20 research outputs found

    Segmentation-based mesh design for motion estimation

    Get PDF
    Dans la plupart des codec vidéo standard, l'estimation des mouvements entre deux images se fait généralement par l'algorithme de concordance des blocs ou encore BMA pour « Block Matching Algorithm ». BMA permet de représenter l'évolution du contenu des images en décomposant normalement une image par blocs 2D en mouvement translationnel. Cette technique de prédiction conduit habituellement à de sévères distorsions de 1'artefact de bloc lorsque Ie mouvement est important. De plus, la décomposition systématique en blocs réguliers ne dent pas compte nullement du contenu de l'image. Certains paramètres associes aux blocs, mais inutiles, doivent être transmis; ce qui résulte d'une augmentation de débit de transmission. Pour paillier a ces défauts de BMA, on considère les deux objectifs importants dans Ie codage vidéo, qui sont de recevoir une bonne qualité d'une part et de réduire la transmission a très bas débit d'autre part. Dans Ie but de combiner les deux exigences quasi contradictoires, il est nécessaire d'utiliser une technique de compensation de mouvement qui donne, comme transformation, de bonnes caractéristiques subjectives et requiert uniquement, pour la transmission, l'information de mouvement. Ce mémoire propose une technique de compensation de mouvement en concevant des mailles 2D triangulaires a partir d'une segmentation de l'image. La décomposition des mailles est construite a partir des nœuds repartis irrégulièrement Ie long des contours dans l'image. La décomposition résultant est ainsi basée sur Ie contenu de l'image. De plus, étant donné la même méthode de sélection des nœuds appliquée à l'encodage et au décodage, la seule information requise est leurs vecteurs de mouvement et un très bas débit de transmission peut ainsi être réalise. Notre approche, comparée avec BMA, améliore à la fois la qualité subjective et objective avec beaucoup moins d'informations de mouvement. Dans la premier chapitre, une introduction au projet sera présentée. Dans Ie deuxième chapitre, on analysera quelques techniques de compression dans les codec standard et, surtout, la populaire BMA et ses défauts. Dans Ie troisième chapitre, notre algorithme propose et appelé la conception active des mailles a base de segmentation, sera discute en détail. Ensuite, les estimation et compensation de mouvement seront décrites dans Ie chapitre 4. Finalement, au chapitre 5, les résultats de simulation et la conclusion seront présentés.Abstract: In most video compression standards today, the generally accepted method for temporal prediction is motion compensation using block matching algorithm (BMA). BMA represents the scene content evolution with 2-D rigid translational moving blocks. This kind of predictive scheme usually leads to distortions such as block artefacts especially when the motion is important. The two most important aims in video coding are to receive a good quality on one hand and a low bit-rate on the other. This thesis proposes a motion compensation scheme using segmentation-based 2-D triangular mesh design method. The mesh is constructed by irregularly spread nodal points selected along image contour. Based on this, the generated mesh is, to a great extent, image content based. Moreover, the nodes are selected with the same method on the encoder and decoder sides, so that the only information that has to be transmitted are their motion vectors, and thus very low bit-rate can be achieved. Compared with BMA, our approach could improve subjective and objective quality with much less motion information."--Résumé abrégé par UM

    Color Image Segmentation Based on Modified Kuramoto Model

    Get PDF
    AbstractA new approach for color image segmentation is proposed based on Kuramoto model in this paper. Firstly, the classic Kuramoto model which describes a global coupled oscillator network is changed to be one that is locally coupled to simulate the neuron activity in visual cortex and to describe the influence for phase changing by external stimuli. Secondly, a rebuilt method of coupled neuron activities is proposed by introducing and computing instantaneous frequency. Three oscillating curves corresponding to the pixel values of R, G, B for color image are formed by the coupled network and are added up to produce the superposition of oscillation. Finally, color images are segmented according to the synchronization of the oscillating superposition by extracting and checking the frequency of the oscillating curves. The performance is compared with that from other representative segmentation approaches

    Video object segmentation for future multimedia applications

    Get PDF
    An efficient representation of two-dimensional visual objects is specified by an emerging audiovisual compression standard known as MPEG-4. It incorporates the advantages of segmentation-based video compression (whereby objects are encoded independently, facilitating content-based functionalities), and also the advantages of more traditional block-based approaches (such as low delay and compression efficiency). What is not specified, however, is the method of extracting semantic objects from a scene corresponding to a video segmentation task. An accurate, robust and flexible solution to this is essential to enable the future multimedia applications possible with MPEG-4. Two categories of video segmentation approaches can be identified: supervised and unsupervised. A representative set of unsupervised approaches is discussed. These approaches are found to be suitable for real-time MPEG-4 applications. However, they are not suitable for off-line applications which require very accurate segmentations of entire semantic objects. This is because an automatic segmentation process cannot solve the ill-posed problem of extracting semantic meaning from a scene. Supervised segmentation incorporates user interaction so that semantic objects in a scene can be defined. A representative set of supervised approaches with greater or lesser degrees of interaction is discussed. Three new approaches to the problem, each more sophisticated than the last, are presented by the author. The most sophisticated is an object-based approach in which an automatic segmentation and tracking algorithm is used to perform a segmentation of a scene in terms of the semantic objects defined by the user. The approach relies on maximum likelihood estimation of the parameters of mixtures of multimodal multivariate probability distribution functions. The approach is an enhanced and modified version of an existing approach yielding more sophisticated object modelling. The segmentation results obtained are comparable to those of existing approaches and in many cases better. It is concluded that the author’s approach is ideal as a content extraction tool for future off-line MPEG-4 applications

    Video coding for compression and content-based functionality

    Get PDF
    The lifetime of this research project has seen two dramatic developments in the area of digital video coding. The first has been the progress of compression research leading to a factor of two improvement over existing standards, much wider deployment possibilities and the development of the new international ITU-T Recommendation H.263. The second has been a radical change in the approach to video content production with the introduction of the content-based coding concept and the addition of scene composition information to the encoded bit-stream. Content-based coding is central to the latest international standards efforts from the ISO/IEC MPEG working group. This thesis reports on extensions to existing compression techniques exploiting a priori knowledge about scene content. Existing, standardised, block-based compression coding techniques were extended with work on arithmetic entropy coding and intra-block prediction. These both form part of the H.263 and MPEG-4 specifications respectively. Object-based coding techniques were developed within a collaborative simulation model, known as SIMOC, then extended with ideas on grid motion vector modelling and vector accuracy confidence estimation. An improved confidence measure for encouraging motion smoothness is proposed. Object-based coding ideas, with those from other model and layer-based coding approaches, influenced the development of content-based coding within MPEG-4. This standard made considerable progress in this newly adopted content based video coding field defining normative techniques for arbitrary shape and texture coding. The means to generate this information, the analysis problem, for the content to be coded was intentionally not specified. Further research work in this area concentrated on video segmentation and analysis techniques to exploit the benefits of content based coding for generic frame based video. The work reported here introduces the use of a clustering algorithm on raw data features for providing initial segmentation of video data and subsequent tracking of those image regions through video sequences. Collaborative video analysis frameworks from COST 21 l qual and MPEG-4, combining results from many other segmentation schemes, are also introduced

    Classifiers and machine learning techniques for image processing and computer vision

    Get PDF
    Orientador: Siome Klein GoldensteinTese (doutorado) - Universidade Estadual de Campinas, Instituto da ComputaçãoResumo: Neste trabalho de doutorado, propomos a utilizaçãoo de classificadores e técnicas de aprendizado de maquina para extrair informações relevantes de um conjunto de dados (e.g., imagens) para solução de alguns problemas em Processamento de Imagens e Visão Computacional. Os problemas de nosso interesse são: categorização de imagens em duas ou mais classes, detecçãao de mensagens escondidas, distinção entre imagens digitalmente adulteradas e imagens naturais, autenticação, multi-classificação, entre outros. Inicialmente, apresentamos uma revisão comparativa e crítica do estado da arte em análise forense de imagens e detecção de mensagens escondidas em imagens. Nosso objetivo é mostrar as potencialidades das técnicas existentes e, mais importante, apontar suas limitações. Com esse estudo, mostramos que boa parte dos problemas nessa área apontam para dois pontos em comum: a seleção de características e as técnicas de aprendizado a serem utilizadas. Nesse estudo, também discutimos questões legais associadas a análise forense de imagens como, por exemplo, o uso de fotografias digitais por criminosos. Em seguida, introduzimos uma técnica para análise forense de imagens testada no contexto de detecção de mensagens escondidas e de classificação geral de imagens em categorias como indoors, outdoors, geradas em computador e obras de arte. Ao estudarmos esse problema de multi-classificação, surgem algumas questões: como resolver um problema multi-classe de modo a poder combinar, por exemplo, caracteríisticas de classificação de imagens baseadas em cor, textura, forma e silhueta, sem nos preocuparmos demasiadamente em como normalizar o vetor-comum de caracteristicas gerado? Como utilizar diversos classificadores diferentes, cada um, especializado e melhor configurado para um conjunto de caracteristicas ou classes em confusão? Nesse sentido, apresentamos, uma tecnica para fusão de classificadores e caracteristicas no cenário multi-classe através da combinação de classificadores binários. Nós validamos nossa abordagem numa aplicação real para classificação automática de frutas e legumes. Finalmente, nos deparamos com mais um problema interessante: como tornar a utilização de poderosos classificadores binarios no contexto multi-classe mais eficiente e eficaz? Assim, introduzimos uma tecnica para combinação de classificadores binarios (chamados classificadores base) para a resolução de problemas no contexto geral de multi-classificação.Abstract: In this work, we propose the use of classifiers and machine learning techniques to extract useful information from data sets (e.g., images) to solve important problems in Image Processing and Computer Vision. We are particularly interested in: two and multi-class image categorization, hidden messages detection, discrimination among natural and forged images, authentication, and multiclassification. To start with, we present a comparative survey of the state-of-the-art in digital image forensics as well as hidden messages detection. Our objective is to show the importance of the existing solutions and discuss their limitations. In this study, we show that most of these techniques strive to solve two common problems in Machine Learning: the feature selection and the classification techniques to be used. Furthermore, we discuss the legal and ethical aspects of image forensics analysis, such as, the use of digital images by criminals. We introduce a technique for image forensics analysis in the context of hidden messages detection and image classification in categories such as indoors, outdoors, computer generated, and art works. From this multi-class classification, we found some important questions: how to solve a multi-class problem in order to combine, for instance, several different features such as color, texture, shape, and silhouette without worrying about the pre-processing and normalization of the combined feature vector? How to take advantage of different classifiers, each one custom tailored to a specific set of classes in confusion? To cope with most of these problems, we present a feature and classifier fusion technique based on combinations of binary classifiers. We validate our solution with a real application for automatic produce classification. Finally, we address another interesting problem: how to combine powerful binary classifiers in the multi-class scenario more effectively? How to boost their efficiency? In this context, we present a solution that boosts the efficiency and effectiveness of multi-class from binary techniques.DoutoradoEngenharia de ComputaçãoDoutor em Ciência da Computaçã

    Investigating Polynomial Fitting Schemes for Image Compression

    Get PDF
    Image compression is a means to perform transmission or storage of visual data in the most economical way. Though many algorithms have been reported, research is still needed to cope with the continuous demand for more efficient transmission or storage. This research work explores and implements polynomial fitting techniques as means to perform block-based lossy image compression. In an attempt to investigate nonpolynomial models, a region-based scheme is implemented to fit the whole image using bell-shaped functions. The idea is simply to view an image as a 3D geographical map consisting of hills and valleys. However, the scheme suffers from high computational demands and inferiority to many available image compression schemes. Hence, only polynomial models get further considerations. A first order polynomial (plane) model is designed to work in a multiplication- and division-free (MDF) environment. The intensity values of each image block are fitted to a plane and the parameters are then quantized and coded. Blocking artefacts, a common drawback of block-based image compression techniques, are reduced using an MDF line-fitting scheme at blocks’ boundaries. It is shown that a compression ratio of 62:1 at 28.8dB is attainable for the standard image PEPPER, outperforming JPEG, both objectively and subjectively for this part of the rate-distortion characteristics. Inter-block prediction can substantially improve the compression performance of the plane model to reach a compression ratio of 112:1 at 27.9dB. This improvement, however, slightly increases computational complexity and reduces pipelining capability. Although JPEG2000 is not a block-based scheme, it is encouraging that the proposed prediction scheme performs better in comparison to JPEG 2000, computationally and qualitatively. However, more experiments are needed to have a more concrete comparison. To reduce blocking artefacts, a new postprocessing scheme, based on Weber’s law, is employed. It is reported that images postprocessed using this scheme are subjectively more pleasing with a marginal increase in PSNR (<0.3 dB). The Weber’s law is modified to perform edge detection and quality assessment tasks. These results motivate the exploration of higher order polynomials, using three parameters to maintain comparable compression performance. To investigate the impact of higher order polynomials, through an approximate asymptotic behaviour, a novel linear mapping scheme is designed. Though computationally demanding, the performances of higher order polynomial approximation schemes are comparable to that of the plane model. This clearly demonstrates the powerful approximation capability of the plane model. As such, the proposed linear mapping scheme constitutes a new approach in image modeling, and hence worth future consideration

    Efficient Algorithms for Large-Scale Image Analysis

    Get PDF
    This work develops highly efficient algorithms for analyzing large images. Applications include object-based change detection and screening. The algorithms are 10-100 times as fast as existing software, sometimes even outperforming FGPA/GPU hardware, because they are designed to suit the computer architecture. This thesis describes the implementation details and the underlying algorithm engineering methodology, so that both may also be applied to other applications

    Automatic video segmentation employing object/camera modeling techniques

    Get PDF
    Practically established video compression and storage techniques still process video sequences as rectangular images without further semantic structure. However, humans watching a video sequence immediately recognize acting objects as semantic units. This semantic object separation is currently not reflected in the technical system, making it difficult to manipulate the video at the object level. The realization of object-based manipulation will introduce many new possibilities for working with videos like composing new scenes from pre-existing video objects or enabling user-interaction with the scene. Moreover, object-based video compression, as defined in the MPEG-4 standard, can provide high compression ratios because the foreground objects can be sent independently from the background. In the case that the scene background is static, the background views can even be combined into a large panoramic sprite image, from which the current camera view is extracted. This results in a higher compression ratio since the sprite image for each scene only has to be sent once. A prerequisite for employing object-based video processing is automatic (or at least user-assisted semi-automatic) segmentation of the input video into semantic units, the video objects. This segmentation is a difficult problem because the computer does not have the vast amount of pre-knowledge that humans subconsciously use for object detection. Thus, even the simple definition of the desired output of a segmentation system is difficult. The subject of this thesis is to provide algorithms for segmentation that are applicable to common video material and that are computationally efficient. The thesis is conceptually separated into three parts. In Part I, an automatic segmentation system for general video content is described in detail. Part II introduces object models as a tool to incorporate userdefined knowledge about the objects to be extracted into the segmentation process. Part III concentrates on the modeling of camera motion in order to relate the observed camera motion to real-world camera parameters. The segmentation system that is described in Part I is based on a background-subtraction technique. The pure background image that is required for this technique is synthesized from the input video itself. Sequences that contain rotational camera motion can also be processed since the camera motion is estimated and the input images are aligned into a panoramic scene-background. This approach is fully compatible to the MPEG-4 video-encoding framework, such that the segmentation system can be easily combined with an object-based MPEG-4 video codec. After an introduction to the theory of projective geometry in Chapter 2, which is required for the derivation of camera-motion models, the estimation of camera motion is discussed in Chapters 3 and 4. It is important that the camera-motion estimation is not influenced by foreground object motion. At the same time, the estimation should provide accurate motion parameters such that all input frames can be combined seamlessly into a background image. The core motion estimation is based on a feature-based approach where the motion parameters are determined with a robust-estimation algorithm (RANSAC) in order to distinguish the camera motion from simultaneously visible object motion. Our experiments showed that the robustness of the original RANSAC algorithm in practice does not reach the theoretically predicted performance. An analysis of the problem has revealed that this is caused by numerical instabilities that can be significantly reduced by a modification that we describe in Chapter 4. The synthetization of static-background images is discussed in Chapter 5. In particular, we present a new algorithm for the removal of the foreground objects from the background image such that a pure scene background remains. The proposed algorithm is optimized to synthesize the background even for difficult scenes in which the background is only visible for short periods of time. The problem is solved by clustering the image content for each region over time, such that each cluster comprises static content. Furthermore, it is exploited that the times, in which foreground objects appear in an image region, are similar to the corresponding times of neighboring image areas. The reconstructed background could be used directly as the sprite image in an MPEG-4 video coder. However, we have discovered that the counterintuitive approach of splitting the background into several independent parts can reduce the overall amount of data. In the case of general camera motion, the construction of a single sprite image is even impossible. In Chapter 6, a multi-sprite partitioning algorithm is presented, which separates the video sequence into a number of segments, for which independent sprites are synthesized. The partitioning is computed in such a way that the total area of the resulting sprites is minimized, while simultaneously satisfying additional constraints. These include a limited sprite-buffer size at the decoder, and the restriction that the image resolution in the sprite should never fall below the input-image resolution. The described multisprite approach is fully compatible to the MPEG-4 standard, but provides three advantages. First, any arbitrary rotational camera motion can be processed. Second, the coding-cost for transmitting the sprite images is lower, and finally, the quality of the decoded sprite images is better than in previously proposed sprite-generation algorithms. Segmentation masks for the foreground objects are computed with a change-detection algorithm that compares the pure background image with the input images. A special effect that occurs in the change detection is the problem of image misregistration. Since the change detection compares co-located image pixels in the camera-motion compensated images, a small error in the motion estimation can introduce segmentation errors because non-corresponding pixels are compared. We approach this problem in Chapter 7 by integrating risk-maps into the segmentation algorithm that identify pixels for which misregistration would probably result in errors. For these image areas, the change-detection algorithm is modified to disregard the difference values for the pixels marked in the risk-map. This modification significantly reduces the number of false object detections in fine-textured image areas. The algorithmic building-blocks described above can be combined into a segmentation system in various ways, depending on whether camera motion has to be considered or whether real-time execution is required. These different systems and example applications are discussed in Chapter 8. Part II of the thesis extends the described segmentation system to consider object models in the analysis. Object models allow the user to specify which objects should be extracted from the video. In Chapters 9 and 10, a graph-based object model is presented in which the features of the main object regions are summarized in the graph nodes, and the spatial relations between these regions are expressed with the graph edges. The segmentation algorithm is extended by an object-detection algorithm that searches the input image for the user-defined object model. We provide two objectdetection algorithms. The first one is specific for cartoon sequences and uses an efficient sub-graph matching algorithm, whereas the second processes natural video sequences. With the object-model extension, the segmentation system can be controlled to extract individual objects, even if the input sequence comprises many objects. Chapter 11 proposes an alternative approach to incorporate object models into a segmentation algorithm. The chapter describes a semi-automatic segmentation algorithm, in which the user coarsely marks the object and the computer refines this to the exact object boundary. Afterwards, the object is tracked automatically through the sequence. In this algorithm, the object model is defined as the texture along the object contour. This texture is extracted in the first frame and then used during the object tracking to localize the original object. The core of the algorithm uses a graph representation of the image and a newly developed algorithm for computing shortest circular-paths in planar graphs. The proposed algorithm is faster than the currently known algorithms for this problem, and it can also be applied to many alternative problems like shape matching. Part III of the thesis elaborates on different techniques to derive information about the physical 3-D world from the camera motion. In the segmentation system, we employ camera-motion estimation, but the obtained parameters have no direct physical meaning. Chapter 12 discusses an extension to the camera-motion estimation to factorize the motion parameters into physically meaningful parameters (rotation angles, focal-length) using camera autocalibration techniques. The speciality of the algorithm is that it can process camera motion that spans several sprites by employing the above multi-sprite technique. Consequently, the algorithm can be applied to arbitrary rotational camera motion. For the analysis of video sequences, it is often required to determine and follow the position of the objects. Clearly, the object position in image coordinates provides little information if the viewing direction of the camera is not known. Chapter 13 provides a new algorithm to deduce the transformation between the image coordinates and the real-world coordinates for the special application of sport-video analysis. In sport videos, the camera view can be derived from markings on the playing field. For this reason, we employ a model of the playing field that describes the arrangement of lines. After detecting significant lines in the input image, a combinatorial search is carried out to establish correspondences between lines in the input image and lines in the model. The algorithm requires no information about the specific color of the playing field and it is very robust to occlusions or poor lighting conditions. Moreover, the algorithm is generic in the sense that it can be applied to any type of sport by simply exchanging the model of the playing field. In Chapter 14, we again consider panoramic background images and particularly focus ib their visualization. Apart from the planar backgroundsprites discussed previously, a frequently-used visualization technique for panoramic images are projections onto a cylinder surface which is unwrapped into a rectangular image. However, the disadvantage of this approach is that the viewer has no good orientation in the panoramic image because he looks into all directions at the same time. In order to provide a more intuitive presentation of wide-angle views, we have developed a visualization technique specialized for the case of indoor environments. We present an algorithm to determine the 3-D shape of the room in which the image was captured, or, more generally, to compute a complete floor plan if several panoramic images captured in each of the rooms are provided. Based on the obtained 3-D geometry, a graphical model of the rooms is constructed, where the walls are displayed with textures that are extracted from the panoramic images. This representation enables to conduct virtual walk-throughs in the reconstructed room and therefore, provides a better orientation for the user. Summarizing, we can conclude that all segmentation techniques employ some definition of foreground objects. These definitions are either explicit, using object models like in Part II of this thesis, or they are implicitly defined like in the background synthetization in Part I. The results of this thesis show that implicit descriptions, which extract their definition from video content, work well when the sequence is long enough to extract this information reliably. However, high-level semantics are difficult to integrate into the segmentation approaches that are based on implicit models. Intead, those semantics should be added as postprocessing steps. On the other hand, explicit object models apply semantic pre-knowledge at early stages of the segmentation. Moreover, they can be applied to short video sequences or even still pictures since no background model has to be extracted from the video. The definition of a general object-modeling technique that is widely applicable and that also enables an accurate segmentation remains an important yet challenging problem for further research

    Personality Identification from Social Media Using Deep Learning: A Review

    Get PDF
    Social media helps in sharing of ideas and information among people scattered around the world and thus helps in creating communities, groups, and virtual networks. Identification of personality is significant in many types of applications such as in detecting the mental state or character of a person, predicting job satisfaction, professional and personal relationship success, in recommendation systems. Personality is also an important factor to determine individual variation in thoughts, feelings, and conduct systems. According to the survey of Global social media research in 2018, approximately 3.196 billion social media users are in worldwide. The numbers are estimated to grow rapidly further with the use of mobile smart devices and advancement in technology. Support vector machine (SVM), Naive Bayes (NB), Multilayer perceptron neural network, and convolutional neural network (CNN) are some of the machine learning techniques used for personality identification in the literature review. This paper presents various studies conducted in identifying the personality of social media users with the help of machine learning approaches and the recent studies that targeted to predict the personality of online social media (OSM) users are reviewed

    SPATIAL TRANSFORMATION PATTERN DUE TO COMMERCIAL ACTIVITY IN KAMPONG HOUSE

    Get PDF
    ABSTRACT Kampung houses are houses in kampung area of the city. Kampung House oftenly transformed into others use as urban dynamics. One of the transfomation is related to the commercial activities addition by the house owner. It make house with full private space become into mixused house with more public spaces or completely changed into full public commercial building. This study investigate the spatial transformation pattern of the kampung houses due to their commercial activities addition. Site observations, interviews and questionnaires were performed to study the spatial transformation. This study found that in kampung houses, the spatial transformation pattern was depend on type of commercial activities and owner perceptions, and there are several steps of the spatial transformation related the commercial activity addition. Keywords: spatial transformation pattern; commercial activity; owner perception, kampung house; adaptabilit
    corecore