
Towards Performance and Dependability Benchmarking

of Distributed Fault Tolerance Protocols

Divya Gupta

To cite this version:

Divya Gupta. Towards Performance and Dependability Benchmarking of Distributed Fault
Tolerance Protocols. Systems and Control [cs.SY]. Université Grenoble Alpes, 2016. English.
<NNT : 2016GREAM005>. <tel-01376741>

HAL Id: tel-01376741

https://tel.archives-ouvertes.fr/tel-01376741

Submitted on 5 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://tel.archives-ouvertes.fr/tel-01376741

THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ GRENOBLE
ALPES
Spécialité : Informatique

Arrêté ministériel : Arrêté n
o

Présentée par

Divya GUPTA

Thèse dirigée par Pr. Sara Bouchenak

préparée au sein Laboratoire d’Informatique de Grenoble
et de École Doctorale Mathématiques, Sciences et Technologies de
l’Information, Informatique

Performance et fiabilité des proto-
coles de tolérance aux fautes

Thèse soutenue publiquement le Mars 18, 2016,

devant le jury composé de :

Pr. Noel De Palma
Grenoble Université Alpes, LIG, Président

Asc. Pr. Eddy Caron
Ecole Normale Superieure de Lyon, Rapporteur

Pr. Gilles Grimaud
Université de Lille 1, Rapporteur

Asc. Pr. Luciana Arantes
Université Pierre et Marie Curie, LIP6, Examinatrice

Pr. Sara Bouchenak
INSA Lyon, LIRIS, Directrice de thèse

ii

This thesis is dedicated to my beloved parents and grandparents.

For their endless love, support and encouragement

iii

Acknowledgments

I would like to take this opportunity, to express my sincere gratitude to the

people for inspiring me to embark on my PhD candidature. My deepest appre-

ciation to my supervisor who guided me throughout on this vast research area,

Professor Sara Bouchenak. I am particularly thankful to her for giving me

the opportunity to pursue this research under her guidance. My immeasurable

appreciation for her time, emotional support, tremendous encouragement and

for sharing an invaluable experience. I thank her for generously guiding me

through all the phases of my PhD with enormous patience. I would like to ex-

tend my gratitude to the jury members, Eddy Caron and Gilles Grimaud, for

accepting to evaluate my work and provide their valuable comments, Luciana

Arantes, for accepting to be the examiner, and Noel De Palma, for chairing

the jury committee.

I am obliged to thank Vivien Quéma, for occasional conversations on my

research topic; his strong theoretical and technical skills greatly helped in

structuring the solution for the complex problem of Byzantine. I am also

grateful to Vania Marangozova-Martin, for giving her time to review my con-

tributions and manuscript.

I am thankful to Damian Serrano for his profitable discussions and advice

on my work, and also guiding me through the initial phases of a PhD student.

My sincere thanks to Lucas Perronne, for critiquing dispassionately about

various aspects of the problems for understanding them better and improving

the research approaches. I am fortunate to have wonderful colleagues in my

team, ERODS. They have been very generous friends, supporting and moti-

vating me throughout my work. My very special thanks to Raquel Oliveira,

for being there by my side like a guiding light, helping me carve my path with

immense patience. I am greatly indebted to her for encouraging and comfort-

ing me during all my tough times. I acknowledge the help and support from

Ecole Doctorale: Zilora Zouaoui, Pierre Tchounikine, Florence Maraninchi,

Pierre Geneves and Brigitte Nonque for kindly helping me with professional

and French bureaucratic problems. I am also grateful to the administration

staff at LIG: Pascal Poulet, Laurence Schimicci, Muriel Paturel and Amelie

Vazquez for assisting me with the complicated, time consuming administrative

formalities.

This dissertation would not have been possible without the unconditional

love and constant encouragement from my parents, sister, brother and other

family members. My grandfather taught me to work hard and value time.

My parents always motivated me to achieve the impossible and go beyond the

limits. Even though we are miles apart, but their positive thoughts and energy

iv

could be felt all the time. I am lucky to have my sister, Somya, who has been

like a teacher, motivating me in the worse times. She stood firm like a pillar,

giving me the strength to face all the difficulties. How can I forget, Nimit,

my brother, his great discussions, reviews, comments and advice, throughout

my PhD career. He made sure that I smiled every day, no matter what. I am

fortunate to have two best friends, Shipra and Sushma, for their cheering and

sharing my life experiences. I would like to express my warm thanks to all

my friends across the globe and in France, for being supportive, encouraging,

and believing in me, during my PhD journey.

v

Résumé

A l’ère de l’informatique omniprésente et à la demande, où les applications et

les services sont déployés sur des infrastructures bien gérées et approvision-

nées par des grands groupes de fournisseurs d’informatique en nuage (Cloud

Computing), tels Amazon, Google, Microsoft, Oracle, etc., la performance et

la fiabilité de ces systèmes sont devenues des objectifs primordiaux. Cette in-

formatique a rendu particulièrement nécessaire la prise en compte des facteurs

de la Qualité de Service (QoS pour Quality of Service), telles que la disponibil-

ité, la fiabilité, la vivacité, la sureté et la sécurité, dans la définition complète

d’un système. En effet, les systèmes informatiques doivent être résistants aussi

bien aux défaillances qu’aux attaques et ce, afin d’éviter qu’ils ne deviennent

inaccessibles, entrainent des couts de maintenance importants et la perte de

parts de marché. L’augmentation de la taille et la complexité des systèmes en

nuage rend de plus en plus commun les défauts, augmentant la fréquence des

pannes, et n’offrant donc plus la Garantie de Service visée. Les fournisseurs

d’informatique en nuage font ainsi face épisodiquement à des fautes arbitraires,

dites Byzantines, durant lesquelles les systèmes ont des comportements im-

prévisibles comme, par exemple, des réponses incorrectes aux requêtes d’un

client, l’envoi de messages corrompus, la temporisation intentionnelle dans

l’échange de messages, le refus d’honorer des requêtes, etc.

Ce constat a amené les chercheurs à s’intéresser de plus en plus à la

tolérance aux fautes byzantines (BFT pour Byzantine Fault Tolerance) et à

proposer de nombreux prototypes de protocoles et logiciels. Ces solutions de

BFT visent non seulement à fournir des services cohérents et continus malgré

des défaillances arbitraires, mais cherchent aussi à réduire le coût et l’impact

sur les performances des systèmes sous-jacents. Néanmoins les prototypes

BFT ont été évalués le plus souvent dans des contextes ad-hoc, soit dans des

conditions idéales, soit en limitant les scénarios de fautes. C’est pourquoi

ces protocoles de BFT n’ont pas réussi à convaincre les professionnels des sys-

tèmes distribués de les adopter. Tandis que certains considèrent les protocoles

de BFT trop coûteux et complexes à mettre en place pour contrer des défail-

lances arbitraires, d’autres sont tout simplement sceptiques quant à l’utilité

de ces techniques. Cette thèse entend répondre à ce problème en proposant

un environnement complet de banc d’essai dont le but est de faciliter la créa-

tion de scénarios d’exécution utilisables pour aussi bien analyser que comparer

l’efficacité et la robustesse des propositions BFT existantes.

Dans ce contexte, les contributions de cette thèse sont les suivantes :

• Nous introduisons une architecture générique pour analyser des proto-

coles distribués. Cette architecture comprend des composants réutilis-

vi

ables permettant la mise en œuvre d’outils de mesure des performances

et d’analyse de la fiabilité des protocoles distribués. Cette architecture

permet de définir la charge de travail, de défaillance, et l’injection de ces

dernières. Elle fournit aussi des statistiques de performance, de fiabilité

du système de bas niveau et du réseau. En outre, cette thèse présente

les bénéfices d’une architecture générale.

• Nous présentons BFT-Bench, le premier système de banc d’essai de la

BFT, pour l’analyse et la comparaison d’un panel de protocoles BFT

utilisés dans des situations identiques. BFT-Bench permet aux utilisa-

teurs d’évaluer des implémentations différentes pour lesquels ils définis-

sent des comportements défaillants avec différentes charges de travail. Il

permet de déployer automatiquement les protocoles BFT étudiés dans

un environnement distribué et offre la possibilité de suivre et de ren-

dre compte des aspects performance et fiabilité. Parmi nos résultats,

nous présentons une comparaison de certains protocoles BFT actuels,

réalisée avec BFT-Bench, en définissant différentes charges de travail et

différents scénarii de fautes. Cette réelle application de BFT-Bench en

démontre l’efficacité.

Globalement, cette thèse vise à faciliter l’analyse de performance et de fia-

bilité de la BFT afin d’en encourager l’utilisation aussi bien par les développeurs

des protocoles BFT que ses utilisateurs finaux. Le logiciel BFT-Bench a été

conçu en ce sens pour aider les utilisateurs à comparer efficacement différentes

implémentations de BFT et apporter des solutions effectives aux lacunes iden-

tifiées des prototypes BFT. De plus, cette thèse défend l’idée que les techniques

BFT sont nécessaires pour assurer un fonctionnement continu et correct des

systèmes distribués confrontés à des situations critiques.

vii

Abstract

In the modern era of on-demand ubiquitous computing, where applications

and services are deployed in well-provisioned, well-managed infrastructures,

administered by large groups of cloud providers such as Amazon, Google,

Microsoft, Oracle, etc., performance and dependability of the systems have

become primary objectives. Cloud computing has evolved from questioning

the Quality-of-Service (QoS) making factors such as availability, reliability,

liveness, safety and security, extremely necessary in the complete definition

of a system. Indeed, computing systems must be resilient in the presence of

failures and attacks to prevent their inaccessibility which can lead to expen-

sive maintenance costs and loss of business. With the growing components in

cloud systems, faults occur more commonly resulting in frequent cloud outages

and failing to guarantee the QoS. Cloud providers have seen episodic incidents

of arbitrary (i.e., Byzantine) faults where systems demonstrate unpredictable

conducts, which includes incorrect response of a client’s request, sending cor-

rupt messages, intentional delaying of messages, disobeying the ordering of

the requests, etc.

This has led researchers to extensively study Byzantine Fault Tolerance

(BFT) and propose numerous protocols and software prototypes. These BFT

solutions not only provide consistent and available services despite arbitrary

failures, they also intend to reduce the cost and performance overhead incurred

by the underlying systems. However, BFT prototypes have been evaluated

in ad-hoc settings, considering either ideal conditions or very limited faulty

scenarios. This fails to convince the practitioners for the adoption of BFT

protocols in a distributed system. Some argue on the applicability of expensive

and complex BFT to tolerate arbitrary faults while others are skeptical on the

adeptness of BFT techniques. This thesis precisely addresses this problem and

presents a comprehensive benchmarking environment which eases the setup of

execution scenarios to analyze and compare the effectiveness and robustness

of these existing BFT proposals.

Specifically, contributions of this dissertation are as follows.

• First, we introduce a generic architecture for benchmarking distributed

protocols. This architecture comprises reusable components for building

a benchmark for performance and dependability analysis of distributed

protocols. The architecture allows defining workload and faultload, and

their injection. It also produces performance, dependability, and low-

level system and network statistics. Furthermore, the thesis presents the

benefits of a general architecture.

• Second, we present BFT-Bench, the first BFT benchmark, for analyzing

viii

and comparing representative BFT protocols under identical scenarios.

BFT-Bench allows end-users evaluate different BFT implementations

under user-defined faulty behaviors and varying workloads. It allows

automatic deployment of these BFT protocols in a distributed setting

with ability to perform monitoring and reporting of performance and

dependability aspects. In our results, we empirically compare some ex-

isting state-of-the-art BFT protocols, in various workloads and fault

scenarios with BFT-Bench, demonstrating its effectiveness in practice.

Overall, this thesis aims to make BFT benchmarking easy to adopt by

developers and end-users of BFT protocols. BFT-Bench framework intends

to help users to perform efficient comparisons of competing BFT implemen-

tations, and incorporating effective solutions to the detected loopholes in the

BFT prototypes. Furthermore, this dissertation strengthens the belief in the

need of BFT techniques for ensuring correct and continued progress of dis-

tributed systems during critical fault occurrence.

Contents

List of Figures xiv

List of Tables xv

1 Introduction 1

1.1 Background and Motivation 2

1.2 Problem Statement and Research Challenges 6

1.3 Contribution of the Thesis . 9

1.4 Organization of the Thesis . 10

2 Related Work 13

2.1 Distributed System Characterizations 15

2.1.1 Interaction Models . 16

2.1.2 Network . 17

2.1.3 Verification & Authentication Mechanisms 18

2.1.4 Fault Categorization 20

2.2 State Machine Replication . 22

2.2.1 Definitions . 23

2.2.2 Message Primitives . 24

2.2.3 Types of Replication 25

2.2.4 Problem of Consensus 26

2.2.5 System Model . 27

2.3 Byzantine Fault Tolerance . 28

2.3.1 Understanding 3f+1 Bound 29

2.3.2 Types of Byzantine Behaviors 31

2.4 BFT Protocols at Present . 33

2.4.1 BFT from Theory to Practice 33

2.4.2 Group 1: Performance Enhancements in Fault-Free Con-

ditions . 33

2.4.3 Group 2: Minimizing Performance Degradation in Faulty

Conditions . 48

2.5 Benchmarking Tools . 56

2.5.1 Performance Benchmarks 56

x Contents

2.5.2 Dependability Benchmarks 58

2.6 Discussion . 60

3 A General Architecture for Performance and Dependability

Benchmarking of BFT Protocols 63

3.1 Overview and Objectives . 66

3.2 Dependability and Performance Benchmarking Specifications

and Validations . 68

3.2.1 Categorization . 69

3.2.2 Measures . 70

3.2.3 Experimental Dimensions 70

3.3 General Benchmarking Architecture and Framework for Dis-

tributed Protocols . 73

3.3.1 Benchmarking Steps 73

3.3.2 High-level class Diagram of Performance and Depend-

ability Benchmark Architecture 75

3.3.3 Overview of Communication Primitives Operation by

Orchestrator . 78

3.4 BFT-Bench: Case Study of Benchmarking BFT Protocols . . 79

3.4.1 Faultload Dimensions 80

3.4.2 Workload Dimensions 81

3.4.3 Measurement Analysis 82

3.4.4 Potential Benchmark Users 82

3.5 Benefits of General Architecture 83

3.5.1 Reduction in Software Development Cost 83

3.5.2 Extensibility . 83

3.5.3 Reusability . 84

3.5.4 Testability . 84

3.6 Summary . 84

4 BFT-Bench: Performance and Dependability Benchmarking

Framework for BFT Protocols 85

4.1 Background . 88

4.2 Objectives of BFT-Bench . 89

4.3 Design Principles of BFT-Bench Framework 90

4.3.1 BFT Protocols in Consideration 90

4.3.2 Fault Types in Consideration 93

Contents xi

4.4 Overview of BFT-Bench . 94

4.4.1 Cluster Setup . 95

4.4.2 BFT Protocol Selection 96

4.4.3 Faultload . 96

4.4.4 Workload . 98

4.4.5 Fault Injection . 98

4.4.6 Performance and Dependability Analysis in BFT-Bench 102

4.5 Automatic Deployment of Experiments 104

4.6 Using BFT-Bench . 104

4.7 Portability of BFT-Bench . 105

4.7.1 Portability of Workload Injection 105

4.7.2 Portability of Fault Injection 106

4.7.3 Portability of Performance and Dependability Analysis 106

4.7.4 Portability of Automatic Experiment Deployer 106

4.8 Summary . 106

5 Experimental Evaluation 109

5.1 Experimental Setup . 110

5.1.1 Hardware Settings . 110

5.1.2 Software Settings . 111

5.2 Comparative Evaluation under Faulty Scenarios 112

5.2.1 Presence of Replica Crash 114

5.2.2 Presence of Message Delay 118

5.2.3 Presence of Network Flooding 122

5.2.4 Presence of System Overloading 126

5.2.5 Combination of Different Types of Faults 130

5.3 Summary . 132

6 Conclusions and Perspectives 135

6.1 Conclusions . 136

6.2 Perspectives . 137

6.3 Publications . 138

6.4 Acknowledgments . 138

Bibliography 139

List of Figures

1.1 Overview of Cloud Computing 3

1.2 Service Models of Cloud Computing 4

2.1 Inclusion relation of different fault types 22

2.2 Request and response message primitives of a client-server model

with state machine replication. 25

2.3 Read and write quorums need 2f +1 replicas to intersect in at

least one correct replica executing both the operations (read-

/write). 31

2.4 Communication pattern of PBFT 34

2.5 Communication pattern of Chain 35

2.6 Communication pattern of Ring 37

2.7 Communication pattern of Q/U 39

2.8 Communication pattern of Quorum 40

2.9 Communication pattern of Zyzzyva 41

2.10 Communication pattern of OBFT 43

2.11 Communication pattern of two sub-protocols of CheapBFT . . 45

2.12 Communication pattern of MinBFT during normal case execu-

tions . 46

2.13 Communication pattern of MinZyzzyva during non-gracious ex-

ecution . 47

2.14 Communication pattern of Prime 52

2.15 Communication pattern of RBFT 55

3.1 Specifications and Validations of a Performance and Depend-

ability Benchmark . 69

3.2 Various modules of a Generic Performance and Dependability

Benchmark . 71

3.3 Benchmarking steps for performance and dependability bench-

marking . 74

3.4 High-level Class Diagram of Generic Benchmark Architecture . 76

3.5 Communication Primitives Overview at Orchestrator 79

3.6 An example of faultload descriptor 81

4.1 Overview of BFT-Bench Framework 95

xiv List of Figures

4.2 Faultloads for different types of faults considered in Section 4.3.2 97

4.3 Architecture of Faultload Injection 99

4.4 Performance and Dependability Benchmarking Architecture of

BFT-Bench . 102

5.1 Performance evaluation of PBFT, Chain, RBFT when primary

crashes . 115

5.2 Dependability analysis of PBFT, Chain, RBFT when primary

replica crashes . 117

5.3 CPU and Network utilization of PBFT in presence of primary

replica crash . 118

5.4 Performance evaluation of PBFT, Chain and RBFT in presence

of message delay fault at primary 119

5.5 Dependability analysis of PBFT, Chain, RBFT in presence of

message delay fault at primary 120

5.6 CPU and Network usage in presence of message delay fault at

primary with #clients = 2 . 122

5.7 Performance evaluation of PBFT, Chain and RBFT in presence

of network flooding by a non primary replica 123

5.8 Dependability analysis of PBFT, Chain, RBFT in presence of

network flooding by a non primary replica 125

5.9 CPU and Network usage in presence of network flooding by a

non primary replica with #clients = 10 126

5.10 Performance evaluation of PBFT, Chain and RBFT when sys-

tem is overloaded with increasing number of clients at every

200s . 127

5.11 Dependability analysis of PBFT, Chain, RBFT when system is

overloaded with increasing number of clients at every 200s . . 128

5.12 CPU Utilization of PBFT, Chain and RBFT when system is

overloaded with increasing number of clients at every 200s . . 129

5.13 Performance evaluation of PBFT, Chain and RBFT in presence

of system overloading with message delay fault. At every 200s,

number of clients increases in the system 130

5.14 Dependability analysis of PBFT, Chain and RBFT in presence

of system overloading with message delay fault. At every 200s,

number of clients increases in the system 131

List of Tables

2.1 Table presents some results from Dwork [51] showing the min-

imum number of replicas required for handling crash (or fail-

stop) and Byzantine faults in synchronous and partially syn-

chronous environments. It also presents the minimum number

of replicas required to execute client request once the request

is totally ordered. 30

2.2 Theoretical Analysis of BFT protocols aiming to enhance the

performance in fault free scenarios 48

2.3 Performance evaluation of robust state-of-the-art protocols un-

der different types of attacks 49

5.1 Hardware Configuration of the Cluster in Grid’5000 111

5.2 List of different faultloads considered for evaluation 113

5.3 Comprehensive analysis of fault handling by each BFT protocol 114

Chapter 1

Introduction

Contents
1.1 Background and Motivation 2

1.2 Problem Statement and Research Challenges 6

1.3 Contribution of the Thesis 9

1.4 Organization of the Thesis 10

2 Chapter 1. Introduction

1.1 Background and Motivation

Cloud computing, the internet (cloud) based development using computer

technology (computing), dynamically scalable, providing virtualized resources

as a service over the network where users have no knowledge, expertise or con-

trol over the technology infrastructure in the cloud [2, 85]. Cloud computing

enables easy access to resources, anytime, anywhere, and from any platform

such as mobile devices or desktop. From an end user’s perspective, a cloud

is a single entity composed of potentially large numbers of configurable com-

puting resources running multiple service instances. Cloud computing focuses

on maximizing the effectiveness of the shared resources and dynamically re-

allocate them on-demand. It provides users various capabilities to store and

process their data in third-party data centers. Figure 1.1, presents the features

of a cloud computing domain.

Cloud computing is the result of the evolution and adoption of existing

technologies and IT paradigms such as Virtualization, Service Oriented Ar-

chitecture (SOA), Distributed and Parallel Computing. Definition of Cloud

computing in National Institute of Standards and Technology (NIST) is com-

posed of five essential characteristics, three service models, and four deploy-

ment models [85].

Essential characteristics of cloud systems.

Cloud computing shares these characteristics with client-server model [9], grid

computing, utility computing [10, 33, 42] and peer-to-peer distributed archi-

tecture.

1. On-demand self-service and Cost. Users can unilaterally provision com-

puting capabilities, such as a number of servers, server time, replication

and network storage, as needed. Cost depends on the type of services

and infrastructures [4].

2. Wide network accessibility. Services are available over the network and

accessed through standard mechanisms that promote the use of het-

erogeneous thin or thick client platforms, for example, mobile phones,

tablets, laptops, and workstations.

3. Resource pooling and Multitenancy. Provider’s computing resources are

pooled to serve multiple consumers using a multi-tenant model, with

4 Chapter 1. Introduction

Networking

Storage

Servers

Virtualization

Operating System

Middleware

Runtime

Database

Applications

In
fr

a
s
tr

u
c
tu

re
 a

s
 a

 S
e

rv
ic

e

P
la

tf
o
rm

 a
s
 a

 S
e
rv

ic
e

S
o
ft

w
a
re

 a
s
 a

 S
e
rv

ic
e

- Amazon EC2
- VMWare Cloud
- Microsoft Azure

- Salesforce.com
- Amazon AWS
- Microsoft Azure
- Google App Engine

- Google Email
- Microsoft Office

Provides cloud
applications

Provides cloud
application infrastructure

Provides basic compute
and storage resources

Figure 1.2: Service Models of Cloud Computing

Deployment Models

1. Public Cloud. The public cloud infrastructure is provisioned for open use

by the general public where its computing services are delivered over the

Internet. The data center is off-premises and uses a “pay as you go” or

”metered service” model.

2. Private Cloud. The cloud infrastructure is provisioned for exclusive use

by a single organization comprising multiple consumers (e.g., business

units). It may be owned, managed, and operated by the organization,

a third party, or a combination of them, and it may exist on or off

premises. It is not shared with another organization.

3. Community Cloud. The cloud infrastructure is provisioned for exclu-

sive use by a specific community of consumers from organizations that

have shared concerns (e.g., mission, security requirements, policy, and

compliance considerations). It may be owned, managed, and operated

by one or more of the organizations in the community, a third party, or

some combination of them, and it may exist on or off premises.

4. Hybrid Cloud. The cloud infrastructure is a composition of two or more

distinct cloud infrastructures (private, community or public) that remain

1.1. Background and Motivation 5

unique entities, but are bound together by standardized or proprietary

technology that enables data and application portability (e.g., cloud

bursting for load balancing between clouds).

5. There are many more deployment models such as Distributed cloud [41],

Inter cloud [23] and Multi cloud [72, 91].

Currently, most of the cloud applications or services are deployed in well-

provisioned and well-managed infrastructures administered by large groups of

cloud providers such as Amazon, Google, and Microsoft. Cloud computing has

evolved from addressing the Quality of Services (QoS) and with its expansion,

factors such as availability, reliability, liveness, safety, and security of the sys-

tems have become important in the complete description of the system. With

the increase in hardware and software components in cloud systems, faults

occur more commonly alike exceptions, resulting in failure to meet expected

consumer QoS.

Furthermore, the performance of these systems degrades when servers

encounter arbitrary (i.e. Byzantine) faults [80]. Cloud providers have seen

episodic incidents of such Byzantine faults in practice. For instance, Google

Compute Engine (GCE) became unavailable as GCE’s virtual network stopped

issuing routing information, Apple iCloud cloud-based services went down

while some were extremely slow. Rackspace suffers from Distributed Denial-

of-Service (DDoS) attack which caused malfunctioning of DNS servers and

blocked network Another example, Amazon Web Services suffered long hauls

of unavailability due to increased error rate for DNS. But for none of the cases,

it could be proved that the techniques proposed by state-of-the-art BFT pro-

tocols are adept in preventing such faults. Some argued on the assimilation

of expensive BFT to tolerate faults which perhaps could be handled with

simpler approaches such as error detection checksums, voting, etc. Recently,

some researchers are also skeptical about the applicability of BFT protocols

in cloud systems and questions the integration of very complex and difficult

to implement BFT protocols in practice [25, 111]. Alysson et al. proposed to

first use BFT protocols for improving the security of critical systems, particu-

larly, critical infrastructures (e.g., power plant distributed control networks),

network infrastructure systems (e.g., name services, authentication systems,

firewalls) and coordination services for open and dynamic systems (e.g., wire-

less ad-hoc and P2P networks) [14]. However, Byzantine community stands

affirm on the need of BFT for ensuring correct and continued progress of cloud

services during critical fault occurrence [16, 25]. They claim that BFT proto-

cols are scalable, capable of being optimized for high load, sustain transaction

streams and variant enough to terminate expensive execution when there are

6 Chapter 1. Introduction

no faults [25]. Thus, to attain non-disrupted availability, BFT services must

be employed in cloud-based systems to prevent faulty events like network fail-

ures, software glitches, maintenance issues, faulty performance updates and

hardware collapses.

Many fault tolerance mechanisms are employed by major cloud providers

to prevent unavailability but failed to mask the arbitrarily occurring failure

and led to periods of cloud outages. For example, Google App Engine uses

automatic replication of data on number of fault tolerant servers, AmazonWeb

Services employ fail-over alerts and syncs back to the last known consistent

state. Another instance, Netsuite uses hot backups to store data on redundant

servers.

In the past fifteen years, constant improvements and enhancements have

been proposed to state-of-the-art BFT protocols. Some of them focus on

improving the performance of the protocols in fault-free scenarios [11, 30,

37, 40, 57, 74, 90, 98, 104]; while others consider the impact on performance

in faulty cases [15, 18, 36, 105, 106]. Considerably lesser progress has been

made to test the robustness and effectiveness of BFT implementations under

real world conditions where nodes can demonstrate arbitrary behaviors [19].

Spinning [105], Aardvark [36], Prime [15] and Redundant BFT (RBFT) [18]

performed the evaluation in the face of certain Byzantine behaviors. However,

these evaluations were conducted in simple settings.

Recent fundamental trends such as increasing expensive hardware (for

replication), frequent occurrence of Byzantine faults and reduction of BFT

replication overhead are in line with the 3-way replication (commercial used

by many systems such as Google File System (GFS) [54], bridges the gap

between acceptance of BFT protocols in practice [35]. Evaluation of different

BFT prototypes under various Byzantine behaviors would allow incorporate

corrective measures during the designing and implementation of BFT pro-

tocols. To convince the practitioners to use BFT implementations in cloud

systems, we believe, it is important to have performance and dependability

metrics showing the robustness and effectiveness of BFT implementations in

practice.

1.2 Problem Statement and Research Chal-

lenges

Cloud computing models are attracting a lot of users’ with alluring benefits

such as reliability, scalability, on-demand access, availability, etc. However,

these models still face challenges of maintaining the performance, reliability,

1.2. Problem Statement and Research Challenges 7

security of user data in the presence of arbitrary incidents. Companies such

as Amazon, Microsoft, Google, Apple, Facebook, Verizon, etc., have suffered

from many incidents of cloud outage [3]. The reasons for such unavailability of

these cloud services are not very clear. There are speculations of incorrect in-

tegration of fixes (Microsoft), cyber attacks (Facebook), etc. Companies have

also experienced severe performance degradation and unreliability issues. For

example, eleven cloud services, of Apple went slower, which included storage

spaces like iCloud Drive, iCloud Mail, iCloud Backup, etc. and with a huge

loss of users data. Reasons for this behavior are still not revealed, but it has

affected a lot of cloud users relying on Apple cloud services. Similarly, AVG

data center went down abruptly affecting its customer email security services

across all regions. The exact cause of this outage is still to be determined,

but it is speculated to be a third-party intervention to get rights on storage

arrays. There are many other such cases of long duration of unavailability,

performance degradation, data security, and unreliability caused by internal

issues of cloud services, software faults, hardware failures, outdated network

control systems, DNS issues or unknown arbitrary failures. These commonly

occurring outages affirm the fact that there is a need to handle arbitrary faults

in cloud services to prevent frequent performance and dependability issues.

For any cloud service to 100% available and reliable, it is important for it

to be fault tolerant. Considerable work has been done on performance bench-

marks for web services, databases, cluster computing, web servers, etc., by

both academia and industry but we recognize the absence of scientific ap-

proaches for evaluating many fault tolerant protocols, precisely, BFT proto-

cols which can benefit in controlling random cloud outages due to mishandled

arbitrary faults [5, 6, 8, 27, 65, 70]. Fault tolerance is a fundamental require-

ment for reliable cloud services. Companies have matured adopting solutions

for benign faults [73] such as crash faults using the well-known Paxos algo-

rithm [77, 78] but they still lack fault tolerant solutions for arbitrary failures.

BFT protocols replicate services in several replicas to ensure service availabil-

ity and correctness despite the fault occurrence [51, 53, 76, 94, 95].

BFT problem in itself is very complex to understand and comparing many

of such proposed BFT solutions can be extremely hard and time-consuming.

However, considerable effort has been made in studying Byzantine faults and

plenty of BFT algorithms have been introduced. Traditional approaches to

compare these protocols are theoretical. We have recognized that practical

evaluations of BFT protocols have been performed in the most ad-hoc settings.

There is a lack of efficient approaches to characterize and empirically evaluate

the performance and dependability aspects of BFT systems under several real

world faulty and fault-free settings. Understanding BFT protocols in itself is

8 Chapter 1. Introduction

difficult and developing a benchmark solution for the same can be extremely

challenging. Here we list a few of the challenging issues encountered while

developing our framework:

1. Understanding complex Byzantine behaviors. Any arbitrary fault

is said to be Byzantine. Byzantine faults are the arbitrary behaviors

shown by the servers when they deviate from the correct execution of

the protocol specifications. It is not only important but also very nec-

essary to distinguish them from network failures, incorrect routing and

switching, DNS issues, Denial-of-Service (DoS) attacks, etc., to prevent

from incorrect detection of fault. This might lead to expensive fault de-

tection and recovery mechanism without resolving the impacting fault.

2. Challenging BFT implementations. BFT protocols are generally

perceived as too complex to understand because the implementations

are large and the protocol logic is hidden in low-level implementation

details. Although most of the protocols use PBFT as their baseline, but

their communication patterns, a number of message exchanges, crypto-

graphic operations performed, etc., makes them a class apart and equally

difficult to comprehend. Each protocol has a different way of interaction

between the client and server replicas which again adds on to the tricky

comparisons and analysis. Most importantly, these variations add new

challenges during runtime. Complex BFT implementations add higher

complexities as they become vulnerable to a higher number of software

bugs, and thus can reduce the overall performance and dependability of

the systems.

3. Quantitative Evaluation in Realistic Conditions. With a dozen

of practical BFT protocols proposed so far, focusing particularly on im-

proving performance in ideal conditions such as zero latency, gigabit

bandwidth, zero packet loss, and no faults, makes no sense in today’s

practical and complex evaluations. There is a lack of an appropriate

implementation, simulation, and evaluation environment to understand

their performance in realistic conditions such as high network delay, low

bandwidth, frequent packet loss, and faults. Additionally, the avail-

able implementations of these protocols use different language primi-

tives, crypto libraries, and transport protocols, which makes it difficult

to compare these protocols fairly. Correct analysis of the behaviors

of BFT implementations using proper performance and dependability

metrics is important to demonstrate their robustness and effectiveness

in practice; otherwise opportunity for BFT integration in cloud-based

systems may be lost.

1.3. Contribution of the Thesis 9

1.3 Contribution of the Thesis

In this thesis, we present a benchmark solution to evaluate and compare the

performance and dependability aspects of many BFT implementations. This

will make BFT benchmarking easy to adopt by developers and end-users in-

tending to use BFT protocols. We first introduces a generic architecture for

benchmarking any distributed protocol, and later we present our novel frame-

work for benchmarking BFT implementations by adapting the components

of a generic architecture and accelerating the software development process.

Contributions of this thesis are as follows.

1. General Architecture for Benchmarks for Distributed Proto-

cols: We introduce a generic architecture for benchmarking distributed

protocols used in cloud services. This architecture comprises of various

modules which are reusable and adaptable for building any benchmark

for performance and dependability analysis of any distributed protocol.

This architecture encompasses the generation of various workloads and

faultloads, injection of these loads in an application or service running

on a cloud system, and production of performance, dependability and

network statistics. Furthermore, we demonstrate the benefits of hav-

ing a general architecture and how it can be re-used for building cost

effective benchmarks for distributed protocols used in cloud computing.

2. BFT-Bench Framework: We introduce BFT-Bench , a novel frame-

work for measuring the effectiveness and robustness of BFT implemen-

tations in practice by analyzing their performance and dependability

aspects in the face of real world settings. We tested our framework by

evaluating state-of-the-art BFT protocols. The benchmark is extend-

able to incorporate other BFT code bases using portability attributes

of BFT-Bench. BFT-Bench allows users to define and inject various

workloads and faultloads. It also includes mechanisms for automatic

deployment of experiments in the cluster and cloud environments, as

well as performance and dependability monitoring and reporting.

3. No-One-Guarantee-All Analysis: Our extensive study of behaviors

and properties of BFT protocols and practical analysis of a few of them

strengthened our believe that none of the protocols is robust enough to

handle all types of Byzantine faults and maintain a constant performance

of fault-free scenario. We perform three steps of analysis: (1) theoretical

analysis of performance on the basis of a number of message exchanges in

communication pattern and number of authentication needed; which is

10 Chapter 1. Introduction

only limited to fault-free scenario. (2) second analysis considers a num-

ber of faults tolerated by each protocol during their evaluation analysis.

and (3) final study is experimental which determines the capabilities of

BFT protocols in the presence and absence of faults using BFT-Bench.

This thesis aims to BFT benchmarking easy to adopt by developers and

end users of BFT protocols. BFT-Bench framework intends to help users to

perform efficient comparisons of competing BFT implementations and incor-

porating effective solutions to the detected loopholes in the BFT prototypes.

1.4 Organization of the Thesis

The rest of the document is organized as follows:

Chapter 2

Chapter 2 gives an overview of different types of faults with a major focus on

Byzantine behaviors. It provides a detailed study of Byzantine fault tolerant

models and their importance in today’s world of cloud-dependent services. We

present some BFT concepts and techniques, and give a brief introduction to

some of the well-known state-of-the-art protocols (some are them are used in

this thesis for evaluation) and their evolution from theory to practice. This

chapter motivates and demonstrates the need for a benchmark solution which

compares and evaluates dependability and performance measures of competing

BFT protocols in the face of Byzantine faults. We also focus on the previ-

ous works done in the area of dependability and performance measurements

of cloud services. Furthermore, we describe some fundamental outcomes of

distributed computing which form the baseline for all the BFT protocols.

Chapter 3

Chapter 3 introduces the generic architecture for performance and depend-

ability framework for distributed protocols used by cloud services. This archi-

tecture is validated in the next chapter with our BFT-Bench-framework. We

present the benchmarking design specifications and validations of the generic

architecture and demonstrate how it can be re-used to build software frame-

works for other distributed protocols. We present various modules that are

reusable and adaptable, and can help to reduce the cost of building new soft-

ware prototypes.

Chapter 4

The BFT-Bench framework is introduced in Chapter 4. This chapter begins

by presenting the overview of the BFT-Bench, the novel benchmark suite

for evaluating and comparing BFT implementations in practice by measuring

their performance and dependability aspects in the presence of different types

1.4. Organization of the Thesis 11

of Byzantine faults. It then presents how various components of generic ar-

chitecture have been re-used and the various functions performed by them.

It defines workloads and faultloads and their corresponding injections in the

system for evaluating prototypes of BFT protocols. This chapter also presents

the system model considered for testing the proposed benchmark. It defines

different fault types and BFT implementations in considered. Further in the

chapter, we demonstrate the automatic deployment of experiments in BFT-

Bench framework and portability of different components of the benchmark

to incorporate other fault models and BFT protocols.

Chapter 5

Chapter 5 explores an interesting experimental performance and dependability

evaluation of BFT implementations using BFT-Bench framework, followed

by a demonstration of ineffectiveness of BFT protocols under different fault

injections. The results expose many loopholes in BFT implementations, which

leads to termination of prototypes when a fault is triggered. This chapter

affirms that BFT prototypes have always been tested in an ad-hoc manner

and why having BFT-Bench framework is important.

Chapter 6

Chapter 6 summarizes the main contribution of this work followed by future

research perspectives.

Chapter 2

Related Work

Contents
2.1 Distributed System Characterizations 15

2.1.1 Interaction Models . 16

2.1.1.1 Synchronous Distributed Systems 16

2.1.1.2 Asynchronous Distributed Systems 16

2.1.1.3 Partial Synchrony 17

2.1.2 Network . 17

2.1.3 Verification & Authentication Mechanisms 18

2.1.3.1 Cryptographic Hash Function 19

2.1.3.2 Message Authentication Code (MAC) 19

2.1.3.3 Digital Signatures 20

2.1.4 Fault Categorization 20

2.2 State Machine Replication 22

2.2.1 Definitions . 23

2.2.1.1 Safety . 24

2.2.1.2 Liveness . 24

2.2.2 Message Primitives . 24

2.2.3 Types of Replication 25

2.2.4 Problem of Consensus 26

2.2.5 System Model . 27

2.3 Byzantine Fault Tolerance 28

2.3.1 Understanding 3f+1 Bound 29

2.3.2 Types of Byzantine Behaviors 31

2.4 BFT Protocols at Present 33

2.4.1 BFT from Theory to Practice 33

2.4.2 Group 1: Performance Enhancements in Fault-Free Con-

ditions . 33

14 Chapter 2. Related Work

2.4.2.1 Agreement-Based Protocols 34

2.4.2.2 Quorum-Based Protocols 38

2.4.2.3 Speculation-Based Protocols 41

2.4.2.4 Client-Based Protocols 43

2.4.2.5 Trusted Component-Based Protocols 44

2.4.3 Group 2: Minimizing Performance Degradation in Faulty

Conditions . 48

2.4.3.1 Robust Protocols 50

2.5 Benchmarking Tools . 56

2.5.1 Performance Benchmarks 56

2.5.1.1 a/b Microbenchmarks 57

2.5.1.2 Hermes Framework 57

2.5.2 Dependability Benchmarks 58

2.6 Discussion . 60

2.1. Distributed System Characterizations 15

This chapter characterizes a distributed system and presents the funda-

mentals of State Machine Replication (SMR) techniques for building robust

and effective fault tolerant services. Our focus is five-fold. First, we present

system definitions and assumptions of a distributed system (Section 2.1). Sec-

ond, we define and discuss the SMR approaches for implementing replication

management protocols to tolerate different types of faults (Section 2.2). Third,

we discuss Byzantine Fault-Tolerance (BFT) concepts and properties, and

describe the motivation of a having a BFT service in a distributed system

(Section 2.3). These three sections are important to learn for better under-

standing various BFT protocols discussed in the next section. Fourth, we

present a concise summary of research on BFT protocols by briefly discussing

some of the prominent state-of-the-art BFT protocols (Section 2.4). This sec-

tion gives the taxonomy of BFT protocols proposed so far categorized under

various type-based protocols. Our benchmark comparatively evaluates some

of these BFT protocols to demonstrate the effectiveness and robustness of our

benchmark, BFT-Bench. This section also performs a theoretical compari-

son of performance of the discussed BFT protocols in terms of throughput

and latency. Finally, we discuss some of the existing benchmarking tools for

evaluating performance and dependability aspects (Section 2.5).

2.1 Distributed System Characterizations

A distributed system involves the cooperation of autonomous, heterogeneous

computing entities, interacting with each other over a network via different

communication protocols and distributed middleware services, which enables

them to coordinate their activities and share resources. Examples of such

distributed systems include Service Oriented Architecture (SOA) based sys-

tems, peer-to-peer applications, distributed databases, network file systems,

aircraft control systems, and cloud computing. In this section of the chapter,

we present some theoretical aspects and abstractions of a distributed system

model. We also discuss some traditional fault behaviors that bring resource

conflicts and disruptions in continuous coordination and service availability of

a distributed system. Such phenomenon led to the research on State Machine

Replication (SMR), quorum replication, agreement and consensus problems,

Byzantine fault tolerance and fault recovery mechanisms.

A distributed system is structured as a set of processes, called servers,

coordinating together to offer underlying services to its users, called clients.

The client-server architecture is usually based on a simple request/response

protocol, implemented with send/receive primitives, Remote Procedure Calls

16 Chapter 2. Related Work

(RPC) or Remote Method Invocation (RMI). The server is defined as a com-

puting resource selectively sharing its resources and services to process the

client requests. The client is a computer or a computer process initiating

contact with a server in order to use its resources and services. Each server

has its own local memory and the information between servers and clients can

be exchanged only by passing messages using communication channels. The

network enables data access through client-server and server-to-server com-

munication protocols. In this thesis, we consider server as a single physical

machine. We will use terms servers, nodes and processes interchangeable in

the entire manuscript.

2.1.1 Interaction Models

In a distributed system, it is difficult to set time limits on the time taken

to process (service/task) execution, message delivery between two interacting

servers or clock drift at a server. This can be achieved by making some

assumptions at the system level. Following are three such interaction models.

2.1.1.1 Synchronous Distributed Systems

Servers in synchronous distributed systems are synchronized with an external

clock before they start to communicate. A system makes some strong tem-

poral assumptions over process and communication network which include:

(i) time to execute a process has known lower and upper bounds, (ii) each

message transmitted over a channel is received within a known bounded time,

and (iii) drift rates of local clocks from real time has a known bound. Syn-

chronous systems give a notion of global physical time with a relative precision

depending on the clock drift rate and predictable behavior in terms of timing

which makes it possible and safe to use timeouts in order to detect failures

(of a process or communication links). Such systems are easier to handle with

lower communication overhead, but determining their realistic bounds can be

hard or impossible. These are used for hard real-time applications or critical

embedded systems.

2.1.1.2 Asynchronous Distributed Systems

Asynchronous distributed systems are more abstract and general with no

bounds on temporal process and communication network: (i) process execu-

tion may take any arbitrary time, (ii) a message can have long hauls of trans-

mission delays (message delivery time), and (iii) clock drift rates are random.

Servers exchange data intermittently, without any prior clock synchronization.

2.1. Distributed System Characterizations 17

This exactly models the Internet, in which servers have different computing

powers with no intrinsic bounds (on server or network load) and communi-

cation channels are unreliable (message drops, loss, delay, etc.). Therefore,

servers can take any amount of time to execute a request (task/operation), or

transmit a message. There is a notion of a logical clock, but only to account

the passage of time and the number of events that have occurred since the

system started.

2.1.1.3 Partial Synchrony

Partial synchrony [51] refers to eventually synchronous distributed systems

where temporal bounds on computation and communications may exist, but

knowledge of such bounds is limited. It is an intermediate model between syn-

chronous and asynchronous systems to achieve optimal resiliency. These sys-

tems can be intuitively modeled as somewhat timely which helps distributed

algorithms distinguish between a crashed process from a slow process, cir-

cumventing impossibility results of consensus in fault tolerant distributed sys-

tems [53] and others in pure asynchrony [52]. Partial synchrony asserts two

constants which can vary during executions: an upper bound δ on the maxi-

mum delay of any message, and an upper bound φ on relative execution speeds.

Values of δ and φ are known, but holds after some unknown Global Stabiliza-

tion Time (GST). It has been generally observed, that messages are somewhat

timely synchronous and server speeds do not change randomly except during

communication delays or crashes. Partial synchrony can handle such occur-

rences of uncertain faults like node crashes [93], Byzantine behaviors [80, 89],

state corruptions during consensus [48, 79, 89], atomic commit [81], mutual

exclusion [46] and clock synchronization [76]. This fundamental contribution

also demonstrated that by separating the Safety and Liveness properties (dis-

cussed in Section 2.2) of a protocol, it is possible to solve consensus in a

partially synchronous system model. This separation was later exploited by

many state-of-the-art BFT protocols [15, 18, 30, 36, 71, 77, 105].

2.1.2 Network

In a distributed setting, servers and clients communicate with each other

through communication protocols using network links (or communication chan-

nels). These communication channels are bi-directional and used by nodes to

exchange messages. Each server has two message primitives, sending and re-

ceiving: send(m,p), where server p sends a message m and receive(m,q) where

server q receives a message m.

Each message uses a unique identifier for detecting and rejecting duplicate

18 Chapter 2. Related Work

packets and checksums to detect and reject corrupted packets. Network fail-

ures are common and at times difficult to detect. We consider a network to

be asynchronous and unreliable where the network itself may fail to deliver

messages, duplicate them, delay them out of order, or corrupt them. In case

of the message delivery failures, the incoming buffer of a server is full and can-

not accept any new messages. This tends to reject some incoming messages

which can be prevented by re-transmitting a message until receipt of its ac-

knowledgment. Message duplication and disorder are common faulty network

behaviors. These issues can be handled by using unique sequence numbers

that define an order to message delivery and nonces to detect duplication of

the same message. The network may also intentionally delay some messages

which are difficult to distinguish from a malicious server demonstrating the

same behavior (we will discuss this fault again in following chapters). This

is usually handled using a timeout at receiving servers. Finally flooding and

corruption of a message by the network or by an intruder, or by a malicious

server are also possible. These faults overload the computational resources to

perform expensive executions (precisely, verification and authentication using

expensive cryptographic techniques). These faults can bring a great overhead

in terms of performance degradation.

It has been argued that it is impossible to achieve a reliable communication on

top of unreliable channels, considering the fact that network links are prone

to be broken even if two communicating nodes are correct. A reliable channel

where message m send by process p (e.g., through the primitive send(m, p))

will be eventually delivered to the destination process q (e.g., through the

primitive receive(m, q)). A communication protocol such as TCP which is

built over a best-effort protocol (IP) gives no reliability guarantees.

However, it is possible to implement a reliable channel on top of fair channels

(fair-links) through the use of retransmissions and acknowledgments. More

precisely, the sender keeps re-transmitting message m periodically until it

receives an acknowledgment (ACK) message from its destination server. Ad-

ditionally, authentication and integrity can be guaranteed by using message

authentication codes (MACs) on the exchanged messages and digital signa-

tures if non-repudiation is also one of the concerns.

2.1.3 Verification & Authentication Mechanisms

A fundamental concern of a distributed system is authentication and data

security [66, 109]. A distributed system is susceptible to a variety of secu-

rity threats imposed by intruders as well as legitimate users of the system.

Legitimate users are more powerful adversaries as they possess internal state

information unknown to an intruder. An adversary can corrupt the system

2.1. Distributed System Characterizations 19

state, modify or delete transmitted messages, replay old messages or per-

form any arbitrary attack affecting the system’s reliability and availability.

In distributed systems, secrecy and integrity are two main requirements for a

secure communication achieved via authentication protocols that verifies the

identity of senders and correctness of their messages. We now discuss the

mechanisms used for verification and authentication purpose in most SMR

(also distributed) protocols.

2.1.3.1 Cryptographic Hash Function

A cryptographic hash function is considered infeasible to invert, i.e., to recre-

ate the input data from its hash value alone. This one-way hash function takes

input data (message plaintext) and generates the hash value which is often

called the message digest. For any message, it is easy to compute its hash

value and infeasible to modify it without changing the hash. And it is practi-

cally difficult to find two different messages with the same hash value. These

hash functions are inexpensive, fast to generate and commonly used in digital

signatures for verifying the integrity of message files, password verification,

generating Message Authentication Codes (MACs), indexing hash tables, to

detect duplication of data, and as checksums to detect data corruption. The

two most commonly used cryptographic hash functions are MD5 (128 bits)

and SHA-2 (up to 512 bits). Hash digest is a cryptographic checksum that

each server computes to verify a message. For example, both servers use the

same algorithm and share a key to compute the digest of the message which

is included in the packet. The receiving server must perform digest computa-

tion on the received message, and compare it to the original (included in the

packet from the sender). If the message is modified in transit (the hash values

will be different), the packet is rejected. Digest can only guarantee message

integrity but not the authenticity of the message, i.e., a malicious server can

alter the message and regenerate the digest (of the altered message) without

being detected.

2.1.3.2 Message Authentication Code (MAC)

A message authentication code (MAC) is used to authenticate a message while

providing integrity and authenticity assurances on the message. MAC is a

keyed digest where digest is encrypted using a secret key shared between com-

municating servers. It is necessary for the involved servers to confidentially

share the keys previously which is generally done using public-key cryptog-

raphy. In a client-server architecture, when a client broadcasts a message, it

includes a MAC authenticator consisting of a MAC for every server. Each

20 Chapter 2. Related Work

MAC is calculated over the digest of the message using a previously shared

secret key between the client and the corresponding server. Each server, upon

receiving the MAC authenticator can verify the content of the request from

its MAC (dedicated for this server). Shared key cryptography ensures mes-

sage authenticity while digest ensures its integrity. However, a faulty client or

server can include some corrupt MACs in the authenticator to prevent a sub-

set of servers from verifying the request. This is a well-known faulty behavior

called MAC attack. It is also possible for an adversary to perform a replay

attack where it can record a MAC authenticator and resend it back at a later

time without getting detected.

2.1.3.3 Digital Signatures

Digital signatures [87] employ asymmetric cryptography (such as RSA [67])

ensuring authenticity, integrity, and non-repudiation of a message. Asymmet-

ric or public key cryptography uses two keys: a public key and a private key

where the public key is disclosed to everyone, but private key is known only

to the entity (server). A valid digital signature validates the sender (authen-

ticity) and this sender at a later time cannot deny having sent the message

(non-repudiation). It also ensures that the message was not altered in transit

(integrity). Digital signatures are calculated on the digest of a message. If

the message changes, so will the digest (integrity). The digest is encrypted

using the private key of the sender (authenticity and non-repudiation). This

encrypted digest is the digital signature. The receiver will decrypt the mes-

sage using the public of the sender and verifies the digest. Digital signatures

are computationally expensive than MACs, but they can guarantee the prop-

erty of non-repudiation. They are commonly used for software distributions,

financial transactions, and also to detect forgery or tampering.

2.1.4 Fault Categorization

There exist different types of faults that can happen in a system (distributed,

real-time, mission-critical, etc.) at any point of time. Failures can occur both

in processes and communication channels due to any software and hardware

faults. These faults can affect the system at different levels of degradation in

terms of performance and dependability. Fault models are necessary in order

to build robust fault-tolerant systems or algorithms with predictable behaviors

in case of fault occurrences. Researchers have categorized these faults accord-

ing to their nature and have proposed several protocols and mechanisms to

handle them.

2.1. Distributed System Characterizations 21

1. Crash Fault. It occurs when a server in a system operates correctly

until some point of time but suddenly fails to produce any results. Other

processes may not be able to detect this state. Crash faults occur at the

process level and are further categorized as:

(a) Fail-stop. Server fails to respond and stops forever until it is manu-

ally recovered. Such crash faults take longer to repair as they need

human interventions. It is not a practical way to deal with a crash

fault as it can be catastrophic if not repaired within a time limit.

(b) Fail-recover. Server stops responding, but it is automatically re-

covered after a period of time. For handling such faults, there are

solutions for instant recovery such as self-rebooting the system and

self-restoration to the point of failure with checkpoint synchroniza-

tion from other servers.

2. Omission Fault. It occurs when a server is up but fails to produce re-

sults. It happens mostly due to a faulty server or a faulty communication

channel. Following are the possible omission faults at a server:

(a) Send Omission. The server sends a message, but it never goes to

the outgoing message buffer.

(b) Receive Omission. The message is there at the server’s incoming

message buffer, but the server never receives it.

These faults are easy to detect and resolve in synchronous systems with

the help of timeouts. If a message is sure to arrive, a timeout will indicate

a fault at the sending server or in the communication link. However, this

fails to distinguish from a timing fault.

3. Timing Fault. Timing faults can occur in synchronous distributed sys-

tems, where time limits are set for process execution, communications,

and clock drifts. A timing fault occurs if any of these time limits is

exceeded. For example, in mission critical systems like telecommunica-

tions, power distribution (to hospitals, data centers), aerospace commu-

nications, etc., it can be catastrophic if the timing constraints are not

respected. For non-critical systems, performance is affected but timing

faults can be ignored (if it is not so critical); for example, loading of a

webpage, accessing emails, etc.

4. Byzantine Fault. It is any arbitrary fault that can occur at any time.

It is the most general and worst possible fault semantics omitting in-

tended execution paths. Byzantine faults envelop all of the above men-

tioned faults (crash, omission & timing). They include faults like sending

22 Chapter 2. Related Work

incorrect response to a request, out of order execution of requests (which

may change the system state), flooding of correct servers with incorrect

messages (having incorrect cryptographic operations) or intentional de-

lay in sending messages to other nodes.

With the augmenting dependencies over service providers (over the inter-

net), it is becoming critical for systems to deal with these arbitrary fail-

ures and preserve the Quality of Service (QoS) guarantees for their end-

users. Several Byzantine Fault Tolerant (BFT) algorithms have been

designed and proposed to help systems cope with such unpredictable

faulty behaviors of the servers. We will discuss some of these algorithms

later in this chapter (see Section 2.4).

Figure 2.1 represents the inclusion relation of all the above discussed faults.

Byzantine Faults

Crash Faults

Fail-stop

Fail-recover

Timing
 Faults

Omission Faults

Send

Receive

Figure 2.1: Inclusion relation of different fault types

2.2 State Machine Replication

State Machine Replication (SMR) is a technique to implement fault toler-

ant services by replicating these services on a set of servers [76, 94, 95]. In

other words, copies of these services are maintained on different servers im-

plementing state machines and clients communicate through SMR protocols.

SMR technique is often implemented for guaranteeing system’s performance,

reliability and availability in the face of software and hardware failures.

According to Schneider [94], implementation of SMR must hold following

three properties.

• Initial state. All the correct replicas must start with the same state.

By same state we mean, having the same input and output conditions.

2.2. State Machine Replication 23

Arbitrary faults such as a crash, random machine reboot can bring some

periods of inconsistencies. SMR employs techniques like checkpoint,

local histories of all the servers, etc., to bring back the system to the

same consistent state.

• Determinism. All the replicas should produce the same output for a

given set of inputs. Determinism can be challenging to achieve due

to complicated multi-threading processing or multiple cored physical

machines. A deviation in output at replicas can determine a faulty

state change in the replicas within a few finite number of steps. Indeed,

determinism guarantees that status of multiple copies of a system will

not diverge under the same inputs. In the context of replication, we

consider implementing only deterministic state machines and not non-

deterministic (where output depends on the inputs and internal states)

due to the above stated obvious reasons.

• Coordination. All correct replicas process the client requests in the

same order.

Consensus or total order multicast protocols [58] help the replicas to reach

an agreement on the total ordering in the presence of partial synchrony.

The two main objectives of any SMR protocols are:

• Robustness : It is the ability to ensure availability and reliability of the

services with consistent performance, despite contentions and failures in

the system.

• Consistency : All the correct replicas produce consistent responses and

their system states are always same.

These objectives are achieved through Safety and Liveness properties

which we define next.

2.2.1 Definitions

There are 2 fundamental properties which every BFT-SMR protocol must

satisfy during both fault-free and faulty scenarios. The primary aim of these

protocols is to maintain the same internal state at each server where all the

servers are consistent and execute the same request at any time. All the

requests are executed automatically in a deterministic way, which means that

they start with the same state, executes the requests in the same way and

results in the same state at all the correct replicas. For example, in case of

24 Chapter 2. Related Work

a bank transaction, if the replicated servers do not possess the same state,

it can be damaging and might result in a situation where rollback is unable

to fix the issue. Considering the nature of communication channels, servers,

and asynchronous networks, it becomes important for the service providers to

guarantee the following properties.

2.2.1.1 Safety

Safety property states that all the correct servers execute the same request

in the same order. According to the property, a system which starts in a

correct state will always complete in a correct state after executing client’s

request. Strongly consistent services satisfying Linearizability [61] property

can guarantee Safety.

2.2.1.2 Liveness

Liveness property states that all the requests coming from the correct clients

will eventually be executed by all the correct replicas. SMR technique em-

ploys a replica as primary for giving sequence numbers to the incoming client

requests. The correct replicas (with consensus) agree with the ordering by

primary before executing the request. Total ordering ensures Safety property.

Liveness is ensured by timeouts (bounded finite delay) at clients and replicas,

i.e., under partial synchrony [51].

2.2.2 Message Primitives

State machine replication technique is implemented in a distributed system

comprising a set of clients and servers where clients invoke an operation to a

deterministic service implemented by the servers. The model is illustrated in

Figure 2.2 where clients communicate with servers via request and response

message primitives for an operation to be performed. In the rest of this

manuscript, we will use the same model where an operation is either read-

only or read-write. This separation is important because, in most BFT-SMR

protocols, read-only operations can be processed without undergoing complex

steps of consensus among replicas since the state of the service is not changed.

This is an optimization employed by protocols to provide high performance

during read-only operations.

Clients can request local logs at servers to discover inconsistencies, state

changes while considering the computational overheads and performance degra-

dation due to such operations. Whereas, servers are limited to provide re-

sponses and cannot initiate any communication with the clients. In the general

26 Chapter 2. Related Work

cas execute the requests in the same order) and since the replicas are well

synchronized before executing a request, no extra monitoring is required.

In this and forthcoming chapters, we will consider only active replication

(as used by BFT protocols). Paxos [77] and PBFT [30] are the first protocols

to tolerate crash faults and Byzantine faults, respectively, using active repli-

cation approach. We will discuss more protocols using the same approach for

fault tolerance, later in this chapter.

2.2.4 Problem of Consensus

Coordination among replicas is a fundamental requirement for implementing

a state machine replication where all correct replicas must agree on the same

order for executing client requests. Conceptually this requirement can be

satisfied by implementation of a total ordered multicast (atomic multicast)

protocol [58]. Total ordering communication primitive and consensus problem,

both subject to the same constraints and, thus, considered equivalent. The

problem of consensus states that all the communicating processes propose

different values for a request and they must agree on a single value with

consensus. A consensus protocol is correct if it meets the following three

conditions.

• Integrity (Consistency). All agreed values must have been proposed by

some process.

• Agreement (Validity). All processes agree on the same ’correct’ value

and all decisions are final.

• Termination. All the correct processes eventually decide on a ’correct’

value (within a finite number of steps).

Consistency property is violated if a process decides not to commit on

the proposed value (this is possible due to slow processes or omission faults).

Agreement is never reached if there are not enough processes validating the

same proposal. Termination condition is violated if processes were never to

agree.

Regardless of the faults, some processes cannot participate in the request

execution leading to violations of above properties due to asynchronous dis-

tributed systems. This led to another well-known result in distributed com-

puting, i.e., impossibility of deterministic consensus among processes in an

asynchronous system [53], also called as FLP impossibility. This impossibility

is a consequence of difficulty in identifying or detecting malicious processes

in asynchronous systems. Considering a case, where a process p waits for a

2.2. State Machine Replication 27

message m from a process q before proceeding to the next step. In this sce-

nario, process p cannot determine if the process q has crashed or is slow in

responding. Process p might decide to wait longer or just proceed without the

message from the process q. In either case, technical proofs of FLP impossibil-

ity demonstrate that (i) consensus protocol never terminates or (ii) different

processes may decide different values. Thus making it impossible to have a

consensus protocol satisfying the above defined properties, precisely, Termi-

nation and Agreement.

Since then, the consensus problem has been studied under different synchrony

and failure assumptions. Initial research on database operating systems [55]

and distributed database systems [101] presented solutions to the problem of

consensus which were extensively studied by Byzantine community. Several

BFT-SMR protocols [11, 30, 40, 56, 57, 104] were devised thereafter guarantee-

ing consensus properties in an asynchronous fault-prone distributed systems.

2.2.5 System Model

We assume a distributed system where servers (replicas) are connected in dif-

ferent network topologies, for example PBFT [30], RBFT [18], Aardvark [36]

are fully connected whereas Chain [56], Ring [57] connect the replicas in a

chain-like pattern (a replica followed by another) or completely disconnected

like in OBFT [98].

System Assumptions. The system is defined as a set of clients and

servers where a client sends a request in a closed loop, i.e., clients have to wait

for the response of a request before sending a new request. We assume a finite

client population where any number of them may be faulty and, a total of N

replicas implement BFT-SMR deterministic protocol where up to ’f ’ number

of replicas can behave maliciously. The total number of replicas, N, depend

on the number of replicas a system can tolerate, precisely, ’f ’. The BFT-SMR

protocols demonstrate that 2f + 1 replicas are enough to solve the problem

of consensus but 3f + 1 replicas are required to tolerate and continue in the

presence of f simultaneous Byzantine faults. We assume that there will be no

more than f simultaneous faults at any moment.

Faulty servers behaving arbitrarily are subject to independent or adversary-

coordinated failures. In case of identical replicas, a flaw on one will be repli-

cated in the others as well, thus violating this assumption. To ensure the

independence of failures, a technique such as N-Version programming is used

to obtain different copies of the protocols or heterogeneous physical machines

with different operating systems and hardware are used. We assume any num-

ber of clients may be faulty. Nevertheless, in some specific protocols such as

28 Chapter 2. Related Work

OBFT [98] where clients are assumed to be trusted and non-malicious. Clients

are only prone to crashes.

Network Assumptions. The links between nodes are asynchronous and

unreliable with synchronous intervals during which messages are delivered

within a known bounded delay. We do, nevertheless, assume that if a node

keeps re-transmitting a message, the message will eventually be received (par-

tial synchrony [51], see Section 2.1.1.3). However, the Liveness property can

only be ensured during periods of synchrony where a message reaches its des-

tination within some fixed worst case delays [53]. Furthermore, the network

itself may fail to deliver messages, delay them, duplicate them, delay them

out of order, or even corrupt them.

Cryptography Assumptions. BFT protocols rely on cryptographic

techniques such as collision-resistant hashing (digests), message authentica-

tion codes (MACs), public-key cryptography and digital signatures to ensure

authenticity, integrity, and non-repudiation properties (see Section 2.1.3 for

details).

Adversary Assumptions. We assume a Byzantine failure model, where

node/(s) (replicas or clients) may behave Byzantine. We assume a strong

adversary capable to manipulate and coordinate the malicious nodes to com-

promise the replicated service. However, we do assume that this adversary is

computationally bounded and unable to break cryptographic techniques, i.e.,

it cannot produce a valid signature of a non-faulty (correct) node.

These assumptions are common to all the state of the art BFT protocols

discussed in this manuscript (see Section 2.4).

2.3 Byzantine Fault Tolerance

Improving integrity, performance, availability and reliability of internet-based

distributed computing has become challenging. The expanse of new comput-

ing technologies has potentially raised numerous threats to deployed services,

compromising integrity due to failures such as software bugs, crash failures,

omission faults and arbitrary malicious attacks and degrading other aspects

of Quality of Services (QoS). Replication is an essential technique to survive

these problems and maintain system reliability through replicating services

at redundant servers (backup replicas) As discussed in the previous section,

State Machine Replication (SMR) is used to make services fault-tolerant.

Traditional fault-tolerant systems such as Paxos [77], survives benign fail-

ures (i.e., crash or fail-stop faults) [78, 88]. However, the problem arises in the

presence of arbitrary faults, called Byzantine [30, 80]. This problem was first

2.3. Byzantine Fault Tolerance 29

presented as Byzantine General’s Problem by Lamport [80] where the gener-

als of an army must decide if they want to attack the enemy or retreat in the

presence of some traitors among them. These traitors can mischievously trick

some generals, force them to change their decisions to be inconsistent with

other generals or forge the messages to create distrust among loyal generals.

Byzantine fault tolerance is possible if and only if all the loyal generals con-

sistently commit to the same decision. And it was demonstrated that if there

are N generals, out of f are traitors, then the problems created by traitors

could only be handled with N > 3f generals1.

On the same lines of idea proposed by Lamport, BFT protocols were pro-

posed to maintain resiliency against Byzantine (arbitrary) faults in distributed

settings. From the perspective of distributed computing, Byzantine faults are

those faults that force services to demonstrate an unpredictable behavior, dif-

ferent from the normal execution paths; such as sending inconsistent responses,

producing wrong responses, corrupting messages and local states, intention-

ally delaying request processing, flooding the communication channels, etc. A

BFT protocol requires at least 3f + 1 replicas to ensure Safety and Liveness

among replicas, while tolerating up to f Byzantine replicas. Many BFT pro-

tocols have been designed so far, some ensuring consistency with more number

of replicas, i.e., 5f+1 in Q/U [11] or trying to minimize the number of replicas

using trusted components [37, 71] or enhancing the performance of the system

in fault-free scenarios [56, 57, 74] or minimizing the performance degradation

in the face of Byzantine faults [15, 18, 36, 105]. We will discuss some of the

state-of-the-art BFT-SMR protocols in this section.

2.3.1 Understanding 3f+1 Bound

Different system models require a different number of processes to implement

consensus, client request ordering while tolerating up to f failures. Table

2.1 presents the minimum number of servers/replicas required by consensus

protocols for tolerating crash [77, 78] and Byzantine faults, respectively [51]

under synchronous and partially synchronous system models for ensuring their

Safety and Liveness. The table also represents the minimum number of repli-

cas that must execute the client requests to enable client always have the

correct responses and for the system to be always consistent despite the pres-

ence of up to f faults. As can be seen in the table, under partial synchronous

model, crash-prone system needs 2f + 1 replicas [77], while BFT system re-

1N also represents the number of replicas required to tolerate f arbitrary (Byzantine)

faults by a BFT protocol. Also, we will use f for faulty, arbitrary, Byzantine, malicious

and traitors replicas, interchangeably

30 Chapter 2. Related Work

Table 2.1: Table presents some results from Dwork [51] showing the minimum

number of replicas required for handling crash (or fail-stop) and Byzantine

faults in synchronous and partially synchronous environments. It also presents

the minimum number of replicas required to execute client request once the

request is totally ordered.

Type of Fault Synchronous
Partially

Synchrony

Replicated

execution

Crash or Fail-Stop f + 1 2f + 1 f + 1

Byzantine 3f + 1 3f + 1 2f + 1

quires 3f + 1 replicas [80] for total ordering and tolerating f simultaneous

faults. However, once the request is totally ordered (by at least 2f +1 correct

replicas), f fewer replicas are required to execute the request in both the fault

models.

We now explain the bound of 2f + 1 replicas to ensure consistency for

Byzantine faults with an example for read and write operations. We con-

sider a replicated service with mutually exclusive read/write operations in an

asynchronous environment. The service must be correct, consistent, ensuring

Safety and Liveness, and always available and reliable even in the presence of

faults. Assuming the total number of replicas is N , and up to f replicas can

be Byzantine. In a BFT system, quorums consist of N − f replicas where f

replicas might be the faulty replicas. Considering the first request to be a read

operation which is carried out by a quorum (quorum A) of N − f replicas,

out of which f replicas might be faulty. Similarly, during the second request,

which is a write operation is carried out by another quorum (quorum B) of

N − f replicas. Out of two quorums (which probably contain responses from

different replicas) might contain responses from two sets of f replicas where

these f replicas might be either Byzantine or just slow (e.g., due to network

congestion).

So we can guarantee that the number of correct responses is at leastN − 2f

which does not contain responses from f Byzantine and f slow replicas. This

would mean, that each quorum must have 2f + 1 replicas (Figure 2.3) where

quorums of two consecutive operations will intersect in at least one correct

replica, masking the responses from f malicious replicas, thus ensuring that

no faulty replica violates Safety property. Finally, to ensure, there are no

responses from the Byzantine or slow replicas, the responses from non-faulty

replicas must be higher than f faulty responses, i.e., N − 2f > f which

is equivalent to N > 3f . Therefore, at least, 3f + 1 replicas are required

to maintain Safety and Liveness where each step of the protocol must be

2.3. Byzantine Fault Tolerance 31

Quorum A: Read Quorum B: Write

2f + 1 2f + 1 1

'f' replicas can be slow while other 'f' might behave Byzantine

Figure 2.3: Read and write quorums need 2f + 1 replicas to intersect in at

least one correct replica executing both the operations (read/write).

executed by at least 2f +1 replicas. For any two quorums (A and B) of 2f +1

responses for two consecutive operations, there is at least one correct replica

which executed both the operations, reflecting the correctness of previous

operations. The quorum of 2f + 1 replicas with another f which may not

respond at all, define the threshold of 3f + 1.

2.3.2 Types of Byzantine Behaviors

Any fault is a Byzantine fault that brings inconsistencies with the capabil-

ities of degrading the performance of the system many folds. Out of many

Byzantine faults, some faults are not observable and therefore, cannot be de-

tected [59]. In this section, we discuss some of the detectable Byzantine faults

which are intentionally induced by an adversary forcing an algorithm to devi-

ate from its correct execution. We consider two categories of these Byzantine

behaviors, they are as follows.

Context-Free Faults

Context-free faults are the faults triggered by a malicious node without any

prior knowledge of the information at a node like messages exchanged, or con-

tent of the messages, or the state of the node, etc. These faults can occur in-

dependently without any understanding of underlying distributed algorithms

or applications.

1. CPU Load : This fault is triggered by increasing load in terms of the

number of concurrent clients sending requests.

32 Chapter 2. Related Work

2. Replica Crash: A Byzantine node crashes and terminates all future in-

teractions with other replicas.

3. Replica Hibernation: A faulty replica delays all the communications

(message exchange) with other replicas. It may also delay the processing

of a request by a certain amount of time.

4. Drop Packets : A malicious replica accomplishes this attack by dropping

packets for a particular replica(s), at a certain time of the day, for exam-

ples dropping x packet every n packets or every t seconds, or a randomly

selected portion of the packets.

Context-Dependent Faults

These types of faults need access to the information regarding the protocol

specifications, the content of the messages including header and payload, the

size of the messages, the signature of the node for forgery, etc.

1. Message Delay : Faulty replica intentionally delays sending of a specific

message to increase the overall response time of the system.

2. Corrupted Messages (header and payload): A faulty replica will corrupt

the header to trigger the re-transmission of the messages with an inten-

tion of buffer underflow/overflow. Payload corruption is done to waste

the CPU cycles in performing heavy cryptographic operations over ver-

ifying malicious information.

3. Network Flooding : A Byzantine replica randomly starts to send cor-

rect/incorrect messages to all the correct nodes to flood their incoming

network.

4. Message Authentication Code(MAC) Attack : Clients send incorrect au-

thenticators to make all the replicas accept the requests without verify-

ing their MACs.

5. Non-repudiation: A Byzantine replica denies the authenticity of its sig-

nature on sending of a message. This attack is generally possible when

using only collision-resistant hashing (digests) or MAC authenticators.

6. Forge Signatures : Forging some parts of a signature in an effort to con-

vince correct replicas to commit to a wrong response.

We implemented some of the above mentioned faults in BFT-Bench (see

Chapter 4) which were also considered in a robust state-of-the-art BFT pro-

tocols [15, 18, 36, 105] (see Section 2.4.3.1).

2.4. BFT Protocols at Present 33

2.4 BFT Protocols at Present

BFT protocols have been the focus of research for well over a decade and

have advanced many folds in terms of improved and robust performance. Re-

search on these protocols has evolved from theoretical proposals to practical

approaches. And in this section, we review the related work on some of the

state-of-the-art BFT protocols under different categories. This section also

demonstrates their comparative theoretical analysis.

2.4.1 BFT from Theory to Practice

The Byzantine General’s Problem was first described theoretically by Lamport

in [80]. It defines that a Byzantine agreement requires 3f + 1 replicas to

tolerate up to f arbitrary faults under partial synchrony, i.e., a known fixed

upper bound on the message delivery time [51, 53, 79] (see Section 2.1.1.3).

Lamport presented the first theoretical model of Byzantine problem while

PBFT introduced the first practical protocol which analyzes and performs

evaluation in terms of performance metrics [80]. Since then PBFT has been

considered the baseline for BFT protocols and its pattern is widely reused for

its practical efficiency [15, 18, 24, 36, 105].

Numerous BFT protocols have been designed since PBFT, each one adding

new features for improving the performance. All of these protocols can be

broadly categorized under two groups: (1) protocols optimizing performance

under fault-free settings, like Chain [104], Q/U [11], Zyzzyva [74], Ring [57],

CheapBFT [71], HQ [40], Quorum [56], MinBFT [106] and OBFT [98] and,

(2) protocols minimizing performance degradation under faulty scenarios in-

cluding Spinning [105], RBFT [18], Aardvark [36] and Prime [15].

The engineering of BFT protocols followed several directions, varying from

various communication patterns to adopting different cryptographic techniques

to dependency over the third party trusted components for reducing the num-

ber of replicas to robust protocols for handling faulty scenarios [15, 18, 36, 37,

98, 106]. In the following, we present these two families of BFT protocols.

2.4.2 Group 1: Performance Enhancements in Fault-

Free Conditions

According to the analysis of protocols in first group, one of the main concerns

of researchers was to enhance the performance of BFT protocols in fault-free

cases, while maintaining the Liveness and Safety properties in the presence

of faults [11, 24, 37, 40, 56, 57, 71, 74, 86, 100, 104, 110]. For example,

34 Chapter 2. Related Work

Zyzzyva [74], Zeno [100], ZZ [110], Q/U [11], HQ [40] and Quorum [56] allowed

the replicas to be temporarily in inconsistent states and moved the task of

detecting these inconsistencies to the client side of the protocol, improving

both throughput and latency in fault-free scenarios. CheapBFT [71], BFT-

TO [37], BFTMencius [86] and MinBFT [106] use trusted components for

ordering the client requests, along with reducing the total number of replicas

required to handle Byzantine faults to 2f + 1. Chain [104], Ring [57] and

Aliph [56] make improvements with regards to throughput. They also propose

protocol switching at fault occurrence. During fault-free cases, they run a

more simplified version of the protocol, and on detection of a fault, the protocol

switches to a more robust protocol to handle faults. This is motivated by the

fact that faults occur rarely in a system, and that it is more important to

provide priority to fault-free cases. The following part of this section describes

some of the state-of-the-art protocols in details under various categories.

2.4.2.1 Agreement-Based Protocols

The primary replica is pivotal in an agreement-based protocol. It has the

major responsibilities than any other replica in the system, and it often be-

comes the bottleneck and a deciding server for the performance of the system.

Primary replica orders the client requests and forwards the same to other

replicas. All the replicas with consensus agree to the ordering done by the

primary and eventually executes the request in the same order, maintaining

the Safety property. For most of the protocols, replicas send their responses

directly to the client, thus preserving liveness, by executing the clients’ re-

quest. Agreement-based protocols require a minimum of 3f + 1 replicas to

tolerate up to f faults. Communication overhead is maximum for such pro-

tocols as they follow all-to-all communication among replicas for consensus.

This at times, leads to poor performance and fault scalability issues.

Client

Replica 1/ Primary

Replica 2

Replica 3

Request Pre-prepare CommitPrepare Reply

Replica 4

1 2 3 4 5

Figure 2.4: Communication pattern of PBFT

2.4. BFT Protocols at Present 35

PBFT. PBFT [30], the first agreement based practical BFT protocol tol-

erates upto f simultaneous faults with 3f + 1 replicas. It is considered the

most robust protocol; therefore, it has been used as the baseline for many

protocols [15, 18, 24, 36, 74, 104, 105]. Figure 2.4 presents the widely used

communication pattern of PBFT. PBFT has a dedicated replica called pri-

mary to order the requests of the clients. PBFT undergoes 3 rounds (phases)

of message exchanges; PRE-PREPARE, PREPARE and COMMIT. Primary

upon receiving a request from a client, assigns a sequence number and broad-

casts a PRE-PREPARE message to all the replicas containing the ordered

request. Once replicas receive PRE-PREPARE message, they verify the or-

dering and acknowledges the message by broadcasting a PREPARE message

(containing the PRE-PREPARE message sent by primary) to all other repli-

cas. Replicas upon receiving matching 2f + 1 PREPARE messages, commits

the request in its local history and broadcasts COMMIT message to all repli-

cas. On receiving COMMIT messages, replicas put them in their logs only if

they are correctly signed, ordered and belongs to the same view. If a replica

receives 2f + 1 COMMIT messages, it executes the request and responds to

the client. The client commits the request only if it receives f + 1 matching

responses, otherwise it retransmits the request. Upon expiration of the timer

at client or any other replica, it initiates a view change protocol to elect a

new primary. All the replicas then send a VIEW-CHANGE message contain-

ing checkpoints and previously sent PRE-PREPARE messages as a proof of

misbehavior. The new primary multicasts a NEW-VIEW message containing

the new view number to all the replicas. Non-primary replicas verifies the

correctness of the NEW-VIEW message; if correct, the protocol resumes to

normal operation.

Client

Replica 1/ Head

Replica 2

Replica 3

1 2 3 54

Replica 4/ Tail

Request Response

Figure 2.5: Communication pattern of Chain

Chain. Chain [56, 104] is an abortable speculative protocol with the com-

munication pattern like a chain. Figure 2.5 presents the communication steps

of the protocol where all the replicas are arranged in a chain fashion, starting

with a head (primary) replica and ending with a tail replica. A client sends

36 Chapter 2. Related Work

a request to the head, which assigns a sequence number to the request. Each

replica forwards the request to its successor except the tail, which replies to

the client. A replica would only accept a message from its predecessor (except

the head which accepts requests only from the clients). Chain ensures: (1)

that content of a message is not modified by any malicious replica, (2) no

replica is bypassed, and (3) reply sent by the tail (to a client) is correct. To

provide these guarantees, Chain depends on lightweight MAC authenticators

generated and verified by each replica in the Chain. Each replica (except

Head) verifies f + 1 MAC authenticators from its predecessor replicas and

adds (except tail) f +1 MAC authenticators (corresponding to the next f +1

successor replicas) to the forwarding request. The last f + 1 replicas include

the digest of their histories (which has the forwarding request and its cor-

responding response) for the client. The client verifies these digests and if

they match, client commits the request with the response obtained by the

tail. This step ensures that reply sent by the tail is correct. In case of an

incorrect response or no response, the client broadcasts a PANIC message to

all the replicas. Similar to protocols, Quorum, Zyzzyva and HQ; replicas stop

executing requests and send back a signed message containing their histories.

The client waits for 2f + 1 matching histories and creates an abort history.

Furthermore, upon fault detection, Chain switches to a backup protocol (eg.,

PBFT) to commit the requests. Chain’s efficient implementation of pipeline

topology brings two benefits: (1) reduced number of MAC operations at the

bottleneck replica, and (2) better network usage (any replica communicates

only with two other replicas). Nevertheless, these benefits makes sense only

when the pipeline is completely fed. This can be done either by using a large

number of messages or a large number of clients sending requests. It has been

observed that Chain outperforms PBFT and Zyzzyva in terms of throughput

when the number of clients is higher (at least more than 40). The pipeline pat-

tern achieves consistently lower response-time than PBFT (due to the complex

message exchange in PBFT). Chain demonstrates lower latency than Zyzzyva

only when the pipeline is saturated.

Ring. Ring [57] is another speculative abortable BFT protocol like Chain

that achieves high throughput (although less than Chain) during contention.

Ring tries to overcome the drawbacks of other protocols such as the use of

IP multicast, the presence of bottleneck replicas due to asymmetric replica

processing, dependency over one primary replica for total ordering and un-

balanced network bandwidth utilization. Ring uses ring topology where each

replica has a successor and a predecessor (Figure 2.6). Like Chain, Ring

protocol must ensure: (1) no replica in the ring is bypassed, (2) Byzantine

2.4. BFT Protocols at Present 37

Client

Replica 1/head

Replica 2

Replica 3

1 2 3 54

Replica 4

6 8 97

ResponseRequest

Figure 2.6: Communication pattern of Ring

clients cannot corrupt the total ordering of correct requests, and (3) the reply

sent by the last replica is not forged. The client sends request to any of the

replicas (in round robin fashion) called as entry replica and this submitted

request is forwarded in the ring until it reaches the predecessor (called as

exit replica) of the entry replica. A sequencer replica (can be any replica)

assigns a sequence number to the request. The protocol undergoes another

round of message passing in Ring which forwards the acknowledgment (ACK)

message (for receiving the sequence number) and the exit replica replies to

the client. Requests are executed in the second round only after they have

received the ACK message. Ring uses the similar MAC authentication (Ring

Authenticators) technique as of Chain but has additional ACK messages. In

case of a fault, client cannot commit the request and sends a PANIC message

to all the replicas and protocol switches to resilient mode. In the resilient

mode, replicas and clients use signed messages which detect a faulty client, a

faulty replica and also a faulty sequencer. In this mode, Ring switches to a

new instance with a different configuration, and a new sequencer is elected.

Due to the two rounds of Ring in fault free scenarios, Ring achieves the worst

performance as compared to most of the state-of-the-art protocols in Group

1. However, under contention or large size messages (when the network or

the primary replica becomes a bottleneck), Ring gradually outperforms some

protocols in terms of performance. Ring demonstrates the best network and

CPU utilization and it is the only protocol to consider the evaluation of these

metrics.

BFT-SMaRt. BFT-SMaRt [24] is another BFT state machine replication

protocol which is similar to protocols such as PBFT [30] and UpRight [34]

but, improves reliability, modularity of components, multicore-awareness while

providing reconfiguration support and flexible programming interface. BFT-

SMaRt aims to be robust in terms of high performance in fault free executions

and correctness during fault occurrences. Design principles of the protocol

include: (i) Tunable fault model where it provides tolerance to Byzantine

38 Chapter 2. Related Work

faults using robust protocol and simplified version of SMR protocol (similar

to Paxos [77]) to tolerate crash message corruptions, (ii) Simplicity to avoid

all the performance optimizations used by other protocols such as pipelin-

ing [56, 104], resource efficiency with trusted components [37, 71, 106], spec-

ulation [56, 74, 100], and IP multicast [31, 74], (iii) Modularity is achieved

by separating agreement protocol from client requests ordering and consen-

sus, state transfer and reconfiguration, and (iv) Multicore-awareness to scale

throughput by running separate hardware threads for signature verification

and computational loads.

BFT-SMaRt protocol comprises of three core protocols considering above men-

tioned design principles.

Total Order Multicast. It is similar to the normal case execution of PBFT [30].

Protocol undergoes three communication steps (for consensus) with messages

PROPOSE,WRITE, and ACCEPT.When a fault occurs, the protocol switches

to synchronization phase where a new primary is elected using the state trans-

fer protocol and reconfiguration techniques.

State Transfer Protocol. Protocol periodically creates logs after every certain

number of request batches or takes snapshots at different points of executions.

During fault occurrence, every replica sends these state information for cre-

ating a consistent state history. When all the correct replicas are consistent,

they switch to a new view. Reconfiguration. During this, faulty replicas are

replaced with new replicas from the same cluster, initiated with the same state

as of correct replicas in the new view.

BFT-SMaRt displays higher throughput than PBFT, UpRight and JPaxos

(Java implementation of Paxos) for a higher number of clients. Also, BFT-

SMaRt underwents reconfiguration during a crash.

2.4.2.2 Quorum-Based Protocols

Another category of protocols is quorum-based. Replicas do not communicate

with each other to reach an agreement, rather they execute the request as send

by the client directly. After execution, they send their responses to the client

without any consensus. For such protocols, clients send their requests to a

set of replicas forming a quorum, which execute the requests independently

and assign their own ordering. We have explained this briefly under 3f + 1

bound in the previous section. Client commits the request only if it receives

the required number of matching responses (depends on the protocol spec-

ifications) and the ordering is consistent for each replica. The performance

of quorum based protocols is higher than agreement based (when there is no

contention), but in case of a fault or an inconsistency, they are a lot more

expensive. Quorum-based protocols cannot handle contention due to lack of

2.4. BFT Protocols at Present 39

request ordering mechanism.

Client

Replica 1

Replica 2

Replica 3

Replica 4

Replica 5

Request Response

Replica 6

Figure 2.7: Communication pattern of Q/U

Query/ Update (Q/U). Query/Update (Q/U) [11] protocol is a quorum

based fault-scalable Byzantine fault protocol ensuring better performance than

PBFT under no contention. It needs 5f+1 replicas unlike commonly required

3f + 1 to tolerate f Byzantine faults. Figure 2.7 presents the communication

pattern of the protocol. It requires only one round-trip of message exchange

between a client and replicas to commit a request. Namely, a client sends

a request to a preferred quorum of replicas and these replicas speculatively

executes it and respond directly to the client. Q/U employs no primary for

ordering the incoming client requests. Consistency is maintained through

periodic exchange of up-to-date history at each replica with other replicas.

Clients ensure that they always obtain the final and correct version of the

history. For performance efficiency, clients can contact a quorum of 4f + 1

replicas, but it results in out of order execution of requests and outdated

histories at the remaining f replicas. These f replicas induce the cost of

synchronization phase where they demand up-to-date histories from at least

f + 1 replicas. This phase ensures that history is not manipulated by more

f faulty replicas. Q/U cannot handle contention as it can cause concurrent

updates leading to different versions on different replicas. This is usually

detected by the client that initiates an expensive recovery phase where all the

replicas are brought to the same version. The performance of Q/U gradually

decreases due to a high number of concurrent updates; therefore, Q/U is

also not scalable where there are a large number of clients. But under no

contention, Q/U is scalable in terms of a number of Byzantine faults tolerated

by the system. Performance of Q/U decreases by only 36% when f = 5

(in comparison to f = 1) whereas the performance of other BFT protocols

decreases by 83%.

40 Chapter 2. Related Work

HQ. Hybrid Quorum [40] replication protocol is another quorum-based pro-

tocol which improves over the shortcomings of PBFT [30] (i.e., the quadratic

cost of inter-replica communication is unnecessary when there is no contention

and poor fault scalability) and Q/U [11] (i.e., Q/U requires a large number

of replicas which not only augment the hardware cost but also increase the

number of possible points of failure and it suffers concurrency issues under

contention). HQ requires 3f + 1 replicas and uses two approaches; (i) in

the absence of contention, it uses a lightweight quorum protocol which re-

quires one round-trip (between client and replicas) for read operations and

two round-trips for write operations, and (ii) when contention occurs, it uses

agreement-based techniques (protocol similar to PBFT) to agree upon the

ordering of contending requests. Therefore, when a client receives conflicting

responses (or dissimilar history digest), client requests conflict resolution by

sending RESOLVE messages with conflict certificate (formed from responses

and history digests). To resolve the conflicts, HQ use BFT-SMR protocol

(PBFT), to reach agreement on a deterministic ordering of the conflicting

messages. Results of HQ exhibit that it performs better than Q/U and PBFT

in contention-free scenarios and scales acceptably for f up to 5. Under con-

tention, HQ achieves better performance than Q/U and similar to PBFT.

Nevertheless, with a rise in contention, contention resolution leads to gradual

degradation in performance.

Client

Replica 1

Replica 2

Replica 3

Replica 4

Request Response

Figure 2.8: Communication pattern of Quorum

Quorum. Quorum [56] is designed to be abortable with the same communi-

cation pattern as Q/U in fault-free cases, however, it requires 3f + 1 replicas

instead of 5f + 1 replicas (unlike Q/U). Quorum is targeted for system con-

ditions that do not involve asynchrony, failures or contention. Figure 2.8

presents the communication pattern where a client sends the request to all

replicas. These replicas independently execute the request (again without any

message exchanges among them), update their local history and reply to the

client (with the digest of up-to-date history). If the client receives matching

2.4. BFT Protocols at Present 41

responses from all the 3f + 1 replicas and all the histories match, client com-

mits the request; otherwise, it invokes a panicking mechanism. Client sends

a PANIC message to all the replicas. Upon reception of PANIC message,

replicas stop executing the requests in their queues and send a signed message

containing their history to the client. Client upon receiving 2f + 1 signed

messages, generates an abort history and aborts Quorum; and, switches to

a backup protocol which uses the history for maintaining consistency across

replicas (in this case, it is PBFT) [56]. Similar to Q/U, Quorum does not

tolerate contention. Quorum achieves the best performance (high throughput

and minimum latency) in comparison to other BFT protocols, but only with

a fewer number of clients. Nevertheless, with f > 1, the Quorum outperforms

Q/U as Q/U requires additional 2f replicas forcing the client to perform addi-

tional MAC computations. Furthermore, Quorum also reduces the overhead

of hardware cost of extra 2f replicas.

There are other protocols like Scrooge [96] which further aim to reduce the

number of replicas required for a quorum while tolerating f Byzantine faults.

2.4.2.3 Speculation-Based Protocols

In these protocols, replicas respond to the client’s request without going

through the expensive 3 phase commit protocol as in agreement based. Repli-

cas optimistically agree with the ordering proposed by the primary replica

and responds to the request. Replicas do not care about the inconsistencies,

it matters only to the clients. If there is a problem, like primary sending differ-

ent operations or assigning different sequence numbers to requests, the correct

client will eventually detect the fault and informs the replicas to rollback to a

consistent state. The client or replicas can initiate the view change upon any

malicious behavior. Speculation-based protocols improve upon performance

in best case scenarios, i.e., partial synchrony and fault free.

Client

Replica 1/ Primary

Replica 2

Replica 3

Replica 4

Request Response

1 2 3

Figure 2.9: Communication pattern of Zyzzyva

42 Chapter 2. Related Work

Zyzzyva. Zyzzyva [74] is a speculative, high throughput BFT protocol that

improves the performance of PBFT. Similar to many state-of-the-art proto-

cols, Zyzzyva also requires 3f + 1 replicas to ensure Safety and Liveness in

presence of up to f Byzantine faults. Figure 2.9 illustrates the message ex-

change pattern of Zyzzyva. During a fault-free scenario, the client sends the

request to the primary which is in charge of assigning a sequence number to

all the incoming client requests. Primary then forwards the ordered request

to other replicas. All the replicas speculatively execute the request and send

the response to the client along with the digest of their local histories. Spec-

ulative approach bypasses the expensive agreement phase (like in PBFT) for

achieving total ordering of the messages before executing (committing) the

request. If the client receives 3f + 1 mutually-consistent matching responses

with complete history, client commits. If the client receives between 3f and

2f + 1 mutually-consistent matching responses, it creates a COMMIT certifi-

cate which contains the SPEC-RESPONSE messages from responding replicas

and broadcasts it to all the replicas. Replica upon receiving a COMMIT mes-

sage, makes sure that the history in the message is consistent with their local

history. If consistent, replica responds with a LOCAL-COMMIT message.

If there exists two different ordering for the same request, replica initiates a

view change protocol with a proof of misbehavior (POM) message. In case,

a client receives less than 2f + 1 matching responses, it resends the request

to all the replicas. Upon receiving the request directly from the client, all the

non-primary replicas send the CONFIRM-REQ message containing the re-

quest to the primary for ordering. If primary confirms with CONFIRM-REQ

(assigning the sequencing number as well), replicas execute the request and

respond to the client. If the replicas fail to receive the confirmation, they cre-

ate the POM against the faulty primary and initiate the view change protocol

to elect a new primary. Under the fault-free scenario, Zyzzyva exhibits better

performance than PBFT and Q/U but it drops sharply upon fault occurrence

due to expensive view change protocol.

Atul et al. proposed Zeno [100], a protocol based on Zyzzyva aiming to

replace strong consistency (linearizability) with a weaker guarantee (eventual

consistency), i.e., clients can temporarily miss each other’s updates, but when

the network becomes unstable, states from all replicas are merged for consis-

tency (having the replicas to agree on a total order for all requests). There

is another protocol, called ZZ [110], proposed by Timothy et al., that reduces

the replication cost from 2f + 1 to practically f + 1 during the normal case

and activate additional f replicas only upon failures.

2.4. BFT Protocols at Present 43

2.4.2.4 Client-Based Protocols

Client-based protocols aim to prevent faulty replicas to attack, mislead or

delay correct replicas, by preventing inter-replica communication. For these

protocols, replicas rely upon or communicate only with the client and their

identity remains secret to other replicas in the system. Protocols completely

depend on the correctness of their clients. They assume their clients to be non-

faulty, honest, but crash-prone. Such protocols show comparable performance

to agreement and quorum based protocols.

Client

Replica 1/ Primary

Replica 2

Replica 3

Replica 4

Request Response

1 2 3 4

Figure 2.10: Communication pattern of OBFT

OBFT. Obfuscated BFT (OBFT) [98] is a client based abortable BFT pro-

tocol ensuring complete independence of failure among replicas unlike other

BFT protocols which include inter-replica communications. Replicas are ab-

solutely unaware of each other’s existence and communicate only with the

clients. This prevents a strong adversary from colluding with other replicas

and impacting the system’s performance. Therefore, the role of clients become

very crucial in OBFT. OBFT considers a strong assumption that clients can-

not be malicious (but are prone to crashes); since they can violate consistency.

A malicious client can send two different requests to two distinct subsets of the

replicas and behaves against each subset as if there was a single request. This

assumption is very strong and thus limits the usability of the protocol for

certain applications where clients are trusted members of the organization.

OBFT requires 3f + 1 replicas to maintain Safety and Liveness. However,

protocol uses only 2f + 1 replicas at a time constituting to an Active replicas

set and the extra f Passive replicas are used upon fault occurrence. Figure

2.10 presents the communication pattern of OBFT. OBFT launches the spec-

ulative phase on 2f + 1 Active replicas where a client sends a request to the

primary replica. Primary replica assigns a sequence number to the request

and executes it. Primary then sends the request with a sequence number and

its corresponding response to the client. The client then forwards this ordered

request to the remaining Active replicas which execute the request and send

44 Chapter 2. Related Work

their responses to the client. If the client receives matching 2f + 1 messages,

it commits the request otherwise launches the recovery phase. During recov-

ery, a client sends a PANIC message to all the Active replicas. Upon receiving

PANIC message, replicas stop executing new requests and send a signed Abort

history to the client. The client waits for matching f + 1 abort histories and

send an INIT message to all the 3f + 1 replicas. The replicas then respond

with ACK messages and the first 2f +1 replicas (that respond the first) form

the new Active set. This phase replaces the suspicious (either faulty or slow)

replicas with correct replicas from the Passive set (forming a new Active set)

and resumes to speculative phase in the new view.

2.4.2.5 Trusted Component-Based Protocols

Considering the fact of impossibility to achieve a consensus in an asynchronous

system, trusted component-based protocols depend on external entities for

partial synchrony unlike other protocols which use timeouts and delays. These

protocols exploit components like Abortable Timely Announced Broadcast

(ATAB) [86] to enable correct servers compute operations during synchronous

period and blacklist the faulty servers responding out of bound, Trusted

Timely Computing Base (TTCB) [106] to provide total ordering services or

Trusted Ordering (TO) Wormholes [37] which are part of every server and

have their dedicated communication channels. All these external entities are

considered to be fault-free, but can crash and have periods of unavailability.

Such protocols display comparable performance with protocols in Group 1,

for fault free configurations. And they also minimize the number of replicas

required from 3f + 1 to 2f + 1 for tolerating the same number of f faults.

CheapBFT. CheapBFT [71], is a resource-efficient BFT system relying on

a FPGA-based trusted subsystem called Counter Assignment Service in Hard-

ware (CASH) which tunes a protocol to the minimal resource usage during

normal cases (i.e., fault free scenarios). CASH is used for message authenti-

cation and verification, and to prevent equivocation; that is, the ability of

a server to generate conflicting messages for other servers in a system. The

trusted CASH subsystem may fail only by crashing and its key remains secret

even at Byzantine replicas. This implies that an attacker cannot gain physical

access to a replica. The protocol runs a composite agreement-based protocol

and saves resources by exploiting passive replication with lesser number of

physical machines. To achieve this, each replica is composed of a trusted

CASH subsystem initialized with a secret key (this key is shared among all

the subsystems of replicas) and is uniquely identified by an id (corresponding

to the replica that hosts the subsystem).

2.4. BFT Protocols at Present 45

The protocol consists of three sub-protocols: (1) normal case protocol,

CheapTiny, (2) transition protocol, CheapSwitch, and (3) fall-back protocol,

MinBFT [106].

Client

Replica 1/ Primary (Active)

Replica 2 (Active)

Replica 3 (Passive)

Request
Response &

Passive Replica

Update

1

Prepare Commit

2 3 4

(a) Communication pattern of CheapTiny

Client

Replica 1/ Primary (Active)

Replica 2 (Active)

Replica 3 (Active)

Panic Response

1

History Switch

2 3 4

(b) Communication pattern of CheapSwitch

Figure 2.11: Communication pattern of two sub-protocols of CheapBFT

Figure 2.11(a) and 2.11(b) present the communication patterns of Cheap-

Tiny and CheapSwitch, respectively.

CheapTiny. During normal case (fault free cases) executions, CheapTiny re-

quires only f + 1 replicas to agree on client requests and execute them. How-

ever, CheapTiny is incapable of tolerating any type of fault.

CheapSwitch. CheapTiny switches to CheapSwitch upon suspecting or detect-

ing any faulty behavior of replica(s). It activates the f additional (passive)

replicas to participate in consensus and execution. This protocol brings all

correct replicas into a consistent state.

MinBFT.Upon achieving consistency, CheapBFT temporarily executes MinBFT

protocol where all 2f + 1 are active. This protocol creates a new view with f

non-faulty replicas making a new active set before eventually switching back

to CheapTiny. MinBFT ensures progress, consistency and tolerates up to f

faults.

The results of CheapBFT demonstrate that it outperforms BFTSMaRt [24]

and MinBFT [106]. This is due to the fact of using minimal number of re-

sources with minimal number of message exchanges in comparison to MinBFT

46 Chapter 2. Related Work

and BFTSMaRt which depends on PBFT communication pattern and under-

goes 3 rounds of message exchange.

Client

Replica 1/Primary

Replica 2

Replica 3

Request Response

1

Prepare Commit

2 3 4

Figure 2.12: Communication pattern of MinBFT during normal case execu-

tions

MinBFT and MinZyzzyva. Giuliana et al. proposed MinBFT and

MinZyzzyva [106] which require only 2f + 1 replicas, instead of usual 3f + 1.

This reduction is achieved via a tamper proof distributed component called

Trusted Timely Computing Base (TTCB) which provides ordering services

and verification simplicity. Another trusted service USIG is a local service that

exists in every replica which is used to prevent equivocation (explained previ-

ously in CheapBFT). USIG assigns a unique identifier along with a certificate

to every request, implying that the ordering was verified by the trusted ser-

vice. During the normal case executions, both the MinBFT (non-speculative)

and MinZyzzyva (speculative) run in the minimum number of communication

steps, 4 and 3 steps, respectively.

MinBFT. Figure 2.12 demonstrates normal case operation. A client sends a

request to all servers, but only primary creates a PREPARE message con-

taining a sequence number and a unique identifier from USIG. Primary then

forwards PREPARE message to all the replicas. Upon receipt of PREPARE

message, replicas verify the message (using USIG) and multicast a COMMIT

message to other replicas. Upon receiving 2f + 1 matching COMMIT mes-

sages, servers accept the request, execute it and return a response to the client.

Client upon receiving matching f+1 responses, commits the requests. In case,

a client does not have f + 1 matching responses or f + 1 backup replicas sus-

pect primary to be faulty, a view change protocol is executed which elects

a new primary and the protocol continues normally. View change protocol

works in the same way as of PBFT [30] but with only 2f +1 replicas and help

of trusted components.

MinZyzzyva. During gracious execution, MinZyzzyva works exactly like Zyzzyva

but with 2f + 1 replicas. Moreover, the ordering of requests by primary and

verification of different messages at replicas is done using USIG. Figure 2.13

2.4. BFT Protocols at Present 47

illustrates the non-gracious executions of MinZyzzyva which happens when

the network is too slow or one of more servers are faulty, therefore, the client

will never receive 2f +1 matching responses. The client during this execution

collects f + 1 responses as a proof of misbehavior, to initiate a view change

protocol to elect a new primary.

MinBFT and MinZyzzyva benefit in terms of cost with fewer replicas to tol-

erate f faults, their resilience and management complexities. Even with the

overhead induced by trusted components, these protocols perform better than

PBFT and Zyzzyva.

Client

Replica 1/Primary

Replica 2

Replica 3

Request Commit

1

Prepare Reply

2 3 4

Local

Commit

5

Figure 2.13: Communication pattern of MinZyzzyva during non-gracious ex-

ecution

Correia et al. proposed BFT-TO [37], an algorithm for asynchronous BFT-

SMR with only 2f + 1 replicas by leveraging a trusted component called

Trusted Ordering (TO) wormhole. Only the algorithm was proposed and

was never implemented. There is another protocol BFT-Mencius [86] based

on a new communication primitive, Abortable Timely Announced Broadcast

(ATAB), and does not use signatures. The protocol was implemented using

Scala and its results are comparable to PBFT. The implementation in Scala

adds an overhead of implementing other protocol in Scala too for performing

comparative analysis.

Several papers considered theoretical evaluation as an alternative, where

throughput is related to the number of cryptographic operations on the bot-

tleneck replica, and latency is related to the number of communication steps

in the critical path of the protocol [56, 74]. Table 2.2 provides the theoreti-

cal analysis of the above discussed protocols in terms of throughput, latency

and minimum number of replicas required to tolerate up to f simultaneous

Byzantine faults. We observe that the Group 1 protocols over the years have

enhanced in reducing the cost of replication, optimized in terms of number

of cryptographic operations performed (most protocols use computation of

MACs over public-key encryption) and ideally provide comparable perfor-

mance to the performance of a non-replicated system, but all in non-faulty

settings. Nevertheless, performance of these protocols degrades in the pres-

48 Chapter 2. Related Work

Table 2.2: Theoretical Analysis of BFT protocols aiming to enhance the per-

formance in fault free scenarios

Type of Protocol BFT Protocol Throughput Latency
Replication

Cost

Cost of Bad

Runs

Agreement-Based

PBFT [30] 8f + 3 5 3f + 1 1 view change

BFT-SMaRt [24] ≈PBFT 5 3f + 1 1 view change

Chain [56] 2f + 2 3f + 2 3f + 1
Switch to PBFT +

PBFT execution

Ring [57] 4f + 4 7f + 2 3f + 1
Switch to resilient

mode of Ring

Quorum-Based

Q/U [11] 4f + 2 2 5f + 1 1 view change

HQ [40] 4f + 2 4 3f + 1
Switch to PBFT +

PBFT execution

Quorum [56] 2 2 3f + 1
Switch to PBFT +

PBFT execution

Speculation-Based
Zyzzyva [74] 3f + 2 3 3f + 1

Checkpointing +

1view change

Zeno [100] ≈Zyzzyva 3 3f + 1 1view change

Client-Based OBFT [98] 2 4 3f + 1 1 view change

Trusted Component

CheapBFT [71] 4f + 2 4 2f + 1 Switch to MinBFT

MinBFT [106] f + 5 4 2f + 1 1 view change

MinZyzzyva [106]
2 +

signatures
3 2f + 1 Switch to Zyzzyva

BFT-TO [37]
8f + 3 +

wormhole ops
5 2f + 1 −

BFTMencius [86] ≈PBFT 5 2f + 1 −

ence of arbitrary failures. This is mainly due to the inherent design defects or

complex implementations of the BFT algorithm.

2.4.3 Group 2: Minimizing Performance Degradation

in Faulty Conditions

One could argue that BFT protocols are meant to efficiently tolerate faulty

behaviors no matter how rarely they occur. The protocols of Group 1 which

were once considered to be Byzantine fault tolerant, crashed during faulty

scenarios. This is due to the fact that their prototypes were never evaluated

under faulty conditions. From the second group, Aardvark introduced the

notion of robust BFT protocols, i.e., maintaining a constant performance in

the presence of few Byzantine faults [36]. Robust BFT protocols such as Spin-

ning [105], Prime [15], Aardvark [36], and RBFT [18] are meant to efficiently

handle some worst-case malicious Byzantine behaviors.

Table 2.3 gives the list of attacks performed by some state-of-the-art pro-

tocols to evaluate performance in faulty conditions. Each protocol considers

2.4. BFT Protocols at Present 49

some Byzantine fault scenarios when evaluating their prototypes and measures

the performance in terms of latency and throughput for each case.

Table 2.3: Performance evaluation of robust state-of-the-art protocols under

different types of attacks

BFT

Protocol
Byzantine Fault Scenarios

Throughput

Evaluation

Latency

Evaluation

Aardvark [36]

Client floods the replicas Yes No

Replica floods the correct

replicas
Yes No

Client sending inconsistent

MAC authenticator
Yes No

Intentional delay of responses

on a specific client
Yes No

Intentional pre-prepare delay

by primary replica
Yes No

Prime [15]
Intentional pre-prepare delay

by primary replica
Yes Yes

Spinning [105]
Intentional pre-prepare delay

by primary replica
Yes Yes

RBFT [18]

Client floods the correct

replicas with invalid requests

or inconsistent MAC

authenticators

Yes No

Intentional delay by primary

on specific client
No Yes

Replica floods the correct

replicas
Yes No

Aardvark [36], Spinning [105], Prime [15] and RBFT [18], all employ dif-

ferent approaches for reducing the harm caused by a malicious primary. Ei-

ther they allow replicas to expect a minimal acceptable throughput from the

primary [36], or they change the primary with every batch of requests [105].

Furthermore, these protocols implement various fault adaptive mechanisms to

handle some fault behaviors. Aardvark allows the replicas to expect a minimal

acceptable throughput T from the primary (level of T is raised periodically)

which enable them to monitor the performance of primary. The inability of

the primary replica to maintain the T leads to frequent view changes. With

this mechanism system throughput remains high in the presence of faulty pri-

mary (mainly slow primary which is unable to maintain T at least at f + 1

50 Chapter 2. Related Work

replicas). Spinning [105] proposed another approach for reducing the damages

introduced by a malicious primary by changing the primary every batch of re-

quests. But there is no mechanism to detect a faulty primary which delays a

request ordering just by a little less than the timeout at the client. Like Aard-

vark, Prime [15] also moved the task of monitoring the performance to replicas.

In Prime [15], the network performance is monitored by the replicas, while the

primary periodically sends messages (with or without request ordering) at a

constant rate. This mechanism allows the replicas to expect a constant fre-

quency of messages and enable them to identify a slower primary. But Prime

fails to improve the performance over Aardvark and Spinning when a ma-

licious primary colludes with a faulty client. Lastly RBFT [18], introduced

the concept of maintaining a constant performance during a fault occurrence.

Authors of RBFT demonstrated that the performance of Aardvark, Spinning,

and Prime is reduced by at least 78% when there is a fault while RBFT shows

a degradation of only 3%. This is due to the fact that RBFT runs f + 1

multiple instances of its protocol, where only one of the instances executes

the requests. The other f instances are meant to monitor the difference in

throughput at different instances. RBFT also implements few fault adaptive

mechanisms like Aardvark, to handle some fault scenarios.

On the other hand, the evaluation of BFT protocols has also raised several

questions. In [36], authors present results showing that the throughput of

PBFT [30], Zyzzyva [74], HQ [40] and Q/U [11] falls to 0 when encountering

a malicious client while these results are theoretically impossible. Thus, BFT

prototypes often perform poorly and in an unexpected way in the presence of

faults, violating Liveness property.

2.4.3.1 Robust Protocols

Recently, a lot of attention has been given to make BFT protocols robust,

i.e., protocols minimizing performance degradation during fault occurrences

(attacks from clients and Byzantine servers). The fact that Group 1 protocols

are fragile and offer less performance guarantees in case of attacks, motivated

the researchers to design robust protocols [15, 18, 36, 105]. According to ro-

bust protocols, the main reason for performance degradation is due to the

bottleneck replica, mostly primary (also known as a principal server). Robust

protocols design mitigate the responsibilities of the primary. This is achieved

by frequently changing the primary [36, 105] or by having multiple instances

with different primary for each instance [18]. Robust protocols show promising

results with minimum performance degradation [18] but with a lower perfor-

mance during fault free scenarios in comparison to the Group 1 protocols.

2.4. BFT Protocols at Present 51

Aardvark. Clement et al. present Aardvark [36], a protocol similar to

PBFT which is effective and robust, unlike protocols Q/U, Chain, Ring,

Zyzzyva, PBFT and HQ. Aardvark follows the same communication as of

PBFT (see Figure 2.4); it requires 3f + 1 replicas where one of the nodes is

primary, responsible for ordering client requests. Aardvark employs various

fault adaptive mechanisms to provide strong Safety and Liveness guarantees

to ensure system’s availability not only during gracious intervals (synchronous

network, timely, fault free replicas and correct clients) but also during uncivil

execution intervals (network links and correct servers are timely but with up

to f Byzantine servers and any number of faulty clients). Aardvark also by-

passes fragile optimizations which only improve best-case performance and

introduce expensive alternative protocol paths, making the system vulnerable

to faulty nodes.

Mechanisms implemented by Aardvark are as follows.

1. Malicious Clients. Aardvark does not rely on clients for anything except

sending their requests. It implements a hybrid signature/MAC authen-

tication construct to safeguard against manipulative faulty clients. This

is due to the fact that MAC-based authentication makes the system vul-

nerable to unfaithful (inauthentic) messages; worse, it fails to correctly

identify the malicious client/server. Aardvark diligently exercises sig-

natures by using it only for authenticating client requests. Rest of the

communication continues to use MACs. It uses Rabin-Williams signa-

ture scheme [84, 108] to disproportionately place the computational load

of signature generator at the clients rather than on the servers. A client

submitting a request, signs the request and then authenticates the signed

request with a MAC. Servers upon receipt of a request, authenticates the

MAC. If it is not valid, the request is discarded otherwise server verifies

the signature. If the signature is invalid, all the future requests from

this client are discarded to prevent the system from the spurious load.

This mechanism amortizes the cost of verifying signatures and brings

down the overhead in line with Group 1 protocols [30, 57, 74, 104]. Fur-

thermore, to mitigate the additional cost of using signatures, Aardvark

exploits multi-core commodity machines by processing client requests in

one core and messages received by servers in other core. Isolating the

computations performed for a request at replicas from messages send/re-

ceived by the replicas, facilitates the protocol to advance.

2. Vulnerable Primary. Unlike past BFT protocols which conservatively

trigger a view change to replace a malicious primary, Aardvark is a lot

aggressive on view changes. It relies on an adaptive throughput mecha-

nism to prevent a primary from achieving a tenure and encourages it to

52 Chapter 2. Related Work

work hard to maintain its position. That means, a primary providing

adequate throughput remains a primary for at least 5 seconds (grace pe-

riod); also, a primary has only 5 seconds to make inappropriate progress.

Once a view change is triggered, minimum accepted throughput is de-

fined for the primary. At every checkpoint, performance of the proto-

col is measured. If the observed throughput is less than the required

throughput, primary is considered faulty and a view change is triggered.

The grace period is long enough to allow a primary to provide required

throughput. The acceptable throughput value is set to 90% of the max-

imum throughput observed in previous n views. Periodically, this value

is increased by a factor of 0.01, until a primary fails to provide the ex-

pected throughput. These throughput adaptive frequent view changes

do induce a performance loss of at most 10%. Furthermore, Aardvark

uses PBFT as its baseline, but its performance is lower than PBFT due

to these fault adaptive mechanisms.

3. Byzantine Servers. Aardvark exploits features of multiple network inter-

faces (Network Interface Controller (NIC)) to separate network traffic

of clients from servers. This limits the load imposed by generic net-

work flooding by relying on distinct network devices to communicate

with each replica. Each replica has 3f + 1 network interfaces; one for

replica-to-client communication and others for inter-replica communica-

tions. This prevents network traffic from clients to slow down the replica

traffic and vice-versa. Aardvark employs flood adaptive mechanism by

allowing a replica to detect excessive flow of messages from a replica than

necessary. This will ensure, that a spurious replica is stressing the net-

work with messages. Upon detection of network flooding from a server

(imposing excessive load), dedicated physical links are deactivated for a

while to prevent system’s performance degradation.

Client

Replica 1/ Primary

Replica 2

Replica 3/ Ordering

Replica 4

PO Request PO ARU PreparePre-Prepare CommitPO ACK

2 3 4 5 6 7 81

Request Reply

Figure 2.14: Communication pattern of Prime

Prime. Amir et al. observed the imperfection of existing Byzantine-resilient

replication protocols in the presence of Byzantine faults and present Prime [15]

2.4. BFT Protocols at Present 53

overcoming these drawbacks. Prime requires 3f+1 replicas where clients send

their requests to any of the replicas in the system and that replica then assigns

an order to the request. Figure 2.14 illustrates the communication steps of

Prime, which are similar to PBFT. Prime was motivated from the possible

attack on PBFT where an attacker can delay sending of pre-prepare messages

(by the duration just less than the timer at other replicas) without letting the

protocol undergo multiple view changes. The attacker benefits on the delay

introduced by it without ever getting detected as malicious and successfully

brings down the performance to almost zero. In the protocol, once a replica

receives a client request, it assigns attributes such a query, r and request or-

dering s and sends a PO-REQUEST message (containing r and s) to other

replicas. Upon receiving PO-REQUEST, replicas send PO-ACK message to

all containing s and n (n is a list of replicas sending PO-REQUEST). A replica

that receives 2f PO-ACK sends PO-ARU message contains the proof with the

replicas which have agreed on the pre-scheduling of the request with same r, s

and n attributes. The PO-ARU message is a proof of accepted sequence num-

bers by n replicas and it keeps replicas aware of the requests being executed by

other replicas. When the primary receives 2f matching PO-ARU messages, it

knows that requests have been pre-ordered and can now be ordered. It then

sends pre-prepare messages to all the replicas and the protocol continues as

PBFT. Prime allows replicas to monitor network performance by analyzing

the maximum time taken by the primary replica to order requests. Thus,

it becomes essential of the primary to periodically send scheduling messages

(even empty) to allow replicas identify a malicious replica. Even the replicas

expect to receive these messages at a certain frequency which is calculated us-

ing three parameters: (1) latency between replicas, (2) frequency of primary

replica for sending ordered requests, and (3) constant considering variable la-

tency of the network. Through this mechanism, it is easy to detect a faulty

primary if it fails to respond within the required frequency and trigger a view

change.

Prime benefits over performance maintenance in the presence of faults,

but the performance reduces many folds during fault free scenarios. This

is because, Prime does not use MACs, but signatures. The addition of a

new ordering phase and use of signatures for ensuring integrity, authenticity,

and non-repudiation, helps in fault detection and performance monitoring.

However, induces non-negligible cost and leads to lower performance than

Group 1 protocols.

Spinning. Spinning [105], another BFT protocol based on PBFT but with

an effort to mitigate performance attacks by changing the primary after every

54 Chapter 2. Related Work

batch of pending client requests. This means, that instead of changing the pri-

mary upon detecting it to be faulty, Spinning changes the primary very single

batch of requests without any inter-replica exchange of messages. During nor-

mal operation, it follows the communication steps of PBFT (see Figure 2.4).

It has no view change operation, but rather merge operation which collects

the information from different servers to decide if the requests in the previous

views should be executed in the new view or not. In Spinning, client requests

are sent to all replicas. Upon receipt of a request from a non-primary replica, it

starts a timer to receive the request ordering message (PRE-PREPARE mes-

sage) from the current primary (of the view). If the timer expires, after the

maximum time duration Tacc
2 to accept the request, the current primary is

considered faulty and blacklisted. The protocol changes its state from normal

to merge. Merge operation ensures Safety and reliability of the system upon

expiration of the timer at non-primary replicas. Another replica becomes a

primary and the value of Tacc is doubled. If there are already f replicas in

the blacklist, the oldest in the list is removed to ensure Liveness property.

This operation is not a change the view, but to agree to the requests from

the previous views which were accepted and have to be executed by all the

correct servers (this excludes all the blacklisted replicas). Merge operation

collects information from all the servers to agree to the requests to be exe-

cuted considering loss of messages, not sent messages, acceptance of requests

by few correct servers and not all of them.

Unlike Aardvark, Spinning does not require clients to sign their requests.

Spinning uses only MAC authentication, thus improving the performance over

Aardvark. However, this makes the protocol vulnerable to MAC attacks. If

a malicious client sends valid messages only to a subset of correct replicas,

then primary would be forced to trigger a merge operation. This attack will

possibly make the protocol spend the majority of its time executing the merge

operation. This would reduce the performance to almost zero, but signing of

a request can always be employed to handle such faults. Also, as previously

said, Tacc is a static parameter, faulty replicas can intentionally trigger the

timeout. A faulty primary can delay the request ordering by a little less than

this parameter, without ever being detected as malicious. This behavior would

greatly reduce the throughput during the view when the faulty replica is the

primary. Several experiments were performed to analyze this intentional delay

by primary and it was observed that throughput drops by 99% [18].

2Tacc is a static system defined parameter and its initial value is defined by the system

user

2.4. BFT Protocols at Present 55

Client

Replica 1/ Primary

Replica 2

Replica 3

Replica 4

Request Pre-prepare CommitPrepare ReplyPropagate

1 2 3 4 5 6

Figure 2.15: Communication pattern of RBFT

RBFT. Redundant-BFT (RBFT) [18] like Prime observed the malicious

behavior of the primary replica in primary-dependent existing BFT protocols

targeting high throughput, where primary can smartly degrade the perfor-

mance of the system without being detected by correct replicas. RBFT follows

the pattern of PBFT except the communication step to exchange the propa-

gate message among replicas before primary sends pre-prepare message with

request ordering to all replicas. RBFT executes multiple instances of the same

protocol, each with a different primary replica executing on a different physical

machine. All the protocol instances order the requests, but only the requests

ordered by the master instance are effectively executed. Other instances are

called backup instances, they order requests only for monitoring performance,

in order to check if the master instance is providing the required performance.

If the master instance is slower, then backup instances can trigger a view

change and a new primary is elected at each protocol instance. RBFT is in-

tended for open loop systems and it is presumed that backup instances would

never be faster than the master instance. It exploits the multicore architecture

of physical machines and uses multiple network interface controllers (NICs)

for ensuring robustness.

RBFT runs f + 1 protocol instances which are necessary and sufficient

to detect a faulty primary and ensure robustness of the protocol. Backup

instances run monitoring module to compute the throughput and if 2f +

1 nodes observe the ratio of performance of master instance to that of the

back instance is lower than a given threshold, the primary of the master is

considered Byzantine. It is also important that f + 1 instances receive the

same client requests. The client sends the requests (REQUEST message) to

all the replicas and once the request is verified by the replica (only after it

receives f + 1 copies of the same request), it sends a PROPAGATE message

to all other nodes. This step ensures that every correct node will eventually

receive the request as long as the request has been sent to at least one correct

node. RBFT follows the steps of PBFT from this point, with prep-prepare,

56 Chapter 2. Related Work

prepare and commit messages. Furthermore, RBFT implements a fairness

mechanism between clients by monitoring the latency at each, which ensures

that client requests are processed fairly.

2.5 Benchmarking Tools

With the growing demand for cloud services, it has become challenging and

essential to guarantee performance and dependability aspects in the presence

of real world fault scenarios. There exist many benchmarks which we discuss

next.

2.5.1 Performance Benchmarks

Until recently, much emphasis has been given to performance benchmarks and

many tools have been proposed that include Open System Testing Architec-

ture (OpenSTA) [6], a distributed software testing architecture that evaluates

performance and resource utilization in the presence of realistic heavy loads

simulating activities of virtual users. It considers web servers, application

servers, database servers and operating systems under test. Pylot [6], a free

open source for testing performance and scalability of web services. SIPp [6]

is a performance testing tool for the SIP protocol. SLAMD Distributed Load

Generation Engine [6] is a Java-based application designed for stress testing

and performance analysis of network-based applications. DBMonster [6] is a

framework that test performance of SQL database driven applications under

heavy loads. There are many more such performance benchmarking tools for

various computer systems. This explains that users are most inclined towards

analyzing performance, resource consumption (CPU utilization, network be-

havior and memory usage) and their associated costs.

Research has been made in the field of Byzantine fault tolerant protocols

to guarantee Liveness and Safety properties in the presence of faults. Many

protocols have been proposed which result in better performance during fault

free scenarios but less effort has been made to evaluate these protocols in the

face of faulty behaviors. There are some protocols, that considered evaluating

the protocols under different types of faults, but compromises on the perfor-

mance during fault free conditions. It is a tradeoff between performance and

incorporating fault tolerant mechanisms which makes it difficult to analyze

and choose the best protocol among all. Byzantine fault tolerance benchmark

is a solution which can help the BFT system users to evaluate the prototypes

in different scenarios for performance and dependability evaluations, with an

ease of injecting different faultloads and workloads. However, even after a

2.5. Benchmarking Tools 57

decade of research on BFT protocols and benchmarks, considerably less effort

as been done for benchmarking BFT systems. Such systems are defined next.

2.5.1.1 a/b Microbenchmarks

Castro et al. [31] devised a micro-benchmark for stress testing the BFT proto-

cols using different sizes of request and response messages. It is denoted as a/b

microbenchmark where ’a’ and ’b’ are sizes of request and response messages

in KBs, respectively. Microbenchmark uses a simple service emulating a real

service, but has no state. The request operations receive arguments from the

clients and return zero-filled results without performing any actual computa-

tions. Experiments can be performed for both read-only and read-write op-

erations considering different arguments and request/response message sizes.

For example, in a 0/0 benchmark, a client sends a null request and receives a

null reply. In the 4/0 benchmark, a client sends a 4KB request and receives

a null reply. In the 0/4 benchmark, a client sends a null request and receives

a 4KB reply. It is worth noting that, computations and I/O operations (over

the request data and operation) at both client and server side would introduce

varying delaying depending on the size of the request/response messages.

2.5.1.2 Hermes Framework

Hermes [29], developed under TRONE project, is a diagnostic tool that can

be used to inject faults in BFT-SMaRt [24]. Hermes allows system develop-

ers to evaluate the performance of BFT-SMaRt implementation by allowing

them to inject faults and observe the corresponding behaviors. Hermes archi-

tecture allows injection of different faults such as crash faults, network faults,

corrupted headers and forged signatures. It contains a fault injection orches-

trator, responsible for injecting multiple faults across different nodes. But the

actual fault injection is performed by the Hermes runtime which is integrated

in every node. It considers injection of four types of attacks:

• Attack 1 : Crash of malicious nodes

• Attack 2 : Malicious nodes forge their payload size with MAX INT.

• Attack 3 : Malicious nodes delay prepare messages to 90% of the timeout

set at all the nodes for receiving the prepare messages.

• Attack 4 : Malicious nodes delay prepare messages to 5 times of the

timeout value.

58 Chapter 2. Related Work

The evaluation was performed in a simulated distributed environment with

11 virtual machines, where 10 machines ran BFT implementations and 1 was

reserved for clients. Hermes measures the throughput and latency during fault

free and faulty scenarios where the number of clients sending the requests vary

from 1 to 11. Even though Hermes can inject various faults, it is limited to

performance benchmarking of only BFT-SMaRt. Hermes is built in AspectJ

which could easily be integrated with the code base of BFT-SMaRt (devel-

oped in Java). Most of the other protocols are implemented in C and their

integration with Hermes C version is ambiguous. This creates an overhead of

implementing all the protocols in Java despite the fact how complex BFT al-

gorithms and their implementations are. However, Hermes was able to detect

some implementation issues in BFT-SMaRt while evaluating the prototype

under faults.

2.5.2 Dependability Benchmarks

The primary objective of benchmarking the dependability is to provide generic

and reproducible ways of characterizing the system behavior in the presence

of faults and also its impact on the performance. On the industry side, work

at Sun Microsystems [65] defines a high level framework specifically for avail-

ability benchmarking during failure of hardware components, installation of

software patches and system recovery. Another work by IBM, the Autonomic

Computing initiative [5], develops benchmarks for analyzing system’s self-

management, self-configuration, self-healing and self-protection capabilities.

In academia, Berkeley University proposed a dependability benchmark to as-

sess human assisted recovery process [27]. There are many other depend-

ability benchmarks available in the domains of hardware, cluster computing,

database systems, web services, operating systems, online transaction process-

ing (OLTP) systems, web-servers, etc. [8, 22, 50, 70, 92, 97, 107].

Considerable work has been done in designing fault and load injection sys-

tems to quantitatively assess the consequences of faulty behaviors in a system

both at software and hardware levels [8, 13, 32, 60, 102]. Hsueh et al. [62] pro-

vide a good survey of fault injection techniques and tools for testing software

dependability. Fault injector like Loki [32] injects various faults based on the

partial view of global state change in a distributed system. Orchestra [43, 44]

uses interception approach to inject communication faults in the different lay-

ers of a protocol by manipulating, dropping, injecting messages. Doctor [60] is

an integrated software fault injection environment for injecting CPU specific

faults, network and memory loads and network communication faults. Fer-

rari [69] (Fault and Error Automatic Real-Time Injection) also injects CPU,

2.5. Benchmarking Tools 59

memory, and bus faults but uses software traps. FTaPE [103] (Fault Tolerance

and Performance Evaluator) allows injection of faults using mode registers in

CPUs, memory locations, and disk subsystems. Xception [38] injects more

realistic faults depending on underlying system applications and processors,

advantaging from advanced debugging and performance monitoring features.

Ballista [45] is a black box software testing tool that uses combinational tests

of correct and incorrect values for parameters to subroutine calls, methods

and functions. Finally, CLIF [47] is a load injection framework for distributed

platforms where it deploys, controls and monitors load injectors and captures

performance and resource consumption upon varying loads. Bobelin et al. [26],

also considered proposing security-aware architecture with an easy expression

of security requirements and an actual enforcement of those requirements.

Apart from the research on performance benchmarks for BFT systems,

advancements have been made in developing BFTSim [99], a simulation en-

vironment and Achilles [21], a tool to detect trojan messages in distributed

systems.

BFTSim [99] intends to implement BFT protocols from pseudocode in the

high-level declarative language and compare these protocols under identical

crypto-primitives, workload and network conditions. It implements three BFT

protocols, precisely, PBFT, Q/U and Zyzzyva and validates the performance

against the published results. Simulator observes that a protocol’s perfor-

mance characteristics are primarily inherent in its high-level design, not the

particulars of its implementation. However, other state-of-the-art protocols,

such as Chain, Ring, Aliph, OBFT, Aardvark, Prime, Spinning, etc., did not

consider using the simulator due to the underlying complex high-level declara-

tive language. Also, some protocols assume different network conditions, such

as, exploitation of multiple core architecture [24], and multiple network inter-

faces [18, 36]. Furthermore, as a known fact, BFT protocols are complex in

nature, therefore, their re-implementation is an overhead for BFT developers.

Radu et al. proposed a tool, Achilles [21], that searches trojan messages

in a distributed system. Trojan messages are messages that seem correct to

the receiver, but cannot be generated by any correct sender [21]. Such mes-

sages reside in untested, uncommon code paths and are difficult to track using

regular testing mechanisms. Such messages can have a major impact on the

performance of a distributed system. For example, Amazon S3 storage system

went down for several hours due to the propagation of single corrupted bit to

the whole system corrupting the entire stored information [1]. Achilles evalu-

ated PBFT for detection of trojan messages and rediscovered the previously

known MAC attack vulnerability. This attack is possible due to the simplicity

of verification by servers on the client’s requests. Servers would accept client

60 Chapter 2. Related Work

(malicious) requests without checking the MACs. Achilles can be a useful tool

for determining coding flaws in the distributed protocols.

From our comprehensive analysis, we can conclude that it is necessary to

primarily focus on the practical evaluation of BFT implementations under

different workload and faultload settings from the viewpoint of adapting them

to real world systems. For realizing the same, it is important to design a

generalized, high-level, easy to use, performance and dependability benchmark

with faultload and workload injectors.

2.6 Discussion

This chapter embarks on the study of distributed system characterizations

which are extensively used in the representation of many replication tech-

niques such as agreement and consensus, state machine replication (SMR)

and quorum. We studied SMR replication thoroughly, that forms a baseline

for all the BFT protocols proposed so far. This chapter provides a comprehen-

sive research on Byzantine (arbitrary) behaviors, analysis of the upper bound

on the number of replicas required simultaneously to tolerate up to f Byzan-

tine faults and many existing BFT protocols. These protocols were classified

into two groups, precisely, (i) performance enhancements in fault-free scenar-

ios, and (ii) minimizing performance degradation in faulty conditions. Group

1 primarily consists of proprietary protocols aiming to reduce the cost (in

terms of the number of replicas) while increasing the performance of the BFT

system in the absence of faults. However, Group 2, so-called robust protocols,

aims to provide performance guarantees (i.e., minimum degradation in perfor-

mance in faulty settings in comparison to fault-free scenarios) in the presence

of Byzantine attacks. Additionally, this chapter provides a theoretical anal-

ysis of all the BFT protocols and lists the Byzantine fault scenarios handled

by robust protocols. This chapter also provided a complete taxonomy on the

known and published state-of-the-art BFT protocols in an effort of helping

the future researchers working on BFT techniques.

Furthermore, we studied the existing work on performance and depend-

ability benchmarks not only for BFT systems, but also in other domains such

as web servers, database systems, application servers, grid and cluster com-

puting. Our investigation of existing benchmark tools expresses absence of a

standard benchmarking approach for empirically evaluating competing BFT

systems in terms of Quality of Service (QoS) metrics under various workloads

and faultloads settings.

We were further motivated by the work of Kanoun et al. [8]. Their tech-

niques guided us with the basic building blocks required in designing a per-

2.6. Discussion 61

formance and dependability benchmark using complex workload, faultload for

different distributed systems.

Analysis of the state-of-the-art BFT protocols and benchmarking frame-

works motivated us to design a comprehensive performance and dependability

benchmark tool for evaluating BFT systems with the following objectives.

• QoS metrics scalability. By this we mean, that multiple metrics must

be analyzed in parallel without limiting the analysis to performance and

dependability aspects in terms of latency, throughput, availability and

reliability. A benchmark must also consider analyzing other metrics such

as cost, security, testability, interoperability, scalability, etc and must

be scalable to incorporate them. It should also provide some high level

statistics such as the number of unsuccessful and successful operations,

and number of incorrect responses. It must be structured to produce

low-level statistics such as CPU and network utilization, a number of

operations performed by each server in the system and size of data read

and written during each operation.

• Heterogeneity. It is well-known that distributed systems are com-

plex and consider various workloads, faultloads described via multiple

characteristics, features and dimensions. In real-world scenarios, we ob-

serve complex workload where some applications are computationally

heavy while others are data access intensive. However, few have both

bulky computational and data access characteristics. Similarly, we have

recognized various faulty behaviors commonly occurring in distributed

systems, such as operator mistakes, network failures, hardware and soft-

ware faults. Considering our analysis, a benchmark must provide a

simple way to define different workloads and faultloads attributes, and

inject them.

• Adoptability. Benchmarking framework must be easy to understand

and use by the researchers and as well as amateur end-users for analyzing

underlying system’s quality measurements.

Thereupon, our exhaustive survey affirms a need of comprehensive bench-

mark to evaluate performance, dependability and other QoS metrics of dis-

tributed systems under various workloads and faultloads.

Chapter 3

A General Architecture for

Performance and Dependability

Benchmarking of BFT

Protocols

Contents
3.1 Overview and Objectives 66

3.2 Dependability and Performance Benchmarking Spec-

ifications and Validations 68

3.2.1 Categorization . 69

3.2.2 Measures . 70

3.2.3 Experimental Dimensions 70

3.2.3.1 Faultload . 71

3.2.3.2 Workload . 72

3.2.3.3 Measurement 72

3.3 General Benchmarking Architecture and Framework

for Distributed Protocols 73

3.3.1 Benchmarking Steps 73

3.3.2 High-level class Diagram of Performance and Depend-

ability Benchmark Architecture 75

3.3.3 Overview of Communication Primitives Operation by

Orchestrator . 78

3.4 BFT-Bench: Case Study of Benchmarking BFT Pro-

tocols . 79

3.4.1 Faultload Dimensions 80

3.4.2 Workload Dimensions 81

3.4.3 Measurement Analysis 82

3.4.4 Potential Benchmark Users 82

64
Chapter 3. A General Architecture for Performance and

Dependability Benchmarking of BFT Protocols

3.5 Benefits of General Architecture 83

3.5.1 Reduction in Software Development Cost 83

3.5.2 Extensibility . 83

3.5.3 Reusability . 84

3.5.4 Testability . 84

3.6 Summary . 84

65

Until recently, for distributed systems, a benchmark implicitly refers and

limits to performance benchmarking. But there are many aspects which con-

verge on the importance of dependability measurement of today’s distributed

systems. Industries define easy to use standard benchmarks for measuring the

performance of a system in a deterministic and reproducible manner, but lack

in characterizing standards for dependability analysis. However, with novel

explorations, increasing demands and advantages of distributed systems, par-

ticularly in the aspects of cloud computing has compelled the researchers and

developers to fabricate solutions to benchmark the dependability and perfor-

mance of these services and distributed protocols.

A dependability benchmark is intended to characterize the system behavior

in the presence of faults which could potentially include component failures,

hardware or software design defects, arbitrary faults and disruptions due to

dynamic environments. Available dependability and performance state-of-the-

art benchmark solutions do not acknowledge many specific challenges faced by

a distributed system when intending to use distributed protocols. We believe

that there is a strong need for designing a performance and dependability

benchmark which evaluates the behavior of distributed protocols under faulty

and highly demanding real-world settings. Therefore, in this thesis, we in-

tend to devise a benchmark for analyzing dependability and performance of

distributed protocols, namely Byzantine Fault Tolerant protocols, which in-

crease the reliability and availability metrics of a system in the presence of

arbitrary failures [80].

In this chapter, we present a generic architecture of a benchmark for eval-

uating performance and dependability aspects of distributed protocols. We

describe each component of the benchmark, responsible for the generation of

various faultloads and workloads, their injections, and measurement and anal-

ysis of performance and dependability attributes. We have used the presented

generic architecture to design a software prototype, BFT-Bench (explained

in details in the next Chapter 4), which evaluates different implementations

of BFT protocols. We also demonstrate the benefits of building a generic

architecture and its easy adoption to enable researchers and developers in

industry and academia to extend it for analyzing various distributed proto-

cols for reliable file systems, verification, communications, different replication

techniques, etc., in the presence of different faulty behaviors.

66
Chapter 3. A General Architecture for Performance and

Dependability Benchmarking of BFT Protocols

3.1 Overview and Objectives

With the increasing dependency on cloud services and its pay-as-you-go mod-

els, users have become more interested in evaluating the reliability and avail-

ability metrics of such services along with other high level statistics like per-

formance, scalability and cost. Furthermore, with growing on-demand nature

of the cloud services, it has become challenging and essential to guarantee

Quality of Service (QoS) attributes of the systems in the presence or absence

of different faulty behaviors. Until recently, substantial emphasis has been

given to evaluate performance aspects of various systems while lesser progress

has been made to benchmark distributed protocols. The primary objective of

any benchmark is to provide generic and reproducible ways of characterizing

system behavior in the presence of faults and also analyze their impact on the

performance and dependability metrics.

Clearly, a lot of work is still required concerning the empirical assessment of

dependability and performance aspects. However, Madeira et al. [83] point out

some of the recent works addressing coupling of such issues, such as bringing

together performance benchmarking and dependability assessments [7], field

measurement and fault injection [64], field measurement and modeling [68],

fault injection and modeling [17], and use of standard performance bench-

marks as a workload for dependability evaluation [39].

From the literature, we have seen that there is no scientific approach or

framework developed so far that can help the researchers and developers (from

industry or academia) to evaluate the dependability quality aspects of an

underlying distributed protocols in cloud systems. And in this path we explore

and design a comprehensive benchmark framework for measuring QoS metrics

of distributed protocols and their comparison with competing solutions.

From a practical point of view, dependability is a promising approach to

assess QoS metrics related to the behavior of a distributed system and its pro-

tocols in the face of various faults. Thus, any dependability benchmark should

be clear enough to allow implementation of the specifications in a system to

benchmark the dependability and complete understanding of benchmark re-

sults.

DBench report [8] provides a basic foundation of dependability benchmark-

ing and defines 3 major guidelines that should be followed while designing a

benchmark. These include (1) implementing the specifications, (2) perform-

ing the experiments with uniform conditions and (3) analysis of results. Any

benchmarking framework should be independent of the underlying infrastruc-

ture and must consider a wide range of workload characteristics, including a

number of concurrent users, and data vs compute-intensive jobs.

3.1. Overview and Objectives 67

Designing a benchmark framework for distributed protocols is complex

and time-consuming as it needs a thorough understanding of the algorithm to

determine the corner faulty cases, ways to inject these faults in a system and

definitions for evaluating different QoS metrics. Distributed protocols are the

building blocks of a cloud system and thus, it becomes necessary to analyze

their performance and dependability before they are integrated in the real

world settings. It is equally substantial to clearly define the objectives while

designing a benchmarking framework. Therefore, we recognize:

• Considering a system model which defines the protocols under study

with all the considered assumptions (probably common to all to have a

unified testing environment).

• Defining workloads and faultloads.

• Defining components and modules and relationships among them such

as fault injection module’s relationship with faultload and the system

under test for injecting a fault.

• Building components for the framework with minimum coupling.

This chapter makes the following contributions:

• We present the main dependability benchmark dimensions as per

DBench [8] report considering categorization which defines the applica-

tion area and benchmarking purpose, measures to define nature, type

and assessment methods, and experimentation to define the system un-

der test, faultloads, workloads and measurements of considered QoS

metrics. While defining these dimensions we also consider benchmarking

validation key features that includes representativeness, repeatability,

reproducibility, portability, non-intrusiveness, scalability, benchmarking

time and cost and simplicity.

• We illustrate the architecture of high-level and low-level classes which

can be adapted easily for integrating implementations of comparable

distributed protocols.

• We demonstrate the adaptability and usability of general architecture

proposed in this chapter by instantiating the integration of Byzantine

Fault Tolerant protocols. We propose a performance and dependabil-

ity benchmark framework BFT-Bench build using the components and

modules of general architecture such as generation of faultloads and

workloads, their injection, and analysis and measurements of perfor-

mance and dependability metrics using output logs and monitoring re-

ports.

68
Chapter 3. A General Architecture for Performance and

Dependability Benchmarking of BFT Protocols

The proposed general architecture can be adopted for developing a bench-

mark for any type of distributed protocol for empirical and effective measure-

ment of performance, cost, availability, security, etc. BFT-Bench framework

(detailed in the next chapter) is designed specifically to analyze and compare

implementations of BFT protocols under different fault settings and various

workloads. The design specifications of the framework demonstrate easy inte-

gration of various BFT protocols with minimum code changes in the software

prototypes to inject some context-based faults. We graphically illustrate the

evaluation of performance and dependability aspects for these BFT prototypes

using BFT-Bench framework.

3.2 Dependability and Performance Benchmark-

ing Specifications and Validations

As said in the report of DBench project [8], a meaningful framework for de-

pendability and performance measurements is the one which clearly states

and understands all the impacting dimensions. This gives an essential insight

to the problem space, ways to catalog and determine the measurable aspects

of performance and dependability benchmarks. Along with dimensions, it

is equally important to consider a set of properties that should be satisfied

and verified while conducting experiments for analyzing the performance and

dependability metrics. For our approach, while designing the generic architec-

ture, we considered the same classifications: (1) Categorization, (2) Measure,

and (3) Experimentation, and the same set of validation properties like repre-

sentativeness, portability, reproducibility, scalability, benchmarking time and

cost, etc., which are mostly verified during measure and experimental phase

of the benchmark specifications.

Representativeness reflects how closely workload of the benchmark corre-

sponds to the actual workload of a real system and how well injected faults

resemble the real faults. Repeatability is a property which guarantees sta-

tistically equivalent results when a benchmark is run more than once in the

same environment, whereas reproducibility is the property which guarantees

that another benchmark user obtains statistically equivalent results when the

benchmark is implemented from the same specifications for evaluating the

same system. Portability refers to the usability of the benchmark for various

systems within the same application domain. This feature enables the bench-

mark users to compare different systems, services, protocols and modules. A

benchmark is said to be non-intrusive if it requires minimum changes in the

system under test. Scalability allows benchmark users to test systems of differ-

3.2. Dependability and Performance Benchmarking Specifications
and Validations 69

ent sizes. For example, in case of BFT protocols, the size of a system changes

depending on the number of faults it can tolerate. A number of nodes required

are 4, 7, 10 for f = 1, 2 and 3, respectively. Benchmark time and cost, is the

time required to receive the results from a benchmark which includes system

setup and preparation time, running experiments, and data monitoring and

analysis.

Categorization

Considered System Byzantine Fault Tolerance
Protocols

Application Area SLA oriented cloud systems

Benchmark Users Researchers, Developers

Measures

Quantitative Throughput, Response Time,
Availability, Reliability, Resource
Utilization

Qualitative Representativeness, Portability,
Scalability, Reproducibility, Non-
intrusiveness, Benchmarking
time and cost

Experimental Dimensions

Workload #concurrent clients,
Size of the request message

Faultload Fault type,
Fault triggger time,
Fault location

Measurements Performance,
Dependability,
Cost,
Resource Utilization

Figure 3.1: Specifications and Validations of a Performance and Dependability

Benchmark

Figure 3.1 demonstrates the performance and dependability benchmark-

ing dimensions for any distributed protocol. In our case, we consider BFT

protocols.

3.2.1 Categorization

Categorization allows us to define the system in consideration (or system

under test) and benchmarking context. It also characterizes benchmarking

context which includes defining benchmark users or performers, and the pur-

pose of building a benchmark tool. Figure 3.1 illustrates these parameters

from the perspective of analyzing and comparing different implementations of

BFT protocols so that the best among all (depending on the performance and

dependability measurements and system requirements) can be integrated into

cloud systems to guarantee QoS metrics.

70
Chapter 3. A General Architecture for Performance and

Dependability Benchmarking of BFT Protocols

Describing the considered system allows us to define the nature of the

system, application area and operating environment. This allows understand-

ing of the system at abstraction and functional layer levels. It enables the

users to perform evaluations of specific measures on key components, func-

tionalities and features. We consider contrasting various BFT protocols and

how their implementations handle faults and maintain their performance and

dependability aspects. Application area and operating environment impact

the selection of measures during experimentation that include types of faults

to be injected. We consider PaaS cloud models which intend to run a BFT

protocol for tolerating up to f Byzantine faults. Thus, we consider the im-

pact of cloud users running/developing an application and using underlining

features of a model. Performance and dependability benchmarking are use-

ful for PaaS cloud providers willing to integrate BFT protocols and aspire

in performing the comparative analysis of available BFT implementations in

the face of physical, design and arbitrary faults. Cloud providers become the

prospective benchmark users performing evaluations to assess the capabilities

and weaker areas of a BFT protocol.

3.2.2 Measures

For any dependability and performance benchmark, it is essential to con-

strue the measures to be assessed under various conditions. Measures allow

the characterization of the system in a qualitative and quantitative manner.

Qualitative measures are defined in terms of features related to capabilities

and properties like representativeness, portability, scalability, reproducibility,

non-intrusiveness, benchmarking time, and cost. Whereas, qualitative mea-

sures include system availability, response time, throughput of the system,

reliability, in the presence of faults. The occurrence of faults in a system leads

to performance degradation, but it is not always true for dependability. The

system may remain available and reliable. Thus, we consider defining per-

formance and dependability measures both under fault-free and faulty condi-

tions. We also define comprehensive measures that include a number of faults

a system is intended to handle, different faulty models, etc.

3.2.3 Experimental Dimensions

Figure 3.2 illustrates the various modules of performance and dependability

architecture with experimental aspects. It also defines system under bench-

marking or system under test which is a targeted system to be evaluated under

various faultloads, workloads for measuring QoS metrics. All these modules

72
Chapter 3. A General Architecture for Performance and

Dependability Benchmarking of BFT Protocols

sure that key features of benchmark validation are satisfied (representative-

ness, portability, easy injection of faults, etc.) For the convenience of bench-

mark users, we generate the faultload file where users just need to input what

fault is to be injected, when (at what time) it is injected and where (location

in the system, for example, node address) it is injected.

3.2.3.2 Workload

The workload is an abstraction of the actual work that an instance or a set of

instances is going to perform. From the practical point of view, the primary

aim of any benchmark is to emulate the real world workloads to examine

the system’s actual behavior in handling it. It represents actual profile of a

considered system. We consider fabricated workload for evaluating the metrics

where we define the number of concurrent clients sending requests in the

system and size of each request/response message. Workload plays a vital role

and makes an impact on performance (with low load, the system maintains its

performance but during high load, performance degrades) and dependability

(with high load, it is possible that system breaks down and is unable to serve

clients’ requests).

3.2.3.3 Measurement

Measurements performed on the target system allow the observation of the

behavior of a system upon injection of workloads and faultloads. The mea-

sures of interest are then obtained from processing these measurements. Basic

measurements include the identification of outcomes of system under bench-

marking/test upon injection of workloads and faultloads. Another important

aspect related to the assessment of the behavior of the system is in the time

domain. For all performance benchmarking, timing related measurements

have formed the basis for evaluating any system. We extend the same for

benchmarking dependability metrics too. For any system under test, we make

the fault-free evaluations as the baseline for comparison with the analysis of

performance and dependability metrics in the presence of faults. Primarily,

we consider the following time-dependent metrics which are measured from

the perspective of a client:

Performance Analysis

• Latency is calculated as the time required by a system to respond to a

job. In other words, it the total time elapsed from the moment a user

submits a request until it receives the corresponding response.

3.3. General Benchmarking Architecture and Framework for
Distributed Protocols 73

• Throughput is calculated in terms of a number of client requests (trans-

actions or jobs) executed by the system per unit of time.

Dependability Analysis

• Availability is a measure of time a system is responding to requests of

clients.

• Reliability is the ability of a system to always respond with correct

responses to the client’s requests, during a period of time.

3.3 General Benchmarking Architecture and

Framework for Distributed Protocols

In this part of the chapter, we discuss the various steps required for conduct-

ing the dependability and performance benchmark of a distributed system

or protocol or component and the high-level class architecture of the general

benchmark.

3.3.1 Benchmarking Steps

Benchmarking is achieved in several steps forming a benchmarking scenario. It

consists of three major steps, analysis step, experimental step and assessment

step. The experimental step is further divided into 2 phases; load injection

and statistics monitoring.

Figure 3.3 gives the three steps for performance and dependability bench-

marking and their interrelations.

The analysis step consists of defining the categorization and measure

dimensions for the system under test. This step can also be expressed as a

load generation step as benchmark users generate workloads and faultloads.

Before the target system is initialized, benchmark users can define system

configuration parameters which require basic information such as a number

of clients sending the request (in the beginning) and fault type (a system is

initiated under fault-free conditions). They also characterize the faultload

parameters where they define what fault is injected, where it is injected and

when it is injected into the target distributed system. Once the loads are

defined, it enters into the second step of benchmarking.

The experimentation step pertains to carry out the experimental part

of the benchmark, i.e., injecting the workload and faultload, and collecting

74
Chapter 3. A General Architecture for Performance and

Dependability Benchmarking of BFT Protocols

Workload

Injection

Faultload

Injection

Workload

Faultload

Analysis

Step

Experimental Step

Load Injection

SAR Reporting

Output Files

Log Files

Stats Monitoring

Performance

Dependability

 Assessment

Step

Steady

State

Condition

Warm up

Time
Fault Trigger

Time

Fault

Detection

Time

Recovery

Time

Fault

Activation

Recovery

Begin Recovery

End

Execution

End

(collect

stats)

Total Experiment Runtime

Execution Time

Figure 3.3: Benchmarking steps for performance and dependability bench-

marking

statistical monitoring reports via output files, log files and SAR generated

files as the results of system execution.

1. Load Injection Phase: Experimentation is tightly related to the target

system, defined workload and faultload during the analysis step. Work-

load injector instantiates a concurrent number of clients as defined in the

workload to stress test the system under benchmarking whereas fault-

load injector triggers the type of fault at the specified time at a given

location (node).

2. Similarly, Statistics Monitoring Phase: measurements and monitoring

is tightly related to the target system accessibility and important mod-

ules. This phase specifies the kind of outputs to be produced during the

experimentation to assess the performance and dependability metrics.

Every experiment runs for a warm up period and then an execution period.

Warm up period gives enough time to the system to stabilize before the statis-

tics monitor starts collecting the data. During the warm up phase, system runs

on the basis of the configuration parameters and no workloads and faultloads

are injected. Once the experiment reaches the execution period, workload and

3.3. General Benchmarking Architecture and Framework for
Distributed Protocols 75

faultload are initiated and triggered at the time mentioned in the parameters

which are in accordance with the beginning of the execution period. Actual

statistics are collected during execution phase for future analysis. Benchmark

user can define the time until which the experiments run. Once the execu-

tion ends, the system collects the SAR reports, output and log files to further

analysis to determine the performance and dependability benchmarking.

The last step, i.e. assessment step analyzes various reports from the

previous step and computes throughput, latency, availability and reliability of

the system under test. During this phase, we also measure resource utilization

in terms of CPU usage, network bandwidth consumption and some low-level

statistics like number of rejected requests, the number of times a request

was re-transmitted, etc. These results can be easily presented in the form

of graphs, pie charts, line diagrams for better comparison and analysis with

other competing target systems.

3.3.2 High-level class Diagram of Performance and De-

pendability Benchmark Architecture

Figure 3.4 illustrates the classes, methods and some of the member variables

of the general architecture presented in Figure 3.2. Most of the modules of

high level class diagram are generic and do not need any additional imple-

mentations (features wise) before integrating a new target system. However,

implementations of some classes like SystemUnderBenchmarking, faultload,

workload, and request are system dependent and require additional imple-

mentation. Considering faultload, it makes sense to inject a type of fault on

one system but may not hold the same significance when injected in another

target system. Classes such as FaultInjector, workloadInjector and Orches-

trator are independent of any system and require no modifications and can be

used as plug and play modules.

We now describe each of these classes and some of their associated methods

at implementation level.

1. Faultload. This class considers fault parameters from class fault and

generates a faultload to be injected into the system under test. Fault

describes the specifications related to the fault to be injected. It defines

the type of fault, time at which it is triggered in the system and where in

the target system (location of the fault). All the faults are user-defined.

2. FaultloadInjector. This class includes a method that injects a fault

in the target system. It also consists of onEvent methods which trigger

when it is the time for injecting a fault depending on the elapsed warm

3.3. General Benchmarking Architecture and Framework for
Distributed Protocols 77

up and execution time. This class, thus, monitors experimental specified

times for injecting a fault accordingly.

3. Workload. This class consists of the methods to setup the initial target

system for benchmarking. For measuring the dependability of any sys-

tem (BFT protocols in our case), its needs to be instantiated. Methods

of workload class consider input data (request from the users), number

of nodes in the system that runs a distributed protocol, etc. Request

class considers the request message and its size, whereas setup class ac-

counts for total number of clients sending requests (initial), number of

faults target system must handle and the number of nodes running the

protocol.

4. WorkloadInjector. This class creates the number of concurrent clients

(emulation of real world system users) waiting for their requests to be

served. But the clients are allowed to send requests only in FIFO order,

where a client sends a request and waits for a response before sending

another request. Each client is given a fair chance to send their requests,

sending their requests in a round-robin fashion.

5. SystemConfiguration. This class includes the methods that are re-

sponsible for preparing the target system under test. It consists of meth-

ods to select one out all the competing distributed protocols (solving the

same problem), install them on the distributed cloud network (it can be

public, private, hybrid or any local setting as described in Section 1.1),

destroy the setup once the experimentation is over and finally, respon-

sible to distribute requests (coming from the clients) in the FIFO order.

6. SystemUnderBenchmarking. This class is actually responsible for

injecting faultloads and workloads depending on the parameters pro-

vided by the faultload and workload injector classes, respectively. This

class contains methods which identifies the complete system, consider-

ing the locations of the nodes, topological arrangements of these nodes

in the system, their properties, like whether it is a primary node or a

backup node. It is important and necessary as benchmark users might

want to inject a fault in a particular node. For example, failing of a

primary node (master node) in a protocol impacts the performance and

dependability of a system in a much critical way than the failing of a

backup node (slave node). Also, this class is responsible for starting

and stopping the nodes once an experiment starts or ends. It also in-

cludes methods that provide statistics such as SAR (System Activity

Reporting) reports generated at each node in the system.

78
Chapter 3. A General Architecture for Performance and

Dependability Benchmarking of BFT Protocols

7. Measurements. This class has methods to compute statistics depend-

ing on the information gathered from SystemUnderBenchmarking class.

It includes methods that compute latency (depending on the send and

receipt of the request and its corresponding response), throughput (de-

pending on the total number of successful requests served by the system),

availability (depending on the time the system is responding which in-

cludes correct or incorrect responses) and reliability (depends on the

number of correct responses by the system before it breaks down due to

any arbitrary fault). It also measures the resource utilization depending

on the usage of CPU and network bandwidth. This class computes some

other low-level statistics related to the total number of re-transmissions

of a request, etc.

8. Orchestrator. This class is the backbone of all the classes commu-

nicating with others and is responsible for providing data between the

classes. This class basically orchestrates the whole system from starting

until the end of the evaluation considering the parameters, configura-

tions, and experimental results from/to the benchmark users.

3.3.3 Overview of Communication Primitives Opera-

tion by Orchestrator

As seen in the above sections, orchestrator is the main component of the

benchmark and its primary goal is to provide the orchestration among all the

modules, for communication, data exchange and result analysis. It communi-

cates directly with the benchmark users, enabling them to prepare the target

system for evaluations and comparisons. The interaction between orchestrator

and a target system is built on top of two communication primitives, namely

injectFaultAction and StatNotification.

Figure 3.5 demonstrates the communication using these primitives.

InjectFaultAction.

The main responsibility of InjectFaultAction is to inject faults according to the

specifications provided by the orchestrator, determined from the parameters

defined by the benchmark users. InjectFaultAction uses the necessary network

infrastructure information to inject a fault in the specific node.

StatNotificationAction.

Orchestrator uses send and receive procedures for sending a request and re-

ceiving a response from the system under test and performs measurements

as per the collected statistics. StatNotificationAction communication primi-

tive is mainly responsible for sending the status report of all the nodes in the

3.4. BFT-Bench: Case Study of Benchmarking BFT Protocols 79

Orchestrator Node 1 Node 2 Node 3 Node 4

Send()

Receive
()

Send
Request
Message

Receive
Response
Message

InjectFaultAction()

StatNotificationActio
n()

Injects
fault

Determines if
fault was
actually

injected or
not

Figure 3.5: Communication Primitives Overview at Orchestrator

system. This enables the orchestrator to determine if the fault was correctly

injected at the right location or not, and is the fault performing the right

actions it is supposed to execute. This also allows the benchmark users to

test the system with corner cases and various malicious faults.

Orchestrator send and receives messages in a synchronous manner from

the manager in the target system (mechanism explained in details in the

next section) and performs analysis of performance and dependability met-

rics. Orchestrator monitors the warm up and execution time and once its

the time for triggering the fault, orchestrator calls InjectFaultAction. Man-

ager of target system sends StatNotificationAction to the orchestrator in an

synchronous manner notifying about the injection of the fault and its impact

through statistics reporting.

3.4 BFT-Bench: Case Study of Benchmark-

ing BFT Protocols

In this section, we illustrate a case study of implementing performance and de-

pendability benchmark for BFT protocols called BFT-Bench using the generic

benchmark architecture proposed in the previous section. This section not

only presents the guidelines to integrate multiple implementations of BFT

protocol but also demonstrates how easy it gets to design a benchmark frame-

work using a general architecture. We have considered three BFT protocols

for our case study, namely, PBFT [30], Chain [56] and RBFT [18]. We have

80
Chapter 3. A General Architecture for Performance and

Dependability Benchmarking of BFT Protocols

briefly explained them in Chapter 2 demonstrating the communication pat-

tern. They are presented again in Chapter 4 from the perspective of fault in-

jection and fault handling mechanisms. As discussed previously, performance

and dependability benchmark must achieve some specification and validation

key features:

1. Providing a clear definition of System Under Benchmark (SUB) or Sys-

tem Under Test (SUT).

2. It should define the qualitative and quantitative measures.

3. Considering the experimental dimensions, it should characterize different

faultload and workload possible for the testing the SUBs and means to

inject them.

4. Benchmark must describe measurements to be performed such as through-

put, latency, availability, reliability, cost, etc.

BFT-Bench framework measures performance and dependability of the

various BFT protocols in presence of arbitrary faults, primarily considering

replica crash (a node completely halts and makes no progress), intentional

message delay (node starts to delay sending of messages to intentionally in-

crease the response time), network flooding (node sends malicious/corrupt

messages to flood the network) and system overloading (demonstrates the

maximum workload a system can handle and its impact on performance and

dependability metrics, before breaking down).

3.4.1 Faultload Dimensions

A faultload file in BFT-Bench framework describes the type of fault to be

injected, time at which it is to be injected, and the location in the system

where it is injected. All the BFT protocols are meant to handle any arbitrary

fault. But considerably less effort has been made to analyze the performance

and dependability of the implementations of these BFT protocols in the face of

various real world fault scenarios. Due to this, BFT protocols still encounter

reluctance in adoption by practitioners. Therefore, BFT-Bench provides a

mean to inject arbitrary faults in the BFT system and analyze the system

behavior in terms of performance and dependability attributes. We consider

injection of three types of Byzantine faults:

Replica Crash. In this fault, a node crashes and completely stops mak-

ing a progress. When a primary node crashes, backup nodes stop receiving

messages from primary and undergoes a view change protocol to elect a new

3.4. BFT-Bench: Case Study of Benchmarking BFT Protocols 81

primary node. Whereas, when a backup replica crash, the system still contin-

ues and does not need a view change protocol. All the nodes can still reach a

consensus and commit to the client’s request. In BFT-Bench benchmark, we

consider failing of primary as it has a higher impact on the performance and

dependability than the crash of backup nodes.

Message Delay. In this fault, any node can start to delay the messages it

is suppose to send to other nodes. But we select primary to delay a certain

message (due to its high impact on performance) by a period of time, which

is sufficient enough to hurt the performance of the system, but inadequate to

detect the faulty primary and trigger a view change protocol to replace it.

Network Flooding. In this fault, node starts to send corrupt malicious

messages to flood the network of correct nodes, with an intention of wasting

their computational resources in validation corrupt messages. Some BFT

protocols apply flood adaptive mechanisms to deal with such a behavior while

some do not.

Figure 3.6 illustrates an example of a faultload for a replica crash.

// faultload

// Replica Crash

Line 1: <fault trigger time, fault type, {fault loc}>

Figure 3.6: An example of faultload descriptor

3.4.2 Workload Dimensions

A workload file describes the number of clients sending the requests con-

currently and the request size. We have considered request size as one of

the key parameters (higher the size of the request, higher is the time taken

by the nodes to perform cryptographic verification and validations). The

BFT-Bench framework considers fault type system overloading which is purely

workload dependent.

System Overloading. In this fault, we do not inject any Byzantine fault,

rather we inject a heavy workload (in terms of the number of concurrent

clients sending requests), which some BFT protocol implementations are able

to sustain while others succumb to the breakdown of the system.

82
Chapter 3. A General Architecture for Performance and

Dependability Benchmarking of BFT Protocols

3.4.3 Measurement Analysis

BFT-Bench is used to measure the performance and/or dependability of BFT

protocols using various faultloads and workloads defined above. Framework

produces runtime statistics for performance, namely, throughput and latency,

and dependability, namely, availability and reliability. It also produces statis-

tics related to resource utilization in terms of CPU usage and network band-

width consumption. Some low-level statistics such as total number of request

re-transmissions, and number of failed vs successful jobs (although all the

BFT protocols should result in successful responses to maintain Safety and

Liveness properties (discussed in Chapter 2 under Section 2.2.1).

3.4.4 Potential Benchmark Users

With the growing dependency on cloud systems for different types of service,

namely, infrastructure, platform, application, it becomes equally important

for these services to be reliable, efficient, available, performing and safe. As

seen until now, these performance and dependability metrics are questionable

when the cloud systems encounter arbitrary faults. QoS parameters cannot be

guaranteed, leading to huge loss and trust of cloud users. Considering the sit-

uation, BFT protocols have a bright future as they intend to handle arbitrary

faults. But, it is fairly critical to test the BFT protocols to build confidence

that they are capable of handling various real world faulty scenarios. The

BFT-Bench framework is proposed to solve the problem of benchmarking the

BFT protocols in the presence of different fault models and analyze their

performance and dependability metrics. The users of BFT-Bench can be:

1. End users (distributed system, cloud providers) intending to use BFT

protocols for their systems.

2. End users willing to compare different available BFT prototypes in the

presence of arbitrary faults.

3. Researchers and developers design robust BFT protocols for constant

performance during the presence of faults, as it was when there were no

faults.

4. Researchers contemplating different implementations to modify the soft-

ware design of the algorithm to integrate robust mechanisms.

3.5. Benefits of General Architecture 83

3.5 Benefits of General Architecture

In this section, we point out some of the key features and benefits of the

proposed generic benchmark architecture in the previous section and how it

reduces the cost and effort of the researchers and users, benchmarking a dis-

tributed protocol. We consider the parameters that define the characteristics

of a software depending on operational, transitional and maintenance grounds

that include software development cost, extensibility, reusability, and testa-

bility.

3.5.1 Reduction in Software Development Cost

Cost is measured in terms of time required to develop a dependability and

performance benchmark which is primarily determined by the coding effort.

Considering the generic architecture proposed in the previous section (see

Section 3.3), we consider the cost of development and reuse of the compo-

nents. There are some parts of the benchmark which are system dependent

like faultload and workload. For any new fault type, it requires changes in

the faultload, fault injector and corresponding change in the system under

test. Similarly, for workload. Cost of development, thus, considers the effort

required to introduce and test different types of faults. In case of BFT-Bench,

the only effort required (in terms of implementation) was implementing addi-

tional methods/messages to recognize injection of faults at replica and client

side.

3.5.2 Extensibility

This characteristic measures, how easy it is to add a new functionality; a good

software design is likely to provide high extensibility. Higher the extensibility,

lesser the time it requires to add a new functionality as changes in the current

code are minimum. This means that system is adaptable and modular enough

to incorporate new changes without leading to regressions. In the generic

architecture for a benchmark, it is not difficult to integrate new fault models

as it will only require some modifications in the code of the target system to

allow fault injections. Faultload and fault injector are flexible and adaptable

and require minimal code changes, if required. It also depends highly on

modularity of the design.

84
Chapter 3. A General Architecture for Performance and

Dependability Benchmarking of BFT Protocols

3.5.3 Reusability

This characteristic measures how different units of logic of a benchmark are

separated so that when a change is necessary, it is only performed in one place

in the current code. Higher the modularity, easier is to integrate more features.

Benchmark architecture design is quite modular where the functionality of

each component does not coincides with each other and they demonstrate low

coupling. Components are reusable with minimal code change effort.

3.5.4 Testability

This characteristic measures how much automation and coverage, the code

tests have. This not only covers unit testing, but integration testing, and

injection of different faults and workloads in the system. It gives more liberty

to the benchmark users to perform analysis and measurements under different

scenarios and extend the evaluation to analysis of other QoS metrics, such as

cost, security, and scalability.

3.6 Summary

In this chapter, we introduced the generic architecture for building perfor-

mance and dependability benchmarks for distributed systems. We presented

the essential building blocks (components or modules) for developing a new

benchmark. They consist of (i) module for defining and injecting various work-

loads and fault models, (ii) component to automatically deploy system under

test and launch experiments, and (iii) module to measure and analyze perfor-

mance and dependability attributes (adapted to incorporate other QoS met-

rics). We believe, for any benchmark (generic or specific), it is necessary for

it to follow design guidelines and provide the following. First, it must provide

end-users an easy way to define and inject various workloads and faultloads,

encompassing different fault models and load conditions. This would also

users to effectively analyze system’s behavior under diverse settings. Second,

the benchmark must provide mechanisms to empirically evaluate various QoS

parameters with easy adaptability (to add more), for example, performance,

dependability, security and cost. Finally, it must be easy to use, portable on

a wide range of platforms, systems and cloud infrastructures.

This chapter also presents some details to use the generic architecture

for building BFT-Bench (discussed at length in the subsequent chapter) to

benchmark BFT protocols under various Byzantine fault models.

Chapter 4

BFT-Bench: Performance and

Dependability Benchmarking

Framework for BFT Protocols

Contents
4.1 Background . 88

4.2 Objectives of BFT-Bench 89

4.3 Design Principles of BFT-Bench Framework 90

4.3.1 BFT Protocols in Consideration 90

4.3.1.1 PBFT: A Practical BFT Protocol 90

4.3.1.2 Chain: Performance Enhancement in Fault

Free Conditions 91

4.3.1.3 RBFT: Minimizes Performance Degradation

in Presence of Faults 92

4.3.2 Fault Types in Consideration 93

4.3.2.1 Replica Crash 93

4.3.2.2 Message Delay 94

4.3.2.3 Network Flooding 94

4.3.2.4 System Overloading 94

4.4 Overview of BFT-Bench 94

4.4.1 Cluster Setup . 95

4.4.2 BFT Protocol Selection 96

4.4.3 Faultload . 96

4.4.3.1 Fault Trigger Time 96

4.4.3.2 Fault Type 96

4.4.3.3 Fault Parameters 96

4.4.4 Workload . 98

4.4.4.1 Concurrent Clients 98

86
Chapter 4. BFT-Bench: Performance and Dependability

Benchmarking Framework for BFT Protocols

4.4.4.2 Message Size 98

4.4.5 Fault Injection . 98

4.4.5.1 Injection of Replica Crash 100

4.4.5.2 Injection of Message Delay 100

4.4.5.3 Injection of Network Flooding 101

4.4.5.4 Injection of System Overloading 101

4.4.6 Performance and Dependability Analysis in BFT-Bench 102

4.4.6.1 Performance 103

4.4.6.2 Dependability 103

4.4.6.3 Cost . 103

4.4.6.4 Network Level Statistics 104

4.5 Automatic Deployment of Experiments 104

4.6 Using BFT-Bench . 104

4.7 Portability of BFT-Bench 105

4.7.1 Portability of Workload Injection 105

4.7.2 Portability of Fault Injection 106

4.7.3 Portability of Performance and Dependability Analysis 106

4.7.4 Portability of Automatic Experiment Deployer 106

4.8 Summary . 106

87

Recently BFT protocols have gained popularity due to frequent occur-

rences of Byzantine faults causing high performance degradation and un-

availability of cloud systems. Constant enhancements have been proposed

to state-of-the-art BFT protocols with focuses on improving the performance

in fault-free scenarios (see Section 2.4.2) while some minimizing performance

degradation in faulty cases (see Section 2.4.3).

Considerably less progress has been made to analyze the robustness and

effectiveness of BFT protocols under real world conditions where nodes can

demonstrate arbitrary/malicious behaviors. Our comprehensive study in pre-

vious chapters motivated us to design BFT-Bench framework, the first perfor-

mance and dependability benchmark tool for evaluating BFT protocols under

identical settings.

The contributions of this chapter are as follows:

• We present BFT-Bench, a framework to evaluate the performance and

dependability metrics of BFT protocols in the face to real world faulty

and non-faulty scenarios to enable the researchers and developers ana-

lyze their effectiveness and robustness in practice.

• We describe the design principles of BFT-Bench framework which in-

cludes automatic deployment of experiments on cloud clusters (public,

private or a local configuration), selection of BFT protocol under assess-

ment, definition and injection of faultloads and workloads, and monitor-

ing of QoS metrics using generated output and log files.

• Lastly, we discuss the portability and usability of BFT-Benchto incorpo-

rate new fault models and other BFT protocols. Although the current

BFT-Bench prototype includes integration of three BFT protocols, but

it can be easily extended to incorporate other BFT implementations.

Section 4.7 describes the portability aspects of BFT-Bench framework.

This chapter is organized as follows. Section 4.1 provides the brief outline

of the BFT systems. Section 4.2 discusses objectives of BFT-Bench. Sec-

tion 4.3 provides the design principles describing BFT protocols and fault

types in consideration for performing comparative analysis using BFT-Bench

framework. Section 4.4 presents the overview of BFT-Bench. Sections 4.5 and

4.6 respectively describe the automatic deployment of experiments and how

end-users can use BFT-Bench framework for evaluating their BFT protocols

and conduct measurement analysis. Section 4.7 demonstrates the portability

of BFT-Bench which makes it easier to integrate other BFT protocols. Finally,

Section 4.8 presents the summary of the contributions of this chapter.

88
Chapter 4. BFT-Bench: Performance and Dependability

Benchmarking Framework for BFT Protocols

4.1 Background

Distributed systems must handle arbitrary malfunctioning, deceptive com-

puter components misleading other parts of the system with incorrect infor-

mation, hardware failures, and operator mistakes. These malicious behaviors

are termed as Byzantine (arbitrary) faults where a server can produce an in-

correct response to a client’s request, sends corrupt messages, disobeys the

ordering of the requests, etc. BFT protocols are used to maintain a resiliency

against such Byzantine behaviors. A BFT protocol manages the communi-

cation among the nodes and clients in the presence of partial synchrony [51]

to identify a malicious behavior in the system. However, the BFT protocols

often suffers from multiple orders of magnitude reductions in performance and

systems become unavailable for a long duration in the presence of Byzantine

behaviors, violating the SLA contracts. This makes it difficult for the system

programmers to trust and adopt BFT protocols for building a fault tolerant

cloud system without worrying about the complex nature of BFT protocols.

System developers intend to know the answers to many questions before

trusting and incorporating a BFT protocol in their underlying systems. They

demand responses on effectiveness, robustness, performance and dependability

aspects of the protocols in presence of Byzantine behaviors. They need to

know what kind of faults a system can tolerate? Can it really handle malicious

faults, including common faults like crash and complex faults like intentional

message delay by a node? What is the maximum number of faults a system

can handle before breaking down? What is the maximum workload a system

can endure? And is it possible to test different BFT implementations under

same settings and perform a comparative analysis to select the most efficient

and most reliable for the required cloud system. Therefore, it is not only

important but necessary to develop a generalized, high-level, easy to use,

performance and dependability benchmarking framework for analyzing BFT

implementations with mechanisms to define and inject various workloads and

faultloads.

All the BFT protocols consist of a primary/head node and backup replicas.

Users of cloud clusters (using BFT protocols) submit their jobs to the primary

node which is responsible for ordering/scheduling the client’s requests. The

other replicas undergo agreement (by message exchanges among themselves)

and commit phases before executing the ordered requests. By default, all

the requests are scheduled in FIFO order. Under fault free conditions, all

the replicas execute the incoming requests and share their state with other

replicas to maintain consistency. Once a request is executed, replicas send

back the responses to the client. Client upon receiving consistent matching

4.2. Objectives of BFT-Bench 89

responses from all the replicas, client commits the request. In case of faulty

scenarios, replicas go through a view change to maintain a correct primary for

correct ordering, consistency and Liveness of the system. Replicas and clients

maintain history logs and share them periodically for failure recoveries.

4.2 Objectives of BFT-Bench

In this section we define the objectives of BFT-Bench framework.

• QoS Metrics Analysis: BFT-Bench assesses and evaluates perfor-

mance and dependability aspects of the implementations of BFT proto-

cols. We consider latency (or response time) and throughput for measur-

ing the performance, reliability and availability for evaluating depend-

ability. We determine the cost of using the BFT-SMR techniques by

cloud services in terms of the number of replicas used by a BFT protocol

for handling Byzantine faults. We also consider low-level statistics like

network bandwidth and CPU utilization, the number of re-transmissions

of a request, failed vs successful jobs, etc.

• Heterogeneous Parameters for Evaluation: BFT-Bench character-

izes various types of loads such as faultload and workload for evaluating

different BFT implementations. Precisely, faultload is defined by type of

fault to be injected, time at which the fault will be triggered and location

(replica in the cluster) where the fault will be induced. For each type

of fault, there are few related parameters which complete a faultload.

Similarly, workload is characterized by the number of concurrent clients

(i.e., the users of the system) and size of the request message send by

each client.

• Usability: BFT-Bench is an easy to use framework where configuration,

deployment of experiments and analysis of results are automated. It is

independent of any cloud infrastructure; thus, can be deployed on public,

private, hybrid or any local cloud configurations. Statistics monitoring

of experimental evaluation can easily be comprehended with the smooth

generation of graphs and charts.

The intention of BFT-Bench framework is to enable researchers and de-

velopers working on cloud systems to understand and evaluate BFT protocols

by injecting various faulty scenarios commonly occurring (affecting) in a real

world cloud environment under different and varying workloads.

90
Chapter 4. BFT-Bench: Performance and Dependability

Benchmarking Framework for BFT Protocols

4.3 Design Principles of BFT-Bench Frame-

work

BFT-Bench is intended to be an open framework, that includes BFT protocol

prototypes, and that may include new BFT protocols. This chapter defines

the system model of BFT-Bench framework where we consider different types

of BFT protocols for evaluation and different types of faults injected in the

system to emulate the real world settings. We describe the assumptions made

at the system level for nodes and the network, and Byzantine failure model

considered for a Byzantine environment. This section provides a brief overview

of the protocols considered for performance evaluation and finally we introduce

different types of faulty behaviors used in BFT-Bench.

4.3.1 BFT Protocols in Consideration

In the rest of this manuscript, we consider the following state-of-the-art BFT

protocols: (i) PBFT for being the first practical BFT protocol [30], (ii) Chain

for its performance efficiency in fault-free conditions [56], and (iii) RBFT as

an instance of robust protocols that minimizes performance degradation in

presence of failures [18]. For an effective comparative analysis of these BFT

protocols, we consider the same system assumptions for all. We assume a

distributed system where N servers/replicas1 are connected in a specific net-

work topology, for example, PBFT [30] and RBFT [18] are fully connected

whereas Chain [104] connects the replicas in a chain-like pattern (a replica

followed by another). The system is defined as a set of clients and servers

where a client sends a request in a closed loop, i.e., a client has to wait for

the response of a request before sending a new request. We assume a finite

client population where any number of them may be faulty, and at most N−1

3

replicas can behave maliciously. The links between nodes are asynchronous

and unreliable with synchronous intervals during which messages are deliv-

ered within a known bounded delay. We do, nevertheless, assume that if a

node keeps re-transmitting a message, the message will eventually be received

(partial synchrony [51]). However, the Liveness property can only be ensured

during periods of synchrony [53].

4.3.1.1 PBFT: A Practical BFT Protocol

PBFT [30] is considered the baseline of BFT protocols and its communication

pattern is used by many protocols such as Aardvark [36], RBFT [18], Spin-

1We will use the terms server, node or replica alternatively throughout this paper.

4.3. Design Principles of BFT-Bench Framework 91

ning [105], Prime [15] and BFTSMaRt [24]. The communication pattern of

PBFT is presented in Figure 2.4. The protocol ensures Liveness and Safety

properties as long as there are no more than f faulty nodes. In order to

maintain Safety, the primary must first assign a sequence number to each in-

coming request during the pre-prepare step. The two following steps, prepare

and commit, are dedicated to the exchange and validation of the sequence

numbers proposed by the primary. Liveness is ensured by detecting whether

the primary performs the correct ordering or not, within a dedicated time. If

Liveness becomes challenged, a view change is triggered accordingly, implying

that a new replica will replace the current primary. This view change mecha-

nism is essential for all BFT protocols relying on a primary for the ordering,

but could imply some conceptual variations depending on the underlying pro-

tocols [74].

Additional detail 1: In PBFT, the communication pattern is not affected by

the actual presence or absence of faulty nodes.

Additional detail 2: Even if PBFT is strong enough to ensure Liveness and

Safety in the presence of attacks, some Byzantine behaviors can substantially

decrease its performance. For instance the pre-prepare delay attack, which

has been the focus of several protocol proposals [18, 36, 105].

4.3.1.2 Chain: Performance Enhancement in Fault Free Condi-

tions

Chain [56] is designed to handle a high load of requests. It is dedicated towards

improving throughput in fault-free settings, while maintaining the ability to

detect inconsistencies. As the name suggests, it has a chain-like communi-

cation pattern that greatly benefits from the batch optimization (multiple

messages in one batch to avoid expensive authentication computations for ev-

ery single message) because unlike PBFT, the head of the chain does not send

the ordered requests to all the replicas but only to its successor, and does

not need to be authenticated by everyone. This greatly reduces the number

of authentications at the bottleneck replica. Chain is most efficient when it

is completely fed, i.e., when the network link between any 2 servers is fully

loaded [56]. This can be done by employing a large set of clients sending

a large number of requests. Thus, Chain gracefully handles a high load of

requests. Chain improves the throughput in fault-free settings among other

protocols from Group 1 (see Section 2.4.2), while maintaining the ability to de-

tect inconsistencies. But Chain is unable to ensure Byzantine fault tolerance

by itself, and must rely on a protocol switching mechanism when subject to

failures. The switching mechanism is activated when Chain cannot continue

to make a progress upon detecting Byzantine failures. Although the switching

92
Chapter 4. BFT-Bench: Performance and Dependability

Benchmarking Framework for BFT Protocols

mechanism has been proposed theoretically, its prototype lacks switching to

PBFT in the presence of faults.

4.3.1.3 RBFT: Minimizes Performance Degradation in Presence of

Faults

Even though PBFT is theoretically strong enough to ensure Liveness and

Safety in the presence of attacks, some Byzantine behaviors substantially de-

crease its performance when evaluated practically [18]. For instance, delay

attack where a primary intentionally delays the sending of pre-prepare mes-

sage to other replicas to increase the latency of the system, has been the focus

of several protocol proposals including RBFT [18, 36, 105]. Redundant-BFT

(RBFT) [18] strengthens the architecture of PBFT and also incorporates fault

adaptive mechanisms to deal with certain faulty behaviors. Figure 2.15 illus-

trates the communication pattern of the protocol. Like other protocols, RBFT

requires 3f+1 replicas and relies on a primary replica for ordering the client’s

requests. RBFT runs f + 1 multiple instances of the same protocol in paral-

lel, but the requests are executed only by one of the instances called master

instance while other f instances are called backup instances. Each backup

instance has its own primary which orders the incoming requests in order to

monitor the difference of throughput between the master instance and itself.

If the performance at master and backup instances differ by a definite thresh-

old2 T at less than 2f + 1 replicas, the primary replica at master instance

is considered faulty and a view change is triggered, where a new primary is

elected at every instance. RBFT further implements few fault adaptive de-

fensive pathways for handling faulty behaviors of both clients and replicas.

RBFT exploits the multicore architectures of today’s world machines to run

multiple instances in parallel for efficiency and robustness.

We selected RBFT as it shows improvements over Aardvark, Prime and Spin-

ning. Although Aardvark was the first to test BFT implementations under

faulty scenarios, but it considered fewer cases than RBFT. Spinning and Prime

were also evaluated under some fault types (see Table 2.3). RBFT the most

robust protocol, not only evaluated the prototype under maximum fault sce-

narios, but also demonstrated that the performance degrades only up to 3%

in the presence of faults.

2The value of threshold depends on the ratio of observed throughput between fault-free

conditions to the throughput observed under attack

4.3. Design Principles of BFT-Bench Framework 93

4.3.2 Fault Types in Consideration

We assume a Byzantine failure model, in which any node (replica) or client

can behave arbitrarily. The network itself may fail to deliver messages, delay

them, duplicate them, delay them out of order, or even corrupt them. A ma-

licious node can perform these behaviors intentionally. We assume a strong

adversary that can manipulate and coordinate these malicious nodes to com-

promise the replicated service. However, we do assume that this adversary is

computationally bounded and unable to break cryptographic techniques like

collision-resistant hashing, digests, Message Authentication Codes (MACs),

encryptions and digital signatures. Apart from the above assumptions for

Byzantine model, we define different types of faults injected for evaluating

the BFT prototypes using the BFT-Bench framework.

The performance of the prototypes for these state-of-the-art protocols (see

Section 4.3.1) is greatly affected by the faulty behaviors [18, 30, 36]. There-

fore, it becomes extremely critical to analyze the performance and resiliency

of BFT implementations in real world faulty settings. We characterize four

types of faults from the perspective of software and hardware components,

out of many feasible faults (few were listed in Section 2.3.2). Some intentional

malicious behaviors like message delay, network flooding make it challenging

to identify a faulty network from a misbehaving server. And this often leads

to an incorrect diagnosis of the fault and becomes critical to preserve system’s

performance, integrity, and availability in times of such Byzantine faults. To

imitate these Byzantine behaviors, replicas are made to drift from the cor-

rect protocol expectations. Hardware faults include unpredictable events like

power outage which eventually results in a crash. Software faults, for exam-

ple, can be related to the addition of a delay before forwarding messages, or

flooding a system with corrupted information.

4.3.2.1 Replica Crash

Crash of a server is a common performance failure that can happen in a sys-

tem. Upon a crash, the server stops completely and do not participates in

any further communication with the clients or the servers. Most of the indus-

tries like Salesforce, Amazon, Oracle, etc., rely on Paxos [77, 78] for handling

crash. But during the occurrence of Byzantine faults, they face challenges of

disrupted availability. BFT protocols consider crash as yet another Byzantine

fault.

94
Chapter 4. BFT-Bench: Performance and Dependability

Benchmarking Framework for BFT Protocols

4.3.2.2 Message Delay

Delaying the sending of messages benefits from the difficulty to distinguish a

faulty replica from a slow network. When a replica starts to delay messages, it

slows down all future operations depending on these messages. As described

in Section 2.4, most of the BFT protocols ensure Safety property by reaching

an agreement on the total order of execution of the requests. If the messages

containing these information are delayed, then the whole protocol is delayed,

leading to performance degradation. This Byzantine behavior is especially

critical when it occurs at the primary replica.

4.3.2.3 Network Flooding

Network flooding is meant to overload both the network and the computa-

tional resources with malicious messages which cannot be said invalid until

verified. This message verification consumes a lot of computational cycles and

prevents the resources from focusing on the correct messages.

4.3.2.4 System Overloading

Overloading the system with a large number of requests sent by many concur-

rent clients can prove to be catastrophic and can degrade the performance to

a large extent. Although none of the servers behave maliciously in this attack,

but continuous increase in the number of clients can eventually deteriorate the

performance or lead to system failure.

4.4 Overview of BFT-Bench

We present BFT-Bench, a novel framework that allows empirical evaluation

and comparison of state-of-the-art and new BFT systems. Figure 4.1 described

the major components of BFT-Bench, such as: (i) Cluster setup component

allows users to prepare the cluster for launching BFT protocols and perform

experiments. (ii) BFT protocol selector launches the BFT implementation

on the required number of nodes. (iii) Fault Injection that triggers the fault

scenarios in the underlying BFT system; (v) Load Injection that injects the

number of concurrent clients accessing the underlying system; and (v) Statis-

tics Monitoring that collects monitoring information, and reports performance

and dependability statistics of the system. BFT-Bench is a testbed to evalu-

ate performance and dependability of BFT systems. In this section we define

the building blocks of BFT-Bench framework in details.

96
Chapter 4. BFT-Bench: Performance and Dependability

Benchmarking Framework for BFT Protocols

4.4.2 BFT Protocol Selection

BFT protocol selector launches the prototype of the BFT protocol consid-

ered for evaluation on the required number of nodes (nodes designated in the

previous step). For evaluating the working of BFT-Bench, we consider three

BFT protocols, PBFT, Chain and RBFT (defined previously in this chapter)

but can be easily extended and adopted for other BFT prototypes. In case of

node failures or crash faults, it relaunches the prototypes once a new experi-

ment commences. Protocol selector takes care of the protocol switching and

its installation. BFT-Bench framework launches only one protocol at a time.

4.4.3 Faultload

Faults can occur accidentally or can be induced intentionally. To test the

practical implementations of BFT protocols in faulty environments, we delib-

erately trigger our faults at a fixed time. We thus do not consider accidental

failures. Users of BFT-Bench framework can generate synthetic faultloads in-

volving different faulty behaviors. Figure 4.2 presents the structures of fault-

loads for different fault types considered individually or in combinations (see

Section 4.3.2) where each line (line numbers) corresponds to one type of fault.

Each faultload contains various information which we describe below.

4.4.3.1 Fault Trigger Time

The fault trigger time contains the time at which the fault must be triggered.

It is the time to be elapsed from the time the experiment is launched.

4.4.3.2 Fault Type

Byzantine faults encompass numerous faulty behaviors. Nevertheless, we keep

our focus on the four faults (mentioned in Section 4.3.2), where each one

is designated with a specific keywords replica crash, message delay, network

flooding and, system overloading, respectively. We also consider the combi-

nation of these faults, such as message delay with system overloading. This

would mean injection of message delay fault when the number of concurrent

clients in the system is increasing.

4.4.3.3 Fault Parameters

Different faults may require additional fault parameters at the time of fault

injection. According to the type of fault to be injected, fault parameters

4.4. Overview of BFT-Bench 97

// faultload

// Replica Crash

Line 1: <fault trigger time, fault type, {fault loc}>

//Message Delay

Line 2: <fault trigger time, fault type, {fault loc, delay time, message type}>

//Network Flooding

Line 3: <fault trigger time, fault type, {fault loc, message size}>

//System Overloading

Line 4: <fault trigger time
1
, fault type, {#clients

1
}>

 <fault trigger time
2
, fault type, {#clients

2
}>

.

.

.

 <fault trigger time
N

, fault type, {#clients
N

}>

//Combination of 2 types of faults

Line 5: <fault trigger time
1
 , fault type, {#clients

1
 }>

 <fault trigger time
2
 , fault type, {fault loc, delay time, message type}>

 <fault trigger time
3
 , fault type, {#clients

3
 }>

.

.

.

<fault trigger time
N
 , fault type, {#clients

N
 }>

Figure 4.2: Faultloads for different types of faults considered in Section 4.3.2

might vary. For replica crash, message delay & network flooding, the location

of the fault must be specified, whereas in system overloading, the location is

irrelevant since no replica acts faulty. For network flooding, the size of the

corrupted messages is an important factor, as larger the size of the messages,

larger will be the time consumed during cryptographic operations. For mes-

sage delay, the value of the delay introduced before sending a message by the

faulty replica, must be specified.

These fault parameters have a huge impact on the performance and depend-

ability of the whole system. We now briefly define the fault parameters we

considered for injecting the four different types of faults.

1. fault loc: It defines the replica at which the fault will be triggered. This

parameter is required for replica crash to know which replica will crash,

for message delay to know which replica will start delaying the messages

and for network flooding to know which replica will send corrupt mes-

sages in an effort to degrade the performance by increasing network and

CPU utilization at correct replicas.

2. delay time : It defines the time by which a replica delays the sending of

messages to the other replicas. This parameter is required by message

delay.

98
Chapter 4. BFT-Bench: Performance and Dependability

Benchmarking Framework for BFT Protocols

3. message type : It defines the type of the message that will be delayed

by delay time before being sent to the other replicas. This parameter is

used by message delay.

4. message size : It is the size of the invalid/corrupt messages send by a

faulty replica to correct/non-faulty replicas when causing network flood-

ing. This parameter is used by network flooding fault type. Larger the

size of the message, higher is the impact on performance.

5. #clients: It defines the number of concurrent clients sending their

requests to the servers. We define this parameter only in case of system

overloading.

4.4.4 Workload

BFT-Bench allows users to determine the impact of varying workload on per-

formance and dependability aspects in the presence or absence of a Byzantine

fault. The workload is characterized by the number concurrent clients issu-

ing requests to the cloud service and also the size of each request message.

Following are the parameters of a workload.

4.4.4.1 Concurrent Clients

It is the number of clients sending requests to the BFT system. Client requests

are executed in FIFO order in a closed loop, where a client submits a request,

waits for the request to get processed and receives a response, before sending

another request.

4.4.4.2 Message Size

It is the size of the client request/response messages exchanged with the BFT

system. It is an important parameter as large size messages affect BFT system

performance, due to time-consuming cryptographic operations executed by

BFT protocols. BFT-Bench includes a client emulator implementing multi-

client behavior, where each client process sends requests to the underlying

BFT system, and receives corresponding responses.

4.4.5 Fault Injection

The overall architecture of fault injection in BFT-Bench is described in Figure

4.3. The cluster runs BFT protocols on N +1 nodes, where N = 3f +1 nodes

4.4. Overview of BFT-Bench 99

are dedicated to replicas, and one node hosts concurrent clients. We run

the fault injector in another node in the same cluster. Faultload injector uses

faultload (see Section 4.3.2) to determine which type of fault is to be triggered

from fault type, at what time this fault will be injected from fault trigger time,

and other required fault parameters (Section 4.4.3.3). The fault injector runs

a daemon that communicates directly with the replicas to trigger faults. For

instance, in case of replica crash, the daemon waits until the fault trigger time

is reached, then calls the fault injector of fault type which interacts with the

replica defined in fault location to trigger the fault. Practically, once a fault

is injected, it persists until the end of the experiment. In the absence of a

faultload, the fault injector lets the system run in fault-free settings. Some

modifications are enforced in the BFT implementations to enable them to

interact with the fault injector daemon.

In the following, we describe for each fault type introduced in Section 4.3.2,

how BFT-Bench implements its injection in a BFT system.

Faultload

Descriptive File

Faultload

Descriptive File

Clients

Node
1

BFT

replica

process

Node
2

Node
3

Node
N

Manager

concurrent

clients

BFT

replica

Process

BFT

replica

Process

BFT

replica

Process

.. … … … … ..

Faultload Injector Process

Faultload1:

<fault trigger time,

Replica crash,

Node
1
>

Faultload1:

<fault trigger time,

Replica crash,

Node
1
>

Faultload2:

<fault trigger time,

Network flooding,

Node
2
,

Message size>

Faultload2:

<fault trigger time,

Network flooding,

Node
2
,

Message size>

..

Faultload3:

<fault trigger time,

Replica crash,

Node
1
>

<fault trigger time,

System overload,

#clients>

Faultload3:

<fault trigger time,

Replica crash,

Node
1
>

<fault trigger time,

System overload,

#clients>

N Servers

initiates

initiates

Faultload Injection

Cluster

Emulated Clients

Figure 4.3: Architecture of Faultload Injection

100
Chapter 4. BFT-Bench: Performance and Dependability

Benchmarking Framework for BFT Protocols

4.4.5.1 Injection of Replica Crash

The simplest way to implement a replica crash is to completely shut down

the whole machine where it is hosted. However, since each replica is isolated

on a dedicated node and to avoid repetitive reboots, we simply shutdown the

replica process on the targeted node. Practically, when fault trigger time is

reached, the fault injector daemon remotely connects to the targeted node

and kills the replica process. After being killed, the replica process is not

restarted until the end of the experiment and no new replica is added to the

system. This fault is implementation independent, thus requires no changes

in the prototypes.

We consider the impact of crashing the primary versus crashing of a non-

primary replica for RBFT and PBFT. Since the primary replica is respon-

sible for ordering of incoming requests, crash of it leads to expensive view

change protocol, degrading the overall performance. Whereas, in case of a

non-primary crash, protocol continues as replicas need only 2f + 1 matching

responses. In case of Chain, location of the fault does not matter as the crash

of any replica will break the pipeline and expensive switching protocol will be

enabled.

4.4.5.2 Injection of Message Delay

It is an implementation dependent fault and needs changes in the BFT imple-

mentations. All the considered BFT protocols rely on a common code base

(RBFT and Chain use PBFT as an underlining protocol), and the functions

for sending and receiving messages follow the same pattern in all prototypes.

Therefore, we introduced a few messages to be recognized in addition to the

ones currently used, to allow fault injector daemon inject faults. Practically,

a delay message is now recognized by all the prototypes, and when a replica

receives it from a fault injector daemon, it triggers the following Byzantine

behavior: instead of sending messages according to the protocol specifications,

the replica process sleeps during the given value of delay time provided in the

fault parameters before resuming to send any messages to other replicas. Our

implementations can delay a subset of messages, to trigger this fault. More-

over, once a replica becomes faulty, it keeps delaying messages until the end

of the experiment.

From the communication pattern of the considered protocols, we observe

that the impact of delaying the pre-prepare message is maximum in compar-

ison to delay of any other message type. But this holds true only for RBFT

and PBFT. All the replicas upon receiving prepare messages, wait for the

corresponding pre-prepare message and start a timer. Upon failing to receive

4.4. Overview of BFT-Bench 101

the message before the expiration of a timer, replicas start to exchange mes-

sages to identify the faulty primary and trigger a view change. View change

and election of new primary is time-consuming and degrades the performance,

whereas delaying of other messages does not trigger view change in RBFT and

PBFT. For Chain, there is only a single message type and all the nodes play

the same role (except the head, which orders the requests as well). Also, there

is no timer mechanism at replicas in Chain as replicas are not anticipating for

messages from their predecessor.

4.4.5.3 Injection of Network Flooding

Network flooding is a common denial-of-service attack that could be performed

both by clients and servers. We consider flooding by a replica since in prac-

tice the replicas are often co-located on the same cluster, making it easier to

monopolize network links. Just like message delay, this fault required to intro-

duce additional messages. Practically, a flooding message is now recognized

by the prototypes, and when received from the fault injector daemon, the

replica triggers the following Byzantine behavior: the faulty replica enters an

infinite loop, where it continuously transmits corrupted messages of a chosen

size (message size) to other replicas until the end of the experiment. We keep

authenticating the messages with the faulty replica’s public key in order to

exhaust not only the network but the computational resources of the other

replicas (the messages cannot be declared invalid until verified).

All the replicas with network flooding fault (primary or non-primary) will

impact the performance in the same way. In case of primary, it will send the

correct messages (prepare message with ordering, pre-prepare message, etc.)

along with corrupted messages. Similarly other non-primary replicas will send

malicious messages with prepare and commit messages.

4.4.5.4 Injection of System Overloading

Clients are not instantiated the same way in all the prototypes. In Chain and

RBFT, a manager is responsible for initiating and managing the clients, while

in PBFT, the clients are independent and can be deployed on multiple nodes.

As mentioned earlier, the workload injector can vary #clients after the exper-

iment has commenced. To do so, the fault injector daemon remotely connects

to the node in charge of hosting concurrent clients and starts additional client

processes.

102
Chapter 4. BFT-Bench: Performance and Dependability

Benchmarking Framework for BFT Protocols

4.4.6 Performance and Dependability Analysis in BFT-

Bench

Cluster

(Amazon, EC2, Azure, ...)Fault Injection
Performance

Analyzer

Faultload

Load Injection

Dataload Workload

Figure 4.4: Performance and Dependability Benchmarking Architecture of

BFT-Bench

BFT-Bench framework is used to evaluate and compare dependability and

performance metrics of BFT protocols. Figure 4.4 presents the high level ar-

chitecture of the benchmark. Following steps are performed to analyze the

performance and dependability for various BFT protocols: (1) build a fault-

load with specifications for injecting a fault (i.e., a specific Byzantine fault

scenario), (2) build a workload for setting up the test environment, (3) con-

duct experiments based on faultload and workload, and (4) collect statistics

for measuring performance and dependability of the BFT protocol under test.

Upon experimental execution, BFT-Bench produces statistics for performance

metrics, namely throughput and latency. They have been the two main per-

formance parameters considered when evaluating BFT protocols, both ex-

perimentally and theoretically. We focus on the experimental evaluation of

the prototypes, thus, we do not take into account any theoretical analysis.

BFT-Bench also considers the measurement of dependability metrics namely

availability and reliability. Along with measurements of performance and de-

pendability aspects, BFT-Bench also computes network level and low-level

statistics, considering network bandwidth usage, CPU utilization, the number

of successful vs failed requests, the number of re-transmissions of each request,

etc.

4.4. Overview of BFT-Bench 103

4.4.6.1 Performance

1. Throughput. It is the number of client requests handled by the sys-

tem per unit of time. It can be evaluated both from the client or the

replicas side of the protocol. Nevertheless, in order to avoid unnecessary

operations on the replicas side, we choose to perform the evaluation of

throughput from the client side of the protocol. Just like latency, the

evaluation of throughput can be performed using timestamps, thus, we

do not need to collect any additional information. We evaluate through-

put in the performance analyzer by summing the number of response

timestamps collected on the client processes per unit of time.

2. Latency or Response Time. It is the time elapsed from the mo-

ment a client submits a request until the complete response is received

by this client. To evaluate latency, we rely on the timestamps of these

two events. We measure latency from the client side of the protocol

by collecting and bringing these timestamp values to the performance

analyzer. Then, performance analyzer evaluates the latency by com-

puting the difference between the response timestamps and the request

timestamps, for all the requests send by all the clients per unit of time.

4.4.6.2 Dependability

1. Availability. It is measured in terms of time when the service is avail-

able, i.e., the service is responding. It is the ratio of the time the service

was returning responses (correct or incorrect) to the total time the ser-

vice was meant to run. It is usually measured over a period of time, in

terms of days, months or years.

2. Reliability is measured as the ratio of successful client requests over

the total number of requests send by the clients over a period of time.

Theoretically, all BFT protocols should be 100% reliable and available.

The experimental evaluation (see Chapter 5) describes how well they perform

in practice.

4.4.6.3 Cost

1. Replica Cost is measured in terms of the total number of replicas

required to handle the f simultaneous Byzantine faults. As we defined

before, that each BFT protocol requires different number of servers, it

becomes an important parameter when it comes to the cost of using

BFT systems in real world applications.

104
Chapter 4. BFT-Bench: Performance and Dependability

Benchmarking Framework for BFT Protocols

4.4.6.4 Network Level Statistics

1. Network Bandwidth Usage is defined in terms of the size of data

send and received by any server per second. Network bandwidth is used

as a synonym for data transfer rate, i.e., the amount of data that can

be carried from one point to another in a given time period (usually a

second). Network bandwidth is usually expressed in bits per second.

2. CPU Utilization is the amount of work that a computer system per-

forms in processing the computations on available resources. It is the

amount of work handled by a CPU. Actual CPU utilization varies de-

pending on the amount and type of computing tasks. Certain tasks

require heavy CPU time, while others require less because of non-CPU

resource requirements. BFT-Bench calculates CPU usage over a small

interval of time, considering the time spent by the CPU over real time.

BFT-Bench measures some offline metrics along with above mentioned

online metrics. BFT-Bench provides statistics related to cost of computations

performed by the cluster, status of each request send by the clients (success

or failure), the total number of re-transmissions of each request, etc.

4.5 Automatic Deployment of Experiments

BFT-Bench framework allows testers to automatically deploy the prototypes

of BFT protocols, run extensive experiments under various Byzantine behav-

iors on a cluster in any cloud infrastructure. The cloud infrastructure and the

size of cluster (number of nodes required by a BFT protocol to run the ex-

periments) are two main configuration parameters of BFT-Bench. The frame-

work acquires on-demand resources maintained by the public or private cloud

providers like Amazon EC2, Azure, etc, where one node is dedicated for run-

ning load and fault injectors, and the rest of the nodes are used for deploying

test environment (installation of BFT prototypes). Once the cluster is set up,

BFT-Bench automatically runs the experiment scripts for injecting different

faults at various times while monitoring and reporting the execution traces of

each experiment for performance and dependability benchmarking. Resources

(nodes in the cluster) are automatically released once BFT-Bench terminates.

4.6 Using BFT-Bench

BFT-Bench user defines faultload and workload; and then BFT-Bench frame-

work automatically deploys the experiments on the reserved resources of the

4.7. Portability of BFT-Bench 105

cloud infrastructure and injects the user defined workloads and faultloads

thereafter. BFT-Bench creates and initializes the concurrent clients as per

the workload. Clients send requests in FIFO order until the experiment ter-

minates. If user defines a faultload, then according to the parameters, fault

injector daemon triggers the specified fault during the experiment run. Once

the experiment ends, the running processes are terminated on all servers. For

each experiment, processes are restarted. Every experiment is independent

and runs with different settings, producing distinct measurement reports for

future evaluations. Every experiment may run a number of times to produce

an average statistics and variance reports.

BFT-Bench is an easy to use framework with very few parameters used for

its configuration. BFT-Bench configuration file mentions warm up time, exe-

cution time, number of nodes, etc. Once the experiment starts the execution

period, workload and faultload can be injected at the defined times. Since we

are evaluating different prototypes, we do not provide any default settings for

BFT-Bench to avoid any complications.

4.7 Portability of BFT-Bench

The prototype of BFT-Bench measures performance and dependability as-

pects of few BFT protocols, namely PBFT, Chain and RBFT. However, it can

be easily adopted for other BFT implementations like Ring, Aardvark, Prime,

Spinning, MinBFT, OBFT, etc. Most of the prototype of BFT-Bench testbed

is general and can be easily applied, except some parts like fault injection

integration where it requires some changes to source code to incorporate trig-

gering of a Byzantine behavior. In the following, we describe all the portable

parts of the framework and how to extend them for other BFT protocols.

4.7.1 Portability of Workload Injection

Workload injection depends on the testers intention on how rigorously he/she

wants to test the BFT system and what are his/her requirements or expec-

tations. Workload injection is used to send the requests (transactions jobs)

of varying sizes (it depends on the applications being used) of the imitating

clients to the cloud cluster running the BFT protocols. Portability of work-

load injection is pretty simple and straightforward and does not require any

change or new modifications unless there are some application specific loads.

106
Chapter 4. BFT-Bench: Performance and Dependability

Benchmarking Framework for BFT Protocols

4.7.2 Portability of Fault Injection

Fault injection depends on the type of fault to be triggered in the system.

For some fault types, it is not necessary to modify the source code, but for

some, it is required to add addition tasks to enable the node to trigger a fault

upon receipt of a fault injection message. For instance, triggering replica crash

is simple where we just use a system to kill a process running at a node at

definite time (fault trigger time). This does not require any implementation

level changes for triggering the crash of a node. On the other hand, faults

like message delay where we delay sending of pre-prepare messages to other

replicas. It requires integration of new code which informs the node to start

delaying a particular message type. Thus, the injection of faults of these types

needs to be adapted to any new BFT protocol being considered for evaluation.

But for all faults, the framework should adapt to the actual names of the

underlying processes.

4.7.3 Portability of Performance and Dependability Anal-

ysis

BFT-Bench measures performance and dependability aspects, but can be ex-

tended to incorporate other Quality of Service (QoS) metrics. BFT-Bench also

measures network and CPU utilization at each server by using the files pro-

duced by Server Activity Reporting (sar commands for unix) for monitoring

individual CPU stats, memory usage, network stats, I/O activities, etc. Low-

level statistics such as the number of successful and failed requests, the number

of times a request is re-transmitted, are extracted from the log files generated

at all servers and clients. Pattern matching is used to extract the necessary

information from the generated reports. Thus, BFT-Bench must adapt to

these pattern recognition for every new QoS parameter.

4.7.4 Portability of Automatic Experiment Deployer

The BFT-Bench allows automatic deployment of experiments which can be

effortlessly adapted to launch other BFT protocols, create workloads and fault-

loads, start and stop experiments and generate required QoS metrics.

4.8 Summary

In this chapter, we presented BFT-Bench, a comprehensive benchmark tool for

evaluating the dependability and performance of BFT protocols under various

4.8. Summary 107

real-world faulty and non-faulty settings. BFT-Bench framework allows end-

users to define and inject various workloads and faultloads, automatic deploy-

ment of experiments, and produce extensive dependability and performance

statistics. It also generates few low-level statistics such as CPU and network

utilization, the number of successful vs unsuccessful operations, etc. This

chapter also discussed fault and load injectors, automatic deployment of ex-

periments, and portability of BFT-Bench to incorporate other BFT protocols

such as Aardvark, Spinning, Prime, Zyzzyva, OBFT, etc. [15, 36, 74, 98, 105].

We demonstrate the adaptability and ease of use of BFT-Bench for inject-

ing Byzantine faults and also mechanisms to define new arbitrary behaviors.

BFT-Bench successfully achieves the main objectives of any benchmark, i.e.,

is to provide practical ways for:

1. Characterizing the dependability of modules or a system.

2. Easy detection of errors or faults in design specifications and its practical

implementations.

3. Identification of weaker segments and violations of protocol blueprints.

4. Obtain insights into the design decisions of the protocol developers.

5. Compare the dependability and performance of competitive solutions/

protocols based on different measurable aspects under unified environ-

mental settings.

This enables the benchmark users to give more attention and provide im-

provements of the implementations by fixing the identified bugs or issues to

enhance the dependability levels (either by using software wrappers or adding

fault tolerance mechanisms).

Furthermore, this work unfolds interesting perspectives in terms of inves-

tigating other faulty behaviors, heterogeneous workloads (computational or

data-access intensive or both) and evaluation of other QoS metrics such as

cost, security, scalability, etc. We believe, BFT-Bench aids researchers and

practitioners to better analyze and evaluate various aspects of BFT protocols

in a systematic manner.

Chapter 5

Experimental Evaluation

Contents
5.1 Experimental Setup . 110

5.1.1 Hardware Settings . 110

5.1.2 Software Settings . 111

5.2 Comparative Evaluation under Faulty Scenarios . . . 112

5.2.1 Presence of Replica Crash 114

5.2.1.1 Performance Analysis 115

5.2.1.2 Dependability Analysis 116

5.2.1.3 System and Network Level Statistics 116

5.2.2 Presence of Message Delay 118

5.2.2.1 Performance Analysis 119

5.2.2.2 Dependability Analysis 121

5.2.2.3 System and Network Level Statistics 121

5.2.3 Presence of Network Flooding 122

5.2.3.1 Performance Analysis 123

5.2.3.2 Dependability Analysis 124

5.2.3.3 System and Network Level Statistics 124

5.2.4 Presence of System Overloading 126

5.2.4.1 Performance Analysis 127

5.2.4.2 Dependability Analysis 128

5.2.4.3 System and Network Level Statistics 129

5.2.5 Combination of Different Types of Faults 130

5.2.5.1 Performance Analysis 131

5.2.5.2 Dependability Analysis 132

5.3 Summary . 132

110 Chapter 5. Experimental Evaluation

In this chapter, we present a comparative analysis of the three BFT proto-

cols considered for evaluation under fault free scenarios and when facing dif-

ferent fault behaviors, presented in Section 4.3.2. We specify our experimental

settings used for performing the experiments followed by comparative graph-

ical representations of performance and dependability metrics evaluations of

each protocol under different faultloads and workloads. We also monitor some

offline statistics like CPU utilization, network bandwidth usage, etc., for all

the scenarios under scrutiny.

5.1 Experimental Setup

This section provides hardware and software settings used for performing ex-

periments. Hardware setup comprises of cluster configurations and network

utilities while the software setting is regarding the installation of BFT proto-

cols, assigning values to parameters for initiating and launching the experi-

ments.

5.1.1 Hardware Settings

All our experiments were conducted on a cluster running in Grid’5000 com-

posed of 34 nodes [28]. Each node hosts two 4-core Intel Xeon E5420 QC

processors at 2.50GHz frequency with 8GB of RAM and 160GB SATA of

storage space. Table 5.1 presents the hardware configuration of the cluster

used for conducting experiments.

All the machines in the cluster are interconnected through 1 or 2 Giga-

bit Ethernet and have only a single network interface. We created multiple

virtual network interfaces (also known as aliasing) on a single physical Net-

work Interface Controller (NIC) to exploit the robustness of RBFT [18, 36].

In the experiments we consider a system capable of handling only up to one

Byzantine fault, i.e., f = 1. Therefore, the cluster needs 4 nodes (3f + 1) for

running BFT protocol instances. We reserve 2 extra nodes, one for concur-

rent clients and one for hosting BFT-Bench framework. The reason to limit

the number of Byzantine faults to 1 is due to the difficult NIC configuration

for RBFT with more than one fault in Grid’5000 settings. Authors of RBFT

conducted some of their experiments on a cluster composed of ten built-in

network interfaces which made it easier to configure with f = 2. In practice,

this limitation does not hold for PBFT and Chain as they do not require

multiple virtual network interfaces. We performed some extra experiments to

determine the sustainable cluster size by each protocol based on the number

5.1. Experimental Setup 111

Table 5.1: Hardware Configuration of the Cluster in Grid’5000
Cluster CPU Memory Storage Network

G5K I

4-core 2-CPU

2.5 GHz Intel Xeon

E5420 QC

8 GB
160 GB

SATA

1 Gbit

Ethernet

of faults they can handle. PBFT is able to tolerate up to 2 simultaneous faults

(7 replicas) before terminating and Chain remains available with a maximum

of 3 faults (10 replicas). This observation is made under fault free scenario

and no Byzantine faults were triggered. For effective practical comparison of

BFT prototypes we used the same environment, i.e., same configuration, same

cluster, same faultloads and workloads.

5.1.2 Software Settings

We have used original versions of the code bases for the three protocols in

consideration1. However, we modified and added some code in their imple-

mentations for triggering the faults which we explained in Section 4.4.5. All

the authors usually performed the experiments using echo service for evalu-

ating their protocols, but unlike them, we introduce a delay of 30 (±10%)

milliseconds before sending any response to the client. This delay is meant to

emulate the computations that a real service would perform during the com-

mit phase of all protocols. We believe this is more realistic than just sending

empty (echo) messages. We keep our focus on intentionally triggering the

faults at replicas and not the accidental failures which can occur at network

or hardware level. We model the faults by forcefully deviating execution of

instructions of the BFT algorithms.

We use BFT-Bench for evaluating throughput and latency for each faulty

behavior (similar to a/b microbenchmark by Castro and Liskov [30]). BFT-

Bench also produces runtime statistics for dependability metrics. Low-level

metrics such as CPU utilization and network usage are assessed offline. Fi-

nally, all the experiments were performed three times to calculate the average

and standard deviations.

We consider total experiment runtime as the sum of warm up time2 and

execution time3 where warm up time is set to 180s, and execution time to

1Code base of PBFT was downloaded from http://www.pmg.csail.mit.edu/bft/#sw

whereas RBFT and Chain implementations were obtained directly from authors [18, 56].
2warm up time allows the system to stabilize before the statistics monitor starts to

collect the execution traces.
3execution time is the actual monitoring phase where system collects all the statistics

112 Chapter 5. Experimental Evaluation

either 600s or 800s. We exclude the results collected during warm up period

from all our results as no actual workload or faultload is injected during this

time. The fault trigger time is 1

2
of (execution time), i.e., 300s for fault types

- replica crash, message delay and network flooding (timer of the fault trig-

ger time starts with execution time). Once a server becomes malicious upon

expiration of fault trigger time, it remains faulty until the end of the experi-

ment. Independent of the protocols, during fault-free case (also corresponding

in our experiments to the time elapsed before a fault gets triggered) we mostly

achieve a peak throughput of around 32/33 requests per second. This is the

consequence of introducing the 30 (±10%) milliseconds of simulated compu-

tation before committing the incoming requests.

5.2 Comparative Evaluation under Faulty Sce-

narios

In this section, we present a comparative analysis of the three BFT protocols,

PBFT, Chain and RBFT when facing different types of faults presented in

Section 4.3.2 using BFT-Bench. It also demonstrates the loopholes of these

BFT implementations. Table 5.2 provides the list of different faults considered

for evaluation of prototypes for BFT protocols.

We inject one Byzantine fault, which means only one replica can be faulty

in a system at any point of time. All the faults are performed independent of

each other except fault type, delay with overloading, where we inject message

delay fault in the primary while increasing the #clients at different inter-

vals. This enables us to evaluate the prototypes with the varying (increasing)

workload in presence of a Byzantine fault, message delay. Faultload for each

fault is defined at the beginning of the experiment, but workload can also be

defined at runtime. Faultload cannot be modified once the experiment starts,

whereas workload is variable and depends on the injected fault type.

Table 5.3 provides a comprehensive analysis of PBFT, Chain and RBFT

when faults are triggered in the system. In all the graphs representing eval-

uations of performance and dependability aspects, the first half corresponds

to fault free scenarios, i.e., there is no fault injection. To perform each exper-

iment, we define few initial values, such as (i) experiment start time, (ii) re-

quest/response message size and (iii) number of concurrent clients.

Defined as:

<start time, size, #clients>.

for future analysis.

5.2. Comparative Evaluation under Faulty Scenarios 113

Table 5.2: List of different faultloads considered for evaluation
fault type fault loc Description of the fault

Replica Crash primary
server stops and terminates all further

communications

Message

Delay
primary

primary delays sending pre-prepare

messages to other replicas

Network

Flooding

any non primary

replica

faulty replica floods correct replicas with

malicious messages to overload the

network and computational resources

System

Overloading
-NA-

#clients sending requests increases with

time

Delay with

Overloading
primary

it is a combination of two faults: message

delay and system overloading

Latency and throughput of each experiment depend on the initial values.

We observe throughput is mostly limited to 32/33 requests per second (with

any #clients) due to induced computational delay at each replica while la-

tency increases with increase in #clients. During a fault free scenario, system

is always available and maintains reliability. All the replicas adhere to the

instructions of BFT algorithms and do not deviate from the correct paths.

As studied, each protocol has a primary/head (Replica1), responsible for

handling the incoming client requests. The primary replica has the highest

computational load as it manages all the client requests, their ordering, client

connections and extra cryptographic operations (for verifying authenticity of

the client and its request). Interestingly, Replica4 in PBFT is used slightly

more compared to other non-primary replicas as we assigned it the responsibil-

ity for sending the encrypted response to the client instead of primary. Other

times, all the replicas just send MAC of the responses to the clients. This is an

optimization performed in PBFT by its authors. Similarly for Chain, the last

replica performs more than the middle replicas as it is sending the responses

to clients like PBFT. Due to the high CPU usage at primary, primary becomes

a bottleneck when there are a high number of concurrent clients and also, in

case of the Byzantine attacks at primary.

In all protocols, there are two network interfaces: replica-to-replica com-

munication and replica-to-client communication. We consider measuring the

total amount of data send (txkB/s) and received (rxkB/s) per second by each

replica to/from clients and other replicas. All the graphs illustrating network

utilization present normalized total data (total of incoming and outgoing data

at each replica). Generally, we observe that primary in PBFT and RBFT uses

the network more intensively than other replicas. This is primarily due to the

114 Chapter 5. Experimental Evaluation

Table 5.3: Comprehensive analysis of fault handling by each BFT protocol
PBFT Chain RBFT

Replica Crash X × ×

Message Delay X X X

Network Flooding X × X

System

Overloading
X X X

fails at clients

> 80

fails at clients

> 120

fails at clients

> 35

Delay with System

Overloading
X X X

Max. #clients

not evaluated

Max. #clients

not evaluated

fails at clients

> 10

incoming channel being used more often for receiving messages from replicas

and clients. For other replicas, it is only replica-to-replica communication ex-

cept for the Replica4 which uses slightly more bandwidth due to optimization

for sending encrypted response (rather than MAC) to clients. In case of Chain,

head and tail are under utilized while replicas in the middle are used exten-

sively. It can be explained by the fact that other replicas receive and send

twice the number of MAC authenticators as of head and tail. Head replica

receives MAC authenticators from a client for itself and next f + 1 replicas.

It then generates f + 1 MAC authenticators for its successors. So the replica

in total will have 3f + 2 MAC authenticators on the incoming (f + 1) and

outgoing (2f +1) channel. For the tail, it creates MAC authenticator just for

the client leading to under utilization of outgoing channel. Consequently, un-

even network bandwidth usage becomes an important, impacting factor that

results in lower throughput of a protocol.

We now consider evaluation of different fault types and their impact on

performance and dependability aspects using BFT-Bench.

5.2.1 Presence of Replica Crash

Here, we consider the Byzantine behavior described by the following faultload

(see Figure 4.2):

<300s, replica crash, {primary}>,

defining fault trigger time, fault type and fault location, respectively.

116 Chapter 5. Experimental Evaluation

matching responses. Figure 5.1 presents the performance of the prototypes

when primary crashes. In the results for PBFT, we observe a sudden increase

in latency (Figure 5.1(a)), and throughput (Figure 5.1(b)) drops sharply upon

crash of the primary. This is due to the view change protocol, which replaces

the faulty primary.

Prototypes for Chain and RBFT fail to respond once the primary crashes.

Upon a crash, Chain cannot maintain its pipeline structure as the successor

of the crashed server never receives any messages. Chain must switch to

PBFT upon crash, but, unfortunately, this mechanism is not present in the

original prototype. We would have observed the same performance as PBFT

if switching was possible [20]. In RBFT, clients broadcast requests to all

replicas. During crash fault, client enters an infinite request re-transmission

loop while attempting to send a request to the crashed replica. This is due to

the absence of a crash handling mechanism at the client side.

5.2.1.2 Dependability Analysis

Figure 5.2(a) demonstrates the impact on the availability of the system upon

the crash of the primary. This result can be easily predicted on the basis of

performance evaluation of BFT prototypes. As soon as the primary crashes,

availability of RBFT suddenly drops to zero while Chain drops slowly. It is

due to the fact that other replicas in the chain (after the head replica) are pro-

cessing the requests they have (exploiting the pipeline pattern of Chain). The

tail will eventually send the responses coming from the pipeline to the respec-

tive clients. But the head will not take any further requests and availability

will eventually hit zero. PBFT handles the primary crash by going through a

view change and thus continues to make a progress. Figure 5.2(b) illustrates

that reliability for PBFT is 100% even after the fault occurrence but Chain

and RBFT are no more available leading to undetermined reliability. The

requests of the clients will not complete and undergo infinite re-transmissions

before terminating. If the system was available after primary crashes, the sys-

tem would have continued to be reliable. We conclude this according to the

definition of reliability that is a measurement of the total number of successful

correct responses to the total number of requests send by the clients.

5.2.1.3 System and Network Level Statistics

Figure 5.3 represents the system and network level statistics of PBFT before

the crash, upon a crash and after the crash. From Figures 5.3(a) and 5.3(b),

we observe that PBFT is able to maintain almost the same CPU and network

bandwidth utilization before and after the crash with a new elected primary

5.2. Comparative Evaluation under Faulty Scenarios 117

0

20

40

60

80

100

0 100 200 300 400 500 600

A
va

ila
bi

lit
y

(%
)

Time (s)

PBFT
Chain
RBFT

Single event of Replica Crash at 300s

Fault free scenario
 with 5 clients

(a) Availability

0

20

40

60

80

100

0 100 200 300 400 500 600

R
el

ia
bi

lit
y

(%
)

Time (s)

PBFT
Chain
RBFT

 Single event of Replica Crash at 300s

Fault free scenario
 with 5 clients

(b) Reliability

Figure 5.2: Dependability analysis of PBFT, Chain, RBFT when primary

replica crashes

(Replica4 in our case). Upon a crash, CPU utilization at primary (Replica1)

becomes zero and other replicas start to use the CPU rapidly (slightly more

than double of before crash). Upon crash, we observe more data exchange.

This increment in network bandwidth and CPU utilization is due to the nu-

merous message exchanges of view change protocol to elect a new primary

and a number of MAC authentications performed at each replica, respec-

tively. After the crash, newly elected primary (Replica4) uses more CPU as

it performs client-to-replica and replica-to-replica communications and send-

s/receives more messages due to client interactions for requests and responses

than other replicas in the system.

118 Chapter 5. Experimental Evaluation

Before crash Upon crash After crash

0

2

4

6

8

10

12

14

Primary/Head

Replica1

Replica2

Replica3

Different events during the execution of PBFT

C
P

U
 U

ti
liz

a
ti
o
n
 (

%
)

(a) CPU Utilization

Before crash Upon crash After crash

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Primary/Head

Replica1

Replica2

Replica3

Different events during the execution of PBFT

N
e

tw
o

rk
 U

ti
liz

a
ti
o

n
 (

rx
k
B

/s
 +

 t
x
k
B

/s
)

(b) Network Utilization

Figure 5.3: CPU and Network utilization of PBFT in presence of primary

replica crash

5.2.2 Presence of Message Delay

This behavior has faultload:

<300s, message delay, {primary, 500, pre-prepare}>

where values correspond to fault trigger time, fault type, fault location, delay

time and message type (in reference to line 2 of Figure 4.2). We implement

this fault by forcing the primary to delay sending of pre-prepare messages by

500ms in case of PBFT and RBFT, and the only message send by the head

to its successor in case of Chain. We perform this fault with #clients sending

the requests equals 2.

5.2. Comparative Evaluation under Faulty Scenarios 119

5.2.2.1 Performance Analysis

0

500

1000

1500

2000

2500

3000

0 100 200 300 400 500 600

La
te

n
cy

(m
s)

Time (s)

PBFT
Chain
RBFT

Continuous Message Delay

Fault-free scenario
 with 2 clients

(a) Latency

0

5

10

15

20

25

30

35

40

0 100 200 300 400 500 600

T
h
ro

u
g
h
p
u
t

(#
re

q
u
e
st

s/
s)

Time (s)

PBFT
Chain
RBFT

Continuous Message DelayFault-free scenario
 with 2 clients

(b) Throughput

Figure 5.4: Performance evaluation of PBFT, Chain and RBFT in presence

of message delay fault at primary

We observe that impact of delaying the pre-prepare message (it contains

the request ordering number) is higher in comparison to the delay of any other

message. But this holds true only for RBFT and PBFT. All the replicas upon

receiving a request, wait for its corresponding pre-prepare message. Upon

failing to receive the message before the timer expires, replicas go through an

agreement to trigger the view change protocol to replace the faulty primary.

View change and new primary election protocols are time-consuming and de-

grade the performance. View change is not triggered when other message

types are delayed. Notice that in Chain, the same behavior could be observed

120 Chapter 5. Experimental Evaluation

if the delay fault occurs in any replica, due to its pipeline structure. In Figure

5.4(b), we can observe that peak throughput of Chain is 15 while for RBFT

and PBFT it is 32 (before the fault is triggered). This is due to the fact, that

Chain is not completely fed to exploit its pipeline pattern. Also, every request

in Chain undergoes the commit phase, sequentially introducing a delay of at

least 120ms (simulated computation delay). Since requests are executed in a

closed-loop, fewer requests are sent to the Chain protocol, consequently less

requests are executed, thus, the throughput is lower than the throughput of

PBFT and RBFT. In presence of fault, the peak throughput falls from 32 to

2 requests per second for PBFT and Chain, and latency increases accordingly

in Figure 5.4(a). This throughput is relevant since no more than 2 requests

0

20

40

60

80

100

0 100 200 300 400 500 600

A
va

ila
bi

lit
y

(%
)

Time (s)

PBFT
Chain
RBFT

Fault-free scenario
 with 2 clients

Continuous Message Delay

(a) Availability

0

20

40

60

80

100

0 100 200 300 400 500 600

R
el

ia
bi

lit
y

(%
)

Time (s)

PBFT
Chain
RBFT

Fault-free scenario
 with 2 clients

Continuous Message Delay

(b) Reliability

Figure 5.5: Dependability analysis of PBFT, Chain, RBFT in presence of

message delay fault at primary

can be executed per second because of the 500ms delay. We do not observe

5.2. Comparative Evaluation under Faulty Scenarios 121

the same behavior for RBFT as it implements a robust mechanism to handle

this fault4. RBFT uses a delay adaptive mechanism where it inspects the total

number of pre-prepare messages received by a replica within a bounded inter-

val. If the number is less than the one expected, a view change is triggered.

This is practically analyzed from the difference observed between the through-

put at primary and backup instances of RBFT [18]. Therefore, we do not see

a degradation in performance after fault injection except at the moment when

the fault was triggered. Throughput drops by 40% approximately during the

time taken by view change protocol to replace the faulty primary. This test

could be performed for a maximum of 5 clients as the prototype of RBFT fails

to make a progress upon fault injection. In PBFT and Chain, view change

protocol is not triggered due to the absence of fault handling mechanisms.

5.2.2.2 Dependability Analysis

Figure 5.5(a) displays that all the three prototypes continue even after primary

starts to delay the pre-prepare messages. Availability has no impact as the

system is always available, but responds slower which we clearly see in the

performance (latency) analysis. Figure 5.5(b) illustrates that system is always

reliable for all the considered BFT protocols. It is due to the fact that BFT

systems continue to work normally by responding to the client’s requests but

with a delay injected by the primary. This delay triggers the timeout at

clients and requests are re-transmitted. Primary do not add any delay to re-

transmitted requests as they are already ordered and pre-prepare messages of

these requests have already been sent.

Therefore, during the message delay, overall system remains available and

reliable except that the responses are delayed to the clients, triggering re-

transmissions of delayed requests. Hence, we see the impact only on the

performance and not on the dependability metrics of this fault.

5.2.2.3 System and Network Level Statistics

Figures 5.6(a) and 5.6(b) illustrate CPU and network utilization, respectively.

We observe a difference in CPU utilization of primary for all the protocols

as it delays pre-prepare messages and processes trigger time for sending these

messages. Delay by primary triggers the timeout (for receipt of pre-prepare

messages), which enables replicas to begin exchange messages with each other

and primary. This increases the utilization of network bandwidth at each

replica. Also, when timeout at a client expires for a response to a request,

4RBFT follows the design and specifications of Aardvark [36] for handling this behavior.

122 Chapter 5. Experimental Evaluation

PBFT Chain RBFT

0

1

2

3

4

5

6

7

Primary/Head

Replica1

Replica2

Replica3

BFT Protocols

C
P

U
 U

ti
liz

a
ti
o
n
 (

%
)

(a) CPU Utilization

PBFT Chain RBFT

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Primary/Head

Replica1

Replica2

Replica3

BFT Protocols

N
e

tw
o

rk
 U

ti
liz

a
ti
o

n
 (

rx
k
B

/s
 +

 t
x
k
B

/s
)

(b) Network Utilization

Figure 5.6: CPU and Network usage in presence of message delay fault at

primary with #clients = 2

it retransmits the request. Thus, further augmenting the network bandwidth

for replica-to-client communications.

5.2.3 Presence of Network Flooding

Figure 5.7 presents the performance of PBFT & RBFT when a non-primary

replica starts to flood (sends as many malicious/corrupt messages as possible)

other replicas.

Faultload used is:

<300s, network flooding, {Replica2, 4KB}>,

where Replica2 will start to flood other servers with corrupt messages of size

5.2. Comparative Evaluation under Faulty Scenarios 123

4KB at 300s (as defined in line 3 in Figure 4.2). To perform this experiment,

we consider #clients to be 10.

5.2.3.1 Performance Analysis

0

100

200

300

400

500

600

700

800

0 100 200 300 400 500 600

La
te

n
cy

(m
s)

Time (s)

PBFT
Chain
RBFT

Continuous Network FloodingFault-free scenario
 with 10 clients

(a) Latency

0

5

10

15

20

25

30

35

40

0 100 200 300 400 500 600

T
h
ro

u
g
h
p
u
t

(#
re

q
u
e
st

s/
s)

Time (s)

PBFT
Chain
RBFT

Continuous Network Flooding

Fault-free scenario
 with 10 clients

(b) Throughput

Figure 5.7: Performance evaluation of PBFT, Chain and RBFT in presence

of network flooding by a non primary replica

We implement this behavior by forcing a replica to enter an infinite loop of

continuous transmission of malicious messages to other servers until the end of

the experiment (corrupt messages have the same size as of request messages).

We observe that any replica, either primary or non-primary would impact the

performance in the same way. The results illustrate that Chain makes no

124 Chapter 5. Experimental Evaluation

progress upon fault injection while the performance of PBFT becomes spo-

radic. This is due to the expensive, time consuming cryptographic operations

performed over corrupt messages by all the replicas in PBFT and successor

replica in Chain. Inability to handle corrupt messages introduces a gap in the

communication pattern and lack of protocol switching mechanism holds the

Chain from continuing.

RBFT uses multiple NICs to avoid malicious clients and replicas from

flooding client-to-replica & replica-to-replica communications. RBFT also

employs flood adaptive mechanism where non-faulty replicas can detect a

flooding replica and blacklists it [18]. Flood protection enables a non-faulty

replica to monitor the number of messages (including correct & malicious mes-

sages) received. If a non-faulty replica receives more than a specific number

of messages from a particular replica in a period of time, then it can label

this replica as faulty and initiates a blacklisting protocol. When this hap-

pens, RBFT closes the NIC of the misbehaving replica for some time but

after a given period it rejoins the system again. Due to this, we observe slight

variations in performance with up to 5% of degradation.

5.2.3.2 Dependability Analysis

In Figure 5.8(a) we demonstrate the availability of RBFT, PBFT and Chain

when network is flooded by one of the non-primary replicas (Replica2). We

observe that PBFT and RBFT are always available while Chain succumbs

to unavailability after the fault is triggered. RBFT handles network flooding

with flood adaptive mechanisms and PBFT prototype is robust enough to

manage to continue. Whereas for chain, this scenario is similar to crash as the

replica succeeding the faulty replica cannot handle the flood and terminates.

According to Figure 5.8(b), we can again conclude that BFT systems are 100%

reliable but not 100% available. In case of Chain, the availability reduces

to 0, but the reliability of the system cannot be questioned as the system

terminates to progress without producing any incorrect responses. There are

no responses at all. Having no response, cannot be equated to an incorrect

response. Therefore, reliability remains undetermined (it cannot be concluded

to non-reliability of the system).

5.2.3.3 System and Network Level Statistics

For evaluation of CPU utilization and network bandwidth usage, we do not

consider Chain as it terminates when a replica starts to flood other replicas.

We consider only RBFT and PBFT as they continue during this fault. Fig-

ure 5.9(a) illustrates the CPU utilization of RBFT and PBFT with network

5.2. Comparative Evaluation under Faulty Scenarios 125

0

20

40

60

80

100

0 100 200 300 400 500 600

A
va

ila
bi

lit
y

(%
)

Time (s)

PBFT
Chain
RBFT

Fault-free scenario
 with 10 clients

Continuous Network Flooding

(a) Availability

0

20

40

60

80

100

0 100 200 300 400 500 600

R
el

ia
bi

lit
y

(%
)

Time (s)

PBFT
Chain
RBFT

Fault-free scenario
 with 10 clients

Continuous Network Flooding

(b) Reliability

Figure 5.8: Dependability analysis of PBFT, Chain, RBFT in presence of

network flooding by a non primary replica

flooding in the presence of 10 concurrent clients. Computation at all the nodes

increases as they also perform authentication and validation of all corrupted

messages (corrupted messages are discarded once authentication fails). CPU

usage is maximum at Replica2 as it is generating those malicious messages for

all replicas. RBFT and PBFT behave similarly in this aspect.

Figure 5.9(b) demonstrates usage of network bandwidth at each replica

for RBFT and PBFT. Fault replica, Replica2, sends a lot of corrupt messages

on its outgoing channel and these messages are evenly distributed to all other

replicas to their incoming channels, increasing the network utilization at all

the replicas. But Replica2 uses the maximum network bandwidth by sending

a large number of malicious messages of equal size to correct messages.

126 Chapter 5. Experimental Evaluation

PBFT RBFT

0

5

10

15

20

25

30

35

40

Primary/Head

Replica1

Replica2

Replica3

BFT Protocols

C
P

U
 U

ti
liz

a
ti
o
n
 (

%
)

(a) CPU Utilization

PBFT RBFT

0

20000

40000

60000

80000

100000

120000

Primary/Head

Replica1

Replica2

Replica3

BFT Protocols

N
e

tw
o

rk
 U

ti
liz

a
ti
o

n
 (

rx
k
B

/s
 +

 t
x
k
B

/s
)

(b) Network Utilization

Figure 5.9: CPU and Network usage in presence of network flooding by a non

primary replica with #clients = 10

5.2.4 Presence of System Overloading

Figure 5.10 presents the performance of protocols under contention but in

fault free conditions. This fault type measures the maximum workload i.e.

#clients a protocol can handle before discontinuation. We do not inject any

Byzantine fault (f = 0). We implement this fault by simply increasing #clients

during the experiment run.

Faultload (see line 4 in Figure 4.2) for this experiment is:

<200s, system overloading, {20}>,

<400s, system overloading, {40}>,

<600s, system overloading, {100}>,

where #clients increase from 10 (at time (t) = 0) to 20 at t = 200s, then 40

5.2. Comparative Evaluation under Faulty Scenarios 127

at t = 400s, and finally 100 at t = 600s.

5.2.4.1 Performance Analysis

0

500

1000

1500

2000

2500

3000

3500

0 100 200 300 400 500 600 700 800

La
te

n
cy

(m
s)

Time (s)

PBFT
Chain
RBFT

System Overloading
 with 20 clients

Fault-free scenario
 with 10 clients

System Overloading
 with 40 clients

System Overloading
 with 100 clients

(a) Latency

0

5

10

15

20

25

30

35

40

0 100 200 300 400 500 600 700 800

T
h
ro

u
g
h
p
u
t

(#
re

q
u
e
st

s/
s)

Time (s)

PBFT
Chain
RBFT

Fault-free scenario
 with 10 clients

System Overloading
 with 20 clients

System Overloading
 with 40 clients

System Overloading
 with 100 clients

(b) Throughput

Figure 5.10: Performance evaluation of PBFT, Chain and RBFT when system

is overloaded with increasing number of clients at every 200s

From the results, we observe that all the protocols achieve the peak through-

put with 10 clients (Figure 5.10(b)), and the latency increases with the number

of clients in the system (Figure 5.10(a)). At t = 400s, the RBFT proto-

type cannot handle more than 20 clients, while PBFT and Chain continue

to progress. At t = 600s, the PBFT prototype does not appear as reliable

as before. It is unable to handle the load of 100 clients and thus terminates.

128 Chapter 5. Experimental Evaluation

However, Chain survives 100 clients with a constant throughput but latency

continues to augment (with increasing #clients).

5.2.4.2 Dependability Analysis

0

20

40

60

80

100

0 100 200 300 400 500 600 700 800

A
va

ila
bi

lit
y

(%
)

Time (s)

PBFT
Chain
RBFT

Fault-free scenario
with 10 clients

System Overloading
 with 20 clients

System Overloading
with 40 clients

System Overloading
 with 100 clients

(a) Availability

0

20

40

60

80

100

0 100 200 300 400 500 600 700 800

R
el

ia
bi

lit
y

(%
)

Time (s)

PBFT
Chain
RBFT

Fault-free scenario
 with 10 clients

System Overloading
 with 20 clients

System Overloading
 with 40 clients

System Overloading
 with 100 clients

(b) Reliability

Figure 5.11: Dependability analysis of PBFT, Chain, RBFT when system is

overloaded with increasing number of clients at every 200s

Figure 5.11(a) presents that RBFT and PBFT stop once they cannot han-

dle a certain number of clients. In this fault, no Byzantine fault is injected

and only the workload is increased with time. These results prove that the

prototypes of these BFT systems cannot handle heavy, realistic workload. To

be acknowledged by the real world practitioners, it is important for these pro-

tocols to demonstrate the ability to handle the workloads and faultloads of

real world applications. From the analysis, we conclude that Chain is able

5.2. Comparative Evaluation under Faulty Scenarios 129

to handle more #clients. We didn’t test Chain for its maximum load in the

presence of message delay fault.

According to Figure 5.11(b) we observe that with time when PBFT and

RBFT gets unavailable, reliability becomes undetermined. For Chain, it re-

mains reliable and available all the time (until it can serve all the concurrent

clients).

5.2.4.3 System and Network Level Statistics

Figure 5.12 illustrates the CPU utilization at each replica for all the consid-

ered BFT protocols with increasing #clients at different intervals of time.

For all the protocols, we observe that replica receiving the client requests, i.e.,

the primary has the maximum CPU load. It is due to the replica-to-client

communication. For Chain, head performs more work in comparison to other

protocols as it computes and verifies more MAC authenticators for every in-

coming request (Chain profits from batching). CPU utilization for PBFT and

RBFT is comparable as they both follow the same communication pattern (of

PBFT). RBFT halts when the number of clients increases to 40 and PBFT

stops at 100 clients while Chain continues until 100 clients (that’s why there

are no bars at these times for PBFT and RBFT).

10 20 40 100 10 20 40 100 10 20 40 100

0

10

20

30

40

50

60

70

80

90

Primary/Head

Replica1

Replica2

Replica3

Number of Clients

C
P

U
 U

ti
liz

a
ti
o
n
 (

%
)

PBFT Chain RBFT

Figure 5.12: CPU Utilization of PBFT, Chain and RBFT when system is

overloaded with increasing number of clients at every 200s

130 Chapter 5. Experimental Evaluation

5.2.5 Combination of Different Types of Faults

In this experiment, we inject a combination of faults, i.e., message delay in

presence of system overloading. This enables us to determine the maximum

number of clients a BFT system can survive when there exists a Byzantine

fault in the system. Figure 5.13(a) and 5.13(b) present latency and through-

put, respectively, upon injection of delay fault in presence of increasing work-

load (#clients).

The faultload (line 5 in Figure 4.2) is:

<200s, message delay, {primary, 500, pre-prepare}>,

<400s, system overloading, {5}>,

<600s, system overloading, {10}>.

0

1000

2000

3000

4000

5000

6000

7000

0 100 200 300 400 500 600 700 800

La
te

n
cy

(m
s)

Time (s)

PBFT
Chain
RBFT

Fault-free scenario
 with 2 clients

Continuous Message Delay

System Overloading
 with 5 clients

System Overloading
 with 10 clients

(a) Latency

0

5

10

15

20

25

30

35

40

0 100 200 300 400 500 600 700 800

T
h
ro

u
g
h
p
u
t

(#
re

q
u
e
st

s/
s)

Time (s)

PBFT
Chain
RBFT

Fault-free scenario
 with 2 clients

Continuous Message Delay

System Overloading
 with 5 clients

System Overloading
 with 10 clients

(b) Throughput

Figure 5.13: Performance evaluation of PBFT, Chain and RBFT in presence

of system overloading with message delay fault. At every 200s, number of

clients increases in the system

5.2. Comparative Evaluation under Faulty Scenarios 131

5.2.5.1 Performance Analysis

The experiment launches in a fault free environment with #clients = 2. At t

= 200s, delay fault is injected at the primary while keeping constant #clients.

Until 400s, the result is same as message delay (Section 5.2.2). At t = 400s, we

increases #clients to 5. Now we observe that RBFT continues to handle the

delay fault (exploiting delay adaptive fault mechanism) without a significant

effect on the performance while Chain and PBFT demonstrate an increase in

latency and their throughput continues to be 2 requests per second. Finally at

t = 600s, #clients grows to 10. RBFT cannot handle contention (more than

0

20

40

60

80

100

0 100 200 300 400 500 600 700 800

A
va

ila
bi

lit
y

(%
)

Time (s)

PBFT
Chain
RBFT

Fault-free scenario
with 2 clients

System Overloading
 with 5 clients

System Overloading
 with 10 clients

Continuous Message Delay

(a) Availability

0

20

40

60

80

100

0 100 200 300 400 500 600 700 800

R
el

ia
bi

lit
y

(%
)

Time (s)

PBFT
Chain
RBFT

Fault-free scenario
 with 2 clients

System Overloading
 with 5 clients

System Overloading
 with 10 clients

Continuous Message Delay

(b) Reliability

Figure 5.14: Dependability analysis of PBFT, Chain and RBFT in presence

of system overloading with message delay fault. At every 200s, number of

clients increases in the system

10 clients) and terminates, however, Chain and PBFT continue to advance.

132 Chapter 5. Experimental Evaluation

PBFT undergoes a view change where the faulty primary is replaced with a

new primary. This phenomenon occurs due to the expiration of the timers

at backup replicas waiting to get pre-prepare messages for a request received

earlier. With the new primary, we observe the same performance of fault

free scenario. Chain continues to worsen in terms of latency, but maintains a

constant throughput of 2. It is interesting to observe that in the presence of

message delay fault, workload handled by all the protocols reduces by many

folds. This clearly demonstrates ineffectiveness of the protocols when a fault

occurs under high workload conditions.

5.2.5.2 Dependability Analysis

Figure 5.14(a) is a combination of Figures 5.5(a) and 5.11(a). As demonstrated

previously, RBFT can handle a maximum of 20 clients in fault free scenario

and with message delay fault, maximum #clients can only be 10. We see

the same behavior in the figure 5.14(a). At 600s, RBFT fails to continue and

system becomes unavailable, whereas PBFT and Chain advances. We are sure

that PBFT will fail once #clients reaches more than 40 (we did not perform

this analysis). According to Figures 5.14(a) and 5.14(b), we observe that

PBFT and Chain continue to be available and reliable while RBFT becomes

unavailable. Therefore, reliability cannot be determined until the time system

is available once again.

5.3 Summary

The evaluation affirms our motivation that prototypes for most of the consid-

ered state-of-the art protocols (for Chain and PBFT) have been assessed only

in fault-free scenarios which make them challenging to be used in real time

systems where faults are prone to happen. Since RBFT uses fault-adaptive

mechanisms for certain types of faults, it is able to maintain a constant perfor-

mance with a small percentage of degradation during these malicious behav-

iors. However, it still fails to sustain all types of injected faults, as illustrated

it terminates the progress in the most prominently occurring crash fault. Our

experimental results confirm our above statements.

We also observe that availability is 100% when the system is up and run-

ning, but upon fault injection, for some protocols, availability drops to 0%

upon fault injection. According to the conducted experiments, all BFT pro-

tocols are 100% reliable (i.e. maintains consistency across replicas) until the

system is available. Once the protocols fail upon fault injection, reliability

cannot be measured. Theoretically, all BFT protocols must be 100% reliable

5.3. Summary 133

and available in the presence or absence of various faults, which is not the case

in practice. Performance and dependability evaluations by BFT-Bench affirms

that prototypes have not been tested rigorously under various fault models. It

also demonstrates many loopholes in the BFT implementations which cause

the termination of the prototypes when a fault is triggered.

Chapter 6

Conclusions and Perspectives

Contents
6.1 Conclusions . 136

6.2 Perspectives . 137

6.3 Publications . 138

6.4 Acknowledgments . 138

136 Chapter 6. Conclusions and Perspectives

6.1 Conclusions

The cloud computing represents a significant shift our society has gone through.

It radically changes the way enterprises manage IT - like servers, data centers,

OS, middleware and clustering. With the increasing on-demand computing,

performance and dependability have become the important requirements of

today’s critical cloud services and data centers. The growth of cloud tech-

nologies, their applications, service oriented models, have raised many types

of failures and attacks paradigms. Such faults have been termed as Byzantine

faults.

Byzantine Fault Tolerance (BFT) is a general approach to make distributed

systems, theoretically, tolerate arbitrary faults. BFT has been investigated ex-

tensively in previous years, with two main families of BFT protocols, (i) pro-

tocols that enhance performance in fault-free cases, and (ii) protocols that

minimize performance degradation in the presence of some types of faults.

Although considerable effort has been made to study Byzantine faults and

achieve BFT protocols, but yet they fail to convince the practitioners for

adopting them in real world settings. Serious concerns have been raised in

the last decade for theoretically dealing with such behaviors, but not many

attempts have been proposed to bring Byzantine fault tolerance to the sight

of potential users. This is mainly due to the significant lack of practical anal-

ysis of QoS metrics, on common grounds. Evaluations of BFT protocols have

been conducted in simplified settings which fail to challenge the prototypes in

worst case scenarios, i.e., presence of arbitrary faults, high contention, mali-

cious clients, etc. Also, no constant improvements are made to any of these

prototypes after their initial release. To the best of our knowledge, there is

no practical solution to identify and inject various Byzantine behaviors for

evaluating performance and dependability levels of BFT protocols.

In this thesis, we underwent extensive research on technical and scientific

know-how in designing a dependability and performance benchmark for dis-

tributed systems. We proposed a generic software architecture in an effort to

help designers and researchers developing benchmark solutions for distributed

protocols for analyzing various QoS aspects. We further used the generic

architecture as a building block for BFT-Bench.

This thesis presented BFT-Bench, the first framework for empirically eval-

uating BFT implementations to quantify their dependability and performance

levels under different faulty behaviors and workloads. BFT-Bench framework

tests three state-of-the-art BFT protocols, automatically deploys them, al-

6.2. Perspectives 137

lows to generate different types of faults, injects them at different locations

and different rates, and computes performance and dependability measures.

We also presented the experiments conducted with BFT-Bench. The eval-

uation results show that BFT-Bench is able to successfully compare various

BFT protocols, in various faulty behaviors.

We wish to make BFT benchmarking easy to adopt by developers and end-

users of BFT protocols. BFT-Bench framework aims to help researchers and

practitioners to better analyze and evaluate the effectiveness and robustness

of BFT systems.

6.2 Perspectives

This work unlocks the way of evaluating BFT protocols under real world

settings, bridging the gap between the research and practical usability of

BFT. While this work concentrates on presenting the current version of BFT-

Bench with some BFT protocols and their related fault types, we believe

that the proposed approach can be easily extended to other BFT protocols

listed under Section 2.4, and many other faulty behaviors. Addition of dif-

ferent fault models will open up the interesting prospects for analyzing other

QoS metrics such as security, scalability, cost, etc. In this thesis, we have

interested in evaluating performance and dependability aspects, considering

throughput, latency, availability and reliability, in addition to some low-level

network statistics and cost of using BFT services in terms of the number of

physical resources used.

BFT-Bench can also interest developers and end-users to model it as a

selection tool for determining the suitable BFT prototype abiding to required

real world settings and QoS parameters. Such an example is of a non-critical

system which would care more for performance rather than dependability

guarantees under high contention.

The proposed benchmark can be used to aid researchers from Byzantine

community to trace implementation issues and tune their source codes and

default parameters (such as various timeouts at client and server side) accord-

ingly. These modifications and corrections will not only improve the original

implementations many folds, but will also boost the robustness and effective-

ness of BFT prototypes. An integration of a debugging tool can ease the

process of determining bugs.

Another technical perspective of this work could be considering high-level

application domains such as database systems, web services, and web servers,

that runs on BFT protocols under comparison. For example, PBFT imple-

138 Chapter 6. Conclusions and Perspectives

mented Byzantine fault-tolerant NFS service using their algorithm while au-

thors of RBFT proposed using their protocols for applications like Zookeeper [63]

or Boxwood asynchronous API [82].

Furthermore, cloud providers can cater BFT-as-a-Service to their cus-

tomers, specifically to ones deploying mission critical applications. This would

imply Byzantine fault tolerance could be proposed as a cloud service, on-

demand, adapted to application needs.

6.3 Publications

Some of our work have been published in international conferences, and few

are under submission.

1. Divya Gupta, Lucas Perronne, Sara Bouchenak. BFT-Bench: Frame-

work to Evaluate Robustness and Effectiveness of BFT Protocols in

Practice, 7th ACM/SPEC International Conference on Performance En-

gineering, Delft, The Netherlands, March 12-18, 2016.

2. Divya Gupta, Lucas Perronne, Sara Bouchenak. BFT-Bench: Frame-

work to Evaluate Robustness and Effectiveness of BFT Protocols in

Practice, 6th ACM Symposium on Cloud Computing, Hawai’i, USA,

August 27-29, 2015. Poster.

3. Divya Gupta, Lucas Perronne, Sara Bouchenak. BFT-Bench: Towards a

Practical Evaluation of Robustness and Effectiveness of BFT Protocols,

16th IFIP International Conference on Distributed Applications and In-

teroperable Systems, Heraklion, Crete, June 6-9, 2016 (To appear).

6.4 Acknowledgments

This work was partly supported by AMADEOS (Architecture for Multi-criticality

Agile Dependable Evolutionary Open System-of-Systems) which is a collabo-

rative project funded under the European Commission’s FP7 (FP7-ICT-2013-

610535) with University of Grenoble as one of the partners.

All our experiments were conducted on the Grid’5000 experimental testbed,

developed under the INRIA ALADDIN development action with support from

CNRS, RENATER and several Universities, as well as other funding bodies.

Bibliography

[1] Amazon s3 availability event: July 20, 2008. retrieved on 2013-07-20.

http://status.aws.amazon.com/s3-20080720.html.

[2] Cloud Computing. https://en.wikipedia.org/wiki/Cloud_

computing.

[3] Cloud outage collection. http://ventures.tpedersen.net/errata/

cloudstatus/cloud-outage-collection.

[4] e-fiscal project state of the art repository.

[5] Ibm: The autonomic computing initiative. http://www.ibm.com/

autonomic.

[6] Performance Test Tools. http://www.opensourcetesting.org/

performance.php.

[7] A recommendation for high-availability options in tpc benchmarks.

http://www.tpc.org/information/other/articles/ha.asp.

[8] Dependability Benchmarking Project. http://webhost.laas.fr/TSF/

DBench/, 2004.

[9] Distributed Application Architecture , 2009.

[10] It’s probable that you’ve misunderstood ’Cloud Computing’ until now,

2010.

[11] M. Abd-El-Malek, G. R. Ganger, G. R. Goodson, M. K. Reiter, and

J. J. Wylie. Fault-scalable byzantine fault-tolerant services. In SOSP,

pages 59–74, 2005.

[12] P. A. Alsberg and J. D. Day. A principle for resilient sharing of dis-

tributed resources. In Proceedings of the 2Nd International Conference

on Software Engineering, ICSE ’76, pages 562–570. IEEE Computer So-

ciety Press, 1976.

[13] G. Alvarez and F. Cristian. Centralized failure injection for distributed,

fault-tolerant protocol testing. In Distributed Computing Systems,

1997., Proceedings of the 17th International Conference on, pages 78–85,

May 1997.

140 Bibliography

[14] P. S. N. F. N. P. V. Alysson Bessani, Miguel Correia. Intrusion tolerance:

The ”killer app”for bft protocols (?). In BFTW3: Why? When? Where?

Workshop on the theory and practice of Byzantine fault tolerance, 2009.

[15] Y. Amir, B. A. Coan, J. Kirsch, and J. Lane. Byzantine replication

under attack. In DSN, pages 197–206, 2008.

[16] L. Arantes, R. Friedman, O. Marin, and P. Sens. Probabilistic byzantine

tolerance for cloud computing. In 34th International Symposium on

Reliable Distributed Systems (SRDS’15), Sept. 2015.

[17] J. Arlat, A. Costes, Y. Crouzet, J.-C. Laprie, and D. Powell. Fault injec-

tion and dependability evaluation of fault-tolerant systems. Computers,

IEEE Transactions on, 42(8):913–923, Aug 1993.

[18] P.-L. Aublin, S. B. Mokhtar, and V. Quéma. Rbft: Redundant byzantine

fault tolerance. In ICDCS, pages 297–306, 2013.

[19] A. Avizienis, J.-C. Laprie, B. Randell, and C. E. Landwehr. Basic

concepts and taxonomy of dependable and secure computing. IEEE

Trans. Dependable Sec. Comput., 1(1):11–33, 2004.

[20] J.-P. Bahsoun, R. Guerraoui, and A. Shoker. Making bft protocols

adaptive.

[21] R. Banabic, G. Candea, and R. Guerraoui. Finding trojan message vul-

nerabilities in distributed systems. In Proceedings of the 19th Interna-

tional Conference on Architectural Support for Programming Languages

and Operating Systems, ASPLOS ’14, pages 113–126, New York, NY,

USA, 2014. ACM.

[22] R. Barbosa, J. Karlsson, Q. Yu, and X. Mao. Toward Dependabil-

ity Benchmarking of Partitioning Operating Systems. In IEEE/IFIP

41st International Conference on Dependable Systems Networks (DSN),

2011, pages 422 –429, june 2011.

[23] D. Bernstein, E. Ludvigson, K. Sankar, S. Diamond, and M. Morrow.

Blueprint for the intercloud - protocols and formats for cloud computing

interoperability. In Internet and Web Applications and Services, 2009.

ICIW ’09. Fourth International Conference on, pages 328–336, May

2009.

[24] A. Bessani, J. Sousa, and E. E. Alchieri. State machine replication for

the masses with bft-smart. In Dependable Systems and Networks (DSN),

Bibliography 141

2014 44th Annual IEEE/IFIP International Conference on, pages 355–

362. IEEE, 2014.

[25] K. Birman, G. Chockler, and R. van Renesse. Toward a cloud computing

research agenda. SIGACT News, 40(2):68–80, June 2009.

[26] L. Bobelin, A. Bousquet, J. Briffaut, J.-F. Couturier, C. Toinard,

E. Caron, A. Lefray, and J. Rouzaud-Cornabas. An advanced security-

aware cloud architecture. In High Performance Computing Simulation

(HPCS), 2014 International Conference on, pages 572–579, July 2014.

[27] A. Brown and D. A. Patterson. Towards availability benchmarks: A case

study of software raid systems. In Proceedings of the Annual Confer-

ence on USENIX Annual Technical Conference, ATEC ’00, pages 22–22,

Berkeley, CA, USA, 2000. USENIX Association.

[28] F. Cappello, E. Caron, M. Dayde, F. Desprez, Y. Jégou, P. Primet,

E. Jeannot, S. Lanteri, J. Leduc, N. Melab, et al. Grid’5000: A large

scale and highly reconfigurable grid experimental testbed. In Proceed-

ings of the 6th IEEE/ACM International Workshop on Grid Computing,

pages 99–106. IEEE Computer Society, 2005.

[29] A. Casimiro, P. Verissimo, D. Kreutz, F. Araujo, R. Barbosa, S. Neves,

B. Sousa, M. Curado, C. Silva, R. Gandhi, and P. Narasimhan. Trone:

Trustworthy and resilient operations in a network environment. In De-

pendable Systems and Networks Workshops (DSN-W), 2012 IEEE/IFIP

42nd International Conference on, pages 1–6, June 2012.

[30] M. Castro and B. Liskov. Practical byzantine fault tolerance. In OSDI,

pages 173–186, 1999.

[31] M. Castro and B. Liskov. Practical byzantine fault tolerance and proac-

tive recovery. ACM Trans. Comput. Syst., 20(4):398–461, 2002.

[32] R. Chandra, R. Lefever, M. Cukier, and W. Sanders. Loki: a state-

driven fault injector for distributed systems. In Dependable Systems

and Networks, 2000. DSN 2000. Proceedings International Conference

on, pages 237–242, 2000.

[33] Q. Z. H. C. Chunye Gong, Jie Liu and Z. Gong. The characteristics

of cloud computing. In Parallel Processing Workshops (ICPPW), 2010

39th International Conference on, pages 275–279, Sept 2010.

[34] A. Clement, M. Kapritsos, S. Lee, Y. Wang, L. Alvisi, M. Dahlin, and

T. Riche. Upright cluster services. In SOSP, pages 277–290, 2009.

142 Bibliography

[35] A. Clement, M. Marchetti, E. Wong, L. Alvisi, and M. Dahlin. Bft:

The time is now. In Proceedings of the 2Nd Workshop on Large-Scale

Distributed Systems and Middleware, LADIS ’08, pages 13:1–13:4, New

York, NY, USA, 2008. ACM.

[36] A. Clement, E. L. Wong, L. Alvisi, M. Dahlin, and M. Marchetti. Making

byzantine fault tolerant systems tolerate byzantine faults. In NSDI,

pages 153–168, 2009.

[37] M. Correia, N. F. Neves, and P. Veŕıssimo. Bft-to: Intrusion tolerance

with less replicas. Comput. J., 56(6):693–715, 2013.

[38] D. Costa, H. Madeira, J. Carreira, and J. Silva. Xception™: A software

implemented fault injection tool. In A. Benso and P. Prinetto, editors,

Fault Injection Techniques and Tools for Embedded Systems Reliability

Evaluation, volume 23 of Frontiers in Electronic Testing, pages 125–139.

Springer US, 2003.

[39] D. Costa, T. Rilho, and H. Madeira. Joint evaluation of performance

and robustness of a cots dbms through fault-injection. In Dependable

Systems and Networks, 2000. DSN 2000. Proceedings International Con-

ference on, pages 251–260, 2000.

[40] J. A. Cowling, D. S. Myers, B. Liskov, R. Rodrigues, and L. Shrira. Hq

replication: A hybrid quorum protocol for byzantine fault tolerance. In

OSDI, pages 177–190, 2006.

[41] V. Cunsolo, S. Distefano, A. Puliafito, and M. Scarpa. Volunteer com-

puting and desktop cloud: The cloud@home paradigm. In Network

Computing and Applications, 2009. NCA 2009. Eighth IEEE Interna-

tional Symposium on, pages 134–139, July 2009.

[42] K. Danielson. Distinguishing cloud computing from utility computing,

2008.

[43] S. Dawson, F. Jahanian, and T. Mitton. Orchestra: A fault injection

environment for distributed systems. Technical report, In 26th Interna-

tional Symposium on Fault-Tolerant Computing (FTCS, 1996.

[44] S. Dawson, F. Jahanian, and T. Mitton. Orchestra: a probing and fault

injection environment for testing protocol implementations. In Com-

puter Performance and Dependability Symposium, 1996., Proceedings of

IEEE International, pages 56–, Sep 1996.

Bibliography 143

[45] J. DeVale, P. Koopman, and D. Guttendorf. The ballista software ro-

bustness testing service. In Tesing Computer Software, 1999., In Pro-

ceedings of, 1999.

[46] E. W. Dijkstra. Solution of a problem in concurrent programming con-

trol. Commun. ACM, 8(9):569–, Sept. 1965.

[47] B. Dillenseger and E. Cecchet. Clif is a load injection framework. In In

Workshop on Middleware Benchmarking: Approaches, Results, Experi-

ences, OOPSLA 2003, 2003.

[48] S. Dolev. Self-stabilization. MIT Press, Cambridge, MA, USA, 2000.

[49] K. Driscoll. Real system failures. In DASHlink. NASA, 2012.

[50] J. Durães, M. Vieira, and H. Madeira. Dependability Benchmarking

of Web-Servers. In Proceedings of 23rd International Conference on

Computer Safety, Reliability and Security (Safecomp’2004), pages 297–

310, 2004.

[51] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of

partial synchrony. Journal of the ACM (JACM), 35(2):288–323, 1988.

[52] F. Fich and E. Ruppert. Hundreds of impossibility results for distributed

computing. Distrib. Comput., 16(2-3):121–163, Sept. 2003.

[53] M. J. Fischer, N. A. Lynch, and M. Paterson. Impossibility of distributed

consensus with one faulty process. J. ACM, 32(2):374–382, 1985.

[54] S. Ghemawat, H. Gobioff, and S.-T. Leung. The google file system. In

Proceedings of the Nineteenth ACM Symposium on Operating Systems

Principles, SOSP ’03, pages 29–43, New York, NY, USA, 2003. ACM.

[55] J. Gray. Notes on data base operating systems. In Operating Systems,

An Advanced Course, pages 393–481, London, UK, UK, 1978. Springer-

Verlag.

[56] R. Guerraoui, N. Knezevic, V. Quéma, and M. Vukolic. The next 700

bft protocols. In EuroSys, pages 363–376, 2010.

[57] R. Guerraoui, N. Knezevic, V. Quema, and M. Vukolic. Stretching

bft. Technical report, Technical Report EPFL-REPORT-149105, EPFL,

2011.

[58] V. Hadzilacos and S. Toueg. A modular approach to fault-tolerant

broadcasts and related problems. Technical report, 1994.

144 Bibliography

[59] A. Haeberlen, P. Kouznetsov, and P. Druschel. The case for byzantine

fault detection. In Proceedings of the 2Nd Conference on Hot Topics

in System Dependability - Volume 2, HOTDEP’06, pages 5–5, Berkeley,

CA, USA, 2006. USENIX Association.

[60] S. Han, K. Shin, and H. Rosenberg. Doctor: an integrated software

fault injection environment for distributed real-time systems. In Com-

puter Performance and Dependability Symposium, 1995. Proceedings.,

International, pages 204–213, Apr 1995.

[61] M. P. Herlihy and J. M. Wing. Linearizability: A correctness condition

for concurrent objects. ACM Trans. Program. Lang. Syst., 12(3):463–

492, July 1990.

[62] M.-C. Hsueh, T. Tsai, and R. Iyer. Fault injection techniques and tools.

Computer, 30(4):75–82, Apr 1997.

[63] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. Zookeeper: Wait-

free coordination for internet-scale systems. In Proceedings of the

2010 USENIX Conference on USENIX Annual Technical Conference,

USENIXATC’10, pages 11–11, Berkeley, CA, USA, 2010. USENIX As-

sociation.

[64] R. K. Iyer and D. Tang. Fault-tolerant computer system design. chapter

Experimental Analysis of Computer System Dependability, pages 282–

392. Prentice Hall PTR, Upper Saddle River, NJ, USA, 1996.

[65] J. M. J. Zhu and I. Pramanick. R3 - a framwork for availability bench-

marking. In Proc. Int. Conf. on Dependable Systems and Networks (DSN

2003), pages 86–87, San Francisco, CA, USA, 2003. DSN.

[66] A. Jiwa, T. Hardjono, and J. Seberry. Beacons for authentication in

distributed systems. J. Comput. Secur., 4(1):81–96, Jan. 1996.

[67] J. Jonsson and B. Kaliski. Public-key cryptography standards (pkcs)

#1: Rsa cryptography specifications version 2.1. 2003.

[68] M. Kalyanakrishnam, Z. Kalbarczyk, and R. Iyer. Failure data analysis

of a lan of windows nt based computers. In Proceedings of the 18th IEEE

Symposium on Reliable Distributed Systems, SRDS ’99, Washington,

DC, USA, 1999. IEEE Computer Society.

[69] G. Kanawati, N. Kanawati, and J. Abraham. Ferrari: a flexible software-

based fault and error injection system. Computers, IEEE Transactions

on, 44(2):248–260, Feb 1995.

Bibliography 145

[70] K. Kanoun and L. Spainhower. Dependability Benchmarking for Com-

puter Systems. Wiley-IEEE Computer Society Pr, 2008.

[71] R. Kapitza, J. Behl, C. Cachin, T. Distler, S. Kuhnle, S. V. Mohammadi,

W. Schröder-Preikschat, and K. Stengel. Cheapbft: Resource-efficient

byzantine fault tolerance. In Proceedings of the 7th ACM European

Conference on Computer Systems, EuroSys ’12, pages 295–308. ACM,

2012.

[72] R. King. Pivotal’s head of products: We’re moving to a multi-cloud

world, 2014.

[73] J. Kohlas, B. Meyer, and A. Schiper, editors. Dependable Systems:

Software, Computing, Networks, Research Results of the DICS Program,

volume 4028 of Lecture Notes in Computer Science. Springer, 2006.

[74] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. L. Wong. Zyzzyva:

Speculative byzantine fault tolerance. ACM Trans. Comput. Syst.,

27(4), 2009.

[75] L. Lamport. The implementation of reliable distributed multiprocess

systems. Computer Networks, 2:95–114, 1978.

[76] L. Lamport. Time, clocks, and the ordering of events in a distributed

system. Commun. ACM, 21(7):558–565, 1978.

[77] L. Lamport. The part-time parliament. ACM Trans. Comput. Syst.,

16(2):133–169, 1998.

[78] L. Lamport. Paxos made simple. SIGACT News, 32(4):51–58, 2001.

[79] L. Lamport. Lower bounds for asynchronous consensus. In Future Di-

rections in Distributed Computing, pages 22–23, 2003.

[80] L. Lamport, R. E. Shostak, and M. C. Pease. The byzantine generals

problem. ACM Trans. Program. Lang. Syst., 4(3):382–401, 1982.

[81] B. W. Lampson. Atomic transactions. In Distributed Systems - Architec-

ture and Implementation, An Advanced Course, pages 246–265, London,

UK, UK, 1981. Springer-Verlag.

[82] J. MacCormick, N. Murphy, M. Najork, C. A. Thekkath, and L. Zhou.

Boxwood: Abstractions as the foundation for storage infrastructure. In

Proceedings of the 6th Conference on Symposium on Opearting Systems

Design & Implementation - Volume 6, OSDI’04, pages 8–8, Berkeley,

CA, USA, 2004. USENIX Association.

146 Bibliography

[83] H. Madeira, K. Kanoun, J. Arlat, D. Costa, Y. Crouzet, M. D. Cin,

P. Gil, N. Suri, and H. Madeira. Towards a framework for dependability

benchmarking.

[84] D. Mazières, M. Kaminsky, M. F. Kaashoek, and E. Witchel. Separat-

ing key management from file system security. In Proceedings of the

Seventeenth ACM Symposium on Operating Systems Principles, SOSP

’99, pages 124–139, 1999.

[85] P. M. Mell and T. Grance. Sp 800-145. the nist definition of cloud

computing. Technical report, Gaithersburg, MD, United States, 2011.

[86] Z. Milosevic, M. Biely, and A. Schiper. Bounded delay in byzantine-

tolerant state machine replication. In SRDS, pages 61–70, 2013.

[87] C. NIST. The digital signature standard. Commun. ACM, 35(7):36–40,

July 1992.

[88] B. M. Oki and B. H. Liskov. Viewstamped replication: A new pri-

mary copy method to support highly-available distributed systems. In

Proceedings of the Seventh Annual ACM Symposium on Principles of

Distributed Computing, PODC ’88, pages 8–17, New York, NY, USA,

1988. ACM.

[89] M. C. Pease, R. E. Shostak, and L. Lamport. Reaching agreement in

the presence of faults. J. ACM, 27(2):228–234, 1980.

[90] M. K. Reiter. The rampart toolkit for building high-integrity services.

In Theory and Practice in Distributed Systems, pages 99–110. Springer,

1995.

[91] M. Rouse. What is a multi-cloud strategy, 2014.

[92] A. Sangroya, D. Serrano, and S. Bouchenak. Benchmarking depend-

ability of mapreduce systems. In Reliable Distributed Systems (SRDS),

2012 IEEE 31st Symposium on, pages 21–30, Oct 2012.

[93] R. D. Schlichting and F. B. Schneider. Fail-stop processors: An approach

to designing fault-tolerant computing systems. ACM Trans. Comput.

Syst., 1(3):222–238, Aug. 1983.

[94] F. B. Schneider. Implementing fault-tolerant services using the state

machine approach: A tutorial. ACM Comput. Surv., 22(4):299–319,

Dec. 1990.

Bibliography 147

[95] F. B. Schneider. Implementing fault-tolerant services using the state

machine approach: A tutorial. ACM Computing Surveys (CSUR),

22(4):299–319, 1990.

[96] M. Serafini, P. Bokor, D. Dobre, M. Majuntke, and N. Suri. Scrooge:

Reducing the costs of fast byzantine replication in presence of unrespon-

sive replicas. In DSN, pages 353–362, 2010.

[97] D. Serrano, S. Bouchenak, Y. Kouki, T. Ledoux, J. Lejeune, J. Sopena,

L. Arantes, and P. Sens. Towards qos-oriented sla guarantees for online

cloud services. In Cluster, Cloud and Grid Computing (CCGrid), 2013

13th IEEE/ACM International Symposium on, pages 50–57, May 2013.

[98] A. Shoker, J.-P. Bahsoun, and M. Yabandeh. Improving independence

of failures in bft. In Network Computing and Applications (NCA), 2013

12th IEEE International Symposium on, pages 227–234, Aug 2013.

[99] A. Singh, T. Das, P. Maniatis, P. Druschel, and T. Roscoe. Bft protocols

under fire. In Proceedings of the 5th USENIX Symposium on Networked

Systems Design and Implementation, NSDI’08, pages 189–204, Berkeley,

CA, USA, 2008.

[100] A. Singh, P. Fonseca, P. Kuznetsov, R. Rodrigues, and P. Maniatis.

Zeno: Eventually consistent byzantine-fault tolerance. In Proceedings of

the 6th USENIX Symposium on Networked Systems Design and Imple-

mentation, NSDI’09, pages 169–184, Berkeley, CA, USA, 2009. USENIX

Association.

[101] D. Skeen and M. Stonebraker. A formal model of crash recovery in a

distributed system. Software Engineering, IEEE Transactions on, SE-

9(3):219–228, May 1983.

[102] A. Tchana, N. De Palma, B. Dillenseger, and X. Etchevers. A self-

scalable load injection service. Software: Practice and Experience,

45(5):613–632, 2015.

[103] T. K. Tsai and R. K. Iyer. Measuring fault tolerance with the ftape

fault injection tool. In Proceedings of the 8th International Conference

on Modelling Techniques and Tools for Computer Performance Evalu-

ation: Quantitative Evaluation of Computing and Communication Sys-

tems, MMB ’95, pages 26–40, London, UK, UK, 1995.

[104] R. van Renesse and F. B. Schneider. Chain replication for supporting

high throughput and availability. In OSDI, pages 91–104, 2004.

148 Bibliography

[105] G. S. Veronese, M. Correia, A. N. Bessani, and L. C. Lung. Spin one’s

wheels? byzantine fault tolerance with a spinning primary. In SRDS,

pages 135–144, 2009.

[106] G. S. Veronese, M. Correia, A. N. Bessani, L. C. Lung, and P. Veŕıssimo.

Efficient byzantine fault-tolerance. IEEE Trans. Computers, 62(1):16–

30, 2013.

[107] M. Vieira, N. Laranjeiro, and H. Madeira. Benchmarking the Robustness

of Web Services. In Proceedings of the 13th Pacific Rim International

Symposium on Dependable Computing, PRDC ’07, pages 322–329, 2007.

[108] H. Williams. A modification of the rsa public-key encryption procedure

(corresp.). Information Theory, IEEE Transactions on, 26(6):726–729,

Nov 1980.

[109] T. Y. C. Woo and S. S. Lam. Authentication for distributed systems.

Computer, 25(1):39–52, Jan. 1992.

[110] T. Wood, R. Singh, A. Venkataramani, P. Shenoy, and E. Cecchet. Zz

and the art of practical bft execution. In Proceedings of the sixth con-

ference on Computer systems, pages 123–138. ACM, 2011.

[111] F. J. Y. J. SONG and B. REED. Bft for the skeptics. In BFTW3: Why?

When? Where? Workshop on the theory and practice of Byzantine fault

tolerance, 2009.

	Dedication
	List of Figures
	List of Tables
	Introduction
	Background and Motivation
	Problem Statement and Research Challenges
	Contribution of the Thesis
	Organization of the Thesis

	Related Work
	Distributed System Characterizations
	Interaction Models
	Network
	Verification & Authentication Mechanisms
	Fault Categorization

	State Machine Replication
	Definitions
	Message Primitives
	Types of Replication
	Problem of Consensus
	System Model

	Byzantine Fault Tolerance
	Understanding 3f+1 Bound
	Types of Byzantine Behaviors

	BFT Protocols at Present
	BFT from Theory to Practice
	Group 1: Performance Enhancements in Fault-Free Conditions
	Group 2: Minimizing Performance Degradation in Faulty Conditions

	Benchmarking Tools
	Performance Benchmarks
	Dependability Benchmarks

	Discussion

	A General Architecture for Performance and Dependability Benchmarking of BFT Protocols
	Overview and Objectives
	Dependability and Performance Benchmarking Specifications and Validations
	Categorization
	Measures
	Experimental Dimensions

	General Benchmarking Architecture and Framework for Distributed Protocols
	Benchmarking Steps
	High-level class Diagram of Performance and Dependability Benchmark Architecture
	Overview of Communication Primitives Operation by Orchestrator

	BFT-Bench: Case Study of Benchmarking BFT Protocols
	Faultload Dimensions
	Workload Dimensions
	Measurement Analysis
	Potential Benchmark Users

	Benefits of General Architecture
	Reduction in Software Development Cost
	Extensibility
	Reusability
	Testability

	Summary

	BFT-Bench: Performance and Dependability Benchmarking Framework for BFT Protocols
	Background
	Objectives of BFT-Bench
	Design Principles of BFT-Bench Framework
	BFT Protocols in Consideration
	Fault Types in Consideration

	Overview of BFT-Bench
	Cluster Setup
	BFT Protocol Selection
	Faultload
	Workload
	Fault Injection
	Performance and Dependability Analysis in BFT-Bench

	Automatic Deployment of Experiments
	Using BFT-Bench
	Portability of BFT-Bench
	Portability of Workload Injection
	Portability of Fault Injection
	Portability of Performance and Dependability Analysis
	Portability of Automatic Experiment Deployer

	Summary

	Experimental Evaluation
	Experimental Setup
	Hardware Settings
	Software Settings

	Comparative Evaluation under Faulty Scenarios
	Presence of Replica Crash
	Presence of Message Delay
	Presence of Network Flooding
	Presence of System Overloading
	Combination of Different Types of Faults

	Summary

	Conclusions and Perspectives
	Conclusions
	Perspectives
	Publications
	Acknowledgments

	Bibliography

