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The exponential growth of digital information is imposing increasing scale and efficiency demands on
modern storage infrastructures. As infrastructures complexity increases, so does the difficulty in ensuring
quality of service, maintainability, and resource fairness, raising unprecedented performance, scalability,
and programmability challenges. Software-Defined Storage (SDS) addresses these challenges by cleanly
disentangling control and data flows, easing management and improving control functionality of conventional
storage systems. Despite its momentum in the research community, many aspects of the paradigm are still
unclear, undefined, and unexplored, leading to misunderstandings that hamper the research and development
of novel SDS technologies. In this article, we present an in-depth study of SDS systems, providing a thorough
description and categorization of each plane of functionality. Further, we propose a taxonomy and classification
of existing SDS solutions accordingly several different criteria. Finally, we provide key insights about the
paradigm and discuss potential future research directions for the field.
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1 INTRODUCTION
Massive amounts of digital data served by a number of different sources are generated, processed,
and stored every day in both public and private storage infrastructures. Recent reports predict that
by 2025 the global datasphere will grow to 163 Zettabytes (ZiB), representing a tenfold increase from
the data generated in 2016 [84]. Efficient large-scale storage systems will be essential for handling
this proliferation of data, which must be persisted for future processing and backup purposes [110].
However, efficiently storing such deluge of data is a complex and resource-demanding task that
raises unprecedented performance, scalability, reliability, and programmability challenges.

First, as the complexity of data center infrastructures increases, so does the difficulty in ensuring
end-to-end quality of service (QoS), maintainability, and flexibility. Today’s data centers are verti-
cally designed and comprehend several layers along the I/O path providing compute, network, and
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storage functionalities, including operating systems (OSes), hypervisors, distributed storage, caches,
I/O schedulers, file systems, and device drivers [105]. Each of these layers includes a predetermined
set of services (e.g., caching, queueing, data management) with strict interfaces and isolated proce-
dures to employ over I/O requests, leveraging a complex, limited, and coarse-grained treatment
of the I/O flow. Moreover, data-centric operations such as routing, processing, and management
are, in most cases, blended as a single monolithic block, turning infeasible the ability to enforce
end-to-end policies (e.g., bandwidth aggregation, I/O prioritization), imposing major scalability,
flexibility, and modularity limitations to storage infrastructures [102].

Second, efficiently managing system resources in multi-tenant environments becomes progres-
sively harder as service demand increases, since not only fine-grained resources within a process
are shared but also resources across multiple processes and nodes along the I/O path (e.g., shared
memory, storage devices, schedulers, caches, network) [63]. Further, since tenants comprehend
different service requirements and workload profiles, traditional resource management mech-
anisms fall short to ensure performance isolation and resource fairness, due to their rigid and
coarse-grained I/O management [63]. As a result, achieving QoS under multi-tenancy is infeasible
while differentiated treatment of I/O flow, global knowledge of system resources, and end-to-end
control and coordination of the infrastructure are not ensured [103, 125].

Third, storage infrastructures have become highly heterogeneous, and are used simultaneously
by a myriad of applications with significant different behaviors and evolving requirements that
fluctuate over time [21]. However, these infrastructures are frequently tuned with monolithic
configuration setups that prevent the online tuning of the storage system [3]. As a result, these
homogeneous setups have lead to applications running on a general-purpose I/O stack, competing
for the system resources in a non-optimal fashion, and incapable of performing I/O differentiation
and end-to-end system optimization [30, 102].
These pitfalls are inherent to the design of traditional large-scale storage infrastructures (e.g.,

cloud computing, high-performance computing – HPC), and reflect the absence of a true pro-
grammable I/O stack and the uncoordinated control of the distributed infrastructure [30]. As the
length of the I/O path increases, it becomes harder to efficiently control and maintain the in-
frastructure stack. Moreover, individually fine-tuning and optimizing each layer of the I/O stack
(i.e., in a non-holistic fashion) of a large-scale infrastructure increases the difficulty to scale to
new levels of performance, concurrency, fairness, and resource capacity. Such outcomes result in
lack of coordination and performance isolation, weak programmability and customization, strict
configuration and adaptability, and waste of shared system resources.

To overcome the shortcomings of traditional storage infrastructures, the Software-Defined Storage
(SDS) paradigm emerged as a compelling solution to ease data and configuration management, while
improving end-to-end control functionality of conventional storage systems [105]. By decoupling
the control and the data flows into two major components — control and data planes — it ensures
improved modularity of the storage stack, enables dynamic end-to-end policy enforcement, and
introduces differentiated I/O treatment on multi-tenant environments. SDS inherits legacy concepts
from Software-Defined Networking (SDN) [54] and applies them to storage-oriented environments,
bringing new insights to storage infrastructures, such as improved system programmability and
extensibility [80, 95]; fine-grained resource orchestration (under single- and multi-tenancy) [63,
103]; end-to-end QoS, maintainability, and flexibility [46, 105]; and resource efficiency [68, 70].
Furthermore, by breaking the vertical alignment of conventional storage designs, SDS systems
provide holistic orchestration of heterogeneous infrastructures, ensure system-wide visibility of
storage components, and enable straightforward enforcement of several storage objectives.
In recent years, the SDS paradigm has gained significant traction in the research community,

leading to a wide spectrum of both academic and commercial proposals to address the drawbacks
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of traditional storage infrastructures. Despite this momentum, many aspects of the paradigm are
still unclear, undefined, and unexplored, which may lead to an ambiguous conceptualization of
the paradigm and a disparate formalization between current and forthcoming solutions. Essential
aspects of SDS such as design principles and main challenges, as well as ambiguities of the field
demand detailed clarification and standardization. There is, however, no comprehensive survey
providing a complete view of the SDS paradigm. The closest related work [43], provides insightful
details about the Software-Defined Cloud paradigm, and surveys other software-defined genres,
such as networking, storage, systems, and security. However, this study investigates the possibility of
a software-defined environment to handle the complexities of cloud computing systems, providing
only a superficial view of each paradigm, not addressing the internals of each plane of functionality,
nor existing limitations and open questions.
In this article, we present the first comprehensive literature survey of SDS, explaining and

clarifying fundamental aspects of the field. We provide a thorough description of each plane of
functionality, and survey and classify existing SDS technologies in both academia and industry
regarding storage infrastructure type, namely cloud computing, HPC, and application-specific
storage stacks. We define application-specific infrastructures as storage stacks built from the ground
up, designed for specialized storage and processing purposes. While some of these stacks can be
seen as a subfield of cloud infrastructures, for the purpose of this article and to provide a more
granular classification of SDS systems, we classify these systems in a separate category. In more
detail, this article provides the following contributions:

– Describe an abstract SDS architecture and identify its main design principles. The
work presented in this article goes beyond reviewing existing literature and categorizes the
SDS planes of functionality, regarding their designs. We surveyed existing work on SDS and
distilled the key design concepts for both SDS controllers and data planes stages, where we
consider most solutions fit.

– Propose a taxonomy and classification for SDS systems. We propose a taxonomy and
classification of existing SDS solutions in order to organize the manifold approaches, bringing
significant research directions into focus. Solutions are classified and analyzed based on the
storage infrastructure – cloud, HPC, and application-specific – as well as other essences of
the field.

– Draw lessons from and outline future directions for SDS research. We provide key
insights about this survey and investigate the open research challenges for this field.

This survey is focused only on the SDS paradigm. Namely, we do not address the design nor
limitations of either specialized storage systems (e.g., file systems, block devices, object stores) or
other fields of storage research (e.g., deduplication [78], confidentiality [22], metadata manage-
ment [100], device failures [91], non-volatile memory [49]). Autonomic computing systems are also
out of the scope of this article [37]. Furthermore, even though other software-defined genres share
similar design principles, they are out of the scope of this article. Such genres include but are not
limited to networking [6, 54], operating systems [8, 79], data center [2, 88], cloud [43], key value
stores [4, 51], flash [77, 93], security [53, 108], and Internet of Things (IoT) [9, 42].
The remainder of this article is structured as follows. We first present the fundamentals of the

SDS paradigm (§2), by depicting the design principles and major characteristics of the field, and
introduce a classification for SDS systems. §3 surveys existing SDS systems grouped by the storage
infrastructure, namely cloud, HPC, or application-specific storage stacks. In §4, we discuss the
current research focus of the paradigm, and investigate the open challenges and future directions
of SDS systems. §5 presents the final remarks of the survey.
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Fig. 1. Layered view of the SDS planes of functionality, comprehending both control and data tiers, as well as
the corresponding communication interfaces.

2 SOFTWARE-DEFINED STORAGE
Software-Defined Storage is an emerging storage paradigm that breaks the vertical alignment of
conventional storage infrastructures, by reorganizing the I/O stack to disentangle the control and
data flows into two planes of functionality — control and data. Such separation of concerns breaks the
storage control into tractable pieces, which (i) enables end-to-end policy enforcement [46, 63, 105];
(ii) grants programmable storage configurations and improved I/O stack flexibility [80, 95]; (iii)
exposes internal storage services to new abstraction levels, easing application-building [82, 95]; (iv)
adds support for isolated and dynamic configurations under multi-tenancy [30, 103, 105]; and (v)
improves resource utilization [46, 63, 70].
Unlike traditional storage solutions, which require designing and implementing individual

control tasks at each I/O layer, such as coordination, queueing, metadata management, and per-
layer monitoring, SDS brings a general system abstraction where plain control primitives are
implemented at the control platform and properly managed by applications built on top. As a result,
a single control platform allows to implement a range of control features (e.g., I/O prioritization,
data placement strategies, rate limiting) over a wide spectrum of control granularities (e.g., per-user,
-tenant, -request) in a variety of contexts (e.g., cloud, HPC, and application-specific storage stacks).

An SDS architecture comprises two planes of functionality. Figures 1 and 2 depict such an archi-
tecture, through a layered view of the SDS functionality and a SDS-enabled storage infrastructure,
respectively. The control plane is twofold, comprehending the global control building blocks used
for designing system-wide control applications. It holds the intelligence of the SDS system, and
consists of a logically centralized controller (§2.2) that shares global system visibility and centralized
control, and several control applications (§2.3) built on top [30, 46, 102, 103, 105]. Control applica-
tions are the entry point of the control environment (Figure 2: CtrlApp1 and CtrlApp2), and the de
facto way of SDS users (e.g., system designers, administrators) to express different storage policies
to be enforced over the storage infrastructure. Policies are a set of rules that declare how the I/O
flow is managed, being defined at control applications, disseminated by controllers, and installed
at the data plane. For example, to ensure sustained performance, SDS users may define minimum
bandwidth guarantees for a particular set of tenants [105], or define request prioritization to ensure
X th percentile latency [58]. Since controllers share a centralized view of the infrastructure, control
applications resort to centralized algorithms to implement the control logic, which are simpler
and less error prone than designing the corresponding decentralized versions [105]. The scope of
control applications (and policies enforced by these) is broad, ranging from QoS provisioning and
performance-related services [65, 125], and storage management [103, 115], to shared-logging [95],
malware scanning [105], and energy efficiency functionalities [70]. These user-defined policies are

ACM Comput. Surv., Vol. 9, No. 4, Article 39. Publication date: May 2019.



A Survey and Classification of Software-Defined Storage Systems 39:5

Controller

CtrlApp1

CtrlApp2

Physical	NIC

Storage	ServerCompute	Server

Hypervisor	-	Stage	2

File	System

N
et
w
or
k	
D
riv
er

Block	Device

Physical	NIC

Stage	1

Stage	4

Network
Driver

VFS

ext4 btrfs
xfs tmpfs

Stage	3
Block	Device

Driver

P

P

P
P

P

Application

I/O	flow Control	flowData	plane	flow P Policy

V
M
1

VHDVNIC

Fig. 2. SDS-enabled architecture materialized on top of a general-purpose multi-tenant storage infrastructure.
Compute servers are virtualized and host virtual machines interconnected to the hypervisor by virtual devices,
namely virtual NIC and virtual hard disk. Storage servers comprehend general network and storage elements.

shared between control applications and controllers through a well-defined Northbound interface,
which defines the instruction set of the control tier while abstracting the distributed control environ-
ment into a centralized one. To preserve a common terminology between software-defined genres,
we adopt the communication interfaces terminology from SDN, namely Northbound, Southbound,
and Westbound/Eastbound interfaces [54].
Controllers track the status of the storage infrastructure, including data plane stages, storage

devices, and other storage-related resources, and orchestrate the overall storage services present
along the I/O stack in a holistic fashion. The control centralization enables an efficient enforcement
of policies and simplifies storage configuration [105]. Policies submitted to controllers are handled
by a planning engine that translates centralized policies into stage-specific rules and operation logic,
which are disseminated to the targeted data plane stages and synchronized with the remainder
controllers. Such rules can come directly from control applications or be dynamically generated by
automation engines that enable controllers to respond to system variations at runtime [30]. Com-
munication with the data plane is achieved through a Southbound interface, illustrated in Figure 2
as a communication channel with gray-toned arrows, that allows controllers to exercise direct
control over data plane stages through policy dissemination (e.g., create, update, remove policies)
and data plane monitoring (e.g., performance metrics, system statistics) operators. Moreover, a
Westbound/Eastbound interface (W/E int. in Figure 1) establishes the communication protocols and
instruction set between controllers to ensure coordination and agreement [30, 102].
The data plane (§2.1) is a programmable multi-stage component distributed along the I/O path

(Figure 2: Staдe1 . . .Staдe4), that holds fine-grained storage services dynamically adaptable to the
infrastructure status. Each stage can be placed within or horizontally aligned with I/O layers, and
respects to a distinct storage service to be employed over intercepted data flows, such as data
management (e.g., caching, rate limiting, I/O prioritization), data transformations (e.g., compression,
encryption, deduplication), and data routing activities (e.g., flow customization, replica placement).
For all intercepted I/O requests, any matching policy will have employed its associated storage

ACM Comput. Surv., Vol. 9, No. 4, Article 39. Publication date: May 2019.



39:6 R. Macedo et al.

services over the filtered data, which will then be redirected to the original I/O flow (e.g., Figure 2:
data flow between File System↔ Staдe1 ↔ Block Device).

The remainder of this section focus on the specificities of each plane of functionality in a bottom-
up fashion, namely data plane stages (§2.1), controllers (§2.2), and control applications (§2.3),
regarding their internals, main properties, and designs. Moreover, we introduce a taxonomy for
classifying SDS systems based on the design principles and major properties of both control and
data planes, which is used as classification criteria for the surveyed work in §3.

2.1 Data Plane
Data plane stages are multi-tiered components, distributed along the I/O path that employ storage-
related operations over incoming I/O packets. Stages are the end-point of SDS systems and abstract
complex storage services into a seamless design that allows user-defined policies to be enforced over
I/O flows. Each of these can be placed throughout the I/O path, establishing flexible enforcement
points for the control plane to specify fine-grained control instructions. As presented in Figure 2,
stages can be transparently placed between two layers of the I/O stack, acting as a middleware
(Staдe1, Staдe3, and Staдe4), or within an individual I/O layer (Staдe2). Moreover, stages comprehend
I/O interfaces to handle I/O flows and a core that encompasses the storage primitives to be enforced
over such flows. To preserve I/O stack semantics, an input and an output interfaces marshal and
unmarshal data flows to be both enforced at the core and correctly forwarded to the next I/O layer.
The stage core comprises a (i) policy store, to orchestrate enforcement rules installed by the control
plane (similar to a SDN flow table [67]); an (ii) I/O filter, that matches incoming packets with the
stage’s installed policies; and (iii) an enforcement structure, that employs the respective storage
features over filtered data (a thorough description of this component is presented in §2.1.2).

Albeit overlooked in current SDS literature, the Southbound interface is the de facto component
that defines the separation of concerns in software-defined systems. This interface is the connecting
bridge between control and data planes, and establishes the operators that can be used for direct
control (e.g., policy propagation, share monitoring information, fine-tune storage services), as well
as the communication protocols between them. The control API exhibits to the control plane the
instructions a stage understands, in order to configure it to perform local storage decisions (e.g.,
manage storage policies, fine-tune data plane configurations) [105]. Such an API can be repre-
sented in a variety of formats, such as tuples [102] or domain-specific languages [30]. Further, the
Southbound interface acts as a communication middleware, and defines the communication models
between these two planes of functionality (e.g., publish-subscribe [30, 63], RPC [63], REST [30],
RDMA-enabled channels [105]). The design of such interface paves the path of interoperability
between SDS technologies, i.e., a controller may orchestrate different data plane solutions.

Despite the influence from SDN, the divergence between storage and networking areas has driven
the SDS paradigm to comprehend fundamentally different design principles and system properties.
First, each research field targets distinct stack components, leading to significantly different policy
domains, services to employ over data, and data plane designs. Second, contrarily to the SDN
data plane, whose stages are simple networking devices specialized in packet forwarding [54],
such as switches, routers, and middleboxes, SDS-enabled stages hold a myriad of storage services,
leading to a more comprehensive and complex design. Third, the simplicity of SDN stages eases
the placement strategy when introducing new functionalities to be enforced [54]. Differently, SDS
stages demand accurate enforcement points, otherwise it may disrupt the SDS environment, and
introduce significant performance penalty to the overall storage system.

2.1.1 Properties. The disparity between SDN and SDS data planes has lead both fields to assume
significantly different design principles and system properties. We now define the properties that
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characterize SDS data tiers, namely programmability, extensibility, stage placement, transparency,
and policy scope. The explored properties are contemplated as part of the taxonomy for classifying
current SDS solutions (§3).

Programmability. Programmability refers to the ability of a data plane to reuse, extend, and
configure existing storage abstractions provided by either specialized storage services or the under-
lying I/O stack, enabling the development of novel fine-tuned configurable storage services via
composition [95]. Programmability in SDS data tiers is usually exploited to ensure I/O differentia-
tion [30, 105], service isolation and customization [46, 102, 103], and development of new storage
abstractions [26, 95]. Conventional storage infrastructures are typically tuned with monolithic
setups to handle different types of applications with time-varying requirements, leading to all
applications experience the same service level [3, 21]. SDS programmability prevents such an
end by customizing and fine-tuning the stage core to provide differentiation of I/O requests and
ensure service isolation (a thorough description of this process is presented in §2.2.2). Moreover,
programmable storage systems can ease service development by re-purposing existing abstractions
of the storage stack, and exporting the configurability aspect of specialized storage systems to a
more generalized environment, i.e., expose runtime configurations (e.g., replication factor, cache
size) and existing storage subsystems of specific storage services (e.g., load balancing, durability,
metadata management) to a more high-level and accessible environment [94, 95].

Extensibility. Extensibility refers to how easy is for data plane stages to support additional
storage services or customize existing ones. An extensible data plane comprises a flexible and
general-purpose design suitable for heterogeneous storage environments, and allows for a straight-
forward implementation of storage services. Such a property is key for achieving a comprehensive
SDS environment, capable of attending significantly different requirements of a myriad of ap-
plications, as well as to broad the available policy spectrum supported by the SDS system. The
extensibility of SDS data tiers strongly relies on the actual implementation of the data plane archi-
tecture. In fact, as presented in the SDS literature, highly-extensible data plane implementations are
built atop flexible and extensible by design storage systems (e.g., FUSE [60], OpenStack Swift [76]).
However, behind this flexible and generic data plane design, lies a great deal of storage complexity
that if not properly assessed, can introduce significant performance overhead. On another hand, an
inextensible data plane is typically accompanied with a rigid implementation and hard-wired storage
services, tailored for a predefined subset of storage policies. Such a design bears a more straightfor-
ward system implementation, fine-tuned for specific storage purposes, and thus comprehending a
more strict policy domain only applicable to a limited set of storage scenarios.

Placement. The placement of data plane stages refers to the overall position on the I/O path a
stage can be deployed. It defines the control granularity of SDS systems, and is the key enabler
to ensure efficient policy enforcement. Each stage is considered as an enforcement point. Less
enforcement points lead to a coarse-grained treatment of I/O flows, while more points allow for a
fine-grained management of storage functionalities. Since the control plane comprehends system-
wide visibility, broadening the enforcement domain allows controllers to accurately determine the
most suitable place to enforce a specific storage policy [105]. Improper number and placement of
stages may disrupt the control environment, and therefore, introduce significant performance and
scalability penalties to the overall storage system.

Depending on the storage context and infrastructure volume, data plane stages are often deployed
individually i.e., presenting a single enforcement point to the SDS environment. This single-point
placement is often associated to local storage environments and tightly coupled to a specific I/O
layer or storage component (e.g., file system [80], block layer [68]). Regardless the extensibility and
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programmability properties of such data tier, the single enforcement point narrows the available
enforcement strategies, which may lead to control inefficiencies and conflicting policies (e.g.,
enforcing X th percentile latency under throughput-oriented services). Further, a similar placement
pattern can be applied in distributed storage settings. Distributed placement of data plane stages
(distributed single-points) is associated to distributed storage components of an individual I/O layer
(e.g., distributed file systems [63], object stores [30, 70]). In this scenario, each enforcement point is
a replica of a data plane stage and is deployed at the same I/O layer as the others. In contrast to
the prior placement strategy, this design displays more enforcement points for the control plane
to decide the enforcement strategies. However, it is still limited to a particular subset of storage
components, and may suffer similar drawbacks as the single-point approach.
Another placement alternative is multi-point data plane stages, which can be placed at several

points of the I/O path, regardless the I/O layer [102, 103, 105]. Such a design provides a fine-grained
control over data plane stages and is key to achieve end-to-end policy enforcement. However,
such a property can introduce significant design complexity in data plane development, and often
requires to be directly implemented over I/O layers i.e., following a more intrusive approach.

Transparency. The transparency of a data plane reflects on how seamless is its integration
with the I/O stack layers. A transparent data plane is often placed between storage components,
and preserves the original I/O flow semantics [80]. Yet, such an integration may require substan-
tial marshaling and unmarshaling activities, which directly impacts the absolute latency of I/O
operations. Contrarily, an intrusive stage implementation is tailored for specific storage contexts
and can achieve higher levels of performance since it does not require unnecessary semantic con-
versions [30, 103, 105]. However, such an approach may entail significant changes to the original
codebase, imposing major challenges in developing, deploying, and maintaining such stages, and
ultimately reducing its flexibility and portability.

Scope. The policy scope of a data plane categorizes the different storage services and objectives
employed over I/O requests. SDS systems can be applied in different storage infrastructures to
achieve a number of different purposes, namely for performance [105], security [80], resource
utilization [70], and data placement [115] optimizations. To cope with this diversity of objectives,
SDS systems comprehend a large array of storage policies categorized in three main scopes, namely
data management, data transformations, and data routing. Noticeably, the support for different
scopes relies on the data plane implementation, as well as the storage purpose it is being employed.
Data management services are primarily associated to performance-related policies to ensure

guaranteed QoS levels [46, 102, 103, 105] (e.g., cache management, rate limiting, bandwidth aggre-
gation, I/O prioritization). Data transformations assemble services that alter the original I/O content,
such as compression [30], deduplication [70], encryption [30, 80], and erasure coding [80]. Data
routing primitives encompass routing mechanisms that redefine the data flow, such as I/O path
customization [102], replica placement strategies [115], and data staging [40]. Even though mainly
applied in networking contexts [54], data routing services are now contemplated as another storage
primitive, in order to dynamically define the path and destination of an I/O flow at runtime [102].

2.1.2 Stage design. We now categorize data plane stages in three main designs, regarding their
internals (enforcement structure) and the organization of storage services. Figure 3 illustrates such
designs, namely (a) Stackable, (b) Queue-, and (c) Storlet-based data plane stages. Similarly to §2.1.1,
these designs are contemplated as part of the taxonomy for classifying SDS data elements.

Stackable stages. Stackable or stack-based data plane stages provide an interoperable layer
design, where layers correspond to specific storage features and are stacked according stage’s
installed policies [80]. Such stacking mechanism, enables an independent and straightforward layer
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Fig. 3. SDS data plane stage architectures, namely (a) Stackable, (b) Queue-, and (c) Storlet-based designs.

development, introducing a modular and programmable storage environment. Layer organization
is established by the control tier, and may result in a number of stacking configurations fine-tuned
to satisfy the installed storage policies and attend I/O stack requirements. Figure 3-(a) depicts an
abstract design of a stackable data plane stage. It comprehends a four-layer stacking configuration,
each with a specific storage feature to be employed over I/O flows, namely malware scanning,
caching, compression, and encryption. The data flow follows a pass-through layout, ensuring that
all packets traverse all layers orderly, such that each layer only receives packets from the layer
immediately on top, and only issues packets to the layer immediately bellow. This sequential
organization simplifies the architecture design and eases metadata management.

Stacking flexibility is key to efficiently reuse layers and to adapt for different storage environments
(e.g., volatile workloads, heterogeneous hardware) [80]. However, this vertical alignment may limit
the ability to enforce specific storage policies (e.g., data routing), hampering the available policy
spectrum exposed to the control plane. Current stackable data plane solutions are attached to
specialized I/O layers, and usually deployed at lower levels of the I/O stack (such as file systems
and block devices) closer to storage drives [70, 80].

Queue-based stages. Queue-based data plane stages provide a multi-queue storage environment,
where queues respect to distinct storage functionalities to apply over I/O packets [105]. Each queue
is a programmable storage element that comprehends a set of rules (derived from policies) to
regulate traffic differentiation and define its storage properties. Such properties govern how fast
queues are served, employ specific actions over data, and forward I/O packets to other point of the
I/O path. Figure 3-(b) depicts the design of a queue-based data plane stage. Incoming packets are
inspected, filtered, and assigned to the corresponding queue (Queue1 . . .QueueN ).
The flexible design of the queuing mechanism allows for simplified queue orchestration, and

improved flexibility and modularity of data plane stages [105]. Although, as demonstrated by
complementary research fields [32, 111], queue structures are essentially used to serve data man-
agement policies, such as performance isolation and QoS provisioning. This management-oriented
flexibility trades stage design’s customization, turning the integration and extension of alternative
storage services, without conflicting with concurrent storage objectives, a challenging endeavor.

ACM Comput. Surv., Vol. 9, No. 4, Article 39. Publication date: May 2019.



39:10 R. Macedo et al.

Storlet-based stages. Storlet-based data plane stages abstract storage functionalities into pro-
grammable storage objects (storlets) [30, 95]. Leveraging from the principles of active storage [87]
and OpenStack Swift Storlets [76], a storlet is a piece of programming logic that can be injected into
the data plane stage to perform custom storage services over incoming I/O requests. This design
promotes a flexible and straightforward storage development, and improves the modularity and
programmability of data plane stages, fostering the reutilization of existing programmable objects.
Figure 3-(c) depicts the abstract architecture of a storlet-based data plane stage. Stages comprehend
a set of pre-installed storlets that comply with initial storage policies. Policies and storlets are kept
up-to-date to ensure consistent actions over I/O packets. Moreover, the data plane stage forms
several storlet-made pipelines to efficiently enforce storage services over data flows. At runtime,
I/O flows are intercepted, filtered, classified, and redirected to the respective pipeline.

The seamless development of programmable storage objects ensures a programmable, extensible,
and reusable SDS environment. However, as the policy sphere increases, it becomes harder to
efficiently manage the storlets mechanisms at data plane stages. Such an increase may introduce
significant complexity in data plane organization and lead to performance penalties on pipeline
construction, pipeline forwarding, and metadata and storlet management.

2.2 Control Plane — Controllers
Similarly to SDN, the SDS control plane provides a logically centralized controller with system-wide
visibility that orchestrates a number of data plane instances. By sharing a unified control point with
control applications, it eases both application-building and control logic development. However,
even though identical in principles and system properties, the divergence between SDN and SDS
research objectives may impact the entailed complexity on designing and implementing production-
quality SDS systems. First, the introduction of a new storage functionality to employ over I/O flows
cannot be arbitrarily assigned to a data plane stage, since it may introduce significant performance
penalties, and even compromise the enforcement of other policies. For instance, SDN data planes
are mainly composed with simple forwarding services, while SDS data planes may comprehend
performance-oriented functionalities (e.g., rate limiting, tail latency), which are sensitive to I/O
processing and propagation along the I/O path, but also data transformations that entail additional
computation, directly impacting the overall processing and propagation time of I/O flows. Thus,
the controller requires to perform extra computations to ensure the efficient placement of storage
features, preventing policy conflicts, and ensuring a correct execution of the SDS environment.
Second, since the domain of both storage features and policy scope is broader than in SDN ensuring a
transparent control logic and straightforward policy specification, introduces increased complexity
to the design of SDS controllers (e.g., decision making, storage service placement).

As depicted in Figure 1, controllers are placed at the mid-tier of the SDS logical view, and are the
main building blocks of the SDS environment, which orchestrate a number of data plane stages
according the actions of control applications built on top. Despite distributed, the control plane
shares the control logic through a logically centralized controller that comprehends system-wide
visibility, eases the design and development of general-purpose control applications, provides a
simpler and less error-prone development of control algorithms, ensures an efficient distribution and
enforcement of policies, and fine-tunes SDS storage artifacts in a holistic fashion (i.e., encompassing
the global storage environment) [30, 40, 102, 105, 115]. Unless otherwise stated, a controller defines
a logically centralized component, even though physically distributed. To ensure such an end,
the controller can be partitioned in three functional modules, namely a metadata store, a system
monitor, and a planning engine (as illustrated in Figure 4-(a)). Each of these modules comprehends
a particular set of control features shared between controllers or designed for a specific control
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Fig. 4. SDS controllers architecture. (a) presents the organization of the internals of a SDS controller. (b) and
(c) depict the design of SDS control plane controllers, namely Flat and Hierarchical designs.

device. Moreover, these modules are programmable and allow SDS users to install, at runtime,
custom control actions to employ over the SDS system (e.g., control algorithms for accurate policy
enforcement, collection of monitoring metrics).

The metadata store comprehends the essential metadata of the storage environment and ensures
a synchronized view of the storage infrastructure. As depicted in Figure 4-(a), different types
of metadata are stored in separate metadata instances, namely topology, policies, or metrics. The
topology instance maintains a stage-level topology graph that comprehends the distribution of the
SDS data plane stages, along the assigned storage services and information about the resources of
each node a stage is deployed (e.g., available storage space, CPU usage). The policies instance holds
the policies submitted by control applications, as well as the ones installed at data plane stages.
The metrics instance persists digested monitoring metrics and statistics of both control and data
flows, to assist other modules define the enforcement plan and control logic. Further, to ensure a
dependable SDS environment, metadata is usually synchronized among controllers [102, 105].

The system monitor collects, aggregates, and transforms unstructured storage metrics and statis-
tics into general and valuable monitoring data [30, 36, 115]. It captures relevant properties of the
physical storage environment, including both static and dynamic metrics (e.g., maximum disk and
network switch performance, available storage space, IOPS, bandwidth usage) from SDS controllers
and data plane tiers, and collects samples of I/O workloads, in order to trace an up-to-date profile of
the storage stack. Such metrics are then analyzed and correlated, bringing significant insights about
the system status, allowing the controller to optimize the infrastructure by (re)configuring the SDS
storage services (deployed at data plane stages), and assist other modules in policy enforcement
and feature placement activities. Furthermore, the system monitor can also exercise automation
operations without input of control applications, ranging from simple management activities (e.g.,
increase or decrease number of controllers), to more complex tasks (e.g., fine-tune storage policies,
reconfigure data plane stages) [30]. Such mechanism is key to enable a self-adaptable SDS system,
capable of attending the requirements of heterogeneous storage environments.
The planning engine implements the control logic responsible for policy translation, policy

enforcement, and data plane configuration. Policies submitted by control applications are parsed,
validated, and translated into stage-specific rules, that will be installed at the respective data plane
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stage. Policy enforcement is achieved through control algorithms that specify how the data plane
handles the I/O flow and define the most suitable place for policies to be enforced [105]. Such
control algorithms can be defined a priori or installed at runtime by control applications. Both
translation and enforcement operations may lead the controller to interact with a single data
plane stage (e.g., to install a particular rule), or include a number of stages to perform distributed
enforcement (e.g., bandwidth aggregation) [103, 105]. Leveraging from the deliverables of other
modules, the planning engine fine-tunes data plane stages in a holistic fashion to efficiently attend
the time-varying requirements of the storage infrastructure.
To provide a seamless integration with the remainder SDS layers, the controller connects to a

northbound and a southbound interfaces to interact with control applications and data plane stages,
respectively. Similar to other software-defined genres, SDS architectures comprehend a network of
controllers connected through a westbound/eastbound interface (as illustrated in Figures 1 and 4-(a)).
Such an interface establishes the instruction set and implements the communication protocols
between SDS controllers, being used to exchange data; ensure state replication, synchronization,
and fault tolerance; monitoring; and, depending on the control plane architecture, submit control
operations and assign control tasks to other controllers (a thorough description of such property
is presented in §2.2.2). Further, this interface aims at achieving interoperability between different
controllers [54], however, despite its clear position in the SDS environment, current literature does
not explore nor details about such an interface.

The depicted modules present the fundamental organization of SDS controllers. Depending on the
design and storage context, additional modules such as discovery components [105], schedulers [115],
and estimators [125] may be included on such architecture.

2.2.1 Properties. Similarly to other software-defined genres, designing and implementing pro-
duction-quality SDS systems requires solving important challenges at the control plane [52]. We
now define the properties that characterize SDS controllers, namely scalability, dependability, and
adaptability, which are also contemplated as part of the taxonomy for classifying SDS systems (§3).

Scalability. Scalability refers to the ability of a control plane to efficiently orchestrate and
monitor a number of data plane stages. Analogously to other software-defined fields, the control
plane can either be physically centralized or distributed [6]. A physically centralized control plane
consists of a single SDS controller to orchestrate the overall storage infrastructure, which is an
attractive design choice in terms of simplicity [74, 98, 107]. However, control centralization of SDS
ecosystems imposes severe scalability, performance, and dependability requirements that are likely
to exhaust and saturate underlying system resources, largely dictating the end performance of the
storage environment. As the amount of data planes stages increases so does the control traffic des-
tined towards the centralized controller, bounding the overall system performance to the processing
power of this single control unit. Hence, despite the obvious limitations in scale and reliability,
such a design may be only suitable to orchestrate small-to-medium storage infrastructures [54].
Production-grade SDS controllers must be designed to attend the scalability, performance and

dependability requirements of today’s production storage systems, meaning that any scaling limita-
tions should be inherent to the storage infrastructure and not from the actual SDS implementation.
As such, physically distributed controllers can be scaled up to attend the requirements of large-scale
storage infrastructures. While sharing a logically centralized service, multiple interconnected SDS
controllers orchestrate the overall storage infrastructure by sharing control responsibility, and thus
alleviating the control load imposed on the centralized controller. Leveraging from existing control
classifications of other software-defined genres, distributed SDS controllers can be organized as
a flat or a hierarchical distribution (§2.2.2) [6]. Flat designs (Figure 4-(b)) imply the horizontal
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partitioning of the storage environment to provide a replicated control service, forming for a reli-
able, fault-tolerant, highly-available cluster of controllers [30, 63, 103, 105, 115]. On the other hand,
hierarchy-based designs (Figure 4-(c)) imply the vertical partitioning of the storage environment to
provide a scalable and highly-performing SDS control plane [40, 46, 102].

Dependability. Dependability refers to the ability of a control plane to ensure sustained avail-
ability, resiliency, and fault tolerance of the control service. Physically centralized controllers
represent a single point of failure (SPOF) to the SDS environment, leading to the unavailability of
the control service upon a failure. As a result, the SDS ecosystem becomes unsupervised, incapable
of regulating incoming storage policies and orchestrate the data plane tier, consequently impacting
the SDS enforcement capabilities and the overall infrastructure’s performance. The system should
handle failures gracefully, avoiding SPOF and enabling fault tolerance mechanisms. Thus, similarly
to SDN [10, 17, 48, 52], physically distributed SDS solutions provide coordination facilities for detect-
ing and recovering from control instance failures [30, 102, 115]. In this model, controllers are added
to the system to form a replicated, fault-tolerant, and highly-available SDS environment. Moreover,
existing distributed controllers consider the different trade-offs of performance, scalability, and
state consistency (strong or eventual), and provide distinct mechanisms to meet fault-tolerance and
reliability requirements. For instance, controllers may assume a clustered format to achieve fault-
tolerance through active or passive replication strategies by resorting to Replicated State Machines
built with Paxos-like techniques [55, 75], or simply implement a primary-backup approach where
one main controller orchestrates all data plane elements while the remainder control instances are
used for replication of the control service [16]. Further, while some solutions may comprehend a
strong consistency model to ensure correctness and robustness of the control service, others may
resort to relaxed models, where each controller is assigned to a subset of storage domain and holds
a different view of the storage infrastructure. Regarding control distribution, flat control planes are
designed to ensure sustained resilience and availability of the SDS environment [30, 105], while
hierarchical control planes focus on the scalability challenges of the SDS environment [40, 102].

Adaptability. Adaptability refers to the ability of a control plane to respond, adapt, and fine-
tune enforcement decisions under time-varying requirements of the storage infrastructure. The
high demand for virtualized services has driven data centers to become extremely heterogeneous,
leading storage components and data plane elements to experience volatile workloads, subject
of workload bursts, diverse storage requests, and skewed access patterns [3, 21, 105]. Moreover,
designing heterogeneity-oblivious SDS systems, with monolithic deployments and homogeneous
configurations, can severely impact the global storage ecosystem, hindering the ability to accurately
enforce storage policies throughout the I/O path [30]. Therefore, SDS controllers must comprehend
a self-adaptive design, capable of dynamically adjust their storage artifacts (e.g., policy values, data
plane stage configurations) to the surrounding environment, in order to deliver responsive, accurate,
and efficient enforcement decisions upon such evolving requirements [30]. While heuristic-based
mechanisms are commonly used to dynamically adjust storage artifacts, existing literature resorts to
storage automation mechanisms such as linear programming [70, 125] and machine learning (ML)
techniques [46] to provide more accurate enforcement strategies and fine-grained control over both
storage policies and data plane stage configurations. First, enforcement strategies directly impact
I/O flows, dictating the overall performance and efficiency of SDS systems. Thus, by employing
self-adaptive and autonomous mechanisms over controllers, an accurate, dynamic, and efficient
enforcement service can be guaranteed. Second, due to the fast changing requirements of the storage
environment, data plane configurations rapidly become subpar. Thus, automated optimization of
data plane resources is key to ensure efficient policy enforcement and optimal resource usage.
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Complementary properties, such as generality, simplicity, and performance, also portray inter-
esting aspects of SDS control planes [52, 93, 105]. Moreover, controllers should provide a generic,
simplified, extensible, and comprehensive control environment, broadening the spectrum of storage
functionalities, simplifying application-building, and easing control service extension. At the same
time, the control plane must not stall the overall system’s performance. Data plane orchestra-
tion, state synchronization, enforcement planning, and policy handling should cause minimal
performance degradation [102, 105].

2.2.2 Controller distribution. SDS literature classifies the distribution and design of controllers
as logically centralized, despite physically distributed for the obvious reasons of scale and re-
silience [102, 105]. Though, beyond the design and implementation of these distributed elements
lies a great deal of practical complexity. In this work, we categorize distributed control planes
regarding controller organization. Figure 4 illustrates such designs, namely (b) Flat and (c) Hierar-
chical control planes. Similarly to the properties presented in §2.2.1, both designs are contemplated
as part of the taxonomy for classifying SDS control elements.

Flat. Flat control planes provide a horizontally partitioned control environment, where a set of
interconnected controllers act as a coordinated group to ensure a reliable and highly-available con-
trol service while preserving logical control centralization. In this model, depending on the control
plane’s implementation, controllers may hold different organizations, being designed accounting
with the different trade-offs of performance and resiliency. For instance, some implementations may
provide a cluster-like distribution, where a single controller orchestrates the overall storage domain,
while others are used as backups that can take over in case the primary fails. In this scenario, the
centralized controller orchestrates the global data plane environment, which involves handling
all stage-related events (e.g., collect reports and metrics), disseminate policies, generate compre-
hensive enforcement plans, and enforce policies. At the same time, the control plane provides the
coordination facilities to ensure fault-tolerance and strong consistency by relying on Paxos-based
mechanisms [102, 115] or simple primary-backup strategies [16]. Such a design vests distributed
controllers with strong consistency properties, ensures high-availability of the control service,
and eases control responsibility. However, since control remains centralized, this cluster-based
distribution falls short when it comes to scalability, limiting its applicability to small-to-medium
sized storage infrastructures [105].
Other solutions may provide a network-like flat control platform, where each controller is

responsible for a subset of the data plane elements [30, 52]. In such a case, by partitioning control
responsibility, each controller orchestrates a different part of the infrastructure, synchronizing its
statewith strong or eventual consistencymechanismswith remainder control peers. Upon the failure
of a controller, another may assume its responsibilities until it becomes available. Such a design
ensures an efficient and high-performance control service, and provides a flexible consistency model
that allows the SDS system to scale to larger environments than cluster-based approaches. However,
the shared control responsibilities of this network-like model hardens the control plane’s ability to
share a logical centralized setup with control applications, along continuous up-to-date system-wide
visibility of the storage environment, hindering its applicability to large-scale production storage
infrastructures. Further, with the emergence of novel computing paradigms composed by thousands
of nodes, such a serverless cloud computing [45] and Exascale computing [24], this design may
hold severe scalability and performance constraints.

Hierarchical. The constant dissemination of stage-related events, such as control enforcement
and metrics collection, hinders the scalability of the control plane [46, 102]. To taper the imposed
load from the centralized control, both control and management flows must be handled closer
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to data plane resources, and minimized as possible without compromising system correctness.
Thus, similarly to distributed SDN controllers [35, 41, 120], hierarchical control plane distributions
address such a problem by organizing SDS controllers in a hierarchical disposition [30, 40, 46, 102].
Despite distributed across the storage infrastructure, controllers are hierarchically ranked and
grouped by control levels, each of them respecting to a cumulative set of control services. Such an
approach distributes control responsibility to alleviate the load imposed over centralized services,
thus enabling a more scalable SDS control environment.
As depicted in Figure 4-(c), the control plane is vertically partitioned, and distinguishes its

elements between core controllers and sub-controllers. Core controllers are placed at the top-tier of
the hierarchy, and comprehend overall control power and system-wide visibility. While maintaining
a synchronized state of the overall SDS environment, core controllers manage control applications,
and orchestrate both data plane and sub-controller elements. Moreover, core controllers share part
of their control responsibilities with underlying control tiers, propagating the control fragments
in a hierarchical fashion. Sub-controllers form the lower-tiers of the control hierarchy, placed
closer to data sources, and comprehend a subset of control services. Each of these controllers
manages a segment of the SDS data plane, and is used manage control activities that do not require
global knowledge nor impact the overall state of the control environment. Since core controllers
comprehend global visibility, they perform accurate and holistic control decisions over the SDS
environment. However, maintaining a consistent view of the system is costly, causing significant
performance overhead even when performing simple and local decisions [40, 102]. On the other
hand, sub-controllers are tailored for control-specific operations, thus performing faster and fine-
grained local decisions over data plane stages. In case a sub-controller cannot perform certain
control actions over its elements, it passes such responsibility to higher ranking controllers.

Communication between control instances is achieved through thewestbound/eastbound interface,
and is used for establishing the control power and policy dissemination, periodic state propagation
for synchronization, and health monitoring events.

2.3 Control Plane — Control Applications
Control applications are the entry point of the SDS environment and the de facto way of expressing
the management requirements and control directives of I/O flows. Such applications exercise direct
control over SDS controllers by defining their control logic through storage policies and control
algorithms, which are ultimately translated into fine-grained stage-specific rules to be employed
over I/O packets. Similar to other software-defined genres [43, 54], control applications introduce a
specification abstraction into the SDS environment, allowing to express the desired storage behavior
without being responsible for implementing the behavior itself. Moreover, the logical centralization
of control services allows control applications to leverage from the same control base, leading to a
correct, consistent, and efficient policy creation.
Existing control applications are designed for a variety of storage contexts, and cover a wide

array of control functionalities. For instance, existing literature proposes performance-oriented
control applications, addressing minimum performance guarantees, I/O prioritization, bandwidth
aggregation, rate limiting, cache management, and tail latency [30, 46, 63, 65, 102, 103, 105, 124, 125];
data placement applications such as replica placement, I/O path customization, load balancing, and
data staging [40, 94, 95, 102, 115]; data transformation applications such as encryption, deduplication,
compression, and erasure coding [30, 80]; and also explore other storage aspects, such as reducing
energy consumption, malware scanning, and distributed logging [70, 95, 105].
Analogously to the Southbound interface, the Northbound interface is the connecting bridge

between control applications and controllers. It abstracts the distributed control environment
into a language-specific communication interface, hiding unnecessary infrastructure details, while
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allowing a straightforward application-building and policy specification. Moreover, such design
fosters the integration and reutilization of different control applications between SDS technolo-
gies, enabling an interoperable control design. However, existing SDS proposals define their own
Northbound interface, each with its own specific definitions, thus hindering the ability to combine
different control applications throughout distinct storage contexts and SDS technologies.

3 SURVEY BY INFRASTRUCTURE
This section presents an overview of existing SDS systems, grouped by storage infrastructure type,
namely cloud, HPC, and application-specific storage stacks. Moreover, each system is classified
according the taxonomies described in §2.1 and §2.2. As each storage infrastructure has its own
requirements and restrictions, the design and combination of SDS properties vary significantly with
the storage type being targeted. Further, solutions from both academia and industry are considered
for this survey.

3.1 Cloud Infrastructures
Cloud computing infrastructures host a myriad of public and private customers with significant
different behaviors and evolving requirements that fluctuate over time. Commercial cloud systems
such as Google Compute Engine, Amazon EC2, and Microsoft Azure, offer enterprise-grade comput-
ing and storage resources as public utilities so customers can deploy and execute general-purpose
services in a flexible pay-as-you-go model. Such infrastructures consist of hundreds to thousands of
compute and storage servers. Compute servers are virtualized and abstract multiple physical servers
into an infinite pool of resources that is exposed through virtual machines (VMs) or containers.
Resources are shared between tenants and mediated by hypervisors. Storage servers accommodate
different storage systems (such as block devices, file systems, and object stores) and drives (e.g.,
SATA HDD and SSD, NVMe SSD) with distinct levels of granularity and performance, respectively.
Such servers are responsible for persisting all data, and are exposed to VMs as virtual devices.
Compute and storage servers are connected through high-speed network links (1-100 Gbps [28])
that carry all infrastructure traffic. However, such virtualized environment has lead cloud infras-
tructures to comprehend complex and predefined I/O stacks unable to perform I/O differentiation,
thus resulting in increased end-to-end complexity and difficulty in enforcing storage requirements
and end-to-end control over storage resources [59, 105]. While several systems have been proposed
to partially address this problem (e.g., QoS provisioning [32, 34, 111], scheduling [12, 33, 118],
elasticity [3, 19, 61]), neither have considered end-to-end enforcement nor holistic orchestration
of infrastructure resources. To address such shortcomings, software-defined systems have moved
towards cloud-based infrastructures.

The term Software-Defined Storage was first introduced by IOFlow [105]. Specifically, IOFlow is
a SDS system that enables end-to-end policy enforcement under multi-tenant infrastructures. It
comprehends a full-fledged SDS stack, consisting of a queue-based data plane and a flat control
plane. Stages are designed for performance isolation and routing primitives, and are deployable
throughout the I/O stack (e.g., hypervisor, drivers), allowing differentiated I/O treatment and policy
enforcement from VMs to shared storage, with minimal performance degradation. Even though
transparent to VMs and guest applications, ensuring negligible overhead during policy enforcement
comes at the cost of reduced extensibility, as turning conventional I/O layers into IOFlow-compliant
ones requires significant code changes. Moreover, stages are soft-state. While not impacting sys-
tem’s correctness, the failure of a stage leads to temporary degradation in performance, until the
enforcement environment stabilizes. At the control plane, a logically centralized controller discov-
ers IOFlow-compliant stages and dynamically configures their storage services. It maintains an
up-to-date topology graph with the SDS essentials and periodic trace profiles of the infrastructure’s

ACM Comput. Surv., Vol. 9, No. 4, Article 39. Publication date: May 2019.



A Survey and Classification of Software-Defined Storage Systems 39:17

hardware, in order to validate the I/O performance under variable scenarios and provide accurate,
correct, and flexible enforcement rules. Moreover, the controller dynamically adapts and fine-tunes
enforcement plans, stage configurations, and storage policies through heuristic-based mechanisms,
which is key to ensure a comprehensive control service under heterogeneous and time-varying
workloads. Furthermore, a controller’s failure does not impact system correctness, but only leads
to temporary performance degradation. Interestingly, IOFlow’s control applications implement
conservative policies in case the controller is unreachable, and perform a best-effort enforcement
activity until the controller is available again.

While the original IOFlow design was focused on end-to-end policy enforcement over complex
I/O stacks, it was later extended to support two fundamental data center resources, namely caching
and networking [102, 103]. Moirai [103] extends IOFlow to exercise direct and coordinated control
over the distributed caching infrastructure, improving overall resource utilization, and achieving
performance isolation and QoS guarantees. Stages are deployed at the I/O path as stackable and
programmable caching instances, that employ management storage features over incoming I/O
requests. Since caches are flexible resources deployable throughout the I/O path, Moirai is able to
perform end-to-end policy enforcement. However, while designed for performance-sensitive and
QoS objectives, extending such design to support routing primitives may be infeasible since the
I/O path is predetermined and static. Additionally, Moirai adds support for monitoring stages that
maintain key performance metrics of each workload running on the system (e.g., throughput, read-
write proportion, hit ratio curves), which are periodically sent to the controller. At the control plane,
a logically centralized controller, built on top IOFlow’s traffic classification mechanism, orchestrates
data plane stages in a holistic fashion, and maintains (cache) consistency and coherence across the
I/O stack. By continuously monitoring the SDS infrastructure and leveraging from the collected
metrics and statistics, it dynamically fine-tunes existing stages, regarding their installed rules,
storage features (e.g., caching policies, priority schemes), and placement.

To override the rigid and predefined I/O path, sRoute [102] goes towards combining storage and
networking primitives. By extending IOFlow’s architecture, it employs routing primitives to the
storage stack and proposes an I/O routing abstraction, turning the storage stack more programmable
and dynamic. The data plane is twofold, composed by programmable switches (sSwitch stages)
deployed throughout the I/O path to provide flow regulation and routing properties, and sSwitch-
enabled queue-based stages, that implement management features and I/O differentiation. Such
stages provide per-I/O and per-flow routing capabilities with strong semantic guarantees, that
allow I/O flows to be redirected to any I/O point (e.g., other file destinations, controller, sSwitch-
enabled stages), and to cope with the manifold QoS objectives. The control plane comprehends a
hierarchical distribution, made of a centralized cluster of controllers, and several control delegates,
which are restricted control plane daemons installed at sSwitches for control plane efficiency. The
controller uses delegates to perform control decisions locally at the sSwitches, alleviating the load
of the centralized component. Such a design, allows the control plane to scale as many existing
sSwitches in the system. Moreover, control service is dependable, being replicated for availability
with standard Paxos-like schemes [55]. While IOFlow only explored routing primitives between
stages, sRoute considers the full I/O routing spectrum, where both I/O path and endpoint can also
change, leading to a more comprehensive SDS system.

Similarly, JoiNS [113] holistically orchestrates both storage and network primitives to efficiently
enforce performance-sensitive operators over networked storage environments. While similar to
sRoute’s control plane, its data plane differs by comprehending queue-based network and storage
stages. For network stages, JoiNS leverages from existing SDN data planes [67] and programmable
switches, to efficiently enforce routing primitives over the storage infrastructure, while storage
stages implement predetermined management features over block device drivers. Moreover, despite
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distributed, both stages are placed at fixed points of the I/O flow. Specifically, network stages are
deployed over network devices, while the storage ones are implemented over storage drivers.

Differently, several systems have been proposed to address specific problems of cloud storage in
a SDS-fashion (e.g., performance isolation, tail latency, resource fairness), which are well-suited to
be further integrated as a submodule, storage functionality, or control algorithm of full-fledged
SDS systems [74, 82, 98, 104, 124, 125]. Pisces [98] introduced system-wide performance isolation
and fair resource allocation at the service level in multi-tenant cloud environments, through a
physically centralized controller and a twofold data plane setup. Similar to generally known SDS
control primitives, the controller translates global storage objectives from different tenants into
individual storage rules to employ over data plane stages, while monitoring performance metrics
and periodically fine-tuning stages to ensure efficient performance isolation. However, control
and data operations are not entirely decoupled, as a number of control activities are performed at
data plane elements, thus not ensuring a comprehensive enforcement activity over the data plane.
The data plane is composed by a number of request routers that orchestrate the resource sharing
activity, and several queue-based stages, each installed at a distinct storage node. Such stages are
implemented with built-in management features to provide fairness and performance isolation.
Despite its advantages, Pisces is limited to storage bandwidth, which is simpler to control

and manage than tail latency as bandwidth is an average over time not affected by I/O path’s
cumulative interactions. This led to designs for efficient QoS provisioning, achieving end-to-end tail
latency under multi-tenancy. PriorityMeister (PM) [125] is a proactive QoS system that combines
prioritization and rate limiting mechanisms over network and storage resources to meet tail latency
objectives. Similar to IOFlow, it comprehends a distributed controller that automatically orchestrates
QoS-based parameters to be installed at data plane stages. At the data plane, queue-based stages
are deployed at both network and storage elements of compute and storage servers, and provide
latency differentiation per-workload basis, by analyzing the workload’s burstiness and load at each
stage. PM stages are independent enforcement modules vested with single-purpose management
functionalities, that act upon QoS parameters received from the global controller. However, each of
these stages comprehends several rate limiting queues, which may result in a manifold increase in
computation time and number of required computing servers. WorkloadCompactor (WC) [124]
addresses such a problem by consolidating multiple workloads onto a storage server. Similar to PM’s
design, WC enforces rate limits and priorities in storage and network to minimize the number of
servers that cloud providers use to satisfy all workloads, while meeting its tail latency objectives. Its
controller automatically selects rate limits and priority profiles through heuristic-based mechanisms,
in order proactively compact workloads while enabling tail latencies at the 99.9th percentile. Unlike
PM, data plane stages are deployed along storage devices (e.g., SSD drives).

Cloud providers offer a wide-array of storage services with trade-offs in performance, cost, and
durability, which lead to applications built on top to opt for simplicity instead of resorting to different
services with conflicting properties. Tiera [82] is a programmable middleware that facilitates the
use and specification of multi-tiered cloud storage. It shields applications from the complexity
introduced by cloud providers by encapsulating and re-purposing existing storage services of
cloud providers into an optimized interface that can be glued to comply with the requirements of
cloud applications. Even though controllerless, Tiera comprehends a programmable data plane
that separates storage policies from the tier mechanisms through storlet-based object store stages,
each of these abstracting a subset of storage services to be employed over I/O requests of a selected
application. Stages are transparently accommodated between applications and cloud services, and
are built through a configuration file that specifies the storage tiers to use, along their capacities
and set of storage services to be employed. However, this design can only extract the storage
properties of a single cloud provider, not being able to combine existing features across data centers.
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To address this, Wiera [74] extends Tiera’s design to provide a control-based geo-distributed
cloud storage system, that allows enforcing global storage policies across multi-tired data centers.
The data plane is composed by Tiera stages, while the control plane comprehends an adaptable
physically centralized controller with system-wide visibility that abstracts the complexities of
accessing distinct Tiera-enabled data centers, such as scalability, fault tolerance, consistency, and
load balancing. Such a design allows system designers to combine a wide-array of storage features
available at different tiers of the cloud storage hierarchy, enabling the creation of new services via
composition, thus providing a comprehensive storage environment suited to attend the needs of
geo-distributed dependent applications.

Multi-tenant distributed systems composed by hundreds of small services (e.g., Service-Oriented
Architectures (SOAs), micro-services) are often used on cloud infrastructures to build large-scale
web applications and infrastructure systems [104]. Such systems comprise fine-grained and loosely
coupled services, each running inside a physical or virtual machine. However, its limited visibility
hinders the ability to provide end-to-end enforcement and QoS provisioning. To address such
challenges, Wisp [104] proposes a physically and logically distributed framework for building
efficient and programmable SOAs that dynamically adapt storage resources under multi-tenancy. It
comprehends a fully decentralized design, composed by a number of controllers and data plane
stages. Each SOA service accommodates a SDS tuple, made of a controller and a number of stages.
The control plane executes distributed control algorithms (e.g., rate limiting, scheduling). Each
controller gathers local information and propagates it with remote controllers, so when locally
executing control algorithms it can cope with the required storage objectives. Moreover, while
several systems provide per-tenant and per-workload enforcement [105, 125], Wisp coordinates
per-request resources, meaning that even though decentralized, it does not trade performance nor
decision accuracy. The data plane resorts to the building blocks provided by SOA resources, and
abstracts them into queue-based stages able to enforce management-oriented storage features, such
as rate limiting and performance isolation.

Other storage features besides QoS provisioning and performance isolation can be also explored
on SDS systems. For instance, flexStore [70] investigates the possibility of using SDS to improve
energy consumption of cloud-based data centers. Specifically, flexStore provides a storage frame-
work for dynamically adapting a data center to cope with specific QoS and power objectives. The
data plane is twofold and employs stackable stages over heterogeneous storage systems (e.g., object
stores) and hypervisors. Storage systems stages adjust the data layout of different storage devices,
and collect performance and resource usage metrics (e.g., latency, space utilization) to support the
enforcement plan of energy-related policies (e.g., data consolidation, reduce amount of storage
drives). Hypervisor-based stages apply transformations and management features over multi-tenant
I/O requests (e.g., deduplication, adjust replication factor, caching). The control plane follows a flat
distribution that enforces QoS and energy-related policies under multi-tenancy. To ensure isolation,
the controller manages the life cycle of dedicated storage volumes (i.e., creates and destroys) and
allocates them to VMs/tenants. Each of these volumes complies with both tenants’ objectives and
overall energy requirements. Upon energy variations, flexStore dynamically adapts its energy
requirements while complying with the performance guarantees.
Cloud-based SDS systems are currently an actively research topic on the storage field, mainly

to improve overall performance, programmability, and resource efficiency of cloud storage stacks.
Indeed, several enterprise systems such as VMware Cloud [109], Microsoft Windows Server [69],
and NetApp ONTAP Select [71], have been paving the way of the SDS paradigm in industry,
fostering its adoption at a global scale. Furthermore, to broad the current SDS environment,
researchers have suggested to integrate on full-fledged SDS systems existing storage subsystems
directly assessing storage-related resources in the cloud (e.g., QoS provisioning [32, 47, 58, 111], I/O
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scheduling [12, 33, 65, 118], consensus [66]), either as a storage functionality, a control algorithm,
or a control application. Nevertheless, most of these systems assume a flat control plane and
programmable queue-based data planes stages, tailored for management-based storage services.
These assumptions may not hold true in HPC infrastructures, which are composed by thousands of
nodes designed for specialized computationally intensive tasks.

3.2 High-Performance Computing Infrastructures
HPC infrastructures are composed by thousands of nodes capable of generating hundreds of PFLOPS
(1015 floating point operations per second) at peak performance [106]. Indeed, supercomputers are
the cornerstone of scientific computing and the de facto premises for running compute-intensive
applications in several research fields (e.g., aeronautics, quantum mechanics, weather forecast-
ing, earth sciences), where large-scale simulations are conducted. Modern HPC infrastructures
are mainly composed by compute and storage nodes [14]. Compute nodes are responsible for
computational-related tasks, comprehending manycore processors that deliver massive parallelism
and vectorization. While cloud premises virtualize heterogeneous commodity hardware to execute
general-purpose tasks, high-performance compute nodes comprehend bleeding-edge homogeneous
hardware, along fine-tuned libraries for parallel I/O communication (e.g., MPI-I/O [31]) and I/O
abstraction (e.g., HDF5 [29], NetCDF [85]). Storage nodes are responsible for storing applications’
results in a Petabyte-scale parallel file system (e.g., Lustre [92], OrangeFS [18], GPFS [90]) that
offers a global namespace and high-performance storage and archival access, on top of hundreds
of storage drives (e.g., SSD, HDD, RAID, tape). Communication across nodes is made available
through specialized high-performance interconnects such as InfiniBand or Intel Omni-Path [13].
HPC applications are directly deployed at compute instances, and users reserve a number of cores
for a given duration, contrarily to cloud where tenants rent a set of VMs. Furthermore, many of the
current Top500 supercomputers comprehend a third group of HPC nodes, namely I/O forwarding
nodes (or I/O nodes) [14, 106]. Such nodes act as a middleware between compute and storage
instances, and are responsible for receiving compute nodes’ requests and forward them to storage
ones. I/O nodes hold the intermediate results of applications, either in memory or high-speed SSDs,
and enable several optimizations over I/O flows (e.g., request ordering, aggregation, data staging).
However, the long I/O path of HPC infrastructures, combined with complex software stacks

and hardware configurations, make performance isolation, end-to-end control of I/O flow, and I/O
optimizations increasingly challenging [117]. The variety of access patterns exhibited by HPC ap-
plications has lead modern HPC clusters to observe high levels of I/O interference and performance
degradation, inhibiting their ability to achieve predictable and controlled I/O performance [62, 121].
While several efforts were made to prevent I/O contention and performance degradation of HPC in-
frastructures (e.g.,QoS provisioning [116, 123], I/O flow, and job scheduling optimizations [44, 101]),
neither have considered the path of end-to-end enforcement of storage policies nor system-wide
flow optimizations. To this end, SDS systems have been recently introduced to HPC environments.
Clarisse [40] is a SDS system designed to improve the I/O stack performance of complex large-

scale HPC infrastructures. It comprises a queue-based data plane and a hierarchically distributed
control plane, and offers the building blocks for designing coordinated system-wide data staging
optimizations. The data plane is responsible for staging data between applications and storage
nodes, and implements the management and routing mechanisms for transferring data between
compute and storage nodes at the middleware layer (e.g.,MPI-IO) of compute instances. To alleviate
the number of calls and data exchange to storage servers, the data plane exposes the parallel
data flows from a supercomputer to its control plane, allowing system designers to develop novel
cross-layer mechanisms, such as parallel I/O scheduling, load balancing, and elastic collective
I/O. The control plane offers the mechanisms for coordinating and controlling routing-related
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activities. Controllers are deployed and hierarchically distributed over compute premises, and are
classified in three different control types, namely node, application, and global controllers. Node
controllers perform single node orchestration, enforcing control primitives at local data plane stages.
Application controllers monitor the nodes an application is running. A single centralized global
controller orchestrates the overall control environment, and monitors all running applications,
enforces system-level decisions and adapts enforcement plans at runtime. Even though distributed,
no assumptions are made about its dependability.

Similarly to Clarisse, SIREN [46] offers the building block for ensuring performance isolation and
resource sharing guarantees in HPC infrastructures. It introduces the concept of SDS resource en-
claves for resource management of HPC storage settings, allowing users to specify I/O requirements
via reservation and sharing of compute and storage resources between applications. Moreover,
SIREN enforces end-to-end storage policies for performance-sensitive objectives by dynamically
allocating resources according applications’ demands. The control plane comprehends several
distributed controllers organized in a tree hierarchy. Each controller allocates a set of compute and
storage nodes according the I/O requirements of applications, and efficiently enforces performance
objectives over such resources. A root controller manages both HPC resources and SDS elements by
dynamically adapting (through heuristic and ML techniques) sub-controllers organization, resource
allocations, and stage configurations to time-varying workloads. Sub-controllers orchestrate a
subset of resources and directly compute over SDS stages. Resources are recursively allocated, being
controlled at a finer grain as control functionality descends. Moreover, even though distributed,
SIREN’s control plane does not ensure dependability of the control environment, and only provides
recovery mechanisms, leading to temporary downtime of the controller and overall performance
degradation of the HPC stack. Data plane stages are deployed throughout the I/O stack in user-
defined enforcement points (e.g., request schedulers, parallel file systems), and are responsible
for dispatching I/O packets through a queue-based structure that implements management-based
storage features to efficiently enforce the reservations and shares specified by control instances.
Stages continuously monitor system performance and resource usage and periodically report them
to the control plane. Similarly to Clarisse, SIREN’s interfaces communicate through a standard
publish/subscribe API to ease communication between SDS elements.
The recent efforts on designing and implementing SDS solutions for HPC environments have

proven the utility and feasibility of the paradigm on high-performance technologies. Even though
in its infancy, as we move closer to the Exascale era [24], the adoption of SDS-based platforms
and services by the scientific community is key to ensure end-to-end enforcement, I/O differen-
tiation, and performance isolation over large-scale supercomputers. When compared to cloud
infrastructures, the radically different requirements in I/O performance and storage bandwidth
imposed by supercomputers has driven HPC-based SDS systems to adopt hierarchically distributed
controllers over flat-based ones, in order to efficiently enforce specialized storage policies and
employ high-performance I/O functionalities.

3.3 Application-specific Infrastructures
Application-specific storage infrastructures are storage stacks built from the ground up, designed
to serve specialized storage and processing purposes to achieve application-specific I/O optimiza-
tions [95]. Examples of real-world production clusters encompass multi-tenant distributed storage
systems such as Hadoop [114], Ceph [112], and OpenStack Swift [76], being mainly composed
by proxy and storage servers. Proxy servers are responsible for mapping application requests to
the respective data location, and comprehend global visibility of the infrastructure (e.g., metadata,
namespace, network topology), system-wide management activities (e.g., garbage collection, load
balancing, lease management), and high-availability of the storage service. Storage servers are
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user-space daemons responsible for storing, retrieving, and deleting application’s data. Each of these
systems exposes distinct abstractions to applications, and comprises different storage mechanisms to
achieve application-specific I/O optimizations and meet the different requirements of performance,
scalability, and dependability. While these systems are built to run on commodity hardware [99],
enterprise-grade infrastructures may hold hundreds to thousands of storage servers interconnected
with dedicated network links (10-56 Gib/s) [86]. Each of these servers accommodates several multi-
core processors and a number of storage drives hierarchically organized, consisting of 64-512 GiB
of memory and hundreds of GiB of high-speed storage devices for temporary files and hot data,
and hundreds of TiB of HDD drives for the main data bulk. However, the specialized environment
that surrounds modern application-specific stacks has lead to hard-coded designs and predefined
I/O stacks, making the programmability of such systems challenging [95]. Moreover, the absence of
performance guarantees and isolation, leads to greedy tenants and background tasks (e.g., garbage
collection, replication, load balancing) to consume a large quota of system resources, ultimately
impacting overall system performance [63]. While several mechanisms have been proposed to
address different system intricacies (e.g., workload-awareness [19], availability [15]), neither have
considered end-to-end enforcement of storage policies nor improve programmability of specialized
storage stacks. As such, several application-specific SDS systems have been proposed to address
such challenges. Even though application-specific infrastructures can be seen as a subfield of cloud
computing, or even HPC, for the purpose of this article and to provide a more granular classification
of SDS systems, we classify these in a separate category of cloud computing.
The ever-growing requirements in QoS provisioning and performance isolation of distributed

storage ecosystems have lead researchers and practitioners to shift from hard-coded single-purpose
implementations to software-defined approaches. Retro [63] provides efficient resourcemanagement
in multi-tenant distributed storage systems, enabling system designers to orchestrate and fine-
tune resource management policies independently from the underlying system implementation.
A logically flat-based centralized controller provides global view of resources and orchestrates a
number of queue-based data plane stages deployed throughout the I/O path. Implemented over
the Hadoop stack, Retro provides dynamic and adaptive policy enforcement by collecting near
real-time measurements, and continuously enforcing fine-tuned storage policies that react to
volatile system requirements. Such a reactive approach allows the system to respond to real-time
resource usage workflows, instead of relying on static models of future system requirements. Retro
is system- and resource-agnostic, and its data plane abstracts arbitrary resources (e.g., storage
devices, CPU, thread pools, network) and implements management-based storage features (e.g., I/O
prioritization, rate limiting) at predefined points of the I/O path. Stages comprehend a queue-based
design, tailored for management objectives to handle custom system resources and support novel
I/O logic. Such a design is key to efficiently enforce end-to-end system objectives and achieve the
desired performance guarantees and resource fairness.

While Retro focus on efficient resource management in the Hadoop distributed stack, other sys-
tems aim at ensuring sustained efficacy and performance in multi-tenant object stores. Crystal [30]
extends the resource management capabilities of Retro by proposing an SDS architecture for object
storage to ensure efficient resource sharing and performance isolation under multi-tenant hetero-
geneous workloads. At the control plane, a set of flat distributed controllers dynamically adapt
storage artifacts to comply with evolving requirements of a number of tenants. Each controller is
seen as an autonomous micro-service, deployable at runtime, that runs a separate control algorithm
to enforce selected points of the storage stack. Global controllers comprehend system-wide visibility
and continuous control of data plane stages, being responsible for distilling monitoring events and
disseminating storage policies to both controllers and data stages, while automation controllers
ingest predefined monitoring metrics and directly fine-tune stages, in a trigger-based fashion, to
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employ specific actions over object requests. Since controllers are lightweight micro-services, fault
tolerance is achieved by spawning a new control process if one fails. Further, the control plane
exposes a domain-specific language to control applications, hiding the complexities of low-level
policy enforcement, and simplifying storage administration. At the data plane, programmable
storlet-based stages are deployed at OpenStack Swift instances [76] to serve management and
transformation storage services. Each of these stages provides a flexible filter (storlet) framework
that enables developers to deploy and run customized storage services on incoming object requests.

Commercial storage systems have also experienced a thrust towards the software-defined domain.
For instance, Coho Data [20, 115] proposes a twofold SDS-based enterprise storage architecture that
provides efficient, scalable, and highly-available control over high-performance storage devices (e.g.,
PCIe storage drives). At the control plane, Mirador [115] provides a dynamic storage placement
service to efficiently orchestrate heterogeneous scale-out storage systems. Controllers are organized
through a flat distribution, providing efficient control centralization and highly-available control
environment, where a coordination service [38] ensures strong resilience of the control environment.
Moreover, it provides modular building blocks to continuous monitor and fine-tune storage artifacts,
allowing the system to enforce dynamic and flexible data placement policies and to be adaptable
under time-varying workloads. At the data plane, Strata [20] implements a stack-based network-
attached object store that allows efficient management of high-performance storage devices under
multi-tenancy. Moreover, its stacking configuration comprehends tightly coupled and predefined
storage services to employ over I/O requests. Specifically, at the first layer, along SDN-enabled
switches, Strata abstracts the underlying storage resources to efficiently balance requests without
compromising the performance and scalability of the storage stack; at the mid-tier, a global address
namespace preserves the centralized control over data placement, reconfiguration, and failure
recovery services; at the ending layer, it implements an object store over PCIe flash devices,
presenting an OSD-like storage interface. Besides routing and device management, Strata also
implements transformation services over I/O requests (e.g., striping, replication, deduplication).
As some storage systems may provide a rich spectrum of storage functionalities (e.g., resource

sharing, durability, load balancing), some SDS systems rely on these artifacts to improve con-
trol functionality of the storage environment [96, 107]. For instance, Mantle [94, 96] decouples
management-based policies from the storage implementation, allowing users to fine-tune and adapt
the storage environment as requirements vary over time (e.g., workloads, resource usage). While
originally implemented over the Ceph distributed storage system to let system administrators define
metadata load balancing policies [96], Mantle is currently implemented as a library to be linked
into a storage system service and provide general-purpose management capabilities. At the control
plane, a policy engine enables users to inject management-oriented policies into running storage
systems, which allows the system to be fine-tuned at runtime. At the data plane, Mantle abstracts
underlying storage artifacts through a data management language, that allows users to build flexible
and fine-grained policies to implement complex storage systems. On the other hand, SuperCell [107]
relies on the flexibility and availability of the storage features of the Ceph distributed storage system.
To respond to the fast changing requirements and time-varying workloads imposed over real-world
production clusters, SuperCell proposes a SDS-based recommendation engine that measures and
provides different configuration settings of existing Ceph deployments. This enables the runtime
adaptation of storage artifacts to best meet the different QoS requirements under multi-tenancy.
At the control plane, a centralized controller measures detailed workload characteristics of the
storage environment (e.g., I/O size, read/write proportion) and generates accurate enforcement
strategies tailored to meet user’s requirements in a cost-effective manner, while ensuring efficient
resource sharing and performance isolation. System administrators will then select an enforcement
plan and fine-tune the existing storage stack. At the data plane, SuperCell fine-tunes different
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storage settings and configurations of Ceph deployments at runtime, to comply with the manifold
management and transformation storage policies.

While previous systems are mainly focused on providing efficient management and fine-grained
control over storage systems, others aim at providing novel abstractions and storage features [80,
83, 95]. Malacology [95] is a controllerless SDS system that provides novel storage abstractions by
exposing and re-purposing code-hardened storage artifacts (e.g., resources, services, abstractions)
into a high-level programmable storage design. Rather than creating storage systems from scratch,
Malacology encapsulates storage system functionality into reusable building blocks that enable
general-purpose storage systems to be programmed and adapted into tailored storage applications
via composition. Due to its wide spectrum of storage functionality, Malacology actuates over Ceph
deployments, and decouples policies from the respective implementation mechanisms through a
storlet-based data plane that exposes commonly used services as programmable interfaces that hold
the main primitives for developing comprehensive storage applications, namely service metadata,
data I/O, resource sharing, load balancing, and durability. Such a design allows administrators
to have fine-grained control of the storage environment, while enabling efficient enforcement of
management-, transformation-, and routing-oriented storage policies.
Following these same principles, SafeFS [80] aims at re-purposing existing FUSE-based file

system implementations into stackable storage services to employ over I/O requests. In more
detail, SafeFS is a flexible, extensible, and modular stackable data plane that abstracts the file
system layer to enable the development of POSIX-compliant file systems atop FUSE. By following a
stackable organization, SafeFS achieves layer interoperability and allows system operators to simply
stack independent layers in any desired order to attend different management and transformation
objectives (e.g., encryption, replication, erasure coding, caching). Such a design reduces the cost of
(re-)implementing new storage functionalities by resorting to self-contained, stackable, and reusable
layers, and enables the development of tailored and fine-tuned data planes. Likewise, to bridge
cluster and big data-oriented file systems, which comprehend significantly different design choices
and workload profiles, Hadoop-GPFS [83] provides a stacking configuration between the HDFS [99]
and the GPFS [90] distributed file systems. Rather than maintaining two separate storage silos, this
stackable design unifies these two file systems, enabling the seamless execution of analytic-oriented
applications over them while improving total cost of ownership. The Hadoop-GPFS system is
implemented as part of the IBM Spectrum Scale SDS solution [39], which is not further detailed
since its design is not publicly disclosed.

Similarly to previous infrastructures (§3.1 – §3.2), while SDS-based solutions received considerable
attention from researchers and practitioners, previous works on application-specific storage had
already crossed the path of software-defined principles [7, 68]. Specifically, as a first attempt
towards SDS, PADS [7] introduced a policy-based architecture to ease the development of custom
distributed storage systems. It decouples storage policies from the associated mechanisms by
providing a controllerless control plane and a storlet-based data plane. At the control plane, control
applications hold a set of routing and blocking policies to define the management and routing
logic of the correspondent storage system. Routing policies define the data flows between nodes,
while blocking policies specify the predicates for meeting consistency and durability objectives of
distributed storage systems. At the data plane, stages accommodate a set of common storage services
(e.g., replication, consistency, storage interface) that allow system designers to develop tailored
storage systems via composition, by simply defining a set of policies rather than implementing them
from scratch. Such flexible and programmable design, enables the development of a wide-range of
storage systems accounting with the different trade-offs of performance, reliability, and availability.
Differently, Mesnier et al. [68] proposes a classification architecture to achieve I/O differentiation
between storage requests. Since the performance of compute servers is often determined by the I/O
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interference and performance degradation of storage servers, it proposes a classification framework
that is able to classify I/O requests at compute instances, and differentiated them at storage servers
according user-defined policies, thus ensuring performance isolation and resource fairness. A
controllerless control plane installs management-oriented policies at a block-level data plane, that
introduces programmability and extensibility to the formerly rigid block layer. Such a design, allows
users to classify I/O requests according different criteria (e.g., metadata, access pattern, file size)
and ensure different objectives of performance, reliability, and security.

The introduction of software-defined principles into specialized distributed storage systems have
lead to significant improvements in terms of programmability, performance isolation, and resource
efficiency of application-specific storage infrastructures. Such a design allows users to experience
sustained QoS provisioning and performance isolation in multi-tenant settings, instead of the for-
merly predefined and single-purposed approaches. Further, the broad applicability and increasing
interest of these storage stacks in both academia and enterprise domains, alongside the overwhelm-
ing requirements of emerging storage paradigms (e.g., serverless computing [45]), motivate the
need to foster research and development of SDS-enabled application-specific technologies.

4 LESSONS LEARNED AND FUTURE DIRECTIONS
Table 1 classifies the surveyed SDS systems according the taxonomy described in §2, while grouping
them by storage infrastructure, namely cloud, HPC, and application-specific storage stacks. This
table highlights the design space of each storage infrastructure, and depicts current trends of the
SDS field and unexplored aspects that require further investigation. The classification considers
systems from both academia and industry.1 Commercial solutions whose specification is not
publicly disclosed are not considered for this survey. Systems that clearly define their solution
as SDS targeting at least one of the planes of functionality, are in the scope of this classification.
Likewise, systems that are not clearly declared as SDS but share similar design principles and
storage functionalities are also contemplated in this classification.2 We now present the key insights
provided by this survey, grouped by storage infrastructure (SIx), planes of functionality, namely
data (Dx ) and control planes (Cx ), SDS interfaces (Ix ), and other aspects of the field (Ox ).

SI1: SDS research is widely explored over cloud and application-specific infrastructures.
Several SDS systems have been proposed to attain the needs of both cloud and application-specific
infrastructures. Cloud-based solutions are full-fledged, mainly composed by flat controllers and
queue-based stages, while application-specific environments focus on data plane proposals. The
advances of the SDS paradigm in both fields are justified by its direct applicability over storage
solutions and the novel trade-offs that it brings to conventional infrastructures [1].

SI2: HPC-based systems are at an early research stage. Due to the increasing requirements of
scale and performance of supercomputers, HPC-oriented solutions have just recently made the first
advances towards software-defined, being composed by hierarchical control distributions backed
by high-performance queue stages. Considering that only a few proposals address this challenge,
novel contributions are expected to both advance the knowledge of the SDS-HPC field and to attend
the requirements of incoming Exascale premises [1, 24].

SI3: SDS-enabled systems for emerging computing paradigms are unexplored. SDS-enabled
systems have been employed over modern storage infrastructures to achieve different storage
objectives. However, with the emergence of novel computing paradigms such as serverless cloud
computing [45], IoT [5], and Exascale computing [24], a number of challenges (e.g., scalability,
1Industrial SDS systems are marked with an i in the classification table.
2SDS-alike systems are marked with ⋆ in the classification table.
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Table 1. Classification of Software-Defined Storage systems regarding storage infrastructure.
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SafeFS [80] — — — — S G#  SP  MT ↓

PADS ⋆ [7] — # # # St   DSP # MR ↑ ↓

Mesnier et al.⋆ [68] — # # # — G# G# SP # M ↓

Properties Distribution Design Placement Scope Interfaces
# Absent C-Centralized S-Stackable SP-Single-point M-Management ↑ Northbound
G# Limited F-Flat Q-Queue DSP-Distributed SP T -Transformation ↔West/Eastbound
 Manifested H -Hierarchical St-Storlet MP-Multi-point R-Routing ↓ Southbound
-⋅- Unspecified D-Decentralized
— Not Applicable

performance, resiliency) need to be addressed to ensure sustained storage efficiency. As such, novel
contributions in SDS architectures over such environments should be expected.

D1: Stage design impacts programmability and extensibility. Several SDS data planes rely on
queue-based designs, trading customization and transparency for performance. This performance-
focused development has lead queue-based solutions to experience limited programmability and
extensibility. Storlet-based solutions however, comprehend a more programmable and extensible
design, being able to serve general-purpose storage requirements.
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D2: End-to-end enforcement is hard to ensure. Most SDS systems provide distributed enforce-
ment points, bounded to a specific layer of the I/O stack (e.g., hypervisor, file system). Systems
that ensure efficient end-to-end policy enforcement comprehend specialized queue-based stages
fine-tuned for specific storage services, which require significant code changes to the original
codebase. As such, end-to-end enforcement is tightly coupled to the placement property, and
directly influences the transparency of data plane stages.

D3: Data management services dominate SDS systems. Data management services have domi-
nated the spectrum of storage policies and services supported by SDS systems. This management-
oriented design has lead to a large research gap for the remainder scopes. Nevertheless, the advent
of modern storage technologies, such as kernel-bypass [122], NVMe devices [49, 119], and storage
disaggregation [50, 97], along the emergence of novel computing paradigms require significant
attention and further investigation in order to adapt, extend, and implement novel storage features
over SDS data planes [1]. As such, there is a great research opportunity to explore these new
technologies in SDS architectures.

D4: End-to-end storlet data planes are unexplored. Despite the acknowledged programmability
and extensibility benefits of storlet-based data planes, end-to-end enforcement has not yet been
explored with such data types. In fact, there are few proposals on storlet data planes, and several
contributions and combinations of storage spaces are possible, being of utmost interest for attaining
the requirements of incoming serverless cloud computing [45] and IoT infrastructures [1, 5], as
well as on the approximation of HPC and cloud ecosystems [72].

D5: Re-purposing of existing storage subsystems is overlooked. Existing storage services in-
stalled at data plane stages are mainly designed from the ground up and fine-tuned for a specific
data plane solution. While some solutions already encapsulate existing storage systems as reusable
building blocks [80, 83, 95], there is no SDS system that leverages from existing storage subsystems
(e.g., QoS provisioning, I/O scheduling) to be re-purposed as programmable storage objects and
reused in different storage contexts throughout the I/O path. Such a design would open research
opportunities towards programmable storage stacks, and foster reutilization of complementary
works [47, 65, 81, 118] and existing storage subsystems [25, 26, 66].

D6: Heterogeneous data planes are unexplored. Despite the large-array of possible combinations
and design flavors of SDS data planes, the combination of different stage designs has not yet been
explored. Such a design turns the data plane domain mostly monolithic, tailored for specific
storage objectives, and may lead to suboptimal performance and enforcement efficiency. As such,
following the steps of the SDN paradigm [54], novel contributions towards heterogeneous data
plane environments, that explore the different trade-offs of stackable, queue-, and storlet-based
designs, should be expected.

C1: Current systems are unsuitable for larger environments. A large quota of SDS systems
follow a flat setup, being able to scale for small-to-medium storage infrastructures, made of hun-
dreds of compute servers and tens of storage servers [105]. However, as we move closer to larger
storage environments such as serverless cloud computing [45] and IoT infrastructures [5], made
of complex and highly-heterogeneous storage stacks, the control centralization assumptions of
current SDS systems do not hold true. As such, leveraging from the initial efforts of decentralized
controllers [104], it is fundamental to further investigate this topic and provide novel contributions
towards control decentralization.

C2: Controllers lack programmability. Current hierarchical SDS controllers resort to delegate
functions or micro-services to improve control scalability, providing limited control functionality to
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the aforementioned control peers. Rather, it would be interesting to follow similar design principles
as SDS data elements and turn control functionality more programmable. Researching different
paths of scalability and programmability in SDS would bring major benefits for incoming storage
infrastructures [1].

C3: Scalability and dependability are overlooked. The design of SDS control planes has been
overlooked since early solutions, which simply define controllers as “logically centralized” [105].
However, behind this simple but ambiguous assumption lies a great deal of practical complexity that
involves several aspects of SDS dependability, leaving no clear definitions on its practical challenges
and actual impact in performance and scalability at the overall storage infrastructure. Moreover,
few SDS systems discuss their control plane’s dependability. Similarly to other software-defined
genres [56], these assumptions leave several open questions regarding controllers dependability
that require further investigation, such as fault tolerance and consistency [10, 11, 48, 52], load
balancing and control dissemination [23], controller synchronization [89], and concurrency [27].

C4: Controllers are self-adaptable. Several controllers resort to heuristic-based mechanisms to
dynamically adjust storage artifacts, while few proposals rely on linear programming and ML
techniques to provide a more accurate and comprehensive automation model. However, the storage
landscape is changing at a fast pace, with new computing paradigms and emerging hardware
technologies vested with novel workload profiles, leaving heuristic-based strategies unsuitable to
achieve higher-levels of accuracy and efficacy. As such, it is necessary to advance the research
of autonomous mechanisms for supporting control decisions of SDS controllers. For instance,
exploring distributed ML techniques [57] would be of great utility to attend the needs of both
modern and emerging storage infrastructures, not only for the obvious reasons of scale but also for
ensuring new levels of accuracy in such heterogeneous and volatile environments.

I1: Communication protocols are tightly coupled to planes of functionality. Current SDS in-
terfaces are used as simple communication APIs, making the communication protocols to be tightly
coupled to either control or data plane implementations. Such a design prevents the reutilization
of alternative communication technologies and inhibits current SDS systems to be adaptable to
other storage contexts without significant code changes at the communication codebase. As such,
decoupling the communication from control and/or data plane implementations would improve
the transparency between the two planes of functionality, foster reutilization of communication
protocols, and open novel research opportunities to attain the communication challenges of novel
storage paradigms [5, 45] and network fabrics [1].

I2: Interfaces lack standardization and interoperability. Contrarily to SDN [54], the SDS liter-
ature does not provide any standard interface to achieve interoperability between SDS technologies.
Indeed, this lack of standardization leads researchers and practitioners to implement custom in-
terfaces and communication protocols for each novel SDS proposal, tailored for specific software
components and storage purposes. Such a design inhibits interoperability between control and data
plane technologies, and hinders the independent development of each plane of functionality. As
such, novel contributions towards standard and interoperable SDS interfaces should be expected.

O1: Black-box and end-to-end monitoring are unexplored. Monitoring mechanisms in SDS
controllers are predefined and static. Integrating black-box [73] and end-to-end monitoring sys-
tems [64, 117] in SDS controllers would bring novel insights to the field, and reveal interesting (and
unexpected) metrics and I/O behaviors of data flows that could assist SDS controllers to define more
accurate enforcement strategies. Moreover, such an approach does not require a priori knowledge
of the I/O stack and comprehends near-zero changes to the original codebase.
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O2: SDS paradigm lacks proper methodologies and benchmarking platforms. Current eval-
uation methodology of SDS systems is essentially made through trace replaying and benchmarking
of specific points of the I/O path, either with specialized or custom-made benchmarks. Thus, there
is no comprehensive SDS benchmarking methodology that systematically characterizes the end-to-
end performance and design trade-offs of general SDS technologies. As such, these considerations
motivate for novel contributions in SDS evaluation.

5 CONCLUSION
In recent years, the Software-Defined Storage paradigm has gained significant traction in the
research community, leading to a broad spectrum of academic and commercial proposals to address
the shortcomings of conventional storage infrastructures. By reorganizing the I/O stack to disen-
tangle control and data flows into two planes of functionality, SDS has proved to be a fundamental
solution to enable end-to-end policy enforcement and holistic control, ensure performance isolation
and QoS provisioning, and provide new levels of programmability to storage stacks.
To this end, and to the best of our knowledge, we present the first in-depth survey of the SDS

paradigm. Specifically, we explain and clarify fundamental aspects of the field, and provide a com-
prehensive description of each plane of functionality, namely control and data planes, describing
their design principles, internal organization, and storage properties. As a first contribution, we
define the SDS design principles and categorize planes of functionality regarding internal organiza-
tion and distribution. In more detail, we surveyed existing work on SDS and distilled a number of
designs for data plane stages, being categorized as stackable, queue-, or storlet-based. At the control
plane, we categorize distributed SDS control planes as being flat or hierarchically organized.

Then, as another contribution, we propose a taxonomy and classification of existing SDS systems
to organize the manifold approaches according to their storage infrastructure, namely cloud,
HPC, and application-specific storage infrastructures. Cloud-based solutions aim at addressing the
requirements of general-purpose multi-tenant storage stacks, mainly through flat controllers and
queue-based data plane stages. On the other hand, SDS-enabled application-specific systems target
specialized storage stacks tailored for specific storage and processing purposes, being particularly
focused on the SDS data elements. Lastly, even though at an early research stage, HPC-based
solutions follow hierarchical control distributions backed by high-performance queue-based stages,
in order to respond to the increasing requirements of scale and performance of supercomputers.
Finally, we provide key insights about this survey and discuss future efforts of the SDS field.

Even though significant advances in SDS research have been made in both application-specific and
cloud computing infrastructures, several issues can still be improved, namely scalability, control
programmability, dependability, heterogeneous data planes, alternative data plane combinations,
and novel storage policies and services of less explored data scopes. Noticeably, since HPC-oriented
SDS systems are at an early research stage, novel contributions to improve performance variability
and I/O contention can be expected. Likewise, novel SDS solutions capable of ensuring the several
requirements of scale, performance, and dependability of incoming storage infrastructures, namely
serverless cloud computing, IoT, and Exascale computing, can also be expected. To conclude, due
to their well-acknowledged benefits, and the need for addressing emerging storage technologies
challenges, we believe that SDS research will continue to grow at an accelerated pace in forthcoming
years. Moreover, we believe the insights provided by this survey will be of great utility to guide
researchers and practitioners to foster the SDS field.
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