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Abstract— Maritime-surveillance operators still demand for 

an integrated maritime picture better supporting international 
coordination for their operations, as looked for in the European 
area. In this area, many data-integration efforts have been 
interpreted in the past as the problem of designing, building and 
maintaining huge centralized repositories. Current research 
activities are instead leveraging service-oriented principles to 
achieve more flexible and network-centric solutions to systems 
and data integration. In this direction, this article reports on the 
design of a SOA platform, the “Service and Application 
Integration” (SAI) system, targeting novel approaches for legacy 
data and systems integration in the maritime surveillance 
domain. We have developed a proof-of-concept of the main 
system capabilities to assess feasibility of our approach and to 
evaluate how the SAI middleware architecture can fit application 
requirements for dynamic data search, aggregation and delivery 
in the distributed maritime domain. 

Index Terms— maritime surveillance; service-oriented 
architecture; message-oriented middleware; interoperability. 

I. INTRODUCTION 
ARITIME surveillance domain includes all of the 

activities that can impact the maritime sphere’s security, 
safety, economy and environmental protection. To this end, 
involved coordination and operational bodies need to share an 
integrated operational picture for performing their duties in an 
effective and cost-efficient way. In the European Maritime 
Policy “Blue Paper”  [4], the European Commission states the 
willingness to "take steps towards a more interoperable 
surveillance system to bring together existing monitoring and 
tracking systems used for maritime safety and security, 
protection of the marine environment, fisheries control, 
control of external borders and other law enforcement 
activities". As highlighted in  [15], existing systems are based 
on an “info-centric centralized approach”, where a Global 
Common Operational Picture is built on top of a central data 
repository system. While such an approach is well suited for 
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addressing the technological interoperability of relatively 
homogeneous communities, it does not fit well with current 
requirements for an integrated information picture spanning 
over technologically and managerially heterogeneous systems. 
To cope with these requirements, emerging efforts are focused 
on the adoption of the network-centric approach by leveraging 
on service oriented architecture models and technological 
standards.  

This work reports on an ongoing study by the Dept. of 
Electronics and Telecommunications (University of Florence) 
and by the National Interuniversity Consortium for 
Telecommunications (CNIT) in collaboration with SELEX 
Sistemi Integrati. This study aims at investigating the adoption 
of SOA models and technologies for addressing main 
information integration requirements of the European 
maritime surveillance domain. Here we present results in the 
design of the architecture and on the development of a proof-
of-concept for a message- and service-oriented middleware 
(named SAI – Service Application Integration – system), 
enabling information search, integration and delivery in the 
maritime surveillance scenario.  

This work is structured as follows: Section II provides a 
brief introduction to the maritime surveillance application 
domain and its related interoperability requirements. Section 
III then presents some relevant high-level and application-
independent architectural principles concerning network-
centric systems and data integration. Section IV discusses 
related works on SOA data integration and prepares the reader 
for the main rationale underlying the SAI system design that is 
fully presented in Section V. Main implementation choices for 
the developed SAI Proof of Concept are presented in Section 
VI, while Section VII reports on the demonstration activities 
carried out through a special maritime surveillance case study. 
Finally, Section VIII draws the conclusions and provides 
some outlines for future work.  

II. MARITIME SURVEILLANCE INTEROPERABILITY 
REQUIREMENTS 

“Maritime surveillance” refers to all of the functional areas 
dealing with assuring maritime safety and security. More 
specifically, its primary focus includes monitoring, control 
and enforcement actions for defense, search and rescue 
activities, maritime traffic control (including anti-terrorism 
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and port security), environment protection, deterrence of 
illegal goods trafficking, drug trafficking and illegal 
immigration. In this domain, actors have different duties and 
responsibilities depending on their institutional role. In the 
European Union area, which is the reference context for this 
discussion, most stakeholders may be classified into three 
categories: 

• Inter-National Level Agencies Layer, grouping European 
agencies in charge of maritime safety and security functions. 
Examples are: the European Agency for the Management of 
Operational Cooperation at the External Borders (FRONTEX, 
http://www.frontex.europa.eu/), the European Maritime Safety 
Agency (EMSA, http://www.emsa.europa.eu/), the European 
Police Office (Europol, http://www.europol.europa.eu/).  

• Member State Coordination Layer, grouping national 
level Ministries, such as the Ministry of Environment (MoE), 
Ministry of Interior (MoI), Ministry of Foreign Affairs 
(MoFA) and Ministry of Transportation (MoT). 

• Member State Operational Layer, grouping Member state 
Operating Bodies such as Navy, Coastal guard, Port 
Authorities, Maritime Police and Antifraud corps. 

According to current practices, these actors typically collect 
information for their own purposes by means of dedicated 
monitoring and surveillance systems, as illustrated in  [5]. This 
situation may lead to many inefficiencies: similar information 
may be collected by different bodies, while information that 
could be jointly exploited by several actors is not shareable, 
just to mention a few examples. In some cases, actors may 
even be unaware that potentially useful information is being 
collected by other actors. In most cases, direct information 
sharing is not possible because of the lack of agreed-on 
standards and policies.  

At present, the European Community is trying to reduce 
information fragmentation by funding research and 
experimentation activities targeting the definition of a 
common information-sharing environment. The objective is to 
harmonize legal frameworks, to define organization principles 
for promoting the international and local cooperation and to 
specify technical frameworks for realizing the information 
exchange environment across the involved actors. As 
discussed in  [15], the approaches currently adopted for 
building a common maritime situational picture are typically 
based on the so-called “info-centric centralized solutions”. In 
these kinds of systems, an actor has the responsibility of 
collecting information in a central data repository system to 
build a global common operational picture and to broadcast it 
back to the affiliated organizations. While such an approach is 
well suited for addressing interoperability issues among 
relatively homogeneous communities, it is does not fit well 
with the current requirements for building a cross-sectoral 
integrated information picture through the extension of the 
information network to a broader community. As a matter of 
fact, a large amount of information is considered sensitive and 
its owners are still required to control the extent to which this 
information is shared with third parties.  

Based on this background, our work aims at eliciting and 

structuring design guidelines for a service-oriented 
middleware targeting operating environments characterized by 
a significant technological and managerial heterogeneity, as 
the one represented by the maritime surveillance domain. To 
address the needs of such complex and variable 
interoperability scenarios, our work primarily targets a 
network-centric approach towards the design of a configurable 
and extensible middleware offering dynamic data and systems 
integration capabilities. Companion requirements for security 
and dependability have also been considered. 

Integration requirements may also be elicited while 
analysing interoperability scenarios within similar application 
domains, even if with different priorities for the design, 
development and demonstration activities. As a consequence, 
the following sections present the SAI middleware by 
adopting a general-purpose point of view. Demonstration 
activities carried out in the reference application domain are 
described in Section VII. 

III. NETWORK-CENTRIC SYSTEMS AND DATA INTEGRATION 
As already stressed by Thomas et al.  [38], the network-

centric approach mainly focuses on the provision of 
situational awareness through the sharing of integrated 
information among surveillance and/or defense bodies. Such a 
goal has usually been interpreted over the years as the 
problem of building a centralized repository from data 
collected through the direct interaction with legacy data-
sources. Of course, such an interpretation is more technical 
than architectural in nature, while presenting at least the 
following significant drawbacks. The primary drawback is the 
tight coupling of the solution with the internal structure of the 
connected data silos. Depending on the application needs, 
most changes in the data schema of the connected silos could 
require propagation to the integration system’s “business-
logic”, up to make it un-maintainable in the long run in case 
of frequent revisions. Secondly, the lack of standardized tools 
and languages for database management would always bind 
such an integration system to specific technologies, so that 
technical choices would ultimately drive system design, as 
opposed to a structured top-down approach. Some concerns 
also arise regarding the interaction model with legacy data 
sources. We simply notice here that high-sensitive data that is 
managed by public institutions typically cannot directly be 
accessed due to relevant security reasons, thus limiting the 
number of information sources considered for integration. 
Finally, information seeding in the maritime surveillance 
domain usually needs support for asynchronous events 
notifications. Such a publish/subscribe dispatching model 
does not fit well with the traditional “pull” database access 
and querying model. These factors considered, the adoption of 
the network-centric perspective seems dependent on meeting 
some basic architectural features highlighted below:  
- the coupling of business integration logic with the data’s 
internal structure should be avoided; 
- interaction with legacy data sources should not be based only 
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on a pull (request/response) RPC-style of interaction but also 
on a push model (one-to-one, as well as one-to-many); 
- the interaction among system components should be based 
on open standards to avoid technological lock-ins; 
- interaction with the integrated data-sources should be 
mediated by a special indirection-layer for enforcing “on the 
outside” the legacy system security and data-disclosure 
policies. 

A. Data as a Service: Using SOA for Distributed Data 
Management 

The service-oriented architectural style (SOA) is being widely 
recognized as an effective approach for achieving the above 
net-centric requirements while also architecting loosely 
coupled, event-driven, standardized and maintainable 
distributed systems   [19] [28]. Services, the SOA basic system 
units, are just processes that can be remotely accessed on 
specific network endpoints. When legacy data is exposed “on 
the outside” of a legacy system through a SOA service, then 
that service is truly providing an indirection layer over the 
legacy system. As a side effect, client applications can now 
acquire data only by means of message exchange with that 
service. Since data gathering in the distributed environment is 
now equivalent to a sequence of service invocations, it turns 
out that data search, aggregation and reconciliation operations 
can now be framed as a problem of SOA service composition. 
By considering data aggregation as a special case of service 
composition, then SOA mainstream techniques and patterns 
for service composition, such as those prevailing in the Web 
Services (WS-*) context, could then be considered as 
candidate solutions to the problem of data integration among 
multiple and heterogeneous legacy systems. 

IV. RELATED WORK 
Among the many available SOA middleware solutions for 

data integration, our work can be compared with some 
significant service-oriented systems based on the message-
oriented paradigm. “Colombo” is a middleware developed by 
IBM Research as an experimental SOA platform, based on 
SOC principles   [6]. The Colombo platform is built around the 
SOAP messaging model and implements most of the Web 
Service stack, including the WS-* specifications for reliable 
messaging, security, transactions and service coordination. 
“WS-Messenger” is a web-service based publish/subscribe 
system, built on top of a message broker providing reliable 
message delivery  [18] . WS-Messenger is based on WS 
specifications and supports both WS-Eventing  [39] and WS-
Notification  [22]. “wsBus” is a Web Service-based 
middleware aiming at supporting dependable WS interactions 
 [8]. It is a lightweight messaging based on the broker pattern 
which can be plugged into existing Web Services platform to 
reliably deliver SOAP messages via various transport 
mechanisms (e.g. HTTP, TCP, JMS).  

In the European area, “EuroSur”  [10] is an ongoing project 
providing a common technical framework for promoting and 
improving the cooperation and communication among 

member state authorities for improving border surveillance 
activities. “SafeSeaNet”  [9] is a European project focused on 
supporting information exchange across authorities and 
operational bodies involved in preventing and detecting illegal 
pollution actions. SafeSeaNet relies on a centralized 
messaging system based on XML messages transported over 
the HTTP protocol.  

The “Net-Centric Adapter for Legacy Systems” (NCALS) 
is a Java software prototype targeting a cost-effective tool for 
integrating defense legacy systems according to a SOA-based 
approach  [38]. Analogously to our proposal, NCALS applies 
the adapter, the channel adapter and the message broker 
patterns to its architecture, but to our knowledge it does not 
provide any support for secured message exchange, workload 
distribution or dynamic data-aggregation capabilities.  

The remaining systems and architectures seem coupled with 
the WS-* technology stack and/or with heavy-weight 
application servers, while also providing just predefined data 
aggregation workflows. On the opposite, our proposal strives 
for runtime dynamic data aggregation while still being 
independent from the WS specification and from commercial 
or open-source application servers. In this regard, it seems that 
most interpretations of the SOA approach overlap the service 
orientation paradigm with Web Services standards and 
correlated technologies (e.g., the BPEL orchestration 
language)  [33]. Our architecture has been instead driven by 
high-level SOA architectural principles that have then been 
translated into practice through the adoption of solid patterns 
in distributed systems design. 

V. THE SAI MIDDLEWARE ARCHITECTURE 
The Service and Application Integration (SAI) middleware 

architecture is the current snapshot of our research activities 
on the application of SOA principles to the secured and 
dynamic aggregation of distributed data from legacy systems. 
The high-level SAI architecture is shown in Fig. 1. The 
architecture is conceived as a set of configurable components 
to be variably assembled into different system deployments to 
best fit domain-specific integration needs. This implies that 
concrete middleware deployments are not required to 
instantiate all of the components envisaged by the logical 
system architecture. On the contrary, developers can make a 
number of decisions for targeting the architecture to specific 
application domains and operating environments. Different 
specialized deployments of the system are then possible and 
each of them should be considered just as a distinct 
instantiation of the same SAI logical framework. In this 
regard, also system configurability and extensibility are first-
class requirements for the architectural specifications, together 
with the targeted functional capabilities for dynamic data 
retrieval, reconciliation and aggregation. 

The SAI design approach puts service-oriented principles 
into practice through the adoption of solid patterns in 
distributed systems design. In software design, patterns 
provide guidelines for the design of software systems  [13]. 
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Since they capture reusable design expertise and solutions to 
recurrent design problems, they support a higher level of 
abstraction than implementation-dependent classes and 
instances  [31]. In this direction, the following subsections will 
provide the rationale for most SAI components in the context 
of a specific design pattern. Subsections A to I describe SAI 
components and strategies for legacy-systems integration, 
service lookup and dynamic data retrieval and composition. 
Solutions for enabling communication within SAI components 
and between SAI components and external systems are also 
considered, while a specific focus is then devoted to the 
dynamic workload distribution capability provided by the SAI 
Grid infrastructure. Subsections J to M then analyze how 
cross-cutting security, dependability and system-consistency 
concerns have been handled through dedicated components 
and design patterns. 

A. Legacy Systems Wrappers: The Adaptor Microcontainer 
The goal of the “Adaptor Pattern” is to reconcile legacy 

components with interface requirements specific to a target 
framework  [1] [3]. Reconciliation is usually achieved through 
a “wrapper” that provides a compliant façade for the legacy 
interface. The “Adaptor Microcontainer” is the SAI 
interpretation of the adaptor pattern in the context of an SOA 
distributed system. The adaptor microcontainer wraps any 
legacy system into an SAI-compliant message processor. 
Interfacing with the middleware infrastructure is achieved by 
connecting the container to the SAI communication bus 
through a Bus Connector component while adapting the flow 
of incoming request messages to the proprietary client 
interfaces of the wrapped legacy system; the response coming 
from the legacy system is then converted back again into an 
SAI-compliant message. Depending on the nature of the 
chosen communication bus, each adaptor can then support 
both synchronous calls and asynchronous messaging patterns. 
The internal architecture of the SAI microcontainer is depicted 
in Fig. 2. 

The container acts as a lightweight and configurable 
message processor hosting a pluggable service 
implementation that provides the interfacing logic with the 

legacy information source. In this regard, the typical service 
implementation will simply interpret received requests into 
chains of remote invocations to the legacy system interfaces, 
while leaving additional processing to the container itself. The 
adaptor micro-container thus manages the life-cycle of the 
hosted service, while also pre- and post-processing both 
incoming and outgoing messages through inbound and 
outbound interceptor chains. By exploiting the “interceptor 
pattern”  [30], the micro-container can so augment the adaptor 
capabilities while establishing a strict separation of concerns 
between the purely functional operations performed by the 
service and the other processing that is possibly required for 
satisfying specific non-functional requirements. Interceptors 
are best suited for light processing of several message aspects, 
including payload compression and message-format 
adaptations, while allowing transparent adaptor interfacing to 
the Security Manager and Transaction Manager components. 
More importantly, interceptors can be “stacked”. As an 
example, let us consider specialized interceptors for message 
compression and decompression, SOAP envelope document 
wrapping and unwrapping and security headers processing. A 
meaningful pre-processing stack would first decompress 
messages, process SOAP security headers to assess the 
requestor authentication level and access rights, decrypt the 
SOAP body, extract the application payload from the SOAP 
body and then trigger the service implementation processing. 
Any response from the hosted service would then pass 
through the same type of interceptors in reverse order to 
finally obtain a compressed and secured SOAP response 
message. Of course, security interceptors can also be 
developed to condition request processing or message 
dispatching to the authentication and authorization policies of 
legacy security systems (as depicted in Fig. 2). In this case, 
security headers would need to be interpreted and translated 
into remote calls to the legacy security infrastructure, which is 
just a particular aspect of system integration. This different 
type of integration, however, would be dealt with by a 
specialized interceptor, while leaving the basic service 
implementation free from any security concern. In this sense, 
the integration logic performed by the hosted service is 
completely reusable, because it does not depend on the SAI 
infrastructure, nor on the adoption of specific messaging 

 
 

Fig.2 SAI Adaptor   

 
Fig.1 SAI middleware architecture   
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standards.  
The set of all active adaptor micro-containers is the lower-

level SAI service layer feeding other components and 
applications with data retrieved by the connected legacy 
systems. To fit the SAI extensibility goal, adaptors never 
exchange information with other adaptors: the layer is thus 
completely modular, with no functional dependency between 
any two adaptors.  

Concerning their deployment, adaptors can be hosted either 
within or outside of the SAI system boundary. When the 
adaptor is deployed into the operating environment of a 
trusted external organization, its control is delegated to the 
management infrastructure of that organization. In this case, 
network communication between the adaptor service and the 
wrapped legacy system is likely to happen under the 
monitoring and control activities of the legacy system owner. 
When the adaptor is instead deployed within the SAI system 
boundary, agreements are required for establishing proper 
requirements for network communication with the legacy 
infrastructure. However, specialized interceptors can be used 
for enabling participation of the adaptor to the transactions 
possibly activated within the SAI environment, as it is 
clarified in the next subsection ( K) dedicated to the SAI 
transaction management.  

B. Service Lookup: The Adaptor Registry 
The “registry pattern” is the commonly accepted design 

solution for services lookup in distributed environments. The 
pattern envisages the presence of a logically centralized 
subsystem supporting lookup capabilities through a “yellow-
page” approach. Accordingly, the SAI “Adaptors Registry” 
manages the “functional profile” of each information system 
connected to the SAI by means of a dedicated adaptor.  

The adaptor profile has to be expressed into an SAI-specific 
formalism. This requirement arises to ease the integration of 
systems whose interface description cannot be easily 
accommodated into the WSDL model and to better support the 
SAI dynamic data composition capabilities. As in the standard 
WSDL document-literal binding, SAI profiles model the 
message-processing capabilities of an adaptor through ordered 
input-output pairs of XML message types. However, optional 
“meta properties” can be added to each input-output pair to 
also describe the non-functional aspects of the transformations 
performed by the adaptor upon invocation. The SAI profile 
can also be used to link XML message types to their 
embedded data atoms. Each data atom is so characterized by 
its “path”, that is by its position inside the containing message 
structure. Due to the underlying XML information model, 
data-atom paths always identify either element leaves or 
element attributes. The final association of atoms with 
optional “semantic properties” can then be used to link 
ontological annotations to the data embedded into each 
message. Fully-populated profiles enable authorized clients to 
perform complex queries within the Adaptors Registry. More 
specifically, clients can lookup adaptor endpoints on the 
communication bus either by target message types, target non-

functional properties and/or target semantic annotations. 
Depending on application needs, the registry can thus support 
simple UDDI-style service-endpoint retrieval as well as 
endpoint retrieval by target data atoms or by semantic 
annotation lookup.   

C. Communication Within SAI Components: Bus Connectors 
The SAI architecture focuses on the design of reusable, 
extensible and configurable components. These requirements 
also mandate the decoupling of every system component from 
the specific solutions that can possibly be adopted for 
enabling communication within the same SAI architecture. 
This need has been satisfied through the introduction of the 
“Bus Connector” indirection layer over the chosen 
communication bus. “Bus Connectors” thus enable SAI 
components to use a common interface for sending and 
receiving messages to/from the communication bus. In so 
doing, components become independent from the specific 
network protocol and/or messaging infrastructure that is 
chosen for a specific SAI deployment. Since they can 
intercept both incoming and outgoing messages, Bus 
Connectors can also be configured for persistent message 
logging so to support the subsequent analysis of correlated 
input/output message pairs. As it will be explained in 
subsection  L, such an analysis can be valuable for back-
tracking component failures and for supporting state-recovery 
mechanisms.     

D. Communication within SAI Components: Communication 
Bus 

Being a distributed system, interaction among SAI 
components can only happen through messages: possible 
interaction patterns between system principals truly depend on 
the messaging infrastructure that supports internal SAI 
communications. Thanks to the indirection layer provided by 
Bus Connectors, choices for the communication bus do not 
affect  the structure of other components, being ultimately 
dependent just on the target application domain for the 
architecture. In this regard, it is common practice to bind 
component communications to the HTTP protocol, especially 
for its clear semantics and its fit with most enterprise firewall 
configurations. Use of this protocol usually leads to a request-
response, RPC-style interaction model for components. As a 
side effect of this choice, interacting components become 
coupled “in time” because they all have to be active during the 
scope of each request. RPC interactions are so perfectly 
acceptable for the SAI architecture when applications are not 
focused on the use of adaptors for the asynchronous provision 
of data streams, say for near-real-time trend detection for 
generating alarms. Indeed, use of the RPC interaction pattern 
in such contexts would eventually lead to continuous 
component endpoint polling for retrieving relevant events or 
to continuous connection opening for events-stream provision. 
The risk here is missing critical events during the polling 
interval, while also saturating available network-bandwidth, 
which can occur whenever a lot of data have to be transferred 
on the wire. As stressed by Helland  [16], data-integration 
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domains can also require additional support for message 
durability and for uniform failover strategies with component 
failures and restarts. Even the basic need for centralized 
communication activities  monitoring strives for the inclusion 
of a dedicated messaging infrastructure. When such 
application-level requirements are relevant, the “Message 
Broker” pattern envisages the communication among system 
components to be mediated by a special “broker” component. 
Such a broker would provide components with a logical 
“address” (endpoint), while also being responsible for uniform 
handling of message delivery, publishing, routing and storage. 
Accordingly, “Message Oriented Middleware” solutions can 
play the role of such a dedicated broker when the SAI 
application requirements approach those of an Event-Driven 
Architecture (EDA)  [27]. 

E. Communication Within SAI Components: Message 
Format 
Messages exchanged over the communication bus among SAI 
back-end components and adaptors have to be expressed 
through standardized protocols and language specifications 
(e.g., XML) as opposed to proprietary binary representations 
(e.g., serialized objects of a native programming language). 
The SAI architecture thus satisfies basic software 
requirements for interoperable remote communications. A 
typical side effect of this choice is the requirement for 
marshalling/un-marshalling of received messages into objects 
of the implementation language of choice prior to their 
processing by components. In the SAI architecture, this 
special function can be assigned either directly to the bus 
connector components or to the pre- and post-processing 
chains of adaptors micro-containers.    

F. Communication Between Applications and The SAI: The 
Delivery Channel Abstraction 
The goal of the “Delivery Channel” component is to provide a 
unified client interface for structuring client interactions with 
the SAI architecture. The component is thus designed along 
the well-known “Façade Pattern”: interactions of clients with 
the Grid Infrastructure, Adaptors Registry, Adaptors and 
Composition Engine are factored-out into a minimal set of 
primitive calls that makes consistent interfacing to most SAI 
capabilities possible. One of the main goals of these 
component APIs is to hide the message-creation logic that is 
required for translating client calls into the interoperable 
message format internally adopted by the SAI. In this regard, 
the delivery channel also has to use the specific bus connector 
associated with the chosen communication bus. Consistently 
with the structure of the adaptor microcontainer, the delivery 
channel also supports configurable message pre- and post-
processing using dedicated interceptors. In this way, the main 
client interface can be tailored to the specific choices 
concerning message format and security schemes of concrete 
system deployment. 

G. Communication Between Adaptors And Legacy Systems 
The communication details concerning the remote interaction 
of an adaptor-hosted service and its managed legacy system 

has to follow the specific data formats and network protocols 
that are mandated by the legacy system technical environment. 
In this sense, they are outside of the SAI architecture’s control 
and they cannot be customized.  

H. Dynamic Data Retrieval and Service Composition  
Most of the current strategies for service composition rely on 
design-time or on request-time definitions of the sequence of 
service endpoints to interact with in order to obtain target data 
and process executions. Technologies adopting such an 
approach include the notable BPEL specification. However, 
other proposals for workflow languages and implementations 
still also require clients and/or system developers to feed 
integration engines with explicit representations of control 
structures and service endpoints. In terms of system 
capabilities, defining data-aggregation workflows at design-
time would require assumptions concerning  a) the number, b) 
location, c) identity and d) message schema of those adaptor 
services providing the desired information. Any addition or 
removal of a legacy-system adaptor would thus compromise 
the logical correctness of the workflow and the overall 
functioning of the data integration platform. In 
complementary terms, request-time defining data-aggregation 
workflows by clients would force a non-automatic behavior of 
the system in terms of information retrieval and management 
capabilities. In this case, clients would be required to 
communicate to the system: a) where the data services are 
located, b) the order to follow for information retrieval, and c) 
how the information should be requested from each data 
service. The system would play the role of a “proxy” for the 
external data services, while information search and 
composition operations would be completely driven by 
clients, that would be then required to perform the “heavy 
duty” implied in finding and composing desired information. 

To overcome these limitations, the SAI Adaptor Registry 
and Composition Engine components provide a dedicated 
infrastructure for semantically handling the adaptors’ 
functional profiles. Through such an infrastructure, the SAI 
can reach distributed data atoms through dynamically 
computed routing tables describing the correct invocation 
sequence that workflow engines or clients are required to 
execute in order to “find” requested data in the distributed 
system. The basic mechanism supporting the SAI service-
composition capabilities is outlined below, while forwarding 
the reader to  [25] for a more detailed explanation.  

As previously explained, clients can send requests to the 
SAI system using the Delivery Channel component. Requests 
for aggregated data have to specify both the “target” message 
type expected as the SAI-system response and the “input” 
request information, for example the required search criteria 
for narrowing the output produced by the system. Upon 
receiving the request, the SAI system will delegate the request 
to the Composition Engine component that will then perform 
the following activities: 1) it will query the adaptor registry 
for gathering the information required for defining the 
adaptors invocation sequence (“plan”) that should be followed 
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for retrieving targeted data; 2) it will bind the invocation plan 
to concrete bus endpoints; 3) it will then execute the solution 
plan by invoking the selected adaptors and aggregating data 
embedded into received messages into the target response 
template specified by the client. The approach followed by the 
SAI Composition Engine is similar to the AI-planning 
framework that is described in  [41]. More specifically, the 
SAI interprets data-aggregation as the problem of encoding 
information expressed by functional profiles into a STRIPS 
domain. These domains consist of initial conditions that 
describe the starting state of the world, operators describing 
the actions that may be performed and goals representing the 
state to be reached. Operators have preconditions, add effects 
and delete effects. The SAI Composition Engine assumes 
initial conditions to be represented by the query input 
parameters, the goals to be specified by the target output 
parameters and the operators to be represented by the adaptors 
functional profile input-output message pairs. For each 
operation, input messages are modeled as preconditions and 
output messages as add effects. Moreover, as messages 
contain inner parameters, as defined in their corresponding 
XML Schemas, the STRIPS domain is also populated by 
further operation types representing the syntactic containment 
data atoms relationships. While existing works such as  [41] 
and   [17] aim at optimizing the search algorithm by taking as 
reference a fixed structure of input and output XML message 
types, our original contribution is in the extension of the 
STRIPS approach for accounting the variable and complex 
structure of the XML messages that can possibly be 
exchanged in real SOA platforms. By considering the adaptor 
interfaces as “inference rules”, it was then straightforward to 
apply AI planning techniques to find service composition 
solution plans  [26]. In this direction, we have exploited the 
Graphplan algorithm that has been first proposed in  [2] as an 
effective way of finding solutions to STRIPS-like domains. 
As a consequence of this approach, a request for dynamic data 
aggregation may be handled by the SAI system: i) by invoking 
a single adaptor service; ii) by executing a composite service, 
that is by invoking several adaptors in the proper order; iii) by 
notifying an exception when no known solutions to the 
planning problem can be provided in the SAI domain. The 
proposed mechanics for information retrieval and aggregation 
are proven to be: 
• flexible, since invocation workflows are created “on-the-
fly” by performing simple operations on  the XML messages 
and atoms graph-representation internally managed by the 
registry. In this sense, there is no need for request-time or 
design-time hard-coding of invocation sequences into the 
system; 
• adaptive, since the behavior of information retrieval 
operations varies according to the number and type of 
registered services (e. g., legacy system adapters); 
• deterministic, since the Graphplan algorithm can provide a 
definitive response to a user query given the state of the 
adaptor registry component. The system can so notify users 

whether a routing table can be computed for achieving target 
data given user-provided data;  
• evolutionary, since more services can be added 
progressively during the life-cycle of the system. 

I. Distributed Computing: The Grid Infrastructure 
While focusing on dynamic data retrieval, the SAI 

architecture also exploits the “Master/Worker” design pattern 
to provide basic workload distribution to system components 
and clients. Such a capability can be used for distributed batch 
processing whenever client applications demand a complex 
transformation of retrieved data in order to use a single 
architectural framework both for data access and analysis. 
Consistently with the Master/Worker pattern, the SAI Grid is 
based on three entities: a master (the “client” of the grid), a 
channel for enabling master to worker communication over 
the chosen communication bus and a set of one or more 
worker instances. According to the pattern’s roles, the master 
component starts parallelization by defining a set of “jobs” 
which are then distributed (or “mapped”) to worker processes, 
then waiting for completion of the scheduled tasks. The final 
step then requires the master to organize (or to “reduce”) 
collected results into a “single” meaningful unit which shall be 
coherent with the semantics of the distributed work. SAI-
specific extensions to such basic workflow include: a) 
transparent and configurable routing of jobs to workers; b) 
transparent dynamic jobs reassignment in case of worker 
failure. The first extension is required for decoupling master 
implementations from the provision of the needed jobs-
scheduling logic. The second extension also decouples the 
master from continuous job-status monitoring: in case of a 
worker failure, the infrastructure should then re-assign the job 
to an active worker with no direct master intervention. To this 
end, the SAI Grid introduces the “PipesManager” controller 
component. Masters simply pass their job-scheduling requests 
to the controller component that then exploits its knowledge 
on the infrastructure to plan job assignments to specific 
worker instances. To coordinate the grid infrastructure, the 
component  associates each worker instance to a compound 
data structure embedding two separate queues for pending and 
completed jobs. Both queues are monitored by the component 
to collect statistics on each worker throughput and to detect 
those failed jobs that need rescheduling. Each worker is 
notified for new pending jobs, while the PipesManager, once 
notified of any completed job, notifies in turn the Master 
component which started the original scheduling request. 
Since each worker is linked to a unique pipe, job contention is 
minimized, while routing logic can exploit pipes information 
to perform scheduling optimization.  

J. Cross-Cutting Aspects: Security 
Every SAI system operation is scoped within the security 

context provided by the “Security Manager” component. The 
Security Manager component enlists authorized principals, 
including all of the SAI system components, and manages 
their security credentials and policies while also supporting 
secured message exchange and enforcement of the Role Based 



 isj_455 Received Date: March 10, 2010, Revised Date: June 23, 2010 
 

8

Access Control model (RBAC)  [29] that has been setup by the 
SAI system administrators. The SAI security framework 
handles these operations through well-known cryptography 
techniques, such as encryption and decryption to ensure 
confidentiality and PKI-based message signing and 
verification to provide action accountability. The Security 
Manager public key is so used by principals to verify the 
identity of the SAI system and to bootstrap a secure tunnel for 
their initial authentication. Before invoking any system 
capability, registered principals are indeed required to exhibit 
their credentials to the security manager component.  

The authentication request is a signed object embedding the 
AES encrypted principal’s password and the RSA encrypted 
AES symmetric key used for password encryption. After 
successfully verifying the principal’s credentials by signature 
checking, the Security Manager decrypts the AES key and 
then uses that key to decrypt the password. After successfully 
verifying the principal name and password combination, the 
security manager creates a time-limited session-wide RSA 
public/private key pair for the recognized principal. The 
session RSA private key is encrypted using the AES key 
originally specified in the authentication request. The same 
key is also used for encrypting the retrieved principal roles 
and authorizations. The new set of credentials is then sent 
back to the principal by the security manager after signing the 
response object with its private component key. The principal 
verifies the source of the authentication response by using the 
security manager public key. At this stage, the principal is 
authenticated and can start using the allowed system 
capabilities. Authenticated principals now possess all the 
required information for establishing secured communication 
with the other system components: since the architecture 
supports message-level security, no other transport level 
security mechanism is strictly required.  

In this regard, it is interesting to sketch how the above 
security framework interfaces the client delivery channel with 
the SAI adaptors layer. It has already been shown that both the 
delivery channel and adaptors can be configured with security 
support just by adding special processing interceptors in their 
inbound and/or outbound processing chains. On the client 
side, security interceptors interface with the security manager 
to acquire public RSA session certificates and security 
policies for the target adaptor. Since the client component is 
already authenticated, its session keys are used with the 
retrieved information to encrypt and sign the request message 
payload according to the adaptor’s declared security policy. 
On the adaptor’s side, security interceptors ask the security 
manager for the public session key of the requesting principal, 
so to assess the identity of the requestor. After a successful 
check, they can decide whether to proceed with request 
processing or perform further evaluation by interfacing with 
the legacy system security infrastructure. In this way, the 
burden of responsibility is delegated to the legacy system 
management infrastructure so that legacy systems can always 
take the final decision concerning whether to allow or not data 
access to SAI authenticated principals.          

K. Cross-Cutting Aspects: Transaction Management 
Distributed systems can typically achieve state consistency 
and uniform exception-handling logic through the “Two-
Phase Commit” (2PC) protocol  [37] and its subsequent 
enhancements. The 2PC is a centralized protocol where a 
“Transaction Manager” component is used to coordinate 
operations over the selected system resources, typically 
databases and messaging infrastructures. When applied to 
databases, transactions guarantee atomicity, consistency, 
isolation and durability (ACID) properties. When applied to 
compliant messaging infrastructures, no ad-hoc compensation 
logic is needed when exceptions are thrown during message 
processing: in these cases, transaction rollback implies both 
re-delivery of failed requests and canceling of messages that 
have been scheduled for publishing. Whenever required by 
component operations, the SAI “Transaction Manager” 
component can be used for coordinating distributed 
transactions to ensure the consistency of data access and 
messaging operations.  

Despite its efficacy, use of the 2PC protocol in the SAI is 
nonetheless conditional on the fulfillment of strict technical 
requirements. Since interactions with the coordinating 
Transaction Manager have to be blocking and synchronous, 
temporal duration of these interactions also has to be 
predictable and relatively short-lived. Indeed, messaging 
activities can suffer from strong performance impact due to 
their scoping within a transaction context, while database 
resources usually have to be locked until transaction 
commitment. This interaction model then implies strict control 
of the system components deployment, service behavior and 
access policies, for example to guarantee constant data 
availability and target QoS levels. Of course, such a vertical 
control is commonly achievable only when the management of 
the whole SAI system is delegated to a single organizational 
unit and all adaptor components are deployed within the SAI 
system boundary.  

L. Cross-Cutting Aspects: Dependability 
System dependability can be defined as “the ability to avoid 
service failures that are more frequent and more severe than is 
acceptable”   [1]. The SAI architecture achieves dependability 
by means of: i) the Grid Infrastructure load-balancing and job-
failover capabilities; ii) the clustering of adaptor services; iii) 
the support for basic autonomic capabilities; iv) the Bus 
Connectors logging capabilities.  

Concerning clustering, we distinguish between clustering 
stateful and stateless adaptor services. Clustering stateful 
services inherently requires state replication across activated 
replica. In order to avoid failures due to an inconsistent state, 
we have decided to first scale stateful services “vertically”, 
that is by running them on dedicated machines, while also 
starting background threads for replicating the “master” 
service instance state to secondary ones in order to support a 
switch-over in case of failure. Clustering stateless services 
simply requires multiple instantiation of the same system 
component, together with a load-balancing strategy for 
dispatching requests. In this regard, some dependencies arise 
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only with respect to the choice for the communication bus 
component. HTTP clustering should be based on standard 
load-balancing techniques, usually based on special HTTP 
proxies or on the tweaking of the DNS configuration, while a 
MOM communication bus can achieve clustering by simply 
configuring stateless components to consume messages from 
the same queue: load-balancing is transparently “coordinated” 
by the broker, with no additional infrastructural requirements.  

The SAI architecture also offers basic autonomicity by 
supporting the well-known “heartbeat” technique. Heartbeats 
are control messages that are periodically sent over the 
communication bus to listening controllers, so that they can be 
interpreted as special signals by listening components. Hence, 
if a publish/subscribe messaging model is made available by 
the communication bus, then heartbeats can allow reaction to 
change in the overall system state with no need for centralized 
system monitoring. The SAI adaptors can indeed react when 
they stop hearing heartbeats from the security components 
cluster. In that case, adaptors actually react by stopping to 
accept requests and by stopping sending messages until 
security heartbeats are resumed. This configurable capability, 
although very simple to implement, still allows for fail-over 
strategies that are capable of preserving the security state of 
the system in a non-trivial manner.  

Finally, the SAI can support back-tracking component 
failures through the Bus Connectors message-logging 
capabilities. While inspecting correlated input-output message 
pairs can always be used to track-down a failed-component 
invocation history, logged messages can also be used to 
recover the most recent state of stateful components. Of 
course, this goal can be achieved only when stateful 
components are “piecewise deterministic”, that is when state-
change is completely dependent on the content and order of 
received messages only. In other terms, “piecewise 
deterministic” components behave “reactively”: all of their 
work is done in response to the trigger of a system component 
external to the service itself. This property thus makes the 
implementation of state-recovery mechanisms possible 
through the sequential re-play of logged messages, as it has 
been described in  [14]. 

M. Propagating SOA Principles to the SAI Component Level 
The SAI architecture propagates its core SOA principles from 
macro to micro functional levels by specifying guidelines for 
the internal structure of its components.  

At the macro level, we know that the SOA basic system 
units are represented by services and that services are 
commonly considered as distributed processors whose 
behavior can be normatively described by publicly accessible 
and standardized contracts. We stress here that the term 
“contract” is almost equivalent to the “interface” concept.  

Once we translate this principle into the world of object-
oriented design, then the SOA principles can be interpreted at 
the micro level as the common “design against component 
interface” advice. Object-oriented systems that follow this 
advice are inherently modular and extensible because class 

members are typed according to the required interfaces, while 
still being internally free from any tight structural coupling 
with specific implementation classes. Since class members are 
then bound to a specific interface-implementation class during 
the object initialization only, for example through constructors 
or through explicit initialization methods, the resulting object 
is extensible, meaning that it can change its behavior by 
simply specifying different implementation bindings for its 
required interfaces. The SAI then mandates such interfaces-to-
implementation binding information (also known as “wiring 
information”) to be “externalizable”. This approach implies 
binding information to be pulled-out from a static class-
initialization code and to be put into a separate resource that 
can be loaded during object initialization. It should be noticed 
that information on the internal wiring of a component is truly 
the real configuration of the component. When such a 
configuration is externalized, then it becomes a resource that 
can be managed as any other data resource. Externalized 
wiring information thus allows for the pervasive use of the 
“Factory pattern” for the runtime injection of class 
dependencies. More specifically, factory objects can now be 
generalized so as to load dependency definitions from this 
type of externalized resource. The application of this pattern 
in the SAI enables objects wiring into working components to 
also be driven by administrative signals, that is by messages 
embedding the desired component configuration. This implies 
that the SAI architecture can extend administrator capabilities 
to the runtime definition of the inner structure for its system 
components. Whenever the internal-component interactions 
are inherently concurrent and asynchronous, the SAI 
architecture also suggests the use of an in-memory message 
bus for centralizing coordination and for monitoring internal 
threading and messaging activities. Hence, a process similar to 
the macro-level message-oriented communication-bus is then 
activated at the micro-level to support both event-driven and 
message-oriented programming styles. Thanks to these 
additional requirements, the SAI architecture is characterized 
by multi-level design consistency. In practical terms, this 
feature enables system architects to reason over the SAI 
micro-structure in much the same way they reason over the 
SAI macro-structure: in most cases, the only real difference is 
how components communicate with each other. At the macro 
level, the SAI architecture requires the specification of a 
communication bus for enabling interaction over the 
underlying network transport protocol; at the micro level, 
inter-component communication happens through the process 
shared memory and it does not require the opening of any 
network socket. Since both micro and macro levels share the 
same service-oriented structural and interaction approach, the 
SAI promotes a “fractal” system thinking that is consistent 
across all of the architecture layers.        

VI. THE SAI MIDDLEWARE PROOF-OF-CONCEPT 
We have developed an SAI Proof-Of-Concept (POC) to 

carefully assess efforts and implementation problems possibly 
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implied by future prototype-level developments. In this 
direction, our efforts have focused on main SAI capabilities 
implementation, while structured component benchmarking 
and performance optimizations are planned for future 
improvements towards a full SAI prototype. The goal of the 
Proof-Of-Concept is then to evaluate the architecture’s 
feasibility needs, especially those concerning the targeted 
extensibility and configurability capabilities. In the process, 
we have also tried to assess to what extent current open-source 
technologies can be successfully adopted in the building of a 
complex enterprise-level architecture. The main rationale for 
our POC technological choices are summarized below.  

A. The Reference Development Language 
The SAI architecture is not targeted towards real-time control 
capabilities. As a consequence, no special technological 
constraints arise on the choice of the POC runtime operating 
system and programming language. To achieve a portable 
implementation while also taking advantage of solid open-
source technologies we have then adopted Java as our 
reference programming language.       

B. The Reference Implementation Framework 
The SAI architecture has demanding extensibility and 
configurability targets. Despite the initial choice for Java as 
the reference programming language, these requirements 
together provide compelling reasons for shifting from the 
Sun’s Java EE 5 specification as the reference implementation 
framework. In developing SAI, Java EE 5 problems are tied 
both to the specification itself and to its leading 
implementations, whether commercial or open-source. In its 
specification, Java EE 5 promotes a development framework 
that is largely based on the adoption of stateless components 
in its “service” (EJB) layer. Indeed, the Enterprise Java Beans 
technology essentially provides RPC or messaging interfaces 
(Message-driven beans) over equivalent component instances. 
Of course, to allow for consistent pooling and lifecycle 
management, component instances are also mandated by the 
specification to be stateless. J2EE components are then 
targeted at easing clustering and replication with no 
standardized support for “singleton” components. On the 
contrary, support for “singleton” EJBs is available only in 
selected J2EE containers through implementation-dependent 
strategies1 (e.g., the JBoss “Service” code-level annotation). 
Since the SAI may require the use of stateful services, any use 
of such proprietary capabilities would eventually make the 
SAI implementation strictly tied to a specific implementation 
of the framework, thus limiting fulfillment of its basic 
extensibility requirement. Though J2EE implementations may 
differ in their maturity level, we also notice that most of them 
still rely on the use of heavyweight application servers. 
Despite its modularity, the J2EE specification and 
programming model has been progressively tied over the 
years to complex containers with strong administration, 

 
1 Sun has included in the recent EE 6 specification a standardized 

“singleton” code-level annotation for EJBs. At the time of POC development, 
Java EE 6 was just released, with really no working implementations for the 
specification.  

deployment and runtime requirements. By coding against 
J2EE specs, the risk for the SAI is thus the breaking of its 
configurability goals and the lock-in to specific J2EE 
implementations. In order to be as coherent as possible with 
our goals, we used a different approach for the POC 
development. We then decided to stick to the basic java 
“Standard Edition” specification while being supported by 
light and transparent frameworks to correctly implement the 
basic component-level patterns devised by the same 
architecture specification. In this direction, we have widely 
used the core dependency injection capabilities of the Spring 
framework  [12] [32], so to break-down code development into 
many framework-independent Java interfaces and into class 
definitions with minimal or zero dependencies on external 
containers, including the Spring framework itself. The SAI 
POC interprets the Spring just as a rich and reusable 
implementation of the Factory pattern: as many technology 
specialists would say, the codebase is fully “Spring unaware”. 
Indeed, the framework has been adopted just for driving 
component development along the “everything is  service” 
approach and to externalize dependencies into separate 
configuration files so to satisfy the SAI component-level 
configurability requirement.  

C. Adopted Open Source Technologies And Libraries 
The SAI POC has found valuable support in many open 
sourced systems and libraries. At present, the Message Bus 
component is powered by ActiveMQ  [35], one of the leading 
open-source implementations of the JMS specification (Java 
Message Service,  [34]). It has been chosen over other 
competing MOMs because of its solid message throughput 
under varying operating conditions and of its configuration 
flexibility. Being a JMS compliant message bus, it was then 
possible to directly use the JMS remoting libraries already 
provided by the Spring framework as Bus Connector 
implementations. Wiring components to such bus connectors 
happens through a simple configuration, while still being 
transparent to the remaining implementation details as 
mandated by the SAI architecture specification. Current POC 
adopts the XML format, which is handled internally through 
the popular JDOM java library. The adaptors functional 
profiles are currently based on a specific XML Schema. 
Unpacking functional profiles data atoms into the Adaptor 
Registry is instead based on the XML Schema Object Model 
(XSOM)  [40] since it is the only general-purpose Java schema 
parser which we are currently aware of. 

The security manager PKI infrastructure was realized using 
the “Bouncy Castle” open source implementation of the Java 
Cryptography Architecture (JCA). The current security 
interceptor implementation, which is used both in pre- and 
post-processing chains of the adaptor microcontainer and of 
the Delivery Channel component, is built on top of the WSS4J 
library  [36] and implements WS-Security specifications  [20]. 
The Transaction Manager component is powered by JOTM, 
which is an open and standalone (container-free) 
implementation of Sun’s JTA specification. The STRIPS 
planner is based on our refactoring of the PL-PLAN, an open 
source Java library implementing the Graphplan algorithm 
 [11]. Our extensions have been focused on the caching of 
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computed plans and of “known-unsolvable” planning 
problems in order to speed-up client request handling. Finally, 
the SAI Grid Infrastructure was entirely developed from 
scratch in the Java programming language by applying 
patterns and strategies  specified by the SAI architecture.  

VII. CASE STUDY IN THE MARITIME SURVEILLANCE 
We carried out a case study for a qualitative assessment of 

the SAI POC model and technologies in the maritime 
surveillance domain. The preliminary analysis of case-study 
requirements was performed in the framework of the 
Operamar European research project in collaboration with 
SELEX Sistemi Integrati  [24]. The case study objective was to 
perform demonstration activities in a test environment 
simulating the exchange of basic messages among legacy 
systems in the maritime surveillance domain. To this purpose, 
we conceived a basic demonstration scenario aimed at 
validating most significant features of the SAI middleware.  

The demonstration scenario is in the north-Tyrrhenian sea 
and is composed of two kinds of simulated legacy systems: 
one providing static information about vessels (e.g. vessel 
registration and owner details maintained in national registers) 
and another providing vessel positioning information (i.e. 
positioning information which might be provided by port 
authorities or the coastal guard and obtained by vessel 
position reports, such as AIS messages). 

We purposely developed a web application (named M3S: 
Maritime Surveillance, Security and Safety) providing end 
users with vessel tracing and tracking services. The M3S 
Application interaction with data providers (i.e. the simulated 
legacy systems) is intermediated by the SAI middleware. The 
demo application allows end users to browse registration 
information about a set of vessels, selected through query 
parameters such as country of registration and/or last 
monitored position.  The M3S Web Application also provides 
a map-based view, showing the current position of monitored 
vessels (Fig. 3). The user can also access further information 
on displayed vessels, such as current vessel status (e.g. 
moored, at anchor, under navigation), route plan and pictures.  

We defined a shared XML-based messaging and data model 
representing a subset of concepts and relations relevant to the 
maritime surveillance domain. The messaging model is a set 
of request/response and notification/acknowledge messages. 
The underlying XML data model includes a core set of data 
which were chosen based on the analysis of current European 
practices for sharing data acquired via existing monitoring 
systems, such as Vessel Monitoring System for Fisheries 
(VMS), Automatic  Identification System (AIS), and Ship 
Reporting Systems (SRS)  [7].  

The report of the European Commission on “Legal Aspects 
of Maritime Monitoring & Surveillance Data”   [7] provides a 
picture of the complexity of data sharing policies in this 
application domain. According to such legal frameworks and 
internal policies, information owners may need to specify and 
enforce specific security policies, e.g. by deciding to disclose 
information elements only to some organizations and/or in 

specific circumstances. As described in subsection  V.J, SAI 
adaptor security interceptors can be configured in order to 
cope with the need of ad-hoc security policy enforcement. 
Presently the system supports a custom policy language, while 
future activities are planned to extend the SAI capabilities in 

order to support standard specifications, such as WS-Policy 
 [21] and WS-Security Policy  [23]. 

VIII. CONCLUSIONS 
In this paper we have discussed the SAI approach towards 

network-centric information sharing and systems integration 
in the maritime surveillance domain. The SAI approach has 
focused on the consistent application of SOA principles both 
at the system and at the component level. The resulting 
architectural framework is flexible enough to accommodate 
most of the interoperability requirements implied by the 
coordination of heterogeneous maritime-surveillance systems 
and organizations. The developed POC has also demonstrated 
that SAI implementations can be made free from any 
technological lock-in, including lock-in to mainstream SOA 
application servers as well. Hence, we have provided the main 
rationale for most POC technological choices and we have 
trialed the POC capabilities through a demonstrator involving 
common maritime-surveillance application needs.  

Regarding future activities, we are fast moving towards a 
prototype-level implementation of the architecture allowing 
for  middleware performance profile benchmarking under 
varying deployment configurations. We think that resulting 
benchmarks will help us design and implement additional 
infrastructure components and optimizations, so as to achieve 
state-of-the-art levels of system resilience and scalability. Our 
research efforts are striving towards two complementary tasks: 
the optimization of the “Adaptor Registry” semantic-
representation capabilities and the evolution of the grid 
subsystem towards a more flexible cloud infrastructure. 
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Fig.3  Screenshot of the SAI demonstration web application: map-based 
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