
VU Research Portal

Architecting with microservices: A systematic mapping study

Di Francesco, Paolo; Lago, Patricia; Malavolta, Ivano

published in
Journal of Systems and Software
2019

DOI (link to publisher)
10.1016/j.jss.2019.01.001

document version
Publisher's PDF, also known as Version of record

document license
Article 25fa Dutch Copyright Act

Link to publication in VU Research Portal

citation for published version (APA)
Di Francesco, P., Lago, P., & Malavolta, I. (2019). Architecting with microservices: A systematic mapping study.
Journal of Systems and Software, 150(4), 77-97. https://doi.org/10.1016/j.jss.2019.01.001

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 27. May. 2021

https://doi.org/10.1016/j.jss.2019.01.001
https://research.vu.nl/en/publications/a5b3dd83-2bce-4290-880b-6cd1ab310f46
https://doi.org/10.1016/j.jss.2019.01.001

The Journal of Systems and Software 150 (2019) 77–97

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Architecting with microservices: A systematic mapping study

Paolo Di Francesco

a , ∗, Patricia Lago

b , Ivano Malavolta

b

a Gran Sasso Science Institute, L’Aquila, Italy
b Vrije Universiteit Amsterdam, the Netherlands

a r t i c l e i n f o

Article history:

Received 30 September 2017

Revised 22 December 2018

Accepted 2 January 2019

Available online 8 January 2019

Keywords:

Microservices

Software architecture

Systematic mapping study

a b s t r a c t

Context: A microservice architecture is composed of a set of small services, each running in its own pro-

cess and communicating with lightweight mechanisms. Many aspects on architecting with microservices

are still unexplored and existing research is still far from being crispy clear.

Objective: We aim at identifying, classifying, and evaluating the state of the art on architecting with mi-

croservices from the following perspectives: publication trends, focus of research, and potential for in-

dustrial adoption.

Method: We apply the systematic mapping methodology. We rigorously selected 103 primary studies and

we defined and applied a classification framework to them for extracting key information for subsequent

analysis. We synthesized the obtained data and produced a clear overview of the state of the art.

Results: This work contributes with (i) a classification framework for research studies on architecting with

microservices, (ii) a systematic map of current research of the field, (iii) an evaluation of the potential

for industrial adoption of research results, and (iv) a discussion of emerging findings and implications for

future research.

Conclusion: This study provides a solid, rigorous, and replicable picture of the state of the art on archi-

tecting with microservices. Its results can benefit both researchers and practitioners of the field.

© 2019 Elsevier Inc. All rights reserved.

1

p

2

c

c

L

s

p

H

n

t

c

c

s

r

a

m

d

o

m

a

c

w

i

f

s

h

0

. Introduction

Amazon, Netflix, LinkedIn, Spotify, SoundCloud and other com-

anies (Fowler and Lewis, 2014; Villamizar et al., 2015; Yahia et al.,

016) have evolved their applications towards a microservice ar-

hitecture (MSA). The most acknowledged definition of the mi-

roservices architectural style is the one provided by Fowler and

ewis (2014) , which describes it as an approach for developing a

ingle application as a suite of small services, each running in its own

rocess and communicating with lightweight mechanisms, often an

TTP resource API .

Recently, the microservice architectural style has received sig-

ificant attention from a research point of view. However, as of

oday it is difficult for both researchers and practitioners to have a

lear view of existing research solutions for architecting with mi-

roservices. The goal of this paper is to characterize the current

tate of the art for understanding what we know about scientific

esearch on architecting with microservices.

For achieving this goal we designed and conducted a system-

tic mapping study methodology . Specifically, we select 103 pri-
∗ Corresponding author.

E-mail address: paolo.difrancesco@gssi.it (P. Di Francesco).

ttps://doi.org/10.1016/j.jss.2019.01.001

164-1212/© 2019 Elsevier Inc. All rights reserved.
ary studies from 532 potentially relevant papers, we rigorously

efine a classification framework for categorizing research results

n architecting with microservices, and we apply it to the 103 pri-

ary studies. Finally, we synthesize the obtained data to produce

 clear overview of the state of the art in architecting with mi-

roservices. Also, we assess how research results on architecting

ith microservices can be potentially transferred and adopted in

ndustrial projects. This assessment can play the role of reference

ramework for acting towards a smoother transfer of research re-

ults to practice.

The main contributions of this study include:

• a reusable framework for classifying, comparing, and evaluat-

ing architectural solutions, methods, and techniques (e.g., tac-

tics, patterns, styles, views, models, reference architectures, or

architectural languages) specific for microservices;
• an up-to-date map of the state of the art in architecting with

microservices;
• an evaluation of the potential for industrial adoption of existing

research results on architecting with microservices;
• an evidence-based discussion of the emerging research trends,

patterns, and gaps, and their implications for future research on

architecting with microservices.

https://doi.org/10.1016/j.jss.2019.01.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2019.01.001&domain=pdf
mailto:paolo.difrancesco@gssi.it
https://doi.org/10.1016/j.jss.2019.01.001

78 P. Di Francesco, P. Lago and I. Malavolta / The Journal of Systems and Software 150 (2019) 77–97

L

a

b

i

o

c

c

r

b

v

N

t

3

s

B

d

3

t

s

p

t

This study is an extended version of our previous research on

architecting with microservices (Di Francesco et al., 2017b). The

novelties added in this study are: (i) the extension of the set of

primary studies from 71 to 103 entries because now we cover pub-

lications until the beginning of May 2017, (ii) a more in-depth elab-

oration of the extracted data, (iii) an orthogonal analysis about the

potential interactions between various parameters of the classifi-

cation framework, (iv) the analysis of the research trends over the

years.

The audience of this study is composed of both (i) researchers

interested to investigate on the microservices architectural style,

and (ii) practitioners willing to understand and adopt existing re-

search on architecting with microservices.

The remainder of this paper is organized as follows. In

Section 2 we provide basic concepts about architecting with mi-

croservices. In Section 3 we present the design of the study.

The elaborated results are reported in Sections 4, 5 , and 6 .

Section 7 discusses the orthogonal findings of the study. Threats

to validity and related work are described in Sections 8 and 9 , re-

spectively. Section 10 closes the paper.

2. Architecting with microservices

While there has not been a wide acceptance of a specific defi-

nition, a popular one was provided by Lewis and Fowler, which de-

fine the microservice architectural style as an approach to develop-

ing a single application as a suite of small services each running in

its own process and communicating with lightweight mechanisms,

often an HTTP resource API (Fowler and Lewis, 2014). Recurrent

characteristics of the microservice architectural style are: (i) orga-

nization of the system around business capability, (ii) automated

deployment, (iii) intelligence in the endpoints, and (iv) decentral-

ized control of languages and data. This style allows to design ar-

chitectures that should be flexible, modular and easy to evolve.

Microservice architectures can provide significant benefits.

Among the important ones, there is the possibility to design, de-

velop, test and release services with great agility. Infrastructure

automation allows to reduce the manual effort involved in build-

ing, deploying and operating microservices, thus enabling contin-

uous delivery. Decentralized governance and data management al-

low services to be independent, and avoid an application to stan-

dardize on a single technology. Microservice architectures are par-

ticularly suitable for cloud infrastructures, as they greatly benefit

from cloud-enabled elasticity and rapid provisioning of resources.

Architecting with microservices, however, is not an easy task as

it requires to manage a distributed architecture and its challenges,

which include network latency and unreliability, fault tolerance,

complex services’ orchestration, data consistency and transaction

management, and load balancing. Cloud infrastructures and new

technologies play a fundamental role for realizing microservice ar-

chitectures and managing the associated challenges and complexi-

ties.

An illustrative example of a microservice-based architecture is

Netflix. 1 Netflix is implemented as an ecosystem of small, inde-

pendently deployable, and independently scalable microservices.

When requests come from client-side devices (e.g., smartphones,

TVs, laptops), they reach the Netflix API orchestration service,

which acts as an API gateway towards the rest of the ecosystem

(i.e., it exposes a set of coarse-grained APIs and then routes incom-

ing requests to the specific target microservices within the ecosys-

tem). The Netflix API implements the logic to route, sequence,

and parallelize incoming calls from the devices. Microservice-

based systems must be designed to cope with failure (Fowler and
1 https://www.nginx.com/blog/microservices- at- netflix- architectural- best- practices/ .
ewis, 2014), meaning that the application must be able to toler-

te possible service failures either by recovering as fast as possi-

le or by gracefully degrading its functionalities. At Netflix, this

s achieved by having each microservice manage its own layer

f persistence (as independently as possible from the other mi-

roservices), by pushing as much as possible towards stateless mi-

roservices, relying on real-time monitoring, using libraries for fast

ecovery of services, and by implementing the so-called circuit

reaker architectural pattern for avoiding cascading failures (e.g.,

ia the open-source Hystrix 2 library). Further details about the

etflix microservice-based architecture can be found in the Netflix

echnical blog 3 .

. Study design

In this research we follow the well-established guidelines for

ystematic mapping studies (Petersen et al., 2015; Kitchenham and

rereton, 2013). In this section we present the key aspects of the

esign of our study.

.1. Goal and research questions

The goal of this study is to identify, classify, and evaluate the

rends, focus, and potential for industrial adoption of existing re-

earch in architecting with microservices from a researcher’s and

ractitioner’s point of view. This abstract goal can be refined into

he following research questions.

RQ1: What are the publication trends of research studies about

architecting with microservices?

Rationale: academic research is a dynamic ecosystem, where

a multitude of researchers and research groups investigate

on specific scientific problems over time with different de-

grees of independence and different methodologies.

Relevance for researchers: the results of this research ques-

tion help researchers in (i) quantifying the intensity of sci-

entific interest on architecting with microservices, (ii) iden-

tifying the academic venues where related papers about ar-

chitecting microservices are published, and (iii) identifying

the academic venues where new results about architecting

microservices may be better received (and appreciated) by

the scientific community.

Relevance for practitioners: the results of this research ques-

tion help practitioners in identifying the relevant venues

where scientific knowledge is created, so to (i) take inspi-

ration for solving problems which have been already tar-

geted by researchers, (ii) get a more orthogonal and cross-

organizational perspective with respect to architecting with

microservices, and (iii) identify the research groups which

are prominently contributing in the field, so to catch future

collaboration opportunities.

RQ2: What is the focus of research on architecting with mi-

croservices?

Rationale: architecting microservices is a multi-faceted re-

search topic, where researchers can focus on very different

aspects (e.g., continuous integration, performance analysis,

security, deployment elasticity, monitoring and fault toler-

ance), applying very different research methodologies (in-

dustrial case studies, empirical evaluations, feasibility stud-

ies, etc.), and providing different types of contributions (e.g.,

specific architectural tactics, architectural languages, etc.).

Relevance for researchers: by answering this research ques-

tion we support researchers by providing (i) a solid foun-
2 https://github.com/Netflix/hystrix
3 http://techblog.netflix.com .

https://www.nginx.com/blog/microservices-at-netflix-architectural-best-practices/
https://www.github.com/Netflix/hystrix
http://techblog.netflix.com

P. Di Francesco, P. Lago and I. Malavolta / The Journal of Systems and Software 150 (2019) 77–97 79

Fig. 1. Overview and numbers of the search and selection process.

3

t

s

l

Listing 1. Search string used for automatic research studies.

g

p

n

(

m

n

t

a

s

d

s

r

s

s

r

s

l

s

dation for classifying existing (and future) research on ar-

chitecting with microservices and (ii) an understanding of

current research gaps in the state of the art on architecting

with microservices.

Relevance for practitioners: the results of this research ques-

tion help practitioners in (i) positioning themselves accord-

ing to their organizational and technical needs (thanks to

the classification framework) and (ii) effectively locate the

research results which can be reused/customized for solving

specific problems related to the microservices architectural

style (e.g., how to efficiently and correctly perform integra-

tion testing of microservice-based systems).

RQ3: What is the potential for industrial adoption of existing

research on architecting with microservices?

Rationale: while it is well known that microservices have

their roots in industry, it is a fact that there are research

groups focusing on them from an academic perspective. So

it is natural to ask ourselves how the produced research

findings and contributions can be actually transferred back

to industry.

Relevance for researchers: by answering this research ques-

tion we support researchers by assessing how and if the cur-

rent state of the art on architecting with microservices is

ready to be transferred and adopted in industry. Moreover,

the results of this research question will trigger a discussion

about the next steps for successfully transferring research

products on microservice architectures to industry.

Relevance for practitioners: the results of this research ques-

tion help practitioners in identifying those research prod-

ucts which are ready to be transferred to industry and

which research groups are already collaborating with in-

dustry. Also, the results of our study support practitioners

in identifying the solutions which are supported by (open-

source) tools, and thus are one step closer to their applica-

tion into an industrial context.

.2. Search and selection process

In the following we present the stages of our search and selec-

ion process (see Fig. 1).

1. Initial search . In this stage we performed

4 automatic

earches on electronic databases and indexing systems. The se-

ection of these electronic databases and indexing systems was
4 The automatic searches were performed on May 8, 2017.

uided by: (i) the fact that they are the largest and most com-

lete scientific databases and indexing systems in software engi-

eering (Petersen et al., 2015; Kitchenham and Brereton, 2013),

ii) the fact that they have been recognised as being an effective

eans to conduct systematic literature studies in software engi-

eering (Petersen et al., 2015), (iii) their high accessibility, and (iv)

heir ability to export search results to well-defined, computation-

menable formats. Our search string is shown in the listing below.

For consistency, the search string has been applied to title, ab-

tract and keywords of papers in all electronic databases and in-

exing systems considered in this research.

2. Impurity removal . Due to the nature of the involved data

ources, search results included also elements that were clearly not

esearch papers, such as international standards, textbooks, book

eries, etc. In this stage we manually removed such impurius re-

ults from our set

3. Merging and duplicates removal . In this stage all relevant

esults from the first stage have been combined together into a

ingle dataset.

4. Application of selection criteria . We considered all the se-

ected studies and filtered them according to the following inclu-

ion and exclusion criteria.

I1 - Studies focussing on architectural solutions, methods or

techniques (e.g., tactics, patterns, styles, views, models, ref-

erence architectures, or architectural languages) specific for

microservices.

I2 - Studies providing an evaluation of the architectural solution,

method or technique (e.g., via formal analysis, controlled ex-

periment, exploitation in industry, simple examples, etc.).

I3 - Studies subject to peer review.

I4 - Studies written in English.

E1 - Studies that, while focusing on microservices, do not explic-

itly deal with their architecture (e.g., studies focussing only

on low-level technological aspects, the inner details of mi-

croservices, etc.).

E2 - Studies where microservices are only used as an example.

E3 - Secondary or tertiary studies (e.g., systematic literature re-

views, surveys, etc.).

80 P. Di Francesco, P. Lago and I. Malavolta / The Journal of Systems and Software 150 (2019) 77–97

Fig. 2. Classification framework.

g

t

s

G

p

a

n

s

3

t

t

fi

f

t

E4 - Studies in the form of tutorial papers, editorials, etc. because

they do not provide enough information.

E5 - Studies not available as full-text.

Even if secondary studies have been excluded because of the E3

exclusion criterion, we considered them in our study for: (i) check-

ing the completeness of our set of primary studies (i.e., if any rele-

vant paper was missing from this study); (ii) identifying important

issues to be analysed in this study; (iii) defining what is the con-

tribution of this study to the literature (see Section 9).

5. Snowballing . In this phase we complemented the automatic

search with a closed recursive backward and forward snowballing

activity (Wohlin, 2014). In the backward snowballing we focussed

on all the references of each considered study, whereas for the for-

ward snowballing Google Scholar has been used to obtain those

studies citing the current one (Wohlin, 2014).

6. Combination . If there were multiple papers on the same

study, we kept a record of all of them and pointed them to a sin-
le study. For example, if a primary study was published in more

han one paper (e.g., a conference paper extended to a journal ver-

ion), only one instance has been considered as a primary study.

enerally, the journal version has been preferred, since more com-

lete, but both versions have been used in the data extraction

nd analysis of the publication trends (RQ1) phases. This step is

ecessary for ensuring completeness and traceability of the re-

ults (Wohlin et al., 2012).

.3. Data extraction

In order to have a rigorous data extraction process and to ease

he management of the extracted data, a well-structured classifica-

ion framework has been rigorously designed. The resulting classi-

cation framework is shown in Fig. 2 and it is composed of three

acets, each of them addressing its corresponding research ques-

ion.

http://scholar.google.com

P. Di Francesco, P. Lago and I. Malavolta / The Journal of Systems and Software 150 (2019) 77–97 81

Fig. 3. Keywording process and data extraction for RQ2.

f

t

y

r

e

c

o

i

fi

c

p

r

i

R

e

R

e

o

i

l

(

p

i

c

t

t

p

m

c

p

(

d

d

c

i

t

k

b

n

m

e

y

h

r

t

h

t

b

t

v

f

3

p

W

t

c

c

s

t

e

t

e

w

a

r

i

3

p

a
In the following we describe each facet of our classification

ramework.

Publications trends (RQ1) . The parameters we considered

o collect data about publication trends are: publication
ear , publication venue (e.g., conference, journal, etc.), and

esearch strategy (e.g., solution proposal, opinion paper,

tc.).

Focus of research (RQ2) . We followed a systematic pro-

ess called keywording for defining the categories of this facet

f our classification framework. Goal of the keywording process

s to effectively develop a classification framework so that it

ts the primary studies and takes their research focus into ac-

ount (Petersen et al., 2008). The following details each step of the

rocess depicted in Fig. 3 :

1. Identify starting set of studies . Two researchers (R1 and R2)

andomly extracted 5 studies, which have been used as pilot stud-

es.

2. Identify keywords and concepts . Three researchers (R1, R2, and

3) collected keywords and concepts by reading the full-text of

ach starting study.

3. Cluster keywords and form categories . Two researchers (R1 and

2) clustered the collected keywords and concepts into a set of

merging categories. The output of this stage is the initial version

f the classification framework. Examples of emerging categories

nclude: supported architecting activities, scope in the software

ifecycle, considered design patterns, considered quality attributes

e.g., performance, reliability, security), etc. Next steps have been

erformed for each primary study.

4. Extract data from current study . A researcher (R1) extracted

nformation about the current primary study to be analysed and (i)

ollected information according to the parameters of the classifica-

ion framework and (ii) collected any kind of additional informa-

ion that was considered relevant and that did not fit within any

arameter of the classification framework. If the collected infor-

ation about the current primary study fit completely within the

lassification framework, then we proceeded to analyze the next

rimary study, otherwise the classification framework was refined

this step involved three researchers, R1, R2, and R3)).

5. Refine comparison framework . Two researchers (R2 and R3)

iscussed together on the collected additional information. This

iscussion could result either in the correction of the performed

lassification or in the refinement of the classification framework

n order to make it a better fit with the primary studies.
c
The above described process ended when no primary study

o analyze was left. The specific parameters emerging from the

eywording process are independent from each other and have

een extracted independently; they are described in Section 5 . Fi-

ally, in this phase we agreed that 9 analysed studies were se-

antically out of the scope of this research, so they have been

xcluded.

Potential for industrial adoption (RQ3) . In order to anal-

se the potential for industrial adoption of microservices, we

ave classified and extracted five different parameters: (i)

eadiness level for assessing the maturity of the involved

echnologies, (ii) industry involvement for understanding

ow academic and industrial researchers collaborate on the

opic, (iii) tool support for distinguishing between software-

ased or knowledge-based contributions, (iv) open-source
est system for identifying existing benchmarks for microser-

ice architectures, and (v) number of microservices used
or evaluation .

.4. Data synthesis

Our data synthesis activity can be divided into three main

hases: vertical analysis, trend analysis, and horizontal analysis.

hen performing vertical analysis , we analyzed the extracted data

o find trends and collect information about each parameter of our

lassification framework. When performing trend analysis , we fo-

ussed on how each possible value of all parameters of the clas-

ification framework evolves over time . When performing horizon-

al analysis , we used contingency tables for evaluating the actual

xistence of relations across different parameters of the classifica-

ion framework, we made comparisons between pairs of param-

ters, and we identified perspectives of interest. In those phases

e performed a combination of content analysis (for categorizing

nd coding the studies under broad thematic categories) and nar-

ative synthesis (for explaining in details and interpreting the find-

ngs coming from the content analysis).

.5. Replicability of the study

To allow easy replication and verification of our study, a com-

lete replication package Di Francesco et al. (2017a) is publicly

vailable to interested researchers. Our replication package in-

ludes: the detailed research protocol of this study, a document

82 P. Di Francesco, P. Lago and I. Malavolta / The Journal of Systems and Software 150 (2019) 77–97

Fig. 4. Distribution of primary studies by year and by type of publication.

Fig. 5. Research strategies.

c

(

m

t

t

d

n

t

v

c

v

g

A

t

t

s

p

s

t

s

M

a

g

(

t

a

y

i

t

t
providing a precise definition of all the parameters of the classifi-

cation framework, the list of all selected studies, raw data for each

phase of the study, and the R scripts for checking, analyzing, and

visualizing the extracted data.

4. Results - Publication trends (RQ1)

In this section we present the results we obtained when ana-

lyzing the publication trends on architecting with microservices. In

order to provide a complete picture about the number and types

of publications on the topic, in this section we consider all the se-

lected publications, independently of the combination step we per-

formed during the search and selection process (see Section 3.2).

More specifically, for answering RQ1 we consider the total set of

119 primary studies, which includes both the entire set of 103 pri-

mary studies and the 16 primary studies resulting from the com-

bination activity.

4.1. Obtained results (RQ1)

Publication years . Fig. 4 presents the distribution of publica-

tions on architecting with microservices over the years. The year

2017 is highlighted with a grey background to remark that data

within this period is only partial, as the search and selection pro-

cess was performed in May 2017.

The Figure emphasizes a clear confirmation of the scientific in-

terest on architecting with microservices in the years 2015 through

2017. A very small number of publications have been produced

until 2014, which is actually the first year in which (i) microser-

vices started to attract the interest of large organizations, and

(ii) the term microservice as architectural style was consistently

used (Pahl and Jamshidi, 2016). As a confirmation, even if the six

studies published before 2014 were about systems composed of

small-scale lightweight services (P9, P60, P61, P62, P104, P105),

they were referring to slightly different perspectives on microser-

vices as they are considered today. For example, P9 considers mi-

croservices as low-level software components in the robotic do-

main, whereas P60 considers microservices as mobile services gen-

erated by end-users. Year 2015 signed a booming in the research

field of architecting with microservices, with the trend increasing

in 2016 and still growing in the first months of the year 2017. 5

Publication types . Fig. 4 shows the publication types of the pri-

mary studies over the years. The high number of conference and

journal papers indicate that architecting with microservices is pro-

gressing as research topic despite its relative young age; the rel-

atively low number of workshop papers indicate that researchers
5 Our search process covers the research studies published until 8th May 2017.

(

i

e
ommonly target more scientifically-rewarding publication types

like journals and conferences) when working on architecting with

icroservices.

Publication venues . We can observe an extreme fragmenta-

ion in terms of publication venues, where research on archi-

ecting with microservices is spread across 91 venues spanning

ifferent research areas like cloud infrastructures, software engi-

eering, software services, autonomic computing, software main-

enance, etc. This result indicates that architecting with microser-

ices is considered as an orthogonal research target with many

ross-cutting concerns. In Table 1 the most targeted publication

enues are reported. We can notice that researchers are mainly tar-

eting specialized venues on architecting with microservices (i.e.,

MS), cloud computing venues (i.e., IEEECC) and software architec-

ure venues (i.e., ICSA). Researchers and practitioners can consider

hose venues as their starting points for their exploration into the

tate of the art on architecting with microservices.

Research strategies . Since this parameter is general and inde-

endent from the research area, we reuse the comparison of re-

earch approaches proposed by Wieringa et al. (2006) . We chose

his comparison because (i) it has been widely used in various

ystematic mapping studies (e.g., Engström and Runeson, 2011;

ehmood and Jawawi, 2013; Petersen, 2011), and (ii) its categories

re quite cost-effective to be identified by reading a paper without

oing into its very details (Petersen et al., 2008).

As shown in Fig. 5 , here the clear winner is solution proposal

86/119). This result is due to the fact that the microservice archi-

ectural style is still in its infancy (we recall here that its first well

cknowledged definition has been provided only in 2014) and not

et consolidated in any (not even de facto) standards. This results

n a large number of researchers trying to propose their own solu-

ions for either recurrent or specific problems (see Section 5.1 for

he details on which problems are targeted). Validation research

43/119) is the second most recurrent research strategy, highlight-

ng the fact that researchers are actually providing some level of

vidence about their proposed solutions, e.g., by simulations, in-

P. Di Francesco, P. Lago and I. Malavolta / The Journal of Systems and Software 150 (2019) 77–97 83

Table 1

Publication venues.

Fig. 6. Trend analysis (RQ1).

t

t

i

t

n

c

i

t

t

o

t

a

s

f

4

o

y

f

d

t

p

i

w

r

u

c

b

r

i

o

s

l

t

o
he-lab experiments, prototypes, etc. At the other end of the spec-

rum, evaluation research is performed very rarely (1/119), mean-

ng that industry- and practitioners-oriented studies (e.g., indus-

rial case studies, action research, practitioner-targeted surveys) are

ot yet in the main focus of researchers today. Specifically, in P34 a

ase study conducted in a software company has been presented;

n this context, the authors developed a Java application using both

he monolithic approach and the microservice pattern. The fact

hat evaluation research is rarely performed has a negative impact

n the potential for transferring current research results in indus-

ry. This suggests a gap that should be filled by future research on

rchitecting with microservices, especially if we want to either (i)

olve real problems coming from industrial scenarios, or (ii) push

urther the technology transfer of research results in industry.

.2. Trend analysis (RQ1)

In this section we report our analysis of the research trends

ver the years for the parameters related to RQ1. We have anal-
sed the research trends for all the parameters of the classification

ramework. However, some trends have been already discussed

uring the vertical analysis (e.g., the spike of conference publica-

ions in 2015 and 2016, see Fig. 6 (a)) or do not have enough data

oints (e.g., the use of architectural languages – see Section 5.2), so

n the following we focus exclusively on the most essential aspects

e could observe. For the sake of completeness, we include in the

eplication package (Di Francesco et al., 2017a) of our study the fig-

res showing the research trends for all parameters of the classifi-

ation framework. In each figure, we have highlighted with a grey

ackground the year 2017 to recall that the data within this pe-

iod is partial, as the search and selection process was performed

n May 2017.

For what concerns research strategies , we observe a growth

f solution proposals from 2014. Studies proposing validation re-

earch are following the trend of solution proposals, but with a

ower magnitude. Unfortunately, as previously discussed, evalua-

ion research (i.e., the one involving industry- and practioners-

riented research methodologies) is still lagging behind and its

84 P. Di Francesco, P. Lago and I. Malavolta / The Journal of Systems and Software 150 (2019) 77–97

Fig. 7. Target problems.

Fig. 8. Research contribution.

Fig. 9. Main research area.

b

a

t

F

t

o

m

e

s

a

o

m

t

a

c

c

p

s

T

s

o

i

i

s

b

p

o

v

t

d

t

o

v

t

d

o

a

v

a

o

m

r

r

b

t

6 https://aws.amazon.com/lambda
trend over the years seems not to be very promising. This confirms

the urgency to fill the gap with respect to the industrial relevance

of the performed evaluations.

Main findings:

� Year 2015 signed a booming monotonic increase in pub-
lication numbers with particular interest in conferences
and journals (both increasing).

� The field is rooted in practice: publication venues are
scattered across specific topics or application domains,
and most publications propose specific solutions and vali-
dations thereof.

� Only one study applied industry- and practioners-oriented

research methodologies (e.g., industrial case studies, ac-
tion research), leaving a gap with respect to the industrial
relevance of the performed evaluations.

5. Results - research focus (RQ2)

As described in Section 3.3 , the part of classification framework

related to RQ2 has been systematically defined. After this process

we obtained two main categories related to the research focus on

architecting with microservices, namely scope of the research (see

Section 5.1) and support for architecting (see Section 5.2).

5.1. Scope of the research

With this category we provide information to help researchers

and practitioners in putting into context research studies on ar-

chitecting with microservices. In the following we discuss the ob-

tained results.

Target problems . Fig. 7 presents the problems targeted by the

primary studies. The obtained results confirm that if on the one

hand microservices can help in achieving a good level of flexi-
ility (e.g., by promoting low services coupling, higher maintain-

bility), on the other hand adopting a microservice-based architec-

ure may bring higher complexity. Interestingly, the bottom area of

ig. 7 shows problems that are related to system-level aspects like

ime to market, low testability, low portability , and security . More-

ver, only one paper (P64) is addressing the problem of bench-

arking microservice-based applications. These aspects have been

xtensively investigated in the software architecture area, but are

till new to microservice architectures; this result is an indicator of

 potentially relevant research gap needing attention in the future.

Research contribution . By referring to Fig. 8 , the realization

f microservice-based application and the consistent number of

ethod studies may indicate that the complexity in the realiza-

ion of these systems is still very high. Interestingly, few papers

re investigating architectural languages and design patterns for mi-

roservices, unveiling interesting gaps to be filled by the research

ommunity.

Main research area . The main research area is about the

rincipal area of interest of the research to which the primary

tudy belongs, e.g., cloud computing, system migration (see Fig. 9).

he focus on the system quality (e.g., performance, maintainability)

uggests that the microservice architectural style has direct impact

n the design of a system and that researchers are still investigat-

ng how to leverage its characteristics.

A significant attention is also given to the use of microservices

n cloud environments. Not surprisingly, a significant number of

tudies are investigating migration techniques in order to adopt and

enefit of microservices starting from the so-called monolithic ap-

lications. An industrial survey on the activities and the challenges

f migrating towards microservices (Di Francesco et al., 2018) pro-

ides insights to this topic from an industrial perspective.

If on the one side microservice architecture have been applied

o recent technologies like Internet of Things, mobile apps , and other

omain-specific fields as robotics (P9) and datacenters (P28), on

he other side a significant number of studies are focusing on

ther research areas (not reported in the figure), such as microser-

ice architecture recovery (P85), distinguishing characteristics be-

ween microservice- and service-oriented architectures (P77, P84),

eployment cost models definition (P79).

Abstraction layer . As shown in Fig. 13 , microservices can run

n top of (i) a physical machine running an operating system, (ii)

 machine running a container engine, (iii) a machine running a

irtualized environment (in this setting the hypervisor is mapped

s operating system), or (iv) a machine running a container engine

n top of a virtualized environment.

As shown in Fig. 10 , more than half of the studies focus on the

icroservice layer only, without considering any other layer. This

esult is also aligned with the recent advent of serverless functions

unning in the cloud, where the developer is asked to provide the

usiness logic that should run in the cloud, whereas the opera-

ional overhead is taken care by the platform (e.g., AWS Lambda 6).

https://aws.amazon.com/lambda

P. Di Francesco, P. Lago and I. Malavolta / The Journal of Systems and Software 150 (2019) 77–97 85

Fig. 10. Abstraction layer.

I

a

d

e

s

b

t

a

c

l

u

k

P

t

b

c

u

(

b

o

i

d

s

t

p

d

t

t

w

D

t

o

d

c

t

a

f

t

g

a

r

w

m

i

A

v

N

h

u

Fig. 11. Software lifecycle scope.

Fig. 12. Microservice architecture definition.

b

d

5

p

p

t

o

v

M

a

i

e

t

t

b

c

e

m

F

t

t

m

a

q

r

(

s

o

s

i

w

m

I

e

a

c
n this context, serverless platforms are able to transparently man-

ge infrastructural and operations aspects of the system, such as its

eployment and configuration, monitoring and logging (at differ-

nt levels, like operating system, containers, communication, etc.),

ecurity facilities and patches, operating system, platforms, and li-

raries updates, management of the services lifecycle, services ver-

ical and horizontal scaling, and so on.

Differently, other studies not only focus on microservices, but

lso consider the environment as an important aspect of the ar-

hitecture. More specifically, the container and the virtual machine

ayers were discussed respectively in 24 and 19 studies. This partic-

lar focus on containerization and virtualization confirms them as

ey enabling technologies for MSA. Moreover, a few studies (P16,

27, P39, P75) also consider the possibility to run containers on

op of virtual machines, thus combining the resource utilization

enefits of virtual machines and the portability and efficiency of

ontainerization (Jaramillo et al., 2016), which seems to be partic-

larly suitable for offering microservices on the IaaS cloud model

 Khazaei et al., 2016).

Software lifecycle scope . As shown in see Fig. 11 , the num-

er of studies on design is significantly higher than the number

f those focusing on other lifecycle phases. In 32 primary stud-

es the microservice architectural style is related with operations of

eployment and configuration of the environment needed for the

ervices in general. We have also investigated which studies relate

he microservice architectural style with DevOps. Among the 103

rimary studies, 30 of them discussed DevOps with two slightly

ifferent perspectives. On the one side, some consider DevOps as

he set of practices intended to reduce the time between commit-

ing a change in the code base and rolling it out in production,

hile ensuring high quality (Bass et al., 2015). On the other side,

evOps deals with the goal of having the development and opera-

ions teams work closely together for achieving rapid and continu-

us release cycles (Fazio et al., 2016). A total of 32 studies explicitly

iscussed on the requirements of the microservice approach/appli-

ation included in the study. This helps define the specific con-

ext information the microservice architectures are subject to. As

n example, in P103 the authors discuss both functional and non-

unctional requirements when they use a microservice architecture

o address key practical challenges in smart city platforms. Finally,

iven the trend in the scope of the studies, we conjecture that the

reas of microservices maintenance and testing will attract further

esearch when the fields of design, implementation and operation

ill gain more maturity.

Microservice architecture definition . In the primary studies,

icroservice architectures have been defined in several ways and

n some cases even more than one single definition was reported.

s shown in Fig. 12 , the most recurring definition was the one pro-

ided by Fowler and Lewis (2014) , followed by the ones given by

ewman (2015) , and others. In 27 of the 103 studies, the authors

ave either provided their own definition of microservices or have

sed an informal definition. Nevertheless, the definitions provided
y Lewis & Fowler and Newman seem to start prevailing over other

efinitions.

.2. Support for architecting

We characterize primary studies with respect to how they sup-

ort architecture-specific concerns and activities, such as design

atterns, support for specific quality attributes, recurrent infras-

ructural services.

Architecting activities . We have based our classification

f architecting activities according to the intro-

ert/extrovert nature of software architects discovered in

alavolta et al. (2013) . The introvert nature regards the

nalysis and design of the software activities. It has been refined

nto the architecting activities defined by Li et al. (2013) . The

xtrovert nature regards the communication between archi-

ects and other stakeholders. It has been further classified into

he providing information and getting input parameters proposed

y Kruchten (2008) . Highlighted in darker gray in the figure, we

an also observe how little investigation has been performed on

xtrovert architecting activities , i.e., providing infor-

ation and getting input from other stakeholders of the system.

rom a research perspective, the low interest in these complemen-

ary activities indicates that there are areas of improvement in

he engagement of customers and users, and also in the project

anagement and communication with teams.

Quality attributes . Fig. 15 shows that performance, maintain-

bility , and functional suitability are by far the most investigated

uality attributes, while the remaining qualities are almost equally

epresented. Among the primary studies discussing performance

59/103), we have classified which of them have a special focus on

calability. It resulted that scalability aspects are addressed in 36

ut of 59 studies, suggesting that many researchers seem to con-

ider scalability as a sub-problem of performance when architect-

ng with microservices.

Architecture provenance . According to our classification frame-

ork, an architecture is designed if it is created prior its imple-

entation, otherwise it is considered as an extracted architecture.

n Fig. 16 , the overwhelming focus on design suggests that it is not

asy to realize microservice architectures unless an actual analysis

nd design of the system is performed prior to its implementation.

Architectural language . An architectural language can be

onsidered as any form of expression used for architecture de-

86 P. Di Francesco, P. Lago and I. Malavolta / The Journal of Systems and Software 150 (2019) 77–97

Fig. 13. Abstraction layers.

Fig. 14. Architecting activities.

Fig. 15. Quality attributes.

Fig. 16. Architecture provenance.

Fig. 17. Architecture description types.

C

b

t

p

m

m

S

t

g

m

c

w

r

t

f

p

n

t

i

(

c

s

t

t

t

a

i

a

g

t

s

t

r

o

p

e

d

b
scription , ranging from box-and-line informal notations, UML

models, to more formal Architecture Description Languages

(ADLs) (Malavolta et al., 2013). From the analysis of the primary

studies has emerged that the majority of the proposed architec-

tures were described using informal architectural languages , while

in few cases UML was used. Interestingly, nine different languages

were either used or proposed as suitable languages for model-

ing specific aspects of microservice architectures: BPMN (P32, P49),

UML (P41), MicroART (P85), OCCIEx (P57), Medley (P50), KDM (P72),

Diary (P97), Ciudad (P60), and Own-DSL (P64). It is interesting to

notice that the Oasis Topology and Orchestration Specification for
loud Applications (TOSCA) (2013) standard has not been used

y any of the primary studies for designing microservice archi-

ectures. TOSCA is a standard that can be used for representing

ortable cloud applications and supporting their life-cycle manage-

ent (Bergmayr et al., 2018), and is a promising candidate for the

icroservice architectures (Ruiu et al., 2016; Lipton et al., 2018;

halom, 2017).

From a researcher’s point of view, the use of informal architec-

ural languages and the lack of a predominant architectural lan-

uage may lead to difficulties in the description and modeling of

icroservice architectures. We can conjecture that this concern

an be addressed by working on a standard architecture language,

hich may help in having a shared common, industry-proven rep-

esentation for microservice architectures. Proposing an architec-

ural language for microservices helps architects in many activities;

or example, it can help in reasoning about the system as a whole,

erforming analyses on the system qualities, coping with the dy-

amic and changing aspects of the application at runtime. Fur-

hermore, an architectural language is a powerful communication

nstrument to enable better communication with both technical-

e.g., developers, architects) and non-technical stakeholders (e.g.,

ustomers and users) at the right level of abstraction and with a

hared technical vocabulary.

Architecture description types . Fig. 17 shows that the archi-

ectures proposed were mostly described in terms of their struc-

ural aspects, while the behavioral aspects were addressed less of-

en. The major focus of researchers on static rather than dynamic

spects gives another perspective about certain types of challenges

nherently related to the definition of the microservices, as for ex-

mple finding the proper level of granularity of each service or mi-

rating legacy systems.

Technology-specific . We have classified as technology-specific

he studies proposing solutions, methods or techniques that are

pecific to one or more particular technologies (e.g., Docker). A to-

al of 75 primary studies were not technology-specific , while the

emaining 28 studies were technology-specific . The predominance

f not technology-specific studies is a good indicator because ap-

roaches and solutions can be reused across technologies. Differ-

ntly, technology-specific studies bear the advantage of being more

etailed, but their applicability and portability in the future might

e limited. In the set of technology-specific studies, Docker is clearly

P. Di Francesco, P. Lago and I. Malavolta / The Journal of Systems and Software 150 (2019) 77–97 87

Fig. 18. Design patterns.

Fig. 19. Infrastructure services.

t

a

S

t

p

e

i

a

T

c

a

P

s

I

m

n

d

t

a

d

a

f

s

i

e

d

s

R

b

i

m

l

r

t

f

5

t

t

2

i

c

e

y

t

m

T

w

t

i

c

f

m

s

o

2

i

l

t

m

i

o

t

e

t

b

i

m

c

t

m

g

f

r

he most recurring technology (12/28) while other technologies

re quite scattered, with a few occurrences of Java EE (P72, P78),

pring framework (P19, P63), Eureka (P19, P28), and other specific

echnologies (e.g., Serfnode (P31), KVM (P23)).

Design patterns . Each design pattern has been identified as re-

orted in the primary studies, thus each pattern has to be consid-

red disjoint from the others (e.g., if the API Gateway is used for

mplementing the load balancing pattern, we report each as a sep-

rate pattern). The set of discussed patterns is reported in Fig. 18 .

he most recurring design patterns when architecting with mi-

roservices are: API gateway, Publish/subscribe, Proxy, Circuit breaker ,

nd Discovery patterns .

It is important to note that 7 primary studies (P10, P18, P29,

36, P42, P44, P48) have addressed or referred to a set of de-

ign patterns which have not been discussed in the other studies.

n P10, four different patterns for implementing loose coupling in

icroservices are reported, namely: location independence, commu-

ication independence, security independence , and instance indepen-

ence patterns. In P29, the authors report about the ports and adap-

or pattern , also known as hexagonal architecture (Cockburn, 2007),

nd the immutable server pattern (Morris, 2014). In P36 a set of

ata adapter patterns for working with data provision mechanisms

re addressed. In P42, the bulkhead pattern is presented to support

ault isolation within a microservice. In P44, cloud-focused patterns

uch as the Twelve-Factor App (Wiggins, 2014), and cloud comput-

ng patterns are referred. In P48, authors not only address sev-

ral existing patterns, but they propose a new pattern called the

atabase-is-the-service .

Infrastructure services . These are the infrastructure
ervices supporting non-functional tasks, as defined by

ichards (2015) . As shown in Fig. 19 , microservice architectures,

eing inherently distributed, show a clear need for monitor-

ng capabilities (e.g., logging, profiling) but also for system level

anagement (e.g., health management, autoscaling) in order to

everage the underlying infrastructure efficiently. A significant

esearch interest is pointing to service brokering and service orches-

ration , which confirms that service management capabilities are

undamental to this area.
.3. Trend analysis (RQ2)

Fig. 20 summarizes our results for the trend analysis related

o RQ2. In the following we will discuss only the most relevant

rends.

When looking at the main research areas (see Fig. 20 (c)), since

015 we are seeing a growth of system-level quality, microservices

n the cloud, and migration; we can conjecture that this trend will

ontinue in the next years. Microservices in the context of mobile-

nabled systems has a negative trend, meaning that in the last

ears researchers on architecting microservices seem to be less in-

erested in microservices deployable on mobile devices in favour of

icroservices deployed in the back-end of mobile-based systems.

his trend is in line with the classical definition of microservice,

hich is heavily influenced by concepts coming from containeriza-

ion and cloud computing.

Research on microservices has a clear trend when consider-

ng the software lifecycle scope (see Fig. 20 (e)), researchers are in-

reasingly focussing on the design of microservice-based systems,

ollowed by operations and implementation. Interestingly, require-

ents is recently starting to attract researchers’ attention, hence

uggesting that this trend might continue in the next years.

Looking at Fig. 20 (g) (architectural activities), it is interesting to

bserve a spike in the focus on architectural analysis in 2015 and

016, unveiling the fact that researchers are devising and apply-

ng (new) architecture analysis techniques in the last years. We be-

ieve that reasoning at the architectural level of abstraction allows

hose techniques to be applicable on large scale systems like the

icroservice-based ones.

It is clear that performance is the raising star in terms of qual-

ty attribute (see Fig. 20 (h)), followed by a relatively strong interest

ver the years on maintainability and functional suitability. From

he collected data, we can also observe that the scientific inter-

st in security and usability is decreasing after 2015. We conjec-

ure that the high degree of isolation provided by containers (e.g.,

y using Dockers namespaces) and resources limitations enforced

n virtualized environments (e.g., limits for CPU load, I/O access,

emory usage, and networking) may have played a role in this

ontext.

When looking at infrastructure services (Fig. 20 (l)) we notice

hat monitoring (e.g., logging, profiling) and system level manage-

ent (e.g., autoscaling, load balancing) have the most prominent

rowth in the last years. These are clearly the two types of in-

rastructure services that are attracting the strongest attention of

esearchers. We expect that this trend will continue in the future.

Main findings:

� Research scope involves problems that consolidate the
need to master the tradeoffs between complexity and

flexibility; here we can notice a strong focus on cloud and

mobile paradigms, and legacy migration. Benchmarking is
growing in 2017, potentially unveiling a promising future
research direction. Requirements are starting to attract re-
searchers’ attention in recent years.

� Architecture analysis emerges as the most popular archi-
tecting activity . Results suggest software architecture as a
powerful instrument for stakeholder engagement. Extro-
vert activities are raising since 2015, even if they are still
not mainstream.

� The clear focus on infrastructure services has the po-
tential to help devising new related patterns and styles
and hence further leveraging cloud-based architecture
models. In the set of investigated infrastructure services
we observed that monitoring and system level manage-

88 P. Di Francesco, P. Lago and I. Malavolta / The Journal of Systems and Software 150 (2019) 77–97

Fig. 20. Trend analysis (RQ2).

P. Di Francesco, P. Lago and I. Malavolta / The Journal of Systems and Software 150 (2019) 77–97 89

Fig. 20. Continued

Fig. 21. Technology readiness levels.

6

6

s

o

t

z

W

e

S

p

t

a

≤

i

a

Fig. 22. Industry involvement.

≥

o

l

w

t

t

P

p

a

c

n

t

i

s

b

e
ment (e.g., health management, autoscaling, load balanc-
ing) have the most prominent growth in the last years.

� An industrial standard describing the architecture of
microservice-based systems does not yet exist. If present,
it could help support the architecting activities of
microservice-based systems better. The most promising
standard in this direction is the OASIS standard for Topol-
ogy and Orchestration Specification for Cloud Applica-
tions (TOSCA) that, with the proper customization, could

be used in the future to model microservice architec-
tures (Lipton et al., 2018).

. Results - potential for industrial adoption (RQ3)

.1. Obtained results (RQ3)

Readiness level . Defined by the systematic measurement

ystem for assessing the maturity of a particular technol-

gy (Mankins, 1995), the technology readiness level (TRL) is an in-

eger n where 1 ≤ n ≤ 9. This measure has been used by the Hori-

on 2020 European Commission for the 2014/2015 work program. 7

e have classified the TRL of each primary study to emphasize the

nvironment in which the proposed approach has been validated.

pecifically, in the context of this study we classify the TRL of each

rimary study on a 3-level scale: (i) low TRL (i.e., TRL ≤ 4) means

hat a technology is either formulated, validated or demonstrated

t most in lab-based environments , (ii) medium TRL (i.e., 5 ≤ TRL

6) means that a technology is either validated or demonstrated

n industrially relevant environment , and (iii) high TRL (i.e., TRL
7 http://ec.europa.eu/research/participants/data/ref/h2020/wp/2014 _ 2015/

nnexes/h2020- wp1415- annex- g- trl _ en.pdf .

m

t

o

b
7) means that a technology is either completed, demonstrated,

r proven in operational environment . Fig. 21 presents the TRL

evels of our primary studies.

The obtained results indicate that (i) research on architecting

ith microservices is still in its initial phase for what concerns the

ransferability of the developed technologies to industry and (ii)

here is a relatively large number of studies (9/103) (P3, P7, P19,

33, P35, P59, P68, P83, P87) in which the actual system has been

roven in its operational environment (TRL = 9).

Industry involvement . Here we classify each primary study as:

cademic if all authors are affiliated with universities or research

enters, industrial if all authors are affiliated with some compa-

ies, or a mix of the previous two categories. As shown in Fig. 22 ,

he results are encouraging, as in almost half of the primary stud-

es (42/103), there is the involvement of at least one industrial re-

earcher or practitioner; this suggests some knowledge exchange

etween academia and industry.

Tool support . In the context of this study a tool can be consid-

red as an instance that may represent a precise version of an auto-

ated tool or a written procedure (Jaccheri et al., 1998). Based on

he given definition, we categorize a tool either as software-based

r knowledge-based . Overall, 54 primary studies provided software-

ased tools and 77 primary studies provided knowledg-based tools.

http://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/annexes/h2020-wp1415-annex-g-trl_en.pdf

90 P. Di Francesco, P. Lago and I. Malavolta / The Journal of Systems and Software 150 (2019) 77–97

6

R

d

a

a

y

d

d

7

p

g

t

s

t

v

fi

a

n

p

t

l

f

i

From a research point of view, this result indicates the need to

support knowledge-based tools with more software-based tools in

order to demonstrate how effective knowledge-based tools are and

how they can be compared one another. This can help researchers

and practitioners to improve the overall quality of microservice-

based systems.

It is important to notice that this parameter can be related to

the Research contribution parameter of our classification framework

(see Section 5.1). Indeed, here we are focussing on whether the

proposed approach is proposing a specific tool, procedure, or guide-

line (or a combination thereof), as opposed to the main research

contribution , which may be about the description of a problem, a

new application of the microservices architectural style, etc.

Open-source test system . When screening the 103 primary

studies we checked if an open-source test system for benchmark-

ing microservices-based systems was used, discussed or proposed.

We identified only one such system called Acme Air, which was

used and discussed in two different primary studies (P26, P85).

Acme Air is a web-based system available in two different archi-

tectures (i.e., monolithic service and microservice) and in two dif-

ferent languages (i.e., Node.js and Java), thus providing researchers

and practitioners with a very useful benchmark for evaluating,

measuring, and comparing their own solutions over a common ref-

erence system. Acme Air is publicly available as open-source repos-

itory on GitHub. 8

The lack of practical systems for benchmarking microservice-

based architectures can severely impact the knowledge trans-

fer from academia to industry. A first step in this direction has

been performed with the Acme Air system, which however is

still far away from being a realistic benchmarking system. Specif-

ically, it is composed of only six services and all of them are

developed using the same programming language and underly-

ing platform; this is rarely the case in real microservice-based

systems, for example the Netflix software stack is composed of

more than 20 technologies, 9 such as Python, Node.js, Java, React,

MySQL, PostgreSQL, Cassandra, and Hadoop. In the near future it

will be fundamental for researchers to have a shared, technologi-

cally polyglot, open-source benchmarking system that can be used

for testing their proposed solutions and for increasing the readi-

ness level of their research products. Technically it is also possible

to (semi-) automatically generate large scale systems composed of

a large number of heterogeneous microservices; even if a gener-

ated system may be realistic only from a syntactical and scale per-

spective (i.e., its microservices communicate with each other, but

they do not do any meaningful operation from a semantic point

of view), it may already prove useful for researchers focussing

on dependability aspects like scalability, performance, security,

availability.

Number of microservices used for evaluation . Most of the

primary studies have only used a relatively small number of mi-

croservices for their evaluations (i.e., less than 10). Only three

primary studies (P82, P35, P72) have used a relatively significant

number of microservices using a total of 27, 28 and 67 microser-

vices respectively. In order to put this result into context, a re-

cent industrial survey (Di Francesco et al., 2018) showed that the

expected number of microservices deployed after migrating to-

wards the microservices architectural style varies between 5 and

250, with an average of 59. In the future, if the research com-

munity on microservice architectures aims to bring new emerg-

ing approaches to maturity and perform realistic evaluations, the

number of microservices used for evaluation purposes should be
increased.

8 https://github.com/acmeair/acmeair
9 http://stackshare.io/netflix
.2. Trend analysis (RQ3)

Fig. 23 summarizes our results for the trend analysis related to

Q2. In particular, we notice interesting trends with respect to in-

ustry involvement (Fig. 23 (b)). Firstly, academic-only publications

re increasing at a fast pace since 2014 and publications with both

cademic and industrial researchers are growing in the last two

ears as well. Finally, publications with only industrial authors are

ecreasing, potentially in favour of publications where also aca-

emic researchers are involved.

Main findings:

� In spite of their focus on specific solutions, the low TRL
scores of most studies suggest that industrial transferabil-
ity is far away.

� The studies with high TRL are quite heterogeneous, and

their contributions range from a component-based gate-
way middleware (P2), to auto scaling services (P33), to
the management of mobile and IoT workloads (P52), etc.
All studies with high TRL involve an industrial case study
or an application of the proposed solution into on an

industrial-scale system.
� The balanced involvement of industrial and academic au-

thors, however, is promising for knowledge co-creation

and cross-fertilization.
� The industrial relevance of research evaluations shall be

fostered by having more significant open-source test sys-
tems or benchmarking applications available.

. Orthogonal results

Table 2 presents the results of our horizontal analysis.In this

hase of the study, we firstly automatically computed a contin-

ency table for every possible pair of parameters of our classifica-

ion framework. Then, we collaboratively created and discussed a

et of 37 potentially relevant insights to be investigated. We itera-

ively analyzed each potentially relevant insight created in the pre-

ious step in order to check if its contingency table actually con-

rms or disproves its related hypotheses. Finally, we filtered out

ll the results which were either (i) not supported by a sufficient

umber of data points, or (ii) chaotic, not revealing any evident

attern. This filtering step was performed manually and collabora-

ively by three researchers until reaching a full agreement. The full

ist of potentially interesting relations and the contingency tables

or evaluating the actual existence of those relations are available

n our replication package (Di Francesco et al., 2017a).

Main findings:

� Gaps for future research especially point toward security
and real-time communication in specific areas like IoT and

mobile.
� With an eye on quality: (i) many orthogonal results sug-

gest that quality control and security are attracting in-
sufficient research. Given the substantial investments in

modernizing software solutions with microservices, this
can become a real issue in industrial practice. Also, (ii)
the quality attributes performance and maintainability oc-
cur with striking frequency together with various target
problems like low flexibility, low efficiency, complexity,
and modernization.

� With the pervasive coverage of the design lifecycle phase,
a few design patterns seem to consolidate towards a cat-
alogue of solutions ready for reuse by practitioners.

P. Di Francesco, P. Lago and I. Malavolta / The Journal of Systems and Software 150 (2019) 77–97 91

Fig. 23. Trend analysis (RQ3).

8

a

t

t

l

s

a

w

r

m

t

s

T

o

t

p

i

I

a

a

t

s

t

p

p

s

p

h

o

i

c

t

t

t

t

n

p

t

w

o

b

i

a

e

b

t

w

e

E

p

c
� Research so far is missing evaluations (maybe hindered by
relatively immature technology or lack of representative
benchmarks). Not surprisingly, practice confirms a strong
interest in migration, and again quality.

� History repeats by architectural languages/descriptions fo-
cusing on system modeling and neglecting support for
analysis/provenance.

� Overall, the studies yield a healthy mix of academic and

industrial authors, hence suggesting synergies that should

help the field to mature toward quality solutions.

. Threats to validity

In 2015, Petersen et al. (2015) created a checklist for objectively

ssessing the quality of systematic mapping studies. In this con-

ext a score can be computed as the ratio of the number of actions

aken in a study versus the total number of actions in the check-

ist. In our case we achieve a score of 65%, far higher than most

ystematic studies in the literature, which have a distribution with

 median of 33% and 48% as the absolute maximum value. As al-

ays, however, threats to validity are unavoidable. The following

eports on the main threats to validity of our study and how we

itigated them (Figs. 3–23 and A.1).

External validity . The most severe potential external threat to

he validity of our study is on our primary studies not being repre-

entative of the state of the art on architecting with microservices.

o avoid this to happen, we applied a search strategy consisting

f both automatic search and backward-forward snowballing on

he selected studies in combination. Specifically, we mitigated the

resence of potential gaps left out by the automatic search (which

s intrinsically syntactic) by means of the snowballing technique.

ndeed, as recommended in the most recent guidelines for system-
tic studies (Petersen et al., 2015), we extended the coverage of the

utomatic search by complementing it with a snowballing activity,

hus enlarging the set of relevant studies by considering each study

elected in the automatic search, and focussing on those papers ei-

her citing or cited by it. Also, we considered only peer-reviewed

apers and excluded the so-called grey literature (e.g., white pa-

ers, editorials, etc.). This potential bias did not impact our study

ignificantly since considered papers have undergone a rigorous

eer-review process, which is a well-established requirement for

igh quality publications. We also applied well-defined and previ-

usly validated inclusion and exclusion criteria, which we refined

teratively by considering the pilot studies of our review. Specifi-

ally, we thoroughly discussed the definition of each selection cri-

eria in order to have a minimal, but complete set of selection cri-

eria, according to the goal of our study. It is important to note

hat we decided to have the E2 selection criterion while piloting

he search string on the electronic data sources. In that phase, we

oticed that a large number of research articles used a very sim-

le example; in those cases, microservices are outside the focus of

he proposed research (e.g., approaches for self-adaptive systems

hich can be applied to any type of system, approaches focussing

n REST APIs in general, etc.) and the microservices domain has

een used by the authors of the articles in order to contextual-

ze their research contributions in a more recent technology. We

dded the E2 selection criterion to avoid this phenomenon. Nev-

rtheless, we are aware that the E2 selection criterion could have

een risky in case of abuses, so during the application of the selec-

ion criteria we have been extremely rigorous and, when in doubt,

e went through the full text of the whole study being consid-

red. Moreover, secondary studies have been excluded (criterion

3) because they are meta-studies, and they provide a different

erspective about microservices w.r.t. primary studies, which fo-

us more on proposing specific architectural solutions, methods, or

92 P. Di Francesco, P. Lago and I. Malavolta / The Journal of Systems and Software 150 (2019) 77–97

Table 2

Orthogonal results.

Relation Results

Target problems - Main

research areas

When looking at the distribution of main research areas over target problems we notice that service composition, resources

management, low flexibility , and complexity are well covered by all the main research areas. Differently, the least covered

problems are: benchmarking (only 1 perspective over 7), low testability (2/7), security (3/7), real-time communication (3/7),

low portability (3/7), and time to market (4/7). The research community in software architecture can consider those problems

as potential good candidates for contributing in solving not-yet-explored challenges in architecting with microservices.

Moreover, some interesting research gaps for the research community on microservice architecture emerged: security from the

IoT perspective, real-time communication from the cloud, IoT and mobile perspectives, low auditability from the IoT and mobile

perspectives, and data management from the cloud perspectives. Those problem-perspective pairs have never been

investigated in any of the analyzed primary studies.

Target problems -

Readiness levels

There are some problems in which the technology readiness is still leaning towards lower values. These are: runtime

uncertainty, modernization , and low portability . Those problems can be considered as potentially relevant for future

researchers as there seems to be a barrier to overcome for architecting with microservices with runtime uncertainty and

high portability.

Target problems -

Software lifecycle

scopes

In general, design is the most frequently considered lifecycle phase independently of the considered target problem (the only

exception is low testability with zero occurrences), followed by implementation (only exceptions are low testability and

benchmarking with zero occurrences). During maintenance almost all target problems are considered, with no clear

interesting trends. Requirements are mainly considered when dealing with low flexibility problems (11 occurrences),

complexity (9), low efficiency (8), and modernization (6). There are target problems which have been considered from a very

narrow set of lifecycle phases, like: low testability (1/6, testing), benchmarking (2/6, design and testing), and security (3/6,

design, implementation, operations). In the future it will be interesting to see if those extremely scoped problems will expand

towards a larger number of lifecycle phases, such as requirements, implementation, and maintenance.

Target problems -

Quality attributes

The most recurrent pairs of target problems and quality attributes are: low flexibility with performance (16 occurrences) and

maintainability (14), low efficiency with performance (15), complexity with performance (12) and maintainability (13), service

composition with performance (12), modernization with maintainability (10). The identified pairs show the interdependencies

between architectural problems and quality attributes that have been investigated most frequently by the community.

Nevertheless, some interesting gaps caught our attention, revealing potentially fruitful research lines for future research on

architecting with microservices: (i) portability has not been considered when addressing either low auditability or data

management , (ii) compatibility, portability, reliability , and security have not been considered when addressing real-time

communication , and (iii) compatibility, reliability , and usability have not been considered when dealing with security .

Quality attributes -

Design patterns

Among the most frequently used design patterns we can see that the API gateway is benefiting all quality attributes with a

spike in maintainability (12) and performance (9), while publish/subscribe is strongly related to the performance (7),

maintainability (7) and compatibility (5) quality attributes. The circuit breaker pattern is related to reliability and portability

(4), whereas proxy is related to performance (5). Differently, the discovery patterns are related to maintainability and

performance (3). These results can be used by practitioners as a catalogue of prepackaged solutions for gaining better quality

of a microservice architecture, as potentially they have been already validated by the research community, or even evaluated

in an industrial setting.

Architecting activities -

Architecture description

types

If on one hand structural descriptions cover all the architecting activities, on the other behavioural descriptions are only

slightly used for describing reuse (1 occurrence) of architectural assets (e.g., design elements, decisions, patterns), getting

input and providing information (3). While it is reasonable to consider the activity of reuse more linked to structural

concerns of the architecture, it is important to note that missing a behavioural viewpoint can be a strong limitation since it

may prevent the architect from reasoning with other stakeholders on the functionalities delivered by the system.

Architectural languages

- Architecture

provenance

Architectural languages are predominantly used for the design of the architecture of the system. Moreover, informal

architecture descriptions are the only notations used when dealing with extracted architectures. This means that

architectural languages (like UML) seem to be only used for designing the system, but are neither used for understanding

nor analysising the current state of the architecture of the system (i.e., architecture extraction) – in spite of the strong focus

on architecture analysis.

Industry involvement -

Research contributions

Industrial contributions are mainly present in studies contributing with (i) an application of architectural methods, principles

or tools (17 academic , 7 industrial , 8 mixed) or (ii) a reference architecture (1 academic , 3 industrial , 3 mixed). Differently,

academia is spread in many types of contributions, with the largest difference with respect to industrial contributions in

method (23 academic , 2 industrial , 10 mixed) and problem framing (12 academic , 3 industrial , 4 mixed). This result indicates

that the latter types of contributions (i.e., method and problem framing) are the ones in which industrial participation is

missing the most.

Industry involvement -

Research strategies

Even though the majority of solution proposals are authored by academic -only authors (44/71), an encouraging result is the

fact that 19 (out of 71) primary studies have been authored by a mixed type of researchers (i.e., both academic and

industrial) and 8 (out of 71) by industrial -only authors. With the exception of one paper (P70), validation research always

involves academic authors (academic-only in 18 occurrences, and mixed in 10 occurrences), which is another encouraging

trend since in principle academic researchers can support industrial ones in setting up well-designed, reliable experiments

by following known methodological guidelines.

m

d

s

t

t

b

i

T

g

v

e

techniques. Nevertheless, even if secondary studies have been ex-

cluded because of the E3 exclusion criterion, we considered them

in our study for checking the completeness of our set of primary

studies, for identifying important issues to be considered in our

study, and for defining what is the contribution of our study to

the literature.

Internal validity . We rigorously defined our research protocol,

and we iteratively defined the classification framework by rigor-

ously applying the keywording process. The synthesis of the col-

lected data has been performed by applying well-assessed descrip-

tive statistics. Also, during the horizontal analysis we made a san-

ity test of the extracted data by cross-analyzing parameters of the

classification framework.
Construct validity . We mitigated this potential bias by auto-

atically searching the studies on multiple data sources, indepen-

ently of publishers’ policies or business concerns; also we are rea-

onably confident about the construction of the search string since

he terms used are very general and suited to our research ques-

ions; the automatic search has been complemented with snow-

alling. Also, we rigorously selected the potentially relevant stud-

es according to well-documented inclusion and exclusion criteria.

his selection stage was performed by one researcher and, as sug-

ested in Wohlin et al. (2012) , a random sample of potentially rele-

ant studies was identified and the inter-researcher agreement was

nsured.

P. Di Francesco, P. Lago and I. Malavolta / The Journal of Systems and Software 150 (2019) 77–97 93

fi

t

h

w

t

t

i

e

s

s

r

9

e

J

t

r

f

c

i

w

i

t

m

o

c

a

v

e

m

t

q

t

v

f

t

i

p

f

e

p

t

s

s

a

t

m

s

f

f

o

t

s

t

t

s

a

e

T

g

o

B

m

e

o

f

s

a

n

a

o

i

m

o

i

s

1

p

t

w

p

w

t

t

U

w

w

t

h

(

m

c

w

a

l

r

s

s

c

s

t

p

p

i

a

t

o

c

a

t

n

n

fl

r

m

o

s

Conclusion validity . We rigorously defined and iteratively re-

ned our classification framework, so that we could reduce poten-

ial biases during the data extraction process. In doing so, we also

ave the guarantee that the data extraction process was aligned

ith our research questions. More in general, we mitigated po-

ential threats to conclusion validity by applying the best prac-

ices coming from three different guidelines on systematic stud-

es (Petersen et al., 2015; Kitchenham and Brereton, 2013; Wohlin

t al., 2012). We applied those best practices in each phase of our

tudy and we documented each phase in a publicly available re-

earch protocol, thus making our study easy to be checked and

eplicated by other researchers.

. Related work

A systematic mapping on microservices was performed by Pahl

t al. on a set of 21 primary studies from 2014 to 2015 (Pahl and

amshidi, 2016). It is a classification of the research directions in

he field and highlights the relevant perspectives considered by

esearchers. Our study differs from Pahl and Jamshidi (2016) as

ollows: (i) we apply a more comprehensive search process by

onsidering studies published in any year up to 2017, extend-

ng their search string, and complementing the automated search

ith snowballing; (ii) we apply a systematic process for defin-

ng a classification framework; (iii) we investigate on the po-

ential of industrial adoption of research in architecting with

icroservices.

Alshuqayran et al. (2016) presented a systematic mapping study

n microservice architecture. Their study focusses on (i) the ar-

hitectural challenges faced by microservice-based systems, (ii) the

rchitectural diagrams used for representing them, and (iii) the in-

olved quality requirements. Their work and ours can be consid-

red as complementary, both cutting the topic of architecting with

icroservices from different perspectives. The main difference be-

ween the two studies is that ours considers different research

uestions, thus leading to different results, findings, and implica-

ions.

Dragoni et al. (2016) performed an informal survey on microser-

ices. Our study differs from their study because (i) we specifically

ocus on architectural principles, method, and techniques, rather

han on microservices in general; (ii) we apply a rigorous empir-

cal method throughout the study (i.e., systematic mapping), thus

roviding evidence-based results and easing replication of the per-

ormed research; (iii) the objective of our study is to characterize

xisting research on architecting with microservices, rather than on

roviding a narrative viewpoint on their historical, current, and fu-

ure traits.

Kratzke and Quint (2017) conducted a systematic mapping

tudy on cloud-native applications. The main outcome of that

tudy is a clear definition of cloud-native applications, which

re defined as “distributed, elastic and horizontal scalable sys-

ems composed of (micro)services which isolate state in a mini-

um of stateful components. The applications and each of their

elf-contained deployment unit are designed according to cloud-

ocused design patterns and operated on a self-service elastic plat-

orm”. Even though the subjects of their study is different from

urs (i.e., cloud-native apps vs architecting with microservices),

he two studies share the overall goal (building a comprehen-

ive body of knowledge about a topic) and some parameters of

he classification framework (e.g., research strategy, quality at-

ributes, publication trends, etc.). Besides the difference in the con-

idered subject, we also investigate on the potential for industrial

doption.

Finally, Bergmayr et al. (2018) conducted a systematic lit-

rature review about cloud modeling languages (e.g., TOSCA).

he study is motivated by the fact that existing modeling lan-
uages for the cloud have different goals, scope, and (partially

verlapping) modeling concepts. The main contributions of

ergmayr et al. (2018) are: (i) a common classification for cloud

odeling languages, (ii) a comparison framework for cloud mod-

ling languages, and (iii) the elicitation and discussion of a set

f relevant findings about the state of the art. Our study differs

rom the one by Bergmayr et al. because: (i) the focus of our

tudy is on architecting with microservices in general, not only

bout the modeling aspect, (ii) we focus on microservices, and

ot on cloud-specific concerns, (iii) our goal is broader and aims

t building a map of the state of the art in order to provide an

verview of the research area, instead of critically evaluating and

nterpreting studies on a specific research topic such as cloud

odeling languages (Napoleão et al., 2017), (iv) we investigate

n the potential of industrial adoption of research contributions,

nstead of zooming into one specific aspect of each analyzed

tudy.

0. Conclusions

By following the suggestion in Dragoni et al. (2016) , the pur-

ose of this study is to provide a broad survey investigating rela-

ionships among research contributions on microservices . Specifically,

e performed a systematic mapping of 103 primary studies and

roduced a clear overview of the state of the art on architecting

ith microservices. We have investigated the research on archi-

ecting with microservices under three main perspectives: publica-

ion trends, focus of research, and potential for industrial adoption.

sing the data that we have extracted from the primary studies,

e have performed both a vertical and horizontal analyses. Further,

e have performed a detailed trend analysis on the data in order

o understand how the research on architecting with microservices

as been evolving over time.

For each research question, the paper has already summarized

in the boxes titled Main findings) the findings we consider the

ost interesting. In addition, the following reports our key asso-

iated reflections.

The scientific interest in microservices exploded in 2015 - hence

e expect that the next few years will witness great advances. Our

nalysis shows that most papers discuss specific solutions and re-

ated validation, fact which calls for more fundamental research,

eusable practices and lessons learned.

Maybe due this bottom-up approach (generalizing from practical

olutions), more fundamental principles and claimed benefits have

till to be proven. Among them, our analysis of the research fo-

us shows that the quality (and especially performance, functional

uitability and maintainability) delivered by microservices archi-

ectures is a main research focus, but also yet to be proven; the

romised flexibility might come to the cost of a much-higher com-

lexity than expected; and the architecture practices upon which

ndustry can rely are still to be identified.

The pervasive role technology is playing in engineering for,

nd migrating toward, microservices will hopefully shape some of

hese architecture practices. For example, the increasing utilization

f virtualization and containerization technologies might push mi-

roservices in the back-end to address, among others, scalability

nd elasticity concerns in cloud-based solutions. In a similar vein,

he increasing popularity of mobile software might give raise to

ew microservice-based patterns for the front-end. Both are defi-

itely directions deserving much-needed research.

Finally, investigating the above-mentioned tradeoff between

exibility and complexity calls for intensive synergy between

esearchers and practitioners, especially because significant

icroservice-based systems must consist of much larger numbers

f microservices than the toy examples covered by the publications

o far.

94 P. Di Francesco, P. Lago and I. Malavolta / The Journal of Systems and Software 150 (2019) 77–97
Appendix A. Primary studies

Table A.1 reports the full list of the 103 primary studies.
Table A.1

Primary studies.

ID Title

P1 A Reference Architecture for Real-time Microservice API Consumption

P2 Apache Airavata As a Laboratory: Architecture and Case Study for

Component-Based Gateway Middleware

P3 Synapse: A Microservices Architecture for Heterogeneous-database Web

Applications

P4 Emergent Software Services

P5 Bifrost: Supporting Continuous Deployment with Automated Enactment of

Multi-Phase Live Testing Strategies

P6 Sustaining Runtime Performance While Incrementally Modernizing

Transactional Monolithic Software Towards Microservices

P7 Case Study: Microservice Evolution and Software Lifecycle of the XSEDE User

Portal API

P8 TopoLens: Building a CyberGIS Community Data Service for Enhancing the

Usability of High-resolution National Topographic Datasets

P9 Service-Oriented Robotic Swarm Systems: Model and Structuring Algorithms

P10 Practical Use of Microservices in Moving Workloads to the Cloud

P11 Container and Microservice Driven Design for Cloud Infrastructure DevOps

P12 Towards Integrating Microservices with Adaptable Enterprise Architecture

P13 Security-as-a-Service for Microservices-Based Cloud Applications

P14 TeNOR: Steps towards an orchestration platform for multi-PoP NFV deployment

P15 Vendor Malware: Detection Limits and Mitigation

P16 Leveraging microservices architecture by using Docker technology

P17 Scalable microservice based architecture for enabling DMTF profiles

P18 The Design and Architecture of Microservices

P19 JMesh – A Scalable Web-Based Platform for Visualization and Mining of

Passive Acoustic Data

P20 CYCLOPS: A micro service based approach for dynamic rating, charging &

billing for cloud

P21 A Reusable Automated Acceptance Testing Architecture for Microservices in

Behavior-Driven Development

P22 Architecture of an interoperable IoT platform based on microservices

P23 Performance Evaluation of Microservices Architectures Using Containers

P24 A microservices architecture for collaborative document editing enhanced with

face recognition

P25 Gru: An Approach to Introduce Decentralized Autonomic Behavior in

Microservices Architectures

P26 Workload characterization for microservices

P27 Challenges in Delivering Software in the Cloud as Microservices

P28 Microservice-based architecture for the NRDC

P29 Microservices approach for the internet of things

P30 Towards microservices architecture to transcode videos in the large at low

costs

P31 Distributed Systems of Microservices Using Docker and Serfnode

P32 Microservice Based Tool Support for Business Process Modelling

P33 Polyglot Application Auto Scaling Service for Platform as a Service Cloud

P34 Evaluating the monolithic and the microservice architecture pattern to deploy

web applications in the cloud

P35 Swiss TSO integrated operational planning, optimization and ancillary services

system

P36 Experience on a Microservice-Based Reference Architecture for Measurement

Systems

P37 Microservices and Their Design Trade-Offs: A Self-Adaptive Roadmap

P38 Designing a Smart City Internet of Things Platform with Microservice

Architecture

P39 Open Issues in Scheduling Microservices in the Cloud

P40 Migrating web applications to clouds with microservice architectures

P41 The ENTICE approach to decompose monolithic services into microservices

P42 Gremlin: Systematic Resilience Testing of Microservices

P43 Automated Fault-Tolerance Testing

P44 ClouNS-a Cloud-Native Application Reference Model for Enterprise Architects

P45 SeCoS: Web of Things platform based on a microservices architecture and

support of time-awareness

P46 Multi cloud deployment with containers
Authors Year

Cristian Gadea and Mircea Trifan and Dan Ionescu and Bogdan Ionescu 2016

Suresh Marru and Marlon Pierce and Sudhakar Pamidighantam and

Chathuri Wimalasena

2015

Nicolas Viennot and Mathias Lécuyer and Jonathan Bell and Roxana

Geambasu and Jason Nieh

2015

Nicolas Cardozo 2016

Gerald Schermann and Dominik Schoni and Philipp Leitner and Harald

C. Gall

2016

Holger Knoche 2016

Walter Scarborough and Carrie Arnold and Maytal Dahan 2016

Hao Hu and Xingchen Hong and Jeff Terstriep and Yan Y. Liu and

Michael P. Finn and Johnathan Rush and Jeffrey Wendel and

Shaowen Wang

2016

G. Zhou; Y. Zhang; F. Bastani; I. L. Yen 2012

D. S. Linthicum 2016

H. Kang; M. Le; S. Tao 2016

J. Bogner; A. Zimmermann 2016

Y. Sun; S. Nanda; T. Jaeger 2015

 J. F. Riera; J. Batallé; J. Bonnet; M. Dias; M. McGrath; G. Petralia; F.

Liberati; A. Giuseppi; A. Pietrabissa; A. Ceselli; A. Petrini; M. Trubian;

P. Papadimitrou; D. Dietrich; A. Ramos; J. Melian; G. Xilouris; A.

Kourtis; T. Kourtis; E. K. Markakis

2016

O. Lysne; K. J. Hole; C. Otterstad; O. Ytrehus; R. Aarseth; J. Tellnes 2016

D. Jaramillo; D. V. Nguyen; R. Smart 2016

D. Malavalli; S. Sathappan 2015

A. Sill 2016

X. Mouy; P. A. Mouy; D. Hannay; T. Dakin 2015

S. Patanjali; B. Truninger; P. Harsh; T. M. Bohnert 2015

M. Rahman; J. Gao 2015

T. Vresk; I. Cavrak 2016

M. Amaral; J. Polo; D. Carrera; I. Mohomed; M. Unuvar; M. Steinder 2015

C. Gadea; M. Trifan; D. Ionescu; M. Cordea; B. Ionescu 2016

L. Florio; E. D. Nitto 2016

T. Ueda; T. Nakaike; M. Ohara 2016

C. Esposito; A. Castiglione; K. K. R. Choo 2016

V. D. Le; M. M. Neff; R. V. Stewart; R. Kelley; E. Fritzinger; S. M.

Dascalu; F. C. Harris

2015

B. Butzin; F. Golatowski; D. Timmermann 2016

O. Barais; J. Bourcier; Y. D. Bromberg; C. Dion 2016

J. Stubbs; W. Moreira; R. Dooley 2015

S. Alpers; C. Becker; A. Oberweis; T. Schuster 2015

S. R. Seelam; P. Dettori; P. Westerink; B. B. Yang 2015

M. Villamizar; O. Garcés; H. Castro; M. Verano; L. Salamanca; R.

Casallas; S. Gil

2015

D. Tchoubraev; D. Wiczynski 2015

M. Vianden; H. Lichter; A. Steffens 2014

S. Hassan; R. Bahsoon 2016

A. Krylovskiy; M. Jahn; E. Patti 2015

M. Fazio; A. Celesti; R. Ranjan; C. Liu; L. Chen; M. Villari 2016

J. Lin; L. C. Lin; S. Huang 2016

G. Kecskemeti; A. C. Marosi; A. Kertesz 2016

V. Heorhiadi; S. Rajagopalan; H. Jamjoom; M. K. Reiter; V. Sekar 2016

A. Nagarajan; A. Vaddadi 2016

Kratzke N., Peinl R. 2016

Zeiner H., Goller M., Expósito Jiménez V.J., Salmhofer F., Haas W. 2016

Jambunathan B., Kalpana Y. 2016

(continued on next page)

P. Di Francesco, P. Lago and I. Malavolta / The Journal of Systems and Software 150 (2019) 77–97 95

Table A.1 (continued)

ID Title Authors Year

P47 Micro service cloud computing pattern for next generation networks Potvin P., Nabaee M., Labeau F., Nguyen K.-K., Cheriet M. 2016

P48 The database-is-the-service pattern for microservice architectures Messina A., Rizzo R., Storniolo P., Tripiciano M., Urso A. 2016

P49 Service cutter: A systematic approach to service decomposition Gysel M., Kölbener L., Giersche W., Zimmermann O. 2016

P50 Medley: An event-driven lightweight platform for service composition Yahia E.B.H., Réveillère L., Bromberg Y.-D., Chevalier R., Cadot A. 2016

P51 Native cloud applications why virtual machines, images and containers miss

the point

Leymann F., Fehling C., Wagner S., Wettinger J. 2016

P52 Location and Context-Based Microservices for Mobile and Internet of Things

Workloads

Bak P., Melamed R., Moshkovich D., Nardi Y., Ship H., Yaeli A. 2015

P53 An ontology-based reasoning framework for context-aware applications Anderson C., Suarez I., Xu Y., David K. 2015

P54 A methodology and tool support for widget-based web application

development

Nicolaescu P., Klamma R. 2015

P55 Learning-based testing of distributed microservice architectures: Correctness

and fault injection

Meinke K., Nycander P. 2015

P56 Microservices validation: Methodology and implementation Savchenko D., Radchenko G. 2015

P57 Automated Deployment of a Microservice-based Monitoring Infrastructure Ciuffoletti A. 2015

P58 An ecosystem of user-facing microservices supported by semantic models Versteden A., Pauwels E., Papantoniou A. 2015

P59 User-aware location management of prosumed micro-services Klein B., Lopez-De-Ipina D., Guggenmos C., Velasco J.P. 2014

P60 m:Ciudad: Enabling end-user mobile service creation Davies M., Carrez F., Heinila J., Fensel A., Narganes M., Danado J.C.S. 2011

P61 Curation micro-services: A pipeline metaphor for repositories Abrams S., Cruse P., Kunze J., Minor D. 2011

P62 Towards a platform for user-generated mobile services Tacken J., Flake S., Golatowski F., Prüter S., Rust C., Chapko A ., Emrich A . 2010

P63 Migrating to Cloud-Native Architectures Using Microservices: An Experience

Report

Balalaie, A; Heydarnoori, A; Jamshidi, P 2016

P64 Model-driven Generation of Microservice Architectures for Benchmarking

Performance and Resilience Engineering Approaches

Thomas F. Dullmann and Andrévan Hoorn 2017

P65 Towards Effective Virtualization of Intrusion Detection Systems Nuyun Zhang and Hongda Li and Hongxin Hu and Younghee Park 2017

P66 Publishing Linked Data Through Semantic Microservices Composition Ivan Salvadori and Alexis Huf and Ronaldo dos Santos Mello and Frank

Siqueira

2016

P67 An Architecture to Automate Performance Tests on Microservices André; de Camargo and Ivan Salvadori and Ronaldo dos Santos Mello

and Frank Siqueira

2016

P68 Design and implementation of a decentralized message bus for microservices Kookarinrat, Pakorn and Temtanapat, Yaowadee 2016

P69 Telecom strategies for service discovery in microservice environments C. Rotter; J. Illés; G. Nyìri; L. Farkas; G. Csatári; G. Huszty 2017

P70 A VNF-as-a-service design through micro-services disassembling the IMS A. Boubendir; E. Bertin; N. Simoni 2017

P71 Requirements Reconciliation for Scalable and Secure Microservice

(De)composition

M. Ahmadvand; A. Ibrahim 2016

P72 Towards the understanding and evolution of monolithic applications as

microservices

D. Escobar; D. Cárdenas; R. Amarillo; E. Castro; K. Garcés; C. Parra; R.

Casallas

2016

P73 A scalable routing mechanism for stateful microservices N. H. Do; T. Van Do; X. Thi Tran; L. Farkas; C. Rotter 2017

P74 A new efficient distributed computing middleware based on cloud

micro-services for HPC

F. Z. Benchara; M. Youssfi; O. Bouattane; H. Ouajji 2016

P75 Efficiency Analysis of Provisioning Microservices H. Khazaei; C. Barna; N. Beigi-Mohammadi; M. Litoiu 2016

P76 A microservice based reference architecture model in the context of enterprise

architecture

Yale Yu; H. Silveira; M. Sundaram 2016

P77 Reflections on SOA and Microservices Z. Xiao; I. Wijegunaratne; X. Qiang 2016

P78 An open IoT framework based on microservices architecture L. Sun; Y. Li; R. A. Memon 2017

P79 Modelling and Managing Deployment Costs of Microservice-Based Cloud

Applications

P. Leitner; J. Cito; E. Stöckli 2016

P80 The evolution of distributed systems towards microservices architecture T. Salah; M. Jamal Zemerly; Chan Yeob Yeun; M. Al-Qutayri; Y.

Al-Hammadi

2016

P81 Microservice Ambients: An Architectural Meta-Modelling Approach for

Microservice Granularity

Sara Hassan, Nour Ali, Rami Bahsoon 2017

P82 Workload-Based Clustering of Coherent Feature Sets in Microservice

Architectures

Sander Klock, Jan Martijn E. M. Van Der Werf, Jan Pieter Guelen,

Slinger Jansen

2017

P83 Microservice Architectures for Scalability, Agility and Reliability in E-Commerce Wilhelm Hasselbring and Guido Steinacker 2017

P84 Differences Between Model-driven Development of Service-oriented and

Microservice Architecture

F. Rademacher, S. Sachweh and A. Zündorf 2017

P85 Towards Recovering the Software Architecture of Microservice-based Systems G. Granchelli, M. Cardarelli, P. Di Francesco, I. Malavolta, L. Iovino and

A. Di Salle

2017

P86 Decision Guidance Models for Microservice Monitoring S. Haselbock and R. Weinreich. 2017

P87 From monolith to microservices - Lessons learned on an industrial migration

to a Web Oriented Architecture

J. Gouigoux and D. Tamzalit 2017

P88 A Dashboard for Microservice Monitoring and Management B. Mayer and R. Weinreich 2017

P89 Self-managing cloud-native applications: Design, implementation, and

experience

Giovanni Toffetti and Sandro Brunner and Martin Blochlinger and

Florian Dudouet and Andrew Edmonds

2017

P90 The IPOL demo system: A scalable architecture of microservices for

reproducible research

Arévalo M., Escobar C., Monasse P., Monzón N., Colom M. 2017

P91 Microflows: Automated planning and enactment of dynamic workflows

comprising semantically-annotated microservices

Oberhauser R. 2017

P92 Continuous software engineering-A microservices architecture perspective O’Connor R.V., Elger P., Clarke P.M. 2017

P93 A microservice architecture for the Intranet of Things and energy in smart

buildings

Bao K., Mauser I., Kochanneck S., Xu H., Schmeck H. 2016

P94 Domain Driven Design and Provision of Micro-services to build Emerging

Learning Systems

Khemaja M. 2016

P95 Cloudware: An emerging software paradigm for cloud computing D. Guo; W. Wang; G. Zeng; Z. Wei 2016

P96 MORe: A micro-service oriented aggregator Gavrilis D., Nomikos V., Kravvaritis K., Angelis S., Papatheodorou C.,

Constantopoulos P.

2016

P97 Incremental integration of microservices in cloud applications Zuniga-Prieto, Miguel and Insfran, Emilio and Abrahao, Silvia and

Cano-Genoves, Carlos

2016

(continued on next page)

96 P. Di Francesco, P. Lago and I. Malavolta / The Journal of Systems and Software 150 (2019) 77–97

Table A.1 (continued)

ID Title Authors Year

P98 Trident: Scalable compute archives: Workflows, visualization, and analysis Gopu A., Hayashi S., Young M.D., Kotulla R., Henschel R., Harbeck D. 2016

P99 A Service-Oriented Approach to Crowdsensing for Accessible Smart Mobility

Scenarios

Mirri S., Prandi C., Salomoni P., Callegati F., Melis A., Prandini M. 2016

P100 On micro-services architecture Namiot, Dmitry and Sneps-Sneppe, Manfred 2014

P101 Towards a Technique for Extracting Microservices from Monolithic Enterprise

Systems

Levcovitz, Alessandra and Terra, Ricardo and Valente, Marco Tulio 2016

P102 A dynamic deployment method of micro service oriented to SLA ZL Ji, Y Liu 2016

P103 InterSCity: A Scalable Microservice-based Open Source Platform for Smart

Cities

Arthur de M. Del Esposte, Fabio Kon, Fabio M. Costa and Nelson Lago 2017

O

P

P

P

P

R

R

S

V

W

W

W

f

a

a

References

Alshuqayran, N. , Ali, N. , Evans, R. , 2016. A systematic mapping study in microser-

vice architecture. In: Service-Oriented Computing and Applications (SOCA), 2016
IEEE 9th International Conference on. IEEE, pp. 44–51 .

Bass, L. , Weber, I. , Zhu, L. , 2015. DevOps: A Software Architect’s Perspective. Addis-
on-Wesley Professional .

Bergmayr, A. , Breitenbücher, U. , Ferry, N. , Rossini, A . , Solberg, A . , Wimmer, M. , Kap-

pel, G. , Leymann, F. , 2018. A systematic review of cloud modeling languages.
ACM Comput. Surv. (CSUR) 51 (1), 22 .

Cockburn, A., 2007. Hexagonal architecture.
Di Francesco, P., Malavolta, I., Lago, P., 2017a. Replication package. http://cs.gssi.infn.

it/JSS2017ReplicationPackage .
Di Francesco, P. , Malavolta, I. , Lago, P. , 2017b. Research on architecting microser-

vices: trends, focus, and potential for industrial adoption. In: Software Architec-

ture (ICSA), 2017 IEEE International Conference on. IEEE, pp. 21–30 .
Di Francesco, P. , Malavolta, I. , Lago, P. , 2018. Migrating towards microservice archi-

tectures: an industrial survey. In: 2018 IEEE International Conference on Soft-
ware Architecture, ICSA 2018, Seattle, USA, April 30, - May 4, 2018, pp. 29–38 .

Dragoni, N., Giallorenzo, S., Lafuente, A. L., Mazzara, M., Montesi, F., Mustafin,
R., Safina, L., 2016. Microservices: yesterday, today, and tomorrow. arXiv:1606.

04036v1 .

Engström, E. , Runeson, P. , 2011. Software product line testing - a systematic map-
ping study. Inf. Softw. Technol. 53 (1), 2–13 .

Fazio, M. , Celesti, A. , Ranjan, R. , Liu, C. , Chen, L. , Villari, M. , 2016. Open issues in
scheduling microservices in the cloud. IEEE Cloud Comput. 3 (5), 81–88 .

Fowler, M., Lewis, J., 2014. Microservices a definition of this new architectural term.
http://martinfowler.com/articles/microservices.html .

Jaccheri, M.L. , Picco, G.P. , Lago, P. , 1998. Eliciting software process models with the

e 3 language. ACM Trans. Softw. Eng.Methodol. (TOSEM) 7 (4), 368–410 .
Jaramillo, D. , Nguyen, D.V. , Smart, R. , 2016. Leveraging microservices architecture by

using docker technology. In: SoutheastCon, 2016. IEEE, pp. 1–5 .
Khazaei, H. , Barna, C. , Beigi-Mohammadi, N. , Litoiu, M. , 2016. Efficiency analysis

of provisioning microservices. In: Cloud Computing Technology and Science
(CloudCom), 2016 IEEE International Conference on. IEEE, pp. 261–268 .

Kitchenham, B. , Brereton, P. , 2013. A systematic review of systematic review process

research in software engineering. Inf. Softw. Technol. 55 (12), 2049–2075 .
Kratzke, N. , Quint, P.-C. , 2017. Understanding cloud-native applications after 10 years

of cloud computing-A systematic mapping study. J. Syst. Softw. 126, 1–16 .
Kruchten, P. , 2008. What do software architects really do? J. Syst. Softw. 81 (12),

2413–2416 .
Li, Z. , Liang, P. , Avgeriou, P. , 2013. Application of knowledge-based approaches in

software architecture: a systematic mapping study. Inf. Softw. Technol. 55 (5),
777–794 .

Lipton, P. , Palma, D. , Rutkowski, M. , Tamburri, D.A. , 2018. Tosca solves big problems

in the cloud and beyond!. IEEE Cloud Comput. .
Malavolta, I. , Lago, P. , Muccini, H. , Pelliccione, P. , Tang, A. , 2013. What industry needs

from architectural languages: a survey. IEEE Trans. Softw. Eng. 39 (6), 869–891 .
Mankins, J. C., 1995. Technology readiness levels. White Paper, April 6.

Mehmood, A. , Jawawi, D.N. , 2013. Aspect-oriented model-driven code generation: a
systematic mapping study. Inf. Softw. Technol. 55 (2), 395–411 . Special Section:

Component-Based Software Engineering (CBSE), 2011

Morris, K., 2014. Immutable server. http://martinfowler.com/bliki/ImmutableServer.
html . [Online], [last accessed on June 15, 2018].

Napoleão, B.M. , Felizardo, K.R. , de Souza, É.F. , Vijaykumar, N.L. , 2017. Practical sim-
ilarities and differences between systematic literature reviews and systematic

mappings: a tertiary study. In: The 29th International Conference on Software
Engineering and Knowledge Engineering .

Newman, S. , 2015. Building Microservices. “ O’Reilly Media, Inc.”.
asis Topology and Orchestration Specification for Cloud Applications (TOSCA) ,

2013. Organization for the Advancement of Structured Information Standards
(OASIS) . Tech. Rep

ahl, C. , Jamshidi, P. , 2016. Microservices: asystematic mapping study. In: Proceed-

ings of the 6th International Conference on Cloud Computing and Services Sci-
ence, Volume 1, Rome, Italy, April 23–25, pp. 137–146 .

etersen, K. , 2011. Measuring and predicting software productivity: a systematic
map and review. Inf. Softw. Technol. 53 (4), 317–343 . Special section: Software

Engineering track of the 24th Annual Symposium on Applied Computing Soft-
ware Engineering track of the 24th Annual Symposium on Applied Computing

etersen, K. , Feldt, R. , Mujtaba, S. , Mattsson, M. , 2008. Systematic mapping studies

in software engineering. In: Proceedings of the 12th International Conference on
Evaluation and Assessment in Software Engineering. British Computer Society,

Swinton, UK, UK, pp. 68–77 .
etersen, K. , Vakkalanka, S. , Kuzniarz, L. , 2015. Guidelines for conducting system-

atic mapping studies in software engineering: an update. Inf. Softw. Technol.
64, 1–18 .

ichards, M., 2015. Microservices vs. service-oriented architecture.

uiu, P. , Scionti, A. , Nider, J. , Rapoport, M. , 2016. Workload management for power
efficiency in heterogeneous data centers. In: Complex, Intelligent, and Soft-

ware Intensive Systems (CISIS), 2016 10th International Conference on. IEEE,
pp. 23–30 .

halom, N., 2017. Building large scale services with microservices white paper,
URL: https://cloudify.co/whitepaper/microservices-orchestration-large-scale-

services/ . .

illamizar, M. , Garcés, O. , Castro, H. , Verano, M. , Salamanca, L. , Casallas, R. , Gil, S. ,
2015. Evaluating the monolithic and the microservice architecture pattern to

deploy web applications in the cloud. In: Computing Colombian Conference
(10CCC), 2015 10th. IEEE, pp. 583–590 .

Wieringa, R. , Maiden, N. , Mead, N. , Rolland, C. , 2006. Requirements engineering pa-
per classification and evaluation criteria: a proposal and a discussion. Require-

ments Eng. 11 (1), 102–107 .

iggins, A., 2014. The twelve-factor app. URL: http://12factor.net/ . [last accessed on
June 15, 2018].

ohlin, C. , 2014. Guidelines for snowballing in systematic literature studies and a
replication in software engineering. In: Proceedings of the 18th International

Conference on Evaluation and Assessment in Software Engineering. ACM, New
York, NY, USA, pp. 38:1–38:10 .

ohlin, C. , Runeson, P. , Höst, M. , Ohlsson, M. , Regnell, B. , Wesslén, A. , 2012. Exper-
imentation in Software Engineering. Springer . Computer Science

Yahia, E.B.H. , Réveillère, L. , Bromberg, Y.-D. , Chevalier, R. , Cadot, A. , 2016. Medley:

an event-driven lightweight platform for service composition. In: International
Conference on Web Engineering. Springer, pp. 3–20 .

Paolo Di Francesco is a Ph.D. student in Computer Sci-

ence at Gran Sasso Science Institute, L’Aquila, Italy. His re-

search interests are software engineering, software archi-
tecture, and modeldriven engineering. His Ph.D. research

is focused on microservice-based architectures, where he
investigates techniques for architecture recovery, architec-

ture modeling, and migration of legacy applications to-
wards microservices. In 2012, he received his master dou-

ble degree in Computer Science from L’Aquila University

(Italy) and Mälardalens Högskola (Sweden), as part of the
Global Software Engineering European Master Programme

(GSEEM). After he completed his master studies and be-
fore pursuing his Ph.D., he was architect and developer

or an industrial company, and then an IT consultant freelancer. In 2015 he was
warded a research grant from the University of L’Aquila. More information is avail-

ble at http://www.paolodifrancesco.com .

http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0001
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0001
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0001
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0001
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0002
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0002
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0002
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0002
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0003
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0003
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0003
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0003
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0003
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0003
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0003
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0003
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0003
http://cs.gssi.infn.it/JSS2017ReplicationPackage
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0004
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0004
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0004
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0004
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0005
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0005
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0005
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0005
http://arxiv.org/abs/1606.04036v1
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0006
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0006
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0006
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0007
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0007
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0007
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0007
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0007
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0007
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0007
http://martinfowler.com/articles/microservices.html
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0008
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0008
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0008
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0008
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0009
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0009
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0009
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0009
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0010
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0010
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0010
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0010
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0010
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0011
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0011
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0011
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0012
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0012
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0012
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0013
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0013
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0014
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0014
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0014
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0014
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0015
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0015
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0015
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0015
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0015
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0016
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0016
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0016
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0016
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0016
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0016
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0017
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0017
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0017
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0017
http://martinfowler.com/bliki/ImmutableServer.html
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0018
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0018
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0018
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0018
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0018
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0019
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0019
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0020
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0020
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0020
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0021
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0021
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0021
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0022
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0022
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0022
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0023
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0023
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0023
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0023
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0023
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0024
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0024
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0024
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0024
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0025
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0025
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0025
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0025
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0025
https://cloudify.co/whitepaper/microservices-orchestration-large-scale-services/
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0026
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0026
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0026
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0026
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0026
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0026
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0026
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0026
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0027
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0027
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0027
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0027
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0027
http://12factor.net/
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0028
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0028
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0029
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0029
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0029
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0029
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0029
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0029
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0029
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0029
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0030
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0030
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0030
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0030
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0030
http://refhub.elsevier.com/S0164-1212(19)30001-9/sbref0030
http://www.paolodifrancesco.com

P. Di Francesco, P. Lago and I. Malavolta / The Journal of Systems and Software 150 (2019) 77–97 97

p

E

S

t

w

s

i

Patricia Lago is Full Professor in software engineering

at the Vrije Universiteit Amsterdam, where she leads the
Software and Services (S2) research group in the Com-

puter Science Department. Her research is in software
architecture and software quality with a special empha-

sis on sustainability. She has a PhD in Control and Com-

puter Engineering from Politecnico di Torino and a Mas-
ter in Computer Science from the University of Pisa, both

in Italy. She is initiator and coordinator of the Computer
Science Master Track in Software Engineering and Green

IT, and co-founder of the Green Lab, a place where re-
searchers, students and companies collaborate to measure

the energy footprint of software solutions and the im-

act on software quality. She is member of the Steering Committees of IEEE ICSA,
CSA and the ICT4S conference series, member of the IFIP 2.10 Working group on

oftware Architecture, the IFIP 2.14 Working group on Services-based Systems, and
he Dutch Knowledge Network on Green Software. More information is available at

ww.cs.vu.nl/ ∼patricia .
Ivano Malavolta is Assistant Professor at the Vrije Uni-

versiteit Amsterdam, the Netherlands. His research fo-
cuses on data-driven software engineering, software en-

gineering for mobile development, software architecture,
model-driven engineering (MDE), and robotics. He is ap-

plying empirical methods to assess practices and trends

in the field of software engineering. He is program com-
mittee member and reviewer of international confer-

ences and journals in his fields of interest. He authored
more than 80 papers in international journals and peer-

reviewed international conferences proceedings. He re-
ceived a PhD in computer science from the University of

L’Aquila in 2012. He is a member of ACM and IEEE, Am-

terdam Data Science, and VERSEN. More information is available at http://www.
vanomalavolta.com .

http://www.cs.vu.nl/~patricia
http://www.ivanomalavolta.com

	Architecting with microservices: A systematic mapping study
	1 Introduction
	2 Architecting with microservices
	3 Study design
	3.1 Goal and research questions
	3.2 Search and selection process
	3.3 Data extraction
	3.4 Data synthesis
	3.5 Replicability of the study

	4 Results - Publication trends (RQ1)
	4.1 Obtained results (RQ1)
	4.2 Trend analysis (RQ1)

	5 Results - research focus (RQ2)
	5.1 Scope of the research
	5.2 Support for architecting
	5.3 Trend analysis (RQ2)

	6 Results - potential for industrial adoption (RQ3)
	6.1 Obtained results (RQ3)
	6.2 Trend analysis (RQ3)

	7 Orthogonal results
	8 Threats to validity
	9 Related work
	10 Conclusions
	Appendix A Primary studies
	References

