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Abstract

The Blockchain and the Internet of Things (IoT) have gained a lot of attention in the

last few years, since both technologies enable the possibility of creating a more connected

and independent world. This combination enables the design of computing systems and

cyber-physical environments without the need of centralized trusted entities, giving users

the freedom and control of their operations, in a decentralized ledger model. By using

storing and logging mechanisms supported by the Blockchain, data is immutable and

independently audited, guaranteeing that it is neither modified nor deleted. At the same

time, applications can benefit from the reliability and fault-tolerance assumptions pro-

vided by the Blockchain in supporting transactions between users and involved devices.

In this thesis, it was studied and proposed a generic solution for a Blockchain-enabled

IoT software architecture. The proposed solution enables the advantages of using decen-

tralized logging and ledgering, without the interference of central authorities, inherently

supported by the base Blockchain reliability, availability and security foundations. These

capabilities are envisaged as key-benefits for a new generation of clean-slate approaches

for IoT applications with the required scalability criteria.

The research conducted in the dissertation work, studied the base software founda-

tions, relevant components and implementation options that enable the identified ad-

vantages of using Blockchain components and services, to leverage more scalable and

trustable IoT platforms. Our proposed solution aims to provide an architecture that con-

tributes to a more appropriate design for secure and reliable IoT systems. In this trend

we propose a better use of edge-based support for local-enabled processing environments

supporting IoT devices and users’ interactions, with operations intermediated by prox-

imity hubs acting as gateways to the Blockchain, where the operations are regulated and

controlled by verifiable smart-contracts involving data and transactions.

Keywords: Blockchain, IoT, Decentralized Ledgering, Reliability, Fault Tolerance, Intru-

sion Tolerance, Smart-Contracts
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Resumo

A Blockchain e a Internet das Coisas (IdC) têm ganho muita atenção nos últimos

anos, dado que as duas tecnologias permitem a criação de um mundo mais interligado e

independente. A combinação das duas tecnologias permite o desenho de sistemas com-

putacionais e ambientes ciber-físicos que não necessitam de entidades centrais confiáveis,

permitindo aos utilizadores a liberdade e o controlo com autonomia sobre as operações,

escrutinadas em registos descentralizados. Sendo utilizado um mecanismo de armazena-

mento como a Blockchain, os dados ficam imutavelmente guardados, garantindo-se que

não são alterado nem eliminados. Ao mesmo tempo, tendo o armazenamento garantias

implicitas de fiabilidade e tolerância a falhas, as aplicações da IdC poderão benificiar

dessas garantias no suporte de transações com processamento de contratos inteligentes

(ou smart-contacts) que suportam interações entre utilizadores e dispositivos involvidos.

Nesta dissertação, foi estudada e proposta uma solução genérica para uma arquitetura

que combina a Blockchain de forma a integrar aplicações e dispositivos para a IdC. A

solução permite integrar o registo e notarização descentralizados dos dados e operações,

sem interferência de autoridades centrais e com características acrescidas de confiabili-

dade. Estas características podem ser usadas como fundamento de uma nova geração de

arquiteturas para a IdC, respeitando os devidos requisitos de fiabilidade e escalabilidade.

A solução proposta tenta proporcionar uma arquitetura que contribui para um melhor

desenho da IdC, com mais garantias de confiabilidade e escalabilidade e com redução

de custos operacionais e riscos de segurança das aplicações. Neste sentido, a dissertação

propõe, implementa e avalia uma arquitetura que permite suportar aplicações de IdC

suportadas em ambiente periféricos ou de proximidade (Edge), onde podem ter lugar in-

terações e processamento de dados locais, sendo essas operações intermediadas por hubs

que atuam como gateways para a blockchain, sendo então reguladas e controladas por

contratos inteligentes (ou smart-contracts) que envolvem os respetivos dados e transações.

Palavras-chave: Blockchain, IdC, Registo descentralizado, Confiabilidade, Tolerância a

Falhas, Tolerância de intrusões, Contrato Inteligente
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1
Introduction

1.1 Context and Motivation

Information is currently the most valuable resource [73], people are sharing their personal

data in trade for comfort and social reputation and big companies like Google or Facebook

are selling user’s profiles to advertisers [29]. This happens in a context in which those

companies are often regarded as reliable and trusted entities by users, where such trust

is centralized by nature. This discussion has emerged security and privacy concerns,

because people are becoming more and more aware of the dangers this topic can bring.

At the same time, many systems and applications, including those managing sensi-

tive data, are using cloud-enabled outsourced services, such as, data-repository or data-

processing services. In this case, cloud-service providers also act as centralized trusted

computing bases, without scrutiny and auditing functions evaluating the reliability, secu-

rity and trustability guarantees.

This way, it is important to study possibilities on how to avoid the use of intermedi-

aries for services, for example, the presence of a bank to complete a transaction between

two accounts or peer-to-peer data transfers without trustability assumptions from cen-

tralized authorities.

IoT Platforms. The network of Internet of Things (IoT) is rapidly growing. According

to many observers, today, the number of connected devices has already surpassed the

world population in size [74] and continues to grow. Some estimations claim that we

can expect 50 to 60 billion devices to be connected to the Internet globally in the first

years of the decade 2020 [31]. These devices are widely used in the context of different

applications, in smart homes, offices, factories, farms, and cities.

While having different application domains involving more or less specific functional
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CHAPTER 1. INTRODUCTION

requirements, current IoT applications and systems share the same architectural ap-

proach: the use of cloud-enabled services in order to process and store sensor data they

collect, as well as provide the desired service for users, possibly using smartphones, to

interact with the back-end cloud-services. In this architectural model, adopted by many

well-known IoT development and operational platforms prompted by different IoT ser-

vice providers (e.g., [5], [61], [1], [41]).

Clouds are used to offload the tasks, to unify the operation of an increasing variety of

IoT devices, otherwise not feasible to perform on the resource-limited hardware of such

devices. At the same time, collected data and operations’ loggings are managed, through

single interfaces offered by the Cloud-enabled platforms managed by service providers,

namely, Cloud-IoT Service Providers, to analyze user interactions with devices or possible

interactions between devices, to make expected decisions for the better user experience.

In order to access cloud services, smart devices from specific manufacturers, can use

Internet connections, as individual devices or often through specialized local gateways

supporting specific and sometimes proprietary communication protocols, interconnect-

ing sets of devices and the central cloud management platform. Once more, in such

architectural models, IoT applications are really managed under central trusted authori-

ties, with a lack of scrutiny and auditable functions allowing the independent verification

of data-integrity, privacy conditions or reliability and trustablity assumptions, as verifi-

able guarantees for users or partners involved in specific IoT applications. For example,

in the domain of smart-homes, an Internet survey reported that a large majority of in-

terviewed people would not want to install devices, such as smart thermostats, that can

monitor their movements around the home, even if it would allow them to save some

money in the monthly energy bill [23]. Considering trustability, security and privacy

concerns, the users of current platforms are more and more concerned about what data

service providers can collect exactly, how much authority they have over it, and who

they share it with, with the complete lack of knowledge about possible operations or

transactions involved their IoT devices and other entities that can have access to data and

operations fired by the devices.

Users are forced to trust the service provider with data or operations’ logging stored

in the cloud, completely outside of their control, with a lack of knowledge on what data

is effectively sent/received and how data is operated. In this situation, users have no way

to ensure how their personal information, evidences of operations or operation states are

processed by the IoT cloud providers, nor can they control the granularity, the state and

logs of related operations on the exposed data. For example, in an IoT consortium, where

different partners can be involved, those operations can be done from different entities

or partners, without any scrutiny of the end users (as consumers).

Blockchains and IoT. As the Blockchain and the Internet of Things (IoT), as two rep-

resentative dimensions in the recent research of Distributed Systems, have been gaining a

lot of attention in the last few years, with different Blockchain platforms available in the

2



1.1. CONTEXT AND MOTIVATION

research and market areas, beyond the cryptocurrency and other ecosystems (e.g. [34],

[10], [57], [32], [13], [15], among others). IoT and Blockchains have become the topic of

many studies in terms of possibilities to build a more connected, independently verified

and trustable world. Both technologies enable the possibility of creating a more inter-

connected world involving the interaction of users with a variety of applications, devices

and smart-things that will surround certainly, more and more, our daily lives in the near

future.

The use or integration of blockchains is regarded at the same time as an inherent

distributed storage and a decentralized ledgering approach, that can leverage a new gen-

eration of more trustable and scalable IoT platforms. Such platforms can provide a

better control in the operation of interconnected things that operate and are processed in

the edge, complementarily to other possible cloud-enabled services. In recent research

publications, the use of Blockchains for IoT is usually regarded as a way to improve se-

curity and privacy, or to address trust decentralization concerns [9], [69], [59], [56], [63].

However, the impact of having blockchained enabled software running in constrained

IoT devices has been referred as a relevant issue. Furthermore, the requirements im-

posed by scalability conditions and reliability or intrusion tolerance (including byzantine

fault-tolerance models beyond the replication and consistency models related with the

blockchain consensus-layer) [65], [30], [50] and, particularly, the impact of such issues

in the way how blockchains can be used for the requirements of IoT platforms, is still an

open issue.

Blockchained IoT Platforms. Blockchain-enabled IoT platforms are interesting as a

work hypothesis in addressing new design options of innovative autonomous systems

for decentralized IoT operations, without the need of centralized entities acting as cen-

tral points of authority and not entirely controlled trust computing bases in proving the

required trustability, reliability, scalability, security and operation management assump-

tions, under independent auditing of users and partners involved.

We believe that Blockchain enabled IoT platforms and their software architectures

can bring important advantages, as clean-slate approaches for a new generation of IoT

software systems operating under scrutinizing decentralized logging and ledgering func-

tions, with independent control in the notarization of transactions, under verifiable non-

repudiation guarantees. Those advantages can also help in providing a better use of

edge-processing and edge-based operation control, as well as, in promoting better scala-

bility criteria, when compared with the current IoT technology and available platforms.

Transactions and data can be immutably stored, managed and verified by all the involved

entities, anytime, anywhere, with full authenticity, integrity and persistency guarantees.

In the hypothesis of the design of generic solutions for Blockchain-enabled IoT software

architectures the idea is to enable the advantages of using decentralized logging and

ledgering, without the interference of central authorities. At the same time, IoT applica-

tions supported in such platforms can inherently offer better characteristics for reliability,

3



CHAPTER 1. INTRODUCTION

availability and security foundations, as key-benefits for a new generation of clean-slate

approaches for the IoT applications with the required scalability criteria.

1.2 Problem

In this section it will be defined the problem statement of this thesis, as well as the

objectives and the contributions.

1.2.1 Problem Statement

From the context and initial considerations in Section 1.1, the statement of this thesis is

as follows:

It is possible to improve the reliability and trustability guarantees of IoT platforms and soft-
ware architectures, by introducing Blockchain-enabled mechanisms for decentralized logging
and ledgering, information flow control of operations involving IoT applications, as well as,
to provide an independent auditing environment in supporting data sent or received by user’s
smartphones and IoT devices in such applications.

In the problem context we are primarily focused on trustability, reliability and scal-

ability issues in the interoperability model between IoT devices and user’s interactions

and Blockchain-enabled services and their components. Nevertheless, there are other

important concerns, such as other security and privacy properties, which are also related

to the dissertation problem. However, these other properties are not in the scope of the

dissertation approach.

Concerning the components and services, as provided by different blockchain plat-

forms, it is particularly relevant to study how smart-contracts in Blockchain-Enabled IoT

platforms can be used, as general-purpose computation processing control elements reg-

ulating operations and data interchanged between users and devices. Also related to the

problem, it is necessary to support operations and smart-contracts in an infrastructure

implemented by replicated asset registries, as materialized by the current blockchains,

preferentially addressing the use of such supports as leveraging mechanisms in extensi-

ble solutions. In this research stream, the use of state-machine replication models with

enhanced Byzantine Fault Tolerant (BFT) solutions in blockchain consensus planes is

particularly interesting, in order to support dependable and verifiable execution of opera-

tions of IoT applications, under reliability, intrusion tolerance and availability arguments.

1.2.2 Problem Addressing

Following the stated problem, it is relevant to address in the thesis how to improve ver-

ifiable trustability properties for operations executed in smart devices, by introducing

mechanisms to perform information flow control. This can be a problem, considering

4



1.3. OBJECTIVES AND CONTRIBUTIONS

that many IoT devices are resource-constrained devices, disallowing the possibility of

introducing complex processing for this purpose, at the device level. To circumvent this

problem, the control of network traces (and payload data) generated by IoT devices can

be inspected, controlled, possibly aggregated and forwarded by local smart-hubs, with

less processing limitations, as gateways to blockchain enabled services. These smart-hubs

can work in the intermediation between end-users or IoT devices (as edging-devices sup-

porting local or proximity operations) and the backend blockchain services (that can be

supported as core-services, for example, cloud-enabled blockchain execution nodes, sup-

porting a permissioned model of consensus that must include all the entities involved,

including the end-users). At the same time, smart-hubs provide a way to decouple the

operations in the edge (e.g., supporting invocations from IoT or users’ devices and pro-

viding local-service endpoints that can be able to support message-based communication,

HTTP or HTTPS based REST (or Representational State Transfer) invocations.

In approaching the problem as discussed above, the blockchain minimizes the role of

centralized authorities in the verification of data, transactions consistency and promotion

of decentralized notarization services allowing different users and entities a scrutiny of

consistency guarantees, anytime and anywhere.

Thus, to approach the problem statement, the dissertation introduces the notion of

blockchained IoT platforms (or Blockchain-Enabled IoT platforms), considering (i) the

use of the blockchain as a foundation component in a clean-slate approach of future IoT

platforms; (ii) the combination of edged-based IoT processing with locally provided Smart

Hubs, acting as intermediation nodes, between the edged devices and the blockchain

(and complementarily with other specific cloud-based services); and (iii) the extension of

smart-contract regulated transactions for a better verification, validation and execution of

transactions involving humans and things, or things-and-things, logged in the blockchain.

These three facets can provide new foundations for a new generation of more reliable,

trust and scalable IoT approach, with a better processing control for all the intervenient

entities.

1.3 Objectives and Contributions

1.3.1 Objective

Considering the problem statement and related considerations, the objective of the thesis

is to study and propose a generic architecture for a Blockchain-enabled IoT software

platform, with new design foundations and components for a clean-slate approach to

improve reliability, trustability and scalability.

In the envisaged approach, the idea is to explore advantages leveraged from Blockchain-

based services, operating under permissioned conditions. Under the permissioned model,

blockchains supporting IoT operations restrict the actors involved that can contribute to

the consensus of the replicated system state, which also helps in scalability conditions
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CHAPTER 1. INTRODUCTION

in the trade-offs between efficiency, consistency and reliability, a well known problem

widely discussed in the blockchain research agenda. In a permissioned blockchain, only

a restricted set of entities and their related nodes (in a possible large number of nodes)

have the rights to validate the block transactions, under the verification of smart-contracts.

This permissioned model may also restrict access to approved actors who can create or

modify those smart contracts.

Our designed solution aims to provide an architecture that must be able to support

IoT ecosystems by services in a permissioned-oriented blockchain, addressing reliabil-

ity effectiveness and scalability criteria. In this trend we also promote a better use of

edge-based support for local-enabled processing environments of things (IoT devices

and user-interaction devices, such as smartphones), intermediated operations supported

by smart-hubs as gateways to control operations regulated and controlled by verifiable

smart-contracts, data and transactions in a blockchain. As a proof-of-concept of the pro-

posed solution it is also developed an application which envisages the implementation of

a locker management service which will be described in greater detail in Chapter 3.

1.3.2 Contribuitions

The main contributions related to the above objective, presented and discussed in the

present thesis report are the following:

1. Design, of a blockchained IoT platform proposal and related software architecture;

2. Study of selected blockchain platforms and their characteristics, as possible lever-

aging solutions to support the mechanisms for reliable ledgering services for the

proposed IoT platform, to support verifiable IoT-based transactions regulated by

smart-contracts, and the selection of the better identified platform for the purpose

of the dissertation;

3. Development and validation of the proposed platform with a prototype of the pro-

posed software architecture and components, used as a reference prototype and

proof-of-concept implementation for future IoT applications:

• As a better solution to keep performance and to provide better effectiveness,

scalability and decentralized trustability criteria;

• As a strategy to promote a better use of edge-based support of local-enabled

processing environments regarded as islands of IoT devices, with operations

and users’ interactions controlled by verifiable smart-contracts, with the inter-

mediation of edge-enabled smart-hubs.

In the described contributions, Smart Hubs are regarded as possible extensible plug-

gable processing entities that can be enhanced with other functions beyond the primary
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communication gateway feature (interconnecting IoT devices, users and Blockchain-

Enabled Services), the feature primarily explored in the dissertation. Examples of ex-

tension functions are: pre-processing or data aggregation components, filtering and local

dataflow-control for security and privacy requirements, as well as, specific-application

gateway services between users or IoT devices and other application-specific cloud-enabled

services. Examples of such services are: payment gateways, customer relationship man-

agement systems, authentication services, public-key infrastructures, etc.

1.4 Document Structure

The remaining of the report is divided in five chapters. In Chapter 2, there is an approach

to the related work, organized in four main sections: a generic background for the the-

sis objectives, blockchain in large-scale environments, analysis of different blockchain

platforms and approaches for blockchain-enabled IoT applications. Chapter 3 presents a

system model and architecture for our proposed blockchain-enabled IoT platform. Chap-

ter 4, presents the implementation details in prototyping our proposal. In Chapter 5 it is

shown the evaluation conducted to validate our proposal and related prototype. Lastly,

in Chapter 6, we summarize the main conclusions and possible future work directions

from the achieved results in the dissertation.
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2
Related Work

In this chapter we discuss the foundations of the blockchain, as well as its characteristics

and properties. In this study we conduct a thorough analysis of reliability, scalability

issues, as well as, components and service layers in the design and operation of cur-

rent platforms. Then, we outline the support for blockchain-supported transactions,

consistency mechanisms and decentralization issues, also summarizing relevant trade-

offs and the role of access control mechanisms for permissioned versus permissionless

blockchains (Section 2.1). Following, we describe the implications and scalability con-

cerns of blockchains in large-scale environments (Section 2.2). From the above notions,

terminology and considerations, we survey how different characteristics and their nu-

ances are addressed in different blockchain platforms (Section 2.3), discussing specific

support mechanisms, permission-models, control of transaction flows, consensus mech-

anisms and guarantees and models for replication and ledgering. Then, we address the

notion of Blockchain-Enabled IoT (Section 2.4), discussing relevant characteristics for

such platforms, limitations that must be considered and initial design issues to be ad-

dressed. Finally we conclude the chapter (Section 2.5) by presenting a summary on the

covered topics, as a baseline discussion to address the proposal of a Blockchain-Enabled

IoT platform and software architecture, as we approach later, in Chapter 3.

2.1 Generic Background

2.1.1 Blockchain Foundations

The concept of Blockchain was first introduced in 2008 by Satoshi Nakamoto, with the

Bitcoin cryptocurrency ecosystem as the application environment [55] and Blockchain as

the core technology. Although the name of the author was used by the unknown person or

people who developed the Bitcoin system, the Blockchain notion emerged, essentially, as

9



CHAPTER 2. RELATED WORK

a replicated database supporting peer-to-peer transactions, with particular characteristics

primary targeted in supporting relevant characteristics, such as, the avoidance of double

spending for digital currency and the related consistency guarantees for the scalability of

P2P operations and inter-networked participants, or blockchain nodes.

Even considering that in many approaches, a blockchain is intrinsically related to the

support of cryptocurrency environments, given the explosion of such cryptocurrencies,

it is particularly interesting in the context of the present dissertation to demystify the

blockchain definition: a replicated database to support lists of records organized in blocks,

under state-machine consistency guarantees, which are linked by integrity properties

using cryptographic primitives. Each block [28], according to its number of records,

contains a cryptographic hash of the previous block, a timestamp and transaction data,

usually represented as sequences in a Merkle Tree root hash. The Merkle tree is a tree

that is constructed by hashing the paired data until a single hash is able to represent all

the results [52].

By definition, the blockchain is resistant to the modification or removal of maintained

information, and it was currently implemented as open and distributed ledger environ-

ment, storing transactions between any two parties, in a verifiable and independent way.

Thus, a blockchain solution consists in an electronic peer-to-peer system that allows

assets to be transferred from one party to another without an intermediary, but also,

is a more generalized or abstract vision, to support peer-to-peer transactions and data-

transfers between the network peers. Generically, the blockchain relies on a network of

nodes that perform tasks of validating and relaying transactions in their blocks, accord-

ing to certain validation guarantees. Each of these nodes has a copy of the blockchain

state, from the moment it joins the network until the moment a new transaction must

be validated and recorded, under the regulation of different processing criteria. This

vision is particularly interesting when we address a blockchain services as open, reusable

and extensible services or components for software architectures targeted for different

purposes and applications, not being strictly related to cryptocurrency environments and

their functional requirements.

The base communication infrastructure for a blockchain is, therefore, a peer-to-peer

(P2P) network, where the inter-node communication environment support writes and

reads, as well as, the implicit independent validation of new blocks. Given the non-

tampering characteristic, once validated and recorded, data in any given block of the

blockchain cannot be affected by forgery, modification or deletion, retroactively, with-

out the required alteration of all the subsequent blocks, which requires the consensus

of the network majority of the members. For this reason, blockchains are considered as

secure and replicated databases by design, where fault-tolerance properties, that include

fail-stop and byzantine fault-tolerance guarantees, a decentralized consensus model and

consistency guarantees are base ingredients of the resulting dependable distributed com-

puting system.
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2.1.2 Blockchain characteristic and their nuances

The Blockchain functions support a distributed ledger environment in which transactions

have to be verified, independently, by every member of the network. The identification of

the network members is secured by some form of verifiable authenticated global names.

In practice, this identification is established by the use of public keys, using public-

key cryptographic methods, which translates to each node address or node name in the

blockchain. The correspondent private-key is then used to digitally sign or authenticate

digital assets for each node, establishing proofs of authentication.

Regarding node identifiers, a blockchain can use the base assumption of public keys

as identifiers, or external global names, that must be securely mapped to the respective

public keys or other related signed identity attributes. The former authentication is the

usual method in open and flat blockchains, as addressed in cryptocurrency ecosystems,

or represents a layer in namespace bindings in other possible models that have been

addressing more recently in the blockchain research agenda, such as hierarchic names,

or models for hierarchies of blockchains, designed to address a different approach for

horizontal scaling and to optimize trade-offs between byzantine fault-tolerant consensus

protocols for consistency guarantees, and the throughput of transactions that can be

achieved. We will discuss other scalability issues related to blockchain models later.

For now, we introduce other common characteristics usually present in a blockchain

environment, as well as, their nuances as supported by different blockchain implementa-

tions.

Openness and permission model. There are two types of Blockchains: permissioned

and permissionless blockchains. Permissionless blockchains, such as Bitcoin blockchain,

enable the open participation of any entity in the network and in the consensus process,

as characterized in [51]. In permissionless blockchains any participant node can create

an address and begin interacting with the blockchain network. This means that in this

model any node can join the network, participate in the process of block verification and

consensus, and in a more broad vision, can also create specific rules for P2P transactions

and block processing. However, in a permissioned blockchain model, the actors who

can contribute to the consensus of the system state are managed to be restricted. In

this case, only a restricted set of nodes have the rights to validate block transactions. A

permissioned blockchain may also restrict access to approved actors that can be involved

in the setup of rules that regulate data and transaction processing.

Permissionless blockchains and characteristics. Related to the permissionless model

supported in the blockchain design model, different characteristics can also have nuances,

if a permissioned model is addressed, in the way those characteristics are achieved and

described [51]:

• Decentralization - represents a key feature when the system is not dependent on a

central authority;
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• Transparency - meaning that data records are transparent to each node;

• Open Source - if the support technology is open source so it can be used for free or

to create any application;

• Autonomy - related to the system support operating independently by implementing

different consensus algorithms, implying on possible different consistency guaran-

tees, by configuration or by dynamic adaptive mechanisms;

• Immutability - the guarantee that records will be stored forever and cannot be

changed, unless someone controls more than the majority of the nodes;

• Anonymity - when participant public names or addresses cannot match real life

identities, of persons or represented entities, mapped in this address through the

system.

Permissioned blockchains. As introduced before, in permissioned blockchains, par-

ticipants are well defined, but the model can be addressed in different ways. Permis-

sioned blockchains are commonly classified as consortium or fully private. In consortium

blockchains transactions can be read publicly or restricted to certain participants and

the consensus process is restricted to predefined nodes in the network. The Hyperledger

Fabric [34] is an example of a consortium blockchain. Fully private blockchains have the

same permissions for reading transactions, however writing new transactions is under the

responsibility of a unique entity. This way, are basically hybrid blockchains for reading

with centralized, and possibly access-control enforced, writers.

Permissioned blockchains are faster, easier to implement, and consume less resources

[62]. With this type of blockchains, it is possible to use consensus algorithms that con-

sume less resources and show higher performances, namely better throughput under low

latency conditions, unlike Proof of Work or Proof of Stake mechanisms, as we will present

below and usually adopted in open and permissionless blockchain models.

2.1.3 Blockchain structure and operation

As stated before, blockchain represents a sequence of blocks and each block will store a

certain number of transactions. For practical reasons, a block has a maximum number

of transactions it can hold that depends on the block size and the size of the transaction,

and indirectly, limited by the performance to be supported.

A block consists of a header and a body. The block header includes [28]: A block

version indicating which set of block validation rules to follow, a Merkle tree with the

hash value of the transactions in the block, a timestamp representing the current time in

universal time in seconds, nBits for the target threshold of a valid block hash, a Nonce

designating the 4-byte field which usually starts with 0 and increases for every hash

calculation and the Parent’s Block 256-bit hash pointing to the previous block. Finally,
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the block body is composed by a transaction counter and transactions. This structure is

very common to permissionless blockchains and also supported with minor changes in

different permissioned blockchains.

The general operation of a blockchain can be explained in three main steps [51]:

1. When a node wants to share information, it broadcasts it to all the other nodes in

the P2P network.

2. Nodes create a new block when they receive valid information and it is enough to

create a new block.

3. The consensus process is executed and, in case of success, it is appended to the

chain.

The services offered by a blockchain ecosystem can be decomposable into different

layers that can be addressed in different planes [17]:

• Network Plane responsible for the propagation of transaction messages. For example,

in Bitcoin it is used to propagate all valid transactions to all nodes in the network.

• Consensus Plane used to designate a set of transactions that is accepted by all nodes,

as well as a total or partial order of these transactions.

• Storage Plane functioning as a global memory that stores and provides availability

for authenticated data produced by the Consensus Plane. Storage applications could

be databases or Key-Value storage such as Dynamo, MongoDB, MySQL or BigTable.

• View Plane represents a state that is derived from the application of all transactions.

• Side Plane allowing consensus to be achieved outside the main chain.

2.1.4 Blockchain structure and other characteristics

There are other characteristics that can be also interesting in the study of blockchain im-

plementations, regarding the different structural planes, as well as, the provided services

and mechanisms. For the scope of the dissertation, we consider the following characteris-

tics:

• Openness – related to the possibility of support and integration of any application,

through externalization interfaces, in such a way that the blockchain components

and services can be reusable for different applications, at different levels of inte-

gration. The characteristic can be regarded in different levels of granularity, for

example, total openness of any blockchain plane as a reusable plane, or limited

openness, when restricted to a specific plane or to a common and limited external-

ized interface hiding internally the logics to access to the other planes.

13



CHAPTER 2. RELATED WORK

• Extensibility - if the mechanisms and software components implementing differ-

ent functions, or blockchain planes, are open, designed and implemented to be

extended, in order to address specific application requirements in the blockchain

processing functions;

• Ordering Flexibility – if there is flexibility to support multiple ordering services

in the consensus plane, possibly extended as pluggable consensus components as

mechanisms managing different information flows. In this, we include the possi-

bility to have support for different consensus protocols with different reliability

semantics and byzantine fault-tolerance guarantees, as pluggable components, im-

plementing different levels of approach for scalability, throughput and consistency

trade-offs.

2.1.5 Blockchain Transactions

Transactions are important in blockchain systems. Each transaction is signed by the

user’s private key [28]. The transaction is authenticated using digital signature and then

broadcast to all the other members of the network for verification.

The signature process is composed by 2 phases. A signing phase in which the sender

encrypts the data using his private key and a verification phase in which the data is vali-

dated using the sender’s public key. Usually, the signature algorithm used in many cases,

such as Hyperledger Fabric [2], is the elliptic curve digital signature algorithm (ECDSA).

The set of private and public keys are stored in a data structure named wallet. This digital

signature, allows to guarantee non-repudiation of data. In the case of Hyperledger Fabric,

keys are a part of the user.

The essential block of a Bitcoin transaction is a transaction output [3]. Transaction

outputs are indivisible chunks of bitcoin currency, stored in the blockchain and recog-

nized as valid by all the network members. Every transaction that is made will represent

a state transition in the Unspent Transaction Output (UTXO) set, the set of all unspent

transaction outputs. In summary, when a user is said to have received a bitcoin it means

that his wallet has found a UTXO that can be spent with one of the keys that are controlled

by that wallet.

In Hyperledger Fabric there is not a crypto-currency associated. A transactions in

Hyperledger Fabric is composed by a header, signature, proposal and a response.

2.1.6 Consistency Mechanisms

When using the blockchain, one of the most important matters is finding a way to be

able to agree on values without the need of trusting anyone. To solve this problem, it is

necessary to incorporate decentralized consensus algorithms.

In [55], is presented a mechanism for emergent consensus. Emergent consensus is an

algorithm that does not have a specific moment where consensus occurs, but as [3] states,
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that "consensus is an artifact of the asynchronous interaction of thousands of independent
nodes, all following simple rules". There are various ways of solving this problem, the main

ones are:

• Proof of Work (PoW) - first presented in 1992 as way to battle against spam emails

[24], is based in a piece of data that is difficult or time-consuming to produce but

is easily verifiable by other nodes [51]. It is a process in which it is changed the

Nonce in the block header is such way that the hash of the header is less than a

pre-specified target. This target’s difficulty is adjusted according to the amount of

blocks that can be generated.

• Proof of Stake (PoS) - this mechanism doesn’t rely on a cryptographic puzzle to be

solved since it will generate a lot of wasted power. This method is translated in a

form of proof of ownership of the currency [46] and coin age. For example, if Bob

sends Alice 100 coins and Alice does not spend it for 20 days, Alice will have 2000

coin days of coin age.

• Proof of Elapsed Time (PoET) - capable of supporting a vast amount of nodes. It uses

safe instructions, provided by the CPU (enclaves) in which, each node requests a

wait time from the enclave and the node with the shortest amount of time is elected

as the leader. This leader election technique guarantees that leadership election is

distributed among all nodes in the network in a balanced way. This leader is then

capable of proposing a block for acceptance, that will then be added to the chain

[33].

• Ripple - consensus algorithm that relies on collectively-trusted subnetworks within

the larger network. In the network, nodes are divided in server, for taking part in

the consensus protocol, and client for fund transferring [76]. It is divided in rounds

and at least 80% of the votes are necessary for a value to be accepted.

• Practical Byzantine Fault Tolerance (PBFT) - A Byzantine fault tolerant state ma-

chine replication algorithm providing both liveness and safety properties for (n-

1)/3 faulty replicas. This algorithm is to be applied to an asynchronous system

rather than an impractical synchronous system [12].

• Tendermint - byzantine fault tolerant replication application that supports up to 1/3

faulty replicas. It consists in a voting consensus engine called Tendermint Core that

the same transactions are recorded on every machine in the same order [48]. The

algorithm is divided in four steps and in each step 2/3 of the votes are necessary.

Although these are the main algorithms for consensus, there are other approaches,

such as Proof of Existence, Proof of Importance, Delegated Proof of Stake and Proof of

Activity. These are some common names for consistency mechanisms that can appear as

variants or hybrid approaches of PoW and PoS based consensus algorithms [55].
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Consensus algorithms such as PoW or PoS are used in permissionless blockchains.

In this case PoW as a consensus mechanism, are used under the assumption that peers

do not rely on trust. Indeed, a model with stronger assumptions regarding trust can be

associated with better performance results.

For example, a Byzantine Fault Tolerant replication protocol with a number of selected

trusted entities may overcome some of these problems regarding performance and scala-

bility. As illustrated in [17], using PBFT greatly outperforms Bitcoin in both transaction

latency and throughput. In the use of PBFT state machine replication and consensus for

blockchains, it is assumed a closed and small consensus group, usually parameterized

for four participants, and never more than fifteen. However, for certain requirements

and for the enlargement of consensus groups, PBFT approaches can also have problems

in throughput, latency conditions and horizontal scalability purposes for permissionless

blockchains. Other approaches have been more recently proposed to avoid such possible

limitations. For example, in [26] the idea is to break a large collective into smaller sub-

groups (using a sharding technique), reducing the overhead of transaction processing in

a large and flat blockchain. Those subgroups are organized in shards, where membership

size is regulated for security vs. performance trade-offs, and shards are re-formed peri-

odically, as the network evolves. This means, that the consensus tasks are split among

different nodes, so each node has a reduced processing and there is an improve in through-

put because the consensus group is small. Performance does not improve linearly with

shard count.

In the ByzCoin blockchain model [25] the idea is to de-conflate membership and con-

sensus by electing temporary leaders by mining key-blocks and the leader signs micro-

blocks with limited number of transactions to accelerate the throughput achievement.

The approach is a model in which a PoW mechanism is used, but mining yields tempo-

rary membership share, in a gradually-rotated consensus group. The approach uses an

efficient tree-structure model of communication to support a collective signing model

in which only one participant signs on compressed messages to optimize the PREPARE
round of the PBFT consensus.

2.1.7 Decentralized Trust and Shared Ledgering

In many current systems, trust is mediated by a central authority. Transactions between

two parties are dependent on a central authority that is responsible for data validations

and for authenticating both parties.

The evaluation of trust in descentralized environments involves three main aspects

[68]. First, there needs to be an incentive for good behavior, this way participants will

act more responsibly in the future. Second, trust evaluation should provide the means

for good participants to avoid working with malicious participants. Third, the results of

trust evaluation allows the detection of malicious participants.

A ledger is an old definition that defines the current state of a business as a register
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of transactions [39]. In a blockchain, these registers are implicitly validated in their

trustability conditions in an autonomous and independent way, by means of transaction

processing and consensus guarantees. For example, in Hyperledger Fabric the ledger is

a sequenced, tamper-resistant record of all state transitions and peers will maintain a

copy of the ledger to every network it belongs. We must notice that are two parts for a

blockchain ledger: (1) the world state, which is a database that holds the current values

for the ledger states and (2) the transaction log, which will store the update history for

the world state [36].

2.1.8 Access Control Enforcement and Anonymization

In general, access control enforcement techniques are used to limit resources or services

in a system according to the user’s rights. These rights are usually expressed through en-

forcement policies. One way to include rights and enforcement policies in the blockchain

would be through Smart Contracts, which is detailed in the next section. The Smart

Contract can be queried directly and transparently, so when a user requests an operation,

it could be verified at access request time. In a primary overview, a smart contract is

nothing more than a computer protocol, as an executable program, or simply executable

code, intended to digitally facilitate, verify, or enforce the negotiation parameters or per-

formance requirements of a contract, regarded as verifiable conditions in transactions

involving data or other assets. The code behind a smart contract contains specific terms,

rules or conditions, as well as the expression of values and invariants, that are executed

when triggered by specific agreed events.

We must notice that in the blockchains’ world, smart contracts are designed and

supported to inherit some of the blockchains’ properties:

• Immutability, which means a smart contract can never be changed and no one

can tamper with or break a contract, as programmable rules for the verification of

transaction and block processing.

• Distribution, which means that the outcome of the contract is independently vali-

dated by every node in the blockchain network, just like any transaction, under the

same consistency scrutiny.

In open or permissionless blockchains, the blockchain is a public ledger that rep-

resents all transactions made. This way, anyone can consult transactions that occurred.

However, since the user’s accessible information is only its public address, or more specifi-

cally, a public key, this key is not linked to an actual name or a home address, for example,

anonymizing the interventions.

According to [18] there are two main properties to describe a system for a full anony-

mous cash model, but this model can be applied for the privacy of any blockchain model:

• Untraceability - for each incoming transaction, all possible senders are equiprobable.
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• Unlikability - for any two outgoing transactions, it is impossible to prove they were

sent to the same person.

2.2 Blockchain in Large-Scale Environments

2.2.1 Scalability Issues and Implications

We addressed before how the design model and implementation options of the different

planes in a blockchain structure can affect the performance under scalability criteria.

For a system to be used in a larger scale, its performance, in a network with a large

number of nodes, is measured in order that it does not cause a burden to the users to use

the system, compared with a small number of nodes. For example, in the current scale

of the Bitcoin, it takes at least 10 minutes to confirm a transaction and has a maximum

throughput of 7 transactions/sec. As a way of comparison, Visa is capable of confirming

a transaction in seconds and has a peak throughput of 56,000 transactions/sec [17].

These values pose the question of whether a decentralized blockchain is capable of

matching the performance of Visa, for digital currency transactions. For this purpose, in

[17], the authors propose some ways to improve the blockchain’s performance, for exam-

ple, increasing the maximum block size or even remove the limit as a way of improving

effective throughput or minimizing latency by reducing the block interval which would

require also a reduction in the block size.

There are two main problems in the Bitcoin’s network protocol that degrade its per-

formance namely:

1. On one hand, a node must fully receive and validate a transaction before propagat-

ing it as a way of avoiding denial-of-service by dissemination of invalid transactions;

2. All transactions must be transmitted twice, one to disseminate the block and an-

other one to disseminate the block in which the first transaction is contained.

To address this, different solutions have been proposed, as stated in [17]. For example,

to solve the first problem, there should be rate limits for nodes that generate invalid

transactions. To mitigate the problem, this approach benefits honest nodes. As a solution

to solve the second problem, a node will only fetch transactions it does not possess.

2.2.2 Scalability Dimensions and Heterogeneity

In a practical application of the blockchain, there will be, possibly, different types of data

and nodes. In different cases there is data that must be available to every nodes, data that

should only be available to a few selected nodes and even some data that is of interest that

can be extrapolated by the stored content. This way, we can define two types of scalability

dimensions: scale-in or scale-out.
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Scale-in scalability must be addressed when all nodes share the same blockchain,

which means that this chain will grow indefinitely. These issues can be achieved by

"scalability tuning"and invariants expressed as system assumptions, together with other

vertical and horizontal scaling conditions in internal service planes of the blockchain

services, as presented before.

When a blockchain scales-out it means that several blockchains are used to differ-

entiate types of data or nodes, in a certain architecture and topology. For example, we

can have blockchains associated with two different domains of implementation and we

can have a third blockchain that serves as a metadata storage and ledger, for those two

blockchains, in a hierarchic model. This way, it is possible to consult information related

to the data or even create hierarchical models for blockchain management under scale-

out conditions. In this approach, the scale-in conditions can be regarded as transparent,

and we can also have different approaches for different scale-in conditions in different

blockchains belonging to the considered hierarchy.

IoT applications rely on devices that can be seriously resource constrained, therefore

it is important to reduce data processing on each node. Using a scale-out approach

and introducing trusted nodes it is possible to create permissioned blockchains that use

different consensus algorithms, such as PBFT, under certain restrictions of the blockchain

membership, which outperforms the PoW model as used in the Bitcoin in both transaction

latency and throughput [17].

2.3 Blockchain Platforms

2.3.1 Characteristics and Design Criteria

Before, we addressed that there are different types of blockchains: public, consortium or

private. Remembering, in a public blockchain every node has the right to join or leave the

network as they will, and this is the case of Bitcoin. In a consortium blockchain not every

node has the right to validate transactions and this process relies on assigning this role to

a few selected nodes. A private blockchain implies on a more centralized structure, since

a single entity controls the transaction process and has the power to make decisions such

as controlling what consensus protocol is used. In Section 2.1, we also analyzed different

characteristics that can be present, with distinct flavors, in various blockchain platforms.

Now, in this section, various platforms will be described and compared, considering

such characteristics. For comparison purposes, several characteristics of each platform

will be taken into account, in order to choose the most appropriate platform for the

development of the proposed application.

It is also relevant to analyze the type of support provided for smart contracts in the

studied blockchain platforms. The analysis of their characteristics and the existent sup-

port for smart contracts is particularly relevant for the choice of a blockchain environment,
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including the related services and components, that is more appropriate to leverage a

blockchain-enabled IoT platform, as we want to address in the dissertation objective.

• Permissions - differentiating between permissioned and permissionless blockchains.

• Open Source - if the platform is open source.

• Consensus Protocol - what consensus protocol is used.

• Transaction Flow - how platforms process transactions.

• Scalability - how scalability impacts performance, which is usually evaluated in

terms of throughput and latency.

2.3.2 Smart Contracts and Access Control Enforcement

Smart Contracts are supported in different blockchains, with differences in terms of

expressiveness power, programming language and support model. The support model

can also have dependencies on the access-control enforcement mechanisms, as well as,

the roles that can be executed by the blockchain nodes.

For example, in Hyperledger Fabric [34] , there are endorsement policies, which enable

to let a certain peer know whether a transaction is properly endorsed. Hyperledger Fabric

also uses an Access Control List (ACL), allowing for the management of resources by

the association of an access rule to a set of identities [35]. Hyperledger Fabric provides

the Client Identity Chaincode Library (CID) [38] which enables the definition of access

control policies based on the identity of a client directly in the chaincode. This library

allows the definition of a set of attributes of users in a associated X509 certificate.

2.3.3 Smart Contracts and Programming Support

It was already stated that smart contracts are, in essence, programs. The term "Smart

Contract"was introduced a long time ago by Nick Szabo, in 1996 in [71] where the author

stated that a decentralized ledger could be used to store contracts in a digital format. This

way, contracts would be converted to code, replicated to the network and would then be

verified by the computers that compose the network.

Since smart contracts are an important part of a decentralized environment, it is

crucial for blockchain platforms to support it. This way, it is essential to acknowledge if

and how different blockchain platforms implement smart contracts, the expressiveness

allowed and how they support possible extensibility conditions.

For example, Bitcoin supports a similar concept to Smart Contracts, however it is

implemented in a restrictive scripting language that is not Turing-complete [10]. On the

other hand, Ethereum provides a contract-oriented, high-level language for the develop-

ment of Turing-complete Smart Contracts, Solidity.
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As another example, Hyperledger Fabric supports the concept of smart contracts as

chaincodes. The chaincode will implement the application logic and will run during

the execution phase [2]. This way, the chaincode will be triggered when a transaction is

proposed and it will decide the state changes to be applied to the ledger. In Hyperledger

Chaincodes are, in its essence, programs written in Golang, but it can be also written in

Node.js, Java and eventually, is more or less easy to have or to develop those contracts,

expressed in other different languages [37].

Chaincodes deal with the initialization and management of ledger states by the re-

ceived transactions. These chaincodes run in different containers from the peer and the

state that is generated by a chaincode is not accessible by another chaincode, this way

being able to provide isolation guarantees.

In the remaining sections we will analyze a set of different blockchain platforms.

2.3.4 Ethereum

Similarly to Bitcoin [55], Ethereum [10] is a distributed public blockchain network. It is a

programmable blockchain that allows users to create their own operations. The Ethereum

Virtual Machine (EVM) is a Turing complete software that runs on every Ethereum node

and allows anyone to run any program.

Ethereum has three main concepts for its functioning: accounts, transactions and

messages. There are two types of accounts: externally owned, which have no code and are

controlled by private keys and contract accounts which are controlled by contract code.

Ethereum messages are comparable to Bitcoin transactions with the additions that

can be created by either an external entity or a contract. Messages can contain data and

recipients can send a response when receiving a message in case it is a contract account.

Transactions are used to refer to signed data packages that will be used to store messages

to be sent from an externally owned account.

Ethereum also introduced the notion of gas, which translates the amount of work

required to execute a certain operation in a fee that is set in the transaction in order to

prevent infinite code loops and exponential blowups. If the gas limit is reached before

the transaction finished, the transaction will be considered invalid and the gas will not

be refunded to the sender, because computational power was already spent.

For a block to be considered valid the previous block reference is checked for block

existence and validity, the new block’s timestamp has to be greater than the previous

block’s timestamp, the proof of work has to be valid and the final state that will be

applied is verified for errors.

Next, it will be presented two platforms that were developed based on the Ethereum

implementation.

• Quorum [57] is a distributed ledger protocol developed by JP Morgan that is based

on the Ethereum implementation using the Go-language. It is a private or permis-

sioned blockchain that uses a voting algorithm to achieve consensus and has data
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privacy with the introduction of private transaction identifiers. Transactions are

split in public and private. Public transactions are validated by every node in the

network, but for private transactions, only nodes that are related to it will execute

the contract code associated, all other nodes will simply skip this step. This way,

the database will be split in a public state database and a private state database.

All nodes will have the same public state database, which does not happen for the

private state database. As a consensus mechanism, Quorum offers two possibilities

a Raft-based mechanism and Istanbul which is inspired by the PBFT algorithm. A

new majority voting protocol is currently under development, QuorumChain. In

this protocol, only a few selected nodes are able to vote which block should be the

head block at a particular height. The creation of a block is a task also attributed to

certain nodes according to its role. The main difference between the two algorithms

is that PBFT is able to tolerate crash and byzantine faults, while QuorumChain is

only able to tolerate crash faults.

• Hydrachain [32] is another extension of Ethereum for permissioned distributed

ledgers. As a consensus protocol it uses a byzantine fault tolerant protocol which

was inspired in the Tendermint [48] Byzantine consensus algorithm, but relies on

a registered and accountable set of validators that guarantee the order of transac-

tions. It provides the tools to create smart contracts using the Python language and

since it is capable of bypassing the EVM, native contract execution is faster. These

contracts are compatible with EVM based contracts, this way it is possible to have

both on the same chain.

2.3.5 Hyperledger

Hyperledger [34] or The Hyperledger Project is an open source project founded by the

Linux Foundation as a way of fueling the development of decentralized projects. It

consists of several platforms and the main ones will be described next:

• Fabric [33] is a platform for permissioned ledgers that follows a modular architec-

ture. It supports channels, this is, transactions are only available to nodes that are

in the same channel, this way creating multiple Hyperledger Fabric instances, this

is, multiple blockchains. Channels are initialized with a configuration block called

the genesis block.

It uses chaincodes, which are comparable to smart contracts, that will enforce a set

of rules when reading or modifying values from storage.

Endorsing peers endorse transactions before they are committed, this way, being in

agreement with the specified endorsement policies.

It also supports a portable notion of membership [2] and each peer is properly

authenticated by the Membership Services Provider when joining a channel. Hyper-

ledger Fabric also provides an implementation of a Certificate Authority (CA), the
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Fabric-CA, but it is also possible to integrate commercial CAs. Fabric-ca is the entity

which deals with the registration of entities, issues Enrollment Certificates and cer-

tificate renewal and revocation. Kafka [45] and SOLO were the chosen mechanisms

to implement consensus, in order to decide the transaction order, which consist in

a voting-based system. Although these mechanisms provide crash fault tolerance,

they do not provide Byzantine fault tolerance, but given its modular architecture,

the consensus protocol can be exchanged by a protocol that is capable of providing

Byzantine Fault Tolerance.

BFT-SMaRt [65] is one example of a BFT protocol that has been implemented for

Hyperledger Fabric [8] which will be detailed in a section detailing Hyperledger

Fabric with Byzantine Fault Tolerance.

Hyperledger Fabric follows a mechanism of execution of execute-order-validate [2],

this way enabling the possibility of a transaction being executed before the ledger

update. First, a transaction is executed and its correctness is verified, this way being

endorsed. It is in this phase where the execution of the chaincode occurs. Then,

the ordering step corresponds to the consensus protocol and finally, the transaction

will be validated following trust assumptions defined in the active endorsement

policy. Hyperledger Fabric follows a hybrid replication model since both active and

passive replication models are used.

The orderer is the entity that guarantees consistency in every peer’s ledger [2]. This

entity will establish the total orderer of the transactions and will functions as an

intermediary between peer and Kafka. This entity does not validate transactions.

• Iroha [33] is a modularized distributed ledger still in development. It prioritizes

the mobile environment and has created and made available libraries for the main

mobile operating systems. It supports Chaincode which is executed in a sandboxed

Java VM. It introduced Sumeragi, a Byzantine Fault Tolerant algorithm which is

inspired by the B-Chain algorithm [22]. It splits the set of peers in two 2f +1 groups

and needs 2f + 1 confirmations to validate a transaction. This way, only the first

group is essential to validate a transaction and the second group is only necessary

when faults happen in the first group. It also uses Hijiri, the algorithm for peer

reputation and leader election, that is used to determine the order of processing

nodes by identifying which servers are most reliable.

• Sawtooth [33] is an open source project for a distributed ledger targeting modularity

and safe smart contracts. It introduces the term Transaction Family and provide

several core transaction families as way of reflecting transaction types. Sawtooth

provides two mechanisms to achieve consensus: Dev_mode and PoET. PoET was

explained in greater detail in the Consensus and Consistency section. Dev_mode,

as defined in the documentation is a "simplified random leader algorithm that is

useful for developers and test networks that require only crash fault tolerance".
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• Burrow [33] is a permissioned blockchain project created by Monax [53] that ex-

ecutes Ethereum smart contracts on a permissioned VM. It aims to provide high

transaction throughput, multi-chain support, security and data privacy. The permis-

sioned EVM makes sure that correct permissions have been given. It also ensures

finality which is guaranteed by the EVM that attributes a random amount of gas to

an execution, making sure that it ends. As a consensus mechanism it uses the Byzan-

tine Fault Tolerant Tendermint protocol [48] to guarantee transaction ordering and

finality.

2.3.6 Hyperledger Fabric with BFT Consensus

Hyperledger Fabric does not officially provide a Byzantine Fault Tolerant (BFT) consensus

protocol, but due to its modularity, it is possible to plug an implementation of a BFT

protocol.

In [65] it is detailed an implementation of the state machine replication algorithm

BFT-SMaRt for Hyperledger Fabric, which not only provides BFT, but also shows results

that its ordering service achieves up to 10.000 transactions/s and it takes 0,5s to write a

transaction to the chain.

BFT-SMaRt’s ordering service is composed by an ordering cluster and a set of fron-

tends. The ordering cluster consists of 3f + 1 nodes that will collect envelopes (transac-

tions) from a frontend and order them by following the Bft-SMaRt’s replication protocol.

Frontends will serve as proxy between the client and the ordering service to deliver

the envelopes and will also receive the blocks that are generated from the ordering service

and deliver them to the peers so these blocks can be added to the ledger. This way, a node

will create a block containing the envelopes and the hash of the previous block, when it

gathered enough envelopes. The node then generates a digital signature for the block and

disseminates it to all frontends, which will collect 2f + 1 matching blocks.

The used ordering service implementation [8], relies on the modular architecture of

Hyperledger Fabric to implement a state machine replication protocol on top of BFT-

SMaRt’s consensus algorithm [65]. When clients send their requests, the consensus pro-

cess is initiated.

The consensus process consists in three phases: propose, write and accept. The pro-

pose phase consists on one replica, the leader, proposing the received batch of requests.

The other replicas will validate this batch and the leadership of the sender. In the case

it is a valid batch, the replicas will register the batch and send a write message to all

other replicas. In the case a replica receives n+f +1
2 write messages, it will send an accept

message. By receiving n+f +1
2 accept messages the decision is complete.

In [65] it is also referred an optimization for geo-replicated environments to the origi-

nal protocol, WHEAT which enables the delivery of client messages after the write phase

and executing the accept phase after sending to the client.
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2.3.7 Chain Core

Chain Core [13] is a protocol for an asset management shared ledger. It supports multiple

and inter-operable networks in which assets can be managed by transaction posting.

Assets are attributed a unique ID between all the chains and when the block is created,

the network is capable of maintaining a unique and immutable order to prevent double-

spending.

The protocol has three programs to maintain system specifications: Issuance, Control

and Consensus programs. The issuance program specifies the set of rules to be applied

to new units of an asset, the control program has the rules for spending asset’s units

and the consensus program controls the rules for new block acceptance conditions. As a

consensus mechanism it uses the federated consensus in which a block to be approved

needs approval from a set of block signers.

2.3.8 Corda

Corda [15] is an open source distributed ledger platform developed with the purpose

of recording, managing and synchronizing financial agreements between institutions.

It is a different platform because only parties that legitimately have to know about an

agreement, will be able to.

In Corda, networks are semi-private, this means that each network will have a door-

man that will enforce rules before a node enters the network. The node will have to

provide the required information and, in case the doorman is satisfied, the node will

receive a TLS certificate. This certificate will confirm the node’s identity when it tries to

communicate with other nodes in the network.

Corda also introduced the concept of states, which are shared facts that are acknowl-

edged by one or more nodes. States can contain arbitrary information like stocks, bonds

or identity information. Since states can not be modified, changes will be converted to a

sequence of states that will represent the evolution of a state.

To achieve consensus, Corda requires two types of consensus to be reached: Validity

consensus and Uniqueness consensus. Validity consensus consists of checking that every

party involved in a transaction not only possesses the transaction itself but also all the

past transactions that led to that transaction. Uniqueness consensus is a solution for the

double-spending problem, since it will check that the inputs of a transaction have not

been consumed by any other transaction.

2.3.9 Comparative summary on studied Blockchain Platforms

Table 2.1 represents a summary of all the platforms evaluated according to the categories

analyzed. For clarification, a bitcoin-like consensus mechanism means that transactions

are processed in a similar way as in Bitcoin. Transactions are propagated and validated

by all members of the network.
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Table 2.1: Platforms description summary.

Platform Type Transaction Flow Consensus Ledger Replication
Ethereum Permissionless Bitcoin-like PoW Global

Quorum Permissioned

Private transactions are
propagated to a subset of
nodes and private transactions
are propagated globally

Raft and
Istanbul

Partial

Hydrachain Permissioned

Private transactions are
propagated to a
subset of nodes and blocks
are propagated globally

HC Consensus Global

Hyperledger
Fabric

Permissioned

Transactions are proposed
to endorsers, then to the
consensus service and block
is then sent to other peers

Kafka or Solo Partial

Hyperledger
Iroha

Permissioned

Transactions are sent to the
consensus mechanism, blocks
are then propagated
to the network

Sumeragi Global

Hyperledger
Sawtooth

Permissioned Bitcoin-like
PoET and
Dev_mode

Global

Hyperledger
Burrow

Permissioned

Transactions are sent to
consensus mechanism and
blocks are propagated
to the network

Tendermint Global

Chain Core Permissioned Bitcoin-like
Federated
Consensus

Global

Corda Permissioned Bitcoin-like
Validity and
Uniqueness

Global in public ledger,
partial in private ledger

Hyperledger Fabric is an open source project of modular nature that supports chain-

code, which corresponds to Smart Contracts. The fact that the consensus mechanism

can be altered to a more appropriate algorithm, PBFT for example, is a big advantage

when dealing with IoT devices because it can transform consensus in a process that con-

sumes less resources. The adoption of a different consensus algorithm can also increase

transaction throughput and provide Byzantine Fault Tolerance if necessary.

By supporting channels, the division of peers in groups, it enables the possibility of

adapting an architecture that is able to scale and guarantees privacy by only permitting

communication between peers from the same channel using the Membership Service

Provider authentication.

Hyperledger Fabric is also able to provide a simulation of the effects of a transaction,

called Read-write set, which permits that a quick temporary response can be returned to

the application.

Security guarantees can be met by the support of Certificate Authorities for certificate

generation. For the mentioned reasons Hyperledger Fabric is the most appropriate platform

for the design of a generic architecture.
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2.4 Blockchain for IoT Applications

2.4.1 Scalability and Blockchained IoT

Nowadays, the usual approach when developing IoT applications is using a "cloud-first"

methodology, this is, all data that is collected by the devices is sent to the cloud without

any type of filtering or control by the owner.

The processing of the collected data is done in the cloud where a higher processing

power exists. In this section, it is described approaches used to solve issues related to the

ownership of the collected data and scalability of this type of systems.

In [60], the concept of Blockchain as a Service and evaluates two different solutions

using Cloud and Fog computing. It refers that the main reasons why hosting a blockchain

directly on IoT devices are the lack of computational resources, the lack of sufficient

bandwidth and the need to preserve power. This study differentiates the two comput-

ing techniques as fog being resource limited but being able to achieve low latency and

cloud being able to scale out and overcome resource constraints by raising latency. In

the experiments, the authors realized that adding delays to the multichain will reduce

network traffic and that the multichain is not the bottleneck and performance is primarily

dependent on the network card and traffic. In conclusion, the results indicate that fog

computing outperforms cloud computing for this type of technology.

In [21], the author presents a secure and resource friendly solution for blockchain

using IoT devices. This solution is based on a three tier architecture which includes a

smart home, an overlay and a cloud storage.

• The smart home is composed by IoT devices, a local immutable ledger and a local

storage. This ledger is managed centrally by a Smart Home Manager (SHM). The

SHM will process all incoming and outgoing transactions and communicates with

IoT devices and local storage with a shared key.

• The overlay tier is constituted by the nodes. These nodes are arranged in clusters

in order to decrease network overhead and in each cluster, a Cluster Head (CH)

exists, which is responsible for block generations. These CHs also have a public

blockchain which will store transactions sent by the overlay user and will be used

to gain reputation.

• The cloud storage tier will associate the user’s data with the block number as a way

of SHMs being able to authenticate. The authors present a trust system as a way

of decreasing overhead for block verification based on the transaction history since

only a portion of the transactions in new blocks will need to be validated.

With this architecture it is possible decrease both traffic and processing overhead when

comparing with results obtained in a Bitcoin network.

In [6], several security and privacy preserving techniques for IoT and blockchain

systems were discussed. The authors propose an architecture for dataset sharing in
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research communities in such way that integrity is preserved. To achieve this, a reference

integrity metric was created and is maintained using the blockchain. This architecture

uses a central hub that stores references to other repositories in the network where the

datasets are stored. It solves the challenge of lifetime in the dataset. That is, an owner

of a dataset may not be interested in sharing it permanently. Only the integrity metric

is maintained by the blockchain and will remain there, this way if the owner decides to

stop sharing it, the dataset will not be available.

2.4.2 Blockchain-Enabled IoT Applications

2.4.2.1 Characteristics

As [20] states, Internet of Things (IoT) are devices that generate, process and exchange

volumes of not only security and safety-critical data, but also privacy sensitive informa-

tion. These devices have to implement security measures on top of the processing of

application functions and all this in a resource constrained environment.

Although the IoT has grown exponentially since most devices used are now connected

to the Internet, there are still some issues related to privacy and security. One example

of these issues is the lack of control that the user has in the data that is sent to the

service providers, the cloud for example, when using IoT devices. As explained in its

Smart Home example [20], there are some security measures that must be applied, such as

devices should be indirectly accessible, different sectors of the system should use different

transaction structures and the use of symmetric encryption.

As defined by the article [47], a blockchain solution with IoT can also solve server

downtimes and unavailability of services due to the fact that there is not a single point of

failure and information is replicated across several devices.

2.4.2.2 Blockchain Limitations for IoT

Using a blockchain in an IoT environment could be very positive, nevertheless there are

some disadvantages that have to be overcome. In a system like Bitcoin, the mining process

is very demanding in terms of processing power. IoT devices are, usually, very resource

constrained, which means that all processing that is done in the node has to be minimized.

The process of mining is usually very timely which will translate in higher latency times.

One possible solution could be to change the consensus mechanism to an algorithm that

requires less processing power from devices. Instead of having all nodes competing to

solve the puzzle first, it could be used an algorithm for consensus that does not rely on

each node’s computing power. For example, using an algorithm such as PBFT can greatly

outperform both transaction latency and throughput results obtained in Bitcoin [17].

As observed in a previous section, the blockchain has scalability issues when expand-

ing its number of nodes. When using IoT devices, it is expected that the number of devices

is high, this way it is expected that performance is affected. Another issue is related to
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traffic, some IoT devices can be bandwidth limited, in these cases, using a blockchain can

generate more traffic than desirable.

2.4.2.3 Design Issues

When designing an architecture for a system that uses a blockchain and IoT devices, there

are several aspects that have to be taken into consideration.

First, since IoT devices are not very resource powerful, the system can not be too

computationally heavy. A solution could be the use of the PBFT algorithm [12] as a

consensus algorithm.

Second, in Bitcoin’s system, there is a monetary reward for a peer that behaves cor-

rectly in the network, but in some cases, a reward could be a speed up in block validation

time by only needing to validate a subset of the transactions contained in a block based

on a reputation system [21].

Third, if a system is growing exponentially, strategies will be necessary in order to

minimize the impact in performance. An example of this can be the introduction of

a hub that plays the role of representative of a cluster of nodes in a global blockchain

centralizing communications in the cluster.

An example of this is [6] where a hub is introduced. This last solution also solves the

privacy issue where a user is able to take control of the data that leaves its smart home

for example.

2.5 Summary

This chapter presented an overview on principles and foundations of the Blockchain,

presenting the characteristics and properties of several Blockchain platforms and high-

lighting some ongoing and relevant problems on scalability and reliability issues, as

well as, performance bottlenecks. These concerns are particularly relevant for the use

of blockchain-enabled services and mechanisms, as leveraging elements for Blockchain-

Enabled IoT Platforms and their software architectures.

Several development platforms were studied and compared in this chapter, focusing

on some relevant characteristics, as possible approaches for the thesis objective. Among

the different characteristics found in the studied platforms, Hyperledger Fabric (HLF)

was selected as a viable and appropriate platform to develop a generic architecture for

IoT integration and for our expected contributions, as initially addressed in the Chapter

1. Summarizing, considering the objective and contributions of this dissertation, the

relevant criteria for this choice are the following:

1. HLF supports a modular architecture, enabling designers to plug in their preferred

implementations for specific components, which is a strong advantage. Important

components of the architecture can be easily plugged, including consensus or cryp-

tographic functions, for example. Exploring such modularity, we can address a
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“pluggable” use of different consensus algorithms, to better achieve optimized bal-

ances between fault tolerance and consistency guarantees, security and performance.

Particularly, this gives the opportunity to design and support different solutions for

byzantine-fault-tolerance requirements, as different modules in the consensus plane

support, in addition to the officially provided crash fault tolerant Kafka solution,

for distributed consensus and ordering service;

2. Related with the previous point, HLF has a design structure promoting separation

concerns between membership management and consensus control. This is an ad-

vantage for combining membership management at the level of the order-service

and the supported byzantine-fault-tolerant state-machine replication model, a rel-

evant issue for scalability and performance, in the global consistency model of the

network;

3. HLF provides the interesting concept of HLF channel, as a way to control the infor-

mation that can be shared only between nodes belonging to the same channel, with

the possible support of multiple chains, which can be used to isolate and structure

transactions between different peers in a more straightforward way. We also find

that it is possible to execute the HLF’s off-chain consensus mechanism in clusters,

local to the entire blockchain network, maintaining the support for a distributed

ledger environment under scalability control, without depending on a third-party

and avoiding the risks of centralized components in the network.

4. In the modular architecture of HLF, a relevant advantage is the clean separation

of transaction processing into three phases: distributed logic processing and agree-

ment ("chaincode"), transaction ordering, and transaction verification and commit-

ment. This separation has important advantages: fewer levels of trust and verifica-

tion are required across node types, and network scalability and performance can

be optimized, with possible conditions and invariants expressed for chaincodes.

5. At the same time, HLF provides openness and extensibility of chaincodes, usable

as a foundation for smart-contracts, allowing for possible extensions in ruling and

expressiveness of programmable transactions’ processing control and required in-

variants and verifications, during the execution of such smart contracts;

6. Despite not providing anonymity, as happens in other Blockchain platforms, this is

not an issue for the dissertation purpose, in the sense that we envisage IoT environ-

ments in scenarios such as Consortium-Platforms, where devices and participants

act in a permissioned model, supporting transactions only available to a subset of

the nodes, which is different when compared with open environments supporting

a permissionless model and public transactions, as happens for example in many

public cryptocurrency ecosystems;
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7. Compared with other platforms with some characteristics similar to the require-

ments we are looking for, HLF is available and extensible as an open-source plat-

form model, with larger and dynamic research and development community con-

ducting academic and industrial work initiatives. Due to the flexibility, open-

ness and design structure of reusable internal services, we find that HLF can be

more easily adopted for different deployment environments, namely: controlled

blockchained services distributed in private data centers, or use of blockchain back-

end services running in a cloud-provider computing and storage solutions (a facet

that we explored in the dissertation, for implementation and experimental evalua-

tion purposes).

In our study of how to address IoT architectures and their possible scalability require-

ments, we find solutions where the authors of proposed architectures defined the major

flaws and vulnerabilities to be aware when dealing with such systems. These studies gave

an insight of techniques and design models that can be applied in the design of large

scale blockchain services for IoT, such as the use of a hierarchies or Cluster Heads, and

the use of intermediation Hubs, as gateways between IoT devices and blockchain-enabled

services.

Considering the analyzed characteristics in Blockchain-enabled services, and select-

ing the Hyperledger Fabric solution as a reference blockchain implementation for the

objective of the dissertation, we can address integration or adaptation capabilities, where

the concerns initially discussed for scalable, trustable and reliable IoT Platforms can be

merged in a trustability model, under the advantages of a decentralized ledger environ-

ment.

In the next chapter, it will be defined a proposal for a generic architecture for address-

ing a Blockchain-enabled IoT platform and related software architecture.
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3
System Model

In this chapter it is presented the System Model and reference architecture for a blockchain

enabled IoT platform. This way, the chapter discusses the main goals and the related

components that were particularly targeted for the proposed platform, starting by intro-

ducing the system model assumptions, following by overviewing the system architecture,

from which we illustrate the support for a reference IoT-application support scenario,

the referenced Locker Management application. To conclude we discuss some relevant

dependability issues, as addressed in our proposed solution.

3.1 SystemModel Overview

In this section it is given an overview of the system model, given its entities, the system

operation and the application-level support.

3.1.1 SystemModel

We will start the explanation of our system model by summarizing the features of the

blockchain services that we will use as "backend"services for our proposed IoT platform.

In the related work chapter, there were several Blockchain characteristics defined which

were applied when designing the system model.

The main characteristics that were applied are the decentralization features, which

are achieved by using the Hyperledger Fabric’s distributed ledger, the immutability of

auditable operations and autonomy, because the system is able to process transactions

representing interactions between users and IoT devices, without requiring a central

trust entity. Another important characteristic about the use of Hyperledger Fabric for

our proposed architecture is the reliability conditions and consistency guarantees, under

dependability criteria, enabling the possibility of changing the consensus algorithm to
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address different guarantees, ranging from the “native” fail stop model in HLF version

1.1, to a byzantine-fault-tolerant model, as we analyzed in our proposal, as well as, in its

implementation and experimental evaluation.

Following the different planes in a blockchain, as discussed in the related work, we

will structure the blockchain services in our solution in the same way as defined for

blockchain services, e.g., as a way of separating the different layers of services. Then, we

identify in our proposed solution, the corresponding planes, as follow:

• The Network plane This plane represents the base foundations of Hyperledger

Fabric, which is composed by peers, endorsing peers, orderers, CAs and replicas.

Endorsing peers will enable the endorsement of transaction, digital signature, cre-

ating the correspondent endorsement signature. Orderers will collect envelopes

(with data for transactions’ processing) and execute the replication protocol, with

the total order guarantees in operations’ execution. The bootstrap Certificate Au-

thority created by Hyperledger Fabric, will deal with the registration of identities

and the involved replicas distributed in the blockchain, executing P2P transactions

and storing consistently the related data.

• The Consensus plane This plane supports different consensus guarantees for con-

sistency control. In our approach we consider two flavors for the consensus plane:

the native Kafka fail-stop service (initially existent in the HLF version 1.1), and an

enhanced order service, supported for Byzantine Fault Tolerant guarantees. This

service is supported by Bft-SMaRt – a state machine replication/consensus library

[7] with the provided optimizations for wide-area communication [64], leveraged

from the modular architecture of HLF and initially implemented to be rehearsed

and experimentally evaluated. We must notice that Hyperledger Fabric provides

Kafka as an ordering service. Although it has high performance and supports fail-

crash tolerance, it is not a Byzantine Fault Tolerant (BFT) consensus solution. This

way, we aimed to evaluate experimentally a solution that incorporated such BFT

assumptions, targeted by the Bft-SMaRt enabled ordering service for our HLF de-

ployment. This solution is also able to achieve acceptable performance values, even

when peers are geographically distant, particularly under controlled membership

conditions at the level of the consensus group.

• The Storage plane This plane corresponds to the layer responsible for storing the

data which will act as the distributed database for the proposed IoT platform, to

store data processed under the verification conditions established by chaincodes.

• The View plane Represents the visibility state of the blockchain for integrated

applications, being the visible state to external clients for user interaction in an IoT

application environment (which in our case can be IoT devices or users’ devices,

interacting through hubs with the blockchain-enabled services, as explained later).

This means that the view plane provides the necessary services to externalize the
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final state from all the operations executed and logged in the backend blockchain

services, when supporting IoT applications.

By taking advantage from the model of HLF Chaincodes, are in its essence regarded

as programs that are responsible for implementing the application’s logic ruling the

executed transactions, we use chaincodes in our proposed architecture seen as the base

for the expression and establishment of smart-contracts, holding the definition of the

data structure, arguments, and conditions do the necessary verifications. Leveraged by

the HLF support, the logic processing and agreement ruled by those smart contracts have

data contexts represented in JSON, and they are fully queriable, with the data-model

compatible to be stored in key-value stores in each peer. The HLF key/value storage

(KVS) used was CouchDB [4], as an alternative to the native solution LevelDB [49]. As

reference, the industrially available HLF packaged solution from IBM [40] offers today

alternative storage solutions, such as MongoDB [54].

3.1.2 System Architecture

In our system model and related architecture we consider a set of main entities, as rep-

resented in Figure 3.1: Blockchain, IoT devices, Mobile Users, IoT Service Provider (SP),

Smart Hubs (SH), Channels and Cluster Heads (CH). These entities will be described in

this section for a better insight of the proposed system model.

Figure 3.1: Representation of the system’s architecture.

The Blockchain represents the distributed registry and ledger, with the backend ser-

vices supported by each planes, and providing the means to store transactions, support-

ing the interactions of the external entities. In our software architectural model, such
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services are leveraged by HLF, which is responsible for the receiving and processing of

transactions proposed and primarily pre-processed by Smart Hubs (SH).

Transactions are signed and proposed by the Smart Hubs, and then the endorsing

peers (in the HLF based network plane) confirm that the transaction is well formed and

that it has not been already submitted. The signatures are validated by the Hyperledger’s

Membership Service Provider, under permissioned conditions, meaning that it is verified

that the SH has the right to perform the proposed operation on the used HLF channel. We

must notice that in the HLF it is possible to set up Endorsement Policies for transactions.

This enables definition of which entities need to endorse a certain transaction, in order

for the peer to consider it as properly endorsed.

The IoT devices are specific devices, from different vendors, as in our architecture are

considered as application-specific devices. Later, we will instantiate the use of our system

model in the context of a locker management system, and in this case, these devices are

smart-locks, which will open or close on a signal sent by the hubs with which the devices

communicate. In general, IoT devices can be very heterogeneous, in its specific functions

or sensing capabilities, software/firmware/hardware packaging, as well as, in supported

communication protocols.

Depending on different solutions, the Smart Hubs used for the interconnection of

such devices, must provide the base support, according to the specific interoperability

requirements, which stands for the nature, characteristics and processing capabilities of

those Smart Hubs.

Client is the device used by the user in order to interact in the context of an IoT appli-

cation. Related to such interaction, the client provides the transaction’s details supported

in endpoint services offered by the Smart Hub. We envisage Clients as mobile applica-

tions accessing IoT services, which will solely contact the IoT platform via a Smart Hub

and trough a provided REST service interface, for HTTP or HTTPS based interactions.

The IoT Service Provider, is the stakeholder which could benefit from the proposed

architecture in order to implement its business, as the provider of IoT applications.

For the purpose of the dissertation, we can see this entity as an external entity, interact-

ing with the proposed platform model through Cluster Head components, supported by

REST-based operations, using interfaces that provide the tools for managing the applica-

tions, sending the required parameters that will be used as input parameters for execution

control, managed in the proposed architecture. We can see such parameters as a variety of

parameters, such as application-level parameters: pricing conditions, payment-gateway

endpoints for payments and reception of payment proofs, agreement or liability condi-

tions for users, etc.

However, we can also consider other parameters that can influence the way how trans-

actions will be validated and completed in the blockchain. All those parameters can be

included as parameters and rules, in the expression of smart contracts, to be considered,

at the level of the blockchained services. Then, the parameters and conditions will be

invariants for processing control and validation of transactions, scrutinized and audited
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under verifiable logging conditions by all the required entities involved in the distributed

ledgering environment.

Smart Hub is a device regarded as software/firmware/hardware appliance that oper-

ates as a smart gateway between the other entities and the backend blockchain services.

In a generic vision, it acts at the middleware level, as an intermediary for the communi-

cations between users, IoT devices and the blockchain-enabled services (accessible from

the provided services at the View-Plane level). A Smart Hub will have a set of IoT de-

vices, which it will be responsible for the IoT devices and users interacting with such

devices, behind the Smart Hub, form local edged IoT ecosystems, interconnected through

the Smart Hubs, and using the functionality provided. The Smart Hubs forward locally-

provided operations as remote transactions to be executed and controlled in the backend

blockchain.

A Channel represents a mechanism which allows for private communications be-

tween different peers that belong to the same channel. These channels are mapped in the

HLF channels serving as as an entity that aggregates Smart Hubs associated to the same

Service Provider. This enables the possibility of a Service Provider, which could hold

different Smart Hubs from the same business, to consult transactions that were inserted

in all of them.

The Cluster-Head acts as an intermediary for communications between Smart Hubs

and Service Providers. The communications with the Service Providers are done via

the REST interfaces for remote operations. This entity follows the same architectural

concerns expressed in [21] which enables a reduction in network overhead and delay,

since communications will be only done with the targeted Smart Hubs in each case.

Presented the entities of our proposed system model for a blockchain-enabled IoT

platform, we must add some information on addressing the notion of Smart Hubs, to

clarify how we see the materialization of these components in a more generic way, and

the more focused vision for the purpose of prototyping our system model and related

software architecture, in the scope of the current dissertation.

3.1.3 Materialization of Smart Hubs

The use of the “Smart” word to express our imagined functionality that must be provided

by a Smart-Hub must be regarded in a generic perspective. The Smart-Hub is seen as an

intelligent gateway that can be designed to be a pluggable computing appliance, where

different service modules can be installed for running, on top of an hardened Operating

System. The idea is to look to such service modules, as possible virtualized and isolated

pluggable software containers, installed and managed in a flexible way and dedicated to

the specific required functions.

We envisage different functions, such as: data aggregation functions, data and traffic

filtering functions (possibly using tainted-data analysis and filtering mechanisms to avoid

undesirable data exfiltration/infiltration or privacy breaches, internetworking firewall
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functions, authentication services for IoT devices in a pairwaised way, intercommuni-

cation and protocol-conversion facilities to intermediate the possible heterogeneity in

device-to-device operations, cryptographic processing functions, and other application-

specific modules for local-processing requirements of particular IoT applications.

A relevant function in Smart Hubs is the provisioning for supporting multiple proto-

cols, suitable for serving different edged-based IoT devices and IoT environments, partic-

ularly addressing subsets of protocols in the panoply of “IoT standards” that have been

promoted: for wired or wireless communication protocols and internetworking infras-

tructures, device-level identification and addressing, transport-level protocols, discovery

protocols, data-dissemination protocols, request/response protocols and remote-calling

operation environments, as well as, data-semantic and representation protocols [44], [42].

In a complete design and implementation of such smart-hubs, those multi-protocols

can be addressed as required supports in the context of multi-layer frameworks, targeted

for different IoT markets, devices, and applications.

Although we can expect that the hub, with this generic perspective for industrial

approach, can have several features in a richer support, we are more interested in regard-

ing smart-hubs, for the implementation purpose in prototyping out proposed platform,

as possible low-cost SW/HW appliances, implemented from cheap and convenient soft-

ware/hardware. Our primary goal is the support of functions for local-operation REST-

based proxy-service, provisioning natively TCP/IP supported IoT devices, to process local

operations (requests) forwarded as blockchain-enabled transactions.

3.1.4 System Operation

Figure 3.2 represents the system operation. The first step in the system operation is for

the client to perform its registration. Next, the service provider will contact the Cluster

Head using the implemented REST interface in order to set the application-specific pa-

rameters, represented as contract rules, which could be, for example, price/time value of

the provided service. This way, all Smart Hubs will be informed of this information and

will be able to construct and propose a transaction to Hyperledger Fabric. A confirmation

will be sent to the Smart Hubs. Following the confirmation, the system will use the its

implemented REST interface in the Smart Hubs in order to consult the contract rules. The

Smart Hub will propose a transaction in order to view this information which is stored

in Hyperledger Fabric. The response is then sent to the Smart Hub and the required

information is shown to the user. The user, will then send the transaction information to

be able to use the system. The payment is then processed between the Smart Hub and

the Service Provider and, when accepted, the transaction proposal is built and sent to

Hyperledger Fabric. A response will then be sent to the Smart Hub, which will send a

confirmation to the client and send an application-specific event to the IoT device. In the

case of the locker management system, this event could represent the opening of a lock.
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Figure 3.2: Representation of the system operation.

3.1.5 Application-level Support

In order to support applications, three REST interfaces are provided. The first one will

be used by Service Providers and is available through the Cluster Head, in order to set

application-specific details. The methods implemented and their respective descriptions

are represented in Table 3.1. The second interface is directed to the user and is available

through the Smart Hub and is used to register user proposed transactions. The imple-

mented methods are represented in Table 3.2.

The use of the first interface enables the possibility of creating a concept of an ex-

tended chaincode. This is a chaincode with parameters that can be set via an exterior

method. For example, in the locker use case, it can be set different sectors for locker

placement and for each sector an associated price. The set of this value permits that the

same chaincode can be used for different sectors.
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Method Description

POST /initPrice/{sector}/{price}
Sets the price per hour value for the
specified sector.

GET /readSectorPrice/{sector}
Reads the price per hour value for the
specified sector.

GET /getSectorsByRange/{startId}/{endId}
Retrieves the sectors and the respective
price whose ID is between the specified.

Table 3.1: Cluster Head’s Interface.

Method Description

POST /initRental/{lockerid}/{sector}/{duration}
Starts a rental for the specified
locker, sector and duration.

POST /endRental/{rentalId}
Ends the rental for the specified
rental id.

GET /getRentalsByRange/{startId}/{endId}
Retrieves the rentals whose ID
is between the specified.

Table 3.2: Smart Hub’s Interface.

Method Description
POST /openLocker Opens the locker.
POST /closeLocker Closes the locker.
GET /getLockerState Retrieves the state of the locker.

Table 3.3: Locker’s Interface.

Table 3.3 illustrates the REST interface of a locker.

There are two data structures that are created with chaincodes are invoked. The sector

data structure, represented in Table 3.4 has two attributes with the Sector’s identifier and

the associated price. The rental data structure, represented in Table 3.5, is composed

by the transaction’s identifier which is a sequence, the locker’s identifier which is being

rented, the sector in which the locker is located, the duration of the rental and the price

which is calculated from the duration and the price of the associated sector.

Field Type
Sector String
Price String

Table 3.4: Sector’s data structure.

3.2 Application Scenario

The application scenario, which represents one of the initial motivations for this dis-

sertation is a Locker Management System. The description of this application scenario

together with the system model entities and interactions, enable a better understating of
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Field Type
TransactionID String
LockerID String
Sector String
Duration String
Price String

Table 3.5: Rental’s data structure.

the next section, System Operation, where the interaction between the different system

entities will be described in more detail. This interaction is represented in Figure 3.3.

Figure 3.3: Representation of the application scenario.

The Locker Management application represents a system without a central trust model

and authority, capable of functioning both for users and service providers in a decentral-

ized ledger manner. Service providers, which would be the owners of sets of lockers,

possibly installed in different places of cities, as a smart-city application context, would

set up their lockers, in the specific locations, as IoT devices interconnected by Smart Hubs.

Each set of lockers would have a Smart Hub and all Smart Hubs from the same provider

would be grouped by a Cluster Head. This Cluster Head is responsible for transmitting

Service Providers’ information to all Smart Hubs. Smart Hubs are responsible for:

1. Acting as an intermediary for communications between users and the blockchain.

This way lowering complexity from the user’s application, as well as the software

running in lockers, which are obviously resource-constrained devices;

2. Establishing communications with the Cluster Head which would lower the com-

munications necessary for the Service Provider;

3. Process orders from Clients for renting (open/close) the lockers, order a specific

locker to open or close, as the result of client-orders;
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Service Providers would contact the Cluster Head in order to set up the price of renting

a locker in that sector, as well as, to setup other additional information and conditions,

which would then be transmitted to the Smart Hubs in order to locally pre-process orders,

to execute the required transactions.

Users would contact a Smart Hub in order to initialize a rental. The Smart Hub would

take the user’s request and information and dispatching the order as a transaction to

the backend blockchain. After validation, the user would be informed and, in case of

validation, the rented locker would open. According to the specific smart-hub control,

the locker could be locked, after the validated renting period, informing the user under

new request for open or close that, in this case, she/he must contact a contact-point for

some specific reason.

In our application scenario we are not concerned with complementary processing re-

quirements behind the validation of transactions in the blockchain, except those executed

via chaincodes in the processing of blockchain transactions. In specific applications, the

execution of transactions in the blockchain executed by extended verification procedures,

in the context of smart-contract executions could fire a composition of remote notifica-

tions in other external services, or can execute remote operations in external services of

possible different entities.

Naturally, these external operations can condition orthogonally the full validation

of the transactions, in addition to the checks on the internal processing of consistent

logging of the state of operations in the blockchain. This is possible regarding additional

interoperability requirements between blockchain processing and the interaction with

such orthogonal services, out of the scope of our basic system model assumptions.

The installation of lockers, enabled as IoT devices interconnected by a Smart Hub,

form a local infrastructure that can be installed in different city places, such as metro or

railway stations, airports, supermarkets, malls, football stadiums, a university campus,

etc. Figure 3.3 represents a user that interacts with the smart hub with a personal smart-

phone (using a IoT specific app), to rent a locker (controlled by the represented smart

hub) that it is associated to a node in the backend blockchain.

3.3 Dependability Issues

3.3.1 Threat Model and Security Trends

The threat model set is related to the protection of communications between the different

entities of the system and the protection of the data that is stored in the Blockchain.

The protection of the communications is done using TLS. The communications that are

protected are the communications between the client and the SH, the SP and the CH, the

SH and the Blockchain, the SH and the device and between the different components that

compose the Blockchain network.
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The communications between client, SH, CH and devices are all done via the REST

interfaces and uses TLS, which means that the traffic is encrypted. The communications

between the network entities are done using the gRPC protocol with TLS. All connections

between different system entities are done with one-way authentication.

The protection of the stored data is guaranteed by the encryption of the data itself. In

the chaincode, the payload of the proposed transaction is encrypted to hide its content.

The method used is the same as in [27] which is the method provided by Hyperledger

Fabric which consists in encrypting data in the chaincode itself using AES 256.

3.3.2 Failure Model and Intrusion Tolerance Guarantees

The failure model which is supported is related to the failure of Hyperledger Fabric

network entities and the failure of the Smart Hub. Since the system implements a BFT

ordering service on top of the BFT-SMaRt [65] protocol the replicas, which will store the

information saved in the blockchain, are tolerant to Byzantine failures.

The ordering service implementation [8], relies on the modular architecture of Hyper-

ledger Fabric to implement a state machine replication protocol on top of BFT-SMaRt’s

consensus algorithm [65].

Clients send their requests which are collected by the frontend delivered to the order-

ing service. Ordering service nodes will create a block containing the envelopes and the

hash of the previous block, when it gathered enough envelopes. The node then generates

a digital signature for the block and disseminates it to all frontends, which will collect

2f + 1 matching blocks. These blocks are then delivered to peers to be added to the

blockchain.

The Smart Hub also implements a recovery mechanism in case it fails. The users

that were previously registered are stored in a permanent storage which is then used to

recover the state. The existent channel is then reconstructed and the system is ready to

operate again.

3.3.3 Scalability Issues

The scalability of the system follows the method which is described in [21]. This method

consists in organizing the system architecture in such way that the devices are organized

in clusters being and the communications to the devices are all done by one device, which,

in the case of this architecture is the Smart Hub. This way, it is possible to greatly reduce

network overlay. Another method consists in using Cluster Heads in order to reduce the

communications that have to be done to Smart Hubs that belong to the same Service

Provider.

43



CHAPTER 3. SYSTEM MODEL

3.4 Summary Remarks

In this chapter, it was defined the system model as well as the system architecture and

operation for a proposed blockchain-enabled IoT platform. It was also illustrated the

use of the proposed model in the context of an application scenario, to clarify the system

operation and the provided application-level support. Finally, we discuss complementary

dependability issues in the proposed architecture. In the next chapter we will describe

the implementation of the discussed ideas in a prototype that we used for conducting the

validation of our proposal and to support the related experimental assessment.
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4
Implementation

This chapter presents the implementation of the proposed system’s architecture, follow-

ing the system model assumptions for the proposed blockchain-enabled IoT platform

and architecture. First, an overview of the implementation is addressed, followed by a

description of the components of the proposed architecture and the technology used for

the prototype. Then, some relevant system development issues and setup mechanisms

are described. The chapter is concluded with a summary of the implementation issues

and related remarks.

4.1 Implementation Overview

The implementation of the proposed architecture follows the base system model as pro-

posed in Chapter 3, with the background inspired by the Locker Management System, as

an Application-Scenario, as a simple concretization for a smart-city application context.

In this application, IoT devices represent as lockers and the Service Provider (SP)

represents providers. These SPs will set different sectors of lockers (as locker cabinets)

that can be installed in different places of one or more cities. For this setup, SPs will

configure associated pricing and payment conditions. This application and its exempli-

ficative requirements are supported in the proposed blockchained IoT platform (regarded

as a reusable architecture for other IoT applications), structures in the seven main com-

ponents: Client, Service Provider, Cluster Head, Smart Hub, Devices, the Blockchain-

enabled backend services and related network infrastructure.
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4.2 Implementation Components and Technology

The Client was implemented in a mobile application that was developed using Ionic

Framework 3 [43]. Ionic Framework 3 is a development framework that enables the

creation of hybrid mobile applications. The application enables users the possibility to

use the system, and the motivation was to create an application environment similar

to real mobile Apps, that will be used to support users’ interactions in the context of

edged-based IoT ecosystems, interconnected and served by the Smart Hub (SH) proximity

functions.

The App is able to read sector prices or rental conditions, initiate a new rental and

retrieve the rentals, after the rental validation and acceptance conditions. The Client com-

municates with the SH via the provided REST interface using HTTP or HTTPS requests,

depending on the specific setup.

The Service Provider was also implemented in a mobile application using the same

framework Ionic 3. The purpose of this application is to enable Service Providers the

setup functionality during the insertion of sectors for the promoted lockers, and its cor-

respondent rental conditions. The Service Provider communicates with the Cluster Head

(CH) via its provided REST interface.

Thus, the interactions of Clients and SPs are done in a web-based internet environ-

ment, anticipating a common interaction model that can be used for the enhancement

of Client Applications and their specific extension of functionalities, as well as, other

Web applications and services for SPs, used as orthogonal Backend environments for

business management functions in a Business-to-Client (B2C) application context, or

client-relationship management (CRM) functions.

The Cluster Head implements a REST interface which will receive the requests from

the Service Providers and communicate these requests to the Smart Hub. The Cluster

Head (CH) is implemented in Java, using the Java 8 development framework.

Figure 4.1: Representation of the Smart Hub’s stack.

The Smart Hub is implemented with the support of three main components, as illus-

trated by Figure 4.1:

1. The REST API, which was implemented using the Spring Boot [66] framework, dis-

patches operations from Clients or SPs, managing the related information flows
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from the mobile application, processing and forwarding such operations as trans-

action to processed and controlled, by the backend service planes provided by the

blockchain environment.

2. The Java application components, responsible for constructing the transaction pro-

posal that must be processed by the Hyperledger Fabric leveraged functions, at the

Blockchain level. There are two main steps involved in the forwarded SH transac-

tion processing: proposal step and the query itself, depending on the functionality

required in the case of read or a write transactions.

3. Hyperledger Fabric Java SDK functions for SH runtime, where the required methods

for communicating with the Hyperledger Fabric services and network are processed,

to support the required information control features and transactions’ states in the

blockchain.

In the prototype we made two different setups for the SH, using both variants for

validation, assessment purposes and experimental observations, as presented in Chapter

5.

One setup is based on a "Software-Emulated SH", that we can run in different com-

puters, with the solo requirement of a setup installation of the related runtime support

components (e.g., Java 8 Runtime Environment, Java SDK for Hyperledger Fabric 1.1,

Apache Maven 3.5.0 and the required cryptographic material generated by the HLF net-

work for the authentication of entities).

The second setup is based on a "Sofware/Hardware SH appliance"implemented with

a Raspberry Pi computer, with the motivation for testing as a cheap and convenient SH

option for real-deployments.

For this implementation, we used a Raspberry Pi Model 3 B+ [58], with a Broad-

Com chipset, 1.2GHz Quad-Core ARM Cortex-A53, 802.11 B/G/N Wireless LAN and

Bluetooth 4.1 (Bluetooth Classic and BLE enabling support), 1GB RAM, 32 Bit CPU and

additional 4 x USB ports. The chipset board includes a native 10/100 BaseT Ethernet

connector, supported by an independent controller, avoiding the use of USB-emulated

wireless Ethernet dongles.

The setup for the SH implementation includes the use of the Raspbian (Linux) OS

distribution, the Stretch lite 9 version (Kernel version 4.14). We used Java version 8 and it

was installed the required runtime support for the SH, including: Apache Tomcat Native

SSL library version 2.0.9 which requires compilation due to the Raspberry Pi’s ARM 32

architecture.

Despite the two setup variants for the SH developed functions, the interaction pro-

vided for Clients and related Mobile Apps, is transparent and only have repercussions in

the evaluation parameters for the support of the REST-based operations, as we analyzed

in our experimental observations.
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The implementation of the Blockchain in the backend of our prototype include all

the entities in the Hyperledger Fabric service planes and network support, that will deal

with the processing of transactions sent by the SH. This includes peers, endorsing peers,

orderers, CAs (Certification Authorities) and replicas. Peers will store information. En-

dorsing peers will process transaction by signing the respective endorsement signatures.

Orderers will collect envelopes and execute the BFT-SMaRt’s replication protocol to order

them consistently. The CA entity at the blockchain level will deal with the registration of

identities and the replicas, managing and storing the related information, which includes

the public-key certification policy management, for trustable public-keys as pure and

anonymous identifiers representing the blockchain nodes.

With the background of the application-scenario, we implemented two chaincodes, as

the expression of smart-contracts, with the included validation executions, for the locker

management system example: one chaincode for locker sectors, as a chaincode for the

aggregated IoT devices in a sector, and a chaincode for rentals.

The sector chaincode enables the creation of a sector and associated pricing conditions.

It enables the possibility to service providers to define the price of renting a locker for

a specific sector. This chaincode holds the data structure for sector, which is defined by

the Sector ID and the associated pricing conditions, considered for validation purposes.

The rental chaincode initializes a rental of a locker, which is located in a certain sector.

The price is based on the sector price, which was previously inserted by defining the first

chaincode. A rental is composed by a Transaction ID, a Locker ID, the Sector reference,

the Rental duration and the price.

The Fabric CA is the entity responsible for the management of the identities and

public-key certified associations of the HLF participants, through the management of

X.509 certificates for ECDSA certification signatures, maintaining the information on a

SQLite database repository [67], in order to store and to retrieve this information and the

associated certificates.

The Blockchain represents a decentralized ledger, where all operations are recorded in

as a total ordered and consistent sequence and transactions (contained in their processed

blocks) are immutable. However, in an application it is useful to use a state database

which records the current state of the stored data in each peer. This way, we decided to

use CouchDB as the state database organized as a key-value storage component.

In the developed application, each key is the ID of the entry, this is its unique identifier,

and the value is a JSON object containing the data. The ID of the sector is given by Service

Providers and its uniqueness is verified. The ID of the rental is a concatenation of the

Sector ID, Locker ID of the rental and a timestamp. The data of the transaction are all the

fields from the data structures defined in the chaincodes. As CouchDB supports queries

based on keys, such as setting and querying operations given the key, and it includes

support queries within a specified range [16], the option (among other alternatives for

peer state-storage in HLF) reveled the required flexibility and functionality.
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4.3 System Development and Setup

The starting point for the implementation was the BFT-SMaRt’s implementation for Hy-

perledger Fabric [8]. This implementation was used and adapted so that each component

executes in individual Docker [19] containers. Another adaptation that was implemented

was the creation of a script that generates the required certificates for entities, genesis

block for the channel where the transactions take place, the channel configuration trans-

action, and the generation of anchor peers. The channel configuration transaction is a

defined transaction that translates the specified network configuration properties, such

as, settings for orderers, the control for different organizations involved in the blockchain

network (in the related mapping on the channel) and the parameterized conditions to

close a block, upon the respective validation.

The configuration of the network, this is the entities that compose the Blockchain

network are all specified in YAML files. YAML is a data serialization standard for all

programming languages [75]. Figure 4.2 illustrates the organization of the Blockchain

network. The Certificate Authority, which is described above will deal with the registra-

tion of identities and the issuance, revocation and renewal of certificates, for the correct

use of the public keys, relevant for the verification of signatures in the supported trans-

actions.

The peers mainly serve two purposes to maintain a ledger containing the current state

of the stored values and to run chaincode operations on this ledger.

As represented in Figure 4.3, BFT-SMaRt is the algorithm executed within the support

of the consensus protocol, to establish the total order of the transactions [8] and the

consistency protocol of the state-machine replication environment. The support for BFT-

SMaRt is composed by an ordering service, which will receive endorsed transactions

(from the endorsement peers) and the frontend, to builds and to send the envelopes of

transactions to the replicas. These replicas will receive these envelopes and execute the

BFT-SMaRt replication protocol to order them [65]. After a certain number of envelopes

is gathered, the replica will build a block, and send the block to the frontend, which will

then relay them to the distributed peers to be appended to the ledger.

As introduced before, we implemented two chaincodes, one for the definition of sector

pricing condition and another one for the rental condition.

The sector chaincode has a structure composed by the object type, the identification

of the sector and the rental price per hour. In this chaincode we provide three functions,

executable in the verification of transactions: initPrice, readSectorPrice and getSectors-

ByRange. The function initPrice enables the creation of a sector setting its price and

readSectorPrice enables reading the price of a certain sector. The function getSectors-

ByRange retrieves all the sectors whose IDs are between the two provided values.

The rental chaincode, related to the rental conditions of a locker has a structure that

includes: the object type, the transaction identification, the identification of the locker, the

sector in which the locker is located and the duration and price of the rental. The provided
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Figure 4.2: Representation of the Blockchain network.

Figure 4.3: Representation of BFT-SMaRt.

functions are similar in functionality to the ones provided in the sector chaincode which

are: initRental and getRentalsByRange. The object is stored in JSON format, with the

respective identification.

In order to implement chaincodes, encryption functions are used These functions

are provided by cryptographic primitives in the EncCC library [27]. The library allows

for data encryption to be stored as protected data. The JSON object in chaincodes are

encrypted with AES 256. The key for the encryption is provided by the Java application,

which generates the key and initialization vectors (for CBC encryption mode), during the

system initialization, and sends it to the chaincode. This key generation and establish-

ment process is used as a bootstrap sequence, and the security issues usually related to

the problem of key-generation and secure distribution, according to more complex and

secure components and protocols, are out of the scope of our dissertation. As a matter

of fact, we use the base key-generation and distribution mechanism, as provided by the

HLF implementation.

Another relevant implementation issue is the definition of endorsement policies,
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which include the rules used by peers to decide if a transaction is correctly endorsed.

We must notice that, since there is only one user in the system, this user has to endorse

the transaction. These policies are defined in a YAML file which states how many or

which peers should endorse a transaction in order for it to be considered as valid.

The implemented application as well as all the necessary documentation are available

in https://bitbucket.org/jpgalmeida/bep-iot-fctunl/.

4.4 Other Implementation Issues and Final Remarks

There are some other issues related to the implementation details, namely related to the

way the Hyperledger Fabric mechanisms are provided and used.

For the assessment purposes described in the Chapter 5, the deployment of such im-

plementation details also involve consequences that can affect the evaluation mechanisms,

as they were materialized for the purpose of the current dissertation. In Chapter 5 we

will describe the setups and implementation support for the conducted experimental

evaluations, but some implementation details at the Blockchain level, are not able to be

tested with other extended variable setups.

One relevant issue is related to the CA support and the process of issuing certificates.

At the same time, in HLF certificates are limited to the usage of the ECDSA signature

algorithm, not allowing the usage of other public-key algorithms and keys in different

representation variants or sizes. ECDSA is a good solution, as a lightweight and secure

digital signature standard, being the better option to avoid processing penalties, in the

execution and validation of transactions.

However, there are other concerns related to the use of other digital signature algo-

rithms, naming and binding services for the identification of peers externally (regarded

as external entities to the blockchain) and internal identifiers (mapped in public-keys),

as well as, the advantages of de-conflating membership management functions from the

internal consensus-algorithms in the HLF consensus plane. This separation of concerns

is a way for a better management of entities and roles, in the context of IoT applications

promoted by IoT consortia, involving different partners with different responsibilities.

Another implementation issue is related to the encryption library that limits encryp-

tion to AES 256, not allowing that neither the key size nor the encryption mode or secure

padding mechanisms to be easily changed. These issues are out of the scope of the de-

velopment issues in the present dissertation, and in some sense, are out of the primary

purposes of the validation and assessment of the proposed platform.

Finally, we must notice that REST APIs implemented for the Cluster Head and Smart

Hub were initially tested with Swagger UI [70]. Swagger UI enables the creation of HTTP

(or HTTPS) requests, with the insertion of the associated testing arguments and instru-

mentation parameters, not limiting the use of the REST interface to a mobile application

setting.
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5
Evaluation

In this chapter, we present the experimental validation of the prototype implementa-

tion described in Chapter 4. The presented observations and results are centered in two

types of benchmarks for the extraction of quantitative and qualitative metrics on the

system operation and performance. First, we conducted benchmarks for the evaluation

of the Blockchain based services. In this evaluation we include the evaluation impact

on throughput and latency conditions, having a failure free environment, a fail-stop

behaviour and a byzantine-failure setting, when using the byzantine fault tolerance en-

vironment promoted by the BFT-SMaRt ordering service. This evaluation give us the

indications on the comparative settings between the native Kafka consensus plane so-

lution (as natively supported by the HLF implementation) and the enhanced consensus

layer, a comparison achieved for failure-free and fail-stop behaviors. Next, we conducted

a second state of benchmark observations, at the client-side level, with observation results

on the client-side invocation performance through the Smart Hub intermediation, also

observing the impact on having concurrent clients performing operations causing the

consequent workloads, dispatched by the Smart Hub to the Blockchain enabled services.

5.1 Testing environment

We considered three testing environments:

1. The first testing environment is a dedicated server in a Cloud hosted by the OVH

Cloud computing and storage provider, using a dedicated server instance to run

the Blockchain services. The hosting server has a CPU Intel Xeon D-1520 – 4c/8t -

2.2GHz /2.7GHz, 128GB DDR4 of RAM and 2x2TB in SoftRaid Disks, available for

support via SATA or SSD. In our tests we used the SATA based SoftRaid solution.

The sever runs Linux Debian 9.0, 64 bit Stretch version (considered as the OVH
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Debian Stable Version). This server is used in order to test different blockchain

network configurations, emulating a higher number of entities in the network.

2. The second environment is a Raspberry Pi 3b+ running the Linux Raspbian distri-

bution (from June 2018) in order to test Smart Hub capabilities, as a specific Smart

Hub appliance solution.

3. The last environment is a personal computer running Ubuntu 17.10 on a VM with

an Intel Core i7 using 8 processors and 8Gb of memory in order to be able to

compare benchmarks with the Raspberry Pi, when running the Smart Hub provided

services. Finally, we used the last computer configuration to run Client-Side tests.

5.2 Evaluation Criteria

In this chapter it is described the evaluation for this dissertation. There are three main

groups of tests: Network benchmarks, Failure benchmarks and Client-side benchmarks.

Network benchmarks, which refer to the tests that were made in order to find the opti-

mal network configuration. In these tests the main objective was to find the best number

of transactions per block and maximum block size in bytes that would maximize the

throughput and minimize the latency in the baseline implementation which uses Hyper-

ledger Fabric out-of-the-box with Kafka as an ordering service. It is also benchmarked

the implementation which uses BFT-SMaRt as an ordering service with the optimal con-

figuration to test the impact of tolerating byzantine faults. The values of throughput

and latency were extracted from proposing two types of transactions, a write and a read

operations. The variations done in this test are related to the way blocks are constructed

in Hyperledger Fabric. A block is constructed when one of the following three conditions

is met. First, a pre-specified number of transactions is achieved. Second, the size of the

transactions is bigger than a pre-specified value. Third, there is a timeout and a block is

built.

Failures benchmarks consist in the evaluation of the impact when failures occur. In this

study it is varied the number of brokers in case of the baseline implementation and the

number of replicas in the case of BFT-SMaRt. It will be tested a failure-free environment

as well as crash and byzantine faults through replica failure simulation and the injection

of wrong values, respectively.

Client-side benchmarks relate to the tests made when the Raspberry Pi was used to

deploy the Smart hub and whether there is an impact in deploying the Smart Hub in

a conventional personal computer configuration, with typical resources. The network

benchmarks were completed using Hyperledger Caliper [11]. Hyperledger Caliper is

a framework that allows to test different HLF blockchain configurations to predefined

use cases, allowing the support of observable benchmarks, including the throughput of

transactions under scalability conditions, and also latency observations, as we present

next.

54



5.3. NETWORK BENCHMARKS

5.3 Network benchmarks

In this section, it is compared the performance results of the baseline implementation of

Hyperledger Fabric which uses Kafka as an ordering service with the proposed system

which relies on BFT-SMaRt.

The goal of this section is to find the optimal number of transactions per block and

the size of the block in bytes. Initially, it was tested the throughput and latency of the

out-of-the-box Hyperledger Fabric implementation which corresponds to 10 transactions

per block and 512 KB of maximum block size. The results from this experiment are

represented in Figure 5.1 as the entry for 0,5 MB. Next, as an experiment to test whether

these parameters would increase the throughput it were tested block sizes of 0.5, 1, 2, 3

and 4 MB. As Figure 5.1 suggests, setting the block size at 2 MB allows better throughput

and lower latency values and having a block size bigger than 3 MB will decrease the

throughput and higher the latency.

Figure 5.1: Variation of block size throughput and latency results.

This way, for the next tests the value of the block size was fixed at 2 MB and it were

tested the maximum number of transactions per block. The results of this experiment is

represented in Figure 5.2. The throughput is higher when there are 100 transactions per

block.

Figure 5.2: Variation of maximum number of transactions throughput and latency results.

According this value and the block size at 2MB were used for further experiments.
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This way, it were also tested different block sizes varying its size and the number of

transactions contained in each block in order to find the optimal throughput. The size

that was used for the following tests is 50 transactions per block and a maximum size of

512 KB.

Following the previously done tests, it were tested the baseline and BFT-SMaRt im-

plementation, with the optimal values obtained. It were performed tests to networks

composed by 2, 4, 8, 10, 20 and 30 peers, in order to test the impact of increasing the

network size would have in throughput and latency. As expected, the throughput when

using the baseline implementation is higher when compared to BFT-SMaRt by about 20%

and has a latency lower by about 13%.

Figure 5.3: Kafka’s throughput and latency.

Figure 5.4: BFT-SMaRt’s throughput and latency.

Our evaluation results follow the expectable trend, and we can say that the results are

aligned with previous experiments showing that the BFT-SMaRt algorithm is not only the

specific component in the aggravation of the throughput, as we evaluated with the HLF

Caliper benchmark factory.

In [65], running a more "empty"environment adapted to HLF, by reducing the over-

head of the blockchain nodes (to just one orderer and one peer in each node), and using a

set of four distributed nodes in a Gigabit LAN environment to run the ordering service

in a cluster of 4, 7 and 10 orderers, we can expect to have respectively throughputs of ap-

proximately 50 K to 5 K transactions per second. The more relevant factors affecting the

performance for the considered number of orderers is the envelope size and the number
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of envelopes used per blockchain block. It is observable in those experiments and results

that even though throughput drops when increasing the number of receivers, the impact

of the number of receivers is considerably smaller when using larger transactions, and

this is expectable due to the envelope sizes. Also, the overhead of the replication protocol

is greater than the overhead of transmitting small blocks.

However, we must notice that the previous observations are only somewhat visible in

our achieved results and we must consider the differences in the use of the BFT-enabled

consensus layer, in our implementation and our benchmarks. First of all, our "blockchain

is virtualized"in the OVH cloud, in a unique computing instance. In this case, we have

a faster "communication environment"connecting the blockchain peers and the nodes

involved in the consensus layer in the related ordering service. On the other hand, the

workload of a large number of nodes in one solo machine, independently of the provided

resources, is a considerable degradation factor.

Additionally, to understand the validity of our results in Figures 5.1, 5.2, 5.3 and 5.4.

We must compare our observations with other benchmark evaluations of HLF, only using

the native services, i.e., using the native Kafka consensus plane service. In this study

we find that there is a space for internal performance improvements in the HLF service

planes. In [72], for example, the authors perform a comprehensive empirical study to

characterize the performance of Hyperledger Fabric and identify potential performance

bottlenecks, to gain a better understanding of the system and in order to promote possible

optimizations. Further, the authors enhanced and measured the effect of bulk read/write

optimization in HLF using CouchDB, in a distributed cluster of 32 peer nodes (32 vCPUs)

in a computing cluster environment, with nodes connected by 3 Gbps links. They im-

proved the initial observations, limited to 140 transactions per second (a reference metric

that we can use to infer a comparison with our observation), to their optimized version,

achieving 2250 transactions per second. The same authors also found significant differ-

ences when the endorsement process run with different endorsement policies, number

of HLF channels, as well as, a significant impact on transaction arrival rates and block

sizes (including the number of transactions, and their payload sizes). Additionally, the

results obtained in [65] are only considering the first response from Hyperledger Fabric

and Hyperledger Caliper, the tool which was used, considers the latency for the complete

operation.

5.4 Benchmarks under failure conditions

In this section, it is compared the impact of failures in the base implementation of the

blockchained enabled services. For these tests, we varied the number of replicas for sup-

porting an increasing number of replica failures. As illustrated in Figure 5.5, latency is

lower than when a less number of brokers are up. This is given to the fact that a less num-

ber of follower brokers have to be in-sync with the leader broke, consequentially, causing

less internal messages to be exchanged, during the consensus processing functions.
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First we show in Figure 5.5 the impact in latency observations, when we use the

variable number of brokers, in a failure free and fail stop environment.

Figure 5.5: Kafka’s latency with broker failures.

Figure 5.6 represents the performance impact in BFT-SMaRt when simulating a fail-

stop behavior. Performance is widely affected in fail-stop simulations in BFT-SMaRt,

given its synchronization phase. This phase takes 20 seconds to complete and due to this,

during this phase, the throughput is strongly affected, because no transactions and blocks

can be completed [7].

Figure 5.7 represents the latency when increasing the number of replicas in the order-

ing service provided by BFT-SMaRt. In this tests, it were tested the impact in performance

when we have a byzantine failure environment, following the fault model of using n = 3f

+ 1, n being the number of replicas and f the number of faulty replicas. It were created

byzantine replicas that would inject wrong values in the consensus process. In this test

it is noticeable that there is not a significant difference between the latency in fault-free

and byzantine faults. This is explained by the fact that BFT-SMaRt’s consensus protocol

requires n+f +1
2 write and accept message and since the faults do not surpass this value,

the malicious nodes are unable to disrupt the service.

5.5 Client-side benchmarks

In this section, it is shown the results measured at the client side. It was developed a

Java application that simulates a normal behavior of the system by using one or multiple
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Figure 5.6: BFT-SMaRt’s latency with fail-stop failures.

Figure 5.7: BFT-SMaRt’s latency with replica failures.
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clients. The simulated tests include the definition of a sector price, the reading of the

previously inserted value and the insertion of a rental.

The main objective of this test is to determine the latency of such operations when

increasing the number of clients, according to the dispatching services at the level of a

Smart Hub. As Figure 5.8 suggests there is a substantial increase in the communication

latency when using less than 5 clients. After that, the latency does not change very

much. We explain the fact because transactions are being constantly received and blocks

are built faster. Our results also show that a Raspberry Pi 3b+ is able to handle 12

simultaneous clients, with acceptable performance, and that there is a slight increase in

latency when the results obtained in the Raspberry Pi (first setup explained in Chapter

4) are compared to an emulated Smart Hub in a conventional portable computer (second

setup, as explained in Chapter 4).

We must clarify that these results are obtained in supporting synchronous remote

REST invocations in the Smart Hub, with call results obtained after the entire cycle of

blocks’ and transactions’ processing in the backend blockchain. In an optimistic imple-

mentation, we can address an asynchronous interaction model in the permissioned model,

in which we can return a promising result and then execute the transactions, taking the

necessary measures to deal with the required implications in such asynchronous setting.

Figure 5.8: Comparison of Smart Hub’s latency on a RPI and a PC.
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5.6 Evaluation summary

In this chapter it was demonstrated the operation and we discuss some validity observa-

tions, in three types of evaluation benchmarks. First, the evaluation of the Blockchain

network conditions, analyzing the impact of the provided services in the implementa-

tion planes. In this study we observed that by varying the conditions for closing blocks

or using the different consensus plane services, the performance of the system can be

substantially improved or affected. Second, we evaluated the performance of the im-

plemented solution, in behaviors under different failure models: failure-free, fault-stop

and byzantine faults. These observations show the impact of tolerating crash and byzan-

tine failures in the performance conditions. Finally, we observed the latency conditions

in client-side operations, when Smart Hubs are deployed with two different setups: a

Raspberry Pi used as the Smart Hub appliance and an emulated Smart Hub running in

a conventional laptop computer. We also evaluated the client-side performance with

multiple concurrent client executions of the developed application, used as a reference

to measure the impact in final client-supported applications.
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6
Conclusions

In this chapter, it is described the main findings from this dissertation, as well as the

existing open issues and introducing some future work directions.

6.1 Main Conclusions

Information is currently the most valuable resource and privacy concerns have been rising

among people. People are becoming more aware of dangers and are looking for solutions

that enhance their security and privacy. The Blockchain and the Internet of Things, have

been one of the focus of many recent studies in the Distributed Systems field. These

technologies are the answer to some of these demands since both technologies are able

to provide solutions in terms of a more connected, independently verified and trustable

world. We believe that Blockchain enabled IoT platforms are able to provide advantages

in a clean-slate approach for new generation IoT architectures.

The main problem to be solved is the improve of verifiable trustability in smart devices

and at the same time minimize the role played by central authorities in the verification

of data and transactions consistency. The use of blockchain’s logging capabilities is a

possible solution for these problems. However, one of the main issues with current

large scale applications that use Blockchain technology is scalability. The number of

transactions that are processed, when the number of nodes in the system increases, are

low and incomparable to systems that do not use blockchain technology. This way, dealing

with scalability issues is a main priority for this dissertation. And, in this matter, it were

studied several approaches that try to minimize the impact in throughput.

The main goal of this dissertation was the design, implementation and evaluation of a

Blockchain-Enabled IoT platform proposal, as a reference architecture and guidelines, in

providing, reliability effectiveness and trustability foundations based on a decentralized
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ledger model, that must fit on the scalability criteria for IoT applications and services.

In the Related Work we survey the foundations and design principles of the Blockchain,

as well the characteristics, properties and drawbacks related to scalability issues. In

the study we analyzed relevant differences in approaching the base services in different

blockchains, and we present different Blockchain platforms, considering their different

design model assumptions and different condiments associated to their components, ser-

vices and related operation. The study oriented the choice of the blockchain-enabled ser-

vices to leverage the objectives of the thesis. Although the chosen platform (Hyperledger

Fabric) to be considered as the base for our proposal, does not officially provide it, it is

possible to integrate ordering services implemented for Byzantine Fault Tolerant consen-

sus protocol, as a pluggable component, taking the advantage of the modular architecture.

For this purpose, it was used the implementation of an ordering service implemented by

the BFT-SMaRt algorithm, a state machine replication protocol for byzantine fault toler-

ance distributed consensus. We also studied some approaches in the research direction

of designing Blockchain-supported IoT applications.

From the studied related work, we proposed a System Model and Architecture for

Blockchain-enabled IoT Platforms. Architectural features of Blockchain drawbacks and

IoT limitations in current IoT platforms were considered, to overcome such limitations by

the added-value of merging Blockchain-enabled services with recent IoT systems using

Smart Hubs as gateways offering proximity services to edge-based IoT environments.

The system model and the proposed architecture are mapped in a developed proto-

typed, providing an implementation environment used to conduct the validation and ex-

perimental evaluation. The results from the experimental observations show the viability

and validity of our ideas, under the careful choice of the blockchain-enabled services, in

terms of provided extensibility, openness, and base foundations, as well as, in allowing for

the use of the permissioned model in the decentralized ledger functions and arguments.

Moreover, the services developed and enabled in the developed prototype, allow us to ob-

serve relevant implications of fine-tuning of parameterizations in the blockchain enabled

services in the performance of transactions and scale conditions, namely, throughput and

latency conditions, under different failure-settings.

Even considering the possible limitations of the current state of the prototype and

other relevant dimensions not achieved in our proposal, we found some interesting an-

swers in addressing the problem statement initially defined for the dissertation: to im-

prove the reliability and trustability guarantees of IoT platforms and software archi-

tectures, by introducing Blockchain-enabled mechanisms for decentralized logging and

ledgering, auditable information flow control of operations involving IoT applications,

as well as, to provide an independent environment in supporting data sent or received

by user’s smartphones and IoT devices in such applications, under decentralized ledger

models and better trustability properties.
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6.2 Future work directions

Although the provided solution shows interesting results, there are a few matter which

could be improved. Namely, the evaluation environment could have a big impact in

the performance of the system. Testing the Hyperledger Fabric’s network in a more

resourceful and distributed environment, distributing the different blockchain nodes in

different physical nodes, could bring performance improvements and better scalability

conditions.

One issue that was not addressed in this dissertation, given time limitations, was

the integration of the CoAP - Constrained Application Protocol [14], as a lightweight

Application protocol for web-based remote invocations to constrained devices, such as

a considerable number of IoT devices. This protocol would be used to complement the

Smart Hubs’s developed REST interface, in order, to create an application that would

not only consume less resources, but also be reliable in lossy networks. Other research

directions in the same line, is the support of other interoperability protocols that are de-

signed for implementation in IoT devices. This effort must be seen as a natural evolution

and extension of Smart Hub modules, in convergence with the vision expressed in the

discussion of the System Model in the background of our proposed architecture.

Another issue that was not dealt with in this dissertation, is the comparison between

the implementation of BFT-SMaRt and the officially supported BFT algorithm that will

be launched for HLF in the near future, in more extensive benchmarking environments.

Finally, there is another research direction in other aspects with relevant impact for scala-

bility purposes. We summarize some of these research directions in two different groups

of concerns: scale-in and scale-out concerns.

• For scale-in concerns we must observe the on-going research proposals in address-

ing better performance figures for HLF (and other permissioned blockchains in the

ongoing research agenda), as well in the approach of separation concerns decou-

pling membership services, consensus planes for consistency control and decentral-

ized hierarchies of blockchains, for example in a tree-based architectural model or

by using sharding models interconnecting different blockchain domains;

• For scale-out purposes, we can extend the current system model in the dissertation

by interconnecting Smart-Hubs in edged-based blockchains, possibly composed in

upper-level hierarchies.

Finally, there is a space to research on better expressiveness conditions of smart-

contracts to support IoT operations enabled by Blockchain transactions. Smart contracts

can be used to define parameters, rules and invariants for different levels of execution

requirements. These requirements range from specific IoT application-level validation

guarantees, to parameters and conditions regulating the internal services of Blockchain
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planes (including storage, aggregation of transactions and management of stored blocks),

in a more reconfigurable and possibly dynamic reconfigurable environment.

66



Bibliography

[1] Amazon Echo. Sept. 2018. url: https : / / www . amazon . com / Amazon - Echo -

Bluetooth-Speaker-with-WiFi-Alexa/dp/B00X4WHP5E.

[2] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis, A. D. Caro, D.

Enyeart, C. Ferris, G. Laventman, Y. Manevich, S. Muralidharan, C. Murthy, B.

Nguyen, M. Sethi, G. Singh, K. Smith, A. Sorniotti, C. Stathakopoulou, M. Vukolic,

S. W. Cocco, and J. Yellick. “Hyperledger Fabric: Distributed Operating System

for Permissioned Blockchains.” In: EuroSys ’18 Proceedings of the Thirteenth EuroSys
Conference abs/1801.10228 (2018).

[3] A. M. Antonopoulos. Mastering Bitcoin: Unlocking Digital Crypto-Currencies. 1st.

O’Reilly Media, Inc., 2014.

[4] Apache CouchDB. Mar. 2018. url: http://couchdb.apache.org.

[5] Apple HomeKit. Sept. 2018. url: https://developer.apple.com/homekit/.

[6] M. Banerjee, J. Lee, and K.-K. R. Choo. “A blockchain future to Internet of Things

security: A position paper.” In: (2017).

[7] A. Bessani, J. Sousa, and E. Alchieri. “State machine replication for the masses

with BFT-SMART.” In: Proceedings of the 44th IEEE/IFIP International Conference on
Dependable Systems and Networks, Atlanta, GA, USA (2014).

[8] BFT ordering service for Hyperledger Fabric. Sept. 2018. url: https://github.com/

jcs47/hyperledger-bftsmart.

[9] A. Bogner, M. Chanson, and A. Meeuw. “A Decentralized Sharing App running

s Smart Contract on the Ethereum Blockchain.” In: IoT ’16: Proceedings of the 6th
International Conference on the Internet of Things (2017).

[10] V. Buterin. “Ethereum White Paper - A Nest Generation Smart Contract & Decen-

tralized Application Platform.” In: (2014).

[11] Caliper. Sept. 2018. url: https://github.com/hyperledger/caliper.

[12] M. Castro and B. Liskov. “Practical Byzantine Fault Tolerance.” In: (1999).

[13] Chaincore - Whitepaper. Sept. 2018. url: https://chain.com/docs/1.2/

protocol/papers/whitepaper.

[14] CoAP Technology – RFC 7252 Constrained Application Protocol, references and other
related IETF RFCs. Sept. 2018. url: http://coap.technology.

67

https://www.amazon.com/Amazon-Echo-Bluetooth-Speaker-with- WiFi-Alexa/dp/B00X4WHP5E
https://www.amazon.com/Amazon-Echo-Bluetooth-Speaker-with- WiFi-Alexa/dp/B00X4WHP5E
http://couchdb.apache.org
https://developer.apple.com/homekit/
https://github.com/jcs47/hyperledger-bftsmart
https://github.com/jcs47/hyperledger-bftsmart
https://github.com/hyperledger/caliper
https://chain.com/docs/1.2/protocol/papers/whitepaper
https://chain.com/docs/1.2/protocol/papers/whitepaper
http://coap.technology


CHAPTER 6. CONCLUSIONS

[15] Corda Documentation. Sept. 2018. url: https://docs.corda.net/.

[16] CouchDB as the State Database. Sept. 2018. url: https://hyperledger-fabric.

readthedocs.io/en/release-1.1/couchdb_as_state_database.html.

[17] K. Croman, C. Decker, I. Eyal, A. E. Gencer, A. Juels, A. Kosba, A. Miller, P. Sax-

ena, E. Shi, E. Gun Sirer, D. Song, and R. Wattenhofer. “On Scaling Decentral-

ized Blockchains.” In: Financial Cryptography and Data Security: FC 2016 Interna-
tional Workshops, BITCOIN, VOTING, and WAHC, Christ Church, Barbados (2016),

pp. 106–125.

[18] CryptoNote. Sept. 2018. url: https://cryptonote.org/whitepaper.pdf.

[19] Docker. Sept. 2018. url: https://www.docker.com/.

[20] A. Dorri, S. S. Kanhere, R. Jurdak, and P. Gauravaram. “Blockchain for IoT security

and privacy: The case study of a smart home.” In: (2017), pp. 618–623.

[21] A. Dorri, S. S. Kanhere, and R. Jurdak. “Towards an Optimized BlockChain for

IoT.” In: (2017), pp. 173–178.

[22] S. Duan, H. Meling, S. Peisert, and H. Zhang. “BChain: Byzantine Replication with

High Throughput and Embedded Reconfiguration.” In: (2014).

[23] M. Duggan. P. I. R. Privacy and Information Sharing, Technical Report. Jan. 2016.

url: http://www.pewinternet.org/2016/01/14/privacy-and-information-

sharing/.

[24] C. Dwork and M. Naor. Pricing via Processing or Combatting Junk Mail. Ed. by E. F.

Brickell. Springer Berlin Heidelberg, 1993, pp. 139–147.

[25] K.-K. E, P. Javanovic, L. Gasser, N. Gailly, E. Syta, and B. Ford. “Enhancing Bit-

coin Security and Performance with Strong Consistency via Collective Signing.” In:

USENIX Security Symposium 2016 (2016).

[26] K.-K. E, P. Javanovic, L. Gasser, N. Gailly, E. Syta, and B. Ford. “OmniLedger: A

Secure, Scale-Out, Decentralized Ledger via Sharding.” In: 39th IEEE Sympsium on
Security and Privacy (2018).

[27] EncCC. Sept. 2018. url: https://github.com/hyperledger/fabric/tree/

master/examples/chaincode/go/enccc_example.

[28] A. Gervais, G. O. Karame, K. Wust, V. Glykantzis, H. Ritzdorf, and S. Capkun. “On

the Security and Performance of Proof of Work Blockchains.” In: CCS ’16 (2016),

pp. 3–16.

[29] D. Gillmor. As we sweat government surveillance, companies like Google collect our
data. Apr. 2014. url: https://www.theguardian.com/commentisfree/2014/

apr/18/corporations-google-should-not-sell-customer-data.

[30] M. Herlihy. “Blockchains and the Future of Distributed Computing.” In: PODC ’17:
Proceedings of the ACM Symposium on Principles of Distributed Computing (2017).

68

https://docs.corda.net/
https://hyperledger-fabric.readthedocs.io/en/release-1.1/couchdb_as_state_database.html
https://hyperledger-fabric.readthedocs.io/en/release-1.1/couchdb_as_state_database.html
https://cryptonote.org/whitepaper.pdf
https://www.docker.com/
http://www.pewinternet.org/2016/01/14/privacy-and-information-sharing/
http://www.pewinternet.org/2016/01/14/privacy-and-information-sharing/
https://github.com/hyperledger/fabric/tree/master/examples/chaincode/go/enccc_example
https://github.com/hyperledger/fabric/tree/master/examples/chaincode/go/enccc_example
https://www.theguardian.com/commentisfree/2014/apr/18/corporations-google-should-not-sell-customer-data
https://www.theguardian.com/commentisfree/2014/apr/18/corporations-google-should-not-sell-customer-data


6.2. FUTURE WORK DIRECTIONS

[31] P. N. Howard. How big is the Internet of Things and how big will it get? Sept. 2018.

url: https://www.brookings.edu/blog/techtank/2015/06/08/how-big-is-

the-internet-of-things-and-how-big-will-it-get/.

[32] Hydrachain - Github. Sept. 2018. url: https : / / github . com / HydraChain /

hydrachain.

[33] Hyperledger. Hyperledger Architecture, Volume 1. 1st. 2017.

[34] Hyperledger. Sept. 2018. url: https://www.hyperledger.org/.

[35] Hyperledger Fabric ACL. Sept. 2018. url: https://hyperledger-fabric.readthedocs.

io/en/release-1.2/access_control.html.

[36] Hyperledger Fabric Blockchain. Sept. 2018. url: https://hyperledger-fabric.

readthedocs.io/en/release-1.2/blockchain.html#what-is-hyperledger-

fabric.

[37] Hyperledger Fabric Chaincode. Sept. 2018. url: http://hyperledger-fabric.

readthedocs.io/en/release-1.1/chaincode.html.

[38] Hyperledger Fabric CID. Sept. 2018. url: https://github.com/hyperledger/

fabric/blob/master/core/chaincode/lib/cid/.

[39] Hyperledger Fabric Ledger. Sept. 2018. url: https : / / hyperledger - fabric .

readthedocs.io/en/release-1.2/ledger/ledger.html.

[40] IBM - Blockchain basics: Hyperledger Fabric and Hyperledger Compose. Mar. 2018.

url: https://developer.ibm.com/articles/cl-blockchain-hyperledger-

fabric-hyperledger-composer-compared.

[41] IFTTT. Sept. 2018. url: https://ifttt.com.

[42] Internet of things. Sept. 2018. url: https://en.wikipedia.org/wiki/Internet_

of_things#Enabling_technologies_for_IoT.

[43] Ionic Framework. Sept. 2018. url: https://ionicframework.com/.

[44] IoT Standards and Protocols. Sept. 2018. url: https://www.postscapes.com/

internet-of-things-protocols/.

[45] Kafka. Sept. 2018. url: https://kafka.apache.org/.

[46] S. King and S. Nadal. “PPCoin: Peer-to-Peer Crypto-Currency with Proof-of-Stake.”

In: (2012).

[47] N. Kshetri. “Can Blockchain Strengthen the Internet of Things?” In: 19.4 (2017),

pp. 68–72.

[48] J. Kwon. “Tendermint: Consensus without Mining.” In: (2014).

[49] LevelDB, A light-weight, single-purpose library for persistence with bindings to many
platforms. Mar. 2018. url: http://leveldb.org.

69

https://www.brookings.edu/blog/techtank/2015/06/08/how-big-is-the-internet-of-things-and-how-big-will-it-get/
https://www.brookings.edu/blog/techtank/2015/06/08/how-big-is-the-internet-of-things-and-how-big-will-it-get/
https://github.com/HydraChain/hydrachain
https://github.com/HydraChain/hydrachain
https://www.hyperledger.org/
https://hyperledger-fabric.readthedocs.io/en/release-1.2/access_control.html
https://hyperledger-fabric.readthedocs.io/en/release-1.2/access_control.html
https://hyperledger-fabric.readthedocs.io/en/release-1.2/blockchain.html#what-is-hyperledger-fabric
https://hyperledger-fabric.readthedocs.io/en/release-1.2/blockchain.html#what-is-hyperledger-fabric
https://hyperledger-fabric.readthedocs.io/en/release-1.2/blockchain.html#what-is-hyperledger-fabric
http://hyperledger-fabric.readthedocs.io/en/release-1.1/chaincode.html
http://hyperledger-fabric.readthedocs.io/en/release-1.1/chaincode.html
https://github.com/hyperledger/fabric/blob/master/core/chaincode/lib/cid/
https://github.com/hyperledger/fabric/blob/master/core/chaincode/lib/cid/
https://hyperledger-fabric.readthedocs.io/en/release-1.2/ledger/ledger.html
https://hyperledger-fabric.readthedocs.io/en/release-1.2/ledger/ledger.html
https://developer.ibm.com/articles/cl-blockchain-hyperledger-fabric-hyperledger-composer-compared
https://developer.ibm.com/articles/cl-blockchain-hyperledger-fabric-hyperledger-composer-compared
https://ifttt.com
https://en.wikipedia.org/wiki/Internet_of_things#Enabling_technologies_for_IoT
https://en.wikipedia.org/wiki/Internet_of_things#Enabling_technologies_for_IoT
https://ionicframework.com/
https://www.postscapes.com/internet-of-things-protocols/
https://www.postscapes.com/internet-of-things-protocols/
https://kafka.apache.org/
http://leveldb.org


CHAPTER 6. CONCLUSIONS

[50] W. Li, A. Sforzin, S. Fedorov, and G. Karame. “Towards Scalable and Private In-

dustrial Blockchains.” In: BCC ’17: Proceedings of the ACM Workshop on Blockchain,
Cryptocurrencies and Contracts (2017).

[51] I.-C. Lin and T.-C. Liao. “A Survey of Blockchain Security Issues and Challenges.”

In: I. J. Network Security 19 (2017), pp. 653–659.

[52] Merkle tree. Sept. 2018. url: https://bitcoin.org/en/glossary/merkle-tree.

[53] Monax. Sept. 2018. url: https://monax.io/.

[54] MongoDB. Mar. 2018. url: https://www.mongodb.com/.

[55] S. Nakamoto. “Bitcoin: A peer-to-peer electronic cash system.” In: (2008).

[56] R. D. Petro, X. Salleras, M. Signorini, and E. Waisbard. “A Blockchain-based Trust

System for the Internet-of-Things.” In: SACMAT ’18: Proceedings of the 23nd ACM
on Symposium on Access Control Models and Technologies (2017).

[57] Quorum - Whitepaper. Jan. 2018. url: https://github.com/jpmorganchase/

quorum-docs/blob/master/Quorum%20Whitepaper%20v0.1.pdf.

[58] Raspberry Pi. Sept. 2018. url: https://www.raspberrypi.org/.

[59] M. Salek-Ali, K. Dolui, and F. Antonelli. “IoT Data Privacy via Blockchains and

IPFS.” In: IoT ’17, Proceedings of the Seventh International Conference on the Internet
of Things (2017).

[60] M. Samaniego and R. Deters. Blockchain as a Service for IoT. 2016, pp. 433–436.

[61] Samsung SmartThings. Sept. 2018. url: https://www.smartthings.com.

[62] L. S. Sankar, S. M., and M. Sethumadhavan. “Survey of Consensus Protocols on

Blockchain Applications.” In: (2017).

[63] H. Shafagh, L. Burkhalter, A. Hithnawi, and S. Duquennoy. “Towards Blockchain-

based Auditable Storage and Sharing of IoT data.” In: CCSW ’17: Proceedings of the
2017 on Cloud Computing Security Workshop (2017).

[64] J. Sousa and A. Bessani. “Separating the WHEAT from the chaff: An empirical de-

sign for geo-replicated state machines.” In: Proceedings of the IEEE 34th Symposium
on Reliable Distributed Systems, Montreal, Quebec, Canada (2015).

[65] J. Sousa, A. Bessani, and M. Vukolic. “A Byzantine Fault-Tolerant Ordering Service

for the Hyperledger Fabric Blockchain Platform.” In: SERIAL ’17 Proceedings of the
1st Workshop on Scalable and Resilient Infrastructures for Distributed Ledgers (2017).

[66] Spring Boot. Sept. 2018. url: https://spring.io/projects/spring-boot.

[67] SQLite. Sept. 2018. url: https://www.sqlite.org/.

[68] Y. L. Sun, Z. Han, W. Yu, and K. J. R. Liu. “A trust evaluation framework in

distributed networks: Vulnerability analysis and defense against attacks.” In: Pro-
ceedings - IEEE INFOCOM (2006).

70

https://bitcoin.org/en/glossary/merkle-tree
https://monax.io/
https://www.mongodb.com/
https://github.com/jpmorganchase/quorum-docs/blob/master/Quorum%20Whitepaper%20v0.1.pdf
https://github.com/jpmorganchase/quorum-docs/blob/master/Quorum%20Whitepaper%20v0.1.pdf
https://www.raspberrypi.org/
https://www.smartthings.com
https://spring.io/projects/spring-boot
https://www.sqlite.org/


6.2. FUTURE WORK DIRECTIONS

[69] D. Svetinovic. “Blockchain Engineering for the Internet of Things: Systems Security

Perpective.” In: IoTPTS ’17: Proceedings of the 3rd ACM International Workshop on
IoT Privacy, Trust, and Security (2017).

[70] Swagger. Sept. 2018. url: https://swagger.io/.

[71] N. Szabo. “Smart Contracts: Building Blocks for Digital Markets.” In: (1996).

[72] P. Thakkar, S. Nathan, and B. Viswanatham. “Performance Benchmarking and Opti-

mizing Hyperledger Fabric Blockchain Platform.” In: in https://arxiv.org/pdf/1805.11390.pdf
(May 2018).

[73] The world’s most valuable resource is no longer oil, but data. May 2017. url: https:

//www.economist.com/news/leaders/21721656-data-economy-demands-new-

approach-antitrust-rules-worlds-most-valuable-resource.

[74] There are officially more mobile devices than people in the world. Sept. 2018. url:

http://www.independent.co.uk/life-style/gadgets-and-tech/news/there-

are-officially-more-mobile-devices-than-people-in-the-world-9780518.

html.

[75] YAML. Sept. 2018. url: http://yaml.org.

[76] Z Zheng, S Xie, H Dai, X Chen, and H Wang. “An Overview of Blockchain Tech-

nology: Architecture, Consensus, and Future Trends.” In: 2017 IEEE International
Congress on Big Data (BigData Congress) (2017), pp. 557–564.

71

https://swagger.io/
https://www.economist.com/news/leaders/21721656-data-economy-demands-new-approach-antitrust-rules-worlds-most-valuable-resource
https://www.economist.com/news/leaders/21721656-data-economy-demands-new-approach-antitrust-rules-worlds-most-valuable-resource
https://www.economist.com/news/leaders/21721656-data-economy-demands-new-approach-antitrust-rules-worlds-most-valuable-resource
http://www.independent.co.uk/life-style/gadgets-and-tech/news/there-are-officially-more-mobile-devices-than-people-in-the-world-9780518.html
http://www.independent.co.uk/life-style/gadgets-and-tech/news/there-are-officially-more-mobile-devices-than-people-in-the-world-9780518.html
http://www.independent.co.uk/life-style/gadgets-and-tech/news/there-are-officially-more-mobile-devices-than-people-in-the-world-9780518.html
http://yaml.org



	Contents
	List of Figures
	List of Tables
	Introduction
	Context and Motivation
	Problem
	Problem Statement
	Problem Addressing

	Objectives and Contributions
	Objective
	Contribuitions

	Document Structure

	Related Work
	Generic Background
	Blockchain Foundations
	Blockchain characteristic and their nuances
	Blockchain structure and operation
	Blockchain structure and other characteristics
	Blockchain Transactions
	Consistency Mechanisms
	Decentralized Trust and Shared Ledgering
	Access Control Enforcement and Anonymization

	Blockchain in Large-Scale Environments
	Scalability Issues and Implications
	Scalability Dimensions and Heterogeneity

	Blockchain Platforms
	Characteristics and Design Criteria
	Smart Contracts and Access Control Enforcement
	Smart Contracts and Programming Support
	Ethereum
	Hyperledger
	Hyperledger Fabric with BFT Consensus
	Chain Core
	Corda
	Comparative summary on studied Blockchain Platforms

	Blockchain for IoT Applications
	Scalability and Blockchained IoT
	Blockchain-Enabled IoT Applications

	Summary

	System Model
	System Model Overview
	System Model
	System Architecture
	Materialization of Smart Hubs 
	System Operation
	Application-level Support

	Application Scenario
	Dependability Issues
	Threat Model and Security Trends
	Failure Model and Intrusion Tolerance Guarantees
	Scalability Issues

	Summary Remarks

	Implementation
	Implementation Overview
	Implementation Components and Technology
	System Development and Setup
	Other Implementation Issues and Final Remarks

	Evaluation
	Testing environment
	Evaluation Criteria
	Network benchmarks
	Benchmarks under failure conditions
	Client-side benchmarks
	Evaluation summary

	Conclusions
	Main Conclusions
	Future work directions

	Bibliography

