
MOV R1,#0FFH ;1 cycle FF 
DJNZ Rl,TAKEM ;2 cycles 
DJNZ R2,TAKEM1 ;2 cycles 
RET ;2 cycles, 1*4*2*255*1e-6 

FINISH: SETB P3.2 
SETB P3.3 
MOV SBUF,#11111111B 

TXBUF: JNB TI,TXBUF 
CLR TI 
CLR A 
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END 

tMOV Pl,#OH 
tMOV Ro,,;#OH 
'UMP MAIN 



Appendix B 

Stability Characteristics 

In this appendix, several terms are defined which are vitaJ for a frequency domain 

control system design. A Bode diagram is also shown which facilitates reader's un

derstanding. 

Two types of specifications are generally given prior to any controller design which 

are closely related. The time domain specifications involve the maximum overshoot, 

settling time etc. whereas the frequency domain specifications provide the bandwidth, 

gain margin, phase margin etc. of the system. These specifications can be evaluated 

by generating the step response and Bode plot of the system respectively. However, 

in an LQG design, frequency tuning is usually desired and therefore some definitions 

are given here for a clearer understanding. There are four main frequency domain 

parameters generally encountered in an LQG paradigm. Figure B.1 depicts these 

quantities and are defined below 

Gain crossover frequency (gcf) is the frequency of the system at which the open 

loop gain of the plant is 0 dB on a Bode magnitude plot. 

Phase crossover frequency (pcf) is the frequency at which the open loop phase 

of the plant reaches -180° on a Bode phase plot. 

Gain margin The gain of the system at pcf below the 0 dB level is called the gain 

margin (GM). It is defined as the amount of gain in dB that can be added to the 

loop before the closed loop system becomes unstable. For stable systems, the 

GM is always positive and stays below the 0 dB line. Clearly, the robustness of 

the system to external disturbances depend on the magnitude of GM. 
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Phase margin The phase margin (PM) of the system can be found by first locating 

the gcf and measuring the distance between gcf on the phase plot and -180° 

line. This gap or distance is termed as the PM of the system as can be seen in 

Figure 8.1. It can be defined as the amount of pure phase delay that can be 

added to the loop before the closed loop system becomes unstable. 
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Figure B. I: Definition of stability margins on a Bode plot 



Appendix C 

Reference Input Tracking for a 

State Feedback Controller 

A derivation has been carried out herein to evaluate the contents of blocks Nx and 

Nu in Figure 6.2 for reference input tracking in an LQR control strategy (Franklin 

et al., 1998). 

Let Nx denotes the forward block which transforms the reference input r to a reference 

state Xr that is an equilibrium one for that r. Mathematically, this can be stated as 

Nxr = Xr 

u = -Kc(X- Xr) 

The final or steady state value of the states can be written as 

x(oo) = X 88 = Xr 

Hence, 

(C. I) 

(C.2) 

(C.3) 

(C.4) 

To compensate for any steady state output error in case of type 0 systems, a steady 

state control term is needed that is proportional to the reference input, i.e., 

U 85 = Nur (C.5) 

Now, from Figure 6.2 

CrXss = Yr = r (C.6) 
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which reduces to 

(C.7) 

Since the system is at steady state, i.e., x(k + 1) = x(k) = x •• and u = u •• , therefore 

x •• = Ax •• + Bu •• 

(A- I)x •• + Bu •• = 0 

substituting Equations C.5 and C.4 in the above equations 

(A- I)Nrr + BNur 

(A- I)Nx + BNu 

Finally writing Equations C.7 and C.9 in matrix form 

0 

0 

[ ~r- I : l [ ~: l = [ ~ ] 

and solving for N:r and Nu yields the desired result 

(C.8) 

(C.9) 

(C.lO) 
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• corresponding author 

Abstracti This chapter describes the navigation, guidance and control (NGC) of the Ila.mmer
he4d autonomous underwater vehicle (AUV). The navigation system is based on an integrated 
use of the global positioning system (GPS) and severallnertial navigation sy~~tem (INS) sensors. 
A simple Kalma.n filter (SKF) and an extended Kalma.n filter (EKF) are propoeed to be used 
subsequently to fuse the data from the INS sensors and to integrate them with the GPS data. 
The chapter highlights the use of fuzzy logic techniques optimized by mu.ltlobjective genetic al
gorithm (MOGA) to the adaptation of the !nltial stat!etical 8!1SUI1lptlon of both the SKF and 
EKF caused by possible changes in sensor noise characteristics. 

For controller design, the El ammerheo.d models are oxtracted using SI techniquee on actual vehicle 
data obtained from full scale experiments. Two guidance laws are proposed which are deeigned 
for cable/pipeline Inspection task for cruising type vehicles. The control systems developed for 
Hammerhead are a combination of optimal control and artificial intelligence (AI) strategies. A 
discrete time linear quadratic Gaussian controller with loop transfer recovery (LQG/LTR) is 
fonnulated. In addition, two forms of model predictive controllers (MPC) blended with a genetic 
algorithm (GA) and fuzzy logic are designed and tested in Hammerhead. Simulation IlB well as 
real-time reeults are presented. 

Keywords: Autonomous underwater vehicle; Navigation; Sensor Fusion; Kalma.n filters; Ex
tended Kalma.n 81ters; FUzzy Logic; Genetic Algorithms; Guidance; System Identification; Opti
mal Control; Model Prediction Control 

1 INTRODUCTION 
The development of AWs for scientific, military and cammerclal purp"""" in applications such 
as ocean surveying (St121rkersen et aL, 1998), unexploded ordnance hunting (Wright et aL, 1996) 
and cable tracldng and inspection (Asakawa et aL, 2000) requires the corresponding development 
of NGC systems, which should work in accord with each other for proper operation. Navigation 
systems are necessary to provide knowledge of vehicle position and attitude. The guidance 
systems manipulate the output of the navigation systems to ga.nerate suitable trajectories to be 
followed by the vehicle. This takes into account the target and any obetacles that may have been 
encountered durillg the couree of a mission. The control systems are responsible for keeping 
the vehicle on course as specified by the guidance processor. In the Hommerhe4d AUV, this 
is achieved through manipulating the rudder and the hydroplane of the vehicle. The need for 
accuracy in NGC syBtemS is ,paro.mount. Erroneous position and attitude data in navigation 
syBtemS can lead to a. meanlngiess interpretation of the collected data, which in turn e.ffect the 
accuracy of the correoponding guidance and control systems. This, if not contained properly 
may lasd to a catastrophic failure of an AW durillg a specific mission. The integrated NGC of 
the Hammerhead AW can be depicted in Figure 1. 

Figure 1: 

Hammerhead, shown in Figure 2, was developed from a deep mobile target (DMT) torpedo 
of 3(m) length and 30(cm) diameter that was purchased by Cranfield University (CU). Initial 
modifications were made to transform the torpedo Into a PC controlled AW (Neylles, 2000). 
Subsequently, reeearch teams from the University of Plymouth (UP) and CU have successfully 
developed an integrated NGC sy~~tem for the vehicle. In this collaboratiw work, CU developed 
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a navigation subsystem based on a laser stripe illumination methodology developed previously 
there (Tetlow and Allwood, 1995). Interested reader on the details of this subsystem is referred 
to Dalgleish (2004). The focus of this chapter is on the NGC work undertaken by the UP research 
team. The navigation system is based on a GPS/INS Integrated system equipped with adaptive 
Kalman filtering (KF) techniques. The proposed guidance laws, namely the pure pursuit and 
hybrid guidance systems are formulated for cable/pipellne lnspection task. Three approaches are 
suggested for autopilot design: linear quadratic GaUBSian controller with loop transfer recovery 
(LQG/ LTR), a model predictive controller (MPC) opti.mized using a GA and a fuzzy based 
GA-MPC. 

Figure 2: 

2 THE HAMMERHEAD AUV NAVIGATION SYS
TEM 

A growing number of research groups around the world are developing Integrated navigation 
systems utilising INS and GPS (Gade and Jalving, 1999; Grenon et al. , 2001; Yun et al., 1999). 
However, few of these works make explicit the essential need for fusion of several INS sensors 
that enable the users to maintain the accuracy or even to prevent a complete failure of this part 
of navigation system, before being Integrated with the GPS. Kinsey and Whitcomb (2003), for 
example, use a switching mechanism to prevent a complete failure of the INS. Although simple 
to implement, the approach may not be appropriate to use to maintain a certain level of accuracy. 

Several estimation methods have been used in the past for multisensor data fusion and int~ 
gration purpose in AUVs (Loebis et al., 2002). To this end, SKFfEKF and their variants have 
been popular methods in the past and interest in developing the algorithms has continued to 
the present day. However, a significant difficUlty in designing a SKF/EKF can often be traced 
to incomplete a priori knowledge of the process covariance matrix (Q ) and measurement noise 
covariance matrix (R). In most practical applications, these matrices are initially estimated 
or even unknown. The problem here is that the optimality of the estimation algorithm in the 
SKF /EKF setting is closely connected to the quality of a priori information about the process 
and measurement noise (Mehra, 1970). It has been shown that insufficiently known a priori 
filter statistics can reduce the precision of the estimated filter states or introduces biases to their 
estimates. In addition, incorrect a priori information can lead to practical divergence of the filter 
(Fitzgerald, 1971). From the aforementioned it may be argued that the conventional SKF/ EKF 
with fixed (Q) and/or (R ) should be replaced by an adaptive estimation formulation as discussed 
in the next section. 

2.1 Fuzzy Kalman Filter 

In this section, an on-line innovation-based adaptive scheme of the KF to adjust the R matrix 
employing the principles of fuzzy logic is presented. The fuzzy logic is chosen mainly because of 
its simplicity and closeness to human reasoning. These enable a satisfactory performance being 
developed empirically in practice without complicated mathematics. These have motivated the 
interest in the topic, as testified by related articles which have been appearing in the literature 
(Escamilla.-Ambrosio and Mort, 2001; Jetto et al. , 1999; Kobayashi et al., 1998). 
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The fuzzy logic Kalman filter (FKF) proposed herein is based on an innovation adaptive es
timation (IAE) approach using a technique known as covari.ance-matching (Mehra, 1970). The 
basic idea behind the technique is to make the actual value of the covariance of the innovation 
sequences match its theoretical value. 

The actual covari.ance is defined as an appraximation of the Innk sample covari.ance through 
averaging inside a moving estirnation window of size M (Mohamed and Schwarz, 1999) which 
takes the following form: 

(1) 

where jo = k- M + 1 is the first sample inside the estimation window. An empirical heuristic 
experiment is conducted to chocee the window size M that is adequate to capture the dynamic of 
the Innk actual covariance. From experimentation it was found that a good size for the moving 
window in Equation (1) used in this work is 15. The value of M is dependent on the dynamic of 
the Innk and therefore can vary for different types of applications. 

The theoretical covariance of the innovation sequence is defined as (Mehra, 1970): 

S, = H, · Pk" · Hf + Rk (2) 

The logic of the adaptation algorithm using covariance matching technique can be qualitatively 
described as follows. If the actual covariance value eh ..... is observed, whose value is within the 
range predicted by theory s..., and the difference is very near to zero, this Indicates that both 
covariances match almost perfectly and only a small change is needed to be made on the value 
of R. If the actual covari.ance is greater than its theoretical value, the value of R should be 
decreased. On the contrary, if C1nn• is leas than s...,, the value of R should be increased. This 
adjustment mechanism lends itself very well to being dealt with using a fuzzy-logic approach 
based on rules of the kind: 

IF (antecedent ) THEN (consequent ) (3) 

'Ib implement the above covariance matching technique using the fuzzy logic approach, a new 
variable called deltlllc, is defined to detect the discrepancy between C1nn• and sk. The following 
fuzzy rules of the kind of Equation (3) are used (Eacamilla.-Ambrosio and Mort, 2001): 

IF (deltlllc 9! 0) THEN (R~o i~ unchangetf) 

IF (deltlllc > 0) THEN (R~o i~ decreaself) 

IF (deltlllc < 0) THEN (R~o is increaself) 

Thus R is adjusted according to, 
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(4) 

(5) 

(6) 

(7) 



where llRk is added or subtracted from R at each instant of time. Here delta.. is the input to 
the fuzzy inference system (FIS) and llRk is the output. 

On the basis of the above adaptation hypothesis, the FIS can be implemented using three fuzzy 
sets for deltak ; N =Negative, Z =Zero and P =Positive. For llRk the fuzzy sets are specified 
as I = In=e, M= Maintain and D =Decrease. 

2.2 Fuzzy Logic Observer 

To monitor the performance of a FKF, another FIS called the fuzzy logic observer (FLO) 
(Escamilla-Ambrosio and Mort , 2001) is used. The FLO assigns a weight or degree of confi
dence denoted as Ck, a number on the interval (0,1], to the FKF state estimate. The FLO is 
implemented using two inputs: the values of !delta..! and R.~~. The fuzzy labels for the mem
bership functions: Z = Zero, S = Small and L = Large. Three fuzzy singletons are defined 
for the output Ck and are labelled as G = Good, AV = Average and P = Poor with values 1, 
0.5 and 0 respectively. The basic heuristic hypothesis for the FLO is as follows: if the value 
of !delta..! is near to zero and the value of Rk is near to zero, then the FKF works &!moet 
perfectly and the state estimate of the FKF is assigned a weight near 1. On the contrary if one 
or both of these values increases far from zero, it mea.ns that the FKF performance is degrad
ing and the FLO assigns a weight near 0. Table 1 gives the complete fuzzy rule base of each FLO. 

Table 1: 

2.3 Fuzzy Membership Functions Optimization 
GAs in single- and multiobjective mode are used here to optimize the membership functions 
of the FKF. To translate the FKF membership functions to a representation useful as genetic 
material, they are parameterised with real-valued variables. Each of these variables constitutes e. 
gene of the chromosomes for the MOGA. Boundaries of chromosomes are required for the creation 
of chromosomes in the right limits so that the MOGA is not misled to some other area of search 
space. The technique adopted in this thesis is to define the boundaries of the output·membership 
functions according to the furthest points and the crossover points of two adjacent membership 
functions. In other words, the boundaries of FKF consist of three real-valued chromosomes 
( Chs) , as in Figure 3. 

Figure 3: 

The trapezoidal membership functions' two furthest points, -0.135 (D1), -0.135 (~) and 0.135 
(!3), 0.135 (!4) of FKF, remain the same in the GA's description to allow a similar representation 
as the fuzzy system's definition. As can be seen from Figure 3, Ds and M1 can change value in 
the 1•• Ch boundary, D4, M2 and !1 in the 2nd Ch boundary, and finally, M3 and h in 3rd Ch. 
Table 2 shows the encoding used for optimization of the membership functions. 

Table 2: 
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2.4 Implementat ion Result s 

This section discusses the implementation of the FKF opti.m.ized using MOGA discussed earlier 
for fusing heading data acquired during a real- time experiment conducted in Ro&dford Reser
voir. The Hammerhead AUV second order model used herein was derived using SI teclmiques 
(Ljung, 1999), which will be discussed in Section 3. In this model, yaw (x1) and delayed yaw 
(x2) are the states of the system. It is assumed in this model that the forward velocity of the 
vehicle is constant at l(m/sec) and the vehicle is not a.t an angle of roll and pitch. Process and 
measurement noise components are both zero mean white noise. Input to the system (indicated 
by Dr.) is rudder deflection. This model is &SSumed to be sufficiently accurate to represent the 
dynamics of the vehicle, and for this reason, any output produced by the model after being ex
cited by an input, can be considered as an actual output value. This assumption also motivates 
the use of the model output as a. reference in measuring the performance of the FKF-MOGA 
algorithm. 

To test the FKF-MOGA algorithms, real data obtained from a TCM2 electronic comp&SS and 
an inertial measurement unit (!MU), as a response to the input shown in Figure 4(a), are fused 
together with two sets of simulated data. 'Ib produce the simulated data, the noise in Figure 
5(a) and S(b) are simply added to the TCM2 electronic compsss and !MU real data respectively. 
In this particular scenario, the second TCM2 electronic compsss (sensor-3) is located in close 
proximity to the propeller DC motor of the vehicle, whose internal temperature increases with 
time and affects t he sensor ambient temperature. A similar scenario can also be considered to 
occur when the second IMU (sensor-4) is located in close proximity to the laser unit used in the 
VNS whose initial internal temperature is high and settles down after sometime. T his particular 
scenario can result in the noise characteristic shown in Figure 5(b). 

Figure 4: 
Figure 5: 

The initial condition are: 

x = [ O(rad) ] . p = [ 0.01(rad)
2 

0 ] 
0 O(rad) ' 0 0 O.Ol(ra.d)2 (8) 

and Qk is made constant as 

(9) 

The values of P o and Q k are determined heuristically. In real-time applications, the Q.~~ values 
are dependent on temporal and spatial variations In the environment such as sea conditions, 
ocean current, and loc&! magnetic variations and therefore, appropriate adjustments to the ini
tial values of Q also need to be undertaken. However, given the fact that the Hammerhead 
AUV mostly operates in a stable environment, the problem with the Q adjustment is reserved 
for future work. The actual value of R is &SSumed unknown, but its initial value is selected 
according to the heading accuracy of the sensors, i.e. l(deg)2 . 

The covariance matching teclmique discussed previously is then implemented to maintain the 
performance of the estimation process. Subsequent optimization of llR k membership functions 
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using MOGA is done using the parameters shown in Table 3. '!fade-off graphs of this particular 
search is shown in Figure 6. 

Table 3: 
Figure 6: 

Table 4 shows the performance of t he sensors, indicated by J.., and J:ro, wbere 

lsv = 
1 n 
- L (zak - Zk)2 

n k=l 
(10) , 

1 n 
(11) 

'·· = 
- L(za~o- i~o)2 
n k=1 

Here, za., is t he actual value of the yaw, Zk is the measured yaw, i~o is the estimated yaw at an 
instant of time k and n = number of samples. A close look on the J.., and J .. , of each sensor 
indicates tbat tbe FKF with GA (single objective optimization) has improved the accuracy of 
the heading information of sensor-1 to sensor-4. However, tbe result of fusing the estimated 
sensor data has shown a slightly inferior performance, indicated by In = 0.2487(rad), compared 
to the performance of sensor-1, indicated by Jzv = 0.2340(rad). This can be underetood as a 
direct result of fusing a relatively accurate sensor-1, witb other sensors that are less accurate. A 
further comparison is made between individual sensor performance of GA and MOGA case. It is 
clear that the individual sensor performance of the MOGA case, with the exception of sensor-1, 
has produced some improvements, with sensor-2 as the most noticeable one. It is clear that the 
improvement on sensor-2 has brought about an overall significant improvement on the quality of 
the estimation of the MOGA fused sensor, which is indicated by J •• = 0.2088(rad). 

2.5 GPS/ INS Navigation 

Here, the fused estimated yaw obtained previously is treated as a single imaginary yaw sensor and 
used by other INS sensors to transform data from a body co-ordinate to a geographical (North
Ea.st-qown/ NED) co-ordinate frame where integration with converted GPS data is performed 
using a combination of FKF and EKF techniques and can be referred to as fuzzy extended Kalman 
filter(FEKF). Two GPSJINS scenarios are considered. The first scenario is where the vehicle 
performs a surface mission. The second scenario is where the vehicle performs an underwater 
mission. 

2.5.1 2D/ Surface Mission 

A continuous t ime model of the vehicle motion appropriate to this problem is taken to be 

X(t) = F (X (t)) + W (t) 

Z(t) = H (X (t)) + V(t) 

(12} 

(13) 

Denoted by X (t ) = [ XNED(t) YNED(t ) ,P;,.(t) r(t ) u(t ) v(t) jT are the model states. 
XNED(t) and YNEo(t) are the longitude and latitude of the AUV position converted from deg
min-sec in an Earth-centered Earth-fixed co-ordinate frame into metres in the NED co-ordinate 
frame, ,p,,.(t) is the yaw angle obtained from the imaginary yaw sensor, r (t) is yaw rate, u(t ) 
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and v(t ) are the surge and sway velocity respectively. In this system model, F (-) and HO are 
both continuous function, continuously differentiable in X(t). The W(t) and V (t) are both zero 
mean white noise for the system and measurement models respectively. The model states are 
related through the following ldnematically based set of functions (F (X(t))) in Equation (12): 

u(t) = o 

ti(t) = 0 

f/,;,.(t) = r(t) 

f(t) = 0 

XNED(t ) = u(t) cos ,P;,.(t) - v(t) sin ,P;,.(t) 

YNED(t ) = u(t) sin ,P;,.(t) + v(t) cos,P;,.(t) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

To obtain an EKF with an effectivs state prediction equation in a simple form, the continuous 
time model of Equations {14) - (19) havs been linearised about the current state estimates, pro
ducing: 

Fw-Uneari•ed(t) = 

0 0 - u(t) sin ,Pim(t ) - v(t ) cos ,P;,.(t) 0 cos,P;,.(t) - sin ,P;,.(t) 
0 0 u(t) cos,P;m(t) - v(t) sin ,P;,.(t) 0 sin ,p,,.(t) cos,P;m(t) 
0 0 0 1 0 0 

(20) 
0 0 0 0 0 0 
0 0 0 0 d 0 
0 0 0 0 0 0 

The output measurements are related through tbe states by the following matrix: 

0 0 0 0 1 0 
0 0 0 0 0 1 

H2D-U .... crioed = 
0 0 1 0 0 0 
0 0 0 1 0 0 

(21) 

1 0 0 0 0 0 
0 1 0 0 0 0 

when GPS signal is available, and when it is not, 

Hw~-~~[1 0 0 0 1 0] 
0 0 0 0 1 
0 1 0 0 0 
0 0 1 0 0 

(22) 

where Fw-linecn•ed and Hw-linecrioed are respectively, equivalent to A and C in linear dynamic 
system. Subsequent discretisation with period T = 0.125(sec) of the linearised model results in 
the EKF algorithm. The initial conditions are: 

The initial conditions are Xo = Olexe and P o = 0.01lexs, and Q is made constant as 
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10(m)2 0 0 0 0 0 
0 10(m)2 0 0 0 0 
0 0 0.0175( rad)2 0 0 0 
0 0 0 0.1 (radjsec)2 0 0 (23) 

0 0 0 0 O.l(m/sec)2 

0 0 0 0 0 O.l(m/sec)2 

The actual value of R is assumed unknown but its initial value is selected 118: 

1000(m)2 0 0 0 0 0 
0 1000(m)2 0 0 0 0 
0 0 0.0873(rad)2 0 0 0 

(24) 0 0 0 0.0175(rad/ sec)2 0 0 
0 0 0 0 2(m/sec)2 0 
0 0 0 0 0 2(m/sec)2 

The FEKF algorithm is then implemented to the diagonal element of Rk. 

Figure 7: 

Figure 7(a) shows the Hammerhead AUV trajectory obtained using GPS, dead reckoning using 
INS sensors (through double integration of the accelerometer data with respect to time) and 
integrated GPS/ INS. As the initial value of R for both XNED(t) and YNED(t) is 1000(m2), the 
standard EKF algorithm puts less weight on the position obtained by GPS and more on the 
prediction of position obtained from dead reckoning method (using INS sensor data). Figure 
7(b) shows that the matrix hiiB been adjusted accordingly and more weight is given to the GPS 
data, a.nd therefore the estimated trajectory in the integrated GPS fiNS is "pulled" a little bit 
further to the GPS trajectory. However, big discrepancies can still be appreciated between the 
integrated GPS/ INS estimate with respect to the GPS fixes. There are several explanations to 
this erratic behaviour. The first possibility is that it is caused by the poor level of accuracy 
of the low-cost GPS being used in this particular application. It is important to note that the 
proposed algorithm has detected a persistent high actual cova.riance (Crnn•) for both XNED and 
YNED throughout the trajectory. This results in insufficient weight being given to the GPS fixes 
in the FEKF and more on the position obtained by the dead reckoning. The second possibility is 
that the GPS receiver did not lock into a sufficient number of satellites with a sufficiently small 
value of position dilution of precision (POOP) that can provide the required level of accuracy. 
The use of a. differential global positioning system (DGPS) receiver or a GPS receiver with a. 
wide area augmentation system (WAAS) or a European geostationa.ry navigation overlay service 
(EGNOS) capability can be considered as a way forward to alleviate this problem. 

2.5.2 3D/ Surface-Depth Mission 

Many missions performed by AUVs require the vehicle to operate not only on the surface of 
the sea, but also at a particular depth. Examples of such AUVs and their specific missions 
can be found in Loebis et al. (2002). The Hamrr=-head AUV is also designed to be able to 
dive to a certain depth and perform a particular mission, such as tracking underwater cables 
for maintenance purposes or landmark recognition for an underwater absolute positioning sys
tem IlB proposed in Loebis et al. (2003). To carry out these missions, the Hammerhead AUV is 
equipped with underwater image acquisition techniques (Dalgleish et al., 2003), coupled with a 
laser stripe illumination methodology (LSI) developed previously by Cra.nfield University (Tetlow 
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and Allwood, 1995) to provide an enhanced viewing of the sea.bed below the vehicle, and a. depth 
controller developed by Na.eem (2004), which will be discussed more thoroughly in the section 
to come about guidance and control. 

The concept of 3D navigation system enhanced by the proposed techniques is demonstrated 
in this section. The real data. used herein are those generated by the individual TCM2 elec
t ronic compass and IMU, their respective simulated counterparts, and their overall fused values. 
Further real-time experiments a.re considered to be imperative and must be conducted before a 
full-scale pseudo real-time implementation of the proposed techniques can be undertaken. This, 
however, due to the amount of time required to do so and to analyse the data produced thereby 
is considered to be suitable for the future werk of the Hammerhead AUV. ' 

The mission scenario adopted in this section is deeigned to mimic the actual cable-tracking 
or landmark recognition that will be performed in the future by the Hammerhead vehicle. This 
involves acquiring GPSfiNS data on the surface and subsequently finding the estimated trajeo
t?ry before sending the vehicle to a certain depth. Once the vehicle is under the water, the GPS 
s1gnals are completely blocked and the GPS/INS navigation system is replaced by a pure dead 
reckoning navigation system. During this period, the underwater image acquisition algorithms 
continuously observing the area beneath the vehicle to find a cable to be tracked or underwater 
landmarks to be identified and UBed as underwater absolute position fixes. In conditions where 
sufficient illumination is available in identifying those objects, produoed either by the LSI or nat
ural ambient light, the vehicle is then controlled to maintain its current depth. Otherwise, the 
depth controller algorithm will act accordingly and send the vehicle further down until sufficient 
illumination is obtained. After a certain period of time the vehicle .is sent back to the surface to 
obtain GPS fixes that are used to reset the drift or the accumulated error produced by the dead 
reckoning navigation system. 

The surge, sway and heave of the vehicle are obtained by integrating body co-ordinate frame 
acceleration data.. The true values of the surge and sway are, respectively, defined as 1.3(m/ sec) 
and ±0.1(m/sec). The heave values are defined into five parts. The first is the heave of the 
vehicle when it is operating on the surface, i.e., true values are assumed to be O(m/sec). The 
second part is the heave of the vehicle as it is descending to a certain depth, defined here as 
-0.1(m/ sec) . Once the vehicle reaches this, the depth controller is employed to ma.intaln the 
depth of the vehicle. Consequently, the true heave during this period is defined to be O(m/sec). 
The vehicle is sent back to the surface, and the heave during ascending period is defined to be 
0.1 (m/ sec). Finally, the vehicle is back to the surface and the heave once again defined to be 
O(mfsec). It clear that the errors added to these true values will contribute to the total drift 
suffered by the dead reckoning navigation system in finding the position of the vehicle when it 
is operating under the water. 

X(t)=( XNED(t) YNED(t) ZNED(t) O(t) q(t) '1/J;m(t) r(t) u(t) v(t) w(t) jT is the state 
vector for a continuous t ime model of the vehicle motion appropriate to this problem, which is 
taken to be as in Equations (12) and (13), with XNED(t) and YNED(t) are the longitude and 
latitude of the AUV position converted from deg-min-sec in the Earth-centered Earth-fixed~ 
ordinate frame into metres in the NED co-ordinate frB.Ihe, ZNED(t) is the depth of the vehicle, 
O(t) is the pitch, q(t) is the pitch rate, '1/Jom(t) is the yaw angle obtained from the imaginary yaw 
sensor, r(t) is yaw rate, u(t), v(t) and w(t) are the surge, sway and heave velocity respectively. 
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The model states are related through the following !cinematically based set of functions: 

XN ED(t ) = u(t) cos 1/J;m(t) cos 9(t)- v(t) sin 1/J;m(t) + w(t) cos '1/J;m(t) sin l!(t) (25) 

YNED(t) = u (t ) sin 1/Jim(t ) cos li(t) + v(t) cos 1/J;m(t) + w(t) sin 1/J;m(t) sin 9(t) (26) 

ZNED(t) = -u(t) sin9(t) + w(t) cos9(t ) (27) 

~=~ ~ 
tj(t) = 0 (29) 

~im(t) = r(t) (30) 

r (t ) = o 
u(t) = a,BODY-NED(t) 

v(t) = ~BODY-N&D(t) 

w(t) = aZSODY-NEO(t) 

(31) 

(32) 

(33) 

(34) 

where a,SODY-NED (t), ~SOOY-NSD (t) and aZSODY-NEO (t) are the a.cceleration Of the vehicle 
acquired in the body ~ordinate frame and transformed subsequently to the NED ~ordinate 
frame. 

The output measurements are related through the states by an identity matrix I1oxlO when the 
vehicle is operating on the surface. When the vehicle is operating under the water, pure dead reck
oning is used. Linearisation about the current estimates of the continuous time model of Equa
tions (25)-(34), producing the F (t) of the system, which in this case defined as FsD-lineori•ed(t), 
with the corresponding HsD-Iinean•ed(t) = l 1oxlO· The FEKF algorithm is then implemented af
ter subsequent discretisation with period T = 0.125(sec) . The initial conditions are Xo = Ol1oxlO 
and P o = O.Olllox10, and Q is made constant as with the following components: 

Q (ll] = O.Ol(m)2 

Q[2:21 = O.Ol(m)2 

Q (s,s] 7 O.Ol(m)2 

Q [4 ,41 = 0.000001(rad)2 

Q (s,S) = O.Ol(radj sec)2 

Q (6,6) = 0.000001 (rad)2 

Q [T,7] = O.Ol(rad/ sec)2 

Q (s,s] = O.Ol(m j sec)2 

Q (9,G} = O.Ol(m/ sec)2 

Q (lO,IO] = O.Ol(m j sec)2 

The init ial value of R is selected as: 

R[l,IJ = 10(m)2 

R [2,2] = 10(m)2 

R[3,3] = 5(m)2 
R[4,4] = 0.000001(rad)2 

R [s,s} = 0.000001(rad/ sec)2 

R [6,6J = O(rad)2 
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R[7,7J = O(radjsec)2 
R [s,SJ = 2(m/sec)2 

R [G,GJ = 2(m/~ec)2 

R [lO,lOJ = 2(m/sec)2 

Figure 8 and 9 show the result of implementing the proposed FEKF algorithm to the 3D jsurfa.ce
depth mission described herein using the yaw produced by an individual sensor (here represented 
by sensor-4) and fused sensor respectively. Readers interested on the complete results and anal
ysis are referred to Loebis (2004). 

Figure 8: 

It is clear from Figure 8, that the initial GPS/INS surface trajectory using the yaw produced by 
sensor-4 contains an unexpected drift in vertical direction. This is a direct result of assuming 
the measurement noise in this direction as being higher than its corresponding process noise. 
The values of the measurement and process covariance matrices are indicated respectively as 
R[3,3J = 5(m)2 and Q(3,3J = O.Ol(m)2. Coi~Bequently, the EKF algorithm puts more confidence 
on the process, i.e., integrating the Z[NEDI• than the measurement of depth from the pressure 
transducer. It is clear, as indicated by Equation (27), that integrating the value of Z[NEDJ con
sequently integrates the noiee in the u(t), 1/J;m, wand 1!. This in turn produces an accumulation 
of error and needs to be reset to ZNED = O(m), right before the vehicle dives. Once the vehicle 
is below the surface, the depth controller and the underwater image acquisition algorithms will 
work side by side to find objects of interest and to maintain a constant depth thereafter for a 
specific period of time. The vehicle is then sent back to the surfa.ce to obtain GPS fixes used to 
reset the drift produced by the dead reckoning process during the underwater mission. A similar 
case of DR error also occurs at this stage. Although the depth has been reset to O(m), the EKF 
algorithm soon puts more confidence on the vertical DR process and consequently produces an 
estimate of depth larger than O(m). This also happens to the horizontal (XNED and YNED) 
estimation process. As the measurement covariance matrices for both t he longitude and latitude 
are R [l,lJ = R[2,2] = 10(m)2, the estimation process put more weight on the DR processes, which 
are assumed to have Q [l,l] = Q(2,2J = O.Ol(m)2 process covariance matrices. 

Figure 9: 

Figure 9 shows the trajectory produced using the fused yaw sensor and with the values of R 
adjusted by FEKF. It is clear as presented, that as the assumed values of R for the longitude and 
latitude quite low, 10(m)2 , compared to the true ones, which are simulated to be 225(m )2 and 
100(m)2, the FEKF estimation process put initial weigbt more on the GPS fixes than the dead 
reckoning solutions. However, as the .filter learns the true nature of R of these quantities, the 
FEKF makes an appropriate adjustment by putting more weight on the dead reckoning solution 
than on the GPS fixes. It can also be observed how the .filter learns the true value of R[3,31, 
which is simulated to be 0.0001(m)2 • This time the vehicle is not estimated to have depth larger 
than O(m)2, as in the case with the trajectory using yaw data produced by sensor-4. As before, 
once the vehicle is below the surface, the depth controller and the underwater image acquisition 
algorithms will work side by side to find objects of interest and to maintain a constant depth 
thereafter for a specific period of time. The vehicle is then sent back to the surface to obtain 
GPS fixes used to reset the drift produced by the dead reckoning process during the underwater 
mission. It is also clear here how the FEKF has learned the true nature of the R values. It 
can be observed from Figure 9 how the FEKF algorithm puts extra confidence on the GPS fixes 
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right after the vehicle reaches the surface. Soon afterwards however, the algorithm recognises the 
high level of noise inherent in the acquired GPS signals and put less confidence thereon. Small 
discrepancies still exist between the true end and the estimated end of the mission. However, it 
is clear that without the FEKF, the estimated end could easily coincide with the last GPS fix 
and cause a significant position error. 

3 SYSTEM MODELLING 
All controller designs are based on a model of the physical system to be controlled. This gPre5 
the modelling process utmost importance before any rea.! time controller ca.n be developed. 
It is imperative that the designer gain significant depth into system behaviour via extensive 
simulations using a model of the process as an alternative to the physica.l system. Clearly, this 
requires a model that ca.n replicate the systems dynamic behaviour as closely as possible. 

Modelling an underwater vehicle is a complex task because of the nonlinear nature of the vehicle 
dynamics and the degrees of freedom of vehicle movement. In addition, cross coupling effects 
makes the controller design even more intricated. Fortunately, there is a plentiful amount of 
literature available on the matbematica.l modelling of underwater vehicles and is generally appli
cable to a.ll types of underwater vessels. However, a major difficulty in using these generalised 
models is the evaluation of hydrodynamic coefficients which require tank tests on a full scale 
physical model of the vehicle provided the test facility is available. 

An alternate route to modelling an AUV using SI is thus suggested and used herein. A SI 
approach is useful in providing reliable and accurate models in a short ti!Ile without relying 
too much on mathen1atica.l modelling techniques. This feature therefore, is attractive for the 
underwater vehicle manufacturers, where a vehicle configuration changes frequently to suit the 
mission requirements. 

AUV modelling using SI approaches have been investigated before, (Tinker et al., 1979; Ippoliti et 
al. , 2001; Goheen and Jefferys, 1990; Ahmad and Sutton, 2003), but most of the work involved 
has been done on identifying a model by generating data from a mathen1atical model of the 
vehicle: However, for Hammerheo.d, the SI is perfor!Iled on input output data obtained from 
actual in water experiments. SI theory is well established and the reader is refered to Ljung 
(1999) for a comprehensive treatment of the subject. 

3.1 Identification Results 

Trials for SI have been perfor!Iled at South West Water's Roadford !Ulservoir, Devon, and at 
Willen Lake in Milton Keynes. Experiments were designed that could obtain the best possible 
data for model development. Ideally, the requirement is to have a completely noise free data 
which is impossible in a real world environment. The Hammerhead is a law speed AUV that 
swims at approximately 2(knots). This gives some insight about the sampling period to be 
chosen. Clearly, too high sampling rate in this case will give no advantage whatsoever. A 
sampling rate of l(Hz) is thus chosen iteratively which is adequate to obtain ample dynamica.l 
information about the system. By the same token, the frequency for the input signal is chosen 
as O.l(Hz) which was deemed sufficient to excite the interesting modes of the system. 
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Some co!Il!Ilon type of excitation signals used are the uniformly distributed random nlliilbers, 
pseudo random binary sequence, and its variants such as multistep, and doublet input. For depth 
channel identification, it was found that the vehicle would bit the bed without the depth autopilot 
in the loop for long duration inputs. Therefore, it was decided to perfor!Il several short duration 
experi!Ilents with a different multistep input being applied to the hydroplane in each experi!Ilent. 
The experiments ca.n easily be merged for model identification using the SI toolbax in MATLAB. 
Please note that all available measurements were pre-fi.ltered and res&!Ilpled at l(Hz) before any 
model parameters could be identified. Due to this, most of the high frequency contamination 
was elililinated and hence it was decided to extract an autoregressive with exogeneous (ARX) or 
state space model without modelling the noise separately. 

3.1.1 Rudder-Yaw Channel 

The input to this channel is the rudder defl.ections and the output is the vehicle's yaw or heading 
angle. The heading information is available from an onboard TCM2 compass and !MU. However, 
the vehicle response was obtained from TCM2 in these particular trials. It has been observed that 
that there is no strong croes coupling present between the yaw and depth channels. Moreover, 
the roll data remains unaltered with respect to the change in vehicle's heading. A single-input 
single-output (SISO) model has thus been developed for this channel from the data and is given 
by Equation (35). 

G( _1) = -0.04226q-1 + 0.003435q-2 

q 1-1.765q-l + 0.765q 2 
(35) 

where q-1 is the delay operator. This model has been verified by independent data sets that 
were not used in the modelling process. In addition, correlation based tests were also carried out 
to gauge the quality of the model which were found to be adequate. 

3.1.2 Hydroplane-Depth Channel 

The input to this channel is the hydroplane defiections whilst the output is the depth of vehi
cle taken from a pressure transducer. It has been mention.ed that only multistep inputs were 
employed to excite the depth dynamics of the vehicle due to the reasons explained before. The ve
hicle was allowed to swim freely in 6 degrees of freedom, however, only a single input (hydroplane) 
was manipulated and the beading, depth, roll and pitch data were analysed and recorded. 

The Hammerhead data obtained from the depth trials reveal some cross coupling effects between 
the depth and beading angle. A multivariable model is therefore should be the idea.! choice. 
However, exploiting the fact that the heading angle does not vary significantly when the vehicle 
is fully submerged, a SISO model involving only hydroplane defl.ections and depth has been 
developed. Several data sets containing these parameters were collected and suitable data were 
averaged, res&!Ilpled and then merged to estimate the model coefficients. 

A fourth order ARX model was chosen iteratively which gives the best fit between measured 
and model predicted outputs. Equation (36) below presents the ARX(441) model of the depth 
dynamics of Hammerhead 

( 
-1) - 0.002681q-1 - 0.00327q-2 - 0.0007087q-3 + 0.001322q-4 

G q - 1- 3.6773q 1 + 5.0839q-2 - 3.1348q-3 + 0.72826q-4 
(36) 
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The depth dynamic model has also been verified by analysing the correlation tests and time 
domain cross vnlidation. 

4 GUIDANCE 
For Hammerhead, two novel guidance strategies have been proposed. These guidance laws were 
specifically designed for underwater cable inspection tasks for cruising type vehicles. The first 
guidance strategy presented has been borrowed from airborne systems and is termed as pure 
pursuit guidance. This scheme generate co=and signals which are proportional to the line..of 
sight (LOS) angle so that the pursuing vehicle maintains its flight profile aligned with the LOS. 
In the other guidance technique, the vehicle speed is used as a means to formulate the guidance 
scheme. This is called a hybrid guidance system since it utilises various existing guidance laws 
during different phases of the mission as depicted in Figure 10. 

Figure 10: 

The idea is to gradually decrease the speed of the AUV as it approaches the cable/pipeline. 
Please refer to Naeem et al. (2004b) and Naeem et al. (2003) for a detailed description and eval
uation of the pure pursuit and hybrid guidance strategies respectively. From an implementation 
perspective, it is currently not possible to test the hybrid guidance law in Ham~ since 
the AUV model is only available at one fixed speed. However, the concept has been verified by 
borrowing an AUV dynamic model from the literature which is represented in terms of vehicle 
velocity. In general, the proposed schemes require the vehicle's speed and orientation to evaluate 
the guidance signals which are available from an IMU onboard the Hammerhead. 

5 HAMMERHEAD AUTOPILOT DESIGN 
Development of an autopilot for the Hammerhead AUV is of vital importance to the absolute 
design stage. This section presents controller design and results as applied to the Hammerhead 
AUV models identified in Section 3. It should be noted that there is a plethora of control systems 
available and a comprehensive review has been undertaken by Craven et al. (1998). However, 
the selection of a particular controller for an AUV is attributed to several factors. Some of them 
are 

• Robustness to modelling errors (plant parameter variations) 

• Disturbance handling characteristics 

• Set point tracking and trajectory following 

• Stability characteristics 

• Application to linear and nonlinear plants 

Two robust optimal control strategies and their variants have been selected as the candidate 
control schemes for the Hammerhead vehicle. A discrete-time LQG/ LTR and the model based 
predictive controller which has been modiiied to acco=odate various AI techniques for improved 
performance. Simulation and experimental results of the application of the proposed controllers 
to the Hammerhead vehicle in the horizontal and dive planes are presented. 
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5.1 LQG/ LTR Cont roller Design 
LQG is an optimal controller whoee name is derived from the fact that it assumes a linear 
system, quadratic cost function and Gaussian noise. Unlike pole placement method, where the 
designer must know the exact pole locations, LQG places the poles at some arbitrary points 
within the unit circle so that the resulting system is optimal in some seru!e. A linear quadratic 
state feedback regulator (LQR) problem is solved which assumes that all states are available 
for feedback. However, this is not always true because either there is no available sensor to 
measure that state or the measurement is very noisy. A KF can be designed to estimate the 
unmeasured states. The LQR and KF can be designed independently and then combined to 
form an LQG controller, a fact known as the separation principle. Individually the LQR and 
KF have strong robustness properties with ·gain margin up to Infinity and aver 60(deg) phase 
margin, (Burl, 1999). Unfortunately, the LQG has relatively poor stability margins which can 
be circumvented by using LTR. The LTR works by a.dding fictitious noise to the process input 
which effectively cancels some of the plant zeros and possibly some of the stable poles, and inserts 
the estimator's zeros (Ma.ciejowski, 1985; Skogesta.d and Postlethwaite, 1996). Herein, a discrete 
time LQG/LTR design has been developed motivated from the work of Ma.ciejowski (1985). A 
substantial amount of material is available on the state feedback LQG/LTR controller, (see for 
example, Franklin et al. (1998) and Burl (1999)). Therefore, attention is focussed only on the 
application of the autopilot to the Hami'TI.e1'head and no controller design details are presented. 

5.1.1 LOS Following 

The LQGfLTR controller has been tuned using the methodology proposed by Ma.ciejowski (1985). 
In this technique, only the noise covaria.nce matrices are required to be adjusted for the KF. The 
weighting matrices of the LQR are then selected according to an automatic procedure. See 
Naeem et al. (2003) for more details regarding the LQG/ LTR autopilot design for Hammerhead. 
The algorithm is tested for a setpoint change in heading angle. The vehicle is assumed to be 
pointing In an arbitrary direction and is required to follow a certain hea.ding angle closely without 
much control effort. A saturation block is inserted in series with the controller with cutoff limits 
of ±20( deg) and a desired heading angle of 100( deg) is chosen with the vehicle initiating close 
to O(deg). The measurement and process noise covariance matrices are adjusted to achieve the 
desired closed loop frequency response whereas weighting m.atrices for the objective function are 
selected according to Ma.ciejowski (1985). The algorithm is simulated and the output reeponse 
is depicted in Figure 11. 

Figure 11: 

The AUV heading bears a negligible overshoot and the settling time is less than 40(sec)1 . How
ever, the price to pay for this settling time is that the actuator saturation constraint becomes 
active for about 35(sec) in the beginning of the simulation run when the vehicle was making a 
turn. 

Increasing the control Input weighting matrix can help limit the rudder movement within the 
constrained boundaries and avoid this saturation but at the cost of large settling times and 
deviation from the desired stability margins. · 

1since T 1 = 1, therefore 1 sample time corresponds to 1 second 
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5.1.2 Depth Control 

For depth controller design, the same procedure is adopted as before using the Hammerhead 
depth dynamic model. Simulations have been performed where the vehicle is 8S811IIled to be 
launched on the surface and the task is to follow a depth of 3(m) below the sea surface. The 
simulation is run for 100(sec) and the Hammerhead response is depicted in Figure 12. With 
a small overshoot of less than 5 per cent and settling time approximately 15(sec), the vehicle 
successfully follows the desired depth and stays on course throughout the rest of the mission 
duration. 

Figure 12: 

5.2 Model Predictive Control 

MPC refers to a class of algorithms that compute a sequence of manipulated variable adjust
ments in order to optimize the future behaviour of a plant. Originally developed to meet the 
specialised control needs of power plants and petroleum refineries, MPC technology can now be 
found in a wide variety of application areas including chemicals, food processing, automotive, 
aerospace and metallurgy (Qin and Badgewell, 2000) , to name but a few. A good account of 
MPC technology from the past to the future has been reviewed by Morari &nd Lee (1999), while 
a comparison between both theoretical and practical aspects of MPC has been undertaken by 
Carlos et al. (1989) . For the interested reader, several other useful referencee on MPC can be 
found (Maciejowski, 2002; Clarke, 1994; Soeterboek, 1992; Richalet, 1993; Rawlings, 2000). 

Herein, two modifications have been proposed to the standard predictive control problem. In the 
first technique, the conventional optimizer is replaced by a GA. One of the distinct advantages 
of using a GA is the possibility of employing various objective functions and the ability to deal 
with any type of process model and constraints, thus generalising a range of MPC technologies 
where each of them is defined on a fixed set of process model and objective function. In the 
other proposed strategy, a fuzzy performance index is used in place of the quadratic objective 
function and a GA is employed as an optimization tool. Herein, only GA-based MPC with a 
standard cost function will be discussed and some real-time results are elaborated. The reader is 
refered to Naeem et al. (2004a) for the fuzzy based GA-MPC autopilot design. The genetic-based 
control algorithm is depicted in Figure 13. As shown, the GA replaces the optimizer block and 
the AUV model identified from SI on the trials data has been used. The GA-based controller 
uses the process model to search for the cont rol moves, which satisfy the process constraints and 
optimizes a cost function. A conventional quadratic objective function is minimised to evaluate 
the control inputs necessary to track a reference trajectory and is given by Equation (37). 

Figure 13: 

H• H. 
J = L e(k + i)T Qe(k + i) + L .6.u (k + if R.6.u(k + i) 

i=l i=l 

H• 
+ L u(k+ifSu(k + i) (37) 

i•l 

subject to input constraints 

U~.ttraint :5 u( k) .$ utn.traint 
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where the positive and negative signs represent the upper and lower constrained limits respec
tively. Q is the weighting scalar on the prediction error given by 

e(k) = y(k)- w(k) (38) 

where w(k) is the reference or the desired setpoint. R and S are weights on the change in 
input, .6.u &nd magnitude of input, u respectively. Please refer to Naeem et al. (2004b) for a 
comprehensive treatment on the GA-based MPC design. 

The perform&nce of the GA-MPC controller is next evaluated using the Hammerhead models 
identified in Section 3.1. Likewise LQG/ LTR controller l3lq>Jicated in Section 5.1, separate con
trollers are designed for the yaw and depth channels. However, real-time results are shown here 
only for the horizontal plane whereas simulated data is. illustrated for the depth ·Output. It Is 
import&nt to point out the fact that the authors tested the controller on a 1960s made vehi
cle hull with the bulk of the existing electronics specifically the motors and their mechanical 
assembly being retained. Due to this, the rudder movement could not be controlled precisely 
and the minimum deflection observed was 2(deg). For this reason, a minimum rate of change of 
input constraint was imposed on the rudder which could lead to chattering effects in the rudder 
movement. 

5.2.1 Heading Control 

To simulate the controller, it is assumed that there is no model/plant mismatch. The constraints 
on the rudder were ::1::20(deg) while the minimum allowed deflection is 2(deg) as discussed in 
the previous section. The weighting matricee were adjusted heuristically and the prediction and 
control horizons (H, and He) of MPC were set to minimise the control effort and to increase the 
speed of response. 

The controller wa.s simulated for a step ch&nge in heading and the result is depicted in Figure 14. 
Without taking any disturbance into account, the vehicle closely follows the desired course after 
initiating from &n arbitrary direction. The response in Figure 14(b) bears a small overshoot which 
can be minimised by adjusting the weighting matricee but at the cost of slower response time. The 
rudder deflections generated by the GA-based controller are also shown in Figure 14(a) requlring 
minimum control effort and stays within the specified bouncis. There is a large movement in the 
rudder position around t =50( sec) yet this does not affect the vehicle's motion because of its slow 
dynamics. The spike is due to the probabilistic nature of GA which producee such results unless 
accounted for in the code but has not been implemented owing to the extra computational burden 
that it imposes. The chattering phenomena can also be observed from this figure because of the 
2(deg) rate constraint. However, the effect of this is almost negligible on the vehicle's movement. 

Figure 14: 

Next, the heading controller was tested in the Hammerhead. The parameters used in these trials 
were kept the same as in the simulation studies for a fair comparison. The test was carried 
out for a step change in heading where the initial and desired headings were the same as in 
the simulation. It is evident from Figure 15(b) that the GA-MPC wa.s able to track the desired 
heading without &ny offset despite the presence of always existing model uncertainty and external 
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disturbances. There is an overshoot though which could be blamed on the surface currents. 
Looking at the rudder deflections in Figure 15(a), again there is some expected chattering present. 
However, the rudder movement always remain within the specified constraints. There is a large 
spike followed by fluctuations in rudder movement at approximately 125(sec) in response to the 
cha.nge in vehicle's heading due to surface currents. However, the controller is robust enough 
to cope with it and attains the steady state input and output values in approximately 50( sec). 
A statistical analysis reveals that the standard deviation of rudder deflections in experimental 
data is approximately ll(deg), while it is quite high (8(deg)) in the simulation (even without 
a.ny disturba.nce), possibly because of the chattering phenomena. 

Figure 15: 

It is interesting to note that the rise time in the experimental data is much smaller (24( sec)) 
than in the simulation (38(sec)). One reason for this is the effect of surface currents pushing the 
vehicle unwantingly and causing even a higher overshoot as compared to the simulated response. 
Model/plant mismatch could also be a potential source of this problem. 

5.2.2 Depth Control 

A GA-based MPC depth autopilot is now developed for Hammerhead in this section. The model 
used for controller design is given by Equation (36) with a sampling time of 1(sec) and identified 
from trials data using SI techniques. The intent is to design a controller that is able to control 
the depth of the AUV as closely as possible despite the presence of external disturbances and 
modelling errors. The performance of the control strategy developed herein will eventually be 
assessed on the Hammerhead vehicle. 

The front canards movement is restricted to ±25(deg) which was thought to be adequate to 
control the vehicle in the vertical plane and was obtained through a series of rigorous in water 
experiments. Please note that no minimum rate constraint is imposed on the hydroplane move
ment since these are newly installed in the vehicle. It is assumed that the vehicle is manouevring 
near the surface (zero depth) and is subjected to a. depth co=and of 3(m). The Hammerhead 
response to a step change in depth when diving from the sea surface is shown in Figure 16. 

Figure 16: 

It took less than 25(sec) for the vehicle to attain the desired depth of 3(m) with little overshoot 
a.nd no steady state error. The diving rate stays uniform as the vehicle approaches t he desired 
level with precision a.nd maintains the specified depth throughout. 

6 CONCLUDING REMARKS 
This chapter presents an overview of the navigation, guidance and control system design of 
Hammerhead vehicle. Two navigation scenarios have been considered to validate the proposed 
approach: 2D ;surface a.nd 3D / surface-depth scenarios. In both scenarios, the data. from the 
TCM2 electronic compass and IMU are fused with two other simulated sensors before being used 
in t ransforming data from the body to the NED co-ordinate frame, where integration between 
the INS a.nd GPS data occurs. In the first scenario, a.s the vehicle operates on the surface only, 
the GPS data is available periodically and the proposed estimation process takes place between 
the GPS fixes. In the second scenario, the GPS fixes are available continuously when the vehicle 

18 

operates on the surface, and the proposed estimation algorithm blends these data with the posi
tion solution produced by the dead reckoning method to find the best estimates of the vehicle's 
position. In this scenario, the vehicle UBeS only dead reckoning method during an underwater 
mission and the accumulated errors produced thereby is reset by GPS fl..xes the next time' the 
vehicle gain access to their signals. It has been shown in both scenarios that the proposed al
gorithm has produced a significant improvement in aceura.cy a.nd reliability of the navigation 
system of the vehicle. 

The use of SI techniques on actual vehicle data for modelling is suggested where the models 
are subsequently used for autopilot development. Since Hammerhead is a cruising type vehicle, 
therefore guidance laws specifica.lly for cable/ pipeline inspection task are formulated. Finally, 
autopilots based on optimal control and AI techniques are conceived. Some real-time results 
based on GA-MPC controller are presented and a comparison is made with simulation examples. 
It is shown that the proposed autopilot is quite robust under a varying set of conditions including 
external disturbances a.nd modelling uncertainty. 

It is envisaged that the NGC techniques emplayed for Hammerhead which are presented within 
this chapter will be considered as an invaluable addition to the underwater research literature. 

References 
Ahmad, S. M. and R. Sutton (2003). Dynamic Modelling of a. Remotely Operated Vehicle. In: 

Proceedings 1st IFAC Workshop on Guidance and Control of Underwater Vehicles GCUV 
2009. IFAC. Newport, South Wales, UK. pp. 47-52. 

Asa.ka.wa., K., J . Kojima., Y. Kato, S. Ma.tsumoto and N. Ka.to (2000). Autonomous Underwater 
Vehicle Aqua Expl01'er 2 for Inspection of Underwater Cables. In: Proceedings of tM 2000 
International Symposium on Underwater Technology_. Tokyo, Japan. pp. 242-247. 

Bur!, J. B. (1999). Linear Optimal Control, H2 and H00 Methods. Addison-Wesley Longman Inc. 

Carlos, E . G., D. M. Prett and M. Morari (1989). Model Predictive Control: Theory and Practice 
-a Survey. Automatica 25(3), 335-348. 

Clarke, D., Eci.) (1994). Advances in Model-Based Predictive Control. Oxford Science Publica.
tions. 

Craven, P. J., R. Sutton and R. S. Burns (1998). Control Strategies for Unmanned Underwater 
Vehicles. The Journal of Navigation 51(1), 79-105. 

Da.lgleish, F. R. (2004). Applications ofLaser-Assisted Vision to Autonomous Underwater Vehicle 
Navigation. PhD Thesis. Cre.nfield University. Cranfield, UK. 

Dalglei.sh, F. R., S. Tetlow and R. L. Allwood (2003). A Preliminary Ex"}>eriments in the De
velopment of a. Laser Based-Imaging Sensor for AUV Navigation. In: Proceedings 1st IFAC 
Workshop on Guidance and Control of Underwater Vehicles. Newport, South Wales, UK. 
pp. 239-244. 

Esca.miJ.la,.Ambroeio, P. J . and N. Mort (2001). A Hybrid Ka.lman Filter-Fuzzy Logic Multisenaor 
Data Fusion Architecture with Fault Tolerant Characteristics. In: Proceedings of the 2001 
International Conference on Artificial Intelligence. Las Vegas, NV, USA. pp. 361-367. 

19 



Fitzgerald, R. J . (1971). Divergence of the Ka.lman Filter. IEEE Transactions on Automatic 
Control AC-16(6), 736--747. 

Franklin, G. F., J. D. Powell and M. Workman (1998). Digital Control of Dynamic Systems. 3rd 
ed .. Addison-Wesley Longman Inc. 

Gade, K. and B. Jalving (1999). An Aided Navigation Post Processing Filter for Detailed Seabed 
Mapping UUVs. Modeling, Identification and Control20(3), 165-176. 

Goheen, K. R. and E. R. Jefferys (1990). The Application of Alternative Modelling Techniques 
to ROV Dynamics. In: Proceedings IEEE International Conference on Robotics and Au
tomation. IEEE. Cincinnati, OH, USA. pp. 1302-1309. 

Grenon, G., P.E. An, S.M. Smith and A.J. Healey (2001). Enhancement of the Inertial Navigation 
System for the Morpheous Autonomous Underwater Vehicles. IEEE Journal of Oceanic 
Engineering 26(4), 548- 560. 

lppoliti, C. G., S. R.adicioni and A. Rossolini (2001) . Multiple Models Control of a Remotely 
Operated Vehicle: Analysis of Models Structure and Complexity. In: Proceedings IFAC Con
ference on Control Applications in Marine Systems {CAMS' 01). IFAC. Glasgow, Scotla.nd, 
UK. 

Jetto, L., S. Longhi and D. Vitali (1999). Localisation of a Wheeled Mobile Robot by Sensor 
Data Fuaion Based on a Fuzzy Logic Adapted Kalman Filter. Control Engineering Pmctice 
7, 763-771. 

Kinsey, J.C. and L.L. Whitcomb (2003). Preliminary Field Experience with the DVLNAV In
tegrated Navigation System for Manned and Unma.nned Submersibles. In: Proceedings of 
the 1st IFAC Workshop on Guidance and Control of Underwater Vehicles. Newport, South 
Wales, UK. pp. 83-88. 

Kobaya.shi, K., K. C. Cheok, K. Watanabe and F. Munekata (1998). Accurate Differential Global 
Positioning via Fuzzy Logic Kalman Filter Sensor Fuaion Technique. IEEE Transaction on 
Industrial Electronics 45(3), 51G-518. 

Ljung,· L. (1999) . System Identification, Theory for the User. 2"d ed .. PTR Prentice Hall. 

Loebis, D. (2004). An Intelligent Navigation System for an Autonomous Underwater Vehicle. 
PhD Thesis. The University of Plymouth. Plymouth, UK. 

Loebis, D., F. R. Dalgleish, R. Sutton, S. Tetlow, J. Chudley and R. Allwood (2003). An Inte
grated Approach in the Design of Navigation System for an AUV. In: Proceedings of MCMC 
£003 Conference. Girona, Spain. pp. 329-334. 

Loebis, D., R. Sutton a.nd J . Chudley (2002). Review of Multisensor Data Fusion Techniques 
and Their Application to Autonomous Underwater Vehicle Navigation. Journal of Marine 
Engineering and Technology AC-15(2), 175-184. 

Ma.ciejowski, J . M. (1985). Asymptotic Recovery for Discrete-Time Systems. IEEE Transactions 
on Automatic Control AC-30(6) , 602~05. 

Ma.ciejowski, J . M. (2002). Predictive Control with Constmints. Prentice hall. 

20 

Mehra, R. K. (1970). On the Identification of Variances and Adaptive Ka!man Filtering. IEEE 
Transactions on Automatic Control AC-15(2), 175-184. 

Mohamed, A. H. and K. P. Schwarz (1999). Adaptive Kalman Filtering for lliS/ GPS. Journal 
of Geodesy 73, 193-203. 

Morari, M. and J. M. Lee (1999) . Model Predictive Control: Past, Present a.nd Fut ure. Computers 
and Chemical Engineering 23, 667-682. 

Naeem, W. (2004). Guidance and Control of an Autonomous Underwater Vehicle. PhD Thesis. 
The University of Plymouth. Plymouth, UK. 

Naeem, W., R. Sutton and J. Chudley (2003). LQG/ LTR Control of an Autonomous Underwater 
Vehicle Using a Hybrid Guidance Law. In: Proceedings of Guidance and Control of Under
water Vehicles £009. Elsevier IFAC Publications. Newport, South Wales, UK. pp. 31- 36. 

Naeem, W., R. Sutton and J . Chudley (2004a). Model Predictive Control of an Autonomous Un
derwater Vehicle with a Fuzzy Objective Function Optimized Using a GA. In: Proceedings 
of Control Applications in Marine Systems (CAMS'04). IFAC. Ancona, Italy. pp. 433-438. 

Naeem, W., R. Sutton and S. M. Ahmad (2004b). Pure Pursuit Guidance and Model Predic
tive Control of an Autonomous Underwater Vehicle for Cable/Pipeline Tracking. IMarEST 
Journal of Marine Science and Environment C (1), 25-35. 

Naylies, I. (2000). The Sensory Requirement of a PC Controlled AUV. Master's thesis. Offshore 
Technology Centre, Cra.n.field University. 

Qin, S. Joe and Thomas A. Badgewell (2000) . An Overview of Nonlinear Model Predictive 
Control Applications. In: Nonlinear Model Predictive ControL Switzerland. 

Rawlings, J. B. (2000). Tutorial Overview of Model Predictive Control. IEEE Control Systems 
Magazine pp. 3&-52. 

Richalet, J . (1993). Industrial Applications of Model Based Predictive Control. A utomatica 
29(5), 1251-1274. 

Skogestad, S. and I. Postlethwaite (1996). Multivariable Feedback Control: Analysis and Design 
Using Frequency-Domain Methods. John Wiley and Sons Ltd. 

Soeterboek, R. (1992). Predictive Control, A Unified Approach. Prentice Hall. 

Stfl!rkersen, N., J. Kristensen, A.lndreeide, J. Seim and T . Glancy (1998). Hugin - UUV for 
Seabed Surveying. Sea Technology39(2), 9~104. 

Tetlow, S. and R. L. Allwood (1995). Development and Applications of a Novel Underwater Laser 
illumination System. Underwater Technology 21(2), 13-20. 

Tinker, S. J., A. R. Bowman and T. B. Booth (1979). Identifying Submersible Dynamics from 
Free Model Experiments. In: RINA Annual Report and Transactions. pp. 191-196. 

Wrigbt, J., K. Scott, C. Tien-Hsin, B. Lau, J. Lathrop and J. McCormick (1996). Multi-Sensor 
Data Fusion for See.fioor Mapping and Ordnance Location. In: Proceedings of the 1996 
Symposium on Autonomous Underwater Vehicle Technology. Monterey, CA, USA. pp. 167-
175. 

21 



Yun, X., R.E. Bachmann, R.B McGhee, R.H. Whalen, R.L. Roberts, R.G. Knapp, A.J . Healey 
and M.J. Zyda (1999). Testing and Evaluation of an Integrated GPS/INS System for Small 
ATN Na..,;gation. IEEE Journal of Oceanic Engineering 24(3), 396 - 404. 

22 

R~.: z s L 
!delta!~.: 
z G G AV 
s G AV p 
L AV p p 

Table 1: Fuzzy rule based FLO 

23 



Limit 

Upper Limit 
Lower Limit 

-0.135 
-0.033 

-0.033 
0.033 

Table 2: FKF boundaries 
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0.033 
0.135 

Parameters 
Number of objective functions 
Number of generation 
Number of individual per generation 
Generation gap in selection operation 
Ra.te in rate in recombination operation 
Ra.te in mutation operation 

Table 3: MOGA parameters 
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Values 
5 
25 
10 
0.95 
0.8 
0.09 



Sensor J,(rad) J •• (rad~ 
Non-MC5GA M<JGA 

- .. ,...---------, 

Sensor-1 0.2340 0.2090 0.2094 
Sensor-2 0.2960 0.3047 0.2761 
Sensor-3 0.6558 0.4131 0.4130 
Sensor-4 0.3852 0.2552 0.2551 

FUsed 0.2487 0.2088 

Table 4: Comparison of performance Figure 1: Navigation, guidance and control for the jiammerhead AUV 
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(a) 

(b) 

Figure 2: (a) The schematic of the Hammerhead, (b) The Hammerhead strapped on its 
trailer 
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Figure 6: Trade-off graphs for the FKF search 
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Figure 7: (a) AUV trajectory obtained using GPS, INS sensors (dead reckoning method) 
and GPS/ INS using EKF without adaptation, (b) AUV trajectory obtained using GPS, 
INS sensors (dead reckoning method) and GPS/ INS using EKF with adaptation 
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Figure 10: Planar view of the four phases of flight for cable tracking problem of an AUV. 
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Figure 11: LQG/ LTR control of Hammerhead showing LOS tracking. 
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Figure 12: Depth control of Hammerhead vehicle using the LQG/ LTR controller showing 
a step change in depth. 

38 

GA-MPC Controller 

y(lc) 

Figure 13: Genetic algorithm based model predictive controller. 
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Figure 14: GA-MPC simulation results (a) Rudder deflections generated by the controller 
(b) A UV heading. 
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Figure 15: Controller trial results (a) Rudder deflections generated by the GA- MPC 
(b) Hammerhead heading obtained from IMU. 
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A genetic algorithm-based model predictive control 
autopilot design and its implementation in an 
autonomous underwater vehicle 

W Naeem1*, R Sutton', J Chudley1, F R Dalgleislr' and S Tedow2 

1 Marine and Industrial Dynamic Analysis Research Group, University of Plymouth, Plymouth, UK. 
2 0ffshore Technology Centre, Cranfield University,Cranfield, UK 

Abstract: The control of any underwater vehicle has always been a challenging task and is certainly 
an important and necessary feature of an autonomous underwater vehicle (AUV). Th.is paper 
describes the implementation of a genetic algorithm (GA)-based model pre<tictive controller for an 
AUV named H~rhead wh.ich is being developed jointly by the Universities of Plymo11th and 
Cranfield. To the present authors' kDowledge, th.is is the first successful application of a GA in real
time optimization for controller tuning in the marine sector and thus the paper makes an extremely 
novel and useful contribution to control system design. The advantages of using model prectictive 
control (MPC) include its constraint handling and disturbance rejection properties commonly present 
in an underwater environment. The use of GAs generalizes MPC to employ linear as well as non
linear process models. Furthermore, it supports the inclusion of various types of objective function 
without having to change the controller structure. The model reqllired for MPC is extracted using 
system identification techniques on actual AUV data obtained from fuU-scale in-water tests. A 
description of Hammerhead AVV is outlined and simulation and experiment data are shown wh.icb 
were obtained by optimizing the cost function online using the GA. Results demonstrate good tracking 
behaviour despite the presence of ctisturbances and ever-present modelling uncertainty. 

Keywords: autonomous underwater vehicles, system identification, model prectictive control, genetic 
algorithm 

NOTATION 

d disturbance 
prediction error 

H. controlhorizon 
HP prectiction horizon 
J performance index or criterion function 
Q weight on the prediction error 
R weight on the change in input 
S weight on the input 
u input to the system 
u•P• optimal controller output sequence 
w reference trajectory or set point 
y output or response of the system 
y precticted process output from the model 
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t:;.u change in the input u 
residuals 

1 INTRODUCTION 

Underwater robots are on the verge of technological 
advances. There have been a myriad of efforts for llnder
water vehicles system design in terms of their physical 
structure and the controller/sensors used on board. Most 
of the vehicles are designed with a specific application 
in mind. The applications can range from subsea cable/ 
pipeline tracking to dam inspection and mine clearing 
operations. Generally, there are two types of urunanned 
underwater vehicle, namely remotely operated vehicles 
(ROVs) and autonomous underwater vehicles (AUVs). 
ROVs require a trained human operator for manoeuvring 
and are generally attached to an umbilical as a source 
of power and for communication. In th.is regard, ROVs 
have limited capabilities mainly because of the umbilical 
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length. On the other hand, AUVs do not have a tether 
and the range of a mission is only limited by the on
board batteries. AUVs are viable tools for underwater 
exploration in places where human divers cannot reach 
or human life is put in jeopardy such as surveying an 
underwater volcano. To be able to perform accurately 
its required task, the AUV needs to have a reliable 
navigation, guidance and control system. The design of 
an autopilot (control system) for an underwater vehicle 
generally requires a mathematical model of the physical 
system. This is imperative in gruning physical insight 
concerning the behaviour of the system. 

The Universities of Plymouth and Cran.field together 
are developing a low-cost AUV named Hammerhead to 
provide an easy-to-use platform for testing various con
trol algorithms and for use by other underwater research 
groups in the UK. Some of the numerous applications 
that are kept in mind for this particular AUV are cable/ 
pipelin.e and sea bed inspection and object tracking. In 
addition, the present authors sense a distinct Jack of 
information in the public domain on in-water trials and 
that there is a need for experimental tests for A UV auto
pilots. Lea [ 1] reviewed various control systems for 
A UVs, presenting experimental comparative tests, while 
Craven et al. [2] reported their findings on classical and 
advance controllers for AUVs. 

It has been observed that, for practical applications, 
the majority of AUVs around the world employ simple 
control algorithms such as the proportional-integral
derivative ( PID) controller. Clearly, this strategy is useful 
in commercializing the product in a short time by employ
ing a controller that is not so easy to tune and that can 
be realized in hardware in a straightforward manner. 
For instance, the Natural Environmental Research 
Council 's AUTOSUB vehicle based at the Southampton 
Oceanography Centre, UK, uses proportional-derivative 
(PD) controllers to control the vehicle position, depth 
and altitude which is shown to be adequate (3]. The 
underlying philosophy for selecting the PD controller is 
' to keep it simple' for the delivery of a reliable and main
tainable system. However, it is shown that the controller 
could not cope with changes in water density (resulting 
from a combination of fresh and saline water), which 
results in the loss of vehicle buoyancy, causing it to sink 
(4]. Similarly, the AQUA explorer (5] developed by 
KDD Research and Development Laboratories, Japan, 
and the Twin Burger [6] vehicle based at the University 
of Tokyo, employed PID and PD control algorithms 
for attitude control. This does not prevent researchers 
from developing a new breed of control laws suitable 
for underwater environment which are robust and over
come many difficulties inherent in P!D controllers. For 
eltample, in addition to PID control, a fuzzy control law 
is developed for the AQUA explorer and experimental 
results for the case of a cable tracking mission have been 
reported [7, 8]. A neural oerwork-based control system 
has also been implemented successfully in the Twin 
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Burger vehicle [9]; however, the online implementation 
entails high computing power or parallel processing to 
obtain the controller parameters in real time. Aguiar 
and eo-workers [ 10, 11] have realized a sliding mode 
controller in the SIRENE underwater vehicle based at 
Institute Superior TCcnico, Portugal. The controller 
provides good robustness to modelling errors and has 
essentially a PID-type structure with additional non-linear 
terms to account for vehicle parametric uncertainty. 
Another sliding mode control methodology was developed 
by Healey and Lienard (12] at the Naval Post 5}raduate 
School (NPS), Monterey, California. The NPS ARIES 
AUV is a successful example of the implementation of 
the sliding mode technique to control the vehicle in the 
horizontal and vertical planes [13]. 

This paper is concerned with system identification (SI ) 
and control of an AUV. The SI approach is useful in 
providing reliable and accurate models in a short time 
without relying too much on mathematical modelling 
techn.iques. This feature therefore, is attractive for the 
underwater vehicle manufacturers, where a vehicle con
figuration changes frequently to suit the mission require
ments. AUV modelling using SI approaches have been 
investigated before [14-18], but most of the work involved 
has been done on identifying a model by generating data 
from a six-degrees-of-freedom mathematical model of 
the vehicle. Moreover, mathematical modelling requires 
the hydrodynamic coefficients of the A UV to be esti
mated (see, for example, reference [19]), which is very 
demanding and expensive and requires a special platform 
that is not available everywhere. However, in this paper, 
the SI is performed on actual A UV input/output data 
obtained from test trials explained in the next section. 

The control system developed is a genetic algorithm 
(GA)-based model predictive control (MPC). MPC was 
originated and has long been used in process industry 
because of its strong robustness and constraint handling 
characteristics. It is the only methodology that can 
handle constraints in a natural way during controller 
design. While the traditional controllers cope with con
straints in an ad hoc way during the implementation 
phase, the model predictive controller is fully aware of 
its boundaries and therefore is able to operate close to 
the constrrunts without actually violating them. As far 
as the p resent authors are concerned, MPC on AUVs 
was first simulated by Kwiesielewicz er al. (20] who com
pared its performance to PD control and an adaptive 
neurofuzzy inference system-tuned autopilot. The results 
were found to be quite promising. Then, Naeem and 
eo-workers simulated GA-tuoed MPC on an AUV for 
heading control [21] and for subsea cable/pipeline track
ing [22]. The results demonstrated the robustness of 
GA-based MPC in the presence of sea currents. 

Furthering the previous work on GA-based MPC as 
an autopilot, herein the present authors have implemented 
the said controller in real time in Hammerhead and thus 
this represents a new application area for this type of 
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control algorithm. In general, it is usually thought that 
a GA is computationally demanding and therefore not 
suitable for real-time processes. In the literature, there 
have been only a few applications, in general, demon
strating the use of an online GA (see, for example, refer
ences [23] and [24]). However, it has been successfully 
shown here that keeping the computational burden at 
its minimum, GA can be used as an efficient optimization 
technique for real-time control problems. The model 
employed by MPC has been identified first from test trials, 
which is then used as an integral'pan of the GA-based 
MPC. The following section gives a description of 
Hammerhead and is then followed by an expose to SI in 
general in section 3. Section 4 details basic MPC and 
problem formulation using GA-based MPC is outlined 
in section 5. The experiment design fo r SI and the con
troller is explained in section 6. Problems encountered 
before and during the trials are also covered. Simulation 
results and experimental data are presented in section 7 
showing results from SI trials and controller testing for 
a step change in heading. Finally, the paper ends with 
concluding remarks in section 8. 

2 HAMMERHEAD SYSTEM D£SCRIPTION 

The Hammerhead vehicle used in this study was acquired 
from the Royal Navy some years ago, where it had 
previously been used as a deep mobile target. It has a 
torpedo-shaped body about 3k m long and approxi
mately i m in diameter. The control surfaces are the two 
rear rudders for steering and rwo front hydroplanes for 
diving. The rudder and hydroplanes are controlled by 
rwo separate on-board stepper motors and the command 
to the stepper motors is currently sent via an umbilical 
attached to the rear end of the vehicle. The other end of 
the umbilical is connected to a control computer running 
MATLAB on a surface vessel. The on-board sensors 
include an inertial measurement unit (IMU) contain-

ing three accelerometers and three rate gyros, TCM2 
electronic compass, pressure sensor, global positioning 
system (GPS) and a shaft speed encoder. The data 
logged using the above-mentioned sensors is summarized 
in Table I. 

A laser stripe illumination system [25, 26], being 
developed at Cran.field University will also be imple
mented in the vehicle to enhance the navigation multi
sensor data fusion (MSDF) algorithm [27], which is being 
developed at the University of Plymouth. However, for 
the results to be presented in this paper, the data from 
the sensors mentioned in Table I were obtained and the 
IMU provides feedback for the heading controller. A 
sectional view of Hammerhead is shown in Fig. I. 

3 SYSTEM IDENTIFICATION 

SI of a dynamic system generally consists of the following 
four steps: 

Step 1. Data acquisition . 

Step 2. Characterization. 

Step 3. Identification/estimation. 

Step 4. Verification. 

The first and most important step is to acquire the 
input/output data of the system to be identified. Acquiring 
data is not trivial and can be very laborious and expensive. 
This involves careful planning of the inputs to be applied 
so that sufficient information about the system dynamics 
is obtained. If the inputs are not well designed, then it 
could lead to insufficient or even useless data. 

Step 2 defines the structure of the system, e.g. type 
and order of the differential equation relating the input 
to the output. This means the selection of a suitable 
model structure, e.g. autoregressive with exogenous input 
(ARX), autoregressive moving average with exogenous 
input (ARMAX), output error (OE), etc. 

Table 1 Logged sensors data 
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Sensors 

!MU 
TCM2compus 
Presawe sensor 
GPS 

DatA 

Heading. pitch, roll, linear &nd angular velocities 
Heading. piu:h and roll 
Depth of the vehicle 

Sbaft speed encoder 
Coordinates of the vehicle on the surface, forward 'pecd 
Vehicle speed 

ConlrOI 
Bowels, 
GP8and 
P,...uN 
S.naor 

Fl&. 1 Sectional view of Hammerhead showing sensor locations 
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Step 3 is identification/estimation, which involves deter
mining the numerical values of the structural parameters, 
which minimize the error between the system to be 
identified, and its model. Common estimation methods 
are the least-squares method, the instrumental-variable 
method, the max.imum-likelihood method and the 
prediction-error method. 

The final step 4, verification, consists in relating the 
system to the identified model responses in the time or 
frequency domain to instil confidence in the obtained 
model. Residual (correlation) analysis and cross
validation tests have been employed for model validation 
in this paper. The above-mentioned features of SI are 
symbolicnlly indicated in Fig. 2. 

ln this figure, u is the input, y is the output or response, 
d is the disturbance, j is the response of the model to 
the same input u and e is the error between the model 
output and plant output also called the residuals. The 
objective of identification is to minimize the sum-squared 
errors or residuals e. More details on SI can be found 
in reference (28]. 

4 MODEL PREDICTIVE CONTROL 

MPC refers to a class of algorithms that compute a 
sequence of manipulated variable adjustments in order 
to optimize the fu.ture behaviour of a plant. Originally 
developed to meet the specialized control needs of power 
plants and petroleum refineries, MPC technology can now 
be found in a wide variety of application areas including 
chemicals, food processing, automotive, aerospace and 
metallurgy [29], to name but a few. 

The development of MPC can be traced back to 1978 
after the publication of the paper by Richalet et al. [30) . 
They nam.ed their algorithm model predictive heuristic 

u(t) 

~r) 

Ag. 2 The oven~ll identiilcation procedure 
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control and it was successfu.lly applied to a fluid catalytic 
cracking unit main fractionator column, a power plant 
steam generator and a poly(vinyl chloride) plant. Then, 
Cutler and Ramalcer from Shell Oil Company in 1979 
and 1980 developed their own independent MPC tech
nology referred to as dynamic matrix control (31], lllld 
they showed results from a furnace temperature con
trol application to demonstrate improved control qu.ality. 
However, another form of MPC, cnlled generalized pre
dictive control has been devised by Clarke et al. (32, 33), 
and is employed in this paper. The fundamental sliffer
eoce between all these techniques is the type of model 
used and the cost function being optimized. 

As noted above, the success that MPC is enjoying 
is attributed to the fact that it was developed in the 
industry, by the industry and for the industry. A good 
account of MPC technology from the past to the future 
has been reviewed by Morari and Lee [34), while a com
parison berween both theoretical and practical aspects 
o f MPC has been undertaken by Carlos ~~al. [35]. For 
the interested reader, several other u.sefu l references on 
MPC can be found [36-40). 

The process output is predicted by using a model of 
the process to be controlled. Any model that describes 
the relationship berween the input and the output of the 
process can be used. Further, if the process is subject to 
disturbances, a disturbance or noise model can be added 
to the process model. In order to define bow well the 
predicted process output tracks the reference trajectory, 
a criterion function is used. T'ypicnlly the criterion is the 
difference berween the predicted process output and the 
desired reference trajectory. A simple criterion function is 

J= I [j{k+i) - w(k+/))2 ( 1) 
1• 1 

where j is the predicted process output, w is the reference 
trajectory and H. is the prediction horizon or output 
horizon. The Structure of a model predictive controller 
is shown in F ig. 3. 

The optimal controller output sequence .... , over the 
prediction horizon is obtained by minimization of J with 

Fig. 3 Structure of a model predictive controller 
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respect to u. As a result the future tracking error is mini
mized. If there is no model mismatch, i.e. the model is 
identical with the process and there are no disturbances 
and constraints, the process will track the reference 
trajectory exactly on the sampling instants. 

The MPC algorithm consists of the following three 
steps. 

Step 1. Use a model explicitly to predict the process out
put along a futu.re time horizon (prediction horizon). 

Step 2. Calculate a control sequence along a future 
time horizon (control horizon H.), to optimize a 
performance index. 

Step 3. Employ a receding horizon strategy so that at 
each instant the horizon is moved towards the future, 
which involves the application of the first control 
signal of the sequence calculated at each step. The 
strategy is illustrated as shown in Fig. 4. 

The selection of MPC to control an AUV is attributed 
to several factors. Some of them are listed as follows: 

l. The concept is equally applicable to single-input 
single-output systems and to multiple-input multiple
output systems. 

2. MPC can be applied to linear and non-linear systems. 
3. It can handle constraints in a systematic way during 

the controller design. 
4. The controller is not fixed and is designed at every 

sampling instant based on actual sensor measure
ments so that disturbances can easily be dealt with 
compared with fixed-gain controllers. 

In this paper, the performance index is optimized 
using a GA which is described next. 

Past Future 

pr-.dlcllon horizon (H,) 

Ag. 4 Predicted output and the corresponding optimum input 
over a horizon H,, where u(k) is the optimum input, 
p(k) is the predicted output and y(k) is the process 
output 
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4.1 Genetic al&orltbms 

GAs inspired by Darwinian theory are powerful non
deterministic iterative search heuristics. GAs operate on 
a popu.latioo consisting of encoded strings; each string 
represents a solution. The crossover operator is used on 
these strings to obtain new solutions, which inherits the 
good and bad properties of their parent solutions. Each 
solution has a fitness value; solutions having higher fitness 
values are most likely to survive for the next generation. 
The mutation operator is applied to produ.ce new charac
teristics, which are not present in the parent solutions. 
The whole procedure is repeated until no further improve
ment is observed or the run time exceeds some threshold 
[41). The flow chart of a simple GA is presented in Fig. 5 
and the operation of the OA is explained as follows. 

To start the optimization, GAs use randomly pro
duced initial solutions. This method is preferred when 
a priori knowledge about the problem is not available. 
After randomly generating the initial population of, say, 
N solutions, the GA uses the three genetic operators to 
yield N nc:w solutions at each iteration. In the selection 
operation, each solution of the cu.rrent popu.latioo is 
evalu.ated by its fitness normally represented by the value 

Ac. S Flow chart of a simple OA 

l'r<lc. tnstn Mecb. Enan VoL 218 Part M: J. Enalnecrina for the Maritime Environment 



W NAEEM, R St.JTTON, 1 CHUDLEY, P R DALGLEISH AND S TETLOW 

of some objective function and individuals with b.igher 
fitness value are selected. Different selection methods 
such as roulette wheel selection and stochastic universal 
sampling can be used. The crossover operator works on 
pairs of selected solutions with a certain crossover rate. 
The crossover rate is defined as the probability of applying 
crossover to a pair of selected solutions. There are many 
ways of defining this operator such as single-point cross
over, double-point crossover and multiple-point crossover. 
For example the single-point crossover works on a binary 
string by determining a point randomly in the two strings 
and corresponding bits are swapped to generate two new 
solutions. 

Mutation is a random alteration with a small prob
ability of the binary value of a string position. This 
operator prevents the GA from being trapped in local 
minima. The fitness evaluation unit in a GA acts as an 
interface between the GA and the optimization problem. 
Information generated by this unit about the quality of 
different solutions is used by the selection operation in 
the GA. Next the stopping criteria must be decided. This 
may be the case when there is no significant improvement 
in maximum fitness or the maximum allowable time 
(number of iterations) is passed. At the end of the 
algorithm, the best solution found so far is returned. 

The key advantage of using GAs in an MPC frame
work is the ability to handle various forms o f objective 
functions and process models without varying the con
troller structure. Both linear and non-linear models can 
be used with this approach without having to consider 
the local minima problem as is normally encountered in 
most linear optimization routines. 

5 GA-BASED MPC ALGORITHM 

The genetic-based control algorithm is depicted in 
Fig. 6. The algorithm was first proposed by Duwaish 
and Naeem [42] for the chemical processes identified as 
the Hammerstein and the Wiener models and resulted 
in a GA-based model predictive controller. As shown, 
the GA replaces the optimizer block and the AUV model 

GA..MPC Controller 

Fig. 6 GA-based model predictive controller 
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identified from SI on the trials data has been used. The 
GA-based controller uses the process model to search 
for the control moves, wb.ich satisfy the process con
straints and optimizes a cost function. The cost function 
to be minimized here is given by 

~ H. 
J - ;_ (k+i)TQe(k+ i) + I 6.u(k+i)TR6.u(k+i) 

1• 1 1• 1 
R 

+ f u(k + i )T Su(k + 1) (2) 
1•1 

subject to 

J ,;; u(k + I) ~ u• 

6.u1
,;; 6.u(k +I)~ 6.u" 

where the superscripts I and u represents the lower 
and upper bounds respectively. Q is the weight on the 
prediction error 

e(k) = Y{k) - w(k) (3) 

where w(k) is the reference or the desired set point. Rand 
S are weights on the change in the input 6.u and magni
tude of the input u respectively. Adjusting the input 
weighting matrices could add damping to the closed
loop control system. The following steps describe the 
operation of the GA-based MPC algorithm and the flow 
chart of the algorithm is shown in Fig. 7. 

Step 1. At time step k, evaluate process outputs using 
the process model. 

Step 2. Use a GA search to find the optimal control 
moves that optimize the cost function and satisfy pro
cess constraints. Tb.is can be accomplished as follows: 
(a) Generate a set of random possible control moves. 

The control moves or population consists of 
real values, which is reasonable in a real-world 
environment. 

(b) Find the corresponding process outputs for all 
possible control moves using the process model. 

(c) Evaluate the fitness of each solution using the cost 
function and the process constraints. The fitness 
function used here is given by 

Fitness - -
1
-

I+J 
(4) 

where Jis the cost function given by equation (2). 
(d) Apply the genetic operators (selection, crossover 

and mutation) to produce a new generation of 
possible solutions. Roulette wheel selection and 
single-point crossover are used for selection of 
parents and mating respectively. 

(e) Repeat until a predefined number of generations 
is reached and thus the optimal control moves are 
determined. 
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~~~&. 7 Flow chart of the GA-based model predictive controller 

Step 3. Apply the optimal control moves generated in 
step 2 to the process. 

Step 4. Repeat steps 1 to 3 for time step k + I. 

5.1 Constraints formulation 

Constraints represent limitations on different physical 
quantities involved in a process. For instance, the input 
or output of a certain process is restricted beyond a 
specified value due to economical or environmental 
reasons or the input cannot be changed abruptly due to 
the hardware dynamics. One of the most powerful and 
distinguishing features of MPC is its ability to handle 
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constraints in a natural way during the controller design 
at every sample time. Generally, two types of constraint 
are considered in controller design. Soft constraints are 
employed in the cost function as a penalty factor and 
can be violated to fulfil some other criteria. On the other 
hand, hard constraints represent physical limitations on 
actuators and cannot be violated. Here, hard constraints 
are placed on the input and rate of change in input 
(actuator bandwidth) variables. In this case, since the 
population in a GA represents the input variable, there
fore, constraints are implemented by generating random 
initial population in the desired range: 

J,;;;u:t;u" 

Soft constraints on the input and rate of change in input 
are realized as penalty factors in the objective function 
in equation (2). To implement the hard rate constraints, 
the input for the current time instant k is compared with 
the input for the previous time instant k - I. If the 
difference 6.u in the two inputs is violating the constraint, 
i.e. if it is b.igher or lower than the desired range, it is 
adjusted to the limiting value accordingly by manipulating 
the input at the CUITent time instant k, thus not allowing 
the rate of change in inputs to violate the constraint 
Mathematically, it can be stated as 

u(k) • u(k -1 ) + 6.J 

u(k) -u(k -1 ) +6.u" 

if u(k) - u(k- I ) < 6.J 

if u(k) - u(k - I) > 6.u" 

6 EXPERIMENT DESIGN 

The inputs applied to any system to be identified must 
be carefully designed prior to the experiment. This is 
imperative in obtaining good-quality data that contain 
sufficient information about the system dynamics. Reek
less design of inputs could lead to useless data containina 
very little or no information about the system behaviour. 
Some co=on types of input sequence employed are 
uniformly distributed random numbers, pseudo-random 
binary sequence (PRBS) ( Fig. 8a), and its variants such 
as multi-step (Fig. 8b) or doublet input (Fig. 8c). 

Each of the inputs was applied for a specified duration 
during wb.ich data from the sensors were acquired. The 
following algorithm shows tlte order in wb.ich identification 
data were obtained. 

Step 1. Send input to the control surface. 

Step 2. While time< speciJied duration 
read depth sensor 
read TCM2 compass 
read IMU 

end. 

Step 3. Read shaft speed encoder 
read GPS 
go to step I. 
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Fie. 8 Various inputs fo r SI: (a) PRBS; (b) multi-step; (c) doublet 38 

With this conliguration, the sampling frequency 
obtained was 8 Hz. The data were resampled afterwards 
at I Hz since this frequency was found to be adequate 
to control the Hammerhead. Moreover, it also helps to 
smooth the data, i.e. acts as a low-pass filter. It was 
observed that, during the transmission phase to the 
on-board actuators, no data could be acquired. This 
is due to the Um.ited data acquisition capabilities of 
MATLAB. This problem was circumvented by leaving 
boles during that interval representing missing data. In 
addition, since there was no feedback from the control 

surfaces, the transition from one input to the other is 
approximated as a ramp and appropriate values are 
inserted. The whole input/output data was later pro
cessed and the missing data were interpolated. Figure 9a 
shows a data set with holes and Fig. 9b depicts the 
processed data. 

The identification trials were carried out at Willen 
Lalce, Milton Keyoes, UK, while the controller was 
tested at Roadford Reservoir, Devon, UK. All experi
mental results shown in this paper were obtained with 
the vehicle manoeuvring on the surface at a fixed speed 

J~fS:a 
.50 100 1.50 200 ~me (N~ples)l!O 400 «< * S50 

(b) 

Fla. 9 Hummuhead yaw response to a doublet: (a) original data set; (b) interpolated data set 
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of approximately 2 knots. The acquired data were 
further processed to eliminate any transients and high
frequency noise. For the yaw channel identification, 
the bending data obtained from TCM2 and IMU were 
utilized only. However, the shaft speed was closely moni
tored and data at various speeds were carefully separated 
from the identification data. 

An autopilot was then developed, sinlulated and tested 
in Hammukad. The feedback for the controller was 
taken from the !MU as the IMU data are observed to 
be more accurate and reliable compared with the TCM2 
data. For future trials, an MSDF algorithm [43) will 
provide an estimate of the true heading of the vehicle by 
combining the IMU and TCM2 outputs. It is important 
to point out the fact that the present authors were testing 
the controller on a 1960s-made vehicle bull with the bulk 
of the existing electronics, specifically the motors and 
th.eir mechanical assembly, being retained. Because of 
this, the rudder movement could not be controlled pre
cisely and the minimum deflection observed was 2". For 
this reason, a minimum rate of change in input con
straint was imposed on the rudder, which could lead to 
chattering effects in the rudder movement. The con
straint implementation has been discussed in section 5.1. 

7 RESULTS 

This section presents results from the SI trials, model 
identification and controller development in a simu
lation environment followed by real-time experimental 
data. The controller code has been written in MATLAB 
and the model was identified using the SI toolbox in 
MATLAB. 

7.1 Hammer/u•admodelllDg 

One of the input sequences used in identification of the 
rudder yaw channel is a 32-length PRBS signal shown 
in Fig. lOa. The response of Hammerhead to this input 
is also illustrated in Fig. I Ob. The data set is compared 
with the other beading responses with the same input 
magnitude and found to be consistent. An ARX(221) 
model was extracted from this data and is given by. 

-0.042 26q-l + 0.003 435q-• 
G(q)- 1- J.765q-• +0.7652q- 1 ( 5) 

where q-1 is the delay operator. This model has a 
pole very close to the unit circle which represents an 
integrator and exhibits a ramp output in response to a 
step input which is a characteristic of many AUVs. The 
autoeorrelation and cross-correlation functions for this 
model are depicted in Fig. 1 I. Although the cross
correlation function was slightly outside the 95 per cent 
confidence band, the model was deemed adequate for 
further analysis. A cross-validation test is performed to 
gauge the predicting capability of the model. In this test, 
data not used for SI are applied to the model and the 
sinlulated output is compared with the measured output. 
Two cross-validation tests are performed for this cha!lllel 
and are shown in Figs 12 and 13. The simulated outputs 
as seen from the figures match the measured outputs 
reasonably well. However, there are some discrepancies 
evident from these figures due to the effect of surface 
currents on different data sets during the trials. From 
the MPC theory in section 4, it is clear that the basic 
controller performance relies heavily on an accurate 
model of the process and a robust controller should be 
able to cope with these discrepancies and disturbances. 

~Z:J \ ~ ~ ~ ~ ~ ~ ~ ~ ~ 
Tlmo (......-.do) 

(b) 

FIK- 10 HammtrMad yaw response to a 32-length PRBS input: (a) PRBS input; (b) yew response from 
the IMU 
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Fig. 11 (a) Autocorrelation of residuals for the yaw angle; (b) cross-correlation for the rudder angle and 
yaw angle residuals 
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Fig. 12 First cross-validation test for the rudder yaw channel 

The oext section discusses the simulation and testing of 
GA-based MPC in the Hammerhead AUV. 

1.1. GA-bascd model predictive controller results 

To simulate the controller, it is assumed that there is no 
model- plant mismatch. The constraints on the rudder 
were ± 20" while the minimum allowed deflection is 
2", as discussed in the previous section. The weighting 
matrices were adjusted beuristically and the prediction 
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and control horizons of MPC were set to minimize the 
control effort and to increase the speed of response. 
The tuning variables together with GA parameters used 
in the simulation are provided in Table 2. 

The controller was simulated for a step change in 
heading and the result is depicted in Fig. 14. Without 
taking any disturbance into account, the vehicle seems 
to be following the desired course closely after initiating 
from ao arbitrary direction. The response in Fig. 14b 
bears a small overshoot which can be minimized by 
adjusting the weighting matrices but at the cost of slow 
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Fl&. 13 Another cross-validation test for the rudder yaw channel 

Table l Tuning pornmeters of 
the OA-based model 
controller 

Parameter 

Q 
R 
s 
~ 
M•utation probability 
CroSJover probability 
Number of acnentiona 
Population size 

Value 

I 
o.s 
0 
7 
I 
o.oos 
0.7 
10 
100 

response time. The rudder deflections generated by the 
GA-based controller are also shown in Fig. 14a requiring 
minimum control effort and stays within the specified 
bounds. There is a large movement in the rudder position 
around r - 50 s and yet this does not affect the vehicle's 
motion because of its slow dynamics. The spike is due 
to the probabilistic nature of GA which produces such 
results unless accounted for in the code but has not 
been implemented in this paper owing to the extra 
computational burden that it imposes. The chattering 
phenomenon can also be observed from this figure 
because of the 2" rate constraint. However, the effect of 
this is almost negligible on the vehicle's movement. 

~IZt : : : ~~==~ 
150o • 47 75 100 ,~ lOO 250 

T\\no (aecondl) 
(b) 

Fig. 14 GA-based MPC simulation results: (a) rudder deflections generated by the controller; (b) AUV 
beading 
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Next, the beading controller was tested in the 
Hammi!T'head. The parameters used in these trials were 
kept the same as in the simulation studies for a fair 
comparison. The test was carried out for a step change 
in beading. The irutial and desired headings were kept 
the same and the vehicle was allowed to swim freely. It 
is evident from Fig. 15b that the GA-based model pre
dictive controller was able to track the desired beading 
without any offset despite the presence of the always 
existing model uncertainty and external disturbances. 
However, there is a o overshoot that could be blamed on 
the surface currents. Looking at the rudder deflections 
in Fig. 15a, again there is some expected chattering 
present. However, the rudder movements always remain 
within the specified constraints. There is a large spike 
followed by fluctuations in rudder movement at approxi
mately 125 s in response to the change in vehicle's head
ing due to surface currents. However, the controller is 
robust enough to cope with it and attains the steady 
state input and output values in approximately SO s. A 
statistical analysis reveals that the standard deviation 
of rudder deflections in experimental data is approxi
mately 11•, while it is quite high (S•) in the simulation 
(even without any disturbance), possibly because of the 
chattering phenomenon. 

It is interesting to note that the rise time in the experi
mental data is much smaller (24 s) than in the simulation 
(38 s). One reason for this is the effect of surface currents 
pushing the vehicle unwantingly and causing an even 
higher overshoot than the simulated response. Model
plant mismatch could also be another source of this 
problem. 

8 CONCLUDING REMARKS 

The problem of controlling underwater vehicles is 
a difficult task mainly because of lack of information 
regarding the vehicle dynamics. The paper reports some 
new results on the implementation of a. GA-based model 
predictive controller on an A UV and suggests the use of 
SI on test trials data. Problems arising from experiments 
have been discussed together with some real-time experi
mental data. There are, however, several aspects which 
need to be investigated. Tb.e first and most-important 
is the effect of the umbilical on vehicle's movement. 
Although the present authors have tried to minimize 
its effect during the trials by conducting all tests on the 
water surface and by using as thin as possible tether, 
there is always some unavoidable drag present. This has 
deeply motivated the present authors to implement a 
wireless ethernet in the vehicle and to let the Hammi!T'head 
swim on its own during future trials. 

Another potential source of argument is the use of an 
online GA. It has long been argued that the GA is not a 
potential solution for an online problem since it generates 
the solution of a problem from a set of random numbers 
based on probability. Additionally, the time complexity 
o f a GA is more than the traditional optimization routines 
such as quadratic programming that makes it inadequate 
for fast-moving processes with short sampling times. 
However, considering the slow dynamic:& of Hammerhead 
(forward speed. approximately 2 knots) the present 
authors have successfully shown that MPC together with 
a GA can evolve into a powerful and robust oaline 
controller. The results showed the robust performance 
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Fig. 15 Controller trial results: (a) rudder dcftectioJU generated by the GA·based model predictive controller; 
(b) Hammtrhtad heading obtained from the IMU 
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of the controller in the presence of model uncertainty 
and disturbances. Future trials will consist of the heading 
control at a certain depth with more precise lcnowledge 
on the vehicle position and orientation using fused 
sensors data. The present authors anticipate that the 
work presented herein will be considered as a valuable 
addition to the current A UV technology in ihe UK.. 

ACKNOWLEDGEMENTS 

The authors would like to thank the Engineering and 
Physical Sciences Research Council for the funding of 
this project. Special thanks are due to the South West 
Water PLC for providing access to the Roadford 
Reservoir and to Willen Lake Management for their help 
in conducting the initial identification trials. 

REFERENCES 

I Lea, R. K. Control of a tethered underwater flight vehicle. 
PhD thesis, University of Southampton, May !998. 

2 Craven, P . J., Sotton, R. and Burns, R. S. Control strategies 
for unmanned underwater vehicles. J. Navig., 1998, 51 (1), 
79-105. 

3 Mcl'hall, S. D. and Pebody, M. Navication a.nd control of 
an autonomous underwater vehicle using a distribu!M, net
worked, control architecture. J. Sot:. Uruhrwattr TtdtnoL, 
1998, 23(1), 19-30. 

4 MDlani, N. W., Gri!lltlls, G., Fineean, G., Mc:Pbail, S. D., 
Meldram, D. T., Pebocly, M., Ptrrett, J. R~ SteYenson, P. 
and Webb, A. T. Ycnatlle autonomous submcrsibles
the realising and testing of a practical vehicle. J. Soc. 
Underwaur Technol, 1998, 23(1), 7-17. 

S Asa.lcura, K., Kojlma, J., lto, Y. and Takagl, S. 
Autonomous underwater vehicle AQUA EXPLORER 
1000 for inspection of underwater cables. ln Proceedings 
of the 1996 Symposium on AutonomDIU Ulld~wattr Vehidt 
Technology, Monterey, California, USA, 1996, pp. 10-17 
( IEEE, New York). 

6 Bal.uuriya, A. and Uno, T. Autonomous target tracking by 
underwater robeu bued on vision. ln Proceedings of the 
IEEE Conference on Underwai~ Ttchnology (UT98), 
Tokyo, Japan, April 1998, pp. 191-197 (IEEE, New York). 

7 !to, Y., Kato, N., Kojllllll, J . and Takaal, S. Cable track
ing for autonomous underwater vehicle. In Proceedings 
of the 1994 Symposium on Autonomous UruhrwaJ~ 
Vehich Ttchnolof)l, Cambridge, Massachusetts, USA. 
!994, pp. 218-224 (IEEE, New York). 

8 Kato, N., lto, Y., Kojlma, J., Tokacl. S., Asakawa, K. and 
Sblruald, Y. Control performance of autonomous under
water vehicle 'AQUA EXPLORER 1000' for inspection of 
underwater cables. ln Proceedings of the Cooference on 
OctlJIIJ Eng/N.trlngfor TodDy's TtchnoloiJI and Tomorrow's 
Prt.servation, Brest, France, 1994, Vol. I, pp. I/135-I/140 
(IEEE, New York). 

MOISlll C IMechE 2004 

9 lshll, K., FujU, T. and Ura, T. An on-line adaptation 
method in a neural network baaed control syttem for auvs. 
IEEE J. Oceanic Engng, 1995, 20(3), 221-228. 

10 Olttdra, P., Slln"cre, C., Apiar, A. and Paseoal, A. 
Guidance and control of the SIR..ENE underwater vehicle: 
from system design to tests at lea. In Prooeedinas of the 
Coofermce on OctlJIIJ, Nice, France, Sepkl!lber 1998, 
pp. 1043-1048. 

11 Aplor, A. and Puc:oal, A. Modelling and control of an 
autonomous underwater shuttle for the transport ofbenthic 
laberatories. In Proceedings of the Cooference on OctlJIIJ, 
Halifu, Canada., October 1997, pp. 888-895 (MTS-IEEE, 
New York). 

12 Healey, A. J. and IJenard, D. Multiva.riable sliding model 
control for autonomous diving and steeriog of urunanned 
underwater vehicles. !EEE J. Octanlc Engng, July 1993, 
18(3), 327-339. 

13 H .. ley, A. J . and MliJ'Co, D. B. Command, Control and 
Navigation: Experimental Results with the NPS ARIES 
AUV. IEEE J. Oceanic Engilll!trlng, October 2001, 26(4), 
4~77. 

14 Tinker, S. J., Bo- A. R. and Booth, T. B. Identifying 
submersible dynamics from free model experiments. RJNA 
An. hp. 7!-lJIIJ., 191-196, 1979. 

15 IppoUd, C. G., Radldonl, S. and Roasolini, A. Multiple 
models control of a remotely operated vehicle: Analysis 
of models structure and complexity. In Proceedinp of 
the lFAC Cooference on Control AppltCIUibiU In Marlnt 
Systtms (CAMS'2001), Glasgow, Scotland, 2001 (lFAC). 

16 Goheen, K. R. and Jelfery:., E. R. The application of 
alternative modellin& techniques to ROY dynamics. In 
Proceedinp of the IEEE International Conference on 
RDbotlc.s and Automation, Cincinnati, Ohio, USA, May 
1990, pp. !302-1309 (IEEE, New York). 

17 Abuwl, S. M. and Suttoa, R. Dynamic modelling of a 
remotely operated vehicle. In Procecdinp of the 1st IFAC 
Workshop on the Guidance and Control of Underwater 
Vehicles (GCUV 2003), Newport, South Wales, April 2003, 
pp. 47-52 (IFAC). 

18 Boosley, K. M., Brown, M. 11nd Hotris, C. J. Neurofuzzy 
identification of an autonomous underwater vehicle. lnt. 
J. System ScL, 1999, 30(9), 901-913. 

19 Kim, S:, !Gm, K., Chol, H. S ., Seon&, W. and Lee, K. Y. 
Estimation of hydrodynamic coefficientS for an AUV usin& 
nonlincar observers. IEEE J. OCI!anic Engn.g, October 2002, 
27(4), 335-348. 

20 Kwleslelewlc:z, M., Plotrowskl, W. and Sutton, R. Predictive 
versus fuzzy control of autonomous underwater vehicle. 
In Proceedinp of the IEEE International Conference 
on Methads and Modtb in Alltomatlbn and &botlc.r, 
Miedzyzdroje, Poland, August 2001, pp. 609-612 (IEEE, 
New York). 

21 Nooem, W. Model predictive control of an autonomous 
underwater vehicle. In Proceedings of the UKACC Con
ference on Control. September 2002, pp. 19-23 ( UKACC, 
Sheffield). 

22 Nooem, W., Sutton, R. and Aluucl, S. M. Pure pursuit 
guidance and model predictive control of an autonomoUJ 
underwater vehlcle for cable/pipeline traclcing (invited paper). 
Presented at the World Maritime Technology Conference, 
San Frucisco, California, USA. 11-20 October 2003. 
Paper Bl. 

Proe.lnnn Mccb.. £qn Vollll Pan M: J. Ea.Jiootrin&for lbo Maritinv Envh'vnmc:nl 



I. 

~ I 

W NAEEM, R S1JTTON, 1 CHUDLEY, F R OALOLEISH AND S TETLOW 

23 Banido, S. C. and Dadloo, E. P. Online robot traclcing 
using genetic algorithms. In Procccdings of r.he IEEE 
International Symposium on /ntt/1/gent Control, Vancouver, 
Canada, October 2002, pp. 479-484 {IEEE, New York). 

l4 O.ou, W. D., Un, F. J. and Sbyu, K. K.lncremcctal motion 
control of an induction motor servo drive via a genetic
algorithm-based sliding mode controller. Proc. ln.~tn Elect/ 
Engrs Part D: Control Theory AppL, May 2003, 1S0(3), 
209-220. 

25 Dalgleisb, F. R., Tetlo,., S. and Allwood, R. L. The dC!ign 
of a laaer-based imagiog seruor for A UV navigation. In 
Institute of Physics PHOTON 02 Exhibition, Cardilf, 
Wales, September 2002. 

26 Dalglelsh, F. R., Tetlow, S. and Allwood, R. L. Preliminary 
experiments in r.he development of a laser-baaed imaging 
sensor for AUV navigation. In Proceedings of the 
Conference on Guldanct and Control of Underwater Vehicles 
(GCUV 2003), Newport, Wales, April 2003, pp. 239-244. 

27 Loebis, D., Dalelelsh, F. R., Sutton, R., Tetlow, S., 
Chudley, J . and All"ood, R. L. An integrated approach 
in the design of a navigation system for an AUV. In 
Proceedings of r.he Conference (MCMC 2003), Girona, 
Spain, September 2003, pp. 319-324. 

28 Ljung, L. System Identification. Theory for the User, 
2nd edition, 1999 (Prentice-Hall, Englewood Cliffs, New 
Jersey). 

29 Qin, S. J . and Bad~e,.ell, T. A. An overview of nonlineas 
model predictive control applications. In Nonlintar Model 
Predict/~ Control {Edited by F. AUgOwer and A. Zhecg), 
1999 {Birkbauser, Switzerland), pp. 369-392. 

30 Rlcbalet, J., Rault, A., Testud, J . L. and Papon, J . Model 
predictive heuristic control: Applications to industia.l 
processes. Automauca, 1978, 14,413-428. 

31 Cutler, C. R. and Ramaker, B. L. Dynamic matrix 
control-a computer control algorithm. In Proceedings of 
the Joint Automatic ContrOl Conference, Sac Francisco, 
California, lJSA, August 1980, Paper wPS-8. 

Proc. hum Mech. Entn Vol. 218 Pan M; J. E.naincerina for the Maritime Rnvirooment 

32 Clarke, D. W., Mobtadl, C. and Tldl', P. S. Generalised 
predictive control. Pan 1: r.he basic algorithm. Automarica, 
1987, 23(2), 137-148. 

33 Clarke, D. W., Mobtadl, C. and Tldl', P. S. Generalised 
predictive control. Part 2: extecsioca and intcrpretatioca. 
Au~madca, 1987, 23{2), 149-160. 

34 Morarl, M. and U. J. M. Model predictive control: past, 
present and future. Computers Chtm. Engng, 1999, 23, 
667-682. 

35 Carloo, E. G., Prtrt, D. M. and Monrl, M. Model pre
dictive control: theory and practice- a survey. Automat/ea, 
1989, 2S{3), 335-348. , 

36 Maciejowskl, J. M. PrtdictiW! Control with ConstraintS, 
2002 {Prcntice-Hall, Englcwood Cliffs, New Jersey). 

37 Oarke, D. {Ed.) Advancts In Modei-Bastd Predict/ut 
Control, 1994 {Oxford Science Publications, Oxford). 

38 Soeterboek, R. Prtdlctlue Control, A Unljitd Approach, 1992 
(Prentice-Hall, En&]ewood Cliffs, New Jersey). 

39 Rlcbalet, J. Industrial applications of model based 
predictive control. Automat/ea, 1993, 29{5), 1251-1274. 

40 RawUnp, J . B. Tutorial overview of model predictive 
control. IEEE Control Systems Mag., June 2000. 20{3), 
38-52. 

41 Salt, S. M. and Youoaef, H. lttrative Computer Algorithms 
with Applications in Enginurlng, Solving Comblnator/QI 
Oprimtzarwn Probltms, 1999 {IEEE Computer Society, Los 
Alamitos, CA, USA). 

42 Duwal!h, H. and Naeesn, W. Nonlicear model predictive 
control of Hammerstcin and Wiener models using genetic 
algorithms. In Proceedings of r.he 2001 IEEE International 
Conference on Control Applications (CCAO!), Mexico 
City, Mexico, September 2001, pp. 465-469 (rEEE, 
New York). 

43 Loebis, D., Sutton, R., O!adley, J. and Naeem, W. Adaptive 
tuning of a Kalmac filter via fuzzy logic for an intelligent 
AUV cavi&atioc system. Control Engng Practice, 2004 
(accepted for publication). 

MOI803 C IMecbE 2004 

189 

A simplified modular approach for the prediction of 
the roll motion due to the combined action of wind 
and waves 

G Bullan and A Francescutto• 
Deparonent of Naval Architecture, Ocean and Environmental Engineering, University ofTrieste, Trieste, Italy 

Abstract: In this work a combined analytical-numerical approach is proposed to address the 
problem of the ship roll motion under the combined action of wind and waves. Roll motion is 
modelled as a one-degree-of-freedom system non-linear in both damping and restoring. The approach 
is modular, allowing an easy update of the methodology on the basis of new research outcomes. 
Realistic environmental conditions regarding the effects of both wind and waves are talccn into account 
o.nd can be easily changed. The spatial correlation of wind gusts is taken into account by means of an 
'aerodynamic admittance' function, whereas the moment due to waves is obtained from the sea slope 
spectrum using the concept of effective wave slope, leading to a 'hydrodynamic admittance' function. 
Both static and dynamic aspectS of the problems are taken into account The proposed analytical 
procedure, based on statisticallineari:zation technique, allows approximate statistical averages of the 
roU motion, assumed to be Oaussian, to be obtained without necessarily resorting to time-consuming 
Monte Carlo simulations. On the basis of the results obtained, an estimation of the capsize probability 
can be carried out. It seems that the effect of wind gustiness could be considered very small when 
compared with the effects of waves and mean wind speed when the metacentric height is sufficiently 
large. Finally, the presented approach moves towards the co!lcept of 'performance-based analysis', 
recently introduced at the International Maritime Organization as the basis for future developments 
of intact stability, in a clear and formal way. 

Keywords: ship roll motion, wind, waves 

INTRODUCITON: OVERVIEW OF TilE 
METHOD AND BASIC ASSUMPTIO S 

The present 'weather criterion' in the International 
Maritime Organization {IMO) intact stability code ( 1] is 
a rule intended to prevent extreme roU motions of the ship 
due to the combined effect of wind and waves. Although 
th.e idea is physically sound, many of the assumptions 
on which the criterion is based are questionable and are 
being criticized during the discussions for the revision of 
the 'intact stability code' at IMO (2]. The parameters 
used for the prediction of the roUback angle do not seem 
to be realistic for certain types of ship when not fitted 
with bilge keels or when fitted with bilge keels oflimited 
size. Regarding the effect of wind, the gustiness factor 
assumed by present rules does not take into account 

Tht MS was r<etll!<d on IS AprU 2004 and waJ occept<d ofllr rauWon 
for publlcotlon on 21 JWit 2004. 
• Ctm<Jpondtng author: D<partm<nt of Naval Archlttcturt, Octon tmd 
EnvirottmDOtol Engtn.ulng. Unlwr:try of Tr/utt, Ylo A Yol..-lo 10, 
34117 Trim•. Italy. ttmaiL· fl'fJIIcm@untu.lt 
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the o.ctual dimension of the ship and imposes o. heeling 
moment under gust action which is 50 per cent larger 
than the mean heeling moment due to constant wind 
speed (assumed to be about 26 m/s). The environment 
assumed by the present criterion is basically deterministic, 
with some correction for talcing into account its actual 
stocbastic nature. Moreover, the methodology used by 
the criterion in the inherent estimation of the maximum 
roll angle after gust is not physical, because it assumes 
that, during the first swing after the gust, the effects of 
both waves and damping disappear, leading to an energy 
balance approach. The criterion is of the pass/fail type and 
no ranking is possible among different design proposals 
on the basis of this cri terioc. 

Because of all this, the criterion is very difficult to 
modify in limited parts even using experimental results; 
this means that the criterion should be used as a ' black 
box', without possibilities for taking into account some 
important features of the ship under analysis. The deter
mination of the 'level of safety' inherent in the criterion 
is also very difficult. 
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Pure pursu i~ guidance and model 
predictive cont rol of an autonomous 
undervvater vehicle for cable/pipeline 

tracking 
W Naeem, R Surron and SM Ah mad, 

Marine and Industrial Dynamic Analysis Research Group, 
Department of Mechanical and Marine Engineering, 

The Univef!ii~ of Plymouth Plymouth, UK 

< 
This paper investigates a new approach for the guidance and control of an autonomous 
underwater vehide (Al.N). An integrated system is deve loped and simulated involving a 
proportional navigation guidance (PNG) law and model predictive control (MPC). The 
classical PNG law for missile systems has been tailored to guide the ALN by generating 
reference headings. MPC is used to t r:ack the reference trajectory (guidance commands). 
which is optimised using a genetic algorithm (GA). The performance of the closed-loop 
system is evaluated in simulations with and without sea current disturbance and imposing 
actuator constraints. Simulation results for the case of a cable-tracking mission and 
waypoint fo llowing. clearly shows the superiority of the proposed algorithm. 
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INTRODUCTION 

T 
he technology and applications of unm.anned 
underwater vehicles (UUVs) have been improv
Ing at a rapid pace. From missions such as cable/ 
pipeline inspection to oil exploration and to 
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design of novel control systems for industrial and marine plant. 
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mine clearing operations, they are routinely being deployed 
by the offshore and defence Industries. This is mainly 
attrtbuted to the fact that it does not require a human 
onboard, thereby not jeopan:listng any life. In addition, In 
cases such as deep-sea exploration, where human inter
vention Is not possible, they have proved to be a viable tool. 
Although regular monitoring and Inspection of cables/ 
pipelines running in deep sea have emerged as an 
Important Issue, little attention has been paid to sub-sea 
cables or pipelines. This paper describes a novel approach 
to undei'Wllter vehicle cable-tracking mission by employing 
an integrated guidance and control system using a PNG law 
for missile systems and MPC. The contemporary method to 
detect linear subsea objects Is through active magnetic, 
passive magnetic or electromagnetic deteetors mounted on 
a remotely operated vehicle (ROV).1 These sensors provide 
lateral and longirudlnal displacement of the ROV from the 
target pipeline, but no target direction. An additional 
sensor Is needed to measure the target orientation. This 
information Is then used by the ROV ptlot to steer the 
vehicle over the p ipeline. Although ROVs have been 
employed for detection and tracldng, their range of 
operation Is constrained by the length of the tether. 
Furthermore, the need for a suppon vessel and an ROV 
operator adds to the cost of monitoring operation. One way 
to circumvent these problems Is to render the vehicle 
autonomous, le, to execute the task wtth minimal human 
Intervention. 

A variety of methodologies and concepts have been 
reponed to perform object-tracking by an underwater 
vehicle. An account of various AUV guidance schemes has 
rccendy been documented by Naeem et all while a 
comparison of clus!cal and advance control strategies 
has been reponed by Craven et al. 3 In this paper, a 
modified PNG law Is proposed for tracldng underwater 
cableslptpellnes employing a sonar system. MPC is used to 
track the reference commands generated by the PNG. The 
Intent Is to demonstrate the suitability of the Integrated 
guidance and control scheme for detecting and tracking an 
undersea object - In this Instance a pipeline - v12 
simulation. The tracking of a pipeline by an AUV Is first 
posed as an AUV-target interception problem. The classieal 
PNG law Is then employed to generate the guidance 
command signals to the AUV. Subsequently this Is 
modified to achieve the desired target-tracking trajectory 
objective. 

Sonars 
Recent ad'Vllnces in sonar technology provide a sophisti
cated means of finding fibre opdc cable, plastic, metal and 
other materials suspended In mid-ocean or buried in a 
seabed. • Tbts strategy entails use of an active sonar system 
for target (pipeline) detection. Active sonars employ echo 
ranging to detect an object whereas pusfve sonars pick up 
acoustic radiation of ships, submarines etc, by an array of 
hydrophones. Some of the several other factors that 
Influence this choice are: 
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1. Active sonars echo-range and therefore are capable 
of detecting even a submerged pipeline in the 
background of clutter le, reverberations, in which it 

appears. VIsion-based systems will have severe 
limitations In such a scenario which Is very likely 
to occur at the seabed due to underwater currents an.d 
various other natural disturbances. 

2. They can provide both range and orientation of the 
target. unllke magnetometers, which are non-direc 
tional and can easily mislead the AUV in presence o£ 
subsea ferrous deposits. 

3. Presence of onboard active sonar can also be employed 
for retrieval of an AUV back to the mother ship once a 
mission Is accomplished. Tbts has been Investigated 
by Ahmad et al' and Is an area of ongoing research. 

4. Sonic signals are the only practical and eflident way o f 
long-range undersea communication, for Instance 
between the mother ship and the AUV.8 

The broader aim of the authors Is to render a n 
underwater vehic.le truly autonomous, lncorporadn8 
fearures such as Sl1lln launch, mid-course guidance, 
target tracldng, area search and, finally, return and dock 
to the mother ship autonomously on completion of a give n 
task. 

PROBLEM DEFINmON 
The following assumptions are made In order to formulate 
the guidance problem: 

(!) The AUV-target engagement Is planar. le in the 
same plane. 

(U) Although the p ipeline is a continuous object. it is 
convenient to assume it as a point mass moving 
with a constant velocity. This condition can be 
ensured by considering only the latest value of 
echoed 'ping' recc!ved by m onboard AUV sonar. 
The AUV Is also considered as a constant-velocity 
point mass. 

(lil) Complete navigational Information of the target is 
available to the AUV. 

Consider a two-dimensional engagement geometry in 
which the AUV and ·wget are clns1ng on each other IU 
constant velocities v, and V, respectively, as shown In 
Fig 1. An Imaginary ' line Joining the AUV and target is 
referred as the line of sigh t (LOS). The angle formed by the 

y 

v. target 

I. v, . 

...... ............... ~f~.~~!'! ~.~ ..... 
AUY 

'-------------------+x 
Fig I: AlN-target engagement geometry 
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LOS with the fixed reference Is .t and from the geometry Is 
given as 

;.~ran-I ~ (l) 
r 

where, h and rare the relative separation between the AtN 
and target, perpendicular and parallel to the fixed reference 
respectively. The relative movement between the AtN and 
target causes the LOS to rotate through a small angle .t, 
indicating a displacement h between the AtN and target, 
perpendicular to the fixed reference. The length of LOS Is a 
range R and represents the Initial AtN--target distance. The 
problem Is then to develop an Integrated system which will 
make the Initial range R between the AtN and target as 
small as possible at the end of expected Intercept time. It 
will be shown later In simulation that it Is a good starting 
point for achieving the desired tracking objective, without 
acrually Intercepting the target. 

GUIDANCE AND CONTROL 
Herein a PNG law Is utllised to obtain the guidance 
commands. The guidance subsystem takes Input from the 
sensors onboard the AUV. The ~rs used could be global 
positioning system (GPS) for positioning on the surface, 
Inertial navigation system (INS), compass etc. Information 
from the sensors Is fused together and provided to the 
guidance system, which then genaates commands to be 
followed by the AtN. A simple block diagram of the 
navigation, guidan.ce and control system Is depicted In 
Fig 2. MPC Is used to track the reference cotiil1Wlds from 
the guidance system. The selection of MPC for this paper Is 
attributed to several factors, the most Important being its 
ability to handle constraints In a narural and systematic 
way. The following subsections describe the PNG and MPC 
algorl.thtns and their developmenL 

Proportional navigation guidance Jaw 
The ultimate objective of the guidance law Is to steer the 
AtN so that it will chase a ta.rget using a constant AtN 
velocity Yr and a controllable heading angle r/1,.. However. 
Initially it w\11 be regmied as an AtN-target Interception 
problem and then subsequently modified to realise the 
desired 'tail-ciuse' type AtN trajectory. The tail-cllase type 
trajectory of Interest Is aldn to that formed when a dog Is 
chasing a caL This type of trajectory will =sure that the AtN 
Is always trailing behind the target and thus continuously 
monitoring it at a dose distance. From the above discussion 
of problem de6.nition, lt Is Intuitive that if the AtN Is made to 

posldon 
coordinates 

Fig 2: Navigation. guidance and control of a vehide 
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lie on the LOS and hold lt there as well, a coustant relative 
bearing between the AUV and target Is ensured, that is , the 
LOS does not rotate, and Interception w\11 occur. This 
mechanisation can be realised using a PNG law. 

Proportional navigation is a method of guidance, which 
generates cotnm2nd signals "•• proportional to the LOS 
angle )., so that the pursuing vehicle remains on the LOS. 
This can be mathematically Slllted as: 

(2) 

(3) 

where k Is called the navigation constant and Is an 
important design parameter. 

A judicious cholce of k will ensure that the LOS does not 
rotate and hence no further Input command Is required. 
Tht;S it Influences both the engagement trajectory as well as 
the command lnpuL The proportional navigation guidance 
scheme Is illustrated In Fig 3 and a good description of 
PNG can be found In Game!. 1 

Guidance law applicarion 
For implementing the guidance law of equation (3), it is 
necessary to compute the LOS angle ).. This requires 
relative positions of the AUV and target in both the co
ordinates, le, 

h-y.-y, (4) 

r•x,-x1 (5) 

therefore, 

A- tan-• (y,-y,) (6) 
x~-x, 

The components of the AtN velocity In the (x, y) plane can 
be stated as, 

v.- v, ccs rJ!, 

v,- v, sin r/1, 

(7) 

(8) 

Hence, the differential equation for the components of the 
AUV position can be expressed as: 

~-~ ~ 
h-~ n~ 

hIs assumed that the AtN speed v, and heading angle t/1, 
are available to the guidance logic from an onboard speed 
log and gyro compass respectively. In certain cases both 
components of the AUV speed, le equations (9 ) and (10) 
can be obtained directly from a Doppler log. 
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Guidance 

Fig 3: Proportional navigation guidance (PNG) Loop 

By Integrating the above velocity component equations, 
the AUY position components V<,. y,) In the earth-fixed 
coordinates can be found. Integrating equations (9) and 
( 10) from time t•O to t•IJ, and zero Initial condition, t.e 
Xp(O) = 0 and y,(O) • 0 w\11 give: 

'r 

x,- J v, ccsrJ!, dt 
0 ,, 

Ye- J v, sin 1{11 dt 
0 

where IJ Is time untillntercepL 

(11) 

(12) 

Similarly, it is easy to get the target positions (x., yJ In 
the earth coordinates. It Is assumed that the target velocity 
V, and orlentation l{t. are known as a function of time. 
These quantities can be dther measured or estimated. 
Therefore, target positions are given by ,, 

x.-x.a+ J V, cos t/1, dt 
0 ,, 

y.-Y.o+ J V, sin r/1, dt 
0 

( 13) 

(H) 

Thus, by substituting equations (11)-(H), In equation (6), 
the LOS angle .t can be detennined which on substitution in 
equation (3) would generate appropriate guidance com
mands. This completes the guidance law mechanisation. 

Model predictive control 
Model predictive control (MPC) refers to a class of algo
rtthtns that compute a sequence of manipulated variable 
adjusanents In order to optimlse the future behaviour of a 
planL Originally developed to meet the spec:tallsed control 
needs of power plants and petroleum refineries, MPC tech
nology can now be found In a wide variety of application 
areas including chemicals, food processing, automotive, 
aerospace, metallurgy,8 to name but a few. 

The development of MPC can be traced back to 1978 
after the publication of the paper by Richalet et a)9 called 
the model predictive heuristic COI!lrol (MPHC). Then Cuder 
and Ramaker from Shell OU tn 1979 and 1960, developed 
their own independent MPC technology, dynamic matrix 
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control (DMC).10
•
11 However, the most popular form of 

predictive control, known as the gmerallsed .J!,redfcdve 
control (GPC), has been devised by Oarke et a11 •13 and is 
employed In this paper. 

The process output is predicted by using a model of 
the process to be controlled. Any model that descrlbes the 
relationship between the input and the output of the 
process can be used. Furthermore, If the process Is subject 
to disturbances, a disturbance- or noise model can be added 
to the process model. In order to define how well the 
predicted process output tracks the reference trajectory, a 
criterion function Is used. Typically, the crlterlon Is the 
difference between the predicted process output and the 
desired reference trajectory. A simple criterion function Is 

J- :t[Y(k+l)-w(k+•)]1 (lS) 
l • l 

where J Is the predicted process output, w is the reference 
trajectory, and H, Is, the prediction horizon or output 
horizon. The strucrure of an MPC is shown In Fig f . The 
controller output sequence ...,. over the prediction horizon 
Is obtained by mlnlmtsadon of J with respect to u. & 
a result, the furure tracking error Is mlnlmlsed.. If there 
is no modd m1smatch, ie the model is identical to the 
process and there are no disturbances and constraints, the 
process w\11 track the reference trajectory exactly on the 
sampUng Instants. The following steps descrlbe the MPC 
algorithm: 

(I) Explicit use of a model to predict the process 
output along a future time horizon (prediction 
horizon). 

(11) Calculation of a control sequence along a future 
time horlztln (control horizon), to optimlse a 
performance index. 

(Ill) A receding horizon strategy so that at each instant 
the horizon Is moved towards the future, which 
Involves the application of the first control signal of 
the sequence calculated at each step. The strategy is 
illustrated In Fig -'· 

The selection of MPC to control an AtN Is attrlbuted to 
several factors. Some of them are listed below: 

• The concept Is equally applicable to stnale-input, 
single-output (SISO) as well as multi-Input, multi
output systetns (MIMO). 
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Fig 4: Structure of model predictive control (MPq 

Past Future 

predlctJon horizon (H pi 

Fig 5: Predicted output and the corresponding optimum 
input over a horizon Hp. where u(l<). optimum input. p(k). 
predicted output. and y(l<). process output 

e MPC can be applied to linear and non-linear systems. 
e It can handle constrain ts in a systematic way during 

the controller design. 
e The controller is not find, le, it is deSigned at every 

sampling instant so disturbances can easily be dealt 
with. 

The opt!misatlon of the performance index Is done using a 
GA, which Is motivated by the work of Duwalsh and 
Naeern. H The following section describes the operation of a 
simple genetic algorithm (GA). 

Generic algorithms 
GAs, inspired by Darwinian theory, are powerful non
deterministic Iterative search heuristics. GAs operate on a 
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population consisting of encoded strings where each string 
represents a solution. A crossover operator Is used on these 
strings to obtain the new solutions, which Inherit the good 
and bad properties of their parent solutions. Each solution 
has a fimess value, and solutions having higher fimess 
values are most likely to survive for the next generation. A 
mutation operator Is applied to produce new character
Istics, which an: not present In the parent solutions. The 
whole procedure Is repeated until no further Improvement 
Is observed or run time exceeds to some threshold. 1~ The 
Oowchan of a simple GA Is presented In Fig 6 and the 
operation is explained as follows. 

To stan the optlmlsation, GA uses randomly-produced 
Initial solutions. This method Is preferred when a priori 
!mow ledge about the problem Is not available. After randomly 
generating the Initial population of, say, N solutions, the 
GA uses the three genetic operators to yield N n= 
solutions at each Iteration. ln the selection operation, each 
solution of the current population is ev:aluated by Its fimess 
no~U:y represented by the value of some objective func
tion, and Individuals with higher 6mess value are selected. 
Different selection methods such as roulette wheel selec
tion (RWS) and stochast:ic universal sampling (SUS) can be 
used. The crossover operator works on pairs of selected 
solutions with certain crossover rate where the crossover 
rate Is defined as the probability of applying crossover to a 
pair of selected solutions. There are many ways of defining 
this operator, such as single point crossover, double point 
crossover, multipolnt crossover etc. For example, the single 
point crossover works on a binary string by deterrnil)l.ng a 
point randomly In the two strings and corresponding bits 
are swapped to generate two new solutions. 

Control low de'!elopment 
The MPC Is responsible for directing the AUV towards the 
reference trajectory generated by the guidance system. In 
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Fig 6: Rowchart of a simple genetic algorithm 

order to generate the conttol moves, a cost function 1s 
mlnlrnised. The cost function used here Is given by 

~ H 
,_ L t<.k+ flQt(k+£) + "f:,tJ.u(k+flR.t.u(k+J) (16l 

l •l l • l 

subject to 

J ~u(k+f)>r. u" 

where the superscripts I and u represents the lower and 
upper bounds on the Input moves respectively. R Is the 
wdght on the rate of change of control moves and Q Is the 
weight on the prediction error 

t(k)-Y(k) - w(k) 
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where J(k) Is the predicted process output and w(lt) Is the 
reference trajectory generated by the PNG law. The second 
term In equation (16) represents the penalty on the rate of 
change of control moves. This Is augmented to prevent 
excessive movements of the rudd.er. 

The following steps describe the operation of the MPC 
algorithm tlslng GA. At any sample time k: 
1) Evaluate process outputs using the process moclel. 
2) Use GA search to find the optimal control moves 

which optimise the cost function and satisfies 
process constraints. This can be accomplished as 
follows. 

(a) 

{b) 

(c) 

(d) 

{e) 

Generate a set of random possible control 
moves. 

Fled the corresponding process outputs for 
all possible control moves using the process 
model. 
Evaluate the fimess of each solu.tlon using the 
cost function and the process constraints. 
Apply the genetic operators (selection, cross
over and mutation) to produce a n= 
generation of possible solutions. 
Repeat until the predefined number of 
generations has been reached and thus the· 
optimal conttol moves are determined. 

3) Apply the first optimal control move of the sequence 
generated In step (2) to tlie process. 

SJMULA TION RESULTS 
The proposed guidance and control algorithm has been 
applled to an AlN simulation model supplied by QlnetiQ, 
based on the AUTOSUB vehicle, 16 having a torpedo-shaped 
hull. Dimensionally, the model represents an AlN that 1s 
7m long, approximately 1m in diameter and has a nominal 
displacement of 3600kg. 

The equations of motion describing the dynamic 
behaviour of the vehicle in the yaw, sway and roll modes 
can be written In the state-space representation as given by 
MarshfieldY 

where 

!

YuvU 
NwU 

F - 0 

Kw U 
0 

{17) 

- Yk 0 -(Yp+mZo) :

1

ol 
(lz-NA) 0 - Np 

0 1 0 

-Kk 0 (lx - K;) 
0 0 0 

( YuR - m)U 

NuRU 
1 
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and the state variables are v, r, 1/J, p, ~(see Appendix A fo r a 
nomenclature). However, it should be noted that, for this 
study, the upper and lower canards are the only surfaces · 
used to concrol the yaw dynamics. A simplified linear 
mode.! of the yaw dynamics of the vdl.icle is extracted from 
the above set of equations using system Identification 
techniques. The identified mode.! is of the form: 

x-Ax+Bu (18) 

whue, A and B are the state and input coupling macrices 
respectively. More precisely, the cwo dimensional core 
state-space model is given by, 

[~] = [: !][~]+~] u (19) 

where a, b, c. d, e. andf are constant paran2eters. Moreover, 
the continuous-time yaw mode.! of the AUV is discretised at 
a sampling frequency of 2H.t owing to the requirements of 
the digital MPC controller . 

The ultimate objectin of this paper is the development 
and slmul:ulon of an integrated guidance and concrol 
system for an AtN to follow a subsea cablelplpe.line for 
Inspection purpose. The program has been written in 
MATlAB/SIMUUNK environment The guidance law Is 
developed in SlMUUNK while the control system has been 
designed In MATLAB which are then combined to form an 
Integrated guidance and control system as shown in Fig 7. 
It was mentioned earlier, in the section on problem 
definition. that the AtN and pipeline are considered as 
point masses moving at a constant velocity. It is also 
assumed that the AtN and t:~rget are moving at the same 
speed, ie, 

~ =l (20) 
V, 

The target frame of coordinate (FOC) with respect to the 
AtN is (0.10) representing the seabed, w hereas, the lnitial 
Al.N coordinates in the Inertial cwo-dimensional frame of 
reference 0c,y) plane are (0, 200) with respttt to the target 
FOC. Further. lt is assumed that the target obeys 
equation (21), and is heading t:ISrwards from the initial 
FOC. 

x(r)-x0 +V,t } 
y(t) ~h 

(2l) 

V, and h being fixed. The target., a ' fieelng' pipeline, is 
travelllng at a constant distance h from th.e AWs Inertial 
FOC. The AtN Is to be lJiunched from a mother ship In the 
vlclnlry (0, 200) of the target to Intercept it. This completes 
the taU-chase problem definition. A navigation constant of 
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START 

Evaluate Guidance 
Commando uolna 
PNG In SIMULINK 

.ll,pply MPC to AUV to 
track the ref-nce 

comrnanch In 
MATLAB 

STOP 

Rg 7: lntegr.rtion of guidance and control systems in 
MA TI.ABISIMUUNK environment 

k- 1 has been chosen since, for this value, the AUV 
trajectory changes at the same rate as the Imaginary LOS 
joining the target and the AUV. Thl5 type of flight profile Is 
often referred as 'pursuit course' and the corresponding 
guidance law as 'pure pursuit'. The trajectory is similar to 
that formed by a predator when pursuing a prey, for 
instance, a dog-cat or hound-hare pursuit. The predator 
always prefers to tall chase a target rather than Intercept it 
by establishing a lead angle. Thl5 characteristic is exploited 
by the authors to achieve the pipe.line-ttaekirl8 objective 
and is discussed next. 

Sin~ it Is desired to folluw rather than Intercept the 
target, a bias is lnuoduced to equation ('I), which in effect 
alt<rs the guidance signal issued by the PNG law of 
equation (3). This essentially prevents the Vlllue of h In 
equation (f ) from reducing to uro, thus precludirl8 the 
AUV from intercq>ting the target Th.e value and the time of 
inrroduction of the bias would bt user-defined, depending 
on at what depth above the target (plpeUne) the AUV Is 
expected to operate. 
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Table I: Simulation parameters for 1he GA and MPC 
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Rg 9: AVV heading controlled by the MPC following clo
sely the guida;nce commands genemed by the PNG 

Ftg 8: AVV and t1rget position coordinates for the con
strained case. AVV is trad<ing 1he cable at a specifled height 

Parameters used in all the slmulatlons are provided in 
Table l. The acruator movement Is constralmd between 
±2Sdeg. A bias of 10m Is inuoduced after 10 sample times 
of the simulation run. ln a ruJ system, this Vlllue could be 
kicked-off by a pressure-depth sensor on an AUV, after 
descending to a depth of 10m above the seabed. The 
simulation Is run for 300 samples and the result is depleted 
In Fig 8. The AUV heading and rudder defiections are also 
shown In Figs 9 and 10 respectively. The AUV charts out a 
'pursuit course' for !M first 150m of dlstan~ anelled. 
With the lnttoduction of a lOm bias signal at the end of 
l50m, the vdl.icle maintains a desired lougttudinal position 
h, while traclting the ~ble laterally without InterCepting IL 
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Fig I 0: Rudder deflections generated by the controller within specified constraints needed to track the reference trajectory 
(guidance commands) 
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Next, waypolnt-following by Healey and Untard11 Is 
considered and the effect of sea current disturbance Is 
investigated. The drcle of acceptance Is taken as twice the 
length of the vehicle. First, simulation Is run without any 
sea current disturbance with actUator movement restricted 
to lSdeg In either left or right direction. The result Is 
depleted In Fig 11 clearly showing that the AUV Is closely 
following the waypoints without much control effon and 
within the constrained Umit as shown In Fig 12. The mean 
square error (MSE) between the actual and Ideal AUV 
distances from the waypoints without any disturbance is 

approximately -45m1. Finally, the simulation Is run for a sea 
current disturbance of lms -I In the positive y-direction 
and with actUator constraints. As shown In Figure 13, the 
disturbance Is tty1ng to lcnock the vehicle off the track, but 
the controller Is still able to cope with lt and reaches the 
target waypolnts. The M5E Is about 800m1, much larger 
than the no disturbance case, although the vehicle follows 
all the waypolnts even In the worst case scenario of the sea 
current mentioned above. The rudder movement Is also 
confined within the specified Umits as depleted In Fig 14. 
although lt Is lot more aggressive as compared to the no 

Waypolnt following·. no sea current disturbance 
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<400 

~ e 350 

'i 300 

1 250 

j 200 
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so 
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Fig I I : AW and target position coordinates for the conscrained case without sea current disturbance. The AW is closely 
following the target waypoints 
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Fig 12: Rudder deflections generated by the controller needed to track the waypoints for the constrained case and without 
sea current disturbance 
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Waypolnt following- current of I ms'1 In the +Ye y direction 
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Fig I 3: AW and target posi1ion coordinates for the constrained case wit!1 sea current disturbance in the positive y-direc
lion. The AW is dosely following the target waypoints 
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Fig I 4: Rudder deflections generated by the controller needed to trade the waypoints for the conscrained case and with 
sea current disturbance in the positive y-dinec1ion 

disturbance case. A Statistical analysis reveals that the 
stant:brd deviation of rudder deflections In the presence o£ 
wave disturbance Is about lOdeg wblle lt Is approximately 
half that value without any disturbance. 

CONCLUSIONS 
Periodic inspection and monitoring of sub-sea cables/ 

pipelines have emerged as important issues. These opel'll
tlons are currently being performed using ROVs whose 
endurance and capabiUties are limited. 

This paper proposes sonar-based detection and tracldng 
of ocean floor pipelines and cables and Is posed as a twO
stage problem. In the first Stage, ut!Usadon of classical PNG 
law Is demonstrated In Intercepting a jledng target, wblle In 
the second stage the guidance law Is modified. to achieve the 
target-tracking objective, albeit without ever Intercepting 
ll MPC Is used to generate control commands for the 
actuators to keep the vehicle as close as possible to the 

reference tr.ajeciDry. Actwator co!Utraints an also handled 
In an dfidcnt way during the controller design. The pro
posed Integrated guidance and control system accomplishes 
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target detection as well as tracldDg objective without lostng 
sight of the targcL inc:orporat!ou of this guidance and 
conaol scheme is Olq>«ted to tncrease the rauge of A1N, os 
no human interveru:ion is essential for gntdlng the ..b!cle. 
The range would only be llmlted by the ava!lab!Uty of the 
onboard power supply. 
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APPENDIX 
Nomenclature of the AIJV equation parameters 

E, F, G State equation matrices 
m Mass 
p, r 

U, V 

"'·~ Ix, lz 
K.N 
y 
B 
G 
Kup 

Nw'"' 

)of, 4. y~, Y.; 
d.sow . ..,._ 6,_ 
~s~~ 

Roll and yaw angular velocity compo
nents 
Surge and sway linear velocity compo
nents 
Yaw and roll angles 
Inertia components 
Rollandyawmoments 
Y direction force component 
Buoymcy force 
Centre of mass 
Dimensional hydrodynamic coellidenm 
of roll 
Dimensional hydrodynamic c:oellidmt 
of yaw with respect to canard upper 
Roll and yaw moment 111'111 lengths 
loput from upper canard rudder 
input from pon stem hydroplane 
loput from upper stem rudder 
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The main problem in bringing autonomy to BDY vehicle lies in the design of a suitllblc gWdance 
lnw. For truly autonomous operation, the vehicle needs to have a reliable Navigation, 
Guidance nnd Control (NOC) system of which the guidance system ia the key element that 
generates suitable trajectories to be followed. Ia thi.9 roview paper, various guidance laws 
found in the literature nnd their relevance to autonomous underWater Vl:hieles (AUVs) ..., 
discussed. Since eltistiag guidance laws for underwoter vehicles have emulated from tactical 
lrirborne missile systems, a aumbar of approaches for the miaaile guidance systems ""' con· 
sidered. Finally, potential guidance strategies for AUVs""' proposed. 

l, Guidance, 
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2. Command & Control. 3. Underwater Vehicles. 

I. INTRODUCTION. Ia recent years, control systems have assumed an 
increasingly important role in the development and advancement of modern civilis
ation and technology. Ia particular, the burgeoning in the fiCJd of navigation, guid
ance and control (NGC) systems, spurred on mainly by the challenges of unsolved 
aerospace problems, contributed significantly to progress achieved in the develop
ment of modern systems and control theories. The &Uccess of tho Soviet Union's 
satellite technology in the 1950s stimulated the United States to develop their own 
aerospace technology thus creating between the two of them new concepts in the 
field of control system design. The Apollo programme in the 1960s is a classical ex· 
ample of the translation of various NGC concepts into working systems. The early 
success of NGC systems soon led to advances in such diverse areas as industrial 
manufacruring, energy management (Lin. 1991) and underwater vehicles. Although 
applications of NGC in these areas have shown a profound impact in control 
theory in general, the majority of research and development in NGC continues to 
find its main application in the aerospace industry. 

Navigation, guidance and control of airbnme systems have been reported exten· 
sively in the literature (Cloutier et al., 1989; Lin and Su, 2000; Lin, 1991); however, 
little attention has been paid to the issue of guidance of autonomous underwater 
vehicles (AUVs). In light of this, the impetus behind this paper is to review a number 
of approaches that have been adopted for the guidance of air and sea vehicles with 
an emphasis on A UVs. Funhermore, it is the intention to explore ways and means of 
employing successful guidance strategies of air-based .systems to underwater vehicles. 
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This would also entail certain modifications to suit the underwater mission require- . 
ment. 

The paper is organised as follows. Section 2 explores the guidance problem in 
general. Guidance laws for the airbnme missile systems are presented in Section 3, 
while Section 4 discusses AUVs and the guidance laws associated with them. Some 
modifted guidance laws for underwater cable tracking prol!lcm are proposed in Section 
S. Finally, concluding remarks are given in Section 6. 

2. GUIDANCE. AD autonomous vehicles must have on-board NGC systems, 
which should work in accord with each other for proper operation. Imperfections 
in one system degrade the efficiency of the others. The navigation system provides 
information related to the target, which is processed by the guidance system to gen
erate reference headings. The control system is responsible for keeping the vehicle on 
course as specilied by the guidance processor. In remotely operated systems, guid
ance commanda are sent from a ground station, while autonomous vehicles have an · 
on-bnard guidance processor. In this respect, a guidance system plays the vital rolo 
in brin&ing autonomy to tbe system. Some definitions and a brief description of the 
clc:ments of a guidance system are presented as follows. 

Ouidanoe is the IICiioa of dctermining the course, attitude and speed of the vchiele, relative to 
some reference frame, to be followed by the vehicle (FossCJt, 1994). 

From the perspectiVI: of a control system: 

guidance is a matter of finding the appropriate compensation network to pla.ce in series with 
the plant in order to aa:omplisb nn intercept (LiD, 1991). 

The guidance system decides the best trajectory (physical action) to be followed by a 
vehicle based on target location and vehicl~ capability. 

The primary function of the elements that constitute a guidance system are sensing, 
information processing and cortection. A rudimentary guidance and control system 

. for a vehicle is shown in Figure I. As shown, the guidance system receives inputs from 
all the senson on-board and generates the relevant signals or set points for the control 
system. Guidance issues are mainly determined by the nature and location of the target 
and the environmental conditions. The nature of the target corresponds to the con
dition as to whether or not the target is stationary, moving, or manoeuvring. The target 
location is also imperative as it determines the beading to be followed by the vehicle; 
however, the accuracy of the system depends on the environmental conditions. The 
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guidance problem is also related closely to the bandwidth of the system. It is often 
assumed while formulating the problem that the controller has a Bllfliciently large 
bandwidth to track the commands from the guidance mbsystem (SuttoDet al., 2000); 
however, in practice, true velricle capability can only be measured in the presence of 
constraints such as system dynamics and actuator limitations. 

The definitions and elements of a guidance loop discussed above are quite generic 
and refer to all guidance mechanisms. Although widely employed in the aerospace and 
land vehicles, they are equally valid for underwater vehicles. 

3. MISSILE GUIDANCE. The guidance technology of missiles is a mature 
field with an abundance of guidance laws already implemented in real systems. Many 
different guidance laws have been employed exploiting various design concepts over 
the years. Currently, the popular' terminal guidance laws involve line-of-llight (LOS) 
guidance, LOS rate guidance, command-to-line-of-sight (CLOS) guidance, pro
portional navigation (PNG) (Locke, · 1955), augmented proportional navigation 
guidance (APNO) (Zarchan, 1994) and optimal guidance laws based on linear qUJUI
ratic regulator theory (Bryson and Ho, 1969; Nazarofl', 1976), linear quadratic 
Gaussian theory (Potter, 1964) or linear quadratic exponential Oanssian theory 
(Speyer et al., 1982). 

Among the current techniques, guidance commands proportional to the WS angle 
rate are generally used by most high-speed missiles today to correct the missile course 
in the guidance loop. Recently, many advance strategies have been implemented to 
generate different guidance laws. Rajasekhar er al. (2000) uses fuzzy logic to implement 
PNG law. The fuzzy law generates acceleration commands for the missile using closing 
velocity and LOS rate as input variables. The input data is fuzzified and their degree of 
membership to the output fuzzy sets is evaluated, which is then clel\m:iAed to get the 
acoeleration command. A fuzzy-based guidance law for missiles has also been pro
posed by Creaser et al. (1998) using an evolutionary computing-based approacb. 
The proposed law uses a genetic algorithm to generate a set of rules for the missile 
guidance law. Menon et al. (1998) uses fuzzy logic weightings to blend three well
known guidance laws to obtain enhanced homing performance. The composite law 
evaluates the weights on each of the guidance laws to obtain a blended guidance com
mand for the missile. Yang and Cben (2001) have implemented an Hco based guidance 
law. Unlilce other guidance laws, it does not require the information of target accel
eration, while ensuring acceptable interceptive performance for arlritrary target with 
finite acceleration. 

3 .I. LOS Guidimu. WS is the most widely used guidance strategy today. In fact, 
almost all guidance laws in use today have some form of LOS guidance because of 
its simplicity and case of implementation. The LOS guidance employs the line of 
sight angle A between the vehicle and the target which can easily be evaluated using 
Equation I. 

(I) 

where: (.x, y1), (xt. y,) are the missile and target position coordinates respectively. 
The objective of the guidance system is to constrain the missile to lie as .nearly as 

possible on the LOS. Since the missile ideally always lies on the line joining it to the 
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F'lgUl"C 2. Proportional Navigation Ouidancxl for a mil3ile syrtcm. 

target, the flight path will be a curved one. LOS guidance does not work well with 
manoeuvring targets. Also, the interception time is high, which can be abridged using 
different strategies as discussed in the following seetions. · 

.3.2. Proportio11111 Navigation~ (PNG) and Its vllrltm13. The Lark mi.ssilc 
that was tested in 1950 was the first missile to use PNO. Since then, the PNG law has 
been used iD virtually all of the world's taetica1 radar, infra-red and lV-guided missiles 
(Rajasekhar and Sreenatha, 2000). It is the most common and eft'ective technique in 
case of non-manoeuvring targets that seeks to nullifY the angular velocity of the LOS 
angle. The missile heading rate is made proportional to the LOS rate from the missile to 
the target. The rotation of theWS is measured by a sensor (either onboard or from a 
ground station), which causes commands to be generated to turn the missile in the 
direetion of the target. Mathematically the PNG law can be stated as: 

(2) 

where: 'le is _the acoeleration command, N' ~ the navigation ratio, V< is the closing 
velocity and.< is the LOS angle rate. The advantage ofusingPNO over LOS guidance is 
that the interception time can be greatly reduced by adjusting the navigation constant 
as shown in Figure 2 for the case of N'= I and N'=4. In the latter case, the missile 
steering commands are four times as great. As a result the missile veers off much more 
to the left resulting in engagement. 

PNG, like LOS guidance, does not work well in the case of manoeuvring targets. 
However, the interception time is reduced. Augmented PNO (APNO) is a modified 
form ofPNG to deal with target manoeuvres. Other forms ofPNO are velocity com
pensated PNG (VCPNG), pursuit plus PNG, and dynamic lead guidance (Lin, 1991). 
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3.3. Optimal Guidance Law. Recently, great interest has been shown in using op
timal control theory in the missile guidance problem. Two important mission par· 
ameters, missile target engagement time and the energy needed, can be reduced by 
utilising optimal control. Tsao and Lin (2000) proposed an optimal guidance law for 
short-range homing missiles to intercept highly manoeuvrable targets. The guidance 
problem that needs to be solved for the interception is to find the optimal missile 
trajectory such that the total time for the interception is minimised. The performaoce 
index used in the proposed optimal law is: 

1" J=tt= Q dt, (3) 

where: t,ris the interception time. 
The proposed guidance law aohieves the best performance in terms of the miss 

distance and interception time in comparison to the true proportional navigation 
guidance (TPNG) and APNO. Howeve.r, a major disadvantage of this law is that the 
target's future trajectory must be known in advance, which is impossible to evaluate 
in a realistic environment (Tsao and Lin, 2000). A comprehensive review of optimal 
guidance laws is presented in (Lin, 1991). 

4. AUTONOMOUS UNDERWATER VEHICLES. AUVs are no 
longer engineering curiosities. They have been under development for over three 
decades and, in the last few years, there have been significant advances towards 
their use in operational missions (Millard and Griffiths, 1998). Although remotely 
operated vehicles (ROVs) play an important role in the offshore industry, their op
erational effectiveness is limited by the tethered cable and the reliance and cost of 
some kind of support platform. Given these limitations, developments in advance 
control engineering theory and the computation hardware for analysis, design and 
implementation, interest in the viability of employing AUVs in operational missions 
has been revived. The use of AUVs is increasingly being considered for applications 
such as cable/pipeline tracking, mines clearing operations, deep sea exploration, 
feature tracking etc. 

The potential usage of A UV s is restricted by two main factors. The first is the 
limitation of battery power, which limits the use of AUVs for long duration missions. 
Most current vehicles use car batteries that need to be rOcharged every "few hours, and 
this makes them unsuitable for long duration missions. The second limiting factor is 
associated with the current generation of onboard NGC systems. The vehicle must 
have a reliable and well-integrated NGC system of which guidance is the key element. 

4.1. Guidance Laws for AUVs. The classical autopilots for AUVs are designed by 
controlling the heading or course angle in the control loop. By including an additional 
loop in the control system with position feedback from the sensors, an AUV guidance 
system can be designed. The guidance system generates reference trajectories to be 
followed by the vehicle utilising the data gathered by the navigation system. The 
following section presents some important guidance laws found in the literature. 

4.1.1. Waypoint Guidance by LOS. Waypoint Guidance is the most widely used 
scheme in the field of AUVs. In the key paper by Healey and Lienard (1993), guidance is 
achieved between two points [x,(t.), y,(r.)] and [x,(tfi, yd(tp] by splitting· the path 
between them into a number ofwaypoints [x,(k), y,(k)] fork= 1, 2, ... , Nas shown in 
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Figure 3. Way Polllt Guidance by LOS. 

FJ.gure 3. It is assumed that the vehicle is moving forward with speed U, then the LOS 
in terms of desired heading angle A can be defined as: 

A= tan-• fyd(k)-y(t)] (4) 
lx-<kJ x<t> • 

where: (x(t), y(t)J is the current location of the vehicle. Care must be exercised to ensure 
that the heading angle A is in the proper qnadrant. Determining when the vehicle 
reaches the vicinity of a waypointis achieved by checking if the AUV lies within a circle 
of acceptance with radius p. around the waypoint [xd(k), y,(k)]. If the vehicle's cummt 
location [x(t), y(t)] satisfies: 

p' =[xd(k)-x(t)f+[yd(k)-y(t)f <;;p!, (S) 

the next waypoint"[x,(k+ I), Yd(k+ I)] is selected. Typically, the circle of acceptance 
could be taken as two times the length of the vehicle (Healey and Lienard, 1998). 

If on the other hand, dp/dt goes from negative to positive without the above con· 
dition being met, then the wnypoint has not been reached. At this point, the guidance 
law must decide whether to keep the same destination waypoint and direct the vehicle 
to the circle or choose the next depending on mission planning decisions. A major 
disadvantage of waypoint guidance is the undesirable consumption of control energy 
due to possible overshoots during the change of trajectory. So, selection of the ref. 
erence trajectory for tracking is important to reduce the overshoot path width and thus 
to decrease the control energy consumption. Yeo et al. (1999) employ turning simu
lation to determine modi1ied waypoints to avoid overshoot. Aguiar et al. (1998) and 
others (Aguiar and Pascoal, 1997) proposed a modification in waypoint guidance to 
deal with the presence of ocean currents. A current compensation for the heading 
autopilot has been developed which aligns the total vehicle velocity direction with the 
heading command. 
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4.1.2. Vision-Based Guidance. The vision-based guidance technique has been 
inspired from the work of ROV operators, whicb utilise or rely on the visual infor
mation to perform tasks thus making a strong argument that visual imagery could be 
used to guide an AUV. VISion-based guidance has been mainly employed for cable 
tracking and docking problems (Gasket! et al., 1999; Balasuriya and Ura, 1998; Bricst 
et al., 1997; Rock et al., 1992). Briest er al. (1997) suggest an optical terminal guidance 
scbcme for the docking of an AUV using a beacon. The beacon could be a light
emitting device, whicb can be identified using photo detectors onboard the AUV. This 
scbcme is analogous to a heat-seeking air-to-air missile when locked on to its target. 
The disadvantage of using a beacon is that in shallow waters, cspecially during the 
daylight, the photo detectors can lock on to sunlight. The remedy could be to adjust the 
frequency of the light emitted by the bencon. 

Oaskett et aL (1999) proposed vision-based guidance for an AUV named Kambara 
using two cameras. The authors demonstrated that guidance could be achieved by a 
feature tracker algorithm that requires two correlation operations within the feature 
tracker as shown in Figure 4. The feature motion tracker follows each fcatnre between 
previous and current images from a single camera while the feature range estimator 
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correlates between the left and right camera images. The feature motion tracker cor
relates stored featnre templates to determine the image location and thus the direction 
·to each feature. Range is determined by correlating the featnres in both images to find 
their pixel disparity. This pixcl disparity is related to an absolute range using camera 
extrinsic and intrinsic paramete.rs, whicb arc determined by calibration. The direction 
and range to each feature is then fed to the controller, whicb determines a set of thruster 
commands. To guide the AUV, thruster commands become a function of the position 
of visual featnres. 

A major drawback of using visual systems in Ulldcrwuter guidance is that the per
formance degrades in case of turbid water or when a cable is buried or there might be 
other similar cables appearing in the image. For such cases, a multi-sensor fusion 
technique has been proposed (Balasuriya and Ura, 1999a and b, 2000 and 2001). The 
proposed sensor fusion technique uses dead reckoning position uncertainty with a 
ID-position model of the cable to predict the region of interest in the image captured 
by a camera mountod on an AUV. The ID-position model of the layout of the cable 
is gencratod by taking the position co-ordinates (x. yi) of a few points along the cable, 
whicb is then nsed to predict the most likely region of the cable in the image. 

As opposed 10 the two camera approach, Balnsuriya and Ura (1998) proposed a 
vision-based guidance law using a single camera. The technique has been implemented 
in a test-bed underwater robot, Twin-Burger 2, at the University of Tokyo for cable 
tracking and following a moving object. The basic idea underlying these schemes is 
that, the feature to be tracked introduces a particular geometric feature in the image 
captured by the CCD camera. The vision processor then labels these features, extract 
their location in the image and interprets the appearance into a guidance parameter as 
shown in Figure 5. For example, an underwater cable introduces a line feature in the 
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image, and the edges of a cylinder introduce a rectangle. The vision processor derives 
the equation of the line rep=enting the cable in the image plane given by Equation 6, 
which gives the direction 'q' and position 'r' parameters. 

r-xcos(q)+ ysin(q). (6) 

where: (x, y) are the co-ordinates of the straight line equation. 
In the case of a cylindrical object, the co-ordinates of the centroid of the object 

(rectangle) in the image plane and the area A covered by the object are derived. These 
parameters are then fused with other sensory parameters to determine the control 
references for the underwater vehicle. 

Rock et al. (1992) devised a vision-based system to uack a dot of light generated by a 
laser. The hardware comprises two cameras, one of which is used to locate the target. 
The vision system works by scanning the image from the last known location of the 
target. or from the centre of the s~ if the target was not previonsly in view. The 
pixels are examined row by row, expanding outward towards the edge. If a target is 
found, its angle and elevation with respect to the centre of the image is evaluated and 
transmitted to the vision processor, while range can be found using sw::cessive images 
from both cameras. The proposed law has been proved to be valid only in the case of a 
single distinguishable target. 

4.1.3. Lyapunov-Based Guidance. A Lyapunov function can be CODSidered as a 
generalisation of the concept of distance or energy. The Lyapunov theorem states that, 
if the distance of the state along any trajectory of:i-Ax decreases with time, then :r(t) 
must tend to 0 as t - oo (Chen, 1984). Caa:ia et t:l. (2000) uses the concept to develop 
a new guidance law for unmanned DDdcrwater vehicles for testing on a prototype 
ROV, Rom£o. This law is temled as a medium range manoeuvring guidance law. In this 
law, the vehicle is allowed to move from point {x, y) to (x., yd) with a desired orien
tation 'P d as shown in Figure 6. By choosing the desired vehicle speeds 

Uti= ~e cos a, 

cosas:ina 
rd=pa+~ a (a+h9), 

(1) 

{8) 

{9) 

(where ~. Jl and h are the tuning parameters) a Lyapunov function is SU88ested given 
by Equation 10, which makes the distance e between the two poinlll converge to zero 
for increasing time. 

V=Je'+!(a'+hll'), {10) 

where: 

e = J(xd-x)' +(yd-y)', {11) 

IJ=r-1/Jd, and (12) 

a=r-1/J. (13) 

The parameters ud, vd and r d arc the desired vehicle's surge, sway and yaw velocities 
respectively. If ac obstacle is detected along the way by the sensors with some 
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orientation 6 and range d from the robot, the vehicle follows its pro!ile until a suit
able detaching condition is verified. and the vehicle theo continues ita free space 
manoeuvring. For feature following, the proposed law does not require control of 
the vehicle sway velocity while controlling the surge and yaw velocities. 

4.1.4. Guidance. wuh Chemict:l Stgnab. Using the fact that marine animals make 
extensive nse of underwater chemical signals to avoid predators and to locate food 
sources etc., an interesting guidance scheme for AUVs using chemical signals has been 
proposed by Consi et t:l. (1994). The authors have built a small underwater robot, 
which mimics the chemical sensing abilities of a lobster. This class ofrobolll is named as 
blomimJJ;s and are designed to mimic certain features of animals and act as animal 
substitutes in behavioral and neurobiological studies. 

The goal of the research was to nse the information in chemical signals to locate the 
source of a chemical discharge. In this respect, it has a number of scientific, en
vironmental, commercial and defence related applications. The sensors used in the 
biomimic are conductivity sensors, and !heY are used to enable the AUV to follow a 
plume of saltwater in a freshwater llow-through llume. A simple gradient following 
algorithm is implemented to locate the souroe of discharge, which has the obvious 
disadvantage of getting trapped in local concentration minima and maxima. 

4.1.5. Proportiontd Navigation Guidance for A UVs. Although PNG is widely used 
for missile guidance systems, Ahmad er t:l. {submitted) demonstrnted that it could be. 
tailored to work for AUVs as well. The authors propose a two-stage problem fonnu
lation to retrieve a returning AUV to the mother submarine. In the finlt stage, inter
ception of the target {mother snbmarine) by the A UV is considered using a PNG law, 
which is the theme of the paper. In the second stage, the docking ofthcAUV is con
sidered when in close proximity to the mother submarine and is an area of current 
investigation. The idea behind using PNG is that, if the AUV is made to lie on the 
LOS and hold there as well, a constant relative bearing between the A UV and target 
is ensured i.e., the LOS does not rotate and interception will occur. The PNG law 
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can be stated as: 

25 

(14) 

(15) 

where: k is the navigation constant,). is the LOS angle and u, is the command input. 
The conunnnd input in this case is the heading angle 1/J., therefore: 

1/J,=NV,J.., (16) 

where: V, is the closing velocity, and N is an important tuning parameter. The block 
diagram of the proposed guidance and control system is shown in Figure 7 and the 
AtN target engagement geometry is shown in Figure 8. The guidance system used is 
PNG, which generates commands for the control system. Different engagement scen
o.rios hnve been considered. For stationary targets, the scheme is analogous to the 
waypoint guidance. For mobile targets, the PNG law generates suitable trajectories to 
be followed by the AUV for docking purposes. 

4.1.6. Guidance using Magnetometers for Cable Tracking. The underwater 
cable network and its capacity arc expanding very rapidly, and its installation and 
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maintenance is becoming more important. AtNs could be a potential tool for under
water cable tracking especially in case of deep waters where human intervention 
is not possible. Different schemes have been proposed for underwater cable tracking. 
Balasnriya and Ura (1998) proposed vision-based guidance for cable/pipelino tracking 
as outlined in Section 4.1.2., but in the case ofShallow waters, where cables are buried 
to avoid being damaged by fishing gear or anchors, the performance degrades. For 
buried electrical or telecommunications cables, the remedy is to use on-board mag
netometers, wbich can detect the magnetic field induced from the current Bowing in 
the cable. The data from the magnetometer is fed to a cable locator that estimates 
the direction, ·burial depth and the distance of the vehicle from the cable. The data 
from the cable locator is then used to guide the vehicle. The Aqua Explorer 1000 is 
an example of a successful implementation of magnetometer-based guidance for 
underwater cable tracking (ASakawa et al., 1996; Kato et al., 1994; Ita et al., 1994). 
Guidance usins magnetometers has limited applications as it can ooly be used to guide 
the vehicle towards the source of the magnetic field. 

4.1. 7. Eleotromagneti£ GWdiznce. A major disadvantage of using opticnl or visual 
guidance systems is that the response is ooly good in nonturbid, clear environments, 
and it is limited over a wide range of background lighting and water turbidity con· 
.ditions. Also, the AtN must lie within the field of light emitted by the beacon on the 
cable or dock and must be oriented in such a way that the optical sensors can detect 
the light. Feezor et al. (200 1) employed an electromagnetic guidance (EM) technique 
during the homing/docking mode of an A UV. The EM guidance system uses a 
magnetic field generated by the coiiB on the dock, which is sensed by the coiiB in the 
AUV. The guidance system provides the AUV not ooly the bearing to the dock, but 
also the angle of the AtN relative to the field lines and thus the angle relative to the 
dock entrance. The accuracy of the proposed system is less than 20 cm but the l'llll80 
is limited to 25-30 m. The proposed system is quite robust under almost all oceano
graphic phenomena. 

S. DISCUSSION. The following discussion presents some modifications in the 
guidance design for AUVs. It can be stated that the waypoint guidance, or specifi· 
cally, LOS guidance is likely to remain a key feature of all present guidance systems 
and systemS that follow. By utilising LOS, several other guidance laws can be con· 
ceptualised. For example, waypoint guidlince could be utilised for a cable following 
problem considering several waypoints on the cable by introducing beacons at dif. 
ferent lengths and then follow the beacons on the cable using onboard sensors. In· 
expensive photodctectors could be employed to detect the light, which can be tuned 
to operate over different frequencies. However, the major drawback as discussed in 
Section 4.1.7. is that the performance degrades in case of turbid water or when there 
is light emanating from other sources. This approach is analogous to the heat seek· 
ing air·to-air missile. 

Another strategy to accomplish a cable tracking mission is to pose the guidance as a 
two-stage problem ie. using waypoint guidance while on the surface and vision-based 
guidance or any other existing guidance scheme while submerged. In this manner, 
the vehicle would have precise position co-ordinates on the surface from the Global 
Positioning System (GPS) so that it can accurately reach the vicinity of the area of 
interesL Dead reckoning could be employed to estimate the position of the AUV under 
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water. A siniilar approach hns been adopted by .the Southampton Oceanography 
centre's AUTOSUB-1 (Mcphail and Pebody, 1998), which utilises GPS for position 
fixes on the surface and dead reckoning usiog an acoustic doppler current protller, 
providing velocity measurement, while submerged. 

A complete mission scenario for the underwater cable tracking problem could be 
to classify it into four different phases utilising different guidance laws. These arc 
i) launch phase, ii) mideourse phase, ill) terminal phnse, and iv) tracking phase as 
shown in Figure 9. In the first phase, called the launch phase or the boost phase, the 
vehicle is L~unched from a boat or from a mother submarine and guided in the direction 
of the LOS with maximum speed, using LOS guidance only. The lleadiD8 command 
can be generated using Equation 4. Once the vehicle approaches the LOS, the mid· 
course phase could be invoked, in which the vehicle follows the LOS angle with 
maximum speed using waypoint guidance, Section 4.1.1. During this part of the op
eration. changes may be required to bring the vehicle onto the c1csimi course and to 
make certain that it stays on that course. The midcourse guidance system is used to 
place the vehicle near the target area, where the system to be used in the final phase of 
guidance can take over. It should be noted that there is no need for the vehicle to 
submerge at this stage. as the objective is to approach the target area with maximum 
accuracy regardless of the orieotation of the vehicle wi~ respect to the cable. When the 
vehicle comes within the circle of acceptance, the third phase called the terminal phase 
is invoked. in this phase, the vehicle must be slowed down and submerged in order to 
line up with the cable/pipeline as shown in Figure 9. The circle of acceptance in this 
case, as opposed to that quoted in Healey and Lienard ( 1993) should be taken as at least 
the minimum turning radius of the vehicle in order to avoid overshoot. Fmally the 
fourth phase, called the tracking phase, is launched utilising any existing guidance law. 
For example, the vehicle could use a vision-based guidance system to follow the cable 
outlined in Sectioc 4.1.2. If the cable to be followed is an electrical/communicatioc 
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cable, then magnetometers could be used to d~ the radiation from the cable and 
guide the vehicle in the appropriate direction. 

6. CONCLUDING REMARKS. This paper presents several guidance laws 
for autonomous vehicles with emphasis on AUVs. Guidance laws for airborne. 
missile systems arc also explored. It has been shown that the guidance system plays 
the vital role in bringing autonomy to the whole system. It is observed that most 
of the current AUV systems employ either the classical waypoint guidance to reach a 
target area or the more advanced vision-based guidance for cable/pipeline tracking. 
In practice, LOS guidance is the key element of all guidance systems. Some hybrid 
guidance schemes arc also proposed based on existing airborne and underwater 
guidance laws. 
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AbstrACt 

This paper describes the implemenw.tion of an intelligent navigation system, based on the integrated use or the global positioning 
system (GPS) and acvera.l inertial naviptlon system (INS) senson, for autonomous underwater vehicle (AUV) applications. A 
simpl_c Kalma.n filter (SKF) and a.a extended J<.alman filter (EKF) are proposed to be used subsequently to fuse the dam from the 
INS sensors and to integrate them with the OPS data. The paper highllghts the use of fuzzy losic techniques to lhc adaptntion of tho 
initial statistical Bl!lumptlon of both the SKF and EKF caused by possible changes in sc:asor nolsc chnrac:tcri8tics. This adaptive 
mechanism i9 considered ,tD 'be ncc:essnry a! the SKF and EK.F can only maintain their atobility and perfonnance when the 
algorithms contain the true sensor noise chnractcristio. la addition, roult detection and !ignal recovery algorithms during the fusion 
process to enhance the reliability of the noviprion systems arc also discussed herdn. The proposed algorithms are implemented to 
real cx.perimentB.l data obtained from a series of A UV trials conducted by running the low-cost Hammultead AUV. d~loped. by the 
University Of Plymouth and Cranfield University. 
tCI 2004 Elsevier Ltd. AD rigb" ruerved. 

K11ywords: AatooomoWI underwat=" vc:hicl~ Naviptl01l; Senior 1\Wo~; Kalman flllCIS; Extended KahnaD tll~ Fuzzy logic 

t. lottoductlon 

The development of autonomous underwater vehicles 
(AUVs) for scientific, military and commercial purposes 
iD applications such as ocean surveying (Srmkersen, 
Kristenseo, lndreeide, Seim. & Glancy, 1998). uoc:x· 
plodod ordnance bunting (Wright et al., 1996) and cable 
tracking and inspection (Asakawa, .Kojima. Kato, 
Matsumoto, & Kato, 2000) requires the corresponding 
development of navigation systems. Such ~ems arc 
necessp.ry to provide knowledge of vehicle poSition and 
attitude. The need for accuracy in such systems is 
paramount~ erroneous position and attitude data can 
lead to a meariiDgless interpretation of the collected data 
or even to a catastrophic failure of an AUV. 

A growing number of resenrch groups around the 
world are developing integrated navigation systems 
utilising inertial navigation system (INS) and global 
positioning system (GPS) (Gade & Jalving. 1999; 

•Com:spondine; aulhar. Td.: +44-1752232633; l'ax: +44-
1752232638. 
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Grenon, An, Smith, & Healey, 2001; Yun et al., 1999). 
However, few of these works make eJq>lic:it the essential 
need for fusion of several INS sensors that enable the 
usen to IIia.intain the accuracy or even to prCvent a 
complete failure of this part of the navigation system, 
before being iDtegrated with the GPS. Kinsey and 
WhitcOmb (2003), e.g. use a switching mechanism to 
prevent a complete failure of the INS. Although simple 
to implement, the approacl! may not be appropriate to 
use to maintain a certain level of accuracy. 

Several estimation methods have been used iD the past 
for multiscns.or data fusion and integrntion purpose 
(Loebis, Sutton, & Chudley, 2002). To this end, simple/ 
extended Kalman filter (SKF/EKF) and their variants 
have been popular methods in the past and interest iD 
developing the algorithms has continued to the present 
day. However, a significant difficulty iD designing a 
SKF /EKF can often be traced to iDcomplete a priori 
knowledge of the process covariance matrix (Q) ·and 
measurement noise covariance matrix (R). In most 
practical applications, these matrices are initially csti .. 
mated or even unknown. The problem here is that the 
optimality of the estimation algorithm in the SKF /EKF 
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setting is closely connected to the quality of a priori 
infonna.tion about the process and measurement noise 
(Mehra, 1970, 1971). lt has been shown that insufll
ciently known a priori filter statistics can reduce the 
precision of the estimated fi1ter states or introduces 
biases to their estimates. In addition, incorrect a priori 
information can lead to practical divergence of the filter 
(Fitzgerald, 1971). From the aforementioned, it may be 
argued that the conventional SKF/EKF with fixed R 
andfor Q should be replaced by an adaptive estimation 
formulation as discussed in the next section. 

2. The adapti'Ye ruolng of KsJman fiher algorithm 

In the past few years, only a few publications in the 
area of adaptive Kalman filtering can be found in the 
literature. The two major approaches that have been 
proposed for adaptive Kalman filtering are multiple 
model adaptive estimation (MMAE) and innovation 
adaptive estimation (!AE). Although the implementa· 
tion of these approaches are quite different, they both 
share the same concept of utilising new statistical 
information obtained from the innovation (or residual) 
sequence. In both cases, the innovation lm~~t. at sample 
time k is the difference between the real measurement Zk, 

n:cc:ived by the filter and its estimated (predicted) value 
fJt. The predicted measurement is the projection of the 
filter predicted states i; onto the measurement space 
through the measurement design matrix HJt. Innovation 
represents additional information available to the filter 
as a result of the new measurement Zk- The occurrence of 
data with statistics different from the a priori informa~ 
tion will first show up in the innovation vector. For this 
reason. the innovation sequence represents the informa~ 
tion content in the new observation and is considered 
the most· relevant source of infonnation to the filter 
adaptation. Interested readen can refer to (Km1ath. 
1968a, b, 1970) for a more detailed discussion of the 
iMova.tion sequence and its use in linear filter theory. 

In the MMAE approach, a bank of Kaiman filten 
runs in parallel (Magill, 1965; Hanlon &. Maybeck, 
2000) or with a gating algorithm (Chaer, Bishop, &. 
Ghough, 1997) under a different model for the statistical 
filter infonnation matrices, i.e. Q and R. In the IAE 
approach (Mehr.1, 1970, 1971), the Q and R matrices 
themselves are adapted as measurements evolve with 
time. In this paper, the IAE approach coupled with 
fuzzy logic techniques with membership functions 
designed using heuristic methods is used to adjust the 
R matrix of both the SKF nnd EKF. The proposed 
algorithms in this paper ore implemented using a set of 
experimental data obtained from the Hammerhead AUV 
trials conducted in July 2003 at Roadford Reservoir, 
Devon, UK. Initial work using purely simulated data on 
the proposed algorithms can be found in Loebis, Sutton, 

--

and Chudley, 2003b and Loebis, Chudley, and Sutton, 
2003a. 

2. 1. Fuzzy stmpk Ka./man jilr.er 

In this section, an on-line innovation~based adaptive 
scheme of the SKF to adjust the R matrix employing the 
principles of fuzzy logic is presented. The fuzzy logic is 
chosen mainly because of its simplicity. This motivates 
the interest in the topic, as testified by related papers 
whieh have been appearing in the literature ~obayashi, 
Cheok, Watanabe, &. Muneka, 1998; Jetto, Longhi, &. 
Vitali, 1999; Loebis et al., 2003a, b). The fuzzy logic 
simple Kalman filter (FSKF) proposed herein and fuzzy 
logic extended Kalman filter (FEKF) discussed in 
Section 4 are based on the IAE approach using a 
technique known as covariance matching (Mehra, 1970). 
The basic idea behind the technique is to make the 
actual value of the covariancc of the innovation 
sequences match its theoreticol value. 

The actual covariance is defined as an approximation 
of the lm~t sample cowriance through averaging inside 
a moving estimation window of size M (Mohamed &. 
Schwan, 1999) whieb takes the foDowing form: 

I • c,NI1 = M L: lnnk Innk. 
J•)o 

(I) 

where }o = k - M + I is the first sample inside the 
estimation window. An empirical experiment is con~ 
ducted to choose the window size M. From experi
mentation, it was found that a good size for the moving 
window in (I) is 15. 

The theoretical covariancc of the innovation sequence 
is ddined as 

s. = H•Pk H[ + R.t. (2) 

The logic of the adaptation algorithm using covar
iancc matching tec:hnique can be qualitatively described 
as follows. If the actual covariance value t,,.. is 
observed, whose value is within the range predicted by 
theory S~c and the diffcreace is very near to zero, this 
indicates that both covariances match almost perfectly 
and only a smaD ehange is needed to be made on the 
value of R. If the actual covariance is greater than its 
theoretical value, the value of R should be decreased. On 
the contrary, if C1rrn. is less thnn S1u the value of R 
should be increased. This adjustment mechanism lends 
itself very well to being dealt with using a fuzzy~logic 
approach based on rules of the kind: 

IF< antecedent> mEN< consequent :>, (3) 

where antecedent and consequent are of the form 
xeO,, tee~. i = 1.2. ... , respectively, where X and x 
are the input and output variables, respeetively, and O, 
and L1 are the fuzzY seu. 
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t><><J tM 
o0.015 0.00 0.018 -o.13e .0.06 0.00 .Q.OS 0.19! 
(•) {b) 

Fig. I. Membership functloD er: (a) d.lr~t~t. and (b)"· 

To implement the above covariaDce matching techni
que ~g the fuzzy logic approach. a new variable called 
del1ak, is defined to detect the c!iscrepancy between t..., 
and Sk. It is important to note that in this particular 
application, C..., and s. are constrained to be c!iasonal 
motrioes. The following three fuzzy rules of the kind (3) 
are used: 

IF <delta.:=O >THEN <R.t is unchanged>, (4) 

IF <delta• > 0> THEN <R.t is decreased>, (5) 

IF <dellat <0 >THEN <R.t is increased>. (6) 

Thus R is adjusted according to 

R.t = R.t-1 + M... (7) 

where M.. is added or subtracted from R at each instant 
of time. Here delta, is the input to the fuzzy inference 
system (FJS) and M.. is the OUtpuL 

On the basis of the above adaptation hypothesis, the 
FIS can be implemented using three fu:z%)' sets for deltak; 
N=NegatlfH!, Z-Zero and P-PosiiiV<. For M.. the 
fuzzy seta are specified o.s 1•/~~&rea.se, M- Ma.intain and 
D- DecreQSe. The membership functions of these fuzzy 
sets which are designed using a heuristic approach on: 
shovm in Fig. 1. 

2.2. Sensor /aull dtagnc>ri< muJ recovery algorithm 

In addition to the adaptation procedure, the FSKF 
has been equipped with the sensor fault diagnostic and 
recovery algorithm as proposed by Escamilla-Ambrosio 
&. Mort (200 I). The basic idea behind this algorithm is 
that the amplitude of the actual value of the /M• and its 
theoretical value (VS.> for a sensor without any fault 
must be around I, but it increases abruptly if a transient 
or persistent fault is present in the measurement dota. 
For this purpose a variable /""C•is defined as 

1 C 111111•1 
nn k =----rif'· (8) 

vs• 
Thus, if the value of lnnC• is greater or equal than a 

threshold (o) then a transient fault is declared and/""" is 
asoigned a value of 0. If I1111C• is still greater than • for 
an instant of time, the persistent fault is declared and 
/11711< is aisigned a value of VS. multiplied by a random 

R><i t><5<d 
D 0.1 0.3 0 2 
(o) 

(b) 

Fig. 2. Memben~hlp f'unc:rion of: (a) JtWw.l. and (b) R.. 

Table I 
F=y rule .... FLO 

~""I 11. 

z s L 

z G G AV 
s G AV p 
L AV p p 

number. From CXJ)erimcntation, it was found that the 
good value of a is 1.2. · 

2.3. Fuzzy logic observer 

To monitor the performance of a FSKF, another FJS 
called the fuzzy logic observer (FLO) (Escamilla
Ambrosio &. Mon. 2001) is uaed. The FLO assigns a 
weight ~r degree of confidence denoted as c~~:, a Dumber 
on the mterval [0,1), to the FSKF state estimate. The 
FLO is implemented using two inputs: the values of 
ldelta,l and R.t. The membenihip functions of these 
variables were found using a heuristie method that 
produced a non-symmetrical shape for ldella,l and a 
symmetrical shape for R.t are shown in Fig. 2. 

The fuzzy labels for the membership funetions: 
z- :z.ro, S• Small anc! L- Large. Tbrce fuzzy single
tons are defined for the output Ck and arc labelled o.s 
G•Good, AV=Average and P-Poor with values I, 
0.5 and 0, respectively. The b.Sic heuristic hypothesis for 
the FLO is as follows: if the value of ldelra•l is near to 
=<> and the value of R.t is near to ..,ro, then the FSKF 
works almost perfectly and the state estimate of the 
FSK.F is assigned a weight near 1. On the contrary, if 
one or both of these values increases far from zero, it 
means that the FSKF performance is degrading and the 
FLO assigns a weight near 0. Table I gives the complete 
fuzzy rule base of eaeh FLO. 

3. Fusfoo of INS seasor data 

In this section, the FSKF algorithm is applied to the 
linear heading model of the Hammt!f'head AUV. 
Fig. 3(a) showS the vehicle before leak testing and 
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Fig. 3. The Hammerhead AUV: (a) before leak te>ting and bollaatina, and (b) during a system idcntiflcation trial. 

ballasting in the laboratory test tank and Fig. 3(b) 
shows the vehicle during a heading system identification 
trial. Inputs to the rudder of the vehicle are sent by the 
user from a laptop through an umbilical cable. Thus in 
reality it was tra velling in a semi-autonomous model for 
that specific trial. The drag effect of the cable is 
considered to be negligible. An electronic compass and 
an inertial measurement unit (IMU) on board the 
vehicle are used to capture the corresponding TC$ponses. 

The system matrix (A), input matrix (B), and 
output vector (H) of the linear discrete state space 
model (see Appendix A) obtained from the trial data 
are, respectively, A=[O I; -0.98312 1.9831), B= 
(-0.0031961 -0.0036JJS),H=(l O),withtheyaw 
and delayed-yaw as the component of the states. 

This model is assumed to be sufficiently accurate to 
represent the dynamics of the vehicle, and for this 
reason, any output produced by the model after being 
excited by an input, can be considered as an actual 
output value. This assumption also motivates the use of 
the model output as a reference in measuring the 
performance of the FSKF algorithms. 

To test the FSKF algorithms, real data obtained from 
the electronic compass and IMU (Fig. 5), as a response 
to the input shown in Fig. 4, are fused together with two 
sets of simulated data. To produce the simulated data, 
the noise in Figs. 6(a) and (b) are simply added to the 
electronic compass and IMU real data, respectively. A 
possible real-time scenario that can result in the noise 
with the characteristic shown in Fig. 6(a) is that the 
second electronic compass is located in close proximity 
to the propeller DC motor whose internal temperature 
increases with time and affects the sensor ambient 
temperature. A similar scenario can also be considered 
to occur when the second IMU is located in close 
proximity to the front hydroplane stepper motor whose 
initial internal temperature is high and settles down after 
sometime. This particular scenario can result in the 
noise characteristic as shown in Fig. 6(b). The initial 

condition of the states are ( 0 0 f, Po = O.Olh (see 
Appendix A) and Q = diag(O,O. J725 x 10-7). The ac
tual value of R for each sensor is assumed unknown, but 
its initial value is selected as I. Simulation results are 
shown in the next section. 
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Fia. 4. Input rudder. 

Tmo 

Fig. 5. Real electronic compau and tMU output. 

3.1. Simulation result 

Figs. 7 and 8 are the simulation results showing the 
response of the Hammerhead AUV observed by electro
nic compass and IMU, respectively, while Figs. 9 and 10 
by sensor 3 and 4, which are the output of the two 
former sensors added with uniform .noise increasing and 
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(a) 

I 
I 
j 

(b) 

Fia. 6. (a) Added noloe proftle to the electronic compass data, and (b) 
to the lMtJ data. 

~~ t~d 
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Fia. 7. (a) Process, measurod and estimated yow outpu~ ond (b) 
measured and estimated yaw error of electronic compass. 

decreasing with time, respectively. Figs. 7 and 8 show 
improvements in the level of error produced by the 
proposed FSKF algorithms as compared to direct 

I 
J 

(a) 

Tmo 

Fia. 8. (o) Proocss, meUIIrcd and .. timatcd yaw outpu~ and (b) 
mcuured and estimated y•w error or JMU. 
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! 
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(b) 

Fia. 9. (a) Process, measured and .. dmated yaw outpu~ and (b) 
measured &nd estimated yaw error of sensor 3 (electronic compass+. 
aimuta1ed noise). 
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Fla. 10. (a) Proocss, meuurcd and estimated yaw output, and (b) 
meuured and estimated yaw error or ~enaor 4 (lMtJ+aimuJaled 
noise). 
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measurements from the sensors. Apart from the 
improvements in the level of error, Figs. 9 and 10 also 
show how the proposed algorithms have detected 
transient and persistent faults in the· sensors (see Section 
2.2) and made nn appropriate recovery. 

To fuse the estimated yow, a centre of gravity method 
is used 

E7 •• fk,Cit., 

L:7.1 Ck1 ' 

(9) 

where 2~ is the output of the ith FSKF (I = I, 2, 3, 4) 
and clt., is the respective weight at instant time k. Fig. 11 
shows the comparison of the actual and the fused 
estimated yaw. h is clear, by comparing Fig. 11 and 
Figs. 7-10 that an improvement has been achieved by 
fusing the estimated yaw. 

Finally, the foUowing performance measure are 
adopted for comparison purposes: 

(10) 

(I I) 

where zak is the actual value of the yaw, Zk is the 
measured yaw, fit. is the estimated yaw at an insuu:n of 
time k and n the number of samples (Table 2). 

A close look on the J:" and J:, on Table 2 of each 
sensor indicates that the FSKF has improved the 
accuracy of the heading information. The result of 
fusing the estimated data has shown a further improve
ment. A slight offset shown by the final fusion result 
might be caused by an inaccurate model of the process 
noise (sec Appendi.Jt A) and its covariance (Q). Adapta
tion of these parameters is the topic of a fUture 
investigation. It should also be noted that from a 
theoretical point of view, the analysis of the stability of 

oo 
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Fig. 11. (a) Proce:!ls and estimated fused ynw output. Bnd (b) l'uscd 
yaw erTOr. 

Table 2 
ComPGrison of performance 

Plectronic coMpll!lll 
!MU 
Electronic oompBS5 +noise 
JMU+ooia:a 
SciUor fbaiou 

PttfOiliWIC:C 

J~ (des) 

13.4050 
17.3507 
37.5725 
22.0702 

12.1170 
15.8216 
23.6664 
14.6159 
11.96SO 

the FSKF needs to be investigated. However, this is not 
easily undertaken due to the use of the adaptation 
tech.a..iqucs used herein. Future work 'Hill address this 
issue more rigorously. 

4. Integrated GPSfiNS 

Here, the fused estimated yaw obtained previously is 
treated as a single imagi:na.ry yaw sensor and used by 
other INS sensors to transform ·data from body eo· 
ordinate to Earth co-ordinate frame where integration 
with GPS data is performed using a combination of 
fuzzy logic nnd EKF techniques nnd c:an be referred to 
as FEKF. 

A continuous time model of the vehicle motion 
appropriate to this problem is taken to be 

X(r) = F(X(r)) + W(r), (12) 

Z(r) = H(X(t)) + Jl(t). (13) 

Denoted by X(r) - [.1.(r) rp(t) 1/-(1) 8(1) >(I) u(1)f is the 
model states. l(1) and rp(r) are the longitude and latitude 
of the AUV position in Earth co-ordinate frame whieh 
are obtained from a GPS receiver, 1/!(t) is the yaw angle 
obtained from the imaginary yaw sensor, .8(1) is yaw 
rate; >(1) and u(1) are the surge and sway velocity, 
respectively. 

In this system model, F and H are both continuous 
functions, continuously differentiable in X(l). The W(t) 
and V(l) are both zero-mean white noise for the system 
and measurement models, respectively. 

The .model states are related through the following 
k.inematically based set of functions (F(X(I)) in 
Eq. (12)): 

>(1) = 0, 

u(1) = 0, 

if,(r) = .9(1), 

.9{1) = 0, 

i.(r) = >(t) cos 1/1(1) - u(l) sin 1/-(1), 

(14) 

(15) 

(16) 

(17) 

(18) 
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l)>(r) =.Cl) sin ,P(r) + u(l) cos 1/-(1). (19) 

The output measurements are related through the 
states by the following output matrix: 

0 0 0 0 I 0 

0 0 0 0 0 I 

H(X(1)) = 0 0 I 0 0 0 
(20) 

0 0 0 I 0 0 

0 0 0 0 0 

0 I 0 0 0 0 

when GPS signal is available, and when it is not, 

H(X(I)) = [~ ~ ~ ~ ~ !]. 
0 0 0 I 0 0 

(21) 

To obtain. an EKF with an effective state prediction 
equation in a simple farm, the continuous time model of 
.(14)-{21) has been linearised aboui· the current state 
estimates, producing 

0 0 0 
0 0 

ll>(r) = 0 o 
0 .o 
0 0 -li(t) lln !JI(t) - u(t) COl t;(t) 0 ooa \ll(t) -.dn rjl(t) 
0 0 l;(t) COl oft(t)- u(t) aia tJI(t) 0 sin Y,(t) COI!J.'(t} 

(22) 

and r is a matrix identical as in either (20) or (21). 
Subsequent discrctisation with period T = 0.125s of the 
linearised model results in an EKF algorithm similar to 
the SKF algorithms in Appendix. A (where 11> and r are 
equiva1e:nt to A and H), only this time the«- matrix is 
updated at every iteration. The initial conditions are 
Po = 0.0 I lo and Q is made constant as diag( I 0, I 0, I, 
0.1, 0.1, 0.1). The actual value of R is assumed unknown 
but_ ita initial value is selected as diag(JOOO, 1000, $, 
I, 2, 2) 

The FSKF algorithm from Section 2 is then 
implemented, only this time the adaptation of the 
(i, <)th element of 11J< is made in accordanoe with the 
(i, <)th element of delra;. Here a single-input-single· 
output FIS as shown in Fig. I, is used sequentially to 
generate the correction factors for the elements in the 
main diagonal of IIJ< as the following: 

IIJ<(i, 1) = IIJ<_ t (I, i) + t1J1.1. (23) 

Fig. 12 shows the Hammerhead AUV trajectory 
obtained using GPS, dead reckoning using INS senson 
(through double integraticm of the acce!erometor data 
with respect to time) and integrated GPSfiNS. As the 
initial value of R for both .1.(1) and IP(I) is I 000, .the 
standard EKF algorithm puts less weight on the 
po_sition obtained by GPS and more on the prediction 

z 
l! 

I 
0 

10 100 1110 2IICI 2SO 1C1D 8S) 

W LIWICU11D (In) I! 

Fis. 12. A\JV tmjcctory obtained ustoa CiPS, INS BCDIOJ'B (dead 
redconiq melbod) and OPS/INS aalng EKF without tdapwfon. 
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Fia- 13. AUV l!'8j:ectory obtained win11 GPS, INS KIUOI'I {dead 
n:clconias method) and GPS/INS using EKF with adaptalion. 

of position obtained from dead reckoning method (using 
INS sensor data). Fig. 13 shows that the R matrix has 
been adjusted accordingly and more weight is given to 
the GPS data, and therefore the estimated trajectory in 
the intesrated INS/GPS is ''pulled" a little bit further to 
the GPS trajectory. However, big disorepancies can still 
be. appreciated between the integrated INS/GPS estl· 
mate with respeot to the GPS fixes. There are several 
explanations to this erratic behaviour. The first possi
bility is that it is caUBed by the poor level of ac:uracy of 
the low-cost GPS being used in this particular applica
tion. It is imponant to note that the proposed algorithm 
has detected a persistent high actual COvariance ( CzM,) 
for both the ~(I) and lP( I) throughout the trajectory. This. 
results in insufficient weight being given to the GPS fixes 
in the FEKF and more on the position obtained by the 
dead reckoning. The second possibility is that the GPS 
receiver did not lock into a sufficient number of satcDiW 
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with a sufficiently small vlllue of po3ition dilution of 
precision that cnn provide the required level of accuracy. 
The use of a differentilll GPS receiver or a GPS receiver 
with a wide area augmentation system or a EuropeaD 
Geostationary Navigation Overlay Service capability 
can be considered as a way forward to alleviate this 
problem. 

5. Summary and conc:lusiom 

The problem with incomplete a priori knowledge of Q 
and R is considered. Within this paper, o.n adaptive 
Kalmnn filter approach, based on the filter innovation 
sequence coupled with fuzzy logic is discnssed as an 
alternative for fusing INS sensor data and integrating 
INS/GPS position information. Implementation of this 
approach to the Hammerhead beading model, whose 
responses are measured with electronic compass, JMU 
nnd two additionn.l sensors with different noise char· 
acteristics, has shown a promising result in improving 
the estimation of an individulll SKF and EKF and 
enhancing the overuU acc:u.racy of the integrated INS/ 
GPS. 

Appeodlx A. Simple Kalman filter algorithms 

Given a discrete--time controlled process described by 
the linear stochastic difference equations: 

(A. I) 

(A.2) 

where x1c is ann x 1 system state vector, A1c is o.n n x n 
transition matr~ Uk is an I x I vector of the input 
forcing· function, Bt is an n x 1 matrix, Wic is nn n x l 
proc:ess noise vector, Zt is an m x 1 measurement vector, 
H1c is an m x n measurement matrix and Vie is an m x I 
measurement noise vector. Both the w1c and Vk are 
assumed to be uncorrclated zero:-mean Gnussio.n white 
noise sequences with covnriance given by 

T { Q,, i = k, 
E[••,w1 ] = O, i,.k, (A.3) 

T { R,, i = k, 
E[v,v1 ] = O, i,.k, (A.4) 

E[w,viJ = 0, for all k and I. (A.S) 

The SKF algorithm alii be organised into time update 
and measurement update equations 

TUn£ updare equarions: 

(A.6) 

1';+1 = A,P,Af + Q... 
Measurement update equations: 

K,. - P; H[(H,P; H"[ + il..r1
, 

.i, - .i;; + K,.[r, - H>ki1 

p, = [/ - K,.H,]P;. 

(A.7) 

(A.8) 

(A.9) 

(A.IO) 

The mcnsurement update equa_tions incorporate a new 
observation into the a priori estimate from the time: 
update equations to obtain on impro~ a posteriori 
estimate. In the time a.nd measurement update equa .. 
tiom, it is an estimate of the system state vector X/c, Kt 
is the Ka1man gain and P~c is the covariance matrix of 
the stnte estimation error. 
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Abslr1lct: Autonomy of an underwater vehicle is iD !he main attributable to tbe design of a 
suitable guidance and control system. Generally, the control system is developed and 
tested first ln simulation smdie:i using B model of tb.c vessel to gain confidence iD the 
approach being udopted. Therefore. plmu identification is imperative to gain insight abour 
tbe system. This paper is concerned will! a practical system identification (SI) method in 
order to obtain a madd of an auronomous und<rWBter vehicle (AUV) using inpm OU!put 
data u opposed 10 painstaking matbcrnatical modelling teclmiques. A model of tbe AUV 
is d...toped using SI ond ~ in slmulations using a linear quadratic Oaussian (LQO) 
conll'Oilc:r. Modelling aod simulation t<Sults are presented. Copyright~ 2003 IFAC 

Keywords: Underwater vehicles, system identification, modelling and LQ0 control. 

I. INI'RODUCI'ION 

Underwater_ vehicles are playing a major role in the 
of!Shore indtlSII)'. especiAlly at ploces where hutnao 
intl:r'Ve:D.tiOD is not possible. Its applialtioas cou1d 
nmge from subsea cable/pipeline !raCking far 
inspection purposes to mine clearing opc:ratioos. 
Normally, remotely operated vehicles (ROVs) ore 
used for tbese purposes. but in cases sucb as deep sea 
exploration or surveillance mis!Jians. ROVs are noE 
adequate due to !be presence of on utnbilical and the 
need far some kind of support platform. Thus. ROVs 
bave limited capabilities iD such type of missions. 
Autonomous underwater vehicles (AUVs), cm dle 
other hand, are nOt I imited by the length of rethc:red 
cable and do not require any human operator a 
support platform far guidance. The performance of 
an AUV is limi!ed by the onboard batteries tbat 
confine the mission duration. In addition, in contrast 
to ROVs, AUVs have ao onboard integrated 
navigation. guidance and control (NOC) sysrem. The 
navigation system provides information relmed to !he 
target ond the vehicle itself using ooboanl sensors 
such as inertial navigation system (INS), compass. 
pressuro II'BI!Sduccr etc. This information is fed ID the 
guidance system which by utilising some guidana: 

- .. 

~ 
Fig. 1. Navigation, guidance and conErol of a vehicle 

law generates reference headings. The control System 
is then responsible far keeping lhe 'ldlide on course 
as specified by the guidance system. A simple block 
diagram of ao underwater vehicle NOC sysrem is 
shown in Fig. I. 

This paper uddn:sscs the issue of designing and 
simulatiog a amll'OI system of ao AUV by first 
developing a model using SI techniques from actual 
AUV trials data. A SI approach is useful in providing 
reliable ond accurate models ill a short time without 
relying too much on malhematical modelling 
tec:bniques. 11tis feature lberefore. is attractive far tbe 
underwater vehicle manufacturers, v.i!c:re a vehicle 
amfiguratioo changes frequendy to suit the mission 
requiremems. 

ATN mcdelling using SI approach<s have been 
investigated before. (Tmm, ., aL. 1979; BeriDzzl, .r 
aL, 2001; Oohec:n, lllld Ioff<:rya, 1990; Ahmad, lllld 
Su11DD, 2003), but mast of the work involved has 
been done en id<:ntlfying a madd by geoeming data 
from a malhOIIIllllcal madd of 1111: 'ldlide. Hawevc:r, 
in this paper, the SI ia performed cm ID actual ATN 
inpm 01llpUt data obtained from lrial3 explained in 
tbe next seclion. A ~ LQ0 CXIIIII'Oilcr is 
also d...toped aud Bimula!od far tbe identified ATN 
model explained iD Section 3. 

2. SYS1EM IDEI'mFICAnON 

System idemillcatlan of a dynamical system · 
g.....Uy consists of lhe following four stq>s 

I. Da!a acquisition 
2. C!aract<risatio 
3. Identification/estimation 
4. Verification 

The first and mast lmponant step is to acquire !he 
iDput/OUipllt data of the system to be ldt:ntified. 
Acquirins data is not lrivial and could be very much 
laborioua and .. penaive. This involves camul 
planniDg of tbe inpms to be applied so lhat sufllcient 
iD!armation about the systan dynamics is obtained. 
If lhe inpms ""' not well desisned. lhen it could lead 
to insufficient or eve:o useless clam. 

The second step dd!nes tbe swcture of tbe system, 
far exmnple, type and ader of lhe differential 
equation reWing tbo Input to the 0U1pUt This means 
selection of a suitable model ~ e.g. llllll>
reg=sivo wi1h exogenous inpm (ARX), auiDo 
regressive moving avrnge Ytith ca.ogenous input 
(ARMAX), Output cm>r 011:. 

The !bird step is ldt:ntification/estimatioo, which 
involves determining lhe numl!ricol wines of !be 
strUCmrll1 """""""' whicb miDimise tbe error 
between lhe System to be Identified, aod its model. 
Common estimation melhoda are least squares (l.S), 
instrumcntal-VIIriable (IV), maximum-likelihood 
(MlE) and tbe predictlon·cm>r method (PEM). 

The final step, verification, consista of relating the 
system to tbe Identified madd responses iD time or 
frequency domain to Instil confidence in tbe obtained 
madd. Residual (correlation) analysis. Bode plots 
and aass-validatlmltests ""' generally employed far 
madd validation. 

The above-mentioned features of sysrem 
Identification are symbolically indic:atod in F~g. 2. 

--... _ --
Fig. 3. Sectional view of lhe Hl11711f1erireDd ATN 

u(O 

Fig. 2. The ovcral.l identifie~~tlon procodure 

In Ibis figure, u is the input. y is the 01llpUt er 
response, • is lhe disturbance, p ia the response of the 
model to me same input u and e is lbe error between 
!be madd output and plant output also called the 
residuals. The objective of id<:ntification Is to 
miDimise lhe sum-squared mors a residusiB t. More 
details can be fouod iD Ljung. (1999). 

2.1 Sy:nem dncriplion 

The wilicle used iD Ibis stwly called Ht1111111n'head 
has a torpedo shaped body about thnoe lllld a halt 
metres long and appraxltn4rcly one-third of a meter 
in cliametr:r. The control surfaces an: tbc two rear 
rudders for steering aod twO front hydroplanes far 
diving. The rw:1da' and hydroplmH:s are conll'Oiled by 
two aeparate onboard stepper motors lllld lhe signal 
to tbe stepper motDI'S is sent tllrougtl an umbilical 
attached 10 !be rear end of the vehicle. The cmboard 
sensors include inertial navigation system (INS), 
TCM2 compass. pressure sensor, global positioning 
system (GPS), and a shaft ~ enaxlcr. The data 
logged usins tbe above mentioned senaars is 
summarised below: · 

INS 

TCM2 Compass 
Pressure sm.sor 

OPS 

Shaft speed 
Encoder 

beading. pitch. roll. linear and 
angular velocities 
beading. piD:h and roll 
deptb of !be vehicle 
co-ordinates of tho vehicle on 
tbe suriaoe, forward speed 

vehicle speed 

Fig. 3 depias tbe seclioual view of lhe HGm1114rl!et:d 
ATN showing the bard"""' semp. The olbc:r end of 
lhe umbilical is attached 10 a control compull:' used 
10 send aod roa:ive various signals. The rudder/ 
heading angle da!a pair is used to geu<:a~e !be yaw 
model while tbe bydroplane angle/deplh is used 10 

--



develop the depth dumDel model. Cross coupling 
effects betweeD c!illi:re!lt dumDels such as yaw and 
roll of the velticle are also c:<amined. 

3. EXPERIMENI' DESIGN 

The inputs IIJlPiied 10 1111y system 10 be: identified 
must be: corefully designed prior ID the experimenl 
This is Imperative in obtnining good quality dn!a thst 
contain& sufficient informmion about the system 
dynamics. Reckless design of inputs could lead ID 
useless data containing vcry little or no information 
about dlc system behaviour. Some common types of 
input sequence are uniformly distributed llUldom 
numbers, pseudo random binary sequence (PRBS), 
Fig. 4, and its variants such as multistcp, Fig. S. er 
doublet inpul Fig. 6. 

Each of the inputs was applied for a specified 
duration during which sensors dam wns acquired. 
The following algorithm shows the order in which 
identification data was obtained. 

Step 1. send inpw to the control 3urjace 
Step 2. whil~ rinu! < .r~cified durarion 

read rkpth sensor 
read TCM2 CompilSS 

read TMU 
end 

Step 3. read shqft speed 
read.GPS 

gotosup J. 

With this configuration. the sampling frequency 
obmined was 8Hz. The data waa resampled 
afterwnrds at 2Hz si:ace this frequency was found 
adequate ID control the H=~ad. Moreovor, it 
also helps smooth the data Le. acts as a low pass 
filter. It was obse<ved that during the transmission 
phase to Ehe onbonrd actuators. no data could be 
acquired. This is due ID the limitations of MA TLAB. 
This problem was circumvented by leaving boles 
during thst intc:rval which represents the missing 
data. [n addition, since there was no feedback from 

. r - r .. . . 
·:--
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a 
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Fig. 4. Flt5! fiftc:c:n aamples of a PRBS input for 
system identificatiou 

the amtrol surfaces, the ln1lsiliol! fram cme iDput to 
the oth.,. is approximated as a ramp IIDd appropriate 
values are inserted. The whole input/output dn!a was 
later processed 111d the missing data was interpolated. 
Fig. 7(a) shows dn!a set with boles lllld Fig. 7(b) 
depicts the processed data. 

Most of the yaw ciwmel idc:ntifiamon Dials v.ue 
done on the surface lb....rore any c:cmbination of 
inputs coold be: applied to the rudder. However. for 
depth chiii!Del idc:ntifiamon. it was found thst the 
vehicle would hit the bed without the depth BlllOpiiot 
in the loop. Therefore. it has bc:c:n decided ID perform 
mnltipie experiments with o dilli:rc:nt multistep inpu~ 
similar to Fig. 5, being applied ID the hydroplane in 
each experirnc:nl The experiments Cllll easily be: 
merged for model ldc:ntifiamon using the Sltoolbox 
inMATLAB. 

Once the model is idc:ntifiid, amtrollers Cllll be: 
designed and tested in Simulation enviromnc:nL Then: 
ore several amtrol l!}'5lem8 awilable ID be: 
implemented on an AUV. A good occount of various 
control laws for AUVs is documented by Craven er 
al. (1998). HDwever, in this paper, a disaeto-time 
LQO amtroil« is developed IIDd simulated and Is 
explained in the next section. 

••• 111 10 
_.,_ 

Fig. 5. Multistep input tbr system identification 
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Fig. 6. Doublet input for system idc:ntifiamon 
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Fig. 7. (a) Original dam set and (b) Interpolated 
data Bel 

4.LQO CONTROllER 

&cc:ntly optimal amtro1 theory baa been extensively 
used ID solve various oontrol engineering problems, 
eapec1a11y with the advent of powedlll digital 
ccmpU!erS, the oomputation time is curtailed to a 
amsiderable extenl The optimal am1r01 is simply a 
minlmi.cation or ID8Jtimisation problem for which an 
objec:t!ve fUnction is defined dw could involve 
different desii!D parameters or states ID optimise. 

LQ0 is an optimal oontrollc:< whose name is derived 
from the fact thst it aasumes a linear system. 
quadratic cost fUnction IIDd Oawsian noise. Unliktl 
the pole plaa:ment method, when: the desigDl:l" must 
know the exact pole locations, LQ0 places the poles 
at some arbitrary points within the nnlt cin:le so dw 
the raulting aystem is optimal in some sense. A 
linear quadratic stale ft:edbacll: n:guiator (LQR) 
problem is solved wb.lch assumes that all states are 
oVBilable tbr feedback. However, this is not ai'Miys 
crue because either lbeno is no aVBilable sensor ID 
measure that slate or the measun:mc:Dt is very noisy. 
A Kalman filter Cllll be: desii!Ded ID estimate the 
llllllleasured statea. The LQR lllld Kalman filter Cllll 
be designed indepc:ndc:ntly and thc:n combined ID 
form "" LQO amtrollc:< os shown in Fig. S. a fact 
known as the separariDn prlncipl< • 

Fig. 8. LQG oontroll.,. &bowing LQR gain 111d stale 
estimaror 

S.REStll.TS 

The procedure detailed in Section 3 waa used ID 
acquire the inpnt/Citllpllt data fram Hamme~ 
"""""""'Y for aystem identification. Trials have been 
performed at South West W11ter's Roadfonl 
reservoir, and at W"illen Lalce ID Milton Keyn"'- The 
following subaectionl proseat aystem identification 
raults applied ID the test trials dn!a IIDd the raulting 
LQ0 control aystem as applied ID the exii'BCted 
model. 

5./ ldmtificmum resul:.r 

AA mentioned earlier, the yaw channel Identification 
trials were performed on the surfnce using Vllrimus of 
PRBS input while short multistep input sequez>ce was 
used far depth channel identifiamon which are later 
merged for aystem identification. It was obsened 
dw dw lb..., is DO coupling belween the yaw IIDd 
depth channels in this case so aingl,..inpm aingl,.. 
OUipUI (SISO) models ~ developed. la addition, 
the pitch IIDd roll does not """" ID be: effected with 
the change of beading. tlt....rore the need for a S1S0 
model is empbnsised. 

Rudd<r-yaw channeL Ono of the 1Dput sequenco used 
in identifiCition of rudder-yaw channel is a 32 length 
PRBS signal shown in Fig. 9(a). The response of 
Htzmml!~ad ID this Input Is also shown in Fig. 9(b). 
Tho dn!a set is compared with the other beading 
responses with same input magnilwle and found 
consistc:nl An ARX(221) model was exii'BCted IIDd 
the autoc:orTelation (ACF) lllld aosa eorte1at1on 
functions (CCF) ore depicted in F~g. IO. Although the 
CCP was aligbtly outsida the 95'11> oonfidenco band, 
the model was deemed adequate for further analysis. 
Cross validation test is performed ID gauge the 
predicting eapability of the model. In this ICSl data 
not uaed for S1 is applied to the model IIDd the 
simnla!ed ourput is compared with the measured 
outpul Two cross validation tests = performed for 
this channel and an: shown in Figs. I I IIDd 12. The 
simulated outpUIB as seen from the figures mBlc:bes 
reasonably well with the measured outpUIB. 

~ 
' - - - - - - - - -.. 

1~2::1 -" 
Fig. 9. (a) 32- length PRBS input sequence and (b) 

Hammerhead reaponse ID the PRBS 
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Fig. I 0. (a) Autoc:orrelation of residuals fur output 

and (b) Ooss correlation of input u and output 
rcsiduals. 
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Fig. 11. Fu:st =• validation test fur yaw channel 

model. 

Fig. 12. Second aoss validation test fur yaw 
chBnnelmodel 

Stemplane-<hpth channd. As described in Section 3, 
short duration multistep inputs were applied to the 
hydroplane and data was collected. Unfornmately, 
nfter few runs, the umbilical used to send nod receive 
the data was cut by the propeller md the mission had 
to be abonod. Since the dam was inadequate to be 
used fur SL only bending tcn!I'Oilcr W1lll developed 

ond the depth dumDel ideruificallon lriaiB were 
postpcmed to a laur date. In tho fbllowing, the dam 
th!t was cclleclod during those nms is showu ID FIB& 
13 and 14. 

'P I n._____d j . . • • ' -., 

GJSJ 
I • • • • ~ --., 

Fig. 13. Sternplane-depth .dumnelldentification 
lriaiB dam .,. I (a) Sternplane d.ollections in 
degrees and (b) Depth in meters. 

ltJJ:J; d .. 

lj ~ _I 
.. . . . . . . --.. 

Fig. 14. Sternplane-depth cbalmd identification 
lriaiB dam set 2 (a) S!allp)lmo d.ollections in 
degrees aod (b) Depth in meters. 

Controller lmpl<m<lltlJtlon. A discret&-time LQG 
controller was developed and applied to the extracted 
model as presented in SectiCD 4. The task ia to 
achieve a desired heading with minimum con!I'OI 
effort and within the specified actuator c:onslnlints. 
lbe constraints on rudder actuator of H~rllead 
are :1:22 degrees. lbe LQO control!.,. requi= the 
uming of four Jlllll!D10!"!' which demands tedious 
trial and error proeedure. To evade this problem. the 
tuning proeeduro of Maciojowald, (198S) has boon 
adopted !bat requires the nming of only rwo 
p~ and the oth.,. two are assigned values 
acctll'ding to an automatic procedure. The controller 
was simulated and the results are depicted below. 
F1g. IS shoV<> tho Hammerhead fbllowing a step 
change in reference heading and Pig. !6 presents the 
COD!I'Oller output. As showu, the rudder requires 
minimiiiD con!I'O! effort and it stays within the 
specified bounda. 

I. • f• . 
. 
. . - - - - - - - ---

Fig. IS. LQO control of Hlllrllrlemeod showing the 
yaw responso to a step change in the heading. 
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• • • a • • • • • • --
Fig. 16. Optimal rudder deflections gooerated by 

the LQ0 controller. 

CONCLUSION 

The design of ao auropilot fur ao underwater vehicle 
gooerally requires a mathematical model of tho 
physical system. Unf'artlmaldy, modelling an 
underwater vehicle Is not ttlvial and could be very 
expensive and time consuming. This paper prosonlll 
pmcdcal syatem ldentificalion naing only tho inpull 
ouqnn dam obtained &om teSt lrials without going 
into .details of marbemadcaJ modelling invoJving 
hcrrau!oua di!l'm:nlial equations. The complete 
hardware setup and the algorithm followed fur 
acquiring data have boon explnined. lbe autopilot 
daveloped ia 1111 LQO controller fur testing the 
modol!ing in simulation environment which will 
evenmally be tested on the real syatem. Simulation 
results are presented to quantify the extracted model. 
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AbstnlCI: This paper addresses the issue of guidance. and control of an autonom~ 
undc:rwuter vehicle (AUV) for a cable tmcking problem. A !inem" quadratic 0aUJJIJIIII 
contn:>ller wilh loop tnmsfcr recovery (LQGILTR) is developed ~e of its !"""8 
robustness properties. lbo vehicle is guided toWards the tarset usmg a oombill~cn of 
diff=t guidance algorithms. lbe vehicle speed is used to formuiala the gmdsnoe 
problem. Simulation results are presented and a comparisoo is made between fix and 
voriable AIN speeds. Copyright C 2003 IF AC 

KeYwords: Guidance, control, LQGIL TR. cable tracking, autonomous underwater' 

vehicle. 

I. INTRODUcriON 

Guidance and control of AINs have seen a 
tremendous growth and development in me last few 
years and there have been significant applications of 
guidance and control systems for missions such as 
cablo/pipeline tracking, mines clem"ing opero!ion, 
deep sea <:>tplonliioo, feature tracking etc. Par on 
AIN to work effectively, a well-integrated 
navigalion, guidance and control (NOC) syStem is 
imperative. A simple block diagnun of an. NOC 
system is depicted in Figure I. The naV!~OD 
system generates information _about . the veb1cle 
position, velocity, heading etc. usmg vanous onboard 
sellSOt1l sw:b aa a oompass, globol positioning system 
(OPS), pressure sensor etc. The guidance system 
manipu~ the navigatiOil information aod 
generates suiiBble references to be followed by the 
AIN. The control system is the11 re5J1011Sible for 
k<eping the vehicle on course as specified by the 
guidance system. 

lbe main difference between an AIN and ROV 
(remotely operated vehicle) is that the ROV is 
controlled by a trained human opcrau>r while the 
AIN is steen:d by an onboard guidance system .. In 

Fig. 1. Navigation, guidance and conU'Ol of a vehicle 

. this roprd, the guidance system plays the key role in 
bringing aotonomy to the vehicle. The purpose of 
this paper is to develop an integrated ~ce ~d 
control algorithm for an AIN test mod<l,-wbu:b wiD 
eventually be developed and tested in real time in BD 
actunl AIN. 
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A plethora of control ll)'8tCIDS is .....wi.bte to be 
implemented on 011 AIN. A good aCCOUDt ofwrious 
controlll)'8ti:IDS is presented by Cra\'011 (1999), wbile 
Naoern et al. (2003), reoendy documented a review 
on various guidance lawa for undc:rvmtrr vehicles. 

Tedate optimal control theory bas been extellSi\'ely 
used to solve various control engineering problems. 
Especially with the . advent or powori\11 digital 

OlllllpUter!, the c:omputDiion time is curtailed to a 
~~'?~< -~ !!'~ optimal control is simply a 
miDimisatioa. or ma.ynn,srrticm problem for which an 
objective flmction is defined that could involve 
different design pa!'8Dieters or s1a1c1 to optimise. 

Linear quadrutie Oauman (LQO) is an optimal 
oontrollor whose name is daived from the filet that it 
aaswnes a linear system, qnadmtic cost flmction and 
Oauman noise. Unlike pole placement method, 
where the designer must know the exact pole 
loc:anons~ L:O<J places the poles at some arbitrary 
pomts Mtbin. the unit circle so that the resulting 
system u optimal in some ...,.._ A linear quadmlic· · 
SIBte fcodbsck ~ (LQR) problem is solved 
which assumes that all state& are available for 
ti:edback. However, this is not always true because 
either thac is no available sensor to measure that 
state or the measurement is vr:ry noisy. A Ka1man 
filter can be designed to estimate the UIIIDellSIIred 
states. The LQR and Kalman filter can be designed 
mdependandy and then combined to form an LQG 
controller, a filet known os the separation prlndple. 
lndividaally the LQR and Kalman filter have strong 
robustness properties with gain margin op to inDDity 
and over 611' phase margin, (Bur~ 1999). 
UDf~mllle~, the LQ0 !"" relatively poor Sllbility 
margDill which oan be cucum'lalted by asmg loop 
~.recovery (LTRJ •. A m- time LQOILTR 
cbign u presented iD this paper motivated from the 
work of Maci~OW!Iki (!m). The LTR work& by 
~ .fictitious aoiae ID the process input which 
c:fl'eclivdy am<els some of the plant zeros and 
possibly some of the stshle poles, and inserts the 
estimator's :zzros (Maciejowski, 1985; Skngeslad lllld 
Postletlnwite, 1996). The hybrid guidance law 
developed utilises vehicle speed as a means to 
fOI'IDll!ate the guidance probk:m that wus first 
proposed by Naeem et al., (2003) BDd is simulated in 
this paper. 

The paper is organised as follows. The next section 
describos the AIN model wblle Section 3 explains 
the LQOILTR control system design. Section 4 Slates 

the guidance law formulation ODd simulation results 
.,. · pr=ted in Section ~. Finally, conclucling 
remarks are made in Section 6. 

2. AIN MODEUJNG 

The AIN test model is that used by Kwiesielewicz 
~~ al. (200 I), ~ere the model pammeter11 are given 
m terms of vehicle speed. Since the guidsnce law 
require different vehicle speeds, therefore this model 
has been eh.,_ for demonstration of the proposed 
algorithm. The aiaglo-input singlo-output (SISO) 
vehicle model for a giVell vehicle speed can be 
described by the fuUowing transfer timction, 

G(s)c as+b 
s(s 2 +cs+d) 

(I) 
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wbere the ooeflicients <1, b, c and d.,. givet1 in terms 
of vehicle speed v in knots. 

a a 0.05803 .;, b = 0.00449.; 
c• 0.25963 v, d• 0.00856 v' 

The input to the AW an: the ruddt:r deflections 
wbile the outpm is the beoding of the vehicle. The 
model par8Dielml are calculated for tbm: different 
vehicle speeds and the rasulting c:antinuous time 
model is discretised at a sampling rate of 10 Hz. The 
disc:retized models are them <:anw:rted into state space 
oontrollable canonical forms owing to !he LQG 
controller requirements. The LQGILTR controller 
requin:s the model to be minimum phase and should 
be. controllable and observable. The model is tested 
for these Rquiranmts and found to be good for aaid 
pwposes. The model AIN is assumed to have a 
turning mdius of 25 m and the oonatraints on the 
rudder actuator are maximum 25 degrees in either 
left or right direction. 

3. CONI'ROL SYSTEM DESIGN 

LQOILTR control of an =eel underwater 
vehicle (UUV) has been reported by Joul et Ill., 
(1994), and Trianta1Yilou and Grosanbaugb, (1991). 
However, both these papera deal with multivariable 
c:ontim2ous LQO/LTR control of an underwale< 
vehiele IIISUIIIiDs that the guidanoe commands are 
available. In this paper, a ~e LQGILTR 

· c:ontroller is developed wbich is more roalistic for 
~ea! pmposes. A guidance law iJ alao developed 
whicb generores auilable commands m be followed 
by the vehicle BDd is the subject of next section. 1n 
the following, the LQGILTR controller is developed 
for the AW model shown in Section 2. 

3.1 De3tgn Specijladjmu 

~ types of design spec:ificatians aze asually given 
pnor to any . controller design which are closely 
related. The tune domnin specifications involve the 
maximum overshoot, seuling time etc. wblle the 
~cy domain spec:ific:otians provides the 
bandwidth, gam margin (OM), phase margin (PM) 
ete. of the system. They can be evaluated by 
generating the step response and Bode plot of the 
llyslan respectively. HoweV«, iD an LQOILTR 
design, frequency tuning is usually desired. A Bode 
plot of the ~ loop llyslan (Equation 1), suggests 

. infinite gam at uro frequency therefore, gain 
CITJssaver frequency (gcf) is used as a measure of the 
bandwidth of the system. The desired gcf of the open 
loop systam for all vehicle speeds is I Hz. An 
acoeptabl.e nominal design usually is one that attains 
both a OM:! 3 dB and PM:! 30", (Wolovicb, 1994). 
lbo desired OM in this cue ia aet 81 10 dB while the 
PM at sJ•, well above the nominal values. 

3.2 Kalntm~ FH,_ Dufgn 

Since tM heading o( tl.e AUV -.upted by noi.c is 
the only measured variable, !he remaining- havo 
to be measured through a state cstimatnr prior to 



control calcularions. A c:urrent estimator is used 
because the estimate is based on the curre~~t 

measurement. This is done because the processing 
time required to compute each control signal is sni.Jl 
in contnlst to the sampling time. In addition, this 
scheme gives more a.ccumtc re.sults as compared to a 
pn:dictinn estimator (Frunldin er al.. 1998). Let the 
plant to be controlled is modelled in state space fonn .. 

z(k +I)= Az(k) + Bu(k) 
(2) 

y(k) = Cx(k) 

The design objective is to find the Ka1nmn gain Kr 
such that the c:stinwe oh(k) is optimal. The solution 
to this problem is givco by the disaete steady state 
Kalman filter gain cquotioa given by {Fl'llllldin er al .. 
1998; Maciejowslri, 1 ~S) 

where V is the measurement noise spectrol deusity 
m.auix and P is lhe stcndy state CITOI' covariltllce 
mstrix givm by the solution of s disaete steady state 
R;ccatti equation, (Maciejowskl, 1985) 

P=APAT -APCT(CPCT +V)-lCPAT +W(4) 

where W is the process noise specttnl dcn.oity matrix. 
The param_.. W aud V an: tuned until the desired 
filter's open-loop rerum mtio ~ (z) specifications 
are mer: wb.ic:b is shown below 

-1 
~(:) = C(zl- A) A • K / (S) 

3.3 LQR Design 

Once the Kn1nian gain is evaluated far the desired 
specifications far aD models, the LQR stntc f<edbock 
gains are calculated. An objective flmctian is 
minimised given by 

J = -i !f·T (k)QJ:(k) +UT (k)Ru(k)] (6) 

vmere the weighting matrices Q and R are chosen 
according to Maciejowski (1985) liS 

Q=C7 C, R•O (7) 

Fig. 2. LQG controller showing LQR gain and stare 

estimator 
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The above valoes provide asymptotic """"'"'Y of the 
stability margins, sivco that the plaal obeys some 
specific c:baraollmstics. The state ft:edback matrix K., 
is obtained by aolvins equStians dual to Equntian.s 3 
and 4, and is used to seoerate the control aocording 
to 

u(k) m -Kci(k) (8) 

where i is the estimate of the stale x given by 
Equation 2, and u is the control sctiOD. The closed 
fonn aolution of K. for the valiiOS of Q and R in 
Equatim 7, is given by Maciejowski (1985) as 

K., • (CB)"1 CA (9) 

A feedbadc compenlllllor is finnlly synthesised as a 
series cnnnoctinn of the Ka1nmn filter and the 
optimal stato-ft:edbadc controller as depicted in 
Figure 2 given by (Macicjowskl, 198:5) 

i(k+l)=(A-81{., -K[CA+ KrCBKc)i(k)+··· 
(A -BK, )Kre(k) 

(10) 

u(k) = Kc(l- KrC)i(k) + K,Kre(k) 

wbcre e ... r - z. is the error between a refcrmce 
signal , and desired SIDle z. Let G(z) n the tnmafer 
flmction of the ~ dcfiDed by Equmion 2 BDd 
H(z) is the eampellS8Iar lniiiSfer flmctioa.lfthe plaal 
G(z) is miuimum pbase IIDd del (CB) ,. 0, then fWI 
reco~ is achieved if 

G(z)H(z) = ~(z) (11) 

where G(z)H(z)is called the loop ll'llllSfer flmction. 

4. GUIDANCE LAW 

The objective of any guidance law is to steer the 
AUV so that it intercepts the targc1 in minimum time 
IIDd maximum aocamey. The guidance law used in 
this paper utili,.. AUV speed as a means to 
formulate the problein. Tho oomplclc missia> is 
clnssified into fDDT cliBi:=t phoBeo utilising diii'Cl"Cilt 
guidanoc laws. These are i) b.mtdo ph-, ii) 
midcourso phase, iii) terminal phase, BDd iv) tracldng 
pbaao as ahown in Figure 3. ID the lint pbase coDed 
the lmmch pbase or the boost ph-, the vehide is 
latmched from a vessel and guided in the diroction of 
lbe line of sight (LOS) with maximum speed, using 
the LOS guidance oaly. Onoc the vehicle epproaches 
the LOS, miclcourst guidance could be invoked. In 
midcourse ph-, the vehicle follows the LOS angle 
with maximum speed using the way point guidance, 
(Healcy and Lic:omd, 1993). Ilurins Ibis plltt of the 
flight, changes may be required to bTing the vehicle 
onto the deBiTed course and to make camiD !bat it 
stays on tbat COIII'IC. The midcoume guidance ~ 
is used to place the vehicle OCBT the 11qet -. 
where the ~ to be used in the fioal pbaso of 
guidance can lllke over. It should be noted !Ill!! there 
is no need far the vchide to submerge at this IIIBge, 
as the objective is to approach the targcl ...,. with 
maximum aceumcy regcrdless of the ori~tation of 

the whicle with respect to the cable. When the 
vehicle reaches within the dn:lo of acceptance, the 
diird pbaso called the taminal pbase is involrod. 
During this pbase the vehicle DIIISt be slowed down 
and submerged in order to liDo up with the 
cablo/pipeline 8.9 sh0Wt1 in FlgUI'C 3. The circle of 
acoep!DDee in this case as opposed to Healey and 
LicnaTd (1993), should be taken at least the 
minimum tuming radius of the vehide in order to 
avoid overshoot. Fllllllly, when the vehicle enters the 
waypoin~ the fourtb pbase called the tracking pbase 
is coDed up utilising 1111y existing guidance law with 
the vehicle speed t<Ciuced to ita minimum value. For 
""""'PlO. tho vehicle oould use vision based guidance·· 
&yllb:m to follow the cable. If the cable to be 
folio-.! is an electrical/ communication cable, tlu:o 
magnotometers oould be used to detect the radiation 
from the cable and guide the vehicle iD the 
-opria:e diroction (Naeem •t al., 2003). 

To implement the guidance law, it is necessory to 
Comp.m, the LOS ougle A. This requires tdalive 
positions of the AUV and tmget iD both the co
ord.inates ie., 

h=)lt-yv 
r=xt -.xv 

F~g. 3. PlanaT view of the four pboses of flight fDT 
cable tracking problem ofanAUV. 

Fig. 4. Guidance &Ubsyatcm blodc diagmm 
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The kilii:IM!ic equatims of the AUV ""' lllll!ed 
below and roprescots the oomponentB of the veloctty 
in the (x.y) plmle 

v. =Y,cosry,. 

Jl1 = v, sinry, 

where ~ md V, reprem!IB the actual heading and 
velocity of lbe AUV respectively. The speed of the 
AUV is rcgulasod Bl three different values used iD 
different phases of the missim aa mentioned above. 
The nomponents (lrft y,) of the AUV position eau be 
ovaluatod by iDtcJ!l'llling the velocities {VD V,), 
raspoctively. ID addition to lbe LOS angle from the 
vehicle to the taTget, the guidanoe systan also 
generatal the nmsc (distDDce) of the AUV from the 
target. The TBDgO measure is used to switch between 
different pr&-tuaed controllers. The guidanoe 
subsystem blodc diagram is sb0Wt1 iD Figure 4 and is 
implcmentod in Simuliak euvironmenL 

S. SIMI.JLATION RESULTS 

The proposed integrated guidance and control 
algorithm is implemented on the AUV model sbowD 
in SectiOD 2 iD MBllabiSimulink eavironmenL The 
foUowing assumptions are IBken for the simulation&: 

i) The AUV and targcl are in the same plmle. 
li) Complete navigational infurmation is available 

tbroagh onboord """""'· 
iii)A oomplete knowledge of the tarsct's motion is 

available to the AUV. 
iv) The AUV is equipped with a vision system that 

genCI'IIIos the co-ordiDates of the poiDts on the 
cable to be tradced. 

v) The inltial target oo-ordina!<s (one cud of the 
cable)""' known prior to the mission. 

The fin: st<p in any LQOILTR control problem is to 
design alltrget filter's open-loop return mtio givco by 
Equntim S, which requires the Kaluum gain to be 
cvahum:d. By manipulatiDs the specttnl dcn.oity 
matrioes W sad V iD Equations 3 and 4, the Ka1man 
filter can be designed and bencc the target filler's 
open-loop retum mtio. ID Ibis paper, the procedure 
adopted by Wcerasoori~ and Plum (199:5) is 
followed. Keep.ins the measurement noise spectral 
dcn.oity fixed Bl tmity BDd ttmins the process noise 
specttnl density matrix, unlil the desired hquency 
domain specifications·""' met. The Bode pl01 of the 
desired filter's open-loop mum ratio for the 10 knots 
speed model oflhe vehicle is shown in Figure 5. The 
OM, PM and gcf can be Radily ovaluated from the 
plot. The nCl<t step is to calculate lbe ft:edbadc pins 
using the optimal Q and R in Equation 7 and develop 
the LQOILTR oomp<S!8I1UI" usins Equation 10. The 
loop ll'llllSfer flmction G(z)B(z) is a1ao evaluasod and 
the Bode plot mperimposed on the III><L! plot of the 
open-loop retum ratio in Figure 6 shows the amGallt 
of recovery acbiovcd. ID this cosc, iWl recovery is 



achieved u the two plots overlap each other. Figure 
7 prese~~ta the step response of the closed. loop 
feedbaok ll)'Sie1t1 showing a large overshoot This am 
be reduced by adding more damping to the system by 
introducing a weighting lhctor on the diagnnal ~ 
of Q c:amsponding to the velocity stare. This. IS 

equival011t to using ntte feedbaok for unprOVIng 
damping from a conV<Ilrional ..,,. (Weerasoonya 
and !'ban, 1995). Figure 8 depicts the step response 
of the closed loop syst= with modified Q and 
Figure 9 pres011ts the Bode plm of the loop tnmsfer 
function. Although ovcnhOO! bas subsided but m the 
cost of reduced stability margins duo to tho devill%ion 
from the optimal values. The some prooedure bas 
been applied to all vehicle models Dl various speeds 
and ccmpenast.,.. are developed. Finally guidance 
and control 8)'StCID integration is done and the 
simulation results are shown in Figure 10 for a cable 
nclciDg mission, wbich clearly shows good traclting 
behaviour using the propooed guidance algorithm. 
The control surfil<e ddlections generated by the 
CODtroller is depicted in Figures 11 end 12 for the 
case of optimal and modified Q rospectively. 
Clcnrly, the modified Q with additinnal daroping 
causes leas varialion in the control input as compared 
to optimal Q but m the cost of reduced smbility 
IDlll1lins- However, both figuroa suggest that the 
deflections ore within the constrained actualOt limitS. 

6. CONCLUSION 

This paper demonstrrrtes an integrated guidance and 
c:ontrol system appronch using on LQOIL TR 
CODtroner and a bybrid guidance law. Tbo LQRIL TR 
c:ontroUer is synthesised in dis~e and a hybrid 
guidance law is proposed wbicb uses di!ferent 
vebiclo speeds in ditfeient phases of the I!USS!on. 
Simulation results are presented to show the 
robustness properties of the propooed integrated 
syatem. Results for a cnblo-following miasion also 
depicts good traclciDg performance. A SISO ll)'Sie1t1 
is used. for the simulaticm, however, a multivnrisble 
LQOJLTR integrated with the proposed guidance 
system is an area of ongoing resenrch. 

_1...,1 

Fig. $. Bode plot of the target~ filter op011-loop 
return ratio 
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Q (filii recovery) 
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modified Q & R-o 
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Fig. 10. Cable traclting mission from launching to 
lrllCltins. variable speed vs. fixed apoed 

--Fig. 11. RDdder deflections genernted by the 
LQOILTR controller for Q-CTC & R.O 

REFERENCES 
Bur!, J. B., (1999). Linear OptimtJ/ Corr11'0L H, twf 

H.M<thods. Addison-Wesley l..ongmmJ Inc.· 
Craven, P. J. (1999). Intelligent control strategies for 

an autorulmous undenwter vehicle. PhD Thuis, 
U7!fllmlly of P/ymDuth. UK. 

Franklin, a. F, J. D. Powo1l and M. Wartmnn 
(1998). Dlgl1ul Conirol of /)y7rami.e Sy#ems, r 
ed. AddisoD-WesleyLongman Inc. 

36 

' 

t 
j 
I . . . 

•, 
TIIMCI....., 

Fig. 12. Rudder defiectiona generated by the 
LQOILTR oontroller for modilled Q & R-0 

Healey, A. J., and D. Liensrcl, (1993). Multivnrisblo 
Sliding Model Ccuttol for AU!OIInmous Diving 
1111d Steering of · Unmanned Uadenwter 
Vehicles. IEEE JaurMJ ofOaztm!c Enginnrilrg. 
orol. 18, DO. 3, pp. 327-339, July. 

Jual, D. L., M. McDeunott, B. L. Nel!oa, D. M. 
Bamell and a. N. W"illiBms (1994). Submem"ble 
Conlro1 Using the Linear Qnadrntic Claussim> 
with Loop Tr1mBft:r Recovery Mdbod. ID: 
l'l'oeudlngs of IM Symprntum on .illllt11UJmDiu 
lJntkrwtJier TedurDitJgy, pp. 417-425, July, 
Cambridge. MA. USA. 

Kwiesielowicz, M., W. Piotrowski and R. Sulum 
(2001). Predictive Versus F1122)1 Control of 
Autonomous lhlderwaler Vehicle. IEEE 
l111er1ullitmJJ/ Confemu:e on MethmJs and 
ModdJ tn.ilUUJmall/1n and Robotks, pp 609-612. 
:ZS..31 August, Miedzyzdroje, Poland. 

Maciejowski, J. M., (1911S). Asymptotic Recovery 
for Dillaez. Time ~ IEEE 1Trmsactl<m.r 
on Automatic Ctmlro( vol. AC-30, no. 6, pp. 
602-605, JIDie. 

Naoem, W, R. · Suuon, S. M. Abmad, and R. S. 
Bums, (2003). A Rmow of Ouidanco Laws 
Applicable to Ullllllllllled Underwater Vehicles. 
To be published in TM Jounud of NavignJion. 
VoL 56, no. 00, pp 1·15 • 

Skogestad. S. and L Postldbwaito, (1996). 
Multivarltlbk Feedbct:Jr. Ctmlrol: .ilna/yst.r twf 
Dufgn using ~onuzin MethmJs. Jabn 
W"tley and Sons Ltd. 

Triantal)ollou, M. S., and M. A. Orosenbaugb, 
(1991). Robust Conttol for Undcnw= Vehicle 
Systems with Time Dela~ IEEE JOIU'IIIJI of 
OcetUric Enginaerlng, ,..L 16, ao.1, pp 146-Ul, 
Janamy. 

Weerasooriyn. S. and D. T. Pban, (1995). Dis=lo
Timo LQOILTR Desiga and Modelling of a Disk 
Drive ACIUator Traoking Servo System. IEEE 
7'ransi:Climr.s on lndustriJJI Ekctron/c$.. voL 4l, 
no. 3, pp 240-247 ,June. 

Wolovicb, w. A.. (1994). .iluro/IUZlk 
5)-mms, Baste 111uzJyru twf 
lntemational Edition, Saunders 
Publishing. 

Conli'OI 
Dutgn. 
College 



MODEL PREDlCTIVE CON'mOL OF AN AUTONOMOUS UNDERWATER VEHICLE 
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Abstn>ct: nu. paper investlprea lbe application of O>odel pt'edictiw eamrol ID lbe )'llW 

snste of an """""""" and..,..... vohicle. A simple line of sight gaidenco scbeme is 
utilised "' ga=m: the n:f==> beodiDg, whi<:h iiO> be foUowod. SlmDimion .....WO ""' 
pr=ented to demo.,.,.. the ouimbilily of the prtiJ>OSed algoritbm. Copyrlg/lt C 100J 
IFAC 

Keywords: Modd pn:dictivc comroL autonotDOUS underwater ~e. guidance. geDelic 
algorithm. navigation. 

1. INTRODUcriON 

AutollDZDOUI undCfWBia' vebicles (AUVI) ~ DO 
loqcr. engineering cmiositie!. They' bavc been under 

--for ov<T -. decade~ and ia tile last 
lbw years then: have been sisDificmt odvan= 
toWDtd.s lllclr use in opcmioaal miasions (Millanl, <t 

t:l., 1998). Althoasb romot~:ly opmted vohiclcs 
(ROVs) pilly on imponzm role in the oflilbare 
itldumy, their operational - is- by 
the ldbared cable and the reliJmce and COlt af 10100 

kind of l1!ppOrt platform. OiYOD the3c llmitalioaa, 
developiOCDIO ln ad-= oomrol coglnecring theory 

and the COUip1IIIUOD - for llllll1Bls. deaisn 
and implom=llltim>, imcr<st in the vla1riJily of 
cmployins AUVs ia opcmioaal miaioos haa been 
,.;ved, T1H> ose of AUVs il lnm:osinalY beias 
considm:d for applloati0113 such as cablclpipe!inc 
aaclcil!g, · mines elcari:ls operations, deep-tea 
exptamion, - uackiag .... The poiOnlialusoge 
of AUVs ;., rc.micted by two main lllctots. TIH> first 
is the limiiBtion of battc!y power, which c:oafillco the 
AUVa for long duration miaslom. Most of the 
vehicles in use, uses car bam:riet that need to be 
recharg<d ~ few """"' and that "'"""" them 
w:unzibl.blc for long duration missions. The second 
limitins fh=r is associltod with the cmrcnt 
_..;on af onboarc! navtption, siDdoace lllld 
conuol (NOC) systems. TIH> vohicle IIIIISt ha.,. a 
reliabh: and ~11-inlepted NGC S)'8lem of whi<:h 
control is the Jccy elcmcm ra:pouiblc fbr keeping the 
vohicle OD course. On the other hand, naviption 
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FiB. I. Navigation, gaiclonee and cammt of a ..tncle 

.,..... provide iDfatmation related 10 the Dlq!C!IIIId 

"'hicle ilsclf, llllinB - - SDCb as inertial 
~" ayat= {INS), - pressure 
- eto. 'nla iDfonDa1icm Is lbd ID tile 
SUfdam:e sym:m wmch by utlUslns ..... guidencc 
law _.,. rofc=JCO IIDjectorica. A simple blodc 
diegnon af lbe noviptioa, gaidODcc and conlr<>l 
system Is depicted in F"!S- I I 

s.-at cbusical and adVIIacc comrol 11m11:gies have 
been simulalod lllld lOOted OD BG AlJV, Crave!~ 
(1999). la dzls paper, a naw ......,1 """"'IY llllinB 
model pmlicdYe control (MPC) is dnelaped and 
aimalated oo m AUV to lnldr !be - beadias 
ptOYided by a p!deacc system. MPC il chosen 
bcco~me ofsovaalreuoas one afwhich, is lbe ability 
ID handle CCIIIIIrOlms m I natmal ...,.. A ..,.Uc 
lllgoridlm (OA) Is liiCd as an optimiaOiioa. IDOl ID aid 
in designiog lbe oo"""""" which il motivated from 
the WOit afDuwoish and NBOCIII (2001). 

2. MODEL PREDICTIVI! CONTROL 

MPC rofora to a claaa of alsommna that compuiO a 
sequenoc of lllllllipulated varilble adjUIIm<IIIB in 
order ID opdmiae lbe .lbnao behaviour of a plaDI. 
QrislDally cleveloped ID -lbe spcoillllBed OODirol 
nceda afpo- p1om lllld pctrolollm ndiDeriea, MPC 
tedmoloSY CIID naw ha tb1md m a w!do wrie1y of 
applicatian ..... laoladill& cllcmi<ala, food 
pn h & autamotlve. ~ IDdall'araY, ad 
pulp lllld paper, (QiD lllld ~ 1997). 

n.. <kvclopment afMPC can be !raCed back ID 1978 
llftor lbe pubu.:alion of lbe paper by lUoba1t:t "' al. 
Tht:D CP!Ier 1111<1 11.11ma1«t ficm Shdl on m 1979, 
1980 clevelaped their """ indep<ndenl MPC 
m:bnalosY "DyDomml: Molrix Comrol". n.. -
popular lbrm af pmliodve - called !be 
....,...._ pzedlcdw -1 haa been clo.ised by 
Clasl<o ., al., (1987a, b) lllld Is emplo)'ed in dzls 
paper. 

TIH> proacss ou1put ia prodicled by Dains a model of 
lbe proceoo ID be canuollcd. IUly model that 
describes lbe rdolionsbip betwocn lbe iDput lllld !be 
CRIIp1lt of dJe pn>CC88 CID be 1Jied. l'oltl=·lf lbe 
pn>CCII Is subjacr ID -....... a clialw' once or 
nolsa model C8D .ha added ID !be - model In 

order .. - ...... ....u lbepredicred -
ncblbe -lr1!icaOJrY •• - -..ill 
111011. 1)pically the c:ziU:rioa is lbe dlffercaoe 
bctWocl>.lbepmlicte<lpmoeos<IU!pllllllldlbedoaired 
-lnljaciDry. A simple c:rilcrlon fbaclioa is 

H 
J • I [;(k +I)- w(k+ 1)]2 (I) 

1=1 

ros. 2. s-otMode!Predlcti,..Comrot 
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.atnatllortulll 
...... lllrthll(tt.J 

Pig. 3. PrediciOd output and the c:omapoJidina 
optimum iapat over a horizon H,. wiloro o(k1 
aplimum inpm, ; (k), pmiic!ed crmput, lllld Jl(k), 

pvcelloutplll. 

where y is ·lbe predioted process Outp1ll, w Is the 

.,.,._ tmjcctoly, and H, Is ""' prediotioa hGrizoa 
or ampu1 borizaD. The mw:iura of on MPC il shown 
in Fig. 2. 

The COIIIIOUet omput aeqlii:IICC .... over the 
pt<diccion bnrizon il obmined by miaimiast!OD of J wilb- to .. As a rosulllbe- 11Dck!ns cnor 
is minimiaed. Utlmo ia no modelllliamaU:b Lc.lbe 
model il identicol to the process and th<to .,. no 
c!is=bancr:s and ODllllrllmo, lbe prnoess 'IVill -
t1Jo rdl:nolcc ~cctoly oxactly OD lbe 81D1Piins 
izllmnts. 

Modal Ptedietivo Ccimot algori1hm, consisiO of the 
tbllowing dncciiiOpO. 

i) E>plidt we of a model to predict lbe puce~~ 

-"""". fiiDin> - hGrizoa ~· HazizDD). 
il) Calculatioo of a control BCqiiCDCC alons a 1biDro 

·tiOJc hGrizoa (Comrol Horizon), to optimisc a 
perfonDaDce lndcz. 

Ill) A reoedins hGrizoa ltrlltOIY so that Bl each 
inBIBDt the horizon is IIIOVOd IDWirds dzo ftltme, 
which ilm>lvea lbe applloatioD of lbe fim 
canuol aisosl otlbe aeq....., c:ak:nlaiDd • each 
Sll:p. The ~ il ii!UIInrll:d .. shown in F"ll!. 
3. 

The scloctiOD af MPC ID OODirol on AIJV ;., 
attribDted to several iilctmB. Some of them are listed 
below. 

• The concept is equally applicable ID ~ 
singl-.uput (SISO) as woU as muld-iapu!, 
malti:outpm.,..... (MIMO). 

• MPC can be applied to liaear and nonliae2r 
systems. 

• It can .band1o c:oascrainta in a B)'Jtel~Udic way 
during the caatrollct clcsign, 

• n.. 00D11<1Uer ts deaiJDed a1 nc:y IIDIPlins 
iMrant ao-can euily be dealt with. 

I r 
I 
I 



Ill diiJ paper, the optlmisatian of the pal'ozw 
ilulcx i6 don< 1l3ing OA, which is dczoribed In the 
"""'scc:don. 

1./. GenukA/gorlthm.r 

OAa inspired by o.n.tnw. theory, m poMrfW 
D~irlilllil: il<fative scmch hcuriltica. 0Aa 
operate an a populmion eaDiists of encoded llriDp. 
eaeb llrins rcprcsc!IIB 1 solution. Qa.,...,. opem10r 
is used on l:bcsc ICriDp to obtain tbe new sollzrions. 
which inheriiB the good one! bad pn>panics of !heir 
parent oolutiOIIL Each solution hu a 111aco1 value, 
oohniona hav!os bigher fitucos \'1lluca ..., 111081 lilcoly 
to survive for the next gcnermio.n. Mumtio11 operator 
i6 applied ro produce new chcractcristico, which.,. 
not pn:sem In the parent oolUiiena. The whole 
pmccdwo is rcpealocl111ltil no ftlnberlmprcmoncm i6 
observed or nm time exceec1a to some tbrahold, 
(Salt one! YOUSIC( 1!199). The fiii'<OC!IIIn of a simple 
senetic alpidlm 11 prcaemcd In Fig. 4 one! the 
opermion of the OA ia explained u followa. 

To """'the oprimizatioD, OA urc tiDdomly pn>duced 
irlidaJ oohttiom. TbJa IIICIIIod il pro!i:mlcl w!= 1 
priori knowledge abom the problem is am ...nable. 
Akr tandomly generadns tile it!idal popullliou of 
suy N sohnioas, the OA use tile three ~c 
operatDrB to yield N DeW aolutiom 11 CICb ib::nlzl.on. 
Ill the seleetiDD opcnttion, each solotiOD of tile =• popolatioll is c:wluatcd by it's liD1ess 
normally rqn'CICttted by the va1nc of 10mo objective 
flmctlon ami individunl.1 with bigher fimoss voluo ""' 
solcctod. Dil!'crau w.=oro melbods such u
wl!cel ICleetian and Btocllutic anivonoJ -liD& 
can be used. The .,.,...,... -......a nn pain 
of selected solutions witb CCIUI:iD crossavcr rare. The 
crossover rate iJ defined u tbCI prvbabillly of 
applyins cnwovcr 10 • pair of solccsod 101nt10Ds. 
n..;.. ano many Wll)'1l of clcfinlDg this opem10r such 
u si.oalc point Cf'OISO'Ya'. doublo poim GI'OIIO"'Cr 

multi-paint =- eo:. Foz 0Z8111pb: the ~ 
point ~ warb oo a lrinory IDins by 
detcnninina • palm nmdom1y In tile - IDinsa ami 
coz=ponding bits .,. '""'P]]ed to ~~"=~'" two new 
solatiODS. 

Matatioll is a random allcrllinn with lllllllll 
probabiUty of the binmy valnc of a striDg position. 
Tbia operator pJ<VeiiiB OA ftom being trapped In 
local minima. Tbc fitness evaluation llllitln OA """' 
41 an lntcrfilce betwoen the OA and tile optimization 
problem. lofonnatinn generated by this llllit ahoat the 
quality of diflm:nt solutions is used by the seloctinn 
opcn~tion In tile OA. Next the stopping criteria 11mS1 
be dcc.idcd. Tbla may be tile ..,e when t11ere is no 
algoillc:ont improw:mcm in maximum lllacol .,. the 
ID8lthmzm allowable time (nmnber of -) is 
passed. Al the end of the algorillun.the best ..,hnion 
found ao &r is returned. 
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F'og. 4. Flowclwtofa aimple senetic algorithm 

3. PROBLEM PORMUUTION 

"' Cll'der 10 fommlme tbe problem tile foD<>wiDS 
IIISalllpliona .,. made. 

i) Tbc AUV ad target ""' IIIB1miOd 10 be ill the 
..... plllllo. 

n1 n.. ~ ia ...... ec1 10 be ~~~~~Dooary, bowavor, 
aan-olllliOnary - 01111 be easily dealt with 
azu1 is area of active IaCa'Ch. 

lii) Naviplion illfcnmation is completely ovailablc 
10 me ga!dnneo-. 

The AUV~ CIJ8IIBCDlCDl gec>11101ry is llhown iD 
F'og. '· Both target ad AUV uo IIIIIDDCd 10 be poim 
IDU8CS baviDg co-onliDatea (z.yJ omd (<.yJ 

rtlpC<:Iively. The gaiclance - - the 
I'O!i:rmoe hcxdlng ID be foDO'iWIII by IIIo AUV which 
is simply the Uno of alabt (LOS) aglo .t fimnocl 
betwnen lbe AUV one! lbe target givl:a by Eqnation 2. 

.t ~ ... -1( !!..:.!!.) (2) l z, -.:r.., 

n..· MPC is dta !apOillible·ID.- IIIo AUV 

- the LOS. The lbllowlna 11cp1 - IIlo 
opeadon ·of ti11:'MPC aiaaritbm 1lliD& 0A. Almy 
timO I!Opk 

i) Bvalnatc proac~~ D111pU11 1lliD& IIIo -· 
model 

ii) Uso OA oearch ID . find tile opliiDII """""I 
moves wbioh opdmllo lho 0011 1\motlon ad 
ll8lisfict proccsa CODI1ralma. Tbia can be 
-liahod u filllowa. 
<•J ............. of- ponalblc OODin>l 

....... The Olllllml ...... 01' popolalicD 
c:onsiJIB of ..at volllea which is I<UOOible 
in I real world eminmmcm. 

(b) find IIIo ~ proccsa OlllpUII for 
all ponalble OOIIIIOIIIIDVCS11111ng tile prvcess 
IIIDdois. 

(c) CVIIIDale the fllncu of each oollltlon 411ng 

""' 0011 ftmclion and IIIo --(d) apply ""' genolio - (aeleedoa, 
czaa<m:r ad lllllllltinn) ID prnduco uow 
geiiOIOiioD ofposall>lo aobldaDL 

( 0) repeat until pnodo!lned ll1llllbcr of 

gnncndlono hu - IIDd - the opdmaJ comrolmovesm cL 1 ri 
lii) Apply ""' opdmal OODin>l ........ ~ ill 

IIOp 2 10 the-

4. SIMUlATIONRIIStlLTS 

The JIIOPOand MPC algorilbm hu been appUed 10 an 
AUV- modclsnppUed by IIIo QinedQ. Tbo modd 
!<laD:I the yaw IDIJ)o 10 IIIo - dclleotinn. 
Dimensionaily. IIIo AUV is 7 ..-.~=& I IIICIJ:r in 
diameter and bu • displacemem of 3600 ltilopms. 
A ftl!l delcdptlau of tile eqaadOOI of II!Dtion 
describing the clynnmic bcbaviour of IIlo v.hiclo In 
the IBietal pllne CID be found ill Cnvon, (1999), Tbc 
IIIOdel is clerlved hm llm pdndplal I.e., 11111ng law 
of plcyllea, wbioh llllllaos lbeory of rip! body 

IDOdoa,. -and~ Aaimplified 
liDesr mcdd is CIZiraCitOclusiaa l)'llCD fclcmfflcstion 
- the .....une... MA.'Il.ABISimalinl llimnlatinu 
IIIDdol prvvidocl. Tbo blcmified IDOdnl is oftlle fonD: 

i•Ax+Ba (3) 

whCI1I A and B ""' the 1111111: omd inpal lllllriocs 
zapoctlvely. MCII'e prociscly tile IWOo<limensiona 
ome -..pnoo model is sivcn by, 
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'!'be llldder - can IIIDVC • IIJIXin11im or 25' 10 
citller lt:ft ar dibt -cm. The A.!JV iJIIIIU pollllon 
co-ardllllra ... (0,0) wll!lc tile - is looaled .. 
(200,0) giviDa IIlo LOS nnglo A equa!IO zr:m 1lliD& 
l!q1lalml2. 

Tbo MPC and OA pllliZDmZI aaccl In the simulation 
""' pmvldo4 ill Tllhle I. The COli lbncllan aacc1 in 
this papa is aiv= by 

H H 
J• 'l.e(t+o"Qd.hl)+ f..,<<+.rflltw(k+J) ,., 

(4) 

u1 Su(k+f)Su" 

whCI1I the lllpaBWipDI I and u ropresCIIIB the IDwor 
adapperboundaonlllo inpaiiii!M:I~. R 
b IIIo weight on IIIo .... ar c:liiiDge of COllln>l ...... 
and a is IIIo wefgbl on IIIo ptedlelion error 

.;(k) • Y(k)- w(k) 

Tbo-"""' ill J!4uadGn 4-the pealty 
on tile .... of c:hanp of 001111'01 mova. 'Ibis ;, 
11111111<'110<1 10 pre..m -.. ............ of the 
radder. 

Tbc AUV beadiDg wilnn the MPC is appliad is 
depiOIOd ill FJa. 6, which clearly lhnwllhal the AUV 
is following tile LOS cloaely. FJa. 7 ~ tile 
- Cllllpllf, wbioh .... OCIImlly tlln llldder 
dellcct!om IICOdcd 10 allcll: the LOS and ia withm tile 
.....-edlimill. 

I 
f 
~ . 

---

--
FiB. 6. AUV beadiDg IOWIIZdo and tmckina the LOS 

Table 1 Slmpl@pn pvpmtjlm fpr fbs; OA •nd MPC 
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Fig. 7. Optimal radderdcllc<tions gcncmed by die 
model predlc!ive contn>U.. 

S. CONCLUSIONS 

A DOW oppn>Kb ID contn>l die yuw lllgle of ID AUV 
aaiag MPC bu been dcmozmamed. Tho aimplo LOS 
guidance scheme il IIIOd ID .,_.,. die -...., 
heading. Tbo rosuiiB produced 110 for -anary 
....... ODd .... quila -sins u tbo -
CCIIIllll"lllaiB .... lllladlod iD .. aflicicm wzy. Ilealina 
~ - 111111& !he prapaaed llgmilbm 
il BD area of octive R:IICirCh. la odcliliaa,. lbc 
tcclmiquc 11 carmllly beiJ1a employed aa MIMO 
.,.._., however, Ibis Pll!>er deals cmly with a SISO -
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MODEL PREDICTIVE CONTROL OF AN 
AUTONOMOUS UNDERWATER VEHICLE 
WITH A FUZZ¥ OBJECTIVE FUNCTION 

OPTIMIZED USING A GA 

W. Naeem, R. Sutton and J. Chudley 
{11'1:lan:D., rn'ttoll.. jdaudl-,}Gplymoutb..".lak 

Marine and Industrial DvnamU: A naly.U Ru<aroh Group 
Jleynola. Building, SchJXJl of Engint=ing, 

Univerrity of Plymouth, Drake Circus, 
Plymouth PL4 BAA, UK 

Abstract: Recently, unmanned underwater vehicles (UUVs) have emorged as a 
viable tool for ocean exploration and for military purposes. This Is due to tbe 
Inability of human divers to reac:h deep sea lll!d tbe bostile nature of underwater 
environment. UUVa ore of two types, namely, remotely operated vehicles (ROVs) 
and autonomous underwater vehicles (AWe). This paper 1s concerned wi:th the 
control of an AUV. A model prediet!ve controller is developed herein when! tbe 
traditional cost function bas beeo replaced by a fuzzy performance index wbic:h 
represent tbe goals lll!d colllltrllints of tbe problem. Since fuzzy logic is basically 
derived from knowledge of human expert!ee, it Is therefore more !ntuitivo tban a 
conventional cost function. Moreover, the choice of aggregation operator am lead. 
to significant reduction in tuning time which is essential for a quadratic objective 
function. A genetic algorithm (GA) is ueed os on opt!mlzatlon tool to evaluate 
the control inputs by minimization of tbe performance index represented by fuzzy 
membership values. The resulting colltroller is applied to an AUV eimnla+Jon model 
obtained from system ldentllicatlon techniques on teat trials data. Simulation 
results ore presented tbut demonstrate the ellicacy of the approach. Copyright 
@2004/FAC 

Keywords: Model predictive control, genetic algorithm, fuzzy objective function, 
opthi:U211tlon and underwater vehicles 

1. INTRODUCTION " We lmbw what the 8Ur/~ of ~ moon U 
better than we know what the 81Jrface of the 
sea floor i3." 

Designing underwater robots present tremendous 
c:hallenges to engineers. This is mainly due to tbe 
hostile underwater environment and the degree~ 
of freedom of the vehicle movement. The last 
decade has seen a boost in underwater vehicle de
velopment for exploring tbe ric:h underwater world 
containing a huge number of natural resouroe9. As 
the oceanographer, James Gordnar BllYB ns quoted 
by M. Barber, (Barber, 2001) 

CAMS 2004 

clearly giving a hint tbat there Is ati11 a conalder
able lack of research work to explore deep oceans. 
The main hurdle In deep sea exploration Is the 
Inability of human divers to reac:h these places. 
Underwater vebicles are thought to be a true !'&

placement of deep sea divers for oceon IIUl"Vl!)ing. 
In addition, tbey ore repeatedly beeo used in 
covert mission. and for mini!B clearing operations 
ae tbe world bas recently witnessed tbe uee of tbe 
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REMUS underwatar vehicle in the Iraqi CODfilct 
(Jordan, 2003). 

AUVa a:e aelf contlllned c:roft thal have cmhoard 
nav!gaticm, guidance and control syvtems. Thus 
the r&Dge of m!a&lona Is OD!y Um!ted by the on
board power supply. The nav!gat!.on system pro
video lllformat!on rolated to the target lll!d .... 
b!cle Itself, using onboerd eeneore such OB Inertial 
navigation system (INS), compass, pressure traDB
ducer etc. This Information Is fad to the guidance 
system wb!c:h by utll!s!ng aOm. guldence law gm. 
erate reference trajector!ee. The control system Is 
then ~to keep the vehicle on couree aa ·. 
spec!l!ed by the gu!denco system. A simp!s blook 
d!agro.m of the navigation, guidance and control 
system Is depleted in Figure 1. 

Fig. 1. Nav!gaticm, guidance lll!d control of a 
vehicle 

This paper Is mainly concerned with tbe control 
of an AUV. The control system d .. e!oped is a 
genetic elgoritbm (GA) hosed model predictive 
controller (MPC) uslns fu2zy decision functioDS. 
MPC wes originated and bas long been used in 
the proooee industry becauee of lte etrons robuet
"""" lll!d oomd:raint bandl!ng charaeteriet!Ca. Ae 
far oa the alltbmo are eoncerned, MPC on AUVs 
wullret simulated by Kwieelelowicz .t al. (2001) 
lll!d waa compared witb a proport!nnal demative 
(PD) lll!d on adaptive nemo-fuzzy infenmoe ~ 
tem (ANFIS) tuned eutopllot. The ree11!ta were 
found to be quite promising. Then Naeem and 
othere simulated a GA tuned MPC on en AUV 
for beading control (Noeem, 2002) lll!d for eubsca 
cable/pipeline tracking (Naeem d al., 2004). The 
reeulte demonstrated tbe robuatnms of the GA
MPC in the preeence of sea c:ummta. The objec
t!vo funet!on ueed to evaluate control act!om in 
botb ......, Wllll a simple quadratic oast funet!on 
Involving the output error, Input GDd tbe c:henge 
In input and can be ...,. In Equation !. 

H. 

J- L;e(k+i)TQe(k+i) 

subject to 
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.... 
Ho 

+I; Ll.u(k + i)T R.O.u(k + i) ... , 
H• 

+ L;u(k+i)TSu(k+i) (1) ... , 

u1 S u{k+i) S u• 

Ll.u1 S Au(k + i) S Au• 

where tbe IJUperscripte llll!d u repreeenta tbe lower 
and upper bounds reepectlvely. Q ill the weight ou 
the prediction error 

e(k) = 9(k)- w(k) (2) 

where Ul(k) is tbe reforenc:e or the deelred aetpo!nt. 
R and S ""' weights on the c:henge in the Input 
Au and megnltude of the Input u respectm!y. 

Herein, tbe control ectione are evaluated by using 
fuzzy membereb!p funet!ons tbat represent the 
goals lll!d couatrainte of tbe problem aimllar to 
a comaut!onal coet function In Equation 1. Fuzzy 
objeet!vo functlone In predictive control have been 
Investigated (Souaa lll!d Kaymak, 2001) and tbe 
ree11!t!ng non COlMlX optimization problem was 
aolvod uaing a Branch lll!d Bound (B&B) algo. 
rlthm. Tbe work preoeuted here ill IlD -., of 
the previoll!l study. 

2. MODEL PREDICTIVE CONTROL 

MPC rofem to a close of algorithms that compute 
a sequenoe of manipulated variable adjustments 
In order to optlmlze the future behaviour of a 
plent. Originally devo!oped to meet the specialised 
control needs of power plenta lll!d petroleum r&

liner!es, MPC tsc1mo1ogy con now be found In a 
wide verletY of appllcot!on areas Including c:hem
lcala, food ~. ontomotl .... - lll!d 
metallurgy (Qin and Badguwel!, 2000), to no.me 
but a few. 

The development of MPC can be traced beck 
to 1978 elter the publicot!on of the paper by 
Rlc:halst .tal. (1978). They no.med their o!goritbm 
model predictive beurlstlc control (MPHC) and 
it woo auoceeefully applied to a fluid catalytic 
creddns 1Diit main fract!ona1or co!nmn, a power 
plaut steam generator lll!d a poly-vln,yi chloride 
plaut. Then Cutler lll!d Ramlllrer from the Shell 
011 Company In 1979 and 1980 developed their 
own Independent MPC technology refmred to oa 
d)'DII2llic lllatrlx control (DMC) (Cnt!er and R&
maker, 1980), and tbey ebowed reeulta from a fur
.,... temperature control appllcot!on to demon
strate !mprovod control quality. Howovar, another 
farm of MPC called generalised prediet!vo control 
(GPC) (Clarke a aL, 1987a; Clarke a aL, 19876) 
Is employud In tb!e paper. The fundo.mental dif
ference between all tbeee tecbuiquee Is the type of 
model used lll!d the coet function being optlmlzed. 

The Jlroce5ll output IB predicted by UBb!g a model 
of tbe proc:eee to be controlled. Any model that d&
lltribeo tbe ralsiionsb!p between the .Input lll!d the 
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output of the process ean be used. FUrther 1f the 
process is subject to disturbances, a disturbance 
or noise model can be added to the process model. 
In order to define how well the predicted prcJCe9!l 

output tracks the refarenc:e trajectory, a criterion 
function la uaed es defined in Equation I. The 
optJ.mal controller output sequanoe Uopt: over the 
predlction horizon iB obtnined by m!nlmlsatlon of 
J with respect to u. AB a result the future tracking 
error is mlnimised. If there is no model mismatch 
i.e. tbe model is Identical to tbe process and there 
are no disturbances and constraints, the proce89 
will tradt the reference trajectory exactly on the 
sampling insu>Dta. Tbe structure of an MPC la 
shown in Figure 2 and lt consists of the following 
three steps. -:···••n•••j:;tr\119fW,,.,,,,1 

- . -

Fig. 2. Structure of a model predictive controller 

{!) Explicit use of a model to prediet the process 
output along a future time horizon (Predic
tion Horizon). 

(2} Calculation of a control sequence along a 
future time horizon (Control Horizon, H,:), 
wo~e·~~in~ 

(3) A receding horizon strategy oo that ot each 
instant the horizon is moved towards the 
future, ·which Involves tho application of the 
first control signal of the sequence calculated 
at each step. The strategy is illustro.ted as 
shown in F'tgure 3. 

-. 
Fig. 3. Predicted output and the c:orresponding 

optimum input over a horizon Hp, where u{k} 
is the optimum input, y(k) io the predicted 
output, and y(k), process output 
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Tbe oelect!on of MPC to oontro1 an AUV is 
attributed to several factoro. Some of them aro 
lioted below. 

• Tho concept la equally applicable to single
Input, single-output (SISO) ao well as multi· 
Input, multi-output oyotems {MIMO). 

• MPC can ho applied to lineor and nonllnear 
oyotems. 

• It can handle constraiuts 1n a oyotematlc way 
during the controller deoign. 

• Tbe controller is designed ot every oampling 
!nota.nt so disturbances can eaoily ho dealt 
with. 

Tbe performan~ Index is optim!zed UBing a GA 
wblch Is described next. 

!.1 Genetic Algorithm. 

GAB inspired by Darwin!on theory, are power. 
ful non-deterministic iterative eearch beur!atico. 
GAs operate on a population consisting of en .. 
coded strings, each string represonta a solution. 
Tbe croesover operator is uaed on these strings to 
obtain new solutions, which inherits tbe good and 
bad properties of their parent solutions. Each so
lution has a fitness value, aolutlons having h!gher 
fitness values aro most Ukely to survive for tbe 
next generation. The mutation operator is applied 
to produoe new charactorist!ce, which are not 
presem ln the parent oolutlons. Tbe whole pro
cedure is repeated until 110 further impl'OVellllmt 
1!1 observed or run time exceeds to some threshold, 
{Salt and YoUBBef, 1999). The fiowchart of a simple 
GA is presented ln Figure 4. 

Fig. 4. Flow chart of a aimple genetic algorithm 

3. FUzzy OBJECTIVE FUNCTION 

The fuzzy !ogle tradltionally used as if·rkn rules 
can be translated to some design specifications U&-
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ing human ezpertlse. These design opeclllcatlons 
""' reproaentod ln terms of an objectlva funl:tlon 
whlch is IDQ%8 lntultlva than OODhmtlonal cost 
function. There aro &svoral oiher reaaoDS to choooo 
fuzzy memhorsblp values as an objoctiw fnnctlon 
to bo optlml2ed ln a predictlve oontrol p>Oblem. 

Some of tbem ""' lioted below 

• FUzzy objective fnnctions aro easy to under
ato.nd 

• Soft and hard constra!nts can ho imp!&. 
mentod using the same memhorsblp function 

• No norm•liea+ion is roquirad for tbe terms 
ln tbe objoctlva fnnction as the membersblp 
function automatically maps tbe input apa<e 
to a [D-1] 1nterval 

• Eaoy to tune ao the ftightlng matrices .for 
lndlvldnal terms aro not needed 

• Tbe aggregs:ion operator DOnnally roqu!reo 
only a singlo tnning parameter for all tbe 
terms 

In this work, memborsbip functions for the ontput 
ezror and Input "Variables aro considered. An ex· 
ponentlal m.embersblp funl:tlon has hooD elected 

·for tbo outpnt error whUe tho!nput is repreoentec! 
by a trapezoldoJ membarsbip function os shown 
1n Flgnres 5 and 6 respect!voly. Tbe steepness of 
tbe oxporumtla.! plot can ho adjusted UBing tbe 
s. vmiable and tlma la an impo:tant tnning pa. 
rameter. Tbe trapezoid&! memhorsblp function ln 
Figure 8 .automatically !mplemonta tbe ooft and 
hard oonstre.!nta, wbero u.... ropre&eDta the max· 
imum allowable input and (u.... - ..._,....,.,) la 
tbo input bound which is allowed but not desired. 

~ 
' 

Fig. 6. Output error membersblp fnnctlon 

9.1 Agll'"!lation Operator 

Finally, a decislon fnnction is required which al
!owo for Interaction amongst dllferent criteria in 
tbe object!w function. A variety of _,.tjon 
opero%0rll can ho choaon w ho noed in fuzzy pre
dictive control such ao min and produc:ll-norm. A 
good account of various aggregation operators and 
the advantages and d!aadvantages of tbe!r use in 

436 

.. 

Flg. 6. 'lhpezoldal memhorahlp function for Input 
variable 

pn>dietlva oontrol have hooD documantod (Sousa 
.. and Kaymak, 200!). 

Hero!n, tbe Yllll'!f 11-norm has been choaon ao the 
decislon function since it UIIOII only one parameter 
w tune the objoctlva function and benco 1ntero<:t 
IIIDODgllt dllferent c:riterla. Mareowr, tb1s operotor 
cowra tbe entire range of 11-nanns, i.e., it goes 
from tbe drastle !ntorsec:t!on to tbo m1n1mum 
operator (Sousa and Kaymak, 2001). Tbe fuzzy 
oast funl:tlon and Yllll'!f 1-norm aro given by 
Equol:ions 3 and 4 respectlvoly. 

B• Ho 

11. = :L(!l.<~<k+ •>>l..,. + :L<P.<u<k +•m"" 
'-1 i•l 

(3) 

(4) 

where P. = 1 - 1J and wy > 0 is the tuning 
parameter 

4. SIMULATION RESULTS 

The propooed control algorithm is applied to an 
AUV oimulatlon model of the Hammerlat4d vehi
cle being doveloped ao a eombinod p>Oject ot tbe 
Uniwroitloo of Plymouth and Cranfield, UK. Tbe 
whlc:lo has a torpedo ohaped hnU apptQX!mately 
3 motMs long and one-tbinj of a metze 1n diam
eter. Tbe )'llW dynamlce of the wbicle has hoen 
obtained from toot trials at WWen Lake, Milton 
Keyn<oo, UK and oystem id-fimt!on tochnlquee 
were applied to extrac& a yaw-rudder cha=el 
model given by Equation 5 

G( ) = -0.04226q-1 + 0.0034359_, 
q J-1.765q-1 + 0.76529"' 

(6) 

wbere the dota was B&!Dpled at a rate of lH z 
with the vehicle ~ OD tbe surf~ at 
a flxed speed of approximately 2 knots. The fol. 
!owing steps describe the operation of a GA oo an 
optlmization toolln MPC followed by simulation 
results for variouo settingo. 

(1} Evaluate process outputs UBing the process 
model. 
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{2) Use a GA search to find tbeoptimal control 
moves which optimlze the cost function and 
satisfy process constraints. Thls can be ao
compllilhed as follows. 
(a) generate o. set of ro.ndom possible control 

moves. 
(b) find the corr<Spondlng proeess outputs 

for all possible control moves using the 
process model. 

(c) evaluate the fltnes!l of each oolution using 
the fuzzy cost function .a.nd the proCC89 
constraints. 

(d) apply the genetic operetors (select.ion, 
crossover and mutation) to produce new 
generation of pDSSible solutions. Stocb.as-
tic universal aampllng and olngle point 
croosover is used for parents selection 
and mating respectively. 

(e) repent until predeflned number of gener
ations is reached and thU5 the optimal 
eoutrol moves a:e determ.ined. 

(3) Apply tbo optimal coDtrol moves genereted 
in step 2 to the process. 

(4) Repeat stepa 1 to 3 for time step k +I. 

The bard constraints on the rudder are ±22" 
therefore ~ and u:.a= in Figure 6 are taken as 
-:no and +22° respectively. However, the control 
is only allowed to move freely within the range 
±2QO to o.void so.turo.tion o.nd hence any nonllnear 
behaviour. Therefore, u!.r.m-ocn.c in Figure 6ls set 
equal to ±20°. S!mulations are carried out first for 
a step change in bcou!ing. The ""hide is launched 
with an arbitrary orientation nnd. is required to 
follow a spec:lfied beou!ing. Tbo parameters s. and 
wy are cbooen as 0.5 and 2 respectively whereas 
the GA parameters are provided in Tabla 1 and 
are selected to minimise the colltrol e!fort and 
increase the speed of response. The step response 
of the c1nsed loop system is depleted in Figure 7 
abowing that the vehicle is clnsaly following the 
set point with little overShoot and zero steady 
state error. The canard demnnd is also sbO'W'D in 
F"JgUre 8 and is within the spec:lfied constrn!nts. 

Table I. GA-MPC tuning pnramters 

Parameters ::Step n!SpCMO W"' point 
follcwiDg 

H, 10 20 
Ho I I 
Muta1ion prob. 0.008 0.008 
Crossover prcb. 0.1 0.1 
No. of pneradoDD I 3 
Population me 100 2>0 -- 0.0 0.1 

Next, the control law is simulated for wo.y point 
following where the intent is to track all the epec
i.fied way points despite the presence of distur
bances. A sea current disturbance is a.ssumed. to 
be acting on the vehicle in the positive y-direction 

CAMS 2004 

--
Fig. 7. Step change in boB4ing response of the 

proposed controller. 

. 
" 

r 
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--
Fig. 8. Optimal rudder deflectio1111 generated by 

the proposed controller. 

and has a magnitude of 0.5m/ a. The initial AUV 
coorcliDateo in the two-dlmenB!onal frame of ref
erence Is (0,10) wbile the way points ere cbo
een to be nt (100, 60), (300, 60), (600, 150) and 
(500, 300). The noxt way point is selected when 
the vehicle enters a circle of acceptance around 
the way point of radiue 10m. As will be Bhcwn, the 
way point following ls equivalent to tro<:king line 
of sight (LOS) augle between any two given way 
points. The GA parametero for thJs case .ire also 
given in Table 1 wbile S, and wy are selected ee 
1.5 and 1.8 respectively. The resulting closed loop 
performADce is lllustrated in Figure 9 Showing the 
affects of sea currents on vehicle's trajectory. The 
disturbance is striving to knock ths AUV off the 
track, however, tbe controller Is quite robust to 
follow all tbo wny points. The AUV trajectory 
through the way points without any sea currents 
is also illustrated in Figure 9 which is closely fol
lowing the Ideal path. The control efl"ort depicted 
in Figure 10 Shows vigoroue rudder movements 
in response to the change in vehicle's beouling 
due to aen currents, however, it never vtola.tes the 
Imposed constraints. The beouling angle or WS 
angle between tbo actual AUV position and wey 
points Shown in Figure 11 is wzying continuously 
because of the addition of disturbances. 

. -------- --._ ...... _ 
Fig. 9. AUV and target position co-ordlnatee with 

- cmrent disturbanos In the positive y
directknL 

I 
I 
I 

Fig. 10. lluddsr deflections ~ by the con
traDer needed to tra<k the way points with 
ooa cmrent disturbance in the positi"" y
dlreetlon. 

Fig. 11. Desired beading angles to the way points 
Showing the affects of 101& ctment disturbance 

CONCLUDING REMARKs 

The tradltlonal fuzzy logic betoed on IJ.then ruJee 
has been used for decision making In an MPC 
framework to control an AUV. A GA ls nsed to 
optlmlze the resulting fuzzy objectlvo furu:tlon. 
Tbo advantage& of asing the proposed ocheme 
are praiOIIted. The GA optlmlzed fuzzy MPC 
have been applled to an AUV slmnlatlon dynamic 
model betoed on the Hammerlaead veblcle being 

d...Jopedjolntly at the Unlveraltles ofPlymoDth 
and Cranfleld, UK and will eventually he tested 
on the rsal vehicle. 
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ADAPITVE AUV CONTROL FOR OPI'IMIZED SWATHE LASER STRIPE IMAGING 

F R Do.llldsb*, W Naeemt, S TetJow•, R L Allwood*, R Suttont 

•Offshore Technology Centre, Crarrfte/d University, Beds, UK 

fSchool of Engineering. The University of Plymouth, Plymouth. D<von, UK 

Abstract: As part of a three year collaborative research project 1\mclod by EPSRC involviog bo1h Clmifield UDivcmity 
and the University of PI)'D!Outh. a Deep Mobile TBIBet (DMTS) tozpedo-ohoped UDderwater vcblcle has beeD 
developed into an AUV called Hammerhead. ID addition ID several low cost navigation sens0111, the AUV has beeD 
installed with a !asct-BSSistecl imaging and aavisation sensor. Tliis sensor is based on the laser stripe illumination 
(LSI) methodology pt<viou.!ily developed at Cnmfield UDivcmity (Tetlow lllld Allwoocl, 1995), providing cmhanced 
viewing of the sec bed below the vcblcle. However, it also providca =I time altitude aud accbed-<elativetnmslational 
velocity date 10 the navigation system during the mission (Dalglcish et al, 2003), as well as sather images ID produce 
a post mission enhanced optical waterfhll image of a surveyed """' (Dalgleish et al, 2004). 

For a particular WBicr type lllld clarity, the optimal stand-off distance (altitude lllld henco BW81be) between the LSI lllld 
the seabcd will vary. The optimisation problem is esaentially the pumuit of a balODco between image aurvoy 
cfliciency lllld image quality. This paper dcacribes the development of BD automatic process for monitoring the LSl 
image quality to determine the optimum altitude at which 10 fly, aud henceforth instruct the AUV control aystt:m to 
do so. In this \Wy, swathe may be optimiacd for maximum seabcd covemge and more effic:iem UBD of AUV time. 1bo 
paper also present& simulation result& from a genetic algorithm (OA) based model predictive control (MPC) 
methodology used to truck the rcqWrcd altitude provided by this process. Copyright C 1004 IF AC 

Keywords:· navigation, autonomous, real-time, image sCDBOIII, model-based contro~ predictive 
control, image processing 

I. INTRODUCTION 

1.1 Background 

Although underwater vision systems cmly cover a 
small area when compared with wide swathe 
acoustic systems, the high resolution lllld case of 
inteqli"Ctation offered by optical tcchniqucs may be 
necessary for certain seabed survey or identification 
U!Sics. 

However. the performJlllce of these w::r.derwater 
vision systems is affected by the scattering and 
absorption properties of the water through which 
they ore viewing. Other than in shallow waa:r during 
deytime when ambient lighting may be sufficient, 
light has to be provided artificially. The conventional 
solution, which usually consists of a wide-angle lamp 
as a source, is limited by both: 
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(i) absorption of the light as it propagates 
througb water ID tile target (and back asain). 

(ii) oear-fiold bac1cscatter of the light 
particularly when the soun:e aud rocciver 
are in close proximity. 

la the case where the intensity of scalll:rod Hgbt ill 
such that it veils the image, the aystt:m is said to be 
'contrust limited'. An increase in the separation 
between the camera lllld the lamp can roducc the 
near-field backscaltercd light, but then the system 
may become limited by absorption wbcro the 
rciUming signal is too weal< to be dctectcd. ID this 
case the aystt:m is said to be 'pOwer limited'. 
IDcreasing tho power of the lamp does not 
significantly improve the situation due to the 
exponential decay of li8ht per unit distance. 
Furthermore, the spreading c:ffcct of tho light beam 
and the finite aperture of a c:amem lens further reduce 
the incoming power to the roccivcr. 

Choosing the sourca wavelength to match the 
optimal bluo-sr=n trommisaion wlDdow of wat.r, 

has driven ...- - tawmds ~· 
light ....,..., in panicular - lasers, whole 
several syBtems have beea dosigoed lllld lcsted. 
These syBtems fhll into three moiD catcgorios: 

(i) l'lll18" sated 
(il) ayncbmlous scannins 
(iii) non-aynchronous BCaiiiiing 

Range sating exploits the 'time of flight' of an 
illumincting light pulse in scawale: lllld teqUires 
precise sating of bo1h tho light SOIUCO and the 
receiver. (Foumier et al., 1994) (Swartz at al, 1993) 

Synchronous SCIIIIIIiDg or Laser Line Scan (LLS) 
methods exploit the highly collimated Dllllue of a 
laser beam by uslng a D.Urow fiold of view (FOV) 
rocciverto !nick tho spot at blgh speed. thus teducing 
bacbcattorocl and forward acatt=d light. (Stnmd et 
al, 1996) (Coles 1997) 

A less oxpcnsive and sophisticated al.temativo is to 
optically or mecbanjcaJJy form 8 fim of light as a 
source lllld use a standard receiver such aa a low light 
charged coupled device (CCD) camera with a wide 
angle lena. Image pmcesaing techniques can be used 
to partially _, the forward lllld back IIC81ImOd 
light. These mcthocls are known aa non-aynchronous 
sccnning syBtems or lasct stripe illumination systems 
(LSI), of which a couple of syatcma bave been 
dovaloped (Tetlow & Allwoocl, 1995) (Langcbrake c:1 
al, 20()(1). ID addition, more aophisticatcd pulsed 
laser variations exist (Moore et al., 2000~ 

From computor aimulationa (1affc lllld Dlmn, 1988) 
these DOD-syDchronous BC8IIning syatcma become 
limited between 5 and 7 aummation lengths. 
compared wi1h 2 to 4 for a conventionally 
jlbnnjngted system. 

The Cnmlield LSJ system has been foUDd to 
significantly improve image contrast over 
conventional imaging (Tetlow, 1993). Furthctmon:, 
the images produced...., approximatoly optically flat, 
meaning they Ollhibit even illumination ....,.. the 
horizontal FOV. Also, the graner depth of view 
allowa mid-water objccta such as fish or objccta at 
various dist&nces to be seen, lllld the structured 
Dllllue of the illuminalion allowa aeabed bathymctry 
to bo derived from the image. Likewise, from the 
intensity of tho rciUming li8ht it ill possible to 
produce simulbmoous reflectivity profiles of the 
scabed. 

Duo to the filet that tho Cnmfield LSI system uses the 
entire field of view (FOV) of a standard 2-D low 
Iigh1 CCD """"""' there is much """" infonnation 
being sathcred thanjuBI the stripe (as long as the area 
outwith the stripe la bcing illuminated either by 
ambicDt lighl or an additional lamp, lllld these .,... 
of !he image are not OODirastlimitcd). As the vcblclc 
passea over the aeabed it la possible to lnulk the 
movement of c:eriBin rogiona (which contain fealura 
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or palloms of toxtun:) througb the FOV between 
auccessive images. Knowing the distaD«> to the 
SOBbed (altitude) from the laser b:iangulation process, 
it is possible to determine the displacoment of the 
vcblcle over the ground, lllld with IICCUmle 
knowlodgc of the time between images, 3-D terrain
relative velocity profiles can be genorated. (Dalgleish 
c:tal, 2003) 

Ono of the distinct differoDces of the LSl system over 
Laser Line Scan (LLS) system is that c1uo to the fhct 
that the rocciver is a standard 2-D CCD camera with 
a wide Geld of view, the aystt:m has a l'lll18" of 
altitudes above the acabcd over which it is able ro 
operata (3 to 18 mc:tros for a recent CODligumliOD), 
rather than baviog a tightly CODStmincd laser 
triangularion gaomcuy consistent with a 1-D CCD 
camora or narrow FOV photo-multiplier tube (PMT) 
that are utilised by LLS systems, requiring complex 
clectro-optical apctture assemblies which are alnvod 
off onboard altimetem. lndocd, some of these 
systems even require the detector lllld rccclver 
gccmctry to be manually adjusted prior to the 
mission ID be able ID ~ images. This adjustment 
is .based on knowledge of the water type and from 
pt<vious oxpcricnce. 

Bcing a ailnple robust system, with a minimum of 
moving part&, it waa felt that LSl would be an idoal 
imagi.ag system to install OD BD AUV tD be used in 
medimn turbid to clear wat.r. 

1.2 EPSRC Funded Hammerhead A UJI Prcgrt~mmS 

As part of a three year collahorative research project 
1\mclod by EPSRC involviog both Cranfiold 
Univcmity lllld the Univeraity of Plymouth, a Deep 
Mobile Target (DMTS) tDipodo-sbapccl UDderwater 
vcblcle has beeD dovcloped into an AUV with BD 
in~ LSI system. The AUV is called 
Hammerhead. 

Tho navigation systan being developed at the 
University of Plymouth is based on a multkensor 
date filsion (MSDF) algorithm using a variety of low 
cost seD!IOIII. Dtaing an actual surveying task this 
subsystan will be cmhaneod by date from the vision 
system, with the JI1UPOSO of siding navigation and 
optimising the imaging parametera. Once tho 
navigation date has beea suitably processed it ill fed 
to the guidance and control aystt:m for the 
appropriate action. 

A summary of the AUV date and image acquisition 
system I!Dd intcsmtcd imaging system is given in 
tai>lo I. The tnotivation bcblnd using a amall form 
factor PC-based system waa driven by the pc=ivcd 
ultima!o use of the AUV; that being an ~c 
test.-bed vcblcle where it is approprlato that 
applications developed 011 PC-based hazdware am be 
tested directly and easily on the AUV. 

The adjustment to imaging paramCII:r!l and switching 
the laser lllld lamp on lllld off is either pcrfomtod 
manually (on the surfit<:o) via a wireless Ethernet link 



or automatically from the host computer based 011 an 
image quality control computer vision application or 
a trigger from the ooboard sonar altimeter. The entire 
system iJ powered from both :!:12 volt aDd 12 volt 
supplies provided by lead acid batteries. 

Table 1 Swnmarv of Hammerhead AUV data and ' 
ima1>e aco•li•itinn """tern whh int~""''""' ·_en 

Luer IOOmW (cw) frequency doubled 
diode ~ Nd:YAO 1~32nml 

Lllh< ~OW dlcbn>ic baloocn 12V 
Cam en Monochrome 113" low ll&ht CCD 

Scnai•tivity 0.0001 Lux (AGC on) 
AuiDmatic control of AOC loa/om 

Scanner :~ctn!m7.:'~ 
La\1 AuiDmatic con<rol of iris. fOCUJ aod zoom 
Com- TCM2 tilt...O~C.S electroooc comous 
Frame o,.bbc< Nalional lnJtnimcaiJ PC!-1409 

lma~ :;:ixcla) la $76x768. 
!maRe• il8orl0bit 

Data ~!ll_uiaitioa NationallnltrumcniJ PCI-60241! 
Computer Micro A iX molhcrboonl 

AMD 2800. proc:cuor 
1024MB RAM 
1200B Hard Drive 

Software WiDclow>"" 2000 f'n>(cuional 
LabVll!W 6.1 Full Dc:vclopmmt Syatcm 
IMAO Visioc Dovcloomcnt Module 6.0.1 

J .J Oprtmised Swathe LSJ 

For a particular walo:r type and clruity, the optimal 
range between the LSI and the seabed will vary. A3 
the range (or altirude) increases, the awathe (or width 
of a single line of survey coverage) also increases. 
The optimisation problem iJ essentially the pursuit of 
a balance between imago survey efficiency aDd 
image quality. By adopting a higher survey altirude, 
LSI allows a larger swathe to be surveyed. This 
reduces the time needed to survey a particular area. 
However, the quality of the images produced may 
not be optimal. lt is clear that there is a balance to be 
met in order to optimise the system. 

lt can be seen from figure 
proportional to the 

that the FOV is 
altirude (Z). 

Fig. 1. Geometry for triangulation ranging and 
swathe width determination. 

Therefore, if it is possible to increase the imaging 
range of operation by one metre or 200/o, for 
example, then this will approximately reduce the 
survey time by the same amount For the 
Hammerhead A UV, which cruises at 2.5 knots, the 
theoretical time taken to 'lawnmower' survey a 
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square D8lltical mile at a nominal altitude of S metres 

with 1 0% survey line overlap and a 30 second tum 
arotmd time is approximalely SO hours. With the 
awathe optimisation applied the time saved is I 0 
hours. 

Now consider the case when the LSI system is too 
close to the aeabed and the stripe is too bright leading 
to 'blooming' (when a pixel overflows with 
electrons and leaks into adjacent pixeb) in the CCD 
camera adveraely affecting image quality. Although 
it is possible to automatically close the iris, in this 
case, it is more effective, and indeed efficient to 
increase the altitude 1• 

Conversely, when the LSI system is too far away 
from the seahcd, the si!Wition can either become 
power limited or contrast limited, depending on the 
rurbidity of the water. For the purpose of this paper, 
where clearer water iJ being considered, the power 
limited scenario is investigated only. The role of the 
vision algorithm is to determine the optimality of the 
images (aDd resulting composite images) based on 
the mean intensity value of the extracted laser stripes, 
and to instruct the AW control system to elter its 
altirudc appropriately. 

J .4 Alritude controller 

A genetic algorithm (.OA) based model predictive 
control (MPC) methodology has been developed to 
traclr: the required altitude provided by the imaging 
sensor. The MPC technique has previously been 
successfully implemented on the Hammerhead 
vehicle in the horizontal plaoc (Naocm et al., 2004). 
Herein, an MPC altitude (depth) controller has been 
developed to !raCk the gujdance commands from the 
vision system. Due to lank of space, the reader is 
referred to Naeem et al. (2004) for a comprehensive 
review on the design of a robust GA based controller. 

A Hammerhead depth clynamic model was extracted 
using system identification techniques on actual 
vehicle trials data. ln this case, since the requirement 
is to maintain a certain altilllde (not depth), the depth 
information can be extracted from the altitude data. 
ln practice, the presaure sensor on board the AUV 
providea the depth of the vehicle below the sea 
surface whereas the imaging sensor provides the 
altirude information above the sea bed. These two 
quantities are added to obtain the depth of the sea 
bed. The desired altirude is then subtracted from the 
result to find the desired depth. 

J.J Overview 

This paper describes a heuristic intensity-based 
technique to automatically determine if the image 
parameters are optimal, along with the AUV control 
demand required to remedy the siruation. Simulation 

1 In~. clooiGa tbo iria in.....,. tbo dcp<b of COcus tlms 
i>rfD1iac tbo- field In., f'oc:ul, with tbo elfCCI or tunbcr 
clcsrodiuclho iJDoce. 

rcsul!l for the MPC OA altitude controller are then 
prcsc~~ted. Finally, the futuro work necesary to 
properly develop and test tho sysbeln is ptUCDted, 
together with real-time AUV cootrol uses of the 
techniques. 

2. LASER STRIPE CHARACTERISTICS 

The LSl sysbeln onboard the Hammerhead AUV is 
used for both imaging aDd oavigation purposes. For 
2-D composite water.fa1l imaging, such as tho ones 
shown in figure 2, it is necesaary to be able to extract 
the stripe by intclllity threshold techniques. whilst 
retaining the maximum amOODt of shape and 
intenlity detail within the stripe as possible. For 
navigation pwpo1e1 (altirude detennination), shown 
in figure l, it is the IICCUI'IIC}' at which the stripe it3elf 
can be extracted from the imago that is important 

ln order to aatisfy both requirements, the emphasis is 
on accurately cx:tracting the stripe whilst preserving 
the inteDJity variation within the stripe, thus not 
losing any visual information. From a aet of trials at 
the Deep Wave Basin at IFREMER. in Brest 
(Dalgloish et al, 2003), it was poaaible to take same 
images at varioua alli!udes. Figure 2 shows a 
composite waterfall image which was constructed by 
stitching the ex1mCtCd stripe region togctber from a 
sequence of 600 consecutive images taken in filleled 
sea water at an altitude of 6 metres aDd velocity of0.5 
ms1• With a horizontal angle of view (in water) of 
over 40 degrees, the swathe was 4.5 metres wide. 
This composite image contains a wide intensity 

with sufficient intclllity 
information. 

A3 the facility at Brest contained filleled seawatcr, 
the level of scattering was low. Examples of theae 
raw images which were taken at night with the 
camera automatic gain control (AOC) aet to 'off', are 
shown in figure 3. 

It can be seen that as the altitude incn:ascs, the 
intclllity of the stripe reduces (mainly due to 
ahlorption efteeta). The image at 4 metrea exhibits 
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slight 'blooming', whilst the image taken at 16 
lower than S0.2 

Fig. 3. Raw images taken at different altitudes with 
zero ambient lighting. ( clockwiae from top left: 
4m, Sm, 12m, 16m, 14m, lOm) 

Figure 4 shows the variation in mean intensity of the 
stripe at different altirudes. 

Wr---------------------~ -.. . .. 
i: 
J •• 

.. 

Fia. 4. Mean inten1ity of laser stripe at differe:Dt 
altirudes 

The mean intensity of the stripe and the 
corresponding position (to determine the altirude) is 
calculate by detecting the peak value of the rcruming 
signal from the seabcd to sub-pixel accuracy using an 
alaorithm that fits a quadratic polynomial to the 
stripe region of each vertical column of the image 
array. The number of data points used in the fit is 
specified by width. For each peak, the quadratic tit iJ 
tested against the threshold leveL Peaks with heights 
lower than the threshold level arc ignored. Once the 
peak intensity value has been established from each 
column, the mean can be calculated. 

With the exception of the image taken at 4 metres, 
the thickness of the stripe in pixels is approximately 
constant for the remaining images. This is due to 
laser beam divergence being cancelled out by the 
effect of increasing the range and therefore the width 
of the target. 

z ~ th!a popor, u tbo ~-'""'.bit, tbo 
moxlmwD im=&ity la a doc:imol valuo of~5. 



3. AUI'OMATICALLYDETERMININO 
OPTIMUM STRIPE CHARACTERISTICS 

It C1lll be seen from the clear water images that very 
little sc:anc::ring is pre5e:DL This allows the extmction 
of the stripe by inteDsity threshold techniques, even 
down to low stripe intensity vaJues. However, at 
these levels of intensity the imaging capabililies are 
nnt optimal, nnd it is likely that impol1nDt visual 
iofonna.tion may still be lOSt. In order to avoid this it 
is necessary for the system. to detc:rmine and instruct 
the AUV to fly at DD altitude at wbicb the intensity of 
the stripe ia optimal, both in terms of ease of 
extrnction and of imaging quality. 

W'bc:n manunlly adjusting the threshold level in order 
to robustly extract the stripe from an image wbicb 
contains a distinct stripe. it is usual to use a threshold 
value of approximately I 00 in order to reject 
exlrtlneous ligbt Unless bigbly reflective targets are 
present. tbe maximum intensity level is unlikely to 
saturate at 255, perluJpo peaking at 250. Therefore 
the mnge of greyscale levels for the stripe is 
approximately ISO. ID the optimal case and assuming 
average target reflectivity along the lt:ngth of the 
illuminated region, the mean value of the extracted 
stripe is likely to be abow 175, wbicb is a useful and 
readily availilble metric for this purpose. · 
Furthermore, it cnn be seca in figure 4 that a mean 
inteosity vnlue of 175 corresponds to an altitude of 6 
metres (N.B. the acceptnblc image in figure 2 wu 
takeo at 6 metres). 

lt could be argued that prediction of the stripe 
thickness is a usefUl tool to aid in tbc stnpe 
excraction process. However, it has previously been 
detennined that boom divergence is largely affected 
by water turbidity and target reflectivity, rendering it 
uareliable for this purpose (Spours, 2000) 
(MacAdam-Sproat, 2004). 

The use of the mean intenSity along the extracted 
laser stripe is the real essence of this approach. 

4. SlMULATION RESULTS 

lt is assumed that the vehicle was launched from the 
surface and is required to follow a certain altitude as 
commanded by the vision system to maintnin the 
image quality'. Tbe lnljectory or guidance 
commands obtained by the imaging sensor and the 
Hammerhead response arc depicted in FigureS. 

Clearly, the lt'Djectmy generated is not entirely 
amootb. However, the controller is capable of 
following it, ignoring the higb frequency 
contamination which i.9 a measure of the robustnesg 
of the controller to externnl disturbances. Tbe control 
effort (hydroplane deOections) produced by the 
controller is illustrated in Figure 6 wbicb never 
violates the actuator constraint> of ±25°. Tbe change 
in deflection angle i.9 also evident from the figure I1S 

3 "Ibe o:bcJud IIOD8r altil:l:tdc:r la 1I8Cd to guide the veh.ic:ICI UDtil a 
via:ual mum fnrm dui acabed. it dalccccd 
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the vcbiclo manoeuvres with n:spect to the cbange iD 
re£= depth. 

J,: 
! 

t 
Fig. S. Tbc tmjectory or guidan<c commands 

obiBined by the lmaging sensor and the AUV 
response. 

~ . - - - - - - -- ---Fig. 6. Hydroplane deOections produced by the 
controller. 

5. CONCLUSIONS AND FUTURE WORK. 

Tbe discussion in this paper is based on images 
obtained during a set of trials wbon: the wa1« 
turbidity was low (the total •-on cocflicient 
being estimated at 0.2m"), typically oceanic. 
Therefore only the powc: limited scenario is 
considered. However, the author and others are 
currently performing seawatm acceptance trials for 
the Hammcrbead AUV, and it is berCn iD1=Ied to 
further refiDe the swad!e optimisation algorithms to 
accommodate the likely cotllraSt limited scenario 
wbicb can result from the bigber level of acaltering 
due to these coastal ccmditi.ons. lb.is is in zm.ticipation 
of real-time field testing of the swathe optimisation 
controller, the promising illitial results from wbicb 
are described in this paper. 

ID turbid estuarine water wbere the total Bltenllalion 
cnef!icient can be petbaps 0.6m'1 and the situation 
become contrast limited, the l1lility of the LSI system 
is reduced significantly. Nevertheless, work oxistB iD 
wbicb the task of extracting the stripe iD VC')I tlltbid 
wau. is addressed. (TeUow, 1993) (MacAdam
Sprollt, 2004). However, the methods used are not 
deemed suitable for real-time imago processing, sueb 
as that required wben deploying the LSI system from 
anAtN. 

Having extracted the stripe from a raw image, the 
most imponant information conlained iD the stripe is 

the amount of intonsity delaiL In avorage !utlridity 
-it bas been detamined !bat llpp!llltimatel only 
the 1Dp quarter of greysca1es are used iD the 
CODstrw:tion of the composite Images. Tbis is due to 
the fild that it is necessary to threabold abova a 
cetlaiD value to =lude the noise from annmd the 
stripe rag;on; and that the maximum intensity along 
tbe stripe iD an optimum image Is usually aligbtly 
less than the bigbest white value. J'be.work iD this 
paper used 8 bit images. Therefore this mentl9 that 
only aboW 60 cll1faaJ1 levels of greysca1e are 
repMSOnted iD the waledBII images. Altbougb it is 
possible 10 impmva the dyDamic l'IIDge of tha 
waledBII images by stretcbiDg the ocmtrast (Nevis, 
1999), a = suitable aoluUon is found in using a 
bigber bit depth of digitisatiOD. Indeed, in the 
forthcoming trials the aWbor bas made provision for 
I 0 bit images. 

ID the ...,. fl1tulo, a act of confined wau. trials bave 
the ,;.., of estal>liabiDs the tmbidity limits of 
operation of the system in -., of extracting the 
stripe for accumte altitude detetmination. Tbe 
resolving capability of !be camposite imaging 
algorithms will also be evaluated as the turbidity 
in......., In order to validate a system model, lhe 
tolal attenuation cocflici=t will be - during 
lb... oxperimetds, When perfmming open water 
trials lho altitude of the AUV will also be meuured 
with a IIODIIr altimeter, wbicb will be compared to the 
LSI system. In very turbid wau. this will also be 
used to Jl!CVCDt the AUV attaining 100 low ao 
allilude, and risking cnllisioo with tbo seabed. Tbe 
110118!' altimeter may also ba used in increasing the 
efficiency in extracting the laser stripe in these turbid 
conditions, by predicting its locatiDD in the image. 

Tbe tecbnlques described here are a step towards a 
real time implmnrntetion of waledBII imaging. 
Indeed, wben capable ofperfmming ext=ded aeabed 
imaging miasioDs, it is intendod to ptocluce 
composite waledBII maps in real time and develop 
strategies to ovon:ome the clrift in vlaioo-based 
naviglllion by revisiting lhe previously imaged areas 
within the OV<rlap of a pllllicular type of seatcb 
pattem. 

1 Tbo authon would lllco to lldalowlodga tlm belp received 
f!:om IFREM1!R. Tbe wotlt was funded by !be BU under 
t1m Aocoss to Rooomeh iDfras!ruclure aedoa of lhc 
Improving HliiDIID PoteatW Pn>grammc. 

1 The au!hon would also like to l!uml: EPSRC for f!mding 
tbi• n!SC8tcb project 
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Abslroct: Thil paper disCUSBeS the idenlillcalion of linear multivoriablo models nf an 
autonomous uncle!water vehiclo. The OKID (Observer Kalman ldentillcalion) mothod is 
app!iod with tho mo.in objectives of verifying couplinss between clifl'erent motions and ID 
ova1Date ita applicability ID tbo desisn an LQO e<>ntrol system. Tho method is tested on 
the basis nf experimemal data obtained from oxperimonts on an 8IIIOIIOmOUS undcwatcr 
vohiclo. Somo preliminary id=tillcalion results ore presented and cammmtrd Copyright 
C2004IFA.C 

Keywords: system identificatiOn, panuneter c:stimotion, numerical me!hodJ, undcwator 
vohic:les. 

1. 1N1'RODUCTION 

An inmoasing intetest has been devoted in the n:cent 
years to the OllpOrimlmtal detmmi!lalion of the 
dynamic behaviour nf undcwatcr vehicles by means 
of system ldentillcation mothodJ. In many situations 
it is important that tho malltematical models obtained 
by means nf system idenlillcalion metbodJ can be 
dim:tly used for e<>ntrol system desisn purposes. 
Thil implies that 1inelll: models that take into 

IICCOUill couplings between different motions should 
be detc!mmed. In fact, in sucll case 1inelll: control 
algorithms can be easily implemented and the c:ft"ect 
of neglected dynamics can be minjmj?H! An 
idenfificarion method that am cope with these 
requirements is OKID (Juaus. 1994), the! has 
provon to be also numerically very cflicient and 
robust with respect to measumnm1t noiso. In this 
paper OKID will be app!iod 10 the depth dynamics 
of the autonomous vohicle Hammerhead (Naeem et 
Al., 2003) by using r=lsea trials dam. 

CAMS 2004 

The paper is organized as follows. Aftor the 
introduction, tbo undcwatcr vohiclo will be shortly 
deseribed in section 2, wharo also the CKperiments 
e<>nducted on tbo vohiclo will be diSCUBSOd. Section 3 
is dedicated to tbo descriptian nf tbo ickDtillcation 
mothod and section 4 is dodicsted 10 tbo lllustration 
of tbo pn:liminluy identillcalion mults, whilo some 
concluding ftliiW'ks ""' expressed in section S. 

2. UNDERWATI!R VEHICLE 

The vohic:le considered for idenlillcalion , called 
Hammerhead (Naeem et Al., 2003), has a torpedo 
shaped bedy, is about 3.5 mo1ca1 long and has a 
dimneter of approximately 0.3 meter.~. The control 
lllUfaoes ""' the two rear ruddas for steering and two 
front hydroplanes for diving. These control ~~~~~'faces 
""' e<>ntroUed by two aepam10 onboard atepper 
mo10111 and tbo aisnal to tbo stepper mo10111 is sent 
throusb an umbilical cable attac:bed to the rear crul of 
the vobiele. The onboartl sensors include an inertial 
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navigation system (INS), a TCM2 annpass, press= 
BCII50r, global posilimling system (GPS), aod a shaft 
speed cucodcr. Tbe dala logged using the above 
mentioned sensors is summnrized below: 

INS (beading, pitch. roll, lioear IUid angular 
velocities) 
TCM2 com:pll!s (bending, pitch and roll 
angles) 
Pressun: sensor (depth of the vebicle) 
GPS (cordinates of the vehicle on the sen 
surface, forwnrd spewed) 
Shaft speed encoder ( vehicle speed) 

The vehicle is connected through a rear umbilical 
cable to a control computer used to tnmsmit various 
input/output signols. A3 n tint otlempt, the 
rudder/beading angles data were used 10 identif)' a 
longitudillal mode~ while the hydropbme angle/deplll 
daD! were uaed to identify a lateral model (Naeem et 
Al. 2003).Howevcr, if cross couplings between yaw 
aod roll and between deplll aod pitch result nat 
negligtble. coupled muhivoriable models hould be 
used. 

During the experiments different multisr.ep inputs 
were applied to the cDDlrol surfacea and the autpu1 
variables were -.,rded with a sampling fioequeDcy 
of 8 Hz. Some examples are ebown in Fig. I and 
Fig.2. 

Fig I. Example of input/outpUI data a&r BD 
ide:ntification experiment of depth dynnmics. 
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Fig 2. Example of input/ou!pUI data a&r an 
identification experiment of deplll dynamics. 

The above figures are rebued to experiments aiming 
at the identification of the 1.-1 dynamics, for 
cbuermiDiDg the depth and pitch response to the 
sternplane deflectiDDO. As it can be observed , owillg 
10 the limillllions of the software used for data 
acquisition, some missing data ocamed. Tbis 
inconve:aience was solved by using an interpolation 
algorithm (Kybic et Al, 2001) deduced by n 
vnriutionalnpproncb. 

As it com be noticed, there exist indeed apprec:isble 
coupliDgs between such motions. However, since this 
paper aims at the prelimjnary objective of verifying 
the suilability of OKID identificoriou method for 
AUV dynamics, cmly deplll response will be 
identified. 

3.1DENTIFICATION MElHOD 

A linear time-invariant discrete time MIMO SDlle 

spsco model describing expressing the relalion 
betWeen the input voctor u(k) eRR, the output 

vector y(k) eR' aod the SDlle voctor 

x(k) e R' can be expressed u : 

x(k +I)= Ar(k)+Bu(k)+v(k) 

y(k) = Cx(k)+ Du(k)+e(k) 
(1) 

Such equation includes also the e1fects of a 
disturbance voctor v(k) of measurement noise 

VCCIOr e(k). 

Tbe Observer Kalman Filter ldentilication, (OKID) 
method (!IIIIDJI,1994), o!lcDpts ID i.dentify, OD the 
basis of input/autput dsla, the amnllest SIDle spnce 
realization that is compatible with a given BCC11I8CJ'. 
For this purpose BD input/output description of the 
above system is assumed of dla form: 

y(k+l)+ !M.'"y(k-z)= !MJ'1u(t- /)+E(k) (2) 
la! J.ol 
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wbt::reM,-2
) eR,_ ,l=l, . .n ad MJ,eR,_, 

j = l, .. .n ara the Markov maDices far a model with 

order nand &(k) Is the filter residual vector. 

Equalion (2) is the MIMO linear model that Cllll be 
used for estimaling the joint Markov -tors 

by a r<eursive Least Squares algorithm. 

Once Mmkov parmnetcrs have been determined, the 
Hankel malrix Cllll be COD!I1JUC!ed: 

[ 

M, 

H(k-1)= ~··• 
M,_. 

(4) 

By using tho ERAIDC. (EigenSystem R=li2urion 
Algorithm with Data Cmrolnrion) (Jwmg et Al, 
1988), it is possiblo to obllliD a block co=Jation 
Hankel matrix composed of corrdalion manricea : 

R(k) = H(k)Hr (0) (S) 

Such correlation llllllrices, are eaaily derived by 
Mmkov parmnetcrs aod allow 10 reduce noise effects 
on lho identificalion procedure. 
FiDslly a block c:ormation lflmke.l matrix W(k) 
associaled toR(k)mattioes is determined, from 
which. by applying an SVD (SinauJ.or Value 
Decomposition), the llDlmDwD ay.- order n is 
detetminod, siaoo it is coincidenl with the IIU!Dbor of 

positive singular values. If W(O) = U .S.v: is 

such SVD decompooition, it follows that a possible 
set of reali2alion manricea of the Identified system is: 

A= s;'"u;w(!)V,s;'" 
B=S!11V:E, 

C=E;u.s!" 
(6) 

where matrices £ 111 and EP 8I'C' block selection 

matrices constitutod by block of identity aod zero 
matrices. 

It can also be shown that it is possible to implement 
an ob!lmer appli;d to the dctcrministic vmian of 
linear stole space equation (I), by considering the 
extended system : 
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x(k+l) = Ax(k)+Bv(k) 

y(k) = Cx(k) + Dv(k) 
(1} 

with 
[
u(k)] the extended iopUI v(k) = ) BDd 

. y(k 
modified mattioes : 

A=A+GC' B=B+GD-G,D=[D 0] (J) 

where all the eigenvalues of the modified system 

· matrix A , under an observability hypothesis, can be 
pbu:ed in the origin. In this case, it CUD be recognized 
that the gain matrix G plays a role analogous 10 
Kalman filter in staUI estimation. 
By using eqnation (6) as a 8lllfc obscrvor, it is otlso 
possible 10 implemenl an LQO controUor 
(Jmmg,l994). 

4.1DENTIFICATION RESULTS 

A number of deplll response e:xperimental files have 
been used for idenlificalion by using the OKID 
method. In Fig.J tbere is shown an example of 
sternp!ane iDpUI time hiatory, while in Fig.4 the 
singular value magnitwles are plotted. As it can be 
noticed there is BD BppJOCiable drop in magnilllde of 
the siDgular values between 7 and 8, indicaling a 
syatem order n of 7 . It is worth DOting that cvideDt.ly 
an nverestimation of the system order has been 
achieved. Tbis lBct derives from having neglected the 
coupling between depth ODd pitch motiDDS. 
Furthermore, the depth JIICII81lmDCDt errnr seems to 
be re.!Diively high, thus contributing to the increase of 
the estimated order. 

I· 
i l_j 

f. 
~ .. - . --

Fig. 3. Sternplnne multi step input 

lt should be noticed, however, that as far as 
identification aims at determining a model for cantrol 
purposos, overestimation of the model order is nat a 
real dmwback, sin£e in tbi.! we identilication i.! 
mainly used for predictive ]MpOses. In Fig. S a 
comparisoo of the meamed depth with the 
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cor=ponding """ predicrod by 1he identified model 
is shown. It COD be app=ialed 1he robus!Dess of 
OKID algorithm, even in the presenoe of a Jdatively 
high measumnent noise on the depth channel 

·~---

r 
I 
L 

Fig. 4. SVD magnitude vs model order. 

I' 
I• 

!'\ 
J \ 

\ 

,L-~~~.--.~~.~~~~~ --

Fig. 5. Comparison between measured depth and 
predicted depth. 

Analogous results have been obtained after the 
identification of differeot experimeots. 

S. CONCLUDING REMARKS 

In this paper the OKID method has been applied to 
the identificalion of the depth dynamics of an AUV. 
From the preliminary results, it can be deduced that a 
multivarishlc model should be used, wh= 1he 
couplings between depth and pitch is dii<ctly taken 
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into IU:COIIDL 1bo results COIIfiJm also tha oxccllcut 
IDIIIIOrlcal capahility of the algorilbm in the presc11ce 
of intense measurmnent noise. 
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Abstract: This paper describes the implementation of a. soft computing method 
based on fuzzy logic and multiobjective genetic algorithm (MOGA) technlques to 
adapt tbe parameters of an error-state complementary Ka!man filter (ESCKF) 
to enhance tbe accuracy of an autonomous underwater vehicle (AUV) integrated 
navigation system. In the ESCKF, inertially-derived quantities from an Inertial 
na.vigation system (INS) sensor are combined with direct mOBBurements of the 
same quantities by use of tbe global positioning system (GPS) when tbe vehicle Is 
on the surface and the velocity estimator output from a visual navigation system 
(VNS) bs.oed on laser stripe lllumlnatlon metbodology whsn tbe vehicle Is in close 
contact to the bottom of the sea whilst performing fill underwater mlBsion. This 
strategy will e.lleviate the need for frequent excursions to the surface to obtain 

·a GPS fix to reset tbe navigatlon solution produced by tbe INS that tends to 
drift after a certain period of time. This technique exploits tbe complementary 
error cbarocteristlcs in such a way so BB to produce optimal esti.mates 1n terms 
of minimum variance. To this end, errors of the seDSOm are modelled UBing 
first..order Markov processea and error data. analysis ia undertaken to determine 
the respective time constants and vmiances. 'Th maintain the stabnlty and 
performance of the ESCKF, which Is likely to deteriorate when tbe assumed error 
and noise chBractermtics do not refiect the true ones, a fu2zy logic based scheme 
is used to m.ake these values adaptive. The choice of fuzzy membership functions 
for thls scheme is first C&I'Tied out using a heuristic approach and further refined 
using n MOGA metbod. Copyright@!!004 IFAC 

Keywords: Autonomous underwater vehicles, navigation, visual motion, Kalma.D 
filters, fuzzy logic, genetic algorithm, multiobjective optimization 

l. INTRODUCTION 

A deep mobile target has bean converted into 
a rudimentary autonomOUB underwater whicle 
(AUV) known as Hammerhead. A tbree year eo-

operative research project funded by tbe Engi
neering and Physical Sciences Research Council 
involving both the University of Plymouth (UoP) 
and CrazU!eld UniV11rrdty (CU) has tbe objectives 
of designing and developing an interactive nav-

!gallon system consisting of a vlsual navigation 
subsystem (VNS) and an inertial navigation sya
tem{global positioning subsystem (lNS/GPS) to 
interact witb an appropriate guidance and oon
trol system. VNS has bean widely adopted as a 
navigation metbodology for AUVo as it has tbe 
capabilities to provide high precision and high 
quality measurements from lma8e data to derive 
accurate relative position lnformat!on. Advanoed 
VNS application! can attempt to provide AUV 
global position updates, while almultnneously cre
ating a mosaic, or composite image mAp of a 
seabed (Floischsr ol al., 1997) and matching cur
rent image with vlBwlng mosaic map. VNS has 
also bean used for tnlcking and cable follcwing 
(Balasurlya and Ura, 1999). In this work various 
imag&-proceoeing tecbniquea to extract position 
meosurements or to Identify a speclllc featuno 
of an object from llve video imagery are used. 
Glvon the high reoolutlon of digitalimaging, mea
suremsnt accuracies on tbe order of mllllmstres 
and precise feature ldentUicatlon """ he ochleved. 
However, tbe metbode employed are llmlted in 
regimes where tbe object or terrain of interest 
is wltbln botb tbe field of view (Fo V) and vi· 
sua! range of tbe camera. In addition to !bat, 
there Is a need for artll!dalllght, which increase! 
tbe expanse and power conaumption of the vehi· 
cles. The fusion of VNS with INS meesuremsnt 
data can ha propoaed aa a potential oolutlon to 
these problems, as INS measurements are not 
affected by tbe aforementloned factors (F1alstber 
<1 al., 1997; Balasurlya and Ura, 1999). Through 
the technlque of dead reckoning, the position of 
an AUV can be inferred by integrating tbe fused 
VNS and INS me~~Bt~remsnts. The problem here Is 
tbat tbe dead reckoning Is only accurate for abort 
time durations; since the measurement noise is 
integrated along with tbe olgnals, the error on po
sition accumulatea quite quickly. Consequently, an 
external reaet mechanism Is required. The use of 
GPS to provide pet!odlc updates and compensate 
drifting from tbe bias errors lnhersnt when inte
grating INS hs.adlng for position, have bean widely 
implemented in tbe navigation of AUVs. The work 
in this paper 1s BD extension to the general int&o 
greted INS/GPS by fusing tbe VNS and INS data 
hstwasn intermittent GPS fixes. The navigation 
system that Is being developed at tbe UoP Is based 
on a mult!Bensor data fusion (MSDF) technique 
that ca.n produce accurate navigation information 
continuously in real time from a variety of low cost 
inertial sensors and a GPS receiver. During an 
actual mleslon tbls subsystem is enhanoed by data 
from the intelllgant viewing system developed by 
CU, with tbe purpose of aiding navigation by 
providing wlocity estimates. Onoe the navigation 
data hBB been suitably prot:el!aed it will be fed to 
tbe guidance and control system for tbe approprl· 
ate action. The aim of tb!B paper Is to describe 

tba present hardware/sensor configurations and 
technlques to oombine meastll'eDIODt data from 
tbe VNS, INS and GPS to derive an estimated 
position of tbe Hamm<rlletul AUV during both 
submerged and snrface operations. The structure 
of tb!B paper Is as followa: the next two aections 
describe the current status of tbe Hammerhead 
VNS and INS/GPS development respectively and 
concluding remarks are given in aection 4. 

2. HAMMERHEAD VNS DEVELOPMENT: 
CURRENT STATUS 

11.1 General description 

The Hammerh=l VNS Is based on the laser 
stripe Wumination (LSI) metbodology previously 
developed at CU ('Thtlow and Allwood, 1995), 
and will provide enhanoed vlBwlng of tbe seabed 
below tbe vehicle. However, it also provides real 
time data such as velocities, altitude and tracking 
information to the navigation system during the 
mission as well as gathering t.mag.., to produce a 
post mission enhanoed optical waterfall image of 
a surveyed area. There are several advantages of 
tb!B type of approach over conventional lmaging. 
LSI provides an improved image contrast at " 
given range. From computer aimulatlons (JaHe 
and Dunn, 1988) tb!B type of system becomes llm· 
ited at 5-7 attenuation lengths, oompared witb 2-4 
for a conventionslly illuminated system. This al· 
lows an ineres.oed deployment altitude for seabed 
surveys (3-18 metres) resulting in a greater swatbe 
and hence greater area coverage. The images pro
duced are approximately optically flat, maaning 
tbey c:xhiblt even llluminatlon. FUrthermore, tbe 
structured nstmu of tbellght allows additional g&

ometrlc information to be derived from tbo image 
and tbe stripe region am be extracted for each 
image to form a continuously evolving 2-D inten
sity waterfall lma8e. a,..,..,.,, LSI oystems are 
more expensive and require a greeter developmsnt 
resource then conventional system:o. The viewing 
system compr!Bea: a lOOmW frequency doubled 
diode pumped Nd:YAG Laser (532nm), a low cost 
high sensitivity monochrome charged coupled de
vioe (CCD) comera with a wide angle lens, a sin· 
gle axis scanner and a tllt-compenaated electronic 
compass (TCM2). Botb tbe laser/scmmsr ....,._ 
bly and tbe camera are mounted witbln separate 
dedicated sectlons of tbe torped<>-Bhaped vehicle, 
with specially made plane ports to accommodate 
the optical patb. The TCM2 compase uses two 
inclinometers to correct tbe output of tbree mag. 
netometers for the declinatlon angle error. The 
inclinometers, which are llquid-fllled, are integral 
to the viewing system, prov!illn£ tllt data for sta. 
blllaatlon when pitch and roll is experienced. The 
complete asnsor oubsystem can be. split into tbe 



three areas, with regard to their distinct utillty: 
1. velocity estimator; 2. active altitude sensor; 3. 
imaglng capabilities. 

A computer vision appUeation is used to derive the 
required navlgatioDal and tracking information 1n 
real time from acquired images. An estimate of the 
instantaneous speed of the vehlcle can be derived 
by using a 2-D correlation-based window-tracl<er, 
together with ao Integration of a range estimate 
from a laser-triangulation syBtem by which lm
oge displacements are transformed Jnto real-world 
displocements. The laser-triangulation technique 
requires the extraction of the vertical position of 
the laser stripe on an image to dete:rm.i.ne the 
range from the centre of the camera axi8 to the 
..... bed. 'Ibgether with the speed and range acqui
sition in real time, image quality ca.o be checked 
and optimized by either changing the laser aystem 
parameters or demanding navigational chenges 
from the vehicle. The complete video sequence 
is also recorded in dlgital-8 format and can be 
p()Sto.processed to produce a continuous 2-D in
tensity waterfall image or J..D ra.nge images of 
the seabed with dimensional data and referenced 
against accurate positional inforination. These op
tical maps con be used to classify and locate 
particular objects that are of interest. This can be 
implemented in the image-processing suite or by 
manual inspection of the mosaic. In the autumn 
of 2002 a set of constrained motion trials were 
performed at the IFREMER facillty in Brest. As 
well ae the valldation of a viewing modei and 
aystem calibration, these trials created a useful 
archive of test files, allowing much of the future 
development to be posaible from the dry la.bora.
tory. Furthermore, the measurements necessary to 
build a ground truth model were ocquired in par
o.Jlel to the Image and vehicle epeci.6.c data. This 
is used in escerto.ining the accuracy of the vision~ 
bMed navigation routines. A description of these 
experiment8, including the construction, ~~is 
and lim.Jtations of the ground truth modelJB gJ.V'eD 

in a previous paper (Dalgleish et al., 2003}. The 
next sub-section brieB.y describe the sensor in 
terms of one navigational components, i.e. the ve
locity estimator. Readers interested in the second 
component, the active altitude sensor, are referred 
to Loebls et aL (2003•). Some recent resuite are 
presented and the meane by which the outputs 
are to be integrated with the MSDF algorithm 
(described later in the paper) is discussed. More 
detail concerning each component and the lmag~ 
ing capabilities will be given in subsequent papers. 

e.e Velocity eatimator 

As an implementation of window-bnsed traclcing 
(Anandan, 1989) using the Lab VIEW IMAQTM 

c-. ..... (1 ........ _ 

Fig. 1. Scatter plot of error ve. confidence level 

Image Processing toolbox, this algorithm per
forms an intelligent correlation between an ini
tial stored image region and subsequent image 
regions where image displacemant Is meaenred 
dlrectJy. The tracker uaes a non-unl!onn aampling 
technique where only a few po1nts that represant 
the overo.Jl content of the image are oxtracteci 
Mo"""""", an adaptive .....rch strategy bused on 

· previous displacement& is also Jncorporated to fur
ther improve tracldng efllciency. Each successful 
matching event outputs a confidence JeVBl based 
OD the degree of success of the c:orrelation. Fig. 
1 Illustrates the distribution of matching events 
for the sJngle resolution case and the correspond
ing pixel error. where sub-plxel accuracy is used. 
This was based on a static subsea sequence of 
two thousand 1ossy' JPEG Images. The stand
off distance wae eight metres. The window size 
was 20 x 20 p!xels. As a more rea.llstic alternative 
to adding Gouseis.n noise to each pixel indepen
dently, it is planned to use an 'artificial turbidity' 
environment iD the Cranfield test tank to assess 
the static performance of the single resolution 
tracker under increaaiD.g noise. It is intended to 
use the confidence value os an Indication of image 
quality, where as the confidence value degradee, 
the deeired elt!tude of the AUV needs to be re
duced. OutlJere a.re detected 1n a smoothing stage. 

3. HAMMERHEAD INS/GPS 
DEVELOPMENT: CURRENT STATUS 

9.1 ESCKF Modelling 

Brown and Hwnng (1997) discuBs the advantages 
of the ESCKF method over the total stete Kalman 
I!Jter. The most important ~ Ill that any 
nonlinear ralstionship between the procese dy
namics in the inertial aystem and the maasure
mant relationehlps can be removed In a differ
encing operation, and the IIJter becomes linear. 
This linearity condition is requlnld by the Kalman 
I!Jter. This condition can also lead to a fBster cndes 
execution as l.inea.tiaation operations are relatively 
slow to execute. KF algorithms are widely avail
able in the literature. The interested raadar""" re
fer to Brown and Hwang (1997}. Works on ESCKF 
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howewr, are very limited espedally 1n the field of 
ATN navigation aystems. An example of this work 
""" be found in Gustaffson ec aL (2001). Llke in 
the KF, the ESCKF algorithm can he divided lnto 
two major parts: the meoti\IIement update and 
the time update. In ESCKF, tbe meaemement 
update Ill obtained by subtracting the direct mea
surements from the computed version of the same 
quantitlea By doing this, the true values cancel 
each othet out and what remains is the d!Herence 
between the measurement errors and drift errors. 
In the time update, the astlmatea are obtained 
by subtracting the estimated drift errors from the 
forward I!Jter paes from the computed version of 
the aame quantities. In this paper, meaeuremant 
errors from an accelerometer and a gyroscope (89-
sembled in an inertial measurement unit(IMU}), 
a TCM2 electronic compass and • GPS receiver 
unit are estimated and modelled using first order 
Markov P'"""""""' which are delined in the follow
ing ma.nner: 

1 z---·:t+"Y 
T 

(4} 

In (4}, x is the error pro<ess to be modeiled, T is 
the time constant of the assumed Markov pro<ess 
and 7 ia white noiae. For modo.JJJng purposes, all 
sensor data have been collected 1n stetic condi
tions for a period of approximately 2.5 hours. 
For the aame purpose, three clllfezent frames of 
reference are delined. The body-fixed (6) frame of 
reference is oJJgnad to the axes of the ATN, where 
forward-starboard-down correspond to x - y - z. 
These naed to be transformed to the geographical 
(g) frame of reference, where x - y - z com>
opond to North-East-Down. For these particular 
applleation, the measu:omentB 1n question are 3D 
acoelerations, ae well ae angular rates meaeured 
by the !MU. Earth-centred Earth-fixed (ECEF) 

frame is where the GPSlatltude and longl&ude are 
detined. The elements of che ate.te of the ESCKF 
are delined as follows: 
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X= [X:~ tP: X: If! f/P, r: u: 0,] (5} 

In (5} the subscripte d and e denote drift and 
sensor errors respectively. Superecripts g, 6 and 
h denote geographical frame, body-fbtad..frame 
ond horizontal frame reepectlvely. Drift errors in 
position, X: and ~ stem from the enor In the 
integrated acceleration ( u~ and v:), and com-
paes error TIP,. tP: is heading drift error which 
oomes from the error in the integrated yaw rate. 
Meaeurement errors ID the pooition bland are re
epectively represented by the steteo X: ond If!. 
Finally, ~ r! represents gyroscope's yaw error. 
The pro<ess matrix (F) is given 1n (3). In (3), m 
denotes measured value. Due to page limitation, 
the deriYatlon of this matrix is not given in thia 
paper. 

The variance of the process noise for a Markov 
error model can be described as 1n Brown and 
Hwnng (1997}, 

varicmce[w•J- (1- .-~) · voriarn:o[x•J (6) 

In (6), .--¥ is the stete transition parameter for 
the Markov ec:or model. "-t I• the dJsorete time 
interval and T Is the time constant. By ts.ldng 
the approximation: e-P<>!<l "' 1 - {J • "-1, where 
{J = T- 1, the following ill true: 

••""""'[w•J = (2/J"-t- (/Jt.t)2
) • """"""'[x•J(7) 

A=ding to the proceso model, the heading drift 
error state represents the Integrated yaw error 
stete, in ed"ect an integrated Markov proceso. 
The proceso noise covar:l.ance matrix for these two 
states can be detined ae 1n Brown and Hwang 
(1997}, 

Q [ E[tP:'1J EJ"'i•!J l (8) 
= El~r:] Elr:r!J 

where 



Qu = 2; [ t.t- ~(1- 4>) + 2~(1- 4>') l (9) 

q, = q, = 20'
2 

[ ~(! - 4>) + 2~ (I- 4>2
) l (10) 

q, = o-'(1- 4>') (11) 

where fJ is the inverse of the Ma.rkov time con· 
ste.nt, u2 is the process noise variance of the yaw 
rate Markov error and dJ = e--¥ and defined BB 

before. 

For the first two states in the process model, Z: 
and ~, the analysis is more compliea.ted and for 
this reason, the noise covariOJlce matrix of the 
two states are obtained from an empirical result, 
and provision for the adjustment method has been 
made and will be reported in the future. 

The measurement matrix H relates the available 
measurement updates to the element in the state 
vector and take! the following form: 

[

I 0 0 -1 0 0 0 0 0] 
H = 0 1 o 0 -I 0 0 0 0 

0 0 1 0 0 -1 0 0 0 
(12) 

The meBBurement noise covariance matrix R.~: is 
determined empirically and given os: 

[ o-:k-P~i<i<m 0 0 ] 
R.~r = 0 0'~-Pa.,don 

2 
0 {13) 

0 0 C'H~o.ding 

where oi--Po.,tu.n• 4-P.,.UUm• aJr&&dmg are the 
variance in X,Y ctirection and bea.ding respec> 
tively. These valu"" will be edapted using the 
algorithm iliscUB9ed in the next sub--section. 

3.2 Fuzzy error :~tate complementary K al.man 
filter (FESCKF) 

In this sub-section, an on-line Innovation-based 
edaptive scheme of the ESCKF to edjust the R 
matrix employing the principles of fuzzy logic is 
presented. The fu2zy logic is chosen ma.inly be
cause of its simplicity. Tb.ls motivates the Interest 
in the topic, os testified by relo.ted papers which 
have been appearing in the literature (Loebis et 
al., 2003b; Esc:amilla-Ambrosio and Mort, 2001). 
The FESCKF proposed herein is based on the IAE 
&pproacll using a technique known 88 covarian~ 

matching (Mehra, 1970). The basic Idea behind 
the technique is to m&ke the actual value of the 
covnri.ance of the innovo.tion sequences mo.tch its 
theoretical vaJ.ue. 

The actual covarie.D.ce la defined as an approx~ 
imation of the Innrc sample covariance through 

averaging inll!de a moving estimation window of 
size M which takes the following form: 

• 1 lr T 
c, •• , =M L Inn •. Inn. (14) 

i•jo 

where j 0 ""' k - M + 1 is the first sample inside 
the estimation window. lu!. emphic:al experiment 
is conducted to choose the window size M. From 
experimentation it was found that a good size for 
the moving window in (14) is 15. The theoretical 
covariance of the innovation sequence is defined as -· 

s, = H •. P; . HI+ R;. (IS) 

The logic of the adaptation algorithm using eo
variance matching technique can be qualitatively 
described as follows. If the actual oovariance volue 
e /nn,. .la is observed, whose value is within the 
range predicted by theory S, and the dlfi"erence 
is very near to zero, this Indicates that both c:o
varianoes match e1moet perfec:t1y and only a small 
change is needed to be mede on the value of R. If 
tbe actual c:avnrlance is greater than its theoretical 
value, the value of R ehould be decreased. On the 
contrary, if(.)[ •• , is less than s •. the value of R 
ehould be inc:reased. This adj~ mechanlam 
lends itself very ...n to being dealt with using a 
fu2zy-!ogic approach based on rules of the kind: 

IF (antecedent) THEN (consequent) (16) 

where antecedent and consequent are of the form 
V£04, Jtd.h i = 1,2, ... respectively. Where ll 8Dd 
x: are the input and ontput voriables, respectively, 
and 0 1 and L, are the fu2zy sete. 

'Ib ln2plement the above oovariance matching 
techmque using the fuzzy logic approach, a new 
variable oalled delta,., is defined to detect the 
discrep8Dcy between. Ornn,. and So~;. The following 
fuzzy rules of the kind (1 6) are ueed: 

IF (de!t"" eo 0) THEN (R;. is unchanged)(17) 

IF (delt"" > 0) THEN (R;. is decreased) (18) 

IF (dolt""< 0) THEN (R, is increased) (19) 

Thus R is edjusted aooording to, 

R, = R,_, + t.R, (20) 

where t.R, is edded or subtracted from R at 
each instant of time. Here delt"" is the Input to 
the fuzzy inference system (FIS) and aR.. is tbe 
output. 

S. S Fuzzy membership fu~ optimisation 

MOGA is used here to optimlze the member
ship functions of tbe FKF. 'Ib translata the FKF 

membership functions to a representation useful 
88 genetic material, they are parametmised with 
real-valued variables. Each of these variables con
stitutes a gene of the chromosomeo for the MOGA. 
Boundaries of chromosomes are required for the 
c:reation O'f ohromosomee in the right limits so that 
the MOGA is not misled to oome othar erea of 
search space. The technique edopted in this paper 
is to define the boundorles of the output mem
bership functions aa:ording to the furthest pnlnte 
and the cralSOver points O'f twn adjacent mmn
bership functions. In other words, the houndarles 
of FKF c:onsist of three reel-valued chromosomes 
( Chs), as In Figure 2. The trapezoidal membership 

Fig. 2. Membership function and houndaries of 
R;. 

functions' twn furthest points, ..0.135 (D,), -0.135 
(D,) and 0.135 (Is), 0.135 (I.) of FKF, remain 
the same in the GA's description to allow a similar 
representation as the fuzzy system's definition. AB 
c:an be eeen from Figure 2, Do and M, oan change 
value in the I" Ch bntmdary, D., M, and I1 in 
the 2"" Ch boundary, and flna.lly, M3 and I2 in 
3"d Oh. 

4. CONCLUDING REMARKS 

A novel method to obtain. an accurate AUV nav
igation syatem is proposed. The method is based 
on the ESCKF coupled with fuzzy logic to adjust 
the value of meaauremmrt noise cavariance ma
trix R durlng hoth ourfaoe and underwater mi&
sion whereby dlfi"erent c:nmhination O'f eensora, ~e. 
INSfGPS and JNSfVNS respentively, are used. 
MOGA is propoeed to further reline the result. 
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