
 isj_455 Received Date: March 10, 2010, Revised Date: June 23, 2010

1

Abstract— Maritime-surveillance operators still demand for

an integrated maritime picture better supporting international
coordination for their operations, as looked for in the European
area. In this area, many data-integration efforts have been
interpreted in the past as the problem of designing, building and
maintaining huge centralized repositories. Current research
activities are instead leveraging service-oriented principles to
achieve more flexible and network-centric solutions to systems
and data integration. In this direction, this article reports on the
design of a SOA platform, the “Service and Application
Integration” (SAI) system, targeting novel approaches for legacy
data and systems integration in the maritime surveillance
domain. We have developed a proof-of-concept of the main
system capabilities to assess feasibility of our approach and to
evaluate how the SAI middleware architecture can fit application
requirements for dynamic data search, aggregation and delivery
in the distributed maritime domain.

Index Terms— maritime surveillance; service-oriented
architecture; message-oriented middleware; interoperability.

I. INTRODUCTION
ARITIME surveillance domain includes all of the

activities that can impact the maritime sphere’s security,
safety, economy and environmental protection. To this end,
involved coordination and operational bodies need to share an
integrated operational picture for performing their duties in an
effective and cost-efficient way. In the European Maritime
Policy “Blue Paper” [4], the European Commission states the
willingness to "take steps towards a more interoperable
surveillance system to bring together existing monitoring and
tracking systems used for maritime safety and security,
protection of the marine environment, fisheries control,
control of external borders and other law enforcement
activities". As highlighted in [15], existing systems are based
on an “info-centric centralized approach”, where a Global
Common Operational Picture is built on top of a central data
repository system. While such an approach is well suited for

Manuscript received March 10, 2010, revised June 23, 2010.
D. Parlanti is with the National Interuniversity Consortium for

Telecommunications, Florence, Italy, 50139 (e-mail: david.parlanti@
gmail.com).

F. Paganelli is with the National Interuniversity Consortium for
Telecommunications, Florence, Italy, 50139 (corresponding author phone:
+390554796392; fax: +39055488883; e-mail: federica.paganelli@ unifi.it).

D. Giuli is with the Electronics and Telecommunications Department,
University of Florence, Florence, 50139, Italy (e-mail: dino.giuli@unifi.it).

addressing the technological interoperability of relatively
homogeneous communities, it does not fit well with current
requirements for an integrated information picture spanning
over technologically and managerially heterogeneous systems.
To cope with these requirements, emerging efforts are focused
on the adoption of the network-centric approach by leveraging
on service oriented architecture models and technological
standards.

This work reports on an ongoing study by the Dept. of
Electronics and Telecommunications (University of Florence)
and by the National Interuniversity Consortium for
Telecommunications (CNIT) in collaboration with SELEX
Sistemi Integrati. This study aims at investigating the adoption
of SOA models and technologies for addressing main
information integration requirements of the European
maritime surveillance domain. Here we present results in the
design of the architecture and on the development of a proof-
of-concept for a message- and service-oriented middleware
(named SAI – Service Application Integration – system),
enabling information search, integration and delivery in the
maritime surveillance scenario.

This work is structured as follows: Section II provides a
brief introduction to the maritime surveillance application
domain and its related interoperability requirements. Section
III then presents some relevant high-level and application-
independent architectural principles concerning network-
centric systems and data integration. Section IV discusses
related works on SOA data integration and prepares the reader
for the main rationale underlying the SAI system design that is
fully presented in Section V. Main implementation choices for
the developed SAI Proof of Concept are presented in Section
VI, while Section VII reports on the demonstration activities
carried out through a special maritime surveillance case study.
Finally, Section VIII draws the conclusions and provides
some outlines for future work.

II. MARITIME SURVEILLANCE INTEROPERABILITY
REQUIREMENTS

“Maritime surveillance” refers to all of the functional areas
dealing with assuring maritime safety and security. More
specifically, its primary focus includes monitoring, control
and enforcement actions for defense, search and rescue
activities, maritime traffic control (including anti-terrorism

A Service-Oriented Approach for Network-
Centric Data Integration and its Application to

Maritime Surveillance
David Parlanti, Federica Paganelli, Dino Giuli, Senior Member, IEEE

M

paganelli
Font monospazio
This is the author's version of an article that has been published in IEEE Systems Journal. Changes were made to this version by the publisher prior to publication. The final version of record is available at http://dx.doi.org/10.1109/JSYST.2010.2090610

paganelli
Font monospazio

paganelli
Font monospazio

 isj_455 Received Date: March 10, 2010, Revised Date: June 23, 2010

2

and port security), environment protection, deterrence of
illegal goods trafficking, drug trafficking and illegal
immigration. In this domain, actors have different duties and
responsibilities depending on their institutional role. In the
European Union area, which is the reference context for this
discussion, most stakeholders may be classified into three
categories:

• Inter-National Level Agencies Layer, grouping European
agencies in charge of maritime safety and security functions.
Examples are: the European Agency for the Management of
Operational Cooperation at the External Borders (FRONTEX,
http://www.frontex.europa.eu/), the European Maritime Safety
Agency (EMSA, http://www.emsa.europa.eu/), the European
Police Office (Europol, http://www.europol.europa.eu/).

• Member State Coordination Layer, grouping national
level Ministries, such as the Ministry of Environment (MoE),
Ministry of Interior (MoI), Ministry of Foreign Affairs
(MoFA) and Ministry of Transportation (MoT).

• Member State Operational Layer, grouping Member state
Operating Bodies such as Navy, Coastal guard, Port
Authorities, Maritime Police and Antifraud corps.

According to current practices, these actors typically collect
information for their own purposes by means of dedicated
monitoring and surveillance systems, as illustrated in [5]. This
situation may lead to many inefficiencies: similar information
may be collected by different bodies, while information that
could be jointly exploited by several actors is not shareable,
just to mention a few examples. In some cases, actors may
even be unaware that potentially useful information is being
collected by other actors. In most cases, direct information
sharing is not possible because of the lack of agreed-on
standards and policies.

At present, the European Community is trying to reduce
information fragmentation by funding research and
experimentation activities targeting the definition of a
common information-sharing environment. The objective is to
harmonize legal frameworks, to define organization principles
for promoting the international and local cooperation and to
specify technical frameworks for realizing the information
exchange environment across the involved actors. As
discussed in [15], the approaches currently adopted for
building a common maritime situational picture are typically
based on the so-called “info-centric centralized solutions”. In
these kinds of systems, an actor has the responsibility of
collecting information in a central data repository system to
build a global common operational picture and to broadcast it
back to the affiliated organizations. While such an approach is
well suited for addressing interoperability issues among
relatively homogeneous communities, it is does not fit well
with the current requirements for building a cross-sectoral
integrated information picture through the extension of the
information network to a broader community. As a matter of
fact, a large amount of information is considered sensitive and
its owners are still required to control the extent to which this
information is shared with third parties.

Based on this background, our work aims at eliciting and

structuring design guidelines for a service-oriented
middleware targeting operating environments characterized by
a significant technological and managerial heterogeneity, as
the one represented by the maritime surveillance domain. To
address the needs of such complex and variable
interoperability scenarios, our work primarily targets a
network-centric approach towards the design of a configurable
and extensible middleware offering dynamic data and systems
integration capabilities. Companion requirements for security
and dependability have also been considered.

Integration requirements may also be elicited while
analysing interoperability scenarios within similar application
domains, even if with different priorities for the design,
development and demonstration activities. As a consequence,
the following sections present the SAI middleware by
adopting a general-purpose point of view. Demonstration
activities carried out in the reference application domain are
described in Section VII.

III. NETWORK-CENTRIC SYSTEMS AND DATA INTEGRATION
As already stressed by Thomas et al. [38], the network-

centric approach mainly focuses on the provision of
situational awareness through the sharing of integrated
information among surveillance and/or defense bodies. Such a
goal has usually been interpreted over the years as the
problem of building a centralized repository from data
collected through the direct interaction with legacy data-
sources. Of course, such an interpretation is more technical
than architectural in nature, while presenting at least the
following significant drawbacks. The primary drawback is the
tight coupling of the solution with the internal structure of the
connected data silos. Depending on the application needs,
most changes in the data schema of the connected silos could
require propagation to the integration system’s “business-
logic”, up to make it un-maintainable in the long run in case
of frequent revisions. Secondly, the lack of standardized tools
and languages for database management would always bind
such an integration system to specific technologies, so that
technical choices would ultimately drive system design, as
opposed to a structured top-down approach. Some concerns
also arise regarding the interaction model with legacy data
sources. We simply notice here that high-sensitive data that is
managed by public institutions typically cannot directly be
accessed due to relevant security reasons, thus limiting the
number of information sources considered for integration.
Finally, information seeding in the maritime surveillance
domain usually needs support for asynchronous events
notifications. Such a publish/subscribe dispatching model
does not fit well with the traditional “pull” database access
and querying model. These factors considered, the adoption of
the network-centric perspective seems dependent on meeting
some basic architectural features highlighted below:
- the coupling of business integration logic with the data’s
internal structure should be avoided;
- interaction with legacy data sources should not be based only

 isj_455 Received Date: March 10, 2010, Revised Date: June 23, 2010

3

on a pull (request/response) RPC-style of interaction but also
on a push model (one-to-one, as well as one-to-many);
- the interaction among system components should be based
on open standards to avoid technological lock-ins;
- interaction with the integrated data-sources should be
mediated by a special indirection-layer for enforcing “on the
outside” the legacy system security and data-disclosure
policies.

A. Data as a Service: Using SOA for Distributed Data
Management

The service-oriented architectural style (SOA) is being widely
recognized as an effective approach for achieving the above
net-centric requirements while also architecting loosely
coupled, event-driven, standardized and maintainable
distributed systems [19] [28]. Services, the SOA basic system
units, are just processes that can be remotely accessed on
specific network endpoints. When legacy data is exposed “on
the outside” of a legacy system through a SOA service, then
that service is truly providing an indirection layer over the
legacy system. As a side effect, client applications can now
acquire data only by means of message exchange with that
service. Since data gathering in the distributed environment is
now equivalent to a sequence of service invocations, it turns
out that data search, aggregation and reconciliation operations
can now be framed as a problem of SOA service composition.
By considering data aggregation as a special case of service
composition, then SOA mainstream techniques and patterns
for service composition, such as those prevailing in the Web
Services (WS-*) context, could then be considered as
candidate solutions to the problem of data integration among
multiple and heterogeneous legacy systems.

IV. RELATED WORK
Among the many available SOA middleware solutions for

data integration, our work can be compared with some
significant service-oriented systems based on the message-
oriented paradigm. “Colombo” is a middleware developed by
IBM Research as an experimental SOA platform, based on
SOC principles [6]. The Colombo platform is built around the
SOAP messaging model and implements most of the Web
Service stack, including the WS-* specifications for reliable
messaging, security, transactions and service coordination.
“WS-Messenger” is a web-service based publish/subscribe
system, built on top of a message broker providing reliable
message delivery [18] . WS-Messenger is based on WS
specifications and supports both WS-Eventing [39] and WS-
Notification [22]. “wsBus” is a Web Service-based
middleware aiming at supporting dependable WS interactions
 [8]. It is a lightweight messaging based on the broker pattern
which can be plugged into existing Web Services platform to
reliably deliver SOAP messages via various transport
mechanisms (e.g. HTTP, TCP, JMS).

In the European area, “EuroSur” [10] is an ongoing project
providing a common technical framework for promoting and
improving the cooperation and communication among

member state authorities for improving border surveillance
activities. “SafeSeaNet” [9] is a European project focused on
supporting information exchange across authorities and
operational bodies involved in preventing and detecting illegal
pollution actions. SafeSeaNet relies on a centralized
messaging system based on XML messages transported over
the HTTP protocol.

The “Net-Centric Adapter for Legacy Systems” (NCALS)
is a Java software prototype targeting a cost-effective tool for
integrating defense legacy systems according to a SOA-based
approach [38]. Analogously to our proposal, NCALS applies
the adapter, the channel adapter and the message broker
patterns to its architecture, but to our knowledge it does not
provide any support for secured message exchange, workload
distribution or dynamic data-aggregation capabilities.

The remaining systems and architectures seem coupled with
the WS-* technology stack and/or with heavy-weight
application servers, while also providing just predefined data
aggregation workflows. On the opposite, our proposal strives
for runtime dynamic data aggregation while still being
independent from the WS specification and from commercial
or open-source application servers. In this regard, it seems that
most interpretations of the SOA approach overlap the service
orientation paradigm with Web Services standards and
correlated technologies (e.g., the BPEL orchestration
language) [33]. Our architecture has been instead driven by
high-level SOA architectural principles that have then been
translated into practice through the adoption of solid patterns
in distributed systems design.

V. THE SAI MIDDLEWARE ARCHITECTURE
The Service and Application Integration (SAI) middleware

architecture is the current snapshot of our research activities
on the application of SOA principles to the secured and
dynamic aggregation of distributed data from legacy systems.
The high-level SAI architecture is shown in Fig. 1. The
architecture is conceived as a set of configurable components
to be variably assembled into different system deployments to
best fit domain-specific integration needs. This implies that
concrete middleware deployments are not required to
instantiate all of the components envisaged by the logical
system architecture. On the contrary, developers can make a
number of decisions for targeting the architecture to specific
application domains and operating environments. Different
specialized deployments of the system are then possible and
each of them should be considered just as a distinct
instantiation of the same SAI logical framework. In this
regard, also system configurability and extensibility are first-
class requirements for the architectural specifications, together
with the targeted functional capabilities for dynamic data
retrieval, reconciliation and aggregation.

The SAI design approach puts service-oriented principles
into practice through the adoption of solid patterns in
distributed systems design. In software design, patterns
provide guidelines for the design of software systems [13].

 isj_455 Received Date: March 10, 2010, Revised Date: June 23, 2010

4

Since they capture reusable design expertise and solutions to
recurrent design problems, they support a higher level of
abstraction than implementation-dependent classes and
instances [31]. In this direction, the following subsections will
provide the rationale for most SAI components in the context
of a specific design pattern. Subsections A to I describe SAI
components and strategies for legacy-systems integration,
service lookup and dynamic data retrieval and composition.
Solutions for enabling communication within SAI components
and between SAI components and external systems are also
considered, while a specific focus is then devoted to the
dynamic workload distribution capability provided by the SAI
Grid infrastructure. Subsections J to M then analyze how
cross-cutting security, dependability and system-consistency
concerns have been handled through dedicated components
and design patterns.

A. Legacy Systems Wrappers: The Adaptor Microcontainer
The goal of the “Adaptor Pattern” is to reconcile legacy

components with interface requirements specific to a target
framework [1] [3]. Reconciliation is usually achieved through
a “wrapper” that provides a compliant façade for the legacy
interface. The “Adaptor Microcontainer” is the SAI
interpretation of the adaptor pattern in the context of an SOA
distributed system. The adaptor microcontainer wraps any
legacy system into an SAI-compliant message processor.
Interfacing with the middleware infrastructure is achieved by
connecting the container to the SAI communication bus
through a Bus Connector component while adapting the flow
of incoming request messages to the proprietary client
interfaces of the wrapped legacy system; the response coming
from the legacy system is then converted back again into an
SAI-compliant message. Depending on the nature of the
chosen communication bus, each adaptor can then support
both synchronous calls and asynchronous messaging patterns.
The internal architecture of the SAI microcontainer is depicted
in Fig. 2.

The container acts as a lightweight and configurable
message processor hosting a pluggable service
implementation that provides the interfacing logic with the

legacy information source. In this regard, the typical service
implementation will simply interpret received requests into
chains of remote invocations to the legacy system interfaces,
while leaving additional processing to the container itself. The
adaptor micro-container thus manages the life-cycle of the
hosted service, while also pre- and post-processing both
incoming and outgoing messages through inbound and
outbound interceptor chains. By exploiting the “interceptor
pattern” [30], the micro-container can so augment the adaptor
capabilities while establishing a strict separation of concerns
between the purely functional operations performed by the
service and the other processing that is possibly required for
satisfying specific non-functional requirements. Interceptors
are best suited for light processing of several message aspects,
including payload compression and message-format
adaptations, while allowing transparent adaptor interfacing to
the Security Manager and Transaction Manager components.
More importantly, interceptors can be “stacked”. As an
example, let us consider specialized interceptors for message
compression and decompression, SOAP envelope document
wrapping and unwrapping and security headers processing. A
meaningful pre-processing stack would first decompress
messages, process SOAP security headers to assess the
requestor authentication level and access rights, decrypt the
SOAP body, extract the application payload from the SOAP
body and then trigger the service implementation processing.
Any response from the hosted service would then pass
through the same type of interceptors in reverse order to
finally obtain a compressed and secured SOAP response
message. Of course, security interceptors can also be
developed to condition request processing or message
dispatching to the authentication and authorization policies of
legacy security systems (as depicted in Fig. 2). In this case,
security headers would need to be interpreted and translated
into remote calls to the legacy security infrastructure, which is
just a particular aspect of system integration. This different
type of integration, however, would be dealt with by a
specialized interceptor, while leaving the basic service
implementation free from any security concern. In this sense,
the integration logic performed by the hosted service is
completely reusable, because it does not depend on the SAI
infrastructure, nor on the adoption of specific messaging

Fig.2 SAI Adaptor

Fig.1 SAI middleware architecture

 isj_455 Received Date: March 10, 2010, Revised Date: June 23, 2010

5

standards.
The set of all active adaptor micro-containers is the lower-

level SAI service layer feeding other components and
applications with data retrieved by the connected legacy
systems. To fit the SAI extensibility goal, adaptors never
exchange information with other adaptors: the layer is thus
completely modular, with no functional dependency between
any two adaptors.

Concerning their deployment, adaptors can be hosted either
within or outside of the SAI system boundary. When the
adaptor is deployed into the operating environment of a
trusted external organization, its control is delegated to the
management infrastructure of that organization. In this case,
network communication between the adaptor service and the
wrapped legacy system is likely to happen under the
monitoring and control activities of the legacy system owner.
When the adaptor is instead deployed within the SAI system
boundary, agreements are required for establishing proper
requirements for network communication with the legacy
infrastructure. However, specialized interceptors can be used
for enabling participation of the adaptor to the transactions
possibly activated within the SAI environment, as it is
clarified in the next subsection (K) dedicated to the SAI
transaction management.

B. Service Lookup: The Adaptor Registry
The “registry pattern” is the commonly accepted design

solution for services lookup in distributed environments. The
pattern envisages the presence of a logically centralized
subsystem supporting lookup capabilities through a “yellow-
page” approach. Accordingly, the SAI “Adaptors Registry”
manages the “functional profile” of each information system
connected to the SAI by means of a dedicated adaptor.

The adaptor profile has to be expressed into an SAI-specific
formalism. This requirement arises to ease the integration of
systems whose interface description cannot be easily
accommodated into the WSDL model and to better support the
SAI dynamic data composition capabilities. As in the standard
WSDL document-literal binding, SAI profiles model the
message-processing capabilities of an adaptor through ordered
input-output pairs of XML message types. However, optional
“meta properties” can be added to each input-output pair to
also describe the non-functional aspects of the transformations
performed by the adaptor upon invocation. The SAI profile
can also be used to link XML message types to their
embedded data atoms. Each data atom is so characterized by
its “path”, that is by its position inside the containing message
structure. Due to the underlying XML information model,
data-atom paths always identify either element leaves or
element attributes. The final association of atoms with
optional “semantic properties” can then be used to link
ontological annotations to the data embedded into each
message. Fully-populated profiles enable authorized clients to
perform complex queries within the Adaptors Registry. More
specifically, clients can lookup adaptor endpoints on the
communication bus either by target message types, target non-

functional properties and/or target semantic annotations.
Depending on application needs, the registry can thus support
simple UDDI-style service-endpoint retrieval as well as
endpoint retrieval by target data atoms or by semantic
annotation lookup.

C. Communication Within SAI Components: Bus Connectors
The SAI architecture focuses on the design of reusable,
extensible and configurable components. These requirements
also mandate the decoupling of every system component from
the specific solutions that can possibly be adopted for
enabling communication within the same SAI architecture.
This need has been satisfied through the introduction of the
“Bus Connector” indirection layer over the chosen
communication bus. “Bus Connectors” thus enable SAI
components to use a common interface for sending and
receiving messages to/from the communication bus. In so
doing, components become independent from the specific
network protocol and/or messaging infrastructure that is
chosen for a specific SAI deployment. Since they can
intercept both incoming and outgoing messages, Bus
Connectors can also be configured for persistent message
logging so to support the subsequent analysis of correlated
input/output message pairs. As it will be explained in
subsection L, such an analysis can be valuable for back-
tracking component failures and for supporting state-recovery
mechanisms.

D. Communication within SAI Components: Communication
Bus

Being a distributed system, interaction among SAI
components can only happen through messages: possible
interaction patterns between system principals truly depend on
the messaging infrastructure that supports internal SAI
communications. Thanks to the indirection layer provided by
Bus Connectors, choices for the communication bus do not
affect the structure of other components, being ultimately
dependent just on the target application domain for the
architecture. In this regard, it is common practice to bind
component communications to the HTTP protocol, especially
for its clear semantics and its fit with most enterprise firewall
configurations. Use of this protocol usually leads to a request-
response, RPC-style interaction model for components. As a
side effect of this choice, interacting components become
coupled “in time” because they all have to be active during the
scope of each request. RPC interactions are so perfectly
acceptable for the SAI architecture when applications are not
focused on the use of adaptors for the asynchronous provision
of data streams, say for near-real-time trend detection for
generating alarms. Indeed, use of the RPC interaction pattern
in such contexts would eventually lead to continuous
component endpoint polling for retrieving relevant events or
to continuous connection opening for events-stream provision.
The risk here is missing critical events during the polling
interval, while also saturating available network-bandwidth,
which can occur whenever a lot of data have to be transferred
on the wire. As stressed by Helland [16], data-integration

 isj_455 Received Date: March 10, 2010, Revised Date: June 23, 2010

6

domains can also require additional support for message
durability and for uniform failover strategies with component
failures and restarts. Even the basic need for centralized
communication activities monitoring strives for the inclusion
of a dedicated messaging infrastructure. When such
application-level requirements are relevant, the “Message
Broker” pattern envisages the communication among system
components to be mediated by a special “broker” component.
Such a broker would provide components with a logical
“address” (endpoint), while also being responsible for uniform
handling of message delivery, publishing, routing and storage.
Accordingly, “Message Oriented Middleware” solutions can
play the role of such a dedicated broker when the SAI
application requirements approach those of an Event-Driven
Architecture (EDA) [27].

E. Communication Within SAI Components: Message
Format
Messages exchanged over the communication bus among SAI
back-end components and adaptors have to be expressed
through standardized protocols and language specifications
(e.g., XML) as opposed to proprietary binary representations
(e.g., serialized objects of a native programming language).
The SAI architecture thus satisfies basic software
requirements for interoperable remote communications. A
typical side effect of this choice is the requirement for
marshalling/un-marshalling of received messages into objects
of the implementation language of choice prior to their
processing by components. In the SAI architecture, this
special function can be assigned either directly to the bus
connector components or to the pre- and post-processing
chains of adaptors micro-containers.

F. Communication Between Applications and The SAI: The
Delivery Channel Abstraction
The goal of the “Delivery Channel” component is to provide a
unified client interface for structuring client interactions with
the SAI architecture. The component is thus designed along
the well-known “Façade Pattern”: interactions of clients with
the Grid Infrastructure, Adaptors Registry, Adaptors and
Composition Engine are factored-out into a minimal set of
primitive calls that makes consistent interfacing to most SAI
capabilities possible. One of the main goals of these
component APIs is to hide the message-creation logic that is
required for translating client calls into the interoperable
message format internally adopted by the SAI. In this regard,
the delivery channel also has to use the specific bus connector
associated with the chosen communication bus. Consistently
with the structure of the adaptor microcontainer, the delivery
channel also supports configurable message pre- and post-
processing using dedicated interceptors. In this way, the main
client interface can be tailored to the specific choices
concerning message format and security schemes of concrete
system deployment.

G. Communication Between Adaptors And Legacy Systems
The communication details concerning the remote interaction
of an adaptor-hosted service and its managed legacy system

has to follow the specific data formats and network protocols
that are mandated by the legacy system technical environment.
In this sense, they are outside of the SAI architecture’s control
and they cannot be customized.

H. Dynamic Data Retrieval and Service Composition
Most of the current strategies for service composition rely on
design-time or on request-time definitions of the sequence of
service endpoints to interact with in order to obtain target data
and process executions. Technologies adopting such an
approach include the notable BPEL specification. However,
other proposals for workflow languages and implementations
still also require clients and/or system developers to feed
integration engines with explicit representations of control
structures and service endpoints. In terms of system
capabilities, defining data-aggregation workflows at design-
time would require assumptions concerning a) the number, b)
location, c) identity and d) message schema of those adaptor
services providing the desired information. Any addition or
removal of a legacy-system adaptor would thus compromise
the logical correctness of the workflow and the overall
functioning of the data integration platform. In
complementary terms, request-time defining data-aggregation
workflows by clients would force a non-automatic behavior of
the system in terms of information retrieval and management
capabilities. In this case, clients would be required to
communicate to the system: a) where the data services are
located, b) the order to follow for information retrieval, and c)
how the information should be requested from each data
service. The system would play the role of a “proxy” for the
external data services, while information search and
composition operations would be completely driven by
clients, that would be then required to perform the “heavy
duty” implied in finding and composing desired information.

To overcome these limitations, the SAI Adaptor Registry
and Composition Engine components provide a dedicated
infrastructure for semantically handling the adaptors’
functional profiles. Through such an infrastructure, the SAI
can reach distributed data atoms through dynamically
computed routing tables describing the correct invocation
sequence that workflow engines or clients are required to
execute in order to “find” requested data in the distributed
system. The basic mechanism supporting the SAI service-
composition capabilities is outlined below, while forwarding
the reader to [25] for a more detailed explanation.

As previously explained, clients can send requests to the
SAI system using the Delivery Channel component. Requests
for aggregated data have to specify both the “target” message
type expected as the SAI-system response and the “input”
request information, for example the required search criteria
for narrowing the output produced by the system. Upon
receiving the request, the SAI system will delegate the request
to the Composition Engine component that will then perform
the following activities: 1) it will query the adaptor registry
for gathering the information required for defining the
adaptors invocation sequence (“plan”) that should be followed

 isj_455 Received Date: March 10, 2010, Revised Date: June 23, 2010

7

for retrieving targeted data; 2) it will bind the invocation plan
to concrete bus endpoints; 3) it will then execute the solution
plan by invoking the selected adaptors and aggregating data
embedded into received messages into the target response
template specified by the client. The approach followed by the
SAI Composition Engine is similar to the AI-planning
framework that is described in [41]. More specifically, the
SAI interprets data-aggregation as the problem of encoding
information expressed by functional profiles into a STRIPS
domain. These domains consist of initial conditions that
describe the starting state of the world, operators describing
the actions that may be performed and goals representing the
state to be reached. Operators have preconditions, add effects
and delete effects. The SAI Composition Engine assumes
initial conditions to be represented by the query input
parameters, the goals to be specified by the target output
parameters and the operators to be represented by the adaptors
functional profile input-output message pairs. For each
operation, input messages are modeled as preconditions and
output messages as add effects. Moreover, as messages
contain inner parameters, as defined in their corresponding
XML Schemas, the STRIPS domain is also populated by
further operation types representing the syntactic containment
data atoms relationships. While existing works such as [41]
and [17] aim at optimizing the search algorithm by taking as
reference a fixed structure of input and output XML message
types, our original contribution is in the extension of the
STRIPS approach for accounting the variable and complex
structure of the XML messages that can possibly be
exchanged in real SOA platforms. By considering the adaptor
interfaces as “inference rules”, it was then straightforward to
apply AI planning techniques to find service composition
solution plans [26]. In this direction, we have exploited the
Graphplan algorithm that has been first proposed in [2] as an
effective way of finding solutions to STRIPS-like domains.
As a consequence of this approach, a request for dynamic data
aggregation may be handled by the SAI system: i) by invoking
a single adaptor service; ii) by executing a composite service,
that is by invoking several adaptors in the proper order; iii) by
notifying an exception when no known solutions to the
planning problem can be provided in the SAI domain. The
proposed mechanics for information retrieval and aggregation
are proven to be:
• flexible, since invocation workflows are created “on-the-
fly” by performing simple operations on the XML messages
and atoms graph-representation internally managed by the
registry. In this sense, there is no need for request-time or
design-time hard-coding of invocation sequences into the
system;
• adaptive, since the behavior of information retrieval
operations varies according to the number and type of
registered services (e. g., legacy system adapters);
• deterministic, since the Graphplan algorithm can provide a
definitive response to a user query given the state of the
adaptor registry component. The system can so notify users

whether a routing table can be computed for achieving target
data given user-provided data;
• evolutionary, since more services can be added
progressively during the life-cycle of the system.

I. Distributed Computing: The Grid Infrastructure
While focusing on dynamic data retrieval, the SAI

architecture also exploits the “Master/Worker” design pattern
to provide basic workload distribution to system components
and clients. Such a capability can be used for distributed batch
processing whenever client applications demand a complex
transformation of retrieved data in order to use a single
architectural framework both for data access and analysis.
Consistently with the Master/Worker pattern, the SAI Grid is
based on three entities: a master (the “client” of the grid), a
channel for enabling master to worker communication over
the chosen communication bus and a set of one or more
worker instances. According to the pattern’s roles, the master
component starts parallelization by defining a set of “jobs”
which are then distributed (or “mapped”) to worker processes,
then waiting for completion of the scheduled tasks. The final
step then requires the master to organize (or to “reduce”)
collected results into a “single” meaningful unit which shall be
coherent with the semantics of the distributed work. SAI-
specific extensions to such basic workflow include: a)
transparent and configurable routing of jobs to workers; b)
transparent dynamic jobs reassignment in case of worker
failure. The first extension is required for decoupling master
implementations from the provision of the needed jobs-
scheduling logic. The second extension also decouples the
master from continuous job-status monitoring: in case of a
worker failure, the infrastructure should then re-assign the job
to an active worker with no direct master intervention. To this
end, the SAI Grid introduces the “PipesManager” controller
component. Masters simply pass their job-scheduling requests
to the controller component that then exploits its knowledge
on the infrastructure to plan job assignments to specific
worker instances. To coordinate the grid infrastructure, the
component associates each worker instance to a compound
data structure embedding two separate queues for pending and
completed jobs. Both queues are monitored by the component
to collect statistics on each worker throughput and to detect
those failed jobs that need rescheduling. Each worker is
notified for new pending jobs, while the PipesManager, once
notified of any completed job, notifies in turn the Master
component which started the original scheduling request.
Since each worker is linked to a unique pipe, job contention is
minimized, while routing logic can exploit pipes information
to perform scheduling optimization.

J. Cross-Cutting Aspects: Security
Every SAI system operation is scoped within the security

context provided by the “Security Manager” component. The
Security Manager component enlists authorized principals,
including all of the SAI system components, and manages
their security credentials and policies while also supporting
secured message exchange and enforcement of the Role Based

 isj_455 Received Date: March 10, 2010, Revised Date: June 23, 2010

8

Access Control model (RBAC) [29] that has been setup by the
SAI system administrators. The SAI security framework
handles these operations through well-known cryptography
techniques, such as encryption and decryption to ensure
confidentiality and PKI-based message signing and
verification to provide action accountability. The Security
Manager public key is so used by principals to verify the
identity of the SAI system and to bootstrap a secure tunnel for
their initial authentication. Before invoking any system
capability, registered principals are indeed required to exhibit
their credentials to the security manager component.

The authentication request is a signed object embedding the
AES encrypted principal’s password and the RSA encrypted
AES symmetric key used for password encryption. After
successfully verifying the principal’s credentials by signature
checking, the Security Manager decrypts the AES key and
then uses that key to decrypt the password. After successfully
verifying the principal name and password combination, the
security manager creates a time-limited session-wide RSA
public/private key pair for the recognized principal. The
session RSA private key is encrypted using the AES key
originally specified in the authentication request. The same
key is also used for encrypting the retrieved principal roles
and authorizations. The new set of credentials is then sent
back to the principal by the security manager after signing the
response object with its private component key. The principal
verifies the source of the authentication response by using the
security manager public key. At this stage, the principal is
authenticated and can start using the allowed system
capabilities. Authenticated principals now possess all the
required information for establishing secured communication
with the other system components: since the architecture
supports message-level security, no other transport level
security mechanism is strictly required.

In this regard, it is interesting to sketch how the above
security framework interfaces the client delivery channel with
the SAI adaptors layer. It has already been shown that both the
delivery channel and adaptors can be configured with security
support just by adding special processing interceptors in their
inbound and/or outbound processing chains. On the client
side, security interceptors interface with the security manager
to acquire public RSA session certificates and security
policies for the target adaptor. Since the client component is
already authenticated, its session keys are used with the
retrieved information to encrypt and sign the request message
payload according to the adaptor’s declared security policy.
On the adaptor’s side, security interceptors ask the security
manager for the public session key of the requesting principal,
so to assess the identity of the requestor. After a successful
check, they can decide whether to proceed with request
processing or perform further evaluation by interfacing with
the legacy system security infrastructure. In this way, the
burden of responsibility is delegated to the legacy system
management infrastructure so that legacy systems can always
take the final decision concerning whether to allow or not data
access to SAI authenticated principals.

K. Cross-Cutting Aspects: Transaction Management
Distributed systems can typically achieve state consistency
and uniform exception-handling logic through the “Two-
Phase Commit” (2PC) protocol [37] and its subsequent
enhancements. The 2PC is a centralized protocol where a
“Transaction Manager” component is used to coordinate
operations over the selected system resources, typically
databases and messaging infrastructures. When applied to
databases, transactions guarantee atomicity, consistency,
isolation and durability (ACID) properties. When applied to
compliant messaging infrastructures, no ad-hoc compensation
logic is needed when exceptions are thrown during message
processing: in these cases, transaction rollback implies both
re-delivery of failed requests and canceling of messages that
have been scheduled for publishing. Whenever required by
component operations, the SAI “Transaction Manager”
component can be used for coordinating distributed
transactions to ensure the consistency of data access and
messaging operations.

Despite its efficacy, use of the 2PC protocol in the SAI is
nonetheless conditional on the fulfillment of strict technical
requirements. Since interactions with the coordinating
Transaction Manager have to be blocking and synchronous,
temporal duration of these interactions also has to be
predictable and relatively short-lived. Indeed, messaging
activities can suffer from strong performance impact due to
their scoping within a transaction context, while database
resources usually have to be locked until transaction
commitment. This interaction model then implies strict control
of the system components deployment, service behavior and
access policies, for example to guarantee constant data
availability and target QoS levels. Of course, such a vertical
control is commonly achievable only when the management of
the whole SAI system is delegated to a single organizational
unit and all adaptor components are deployed within the SAI
system boundary.

L. Cross-Cutting Aspects: Dependability
System dependability can be defined as “the ability to avoid
service failures that are more frequent and more severe than is
acceptable” [1]. The SAI architecture achieves dependability
by means of: i) the Grid Infrastructure load-balancing and job-
failover capabilities; ii) the clustering of adaptor services; iii)
the support for basic autonomic capabilities; iv) the Bus
Connectors logging capabilities.

Concerning clustering, we distinguish between clustering
stateful and stateless adaptor services. Clustering stateful
services inherently requires state replication across activated
replica. In order to avoid failures due to an inconsistent state,
we have decided to first scale stateful services “vertically”,
that is by running them on dedicated machines, while also
starting background threads for replicating the “master”
service instance state to secondary ones in order to support a
switch-over in case of failure. Clustering stateless services
simply requires multiple instantiation of the same system
component, together with a load-balancing strategy for
dispatching requests. In this regard, some dependencies arise

 isj_455 Received Date: March 10, 2010, Revised Date: June 23, 2010

9

only with respect to the choice for the communication bus
component. HTTP clustering should be based on standard
load-balancing techniques, usually based on special HTTP
proxies or on the tweaking of the DNS configuration, while a
MOM communication bus can achieve clustering by simply
configuring stateless components to consume messages from
the same queue: load-balancing is transparently “coordinated”
by the broker, with no additional infrastructural requirements.

The SAI architecture also offers basic autonomicity by
supporting the well-known “heartbeat” technique. Heartbeats
are control messages that are periodically sent over the
communication bus to listening controllers, so that they can be
interpreted as special signals by listening components. Hence,
if a publish/subscribe messaging model is made available by
the communication bus, then heartbeats can allow reaction to
change in the overall system state with no need for centralized
system monitoring. The SAI adaptors can indeed react when
they stop hearing heartbeats from the security components
cluster. In that case, adaptors actually react by stopping to
accept requests and by stopping sending messages until
security heartbeats are resumed. This configurable capability,
although very simple to implement, still allows for fail-over
strategies that are capable of preserving the security state of
the system in a non-trivial manner.

Finally, the SAI can support back-tracking component
failures through the Bus Connectors message-logging
capabilities. While inspecting correlated input-output message
pairs can always be used to track-down a failed-component
invocation history, logged messages can also be used to
recover the most recent state of stateful components. Of
course, this goal can be achieved only when stateful
components are “piecewise deterministic”, that is when state-
change is completely dependent on the content and order of
received messages only. In other terms, “piecewise
deterministic” components behave “reactively”: all of their
work is done in response to the trigger of a system component
external to the service itself. This property thus makes the
implementation of state-recovery mechanisms possible
through the sequential re-play of logged messages, as it has
been described in [14].

M. Propagating SOA Principles to the SAI Component Level
The SAI architecture propagates its core SOA principles from
macro to micro functional levels by specifying guidelines for
the internal structure of its components.

At the macro level, we know that the SOA basic system
units are represented by services and that services are
commonly considered as distributed processors whose
behavior can be normatively described by publicly accessible
and standardized contracts. We stress here that the term
“contract” is almost equivalent to the “interface” concept.

Once we translate this principle into the world of object-
oriented design, then the SOA principles can be interpreted at
the micro level as the common “design against component
interface” advice. Object-oriented systems that follow this
advice are inherently modular and extensible because class

members are typed according to the required interfaces, while
still being internally free from any tight structural coupling
with specific implementation classes. Since class members are
then bound to a specific interface-implementation class during
the object initialization only, for example through constructors
or through explicit initialization methods, the resulting object
is extensible, meaning that it can change its behavior by
simply specifying different implementation bindings for its
required interfaces. The SAI then mandates such interfaces-to-
implementation binding information (also known as “wiring
information”) to be “externalizable”. This approach implies
binding information to be pulled-out from a static class-
initialization code and to be put into a separate resource that
can be loaded during object initialization. It should be noticed
that information on the internal wiring of a component is truly
the real configuration of the component. When such a
configuration is externalized, then it becomes a resource that
can be managed as any other data resource. Externalized
wiring information thus allows for the pervasive use of the
“Factory pattern” for the runtime injection of class
dependencies. More specifically, factory objects can now be
generalized so as to load dependency definitions from this
type of externalized resource. The application of this pattern
in the SAI enables objects wiring into working components to
also be driven by administrative signals, that is by messages
embedding the desired component configuration. This implies
that the SAI architecture can extend administrator capabilities
to the runtime definition of the inner structure for its system
components. Whenever the internal-component interactions
are inherently concurrent and asynchronous, the SAI
architecture also suggests the use of an in-memory message
bus for centralizing coordination and for monitoring internal
threading and messaging activities. Hence, a process similar to
the macro-level message-oriented communication-bus is then
activated at the micro-level to support both event-driven and
message-oriented programming styles. Thanks to these
additional requirements, the SAI architecture is characterized
by multi-level design consistency. In practical terms, this
feature enables system architects to reason over the SAI
micro-structure in much the same way they reason over the
SAI macro-structure: in most cases, the only real difference is
how components communicate with each other. At the macro
level, the SAI architecture requires the specification of a
communication bus for enabling interaction over the
underlying network transport protocol; at the micro level,
inter-component communication happens through the process
shared memory and it does not require the opening of any
network socket. Since both micro and macro levels share the
same service-oriented structural and interaction approach, the
SAI promotes a “fractal” system thinking that is consistent
across all of the architecture layers.

VI. THE SAI MIDDLEWARE PROOF-OF-CONCEPT
We have developed an SAI Proof-Of-Concept (POC) to

carefully assess efforts and implementation problems possibly

 isj_455 Received Date: March 10, 2010, Revised Date: June 23, 2010

10

implied by future prototype-level developments. In this
direction, our efforts have focused on main SAI capabilities
implementation, while structured component benchmarking
and performance optimizations are planned for future
improvements towards a full SAI prototype. The goal of the
Proof-Of-Concept is then to evaluate the architecture’s
feasibility needs, especially those concerning the targeted
extensibility and configurability capabilities. In the process,
we have also tried to assess to what extent current open-source
technologies can be successfully adopted in the building of a
complex enterprise-level architecture. The main rationale for
our POC technological choices are summarized below.

A. The Reference Development Language
The SAI architecture is not targeted towards real-time control
capabilities. As a consequence, no special technological
constraints arise on the choice of the POC runtime operating
system and programming language. To achieve a portable
implementation while also taking advantage of solid open-
source technologies we have then adopted Java as our
reference programming language.

B. The Reference Implementation Framework
The SAI architecture has demanding extensibility and
configurability targets. Despite the initial choice for Java as
the reference programming language, these requirements
together provide compelling reasons for shifting from the
Sun’s Java EE 5 specification as the reference implementation
framework. In developing SAI, Java EE 5 problems are tied
both to the specification itself and to its leading
implementations, whether commercial or open-source. In its
specification, Java EE 5 promotes a development framework
that is largely based on the adoption of stateless components
in its “service” (EJB) layer. Indeed, the Enterprise Java Beans
technology essentially provides RPC or messaging interfaces
(Message-driven beans) over equivalent component instances.
Of course, to allow for consistent pooling and lifecycle
management, component instances are also mandated by the
specification to be stateless. J2EE components are then
targeted at easing clustering and replication with no
standardized support for “singleton” components. On the
contrary, support for “singleton” EJBs is available only in
selected J2EE containers through implementation-dependent
strategies1 (e.g., the JBoss “Service” code-level annotation).
Since the SAI may require the use of stateful services, any use
of such proprietary capabilities would eventually make the
SAI implementation strictly tied to a specific implementation
of the framework, thus limiting fulfillment of its basic
extensibility requirement. Though J2EE implementations may
differ in their maturity level, we also notice that most of them
still rely on the use of heavyweight application servers.
Despite its modularity, the J2EE specification and
programming model has been progressively tied over the
years to complex containers with strong administration,

1 Sun has included in the recent EE 6 specification a standardized

“singleton” code-level annotation for EJBs. At the time of POC development,
Java EE 6 was just released, with really no working implementations for the
specification.

deployment and runtime requirements. By coding against
J2EE specs, the risk for the SAI is thus the breaking of its
configurability goals and the lock-in to specific J2EE
implementations. In order to be as coherent as possible with
our goals, we used a different approach for the POC
development. We then decided to stick to the basic java
“Standard Edition” specification while being supported by
light and transparent frameworks to correctly implement the
basic component-level patterns devised by the same
architecture specification. In this direction, we have widely
used the core dependency injection capabilities of the Spring
framework [12] [32], so to break-down code development into
many framework-independent Java interfaces and into class
definitions with minimal or zero dependencies on external
containers, including the Spring framework itself. The SAI
POC interprets the Spring just as a rich and reusable
implementation of the Factory pattern: as many technology
specialists would say, the codebase is fully “Spring unaware”.
Indeed, the framework has been adopted just for driving
component development along the “everything is service”
approach and to externalize dependencies into separate
configuration files so to satisfy the SAI component-level
configurability requirement.

C. Adopted Open Source Technologies And Libraries
The SAI POC has found valuable support in many open
sourced systems and libraries. At present, the Message Bus
component is powered by ActiveMQ [35], one of the leading
open-source implementations of the JMS specification (Java
Message Service, [34]). It has been chosen over other
competing MOMs because of its solid message throughput
under varying operating conditions and of its configuration
flexibility. Being a JMS compliant message bus, it was then
possible to directly use the JMS remoting libraries already
provided by the Spring framework as Bus Connector
implementations. Wiring components to such bus connectors
happens through a simple configuration, while still being
transparent to the remaining implementation details as
mandated by the SAI architecture specification. Current POC
adopts the XML format, which is handled internally through
the popular JDOM java library. The adaptors functional
profiles are currently based on a specific XML Schema.
Unpacking functional profiles data atoms into the Adaptor
Registry is instead based on the XML Schema Object Model
(XSOM) [40] since it is the only general-purpose Java schema
parser which we are currently aware of.

The security manager PKI infrastructure was realized using
the “Bouncy Castle” open source implementation of the Java
Cryptography Architecture (JCA). The current security
interceptor implementation, which is used both in pre- and
post-processing chains of the adaptor microcontainer and of
the Delivery Channel component, is built on top of the WSS4J
library [36] and implements WS-Security specifications [20].
The Transaction Manager component is powered by JOTM,
which is an open and standalone (container-free)
implementation of Sun’s JTA specification. The STRIPS
planner is based on our refactoring of the PL-PLAN, an open
source Java library implementing the Graphplan algorithm
 [11]. Our extensions have been focused on the caching of

 isj_455 Received Date: March 10, 2010, Revised Date: June 23, 2010

11

computed plans and of “known-unsolvable” planning
problems in order to speed-up client request handling. Finally,
the SAI Grid Infrastructure was entirely developed from
scratch in the Java programming language by applying
patterns and strategies specified by the SAI architecture.

VII. CASE STUDY IN THE MARITIME SURVEILLANCE
We carried out a case study for a qualitative assessment of

the SAI POC model and technologies in the maritime
surveillance domain. The preliminary analysis of case-study
requirements was performed in the framework of the
Operamar European research project in collaboration with
SELEX Sistemi Integrati [24]. The case study objective was to
perform demonstration activities in a test environment
simulating the exchange of basic messages among legacy
systems in the maritime surveillance domain. To this purpose,
we conceived a basic demonstration scenario aimed at
validating most significant features of the SAI middleware.

The demonstration scenario is in the north-Tyrrhenian sea
and is composed of two kinds of simulated legacy systems:
one providing static information about vessels (e.g. vessel
registration and owner details maintained in national registers)
and another providing vessel positioning information (i.e.
positioning information which might be provided by port
authorities or the coastal guard and obtained by vessel
position reports, such as AIS messages).

We purposely developed a web application (named M3S:
Maritime Surveillance, Security and Safety) providing end
users with vessel tracing and tracking services. The M3S
Application interaction with data providers (i.e. the simulated
legacy systems) is intermediated by the SAI middleware. The
demo application allows end users to browse registration
information about a set of vessels, selected through query
parameters such as country of registration and/or last
monitored position. The M3S Web Application also provides
a map-based view, showing the current position of monitored
vessels (Fig. 3). The user can also access further information
on displayed vessels, such as current vessel status (e.g.
moored, at anchor, under navigation), route plan and pictures.

We defined a shared XML-based messaging and data model
representing a subset of concepts and relations relevant to the
maritime surveillance domain. The messaging model is a set
of request/response and notification/acknowledge messages.
The underlying XML data model includes a core set of data
which were chosen based on the analysis of current European
practices for sharing data acquired via existing monitoring
systems, such as Vessel Monitoring System for Fisheries
(VMS), Automatic Identification System (AIS), and Ship
Reporting Systems (SRS) [7].

The report of the European Commission on “Legal Aspects
of Maritime Monitoring & Surveillance Data” [7] provides a
picture of the complexity of data sharing policies in this
application domain. According to such legal frameworks and
internal policies, information owners may need to specify and
enforce specific security policies, e.g. by deciding to disclose
information elements only to some organizations and/or in

specific circumstances. As described in subsection V.J, SAI
adaptor security interceptors can be configured in order to
cope with the need of ad-hoc security policy enforcement.
Presently the system supports a custom policy language, while
future activities are planned to extend the SAI capabilities in

order to support standard specifications, such as WS-Policy
 [21] and WS-Security Policy [23].

VIII. CONCLUSIONS
In this paper we have discussed the SAI approach towards

network-centric information sharing and systems integration
in the maritime surveillance domain. The SAI approach has
focused on the consistent application of SOA principles both
at the system and at the component level. The resulting
architectural framework is flexible enough to accommodate
most of the interoperability requirements implied by the
coordination of heterogeneous maritime-surveillance systems
and organizations. The developed POC has also demonstrated
that SAI implementations can be made free from any
technological lock-in, including lock-in to mainstream SOA
application servers as well. Hence, we have provided the main
rationale for most POC technological choices and we have
trialed the POC capabilities through a demonstrator involving
common maritime-surveillance application needs.

Regarding future activities, we are fast moving towards a
prototype-level implementation of the architecture allowing
for middleware performance profile benchmarking under
varying deployment configurations. We think that resulting
benchmarks will help us design and implement additional
infrastructure components and optimizations, so as to achieve
state-of-the-art levels of system resilience and scalability. Our
research efforts are striving towards two complementary tasks:
the optimization of the “Adaptor Registry” semantic-
representation capabilities and the evolution of the grid
subsystem towards a more flexible cloud infrastructure.

ACKNOWLEDGEMENTS
This work has been partially carried out in the context of a

study funded by SELEX Sistemi Integrati, under the
supervision of Agostino Longo. Technical assistance by Luca
Capannesi, Department of Electronics and
Telecommunications of the University of Florence, is

Fig.3 Screenshot of the SAI demonstration web application: map-based
view with information about registered vessels

 isj_455 Received Date: March 10, 2010, Revised Date: June 23, 2010

12

gratefully acknowledged.

REFERENCES
[1] A. Avizienis, J. Laprie, B. Randell, C. Landwehr, Basic Concepts and

Taxonomy of Dependable and Secure Computing, IEEE Transactions on
Dependable and Secure Computing, 1, 1, 2004

[2] A. Blum and M. Furst, "Fast Planning Through Planning Graph
Analysis", Artificial Intelligence, 90 (1997), 281--300

[3] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal,
Pattern-Oriented Software Architecture, Volume 1: A System of Patterns
(1996), John Wiley & Sons Ltd.

[4] Commission of the European Communities, An Integrated Maritime
Policy for the European Union. Communication from the E. C. (2007),
http://eur-lex.europa.eu/

[5] Commission of the European Communities. “Towards the integration of
maritime surveillance: A common information sharing environment for
the EU maritime domain”. Communication from the E. C., (2009),
http://eur-lex.europa.eu/

[6] F. Curbera, M.J. Duftler, R. Khalaf, W.A. Nagy, N. Mukhi, S.
Weerawarana, Colombo: lightweight middleware for service-oriented
computing, IBM System Journal 44, 4 (2005), 799-820.

[7] Directorate-General for Maritime Affairs and Fisheries, European
Commission, “Legal Aspects of Maritime Monitoring & Surveillance
Data”. Final Report submitted to: DG Maritime Affairs & Fisheries,
October 2008,
http://ec.europa.eu/maritimeaffairs/studies/legal_aspects_maritime_moni
toring_summary_en.pdf

[8] A. Erradi and P. Maheshwari, wsBus: QoS-aware middleware for
reliable Web services interactions,", In the Proc. of the 2005 IEEE
International Conference on e-Technology, e-Commerce and e-Service ,
(2005), 634-639.

[9] European Maritime Safety Agency Extranet, SafeSeaNet,
https://extranet.emsa.europa.eu/index.php?option=com_content&task=vi
ew&id=70&Itemid=114

[10] EUROSUR, Examining the creation of a European Border Surveillance
System,
http://europa.eu/rapid/pressReleasesAction.do?reference=MEMO/08/86
&format=HTML&aged=0&language=EN

[11] P. Fournier-Viger and L. Lebel, PL-PLAN, Java Open-Source AI
Planner, accessed May 2009 http://plplan.philippe-fournier-
viger.com/index.html.

[12] M. Fowler, Inversion of Control Containers and the Dependency
Injection pattern (2004),
http://www.martinfowler.com/articles/injection.html.

[13] E. Gamma, R. Helm, R. Johnson, J. M. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software, Addison-Wesley
Professional, 1995

[14] V. K. Garg, Concurrent and Distributed Computing in Java. Wiley
Interscience, 2004

[15] B. Garnier, J.-M. Lhuissier, A. Guillot, “The global challenge of
Information Exchanges in the Maritime Community”, in the Proc. of
Maritime Systems and Technology Conference, MAST 2008 (2008).

[16] P. Helland, Data on the Outside vs. Data on the Inside, Microsoft
MSDN, Library, http://msdn.microsoft.com/en-
us/library/ms954587(loband).aspx

[17] R. Hewett, P. Kijsanayothin, and B. Nguyen, “Scalable Optimized
Composition of Web Services with Complexity Analysis”, in
Proceedings of the 2009 IEEE international Conference on Web
Services. ICWS. IEEE Computer Society, Washington, DC, 389-396

[18] Y. Huang, A. Slominski, C. Herath, and D. Gannon, WS-Messenger: A
Web Services-Based Messaging System for Service-Oriented Grid
Computing. In Proceedings of the Sixth IEEE international Symposium
on Cluster Computing and the Grid (IEEE Computer Society, 2006).

[19] K.B. Laskey, K. Laskey, “Service oriented architecture”, Wiley
Interdisciplinary Reviews: Computational Statistics, 1, 1, 101-105, 2009

[20] OASIS Consortium, WS-Security, http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=wss

[21] OASIS, WS Policy, http://docs.oasis-open.org/ws-sx/ws-
securitypolicy/200702/ws-securitypolicy-1.2-spec-os.html#wspolicy

[22] OASIS, WS-Notification (v1.2), http://docs.oasisopen.org/wsn/2004/06/
[23] OASIS, WS Security Policy, http://docs.oasis-open.org/ws-sx/ws-

securitypolicy/v1.2/ws-securitypolicy.html

[24] OPERAMAR Project, “An InterOPERAble Approach to European
Union MARitime Security Management”, Final Report for Public
Dissemination - Deliverable No4.4, 2008, available online at
http://www.operamar.eu/attachments/008_Operamar%20deliverable%20
public%20summary%20FINAL.pdf

[25] F. Paganelli, D. Parlanti, D. Giuli. "Message-based Service Brokering
and Dynamic Composition in the SAI Middleware", to be included in the
Proc. of the 7th IEEE International Conference on Service Computing
(SCC 2010), Miami, Florida, 2010.

[26] J. Rao and X. Su. "A Survey of Automated Web Service Composition
Methods". In Proceedings of the First International Workshop on
Semantic Web Services and Web Process Composition, SWSWPC 2004,
San Diego, California, USA, July 6th, 2004.

[27] A. Rotem-Al-Gaz, Bridging the Gap Between BI and SOA (2007),
http://www.infoq.com/articles/BI-and-SOA

[28] A. Rotem-Gal-Oz, What Is SOA Anyway. From Hype To Reality,
http://www.rgoarchitects.com/Files/SOADefined.pdf

[29] R. Sandhu, E. Coyne, H. Reinstein and C. Youman, Role-based access
control model, IEEE Computer, 29, 2 (1996), 38–47.

[30] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann, Pattern-Oriented
Software Architecture: Patterns for Concurrent and Networked Objects,
vol. 2: Wiley & Sons, 2000

[31] D.C. Schmidt, F. Buschmann, Patterns, frameworks, and middleware:
their synergistic relationships, in the Proc. of the 25th International
Conference on Software Engineering, (2003), pp. 694-704.

[32] Spring framework. http://www.springsource.org/
[33] M. Stal, Using Architectural Patterns and Blueprints for Service-

Oriented Architecture, IEEE Software, 23,2 (2006), 54-61
[34] Sun Microsystems Inc., Java Message Service Version 1.1,

http://java.sun.com/products/jms/docs.html
[35] The Apache Software Foundation. ActiveMQ.

http://activemq.apache.org/, 2009 ActiveMQ,
[36] The Apache Software Foundation, WSS4j, http://ws.apache.org/ wss4j/
[37] The Open Group, “Distributed TP: The XA Specification”, CN 193,

ISBN 1-87263-024-3, 1992. Available:
http://www.opengroup.org/bookstore/catalog/c193.htm

[38] A. Thomas, T. Turner, S. Soderlund, Net-Centric Adapter for Legacy
Systems, IEEE Systems Journal, 3, 3, 8 (2009).

[39] W3C, “WS-Eventing”, W3C Member Submission (2006),
http://www.w3.org/Submission/WS-Eventing/

[40] XSOM, XML Schema Object Model, official web site,
https://xsom.dev.java.net/

[41] X. Zheng, and Y. Yan, “An Efficient Syntactic Web Service
Composition Algorithm Based on the Planning Graph Model”, In
Proceedings of the 2008 IEEE international Conference on Web
Services, ICWS 2008. IEEE Computer Society, Washington, DC, (2008)
691-699.

