492 research outputs found

    Performance et fiabilité des protocoles de tolérance aux fautes

    Get PDF
    In the modern era of on-demand ubiquitous computing, where applications and services are deployed in well-provisioned, well-managed infrastructures, administered by large groups of cloud providers such as Amazon, Google, Microsoft, Oracle, etc., performance and dependability of the systems have become primary objectives.Cloud computing has evolved from questioning the Quality-of-Service (QoS) making factors such as availability, reliability, liveness, safety and security, extremely necessary in the complete definition of a system. Indeed, computing systems must be resilient in the presence of failures and attacks to prevent their inaccessibility which can lead to expensive maintenance costs and loss of business. With the growing components in cloud systems, faults occur more commonly resulting in frequent cloud outages and failing to guarantee the QoS. Cloud providers have seen episodic incidents of arbitrary (i.e., Byzantine) faults where systems demonstrate unpredictable conducts, which includes incorrect response of a client's request, sending corrupt messages, intentional delaying of messages, disobeying the ordering of the requests, etc.This has led researchers to extensively study Byzantine Fault Tolerance (BFT) and propose numerous protocols and software prototypes. These BFT solutions not only provide consistent and available services despite arbitrary failures, they also intend to reduce the cost and performance overhead incurred by the underlying systems. However, BFT prototypes have been evaluated in ad-hoc settings, considering either ideal conditions or very limited faulty scenarios. This fails to convince the practitioners for the adoption of BFT protocols in a distributed system. Some argue on the applicability of expensive and complex BFT to tolerate arbitrary faults while others are skeptical on the adeptness of BFT techniques. This thesis precisely addresses this problem and presents a comprehensive benchmarking environment which eases the setup of execution scenarios to analyze and compare the effectiveness and robustness of these existing BFT proposals.Specifically, contributions of this dissertation are as follows.First, we introduce a generic architecture for benchmarking distributed protocols. This architecture, comprises reusable components for building a benchmark for performance and dependability analysis of distributed protocols. The architecture allows defining workload and faultload, and their injection. It also produces performance, dependability, and low-level system and network statistics. Furthermore, the thesis presents the benefits of a general architecture.Second, we present BFT-Bench, the first BFT benchmark, for analyzing and comparing representative BFT protocols under identical scenarios. BFT-Bench allows end-users evaluate different BFT implementations under user-defined faulty behaviors and varying workloads. It allows automatic deploying these BFT protocols in a distributed setting with ability to perform monitoring and reporting of performance and dependability aspects. In our results, we empirically compare some existing state-of-the-art BFT protocols, in various workloads and fault scenarios with BFT-Bench, demonstrating its effectiveness in practice.Overall, this thesis aims to make BFT benchmarking easy to adopt by developers and end-users of BFT protocols.BFT-Bench framework intends to help users to perform efficient comparisons of competing BFT implementations, and incorporating effective solutions to the detected loopholes in the BFT prototypes. Furthermore, this dissertation strengthens the belief in the need of BFT techniques for ensuring correct and continued progress of distributed systems during critical fault occurrence.A l'ère de l’informatique omniprésente et à la demande, où les applications et les services sont déployés sur des infrastructures bien gérées et approvisionnées par des grands groupes de fournisseurs d’informatique en nuage (Cloud Computing), tels Amazon,Google,Microsoft,Oracle, etc, la performance et la fiabilité de ces systèmes sont devenues des objectifs primordiaux. Cette informatique a rendu particulièrement nécessaire la prise en compte des facteurs de la Qualité de Service (QoS), telles que la disponibilité, la fiabilité, la vivacité, la sureté et la sécurité,dans la définition complète d’un système. En effet, les systèmes informatiques doivent être résistants aussi bien aux défaillances qu’aux attaques et ce, afin d'éviter qu'ils ne deviennent inaccessibles, entrainent des couts de maintenance importants et la perte de parts de marché. L'augmentation de la taille et la complexité des systèmes en nuage rend de plus en plus commun les défauts, augmentant la fréquence des pannes, et n’offrant donc plus la Garantie de Service visée. Les fournisseurs d’informatique en nuage font ainsi face épisodiquement à des fautes arbitraires, dites Byzantines, durant lesquelles les systèmes ont des comportements imprévisibles.Ce constat a amené les chercheurs à s’intéresser de plus en plus à la tolérance aux fautes byzantines (BFT) et à proposer de nombreux prototypes de protocoles et logiciels. Ces solutions de BFT visent non seulement à fournir des services cohérents et continus malgré des défaillances arbitraires, mais cherchent aussi à réduire le coût et l’impact sur les performances des systèmes sous-jacents. Néanmoins les prototypes BFT ont été évalués le plus souvent dans des contextes ad hoc, soit dans des conditions idéales, soit en limitant les scénarios de fautes. C’est pourquoi ces protocoles de BFT n’ont pas réussi à convaincre les professionnels des systèmes distribués de les adopter. Cette thèse entend répondre à ce problème en proposant un environnement complet de banc d’essai dont le but est de faciliter la création de scénarios d'exécution utilisables pour aussi bien analyser que comparer l'efficacité et la robustesse des propositions BFT existantes. Les contributions de cette thèse sont les suivantes :Nous introduisons une architecture générique pour analyser des protocoles distribués. Cette architecture comprend des composants réutilisables permettant la mise en œuvre d’outils de mesure des performances et d’analyse de la fiabilité des protocoles distribués. Cette architecture permet de définir la charge de travail, de défaillance, et l’injection de ces dernières. Elle fournit aussi des statistiques de performance, de fiabilité du système de bas niveau et du réseau. En outre, cette thèse présente les bénéfices d’une architecture générale.Nous présentons BFT-Bench, le premier système de banc d’essai de la BFT, pour l'analyse et la comparaison d’un panel de protocoles BFT utilisés dans des situations identiques. BFT-Bench permet aux utilisateurs d'évaluer des implémentations différentes pour lesquels ils définissent des comportements défaillants avec différentes charges de travail.Il permet de déployer automatiquement les protocoles BFT étudiés dans un environnement distribué et offre la possibilité de suivre et de rendre compte des aspects performance et fiabilité. Parmi nos résultats, nous présentons une comparaison de certains protocoles BFT actuels, réalisée avec BFT-Bench, en définissant différentes charges de travail et différents scénarii de fautes. Cette réelle application de BFT-Bench en démontre l’efficacité.Le logiciel BFT-Bench a été conçu en ce sens pour aider les utilisateurs à comparer efficacement différentes implémentations de BFT et apporter des solutions effectives aux lacunes identifiées des prototypes BFT. De plus, cette thèse défend l’idée que les techniques BFT sont nécessaires pour assurer un fonctionnement continu et correct des systèmes distribués confrontés à des situations critiques

    RADON: Rational decomposition and orchestration for serverless computing

    Get PDF
    Emerging serverless computing technologies, such as function as a service (FaaS), enable developers to virtualize the internal logic of an application, simplifying the management of cloud-native services and allowing cost savings through billing and scaling at the level of individual functions. Serverless computing is therefore rapidly shifting the attention of software vendors to the challenge of developing cloud applications deployable on FaaS platforms. In this vision paper, we present the research agenda of the RADON project (http://radon-h2020.eu), which aims to develop a model-driven DevOps framework for creating and managing applications based on serverless computing. RADON applications will consist of fine-grained and independent microservices that can efficiently and optimally exploit FaaS and container technologies. Our methodology strives to tackle complexity in designing such applications, including the solution of optimal decomposition, the reuse of serverless functions as well as the abstraction and actuation of event processing chains, while avoiding cloud vendor lock-in through models

    A Service-Oriented Approach for Network-Centric Data Integration and Its Application to Maritime Surveillance

    Get PDF
    Maritime-surveillance operators still demand for an integrated maritime picture better supporting international coordination for their operations, as looked for in the European area. In this area, many data-integration efforts have been interpreted in the past as the problem of designing, building and maintaining huge centralized repositories. Current research activities are instead leveraging service-oriented principles to achieve more flexible and network-centric solutions to systems and data integration. In this direction, this article reports on the design of a SOA platform, the Service and Application Integration (SAI) system, targeting novel approaches for legacy data and systems integration in the maritime surveillance domain. We have developed a proof-of-concept of the main system capabilities to assess feasibility of our approach and to evaluate how the SAI middleware architecture can fit application requirements for dynamic data search, aggregation and delivery in the distributed maritime domain

    Modelling Organizational Resilience in the Cloud

    Get PDF
    Cloud computing (CC) is a promising information and communication technologies (ICT) services delivery model that has already had a significant impact on Government agencies, small and medium enterprises and large organisations. Even though its adoption is moving from the early stage to mainstream, many organisations are still afraid that their resilience might deteriorate because of the additional levels of abstraction that CC introduces. This additional complexity makes the assessment of ICT operational resilience more difficult and no consensus exists of such analysis. Following a multi-method approach, this research proposal first extends prior research in the field, looking at new possible categories of resilience-oriented requirements when working in CC environments. Based on the results, this research will propose a conceptual model that helps organisations to maintain and improve Organisational Resilience (OR) when working in CC environments, from the ICT operational perspective. Particularly, as a lack of coordination has been identified as one of the main problems when facing disruptive incidents, using coordination theory, this research will identify the fundamental coordination processes involved in the proposed model. The results of this research should be of interest to academic researchers and practitioners

    A survey and classification of software-defined storage systems

    Get PDF
    The exponential growth of digital information is imposing increasing scale and efficiency demands on modern storage infrastructures. As infrastructure complexity increases, so does the difficulty in ensuring quality of service, maintainability, and resource fairness, raising unprecedented performance, scalability, and programmability challenges. Software-Defined Storage (SDS) addresses these challenges by cleanly disentangling control and data flows, easing management, and improving control functionality of conventional storage systems. Despite its momentum in the research community, many aspects of the paradigm are still unclear, undefined, and unexplored, leading to misunderstandings that hamper the research and development of novel SDS technologies. In this article, we present an in-depth study of SDS systems, providing a thorough description and categorization of each plane of functionality. Further, we propose a taxonomy and classification of existing SDS solutions according to different criteria. Finally, we provide key insights about the paradigm and discuss potential future research directions for the field.This work was financed by the Portuguese funding agency FCT-Fundacao para a Ciencia e a Tecnologia through national funds, the PhD grant SFRH/BD/146059/2019, the project ThreatAdapt (FCT-FNR/0002/2018), the LASIGE Research Unit (UIDB/00408/2020), and cofunded by the FEDER, where applicable

    Blockchain Enabled Platforms for the Internet of Things

    Get PDF
    The Blockchain and the Internet of Things (IoT) have gained a lot of attention in the last few years, since both technologies enable the possibility of creating a more connected and independent world. This combination enables the design of computing systems and cyber-physical environments without the need of centralized trusted entities, giving users the freedom and control of their operations, in a decentralized ledger model. By using storing and logging mechanisms supported by the Blockchain, data is immutable and independently audited, guaranteeing that it is neither modified nor deleted. At the same time, applications can benefit from the reliability and fault-tolerance assumptions provided by the Blockchain in supporting transactions between users and involved devices. In this thesis, it was studied and proposed a generic solution for a Blockchain-enabled IoT software architecture. The proposed solution enables the advantages of using decentralized logging and ledgering, without the interference of central authorities, inherently supported by the base Blockchain reliability, availability and security foundations. These capabilities are envisaged as key-benefits for a new generation of clean-slate approaches for IoT applications with the required scalability criteria. The research conducted in the dissertation work, studied the base software foundations, relevant components and implementation options that enable the identified advantages of using Blockchain components and services, to leverage more scalable and trustable IoT platforms. Our proposed solution aims to provide an architecture that contributes to a more appropriate design for secure and reliable IoT systems. In this trend we propose a better use of edge-based support for local-enabled processing environments supporting IoT devices and users’ interactions, with operations intermediated by proximity hubs acting as gateways to the Blockchain, where the operations are regulated and controlled by verifiable smart-contracts involving data and transactions

    DEPENDABILITY BENCHMARKING OF NETWORK FUNCTION VIRTUALIZATION

    Get PDF
    Network Function Virtualization (NFV) is an emerging networking paradigm that aims to reduce costs and time-to-market, improve manageability, and foster competition and innovative services. NFV exploits virtualization and cloud computing technologies to turn physical network functions into Virtualized Network Functions (VNFs), which will be implemented in software, and will run as Virtual Machines (VMs) on commodity hardware located in high-performance data centers, namely Network Function Virtualization Infrastructures (NFVIs). The NFV paradigm relies on cloud computing and virtualization technologies to provide carrier-grade services, i.e., the ability of a service to be highly reliable and available, within fast and automatic failure recovery mechanisms. The availability of many virtualization solutions for NFV poses the question on which virtualization technology should be adopted for NFV, in order to fulfill the requirements described above. Currently, there are limited solutions for analyzing, in quantitative terms, the performance and reliability trade-offs, which are important concerns for the adoption of NFV. This thesis deals with assessment of the reliability and of the performance of NFV systems. It proposes a methodology, which includes context, measures, and faultloads, to conduct dependability benchmarks in NFV, according to the general principles of dependability benchmarking. To this aim, a fault injection framework for the virtualization technologies has been designed and implemented for the virtualized technologies being used as case studies in this thesis. This framework is successfully used to conduct an extensive experimental campaign, where we compare two candidate virtualization technologies for NFV adoption: the commercial, hypervisor-based virtualization platform VMware vSphere, and the open-source, container-based virtualization platform Docker. These technologies are assessed in the context of a high-availability, NFV-oriented IP Multimedia Subsystem (IMS). The analysis of experimental results reveal that i) fault management mechanisms are crucial in NFV, in order to provide accurate failure detection and start the subsequent failover actions, and ii) fault injection proves to be valuable way to introduce uncommon scenarios in the NFVI, which can be fundamental to provide a high reliable service in production

    MLOps: A Review

    Full text link
    Recently, Machine Learning (ML) has become a widely accepted method for significant progress that is rapidly evolving. Since it employs computational methods to teach machines and produce acceptable answers. The significance of the Machine Learning Operations (MLOps) methods, which can provide acceptable answers for such problems, is examined in this study. To assist in the creation of software that is simple to use, the authors research MLOps methods. To choose the best tool structure for certain projects, the authors also assess the features and operability of various MLOps methods. A total of 22 papers were assessed that attempted to apply the MLOps idea. Finally, the authors admit the scarcity of fully effective MLOps methods based on which advancements can self-regulate by limiting human engagement
    • …
    corecore