
SICS Software-Intensive Cyber-Physical Systems
https://doi.org/10.1007/s00450-019-00413-w

SPEC IAL ISSUE PAPER

RADON: rational decomposition and orchestration for serverless
computing

G. Casale1 ·M. Artač2 ·W.-J. van den Heuvel3 · A. van Hoorn4 · P. Jakovits5 · F. Leymann4 ·M. Long6 ·
V. Papanikolaou7 · D. Presenza8 · A. Russo1 · S. N. Srirama5 · D. A. Tamburri3 ·M. Wurster4 · L. Zhu1

© The Author(s) 2019

Abstract
Emerging serverless computing technologies, such as function as a service (FaaS), enable developers to virtualize the internal
logic of an application, simplifying the management of cloud-native services and allowing cost savings through billing and
scaling at the level of individual functions. Serverless computing is therefore rapidly shifting the attention of software vendors
to the challenge of developing cloud applications deployable on FaaS platforms. In this vision paper, we present the research
agenda of the RADONproject (http://radon-h2020.eu), which aims to develop amodel-drivenDevOps framework for creating
and managing applications based on serverless computing. RADON applications will consist of fine-grained and independent
microservices that can efficiently and optimally exploit FaaS and container technologies. Our methodology strives to tackle
complexity in designing such applications, including the solution of optimal decomposition, the reuse of serverless functions
as well as the abstraction and actuation of event processing chains, while avoiding cloud vendor lock-in through models.

Keywords Function as a service · Serverless computing · DevOps · Software models

1 Introduction

The success of IT-driven companies, like Apple, Facebook
and Oracle, has shown that businesses investing in advanced
software technologies can build a strong lead across a variety
of market domains. A recent development with the poten-
tial to radically evolve the software technology landscape is
serverless computing, a cloud-computing execution model

This paper has been partially supported by the European Union’s
Horizon 2020 research and innovation programme under Grant
Agreement No. 825040 (RADON).

B G. Casale
g.casale@imperial.ac.uk

1 Imperial College London, London, UK

2 XLAB, Ljubljana, Slovenia

3 Jheronimus Academy of Data Science, ‘s Hertogenbosch,
The Netherlands

4 University of Stuttgart, Stuttgart, Germany

5 University of Tartu, Tartu, Estonia

6 Praqma, Oslo, Norway

7 Athens Technology Center, Chalandri, Greece

8 Engineering Ingegneria Informatica, Rome, Italy

proposed to entirely bypass user involvement in managing
compute resources [1]. Function as a service (FaaS) is as
of today the most prominent example of serverless tech-
nology. Using FaaS, individual function calls can be served
remotely and automatically from the cloud [2]. This powerful
idea brings us at a crossroads where current cloud software
architectures are changing rapidly, increasing in flexibility
and adaptability. In response, we propose a research agenda
for developing an innovative DevOps framework centered
around serverless computing, unlocking the advantages of
the FaaS paradigm to industry.

To better understand these advantages and the implied
research challenges, it is important to realize that the sud-
den popularity of platforms such as AWS Lambda,1 Google
Cloud Functions2 and Microsoft Azure Functions,3 may be
attributed to the following two main promises of the server-
less FaaS paradigm, among other benefits:

(1) Fine-grained autoscaling This refers to the ability to
virtualize the internal logic of cloud-native applications, so
that individual function calls are served remotely from the

1 https://aws.amazon.com/lambda.
2 https://cloud.google.com/functions.
3 https://azure.microsoft.com/services/functions.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00450-019-00413-w&domain=pdf
http://radon-h2020.eu
https://aws.amazon.com/lambda
https://cloud.google.com/functions
https://azure.microsoft.com/services/functions


G. Casale et al.

cloud and can thus harness autoscaling on demand. That is,
serverless FaaS adds compute resources only to the portion
of code that consumes them, simplifying scaling and sav-
ing costs compared to container as a service (CaaS) or other
paradigms. Transparent and fine-grained scaling is particu-
larly efficient for event-centric systems, as for example in
the Internet of things (IoT), where actions need to promptly
take effect in response to events triggered by code, data or
the physical world.

(2) Productivity gains These arise from storing IT know-
how as reusable serverless functions, which can be auto-
matically orchestrated onto either private or public cloud
infrastructures. Contrary to web services, serverless plat-
forms automatically take care of resource management in
a portable and reproducible way. Thus, every organization
can be digitally transformed through investment in archiving
core functions to be later used as building blocks for IT-driven
business processes. Further to this idea, common functions
may be shared in publicmarketplaces or repositories to estab-
lish a rich and diverse ecosystem. Such a development can
considerably accelerate the delivery of new offerings to the
market, even for companies with limited IT skills or no oper-
ations teams.

Despite the above promises, today there is still a lack
of methodologies to reap the benefits of serverless FaaS in
industry. Our vision is that open-source tools can greatly
assist companies, especially small- and medium-sized enter-
prises, in building proof-of-concept and business cases with
serverless FaaS at low costs, in order for them to respon-
sively and progressively acquire technical capacity needed
to incorporate this innovation in existing or new products.
From an engineering point of view, a DevOps framework
integratedwith holisticmanagement solutions that covers the
entire life cycle of FaaS-based applications is still an open
research problem that deserves attention from the software
engineering community.

The research agenda of the RADONproject (http://radon-
h2020.eu, 2019–2021, funded by Horizon 2020) focuses
on the development of an advanced DevOps framework
for designing, prototyping, deploying, testing, verifying and
evolving complex applications built on (i) serverless FaaS,
defining events, triggers and actions (handling functions);
(ii) services of various granularities, typically microservices,
implementing business logic; (iii) data pipelines, i.e., spe-
cialized microservices (or serverless functions), resources
and communicationmechanisms in combination thatmanage
the life cycle (ingestion, filtering, transformation, buffer-
ing, scheduling, analysis, transfer and storage) of data. The
framework we aim for will support a continuous spectrum of
service granularities, the fine-grained control of autoscaling
at the function level, and deployment on infrastructures with
heterogeneous capacities and at different locations, which
are mediated by models.

2 Major challenges

In this section, we discuss the major challenges identified for
the RADON research agenda, highlighting technical prob-
lems that are currently open and needs to be solved.

2.1 FaaS-orientedmodeling

Each element in a microservices architecture constitutes
a single, independent, functional and self-managing build-
ing block, e.g., a business logic module [3]. Serverless
computing, particularly its instantiation into FaaS, is real-
ized as a suitable programming paradigm for microservices,
making the management of compute resources completely
transparent and enabling the services to be designed in an
event-centric manner [4]. Specific languages are emerging to
natively program architectural design of applications com-
posed of microservices, e.g., Jolie.4 Such languages are a
positive development but pose new problems. They typically
rely on a custom interpreter that potentially carries the risk
of vendor lock-in. Also, none of them support the specifica-
tion of dependencies at the function level or the definition
of data pipelines needed for business logic where events are
essentially triggered by data. To counteract vendor lock-in,
we argue that amodel-driven approach can be combinedwith
DevOps to deliver FaaS-based application. One major chal-
lenge in the RADON research agenda is then to introduce a
FaaS-oriented modeling language with novel constructs for
specifying function dependencies and defining data pipelines
carrying events that trigger the function calls.

2.2 Requirements formalization

Common features of modeling languages include abstract
syntax, i.e., the definition of concepts and how they relate to
each other, and semantics, i.e., machine-interpretable map-
pings from abstract concepts to concrete elements in a given
domain. The semantics of cloud modeling languages often
reflects English prose [5]. This results in a shortage of for-
mal solutions for synthesizing requirements across different
layers of cloud applications, creating a gap with respect
to advanced tools for automated synthesis of requirements
arising from business goals and user scenarios outside the
cloud context [6,7]. DevOps and continuous delivery (CD)
also call for extension to existing formalization methods to
simplify decomposition, synthesis and refinement of require-
ments up to the orchestration layer. In particular, there
is a strong expectation for requirements formalisms that,
while remaining close to concepts and abstractions typical
of human thinking, are easy to translate into standard models
for orchestration. To address these challenges, RADON will

4 https://www.jolie-lang.org.

123

http://radon-h2020.eu
http://radon-h2020.eu
https://www.jolie-lang.org


RADON: rational decomposition and orchestration for serverless computing

introduce a constraint definition language (CDL) for formally
specifying both functional and non-functional requirements,
increasing automation in designing FaaS-based applica-
tions.

2.3 Continuous integration and continuous delivery

Continuous integration and continuous delivery (CI/CD) are
concepts that underlie agile approaches for software engi-
neering [8,9]. They define full development and release
pipelines that involve code compiling, functional testing,
deployment packaging, artifact generation and storage, instal-
lation in test environments as well as delivery of complete
artifacts. At the bottom level are configuration manage-
ment tools, such as Chef,5 Ansible6 and Puppet,7 that use
an infrastructure-as-code (IaC) language to install and con-
figure application components on the target infrastructure.
Operating at the next level are orchestrators that take the
deployment blueprint of a whole application, provision com-
pute resources needed for running the application, and invoke
configuration management tools to populate the resources.
OpenTOSCA,8 Cloudify9 and Apache ARIA TOSCA10 are
examples of orchestrators that consume variants of OASIS
TOSCA,11 while Apache Brooklyn12 and Juju13 are based
on other languages. At the top level are servers like Hudson14

and Jenkins,15 which are open-source, and commercial ones
like TeamCity,16 Bamboo,17 Travis CI18 and CircleCI.19

These offerings have in common that users can set up CI/CD
jobs to execute a given script upon certain events. For the
RADON research agenda, the major challenge in this aspect
is to extend existing solutions with capabilities to orches-
trate serverless functions, microservices and data pipelines
in a native, reusable and portable fashion.

5 https://www.chef.io.
6 https://www.ansible.com.
7 https://puppet.com.
8 https://www.opentosca.org.
9 https://cloudify.co.
10 https://ariatosca.incubator.apache.org.
11 https://www.oasis-open.org/committees/tosca.
12 https://brooklyn.apache.org.
13 https://jujucharms.com.
14 http://hudson-ci.org.
15 https://jenkins.io.
16 https://www.jetbrains.com/teamcity.
17 https://www.atlassian.com/software/bamboo.
18 https://travis-ci.org.
19 https://circleci.com.

2.4 Quality assurance

Tools for functional testing are already an integral part of
today’s CD pipelines, e.g., automated unit and integration
tests. However, testing non-functional properties, e.g., per-
formance, has always been difficult [10,11], and additional
challenges arise in the context of microservices [12]. An
often-cited one is the trade-off between rapid delivery and
extensive testing. One promising approach for this is to
use monitoring data recorded in production to automati-
cally create, select and evolve test cases to be executed
through CD pipelines [13]. Among existing efforts, ITEA3
TESTOMAT20 focuses on test automation in agile devel-
opment but does not cover the microservices architectural
style. ContinuITy21 aims to improve the quality of load test-
ing for microservices by evolving test specifications using
monitoring data. DICE QT22 automates the load testing of
data pipelines by generating workloads that are stochasti-
cally similar to input traces. RADON is expected to offer a
set of quality assurance tools for seeking latent defects in
FaaS-based applications and verifying their satisfaction of
service-level agreements (SLAs) and other non-functional
requirements.

As in the DevOps quality assurance paradigm [14], IaC
enables developers and operators to jointly create, configure
and manage infrastructures by means of executable code,
e.g., using a combination of the TOSCA language and con-
figuration management tools like Chef, Ansible and Puppet.
At present, the quality of IaC code is still largely dependent
on the experience of developers and operators. A great deal of
research work has been devoted in traditional software engi-
neering to devising quality measures for the technical debt of
code in recognition of for example bad smells [15,16], which
are suboptimal design decisions made by developers that can
affect the overall maintainability of a software system and
make it more defect-prone [17]. However, none of technical
debt management techniques, e.g., bad smell detection and
defect prediction, have been applied to IaC languages. This is
a gap that needs also to be filled by the quality assurance tools
to support DevOps, broadening the spectrum of challenges
in the RADON research agenda.

3 RADON framework

To tackle the identified challenges, we propose a research
agenda for an integrated DevOps framework. The authors
of this paper, who are involved in the RADON project, will

20 https://www.testomatproject.eu.
21 https://continuity-project.github.io.
22 https://github.com/dice-project/DICE-Quality-Testing.

123

https://www.chef.io
https://www.ansible.com
https://puppet.com
https://www.opentosca.org
https://cloudify.co
https://ariatosca.incubator.apache.org
https://www.oasis-open.org/committees/tosca
https://brooklyn.apache.org
https://jujucharms.com
http://hudson-ci.org
https://jenkins.io
https://www.jetbrains.com/teamcity
https://www.atlassian.com/software/bamboo
https://travis-ci.org
https://circleci.com
https://www.testomatproject.eu
https://continuity-project.github.io
https://github.com/dice-project/DICE-Quality-Testing


G. Casale et al.

Fig. 1 Architecture of the RADON framework

continue to concretely deliver on this proposal and release
the results as open-source software.

The RADON framework is envisioned to comprise three
environments: (i) the modeling environment, (ii) the run-
time environment, (iii) the coding environment (IDE). It will
be coupled with a DevOps methodology to coordinate the
development and release of FaaS-based applications, and
with quality assurance tools to validate a particular solution.
Figure 1 illustrates the architecture of the framework.

3.1 Modeling environment

RADON will rely on a model-driven approach for creat-
ing and managing cloud applications that typically exploit
the microservices architectural style and the serverless FaaS
paradigm. We see OASIS TOSCA as being in the best posi-
tion to act as the baseline modeling language to describe the
topology and orchestration of such applications, on top of
which a novel family of RADON models will be defined. At
present, no native support is provided by the TOSCA lan-
guage for serverless FaaS or data flows, which however are
both critical to RADON’s significance due to the fact that
serverless functions are often used to handle events triggered
by data, e.g., real-time streams and diagnostic logs. Prelimi-
nary work has been done on the extension to TOSCA for the
modeling and automated deployment of FaaS-based appli-
cations [18]. This is considered as a basis for our further
research in RADON.

One conceptual difference between RADON and TOSCA
models lies in incorporating the behavior specification of
FaaS-based applications. For example, RADON tends to
simplify the description of a temporal sequence of actions

triggered by a certain chain of events via graphical annota-
tions, while in cases where the graphical complexity may be
a limiting factor, users will have the possibility to annotate
temporal predicates through aCDL. This is an intuitive logic-
based language to be introduced in RADON for specifying
temporal behavior and formal requirements (for perfor-
mance, costs, security and privacy) at different development
stages of an application. The CDL will enable users to relate
entities as well as events in RADONmodels, including those
pertaining to data that transit on a pipeline. With CDL anno-
tations, RADON models can retain two core benefits of
TOSCA: (i) graphical and textual modeling, thanks to the
Eclipse Winery project23 and the TOSCA YAML specifica-
tion;24 (ii) automated orchestration of cloud applications at
runtime.

3.2 Runtime environment

TheRADON runtimewill package tools that bridge themod-
eling environment and IDE of the framework with the cloud,
relying on model-driven orchestration and IaC to enact the
deployment of FaaS-based applications and data pipelines on
multiple target cloud platforms. Particularly, development in
the absence of an operations team will also be taken into
account in this methodology, so that the development team
can manage the runtime life cycle of an application in a
self-service fashion. Model-to-text transformation between
graphically built models and TOSCA YAML files will be
performed by Eclipse Winery to directly feed the RADON
orchestrator.

The runtime environment will feature a template library
that encapsulates at the proper levels of abstraction all
the necessary elements of microservices architectures. This
will extend the DICE TOSCA library,25 a baseline that
encodes many TOSCA templates for Big Data processing.
The extension for FaaS-based applications includes the node
representations of individual functions and relationship rep-
resentations that express dependencies as well as annotations
for events foreseen to trigger a function. In effect, a tem-
plate defines a directed acyclic graph (DAG) of components
that make up an application, inclusive of those pertain-
ing to serverless computing. Purpose-built microservices,
called event gateways, will serve as mediators between event
producers and consumers across multiple serverless FaaS
platforms, realizing an abstraction layer internal to the appli-
cation. Developers will be able to implement functions at
their discretion and store the implementations in a function
hub provisionedwithin both the runtime environment and the

23 https://projects.eclipse.org/projects/soa.winery.
24 https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML.
25 http://dice-project.github.io/DICE-Deployment-Cloudify.

123

https://projects.eclipse.org/projects/soa.winery
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML
http://dice-project.github.io/DICE-Deployment-Cloudify


RADON: rational decomposition and orchestration for serverless computing

graphical modeling tool, allowing the reuse of business logic
according to a function life-cycle model devised in RADON.

A special focus will be put on enabling data engineers to
carry out the control (ingestion, buffering, scheduling, trans-
fer and storage) as well as the processing (filtering, transfor-
mation and analysis) of data across FaaS-based applications
using data pipelines, which are essentially composed of spe-
cialized microservices (or serverless functions), resources
and communication mechanisms. Data pipeline templates
will be developed as part of the template library, combin-
ing these building blocks into reusable TOSCA components
that can be injected into RADON models and consumed by
the orchestrator.

Upon deployment of an application, the RADON orches-
trator will leverage IaC at the configuration management
level to set up and wire up all the components. It will auto-
matically configure monitoring services and connect metric
collectors with user-specified storage, which can primarily
make passive monitoring useful for the quality assurance
of the application but also enable the orchestrator to adhere
to performance requirements defined in the template. The
orchestratorwill be able to dynamically reconfigure the appli-
cation components and change the number of node instances
according to the scaling policies, while the serverless FaaS
platform handles the autoscaling of the functions.

The security and privacy policies, e.g., access control and
data encryption,will be implemented by theRADONorches-
trator to manage the application components at runtime and
their initialization process as well in order to limit the expo-
sure of critical functionalities, ensuring that both business
logic and sensitive data are protected even before the appli-
cation starts running. The orchestrator will exploit service
meshes to enact the security and privacy policies for FaaS-
based applications, which consist of serverless functions,
microservices and data pipelines. In essence, a service mesh
forms a separate control layer for managing and configur-
ing intelligent proxies deployed as sidecars that mediate and
route traffic among services.

3.3 IDE & DevOpsmethodology

RADON models will be exposed via a web-based graphical
IDE (Eclipse Che26). By clicking corresponding graphical
elements, users will be able to (i) define serverless func-
tions and microservices (for developers); (ii) design IaC
recipes such as TOSCA YAML files (for runtime operators).
Data engineers will also rely on the IDE to implement data
transformations as serverless functions or microservices and
combine these building blocks into reusable data pipeline
templates. Under teamwork circumstances, users with dif-
ferent roles will be granted an appropriate level of access.

26 https://www.eclipse.org/che.

A DevOps methodology will be investigated, identifying
stakeholders, the socio-technical system, barriers to adop-
tion, customization methods, recurrent architectural patterns
and the roles of users interacting with the RADON frame-
work. An important feature of the methodology will be
the conceptualization of different life cycles at play for the
components of a FaaS-based application. This is a richer set-
ting compared to that of a traditional methodology, as one
can envision different life cycles for serverless functions,
microservices and data pipelines. The identified life cycles
will be archived in both user documentation and online help
to provide guidance on how to decide tool workflows and
make the whole framework easy to use.

3.4 Quality assurance tools

A particular concern is raised by serverless FaaS for security
and privacy. The increased granularity and expressiveness of
RADON models will prompt the need to consider security
and privacy with high priority in the architectural design.
To deliver the business logic through serverless functions or
microservices, developers have to make careful trade-offs in
terms of non-functional requirements such as performance,
costs, security and privacy. The decision of the optimal attack
surface exposed by an architecture, as well as the implication
of the fine-grained decomposition on non-functional require-
ments, ask for a rigorous methodology to help engineers
select the right level of granularity.

RADONmodels will combine CDL annotations and gen-
eralized TOSCA models that support serverless functions,
microservices and data pipelines. Developers will be able to
analyze aRADONmodel using a hierarchy of logic program-
ming and simulation techniques to determine whether the
decomposition or aggregation of certain services produces an
improvement in satisfying the specified requirements. This
mechanism will make it possible to enact progressive deci-
sions on the model, resulting in a solution with the optimal
decomposition and the satisfaction of security and privacy
policies in addition to usual non-functional requirements for
performance and costs. Monitoring feedbacks will also be
available on a dashboard for users to diagnose the runtime
behavior of each application component and identify in a
semi-automated manner what needs to be prioritized in the
design.

The RADON quality assurance tools will be used to vali-
date (i) IaC recipes, (ii) business logic encoded in serverless
functions or microservices, (iii) data pipelines.

– For IaC recipes, a defect-prediction tool will be devel-
oped, combining anti-pattern detection and recent tech-
niques frommachine learning. It will address the intrinsic
polyglot nature of infrastructure code, being either agnos-

123

https://www.eclipse.org/che


G. Casale et al.

tic of IaC technologies or specific to certain IaC defects
and anti-patterns.

– For business logic, a continuous testing approach will be
employed, through execution at the development stage
immediately preceding the actual deployment of the
application, to help detect unexpected issues before they
are manifest in production.

– For data pipelines, users will be required to model data
flows by customizing data generation profiles, which are
needed to automatically produce test data with desired
statistical characteristics, e.g., tailedness and burstiness,
for verifying responsiveness and scalability annotated
through the CDL.

4 Expected progress

RADON will touch upon various aspects of the state of
the art, including microservices architectures, serverless
FaaS, data technologies, topology and orchestration models,
requirements engineering, continuous integration and con-
tinuous delivery as well as quality assurance. We describe in
what follows the expected progress of our research agenda
beyond the state of the art.

4.1 Microservices architectures

RADON will offer a holistic DevOps methodology to
design, prototype, deploy, test, verify, and evolve microser-
vices architectures. A variety of architectural patterns will
be explored and encoded in the corresponding paramet-
ric TOSCA templates. The RADON framework will then
enable the rapid prototyping of microservices architectures
that combine microservices with serverless FaaS technolo-
gies, allowing a continuous spectrumof service granularities,
a fine-grained capacity control through scaling at the function
level, and deployment on resources and devices with hetero-
geneous capacities and at different locations (e.g., edge vs
cloud backend). Several life-cycle management issues for
microservices that are currently open will be tackled directly
by the RADON methodology. These include, among others,
devising strategies for granular monitoring, container-level
anomaly detection, aligning performance regression test-
ing with containerized microservices, finding appropriate
modeling abstractions for microservices, and incorporating
the container-based infrastructure in predictive models used
to reason on optimal architectural decomposition. Holistic
pattern-based design of microservices is a pending challenge
and has the potential to radically improve the way in which
microservices are reused, operated and evolved. In partic-
ular, there is a lack of methods and tools to establish the
appropriate level of granularity or module decomposition
while designing microservices architectures. In this respect,

the scientific potential behind RADON is considerable: not
only doesRADONintroduce amethodology for guiding soft-
ware architects, and operators to understand and compose
microservices, but also provide non-invasive, predictive tools
to ensure the quality of microservice templates in terms of
performance and correctness. Moreover, RADON advocates
advancing along open standard andwidely-adopted solutions
like TOSCAwhich already have proven industrial and large-
scale adoption, andmay benefit from further experimentation
and augmentation in the way of microservices and serverless
computing.

4.2 Serverless FaaS

At present, the FaaS service model is not supported within
model-based approaches to orchestration such as TOSCA.
The challenge in extending these models to FaaS is con-
siderable as one needs to move to modeling also the func-
tion dependencies of the application, retaining the ability
to express dependencies and requirements on it, through
triggers and events, as well as function parameters. The
achievement of this extension will considerably broaden the
expressiveness and applicability of model-based approaches
to orchestration. Supporting tools to reason about the quality-
of-service and cost of the resulting architecture are also
required and present significant scientific challenges in their
definition as one needs to tractably model a possible large
number of triggers and actions, which is expected to result in
state space explosion. These in turn require a characterization
of the frequency at which certain triggers arrive, reasoning
about performance risks (e.g., due to early dehydration of
the container that servers the remote function), and an under-
standing of the different data caching policies that should be
used when parts of the data is processed using FaaS services.
Developing a methodology to reason and instantiate appli-
cations that encompass all these novelties thus represents an
ambitious scientific endeavor.

4.3 Data technologies

RADON will adopt the data pipeline concept where the
whole application is composed of independently deploy-
able, schedulable and scalable pipeline tasks, regardless
of whether they are microservices, serverless functions or
self-contained applications. In comparison to other Euro-
pean projects, data processing will move from utilizing
monolithic Big Data applications to adopting more general
data pipelines consisting of freely composable, portable and
reusable microservices for data transformation, storage and
processing. RADON will also extend the TOSCA standard
and its tools to support the design, deployment and automated
life-cycle management (including programmatically estab-
lishing, configuring, scheduling, monitoring and destroying)

123



RADON: rational decomposition and orchestration for serverless computing

of data pipelines composed ofmicroservices andwill support
multiple data pipeline management frameworks (e.g., AWS
Data Pipelines,27 Apache Nifi28) and service mesh solutions.

4.4 Topology and orchestrationmodels

RADON models will describe serverless FaaS-based solu-
tions, which are currently unsupported in standardized
orchestration languages such as TOSCA. Currently TOSCA
mainly focuses on the description of the structure of the
application to be deployed (topology templates) and imper-
ative management processes (management plans). However,
TOSCA does not support integrating behavioral information
about the application itself in the deployment model, which
is though required in FaaS since serverless virtualizes also
the application logic. Thus, a significant extension to TOSCA
developed in RADON will be the integration of behavioral
aspects to enable the description of FaaS-based services.

4.5 Requirements engineering

RADON aims at defining a CDL to specify formal require-
ments and topology constraints and increase the automation
in defining serverless-based applications. The CDL will
use an abstract syntax and semantics that is natively close
to orchestration abstractions and relationships available in
TOSCA, thus easing bidirectional transformation, while also
capturing application execution requirements, architectural
properties, and security and privacy policies. RADON will
couple the CDL with models that augment TOSCA and
the Winery graphical environment for visual orchestration,
offering a seamless way for the end user to recognize the
model entities at play in the system, annotating CDL require-
ments that relate such entities, and obtain in return from
the RADON framework recommendations on the optimal
decompositions and generate mappings into concrete plat-
forms and resources. The ability to annotate TOSCAmodels
with requirements will allow to carry out automatically
certain refactorings, for example by automating the addi-
tion of firewalls and other security-related services to meet
regulatory and contractual constraints (e.g., legal intercep-
tion by cloud providers that host applications defined using
TOSCA).

4.6 Continuous integration and continuous delivery

RADON will extend capabilities of the existing tools by
addingnative support for orchestratingmicroservices, server-
less FaaS and data pipelines, making them easier to manage,

27 https://aws.amazon.com/datapipeline/.
28 https://nifi.apache.org/.

more reusable and portable. The toolswill be further enriched
with deployment templates that allow to reuse repeating
architectural and technology patterns. RADON’s advanced
delivery modes will include canary testing schemes, dark
launches, and A/B testing, which are generally available
in commercial solutions but not in integrated open-source
frameworks, a problem for the current portfolio of frame-
works from European projects. The FaaS abstraction layer,
centered around the notion of versatile event gateways act-
ing as mediators for serverless calls, will provide a solution
to proprietary lock-in that currently affects FaaS offerings,
enabling security out-of-the-box and event-centric capabili-
ties to traditional data sources.

4.7 Quality assurance

As current practices are not designed for the frequency
of deployments in microservice- and FaaS-based systems,
automation of the testing process is essential. In RADON,
TOSCA will be extended to include testing annotations,
which will provide both functional and non-functional test-
related information. This will allow for automated setup of
testing infrastructure. Input data for testing of built arti-
facts usually comes from fixed sample inputs, which provide
debatable test coverage. In RADON, test inputs will also
be made available from production data, which will be col-
lected using available platform monitoring tools. It will
include not only input data from users, but also extracted
usage profiles, to simulate real user behavior in tests. When
testing built artifacts that depend on other entities in the
system, RADON will, again from production data, extract
performance data of these other entities, to simplify test
deployments. This means that instead of deploying complete
application infrastructure, RADON will test artifacts with
extracted simulations of entities they depend on. An addi-
tional layer of abstractionwill allow forRADON to be able to
use production data from different platforms, i.e., to achieve
platform independence.RADONintends to pioneer IaCqual-
ity assurance, focusing in particular on developing tools for
code smell detection and defect prediction for IaC. RADON
tools will help improving the quality of IaC, assisting devel-
opers with machine-learning techniques to recognize code
portions expected to bemore prone to defects, based on train-
ing data from IaC libraries and codebases.

5 Related research projects

In this section,we reviewpast and ongoingEuropean projects
where outputs are expected to feed or influence RADON.

123

https://aws.amazon.com/datapipeline/
https://nifi.apache.org/


G. Casale et al.

A list of relevant projects is as follows:

– DICE29 is a recently completed project that offers an IDE
and DevOps tools for Java-based Big Data applications,
leveraging on an extended UML profile and TOSCA.

– MODAClouds30 offers an IDE, methodology and run-
time framework to create and manage applications that
run on multiple clouds. It is based on a model-driven
engineering paradigm, rooted in the CloudML language,
and integrated in the Modelio development environment.

– OpenReq31 explores community-driven requirements
engineering in the context of large and distributed
software-intensive projects with tight inter-relations. The
project aims at fostering a manageable continuous feed-
back stream from different types of stakeholders.

– STAMP32 aims at pushing automation in DevOps one
step further through innovative methods of test amplifi-
cation, leveraging advanced research in automatic test
generation. It reuses existing assets (test cases, API
descriptions, dependency models), in order to generate
more test cases and test configurations each time the
application is updated.

– MIKELANGELO33 focuses on making virtual infras-
tructures ready to run Big Data, HPC, and I/O intensive
applications in production.

– WITDOM34 aims at protecting the privacy and security
of data outsourced to untrusted ICT providers, such as
clouds, using cryptography and privacy-by-design.

– SEMIoTICS35 aims at developing a framework for IoT
application actuation. The approach covers security, pri-
vacy, interoperability, and dependability properties as
well as embedded intelligence.

– CloudPerfect36 offers tools for cloud providers to opti-
mize the performance characteristics of their offerings
through workload characterization, automated deploy-
ment and orchestration, monitoring and benchmarking.

– COLA37 delivers a microservices platform (MICADO)
along with runtime orchestration. COLA introduces
its own domain-specific language similar to TOSCA
YAML.

29 http://www.dice-h2020.eu/.
30 http://www.modaclouds.eu/.
31 http://openreq.eu/.
32 https://www.stamp-project.eu/view/main/.
33 https://www.mikelangelo-project.eu/.
34 http://witdom.eu/.
35 https://www.semiotics-project.eu/.
36 http://cloudperfect.eu.
37 https://project-cola.eu/.

– ARCADIA38 tackles challenges in design and deploy-
ment of highly distributed applications. The project
introduces an execution model compatible with TOSCA
NFV.

– SUPERSEDE39 targets at providing advancements in
end-user feedback and contextual-data analysis as well
as DevOps-type decision-making. The major novel con-
tribution is a new framework for instrumented software
evolution and adaptation in the specific scope of data-
intensive applications.

– CloudSocket40 advances the research in multi-cloud
computing, business process/service management, by
offering a framework to manage BPaaS by considering
all the necessary management levels involved and offer-
ing business-IT alignment. Context conceptual modeling
in the context of the project is combined with machine
intelligence techniques.

– CYCLONE41 provides DevOps tools for multi-cloud
management, covering virtual machine network acces-
sibility, intra-site data access, inter-site data transfer, and
resource scaling. Dimensions such as end-to-end secu-
rity and federated network management are also taken
into account.

6 Industrial use cases

Part of the challenge of investing in FaaS is to recognize the
industrial use cases where the new technology is necessary
to overcome technical and cost barriers. We illustrate three
industrial use cases that demonstrate industrial domains in
which the serverless FaaS paradigm can strike a contribution
and there is a potential advantage in adopting a model-driven
DevOps framework such as the one we have described.
These use cases arise from the commercial needs of units
within three European companies: Athens Technology Cen-
ter (ATC), Engineering Ingegneria Informatica (ENG) and
Praqma (PRQ).

6.1 Tourism promotion

ADAMO is an Android mobile application that combines
the individual’s tourist profile, a city’s mobility network and
points of interest (POIs) to share personalized experiences for
travelers and residents, who can then discover themost excit-
ing city routes customized to their preferences. The portfolio
of news portals and touristic agencies will be able to suggest

38 http://www.arcadia-framework.eu/.
39 https://www.supersede.eu/.
40 https://site.cloudsocket.eu/.
41 http://www.cyclone-project.eu/.

123

http://www.dice-h2020.eu/
http://www.modaclouds.eu/
http://openreq.eu/
https://www.stamp-project.eu/view/main/
https://www.mikelangelo-project.eu/
http://witdom.eu/
https://www.semiotics-project.eu/
http://cloudperfect.eu
https://project-cola.eu/
http://www.arcadia-framework.eu/
https://www.supersede.eu/
https://site.cloudsocket.eu/
http://www.cyclone-project.eu/


RADON: rational decomposition and orchestration for serverless computing

alternative routes for their clients and promote relevant data
and services during route development. ADAMO may also
play the role of a fair advertisement hub for local enterprises,
while allowing city authorities to gain from the visibility of
their profile. This will help showcase the touristic values of
the city and connect preferable business offerings to stake-
holders.

The current implementation of ADAMO is based on
microservices and coarse-grained web services, which are
developed in Java for the backend and in mobile Java for
the Android app. The former hosts a set of components
for collecting information about POIs in a city, analyzing
data regarding the mobility and transportation support to
move from one place to another and maintaining user per-
sonalization features. ATC exploits RESTful web services
to coordinate communication among different components.
These will be migrated to Docker42 containers, applying
the FIWARE43 generic enabling (GE) technologies for (i)
authentication and authorization (KeyRock, AuthZForce,
Wilma); (ii) the management of POIs and routes (POI Data
Provider, Object Storage, POI Proxy Swagger).

ADAMO is a general use case of RADON where novel
data pipelines and data processing microservices, several
FaaS-based, will be added to an existing architecture. With
the help of the RADON framework, ATC will enrich
ADAMO with a story-building environment, in which jour-
nalists will harness online contents collected from multiple
sources (e.g., social media, blogs, news reports) to compose
stories about POIs in a city. This development will facili-
tate the needs of news portals and tourist agencies for stories
about specific routes. Specifically, data processing and AI
technologies will be applied for the real-time analysis of
online contents and their connection to POIs and routes. The
resulting stories will be displayed on alternative routes to
introduce POIs along them (Fig. 2).

6.2 Ambient assisted living

In recent years, eHealth technologies have been increasingly
applied to assisted living in the home environment. ENG’s
use case falls within this application domain. It couples a
horizontal platform, the CLOE-IoT middleware, on top of
which runs a vertical application for ambient assisted living
called AREAS SARA. CLOE-IoT is one of the ENG cloud
offerings (CLOE), which aims to simplify the development
of complex and robust IoT solutions across a wide variety of
IoT devices and networks. SARA is an example of a CLOE-
IoT distributed application envisioned to be part of AREAS,
ENG’s health ERP solution. It integrates robotic and IoT

42 https://www.docker.com.
43 https://www.fiware.org.

Fig. 2 ADAMO: a use case for tourism promotion

technologies to preserve quality of life for elders with mild
cognitive impairment or Alzheimer’s disease.

Built on the CLOE-IoT platform, SARA coordinates the
following nodes available in the use case: Smart Phone, act-
ing as the hub of a body area network of wearables for
mobility detection and risk assessment; Robotic Rollator, a
powered,wheeledwalking frame, primarily used for physical
support but also capable of identifying the patient, moni-
toring his mobility and navigating autonomously; Robotic
Assistant, a robotic component connected to a (possibly
dynamic) network of embedded devices and services for
monitoring the patient’s activities, health status and treat-
ment/training progress as well as for supporting cognitive
skills training and notifying the patient of upcoming treat-
ments and visits; Environment Gateway, acting as the hub of
smart devices embedded in the local physical environment
and providing a variety of services ranging from appliance
monitoring to patient tracking.

SARA is relevant to RADON as a prototypical use case
where augmenting the capacity of the middleware can accel-
erate the redeployment, configuration and evolution of the
vertical application consisting of robotic and IoT devices.
Concretely, the use case will involve the use of the RADON
model to capture the existing IoT/edge landscape. This will
show in the process how to code new IaC recipes to set up the
robotic and embedded devices at the edge, allowing ENG to
develop a reusable library of deployment templates and con-
figuration recipes for SARA. Serverless functions to capture
events and triggering of actions will then be coded. Through
integration of an open-source FaaS platform (e.g., Open-
FaaS44) with CLOE-IoT, ENGwill show how to increase the
capacity of this industrialmiddleware to give SARAaccess to
serverless computing technologies. Serverless functions will
be then used to detect and react to specific events relatively
to the environment (Fig. 3).

44 https://www.openfaas.com.

123

https://www.docker.com
https://www.fiware.org
https://www.openfaas.com


G. Casale et al.

Fig. 3 SARA: a use case for ambient assisted living

6.3 Managed DevOps

Embracing DevOps in industrial setting requires accepting
agile development and delivery principles throughout an
organization, intersecting with the socio-technical systems
that revolve around the software production process. PRQ is
building a novel framework, called Orbit, that consolidates
the company expertise in CI/CD methods and automation to
implement DevOps-style governance in organizations. Man-
aged DevOps, the focus of this use case, is conceptually
similar to an outsourcing contract that a customer stipu-
lates with an external company, like PRQ, to restructure the
business with DevOps-style agile processes and adopt and
maintain the related IT tools. This use case offers the oppor-
tunity to explore the interface between serverless, DevOps,
socio-technical systems, and ensure that RADON itself is not
perceived as a form of lock-in by adopters. As PRQ operates
mainly in consulting, Orbit is envisioned as consolidating
and expanding their market offering for digital transforma-
tion and will be offered to PRQ’s customers across various
markets, considerably enhancing the business potential of the
company.

PRQhas noted apotential to further expand the use ofFaaS
through enrichment of DevOps governance with automatic
FaaS-based triggers and actions that react to fine-grained
events generated by developers, operators and all the human
actors in the socio-technical system,while theywork together
in developing and delivering software. For example, a certain
comment in the source code monitored by serverless func-
tionsmay trigger a chain of actions to alert other developers in
the team or be automatically picked up by the testing pipeline
to reconfigure itself for an atypical test. Moreover, a large
market has been identified towards integrating within Orbit a
general-purpose function hub that consolidate the customer
organization assets into libraries of functions that can be sys-
tematically reuse to rapidly create new business processes
and IT-driven products. This will allow further reasoning on

Fig. 4 Orbit: a use case for managed DevOps

the function life cycle and long-term storage of technical and
business process functions.

The primary goals of this use case are twofold: (i) to
explore the adoption of DevOps through externally manage-
ment services, which will be achieved through automation of
IT actions needed to ensure that the different teams working
on a software product can collaborate smoothly and effi-
ciently, while following the correct setup of security and
privacy rules; (ii) to explore the capabilities of the function
hub component to archive complex process templates that
are in use across industries relevant to this market segment,
in order to enhance the capacity of the target organizations to
start from day one to use serverless functions and build new
processes on top of such stored business logic (Fig. 4).

7 Conclusion

A research agenda has been proposed for the RADON
project, which aims at developing an innovative DevOps
framework centered around serverless computing to unlock
the advantages of the FaaS paradigm to industry. RADON
will enable developers and operators to combine pre-
packaged functions and microservices into architectural
topologies that are readily deployable, automating design,
prototyping, deployment, testing, verification and evolution
of FaaS-based applications under specified functional and
non-functional requirements. A broad range of users can
potentially benefit from the innovations foreseen byRADON
as illustrated in our review of possible industrial use cases.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


RADON: rational decomposition and orchestration for serverless computing

References

1. Baldini I, Castro P, Chang K, Cheng P, Fink S, Ishakian V,Mitchell
N, Muthusamy V, Rabbah R, Slominski A et al (2017) Serverless
computing: current trends and open problems. In: Chaudhary S,
Somani G, Buyya R (eds) Research advances in cloud computing.
Springer, Singapore, pp 1–20

2. Fox GC, Ishakian V, Muthusamy V, Slominski A (2017) Status of
serverless computing and function-as-a-service (FaaS) in industry
and research. arXiv preprint arXiv:1708.08028

3. Bass L, Clements P, Kazman R (2012) Software architecture in
practice. Addison-Wesley, Boston

4. Gannon D, Barga R, Sundaresan N (2017) Cloud-native applica-
tions. IEEE Cloud Comput 4(5):16–21

5. Papazoglou MP, Vaquero LM (2016) Knowledge-intensive cloud
services: transforming the cloud delivery stack. In: Kantola J, Kar-
wowski W (eds) Knowledge service engineering handbook. CRC
Press, Boca Raton, pp 472–517

6. Alrajeh D, Kramer J, Russo A, Uchitel S (2013) Elaborating
requirements using model checking and inductive learning. IEEE
Trans Softw Eng 39(3):361–383

7. AlrajehD,Kramer J, RussoA,Uchitel S (2015)Automated support
for diagnosis and repair. Commun ACM 58(2):65–72

8. Duvall PM, Matyas S, Glover A (2007) Continuous integration:
improving software quality and reducing risk. Pearson Education,
London

9. Humble J, Farley D (2010) Continuous delivery: reliable software
releases through build, test, and deployment automation. Pearson
Education, London

10. JiangZM,HassanAE (2015)A survey on load testing of large-scale
software systems. IEEE Trans Softw Eng 41(11):1091–1118

11. Leitner P, Bezemer C-P (2017) An exploratory study of the state of
practice of performance testing in java-based open source projects.
In: Proceedings of the 8th ACM/SPEC on international conference
on performance engineering. ACM, pp 373–384

12. Heinrich R, van Hoorn A, Knoche H, Li F, Lwakatare LE, Pahl
C, Schulte S, Wettinger J (2017) Performance engineering for
microservices: research challenges and directions. In: Companion
of the 8th ACM/SPEC on international conference on performance
engineering. ACM, pp 223–226

13. Schulz H, Angerstein T, van Hoorn A (2018) Towards automat-
ing representative load testing in continuous software engineering.
In: Companion of the 9th ACM/SPEC international conference on
performance engineering. ACM, pp 123–126

14. Cois CA, Yankel J, Connell A (2014) Modern DevOps: optimiz-
ing software development through effective system interactions.
In: Proceedings of the 2014 IEEE international professional com-
munication conference. IEEE, pp 1–7

15. Shull F, Falessi D, Seaman C, DiepM, Layman L (2013) Technical
debt: showing the way for better transfer of empirical results. In:
Münch J, Schmid K (eds) Perspectives on the future of software
engineering. Springer, Berlin, pp 179–190

16. Tufano M, Palomba F, Bavota G, Oliveto R, Di Penta M, De Lucia
A, Poshyvanyk D (2015) When and why your code starts to smell
bad. In: Proceedings of the 2015 IEEE/ACM international confer-
ence on software engineering, vol 1. IEEE, pp 403–414

17. D’AmbrosM,LanzaM,RobbesR (2012)Evaluating defect predic-
tion approaches: a benchmark and an extensive comparison. Empir
Softw Eng 17(4–5):531–577

18. Wurster M, Breitenbücher U, Képes K, Leymann F, Yussupov V
(2018) Modeling and automated deployment of serverless applica-
tions usingTOSCA. In: Proceedings of the 2018 IEEE international
conference on service-oriented computing and applications. IEEE,
pp 73–80

123

http://arxiv.org/abs/1708.08028

	RADON: rational decomposition and orchestration for serverless computing
	Abstract
	1 Introduction
	2 Major challenges
	2.1 FaaS-oriented modeling
	2.2 Requirements formalization
	2.3 Continuous integration and continuous delivery
	2.4 Quality assurance

	3 RADON framework
	3.1 Modeling environment
	3.2 Runtime environment
	3.3 IDE & DevOps methodology
	3.4 Quality assurance tools

	4 Expected progress
	4.1 Microservices architectures
	4.2 Serverless FaaS
	4.3 Data technologies
	4.4 Topology and orchestration models
	4.5 Requirements engineering
	4.6 Continuous integration and continuous delivery
	4.7 Quality assurance

	5 Related research projects
	6 Industrial use cases
	6.1 Tourism promotion
	6.2 Ambient assisted living
	6.3 Managed DevOps

	7 Conclusion
	References




