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Chapter1
Introduction

This chapter presents an introduction to the applications and challenges
of video-segmentation and it provides an outline of the thesis structure.
The motivation starts with a survey of typical application areas that apply
segmentation algorithms. This includes video editing, compression, con-
tent analysis, and 3-D reconstruction applications. A particular focus is
on the concept of object-oriented video coding in the MPEG-4 standard.
Afterwards, the requirements are defined for a segmentation system that is
compliant with the MPEG-4 video-coding approach. A proposal for such a
segmentation system is made and the main components are briefly intro-
duced. The detailed description of this segmentation system establishes the
first half of the thesis (Part I). Finally, various extensions of the segmenta-
tion system are proposed which are also discussed further in the second half
of the thesis (Part II and III). This introduction concludes with an overview
of the individual chapters, indicating the relevant publications and contri-
butions of the author.

The White Rabbit put on his spectacles.
”Where shall I begin, please your Majesty ?” he asked.
”Begin at the beginning,” the King said, very gravely,
”and go on till you come to the end: then stop.”
(Lewis Carroll)

1
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1.1 Motivation

In 1966, the Artificial Intelligence pioneer Marvin Minsky directed an un-
dergraduate student to solve the problem of computer vision as a summer
project. Now, 40 years later, the computer-vision problem is still unsolved,
despite the huge amount of joint efforts that have been undertaken in the
research community. While the general video-understanding problem is
widely regarded as too ambitious to be solved in the near future, various
successful spin-offs for practical problems in controlled environments have
been developed. Although video understanding is a very difficult area for
automatization, it is worthwhile to adopt it in many applications that are
currently operating mainly at the signal level without content-adaptive pro-
cessing. The better we understand not only the video-signal statistics, but
the semantic meaning of it, the better we can adapt the associated video
processing and the more possibilities for interaction with the video content
are made available.

The video understanding problem can be specialized into a large variety
of applications. In the following sections, four application areas for video
segmentation are outlined. This overview also provides references to the
relevant chapters in this thesis.

1.1.1 Video editing and scene composition

Until recently, video editing was equivalent to the temporal cutting of video
to create movies or documentaries. However, the production of movies is
currently making the step towards an object-oriented scene composition.
An increasing number of scenes are not recorded directly as a whole, but
recorded object-by-object and composed later.

For the composition of video objects, not only the raw texture data is
required but also the object shape in form of a mask to seamlessly insert
the object into a background image. In the case of computer-generated
objects, this mask is easy to obtain, but for captured real-world objects,
the mask must be deduced from the image itself. For difficult cases or
when no compromise on quality is allowed, this segmentation task is still
done manually. Automatic segmentation is usually carried out with the
chroma-key technique. Here, by providing a scene background in the des-
ignated background color, the object can be distinguished easily from the
background. The disadvantage of the choma-key technique is clearly that
it is only applicable in a strictly controlled environment. For the extraction
of objects from general video-sequences, other segmentation techniques are
required. (High-quality segmentation for editing application will be ad-
dressed in Chapter 11).
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1.1.2 Object-oriented video coding

Most current techniques for video coding like MPEG-2 are non-adaptive
to the content. Choosing between different coding modes for individual
macroblocks allows for some adaptation to the video content, but the de-
cision about coding modes is usually based on minimizing the resulting
bit-rate. However, people started to intentionally misuse the possibilities
of the video-coding tools to achieve a higher subjective image quality. These
techniques exploit properties of the human visual system at the semantic
level of attention to detect those areas in the image that are most impor-
tant to the viewer. These areas are then coded with a better quality at the
expense of a lower quality in other regions.

Such a system has been proposed by the author in earlier work to achieve
a better visual quality for an MPEG-2 video coding system [67, 66]. In this
system, the image was classified into regions of texture, text/graphics, and
smooth areas. Since it is important to keep text at a high quality, its quality
was increased by using more bits for coding text regions instead of spending
the bits on the coding of texture regions. Additionally, the encoder used a
scene-change detection algorithm to decrease the coding quality in a short
time interval around the scene-change, based on the observation that the
human perception is not sensitive to a low image quality close to global
changes in the image. Compared with a system that optimizes on PSNR
[64], the content-adaptive coding can achieve a better visual quality for the
same bit-rate.

With the advent of the MPEG-4 video coding standard, object-oriented
video coding was for the first time integrated as a substantial part of a video
coding standard. The object-oriented approach offers several advantages
and new possibilities. Let us present two of them by using the example
case of news programs.

• Composing the visual elements of the news program into a single
picture and transmitting this picture as a whole leads to low com-
pression efficiency, because the image is composed of objects of dif-
ferent nature. While the anchorman is a natural video object, there
is also superimposed text, graphical images like maps, and computer-
generated videos like the weather chart. A better coding efficiency
could be obtained by using specialized codecs for the different types
of content and composing the final scene at the decoder.

• An object-oriented video representation also offers more possibilities
to interact with the content. For example, the viewer could choose his
favourite design of the news studio, or he may increase the text font-
size if he is visually impaired. Another possibility of interaction is to
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provide object-specific annotations or to make the objects clickable.
This would make it possible to create videos with hyperlinks that can
be activated by clicking on objects.

A prerequisite for the above application features is the availability of
efficient object-segmentation algorithms. However, the accuracy required
for the segmentation results depends on how the segmentation masks are
employed in the coding process. We can identify three coding approaches
that we present in the following in the order of increasing requirements on
the segmentation accuracy.

• Region-of-Interest (ROI) coding. The image is coarsely sepa-
rated into background and foreground. The background includes the
content that is unimportant for the viewer whereas the foreground
comprising the more important objects. The video coder can then be
controlled to code the foreground with a higher quality at the expense
of lower quality in the background. The ROI-coding approach is in-
teresting, for example, for surveillance-video recording systems, since
the amount of recorded video can be increased, while still keeping
the high quality of the objects that matter in the analysis. Moreover,
because of the static background in surveillance videos, it is also easy
to define the important foreground objects.

• Coding improvement by object-border detection. Traditional
video coding approaches mostly employ block-based transforms that
do not adapt to the boundaries of objects. However, the texture
usually changes suddenly at the object border. Filtering across this
border consequently leads to a low decorrelation of the pixel values.

Both problems can be eliminated by coding the interior and exterior
regions independently. The MPEG-4 video-coding standard applies
this approach by employing a shape-adaptive DCT to include only
object pixels in the transformation, and by restricting the effect of
the motion vectors to the current object area.

For this coding approach, it is not required that the segmentation
masks are semantically meaningful, as long as they serve to improve
the coding efficiency.

• Composition of video objects. Semantically correct segmenta-
tion masks are certainly required if the purpose of the object-oriented
video coding is not only to provide better compression efficiency, but
also to enable the composition of new scenes from independently cap-
tured video objects. It should be noted that this area of applications



1.1. Motivation 5

not only covers TV broadcasts, which is traditionally a more passive
medium for the viewer, but it also covers especially more interactive
internet applications. Numerous possible applications exist and in-
clude web-based games, product presentations (e.g., show a specific
piece of furniture in various environments), virtual realities, or inter-
active design applications.

1.1.3 Automatic video analysis

Video-object segmentation is also an indispensable technique for an in-
depth analysis of video content. Before the objects in a scene can be iden-
tified and their behaviour is analysed, video object have to be detected and
separated in the image. The segmentation accuracy that is required de-
pends on the subsequent analysis steps. In case that the object behaviour
is derived from the motion trajectory of the object, an accurate segmen-
tation mask is not required. Contrariwise, if the object shape is used to
derive its pose and ultimately its behaviour, the accuracy of the segmenta-
tion mask is of significant importance.

Automatic video analysis is relevant for a broad range of applications.
In the following, we provide only a few examples:

• Surveillance. One application area that is quickly growing is the
automatic analysis of surveillance videos. Currently, surveillance sys-
tems are still non-intelligent video recording systems, often compris-
ing a larger number of cameras. The analysis is primarily still per-
formed by humans watching the videos either in real-time or from the
recording. Automatic surveillance systems can help in this situation
by either doing the analysis completely automatic, or by providing a
pre-alarm indicating situations that require a closer look by a human
observer.

Surveillance is also attractive for automatic analysis from a technical
point of view because the input video is relatively easy to analyze.
Often, the cameras are statically mounted, such that the environment
is well-defined. Moreover, the objects that should be observed can
usually be well defined. (Related to Appendix F.)

• Sports. Another application that is, from an algorithmic point of
view, similar to the surveillance application is the automatic analysis
of sport events like tennis or soccer games. Well-known examples are
offside analysis in soccer games or court-line checks in tennis. Au-
tomatic sports analysis can extract statistical information about the
game or for individual players. This information can subsequently
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be used to enrich the sports transmission with additional informa-
tion about the player performance, which is for the entertainment of
the viewers, but which can also provide valuable information for the
coaches to analyze the strengths and weaknesses of their own athlets
or the competitors. From the technical point of view, sports analysis
is also interesting because the variety in the scenes is rather limited,
thereby enabling a more detailed analysis. The playfield is usually
well defined by the markers that are drawn on the playfield. More-
over, the behaviour of the players is well defined and can be described
by the rules of the game. (Related to Chapter 13.)

• Video databases. Storage costs for video data become increasingly
lower and large amounts of video data are already collected in pro-
fessional archives and at home. The search and retrieval in these
media databases poses the new problem of efficiently searching in
video data. Manual annotation of the videos with meta-data is often
not feasible, so that the search must be carried out either on the raw
video data or on automatically generated meta-data. This again re-
quires detailed video analysis, since the queries have typically a high
semantic level. An optimal query system should be able to trans-
fer a linguistic description of the scene to a suitable query into the
video data. For specific applications like surveillance, this is easier
to accomplish, since the nomenclature is well defined. (Related to
Chapters 9 and 10.)

Another problem specific to video databases is the quick browsing in
the archive. Since video is a medium that takes place also in time,
it cannot be understood quickly from a static snapshot. However,
the computer can help to reduce the amount of video that should be
viewed by preselecting the most important scenes, or the scenes which
are most characteristic to deduce an impression of the full video. Cur-
rent algorithms in this area usually only consider the global appear-
ance of the image, but the systems can be extended to more in-depth
analysis by detecting specific objects of interest [104] and extract-
ing preferably those scenes where these objects occur. (Related to
Appendix A.)

Further applications of video analysis which we do not consider fur-
ther are medical applications, industrial image processing for, e.g., quality
control, robotics, or remote-sensing. Even though such applications may
be very different, the basic video-analysis techniques are comparable and
their principles can be reused. For example, semi-automatic segmenta-
tion algorithms as described in Chapter 11 for natural images are also
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very popular in medical applications, e.g., for defining tumor areas on CT
scans. Industrial image processing often employs of simple color segmen-
tation (Appendix E), because the environment can be controlled easily.
Mobile robots require video-object segmentation for collision prevention or
for the interaction with the objects. Finally, remote-sensing applications
apply the same change-detection algorithms as the ones in the foreground
extraction presented in this thesis, but for remote-sensing, their usage is to
identify changes in vegetation.

1.1.4 3-D analysis and reconstruction

Video-object segmentation as discussed up to now was related to the extrac-
tion of a two-dimensional mask of the object in the input image. However,
the input image itself is only a projection of the 3-D world onto a flat
image. More information about the scene can be obtained if the analysis
system is successful in recovering the 3-D geometry and motion of objects.
The 3-D reconstruction approaches can be coarsely classified in techniques
generating volumetric models and techniques reconstructing surface mod-
els. A volumetric model is obtained with reconstruction-from-projections
approaches as they are known, e.g., from computer tomography. These
volumetric models are beyond the scope of this thesis. In a surface model,
the objects are represented using only their textured surface. Apart from
the object geometry, 3-D reconstruction also includes estimating the 3-D
motion of objects as well as the motion of the camera.

Even though general 3-D reconstruction is out of the scope of this thesis,
there is a gradual transition between video analysis and 3-D reconstruction.
For example, to derive an appropriate model for camera motion, we have
to consider the 3-D motion of the camera. It turns out that the depth of
a scene is insignificant as long as the camera motion is restricted to rota-
tional motion around a fixed optical center. This type of camera motion
plays a central role in the thesis and is therefore examined in more detail.
Especially, it is discussed how the physical camera-movements can be re-
covered from the observed camera motion (Chapter 12). This information
establishes a link between the 2-D video image and the 3-D real-world ge-
ometry. Knowing this relation, techniques to augment the input video with
computer-generated objects are made possible. Thereby, the virtual camera
for the generation of the computer images is controled by the parameters
extracted from the input video. This has the effect that the virtual camera
follows the motion of the real camera, which enables a seamless integration
of the virtual objects into the original scene.

The physical camera-parameters are also helpful in the video-content
analysis, since the type of camera motion often provides information about
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the intention of the editor. For instance, a camera zoom onto a face indi-
cates that this person plays a major role in the scene.

Another case considered in the thesis is the calibration of the camera for
sports sequences (Chapter 13). In this application, the calibration estab-
lishes the link between the 2-D image coordinate system and a real-world
coordinate system. The transformation to absolute coordinates is required
for in-depth analysis of the content, since in sports sequences, the position
of the players on the playfield is important, but not their position in the
image.

Although the thesis does not cover general 3-D reconstruction, the seg-
mentation algorithm employs synthesized background images as a repre-
sentation of the scene. These background images can also be considered
as 360-degree panoramic images, which, when unwrapped, are also rect-
angular flat images, but covering a full 360-degree panoramic view. In
this context, the question arises how these panoramic images can be best
visualized to the user. The proposed solution from Chapter 14 is a sim-
plified semi-automatic 3-D reconstruction which recovers the global room
geometry to give coarse orientation hints to the viewer.

1.2 The video-object segmentation problem

The task of video-object segmentation is to identify and separate the im-
portant objects in a video scene from the scene background. Clearly, to
approach this problem, it is necessary to define what is exactly meant with
important objects and how the correct object masks should look like. How-
ever, in practice, it turns out that even an unambiguous definition of video
objects is a fundamental problem. In the following, the involved defini-
tion problems are addressed and grouped into physical problems, being a
consequence of the image formation, and semantic problems. The physical
problems are as follows.

• Shadows. Objects cast a shadow onto the ground or background.
Since this shadow moves with the object, it can be considered part
of the object. However, this might be undesired in video analysis ap-
plications. For example, if a subsequent object recognition is based
on shape information, this can lead to an erroneous object classifica-
tion. For this reason, special algorithms for shadow identification and
removal (Fig. 1.1(a)) have been proposed [72, 162]. In video editing
applications, it may be desired instead to reproduce a similar shadow
on a new background [27, 20].
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• Reflections. The problem of handling reflections is actually similar
to object shadows. However, reflections are more difficult, because the
appearance of the reflected image depends on the physical properties
of the reflecting surface (Fig. 1.1(b)) and because the reflection is not
necessarily attached to the object.

• Occlusions. The object shape can also change because of occlusions.
It depends on the application whether the masks of occluded objects
should be extended to their original shape.

• Translucent objects. Objects can appear partially translucent
since they are made of translucent materials, or because thin struc-
tures like hair or cloth appear translucent. Moreover, pixels along
object boundaries are always a mixture of foreground color and back-
ground color. To model the translucency, the segmentation algorithm
has to compute an alpha-channel mask which identifies the translu-
cency factor for each pixel instead of only computing a binary object
mask. Accurate alpha-channel information cannot be obtained from
a single image, but algorithms using heuristic approaches have been
proposed [26, 161].

Apart from the physical problems, there are semantic definition prob-
lems, like the following.

• Objects of interest (foreground objects). The first and obvious
question of video segmentation is what parts of an image constitue the
foreground objects. This issue is already surprisingly difficult, since
the intuitive human understanding of foreground objects is strongly
depending on the scene context. Mostly, human intuition expects
that this should be the main acting objects. For example, in a sports
broadcast, the players are usually considered foreground and the au-
dience is considered background, even if the audience is moving (see
Fig. 1.1(c) for an example). This distinction is on a very high seman-
tic level, since it assumes knowledge about the meaning of the scene.
Note that the object definition can also vary with the application.
A surveillance system in a sports stadium will be interested in other
objects than a system for automatic analysis of the sports game.

• Small background movements. When taking a more detailed
view on the last point, it can be observed that the distinction between
foreground and background is in fact gradual. The question is to what
extent a background should change such that it is considered part of
the foreground. For example, trees may occur in the background with
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(a) Segmentation without and
with shadow removal.

(b) Semantically difficult segmen-
tation with reflections and trans-
parencies.

(c) Background objects: not only
the players are detected, but also
the referee on the right side.

(d) Occlusion: the car passes be-
hind a pole, which separates the
car into two parts.

Figure 1.1: Various segmentation problems, such as shadows, reflections,
and occlusion.

leaves moving slightly in the wind, or there may be a clock on a wall
at the back of the room.

• Object-status change. Objects can also change their classification
over time. For example, most people would consider a car that drives
along a street as an important object. But how to define the object
status when the car stops and parks at the side of the street? Alter-
natively, the opposite case may occur that a car that was parked for a
long time suddenly drives away. Note that it is practically impossible
to separate all objects, including the static ones, into independent
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objects, since this would imply that all future actions would have to
be predicted.

• Multi-body objects. Objects may be separated into several non-
connected regions in the image. One reason for this can be that an
occluding object cuts the foreground object into pieces. For example,
see Fig. 1.1(d). Another complex example are objects that are really
composed of several parts but still belonging together like flocking
birds.

• Hierarchical objects. Additional to multi-body objects, there can
also exist a hierarchical relationship between objects. One example
is a car object that contains a driver object.

When considering all of these problems simultaneously, it can only be
concluded that a general-purpose segmentation of video objects is virtually
impossible, since the definition of the expected output from the algorithm
depends largely on the scene context and the application that we have in
mind. However, despite all the mentioned problems, it is still possible to
design algorithms that cover a multitude of specific applications and that
work well in many practical cases.

1.3 Object-oriented video coding in MPEG-4

The MPEG-4 video-coding standard is the first and to date only video-
coding algorithm that supports the coding of arbitrarily-shaped video ob-
jects. In the terms of MPEG-4, a video is composed of several independent
Video Objects (VOs) that can be placed in front of a background image
(sprite). This background sprite image can be larger than the display size,
such that only part of the sprite is shown at a time. This concept enables an
efficient transmission of video sequences with camera motion, since the cur-
rent background view can be obtained from the sprite buffer. Additionally,
only the foreground objects have to be transmitted to the decoder. After
decompression, the decoder superimposes the foreground objects onto the
background image.

This coding architecture has two pronounced advantages. First, it pro-
vides for a potentially higher compression ratio, since the background is
only transmitted once and the foreground objects are considerably smaller
than the complete picture. Moreover, the video quality can be regulated on
a per-object basis, assigning a larger bit-rate for the important objects and
a smaller bit-rate to the background [136, 188]. Second, the separation of
objects allows for new possibilities to interact with the content. Video ob-
jects can be extracted from one sequence and placed into a different scene.
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Figure 1.2: Overview of an object-oriented MPEG-4 video coding system.

Note that it is also possible to remove objects from the scene. This does
not result in an undefined hole in the image because the background can
be obtained from the sprite image.

An overview of a typical object-oriented MPEG-4 video coding system
is depicted in Figure 1.2. At the encoder side, the input video is analyzed
and split into independent video objects (VOs) in the segmentation mod-
ule. Instead of the indicated automatic segmentation module, the video
objects can also be generated by other techniques, like synthetic content,
or they may be recorded separately and segmented using a blue-screen tech-
nique. The output of the segmentation module is formed by several video
objects that comprise the texture data and also the shape of the indepen-
dent objects. Moreover, the segmentation module also generates a sprite
image of the scene background and suitable camera-motion parameters to
reconstruct the original camera motion.

Video objects and sprite data are encoded independently into separate
elementary bitstreams by an MPEG-4 compliant encoder and multiplexed
into a single bitstream. At the decoder side, the received bitstream is split
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into the elementary bitstreams and passed to the texture and VO-shape
decoders. Note that the sprite image is only transmitted at the beginning
of the scene and then stored in a sprite image buffer. The scene background
image is then reconstructed by displaying a geometrically transformed part
of the sprite-buffer content (using a projective transformation). Finally,
the video objects are superimposed onto the scene background in the scene
compositor using the VO shape masks.

1.4 Automatic video segmentation system (Thesis
Part I)

Part I of the thesis (Chapters 2-8) describes a generic, automatic segmenta-
tion system. The motivation for this segmentation system is to implement
a video-object segmentation module that can be integrated into an MPEG-
4 encoding framework, as depicted in Figure 1.2. The requirement that the
segmentation system should be compliant to MPEG-4 imposes restrictions
onto the algorithm design. These design constraints are described in the
subsequent section. Afterwards, an overview of the segmentation system is
presented, briefly summarizing the processing carried out in each algorithm
step.

1.4.1 Design goals

A principal design criterion for our segmentation system is to build a system
that is compatible with the object-oriented video-coding tools as defined in
the MPEG-4 video-compression standard [93]. It was discussed previously
that it is not feasible to target an automatic segmentation system operating
unambiguously for every possible input video. Consequently, we restrict
ourselves to a limited, well-defined case which nevertheless enables a broad
range of applications. More specifically, the proposed system is based on
the following two fundamental assumptions.

• Static background. We assume that the scene background is static.
Camera motion is allowed (see next point), but every object that
changes its appearance relative to a static background is considered
foreground.1

• Rotational camera motion. We assume that the recording camera
is a pan/tilt/zoom camera. This means that the camera is allowed

1Note that this definition implies that shadows and reflections are extracted as part
of the object and that “background objects” like the audience in a sports broadcast are
also considered as foreground when they are moving.
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to rotate around its optical center in any direction, and it may also
change the focal length (zoom). However, translatorial camera motion
is not allowed because in such a case, the parallax effect would make
it impossible to synthesize a static background image.

These assumptions are sensible for many practical applications. For
example, most surveillance cameras are pan/tilt/zoom cameras observing
objects in a static environment. Moreover, in many typical television scenes
like interviews or sport transmissions, several cameras are used at a fixed
position and the operators switch only between the views. The restriction
to rotational camera motion is also required in order to be compatible with
the MPEG-4 video-compression standard, which only supports this type of
camera motion for the background sprites.

1.4.2 Segmentation-algorithm overview

The segmentation system developed in this thesis is based on the background-
subtraction approach. In this technique, the segmentation algorithm com-
pares the input images to a background image. The background image
is a synthesized view of the scene background in which all foreground ob-
jects have been removed. Regions in the input image that differ from the
background image are marked as foreground objects (Fig. 1.3).

To compute the background image, the camera motion is estimated
and by compensating this motion, the input images are composed into a
background image. If the camera is panning across the scene, this results
in panoramic background images which are larger than the input image.
Finally, the background image is reconstructed from the input sequence
by integrating all frames of the sequence such that non-static foreground
objects are removed from the image.

The synthesized background images together with the extracted fore-
ground objects match the input that is required for the MPEG-4 object-
oriented video coding tools. Hence, the output of our segmentation algo-
rithm can be directly used as input for an object-oriented MPEG-4 video
coder.

1.4.3 Framework of the segmentation algorithm

This section briefly describes the processing steps of the developed segmen-
tation system (see Figure 1.4) and introduces the core algorithms that are
used.
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(a) Input image. (b) Background view. (c) Segmented fore-
ground.

(d) Sprite image.

Figure 1.3: Principle of the segmentation algorithm. All input images (a)
are combined into a static background sprite (d). The current
camera view (marked quadrilateral) is extracted and dewarped
(b). By comparing the input (a) and the background (b), the
foreground object (c) is obtained.

Camera-motion estimation

The largest part of the system is the camera-motion estimation. The dif-
ficulty of the camera-motion estimation is that it must be robust to fore-
ground object motion, and that it also has to give very accurate motion
parameters such that all input frames can be combined seamlessly into a
background image. To achieve this, we apply a combination of a feature-
based motion estimator and a direct estimation algorithm.

Chapter 3 starts the presentation of the feature-based motion estima-
tor with the detection of feature-points that can be retrieved reliably in
a subsequent frame. In the next step, correspondences between matching
points are established. Each feature-correspondence can be viewed as the
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motion of this point between the two images. Chapter 3 describes sev-
eral feature-point detectors (SUSAN, Harris, Shi-Tomasi, and Moravec),
which are evaluated for their accuracy and robustness, for a wide variety of
video sequences. Moreover, the chapter describes an algorithm to compute
feature-correspondences across pairs of images. The algorithm features pre-
diction of the matching feature-points and a fast neighborhood-search to
achieve a low computation time.

Chapter 4 discusses the estimation of the global-motion parameters
from the previously computed feature-correspondences. First, the problem
is considered on sequences with pure camera motion without foreground
objects. Subsequently, the estimation problem is considered for the gen-
eral case that the observed motion is a mixture of camera motion and
object motion. Robust estimation algorithms are introduced to estimate
the parameters of the dominant motion. Chapter 4 concentrates particu-
larly on the RANSAC algorithm, while other estimators are considered in
Appendix C. Finally, the chapter presents why the robust estimator breaks
down earlier in practice than predicted from theory. Based on the discus-
sion of this phenomenon, the RANSAC algorithm is modified to increase
its robustness to about the theoretically predicted performance.

The first part of Chapter 5 presents the direct motion-estimation al-
gorithm to refine the motion parameters obtained from the feature-based
motion estimator. The obtained motion parameters are a good estimate for
the inter-frame motion, but they are not accurate enough to build a global
background image. The direct motion estimator is a gradient-based global-
motion estimator, which computes long-term motion parameters between
each input frame and the background sprite. Compared to the short-term
motion parameters obtained from the feature-based motion estimator, the
long-term parameters have a higher accuracy, since there is no accumula-
tion of errors as would happen with a concatenation of inter-frame motion
parameters. However, the gradient-based estimator should be initialized
with the result of the feature-based motion estimator, because the area of
convergence is smaller and it thus requires a good initialization.

Background reconstruction

The second part of Chapter 5 discusses the synthetization of static back-
ground-sprite images with all foreground objects removed. Knowing the
camera-motion parameters, a background image can be synthesized by
stitching the input images to a common background image using the ob-
tained parameters. However, the essential problem in this step is to remove
the foreground objects from the background image. The chapter presents
a new algorithm based on the observation that each region in the image
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can be classified into one of three states: static background, moving fore-
ground, non-moving foreground. The difficult case in this classification is
the distinction between static background and temporally non-moving fore-
ground. This classification problem is solved by building clusters of regions
with stable content in temporal direction, and by considering that the times
in which foreground appears in neighboring regions are similar. Finally, the
proposed algorithm is compared to other algorithms, especially the median
algorithm, which is the best previously known algorithm.

Our approach of generating background images uses the same motion
models as those that have been defined in the MPEG-4 and MPEG-7 stan-
dards to describe camera motion. However, it is shown in Chapter 6 that
this approach does not work for all kinds of camera motion. This problem
has not been considered in previous work, even though it leads to major
problems when camera rotations of large angles are present. For example,
the MPEG-4 sprite-coding approach becomes inefficient for camera rotation
angles larger than approximately 25 degrees. Moreover, ad-hoc implemen-
tations for sprite generation usually do not consider that camera zooming
changes the image resolution and, if the higher resolution is not reflected
in the sprite, the reconstructed view from the sprite misses small details.
Chapter 6 first shows theoretically that all of these problems can be solved
by computing a set of independent sprites (a multi-sprite) instead of trying
to compute a single sprite representation. Afterwards, a novel multi-sprite
partitioning algorithm is presented, which partitions the video sequence
into a number of segments, for which independent sprites are synthesized.
The partitioning is computed in an optimal way, such that the total area
of the resulting sprites is minimized. Furthermore, the algorithm can in-
corporate constraints, such as a limited sprite-buffer size at the decoder, or
the restriction that the image resolution in the sprite should never be lower
than the input image resolution. The described multi-sprite approach is
compatible to the MPEG-4 standard, and yet provides several advantages:
any arbitrary rotational camera motion can be processed, the coding-cost
for transmitting the sprite images is lower, and the quality of the decoded
sprite images is better. In Figure 1.4, the multi-sprite algorithm is depicted
as an extension to the baseline segmentation algorithm.

Foreground object segmentation

Chapter 7 describes the actual foreground-object segmentation, which
is based on a background-subtraction technique. Input images are com-
pared with the corresponding camera-motion compensated view from the
synthesized background sprite and areas that deviate are marked as fore-
ground. At first, a classification of independent pixels is considered, where
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Figure 1.4: Overview of the segmentation system.

the influence of the color-space and the difference measure is evaluated.
Subsequently, multi-pixel based tests and Markov random fields are used to
derive the foreground mask with improved accuracy. Moreover, the concept
of risk maps is introduced to account for the problem that the background
image may not be perfectly aligned to the input images, e.g., because of
inaccuracies in the motion-estimation. These risk maps significantly reduce
the errors caused by misregistration and by blurring of the background im-
age that occurs in the image warping. Finally, post-processing filters are
described that remove clutter regions from the segmentation mask.
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Figure 1.5: Extensions to the segmentation system.

System architecture

Chapter 8 discusses that a complete segmentation system comprises all
or a selection of the processing steps outlined above. Depending on the
application and type of sequences to be processed, the system can be im-
plemented in different variations. For example, the algorithm can be sim-
plified for a surveillance application with static cameras, or the application
may require an online real-time segmentation. Furthermore, this chapter
provides results of the segmentation algorithm on a wide variety of input
sequences and typical effects and problems of the segmentation algorithm
are discussed. Finally, example applications for the described segmentation
algorithm are presented. This includes MPEG-4 video coding, for which
the gain in the compression ratio is discussed, object-based video editing,
pseudo 3-D video generation, or object recognition.

1.5 Extensions to the segmentation system

The segmentation system outlined in the previous section can be regarded
as the core framework, which can be adapted to many specific applications.
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Some of these possibilities are the subject of Part II and Part III of the
thesis. These two parts relate to the two research directions object models
and camera models that are considered as particularly interesting.

1.5.1 Segmentation using object models (Thesis Part II)

A first possibility is the integration of model knowledge about the objects
to be segmented into the segmentation algorithm. The segmentation al-
gorithm outlined so far has no explicit knowledge about the objects to be
extracted. However, if object models should be added to the segmenta-
tion system, the central question is how the object description should be
defined. It is important to balance between an object definition that is ac-
curate enough to uniquely identify the object, and a definition that allows
for enough freedom to recognize the object in different views.

Graph-based object models

In Chapter 9, a graph-based object model is presented. In this model, the
main regions of the object and the region features are summarized in the
graph nodes, and the spatial relations between these regions are expressed
with the graph edges. The approach is first described in Chapter 9 for the
special case of cartoon sequences, since for this type of sequence, the object
regions can be obtained easily with color segmentation. The graph-based
object-detection system consists of two parts. First, the user defines the
object model based on an example image of the object. At the detection
stage, the algorithm applies an automatic color segmentation onto the input
image to obtain a similar, but much larger graph of the input image. Using
an efficient sub-graph matching algorithm, the object is identified in the
input image.

Chapter 10 extends this concept to the detection of objects in natural
video sequences. A similar graph-model is used with the only difference that
the region shapes, which cannot be extracted easily using color segmenta-
tion, are approximated using ellipses. The concept of the object-detection
algorithm is similar to the algorithm for the cartoon sequences, except that
for each model region, a set of candidate regions is first extracted from the
input image. This set comprises several possible placements of ellipses in
the input image to cover areas that have similar color and size as indicated
in the object model. Additionally, the algorithm can integrate change-
detection masks providing a coarse hint about the location of the objects.
The final object segmentation is carried out with a color segmentation al-
gorithm that is modified such that the object regions are restricted to the
areas covered by the detected object position.
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The graph-based object models can be integrated into the core segmen-
tation system as depicted in Figure 1.5. In this configuration, the segmen-
tation result of the core segmentation system is applied only as a coarse
indication of object location. Note that this indication can be incomplete
if only a part of the object is detected in the segmentation system (e.g., see
Fig. 8.14). The subsequent model detection step uses this first indication of
the object location and the object model that has been created manually
with the object-model editor to determine the image area that comprises
the object. Accurate pixel-level object boundaries are computed in the
final spatial segmentation step.

Object signatures for tracking

Chapter 11 presents a different approach to describe specific objects. The
segmentation problem is approached from a different perspective. For appli-
cations requiring highly accurate segmentation masks, the quality provided
by an automatic segmentation may not be sufficient. For these cases, it
should considered to use a semi-automatic segmentation algorithm where
the user controls the segmentation, but the computer relieves him from
working at the pixel level. To this end, an advanced algorithm based on
the concept of the Intelligent Scissors algorithm [130] is presented. This is
an edge-based segmentation algorithm, in which the user traces along the
object edge to define the boundary. This approach is generalized to search
the object contour in a user-drawn corridor that he draws along the object
boundary. The exact object boundary is obtained using a newly developed
shortest circular-path search algorithm.

Apart from the semi-automatic segmentation algorithm, the chapter
deals with the novel concept of object signatures. The object signature is
defined as the image texture along the object boundary. Once this object
signature is known, for example from a segmentation of the first frame
of a sequence, its information can be integrated into the segmentation of
the successive frames. This enables an automatic tracking of the object
through the sequence without manual intervention. The tracking step can
also be added to the core segmentation system in order to carry out the
computationally expensive segmentation only for one frame and then switch
to the more efficient object tracking.

1.5.2 From camera motion to 3-D models (Thesis Part III)

During the work on camera-motion estimation, it was observed that there
is a close connection between the camera-induced motion in the image and
the scene geometry. This relation between the 2-D image and the 3-D
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world becomes especially important when the segmentation result is used
to analyze the video content. Whenever object motion is used for the
analysis, the object motion in the image has to be translated to motion in
the real-world, because the motion in the image is composed of the object
motion as well as the camera motion. Different techniques are explored
to derive information about the physical 3-D world for the special case of
rotational camera motion.

The core segmentation system employs camera-motion estimation to
compensate for any camera motion. When we derived the camera-motion
model in Chapter 2, we started with a 3-D model of the environment and
the image-formation process of a camera. Based on this physically mo-
tivated model, the projective motion model was derived, which was sub-
sequently used in the camera-motion estimation. However, although the
motion model was derived from a physical description including rotation
angles and the focal length of the camera, it is not easily possible to recover
these parameters from the parameters of the estimated projective motion
model.

Chapter 12 adresses the inverse problem of factorizing the motion
parameters into physically meaningful parameters using camera autocali-
bration techniques. Our approach uses first a linear estimation approach
based on the concept of the image of the absolute conic. To refine the
motion parameters, the accuracy is further increased with a non-linear op-
timization similar to bundle-adjustment techniques. The speciality of the
new algorithm is that it can integrate camera motion that spans several
sprites according to the earlier introduced multi-sprite technique. Conse-
quently, the algorithm can be applied to arbitrary unrestricted rotational
camera motion.

For the analysis of video sequences, it is often required to know and
follow the position of the objects. Clearly, the object position in terms of
image coordinates provides little information as long as the viewing direc-
tion of the camera is not known. In some application, like sport videos,
the camera view can be determined from markings on the ground of the
playing field. Chapter 13 provides a new algorithm to deduce the trans-
formation between the image coordinates and the real-worlds coordinates,
based on the lines defining the playfield. The theory behind this approach
is closely related to the estimation of camera motion, since also the map-
ping between two image planes (the image and the flat real-world ground
plane) is estimated. However, the difference is that in this case, a mapping
onto absolute coordinates is obtained.

The camera calibration for sports sequences employs a special model for
the arrangement of lines in the playfield, which is usually defined in the rules
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of the game. After detecting lines in the input image, a combinatorial search
is carried out to establish correspondences between lines in the input image
and lines in the model. Comparable to the feature-based motion estimator,
motion parameters are deduced from a set of corresponding lines. To reduce
the overall computation time, a tracking step is additionally presented that
updates the transformation parameters during camera motion with reduced
computational complexity.

Chapter 14 describes a step towards the reconstruction of 3-D models
from video images. During the work on background sprites and their gener-
alization to multi-sprites, the question arose how the sprite images, which
are informative pictures by themselves, can be best presented to the user.
Usually, very wide-angle images are presented in the form of panoramic
images, which are actually a mapping of the environment on a cylinder
instead of a plane, as it is the case for MPEG-4 compliant background
sprites. However, the disadvantage of panoramic images is that complete
360-degree views are unwrapped into one rectangular image with the con-
sequence that all straight lines in the image become bent and, more impor-
tantly, the viewer has no good orientation in the image because he looks
into all directions at the same time. In order to provide a more intuitive
presentation for wide-angle views, a visualization technique is developed
which is specialized for the case of indoor environments. The visualization
program recomputes the 3-D shape of the room in which the image was
captured and projects the panoramic image onto these virtual room walls.
The advantage of this presentation is that the room shape helps the user
in the orientation, making it clear which part of the image corresponds to
which wall. This concept is further generalized with an algorithm to recon-
struct the complete floor plan from several panoramic images. This enables
to conduct virtual walk-throughs in the reconstructed rooms.

1.6 Contributions of the author

Most parts of the chapters in this thesis have been published in confer-
ence proceedings or scientific journals. An overview of which chapters are
covered by corresponding publications is summarized in Table 1.1.

Part I - An Automatic Video-Object Segmentation System

The concept of Part I of the thesis is to provide the reader with a complete
discussion of a segmentation system in every detail. Because of this, some
chapters also comprise background information, additional to the contri-
butions of the author. In particular, Chapter 2 provides an introduction



24 Chapter 1. Introduction

to projective geometry, which can be skipped by the reader who is familiar
with this topic.

The implementation of a complete segmentation system is a difficult
task because of the complexity of the system. Various algorithm types and
techniques covering many research areas have to be combined, like global-
motion estimation, feature extraction, statistics (Markov Random Fields),
and various linear, non-linear, and combinatorial optimization techniques.
Each of the processing steps has to be designed carefully, since a low accu-
racy in one step can lead to a complete failure of the system. Consequently,
it was of significant importance to evaluate different alternatives for each
processing step and select those algorithms that provide the most robust
result when combined. For example, only the combination of the feature-
based motion estimator with the direct estimation leads to high-accuracy
parameters as well as robustness against fast camera motion, and the ac-
curacy limitations of the motion estimator requires the adaptation of the
change-detection algorithm with the risk-map approach.

An important algorithmic invention is the use of multi-sprites as a re-
placement for single static background images (Chapter 6). This technique
has made it possible for the first time to process arbitrary camera mo-
tion. Although this is a crucial part to enable a practical implementation,
this problem has been overlooked in the literature. The attractivity of our
multi-sprite approach is that the problem is solved in an optimal way, also
minimizing the MPEG-4 sprite-coding cost.

The two papers [59, 55] about multi-sprite coding both received the
Best Student Paper award at the SPIE Visual Communications and Image
Processing conference 2004, and at the 24th Symposium on Information
Theory in the Benelux, 2003.

Another new development is the algorithm for background synthetiza-
tion (Section 5.3). Compared with previous algorithms, this new algorithm
also succeeds in reconstructing the background if it is visible for only short
periods of time. This is important, because for a given video-sequence, the
total observation time can be short (only one camera-pan). Because of this
reason, existing algorithms that were primarily designed for background
reconstruction in surveillance video, where the same scene is observed for
a long time, cannot be applied.

The segmentation system was summarized in a book chapter [62] and it
will also be presented by the author as a tutorial at the IEEE International
Conference on Consumer Electronics 2006. Furthermore, the research on
segmentation and object models (see below) has led to the organization of
a special session about content analysis at the same conference.
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Part II - Segmentation using object models

Because we made the observation that a semantically meaningful segmen-
tation requires pre-knowledge about the object to be extracted, we ex-
plore in Chapters 9 and 10 how this object description can be specified.
We combined ideas of image databases supporting region-based queries
[23, 17, 112] with articulated-object models as they are used for object-
tracking applications [154, 70]. This is implemented in a new integrated
framework supporting the creation of object models from sample images,
as well as two algorithms for detecting the objects in real-world or cartoon
images. We extended the concept of a 1 : 1-matching as it is used for
tracking to an 1 : N -matching to enable a complete coverage of the object
to be segmented. The object-detection algorithm uses a cascade of steps
(candidate-region detection, skeleton-tree based graph-matching, extension
of the mapping from an isomorphism to an homomorphism) to be compu-
tationally efficient. Finally, the object detection is combined with a color
segmentation to obtain accurate object boundaries.

In Chapter 11 a new approach for semi-automatic segmentation is devel-
oped. Based on the Intelligent Scissors algorithm, we present an interactive
segmentation tool that is easier to use and which also comprises a track-
ing component. Our tool replaces the shortest-path search with a shortest
circular-path search. This not only provides a more intuitive user-interface,
but it is also used in the tracking step. The tracking step is special because
it uses a model of the object that is derived automatically from a previously
segmented image. A main innovation in this chapter is the development
of the circular-path search algorithm. It is the fastest algorithm currently
known for planar graphs, with a typical computation complexity equal to
the ordinary shortest-path search. This algorithm is generic and can be
used for many applications apart from our manual segmentation tool, such
as shape matching.

Part III - From camera motion to 3-D models

The contribution of Chapter 12 is the integration of the multi-sprite concept
into the autocalibration for rotational cameras. This enables the recovery
of physical camera parameters from projective-motion parameters for un-
restricted camera motion.

In Chapter 13 discusses a special kind of model: the model of a sports
court to compute camera-calibration parameters. In order to obtain a ro-
bust court detection, the algorithm is based on line features. Similar to
the graph-based object models, we use a combinatorial optimization to es-
tablish the correspondences between image features and the model. Our
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results show that a specialized model can lead to highly robust object de-
tection, invariant to observation conditions like illumination or court colors.
It is also interesting to note that the robustness of the algorithm allows to
adapt it to various kinds of sport by simply exchanging the court model.

Later, the work on camera calibration for sport sequences was integrated
into the Philips Cassandra demonstrator [133] that was presented at the
IEEE International Conference on Multimedia and Expo (ICME), 2005.
The research in this area has also led to a special session on that topic
at the same conference, co-organized by the author and Xinguo Yu. The
calibration algorithm also builds the basis of ongoing research on sports
analysis, extending it to a complete analysis system [81]. Furthermore,
several international research groups employed our algorithm in their tennis
or soccer analysis systems [89, 116].

Due to the work on background sprites, the author was invited in
2003 to stay at the Stanford Center for Innovations in Learning (SCIL)
in the context of the Diver project [142], in which the human interaction
with panoramic-video content was studied. In this time, the author devel-
oped the room reconstruction algorithm for rectangular rooms, presented
in Chapter 14. Later, the algorithm was extended for general floor plans. A
main contribution is the new approach of combining pre-knowledge about
the room shape with measurement data from the panoramic image. Using
the panoramic image for obtaining measurements is convenient since inter-
nal camera parameters like the focal-length are easily computed from the
panoramic image instead of being estimated a difficult process.

Appendices

Apart from the work on segmentation, the author contributed to the Ger-
man BMBF project “L3-Lifelong Learning”. In this project, the author
contributed a video-database application featuring an automatic video-
summary generation (Appendix A). Furthermore, the segmentation system
has also been integrated into a video-abstracting system that was developed
in the context of the European ECHO project (European CHronicles On-
line) [104]. In this project, a video-archiving system for historical films was
established.

Appendix E describes early work about color-segmentation that has
later been integrated into the model-based object detection. This color
segmentation features a new speed-improved variant of the region-merging
algorithm and a multi-stage approach, in which the merging criterion is
switched during the segmentation. The paper about multi-stage segmenta-
tion [12] also received a best student paper award at the 22nd Symposium
on Information Theory in the Benelux, 2001.



1.6. Contributions of the author 27

Chapter Publication title and contribution

Early work about content-adaptive MPEG-2 encoding
1 “A Software-Based High-Quality MPEG-2 Encoder Em-

ploying Scene Change Detection and Adaptive Quantiza-
tion”, IEEE Trans. on Consumer Electronics, 2002, [67]

and
1 “SAMPEG, a Scene Adaptive Parallel MPEG-2 Software

Encoder”, SPIE VCIP, 2001, [66]
Preparatory work: implementation of a parallel MPEG-2 en-
coder. Includes video content analysis to control the adaptive
quantization separately for different types of content. Also in-
cludes scene-change detection for adapting the GOP pattern.

1 “Rate-Distortion Optimal Adaptive Quantization and
Coefficient Thresholding for MPEG Coding”, 23rd Sym-
posium on Information Theory in the Benelux, 2002, [64]

Development of a theoretically optimal encoder for MPEG-2
I-frames, yielding the highest possible PSNR for quality com-
parison to adaptive quantization approaches.

Part I - An Automatic Video-Object Segmentation System
2–8,F Book chapter “Segmentation and Classification of Mov-

ing Video Objects”, in “CRC Handbook of Video
Databases”, 2003, [62]

Overview of the core segmentation system, excluding multi-
sprite segmentation. Presents different motion-models,
feature-based and dense motion-estimation, Markov Random
Field segmentation. Also discusses object recognition based on
the object shape.

3–8 “Video-Object Segmentation using Multi-Sprite Back-
ground Subtraction”, IEEE ICME, 2004, [60]

Overview of the segmentation system with special considera-
tion of using multi-sprites.

3,4 “Evaluation of a Feature-Based Global-Motion Estima-
tion System”, SPIE VCIP, 2005, [50]

Evaluation of different feature-point detectors. Efficient
feature-correspondence algorithm. Comparison of linear vs.
non-linear parameter estimation. Improvement of the robust-
ness of the RANSAC parameter estimation algorithm.

5 “Robust Background Estimation for Complex Video Se-
quences”, IEEE ICIP, 2003, [57]

Algorithm for synthesizing background images in which mov-
ing foreground objects are removed. The algorithm is partic-
ularly robust even if the background is only visible for short
periods of time.
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Chapter Publication title and contribution — continued
6 “Optimal Partitioning of Video Sequences for MPEG-4

Sprite Encoding”, 24th Symposium on Information The-
ory in the Benelux, 2003, [55]

Observation that MPEG-4 sprite-coding is not applicable to
wide camera pans. Proposal of an algorithm that removes this
limitation and which provides a significant reduction of bit-rate
for the transmission of sprite images. (Award paper.)

6 “Minimizing MPEG-4 Sprite Coding-Cost Using Multi-
Sprites”, SPIE VCIP, 2004, [59]

Extended paper of [55]. Enhanced algorithm now supports
additional constraints like a maximum decoder sprite-buffer
size. Also provides a better approximation of sprite-coding
cost based on the sprite area. (Award paper.)

6 “Enabling Arbitrary Rotational Camera-Motion Using
Multi-Sprites with Minimum Coding-Cost”, IEEE Trans.
on Circuits and Systems for Video Technology, accepted
for publication, [54]

See above.
6,8 “Automatic Video-Object Segmentation Employing

Multi-Sprites with Constrained Delay”, IEEE ICCE,
2006, [53], (will also be submitted as journal paper)

Overview of the segmentation system with special considera-
tion of the real-time implementation of multi-sprites.

7 “A New Similarity Measure for Sub-Pixel Accurate Mo-
tion Analysis in Object-Based Coding”, ISAS SCI, 2001,
[47]

Improved distance metric to reduce matching error in the pres-
ence of aliasing and misregistration. (Invited paper.)

7 “Misregistration Errors in Change Detection Algorithms
and How to Avoid Them”, IEEE ICIP, 2005, [51]

Change-detection algorithm is improved by estimating a map
indicating regions with risk of misregistration errors. Risk
map is integrated into change-detection algorithms to improve
robustness against inaccuracies in the motion estimation and
aliasing noise.

Part II - Segmentation Using Object Models
9 “Recognition of User-Defined Video Object Models using

Weighted Graph Homomorphisms”, SPIE IVCP, 2003,
[56]

Specification of objects by attributed graph models. Detec-
tion of the user-supplied object model by detection of graph
homomorphisms (1 : N mapping). Efficient implementation
using a matching algorithm based on dynamic programming.
Algorithm is specific to cartoon sequences.
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Chapter Publication title and contribution — continued
10,E “A Segmentation System with Model Assisted Comple-

tion of Video Objects”, SPIE VCIP, 2003, [58]
Graph-based object models are applied to the detection of ob-
jects in natural video sequences. Model matching yields ap-
proximate location of object. Accurate boundaries are com-
puted by combining the positional hint with pixel-level color
segmentation.

E “Multi-Stage Region Merging for Image Segmentation”,
22nd Symposium on Information Theory in the Benelux,
2001, [12]

A color-segmentation algorithm based on region-merging that
features a multi-stage segmentation, where the segmentation
criterion is changed during the segmentation to adapt it to the
typical signal characteristics at the respective stage. (Award
paper.)

E “Towards Real-Time MPEG-4 Segmentation: A Fast Im-
plementation of Region-Merging”, 21st Symposium on
Information Theory in the Benelux, 2000, [46]

Fast implementation of region-merging color segmentation.
11 “Corrisor Scissors: A Semi-Automatic Segmentation

Tool Employing Minimum-Cost Circular Paths”, IEEE
ICIP, 2004, [68]

Development of the Corridor Scissors segmentation algorithm
as an extension of the Intelligent Scissors algorithm. A first
fast algorithm for shortest circular paths is presented.

11 (drafted as journal paper)
Enhancement of the circular-path search algorithm to remove
special cases and achieve a high computation speed for any
input data.

Part III - From Camera Motion to 3-D Models
12 “Estimating Physical Camera Parameters for 3DAV

video coding”, 25th Symposium on Information Theory
in the Benelux, 2004, [48]

and
“Estimating Physical Camera Parameters based on
Multi-Sprite Motion Estimation”, SPIE IVCP, 2005, [49]

Auto-calibration of rotational cameras. Rotation angles and
focal-length are estimated from the projective-motion param-
eters obtained in the segmentation system. Speciality of this
algorithm is that it supports the estimation also in the case of
unrestricted camera motion, since the multi-sprite technique is
integrated.
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Chapter Publication title and contribution — continued
13 “Robust Camera Calibration for Sport Videos using

Court Models”, SPIE Storage and Retrieval Methods and
Applications for Multimedia, 2004, [65]

Estimation of mapping between image coordinates and real-
world coordinates for sport sequences, based on a model of the
playfield. Lines are estimated and a set of four corresponding
lines between the image and the model are determined. Also
supports a tracking step to reduce the computational complex-
ity after initial calibration.

13 “Fast Camera Calibration for the Analysis of Sport Se-
quences”, IEEE ICME, 2005, [63]

Enhancement of the camera calibration algorithm that reduces
the computation time by only requiring the matching of two
line-segments for the calibration instead of four correspon-
dences.

13 “Current and Emerging Topics in Sports Video process-
ing”, IEEE ICME, 2005, [199] (co-work with Xinguo Yu)

Overview of techniques and applications for sport-video anal-
ysis.

14 “Reconstructing Virtual Rooms From Panoramic Im-
ages”, 26th Symposium on Information Theory in the
Benelux, 2005, [52]

Geometry reconstruction of rectangular rooms from panoramic
images. Generation of 3-D room-models where the wall-
textures are extracted from the panoramic image.

Appendices
A “Robust Clustering-Based Video-Summarization with In-

tegration of Domain-Knowledge”, IEEE ICME, 2002, [61]
Development of a video-summarization algorithm that can in-
corporate pre-knowledge about scenes that should be excluded
from the summary.

A,2-8 “Automatic generation of video summaries for histori-
cal films”, IEEE ICME, 2004, [104], (co-authored with
Stephan Kopf)

and
A,2-8 “Automatic Generation of Summaries for the Web”,

SPIE Storage and Retrieval for Media Databases, 2004,
[103], (co-authored with Stephan Kopf)

Video-abstracting algorithm that incorporates the described
segmentation system and object recognition to improve the
detection of significant scenes.

Table 1.1: Contributions of the author in the respective chapters.
If not noted otherwise, the thesis author is also the first author of
the paper.
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Chapter2
Projective Geometry

The geometric relations between objects in the 3-D world and a 2-D image
of them is of central importance when we want to estimate the motion of
the camera from a sequence of images. In particular, we need a geomet-
ric model that describes the observed motion fields resulting from different
kinds of camera motion. Object motion and image formation can be ex-
pressed mathematically with the concept of projective geometry. This chap-
ter gives an introduction to projective geometry as far as it is required to
understand the subsequent chapters. We start with defining the projective
space and deriving basic operations on points and lines in it. We proceed
by discussing geometric transformations in the projective plane and in the
3-D Euclidean space, including the projection of 3-D space onto a 2-D im-
age plane. Finally, we construct a detailed model of the image formation
process for a moving camera. The reader familiar with projective geometry
and its application to computer vision can jump to the concluding section
of this chapter where we summarize the notation that will be used for the
following chapters.

Equations are just the boring part of mathematics.
I attempt to see things in terms of geometry.
(Stephen Hawking)

33
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2.1 Introduction

The theory of projective geometry establishes the basis for three-dimensional
computer vision and computer graphics. Compared to Euclidean geometry,
it facilitates the description of rigid1 three-dimensional motion and the per-
spective projection onto planar images, because it enables to formulate both
with linear algebra techniques. In particular, projective geometry provides
a uniform description of situations that require special cases in Euclidean
geometry, like the intersection of parallel lines. Consequently, projective ge-
ometry has become the standard technique to describe three-dimensional
geometry.

Since we employ the mathematical tools of projective geometry in many
of the succeeding chapters, this chapter gives an introduction to projective
geometry. Thereby, we concentrate on the aspects that are required in our
applications. First, we describe the basic notion of homogeneous coordi-
nates and we show how points and lines are represented in two-dimensional
images. Second, we consider geometric transformations in the plane. We
show how elementary operations like translations or rotations can be de-
scribed and we introduce the classes of affine and projective motion. Third,
the planar transformations are generalized to three-dimensional rigid mo-
tion. This gives us the required tools to describe the complete geometric
image formation process as a concatenation of elementary operations. Fi-
nally, we deduce motion models for important classes of camera motion like
rotational camera motion.

While this chapter only gives a brief introduction, a thorough discus-
sion of 3-D geometry, estimation of camera parameters, and multi-view
geometry can be found in the books [85] and [69]. Book [85] concentrates
on the description of camera geometry for 3-D reconstruction, while [69]
covers a wider range and also includes computer-vision algorithms, e.g., for
multi-view tracking of objects. A detailed introduction to the mathemat-
ical theory of projective geometry can be found in [166]. Many practical
aspects of projective transformations for image warping are described in
[90]. These include optimal filtering of the transformed image to prevent
aliasing and fast algorithms to compute transformation parameters and in-
verse transforms. Finally, [99] and [127] provide condensed introductions
to the field.

1Rigid: shape and size preserving. Motion of non-deformable solid objects.
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2.2 Projective spaces

Elementary geometry is usually described in the Euclidean space, which is
a direct description of space as we perceive it with our human intuition. In
this formulation, points in n-dimensional Euclidean space En are simply
represented as vectors of length n. However, this supposedly convenient
definition of Euclidean space has several practical drawbacks. First, there
is no notion about points at infinity, so that these must be considered sep-
arately as a special case. For example, this problem arises when computing
the intersection of parallel lines, which is not defined in Euclidean space.
A second drawback becomes apparent when we use geometric transforms
to describe object motion. Even for the basic types of motion, different
formalisms are required. While translation is described using a vector ad-
dition, rotation is written as a matrix multiplication, and the perspective
projection of points onto a plane requires a division operation.

The concept of projective spaces, provides an alternative convenient for-
malism to describe all types of rigid motion and the perspective projection
in a unified way. Moreover, points at infinity are an integral part of the
projective space and require no special consideration.

The remainder of Section 2.2 introduces the construction of projective
space, its relationship to Euclidean space, and it introduces basic operations
on points and lines.

2.2.1 Homogeneous coordinates

In the n-dimensional Euclidean space En, each point is written as a vec-
tor of length n, where each component is the position along one coordi-
nate axis. In contrast, points in n-dimensional projective space Pn are
represented by n + 1 dimensional vectors. The construction is such that
each point (x1, . . . , xn)> in En corresponds to a one-dimensional subspace
(wx1, . . . , wxn, w)> in Pn with the free scaling parameter w 6= 0. Euclidean
space En can be embedded into Pn in a simple way by using the canon-
ical injection En 3 (x1, . . . , xn)> 7→ (x1, . . . , xn, 1)> ∈ Pn. In the reverse
direction, Euclidean coordinates can be recovered by the mapping

P
n 3 (x1, . . . , xn, w)> 7−→

(x1

w
, . . . ,

xn

w

)>
∈ En. (2.1)

This projective representation is denoted as the point’s homogeneous coordi-
nates. A direct consequence of the definition is the important property that
homogeneous coordinates are scaling invariant. Thus, (x1, . . . , xn, w)> and
(λx1, . . . , λxn, λw)> represent the same point for all λ 6= 0. In other words,
each Euclidean point p is represented by one equivalence class E(p) ⊂ Pn
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(x/w, y/w) w=1

x

y

w
p=(x,y,w) Euclidean plane (w=1)

Figure 2.1: The Euclidean plane E2 can actually be viewed as the plane
w = 1 in projective space P2 = {(x, y, w)>}.

in the projective space. All vectors in the equivalence class can be obtained
by a uniform scaling of the coordinates.

Projective points with w = 0 represent ideal points at infinity with no
correspondence in Euclidean space. For these points at infinity, the first
n vector components indicate the direction in which the point is located.
The non-sense null-vector (0, . . . , 0)> is not included in Pn.

Visualization of P2

In the following discussion, the projective plane P2 is of central importance.
For this case, the relation between points in Euclidean space E2 and corre-
sponding points in projective space P2 can be visualized easily. We draw
P

2 = {(x, y, w)>} as a three-dimensional space with the dimensions x, y, w
(see Figure 2.1). In this space, the equivalence class induced by a point p
in P2 can be visualized as the line through the origin and the point p. The
intersection of this line with the plane w = 1 defines the coordinate in the
Euclidean plane. Since a scaling of the homogeneous coordinates of point
p by a non-zero constant only moves the point along the line, its position
on the Euclidean plane stays the same. This explains the scaling invariance
of homogeneous coordinates. By choosing the special representation with
the last coordinate w = 1, it becomes clear that the Euclidean plane itself
can be embedded into the projective space as the plane at w = 1.

Ideal points p with w = 0 correspond to lines parallel to the Euclidean
plane and thus intersect them ideally at infinity. Since these lines are par-
allel to the Euclidean plane w = 1, the ideal points are not part of the
Euclidean space. This is consistent with the definition of Euclidean space,
because it has no notion about points at infinity.
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w=1

x

w

l=(a,b,c)

ax+by+c=0

y

Figure 2.2: Lines l = (a, b, c)> in the P2 can be represented as planes
through the origin with normal vector l. The intersection of
this plane with the Euclidean plane forms the corresponding
line in the Euclidean plane.

Normalization of homogeneous coordinates

It is common practice to normalize homogeneous coordinates to have unit
norm ||p|| = 1 during computations. Regarding the above-mentioned vi-
sualization model, this has the effect that all points in homogeneous coor-
dinates lie on the unit sphere around the origin of P2. The normalization
resolves numerical problems that can occur when working with coordinates
of significantly different magnitude. We do not explicitly mention the nor-
malization of coordinates in the following, but simply note that this normal-
ization procedure can be applied at arbitrary times during the computation,
whenever it seems appropriate.

2.2.2 Lines in the projective plane

In Euclidean geometry, lines are defined as ax + by + c = 0, where a, b, c
are the line parameters. Note that these line parameters are invariant to
scaling with a constant w 6= 0, since w(ax) + w(by) + wc = 0 describes the
same line. If we denote the line parameters by the vector l = (a, b, c)> and
specify points using homogeneous coordinates p = (wx, wy,w)>, we can
rewrite the line equation conveniently as l> · p = 0.

It is possible to visualize lines in the projective plane in the same way
as we did with points in the last section. The construction represents each
line in E2 as a plane in P2 which goes through the origin and which has
a normal vector equal to the line parameters l. This plane intersects the
Euclidean plane w = 1 in the desired line (see Figure 2.2). Since the norm
of the plane normal is irrelevant, the line parameters are also invariant to
scaling with a non-zero value.
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l
1
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l2

(a) Intersection of lines.
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w
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l

l

1

2

p

(b) Intersection of parallel lines.

Figure 2.3: (a) The intersection point p of two lines l1, l2 can be calculated
by p = l1× l2, since the vector p must lie on both planes and
hence, it must be orthogonal to l1 and l2. (b) For two parallel
lines, the intersection is an ideal point at infinity.

Similarly to the points at infinity, a special line at infinity is defined by
l∞ = (0, 0, 1)>. Since l>∞ · (x, y, w)> = 0 iff w = 0, the line l∞ is the set
of all points at infinity. Note that just like the points at infinity, l∞ has
no correspondence in Euclidean geometry. In our visualization, where we
consider the vector of line parameters to be a plane normal, l∞ defines a
plane parallel to the Euclidean plane, intersecting it ideally at infinity (see
Figure 2.4(b)).

Intersection of lines

Let l1 and l2 denote two lines in P2. Visualized in the (x, y, w)-space, these
can be viewed as two planes through the origin with normal vectors l1 and
l2 as shown in Figure 2.3(a). The intersection point p of the two lines l1, l2
obviously must lie on both planes in the (x, y, w)-space. This means that
p> · l1 = 0 and p> · l2 = 0 must hold. In other words, p is orthogonal to
both l1 and l2. Consequently, we can compute it as p = l1 × l2.

Note that when using homogeneous coordinates, the intersection of two
parallel lines is well defined and results in an ideal point at infinity (Fig-
ure 2.3(b)). In this case, the intersection point has w = 0, and the other
two coordinates indicate the direction towards the intersection at infinity.

Line through two points

Let p1 and p2 be two points in P2. Following a similar approach as above,
we remember that p1 and p2 can be visualized by two rays, starting from
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(a) Line through two points.
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(b) Line through two points at infin-
ity.

Figure 2.4: The line l through two points p1,p2 is defined by a plane,
which must include the two vectors p1,p2. Consequently, its
normal vector l must be orthogonal to both vectors p1,p2.

the origin of the (x, y, w)-space (Figure 2.4). To find the projective parame-
ters of the line through p1 and p2, we have to find a plane in (x, y, w)-space
which contains p1, p2 and the origin. If we specify this plane by its plane
normal l, this means that l> · p1 = 0 as well as l> · p2 = 0 must hold.
Therefore, we can determine l by using the cross product l = p1 × p2.
Note that the line through two points at infinity results in the line l∞.

The similarity of the expressions for computing intersection points be-
tween two lines and the expression for computing the line through two
points is not accidental. In fact, it is one example of the duality principle
between points and lines in projective space. This fundamental property
implies that every theorem in projective space P2 stays true if all references
to lines and points are interchanged.

2.3 Geometric transformations in 2-D

In this section, we introduce the projective transformation, which is used
frequently to describe object motion as a geometric transformation in the
image plane. We also derive some basic properties of projective transforms
and introduce affine motion as an important sub-class of projective trans-
forms. The class of affine transformations allows us to develop an intuitive
understanding of the physical meaning of the transform parameters. Fi-
nally, we see how the projective motion model, which is commonly used for
motion analysis in its inhomogeneous formulation, can be derived directly
from the homogeneous definition.



40 Chapter 2. Projective Geometry

2.3.1 Projective transformation

A projective transformation is defined as a linear transformation between
homogeneous coordinates. We only consider non-degenerate cases where
the transform is invertible. Since the transform is linear and invertible, it
can be written as a multiplication with a non-singular matrix H = {hik}.
For a projective space Pn, the matrix is of size (n + 1) × (n + 1). In the
planar case P2, we get specificallyx′

y′

w′

 =

h00 h01 h02

h10 h11 h12

h20 h21 h22

x
y
w

 . (2.2)

The matrix entries {hik} are the transform parameters. Note that because
of the use of homogeneous coordinates, the transformation matrix is only
defined up to a scaling factor. Hence, in P2, the transform has only 8 de-
grees of freedom even though the transformation matrix has nine elements.

Outlook: Estimation of projective transforms.

To estimate the transformation between two frames, we will investigate
feature-based motion estimators in Chapters 3 and 4. The idea is that we
can identify a set of points (xi, yi, 1) in one image and a corresponding set
of points (x′i, y

′
i, 1) in the second image. When inserting pairs of points into

Eq. (2.2), we obtain two constraints for each pair of points. With at least
four pairs of points and one additional constraint (e.g., h22 = 1) to remove
the scaling invariance, we can determine the transformation between the
two images. These transformation parameters can then be used, e.g., to
stitch both images together (Fig. 2.5).

Equivalence to collineations and the mapping of lines

A collineation in the plane is defined as a transform that maps lines onto
lines. It can be shown that every collineation can be written as a projective
transformation, and vice versa. In the following, we only give the proof for
one direction. Given a non-singular transformation matrix H = {hkl}, we
can easily show that lines are always mapped onto lines. To prove this,
let {pi} be a set of points that all lie on a line l, so l> · pi = 0. Since we
assumed that H is invertible, this equals l>(H−1H)pi = 0. By changing
parenthesis, we can read this equation as

(
l>H−1

)(
Hpi

)
= 0. But this

means that the transformed points Hpi all lie on the line l>H−1. Thus,
the projective transformation preserved lines. The reverse direction, which
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(a) Two images with four point-correspondences.

(b) Both images can be aligned using the com-
puted projective transform.

Figure 2.5: Images captured with a rotating camera can be aligned by iden-
tifying four point-correspondences and computing the projec-
tive transformation matrix from these correspondences.

states that every collineation can be written as a projective transform, is
far more complicated to show, and the proof is omitted here.

The above proof also gives us a useful side-result. For a given trans-
formation p′ = Hp between points, we can find a corresponding transfor-
mation that maps a line parameter vector l to the line parameters l′ of the
transformed line. From the above proof, it follows immediately that

l′> = l>H−1 or, equivalently, l′ = H−>l. (2.3)

Consequently, we can say that for a point-transform H, the corresponding
line-transform is H−>.



42 Chapter 2. Projective Geometry

Outlook: Estimation of transform parameters based on corresponding
lines.

Equation (2.3) does not only provide the parameters of lines after a trans-
formation. The equation can also be used to determine the transformation
parameters if a set of corresponding lines are known in two images. The
approach is similar to estimating the transformation parameters from a
set of points, with the only difference that an additional matrix inversion
has to be computed. In some applications, the estimation of lines is more
reliable than the estimation of points, and the approach to estimate the
transformation directly from the lines is more convenient (Fig. 2.6). We
use this technique in Chapter 13 to obtain a camera calibration for sport
sequences. In this case, we detect the lines of the sports court and match
them with lines in a model of the court.

Equivalence to perspective plane-to-plane mapping

One transform of special importance for computer graphics is the perspec-
tive projection of one plane onto another. As depicted in Figure 2.7, points
pi on plane Π are projected onto points p′i on plane Π′ along rays emanat-
ing from the origin 0. Consider the line l through the points p1 and p2.
The plane through the points 0,p1,p2 intersects Π at l. The same plane
will intersect Π′ in a line l′. Consequently, each perspective plane-to-plane
mapping is also a collineation and therefore a projective transform.

2.3.2 Affine motion

Before we discuss properties of the general perspective transform, let us
consider the important sub-class of affine motion. From elementary geom-
etry, we know that planar affine motion in E2 is written as(

x′

y′

)
=
[
a00 a01

a10 a11

](
x
y

)
+
(

tx
ty

)
, (2.4)

comprising a 2×2 transformation matrix A = {akl} and a translation vector
t = (tx, ty)>. The matrix A can always be factorized into a sequence of the
elementary operations rotation, non-isotropic scaling, and skewing. The
transformation matrices for each of these elementary operations is given in
Table 2.1. It is easy to see that all of these elementary operations map
parallel lines onto parallel lines. Consequently, this property also holds for
the general affine transform, since it can be decomposed into a sequence of
elementary operations.
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(a) An image of a tennis court and
a tennis court model. Four corre-
sponding lines are indicated.

(b) Using a projective trans-
form obtained from the line
correspondences, the tennis
court image can be rectified
to the real-world geometry.

Figure 2.6: Rectifying a tennis court image based on the court lines. It is
more robust to determine the transformation from line corre-
spondences, because the court-lines are not occluded as often
as specific feature-points.

We can also write the affine transform using homogeneous coordinates,
in which case we can integrate the translation vector into the matrix, lead-
ing to the unified formulationx′

y′

w′

 =

a00 a01 tx
a10 a11 ty
0 0 1

x
y
w

 . (2.5)

The affine transformation has six degrees of freedom. However, in this
general form, the affine transformation includes types of motion that are
no valid motion of rigid objects. Therefore, we can further restrict the
transformation by disallowing skewing (force k = 0) and allowing only
isotropic scaling (s := s1 = s2). As a consequence, only four parameters
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Figure 2.7: In a projective plane-to-plane mapping, points on plane Π are
projected along rays starting from the origin 0 onto the plane
Π′. This plane-to-plane transform maps lines on Π onto lines
on Π′.

remain, namely one for rotation, one for isotropic scaling, and two for the
translation vector. In this case, we call the transform a similarity transform,
which can be expressed as s cos α s sin α tx

−s sinα s cos α ty
0 0 1

 , (2.6)

with α being the rotation angle and s representing the isotropic scaling
factor.

In Section 2.4.3, we will see that the affine motion model can describe
the motion of planar objects in 3-D space if the camera is located at an
infinite distance. Even though this is never true in practice, the affine
camera model is still often used as an approximation if the distance between
camera and scene is large and the motion is small.

2.3.3 Projective motion

After we have covered the case of affine motion and described it as as
a sub-class of projective motion, we now make the step to the general
projective transformation. If we recall Equation (2.5) for affine motion in
homogeneous notation, we see that the last row of the matrix is always
(0, 0, 1). Therefore, w′ = w holds for every possible transform, i.e., the
transform does not change the w-coordinate. Considering our visualization
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rotation non-isotropic scaling skewing[
cos α − sinα
sinα cos α

] [
s1 0
0 s2

] [
1 k
0 1

]
α

s1

s2

k

Table 2.1: Transformation matrices A for the elementary affine trans-
forms, written in inhomogeneous form p′ = Ap+t. Isotropic
scaling is obtained for s1 = s2.

model from Figure 2.1, this means that motion of a point is only performed
within a plane parallel to the Euclidean projection plane. Since no change
of depth occurs, we do not observe a perspective projection effect.

If we generalize the model such that the last line can hold arbitrary
values, we have the general projective transformation. As we have seen
previously, this models a general plane-to-plane transform, which allows
to describe the 3-D motion of a plane, viewed by a pinhole camera. The
difference to the affine transform is that, in general, parallel lines do not
remain parallel after the transform (Figure 2.8(a)). Instead, the projective
transform has the property that parallel lines are mapped to lines that
intersect in a common vanishing point. Note that this includes the special
case that parallel lines remain parallel, since parallel lines are intersecting
at an ideal point at infinity. Because parallel lines intersect at the same
vanishing point, it is clear that the location of the vanishing point can only
depend on the direction of the lines in the source image.

The horizon and the line at infinity

The set of all vanishing points is called the vanishing line. In the real
world, we know this vanishing line of the ground plane as the horizon
(Figure 2.8(b)). Since the horizon line and its relationship to the line at
infinity plays a special role, we explore in this section how the parameters
of the horizon line can be obtained from a transformation matrix. Consider
the case depicted in Figure 2.8(b), where an object plane Π′ is projected by
a general projective transformation onto an image plane Π. Let us denote
the transform of image coordinates back onto the object plane by H. In
this formulation, we can define the horizon line as those points p that are
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(a) Parallel lines do not stay paral-
lel, but they intersect in their van-
ishing point.

horizon line

x’

y’

x

y

Π’

Π

lh

(b) The horizon is the line of all
vanishing points.

Figure 2.8: Planes under perspective projection.

mapped to points at infinity by the transform H. Recalling that points
(x, y, w) lie at infinity iff w = 0, it must hold that

x′

y′

0

 =

h00 h01 h02

h10 h11 h12

h20 h21 h22

x
y
w

 . (2.7)

From this, we derive the constraint that for points on the horizon,

(h20, h21, h22) · p = 0 (2.8)

must hold. Since this equation has the same form as a general line equation,
we can regard the last row of the matrix H as the line parameters for the
horizon line lh. Hence, we have the simple result that

lh = (h20, h21, h22)>. (2.9)

Let us finally examine the special case of an affine transform. We know
already that the affine transform preserves parallelism. Consequently, the
vanishing points will always lie on the line at infinity. This observation is
supported by the fact that the last line of the affine transformation matrix
is (0, 0, 1), which equals l>∞. Hence, the location of the line at infinity is
invariant to any affine motion.
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Inhomogeneous formulation of the projective transformation

Writing the projective transformation with the inhomogeneous formulation,
we have

x′ =
h00x + h01y + h02

h20x + h21y + h22
, y′ =

h10x + h11y + h12

h20x + h21y + h22
. (2.10)

Since the parameters {hkl} are invariant to an overall scaling, it is common
practice to apply the normalization h22 = 1. Especially in the literature
about motion estimation for video coding, the inhomogeneous form is usu-
ally chosen. However, it should be noted that this normalization is only
possible if h22 6= 0. It is important to know in which cases h22 equals zero
to decide if the inhomogeneous form is applicable.

The examination about the line at infinity gives us more insight into
the case. We know that the horizon line in the destination image is given
by (h20, h21, h22). The specific case h22 = 0 induces that the horizon line
has the form h20x + h21y = 0, which is just the pencil of lines that goes
through the origin. Consequently, the normalization h22 = 1 is invalid iff
the horizon line includes the origin. If this situation can occur in a specific
application, the inhomogeneous form should not be used.

In our application of describing object motion by a perspective trans-
form between successive frames, motion is so small that the normalization
is usually not a problem. On the other hand, if motion is estimated over a
large time distance (as it is the case in the background sprite construction),
this can be a problem. However, especially for background sprite genera-
tion, other factors make the long-distance motion description impractial,
even before we approach the problem of the inhomogeneous formulation.

Ignoring the cases where the normalization h22 = 1 is invalid, we get
the most widely-used formulation of projective motion as

x′ =
h00x + h01y + h02

h20x + h21y + 1
, y′ =

h10x + h11y + h12

h20x + h21y + 1
, (2.11)

or, when using different symbols for the transformation parameters, to
better reflect better their relation to the affine transform, we write it as

x′ =
a00x + a01y + tx
pxx + pyy + 1

, y′ =
a10x + a11y + ty
pxx + pyy + 1

. (2.12)

We see that the affine transformation results as a special case of the per-
spective transformation for px = py = 0. Because the denominator only
disappears in the affine case, the perspective transformation is a non-linear
transform. We will see in Chapter 4 that this complicates the parameter
estimation process.
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2.4 Geometric transformations in 3-D

To describe object or camera motion in 3-D, we make use of the same
formulation as for 2-D. We also use homogeneous coordinates in P3 even
though we only consider affine motion. Affine motion is sufficient to de-
scribe rigid object motion, but the use of homogeneous coordinates enables
to use the unified formulation in which affine motion can be described as a
matrix multiplication.

2.4.1 Affine motion in 3-D

The generalization of the affine motion in 2-D to affine motion in 3-D is
straightforward. In the 2-D case, we described affine motion in inhomoge-
neous coordinates by p′ = Ap+t, where p′,p, t are two-component vectors
and A is a 2× 2 matrix. When we go to 3-D, we can take the same equa-
tion and simply substitute the vectors by three-component vectors and the
matrix by a 3× 3 matrix.

In the 2-D case, we used homogeneous coordinates to unify the formula-
tion. Clearly, we can apply the same approach also in the 3-D generalization
of affine motion by augmenting vectors with a homogenization element and
matrices with an additional row and column. As a consequence, translation
can now also be described as a simple matrix multiplication. In its general
form, affine motion in 3-D is consequently described by a multiplication
with a matrix, where the last row is (0, 0, 0, 1):

x′

y′

z′

w′

 =


a00 a01 a02 tx
a10 a11 a12 ty
a20 a21 a22 tz
0 0 0 1




x
y
z
w

 . (2.13)

A collection of the most important elementary transformations in this
homogeneous formulation is shown in Table 2.2. Besides the basic affine
operations translation, scaling, and rotation, a special operation is included
to carry out a perspective projection from 3-D space onto a 2-D plane. This
is a special operation that will be described in Section 2.4.3.

2.4.2 Rotation in 3-D

Describing rotation in 3-D space is a surprisingly complicated problem.
Several techniques for parameterization of rotations have been proposed,
such as Euler angles or Quaternions [108]. We use the Euler-angle notation
here since this mimics the frequently-used practice to describe rotation by
elementary rotations around the coordinate system axes.
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translation isotropic scaling rotation projection
1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1




s 0 0 0
0 s 0 0
0 0 s 0
0 0 0 1

 [
R 0
0> 1

] f 0 0 0
0 f 0 0
0 0 1 0


Table 2.2: Most important transformation matrices H expressed in ho-

mogeneous coordinates. Matrix R is a 3× 3 rotation matrix;
see Section 2.4.2 for details.

In the following, we only consider rotation around the coordinate system
origin, which is sufficient for the successive discussion. Furthermore, we
assume that the observer (i.e., the camera) is located at the origin and that
observations are made in a local camera coordinate system.

Let us begin with a simple rotation around one of the coordinate system
axes, which can be described like a rotation in two dimensions where the
third dimension is not affected. This can be written as an elementary
rotation matrix (Jacobi rotation matrix). In 3-D space, we obtain the three
elementary rotation matrices

Rx(α) =

1 0 0
0 cα −sα

0 sα cα

 , Ry(β) =

 cβ 0 sβ

0 1 0
−sβ 0 cβ

 , (2.14)

Rz(γ) =

cγ −sγ 0
sγ cγ 0
0 0 1

 ,

where we use the abbreviations cα = cos α, and sα = sinα. The signs of
the sin(·)-terms have been chosen such that it conforms to a right-handed
coordinate system (see Figure 2.11(a)). It is clear that the inverse rotation
to some angle α is the rotation with the same angle in the opposite direction
(i.e., a rotation with the angle −α). Since the rotation matrices are skew
symmetric and sin(−α) = − sinα, the inverse of each elementary rotation
matrix is simply its transpose (R−1 = R>).

According to Euler’s rotation theorem, an arbitrary rotation can be
decomposed into three successive rotations around predefined axes. Con-
sequently, we can choose a sequence of three elementary rotation matrices
to describe every possible rotation. Obviously, two successive rotations
must use different elementary rotations, since rotating two times around
the same axis can be trivially combined into only one rotation. However,
it is possible to use the same axis twice (e.g., a rotation sequence using a
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(a) γ = 0, rotation with pan angle β
shows as horizontal motion.

x

y

z

β

camera image

β

(b) γ = 90◦, rotation with pan angle
β shows as vertical motion.

Figure 2.9: Rotation with a fixed order of axes can result in non-intuitive
behaviour. The camera is located at the origin and looks
along the z-axis. In the rotation sequence Rz(γ)Ry(β), we
intuitively understand β as the horizontal pan. However, for
γ ≈ 90◦, a change of β results in vertical motion.

Z-Y-Z axes order is also capable to describe all possible rotations).
Rotations are not commutative and hence, the order in which we per-

form the rotations is important. Moreover, without further restrictions
on allowed rotation angles, the same rotation can often be specified with
different sets of parameters even if the order of rotation axes is fixed.

Euler angles vs. human intuition

The human understanding of rotations is strongly related to our physical
environment. If there are several ways to describe the same rotation, we
have a strong tendency to describe it in a way which corresponds best to
the physically most probable action. For example, when we watch our
image in the mirror, we perceive it with swapped left and right orientation.
However, it could also be understood just as well with swapped up and
down orientation. Only the fact that we turn around our vertical axis more
frequently than we stand on our head makes the distinction.

Moreover, it seems that human intuition always considers rotation as
an iterative action which is relative to the last state. Changing the angle of
a rotation that is not the last one in the rotation sequence does not match
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our expectations. As an example, consider the set-up of Figure 2.9 with
the rotation sequence Rz(γ)Ry(β), which is a rotation by β around the
vertical axis (camera pan), followed by a rotation by γ around the optical
axis. Usually, we intuitively associate a camera pan (rotation around y-
axis) with a left-right motion, which is true if we consider the rotation
independently. However, if the pan is followed by another rotation, e.g.,
Rz(γ), the motion direction can change completely because of the second
transform. If γ ≈ 90◦, a change of the camera pan angle β does not result
in horizontal motion, but it induces a vertical motion in the camera image.

This conflict with our intuition occurs, because we tend to think that
changes of rotation angles occur relative to the last position. If we make a
small change of camera pan ∆β, our intuition suggests that the overall cam-
era transform would be Ry(∆β)Rz(γ)Ry(β), instead of Rz(γ)Ry(β+∆β).
If we stick to the Euler-angles parameterization, we have to live with this
discrepancy to our intuition. Fortunately, this problem only shows at large
rotation angles. Since the freedom of camera motion is usually very lim-
ited (mostly horizontal pan, sometimes vertical pan, but usually no tilting),
this problem can be reduced in practice. Using the pre-knowledge of typi-
cal camera motion, we select an appropriate parameterization that mostly
behaves according to our expectations. Since rotations can be influenced
by subsequent transformations, the rotation that has the largest dynamic
range should be the last in the sequence. Using this order, we get

R(α, β, γ) = Ry(β)Rx(α)Rz(γ) (2.15)

as a good choice for the rotation sequence.

Gimbal lock

An especially annoying effect of the Euler-angle parameterization is the
gimbal lock phenomenon. Gimbal lock is the situation that the Euler angles
are chosen such that two of the rotation axes coincide. In our parameteriza-
tion of Eq. (2.15), this is the case when α = ±π/2. In this situation, the y
and the z axes coincide and the rotation angles β and γ both induce similar
motion (Fig. 2.10). Thus, the degrees of freedom is reduced from three to
only two in the gimbal lock position. To prove this, we insert α = π/2 into
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rotation sequence.
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(b) Gimbal lock position.

Figure 2.10: The object is mounted into a gimbal that corresponds to our
Euler rotation sequence. In the position (b), the inner frame
is positioned with α = ±π/2, so that the z and the y axes
coincide.

Eq. (2.15) and get

Ry(β)Rx(π/2)Rz(γ) =

 cβ 0 sβ

0 1 0
−sβ 0 cβ

1 0 0
0 0 −1
0 1 0

cγ −sγ 0
sγ cγ 0
0 0 1


=

cβcγ + sβsγ sβcγ − cβsγ 0
0 0 −1

cβsγ − sβcγ sβsγ + cβcγ 0

 =

 c(β−γ) s(β−γ) 0
0 0 −1

−s(β−γ) c(β−γ) 0

 .

(2.16)

Hence, β and γ induce the same rotation (in opposite directions).

Rotation matrices

Often, we do not require the parameterization into Euler angles but we can
work with only the out-multiplied rotation matrix. In these cases, we can
just use general 3× 3 rotation matrices

R =

r00 r01 r02

r10 r11 r12

r20 r21 r22

 , (2.17)

without knowing its factorization into angle parameters. However, since
we know that R is a rotation matrix, we can make use of some properties
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Figure 2.11: Naming conventions used on the right-handed camera coordi-
nate system.

of rotation matrices. We have seen previously that for the inverse of a
elementary rotation matrix, it holds that Ri

−1 = Ri
>. Now, let R be

composed of a sequence of rotations R = R1 · · ·Rn. It follows that

R> = (R1 · · ·Rn)> = R>
n · · ·R>

1 = R−1
n · · ·R−1

1 (2.18)

and
R ·R> = R1 · · ·Rn ·R−1

n · · ·R−1
1 = I. (2.19)

Consequently, the transpose of the composed rotation matrix must be equal
to its inverse R> = R−1. In other words, RR> = I, which shows that R
must be an orthogonal matrix.

Obtaining Euler angles from a rotation matrix

Sometimes, we have an arbitrary rotation matrix and we want to know
the Euler angles for a factorization into a given sequence of elementary
rotations. Assume that we fix the rotation sequence to that of Eq. (2.15),
we get the out-multiplied matrix

R =

cβcγ + sαsβsγ −cβsγ + sαsβcγ cαsβ

cαsγ cαcγ −sα

sαcβsγ − sβcγ sαcβcγ + sβsγ cαcβ

 . (2.20)

Because the trigonometric functions are cyclic, we require additional re-
strictions to find a unique solution. A possible restriction is to assume that



54 Chapter 2. Projective Geometry

−π/2 < α < π/2. This is a sensible assumption for a normal camera, since
it limits the up-down rotation to ±90◦. Now, α can be obtained directly
from r12 = − sinα. Further, we see from the last column of R that

r02

r22
=

cα · sβ

cα · cβ
, and consequently, tanβ =

sβ

cβ
=

r02

r22
. (2.21)

The correct quadrant of β can be determined from the signs of nominator
and denominator. Thus, it is important that we keep the signs at their
respective terms. Since we assumed that |α| < π/2, we know that cα > 0.
This makes it easier to obtain the correct quadrant for β in Eq. (2.21). The
angle γ can be obtained similarly from r10 and r11.

Quaternion rotation

Because of the gimbal lock problems of Euler rotation sequences, a different
representation of rotations has become popular in the computer graphics
community. This representation uses quaternions, which are a general-
ization of complex numbers to four elements. A quaternion is a number
q = a+bi+cj+dk together with the rules i2 = j2 = k2 = −1, ij = −ji = k,
jk = −kj = i, and ki = −ik = j. Furthermore, the quaternion conjugate
is defined as q̄ = a− bi− cj − kj.

Alternatively to using the imaginary units, a quaternion can also be
written as a vector of its four components q = (a, b, c, d). It can be shown
that a quaternion with ||q|| = 1 represents a rotation in 3-D space using
the transformation p′ = qpq̄, where p = (0, x, y, z) is the point coordinate.

It is especially easy to construct a quaternion that represents a rotation
of θ around the axis vector n. This rotation can be written as the quaternion
q = (cos(θ/2), sin(θ/2) ·n>). On the other hand, a quaternion rotation can
also be written as the 3× 3 rotation matrix

R =

1− 2q2
y − 2q2

z 2qxqy − 2qwqz 2qxqz + 2qwqy

2qxqy + 2qwqz 1− 2q2
x − 2q2

z 2qyqz − 2qwqx

2qxqz − 2qwqy 2qyqz + 2qwqx 1− 2q2
x − 2q2

y

 . (2.22)

The advantage of the quaternion representation compared to the Euler ro-
tation sequences is that there is no singularity as with the gimbal lock
position. Furthermore, they are faster to compute since no transcenden-
tal functions are involved. We will use the quaternion representation in
Chapter 12 to describe camera rotation.

2.4.3 Perspective projection

In this section, we introduce the projection of points from 3-D space onto
a 2-D image plane. This projection operation is based on the idealized
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Figure 2.12: Model of an ideal pinhole camera.

model of a pinhole camera, which is a very good approximation to most
real cameras. We derive the projection equations and formulate them, using
the previously explained homogeneous coordinates framework. Finally, we
introduce the affine camera model, which is an often used approximation
that leads to the special case of affine motion in the image plane.

Perspective pinhole camera

The setup for the perspective camera model is illustrated in Figure 2.12.
Object points are projected along the ray from the camera center to the
object point. The intersection of the ray with the image plane defines the
point’s position in the image. In a real camera, the image plane is actually
behind the camera center, and the image is projected onto it up-side down,
but for simplicity, we assume that the image plane is in front of the camera.
This is equivalent, but it relieves us from considering many minus signs.

Let us denote the distance between the camera center and the im-
age plane by f (focal length) and let the object points have coordinates
(x, y, z)>. Since the camera is located at the coordinate system origin, and
since it is looking along the positive z-axis, the projection of the point onto
the image plane is given by (x′, y′)> = (fx/z, fy/z)>. This projection can
also be written using a matrix multiplication in homogeneous coordinates
as x′

y′

w′

 =

f 0 0 0
0 f 0 0
0 0 1 0




x
y
z
w

 . (2.23)

We call this matrix the matrix of intrinsic camera parameters. In our
ideal pinhole camera model, the matrix only consists of the focal length,
which can be considered as an internal parameter of the camera. However,
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Figure 2.13: From perspective projection the orthographic projection.

in the following sections, we extend the intrinsic matrix with additional
parameters.

Affine camera

When we use the perspective camera model together with inhomogeneous
coordinates, we obtain non-linear equations for the transformation. In sev-
eral situations, this non-linearity makes the computation more complex. A
popular approach is to use a linear estimation to the perspective camera
which assumes that the camera is placed infinitely far from the object. As is
shown in the following, the simplified camera model results in affine motion
in the image plane.

In Figure 2.13(a), the normal perspective camera setup is depicted. Now
assume that the camera is shifted away from the image plane by an addi-
tional distance d. This shift is compensated by increasing the focal length
to f +d to keep the distance between object and image plane constant. We
can formally write this construction by inserting a matrix for the camera
movement before the projection is made:x′

y′

w′

 =

f + d 0 0 0
0 f + d 0 0
0 0 1 0




1 0 0 0
0 1 0 0
0 0 1 d
0 0 0 1




x
y
z
w

 . (2.24)

Multiplying out the two matrices and increasing the camera distance d up
to infinity, we getf + d 0 0 0

0 f + d 0 0
0 0 1 d

 ∼
f

d + 1 0 0 0
0 f

d + 1 0 0
0 0 1

d 1

 d→∞−−−→

1 0 0 0
0 1 0 0
0 0 0 1

 ,

(2.25)
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where the first similarity holds because of the scaling invariance of homo-
geneous coordinates. The resulting matrix is the camera projection matrix
for affine cameras. Clearly, it is independent of a focal length and the scene
depth z (the column that multiplies z only contains zeroes). Written in
inhomogeneous coordinates, this is simply

x′ = x/w y′ = y/w, (2.26)

which is just the conversion of homogeneous coordinates into inhomoge-
neous coordinates (see Eq. (2.1)). Consequently, the affine camera model
describes a parallel projection of the 3-D coordinates onto the image plane
(Fig. 2.13(b)). This type of projection is also called an orthographic pro-
jection.

Let us now examine the complete imaging process with an affine camera.
We start with an arbitrary affine object motion in 3-D, followed by an
orthographic projection:

x′

y′

w′

 =

1 0 0 0
0 1 0 0
0 0 0 1


︸ ︷︷ ︸

orthographic projection


a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

0 0 0 1


︸ ︷︷ ︸

affine motion in 3-D


x
y
z
w

 . (2.27)

Furthermore, we assume that the observed object is planar, which means
that, e.g., its z-coordinate is dependent on the others, and we can write
z = pxx + pyy + pw. Incorporating this constraint into Eq. (2.27), we get

x′

y′

w′

 =

1 0 0 0
0 1 0 0
0 0 0 1




a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

0 0 0 1




1 0 0
0 1 0
px py pw

0 0 1


x

y
w

 .

(2.28)
Multiplying the three matrices, the total mapping onto the image plane
computes asx′

y′

w′

 =

a00 + pxa02 a01 + pya02 pwa02 + a03

a10 + pxa12 a11 + pya12 pwa12 + a13

0 0 1

x
y
w

 . (2.29)

However, since the last row is (0, 0, 1), this defines an affine transformation.
Consequently, planar object motion in 3-D is observed on the image plane
as affine motion if an orthographic projection is applied.
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Figure 2.14: Image formation in the case of an ideal pinhole camera.

2.5 Image acquisition

In this section, we discuss the image formation process in more detail.
We start by looking at the pinhole camera model again and extend its
description to cover more general cases. Furthermore, we include a brief
discussion of lens-distortion artifacts that can become relevant in a practical
application. Finally, we analyse which camera setups allow to use the
projective motion model to describe global motion.

2.5.1 Intrinsic camera parameters

We start with a more detailed discussion of the ideal pinhole camera, which
we will successively extend to include more general camera configurations.
When we specify the camera position by saying, that the camera should be
located at the origin of the coordinate system, this means more specifically
that the pinhole of the camera is at the origin. The pinhole position, which
is the center of the projection rays, is denoted as the optical center of the
camera.

Let us assume that a local coordinate system is attached to the camera.
We define this coordinate system to be right-handed, and the camera to
be viewing in the direction of the positive z-axis (Figure 2.14). The x-axis
increases to the right and the y-axis, consequently, to the bottom. The
image plane is perpendicular to the z-axis, at a distance of the focal length
f . The viewing direction, which is in our case simply the z-axis, is called
the principal axis, and the position where the principal axis intersects the
image plane is denoted as the principal point.
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Projection of 3-D points onto the image plane

Consider the point p = (x, y, z)> in E3. To determine its position on the
image plane using the pinhole camera model, we construct a line through
the optical center and the point p. The intersection of this line with the
image plane defines its position p′ = (x′, y′) on the image plane. If the
origin of the local coordinate system of the image plane is also at the
principal point and the coordinate axes are parallel to that of the camera,
the projection can be calculated by

x′ =
x · f

z
; y′ =

y · f
z

. (2.30)

Using homogeneous coordinates, the projection can also be written as the
matrix multiplication

p′ =

x′

y′

w′

 =

f 0 0 0
0 f 0 0
0 0 1 0




x
y
z
w

 . (2.31)

Note that in the derivation of the equation, we have silently assumed a
number of idealized properties: we assumed that pixels in the image plane
are square, and we assumed that there is no skew in the image sensor-array.

Non-ideal image sensors

Usually, we can assume square pixels in the recording camera. However, if
they are not square, the intrinsic camera-parameter matrix can be extended
by a parameter η, denoting a vertical scaling factor. Moreover, the sampling
grid may be skewed (see Fig. 2.15(a)). This can also be represented by an
additional parameter τ . If we include these parameters, we get the more
general camera projection matrixf τ 0 0

0 ηf 0 0
0 0 1 0

 . (2.32)

However, in most cases, it can simply be assumed that η = 1 and τ = 0.
In fact, in Chapter 12, we use these assumptions as constraints to recover
the focal length from estimated camera motion.
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Figure 2.15: (a) In a non-ideal camera, the sampling-grid may have non-
square pixels and the sampling-grid may be skewed. (b) Usu-
ally, the image coordinate system is assumed to have its origin
at the top-left corner instead of the principal point.

Changing the image coordinate system

The usual convention of storing images in memory is to place the origin of
the image coordinate system at the top left of the image, with the x-axis
extending to the right, and the y-axis pointing downwards. Previously, we
have assumed that the origin coincides with the principal point. Now, we
relieve this constraint and assume that the principal point is located at
(ox, oy) in image coordinates. Moreover, we might want to flip some of the
coordinate system axes if their definition in the image is different. For the
purpose of demonstration, we assume that we also want to flip the direction
of the y-axis. By concatenating the projection matrix with the flip of the
y-axis and the shift of the coordinate system, we get the generalized camera
projection matrix1 0 ox

0 1 oy

0 0 1


︸ ︷︷ ︸

translate

·

1 0 0
0 −1 0
0 0 1


︸ ︷︷ ︸

flip y-axis

·

f τ 0 0
0 ηf 0 0
0 0 1 0

 =

f τ ox 0
0 −ηf oy 0
0 0 1 0

 . (2.33)

The right-hand side of this equation is the most general form of the intrinsic
camera-parameters matrix. The last column is often omitted so that only
a 3 × 3 matrix is considered. Note that even the general intrinsic matrix
is upper triangular, which is sometimes exploited in camera calibration
techniques where we try to estimate the intrinsic matrix.
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Figure 2.16: Radial lens distortian. Opposed to the ideal pinhole model,
real cameras are subject to lens distortion.

Radial lens distortion

Real cameras consist of a number of lenses instead of a simple pinhole.
These lenses are usually not ideal and show some non-linear geometric
distortion, which can become significant for applications requiring a high
accuracy.

There is no simple general model for lens distortion, but for most prac-
tical purposes, it can be approximated by a simple radial lens distortion
model. To define a distortion model, let (x′, y′) be the coordinates of a pixel
including the lens distortion (the projected position on the sensor array),
and let (x̂, ŷ) be the coordinates of their ideal, undistorted coordinate (Fig-
ure 2.16). A popular model for radial lens distortion can then be described
by

x̂ = ox + (x′ − ox) · (1 + D)
ŷ = oy + (y′ − oy) · (1 + D)

(2.34)

with D being the radial correction term

D = (κ1r
2 + κ2r

4 + κ3r
6 + · · · ), (2.35)

where
r =

√
(x′ − ox)2 + (y′ − oy)2 (2.36)

is the distorted point’s distance from the principal point. In most cases,
it is sufficient to consider only the two low-order coefficients κ1, κ2, and
assume that the higher-order coefficients are zero.
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Figure 2.17: General setting of a camera located at c, observing a point pw

in 3D space.

For many cameras, the effect of radial distortion can be neglected. How-
ever, for extreme wide-angle lenses, the effect can become significant and
the radial distortion should be compensated. In this thesis, we assume that
radial distortion is not present, or that it has been compensated previously.

2.5.2 Extrinsic camera parameters

While the intrinsic camera parameters describe properties of the camera like
its focal length and the image geometry, the external camera parameters
describe the camera placement and orientation in the 3-D world.

Assume that the camera is located at a position t and rotated according
to a rotation matrix R. To determine the image position of a 3-D point
p in the observed image, we first have to bring the camera to the origin
and rotate it so that its local camera coordinate system is aligned with
the world coordinate system. Written as a sequence of transformations, we
obtain

x′

y′

w′

 =

f 0 ox 0
0 f oy 0
0 0 1 0

[R 03

0>3 1

]
︸ ︷︷ ︸

rotation

[
13×3 −t
0>3 1

]
︸ ︷︷ ︸

translation


x
y
z
w



=

f 0 ox 0
0 f oy 0
0 0 1 0


︸ ︷︷ ︸
intrinsic parameters

[
R −Rt
0>3 1

]
︸ ︷︷ ︸

extrinsic parameters


x
y
z
w

 .

(2.37)

Since the last column of the intrinsic parameters matrix is all zero, it is
common practice to remove the last column from the intrinsic parameters
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matrix and as a consequence thereof, also the last row of the extrinsic pa-
rameters matrix. Note that this is a slight misuse of notation, since homo-
geneous coordinates are mixed with an inhomogeneous notation. However,
it saves us from writing matrices with constant zero rows or columns. The
reduced matrices can then be defined as

K =

f 0 ox

0 f oy

0 0 1

 ; E =
[
R | −Rt

]
, (2.38)

where we call K the 3 × 3 intrinsic camera parameters matrix and E the
3 × 4 extrinsic camera parameters matrix. Note that the matrix E trans-
forms from P

3 to E3 and K further from E
3 to P2. The annotated arrows

in the following equation show the type of the vector after each matrix
multiplication:

x′

y′

w′

 =
↑
P

2

f 0 ox

0 f oy

0 0 1


↑
E

3

[
R | −Rt

]
↑
P

3


x
y
z
w

 . (2.39)

Inverse transformation

When a 3-D scene is projected onto the 2-D image plane, it is obvious
that information about the depth is lost. In the perspective projection,
every point along the projection ray is mapped onto the same image point.
Therefore, it is impossible to say which point on the ray is viewed in the
image. This becomes apparent if we try to invert the above transformation
pipeline. Using the intrinsic parameters matrix in the inverse direction to
map 2-D points (x′, y′, 1) ∈ P2 into 3-D space (x, y, z) ∈ E3 again, results
in x

y
z

 = K−1

λ · x′
λ · y′
λ · 1

 . (2.40)

The factor λ on the right-hand side accounts for the fact that the same
point in homogeneous coordinates can also be specified by an arbitrarily
scaled version of that vector. After applying the inverse K−1, each point
on the image plane therefore defines a one-dimensional subspace in E3.
Clearly, this subspace is the projection ray with the free parameter λ 6= 0.

To invert the extrinsic parameters matrix, we have to use the full 4× 4
matrix, since the abbreviated 3×4 matrix is not square. Since the result of
the multiplication with K−1 is in E3, we also have to augment that vector
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Figure 2.18: Steps for transforming a 3-D point position to its coordinate
in a camera image, including distortions.

with the homogenizing constant 1. When we compute the inverse of the
external parameters matrix, we get[

R −Rt
0>3 1

]−1

=
[
R−1 t
0>3 1

]
. (2.41)

It can be seen that the last matrix row of the inverse is still (0, 0, 0, 1). This
is clear since the external parameters matrix is affine, and hence, its inverse
must also be affine.

The complete imaging process

If we put all the described image transforms together, we obtain a complete
formulation for the entire image formation process. This image formation
is divided into several steps and can be illustrated as a pipeline process, as
shown in Figure 2.18. When we follow the path of a point from the 3-D real
world to the image sensor, we start by transforming the point’s position in
the world coordinate system into the camera coordinate system using the
extrinsic parameters matrix E. The succeeding intrinsic parameters matrix
further maps the point to the position on the image sensor-array, but still
neglecting lens distortion. Finally, the distortions that are introduced by
non-ideal lens optics are modeled with a radial lens distortion.

2.5.3 Camera motion in a static environment

Suppose that two pictures of a static 3-D scene are taken from different
positions or at different angles. We would like to explore in which cases it
is possible to describe the transform between the two images as a projective
transform H.
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Figure 2.19: Top view of a 3-D scene with three object A,B,C. Seen from
two different angles, the objects appear on the camera images
in a different order.

Since we have seen in Section 2.3.1 that a projective transformation is
equivalent to a plane-to-plane mapping, it is clear that the transform can
model arbitrary camera motion, as long as the observed object is planar.
However, the restriction that the complete observed environment is pla-
nar is too strict in practice, and we would like to know if there are more
situations which can still be described using the projective motion model.

Obviously, it is also clear that we cannot describe the general case with
a simple perspective transformation. Take for example Figure 2.19 which
shows a scene with four objects, viewed from two different positions. It
can be observed that the objects are projected onto the camera images in
a different ordering, depending on the camera position.

Parallax effect

From everyday experience, we know the effect that if we move a camera at
a constant speed, near objects seem to move faster than objects at a larger
distance. This visual effect is commonly known as the Parallax effect. The
Parallax effect has consequences for 3-D vision, since an arrangement of
objects in space can look very dissimilar from different camera locations.
In general, it is not possible to describe the transform between these camera
images by a projective transform.

To illustrate this, assume that we observe two points with inhomoge-
neous coordinates p0 and p1 at different distances from the camera, but
which are projected onto the same point in the image plane (Fig. 2.20(a)).
For simplicity, we assume w.l.o.g. that the camera is first located at the
origin of the world coordinate system and that it is looking along the pos-
itive z-axis. Since both points are projected onto the same image position,
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it holds that Kp0 ∼ Kp1, and consequently p0 ∼ p1. This means that
there exists a λ such that p0 = λp1.

Now, we translate the camera by a distance d and rotate it according
to a rotation matrix R. The question is whether the two points p0,p1 are
also mapped onto the same image point in the new camera view. In other
words, we want to know, if

K
[
R −Rd
0 1

](
p0

1

)
︸ ︷︷ ︸
new image position of p0

∼? K
[
R −Rd
0 1

](
λp0

1

)
︸ ︷︷ ︸
new image position of p1

(2.42)

holds. After multiplying with K−1 from the left, we get

Rp0 −Rd ∼? λRp0 −Rd. (2.43)

It is easy to see that this is only true if d = 0, i.e., there is no translatorial
camera motion, or λ = 1. The former case holds if camera motion is
restricted to rotation around the optical center (Fig. 2.20(b)). Since this
case is of high practical importance, it will be described in more detail in
the next subsection. The second case means that the two points p0,p1

are actually the same point. However, this means that on each projection
ray, there may only be one object point. Otherwise, the two points could
coincide in one image, but have a different position in another image. This
second case applies if the object is planar.

Rotating camera

In the special case of a purely rotational camera, let us first assume that the
optical center of the camera is located at the coordinate system origin, and
the rotation is performed around the coordinate system origin. In this case,
the camera translation is t = 0, and the complete viewing transformation
can be written as x′

y′

w′

 = K R

x
y
z

 . (2.44)

The rotation matrix R assumes rotation of the world around a fixed camera,
which is equivalent to rotating the camera in a fixed world, if the matrix is
inversed (negative angles in opposite order).

One property of rotational camera motion is of special importance and
should therefore be emphasized here. For the transformation between im-
ages taken by a rotating camera, the object depth is of no importance, since
no parallax effect occurs. This fact can be justified easily with Eq. (2.44).
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(a) Observing two points from dif-
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(b) Rotation-only camera.

Figure 2.20: What kind of camera motion is allowed in arbitrary 3-D
scenes? (a) Object points at different depth and moving cam-
era. Points may fall onto the same position in one image and
onto different positions in another image. Hence, there cannot
be a bijective transform between both. (b) Rotational camera
motion. Two points on the same projection ray stay on one
ray independent of a camera rotation. Hence, a transform
between images is possible even with arbitrary object depths.

Since the camera is assumed to be at the origin, all pixels on the projec-
tion ray through a point can be obtained by scaling the point coordinate
(x, y, z)> on the right-hand side. Moreover, the transform is linear which
means that the same scaling will be effective on the left-hand side. But
since homogeneous coordinates are scaling invariant, this is actually the
same point in the image. This holds for any choice of R such that points
projected onto the same image position will always coincide, independent
of any camera rotation.

2.5.4 Inter-image transformation

Up to now, we only considered transformations that map points from the
3-D world onto the 2-D image plane. However, in many cases, we want to
describe the motion between successive images.
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Inter-image transforms with a rotating camera

Let us discuss again the situation of a rotational camera. In general, the
scene around the camera has varying depths, but we have seen in the last
subsection that the depth of objects does not play any role in the image
formation. Hence, we can assume that the environment is actually located
in the camera-image plane.

Now consider that we take two images Π0 and Π1 at different rotation
angles R0 and R1 (as depicted in Figure 2.20(b)). According to Equa-
tion (2.44), we can compute the 3-D ray on which an image point from Π0

lies, and we can also compute the intersection of this ray with Π1 by invert-
ing the equation. Combining these two parts gives us the transformation
between image Π0 and Π1 as

p1 = K R1 R−1
0 K−1︸ ︷︷ ︸

H

p0. (2.45)

Clearly, the four transformation matrices can be combined into a single
3× 3 inter-image transformation matrix H.

Motion field for panning camera motion

A common misunderstanding about panning camera motion is that it is
often assumed that the motion field resulting from a rotating camera equals
a pure translation. However, as can be seen in Figure 2.21, this is not true.
The figure depicts the motion field that is observed when a camera performs
a rotation around the vertical axis. The motion field depends on the focal
length of the camera. For larger focal lengths, the motion trajectories get
straighter, and for the limit case of infinite focal length (affine camera), the
motion field becomes translatorial. For practical cases, f is in the order
of the image width and, consequently, the motion cannot be approximated
with a simple translation.

Inter-image transforms with a planar object

If the observed object is planar, it is also possible to find an inter-image
transform. In this case, this is obvious, since the mapping from the object
plane onto each of the image planes Π0, Π1 is an invertible plane-to-plane
mapping (see Figure 2.22). Hence, we get the inter-frame transform by
projecting the Π0 plane onto the background plane, and then projecting
from the background plane onto plane Π1. Following the derivation in
Section 2.5.2, let the transform from the background plane to image plane
i be denoted as Mi = KiEi. Since this product is a 3× 4 matrix, it cannot
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(a) Short focal length (f = 400). (b) Long focal length (f = 700).

Figure 2.21: Motion field of a pure horizontal camera pan for an image
width of 800.
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Figure 2.22: A planar background is observed by a moving camera.

be inverted. However, we are free to choose the world coordinate system
and can thus define that the background plane coincides with the z = 0
plane. In this case, the projection from the background plane to image
coordinates becomes

x′

y′

w′

 =

m00 m01 m02 m03

m10 m11 m12 m13

m20 m21 m22 m23




x
y

z = 0
w

 , (2.46)

and the third column of the matrix M = {mik} can be omitted. Let us
denote the matrix M without the third column as M̌. Since this matrix M̌
is now a 3×3 matrix, it can be inverted and we can combine the two plane-
to-plane mappings to obtain the inter-frame transform as H = M̌1M̌−1

0 .
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Outlook: Camera calibration from video sequences.

In this section, we have shown that the projective transform between two
images can be modeled as a sequence of elementary physically meaningful
operations. Usually, a camera-motion estimator only determines the final
set of parameters that are not directly related to the elementary operations.
In Chapter 12, we develop an algorithm to factorize the projective trans-
formation parameters back into the elementary operations. This makes
it possible to describe camera motion in physically meaningful terms, like
rotation angles or the current focal length of the camera zoom lenses.

2.6 Summary and notational conventions

This chapter has introduced homogeneous coordinates to describe point
positions. In two-dimensional space, a point is specified with a column
vector p = (x, y, w)>, where the Euclidean coordinates can be recovered as
(x/w, y/w)>. To facilitate the formulation, we also use homogeneous coor-
dinates as arguments to two-dimensional functions in the following chap-
ters, assuming implicit conversion to Euclidean coordinates. This means
that we use the simplified notation I(p) instead of I(x/w, y/w).

We have also seen that the projection of rigid 3-D motion of planar
patches onto 2-D images can be described by a simple matrix multiplication.
Considering the plane-to-plane mapping which transforms p onto p′, it can
be formulated as multiplication with a 3× 3 matrix H as p′ = Hp.

An important case is the transformation of Euclidean 3-D coordinates
onto a planar image as it is seen by a pinhole camera at the origin of
the coordinate system. This transformation is usually decomposed into
two parts, namely the intrinsic camera parameters matrix K, comprising
internal camera parameters like the focal length and the principal point
ox, oy, and the extrinsic camera parameters matrix E, describing camera
rotation and translation (see Eq. (2.38)). For the special case of rotational
camera motion, the intrinsic and extrinsic matrices can be combined to a
transformation matrix H denoting the motion between a pair of images.

The most important equations are summarized in Table 2.3 with refer-
ences to the sections in which they were introduced.
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Equation Description Section
l = p1 × p2 line through two points 2.2.2
p = l1 × l2 intersection point of two lines 2.2.2
p′ = Hp projective transformation of points 2.3.1
l′ = H−>l projective transformation of lines 2.3.1

K =

f τ ox

0 ηf oy

0 0 1

 intrinsic camera parameters 2.5.1

E =
[
R | −Rt

]
extrinsic camera parameters 2.5.2

H = KiRK−1
j rotational camera motion 2.5.4

Table 2.3: Summary of the most important equations.
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Chapter3
Feature-based Motion I:
Point-Correspondences

Algorithms for motion estimation can be coarsely divided into feature-based
techniques and dense estimation techniques. The feature-based techniques
are known to perform better with large motions while dense estimation tech-
niques provide a higher accuracy. To combine the advantages, we inte-
grated both approaches into one motion-estimation system. We describe
the feature-based motion estimator in this and the following chapter while
dense estimation is covered in Chapter 5. A feature-based motion estima-
tor comprises three steps: detection of feature-points, establishing feature-
correspondences, and estimation of camera motion parameters. In this
chapter, we give an introduction to feature-based motion estimation and
we cover the first two steps. We provide a survey of feature-point detec-
tors and evaluate their accuracy. After that, we present a fast algorithm
for determining correspondences between two sets of feature-points. The
remaining parameter estimation step will be discussed in the next chapter.

The shortest distance between
two points is under construction.
(Noelie Altito)

73
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3.1 Introduction

Video sequences generally comprise two types of motion: the motion of
objects visible in the scene and the global motion that is caused by the
moving camera. Object motion is usually also difficult to describe, since in
general, objects can show articulated or deformable motion. In general, the
motion of objects can be rather complex and very difficult to model. Ex-
amples are water waves, explosions, traffic lights, or other sudden changes.
On the other hand, camera motion is restricted to only a few degrees of
freedom like the camera rotation angles or its focal length. In the previ-
ous chapter, camera motion was described using a geometric model with
a small set of parameters. When analyzing a video sequence, the inverse
problem occurs: find the parameters which describe the apparent motion
in the video sequence.

Techniques for estimating the motion parameters generally follow one
of two fundamental approaches: direct estimation algorithms and feature-
based algorithms.

• In the direct estimation algorithms, the motion parameters H are
computed by minimizing the motion-compensated image difference
between the two images It and It+1, thus computing

min
H

∑
p

|It(p)− It+1(Hp)|2. (3.1)

If the motion model is simple, like the translatorial motion model
of MPEG-2, the motion parameters can be found by an exhaustive
search through the parameter space. However, for the projective mo-
tion model, there are eight free parameters, which raises the need for
fast optimization algorithms. Usually, gradient-descent algorithms
are applied to solve Equation (3.1). When initialized with a good
set of parameters, the direct estimation methods can achieve high
accuracy. On the other hand, convergence of the gradient-descent
algorithms requires a good initialization, especially if the motion be-
tween images is large.

• The second approach for motion estimation are feature-based tech-
niques. They determine a small set of feature points in each of the
input frames and establish correspondences between matching points.
The feature points are selected such that the motion of the point can
be computed with high reliability and accuracy. After the point-
correspondences have been established, the motion parameters are
determined by fitting the motion model to the point-correspondence
data.
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?
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(a) Aperture problem along a line.

!

(b) No aperture problem at cor-
ners.

Figure 3.1: (a) A small area with a linear structure cannot be located pre-
cisely in a larger image. (b) The aperture problem does not
occur if a corner or any other texture that varies in two di-
mensions is visible in the window.

Since the feature-based methods primarily use the position of feature-
points instead of a direct comparison of the image data, the feature-based
methods are more robust to changes of illumination or noise than the direct
methods. Furthermore, they allow large motions between images and they
are also faster to compute. On the other hand, their estimation accuracy
is generally below that of dense estimation algorithms. To combine the
respective advantages of both approaches, it is possible to use the result
of the feature-based approach as an initialization of the successive dense
estimation step. Since the initialization is already close to the correct mo-
tion, the gradient-descent algorithm will converge to the correct minimum.
Without this close initialization, the algorithm may not find this minimum
if the motion is too fast.

Our segmentation system also follows this approach of combining a
feature-based initialization of the motion model with a refinement of ac-
curacy in a succeeding direct estimation step. We discuss feature-based
motion estimation in this chapter and the direct estimation algorithms in
the successive chapter.

3.1.1 Basics of feature-based motion estimation

Estimating image motion is an ill-posed problem in many situations. For
small image patches or even single pixels, there is usually not enough in-
formation available to determine the motion reliably. Consider for example
a small image patch with a straight region border (Fig. 3.1(a)). If we take
this small piece and try to find the matching position in a larger picture,
we see that this is impossible, since the pattern can be found all along the
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Figure 3.2: (a) Example of detected interest-points and their correspon-
dence in the previous frame. (b) Example of a repetitive image
texture. Correspondences cannot be established easily, since
many similar interest-points exist.

region border. The problem can already be identified by only examining
the search pattern. In our case, the pattern is only structured in one di-
rection, namely perpendicular to the line direction. Along the line, the
texture is uniform, making it impossible of finding a best-matching posi-
tion. The problem becomes even worse if the pattern only shows uniform
color, providing no directed structure in the texture at all. This undeter-
minism is known as the aperture problem. It is only possible to determine
the position of the pattern reliably if the pattern shows variations in two
directions. This is the case, for example, at corners (see Fig. 3.1(b)). Here,
the position of the pattern can be determined precisely in both dimensions.

We have seen that for the purpose of motion estimation, little informa-
tion can be obtained from areas of uniform or texture that is structured
only in one-dimension. Hence, the idea of feature-based methods is to con-
centrate only on a small set of interest-points, for which the motion can
be determined reliably. An example of detected interest-points and the re-
spective motion vector to the corresponding point in the previous frame is
shown in Figure 3.1.1.

The decision whether a position in the image is a good feature-point is
generally made as a local decision based only on the image content in the
neighborhood of the interest-point. However, on a more global view, it can
still be difficult to determine the motion for an interest-point, even when it
shows a clear corner. If the image content shows a repetitive structure (like
seen in Figure 3.1.1), many interest-points with comparable a neighborhood
exist and it is not clear which points corresponds to each other.

Resolving this problem is the task of a second algorithm, which com-
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putes the actual correspondences between the two sets of interest-points.
A variety of algorithms have been developed for this problem and they
can be distinguished as algorithms that only consider the positions of the
interest-points, and algorithms that also take the image content around
each interest-point into account. The second approach has the advantage
that the image content can guide the matching algorithm. On the other
hand, this approach does not work well if the transformation between both
images is so large that the image content cannot be easily compared. Sim-
ilarity metrics that are invariant to e.g. affine transformations have been
proposed in the literature, but since the motion between frames in a video
sequence is usually small, we will not consider them further.

3.1.2 From feature-points to motion parameters

Once we obtained a set of corresponding points between two images, we
can use this information to determine the motion parameters. Since each
point-correspondence gives us two equations of constraints — one for the
horizontal component and one for the vertical — we need four point-
correspondences to solve for the eight parameters of the perspective motion
model (see Figure 3.3). Inserting any four correspondences pi ↔ p̂i with
pi = (xi, yi, 1), p̂i = (x̂i, ŷi, 1) into the inhomogeneous formulation from
Eq. (2.10) and multiplying with the denominator results in the linear equa-
tion system

x1 y1 1 0 0 0 −x1x̂1 −y1x̂1

0 0 0 x1 y1 1 −x1ŷ1 −y1ŷ1

x2 y2 1 0 0 0 −x2x̂2 −y2x̂2

0 0 0 x2 y2 1 −x2ŷ2 −y2ŷ2

x3 y3 1 0 0 0 −x3x̂3 −y3x̂3

0 0 0 x3 y3 1 −x3ŷ3 −y3ŷ3

x4 y4 1 0 0 0 −x4x̂4 −y4x̂4

0 0 0 x4 y4 1 −x4ŷ4 −y4ŷ4





h00

h01

h02

h10

h11

h12

h20

h21


=



x̂1

ŷ1

x̂2

ŷ2

x̂3

ŷ3

x̂4

ŷ4


, (3.2)

which can be easily solved for the model parameters hik
1. While four cor-

respondences are enough to solve for the motion parameters, we usually
have many more correspondences available. However, these are contami-
nated with outliers and inaccuracies in the feature positions. Apart from
errors in the computation of the point-correspondences, we also consider
correspondences that are part of foreground object motion as outliers. To
separate this mixed data into clean sets of compatible motion is the main
topic of Chapter 4.

1See also Annex B for an alternative way to obtain the motion parameters with lower
computation cost.
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Figure 3.3: Four point-correspondences between two images define the pro-
jective transformation.

To summarize the typical feature-based motion estimation approach, we
can conclude that a feature-based motion estimator comprises three main
processing steps:

1. detection of interest-points,

2. establishing correspondences between two sets of interest-points, and

3. estimating the motion-model parameters for the dominant motion.

Algorithms for the first two steps are discussed and evaluated in the re-
mainder of this chapter, while the third step is covered in the following
chapter.

3.2 Interest-point detectors

In the past, a large number of interest-point detectors have been proposed
and this topic is still an active area of research. One of the first interest-
point detectors was the Moravec detector [129]. It is a simple ad-hoc al-
gorithm to detect image locations that show variations in many different
directions. Shi and Tomasi [167] describe an interest-point detector that
is derived directly by identifying the sort of texture for which the motion
estimation process is well defined.

Many authors propose to use interest-point detectors that are in fact
corner-point detectors2. However, it is interesting to note that for our
application, it is not important that the interest-points are placed at some

2Note that we use the three terms feature-point, interest-point, and corner-point al-
most synonymically. The term feature-point originates from the motion estimation area,
where the generation process of these points is not considered. The terms interest and
corner point are used for detection algorithms, depending on whether the algorithm is
designed to identify just arbitrary interest points, or corners in the image.
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specific position like the true corner position. As long as the detector
consistently places the interest-points to the same corresponding positions
in each image, its output is valuable.

A commonly used corner detector is the Harris (also known as Plessey)
corner detector [84]. Interestingly, the Harris detector appears to be very
similar to the Shi-Tomasi algorithm using only a different detection criterion
on the same extracted data. A more recent corner detector that claims to
have especially good corner localization capabilities is the SUSAN corner
detector [170]. We will describe and evaluate the performance of the four
mentioned corner detectors in the following sections.

Recent work concentrates on designing interest-point detectors that are
invariant to some classes of image transformations. Since image transfor-
mations are usually small between successive frames of a video sequence,
ordinary interest-point detectors work well for our application and we will
not consider these invariant detectors here. For further information see,
e.g., [126, 110].

Criteria for good detectors

Interest-points should be placed at positions where the image content around
the feature allows to identify the corresponding position in a second image
with high reliability. Placing a feature-point onto a line is not sufficient,
since a line is a one-dimensional feature that only allows to fix the position
perpendicular to the line. The position of the interest-point along the line,
on the other hand, remains uncertain. Consequently, good features must
show a change of texture in two directions so that they can be localized
reliably. In practice, corners, T-junctions, or complex textures provide a
good localization (see Fig. 3.4(a)-(c)). However, interest-points are only
selected locally and an interest-point that seems easy to track at first sight
can actually be a bad choice if there are ambiguities because of, e.g., a
repetitive pattern in the image (Fig. 3.1.1). Another problem case can
occur if the video sequence shows several objects moving in different direc-
tions. If two of these objects overlap, artificial T-junctions can be visible
along the object boundary. If one object moves, this junctions may seem
to move in a different direction than the objects (see Fig. 3.4(d)). Both
problems can only be solved globally and thus, they are not considered in
the feature-point detector.

For the successive processing steps, where we want to establish corre-
spondences between points in pairs of images, two properties of the interest-
point detector are especially important.

• First, for images which show basically the same content in a slightly
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(a) (b) (c)

background object

foreground object

interest
point

(d)

Figure 3.4: (a)-(c) Suitable structures for placing of interest-points. (d)
An artificial T-junction is visible at the boundary between two
objects. If one objects moves, the T-junction moves virtually
in a different direction.

different view, the same features should be detected in both images.
Features that are only found in one of the images cannot be part of a
point-correspondence and would be useless for the succeeding steps.
Even worse, these features will contaminate the data with noise and
may lead to wrong correspondences which will then again make the
robust estimation harder.

• A second criterion for a good interest-point detector is that the posi-
tion of the interest-points should be invariant to the image transform
that is present between the two images. Consider for example that
the interest-point placement is biased to one direction, e.g., all points
have some offset to the left. If we have a rotational transform be-
tween the two considered images, the interest-points would not lie at
corresponding image positions anymore. This imposes problems in
later steps where we want to estimate the image transforms based on
the assumption that corresponding feature-points in a pair of images
move according to the image transform. Clearly, a larger error in the
localization of feature-points also increases the error in the estimation
of the transform.

3.2.1 Moravec interest-point detector

The Moravec interest-point operator is based on the observation that the
image content around a good feature-point should show variations in every
possible direction. Following this principle, the Moravec operator considers
a window W(x, y) of size w × w around a pixel (x, y) and calculates the
sum of absolute differences between pairs of pixels that are either horizontal,
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vertical, or diagonal neighbours. More specifically, the sums for the four
directions are calculated by

Shoriz(x, y) =
∑

(x′,y′)∈W(x,y)

∣∣I(x′, y′)− I(x′ + 1, y′)
∣∣ , (3.3)

Sverti(x, y) =
∑

(x′,y′)∈W(x,y)

∣∣I(x′, y′)− I(x′, y′ + 1)
∣∣ , (3.4)

Sdiag1(x, y) =
∑

(x′,y′)∈W(x,y)

∣∣I(x′, y′)− I(x′ + 1, y′ + 1)
∣∣ , (3.5)

Sdiag2(x, y) =
∑

(x′,y′)∈W(x,y)

∣∣I(x′, y′)− I(x′ − 1, y′ + 1)
∣∣ . (3.6)

Since the differences along all directions must be large, the operator deter-
mines the minimum

S(x, y) = min{Shoriz(x, y), Sverti(x, y), Sdiag1(x, y), Sdiag2(x, y)}, (3.7)

it applies a local non-maximum suppression to these values, and it selects
those positions as interest-points for which S(x, y) exceeds a threshold τmo.

A disadvantage of the Moravec operator is that it is an anisotropic
operator that is sensitive to image rotation. The reason for this is that
only four directions are considered and that the diagonal pixel distances
are a factor of

√
2 larger than the horizontal and vertical distances.

3.2.2 Shi-Tomasi detector

Instead of using an intuitive ad-hoc definition of an interest detector, Shi
and Tomasi propose in [167] to define the interest-point detector by looking
at the motion-estimation problem itself and finding conditions when this
problem can be solved reliably. The interest-points they search for are not
defined by intuitive terms like corners, but only by their ability to track
the features reliably. They assume a translatorial motion d between two
images It and It+1. If we consider again a small window W around the
feature, the matching error E can be written as

E =
∑
p∈W

(It(p + d)− It+1(p))2. (3.8)

After approximating It by a linear Taylor expansion It(p + d) ≈ It(p) +
∇I>t d, we can write the matching error as

E =
∑
p∈W

(
It(p)− It+1(p) +∇I>t d

)2
. (3.9)
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To determine the motion d, we find the minimum matching error by setting
the derivatives to zero:

∂E

∂d
= 2

∑
p∈W

(
It(p)− It+1(p) +∇I>t d

)
∇It = 0. (3.10)

It follows that∑
p∈W

(∇It∇I>t ) · d =
∑
p∈W

∇It · (It(p)− It+1(p)), (3.11)

which is actually a linear equation system Gd = e, where

G =
[ ∑

(∂It(p)/∂x)2
∑

(∂It(p)/∂x)(∂It(p)/∂y)∑
(∂It(p)/∂x)(∂It(p)/∂y)

∑
(∂It(p)/∂y)2

]
, (3.12)

e =
(∑

(∂It(p)/∂x) · (It(p)− It+1(p))∑
(∂It(p)/∂y) · (It(p)− It+1(p))

)
(3.13)

and all the sums go over the window W. To solve reliably for d, the
equation system should be well-conditioned. Shi and Tomasi claim that
this is the case if the value of both Eigenvalues of G do not differ much
and if the Eigenvalues exceed a minimum threshold. Speaking in terms of
the image content, two small Eigenvalues correspond to an almost uniform
content while two Eigenvalues with very different size indicate an edge-
like content [96]. Consequently, the authors propose to use the smaller of
the two eigenvalues λ1, λ2 as a detection criterion for feature-points. Since
G = {gik} is a symmetric 2 × 2 matrix, the Eigenvalues can be computed
easily as

λ1, λ2 =
1
2

(
g00 + g11 ∓

√
(g00 + g11)2 − 4(g00g11 − g2

01)
)

. (3.14)

Detection is carried out by taking λ(x, y) = min{λ1, λ2} for each image
position and assuming a feature-point if λ(x, y) > τst and λ(x, y) is a local
maximum in the image.

Using a weighted window

In the previously described algorithm, all pixels within the window W are
included equally in the calculation. However, this leads to the problem
that the window W is placed such that the window maximizes the number
of high-gradient pixels in the window, regardless of their position in the
window. This induces that the detected interest-point position will be
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Figure 3.5: Placement of the feature-point at a corner. (a) If all pixels
within a window contribute equally (left window), the feature-
point will not be located exactly at the corner, since the algo-
rithm tries to maximize the amount of edge pixels within the
window. When pixels at the center are weighted more than
pixels further away (right window), the feature-point moves
closer to the window center. (b) A Gaussian weighting func-
tion.

biased (see Fig. 3.5(a)). To prevent this effect, a weighting function w can
be introduced to increase the weight of the center pixels. In our application,
we use a cascade of five computationally efficient binomial filters on the
gradient vector components to approximate a Gaussian windowing function
(Fig. 3.5(b)).

3.2.3 Harris corner detector

The Harris corner detector [84] (also known as Plessey detector) is in fact
very similar to the Shi-Tomasi operator, but in this section, we would like
to derive the operator in a different way to give an alternative, more intu-
itive explanation of its function. We begin with examining the texture in a
window W around the considered pixel position by observing the gradient
vectors in this window. The idea is to classify the texture in the window
based on the distribution of the gradient vectors. Figure 3.6 shows scatter-
plots of the gradient vectors for three example window locations. If we
consider Window 1, which contains a linear edge, we obtain the gradient-
vector distribution as shown in Figure 3.6(c). We see that all the gradient
vectors have approximately the same orientation, where the major axis of
the distribution is perpendicular to the image edge. For an image corner
(Fig. 3.6(e)), different gradient orientations are present, each correspond-
ing to one of the edges. This is comparable to complex texture content
(Fig. 3.6(d)) where the gradient vectors are distributed more or less uni-
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(a) Original image. (b) Detected feature-points.
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Figure 3.6: (c)-(e) Scatter plots of gradient vectors for the indicated win-
dows in (a). The detected corner positions are shown in (b).

formly. Finally, for image content with only small luminance variations, all
the gradient vectors are close to zero. To classify the different situations,
we model the distribution of gradient vectors with a bivariate Gaussian dis-
tribution whose principal axes can be obtained as the principal components
of the correlation matrix of the gradient vectors. Note that the correlation
matrix is exactly equal to G as we defined it for the Shi-Tomasi operator
in Eq. (3.12). Moreover, the length of the principal axes are again the
Eigenvalues λ1, λ2 of the correlation matrix. If we look at the length of the
principal axes for each of the texture types, we observe that two small axes
indicate a flat image content, one large and one small axis indicates a linear
structure, while two large axes indicate a corner or other complex texture.
Following this observation, Harris and Stephens proposed the classification
scheme of Figure 3.7(a) to classify a specific gradient-vector distribution
into one of the classes flat, edge, and corner. According to this, a flat re-
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Figure 3.7: (a) Classification of a pixel into one of the three classes
flat,edge,corner is based on the two Eigenvalues λ1, λ2 of the
correlation matrix. (b) The sub-pel accurate corner position
is determined by fitting a quadratic function and taking their
minimum position.

gion is detected if λ1 + λ2 < τha, where τha is a flat-region threshold. The
decision function for the corner region is defined by

r = λ1λ2 − k(λ1 + λ2)2 = Det(G)− k · Tr(G)2 > 0, (3.15)

where k ≈ 0.06. Note that the decision function is chosen such that it is not
necessary to actually compute the Eigenvalues. Instead, it is sufficient to
compute the matrix determinant and the matrix trace by exploiting their
equivalence to the product and sum of the Eigenvalues, respectively. To
locate the corner-points, local minima of r are determined and a corner is
reported at this position if r > 0 and an additional flat area test (Tr(G) ≥
τha, with τha being a flat area threshold) is passed.

The Harris detector shows the same problem of biased corner-point
placement as described earlier for the Shi-Tomasi detector. However, this
problem can be easily approached in the same way by introducing pixel-
weighting within the window. An example result of applying the Harris
detector is shown in Figure 3.6(b).
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Extension to sub-pel accuracy

The Harris corner detector described so far determines the location of cor-
ners with integer pixel accuracy. We have extended the algorithm by fitting
a second-order polynomial to the horizontal and vertical neighborhood and
taking the minimum of these polynomials as the sub-pixel position of the
corner.

Assume that we found an (integer-accurate) local minimum of decision
function r at r(x0, y0). Since a translation does not affect the shape of the
polynomial function, we can assume w.l.o.g. that x0 = y0 = 0. In the
following, only the computation along the horizontal direction is described,
since the computations for the vertical direction are equivalent. Inserting
the values r(−1, 0), r(0, 0), r(1, 0) into the model of the polynomial as ax2+
bx+ c = r(x, 0) allows to easily compute the parameters as a = (r(−1, 0)+
r(1, 0))/2 − r(0, 0), b = (r(1, 0) − r(−1, 0))/2, and c = r(0, 0). Computing
the derivative and setting it to zero results in the position of the minimum

x =
(r(−1, 0)− r(1, 0))/2

r(−1, 0) + r(1, 0)− 2r(0, 0)
, (3.16)

which provides the sub-pel correction offset.

3.2.4 SUSAN corner detector

The principle of the SUSAN corner detector [170] is based on a morphology
approach. While the previous detectors identify positions where the image
content changes in differing directions, the SUSAN corner detector directly
uses a definition of a corner in its algorithm. For this, it uses the USAN
principle (Univalue Segment Assimilating Nucleus). The USAN is the area
of a local neighborhood that has the same color as the center pixel of the
considered neighborhood. This is illustrated in Figure 3.8 where the circles
depict several examples of local neighborhoods.

In the cases where the circle center lies inside of the rectangle, the
USAN consists of pixels from the rectangle. If the center is outside of
the rectangle, the USAN only consists of pixels outside of the rectangle.
When we calculate the size of the USAN area for every possible location, we
observe that the USAN area is smallest at the corners (see Figure 3.9). This
principle is now used in the SUSAN corner detector (SUSAN=”Smallest
Univalue Segment Assimilating Nucleus”) by searching for local minima
of the USAN area. Since the authors of [170] provide source code for the
SUSAN corner detector, we integrated the original implementation into our
experiments.
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Figure 3.8: USAN principle. The USAN is defined as the part of the
neighborhood window that has the same color as the center
pixel. The USAN area for different window positions is drawn
black.

Figure 3.9: SUSAN corner detector. The USAN area for a small sample
image. Corners are detected by finding local minima of the
USAN area. (Picture is taken from [170].)
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3.2.5 Evaluation

Reference correspondences

For the successive evaluations, we need ground-truth data that tells us
which feature-point pi in one frame corresponds to a feature-point p̂k in
the second frame (written as pi ↔ p̂k). Unfortunately, this information
is not available easily and a manual generation of the data is impractical,
since there are usually several hundred feature-points in each frame. As a
solution, we assume that the transform H? between images is known. In
our experiments, we used the output of our complete motion estimation
system where we checked beforehand that the estimation result was very
accurate. Based on this reference transformation H?, we define a set of
reference correspondences R which we use instead of ground truth data.

Let us denote the set of feature-points in the first image It as Ft = {pi}
and as Ft+1 = {p̂k} for the second image It+1. We define the set of reference
correspondences basically as Rε = {pi ↔ p̂k | d(p̂k,H? · pi) < ε}, but with
the additional constraint that each feature-point is only included once. This
set is constructed in a greedy approach where a pair of points is iteratively
added to the set if their projection distance d(p̂k,H? · pi) is smallest and
both points are not used yet in Rε. The parameter ε defines the maximum
displacement error that is allowed for a correpondence. This threshold
is required, since the interest-point detectors can only estimate the point
positions with some amount of error. Choosing a too low value for ε would
result in missed feature-correspondences, whereas a too high value would
include wrong matches. A good choice for ε will become apparent after we
evaluate the repeatability of the interest-point detectors.

Evaluation criteria

We evaluate the performance of the described interest-point detectors ac-
cording to two criteria:

• Repeatability: The fraction of detected interest-points in one frame
that can also be found in the other frame. Features that are only
found in one of the images cannot be part of a point-correspondence
and consequently, they are useless for the succeeding motion analysis.
Even worse, unmatched features would contaminate the data with
noise and may lead to wrong correspondences, which would make the
parameter estimation harder. To quantify this property, we define the
repeatability of the interest-point detector as the fraction of detected
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feature-points in one frame that can also be found in the other frame:

repeatability =
|Rε|

min(|Ft|, |Ft+1|)
. (3.17)

This is the number of available correspondences, normalized by the
minimum number of features in the two input frames. Since we cannot
get more correspondences than the minimum number of features, the
maximum value for repeatability is 1.0.

• Accuracy: A good interest-point detector provides unbiased posi-
tions that are invariant to the image transform that occurs between
the two images. Clearly, a more consistent placement of feature-points
leads to a higher accuracy of the motion estimation parameters, since
the displacement errors are smaller. Note that there is no direct defi-
nition what the ideal position for an feature-point is, but the position
should not jitter between frames.

Assuming that we know the ground-truth transformation H? between
the two frames, we define the accuracy of an interest-point detector as
the mean distance between the feature-point position p̂k in the second
frame and the position of the corresponding feature-point in the first
frame, mapped onto the second frame as H? ·pi. Feature-points which
have no counterpart in the other image are not considered. This gives
the definition of the accuracy as

accuracy =
1
|R|

∑
pi↔p̂k ∈R

d(p̂k , H? · pi). (3.18)

Note that a lower accuracy value indicates a better accuracy. Optimal
accuracy is reached for accuracy = 0.

Evaluation results

The diagrams in Figure 3.10 show the repeatability for four test sequences3

and all of the previously described interest-point detectors, using ε as a
parameter. In each diagram, the repeatability is averaged over the complete
sequence length. From these diagrams and the results of other sequences,
we see that the Harris detector reaches a repeatability between 80− 90%,
where saturation is almost reached for ε ≈ 1.5. Note that a repeatability
near 100% cannot be reached since new image content appears and old

3See Appendix D for a description of the sequence contents.
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Figure 3.10: Repeatability of the detected feature-points: fraction of corre-
sponding feature-points. Feature-points from one image are
transformed into the second image. They match a feature-
point in the second image if there is a detected feature-point
within a neighborhood ε. (Continued in Fig. 3.11.)



3.2. Interest-point detectors 91

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.5  1  1.5  2  2.5  3

matching-distance threshold ε

Harris with sub-pel refinement

Harris w/o sub-pel refinement

Shi-Tomasi
Susan

Moravec

re
pe

at
ab

ili
ty

(a) opera4

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.5  1  1.5  2  2.5  3

matching-distance threshold ε

Harris with sub-pel refinement

Harris w/o sub-pel refinement

Shi-Tomasi

Susan
Moravec

re
pe

at
ab

ili
ty

(b) nature2

Figure 3.11: Continuation of Fig. 3.10.
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Accuracy (pixels) roma rail opera4 nature2 Average
Harris (sub-pel) 0.34 0.56 0.51 0.46 0.47
Harris (integer) 0.53 0.74 0.65 0.67 0.65
Shi-Tomasi 0.53 0.80 0.95 0.83 0.78
SUSAN 0.75 1.13 0.98 1.11 0.99
Moravec 0.74 1.05 0.76 0.98 0.88

Table 3.1: Accuracy results for the four test sequences roma, rail, opera4,
and nature2.

content disappears during the sequences. Especially the feature-points near
the image border are often impossible to match since their counterpart is
outside of the visible image area.

The repeatabilities of all other detectors are clearly below the Harris
detector and they also do not reach a clear saturation, which is due to a
lower localization accuracy. The Shi-Tomasi detector and SUSAN reach
both a repeatability rate between 40 − 70%, while the Moravec operator
only reaches about 30− 40%.4

The results for the accuracy of the four sequences are summarized in
Table 3.1. It can be noticed that the Harris detector again shows the best
performance and that its accuracy can indeed be increased by our sub-pel
refinement.

Conclusion

According to our experiments, the Harris detector showed the best per-
formance for repeatability and also for accuracy. While all detectors yield
a good accuracy, the repeatability is not satisfactory except for the Harris
detector. As a consequence, we selected the Harris detector for our motion-
estimation system and we will omit the other detectors in the successive
sections. It can also be seen that the sub-pel refinement can in fact increase
the accuracy of the Harris detector by about 0.2 pixels.

3.3 Computing feature-correspondences

After feature-points have been extracted for each video frame, it is necessary
to establish correspondences between the feature-points. Each correspon-
dence indicates the motion of one image position with a high confidence.
Computing the correspondences is subject to a number of problems. As

4Since the latter detectors do not show that clear saturation point, we fix ε to a
defensive value of 2.5 for the successive sections and set R = R2.5.
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we have seen in the previous section, no interest-point detector is able to
yield an ideal repeatability. This means that our data-sets will always be
contaminated with feature-points that have no matching counterpart in the
other image. However, this is not only due to imperfections of the detection
algorithms, but it is also caused by the video content itself. One reason
are foreground objects that occlude parts that still were visible in the last
frame, or objects that uncover previously hidden areas. Comparable to the
occlusion problem is the effect that a moving camera results in displacing
the video content such that areas at the image border fall outside of the im-
age area while new parts move into the image at the opposite side. Finally,
it should be noted that the number of feature-points is usually very high
(about 1000-2000 for CIF-resolution video), which emphasizes the need for
a computationally efficient algorithm.

The algorithms for feature-correspondences can be coarsely classified
into two categories: algorithms that take the texture around a feature-point
into account to guide the matching process, and algorithms that only use
the geometric point locations. The second type of algorithm has advantages
when the transformation between successive images is large, like a rotation
of 180◦. In this case, it is difficult to define a reliable similarity measure for
feature-points. Similarity measures that are invariant to some geometric
transformations are a current area of research. However, in our application
to video data, the transformation between images is relatively small and
we can use a simple measure like the sum of absolute differences of the
luminance data in the neighborhood to measure feature-point similarity.

3.3.1 Fast greedy algorithm

Several algorithms for computing feature-point correspondences have been
proposed in the literature [121, 147]. Some of them are especially designed
to allow for large motions [182]. However, for our application, the mo-
tion is relatively small and well predictable from previous frames. On the
other hand, many feature-points are extracted for typical video content, so
that a low computational complexity becomes important. For this reason,
we have developed a fast ad-hoc algorithm to compute point-feature corre-
spondences. In the following, we first describe the algorithm core, which
we subsequently modify to decrease the computational complexity and also
enhance the accuracy.

Algorithm core

Let us denote the feature-points in the first image It as pi = (xi, yi, 1)
and in the second image It+1 as p̂k = (x̂k, ŷk, 1). Furthermore, we define a
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dissimilarity metric on the pairs of feature-points, using the sum of absolute
errors distance, defined as

mi,k =
7∑

r=−7

7∑
s=−7

∣∣∣It(xi + r, yi + s)− Ît+1(x̂k + r, ŷk + s)
∣∣∣ . (3.19)

Finally, we denote the Euclidean distance between the points pi and p̂k as
d(pi, p̂k). Under the assumption that the motion between successive frames
is small, we only consider feature correspondences between points that are
within a search-range dmax. The purpose of this threshold is to reduce
the computational complexity and also to block correspondences between
points that are obviously too far away.

The feature-matching algorithm proceeds as follows.

1. We start the algorithm by establishing the set of all admissible can-
didate correspondences

C0 =
{
pi ↔ p̂k

∣∣ d(pi, p̂k) ≤ dmax

}
. (3.20)

2. For each of the correspondences pi ↔ p̂k in C0, we compute and store
the dissimilarity measure m(i, k) in a matrix.

3. In a greedy approach, we iteratively select the candidate correspon-
dence c = pi ↔ p̂k with the lowest dissimilarity measure and add
that correspondence to the final set of correspondences: C := C ∪{c}.

4. Since each feature-point may only participate in one correspondence,
we remove all candidate correspondences from C0 that have a feature-
point in common with the selected correspondence:

C0 :=
{
pc ↔ p̂d ∈ C0

∣∣ pc 6= pi ∧ p̂d 6= p̂k

}
. (3.21)

The algorithm ends when C0 is empty or the dissimilarity error exceeds a
threshold mmax. This threshold mmax is required to prevent the algorithm
from associating completely dissimilar feature-points which may remain
after most correct correspondences have been found.

Reducing the search-range with motion prediction

The computational complexity of the above algorithm is primarily influ-
enced by the size of the initial candidate set C0, since for each candidate cor-
respondence, the dissimilarity measure has to be calculated. One possible
approach to reduce the candidate set would be to reduce the search-range
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pi: feature position in frame Itpredicted feature
position H0pi
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: feature position in frame It+1

Figure 3.12: Reducing the required search-range with a motion prediction.
Assuming that the past motion H0 does not change much,
the feature-point pi is projected into the future to the position
H0pi. This allows for a smaller search-range d′max compared
to the search-range dmax in the case without prediction.

dmax, but this would make the above algorithm unusable for sequences with
fast motion. Using a similar prediction approach as has been used previ-
ously for block-based motion [35, 36], we assume that the motion between
successive frames is smooth without abrupt changes. This allows us to use
the motion model from the previous pair of frames as a predictor to esti-
mate the position of the feature-points in the current frame. Hence, we can
limit the search-range for matching features to only a small neighborhood
around this estimated feature position. Using the motion model that we
computed for the previous pair of images, we can replace Eq. (3.20) by

C0 =
{
pi ↔ p̂k

∣∣ d(H0pi, p̂k) ≤ d′max

}
, (3.22)

where H0 is the motion model prediction and d′max is the radius of the
search-range around the predicted position (Fig. 3.12). Because the pre-
dicted feature position will be closer to the actual position, we can choose
d′max smaller than dmax, which reduces the computational complexity with-
out sacrifying the ability to handle large motions. The predicted displace-
ment is not limited, so that the actual effective search-range is unlimited.
However, we have the restriction that the motion may not change in speed
too quickly.

Fast neighborhood search with 2-D bucket sort

The evaluation of Eq. (3.20) and (3.22) requires finding the set of feature-
points p̂k, that are within a maximum distance dmax around a position
H0pi. The naive approach to iterate through all feature-points and com-
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b
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y

Figure 3.13: The image area is divided into small squares (buckets) of size
b × b. A list of feature-points is associated with each bucket.
To get a list of features in a neighborhood of a given point,
only the features in the buckets intersecting the neighborhood
have to be checked (indicated with grey).

pute the distance requires substantial computation time because the num-
ber of feature-points can be larger than 1000. Consequently, 1000 × 1000
comparisons would be required for each frame. We can reduce this consid-
erably by storing the feature-points in a data structure which allows for an
efficient search for close points. A simple solution is to partition the image
area into a lattice of small square cells where each cell (m,n) consists of a
set Bm,n, storing the feature-points located in the area of this cell:

Bm,n =
{
p̂k = (x, y)

∣∣∣∣ ⌊x

b

⌋
= m ∧

⌊y

b

⌋
= n

}
. (3.23)

The parameter b is the cell width and can be chosen as, e.g., b ≈ d′max, but
the actual choice is not critical. Locating the set of features within a maxi-
mum distance can now be carried out efficiently by first determining which
cells intersect the search-range (Fig. 3.13). The points within cells that are
completely covered by the search-range can be taken into the solution set
without further testing. Points within cells that are only partially covered
by the search-range have to be tested individually.

3.3.2 Evaluation

A typical output of the algorithm is visualized in Figure 3.14. The corre-
spondences are drawn with lines where the small circle indicates the feature
position in the second frame. Unmatched feature-points are drawn with
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larger circles (unfilled for features of the first frame and filled for features
of the second frame). Most unmatched features are located along the im-
age border, since this part of the image is visible in only one of the two
frames. Other sporadic unmatched features are due to a non-perfect re-
peatability in the interest-point detector. It is obvious that the number of
unmatched features increases quickly if the search-range is too small and
motion prediction is not used (see Figure 3.15). However, even in this case,
a correct estimate of the background motion would be possible, because
enough correspondences have still been found.

In general, a large search-range is required if the motion is very fast.
But unfortunately, a large search-range increases the probability to find
non-correct matches (see Fig. 3.16(a)), and it also increases the computa-
tion time. However, if we use motion prediction to relocate the center of
the search-range, we can obtain the correct correspondences with a much
smaller search-range (see Fig. 3.16(b)). At the same time, the number of
wrong matches is reduced, because the algorithm locks to the camera mo-
tion H0 and since it only detects correspondences that fit into the global-
motion model.

The effect of motion prediction is evaluated further in Figure 3.17 for
four test sequences. Depicted is the recall rate |C ∩ R|/|R| (the fraction
of correctly found correspondences) depending on the search-range. Also
shown is the fraction of the total correspondences found |C|/|R| (including
the wrong matches). All values are averaged over the complete sequence
length. The diagrams show clearly that a much smaller search-range of
only about two pixels (on the average) is required when motion prediction
is enabled, whereas a much larger range is required without prediction.
Obviously, both approaches converge for larger search-ranges.

In a second experiment, we explored the dependency of the recall rate on
the maximum matching error that is allowed for a feature-correspondence.
Since the image motion in general is non-translatorial, but the feature sim-
ilarity is computed assuming only a translatorial model, the feature error
increases for larger non-translatorial transforms. Hence, it is clear that a
higher threshold on the matching error allows more feature-correspondences
to be established. On the other hand, a higher threshold also induces more
erroneous features matches. Figure 3.19 again shows the recall rate, but
now for different maximum matching errors. Since we found that for higher
thresholds, the number of correct correspondences as well as the number
of errors increases, a good trade-off value has to be found. Based on the
results using our test sequences, we chose mmax = 5000 as threshold. How-
ever, we also noticed that the choice of this threshold is non-critical, as the
final result of the motion estimation was similar over a wide range of mmax.
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Figure 3.14: Typical output of our greedy point-correspondence algorithm.
Spurious unmatched feature-points exist from the imperfect
interest-point detector. Since these points are not passed to
the next stage, they do not degrade the total algorithm output.

Figure 3.15: Computed motion between frames 236 and 238 without motion
prediction. It can be seen that the search-range (40 pixels) is
not sufficient to find correspondences at the left part of the
audience and in the tennis-player object. (Motion on the left
side is faster since a left pan is combined with a zoom-out.)
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(a) No motion prediction. A large search-range
(70 pixels) is required, which also increases the num-
ber of wrong matches.

(b) Enabled motion prediction with small search-
range (8 pixels). The algorithm locks to the camera
motion and the number of wrong matches is reduced
considerably.

Figure 3.16: Comparison of the correpondence algorithm without motion
prediction and with motion prediction for a scene with fast
motion.
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Figure 3.17: Recall rate of correct correspondences for different search-
ranges dmax (solid line). The maximum matching error mmax

is fixed to 5000. For comparison, the total number of re-
turned correspondences (also normalized to |R|) is shown with
a dashed line. The wrong correspondences can be seen as the
difference between the two values. (Continued in Fig. 3.18.)
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Figure 3.18: Continuation of Fig. 3.17.
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Figure 3.19: Recall rate of correct correspondences for different maximum
matching errors mmax (solid line). The search-range is fixed
to d′max = 3, motion prediction is turned on. For comparison,
the total number of returned correspondences (also normalized
to |R|) is shown with a dashed line. The wrong correspon-
dences can be seen as the difference between the two values.
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3.4 Summary

This chapter presented the feature-point detection and matching steps of
the feature-based motion estimator. First, we evaluated four different
interest-point detectors for their performance in our application. In partic-
ular, we defined and measured the repeatability and the accuracy of the
detectors. The repeatability is the number of features that are detected in
both images of a pair. A high repeatability is desired, since only features
that are detected in both images can establish a correct correspondence for
the successive motion estimation step. The accuracy of an interest-point
detector is the variance of the detected feature position in different images.
A high accuracy is desired, because inconsistent placement of the feature
points would finally lead to less accurate motion parameters. Based on our
experiments, we concluded that the Harris interest-point detector with our
sub-pel refinement provided the best repeatability of approx. 90% and also
the highest accuracy of about 0.5 pixels.

Furthermore, we presented the feature-matching algorithm. The algo-
rithm is a greedy highest-confidence-first algorithm that first groups fea-
tures for which the SAD matching error of a small window around the
feature is smallest. We added a motion prediction step that predicts the
position of a feature in the new frame based on the motion model between
the last pair of frames. The feature matching is limited to a small neigh-
borhood around this predicted position. This motion prediction has two
advantages: first, the small neighborhood allows for a computationally fast
search, compared to considering all detected features. Second, it prevents
that features are matched that deviate much from the current camera mo-
tion. This effectively decreases the number of wrong matches.

Architecture of the feature-point detection and matching

The data-flow of the feature-point detection and the feature matching step
is depicted in Figure 3.20. For a pair of temporally successive pictures,
feature-points are extracted with the Harris detector. Note that for each
step only one input frame has to be processed, since the features of the
other frame can be reused from the last step. The features Ft are projected
onto the next frame, using the previously computed camera-motion model
Ht;t−1. Matching the two feature sets Ft and Ft+1 results in a set of
correspondences {pi ↔ p̂i} that will be used to determine the camera-
motion parameters (as described in the subsequent chapter). The computed
camera-motion parameters are then used to predict the feature positions in
the next pair of frames.
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search for feature-
correspondences

(Chapter 4)

Harris
corner detector

image  t image  t+1

Harris
corner detector

transform
with Ht ; t-1

Ht+1 ; t

(pi       pi)
^

Ft Ft+1

predicted
feature
positions

delay

estimate motion
parameters

Figure 3.20: Feature-point detection and matching of corresponding fea-
tures.



Chapter4
Feature-Based Motion II:

Parameter Estimation

This chapter describes the algorithm for computing the parameters of the
projective motion model, based on the feature-correspondences that we ob-
tained in the last chapter. We construct the algorithm step by step, start-
ing with a simpler affine motion model, prior to considering the projective
motion model. Whereas the parameter estimation for affine motion can
be realized with linear least-squares, an equivalent problem formulation for
projective motion leads to a non-linear optimization problem. Furthermore,
we study the case of images with multiple independent motions in the same
frame. To extract the dominant motion model in this case, we apply the
RANSAC algorithm, which is a robust estimation algorithm that is not af-
fected by outlier data. An evaluation of the robust estimation algorithm
shows that the accuracy of the results in practice is worse than expected
from a theoretic evaluation. However, after analyzing this discrepancy, we
propose a modification to reach the theoretical performance.

Never mistake motion for action.
(Ernest Hemingway)
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4.1 Introduction

Chapter 2 presented how camera motion can be described with a projec-
tive motion model. In this chapter, we address algorithms to solve the
inverse problem of estimating the model parameters from a set of point-
correspondences.

We describe the algorithm in two steps. First, we assume that the video
sequence shows only background motion without foreground objects that
move in a different direction. This allows us to include all the correspon-
dences in the parameter estimation. In Section 4.3, we describe an enhanced
algorithm that generalizes the algorithm such that foreground motion and
outlier data are excluded from to estimating the motion parameters. The
applied algorithm is the RANSAC (Random Sample Consensus) [73] al-
gorithm, which is a probabilistic algorithm only succeeding with a certain
probability. Our experiments show that the practical performance does
not reach the theoretically predicted probability of success. We will derive
an explanation and propose a modification to increase the robustness in
Section 4.3.3.

Besides the RANSAC algorithm, other robust estimation algorithms
have been proposed. We conducted experiments with the LTS (Least
Trimmed Squares) and LMedS (Least Median of Squares) algorithms. These
algorithms are explained and compared to RANSAC in Appendix C.

4.2 Computing motion model parameters

In the following two sections, we will first consider the estimation problem
for the affine motion model, since this can be solved with linear least-
squares. After that, we will discuss the projective motion model in Sec-
tions 4.2.3 and 4.2.4.

4.2.1 One-dimensional affine motion

Let us first illustrate the principles for simple one-dimensional affine mo-
tion. If we denote the positions in the first (one-dimensional) picture by
xi and the corresponding position in the second picture by x′i, we can for-
mulate the affine motion model as x′i = a · xi + b. Each selection of model
parameters defines a line in an x, x′ diagram which illustrates the corre-
sponding positions between x and x′. The two possible types of motion
which are possible with this simple transform are depicted in Figure 4.1(a).
The two types of motion are translatorial motion, which is specified us-
ing the b parameter and zoom, which is specified with the a parameter.
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x

x’

no motion (x’=x)

translation
(a=1)

zoom

zoom center

(a)

model error

x

x’

correspondence data

best-fit
motion model

(b)

Figure 4.1: One-dimensional affine motion. The horizontal axis shows
the position x in the first picture while the vertical axis shows
the corresponding position x′ in the second picture. (a) Lines
in the x, x′ diagram depict the motion between x and x′. (b)
From the feature-correspondence step, we get a set of (noisy)
correspondences {x ↔ x′} which are drawn as dots. A least-
squares fit is carried out by minimizing the sum of model er-
rors |g(xi)− x‘i|.

The center of the zoom is at the position where the model line crosses the
identity line x = x′.

The parameter-estimation problem is now to obtain an estimate for the
parameters a and b, based on a set of measured point-correspondences. We
denote a set of points in the first image as {xi} and their corresponding
points in the second image as {x̂i}. Since the point measurements are
not exact, we cannot assume that they will all fit perfectly to the motion
model. Hence, the best solution is to compute a least-squares fit to the data.
We consequently define the model error as the sum of squared distances
between the measured positions x̂i and the positions obtained from the
motion model (Figure 4.1(b)). This results in the definition of the model
error as E =

∑
i((axi + b)− x̂i)2. To minimize the model error E, we take

its derivatives with respect to the motion parameters

∂E

∂a
=
∑

i

2(axi + b− x̂i)xi ;
∂E

∂b
=
∑

i

2(axi + b− x̂i), (4.1)

and set them to zero. This leads to the two equations∑
i

(ax2
i + bxi − x̂ixi) = 0 ;

∑
i

(axi + b− x̂i) = 0, (4.2)
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which can be written in matrix form as[∑
i x

2
i

∑
i xi∑

i xi
∑

i 1

](
a
b

)
=
(∑

i x̂ixi∑
x̂i

)
. (4.3)

By solving this linear equation system, we can determine the unknown
model parameters a and b. Note that the problem solved so far is mathe-
matically identical to the problem of simple linear regression.

4.2.2 Two-dimensional affine motion

In the two-dimensional case, our measurements consist of positions (xi, yi)
in the first image and corresponding position (x̂i, ŷi) in the second image.
The position that is obtained by transforming (xi, yi) according to the
motion model will be denoted as (x′i, y

′
i). Now, it is the 2-D affine motion

model (
x′

y′

)
=
[
a00 a01

a10 a11

](
x
y

)
+
(

tx
ty

)
, (4.4)

for which we want to find a good estimate of the six parameters {aik}, tx, ty.
As a direct generalization of the model error of the one-dimensional case, we
can define the model error as: E2 =

∑
i(x

′
i−x̂i)2+(y′i−ŷi)2. In a geometrical

sense, this is the sum of Euclidean distances between the measured positions
in the second frame and the positions to which the features from the first
image are transformed (Fig 4.2). Note that this definition assumes that
the measurements in the first frame are exact and errors are only made
in measuring the position in the second picture. Since this is not true in
practice, it is proposed in [85] to use a more symmetric error definition
like the symmetric transfer error or the reprojection error. However, this
would lead to a more complicated solution with only very little increase of
accuracy. Consequently, we will use the definition of Euclidean error E2.

To solve for the minimum error E2, we again take the partial derivatives
with respect to the model parameters a{ij}, tx, ty and set them to zero. This
gives the equation system

∑
i x

2
i

∑
i xiyi

∑
i xi 0 0 0∑

i xiyi
∑

i y
2
i

∑
i yi 0 0 0∑

i xi
∑

i yi
∑

i 1 0 0 0
0 0 0

∑
i x

2
i

∑
i xiyi

∑
i xi

0 0 0
∑

i xiyi
∑

i y
2
i

∑
i yi

0 0 0
∑

i xi
∑

i yi
∑

i 1




a00

a01

tx
a10

a11

ty

 =



∑
i x̂ixi∑
x̂iyi∑
x̂i∑

i ŷixi∑
ŷiyi∑
ŷi

 ,

which obviously can be solved more easily by splitting the equation system
into two independent systems. The first one determines the parameters for
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(xi,yi)

(x’i,y’i)

(xi,yi)
^ ^

H(xi,yi)

euclidean distance

Figure 4.2: The model error is specified as the Euclidean distance between
the detected feature position in the second frame and the ideal
feature position according to the motion model.

the horizontal motion component a00, a01, tx, while the second one deter-
mines parameters a10, a11, ty for the vertical component.

4.2.3 One-dimensional projective motion

Let us now switch from the affine model to projective motion. We again
consider the one-dimensional case first, for which we use a one-dimensional
projective motion model in the inhomogeneous representation x′i = (a ·
x + b)/(c · x + 1). The most important difference for the estimation is
the fact that this motion model is not linear anymore. Would we use the
same model error definition as above and proceed with the same approach,
we would get a non-linear equation system which is much more difficult
to solve. However, we can apply a trick to linearize the equation system
by modifying the model error definition. Instead of using the Euclidean
distance

E2(a, b, c) =
∑

i

(x′i − x̂i)2 =
∑

i

(
axi + b

cxi + 1
− x̂i

)2

, (4.5)

we multiply with the nominator of the motion model and obtain the alge-
braic error

Ea(a, b, c) =
∑

i

(
(
axi + b

cxi + 1
− x̂i) · (cxi + 1)

)2

=
∑

i

(axi + b− x̂i(cxi + 1))2 .

(4.6)
With this new error definition, we can again compute the partial deriva-
tives and set them to zero to obtain the optimal parameter estimate. After
reordering the obtained equations, we can write them as the equation sys-
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Figure 4.3: Estimation of parameters for the perspective motion model us-
ing linear least-squares on a algebraic distance, and using non-
linear least-squares on the Euclidean distance.

tem  ∑i x
2
i

∑
i xi

∑
i−x2

i x̂i∑
i xi

∑
i 1

∑
i−xix̂i∑

i x
2
i x̂i

∑
i xix̂i

∑
i−x2

i x̂
2
i

a
b
c

 =

∑i xix̂i∑
i x̂i∑

i xix̂
2
i

 . (4.7)

The use of the algebraic error instead of the Euclidean error enables a more
easy computation of the parameters, since only a small linear equation
system has to be solved. However, the penalty for this simplification of
the computation is a reduction of parameter accuracy. Because of the
changed definition of our model error, we now optimize a geometrically
meaningless algebraic distance. As long as the noise level in the data is low,
the difference between both models is small, but it increases with a larger
noise variance. This behaviour is illustrated in Figure 4.3, where random
sample data was generated for an example model with the parameters a =
2, b = 3, c = 0.5. In Fig 4.3(a), the data was distorted by Gaussian noise
with σ = 0.01 and in Fig 4.3(b), a higher noise level of σ = 0.03 was
chosen. It can be seen that the non-linear least-squares fit using squared
Euclidean distances closely approximates the internal parameters. The fit
using algebraic distances results in a reasonable solution for low noise, but
it is strongly biased in the case of high noise.

4.2.4 Two-dimensional projective motion

Let us now extend the one-dimensional case to estimating the parameters of
two-dimensional projective motion. Recall that we want to determine the
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homography matrix H, describing the motion from points pi in one frame
to points p′i = Hpi. When estimating the parameters {hik}, we have to
consider that the parameters are scaling invariant. In the previous section,
we adopted the inhomogeneous representation of the motion model. In
the two-dimensional case, we pursue a similar approach by assuming that
h22 = 1. As we have seen in Section 2.3.3, this normalization fails for the
case where the horizon line includes the coordinate origin, since in that case
h22 = 0. An alternative is to use the overcomplete parameterization and
to impose additional constraints like the unit norm ||H||F = 1 where || · ||F
is the Frobenius norm. This second approach imposes no restrictions on
the transform and thus works in any case. However, it is computationally
more complex since it leads to computing a Singular Value Decomposition
[85]. For inter-frame motion, usage of the inhomogeneous formulation is no
problem because the motion is relatively small. The problem only becomes
apparent for large rotation angles (as we will see in Chapter 6).

Recall the normalized perspective motion equations

x′ =
h00x + h01y + h02

h20x + h21y + 1
, y′ =

h10x + h11y + h12

h20x + h21y + 1
. (4.8)

Since the definition of an Euclidean error measure E2 =
∑

i(x
′
i − x̂i)2 +

(y′i − ŷi)2 would again lead to a complicated non-linear equation system,
we will use an algebraic error in a similar way as in the previous section by
defining

Ea =
∑

i

(
(x′i − x̂i)2 + (y′i − ŷi)2

)︸ ︷︷ ︸
Euclidean distance

(h20x + h21y + 1)2

= (h00x + h01y + h02 − x̂i(h20x + h21y + 1))2+

(h10x + h11y + h12 − ŷi(h20x + h21y + 1))2.

(4.9)

Imposing the necessary condition ∂Ea/∂hik = 0 for a minimum error
results in the linear equation system of the form

(∑
i

Ai

)
h =

∑
i

bi, (4.10)

consisting of a sum of matrices Ai and a sum of vectors bi on the right-
hand side. Using the abbreviation ŝi = (x̂2 + ŷ2), the Ai and bi evaluate
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(a) Detected correspondences. (b) Motion field estimated with linear
least-squares.

Figure 4.4: (a) The correspondences obtained from the previous process-
ing steps. Most of the correspondence vectors are correct, only
a few are established between unmatching feature-points. (b)
The projective motion-model fitted to the correspondences us-
ing linear least-squares with the algebraic distance measure.

as

Ai =



x2
i xiyi xi 0 0 0 −x2

i x̂i −xiyix̂i

xiyi y2
i yi 0 0 0 −xiyix̂i −y2

i x̂i

xi yi 1 0 0 0 −xix̂i −yix̂i

0 0 0 x2
i xiyi xi −x2

i ŷi −xiyiŷi

0 0 0 xiyi y2
i yi −xiyiŷi −y2

i ŷi

0 0 0 xi yi 1 −xiŷi −yiŷi

x2
i x̂i xiyix̂i xix̂i x2

i ŷi xiyiŷi xiŷi −x2
i ŝi −xiyiŝi

xiyix̂i y2
i x̂i yix̂i xiyiŷi y2

i ŷi yiŷi −xiyiŝi −y2
i ŝi


(4.11)

and
bi =

(
xix̂i yix̂i x̂i xiŷi yiŷi ŷi xiŝi yiŝi

)>
. (4.12)

The solution is collected in the parameter vector

h =
(
h00 h01 h02 h10 h11 h12 h20 h21

)>
. (4.13)

Figure 4.4 shows an example result of applying the linear least-squares
fitting algorithm for the perspective motion model. The rail sequence is
a pure background sequence without foreground objects, so no correspon-
dence outliers from foreground motion are present. However, there is a
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small number of outliers that are errors of the feature-correspondence al-
gorithm. These few outliers have not much influence since the number of
correct correspondences is significantly larger.

4.2.5 Non-linear least-squares estimation

We have seen previously that the algebraic error measure can result in an
inaccurate estimate if the noise in the data is high. Consequently, we will
develop an alternative least-squares estimator in this section which directly
uses the Euclidean error metric.

Let C = {xi ↔ x̂i} be a set of point-correspondences. We want to find
parameters for H to minimize the error defined as

E2 =
∑

i

e2
i;x + e2

i;y, (4.14)

where ei;x and ei;y are the residuals of a single point-correspondence in
horizontal and vertical direction:

ei;x =
h00xi + h01yi + h02

h20xi + h21yi + 1
− x̂i ; ei;y =

h10xi + h11yi + h12

h20xi + h21yi + 1
− ŷi. (4.15)

To find a solution, we use the Levenberg-Marquardt algorithm [151]. This
algorithm is a combination of a gradient-descent and Newton-like algo-
rithm. Apart from the error function, the algorithm also requires the par-
tial derivatives with respect to the parameters (for the gradient-descent)
and the Hessian matrix (for the Newton optimization-algorithm). Using
the abbreviations D = h20xi + h21yi + 1, Nx = h00xi + h01yi + h02, and
Ny = h10xi + h11yi + h12, we can determine the derivatives as

∂ei;x

∂h00
=

∂ei;y

∂h10
= xi/D ;

∂ei;y

∂h00
=

∂ei;x

∂h10
= 0

∂ei;x

∂h01
=

∂ei;y

∂h11
= yi/D ;

∂ei;y

∂h01
=

∂ei;x

∂h11
= 0

∂ei;x

∂h02
=

∂ei;y

∂h12
= 1/D ;

∂ei;y

∂h02
=

∂ei;x

∂h12
= 0 (4.16)

∂ei;x

∂h20
= −Nxxi/D2 ;

∂ei;y

∂h20
= −Nyxi/D2

∂ei;x

∂h21
= −Nxyi/D2 ;

∂ei;y

∂h21
= −Nyyi/D2.

Based on these derivatives, we obtain the gradient vector and Hessian ma-
trix for each iteration step. The optimization can be started with H equal
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Avg. Avg. Avg. Max. Max. Max.
algebr. nonlin. RANSAC algebr. nonlin. RANSAC

roma 0.150 0.150 0.455 0.513 0.509 1.014
rail 0.112 0.112 0.569 0.450 0.449 1.659
opera4 0.600 0.600 1.122 3.177 3.180 3.682
nature2 0.176 0.176 0.541 0.795 0.803 1.710

Table 4.1: Motion model error Ev for different estimation techniques.
Shown are the average and maximum values, computed over
the complete sequence. Note that the RANSAC column
shows the model error for the drawn sample excluding the re-
estimation step using all inliers.

to the identity matrix as the initial starting condition. Note that the min-
imization of E2 is considerably more complex than for the linear case, be-
cause it is an iterative process and in each iteration, the derivatives of
Eq. (4.16) have to be computed and summed over all feature-points.

Comparison to linear least-squares

To decide if the simplified linear estimation algorithm using algebraic dis-
tances can be used instead of the more complex non-linear algorithm, we
compared the difference between the estimated motion model and the ref-
erence model H?. Since the reference model is unknown, we instead use the
result of our complete motion-estimation system including the parameter
refinement from Section 5.2. We assume that these parameters are very
accurate, since no alignment errors are visible in the reconstructed sprite
image, which is based on these motion parameters.

We quantify the distance between two transforms by transforming a
point using both transforms, computing the distance between the two re-
sulting positions and averaging over the image area. More specifically, if
A is the image area and H and H? are the two transforms, we define the
transform distance Ev as

Ev =
1
|A|

∫∫
A

d(Hp,H?p) dxdy. (4.17)

We computed the transform distance Ev for the four test sequences and
computed the average and the maximum value over all frames. The results
are shown in Table 4.1 (the RANSAC column will be discussed later).

It is clearly visible that the results obtained with the algebraic distance
do not differ much from the results obtained with the Euclidean distance.
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(a) Typical frame of nature2. (b) Critical frame in opera4.

Figure 4.5: Detected feature-correspondences. While the sequence (a) has
many features that are well distributed over the frame, only
a few features could be found in sequence (b). Moreover, the
features are not distributed uniformly over the image area.
Consequently, the accuracy of the motion estimation is lower
for sequence (b). See also Table 4.1.

Apparently, the noise in the feature location is so small that no difference
is observable between both parameter estimation algorithms. We can con-
clude that the simpler algebraic distance can be used without sacrifying
accuracy.1

4.3 Robust estimation algorithms

As long as we can assume that the only source of errors are inaccuracies
in the feature-point positions, the parameters can be determined using a
least-squares approximation as described above. Unfortunately, this is only
the case for video sequences showing pure camera motion and no indepen-
dent object motion. In most practical situations, the data is disturbed by
gross outliers or it comprises multiple concurrent motions, so that robust

1Also visible in the table is the unusually high error for the opera4 sequence. The
reason for this is the fact that the sequence shows very little texture (see Fig. 4.5(b)), so
that only few feature-points are generated. Moreover, these features are not distributed
equally over the image. A motion model that is derived from only these features will have
a larger error at positions that are distant to the detected features. We will evaluate the
problem of parameter estimation from a poor set of features in detail in Section 4.3.3.
In most cases, these errors in the feature-based motion estimator can be corrected in the
direct estimation algorithm that will be described in Chapter 5.
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estimation algorithms have to be applied. The purpose of the robust esti-
mation algorithms is to fit a given function to a set of data points, even if
the data is contaminated with a considerable number of outliers.

In this section, we present a robust estimation algorithm that extracts
the dominant motion model from the a mixture of different motions. The
robust estimation algorithm separates the input data into inliers (part of
the dominant motion), and outliers (non-dominant motion or erroneous cor-
respondences). For the estimation of the motion parameters from the inlier
data, we apply the parameter-estimation algorithm derived in Section 4.2.

4.3.1 Breakdown of least-squares fit on data with outliers

The direct least-squares approach for parameter estimation works well for
a small number of outliers that do not deviate too much from the correct
motion. However, the result is significantly distorted when the number of
outliers is larger, or the motion is very different from the correct camera
motion. Especially if the sequence shows independent object motions, a
least-squares fit to the complete data would try to include all visible ob-
ject motions into a single motion model. Obviously, this cannot give a
reasonable result.

Figure 4.6 shows an example taken from a sequence with panning cam-
era motion (background moves to the left) and object motion (human walks
to the right) at the same time. The result of fitting the model to all corre-
spondences is shown in Fig 4.6(b). This non-sense result presents a motion
field which indeed moves to the left at the right part of the picture (where
mostly camera motion is visible) and in the other direction at the left side
(where a large object is visible). However, this motion field is neither a
good representation for the camera motion nor for the object motion.

The solution to this problem is to separate feature-correspondences that
originate from different motions and to compute independent motion fields
for each set of correspondences. However, this is a chicken-and-egg problem.
How can we classify the correspondences into different motion types if the
motion fields are unknown, and on the other hand, how can we compute the
motion-field parameters, if the sets of consistent feature-correspondences
are unknown? This problem is addressed in the following sections.

4.3.2 Robust estimation using RANSAC

We consider the following inverse problem. We are given two video frames
that contain several areas with different motions. Two motions are con-
sidered different if the motions cannot be explained by a single projective
motion model. The apparent motion model parameters as well as the seg-
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(a) Detected correspondences (outliers found by RANSAC are drawn
in white color).

(b) Motion field computed from all
correspondences.

(c) Motion field computed using inlier
correspondences only.

Figure 4.6: Example from the human sequence. The computed correspon-
dences are shown in (a). They are classified as either inliers
(black) or outliers (white) by a RANSAC algorithm. (b) shows
the result of fitting a projective motion model on the whole
data-set using a least-squares estimation with algebraic dis-
tance measure. (c) shows the result of using the same estima-
tion technique, but fitting only to the inlier correspondences.
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x’

x

Figure 4.7: Illustration of multiple motions. Each point represents the
motion of one feature-correspondence. Correspondences for
different motion models lie on different manifolds.

mentation into differently moving image areas are unknown. The only input
is a sparse set of samples of the image motion. The objective is to obtain
the model parameters for the dominant motion, i.e., the motion model that
has the largest support of input data. In practice, this dominant motion is
usually the camera motion.

The main difference to the last section is that we now have a mixture
of several motions with unknown parameters. For the one-dimensional
case, this is visualized in Figure 4.7. As mentioned earlier, we cannot
start with estimating motion parameters for one of the models, since the
partitioning into uniform motion areas is still unknown, and we also cannot
start with the partitioning until the motion model parameters are known.
This deadlock situation can be solved with robust estimation algorithms, of
which RANSAC (RANdom SAmple Consensus) [73] is the most prominent
one (other approaches [175, 183, 159] are described in Appendix C). The
idea is to repeatedly guess a set of model parameters using small subsets
of data that are drawn randomly from the input. The hope is to draw a
subset with samples that are part of the same motion model. After each
subset draw, the motion parameters for this subset are determined and the
amount of input data that is consistent with these parameters is counted.
The set of model parameters that has the largest support of input data is
considered to be the most dominant motion model visible in the image.

Introductory examples

Let us consider again the previous example of estimating a one-dimensional
perspective motion model. Since we have three free parameters, we also
need three input correspondences to determine one set of parameters. Con-
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x’

x

(a) Non-fitting sample.

x’

x

(b) Good sample.

Figure 4.8: Two steps of the RANSAC algorithm. A sample set of size
three is drawn to compute the parameters of a one-dimensional
perspective motion model. All input data that is close to the
model computed from the drawn samples is considered as in-
liers (black dots). Circles mark the outlier data.

sequently, every draw from the input data must contain three samples.
From these samples, we can directly calculate the motion parameters. Now,
basically two cases are possible. If we are unlucky, the samples will be drawn
from different motions (Figure 4.8(a)) and their support of inlier input data
(the data which is close to the computed motion model) is small. However,
if we draw the samples from a consistent motion (Figure 4.8(b)), the ob-
tained parameter set will have a larger support. To increase the probability
of finding a consistent set of samples, we have to repeat the random draw-
ing of subsets several times where the number depends on the fraction of
inlier data. Finally, we select the largest set of inliers and assume that it
mainly consists of data from only one motion model. Consequently, we can
now use a standard least-squares estimation on this inlier data to obtain
an accurate parameter set for the motion model.

RANSAC algorithm

Let us now describe the RANSAC algorithm for the special case of es-
timating the parameters of a two-dimensional perspective motion model.
We denote the set of correspondences, which we use as algorithm input,
by C = {pi ↔ p̂i}, and we further denote the Euclidean distance between
two points pi and pk as d(pi,pk). The RANSAC algorithm can then be
described with the following steps.

1. Draw a subset S of size |S| = 4 from C. Four correspondences are
required to solve for the eight free parameters of the motion model.
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2. Compute the parameters {hjk} of the motion model H from the cor-
respondences in S using the linear system in Eq. (3.2).

3. Determine the set of inliers I = {pi ↔ p̂i ∈ C | d(p̂i,Hpi) < ε} which
is the set of correspondences that comply with the motion model. In
other words, this means that we use the current set of parameters to
transform the features from the first image into the second and com-
pare this with the measured positions. If the distance is low, then the
pair of points is assumed to comply with the motion model, and it is
selected as an inlier.

4. Repeat Steps 1–3 several times (N) and choose the set of inliers for
which |I| is largest.

5. Perform a least-squares approximation of the motion parameters with
the set of inliers as described in Equation (4.10). The solution is the
result of the RANSAC algorithm.

The RANSAC algorithm has two parameters that have to be chosen
initially: the number of draws N and the inlier threshold ε. A good value for
the inlier threshold can be obtained from the evaluation of the feature-point
detector. The more accurate it can locate the features, the smaller ε can
be chosen. Section 3.2.5 showed that the number of found correspondences
by increasing ε saturates very quickly. Hence, we have chosen a small value
around 1.5 for ε, but the right selection of ε is not critical. If it is chosen
too low, some correct correspondences will be sorted out as outliers, but
usually the set of inliers is still large enough to estimate accurate model
parameters. If it is chosen too high, some outlier data will be included, but
since these outliers cannot differ much from the inliers (their error is below
ε), their influence in the least-squares approximation will be limited.

The required number of draws N primarily depends on the percentage
of outliers po we expect in the input, and it also depends on the maximum
probability for algorithm failure that is acceptable. This probability P that
the RANSAC algorithm will fail computes as

P (po, |S|, N) = ( 1− ( 1− po︸ ︷︷ ︸
percentage of inliers

)|S|

︸ ︷︷ ︸
probability to draw set of inliers︸ ︷︷ ︸

probability to draw set with at least one outlier

)N

︸ ︷︷ ︸
probability to get only outlier sets after all draws

, (4.18)

where |S| is the size of the subset to be drawn (four in our case). By
fixing a probability P (o, |S|, N) of algorithm failure, we can compute the
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required number of draws N . Clearly, we can always increase N to be more
robust, however, this will also increase the required computation time. Let
us assume as an example that we have an outlier percentage of 30%, then
only 20 draws would be enough to reduce the probability of algorithm
failure to 0.004. Since the inner loop of the RANSAC algorithm is not
very computationally expensive, we can even choose a larger number of
draws, like 50. Section 3.3.1 discussed that by using motion prediction, the
correspondences will lock to the camera motion and fewer correspondences
will be generated for foreground objects. This favourable effect can reduce
the number of outliers beforehand, so that the typical percentage of outliers
is even lower than in the example.

4.3.3 Robustness of the RANSAC algorithm

The RANSAC algorithm is a probabilistic technique that is not always
successful. However, by increasing the number of draws, the probability of
failure can be reduced to arbitrarily small values. Using Eq. (4.18) implies
that the number of draws N depends on the fraction of outliers po, the
sample subset size |S| and the maximum allowed probability of failure P .
For simplicity, we will abbreviate the probability that a non-fitting subset is
drawn by pf = 1−(1−po)|S| during the following discussion. Consequently,
to achieve a maximum error rate of not more than P , we need at least
N = log P/ log pf draws.

Robustness against outliers

To validate the theoretical derivation of the probability of success, we gen-
erated synthetic input data, consisting of a fraction pi of inlier correspon-
dences (motion vectors) that were consistent with a given motion model.
Furthermore, this set of data was contaminated with a fraction pn of ran-
dom motion vectors, and a fraction p2 of object motion vectors that are
consistent with a second motion model. In total, this gives an outlier frac-
tion of po = p2 + pn. We carried out a large number of random draws
and compared the obtained motion model with the predefined inlier model,
which gave us a measured probability p′f to draw a non-fitting subset. The
obtained p′f was very close to the theoretical value pf . The result did not
depend on the type of outlier (noise or secondary motion model). RANSAC
could also successfully find the correct motion model if pm > 50%. How-
ever, it should be noted that the fraction of secondary motion data must
be smaller than the fraction of inliers (p2 < pi), since otherwise the second
motion model is the dominant one.
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Difference between theory and practice

In a second set of experiments, we measured the robustness of the RANSAC
algorithm for noisy real-world data. We selected sequences for which the
correct motion model H? was previously computed using our complete
motion-estimation system. We computed feature-correspondences and clas-
sified them into inliers I? and outliers based on the precomputed accurate
motion model. This gave us the fraction of outliers po in our input data.
Afterwards, the RANSAC algorithm was executed with a large number of
subset draws. For each subset (not only for the best one), the refined mo-
tion model was computed as described in Step 5 of the RANSAC algorithm
and another set of inliers IR was determined based on the refined motion
model. If this set of inliers was equal for more than 90% to the set of inliers
I? obtained with the accurate motion model, the computed motion model
was considered to be correct. Note that a direct comparison between mo-
tion models is not possible because of small differences in the parameters.
The fraction p′f of incorrect motion models that we obtained in the sim-
ulation should approximately equal the theoretical fraction pf . However,
we noticed that the actual probability to draw a non-fitting subset is much
higher (see Table 4.2; compare columns theory vs. refinement steps=1). As
a consequence, an inaccurate motion model is often computed even if all of
the four correspondences in our subset are inliers. This effect will now be
further analyzed.

Dependency of the failure probability on the sample distances

In order to find the reason for this degraded performance, we marked the
randomly drawn subset and the obtained set of inliers in the input image
(see Fig. 4.12(b)). It can be seen that the inliers are spatially concentrated
with an almost clear border to the area with outliers. Moreover, it can also
be verified that the inlier area is larger if the points from the drawn subset
are spatially distant (Fig. 4.12(a)).

The reason for this behaviour are numerical instabilities that can be
easily visualized in the simpler one-dimensional affine case (Fig. 4.9). In
this case, a linear model is computed through two sample points. However,
the position of the sample points is distorted by some noise. This uncer-
tainty of the sample positions has a higher influence on the obtained model
parameters if the samples have a smaller distance. In our one-dimensional
case, this means that the slope of the model line will be inaccurate and
only a few points near the two samples will be classified as inliers.

To validate this explanation, we have further analyzed the dependency
between the probability of having found a successful set of parameters and
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x’

x

computed motion model

Figure 4.9: RANSAC for a linear estimation problem. Even though both
selected points are inliers, the model defined by these points
differs much from the optimum model. Inaccuracies in the
point positions have a large influence on the model if the points
are close together.

the distance between the samples from which the parameters were derived.
In order to show this dependency, we computed the total sample distance

ds =
1
2

∑
i,k∈{1,2,3,4}

d(psi ,psk
) (4.19)

for each selected subset {s1, s2, s3, s4} and plotted the measured probability
of failure p′f depending on ds. It can be observed (Fig. 4.10) that the
probability of failure indeed decreases with larger sample distances. On
the other hand, the estimation will almost certainly fail if the distances are
very small.

Improving RANSAC by equalizing the sample distribution

One possible solution (even though described for the related problem of
computing a fundamental matrix) has been proposed in [201]. The idea
is to disable the selection of samples which are too close by dividing the
image into a grid of rectangular buckets, similar to the technique described
in Section 3.3.1. Random samples are now obtained in two steps. First, a
bucket is randomly selected, followed by a random selection of a feature-
point within this bucket. Since the number of points in the buckets are
unequal, the selection is weighted by the number of points. To get spatially
distant samples, a bucket may only be chosen once in each iteration.

We do not follow this technique, since it favours the selection of distant
feature-points, but it cannot prevent that the position of the sample set is
degenerated. For example, all feature-points could lie in one line.
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Figure 4.10: Probability of generating an inaccurate motion model depend-
ing on the distance between the samples in the drawn subset.
The opera4 sequence is not included since the number of fea-
tures is very low and unequally distributed.

Improving RANSAC using iterative model refinement

As an alternative solution, we propose to keep the original random sam-
ple selection strategy, but to carry out the motion-parameter refinement
(Step 5) of the RANSAC algorithm several times. The idea is that the
initially obtained motion model is not always accurate, but it still includes
a considerable number of inliers. Each time the model parameters are
adapted to the newly obtained set of inliers, the number of inliers will
increase.

A sample result is shown in Figure 4.12(b)-(d), where the set of inliers
after each of the refinement steps is marked. It is clearly visible that the
area of inliers grows with each refinement step. The measured probabilities
of failure p′f for the improved algorithm are shown in Figure 4.11 and Ta-
ble 4.2. It is interesting to note that for a larger number of refinement steps
(≥ 3), the measured probabilities of failure are even below the theoretical
value. The reason for this is that some of the outlier correspondences are
very close to being classified as inliers. Consequently, even if one of these
almost-inliers is selected, the motion model still converges to the correct
model.

Because each additional refinement step might improve the final mo-
tion model, the probability of failure p′f decreases which also means that
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Figure 4.11: Probability of generating an inaccurate motion model depend-
ing on the distance between the four samples in the drawn
subset. The values are based on the rail sequence. The proba-
bility is drawn for different numbers of model refinement steps
(the original RANSAC uses a single step). Also shown is the
distribution of the sample distances as they were drawn ran-
domly from the image.

the number of required subset draws N can be reduced. On the other hand,
each refinement step requires some additional computation time. Hence,
the question arises what the optimum number of refinement steps is. Since
the most computational intensive step in the RANSAC algorithm is the sep-
aration of the samples into inliers and outliers, we count the total required
computation time in units of these classification steps to be performed. If
we denote the number of refinement steps as R, we get the total computa-
tion time C as

C = (R + 1) · dlog P/ log p′fe. (4.20)

After conducting experiments on several test-sequences, we could see that
three refinement steps resulted in the lowest computation time. Since the
probability of failure p′f for three refinement steps is usually close to or
smaller than the theoretically determined value pf , we can use the theoret-
ically computed number of iterations.
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(a) Good sample set (original
RANSAC).

(b) Degenerate sample set (after 1st

refinement = original RANSAC).

(c) Degenerate sample set (after 2nd

refinement).
(d) Degenerate sample set (after 3rd

refinement).

Figure 4.12: Examples for obtained sets of inliers (black color). (a) A good
sample set provides an accurate motion model. (b)-(d) A non-
fitting sample gives inaccurate motion parameters, but they
can be improved by additional refinement steps.

4.4 Summary

This chapter described the second half of the feature-based camera-motion
estimation. Whereas the previous chapter presented the computation of
feature-point correspondences, the current chapter explored the estimation
of motion parameters from feature-point correspondences.

First, we considered the parameter estimation for scenes in which only
camera motion is present. We found that a simple linear algorithm can be
used for affine motion models, but that non-linear optimization is required
for the projective motion model. However, a comparison between the non-
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Failure risk Refinement steps
P = 0.1% Theory 1 2 3 4 5

rail p′f 42.7% 66.9% 46.5% 36.9% 22.7% 17.9%
po = 13% N 8 18 9 7 5 4
roma p′f 14.6% 31.6% 13.7% 7.9% 6.1% 4.7%
po = 4% N 4 6 4 3 3 3
opera4 p′f 54.1% 62.3% 48.8% 42.0% 38.5% 36.3%
po = 18% N 12 15 10 8 8 7
nature2 p′f 31.7% 55.3% 32.8% 21.8% 17.0% 14.8%
po = 9% N 6 12 7 5 4 4

Table 4.2: Probability of degenerated subset draws for different number
of refinement steps. The original RANSAC algorithm corre-
sponds to refinement steps=1. Also shown is the number of
draws N that are needed to reach an algorithm failure rate
below 0.1%.

linear parameter estimation and a linear approximation showed that the
accuracy of the linear-approximation algorithm is comparable.

Afterwards, we extended the algorithm to differentiate between fore-
ground motion and background motion, such that the camera-motion pa-
rameters can also be estimated even when the camera motion is mixed
with object motion. We applied the RANSAC algorithm2 to detect the
dominant motion and to compute its model parameters. The RANSAC al-
gorithm is a probabilistic algorithm that succeeds only with a certain prob-
ability, which can be increased arbitrarily by carrying out more program
iterations. However, experiments showed that the probability of failure was
larger than predicted by a theoretical analysis. It was found that the rea-
son for the reduced performance are degenerate sets of samples, which lead
to numerical instabilities in the parameter estimation. We addressed this
problem by re-estimating the parameters based on the obtained inlier and
then recomputing the set of inliers for a small number of iterations. This
increases the set of inliers in each iteration such that the parameter estima-
tion is based on more input data, resulting in a more accurate estimation.
With this modification to the RANSAC algorithm, we could increase the
probability of success to reach or even exceed the theoretically predicted
performance.

2See Appendix C for a description of alternative algorithms.
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(RANSAC refinement steps)
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Figure 4.13: Estimation of motion parameters based on a RANSAC algo-
rithm. Depicted is only one iteration. The algorithm is re-
peated several times and the solution with the largest number
of inliers is selected.

Resulting algorithm flow-graph

The data-flow of the motion-parameter estimation is depicted in Figure 4.13.
It shows the RANSAC algorithm with an additional loop for the refinement
steps. The algorithm input is formed by the feature-point correspondences
that are extracted in the previous step (see Chapter 3). Four random sam-
ples are selected and a candidate motion model is computed from these
samples. All input correspondences are compared with this motion model
to separate them into an inlier set and the outliers. After this, refined
motion parameters are computed with a least-squares approximation on all
inliers. The last two steps, selection of inliers, and least-squares approx-
imation, is repeated three times to converge to a maximum coverage of
feature-points. This whole process is repeated several times, and only the
motion model that had the largest number of inliers is returned as result.

Experimental results

The camera-parameter estimator has been tested on many sequences that
were either recorded from regular DVB broadcasts, or recorded with a
camcorder. Additionally we also used some standard test sequences. The
algorithm proved to be very robust on most sequences. Problems only
arose if the video contained too few features in the background, or if it had
a very low contrast such that the feature-point extraction could not find
good features to track. In most cases, errors in the feature-based motion
estimator could be corrected in the direct motion estimator that will be
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explained in the next chapter.
Some example results, in which both background and foreground mo-

tion are present, are depicted in Figure 4.14. In Figures 4.14(a) to (d),
surveillance-type scenes were recorded with a hand-held camera. In a real
application, this could be a remotely controlled pan-tilt-zoom camera in a
surveillance system. Finally, Figures 4.14(e) and (f) show two scenes of the
stefan test sequence, one with a slow camera motion and one with a very
fast camera pan.

For the experiments, we selected the Harris algorithm to detect features,
the search-range of the feature-matching algorithm was set to 16 pixels
around the predicted feature position, and the RANSAC algorithm used
25 iterations with 3 refinement steps. All algorithm parameters were fixed
for all sequences. The pictures show the inlier (background motion) vectors
in black color and the outliers (foreground motion and erroneous vectors)
in white color.

The examples show that foreground motion and background motion are
well separated. In addition to the foreground motion, a small number of
outliers can be observed that result from bad feature-correspondences. An
interesting effect is visible in Fig. 4.14(f): the foreground object contains
almost no features. The reason is that the feature-correspondence algorithm
only searches for matching correspondences in a small neighborhood around
the predicted feature position. Since the feature positions are predicted
with the camera motion parameters, the predicted position is far away
from the object motion. Consequently, the algorithm does not find the
correspondences for the object motion. For our application, this is an
advantage because the number of outliers in the input for the RANSAC
algorithm is decreased.
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(a) Humans & bus. (b) Biker & tramway.

(c) Car & biker. (d) Car.

(e) Slow camera motion. (f) Fast camera motion.

Figure 4.14: Inliers (black) and outliers (white) as detected by the
RANSAC algorithm for different scenes with foreground ob-
jects. See Section 4.4 for more details about (f).



Chapter5
Background Reconstruction

If a video sequence is recorded with a rotational camera, it is possible to
reconstruct an image of the scene background. In the context of our video-
object segmentation system, this synthetic background image can be used
for two purposes. First, the background images enable an easy segmenta-
tion algorithm that detects the foreground objects based on the differences to
this background image. Second, the background image can be used together
with the MPEG-4 sprite coding tools to transmit the background content
of a video scene with a very low bit-rate. This section describes the back-
ground reconstruction process, involving the following main tasks. At the
start, the accuracy of the camera-motion parameters is increased such that
long-term consistency is achieved. After that, the input frames are com-
bined into the background image such that moving foreground objects are
removed. We briefly review some of the existing approaches and present
a new algorithm for background estimation which is designed for difficult
reconstruction cases in sequences where the background is only visible for a
short time period.

It’s not an optical illusion, it just looks like one.
(Phil White)
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5.1 Introduction

The segmentation algorithm that will be described in Chapter 7 requires
a pure background image of the captured scene. When the scene back-
ground is available, the segmentation can be obtained by detecting changes
between the background image and the input images. For some applica-
tions, the background image can be captured manually. One example are
indoor surveillance systems that observe a non changing scene. However,
in other cases, the background image should be synthesized automatically
for various reasons. First, it can be impractical to wait for a moment when
there is no foreground object visible, like when observing a busy highway.
Second, the background may change slowly during the day, e.g., because of
changing light conditions. Finally, automatic video segmentation for con-
tent analysis may operate on many small sequences for which it is tedious
or impossible to generate background images by hand. Because of these
reasons, algorithms that synthesize backgrounds automatically become im-
portant.

The basic principle of these algorithms can be explained using Fig-
ure 5.1. The figure shows a slice through the 3-D video volume, comprising
the spatial x,y axes and the time t. Since the sequence was recorded with a
static camera, background pixels do not change over time. However, during
some time periods, the background image content can be occluded by fore-
ground objects. Under the assumption that the background is visible for
a longer time than the foreground, we can apply some averaging method
to filter out the time periods showing foreground content and identify the
background content.

In practice, it is not always true that the background content is visible
during most of the time like in Figure 5.1(b). A much more difficult scene
is shown in Figure 5.2, in which some parts of the background are only
visible during a very short time, or they are not visible at all. The second
part of this chapter will present a new algorithm that is more robust than
previous algorithms in such difficult cases.

In the first part of this chapter, we study camera-motion compensation.
Whereas background estimation for static cameras can simply observe pix-
els at constant position during time, this is not possible for moving cam-
eras. As is visualized in Figure 5.3, a moving camera leads to trajectories
through x-y-t space that should be followed for each background pixel. This
is achieved by aligning all input frames to a common reference frame, which
is at the same time the reference for the background image to be generated.

In the previous chapters, we described the estimation of camera motion,
but unfornately, the obtained motion parameters cannot be used directly
for the camera compensation because of two reasons. First, the motion
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(a) Cut through a 3-D video volume for a se-
quence captured with a static camera.
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(b) An x-t slice of
the 3-D video vol-
ume.

Figure 5.1: For a static camera, the background does not change along the
t-axis. However, foreground objects appear for some time and
occlude the background.

(a) Slice at row 140. (b) Slice at row 180.

Figure 5.2: Two x-t slices for an especially difficult sequence with many
foreground objects. See Figure 5.21(a) for an example input
frame.
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(a) Cut through a 3-D video volume for a sequence
captured with a moving camera.
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(b) An x-t slice of the
3-D video volume.

Figure 5.3: Same visualization as in Fig. 5.1, but now for a moving cam-
era. With a moving camera, the background pixels are not
aligned in temporal direction.

H - short-term
image 1

image n

(a) short-term motion parameters

H - longtermimage 1

image n

background image

(b) long-term motion parameters

Figure 5.4: The feature-based motion estimator described in the previous
chapters gives us short-term motion parameters between suc-
cessive frames. To combine all the images into a single back-
ground frame, long-term motion parameters are required.
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parameters describe the motion between of successive frames (short-term
motion estimation) instead of being relative to a common background ref-
erence frame (long-term motion estimation). The difference is shown in
Figure 5.4. Second, a simple chaining of short-term transforms to obtain
long-term motion parameters would lead to an accumulation of estimation
errors. Hence, we carry out a parameter refinement step that computes
accurate long-term motion parameters.

5.2 Frame alignment

The first step in synthesizing a background image is to determine the ac-
curate placement of the input frames in the background image. With the
feature-based motion estimator described in the last chapter, we computed
the transforms between successive input frames. These inter-image trans-
forms, we have to derive the transformation from each of the input images to
a common, virtual background image. Even though we can obtain the mo-
tion parameters with a very high accuracy of about 0.15 pixels (Table 4.1),
small errors in these parameters will accumulate when we combine these
transforms. These errors will show as blurring when several images are av-
eraged. In the worst case, the alignment errors can lead to discontinuities
along the boundaries of images that are combined together. Consequently,
it is required to further refine the motion parameters by aligning each input
image to the constructed background image with high accuracy. We com-
mence with applying a direct estimation method [92] to obtain the motion
parameters. This technique does not rely on detected feature-points and
hence, in combination with the feature-based estimator, it can increase the
robustness in those cases where the feature-based method yields only low
accuracy because the number of features is low. The direct method re-
quires a good initialization of the parameters, which can be obtained from
the previous feature-based estimator. This combination of both estimation
algorithms brings together the advantages of both. While the feature-based
estimator supports fast camera motion, the direct estimation method pre-
serves long-term consistency due to its higher accuracy.

5.2.1 Motion models for sprite generation

The MPEG-4 sprite coding tools allow to choose between four different mo-
tion models of which the projective model is the most general. In MPEG-
4, a slightly different (but equivalent) parameterization of the projective
model with four motion-vectors at the image corners is used. The other
models are affine (where only three motion-vectors are transmitted), a rota-
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tion/scale/translation model, which only requires two motion-vectors, and
a translatorial model using only one vector. Each of these models is actually
a superset of those with less motion-vectors.

As discussed in Section 2.5.4, all images recorded with a rotating camera
can be aligned into a common reference image by applying the projective
motion model with eight parameters. The parameter estimation of the pro-
jective motion model is often considered difficult since it is non-linear. For
this reason, various authors, e.g., [97, 24] propose to approximate it with an
affine model comprising six parameters. However, the affine model is only
valid for an orthographic projection, i.e., for the case of very large focal
length (see Section 2.4.3). In [172, 122], the bilinear model (eight param-
eters) or the biquadratic model (twelve parameters) have been proposed.
But neither of these models is capable to describe a rotational camera mo-
tion, so that they are only applicable as an approximation to camera motion
when the rotation angle is very small.

5.2.2 Geometry of background image generation

Let us recall the physical image-formation process for a rotation-only cam-
era. The restriction to a rotating and zooming camera is necessary be-
cause with translatorial camera motion, the parallax effect leads to differ-
ent speeds for objects at different depths. This would make it impossible
to align the background images into a seamless mosaic1.

Let us define the 3-D world coordinate system such that the camera is
located at its origin (Figure 5.5). The camera captures a number of images
Ii with different rotations Ri and focal lengths fi. In a rotated local image
coordinate-system, where the frontal viewing direction is along the positive
z-axis, the corresponding 3-D position of each image pixel (x̂, ŷ) in the focal
plane is (x̂, ŷ, fi)>. For simplicity of notation, we assume that the origin of
image coordinates is at the principal point, which can usually be assumed
to be at the center of the image. Now let the virtual sprite-plane be placed
orthogonal to the z-axis of the world coordinate system at a distance fs.

1In fact, it is also possible to generate sprites for arbitrary camera motion including
translation provided that the background is planar.
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The projection of the image point (x̂, ŷ) can then be determined byx′
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(5.1)

where (ox, oy) is the position of the principal point on the sprite plane, and
the resulting sprite coordinates (x′, y′, w′) are given in homogeneous co-
ordinates. Multiplying the intrinsic and extrinsic transformation matrices
together, we obtain the combined matrix Hi, describing the projection of
the image coordinates from frame i onto the background plane. Taking the
image-to-background transformations Hi,Hk for two images i,k, we can
obtain the transformation from image k to i by first mapping the point of
image k onto the background and then mapping it back onto image i. We
denote this inter-image transform as Hi;k = H−1

i Hk. The motion Hi+1,i

between successive frames i and i + 1 is known, since this is the output of
our feature-based motion estimator. However, it is not yet possible to ob-
tain the image-to-background transform from the inter-image transforms,
because the location of the background plane has not been fixed. Basically,
the background plane can be placed at an arbitrary position (see Fig. 5.6),
but we will see in Chapter 6 that the placement of the background plane
still has some important practical consequences. However, in this section,
we will simply choose one arbitrary input frame as the reference frame r,
and use it as the background image reference by setting the transforma-
tion Hr to the identity matrix: Hr = I. Since this fixes the relationship
between the input frames and the background frame, we can obtain the
remaining background transforms Hi by a suitable concatenation of known
transforms. Let, for example, frame 4 be the reference frame, then we can
set H4 = I and thus get H1 as

H4H4,3H3,2H2,1 = H4,3H3,2H2,1 = H1, (5.2)

while we have to take inverse transforms for frames i > r. For, e.g., frame 7,
we get

H7 = H4H−1
5,4H

−1
6,5H

−1
7,6. (5.3)
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Figure 5.5: The rotating camera is located at the origin of the world coor-
dinate system. The sprite plane is assumed to be orthogonal
to the z-axis. Input images are at a distance to the origin
that is equal to the focal length when the image was taken. A
point (x̂, ŷ) on the image is projected onto the sprite position
(x′/w′, y′/w′).

One example result of aligning several frames from the stefan sequence into
a reference frame is presented in Figure 5.7.

5.2.3 Long-term motion estimation

The computation of the image-to-mosaic transforms by concatenating inter-
image transforms is subject to a practical problem. The parameters that
we obtain from the feature-based motion estimator have small inaccuracies
that are negligible when only pairs of images are considered, but which can
accumulate when many transforms are concatenated. As a consequence,
images that are temporally far apart will not fit together in a composed
background image. For a straight camera pan, this effect is almost invisible,
since only successive images overlap. However, if the camera motion returns
to a previous position after some time, the accumulated errors might be well
visible (see Figure 5.8(a)).

To prevent this accumulation of parameter errors, we refine the image-
to-mosaic transforms with a high-accuracy motion estimation algorithm,
where the concatenation of inter-image transforms is used to initialize the
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optical center

projection direction

Figure 5.6: The placement of the background plane can be chosen arbi-
trarily, because an image on each of these planes will look
identical, seen from the optical center.

optimization.

Accurate alignment with direct estimation methods

In contrast to the feature-based motion estimation algorithms that estimate
the parameters from a set of corresponding point features, direct methods
estimate these parameters directly by minimizing the motion-compensated
residual image. This makes use of the brightness-constancy constraint,
which states that the brightness of pixels does not change during motion.
In other words, this means that if H̄t+1,t is the true image motion, then
|It+1(H̄ip)− It(p)| = 0.

Let us denote the background image as IB(x, y) and the current frame
t as It(x, y). In the direct motion estimation algorithm, the refined motion
parameters H̆t are computed by minimizing the motion-compensated image
difference

H̆t = arg min
Ht

∑
p∈A
|IB(Htp)− It(p)|2, (5.4)

where A denotes the complete image area of It. Since the number of param-
eters is large and the function to be minimized is non-linear, an iterative
gradient-descent algorithm has to be applied to find a solution. A gradient-
descent algorithm does not guarantee to find the global optimum, since it
usually converges to a local optimum near the initialization. Hence, it is
important to start with a good initialization, which we can in our case get
from the motion parameters of the feature-based motion estimator.

Practically, we cannot use Eq. (5.4) in the presented form, because of
three reasons. First, during the construction process, the complete back-
ground image is not available yet, which means that some of the trans-
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H1

H2,1 H3,2 H4,3 H5,4

H2 H3 H4 H5

Figure 5.7: Alignment of input frames into a common reference frame.
The inter-image transforms Hi+1,i are obtained from the
feature-based motion estimator. The input-to-mosaic trans-
forms Hi can be obtained by a concatenation of inter-image
transforms as soon as one reference transform Hr has been
defined.

formed pixels Htp will fall onto pixels which are still undefined. It is not
sufficient to set all undefined pixels in IB to an arbitrary color value, since
this can cause large matching errors if the input image It has a different
color. As a consequence, the optimization would try to squeeze It onto the
already defined area of IB as much as possible. A solution is to introduce
a special background pixel value that denotes transparent pixels and set
the matching error between any value and transparent pixels to zero. Of
course, this also means that we get the minimum matching error if both
images do not overlap at all, but since the optimization algorithm locks to
the nearest local minimum, this unfavourable solution is not reached.2

A second difficulty is that our input sequences usually do not show pure

2At first view, both approaches seem to be symmetric. If the cost of non-overlapping
pixels is high, the optimization will move the image onto the defined area to decrease the
error. On the other hand, if the cost of non-overlapping pixels is zero, the optimization
will move the image off the defined area to decrease the error. However, the difference
is that we start with a good initialization where most of the residuals are low. Hence, if
we set the cost in undefined areas to zero, the error does not change much if pixels move
off the defined area.
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(a) Alignment using a concatenation of short-term motion parameters. Note the
alignment errors, which are especially visible at the court line.

(b) Alignment using long-term motion parameters. The long-term parameters were
determined as a refinement of the transform between the image and the mosaic.

Figure 5.8: Alignment quality using short-term or long-term motion pa-
rameters. Only every 12th input image has been included in
the mosaic to make the misalignments more visible.

background images, but they also contain foreground objects. These can
create large matching errors which would dominate the optimization and
therefore bias the estimation towards an inaccurate solution. The solution
for this is to use an M-estimator instead of the squared error to limit the
effect of non-matching areas. We use a saturated squared-error function
which does not increase if the pixel difference exceeds a threshold τ . Other
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Figure 5.9: Robust M-estimators.

authors [171, 39] propose to use a clipped squared-error function, which
drops to zero if the difference exceeds the threshold (Fig.5.9(a)). However,
we think that this can have the unfavourable effect that a bad match can
result in a low matching error, especially with high-contrast backgrounds.

The third problem of Eq. (5.4) is that the transformed pixel positions
Htp will usually not be integer positions, whereas the background image
is discretized. Here, it is important that the transformed positions are not
just rounded to the nearest-neighbor pixel, since this would degrade the
sub-pixel accuracy of the solution. We applied a bi-linear interpolation3 on
IB to obtain values also at sub-pixel locations.

Also note that the total matching error is not normalized to the mapped
image size. This means that a smaller image would lead to less error. How-
ever, adding the normalization would make the equations for the optimiza-
tion process far more complex. Fortunately, the behaviour of gradient-
descent algorithms to lock to a local minimum is again to our benefit, since
it prevents that the projected area collapses to a small size (Fig. 5.10).

Introducing the above-mentioned considerations into a modified cost
function, we obtain the modified optimization equation

H̆t = arg min
Ht

∑
p∈A

ρ(IB(Htp) , It(p)), (5.5)

where IB(Hip) is evaluated using bilinear interpolation and the M-estimator

3Bi-linear interpolation was chosen because this complies to the sprite-warping process
as defined in the MPEG-4 standard.
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Figure 5.10: Cost function of an optimization problem. Often, cost func-
tions are defined such that the global minimum corresponds to
a degenerate solution. For example, in our motion-estimation
problem, we minimize the luminance difference in the overlap-
ping image region. Consequently, the global solution would be
to place the two images beneath each other, resulting in zero
cost since there is no overlapping area. In these cases, it is
an advantage to reach the nearest local optimum instead of the
global solution.

is defined as the clipped squared error

ρ(yB, yI) =


0 if yB is transparent,
(yB − yI)2 if |yB − yI | < τ ,
τ2 else.

(5.6)

Parameter optimization

Gradient descent algorithms optimize the parameters with a number of it-
erations. Note that to evaluate the cost function, we have to transform the
input image using a projective transform with bilinear interpolation and
compare the result with the background image. Since this computation-
intensive calculation has to be carried out in each iteration, it is impor-
tant to keep the number of iterations low. For this reason, we apply the
Levenberg-Marquardt minimization algorithm which is more complex than
a steepest descent, but which is known to converge in a small number of
iterations. We do not describe the Levenberg-Marquardt algorithm here
(refer to [151, 179] for an in-depth description), but we show how to apply
it to our motion estimation problem.

Let us write the transform parameters in vector form as θ = (h00, . . . , h21).
For the optimization process, the algorithm requires the gradient vector of
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the cost function
Eθ =

∑
p∈A

ρ(IB(Htp) , It(p)) (5.7)

with respect to the optimization parameters, i.e., ∇E = ∂Eθ/∂θ and the
Hessian matrix ∇2E. To get the expressions for the gradient vector, we
substitute the motion model Eq. (2.10) into Eq. (5.5). Let us for the ease
of notation abbreviate the residual for a single pixel k as

ek = IB(Htpk)− It(pk) = IB(x′, y′)− It(x, y). (5.8)

Then we can obtain the derivatives for the case where ρ(yI , yB) = |yI−yB|2
as

∇E = 2
∑

k

ek ·
(

∂ek

∂θ1
, · · · , ∂ek

∂θ8

)
. (5.9)

To compute the derivatives of ek, we apply the chain rule to get, for exam-
ple,

∂ek

∂θ1
=

∂ek

∂h00
=

∂IB

∂x′
∂x′

∂h00
=

∂IB

∂x′
x

D
(5.10)

or

∂ek

∂θ7
=

∂ek

∂h20
=

∂IB

∂x′
∂x′

∂h20
+

∂IB

∂y′
∂y′

∂h20
= − y

D
·
(

x′
∂IB

∂x′
+ y′

∂IB

∂y′

)
(5.11)

with the abbreviation D = h20x + h21y + 1.
For the computation of the Hessian matrix, we start with Eq. (5.9),

which we derive a second time. To simplify the result, we follow the sug-
gestion in [151] to ignore the second-order derivatives of e2

k

∂2e2
k

∂θm · ∂θn
= 2
(

∂ek

∂θm
· ∂ek

∂θn
+ ek

∂2ek

∂θm · ∂θn︸ ︷︷ ︸
ignore

)
≈ 2

∂ek

∂θm
· ∂ek

∂θn
, (5.12)

because near the optimum, the errors ek can be assumed to be distributed
around zero. Hence, these terms will cancel out to a large extent when
summing over all pixels. Moreover, since the Hessian matrix is only used
to compute the direction of search, the optimization process is very toler-
ant to inaccuracies in the Hessian matrix (this is similar to Quasi-Newton
approaches). Consequently, we compute the Hessian matrix ∇2E from the
entries of the gradient vector as

(∇2E)mn = 2 ·
∑

k

∂ek

∂θm
· ∂ek

∂θn
. (5.13)
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Image alignment process

The complete background image is constructed by computing refined mo-
tion parameters H̆t between each input image and the background image,
while the background image is updated with the new image after each step.
In the update of the background image, it is important that only the back-
ground pixels that have previously been transparent are replaced in the
background to prevent a slow drift over time.

The construction process is as follows:

1. Copy the reference image Ir into the initially transparent background
image IB using the identity transform H̆r = 1. Set the next image t
to be processed to t = r + 1.

2. Calculate optimized motion parameters H̆t for the current frame us-
ing the prediction H̆t−1H−1

t,t−1.

3. Add It to the background IB where only previously transparent pixels
are modified.

4. Proceed to the next image t := t + 1 and continue at Step 2 until all
images are processed.

Images t that are before the reference r, i.e., with i < r are added similarly
in a second pass.

An example result of the long-term parameter estimation is shown in
Figure 5.8(b). It is visible that the accumulated errors from the short-term
esimations have been corrected to a globally consistent background image.
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5.3 Background estimation

The background image that was synthesized during the alignment pro-
cess was obtained by simply copying the input frames into the background
image. Consequently, the background image will still contain foreground
objects. In this section, we will recompute the background image with the
intention to remove the foreground objects and to get a pure background
image. An example is shown in Fig. 5.8(b), which is actually the output of
this background estimation step. Note that the foreground object has been
removed, unlike Fig. 5.8(a).

5.3.1 Introduction and previous work

Background estimation is the problem of obtaining an image of the scene
background from sequences where the background might be occluded by
foreground objects during most of the time. Since there is no a-priori
knowledge how the background looks like, it can only be estimated by
observing the scene for a longer time and by considering anything as fore-
ground that is not static. Note that this definition of background may differ
from the usual intuitive meaning, which is very dependent on the context.
For example, in a tele-conferencing scene with several participants in a
meeting-room, we would consider the meeting-room to be the background,
while the humans are foreground. Now consider that at the wall there is
a clock, which apparently changes its appearance over time. Based on our
intuition, we would still classify the clock as background, but in the sense
of image background estimation, the clock would be foreground.

In many cases, the decision is even more difficult to make, or the decision
can depend on the time-interval during which we observe the scene. For
example, assume that we can see some book shelves at the back of our
meeting-room. Normally, we would consider this shelf to be background.
However, if one of our persons is removing a book from the shelf, this book
is suddenly becoming a foreground object. Further difficulties can arise
from gradual environmental changes like the direction of the sunlight or
sudden changes when someone switches on a light. A good survey of the
problems of background estimation can be found in [186].

Basically, we can identify two classes of background-estimation prob-
lems which arise from different applications. The difference between both
is the duration for which we observe the scene.

• Long-term. In surveillance applications, we have long-term observa-
tions, where a scene is continuously recorded. Background-estimation
algorithms for this application must use an update strategy, since the
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(a) Constant update factor. (b) Motion adaptive update.

Figure 5.11: Iterative background estimation for hall-and-monitor sequence
up to image 120.

number of available frames is too large to consider them all at once. A
typical requirement for these long-term observations is that the back-
ground image in fact is not static, but also reflects a gradual change
of the scene. Typical problems for this class of algorithm are sudden
changes of the background or changes of the semantic meaning as
described above.

• Short-term. In a video-analysis application, where the video content
includes movies or home-videos, we usually have only short scenes
from which we want to create a background image. The main problem
in this application is that the video sequence may be very short and
yet the algorithm has to find the best possible solution for this limited
input. Fortunately, the scenes are usually so short that we do not have
to take gradual changes into account.

Iterative update algorithm

Since most algorithms proposed in the literature have surveillance appli-
cations in mind, they use a frame-based update strategy that maintains
a current background estimate IB which is updated iteratively with each
new input frame It. In the simplest case, the update can be made with a
constant update factor α as

IB := αIt + (1− α)IB. (5.14)

The disadvantage is that slowly moving objects will appear in the back-
ground image as shadows (Fig. 5.11(a)). It has also been proposed [18,
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(b) With foreground object.

Figure 5.12: A foreground object adds a bias to the median filter, such that
it will not output the mean background color.

148, 156] to adapt the aging factor to the amount of motion in the input
image to reduce the influence of moving objects. More specifically, the
update factor is reduced if the frame-to-frame difference or the frame-to-
background difference is high. However, the problem is that because there
is no distinction between foreground and background, the update factor
is not only reduced when a foreground object covers the background, but
also when the background is uncovered again. Consequently, it also takes a
longer time to remove erroneous objects from the background (Fig. 5.11(b)).
This class of algorithms can only work reliably when foreground objects do
not move too slowly and background is visible during most of the time.
Otherwise, the reconstruction stays unstable or converges to an average of
foreground and background color.

Temporal median algorithm

A different approach that works better for short image sequences is to use
a temporal median-filter over all input frames [123]. This guarantees that
the background color is correctly found if the background was visible for
more than half of the time. The disadvantage of the algorithm is that a
large number of input frames have to be stored. But note that the median
value can be computed efficiently by computing the pixel histogram over
time and deriving the median value from that histogram.

An advantage of the median-filter algorithm is that the effect of blurring
is not as severe as with the weighted update algorithms. However, even with
the median-filter algorithm, the background image content can deviate from
the correct background color. To understand this, assume that a bright
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background is occluded for some period by a dark object. Since the median
is computed including the dark foreground object pixels, as well as the
bright background pixels, the median will not be at the mean background
luminance, but it will be shifted to slightly darker values, caused by shadows
or image noise (see Fig. 5.12). The effect can be observed in the results
shown in Fig. 5.21(d). Even though all foreground objects are dark and the
background is bright, objects appear half-transparent in the reconstruction.
At first glance, this should not happen since the median filter should either
select the darker foreground or the bright background. However, because of
image noise or because there has been a shadow on the background, darker
pixels occur and the foreground objects give a bias to the estimation such
that darker pixel values are selected. This bias from the correct background
color is not always perceivable, but it can cause difficulties in automatic
segmentation algorithms, because this bias might already be detected as a
significant change.

Pixel mode algorithm

Another algorithm that follows the same approach as the median algorithm
is the mode algorithm. Instead of computing the median of the pixel bright-
ness over time, we select for each pixel the most frequently occurring color.
At first view, this seems to be a good solution, but the problem lies in
the definition of pixel similarity. If we count the number of occurrences
of a specific luminance, we have to allow for some tolerance of the lumi-
nance. Otherwise, effects like quantization from an optimally preceding
compression step might influence the result.

Manual synthesis

For the purposes of comparison and ground-truth generation, we wrote a
tool that simplifies the manual extraction of the background from a video
sequence. The program presents the input sequence to the user and lets
him navigate through the sequence. When the user marks an area in a
specific input frame, this area is copied into the background image. To
simplify this process, the image is divided into small blocks, such that the
complete block is copied to the background image when the user selects it.

5.3.2 The SimMat background-estimation algorithm

In this section, we discuss a new background-estimation algorithm that
does not show the luminance bias as the median algorithm does, and that
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Figure 5.13: Sample result of automatic block classification into the three
classes (a) static background, bright areas; (b) moving fore-
ground, dark areas; (c) static foreground, black squares. It
is visible that the legs of the left human are static, while his
upper body is moving.

provides robust results even for difficult scenes. This new algorithm (Sim-
Mat) also succeeds in reconstructing the background image for areas that
are visible in less than half of the frames. It achieves this by integrating
contextual information from neighboring areas, for which the decision is
easier, and by also considering motion information.

When we examine typical video sequences, we can see that areas in
each of the images can usually be assigned to one of three classes: static
background, moving foreground, and static foreground. In this context, the
terms static and moving are related to only a single frame. For a foreground
object, the classification can change between moving foreground and static
foreground during the sequence, since the object can move in some images,
but it can also stay at the same position during some other time. It can
even happen that parts of the object are in different classes in the same
image, like a human that is standing still, but waving with his hands.
However, foreground objects never belong to the static background class.
An illustration of the three classes for an example picture can be found in
Fig. 5.13.

To reconstruct the background image, it is required that we can detect
these three classes. While it is not difficult to detect moving objects, the
differentiation between static background and static foreground is the main
problem. To help in this classification, we can further use the following two
assumptions about backgrounds:

• A background never changes its appearance, even if it was occluded by
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a foreground object for some time. This means that the background
pattern will be visible repeatedly without change, while a foreground
object might appear static for a limited time, but not on a global
scale.

• If an image area is occluded by a foreground object for some periods,
it is probable that a neighboring area is occluded for comparable
periods (see Fig 5.17).

Algorithm overview

The principal idea of our algorithm is as follows. First, we apply a rough
classification of the data in the input images into the two foreground classes
and the background classes. Afterwards, the background image is synthe-
sized from typical representatives of the background class data. Since fore-
ground data is not considered in the background reconstruction, any bias
towards the foreground color is prevented. Moreover, small classification
errors do not lead to errors, because only one typical representative of the
class is selected, so that outliers do not have much influence.

The classification is carried out on units of small blocks of about (8× 8
pixels) to reduce the computational cost and to make the classification be-
tween background and foreground more robust. Periods in which a block
shows background content are identified by searching for the subset of
frames in which the block shows a stable content. The similarity of the
contents of a single block over time is collected into a similarity matrix M,
which contains the difference Ma,b between the image content in this block
for each pair of frames (a, b). High values correspond to similar content,
whereas low values are found for each pair of frames that contains differing
content. Every subset of frames T induces a decomposition of the matrix
into elements that correspond to pairs of frames, where both frames are
within T , and entries where at least one corresponding frame is not in T
(see Fig. 5.14). Our goal is to find a subset T that includes all the frame-
numbers for which background content is visible in a specific block. For a
good solution, the sum of the matrix elements that are covered by T should
be large, since these entries correspond to static background. On the other
hand, entries that are not covered by T should show considerably smaller
similarity. This criterion is used in an optimization to find for each block
the subset of background frames that has the most static content.

Block similarity matrices

We begin with presenting the definition of a block similarity matrix. Let
the block size be N ×N pixels and let the input sequence be of length L.
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Figure 5.14: A set of frames T induces a decomposition of the matrix into
entries Ma;b, where a, b ∈ T (drawn in white), and entries
Ma,b, where either a or b is not in T .

Furthermore, let It(x, y) be the luminance of pixel (x, y) in input frame t.
In this section, we assume that It(x, y) ∈ [0; 1]. To simplify the notation,
we assume in the following that the camera motion has been compensated
as described previously. For each block (u, v) with top left pixel at position
(uN, vN), we calculate a symmetric similarity matrix M(u,v) of size L× L
with

M(u,v)
a,b = 1− 1

N2

N−1∑
i=0

N−1∑
j=0

∣∣Ia(uN + i, vN + j)− Ib(uN + i, vN + j)
∣∣. (5.15)

This equation states that each matrix element Ma,b is set according to the
sum of absolute differences (SAD), measured between the blocks in frame
a and frame b at the same block position in the image.

For time periods in which the content in the block does not change, a
square block along the matrix diagonal will contain high values (Fig. 5.15).
If a specific block content disappears for some time and reemerges later,
a corresponding rectangle of matrix elements beneath the matrix diago-
nal will show low values. Periods with moving content show as low-valued
matrix elements. If the content is only visible for a short time, the corre-
sponding matrix rows and columns will contain mostly low values.
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periods with stable
background (T)

locally non-moving object

high similarity  (Ma,b    1)

low similarity  (Ma,b     0)

Figure 5.15: Structure of a block similarity matrix M = {Ma;b}a;b. White
matrix elements indicate a high block similarity, while dark
elements show low similarity pairs.

(a) Sample similarity
matrix.

(b) Same matrix af-
ter invalidating peri-
ods with motion.

(c) Decomposition re-
sult.

Figure 5.16: A sample block similarity matrix taken from the sequence
shown in Fig. 5.21.

Matrix decomposition

To identify the periods in which only background is visible in a block,
we decompose the matrix into two parts: the stationary elements (high
similarity values), and the non-stationary elements (low similarity values).
Let T (u,v) ⊆ {1, . . . , L} be the set of frames for which we assume that
block (u, v) only contains background content4. Because the background is
static, we consider a matrix element Ma,b stationary iff a and b ∈ T , i.e.,

4We will omit the superscript (u, v) to simplify notation when the meaning is clear.
Since we are only considering single blocks in this section, no ambiguities will occur.
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background is seen in frame a and frame b.
Since stationary matrix elements should have large values and non-

stationary elements should have small values, we can separate them by
choosing T such that the stationary elements are as large as possible and
the non-stationary elements are as small as possible. More specifically, we
optimize the objective function C

max
T

C = max
T

∑
a,b∈T

Ma,b︸ ︷︷ ︸
stationary elements

+
∑

a/∈T ∨ b/∈T

(1−Ma,b)︸ ︷︷ ︸
non-stationary elements

. (5.16)

Optimization is carried out using an iterative process. Starting with a
good estimate of T (obtaining a good initialization is described later), we
calculate the difference that results from adding or removing each of the
input frames from T . If the objective function can be increased by adding or
removing a frame, T is modified accordingly. Optimization is stopped when
C cannot be increased further. We have found that this process converges
in only about two or three passes over the input frames. Note that instead
of the naive way of computing the objective function by summing over the
complete matrix, it is sufficient to compute the difference, which can be
obtained by summing only over a single matrix row. In the case of adding
a frame k to T , the difference is

∆C+k = 2
(∑

a∈T
Ma,k +

∑
a/∈T

(1−Ma,k)︸ ︷︷ ︸
new costs

−
∑

a∈{1,...,L}

(1−Ma,k)︸ ︷︷ ︸
old costs

)

= 2
(∑

a∈T
(2Ma,k − 1)

)
.

(5.17)

Clearly, for the case of removing a frame k from T , the difference is just
the negative value ∆C−k = −∆C+k.

Since the above matrix decomposition process converges to a local min-
imum close to the initialization, an initialization near the correct minimum
must be chosen. Note that the global minimum need not necessarily cor-
respond to the correct background periods. If the sequence contains many
foreground objects of the same color, and if the objects are visible during
most of the time, the global optimum can correspond to those periods in
which foreground objects are visible. To reduce this problem, we apply two
additional steps, preceding the optimization step. First, we exclude periods
from T for which we observe motion in the block. Since we assume that
camera motion has been compensated beforehand, moving content cannot
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t
t
t

time in which foreground is visible

Figure 5.17: A foreground object moves across three blocks in the image.
The times during which the object is visible in the blocks are
correlated.

occur in background regions. Second, we exploit the correlation of back-
ground periods between neighboring blocks. Both steps are described in
the next two sections.

Integration of motion information into the similarity matrix

Motion estimation is carried out for each block using a block-matching
algorithm in a small neighborhood. If the minimum block matching error is
lower than 90% of the null-vector matching error, the block is considered as
moving and the matrix row and column corresponding to the current input
frame are artificially set to 0. This prevents the optimization algorithm
from selecting the block in this frame as a background block. Figure 5.16
shows an example how this exclusion disambiguates an otherwise unclear
situation.

Initializing the optimization by background periods prediction

If there is object motion visible in a block, it will most probably also
be present in a neighboring block during a comparable time period (see
Fig. 5.17). Hence, when calculating T (u,v), we use the previously calcu-
lated T (u−1,v) and T (u,v−1) to initialize the optimization process. If an
input frame a is contained in T (u−1,v) and T (u,v−1), it is also included in
T (u,v). If it is only contained in one of both, it is decided randomly whether
to include it. At the left and top border, predictions are formed directly
from the solution of the block above or to the left, respectively. The very
first block (top-left) is initialized with all input frames active in T (0,0).
This is a sensible assumption, since image activity is usually centered in
the image such that the border contains mainly background content.

The spatial prediction scheme has two advantageous properties. First,
it provides an accurate initialization of the optimization, leading to fast
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Figure 5.18: Spatial background-period prediction (first column of blocks
in the input images). The block at the top left T (0,0) con-
tains background content throughout the sequence (background
marked in a dark shade). The background periods of T (0,i)

form the initialization for background periods of T (0,i+1) (pre-
diction is drawn in a light shade). The matrix decomposition
step then refines this prediction to get the final result for this
block. Since optimization is started with the last block’s result,
the optimization will converge to the correct minimum even for
blocks that are clearly dominated by foreground objects (e.g.,
T (0,4)).

convergence. Second, the prediction helps to select the correct local mini-
mum, even when the object is visible for a longer time than the background.
Since the prediction provides the initialization, even a strong minimum has
not enough support in the beginning that the optimization could be at-
tracted to it. This is illustrated in Figure 5.18 and a real-world example is
shown in Fig. 5.19.

Using SimMat for background updating

The algorithm described so far was presented as an offline algorithm that
is started when all input frames are available. In fact, this is the way the
algorithm is used in our segmentation system. However, as noted previ-
ously, surveillance applications usually update the background during the
observation to adapt to changing illumination and other changes in the
background. If the SimMat algorithm should be used for this application,
then it can be done with a simple modification.

Instead of using similarity matrices of size L×L, where L is the sequence
length, we set L to a history size. This is the number of past frames that
are considered in the background reconstruction. Note that this need not
be a continuous stream of frames, but it can also consist of only, e.g., every
10th frame to same memory and computation time.

Whenever a new input frame t is added to the background estimation,
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Figure 5.19: Prediction of foreground time periods between adjacent blocks.

we modify the row and column (t mod L) in the matrix. This means that
the matrix is filled frame by frame and it cyclically starts over without
deleting the previous content when the matrix is full. After the matrices
are modified, one pass of the optimization algorithm is carried out to adapt
the background classification T .

An example result of background updating with SimMat is shown in
Fig. 5.24 and it will be described in the following section.

5.3.3 Results

We have applied our algorithm to a variety of popular test sequences like
the hall-and-monitor, road1, road2, or urbicande sequences. For these se-
quences, the background could be reconstructed without any visible er-
rors. Even the background from seq 17 of the Video Quality Expert Group
(VQEG) test set was recovered without error (see Fig. 5.23). To discuss
the properties of the algorithm in comparison to other algorithms, we will
evaluate some scenes in more detail.
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The queue sequence

To see the limits of the reconstruction algorithms, we applied our algo-
rithm to a very difficult sequence (see Fig. 5.21) containing many people,
where some persons are walking around and some are standing still for a
long time. We carried out background reconstruction with all described
algorithms. Because parts of the background are never visible during the
whole sequence, it is impossible to get a complete background reconstruc-
tion even with a manual synthesis (Fig. 5.21(b)). Some background areas
in the center of the image are visible only for a very short time, such that
the iterative update, median, and mode algorithms all fail to obtain a good
reconstruction. Compared to these algorithms, the SimMat algorithm is
able to recover larger areas of the background. Furthermore, it is visible
that for the median algorithm (and even worse for the iterative update al-
gorithm), there is a strong bias towards the dark foreground object color.
This bias is not present with the SimMat algorithm, which reconstructs the
background without any blurring.

The road1 sequence

The road1 sequence shows a traffic scene, where a car on the right lane slows
down and finally stops (Fig. 5.22). We synthesized two background images
for the median and the SimMat algorithm, respectively. One background
image is computed for frames 1-150, while the other one is computed for
the whole sequence (frames 1-300). Since the car slows down and finally
stops in about frame 200, the median algorithm cannot decide clearly if
the car should belong to the background or not. The result is a blurred
region. The SimMat algorithm does not have this problem and it adapts
the background image almost instantaneously. Consequently, we have a
background image without the car if we consider the sequence up to frame
150, and a background image with the car for the whole sequence. Notice
that the median algorithm also failed to remove the cars at the end of the
street completely. However, applied to the whole 300 frames, the median
algorithm provided a similar result as the SimMat algorithm.

The hall-and-monitor sequence

To further evaluate the behaviour for changing backgrounds, we applied the
median and the SimMat algorithms also to the hall-and-monitor sequence.
Figure 5.24 depicts the background images that were obtained after every
50 frames. For better visibility in the figure, the images have been cropped
to the most important part. To compute the background images, a history
size of 150 frames was used, but only every 5th frame was used for the
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PSNR
iterative update 29.86 dB
median 30.89 dB
median (cropped) 32.02 dB
our algorithm 35.15 dB
camera noise 38.74 dB

Table 5.1: PSNR between reconstructed background and real background
(hall-and-monitor sequence).

computations. The interesting point in this sequence is the bag that the
left man is placing on the pedestral, and the monitor that the right man
is carrying away. These objects change their status during the sequence to
background or foreground, respectively. The left column in the figure shows
the input frame, the middle column the output of the median algorithm,
and the right column the SimMat algorithm. It is well visible that the
median algorithm has difficulties to keep a clean background without the
two men. Since the men are walking in the direction of the optical axis,
they stay at the same position for a long time. Consequently, they appear
partly in the background reconstruction. The same holds for the bag, which
appears gradually on the pedestral. The SimMat algorithm does not show
this problem. The background stays clean, and it adapts the background
after some time to accomodate for the bag on the pedestral.

Quality of the reconstructed background

To evaluate the quality of the background image with respect to applica-
bility for automatic segmentation algorithms, we measured the difference
between the reconstructed background image and the ground-truth back-
ground image (Table 5.1). Since the real background image is only avail-
able for the hall-and-monitor sequence (in the first frames of the sequence),
we used this sequence to obtain the results. We measured the PSNR of
several reconstruction algorithms and estimated the camera noise by cal-
culating the PSNR between the first two frames of the sequence. Because
the median algorithm cannot remove the foreground objects completely,
we calculated the PSNR a second time, now with the erroneous regions
excluded. Even with these regions excluded, our algorithm achieves con-
siderably higher PSNR than the median algorithm, which makes it a better
choice for segmentation applications.
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5.4 Summary of the background reconstruction
module

This chapter presented the processing steps that are required to synthesize a
background sprite image from a video sequence, when approximate models
for the camera parameters are already available (see Chapters 3 and 4).
These two main processing steps are

• obtaining the accurate motion models to align all input images into
the common background image, and

• fusing the input images to remove moving foreground objects from
the background image.

The framework of these processing steps is illustrated in Figure 5.20. As
input, we apply the approximate parameters Ht,t−1 for describing camera
motion between two frames t− 1 and t. These parameters are refined and
converted to frame-to-mosaic motion parameters with a long-term motion
estimation algorithm that also provides a high accuracy. After each step,
the accurate parameters Ȟt−1 are used together with the frame-to-frame
motion parameters Ht,t−1 to initialize the parameters for the next frame t.

The accurate motion parameters are subsequently used in the back-
ground reconstruction algorithm to obtain camera-motion compensated
input frames. The background-estimation algorithm generates one back-
ground image for the whole sequence, which is subsequently saved as back-
ground sprite and which will also be used for the subsequent segmentation
step (see Chapter 7).

Clearly, the system can be simplified significantly if we know beforehand
that the camera is static (as it is often the case for surveillance sequences).
In this case, we can omit the camera-motion estimation steps and only keep
the SimMat background synthesis algorithm.
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Figure 5.20: Data-flow for motion parameter refinement and background
estimation.
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(a) Typical input frame. (b) Manual synthesiss

(c) Iterative update. (d) Median.

(e) Mode. (f) SimMat.

Figure 5.21: Results for a very complex scene with many walking and stand-
ing people. Note that the background cannot be reconstructed
completely, since some background regions are never visible in
this sequence.
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(a) Input frame 150. (b) Median, frame 1-150.

(c) SimMat, frame 1-150. (d) SimMat, frame 1-300.

Figure 5.22: Results for the well-known road1 test sequence. The Median
algorithm over all 300 frames (not shown) has comparable
quality as the SimMat algorithm in (d).

(a) Typical input frame. (b) SimMat result.

Figure 5.23: Results for VQEG test sequence 17. Note that we have in-
creased the background image brightness for clarity.
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(a) input, 50 (b) medi., 50 (c) SimM., 50

(d) input, 100 (e) medi., 100 (f) SimM., 100

(g) input, 150 (h) medi., 150 (i) SimM., 150

(j) input, 200 (k) medi., 200 (l) SimM., 200

(m) input, 250 (n) medi., 250 (o) SimM., 250

(p) input, 300 (q) medi., 300 (r) SimM., 300

Figure 5.24: Results of online background generation for the hall-and-
monitor sequence. History size is 150 frames.



Chapter6
Multi-Sprite Backgrounds

The previous three chapters presented an algorithm to reconstruct a scene
background image from a video sequence. In the MPEG-4 standard, this
background image (sprite) can be coded and transmitted independently from
the foreground objects. This separation saves bandwidth when the back-
ground sprite is sent less often or only once, and the image area that has to
be coded comprises only the foreground objects. Whereas it seems optimal
to combine as many images into one background sprite as possible, we have
found that the counter-intuitive approach of splitting the background into
several independent parts can reduce the overall amount of data needed to
transmit the background sprite. Furthermore, we show that in the general
case, the synthesis of a single background sprite is even impossible and that
the scene background should be sent as multiple sprites instead. For this
reason, we propose an algorithm that provides an optimal partitioning of
a video sequence into independent background sprites (a multi-sprite), re-
sulting in a significant reduction of the involved coding cost. The generated
multi-sprite backgrounds are a generalization of the previously discussed
background reconstruction algorithm, with the main difference that several
background images are used throughout the sequence.

The most exciting phrase to hear in science, the one that
heralds new discoveries, is not ’Eureka!’ but ’That’s funny ...’
(Isaac Asimov)

165
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6.1 Introduction

The background image that we reconstructed with the algorithms of the
previous chapters serves two purposes. First, we need the pure background
images for the foreground-object segmentation algorithm that is presented
in the next chapter. But we can also use the obtained background images
and motion parameters directly as input for an MPEG-4 encoder that sup-
ports sprite coding. The concept of sprite coding is that the static sprite
image is reused for the decoding of many frames, where each output image
shows a partial view of the sprite image. One main advantage of using
sprite coding is to reduce the required bandwidth, since the background
areas are only sent once with a common sprite image [194].

In this chapter, we take a closer look at the coding efficiency of sprites
and relate this to the image formation geometry and the camera motion.
Interestingly enough, it will be shown that transmitting the background
in a single sprite is generally not the most efficient approach and that the
amount of data can be reduced by splitting the background into several
separate sprites. Moreover, we clarify that when applying the projective
motion model, which is used in MPEG-4, it is only possible to cover at most
180◦ field of view in a single sprite, which makes the use of independent
sprites a necessity. We also address the optimal placement of the reference
frame for defining the sprite coordinate system and we consider a possible
loss of resolution for camera zoom-in sequences.

In [25], coding with multiple sprites was proposed to reduce the distor-
tions in a sprite. However, observed distortions are mainly due to using the
affine motion-model for sprite generation, which is an inappropriate model
for rotational camera motion. Hence, the multiple sprites can only reduce
the perceived distortion, but cannot achieve a geometrically correct sprite
construction.

If we examine the derivation of the projective motion model from the
image formation equations of a rotating camera, we observe that the motion
model cannot be applied for large camera rotation angles. Even for small
rotation angles, sprite-coding can be inefficient, because the perspective
deformation increases rapidly with the rotation angle. We propose to solve
this inherent problem of the projective motion model by distributing the
background image data over a set of independent sprites instead of trying to
code the entire sequence with a single sprite. Despite the increased overhead
of using multiple sprites, the total amount of data can be considerably
smaller than in the single-sprite case.

Another open point, which we ignored in the last chapter, is the selec-
tion of a reference coordinate system. The usual approach to date is to use
the first frame of the input sequence as the reference frame. Alternatively,
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Massey and Bender [123] propose to use the middle frame of a sequence,
which results in a more symmetric sprite shape if the camera performs a
continuous panning motion. Instead of using a heuristic reference frame
placement, our algorithm also computes the optimal reference frame to
minimize the synthesized sprite size.

A further problem that has not yet been treated in the literature is the
problem of camera zoom-in operations. If the camera performs a zoom-in,
the visible part of the scene becomes smaller, but the relative resolution
increases. When the zoomed image is aligned to the sprite background, it
means that the sprite area that is covered by the image is smaller. If we
do not want to lose the increased resolution of the input, it means that
we also have to increase the resolution of the sprite. Otherwise, the input
image would be scaled down to the coarser sprite resolution and fine detail
would be lost. To prevent this unfavourable loss of resolution, our sprite
generation algorithm can incorporate a constraint that ensures that the
resolution of no input frame is decreased during the warping process. As a
result, sprite coding will not cause any loss of resolution and, consequently,
the quality of the decoder output will increase.

The remainder of the chapter is structured as follows. Section 6.2 re-
veals limitations of the MPEG-4 sprite model and introduces the concept
of multi-sprites. Section 6.3 derives a classification method to detect cam-
era configurations for which no appropriate projective transform onto a
sprite plane exists. In Section 6.4, the three idealized examples of pure
camera zoom-out, zoom-in, and camera rotation are analyzed. It will be
shown theoretically that using multi-sprites can in fact reduce the total
sprite size. Furthermore, the resolution-preservation constraint is derived
from the zoom-in example. Section 6.5 presents several definitions of sprite
coding cost, differing in accuracy and computation speed. Moreover, it is
shown how to incorporate practical constraints like a limited sprite buffer
size. The multi-sprite partitioning algorithm is described in Section 6.6,
while experimental results are presented in Section 6.7. An overview how
the algorithm can be integrated into a video-object segmentation frame-
work is given in Section 6.8, and we discuss briefly how multi-sprites can
be transmitted in standard MPEG-4 sprite VOPs in Section 6.10.

6.2 Limitations of the single-sprite approach

MPEG-4 sprite coding is based on the previously described projective mo-
tion model, which is defined as Eq. (2.12). In geometric terms, this trans-
formation is a plane-to-plane mapping. Thus, the sprite image can be en-
visioned as the projection of the 3-D world onto a plane. This is illustrated
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(a) The use of ordinary sprites leads to large geometric deformations.
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Figure 6.1: (a) Top-view of projecting the input frames onto the sprite
plane. The more the camera rotates away from the frontal
view (|θ| increases), the larger the projection area on the sprite
plane. For |θ| ≥ 90◦, the projection ray does not intersect the
sprite plane. Hence, only 180◦ field of view can be covered with
one sprite. (b) Using several sprites reduces the geometric
deformation and allows coverage of larger viewing angles.
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frame 1

frame 255

input sequence background sprite decoded image

frame 1

frame 255

Figure 6.2: MPEG-4 sprite coding is inefficient for large camera rotation
angles. Frame 255 covers a much larger area in the sprite
than in the original sequence. Hence, a magnified view is
transmitted, but only the low resolution is displayed. Note
that the reference frame 1 has the same size in the sprite as
in the original sequence.

in Fig. 6.1(a), which shows a top-view of a camera that rotates around its
vertical axis. If the camera rotates away from the frontal view position,
the area on the sprite that is covered by each image projection becomes
larger. For projection angles that exceed 90◦, input image pixels cannot be
projected onto the planar sprite anymore (see, e.g., the pixel position p).

As a consequence, ordinary MPEG-4 sprites have the direct limitation
that only 180◦ field of view can be represented in a single sprite image.
If this 180◦ limitation is neglected and a wide camera pan is still forced
into a single background sprite [118, 119], very strong image distortions are
inevitable. In practice, the usable viewing angle is even smaller, since the
perspective deformation increases rapidly when the camera rotates away
from its frontal view position. Consequently, the required sprite size also
increases quickly during a camera pan with short focal length. Unfortu-
nately, even though some input images are projected onto a larger area
in the sprite than their original size, this does not result in an increased
resolution at the decoder output, since the image will be scaled down to its
original resolution again at the decoder. In this sense, the sprite-coding is
rather inefficient, since it uses a high resolution for transmitting the sprite
although this extra resolution is never displayed (Fig. 6.2).

An alternative representation for background images would be to use
spherical or cylindrical image mosaics [180] for the background image, in-
stead of a planar mapping (Fig. 6.3). However, this approach has several
disadvantages compared to using the projective motion model. First, gener-
ation of spherical/cylindrical mosaics requires that the internal camera pa-
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Figure 6.3: Using a cylindrical background model.

rameters like focal length and the principal point of the camera are known.
Even though these values can be estimated from the parameters of the
projective motion model, the estimation is difficult, since the calculation is
numerically sensitive (see Chapter 12). Furthermore, the estimation of the
transformation parameters for cylindrical and spherical mosaics requires
complicated non-linear optimization techniques, and the reconstruction at
the decoder is computationally expensive, because transcendental functions
are required. Finally, and above all, the obtained cylindrical/spherical
background is not compliant with the MPEG-4 video coding standard,
since MPEG-4 only supports the projective transformation model.

In the remainder of this chapter, we propose a more efficient coding
technique, based on partitioning the video sequence into several intervals
and calculating a separate background sprite for each of them. Although
some parts of the background may be transmitted twice, the overall sprite
area to be coded is reduced. This counter-intuitive property results from
the fact that the perspective deformations do not accumulate much in the
multi-sprite case, so that larger parts of the sprite can be transmitted in
a lower resolution. Figure 6.1(b) depicts the same scene as in Fig. 6.1(a),
but using a two-part multi-sprite instead of only one single sprite. Two
advantages of the multi-sprite approach can be observed.

• First, the complete scene can be represented in the multi-sprite be-
cause additional sprite planes can be placed as required to cover an
arbitrarily large field of view.

• Second, the total projected area becomes smaller, since the sprite
plane onto which the input is projected can be switched to a different
sprite plane, if this results in a smaller projected area.
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Our algorithm for multi-sprite generation finds the optimal partitioning
of a video sequence into multi-sprites and also determines for each sprite
the optimal placement in 3-D space. Different sprite cost definitions can be
selected to adapt the optimization criteria to different application require-
ments. Finally, the proposed algorithm also allows to integrate additional
constraints into its optimization process. These include the specification
of a maximum sprite-buffer size at the decoder or a resolution-preservation
constraint, which prevents loss of detail during camera zoom-in operations.

6.3 Detecting degenerated transforms

As we have seen in Figure 5.5, the projective transform maps image posi-
tions using a central projection through the origin onto the flat sprite plane.
As a consequence, only points in the half-space in front of the camera should
be projected onto the sprite plane, since points on the back-side would be
mapped ambiguously onto the same points. However, when applying the
projective transform without special treatment for objects behind the cam-
era, these objects are also projected through the optical center onto the
sprite plane, where they will appear up-side down. As an example, the
point p in Figure 6.1(a) lies on the right side behind the camera and would
be mapped onto the left side of the sprite. In the following, we will call
a transformation which maps some image points from behind the camera
onto the sprite-plane as degenerated (see Figure 6.4). These transforms
must be avoided in the sprite-generation process.

Usually, the camera motion Hi;i+1 between successive frames is small
and the problem of degenerated transforms will not appear. However,
the concatenation of the frame-to-frame motions to determine the frame-
to-sprite transform can lead to this degenerated case which maps points
from behind the camera to the other side. Since the sprite construction
process only knows the camera motion in the formulation of the eight-
parameter motion-model from Eq. (2.12), no direct knowledge about the
three-dimensional layout is available and an appropriate detection of a de-
generated transform has to be performed using only the parameters of the
eight-parameter motion-model.

To derive an appropriate detection rule, let us consider again the image-
formation Equation (5.1). According to our assumption that the viewing
direction is along the positive z-axis, the degenerated case occurs if the
z-coordinate of a pixel after multiplication with the rotation matrix R =
{rik} becomes zero or negative. If z = 0, the point would be projected
to infinity, which we also subsume into the degenerated case. Since the
intrinsic camera-parameters matrix Ks and the shift of the image onto
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Figure 6.4: Top view of a horizontal pan set-up. Images a and b in-
clude pixels that are at the back-side of the camera; their
projection onto the sprite-plane must be avoided. The ma-
trix columns (h0i, h1i, h2i)> correspond to the basis vectors of
the rotated and scaled coordinate system. Since the basis vec-
tor (h02, h12, h22) corresponds to the rotated viewing direction,
a negative h22 indicates a rotation of more than 90◦ degrees
away from the frontal view onto the sprite. A scaled version of
the basis vectors can also be found in the inhomogeneous for-
mulation as (a00, a10, px)>, (a01, a11, py)>, (tx, ty, 1)>. How-
ever, because of the normalization process which sets h22 = 1,
these basis vectors may swap their orientation. This is de-
picted for the input image Ia. For image Ib, the matrix entry
h22 is > 0 and no swapping occurs.

its focal plane by the matrix K−1
i does not modify the sign of this value,

the degenerated case for a specific point (x̂, ŷ) can be detected with the
condition

w′ = h20x̂ + h21ŷ + h22 ≤ 0. (6.1)

However, since Hi is scaling invariant and the motion parameters are nor-
malized to h22 = 1 in the formulation of the eight-parameter model, the
sign of all matrix entries hik can change because of the normalization, and
the above test condition would be reversed to its opposite. Therefore, the
condition must be modified to be invariant to the normalization.

To derive a suitable condition for the normalized parameters, we have to
identify when the normalization altered the signs. Consider the case where
h22 < 0 prior to the normalization process. In this case, the normalization
process changes the sign of all matrix entries. Since each column of the
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rotation matrix represents the direction of a rotated basis vector, changing
the signs of all matrix entries hik will swap the directions of all of those
basis vectors. Because we assumed that the coordinate system is originally
right-handed, each swap of a basis vector will change the orientation of
the coordinate system, so that after the three basis vector swaps, the basis
becomes now left-handed. To detect this, we can observe the sign of the
determinant D of the matrix of normalized parameters

D =

∣∣∣∣∣∣
a00 a01 tx
a10 a11 ty
px py 1

∣∣∣∣∣∣ . (6.2)

If the determinant D > 0, the coordinate system is right-handed (it is not
necessarily equal to unity, since the length of the basis vectors is not unity),
otherwise, it is left-handed. Note that the matrix entry h22 corresponds to
the z-coordinate of the basis-vector in z direction. Since the camera looks
along the z-axis, a negative h22, or equivalently, D < 0, corresponds to a
rotation of more than 90◦ away from the frontal viewing position, so that
the camera is looking into the opposite direction.

Finally, this lets us derive the condition to decide whether a point p =
(x̂, ŷ) is projected onto the sprite in a non-degenerated way. For this, we
start with Eq. (6.1) using normalized parameters, obtaining the condition
pxx̂ + pyŷ + 1 ≤ 0. Combining this with the sign of D leads to the final
condition

D · (pxx̂ + pyŷ + 1)

{
> 0 non-degenerated case,
≤ 0 degenerated case.

(6.3)

To decide if an image as a whole would be mapped non-degenerated onto
the sprite plane, we examine the four corner points of the image, which all
must be transformed in a non-degenerated way.

6.4 Examples of single-sprite inefficiencies

Let us first describe some idealized examples to clarify why the MPEG-4
sprites are inefficient in the general case, and how this problem can be
alleviated using multi-sprites. However, note that the algorithm described
in Section 6.6 is not limited to these special cases, but finds the optimum
solution for any real-world sequence.

6.4.1 Example case: camera zoom-out

As a first example, we consider the case that the camera is performing
a continuous zoom-out operation. Since each image covers a larger view
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than the previous one, the projection area on the sprite plane is constantly
increasing. At first, using a single sprite is advantageous, because most of
the image was already visible in the previous image. However, when the
zoom continues, the situation will eventually change, so that the increase of
the total sprite size outweighs the reuse of the already existing background
content and it would be better to start with a new sprite (also see the
real-world example in Figure 6.17).

If we denote the zoom factor between two successive frames as s and
the image size as W × H, the sprite size after n frames will be WHs2n.
Considering the alternative, in which a two-part multi-sprite is constructed
with each sprite comprising only half of the frames, the total size of the
multi-sprite is 2 ·WHs2n/2. Consequently, coding the scene as a two-part
multi-sprite results in a lower total sprite area iff

WHs2n > 2 ·WHsn ↔ n > logs 2. (6.4)

Generalizing this result, it is easy to derive that a p-part multi-sprite gives
a smaller sprite area than a (p − 1)-part multi-sprite, provided that the
sequence length n satisfies

pWHs2n/p < (p− 1)WHs2n/(p−1)

logs p +
2n

p
< logs(p− 1) +

2n

p− 1

n >
p(p− 1)

2
(
logs p− logs(p− 1)

)
.

(6.5)

6.4.2 Example case: horizontal camera pan

Alternatively, let us now assume a camera set-up where the camera only
performs rotation around the vertical axis (camera pan, Fig. 6.5). Input
images are assumed to have normalized size W ·H = 1 and the aspect ratio
W : H = 4 : 3. Furthermore, we assume that the sprite plane is placed at
a distance from the camera which is equal to the focal length f . Hence,
if the camera is in the frontal view position, input images projected onto
the sprite plane remain at the same size. If the camera leaves this frontal
view position, the projection area on the sprite increases. In the following,
we observe the sprite size resulting from a camera pan with angle α. Obvi-
ously, the sprite size will be minimal if the pan is performed symmetrically.
This means that when starting from the frontal view position, we rotate
the camera α/2 to the left and an equal amount α/2 to the right. Since we
assume that the origin of the input image coordinate system is positioned
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at the image center, it is sufficient to consider only one corner of the im-
age, because the other corners can be obtained by mirroring the x and y
coordinates.

Using the abbreviations cθ = cos θ and sθ = sin θ, our camera model in
this example isx′

y′

w′

 =

f 0 0
0 f 0
0 0 1

 cθ 0 sθ

0 1 0
−sθ 0 cθ

x̂ = W/2
ŷ = H/2
ẑ = f


=

fcθW/2 + f2sθ

f ·H/2
−sθW/2 + fcθ

 .

(6.6)

Hence, if the camera is rotated by an angle θ, the top right image corner
(W/2,H/2) projects to (see also Fig. 6.6)

x(θ) =
fcθ

W
2 + f2sθ

−sθ
W
2 + fcθ

; y(θ) =
f H

2

−sθ
W
2 + fcθ

. (6.7)

Consequently, the area A that is covered by image content can be calculated
by

A(α) = W ·H + 4
∫ θ=α/2

θ=0
y(θ)

dx

dθ
dθ, (6.8)

where the integral covers one of the four symmetric “wings” of the sprite.
Figure 6.7 depicts the total covered sprite area A for two different camera
set-ups, one using f = 1 (wide-angle) and the other for f = 10 (tele).
For both set-ups, three alternatives were examined using Eq. (6.8). The
first one is the coding with an ordinary sprite1, whereas the other two
alternatives are using multi-sprites with two or three parts. In the multi-
sprite cases, the total pan angle was divided into equal parts and a separate
sprite was generated for each part. Hence, the total sprite area that is
required for a n-part sprite is n · A(α/n). Figure 6.7 depicts the sprite
area A, depending on the total pan angle α for the different set-ups and
number of sprites used. For very low pan angles, it is clear that the ordinary
sprite construction is more efficient, since the multi-sprite coding has the
overhead of multiple transmission of mainly the same content. However,
because of the fast increasing geometric distortion in the single-sprite case,
the two-part multi-sprite becomes more efficient for pan angles over about
25◦ (f = 10). Finally, for angles exceeding approximately 45◦, using a
three-part sprite becomes the most efficient partitioning.

1But with the optimal selection of the reference frame.
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camera rotation exceeds a specific angle, the area to be coded
in the multi-sprite case is lower than for a single sprite.

6.4.3 Example case: camera zoom-in

Another sprite-generation problem, which is different from the above two
cases, occurs if the camera performs a zoom-in after the reference frame.
Since the resolution of the input frame is reduced when the image is mapped
into the sprite, the resulting output quality at the decoder degrades because
fine details of the input frames are lost. To prevent this undesirable prop-
erty, we introduce a constraint to ensure that the sprite resolution is never
lower than the corresponding input resolution.

Let us first define a magnification factor ml(x′, y′) that indicates for
each pixel in the sprite, by which factor its size has been magnified with
respect to the input image l. To prevent quality loss, ml(x′, y′) should
always be ≥ 1 (project to the same size or larger). Obviously, this will
not be the case during zoom-in sequences, but it can also be violated for
rotational motion. Hence, from now on, we will not only concentrate on
the zoom-in case, but indicate the solution for the general case.

Because we want to ensure that ml(x′, y′) ≥ 1 for all pixels in the whole
video sequence, we have to determine the minimum ml(x′, y′) for the whole
sequence and increase the sprite resolution by the reciprocal value. Since
the motion model includes perspective deformation, the scaling factor is
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Figure 6.8: Change of local resolution. The input image (left) is warped
to the sprite coordinate system (right). In general, this trans-
formation will change the size of a pixel.

not constant over a single input frame (see Fig. 6.8). The local scaling
factor can be computed using the Jacobian determinant of the geometric
transformation Eq. (2.10), which maps the input-image coordinate system
to the sprite coordinate system. Consequently,

ml(x′, y′) =

∣∣∣∣∣ ∂x′

∂x
∂x′

∂y
∂y′

∂x
∂y′

∂y

∣∣∣∣∣ = 1
D2

[∣∣∣∣ a00 a01

a10 a11

∣∣∣∣
−
∣∣∣∣ a00 a01

px py

∣∣∣∣ y′ + ∣∣∣∣ a10 a11

px py

∣∣∣∣x′], (6.9)

where D = pxx+pyy+1 is the denominator of the motion model equations2.
For non-degenerated image projections, ml(x′, y′) is monotonic in x′ and y′,
and its minimum value over the image area can be found in one of the image
corners. Hence, to determine the minimum value m̄l = minx′,y′{ml(x′, y′)}
over a complete input image l, we only have to compute ml(x′, y′) for the
four image corners and select the minimum value.

We will now consider a sprite which is built from input frame i to k. Let
m̄i;k = minl; i≤l≤k m̄l be the minimum scaling factor of all frames between i
and k. To preserve the full input resolution for all frames that were merged
into the sprite, the sprite resolution has to be scaled up by a factor of
1/m̄i;k. The increase of coding cost induced by the enlarged sprite area
can be integrated into the definition of coding cost as will be shown in
Section 6.5.4.

2For the affine motion model, which is a special case of the projective transformation,
px, py are zero and, hence, D = 1. The pixel scale is then simply the determinant of the
affine matrix and independent of x, y.
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6.5 Sprite cost definitions

Optimization towards minimum sprite coding cost requires a formal def-
inition of coding cost. Thus, let Sr

i;k be the sprite which is constructed
using input frames i to k and which uses frame r as its reference coor-
dinate system. The following sections propose several definitions of costs
||Sr

i;k|| which differ in accuracy and computational complexity. Finally, we
show how constraints can be introduced into the optimization process by
combining several cost definitions.

6.5.1 Bitstream length

The obvious choice for defining the sprite coding-cost is the bitstream length
itself. However, this definition is not practical, because of the high compu-
tational complexity required. The optimization algorithm for determining
the optimal sprite arrangement (see Section 6.6) requires the cost for cod-
ing sprites of all possible frame ranges and reference frames. Calculating
these costs is the most computation intensive part of the algorithm. For
this reason, estimates which are more easy to compute will be pursued.

6.5.2 Coded sprite area

As an approximation to the actual bitstream length, we can use the sprite
area that is covered with image content. In a real implementation, Eq. (6.8)
cannot be used, since the covered area is composed of discrete projections.
Instead, we describe the coded sprite area using a polygon xi, yi along
the sprite border (see Figure 6.9). Whenever an image is added to the
sprite, the quadrilateral of the image border is combined with the boundary
polygon around the sprite to represent the new contour. The polygon area
can be calculated rapidly using Green’s theorem by

|| · ||A =
1
2

∑
i∈{0;...;l−1}

(xiyi+1 − xi+1yi) . (6.10)

Computing the sprite area for sprites over the same frame range, but with
a different reference frame, can be simplified. Obviously, the relative place-
ments of the input frame projections stay the same, regardless of the ref-
erence coordinate system. Hence, the contour polygon only has to be com-
puted once, say, for frame k. In order to compute the contour polygon for
another frame i, we only have to apply Hi;k to every point of the contour
polygon and recompute the polygon area.

The sprite-area criterion assumes that the bitstream length is propor-
tional to the number of coded macroblocks. This is only the case if on
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Figure 6.9: The boundary polygon around the sprite area is computed as
the combined outlines of all transformed quadrilaterals. For
simplicity of notation, we double the last point (xl, yl) =
(x0, y0).

the average, the block content does not depend on the sprite-construction
process. However, as we have seen previously, different areas of the sprite
are synthesized with differing local resolution. Since the amount of image
detail per block decreases when the image is magnified in the projection,
the relative coding-cost per block also decreases. This is not reflected with
the cost definition of || · ||A, which only considers the sprite area, regardless
of the detail that is left. Hence, when using an area-based cost definition,
there will be a small bias towards making magnified areas more costly than
when using the theoretically optimal bitstream length cost definition of the
previous section.

To determine the relationship between the resolution scaling factor and
the bitstream length, we scaled images from several sequences to different
sizes and compared the bitstream length after coding the scaled images
as MPEG-4 sprite images. All the coding parameters were held constant
during the experiment. The results are depicted in Figure 6.10. Even
though the input images have very different content, the relationships be-
tween scaling-factor and increase of bitstream length seem to be compara-
ble. Small peaks in bitstream size can be observed at 100%, 150% and 50%.
Since bi-linear interpolation was used for the scaling, which smoothes the
image a little bit, the bit-rate decreases. At integer and other regular scal-
ing factors, the pixels are sampled without effective interpolation, which
explains the slightly higher bit-rate. It can be seen that, as assumed, the
bitstream length does not increase linearly with the image size, but only
with an exponent of 1.6/2. Up to now, we assume a simple linear relation-
ship, but future work might try to compensate for this effect by integrating
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creases the bitstream size by about m(x, y)1.6/2, which is a bit
less than a linear increase relative to the image area.

a detail-loss factor. However, we do not expect a significant difference since
for the optimal sprite-partitionings, we observed that m(x, y) is close to 1
over large parts of the sprite.

6.5.3 Sprite buffer size

A further approximation to the real bitstream length, providing a quick
computation, is to take the area of the bounding box (which we will denote
by || · ||B) around the sprite. Also note that the bounding box size is equal
to the required sprite buffer size at the decoder. Hence, optimizing for
the bounding box size is equivalent to minimizing memory requirements
for sprite storage at the decoder. Except for rare extreme cases, the result
when using the bounding box as an optimization criterion (|| · ||B) differs
not much from using the really covered sprite area (||·||A). The explanation
is that an optimal multi-sprite arrangement will have as little perspective
deformation as possible. Hence, the covered sprite area will be almost
rectangular and obviously, the bounding box is a good approximation for
almost rectangular shapes.
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6.5.4 Adding a resolution preservation constraint and lim-
iting sprite buffer requirements

A cost definition based only on the sprite area gives inappropriate results
if the camera zooms into the scene. Since the algorithm tries to minimize
the total sprite area, it will select the frame at the beginning of the zoom-
in as reference. As we have described in Section 6.4.3, this would lead to
a poor quality for the decoded images at the end of the zoom sequence.
Hence, we have to constrain the solution such that the local scale m(x′, y′)
in the sprite Sr

i;k never falls below unity. This is achieved by calculating
the magnification factor m̄i;k and multiplying the area size with m̄−1

i;k . This
correction factor reflects the potential resolution increase which is carried
out in the final sprite synthesis. Note that increasing the sprite resolution
by the factor m̄i;k corresponds to shifting the sprite plane in 3-D closer to
the origin (f ′s = m̄−0.5

i;k fs).
A further constraint may be a limited sprite buffer size at the decoder.

For example, the MPEG-4 profile Main@L3 (CCIR-601 resolution) defines a
maximum sprite buffer size of 6480 macroblocks. Consequently, the encoder
has to consider this maximum size in its sprite construction process. We
can include this constraint into the cost function by setting the cost to
infinity when the sprite size exceeds the buffer size limitation. Finally, we
also set the cost to infinity if the input image cannot be projected onto
the sprite plane because the transform would be degenerated. This case is
detected using the test condition derived in Section 6.3.

Adding the described constraints to the area cost definition results in
the following combined cost definition

||Sr
i;k||C =


∞

if frame range i; k cannot
be projected onto a single
sprite,

∞ if ||Sr
i;k||B exceeds the max-

imum sprite buffer size,
||Sr

i;k||A
m̄i;k

else.

(6.11)

It is easy to see that for any sensible definition of sprite coding-cost, the
cost is monotone for the beginning and the end of the frame range. More
specifically, for a frame range a; b with a ≤ i and b ≥ k, it holds that
||Sa;b|| ≥ ||Si;k||, since a sprite over a range a; b must also contain at least
the same information as the sprite constructed from every sub-range i; k.

We use the combined cost definition || · ||C in the optimization, since it
is fast to compute and it also ensures that the obtained sprite fits into the
decoder sprite buffer.
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Figure 6.11: Sprite for frames 1 to 7 with frame 4 as the reference frame.
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6.6 Multi-sprite partitioning algorithm

To find the best multi-sprite configuration, the algorithm has to determine
the optimal range of input frames for each multi-sprite part, and addition-
ally, for each sprite the optimal reference frame.

The multi-sprite partitioning algorithm comprises two main steps. In
the first step, it computes the cost for coding a sprite Si;k for all possible in-
put frame ranges i; k. Moreover, it determines the best reference-coordinate
system for each of these frame ranges by selecting that input frame as a
reference, for which the sprite area for this frame range would be smallest.
The second step partitions the complete input sequence into frame ranges,
such that the total sprite coding cost is minimized.

6.6.1 Cost matrix calculation and reference frame place-
ment

In this preprocessing step, we prepare all the sprite costs required for the
main optimization step. For each pair of frames i, k with (i ≤ k), we
consider the cost ||Sr

i;k|| for all reference frame placements r with i ≤ r ≤ k.
Since we can choose the optimal reference frame for each of the sprite ranges
independently, we select the placement for which the sprite cost is lowest.
The sprite cost for optimal placement of the reference is denoted with

||S∗i;k|| = min
r
||Sr

i;k||. (6.12)

The enumeration of all possible configurations of i, k, and r may seem
computationally complex, but can be calculated efficiently for most cost
definitions (including || · ||A, || · ||B, and || · ||C) using a two-step approach.
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In the following, it is assumed for simplicity that the cost definition is based
on the sprite bounding box, but the same principle can also be applied to
the area computation.

We begin with computing all bounding boxes for the case that the first
frame in a range is selected as reference frame (Sr

r;k). These costs can be
computed efficiently for all k by starting with the bounding box of Sr

r;r,
which has simply the input image size. Each Sr

r;k can now be computed
iteratively from its predecessor Sr

r;k−1 by enlarging the predecessor’s bound-
ing box to include frame k. The same process is repeated in the backward
direction to compute all Sr

i;r. When both directions are processed, is it
possible to quickly determine the bounding box for Sr

i;k by computing the
enclosing bounding box of Sr

i;r and Sr
r;k (see Fig. 6.11). Let us denote the

computation of the enclosing bounding box of two sprites Sr
i;r and Sr

r;k as
||Sr

i;r;S
r
r;k|| = ||Sr

i;k||. The difference to using the sprite size ||Sr
i;k|| directly

is that this would require a look-up in a three-dimensional array of pre-
computed cost-values. By splitting the sprite-range into two parts, namely,
the range preceding the reference frame and the remaining range after the
reference frame, precomputed sprite costs can be determined with lower
memory requirements, since only two triangular matrices are stored.

Consequently, when we determine ||S∗i;k|| by searching for the r that
results in the minimum area bounding box, we do not apply Eq. (6.12)
directly, but combine the cost using the two sprite halves as

||S∗i;k|| = min
r
||Sr

i;r;S
r
r;k||. (6.13)

The results are stored in an upper triangular data matrix consisting of
the values ||S∗i;k||. These values serve as the input data for the subsequent
optimization algorithm. Additionally, we store the reference frame r for
each S∗i;k as it was found in the minimization Eq. (6.13). This value is not
needed for the optimization, but the final sprite-image generation uses the
information for selecting the reference coordinate system.

6.6.2 Optimal sequence partitioning

In the sequence-partitioning step, the input frames are divided into sepa-
rate ranges, so that the total cost to code the sprites for all frame ranges
is minimal. More formally, let P =

(
(1, p1 − 1), (p1, p2 − 1), . . . , (pn−1, N)

)
be a partitioning of the video sequence of length N into n sub-sequences.
The optimization problem can then be formulated as determining the par-
titioning P ∗ for which the sum of all sprite costs is minimal:

P ∗ = arg min
P

∑
(i,k)∈P

||S∗i;k||. (6.14)
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Figure 6.12: Determination of the optimal sequence partitioning. Each
state ck is assigned the minimum coding cost for a partition-
ing ending in frame k. Each arrow represents the cost for
the sprite built from the covered frames. For each ck with
k ≥ 1, the sprite that results in the minimum cost in node
ck, is marked with a bold arrow. Tracing back the bold arrows
from the last node (c5) provides the optimal partitioning with
minimum cost.

This minimization problem can actually be viewed as a minimum-cost
path search in a graph, where the graph nodes correspond to the input
frames plus an additional dummy start node, V = {0, . . . , N}. The graph
is fully connected with directed edges E = {(i; k) | i, k ∈ V ; i < k}. Each
edge (i; k) is attributed with edge costs ||S∗i+1;k||. Every path from the
start node 0 to node N defines a possible partitioning, where each edge on
the path corresponds to one frame range for which a sprite is generated.
Consequently, the minimum cost path gives the minimum-cost partitioning
P ∗. The shortest-path search can be carried out using a standard Dijkstra
algorithm or A∗ search.

However, because of the regular graph structure, the minimization prob-
lem can also be computed with simple iterative algorithm (Figure 6.12). For
each image i, we compute the minimum cost ck (c0 = 0) of a partitioning
ending in image k as

ck = min
i∈[1,k]

{
ci−1 + ||S∗i;k||

}
. (6.15)

The index i denotes the beginning of the last sub-sequence in the partition-
ing up to frame k. For each image, we store the i for which the minimum
was obtained. Tracing back these stored i-values, starting at frame N ,
results in the optimal partitioning with respect to total sprite size.

When searching through the possible values of i in Eq. (6.15), a common
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case is that the sprite cost ||S∗i;k|| will reach ∞ when a cost definition
according to Eq. (6.11) is used. As the cost cannot decrease if the frame
range is extended (see Section 6.5.4), an efficient way is to carry out the
search for i backwards, starting with k and stopping the search as soon as
∞ is obtained for the sprite cost ||S∗i;k||.

6.7 Experiments and results

We have implemented the algorithm with the sprite cost definition of Sec-
tion 6.5.4. This section describes the algorithm results for the three se-
quences table-tennis, rail, and stefan. The sequences table-tennis and ste-
fan are well-known test-sequences, whereas the rail sequence was recorded
from a public DVB broadcast. In the Figures 6.17–6.22, we indicate the
frame range which was used to generate the sprite, the bounding-box size,
and the covered sprite area in 1000-pixel units. The obtained sprite sizes
are also summarized in Table 6.1.

From the table-tennis sequence, the first camera-shot consisting of 132
frames has been selected. This camera-shot shows a long zoom-out, starting
from a close-up of the player’s hand to a wide-angle view of the complete
player. Our algorithm prevents the sprite from growing too large by split-
ting the sequence into a three-part multi-sprite (Fig. 6.17). Compared with
the size of an ordinary single-part sprite, the area of the multi-sprite is a
factor of 2.9 smaller. The resolution-preservation constraint enforced that
the first frame of each part was selected as the reference frame. Since
the first frames appear with the highest resolution in the sprites, optimal
reconstruction quality is assured.

The rail sequence (Fig. 6.18) contains a complicated camera rotation. It
starts with the camera looking downwards and continues with the camera
rotating to the left and around its optical axis at the same time. At the
end, the camera is looking to the left side. Integration of the complete
sequence into a single sprite leads to a very strong deformation of the
input frames which makes the conventional approach rather impractical
(Fig. 6.19). Applying the multi-sprite algorithm to the sequence results
in a three-part multi-sprite, where each of the sprites shows only little
perspective deformations.

Since the rail sequence does not contain foreground objects, it was pos-
sible to measure the quality of the sprite reconstruction compared to the
input sequence. The reconstruction quality of uncompressed background
sprites is measured by synthesizing the sprites from the input sequence and
then applying the global-motion compensation on the sprites to reconstruct
the input sequence again. The measurements were carried out using three
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Figure 6.13: Comparison of sprite reconstruction quality for the rail se-
quence from Fig. 6.18.

different types of sprite-construction: multi-sprite coding with integration
of the scale-factor m̄i;k, without the scale-factor, and a heuristic sprite par-
titioning. In the heuristic sprite-partitioning, the sprite was built iteratively
until the sprite width exceeded a threshold. The threshold was chosen such
that the first sprite covers frame 1–82 (see Fig 6.19), which corresponds
to the frame range of the first two sprites obtained from the multi-sprite
partitioning. Figure 6.13 depicts the reconstruction quality of the differ-
ent approaches. Apart from the fact that the multi-sprite reconstruction
clearly outperforms the single-sprite reconstruction by about 1 dB, it can
also be seen that the integration of the scaling-factor in fact increases the
reconstruction quality in the last part of the sequence.

Since the reconstruction from the sprite is always based on a static
sprite, although the input is a moving image sequence, variations in the
image apart from camera motion cannot be reconstructed from the sprite.
Even if there are no perceivably moving objects in the sequence, the input
images can still vary, e.g. because of motion-blur during a fast camera
pan. Moreover, the camera optic can also deform the image by radial lens
distortion, which cannot be represented in the sprite. Hence, it is clear
that the sprite reconstruction cannot be perfect. On the other hand, since
many input frames are combined when synthesizing the background sprite,
a super-resolution effect occurs, so that the amount of detail in the sprite
is even higher than in the original video. This can be observed in Fig. 6.20,
which shows a magnification of part of the Fig. 6.18(a). Since the input was
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Single sprite Multi sprite
Sequence Bounding box Covered area B. box Area
table-t. (1–132) 2557k (292%) 2540k (295%) 875k 860k
rail N/A N/A 630k 492k
rail (1–82) 748k (152%) 427k (125%) 493k 340k
stefan N/A N/A 936k 841k
stefan (1–255) 2509k (481%) 1208k (264%) 521k 457k

Table 6.1: Comparison of sprite sizes using single sprites and the multi-
sprite approach. The area of the bounding-box and the covered
sprite area are expressed in units of 1000 pixels.

originally MPEG-2 compressed, it shows some noise, which is not present in
the sprite reconstruction. Furthermore, clearly more detail is visible in the
sprite reconstruction. Consequently, a decrease in PSNR compared to the
input does not necessarily correspond to a reduction of perceived quality.

For the MPEG-4 sequence stefan, we first attempted to generated an
ordinary sprite-image for the complete 300 frames. However, because the
total viewing angle during the sequence is too large, it is not possible to
synthesize a single background sprite. When adding images after frame 255
(which is approximately in the middle of the final fast camera pan), the
geometric distortion increases very quickly. Hence, we used only the first
255 frames for building the sprite. The resulting sprite is shown in Fig-
ure 6.21. Applying the multi-sprite algorithm on the complete sequence
resulted in a four-part multi-sprite, which is shown in Figure 6.22. We
have measured that the total required sprite size for the multiple-sprite
approach is a factor of 2.6 smaller than for the single-sprite case. However,
note that the multi-sprite covers the complete 300 frames of the sequence,
while the ordinary sprite covers only the first 255 frames. The effect of
the resolution-preservation constraint can be observed in the fourth sprite
(Fig. 6.22(d)). Here, the algorithm decided to use the last frame of the
camera zoom-in as a reference to preserve the full resolution. This also
explains why the algorithm separated the last 45 frames (256-300) into
two separate sprites. If all frames would have been combined into a single
sprite, all frames would be scaled up to preserve the resolution of the last
frame. However, by splitting the sequence into two sprites, frames 256-292
could be coded with a lower resolution, which outweighs the overhead of
an additional sprite.
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Figure 6.14: The integration of the multi-sprite partitioning into the frame-
work for background reconstruction.

6.8 Integration into the segmentation system

This section discusses how the multi-sprite partitioning algorithm can be
integrated into the video-object segmentation system. The segmentation
system that we started to construct in Chapters 3 to 5 already included all
the steps required to synthesize background sprites from the input sequence.
However, it comprised all the limitations that we described in the beginning
of this chapter.

These limitations can be removed by integrating the multi-sprite par-
titioning algorithm into our framework. The goal is to take the motion
parameters from the feature-based motion estimator and determine the
multi-sprite partitioning. This information is then used in the background
reconstruction stage to actually synthesize the sprite images from the spec-
ified frame ranges.

An overview of our multi-sprite enabled segmentation system is depicted
in Figure 6.14. Processing starts with a feature-based global-motion esti-
mator as described in Chapters 3 and 4. This results in a set of approximate
motion parameters which are used to compute the multi-sprite partitioning
from this chapter. This partitioning defines from which input frames the
respective background sprites are synthesized. The multi-sprite algorithm
also computes the optimal reference frame, which is used in the refinement
step for the long-term motion estimation. This motion parameters refine-
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Figure 6.15: Online calculation of multi-sprite partitionings. After smax

frames (here smax = 7) have been collected, the optimal par-
titioning is computed. The first frame-range is returned and
the computation proceeds when the buffer fills again to smax

frames. Note also that graph-edges spanning less than smin

frames have been disabled (dotted lines). In our example,
smin = 3.

ment step and the background synthetization is carried out as described in
Chapter 5.

6.9 Online calculation of constrained sprites

The presented multi-sprite algorithm computes the optimal partitioning
for the complete video sequence. Therefore, it has to consider the motion
parameters for all frames in its computation. This has the disadvantage
that the sequence has to be processed in at least two passes. The first pass
computes the motion parameters and the multi-sprite partitioning, based
on which the second pass can synthesize the sprite images. However, for
many applications, online processing of the sequence is desired such that
virtually infinite input sequences can be partitioned with only a small delay.
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In these cases, it is convenient to limit the number of frames per sprite to
a maximum of smax. Furthermore, for reasons that will be described in
Section 8.2.4, it can also be required to set a minimum number of frames
smin that must be included in a sprite. The multi-sprite partitioning can
be modified to an online algorithm as follows.

Instead of constructing the complete computation graph for the com-
plete sequence, a graph covering only the first smax frames is generated. All
graph edges that span less than smin frames are omitted (or their cost is
set to∞). Note that this graph can be built online while new input frames
are received. When smax frames are available, the minimum-cost path is
computed as before. This path again defines a partitioning, but now we
only output the first frame-range. The subsequent processing stages can
then begin to work on the sprite defined by this frame-range in parallel. As
new input images arrive at the multi-sprite partitioning algorithm, it again
constructs the graph for the next smax frames, as shown in Figure 6.15.

This algorithm does generally not result in a globally optimal solution,
but it limits the maximum memory requirement and processing delay that
is introduced by the sprite generation to smax frames.

6.10 Coding multi-sprites in MPEG-4 streams

The obtained background sprites can be coded as a sprite VOP with a stan-
dard MPEG-4 encoder. To transmit the multi-sprite, we have to consider
that we will switch between several sprites. This switching is not addressed
in the MPEG-4 standard, but two approaches are possible to simulate this
without modifications in the MPEG-4 encoder and decoder. In the first
approach, the sprites are transmitted sequentially, where a new sprite is
sent just in time to show a continuous video at the decoder. However, this
requires a high peak data-rate to send the new sprite. The second approach
is to assemble the individual sprites into a single sprite image, where the
sprites are placed independently beneath each other. To select the correct
sprite at the decoder, the top-left corner position of the sprite is added to
the camera-parameters in order to decode the correct sprite. In particular,
if the sprite is stored at a displaced position (t0x, t0y) in the sprite buffer, we
send the motion parameters H′, which are computed as

H′ =

1 0 t0x
0 1 t0y
0 0 1

 ·H, (6.16)

where H are the original camera-motion parameters. This second approach
does not require a high peak data-rate, but needs more decoder memory for
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(b) Frames that are synthesized into the background
sprites.

Figure 6.16: Determining the frame ranges for background synthesis. (a)
The video is depicted as a stack of motion-compensated
frames. Along the borders of the sprite, foreground objects
cannot be removed reliably, since too little temporal informa-
tion is available. (b) To obtain an optimal suppression of
foreground objects, the frame range of each sprite is extended
to include more frames that overlap with the sprite area.

the sprite buffer. Future work might combine the multi-sprite partitioning
with optimized decoder-buffer management, such that the decoder buffer
for example always contains two sprites, where one is displayed while the
other is updated.

6.11 Conclusions

This chapter has shown that partitioning a background sprite into several
independent parts results in a clearly reduced coding cost and better reso-
lution at the same time. Our algorithm computes the optimal partitioning
of a sequence, the reference frame for each partition, and associated scaling
factors. As a consequence, the proposed algorithm solves the subsequent
problems.
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• It removes the limitation of camera motion and enables to use sprite
coding for arbitrary rotational camera motion.

• It selects optimal reference frames and defines multi-sprite partitions
to considerably reduce the required amount of data for coding the
background sprite, and

• it increases the reconstruction quality of the sprite.

The above features are achieved while remaining fully compatible to the
MPEG-4 standard.

Clearly, the reduction of sprite area depends on the type of camera mo-
tion in the sequence. For e.g. the stefan sequence, a reduction by a factor
of at least 2.6 has been achieved. Moreover, note that the proposed algo-
rithm can synthesize sprites for all kinds of camera motion, which cannot
be guaranteed with previous approaches. The ability to handle arbitrary
rotational camera motion is an important generalization to previous sprite-
construction algorithms which in these cases would simply fail to create the
sprite. Moreover, the generalization is not only important for the coding of
the background sprite, but also for other image analysis algorithms like our
video-object segmentation, which is based on background subtraction. This
algorithm also requires a complete coverage of the background environment
as obtained from the computed set of background images.
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(a) Frames 1–51, 603× 500. (b) Frames 52–77, 587× 501.

(c) Frames 78–132, 585× 478.

Figure 6.17: Multi-sprite synthesized from a long zoom-out operation. The
sequence is partitioned into three separate sprites of almost the
same size. The center image has been selected as the reference
coordinate system (shown in a darker shade). For comparison,
a single-part sprite generated from the same sequence would
result in a size of 1687×1516.



6.11. Conclusions 195

(a) Frames 1–45,
541 × 445, area:
170k.

(b) Frames 46–82,
479×446, area: 171k.

(c) Frames 83–140,
455×387, area: 152k.

Figure 6.18: Multi-sprite for the rail sequence. The sequence shows a cam-
era rotation around two axes at the same time. At the be-
ginning of the sequence, the camera is looking down. It turns
left and around its optical axis until it looks left in the last
frame. For each sprite, the covered sprite area is indicated in
1000-pixel units and the size of the bounding-box. Reference
frames are depicted in a darker shade.

Figure 6.19: Frames 1–82 integrated into a single background sprite
(1264×592, area: 427k). The attempt to integrate the en-
tire rail sequence into a single background sprite fails because
of the complicated camera motion. The camera performs an
approximate 90◦ rotation around two axes.
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(a) Input. (b) Sprite reconstruction.

Figure 6.20: Super-resolution effect. Since many input frames are inte-
grated in the background synthesis step based on an accurate
motion-model, a high-resolution image can be derived from a
sequence of low-resolution images.

Figure 6.21: Sprite synthesized from stefan sequence. Only the first 255
frames can be used, since it is impossible to create the sprite
for the complete sequence if the first frame is selected as ref-
erence. Sprite resolution is 2445×1026 pixels, area: 1208k.
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Chapter7
Background Subtraction

When the background view excluding the foreground objects is available, it
becomes obvious that the foreground objects can be obtained by comparing
the background image with the current video frame. In practice, camera
noise and regions in which the object has the same color as the background
make the separation of foreground objects and background more difficult.
The previous chapters showed how this background image is reconstructed
from a video sequence, and how the camera motion can be compensated.
This chapter discusses the background-subtraction module, which deter-
mines the segmentation masks that are the final output of the segmentation
system. The chapter commences with simple independent pixel classifica-
tion and then proceeds to more complex tests that include contextual infor-
mation to decrease the number classification errors. Furthermore, typical
problems that lead to segmentation errors are identified and a modification
to the segmentation algorithm is provided to reduce these effects. Finally, a
few postprocessing filters are presented that can remove obvious errors like
small clutter regions.

In theory, there is no difference between theory
and practice. But in practice, there is.
(Manfred Eigen)

199
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7.1 Introduction

Chapter 5 described how a pure background image of a video scene can be
synthesized from the input video itself. By combining many video frames
into this background image, we are able to reconstruct the background
image excluding the foreground objects. Such a background image can be
elegantly used to determine the foreground objects by comparing the input
frame with the background image and mark the differences as foreground
objects. This technique is commonly known as background subtraction or
change detection. It is the most popular approach in video surveillance
applications, because it is a computationally efficient technique and it is
relatively easy to obtain background images for static surveillance cameras.

Previous work

The change-detection problem has been studied for a variety of applications,
where surveillance, medical diagnosis, and remote sensing are currently the
most important. In all of these applications, the objective is to compare an
image to a background image and identify the regions that have changed.
Unfortunately, the exact definition of what is actually meant with changed
depends on the application and cannot be generalized.

A large number of change-detection operators have been proposed and
good surveys about available techniques can be found in [41, 152, 157, 19].
Apart from independent-pixel classification schemes, algorithms have been
developed that integrate contextual information to improve the robustness.
Prominent techniques are classifiers using statistical models of the pixel
neighborhood [1, 202], Markov Random Field (MRF) based models [101,
15, 14, 3, 98], or algorithms combining intensity and texture differences
[113].

Since surveillance is a major application, many algorithms are designed
to be invariant to changes in global illumination. A standard technique to
approach the problem of varying illumination is to model the luminance
distribution of each background pixel with one or several Gaussian dis-
tributions [174]. However, since we consider only short video sequences
in our application, the problem of global illumination changes is usually
neglegible.

Another common difficulty is the problem of image misregistration. It
has been shown in [33] that even small registration errors of less than
0.2 pixels can lead to about 10% of additional false detections. As a solu-
tion, it has been proposed in [13] to estimate the expected distribution of
misregistration noise and adapt the distance measure accordingly.
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Chapter outline

This chapter gradually develops a robust background subtraction algorithm
in a number of steps. We start with independent classification of the input
pixels, for which we compare different metrics to detect changed image
content. It will be shown that classifying the pixels independently does
not provide robust results, since objects often have colors similar to the
background and there is also a considerable amount of noise in the input
video. Both effects cause misclassification errors, namely foreground pixels
that are not detected, and background pixels that are detected as changed.
To enhance the robustness, we implement a classification scheme [1] that
considers a neighborhood of pixels at once, using a χ2 significance test. This
approach is further refined to using a Markov Random Field model, allowing
to integrate pre-knowledge about the object shape. Finally, we propose
a few modifications to reduce problems caused by image misregistration
and we add morphological postprocessing operations to optimize the object
masks.

7.2 Pixel-based classification

Change detection can be carried out on either greyscale information only,
or using the full color information. Many algorithms in the literature are
described for the greyscale case, but it is obvious that the robustness can
be increased by examining all three color channels (e.g., consider two dif-
ferently colored objects with equal luminance).

7.2.1 Distance metrics

We denote the pixel values in the RGB color-space as triples IRGB =
(IR, IG, IB) and in the YUV color-space as IY UV = (IY , IU , IV ). The
background and input image are indicated with a subscript, such that IB

denotes the background image and It denotes the current input image.
The following distance metrics are implemented:

• the pixel difference of only the luminance channel

dy = |IY
t − IY

B |, (7.1)

• the sum of pixel differences of the three color channels

dRGB
1 = |IR

t − IR
B |+ |IG

t − IG
B |+ |IB

t − IB
B |, (7.2)
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• the sum of squared pixel differences of the three color channels(
dRGB

2

)2
= |IR

t − IR
B |2 + |IG

t − IG
B |2 + |IB

t − IB
B |2, (7.3)

• the maximum pixel difference in the three color channels

dRGB
∞ = max{|IR

t − IR
B |, |IG

t − IG
B |, |IB

t − IB
B |}, (7.4)

• and the Mahalanobis distance in YUV space(
dY UV

M

)2
= (IY UV

t − IY UV
B ) S−1 (IY UV

t − IY UV
B )>, (7.5)

where S is the 3 × 3 covariance matrix of the color differences. It is dis-
cussed later how the entries of this matrix are chosen. Note that the three
metrics d1, d2, d∞ correspond to the L1, L2, and L∞ norms. Additionally
to the RGB space, these three metrics are also implemented in the YUV
space, where they are denoted as dY UV

1 , dY UV
2 , dY UV

∞ . All proposed metrics
have in common that their values increase when the color It in the current
image deviates more from the reference color IB. This enables a classifi-
cation in which a pixel is noted as changed (foreground) if the difference
to the background exceeds a threshold τ . For example, using the greyscale
difference, we obtain the decision function dy > τ .

7.2.2 Influence of the color-space

The previous section has defined a number of metrics for measuring the
distance between two colors. It is not obvious, which of these metrics
will yield the most accurate result in combination with a certain color-
space. Theoretically, the choice of the color-space has no influence on the
classification accuracy. To understand this, assume that we have a best
reference metric in some color-space. This metric together with a threshold
defines a decision boundary in this color-space. Now we take an arbitrary
different color-space. If there is a transform from the first color-space to the
second, we can also transform the decision boundary into the second color-
space, so that we realize a classification function of similar performance in
every color-space.

In practice, the question is for which color-space a computationally
simple metric can be defined that leads to a good classification. Primarily,
this depends on the distribution of noise in the color-space. Let us assume
that the noise is mainly a variation of luminance, while the hue of the color
remains stable. Consequently, the noise distribution in the YUV space
will have its largest variance along the Y-axis and it will have considerably



7.2. Pixel-based classification 203

R R

G B B

G

R R

G B B

G

ba
ck

gr
ou

nd
fo

re
gr

ou
nd

(a) RGB color-space.

Y Y

U V V

U

Y Y

U V V

U

ba
ck

gr
ou

nd
fo

re
gr

ou
nd

(b) YUV color-space.

Figure 7.1: Distribution of color-differences for the stefan sequence, sep-
arately for changed and unchanged pixels. The images show
projections of the 3-D distribution.

smaller variance in the U and V dimension (see Figure 7.1). In the RGB
color-space, the noise distribution is oriented along the diagonal vector
(1, 1, 1). This is of course a simplification, because the orientation of the
distribution will vary for different colors. However, we can still make use
of it, since the majority of the colors in natural images are usually not very
saturated.

Let us now discuss how the isosurfaces of constant cost are defined by
the different metrics. Since the L2 metric equals Euclidean distance, the
isosurfaces of constant cost are spheres. For L∞, they are axis-parallel
cubes and for L1, they are cubes with corners on the axes. Selecting a
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Figure 7.2: Isolines of constant cost for L∞ in the RGB space (a), and
for L1 in the YUV space (b). Displayed is a cut through
the three-dimensional color-space such that the reference back-
ground color is at the origin. The optimal metric to separate
a foreground color from the background distribution depends
on the orientation of the background distribution.

specific threshold corresponds to selecting one of the isosurfaces to separate
the class of background colors (inside of the closed isosurface) from the
foreground-colors (outside space).

Figure 7.2 depicts typical noise distributions in the RGB and the YUV
color-space. It can be concluded that the distribution along the diagonal
(RGB space) can be enclosed most tightly with the L∞ norm. It is easy
to note that using the L1 or L2 metrics would enclose more foreground
colors when the complete background distribution should still be contained.
The same argument is also valid in the YUV-space, in which the L1 norm
provides a good separation.

In both color-spaces, neither of the L1, L2, or L∞ metrics enclose the
background distribution optimally. However, assuming that the noise dis-
tribution is a multi-variate gaussian and provided that its covariance matrix
is known, the results can be improved by using the Mahalanobis distance
metric. In the case of the YUV space, this is especially easy, since it can
be assumed that the luminance is independent from the two chrominance
dimensions. Consequently, the distribution is axis-parallel and the covari-
ance matrix is diagonal S = σ2diag(1, β2, β2) with the standard deviation
σ in the luminance channel and β · σ in the color channels. This gives the
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(a) Thresholded greyscale differ-
ence.

(b) Thresholded RGB error maxi-
mum.

Figure 7.3: Background differencing using independent pixels (stefan se-
quence, frame 6).

particularly simple formulation of dY UV
M as

(
dY UV

M

)2
=

1
σ2

(IY
t − IY

B )2 +
1

σ2β2

(
(IU

t − IU
B )2 + (IV

t − IV
B )2
)
. (7.6)

Because a change of σ2 can be compensated by adapting the threshold τ ,
the standard deviation can be arbitrarily set σ = 1. Note that this gives
basically the equation for Euclidean distance with an additional scaling
factor for the chrominance components. According to our experiments,
good results are obtained for β2 ≈ 0.1.

7.2.3 Classes of errors

Example results of independent pixel classification are depicted in Fig-
ure 7.3. Two kinds of errors can be identified in the results.

1. Pixels that actually belong to the background, but which are classified
as foreground, because of camera noise or misregistration errors.

2. Pixels that belong to the foreground object, but which are classified
as background, because their color is very similar to the background
at the same position.

It is not possible to minimize both errors at the same time. Depending on
the decision threshold, it is only possible to reduce one type of error while
simultaneously increasing the other type of error.
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(a) Input image. (b) Reference mask.

Figure 7.4: Example of a manually generated reference mask. Grey areas
indicate foreground regions, black areas represent don’t care
regions that are excluded from the evaluation of segmentation
results.

7.2.4 Evaluation method

To be able to quantify the quality of the obtained segmentation masks, we
manually created reference masks for several sequences. Because an object
often has a blurred boundary or a soft shadow, it is difficult to define
the correct border of an object. We therefore separated the pixels in our
reference masks into three different classes: Foreground pixels, background
pixels, and don’t care pixels that are excluded from the evaluation (see
Fig. 7.4(b)).

To evaluate the quality of the segmentation algorithms, we compare
the obtained segmentation masks with the reference masks by counting the
percentage eb of incorrectly classified pixels in the background region and
the percentage of incorrectly classified pixels in the foreground region ef .
Note that both error percentages are depending on the chosen threshold.
Lowering the threshold will lead to less pixels that are classified as fore-
ground and hence, it will decrease eb, but at the same time, it will increase
ef . Increasing the threshold has the opposite effect.

The dependence of the two error classes for different thresholds are
collected in an ROC (Receiver Operating Characteristic) curve [150]. This
curve depicts the relation between the two errors that the algorithm yields
for different thresholds (see Fig. 7.5). An ideal segmentation algorithm
would succeed to reach 100% correct foreground pixels and 100% correct
background pixels at the same time. Practically, this ideal case cannot be
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obtained.
In general, two ROC curves for different algorithms are not necessarily

better or worse along the whole curve. It is well possible that two curves
intersect. To still quantify the accuracy of a segmentation algorithm, we
measure its performance using the area under the ROC curve.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.5  0.6  0.7  0.8  0.9  1

greyscale diff

YUV L-infinity

YUV L-2

YUV L-1

YUV Mahalanobis

fraction of correct foreground pixels

fr
ac

tio
n 

of
 c

or
re

ct
 b

ac
kg

ro
un

d 
pi

xe
ls

(a) Stefan sequence.

fr
ac

tio
n 

of
 c

or
re

ct
 b

ac
kg

ro
un

d 
pi

xe
ls

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.5  0.6  0.7  0.8  0.9  1

greyscale diff

YUV L-infinity

YUV L-2

YUV L-1

YUV Mahalanobis

fraction of correct foreground pixels
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Figure 7.5: ROC curves for single pixel classification. Because the ste-
fan sequence comprises more saturated colors, the difference
between the greyscale metric and the color metrics are larger
than for the surveillance sequence.

7.2.5 Results

The performance of all pixel-based classification metrics on the three se-
quences stefan, surveillance, and hall-and-monitor was measured. A de-
scription about the content of these sequences can be found in Appendix D.

Greyscale vs. color metrics

The first observation is that color-based metrics provide higher accuracy
than the greyscale metric dy (see the ROC curves in Fig. 7.5). This is not
surprising, since each colored pixel comprises three channels which should
all be non-changing when background is shown, whereas a change in one of
the color channels is sufficient to detect a foreground object. However, the
advantage of a color-based metric over a greyscale metric diminishes if the
sequence shows mostly low-saturated colors. This can be observed when
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Figure 7.6: Area under ROC curve for greyscale and color-based distance
metrics.

comparing the colorful stefan with the low-saturated surveillance sequence.
While the difference between the metrics is well visible for the colorful
stefan sequence, it is smaller for the surveillance scene.

Influence of the color-space

We claimed in Section 7.2.2 that from the implemented metrics, the L∞
metric should give the most accurate results in the RGB-space. In the YUV-
space, the best results should be obtained using the L1 or, even better, the
Mahalanobis distance.

This predicted behaviour can indeed be seen in Fig. 7.6. For RGB, L∞
gives the best results, followed by L2 and L1 at the end. For YUV, it is
just the opposite, with the Mahalanobis distance giving the best results,
followed by L1, L2, and L∞.

7.3 Multi-pixel based significance tests

Up to this point, the pixels in the image were considered to be indepen-
dent. However, since objects are compact regions of foreground pixels, the
probability that a pixel belongs to a specific class increases with the num-
ber of pixels of the same class in its neighborhood. This regularity can be
exploited to increase the robustness of the segmentation algorithm. Two
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main approaches are possible. The first assumes that all pixels in a small
neighborhood belong to the same class (either foreground or background).
With this assumption, the measurements in the pixel neighborhood can be
combined to deduce a more robust decision function. The second approach
uses a Markov Random Field model to define a-priori probabilities for the
pixel classification based on the class of its neighborhood pixels. Both
approaches will be discussed in the current and the subsequent section,
respectively, as they are both used in our final segmentation system.

7.3.1 Classification using a χ2 test

If the change detection is based only on observations of individual pixels,
it is often not possible to detect whether small color differences are the
consequence of a foreground object or if they are only camera noise. To
make change detection more robust, the neighborhood of a pixel should
be included into the decision. Let us introduce this approach by review-
ing the technique proposed in [1] for greyscale images and Gaussian noise.
Subsequently, we will enhance this algorithm to color images.

Let us denote the difference between the current input greyscale image
and the background as DY = IY

t − IY
B . For simplicity, we omit the su-

perscript for D in the following. In the case that the pixel did not change
(null-hypothesis H0), we assume that it is subject to Gaussian noise with
variance σ2, so that the pixel difference satisfies the distribution

p(D|H0) =
1√

2πσ2
exp

{
−D2

2σ2

}
. (7.7)

It is a valid assumption to use Gaussian noise, since the pixel differences
are only a consequence of the camera noise. Another distribution that is
frequently used in this context is the Laplace distribution. However, the
Laplace distribution is usually considered as the distribution of prediction
errors. In fact, we conducted experiments which showed that the real distri-
bution is in-between Gaussian and Laplace. Since the variance of the noise
is very small, both distributions can be used with comparable results.1

Let us now observe a window w centered at the considered pixel. We
construct a vector D of all pixel differences within the window as D =
(D(x, y))(x,y)∈w. Since the pixel labels have a high spatial correlation, we
employ the simple assumption that the center pixel of the window is clas-
sified as unchanged only if every pixel in the window has a low difference

1In [1] it is derived that for the Laplace distribution, a test-statistic using the sum
of absolute differences should be used, while for the Gaussian distribution, the sum of
squared differences is optimal.
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B

C
A

Figure 7.7: In the multi-pixel classification test, we label a pixel as un-
changed only if all pixels in the neighborhood window have
small differences. This leads to the correct decision for pix-
els A and B (dark pixels denote object pixels with large differ-
ence values). However, pixel C will be erroneously classified as
object pixel. Consequently, the detected object will be slightly
larger than the true object.

value. This assumption is valid for most areas of the image, but obviously,
it is not true along the object boundaries (Fig. 7.7). The defects that are
introduced along the object boundary are eliminated in the subsequent
processing stage that is described in Section 7.4.

Under the assumption that all pixels in the window are unchanged and
their noise is independent, the probability distribution becomes

p(D|H0) =
(

1√
2πσ2

)Nw

exp

− ∑
(x,y)∈w

D(x, y)2

2σ2

 , (7.8)

where Nw denotes the number of pixels within the window w. Because it
is very difficult to deduce any property of the probability distribution for
the case of the counter-hypothesis H1 that a pixel has changed, we use a
significance test based on p(D|H0). Notice that this distribution can also
be written as a function of the sum of squared pixel differences

∆ =
∑

(x,y)∈w

(D(x, y)/σ)2. (7.9)

Assuming that changed foreground pixels will show larger pixel differences,
we will put a threshold tα on ∆ such that a pixel is detected as changed, if
∆ > tα. Hence, the probability of obtaining a false positive equals P (∆ >
tα|H0). Now, we can choose a significance level α defined as

P (∆ > tα|H0) = α, (7.10)

from which we can deduce tα. Since ∆ is a sum of Gaussian-distributed
random variables, ∆ itself is distributed according to a χ2 distribution with
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Nw degrees of freedom. The complete classification process based on the
χ2 test can be summarized as follows.

• Choose an observation window w, a significance level α, e.g. 10−5,
and set an appropriate standard deviation of the image noise σ ≈ 10.

• Use the inverse cumulative function of the χ2 distribution to obtain
a threshold tα according to Eq. (7.10).

• Iterate through the picture and compute the sum of squared differ-
ences ∆ within each neighborhood window. Set the center pixel to
changed if ∆ > tα.

7.3.2 Extension to color images

The above significance test was designed for greyscale images, but Sec-
tion 7.2 revealed that our results can be improved if the color information
is included into the change detection algorithm. This can be achieved in
a straight-forward way by adding the color channel values as extra pixels
to the difference vector D, so that it is extended to three times its original
length:

D = (DY (x, y), . . .︸ ︷︷ ︸
(x,y)∈w

, DU (x, y), . . .︸ ︷︷ ︸
(x,y)∈w

, DV (x, y), . . .︸ ︷︷ ︸
(x,y)∈w

). (7.11)

Clearly, this means that the threshold has to be determined using the χ2

distribution with 3 · Nw degrees of freedom. Additionally, two important
aspects are considered. First, we have to ensure that the differences in the
two color channels are statistically independent to the luminance channel
values and also between the color channels themselves. This can be consid-
ered true if we operate in the YUV color-space, but it is not valid for the
RGB color-space, as we saw earlier. Therefore, we only consider the YUV
color-space in the following. Second, the variances for difference signals in
the luminance channels and the chrominance channels are different. This
means that we should replace the constant σ in the monochrome case with
σ for the luminance values and β ·σ for the chrominance values. This leads
to a modified definition of ∆, so that

∆ =
∑

(x,y)∈w

1
σ2

DY (x, y)2 +
1

σ2β2

(
DU (x, y)2 + DV (x, y)2

)
(7.12)

=
∑

(x,y)∈w

(
dY UV

M (x, y)
)2

, (7.13)

which is based on the Mahalanobis metric for the YUV color-space.
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C(x1,y1)

C(x1,y0)

C(x0,y1)

C(x0,y0)

Figure 7.8: The sum over the dark area can be computed from the cumu-
lative sums C(x1, y1)−C(x0− 1, y1)−C(x1, y0− 1)+C(x0−
1, y0 − 1).

7.3.3 Fast implementation

A direct implementation of the above algorithm becomes inefficient for
larger window sizes. To reduce the complexity, we propose to use the
technique of cumulative sums [190]. Instead of computing the sum over a
rectangular window w directly from the pixel costs dY UV

M (x, y)2, we first
compute the cumulative costs

C(x, y) =
x∑

i=0

y∑
k=0

(
dY UV

M (i, k)
)2

. (7.14)

Each C(x, y) equals the sum of all pixel costs in the rectangle starting at
the top-left corner and the bottom-right corner at (x, y). Note that C(x, y)
can be computed iteratively with two passes over the cost image. In the
first pass, costs are cumulated in the horizontal direction, followed by a
second pass in the vertical direction. When the cumulative costs C(x, y) are
available, the sum over an arbitrary rectangular area with top-left position
(x0, y0) and bottom-right position (x1, y1) can be obtained in constant time
with (see Fig. 7.8)

C(x0, y0, x1, y1) = C(x1, y1)−C(x0−1, y1)−C(x1, y0−1)+C(x0−1, y0−1).
(7.15)

7.3.4 Evaluation

Two questions arise for the classification algorithms using the significance
test. First, how does the quality of the result depend on the size of the
neighborhood window, and second, does the inclusion of color information
improve the segmentation result? To illustrate the typical segmentation
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(a) Independent pixel classifica-
tion.

(b) χ2 test in 3× 3 neighborhood.

(c) χ2 test in 5× 5 neighborhood. (d) χ2 test in 7× 7 neighborhood.

Figure 7.9: Background differencing using significance tests on YUV color
(stefan sequence, frame 80). Compare the reduced noise in the
mask compared to an independent pixel classification with the
Mahalanobis metric. But also note the increasing aura around
the object larger window sizes.

masks that result from different window sizes, Figure 7.9 portrays the out-
come of the color-based significance test.

Influence of window size

The immediate observation is that the amount of small pixel-noise is sig-
nificantly reduced when using even a small 3× 3 window, instead of the in-
dependent pixel classification. The amount of background errors is further
reduced by applying larger window sizes, but simultaneously, a disadvan-
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Figure 7.10: Area under ROC curve for the color-based significance test
with different window sizes. Each bar is divided into two parts.
The lower (brighter) part shows the result using the greyscale
distance measure, while the upper (darker) part shows the re-
sult for using the Mahalanobis color distance.

tageous effect becomes more apparent. Foreground objects are surrounded
by a growing aura of pixels that are falsely attributed to the foreground
object.

The reason for this effect is the initial assumption that a pixel is only
classified as unchanged if every pixel in the window is unchanged. On the
other hand, this means that the center pixel is classified as changed even if
some pixels at arbitrary position in the window are changed, but not the
center pixel itself. Consequently, foreground pixels at the object boundary
have influence even on pixels that are further away from the object.

The same effect also leads to closing small holes in the segmentation
mask. Even though closing these holes seems to be a good effect, this is not
so important, since this can also be achieved with a simple post-processing
step (will be described in Section 7.6.1).

We evaluated the quality of the obtained segmentation masks by com-
paring them to our reference masks in the same way as for the single-pixel
classification case. Finally, we computed the ROC curves (see Fig. 7.11 for
an example) and measured the area under the ROC curves (Fig. 7.10).

It can be noticed that the accuracy of the segmentation in fact increases
with larger window sizes, where the maximum is at about 9×9 pixels. How-
ever, in this case, this evaluation with the ROC-area as a quality criterion is
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Figure 7.11: ROC curves for χ2 significance test with varying window size
(hall-and-monitor).

partly misleading because of two reasons. First, remember that the objects
in the reference masks have an aura of don’t-care pixels surrounding them,
meaning that segmentation errors in these regions are not counted. When
using a large neighborhood window, it appears that the masks grow larger
than the objects. However, this error is not detected during the compari-
son with the reference masks, so that the quality measure still reports good
results. For larger windows, the results start to deteriorate (Fig. 7.11).
This phenomenon only occurs after the object aura extends beyond the
don’t-care areas of the reference masks.

Second, the background is typically larger than the objects, which
means that false background pixels as in the object aura count much less
than missing pixels in the object mask. This does not match the subjective
quality, where errors of both classes count as equally imporant.

Greyscale vs. color

As expected, Fig. 7.11 shows that color information gives an additional gain
to the segmentation accuracy. However, it can also be deduced that the
differences are not as large as before, since good results can also be obtained
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using only greyscale information. Especially for the hall-and-monitor se-
quence, the color information seems to have almost no influence on the
result. It is surprising that adding the color information does not make
a big difference for the stefan sequence, because we obtained big improve-
ments for this sequence with single-pixel decision functions. However, it
should be noted that the results for stefan are already very close to the
optimum.

7.4 Classification using Markov random fields

The results of the statistical-significance algorithm showed that the segmen-
tation can in fact be improved by incorporating contextual information into
the decision process. While reducing the noise in the segmentation mask,
the previously discussed algorithm has the main disadvantage that the po-
sitions of the object boundaries are not preserved. The obtained segmen-
tation masks are extended beyond the true object boundary, resulting in
the aura effect.

7.4.1 MRF model for segmentation masks

A change detection algorithm that is based on a Markov Random Field
(MRF) model for the segmentation mask has been proposed in [2]. The idea
is to determine the segmentation mask as a Maximum A-Posteriori (MAP)
approximation, in which the a-priori probability of the segmentation masks
are modeled as Gibbs/Markov Random Fields. We will review the model
in this section, extend it to color images, and discuss its implementation.

Let Q = {q(x, y)} be the segmentation mask, where q(x, y) ∈ {u, c}
is the label of one pixel. We label an unchanged (background) pixel as
q(x, y) = u and a changed pixel (foreground) as q(x, y) = c. We model
the a-priori probability of a segmentation mask as a Gibbs field [114] with
second-order cliques. To define the clique potentials, we further divide the
second-order cliques into the set of horizontal/vertical cliques

Chv =
{
{(i, k), (x, y)}

∣∣ |i− x|+ |k − y| = 1
}

(7.16)

and the set of diagonal cliques

Cdiag =
{
{(i, k), (x, y)}

∣∣ |i− x| = |k − y| = 1
}

. (7.17)

These two sets of cliques are illustrated in Fig. 7.12. Let us define the
probability of a given segmentation mask Q by

p(Q) =
1
Z

exp{−U} (7.18)
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(a) Chv (b) Cdiag

Figure 7.12: The cliques set Chv comprises the all direct horizontal/vertial
neighbors, while Cdiag comprises diagonal neighbors.

where the constant Z normalizes the sum of probabilities to unity. How-
ever, it will be shown in the sequel that the value of Z is not required for
the resulting computations. The properties of the segmentation masks are
modeled with the energy function U as

U =
∑

{(x,y),(x′,y′)}∈Chv

γhv · V (q(x, y), q(x′, y′)) + (7.19)

∑
{(x,y),(x′,y′)}∈Cdiag

γdiag · V (q(x, y), q(x′, y′)), (7.20)

where the function V (q, q′) is defined as

V (q, q′) = 1− δ(q, q′) =

{
1 if q 6= q′,

0 if q = q′.
(7.21)

Consequently, the parameters γhv and γdiag control the regularity of neigh-
bored labels. Setting both values to zero results in equally probably seg-
mentation masks (p(Q) = const), which leads to an independent pixel clas-
sification. Higher values for γhv, γdiag increase the probability of masks in
which neighboring pixels have the same label. Consequently, the resulting
segmentation masks will have smoother boundaries, but small details can
be lost. See Table 7.1 for the values that we used during our experiments.

7.4.2 Obtaining a MAP estimate

Let us now consider a single pixel (x, y). We want to know which state
(changed or unchanged) is more probable, given the difference image d(x, y)
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and keeping the remaining segmentation mask fixed. In other words, we
want to know if

p(q = u|d) ≷u
c p(q = c|d), (7.22)

where the pixel coordinates are omitted for brevity. Using the Bayes rule,
we can rewrite this as

p(d|q = u) · p(q = u)
p(d)

≷u
c

p(d|q = c) · p(q = c)
p(d)

, (7.23)

or simply
p(d|q = u) · p(q = u) ≷u

c p(d|q = c) · p(q = c). (7.24)

To solve this, an assumption about p(d|q) is needed. In the case of un-
changed pixels (q = u), we model this as Gaussian noise with variance σ2

according to Eq. (7.7). We cannot derive much about the case of changed
pixels so that we model this also with a Gaussian distribution, but with a
much larger σc. Finally, we determine the probabilities p(q), where Q is
fixed with the exception of this one pixel at (x, y). Since we modeled the
segmentation mask with a Gibbs random field, the influence of one pixel
is limited. The total field probability is computed from all cliques, but the
number of cliques that are influenced by the choice of one pixel is small
(see Fig. 7.12). This allows us to reorder the two sums in Eq. (7.20) into
two new sums, namely one sum over all cliques C0 that are not affected by
the choice of the pixel (the majority), and the sum over cliques C1 that are
affected by the pixel. This results in the desired probability

p(q) =
1
Z
· exp

{
−
∑
C0

· · ·

}
︸ ︷︷ ︸
unaffected by label of q

· exp

{
−
∑
C1

· · ·

}
︸ ︷︷ ︸

depending on label of q

. (7.25)

The second sum can be written as∑
C1

· · · = nhvγhv + ndiagγdiag, (7.26)

where nhv is the number of horizontally or vertically neighboring pixels
with a different label, and ndiag is the number of diagonally neighboring
pixels with different labels (see Fig. 7.13(b)). Since we consider both cases
of an unchanged and a changed center pixel, we denote the number of
inhomogeneous cliques as nu

hv, n
u
diag and nc

hv, n
c
diag, respectively. Inserting

(7.25) and (7.26) into (7.24) results in

p(d|q = u) · 1
Z exp

{
−
∑
C0 · · ·

}
exp

{
− nu

hvγhv − nu
diagγdiag

}
p(d|q = c) · 1

Z exp
{
−
∑
C0 · · ·

}
exp

{
− nc

hvγhv − nc
diagγdiag

} ≷u
c 1,

(7.27)
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(a) Local influence of a pixel.
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Figure 7.13: (a) The state of one pixel has only influence on the eight in-
dicated clique potentials. (b) In this example configuration,
there is one inhomogeneous vertical clique (nhv = 1) and three
inhomogeneous diagonal cliques (ndiag = 3).

which can be simplified to

p(d|q = u) · exp
{
− nu

hvγhv − nu
diagγdiag

}
p(d|q = c) · exp

{
− nc

hvγhv − nc
diagγdiag

} ≷u
c 1. (7.28)

Inserting Gaussian distributions for p(d|q) leads to

1/
√

2πσ2 exp
{
− d2/(2σ2)− nu

hvγhv − nu
diagγdiag

}
1/
√

2πσ2
c exp

{
− d2/(2σ2

c )− nc
hvγhv − nc

diagγdiag

} ≷u
c 1, (7.29)

and after taking the logarithms, we obtain the final decision function

d2 ≷c
u 2

σ2
cσ

2

σ2
c − σ2

(
ln

σc

σ
+ (nc

hv − nu
hv)γhv + (nc

diag − nu
diag)γdiag

)
. (7.30)

The right-hand side of this equation is effectively an adaptive threshold
that depends on the local neighborhood. If the number of inhomogeneous
cliques is the same, independent of the state of the center pixel (nc

hv = nu
hv

and nc
diag = nu

diag), the neighboring pixels have no influence on the decision
and we obtain the special case

d2 ≷c
u 2

σ2
cσ

2

σ2
c − σ2

ln
σc

σ
(if nc

hv = nu
hv and nc

diag = nu
diag). (7.31)
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Otherwise, the threshold is shifted in either direction to bias the decision
level. If, for example, the neighborhood has many unchanged pixels, nu

hv
and nu

diag will be low, leading to a higher threshold. This again will bias
the decision for the center pixel towards unchanged.

7.4.3 Extension to color images

Up to this point, the MRF-based approach was described for luminance
images only. However, it is not difficult to extend this approach to color
images, assuming that the color distribution is a multi-variate Gaussian
distribution (as done previously when introducing the Mahalanobis distance
metric in Section 7.2.2). When considering again images in the YUV color-
space, we can assume that the noise variance in the luminance channel is
σ2, while it is β2σ2 in the color channels. Consequently, the covariance
matrix of color pixel-differences d = |IY UV

t − IY UV
B | is a diagonal matrix

given as S = σ2diag(1, β2, β2). This enables to write the probability density
as a multi-variate Gaussian

p(d|q = u) =
1√

(2π)3σ3β2
exp

{
−1

2
dS−1d>

}
. (7.32)

Inserting this into Eq. (7.28) results in√
(2πσc)3β2 exp

{
− 1

2d · S
−1 · d> − nu

hvγhv − nu
diagγdiag

}√
(2πσ)3β2 exp

{
− 1

2d · S−1 · d> − nc
hvγhv − nc

diagγdiag

} ≷u
c 1, (7.33)

which finally leads to the decision function

(dY UV
M )2 ≷c

u 6
σ2

cσ
2

σ2
c − σ2

(
ln

σc

σ
+ (nc

hv − nu
hv)γhv + (nc

diag − nu
diag)γdiag

)
,

(7.34)
where dY UV

M is the Mahalanobis distance. Note that this decision function
differs from Eq. (7.34) only in the changed constant at the right-hand side.

7.4.4 Optimization algorithm

The optimization problem to find the segmentation mask with the maxi-
mum a-posteriori probability (MAP) for the described Markov field model
is difficult, since the number of variables equals the number of pixels in the
image. A number of algorithms has been proposed to find an approximate
solution to maximize the joint probability (see [114] for a comparison). We
have chosen to use the iterated conditional modes (ICM) algorithm, which
was initially described in [9]. This algorithms runs several passes over the
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image, where each pixel is assigned the most probable label, considering
its current local neighborhood. Specifically, this means that we iterate
through all pixels in the segmentation mask image and set the label of a
pixel according to Eq. (7.30). When all the labels have converged, the algo-
rithm is stopped. It is assured that the algorithm converges, because each
modification of a pixel increases the joint probability of the Markov field.

Efficient implementation with a queue of boundary pixels

Fortunately, the algorithm complexity can be reduced, since most of the
pixels will not change their label from one iteration to the next. As a
consequence, we maintain a queue of pixels that should be checked for
modification. In each iteration, we take a new pixel out of the queue until
the queue is empty. If we check a pixel and it does not change its label,
the neighboring pixels will not be affected. However, if the pixel label
is changed, this may also influence the label of the neighboring pixels.
Consequently, when the label of a pixel is changed, we put the coordinates
of the eight neighboring pixels into the queue to check them for modification
in a later iteration. This algorithm will converge, because we know that
the number of label changes are limited and the queue does only grow in
size as long as labels are modified.

Initialization

Up to now, the inner loop of the segmentation has been described. In
each step, this iterative process improves the segmentation mask from the
previous step. However, we still need a segmentation mask to start with.
Taking a completely transparent or completely opaque segmentation mask
does not converge to a good solution, because the shape prior effectively
inhibits any change.

One solution is to start with a very weak shape prior with parameters
γhv, γdiag ≈ 0, and to increase these parameters gradually. Note that if
both are set to zero, we obtain the pixel-based decision function Eq. (7.31).

An easier approach is to start with the result of one of the previous
segmentation algorithms. In our system, we use the χ2 significance test on
5 × 5 windows with the Mahalanobis distance. After the initialization of
the segmentation mask, the queue of pixels is initialized with pixels to be
checked. To limit the number of pixels in the queue, we only fill in pixels
along the object boundary.
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(a) Frame 6. (b) Frame 80.

Figure 7.14: Results of the MRF-based segmentation. (Compare to
Figs. 7.9 and 7.3.)

7.4.5 Evaluation

The result of the Markov field based segmentation for two example frames of
the stefan sequence is depicted in Fig. 7.14. When comparing these results
to the results in Figs. 7.9 and 7.3 that were obtained with the previous
segmentation algorithms, it can be concluded MRF-based segmentation
yields more accurate results. The quality of the interior of the object is
comparable to the χ2 significance test, but the algorithm does not yield the
disadvantageous aura effect along the object boundary.

Parameter selection

The MRF-based segmentation algorithm includes two parameters γhv, γdiag

that control the influence of the shape prior. In our final system, we used
γhv = 2.5 and γdiag = 1.25, which are the values proposed in [2]. However,
we noticed that an increase of these parameters does not have much effect
on the obtained segmentation mask.

Surprisingly, we could even obtain comparable results with setting γhv =
γdiag ≈ ∞. If we examine Eq. (7.34), it can be derived that setting these
two parameters to very high values can force a pixel to foreground or back-
ground just because of the labels of its neighbors. Only for the case that
nc

hv = nu
hv = 2 and nc

diag = nu
diag = 2, the shape prior is zero and the

decision function reduces again to Eq. (7.31). The cases for which this hap-
pens are depicted in Fig. 7.15. In all other cases, the label for the center
pixel can be simply derived from the pixel neighborhood. This simplified
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?

(a)

?

(b)

?

(c)

?

(d)

Figure 7.15: Patterns or neighborhood pixels, for which nc
hv = nu

hv =
nc

diag = nu
diag = 2. In these cases, the label for the central

pixel is chosen only based on the difference value at the cen-
tral pixel.

algorithm is not used in our implementation, but it can be advantageous
for a hardware implementation, for which it is easier to implement.

7.5 Sources of errors and robustness improvements

In the previous section, it was assumed that scenes were recorded with
a static camera, or that the camera motion was compensated by taking
background pictures from the synthesized background mosaic. At first view,
this should assure that corresponding pixels are co-located in the foreground
and the background image. However, in practicer, three problems occur:

• Registration errors. When the background view is reconstructed
from a synthesized panorama, small inaccuracies in the motion-model
can occur. Even though this is usually much less than a pixel distance,
it can cause difficulties along strong edges. If there is a large difference
in brightness across the edge, a tiny inaccuracy in the motion model
or aliasing in the input video can cause a large value in the difference
image.

• Interpolation errors. In the background reconstruction process,
the input images are resampled when they are warped onto the back-
ground image. This resampling involves bi-linear interpolation that
results in some image blurring. To obtain the camera-motion com-
pensated image, a second resampling is carried out to obtain the cur-
rent background view from the synthesized background overview im-
age. The consequence of these two resampling steps is that a blurred
background reconstruction is compared with the sharp input image.
Especially within fine texture, this can lead to false positives.

• Motion blur. For the case that the input sequence comprises fast
camera motion, the image is not only transformed geometrically, but
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Figure 7.16: A background image that shows different strengths of motion
blur, because it combines slow and fast camera motion in a
single image. At the right side, camera motion was slow, so
that the image is sharp. At the left side, the camera motion is
much faster, resulting in significant image blurring. Especially
note the difference between the two stair rails in the center
area.

it can also show motion blur. The amount of blur can differ through-
out the sequence, but this cannot be reflected in the synthesized back-
ground. Consequently, errors occur, e.g., when comparing a motion-
blurred input image with a sharp background image (see Fig. 7.16).
However, note that motion blur itself does not cause segmentation
errors provided that the same motion blur occurs both in the input
image and the background image.

Our general concept to approach these problems is to identify those
parts of the image, that have a high error risk. We then modify the previ-
ously discussed segmentation algorithms to exclude the identified pixels of
high risk from the difference image computation. We will present solutions
to improve the robustness against the first two problems in the remainder
of this section. First, we describe the concept of using maps of risky pixels
and how to obtain these maps. Afterwards, the modifications to the seg-
mentation algorithms to consider these maps in the object segmentation
are presented.
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Figure 7.17: Two edge-profiles, with (a) low-contrast, (b) high-contrast
edge. In the high-contrast case, a misregistration of the edges
induces a larger luminance error than in low-contrast cases.

7.5.1 Map of misregistration risk

The previous segmentation algorithms assumed that the difference image
comprises only camera noise and differences to foreground objects. How-
ever, the camera-motion compensation itself can lead to misregistration
and resampling errors that also appear in the difference image. This kind
of error depends on the local contrast in the pixel neighborhood and has the
largest value at strong edges (see Fig. 7.17). This is not in accordance with
the assumption that the variance of noise is independent of the position in
the image.

As a first solution [47], we investigated to change the image difference
measurement. Instead of using the direct luminance difference |IB(x, y) −
It(x, y)|, we compensated for the expected misregistration along edges by
dividing by the luminance gradient in the background image, leading to

d(x, y) =
|IB(x, y)− It(x, y)|
||∇IB(x, y)||

. (7.35)

Even though this approach helps in reducing the misregistration errors, we
observed problems in cases where the background is textured and the object
has uniform color. In these cases, the gradient in the background is high,
which consequently leads to a lower total error. This is not optimal, because
we know that the observed region cannot be background as the object shows
no texture. This observation leads to a different approach, which explicitly
identifies a pixel to be probably affected by misregistration errors. More
specifically, we identify a pixel as risky if there is a high-contrast edge
in the background image, and there is also a high-contrast edge in the
foreground image at the same position. To detect steep edges, we simply
apply a threshold onto the gradient magnitudes. Since a misregistration
only results in a segmentation error when there are edges is both images,
we combine the detected edges into the map RM (x, y) of misregistration
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(a) Input image. (b) χ2 test without misregistration
reduction.

(c) MRF segmentation without
misregistration reduction.

(d) MRF segmentation with mis-
registration reduction.

Figure 7.18: Example for misregistration, following from a lightly moving
camera caused by wind.

risk with the definition that

RM (x, y) =
(
||∇IB(x, y)||2 > τm

)
∧
(
||∇It(x, y)||2 > τm

)
, (7.36)

where τm is a fixed threshold for edge detection. An example scene with an
particularly strong misregistration effect is shown in Fig. 7.18. Note that in
this example, the camera was assumed static, so that a static background
image was used for the segmentation. However, the camera seems to have
moved a little bit, probably because of wind. This tiny motion results in
the observed misregistration.
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7.5.2 Map of interpolation errors

The second problem is introduced by the image warping in the camera mo-
tion compensation. Remember that during the background reconstruction,
the input frames are warped into the reference coordinate system. In this
process, the target pixel values are interpolated from the input pixels us-
ing bi-linear interpolation. A second interpolation step is carried out to
reconstruct the current camera view from the background reconstruction.
In total, this means that this interpolation is applied twice, such that a
reconstructed background view looks blurred, compared to the original in-
put frame. Suppose that we now take the difference to the original input,
large differences can occur just because of this blurring effect (see Fig.7.19).
We approach this problem in a comparable way as with the misregistration
errors.

To simulate the blurring of the two interpolation steps, we apply a
simple low-pass filter to the current input image. This blurred image is
compared with the input image and a risk of interpolation error is detected
when the difference exceeds a threshold τi. This defines the map of inter-
polation risk as

RI(x, y) = true iff

∣∣∣∣∣∣It(x, y)− 1
16

1 2 1
2 4 2
1 2 1

⊗ It(x, y)

∣∣∣∣∣∣ > τi. (7.37)

A different approach to eliminate the interpolation problem that could
be further studied in future research is to avoid the double interpolation by
reorganizing the segmentation process. The current background subtrac-
tion data-flow is shown in Fig. 7.20(a). Note that the actual background
subtraction is performed in the input coordinate space. However, it is also
possible to carry out the background subtraction in the coordinate system
of the background image as shown in Fig. 7.20(b). The advantage of this
would be that the input image is transformed exactly once. Moreover, in
both cases, for reconstructing the background and also for carrying out the
background subtraction, exactly the same transformation is used. Con-
sequently, both images will show the same interpolation artifacts. When
comparing the two images, this means that both interpolation artifacts
cancel out. However, the disadvantage of this approach is that we obtain
the segmentation mask in the background coordinate system and we may
require an additional step to transform the obtained mask to the image
coordinate system again.
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(a) Input image. (b) Synthesized background view.

(c) Input image (detail picture). (d) Synthesized background view
(detail picture).

(e) Segmentation without misregis-
tration reduction.

(f) Segmentation with misregistra-
tion and interpolation reduction.

Figure 7.19: Example for interpolation error reduction. When comparing
the input image (a) and the reconstructed background view
(b), it is visible that the background view is slightly blurred.
Since this blur is only visible at the pixel level, detail views
are provided in (c) and (d). Segmentation without misreg-
istration/interpolation reduction erroneously includes regions
like the score display or the logo. These regions are removed
by enhancing the segmentation algorithm with misregistration
and interpolation risk maps.
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(b) Symmetric interpolation errors.

Figure 7.20: Two possible data-flows for carrying out the background sub-
traction. (a) The background is transformed to the current
camera view, background subtraction is performed in the in-
put coordinate space. (b) The input is transformed to the back-
ground coordinate space, background subtraction is carried out
in the background coordinate space.
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7.5.3 Integrating risk maps into the segmentation process

Once the pixels are obtained for which a possible unreliability is identified
in the difference image, the previously discussed algorithms can be modified
such that these unreliable pixels are excluded from the computation.

χ2 significance test

The central operation of the χ2 significance test is to sum the squared differ-
ence values in a small neighborhood window. The change when integrating
the risk maps is that pixels that we classified as risky are not included in
the sum. Note that the degrees of freedom in the χ2 test are not reduced
by the number of removed pixels.

MRF-based segmentation

The MRF-based segmentation uses Eq. (7.30) as the decision function. If
the center pixel is classified as risky, we base the segmentation only on the
neighborhood information, i.e., the shape prior. This leads to the decision
function

0 ≷c
u (nc

hv − nu
hv)γhv + (nc

diag − nu
diag)γdiag (7.38)

if the considered pixel is risky, otherwise Eq. (7.30) is used without modi-
fication.

7.6 Postprocessing the object mask

When performing a subjective evaluation of the segmentation masks, we can
discover several obvious errors, which on a closer look are only considered
obvious because we recognize the object and can immediately judge that
a specific mask cannot be correct. When the type of the observed objects
are known, various heuristic rules can be derived for postprocessing the
segmentation mask to remove these errors. A selection of these rules seem
to be true in many practical situations, so that they can be provided as
general postprocessing filters in a multi-purpose segmentation system.

7.6.1 Filling holes in the object

Most natural or man-made objects have no holes (in the sense of a torus, not
in the sense of a coffee cup). The majority of the objects are either compact
(like cars, balls), or they are star- or tree-shaped (like humans, animals,
flowers). Consequently, small holes in objects are most likely segmentation
errors and we can usually improve the segmentation by closing the holes
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(a) Unprocessed segmentation
mask.

(b) Postprocessed mask.

Figure 7.21: Postprocessing of segmentation masks. (a) Output from MRF-
based segmentation. (b) Output of mask post-processing.
Small clutter regions are removed and the disconnected object
region (the leg) is added to the main object mask.

in objects. The most frequent case in which this heuristic fails is when
articulated objects like humans build loops with their limbs (see Fig. 7.21).
Hence, to limit the impact of the modification, we put a small threshold τh

on the size of the hole and close it only if the size if below this threshold.

7.6.2 Heuristics for removing clutter in the mask

Another frequent case is that we know in advance to expect only relatively
large objects in the image. Small regions in the mask are likely either just
errors or small changes in which we are not interested. One example of the
latter is a recording of sports, where the actors are visible in the front and
the audience is located at the background. In this case, not only the actor
will move, but also the audience has little motion. Usually, this motion
irrelevant for most applications. Hence, we also provide a filter to remove
regions if their size is below a small threshold so. If it is known that the
scene contains only one object, we can even exclude all regions except the
largest one.

However, in the case that there is only one object of interest, excluding
all regions but the largest one can result in incomplete segmentation masks.
This is the case if parts of the object are disconnected from the main region.
One example case is shown in Figure 7.21(a), where part of one leg has no
connection to the body. If we would only keep the largest region, this part
of the leg would be lost. To prevent this behaviour, we modify the single-
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object heuristic to include also regions which are close to the largest region
and which are not too small. The algorithm becomes as follows.

1. Find the largest region in the segmentation mask.

2. Grow this largest region by do pixels. This is done with do dilate
operations.

3. If another region is touched during the dilate operations, check if the
size of this region exceed the minimum size sd.

4. If the region size is larger than sd, add this region to the final seg-
mentation mask.

The result of this postprocessing heuristic is shown in Fig. 7.21(b).

7.7 Overview of the segmentation process

This section summarizes which of the previously described algorithms are
used in our segmentation system and how they are connected. The data-
flow of the complete background-subtraction module is shown in Figure 7.22.
The input of the module is the original input video stream and a syn-
chronous stream of reconstructed background images. These background
images are obtained from the synthesized multi-sprite background model by
extracting the current camera view from the multi-sprite. This means that
the background sequence shows the same content as the input sequence,
but without the foreground objects.

The background-subtraction module first computes the risk map, which
identifies for which pixels the segmentation is possibly unreliable. Taking
this risk map into account, a χ2 significance test is carried out to obtain an
initial segmentation mask. The Mahalanobis distance in the YUV color-
space is employed as distance measure. This algorithm already yields a
good segmentation mask, but it still shows the aura effect along the object
boundary and it usually also contains small clutter. Both problems are
reduced in the successive refinement based on the Markov random field
model. This algorithm also takes the risk map into account.

The final two postprocessing steps comprise filling of object holes and
removing small clutter regions from the segmentation mask. We consider
these two steps as optional, since their integration may depend on the
application. Small regions that remain after the MRF optimization step
usually correspond to actual changes in the image. However, many of these
small changes are often unimportant actions.



7.7. Overview of the segmentation process 233

background
input image

significance test

MRF optimization

fill object holes

remove clutter

risk map:
interpolation error

risk map:
misregistration error

OR
difference image

segmentation mask

(black=risky)

χ2

Figure 7.22: Architecture of the background-subtraction module.

The background-subtraction module is influenced by many adjustable
parameters. The parameter values selected in our system are summarized
in Table 7.1. Most of these parameters are not critical and can be changed
without strong effects on the output. The most sensitive parameter is σ, for
which we obtained the best results for the range σ = 6, . . . , 16, depending
on the quality of the input sequence. For compressed input sequences, a
higher σ of around 12 proved to be most suitable.
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Processing step Parameters
χ2 significance test w = 5× 5, σ = 8, α = 10−6, βw = 0.2
MRF optimization σ = 8, σc = 40, γhv = 2.5, γdiag = 1.25
Fill object holes sh = 20
Remove clutter so = 500 or largest only, do = 15, sd = 150
Misregistration risk map τm = 200
Interpolation risk map τi = 12

Table 7.1: Parameters used in our background-subtraction module.



Chapter8
Results and Applications

This chapter describs the combination of the algorithms that were presented
in Chapters 3 to 7 into a complete segmentation system. Several variants
of the segmentation system are discussed, each optimized for a different
type of input sequence, like scenes captured with a static camera or scenes
with a known background. Furthermore, it is addressed, which of these
systems are suitable for real-time processing, and how the more complex
offline systems can be implemented as an online system. For evaluation
purposes, results are presented for a large variety of sequences to show the
quality of th segmentation masks, but also to show the limitations of the
proposed approach. Algorithm enhancements to overcome these limitations
are proposed for future work. Finally, examples are provided for application
of the segmentation system in MPEG-4 video coding, 3-D video generation,
video editing, and video analysis.

An expert is someone who knows some of the worst mistakes
that can be made in his subject, and how to avoid them.
(Werner Heisenberg)

235



236 Chapter 8. Results and Applications

8.1 Algorithm modules

The proposed segmentation system is composed of several algorithms that
were described in the preceding chapters. The following list provides an
overview of these algorithms and summarizes their execution behaviour.

• Feature-based motion estimation (Chapter 3 and 4). This mod-
ule computes camera-motion parameters for pairs of successive frames.
The computation can be carried out online, since the computation for
each frame only requires the feature-points from the current and pre-
ceding frame, as well as (optionally) the previous motion model for
computing the motion prediction.

• Multi-sprite partitioning (Chapter 6). Given the set of inter-
frame motion parameters from the feature-based motion estimator,
the multi-sprite partitioning separates the input sequence in ranges
for which independent background images are synthesized (in the
sequel called segments). The multi-sprite partitioning requires the
camera-motion parameters of the complete sequence to make an op-
timal decision. Therefore, it is an offline process that provides the
result at the end of the sequence. However, the algorithm can be
modified to output a new segment online as soon as it is known. Gen-
erally, there is no maximum delay, after which these ranges are known,
but if strict optimality is not required, it is possible to set a maxi-
mum number of frames smax per sprite. This allows to implement the
multi-sprite partitioning as an online process with a maximum delay
and buffer requirement of smax frames.

• Direct motion estimation (Section 5.2). Once the frames that
should be incorporated into one background image are known, they
have to be aligned with a high precision. This step uses the parame-
ters of the feature-based motion estimator as initialization. Further-
more, it also requires all input frames of the processed frame range.
The output of this step is a refined set of global-motion parameters
that are used to synthesize a background image.

• Background image reconstruction (Section 5.3). With the accu-
rate motion parameters from the direct motion estimation, this step
combines the input frames into a global background image and elim-
inates the foreground objects from this background image. Here, we
can distinguish two algorithm variants. If a single background image
is desired as output, the background reconstruction algorithm will
first collect all available images and, afterwards, synthesize the back-
ground image (offline mode). This first algorithm is used, e.g., for
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Figure 8.1: Online segmentation system for sequences captured with a
static camera. An optional background-update module adapts
the background image to changes in the scene.

MPEG-4 video coding to generate the sprite image. A second vari-
ant occurs in a video analysis application that does not output the
background image itself. In this case, it is possible to keep a single
background image that is continuously updated (online mode). This
is a common approach in surveillance systems that have to cope with
a varying illumination.

• Background subtraction (Chapter 7). This step computes the
video-object masks based on a pure background image. For non-static
cameras, it also incorporates global-motion parameters to compensate
the camera motion. Since every frame is processed independently, the
algorithm can run online.

8.2 Variants of the segmentation system

The algorithm modules can be combined in different ways to adapt to
different types of input that are typically processed in specific applications.
Consequently, the system can be tuned to process easy sequences with
reduced computational complexity, or to use more complex algorithms for
more difficult scenes. In the following, we will discuss several architectures
for example applications.

8.2.1 Surveillance with a static camera

In the simplest case, it is preferred to analyse or store the video data cap-
tured with a static camera that observes a scene with known background.
For this case, no camera-motion estimation is required and the segmenta-
tion system comprises only the background-subtraction module (Fig. 8.1).
If the scene is static, we can even assume that the background image is
manually captured once in the initialization. However, usually, it is desired
that the background adapts automatically to changes in the scene. These
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Figure 8.2: Online segmentation system for sequences captured with a ro-
tational camera in a known environment. Camera-motion is
computed directly relative to a known background image. The
optional background-update module adapts the background im-
age to changes in the scene.

can be gradual changes in the illumination or changes in the environment
like moving of furniture. To allow for an automatic update of the back-
ground image, an optional background-reconstruction module can be added
to the system. This background reconstruction can be implemented either
with an explicit iterative background update algorithm (see Section 5.3.1 on
page 147), or background images can be generated at regular intervals (e.g.,
once every minute) using an algorithm as described in Section 5.3.2.

This set-up can be implemented as a real-time online application, and it
is the currently most frequently-used architecture for surveillance systems.

8.2.2 Surveillance with a moving camera

Let us now relax the restriction to a static camera, while still assuming
that the scene background does not change. This is for example the case
for user-controlled pan/tilt/zoom cameras or automatic scanning cameras,
mounted at a fixed position. For this application, we can also initialize
the system manually with a known background image, which covers the
complete field-of-view of the camera.

In this set-up, the system has to align the input image with the corre-
sponding view of the background image prior to carrying out background
subtraction. Even if information about the camera position is available from
the system (e.g., because the camera motors are computer controlled), the
accuracy is usually not sufficient for image alignment1. Consequently, an
accurate alignment has to be computed from the image data. Because the

1However, the information from the camera control can provide a good initialization
for the motion estimation.
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background image is already available, the motion parameters can be com-
puted directly relative to this background image, instead of first computing
interframe motion. These motion parameters are subsequently used in the
background-subtraction algorithm to obtain camera-motion compensated
views from the background image (Figure 8.2).

Similarly to the static camera set-up, we can optionally update the
background image iteratively to adapt to varying illumination or changes
in the scene. The update algorithm also requires the computed motion
parameters to update the correct area of the background image.

8.2.3 Offline video analysis

Automatic video analysis is expected to become increasingly important in
future video processing systems. Examples are intelligent searching in video
databases, analysis of sports recordings, or medical applications. In these
applications, the analysis can usually be carried out offline, which also al-
lows for more in-depth analysis using computationally intensive algorithms.
If the environment is known, it is possible to often use a computationally-
efficient approach as described in the previous two sections. However, for
many analysis applications the environment is not known. For instance, in
a video database system, we desire to place queries such as “find all scenes
with cars”, independent of the video source. Especially for the analysis of
television broadcasts in, e.g., a personal video recorder, no pre-knowledge
about the video content is available. Consequently, a general video analysis
system has to synthesize suitable background images automatically.

We implemented an offline video analysis system to compute the seg-
mentation in four passes over the input data (see Fig. 1.2 for the architec-
ture). These passes comprise the following processing steps.

• Pass 1: Feature-based motion estimation, combined with the multi-
sprite partitioning. The outputs of this step are approximate motion
parameters and the sequence partitioning.

• Pass 2: Calculation of accurate motion parameters with the direct
motion-estimation algorithm.

• Pass 3: Synthetization of a background image without foreground
objects.

• Pass 4: Object segmentation with the background-subtraction algo-
rithm.

Each of these four passes requires the original input video sequence and pa-
rameters from the preceding computation steps. This offline segmentation
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system is easy to implement, but it requires access to the complete video
data at once. While this is usually not a problem for implementations
on personal computers, it can impose difficulties for resource-constrained
platforms. A modified architecture for resource-constrained systems is pro-
posed in the successive section.

8.2.4 Online video segmentation and transmission

The previous offline video segmentation system is not applicable if the seg-
mentation is required in real-time. An important application where real-
time performance is required, is the transmission of live video with MPEG-4
video coding. However, a general low-delay video transmission system us-
ing MPEG-4 sprite coding is not possible, because the sprite image first has
to be built in the encoder. Since the sprite image combines video content
from possibly long video scenes, and because the sprite image should not
contain foreground objects, the encoder has to collect input frames until
the background sprite can be synthesized and the objects have moved suffi-
ciently so that they can be removed from the background. These processing
steps require buffers that store the frames of at least one segment, i.e., the
frames that will be composed into a single sprite image.

To enable online processing, it is required to restrict the maximum
segment length. This allows to limit the number of image buffers and here-
with also the maximum delay that results from this buffering. A complete
segmentation system using this approach is depicted in Figure 8.3. The
processing in this framework is organized in a pipeline structure, where
each stage operates concurrently on one segment of the input sequence.

The first stage in the pipeline computes the interframe-motion param-
eters for each pair of input frames. Additionally, a multi-sprite algorithm
is interleaved with the computation of the motion parameter. The multi-
sprite algorithm is modified to limit the maximum length of a segment
to a maximum of smax frames. Consequently, whenever the input buffer
contains smax frames, the multi-sprite algorithm computes the number of
frames for the next segment. Once the segment length is known, the sec-
ond stage can begin to compute accurate motion parameters for each input
frame of the segment (Fig. 8.4). The input images for the second stage
are taken from the image buffers that delayed the input by smax frames.
The first stage can continue its computations for the next sprite, while the
second stage works on the current segment. Note that both stages can run
synchronously, such that Stage 1 processes one frame t at the same time as
Stage 2 processes frame t− smax.

Stage 3 uses the accurate motion parameters to synthesize a background
image. Again, this stage runs in parallel to the previous stages. However,
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Figure 8.3: Online segmentation system for general video sequences. The
maximum number of frames that are covered by a single sprite
is limited to smax frames. Hence, the processing can be
pipelined with image buffers (each with space for smax im-
ages) at each processing stage. Although not shown here, the
motion parameters should also be delayed between successive
processing stages.
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Figure 8.4: Scheduling diagram of the online segmentation system. The
processing pipeline consists of four consecutive stages. The
3× smax image buffers (shown along the vertical axis) are or-
ganized as a ring-buffer. In the beginning, new images are fed
into the buffer until it contains smax images. At this time,
the first stage can decide on the size of the first segment. Sub-
sequently, Stage 2 begins to work on this segment, and so on.
Note that a frame is removed from the queue, when Stage 4
finishes the segmentation of that frame. Hence, the total pro-
cessing delay is 3 · smax frames.

because most background-synthetization algorithms do not operate frame-
by-frame but, e.g., scanline after scanline, it requires access up to smax

frames in parallel. When Stage 3 finishes the synthetization of the back-
ground image, the image is moved to a queue of sprite-image buffers such
that Stage 3 can reconstruct the next sprite image, while Stage 4 works on
the segmentation of the previously computed segments.

If the system generates several short (compared to smax) segments after
each other, several sprite-image buffers are required to store these images
(Fig. 8.5). In the worst case, if every sprite segment only includes one
image, we would require smax sprite image buffers. To limit the number of
buffers, we can limit the minimum length of a segment to include at least
smin frames. With this limitation, we only require smax/smin sprite image
buffers in the worst case. Note that cases where very short segments are
proposed by the multi-sprite partitioning, the encoder can also switch to a
different coding mode and decide not to use sprite coding at all. This is a
sensible approach anyway, since a short sprite segment will not be efficient
to code and the segmentation will probably be of low quality (not enough
information to build correct background image).
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Figure 8.5: Scheduling diagram for the case of many small segments.
At the end of Stage 3, a new sprite image is generated.
This sprite image must be available until the segmentation
in Stage 4 has completed. If the sprite segments are short,
several sprite images have to be buffered.

8.3 Implementation

We implemented the offline version of the proposed segmentation system
(Section 8.2.3) and a simplified version for cases in which we know in ad-
vance that the camera is static (Section 8.2.1). In the latter case, we
synthesized the background image with the same automatic algorithm, but
we disabled camera-motion compensation. The simplified version carries
out two passes over the input sequence (1. synthesize background, 2. ob-
ject segmentation). The full version runs in five passes (1. feature-motion,
2. multi-sprite partitioning, 3. direct motion, 4. synthesize sprites, 5. object
segmentation). Since we did not combine the first two passes into one, this
is one pass more than required. However, for a full software implementa-
tion, this is not a disadvantage because the second pass is computationally
inexpensive as it only works on the global motion parameters.

All programs were implemented in system-independent C++. Some
computationally-expensive functions like feature-point detection, feature-
matching, low-pass/high-pass filters, color-space conversions, and parts
of the direct motion estimation were additionally implemented using the
SIMD extension of the x86 processor architecture (MMX, MMX-2, SSE).
The software was developed under Linux, but has also been tested with
other UNIX variants (HP-UX, Solaris), and MS-Windows (using the Cyg-
Win environment).
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8.4 Segmentation results

We tested our segmentation system with a wide variety of sequences. A
selection of representative results is depicted in Figures 8.6 to 8.12. All of
these results were obtained by running the segmentation system with the
same parameter settings. For the results in Fig. 8.6, and 8.12(g)-8.12(l), we
used the simplified algorithm for static cameras. In the sequel, we comment
on special observations that can be made on these sequences.

• Fig. 8.6, badminton: In frame 0, we can see a “segmentation error”
in the top-left corner. This is due to the superimposed score display,
which was not visible in the first frames. Apart from the players, also
the two referees on both sides of the court move a little bit and hence
appear sometimes in the segmentation. The ball and the rackets are
not visible in the segmentation, since they are too small and partly
transparent (ball is transparent because of motion blur).

• Fig. 8.7, trampoline: Additionally to the athlete, also some people
move and hence appear in the segmentation. Also the trampoline
appears when the athlete jumps on it. Errors along the high-contrast
edges in the balustrade are eliminated by the misregistration and blur
reduction algorithms.

• Fig. 8.8, gymnastics: A sequence with camera motion. The bottom
part of the image only contains lines, along which no feature-points
can be identified. Hence, the feature-based camera-motion estimation
is based only on features in the top image part. However, the suc-
cessive direct motion estimator considers the whole image and refines
the alignment of the lines. The segmentation algorithm provides an
accurate segmentation mask, but it also includes many people that
walk in the background of the scene.

• Fig. 8.9, surveillance: The sequence was recorded with a hand-
held camera and the motion is not perfectly rotational around the
optical center. The wheels of the bicycle are partly missing, since they
are mostly transparent. Also, part of the bottom car in frame 400
is missing, because its color is very close to the street color. The
small regions are no segmentation errors, but people walking through
the scene. Since the legs of these people are thin, they are missing
(compare input and segmentation of the top left human in frame 250).

• Fig. 8.10, stefan: Segmentation of the MPEG-4 test-sequence ste-
fan. Using the multi-sprite approach (see Fig. 6.22), all 300 frames
can be processed.
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• Fig. 8.11, walking/sitting: Note the reflections on the ground that
also appear in the segmentation. This sequence is further analyzed
in Appendix F to recognize the actions (walking, sitting).

• Fig. 8.12, miscellaneous sequences: In the tennis sequence, note
that the player shadow is included in the segmentation. Also note
that the logo of the TV-station is in the segmentation, since the logo
is fixed even when the camera image moves (logo moves relative to
background).

While the results are good for the previous examples, we observed prob-
lems with some other sequences. We discuss the main difficulties based on
the following examples.

• Fig. 8.13, claire: This well known test-sequence shows a news-
speaker in front of a uniform blue background. We observe two prob-
lems. First, since the background has uniform color, we cannot iden-
tify any feature-points on it. Consequently, the camera-motion esti-
mation cannot lock to the (static) background. Instead, the motion
estimation calculates parameters that fit to the foreground object
motion, since this is the dominant motion (in terms of number of
feature-points). The algorithm cannot detect that this is the wrong
motion, since the motion-compensated difference in the background
area is low for any arbitrary motion field. If it is known beforehand
that the camera is static (like in this example), we can eliminate this
problem by simply disabling the camera-motion estimation.

The second problem is that the object does not move enough to enable
the construction of a clean background image. In this example, it
would be possible to create a synthetic background image with pure
blue color, but in general, this is not always possible. Consequently,
the background image includes large parts of the foreground object
and the segmentation result only includes those areas that move.

• Fig. 8.14, news: This is a real-world example showing the same
problems as with the claire sequence. In this case, the background
includes enough information to obtain the correct (static) camera
motion. However, the problems of the non-moving foreground object
remains. Depending on the current pose of the foreground object,
this can lead to an acceptable, but also to insufficient segmentations.

• Fig. 8.15, hurdles: This sequence shows a hurdles race, captured
by a panning camera. Since it is a wide camera pan, the algorithm
splits the background sprite into several parts. For the first sprite
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(a) Input, frame 50. (b) Background sprite. (c) Frame 0.

(d) Frame 50. (e) Frame 100. (f) Frame 125.

(g) Frame 150. (h) Frame 175. (i) Frame 200.

(j) Frame 225. (k) Frame 250. (l) Frame 275.

Figure 8.6: Results for a badminton scene, recorded from a DVB source.
The segmentation error at the top-left corner of (c) is due
to the score display that was superimposed. At the beginning
and end of the sequence, also the two referees appear in the
segmentation because they move their heads.
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(a) Input, frame 50. (b) Input, frame 150. (c) Background sprite.

(d) Frame 25. (e) Frame 50. (f) Frame 75.

(g) Frame 100. (h) Frame 125. (i) Frame 150.

(j) Frame 175. (k) Frame 200. (l) Frame 225.

Figure 8.7: Results for a trampoline sports scene, recorded from a DVB
source. Note the segmentation of frame 150, where the tram-
poline is included in the segmentation mask, since its cloth is
deformed.
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(a) Sprite (frames 223-399). (b) Sprite (frames 69-222).

(c) Input, frame 250. (d) Frame 50. (e) Frame 100.

(f) Frame 150. (g) Frame 200. (h) Frame 250.

(i) Frame 300. (j) Frame 350. (k) Frame 400.

Figure 8.8: Results for a gymnastics scene, recorded from a DVB source.
Note that the segmentation errors are due to people that walk
around in the background.
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(a) Background sprite (frames 81-546).

(b) Input, frame 250. (c) Input, frame 450. (d) Frame 50.

(e) Frame 100. (f) Frame 150. (g) Frame 250.

(h) Frame 350. (i) Frame 400. (j) Frame 450.

Figure 8.9: Results for a street surveillance scene, recorded with a hand-
held DV camera.
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(a) Frame 25. (b) Frame 50. (c) Frame 75.

(d) Frame 100. (e) Frame 125. (f) Frame 150.

(g) Frame 175. (h) Frame 200. (i) Frame 225.

(j) Frame 250. (k) Frame 275. (l) Frame 300.

Figure 8.10: Results for the MPEG-4 test-sequence stefan. The four sprites
that were used for segmentation are depicted in Figure 6.22.
Some people in the audience moved slightly and are therefore
included in the segmentation.
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(a) Input, frame 150. (b) Input, frame 200. (c) Background sprite.

(d) Frame 0. (e) Frame 50. (f) Frame 100.

(g) Frame 150. (h) Frame 200. (i) Frame 250.

Figure 8.11: Results for a scene that was recorded with a hand-held DV
camera. Because the camera was held in the hand, small cam-
era motion is present.
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(a) Tennis, frame 140,
moving camera.

(b) Frame 60. (c) Frame 140.

(d) Aquarium, input
frame 1, static camera.

(e) Frame 0. (f) Frame 380.

(g) Surveillance,
scene 1, static camera.

(h) Scene 1. (i) Scene 2.

(j) Surveillance,
scene 3, static camera.

(k) Scene 3. (l) Scene 4.

Figure 8.12: Results for various sequences. The two surveillance sequences
are courtesy of Bosch Security Systems B.V..
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(a) Claire, input frame. (b) Background (static
camera).

(c) Background (moving
camera).

(d) Segmentation
(static camera).

(e) Segmentation (mov-
ing camera).

Figure 8.13: Results for the claire sequence. This is a difficult sequence for
the proposed segmentation system, since the motio estimation
cannot place any feature-points in the background area. More-
over, the body of the foreground object does not move, so that
it cannot be detected.

(a) News, input frame
660.

(b) News, poor segmen-
tation (frame 660).

(c) News, good segmen-
tation (frame 590).

Figure 8.14: Results for a news sequence recorded from a DVB source.
Comparable result to Fig. 8.13.



254 Chapter 8. Results and Applications

(a) Hurdles, sprite 1–93. (b) Hurdles, sprite 164–200.

(c) Hurdles, input frame 26. (d) Hurdles, input frame 172.

(e) Hurdles, segmentation
frame 26.

(f) Hurdles, segmentation
frame 172.

Figure 8.15: Results for a hurdles race sequence (see Appendix D). Con-
struction of the first sprite (a) is successful, since enough
feature-points are available for motion estimation. A later
sprite (b) cannot be constructed well, since large parts of the
background are uniform or only show lines. Consequently, the
segmentation results for frames within the first sprite are bet-
ter (e) than for frames from later sprites (f).
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(Fig. 8.15(a)), the background has enough texture to enable an ac-
curate motion estimation and, consequently, a good segmentation.
Later in the sequence, the background is almost uniform or contains
only lines along which no feature-points can be identified. As a result,
the estimated camera-motion parameters have less accuracy and the
synthesized background image has a low quality (Fig. 8.15(b)). In
the end, this leads to an inaccurate segmentation mask.

A framework to solve the problem of static foreground objects is de-
scribed in Section 8.6.4 and particularly in Chapters 9 and 10. A proposal
to solve the camera-motion estimation problem for scenes with an insuffi-
cient number of features is outlined in Section 15.1.1 on page 454.

8.5 Applications of the segmentation system

The segmentation masks that are generated by a segmentation algorithm
have no direct application themselves. However, to determine the segmen-
tation masks is an important step of higher level, object-oriented video
processing. In this section, we discuss some example applications.

8.5.1 MPEG-4 video coding

The proposed segmentation system has been designed to enable an easy in-
tegration into an object-oriented MPEG-4 video codec. All necessary input
data for the MPEG-4 encoder (background sprite images, camera-motion
parameters, and binary object masks) is generated by the segmentation
system. The central question is, whether it is possible to obtain a bet-
ter image quality, if shaped object coding with sprite coding (shape+sprite
coding) is used instead of standard rectangular frame coding. The advan-
tage of the sprite coding mode is that the background image only has to be
sent one. On the other hand, the background can also be coded efficiently
with standard motion-compensated coding. Furthermore, object-oriented
coding requires the transmission of additional shape information for the
foreground objects.

To compare the coding efficiency for both coding modes, we carried out
the experiment to encode the stefan sequence using both approaches at var-
ious bit-rates. For these experiments, we used a beta-version (MoMuSys-
FDIS-V1.0-990812) of the MoMuSys reference encoder software [94] to gen-
erate MPEG-4 compliant bitstreams. The obtained rate-distortion curve is
depicted in Figure 8.16, where the PSNRs for luminance and chrominance
are shown separately. According to this result, the sprite-coding mode can
in fact achieve a much lower bit-rate for a similar PSNR. However, even for



256 Chapter 8. Results and Applications

 20

 25

 30

 35

 40

 0  10000  20000  30000  40000  50000
bits per frame (CIF-resolution)

PSNR [dB]

PSNR-Y
shape+sprite

PSNR-UV
shape+sprite PSNR-UV

rectangular

PSNR-Y
rectangular

26.9 dB

Figure 8.16: Rate-distortion curve for rectangular MPEG-4 coding vs.
shape+sprite coding of the stefan sequence. PSNR for lu-
minance and chrominance is shown separately. The rate-
distortion curve includes the bits for sprite coding (ap-
prox. 1800 bits/frame averaged). Two decoded pictures at the
indicated PSNR of 27.9 dB are depicted in Fig. 8.18.

Figure 8.17: Difference image between an input image and a decoded image
of the shape+sprite coding mode, that was encoded with a very
high bit-rate. It is visible that the complete sprite is displaced
by a small geometric misalignment. This reduces the PSNR
even though it is hardly visible by a human observer. Note
that the foreground object is not affected by the shift.
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(a) Binary shape and sprite coding,
PSNR-Y=26.96 dB, bits/frame=3545
(sprite+object).

(b) Rectangular frame coding, PSNR-Y=26.84 dB,
bits/frame=12635.

Figure 8.18: Comparison of the coding quality for rectangular frame cod-
ing and sprite+shaped object coding. Even though the PSNR
of both sequences is almost similar, the visual quality of the
shape+sprite coding is significantly better.
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(a) Frame 25. (b) Frame 50. (c) Frame 75.

(d) Frame 100. (e) Frame 125. (f) Frame 150.

(g) Panoramic view.

Figure 8.19: Foreground object from the stefan sequence placed onto a new
background.



8.5. Applications of the segmentation system 259

the same PSNR values, we observed that the sprite-mode provides better
subjective image quality than the rectangular coding mode. As an example,
Figure 8.18 shows decoded pictures of both coding modes at 26.9 dB.

There are several reasons, why the PSNR does not match the subjective
quality. These reasons are addressed below.

• In the sprite-warping process, the background image can be recon-
structed slightly shifted relative to the original image. This is due
to inaccuracies in the motion computations, or in camera-lens dis-
tortions that cannot be reconstructed from the sprite image. These
small geometric distortions are hardly visible to a human observer,
but the objective quality measurement is affected because the PSNR
is computed over non-corresponding pixel positions. To illustrate this
effect, Fig 8.17 shows the difference image between the input image
and an image encoded with the shape+sprite coding mode at a very
high bit-rate. It is visible that the background sprite has a small
spatial offset. Clearly, the foreground object region is not affected by
this effect.

• During the construction of the sprite-image, the images are geometri-
cally transformed and filtered several times. This leads to a difficult
implementation of the processing of pixels near image borders. In
the end, this can lead to missing pixels in the sprite image, such that
undefined pixels are copied from the sprite into the output image (see
the bottom-left corner of Fig. 8.18).

• Segmentation errors along the object boundary lead to pixels that
should be part of the foreground object, but which are simply replaced
by background content. Most frequently, these are soft shadows or
thin objects.

In our example, the bit-rate for the shape+sprite coding mode includes
the bits for sprite and shape. Averaged over the complete sequence, the
number of bits/frame for the background sprite is about 1800 bits/frame,
and approximately 530 bits/frame for the binary-shape information.

8.5.2 Video editing

An alternative application area for object segmentation can surely be found
in video editing systems. Current video editing systems operate usually at
the frame-level. They enable the cutting of sequences and they can gener-
ate transitions between scenes, but they provide few tools to manipulate
the video content itself. However, for still images, it is a common editing
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operation to cut out objects in one image and paste them into a new image.
To extract an object from an image, its boundary is usually marked man-
ually. Special tools for manual segmentation can simplify this operation
(see Chapter 11). However, for video sequences, manual segmentation is
impractical because of the amount of work involved. Automatic segmenta-
tion algorithms can assist to define the object masks and to cut-and-paste
the video object into a new sequence.

As an example, we have used automatic segmentation to extract the
foreground object and the camera-motion parameters from the stefan se-
quence. Moreover, we composed a new background sprite image from a set
of still images with a panoramic image stitching program (see Chapter 14).
By simulating the camera motion on the new background image and su-
perimposing the foreground objects, we can generate the illusion that the
object is acting in the new environment (see Fig. 8.19).

Using the same input data, it is also possible to keep the background
image static, but project the foreground objects at the current camera view,
which is defined by the global-motion parameters. With this approach, we
obtain a static visualization of the object motion (Fig. 8.19(g)).

8.5.3 Pseudo 3-D video generation

Object segmentation also plays an important role in the generation of
pseudo 3-D video content from 2-D sequences. The need for 3-D video
sequences is quickly gaining interest because new developments of display
technology enable the presentation of 3-D images without special glasses
(e.g., with red/blue or polarization filters). However, the introduction of
3-D television into the market suffers from the chicken-and-egg problem
of suitable video content. Consequently, it is important at least for the
transition phase to generate pseudo 3-D video from existing standard 2-D
recordings.

One approach for realizing this could be to use automatic foreground
object segmentation and to arrange the foreground objects and the back-
ground into different depth-layers, such that foreground objects appear
closer to the viewer. As an experiment, we applied this approach to the
stefan sequence to generate virtual 3-D views, which are depicted in Fig-
ure 8.20 as anaglyph images. In these images, we have defined the back-
ground layer as reference plane. Objects that are closer to the viewer are
displayed with a horizontal offset between the left and right view. The
value of this offset determines the depth of the object (Fig. 8.21).
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(a) Frame 15.

(b) Frame 100.

Figure 8.20: Pseudo-3D generation from the segmented stefan sequence
(view this with red/blue-glasses). The foreground objects are
placed closer to the viewer.
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background (reference plane)

left image right image

foreground
object

Figure 8.21: Geometry of stereoscopic imaging. Relative to the background
image, the foreground object appears shifted between the left
and right images. The closer the object is located towards the
viewer, the larger the is the offset between the two views.

8.5.4 Video-object recognition

The segmentation of video objects is also the first step for higher-level
video analysis like the recognition of objects. Once the exact object mask
is known from the segmentation, we can use for example the object shape
to obtain more semantic information about the object itself. This includes
the classification of the object into pre-defined categories, the recognition
of specific objects, or the analysis of the object behaviour.

We have implemented a prototype application that compares the ob-
ject outline with a database of objects to determine the object class. In
our example, we used different shapes of humans that were labeled with
their current action (walking, standing, sitting, standing-up). Each frame
of the input object was classified into one action category. To increase
the robustness, we also included a transition model between these states
(the sitting-state cannot directly change to walking, but has to transit the
standing-up state first). The approach is described in more detail in Ap-
pendix F. An example result is visualized in Figure 8.22.

8.6 Extensions

The proposed segmentation system can be extended in several ways to
adapt it to special applications, while still keeping the general core. In the
following, we briefly mention some possibilities of extensions. Some of these
extensions are discussed in detail in the second part of this thesis.
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sitting

standing up

walking

standing

walking

Figure 8.22: Automatic segmentation was applied to a sequence that shows
an actor (see Fig 8.11). Based on the object shape, the action
in each frame was classified into the classes walking, standing,
sitting, standing-up.

8.6.1 MPEG-4 coding with sprite-mode detection

When general video sequences are compressed with MPEG-4, it is not ef-
ficient to use the sprite coding-mode for the complete sequence. Many
parts of typical video sequences comprise camera motion along 3-D paths
or complex motion that cannot be reconstructed from a static background
sprite. A practical encoder should automatically detect those scenes in
which sprite-coding can be used efficiently.

One approach to implement this detection is to observe internal param-
eters of the feature-based global-motion estimator (Chapter 4). Remember
that this estimator uses the RANSAC algorithm to identify the dominant
global-motion model. The number of inlier vectors in this process indicates
how well the estimated model fits to the observed motion. If the fraction of
inliers is small, it means that the scene motion is not described very well by
the estimated parameters, and a standard non-sprite coding mode should
be used.

8.6.2 Camera auto-calibration

The global-motion parameters that we estimated represent the motion of a
rotational camera. However, the parameters do not correspond directly to
physically meaningful parameters like camera rotation angles or the focal
length. Knowing the physical parameters enables several new applications.
For example, the computer could superimpose artificial 3-D objects into
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the scene that move consistently with the camera motion. Moreover, the
physical parameters can be used to control a motorized pan/tilt/zoom cam-
era to simulate the camera motion of the input video. The latter can be
applied in the video editing process to capture new background scenes for
an existing video sequence. The foreground objects can be extracted from
the old video sequence and placed in the new sequence. The advantage of
this approach compared to simply replacing the background sprite image
(Fig. 8.19) is that the new scene “background” can contain arbitrary ob-
ject motion. An algorithm to extract physical camera parameters from the
global-motion parameters is described in Chapter 12.

8.6.3 Absolute coordinate transfer

For the analysis of video sequences, it is often required to describe the
object positions not only in terms of image coordinates, but in real-world
coordinates. One example is the analysis of sport videos like soccer or ten-
nis. In this case, not the position of the players on the display is relevant,
but the position on the playing field or on the tennis court. Another exam-
ple are surveillance applications, where certain areas should be monitored
for intrusion.

If the camera is static, specific points with known coordinates can be
identified to manually calibrate the system. However, a static mapping be-
tween image coordinates and real-world coordinates is impossible if camera
motion is visible in the input. In Chapter 13, we propose an algorithm for
automatic camera calibration in sports-sequences.

8.6.4 Object models

The proposed segmentation system is based on the definition that every-
thing that differs from a static background image is classified as foreground.
As can be observed in the segmentation results, this definition is not always
sufficient for all applications. In many situations, there are several moving
objects in an image, but we are only interested in one of them (Fig. 8.8).
On the contrary, sometimes only parts of the interesting object shows in
the segmentation, since parts of the object do not move (Fig. 8.14). To sep-
arate the object of interest from the remaining objects, we have to define
more specifically what objects should be extracted.

The difficulty of this is to find a model that is accurate enough to detect
the correct object, but on the other hand, it has to be robust against object
deformations, occlusions and similar problems. We propose an algorithm
for general object detection in Chapter 9 and 10.
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Chapter9
Object Detection based on
Graph-Models I: Cartoons

The first part of this thesis has presented an automatic segmentation sys-
tem that does not use any pre-knowledge about the foreground objects to be
extracted. However, sometimes it is desired to specify more precisely which
objects should be extracted. This allows to disambiguate between the impor-
tant acting objects and unimportant objects that should not be extracted (like
the audience in sport videos). Moreover, having a model about the objects
can provide a better segmentation in cases where the scene background is not
known or where it is very similar to the foreground. This and the following
chapter present a graph-based model to describe video objects. This model
is applied to extract a user-defined object from video sequences or still im-
ages. The model-detection algorithm is based on an inexact graph-matching
between the user-defined object model and an automatically extracted graph
describing the input image. This chapter discusses the model-generation
process, and we present a matching algorithm tailored to the object de-
tection in cartoon sequences. Cartoon sequences are especially difficult to
process with ordinary segmentation algorithms, but they are fitting well to
the graph-model based approach. The successive chapter further extends the
object-detection algorithm to natural video sequences.

It is a mistake to think you can solve
any major problems just with potatoes.
(Douglas Adams)

267
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9.1 Introduction

In the first part of the thesis, an automatic segmentation system was de-
scribed that is based on a background-subtraction technique. Background
subtraction employs knowledge about the scene background, but it uses
no pre-knowledge about the foreground objects. This has the advantage
that no information about the foreground objects is required. On the other
hand, a simple background subtraction cannot decide if the detected objects
are important for the successive processing steps. In many cases, we are
only interested in some of the visible objects, even though more objects are
extracted. One example are sport videos, where the athletes are extracted,
but also moving people in the audience. In contrast with this, we also ex-
perience problems when only part of the important object is moving, like in
news broadcasts in which the anchorman usually only moves his head. In
this case, the previously proposed segmentation system cannot know that
the body of the anchorman is not simply part of the background. These
problems can only be solved by providing the segmentation algorithm with
pre-knowledge about the objects to be extracted.

A video object can generally appear in many different deformed or artic-
ulated appearances in an image (see Fig. 9.1). Moreover, it can be occluded
or viewed from different sides. The crucial problem in defining an object
model is to find a representation that is flexible enough to fit to all the
different appearances of the object. On the other hand, the model should
not be too general, since it will fit to incorrect places otherwise.

In this chapter, we introduce a system for video-object detection and ex-
traction based on user-defined models. Our object models are described by
“model graphs”, in which nodes represent image regions and edges denote
spatial proximity. Each node is attributed with color and shape informa-
tion about the corresponding image region. Model graphs are specified
manually based on a sample image of the object. Object recognition starts
with automatic color segmentation of the input image. For each region, the
same features are extracted as specified in the model graph. Recognition
is based on finding a subgraph in the input graph that matches the model
graph. Evidently, it is not sufficient to search for an isomorph subgraph,
since node and edge attributes will not match exactly. Furthermore, the
automatic segmentation step leads to an oversegmented image. For this
reason, we employ inexact graph matching, where several nodes of the in-
put graph may be mapped onto a single node in the model graph.

Graph matching is a well-known technique in computer vision and sev-
eral efficient heuristics have been developed for the graph isomorphism
problem. These include algorithms based on nonlinear optimization [76],
quadratic programming [163, 145], relaxation labeling [184], or algorithms
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(a) (b) (c) (d)

Figure 9.1: The same object can appear in many different shapes.

that are specialized for a specific class of graphs [43]. A completely dif-
ferent approach to region correspondence uses the Earth Movers Distance
(EMD), which is a popular distance measure in the field of image retrieval
[79]. Recently, region-based algorithms have also become popular in the
context of searching in video databases [17, 112, 23]. In this case, char-
acteristic regions are first extracted from a query image and subsequently,
these regions are used to form a database query for images that contain
similar regions. However, since the relevant regions are extracted auto-
matically, no pre-knowledge about the spatial object structure is available.
Consequently, the object structure is often neglected.

In this chapter, we concentrate on the object recognition in cartoon
sequences. This class of sequences is difficult to handle with current au-
tomatic segmentation algorithms, because the motion estimation has dif-
ficulties arising from large homogeneous regions and because the object
appearance is typically highly variable. In the next chapter, we extend the
graph-model based object detection approach to a similar detection system
for natural images.

9.2 Principle of region-based graph matching

Our approach for object detection is based on the assumption that objects
can be described reliably by a set of attributed regions and their spatial
relationship. The model structure and features are expressed by an object
model graph GM = (VM , EM ), where each node in VM represents an image
region with uniform color. Nodes have attributes describing region color,
shape, and size. Edges in the model graph define spatial proximity. This
means that if (v1, v2) ∈ EM , region v1 must be near region v2. The model
graph representation allows to recognize objects independent of their exact
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spatial layout as long as the characteristic spatial structure of the objects
remains. In particular, articulated object motion can be modeled in a
straightforward way.

Model graphs are defined manually by the user in a graphical editor (top
part of Figure 9.2). To ease the definition, a sample image of the object
can be segmented semi-automatically. Subsequently, the region features
are extracted automatically from the sample image. Finally, the spatial
structure of the object is defined by connecting neighboring regions.

Object recognition starts with an automatic color segmentation of the
input image. For each of the regions obtained from this segmentation,
the same features are extracted as for the model graph (bottom part of
Figure 9.2). A fully connected input graph is defined, generating nodes
from the regions and attributing the edges with the distance between pairs
of regions. Since the regions are generated by an automatic segmentation
process covering the whole image, this input graph will be much larger
than the model graph. Furthermore, due to oversegmentation, regions that
belong together semantically may be split into separate regions.

The object recognition is based on the idea to find a subgraph in the
input graph that matches our model graph. Obviously, it is not possi-
ble to find an isomorph subgraph, because node and edge attributes will
not match exactly and model-graph regions are possibly split into overseg-
mented regions. Hence, we apply an inexact graph matching where several
nodes of the input graph can be mapped onto a single node in the model
graph (1 : N -matching). The quality of a match is described by judging
the compatibility of the node and edge attributes.

In order to reduce the high computational complexity of graph match-
ing, we employ a fast three-step matching algorithm.

• The first step reduces the search space by eliminating nodes in the
input graph that are very unlikely to occur in the match.

• The second step performs a 1 : 1-matching of the skeleton tree of the
model graph. The skeleton tree is a sub-graph T = (VM , ES) (with
ES ⊆ EM ) of the model graph that only contains a subset of the
edges such that it forms a tree. This 1 : 1-matching of the skeleton
tree can be carried out very efficiently using a dynamic-programming
approach.

• The third matching step considers the whole model graph and extends
the matching to a 1 : N -matching.
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(a) Standard watershed.

M M M M1 2a 2b 3

(b) Marker driven watershed.

Figure 9.3: Marker-driven manual watershed algorithm. Whereas in the
standard algorithm each local minimum creates a new segment
(a), the marker-driven watershed algorithm only builds water-
sheds between markers (b). Note that the markers M2a and
M2b are assigned to the same region, so that no watershed is
built between them.

9.3 Model editor

This section describes the editor for generating the model graphs. The
object models which are used during the object-detection process, are de-
fined manually by the user in a graphical editor. Manual user interaction
is required, because only the user knows exactly the semantic meaning of
the object model and thus only he can specify the characteristic attributes
of a particular object. Since the model specification is an easy task and
the models can be saved into a database of frequently-used models, the
required time for user interaction is low.

Segmentation of the object regions is based on a marker-driven water-
shed algorithm, which is applied on the gradients of a sample image. The
difference to the standard watershed algorithm is that the water does not
start flooding from the various local minima. Instead, the water commences
to flow from the markers. Several markers can be grouped together such
that water basins of these markers are attributed to the same region (i.e., no
watershed is built between markers for the same region, see Figure 9.3(b)).

Relevant object regions are defined manually by placing markers in a
sample image. The exact region boundaries are subsequently located by
the watershed algorithm. Errors in the segmentation can be corrected by
joining regions that have been separated by the watershed algorithm. Inter-
nally, this is realized by considering the markers of both regions equivalent
(compare the markers M2a,M2b in Figure 9.3(b)). The region attributes
are extracted from the sample image (see Figure 9.4(d)), but they can be
modified by the user in case the sample image does not contain a typical
view of the object.

Finally, graph edges are added to define regions that should be close
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(a) Input image. (b) Manual segmenta-
tion.

(c) Model graph. (d) Blobbed model graph
showing region features.

Figure 9.4: The creation process of a model graph. Based on the sample
input image (a), the user places markers into the image to
separate the regions (b). Edges are introduced (c), where edges
of the model skeleton tree are depicted with strong red lines,
and the fine green lines denote the refinement edges used in
the 1 : N matching step. The region features can be visualized
in an abstract presentation (d).
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(a)

(b)

Figure 9.5: Result of the input graph obtained from the automatic color
segmentation. Each color region established a node in the in-
put graph, enriched with features like node color and size.
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to each other, independent of a specific object view. Note that the model
should only contain those edges that are semantically necessary for the
specific object. For a model of a human, for example, the head is directly
connected to the body, but not to one of the arms even though this may
be the case in a specific sample image.

As we will see later when considering the matching algorithm, matching
becomes particularly efficient when the model graph has a tree topology.
Therefore, we classify the model graph edges into two classes: skeleton tree
edges, and refinement edges. The principal 1 : 1-matching step only uses
the skeleton tree edges. This forms no severe restriction, since most natural
objects can be described sufficiently using trees. The refinement edges are
used in the 1 : N -matching step when oversegmented regions are combined
to cover the whole object.

9.4 Automatic color segmentation

Automatic color segmentation is carried out using a combination of water-
shed segmentation and region merging. The watershed algorithm provides a
very fast pre-segmentation, but this is usually strongly oversegmented and
thus not sufficient for our purpose. Hence, an additional region-merging
algorithm is applied on the pre-segmentation result to further combine
neighboring regions obtained from the watershed algorithm. Although the
watershed pre-segmentation is not required, it considerably speeds up the
segmentation process, because the region-merging algorithm can start with
larger initial regions (more detail about the color segmentation can be found
in Appendix E).

Region merging has proven to be a powerful segmentation algorithm,
enabling the use of various merging criteria to control the merging process.
We have chosen the Ward criterion, which results in a segmentation in
which the region variance is minimized. The fundamental idea is to consider
every neighboring pair of regions and calculate the increase of variance
that a possible merge of the two regions would impose. Let σ2

i denote the
variance of region ri, µi the region mean brightness, and |ri| the region size.
Then, the increase of variance when regions ri and rj are merged, can be
calculated by the new variance σ2

ij minus the original individual variances,
which gives

∆ij = σ2
ij − σ2

i − σ2
j =

|ri| · |rj |
|ri|+ |rj |

(
µi − µj

)2
. (9.1)

The region-merging algorithm now successively combines the two regions
ra, rb for which ∆ab is minimal until the minimum ∆ab exceeds a threshold.
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We denote the final set of regions as R = {ri}. A more in-depth treatment
of the color segmentation is provided in Chapter 10.

9.5 Feature extraction and matching criteria

To evaluate the similarity of image regions, a set of features is extracted
for each region during model creation, as well as for each region generated
by the automatic segmentation process. Based on these features, node
and edge cost-functions are defined which serve as matching criteria in the
graph matching step. The calculation of features that are not required
for candidate selection (see below) can be postponed after the candidate
selection step. Since only a smaller subset of the regions is actually used in
the matching process, the computation time is reduced.

9.5.1 Color

The color of each region is described by its coefficients in the Hue, Value,
Saturation (HVS) color space. This color space allows an easy definition of
a distance metric having a close relationship with the human perception.
HVS space can be visualized as a cone with black at the tip and the rainbow
colors around the base. After transforming the HVS color (h, v, s) with
h ∈ [0; 2π], v, s ∈ [0; 1] into cartesian coordinates using x = v · s · cos h,
y = v ·s · sinh, z = v, we use the Euclidean distance between the two colors
as color matching cost. We denote the matching cost for assigning region
ri ∈ R to model node mi ∈ VM as CC

mi
(ri).

9.5.2 Size

The shape feature is simply the size of a region in pixels. During the
matching process, two cost measures are used for region sizes: one based on
the absolute region size and one based on relative region sizes. The absolute
region size measure is applied during the candidate selection step to sort
out regions that are much larger than the object model. The absolute size
feature is computed as the ratio of the input region size |ri| with respect to
the model region size |mi|: fS

mi
(ri) = |ri|/|mi|.

For the computation of the relative size measure, let |ri|, |rj | be the
sizes of two connected regions and |mi|, |mj | the sizes of the corresponding
model regions. Since the size of the object in the image may vary, we do
not compare the absolute region sizes to the model in the actual matching
step. In fact, only the relative sizes of connected regions are compared to the
model. Following this approach, we define the matching cost CRelS

mi,mj
(ri, rj)

by the piecewise linear function depicted in Figure 9.6. This measure does
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j

Figure 9.6: Relative size cost CRelS
mi,mj

(ri, rj) for matching a pair of con-
nected model nodes to a pair of input regions.

not penalize variations of region sizes up to a factor of two. This is to
be robust for varying region sizes because of many factors like occlusions,
differing viewing position, deformable objects, or inaccurate segmentation.

9.5.3 Distance

Connected model regions are assumed to have zero distance. However, the
distance between a pair of input regions ri, rj is measured as the minimum
pixel distance d(ri, rj) between both region borders (see Fig. 9.7(a)). The
region distance-cost is defined as (see Fig. 9.7(b))

CD(ri, rj) =

{
0 for d(ri, rj) < dmin,
d(ri,rj)−dmin

dnorm−dmin
else.

(9.2)

Truncating the error for small distances has been introduced to tolerate
small region distances between input regions. These small distances can
be caused by an inaccurate segmentation. We have chosen dmin = 5 and
dnorm = 30 pixels in our experiments, in which the image size was 720×576
pixels.

9.5.4 Shape

Automatic segmentation usually generates some regions having a “fuzzy”
shape, being thin and having many concavities. These regions almost never
belong to any object, but rather appear in background regions between
objects. Since the regions are often located near object boundaries, they
are close to all regions in the object and thus, for the matching algorithm,
they seem to be part of the object. Hence, it is preferable to early identify
these regions and exclude them from the matching.

To find such “misleading” regions, we make use of a shape feature that
describes the shape complexity of a region. It is computed as

fSh(ri) = 4π
|ri|

border(ri)2
, (9.3)
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region distance

(a) Region distance.

1 d d

cost

1

0 d(r  ,r )
min norm

i j

(b) Cost measure CD(ri, rj).

Figure 9.7: (a) Region distances are calculated as the minimum Euclidean
distance between the region borders. (b) The cost function in-
creases linearly with the distance, but tolerates small distances
between regions due to inaccurate segmentation.

where border(ri) is the length of the region border and |ri| is the region
area. Clearly, the shape feature is maximal (fSh = 1) when the region
boundary is a circle and approaches zero when the region is long and thin.
Note that fSh is invariant to scaling.

9.5.5 Orientation

Edge orientation is an optional matching criterion and can be activated
manually for each individual edge. When matching symmetric objects, the
orientation of the matched graph is ambiguous. To break this symmetry,
edges can be declared as oriented edges. These edges remember which
of the two regions is left of the other (or above the other). The relative
orientation of two regions is determined by comparing the coordinates of
their centers of gravity. If the model edge e = (mi,mj) is an oriented edge
and the orientation of the assigned input regions ri, rj differs, the costs is
set to CO

mi,mj
(ri, rj) = 1; otherwise we set CO = 0.

9.5.6 Node and edge costs

The above-mentioned costs are combined into node-cost and edge-cost func-
tions, which are computed by

CN
mi

(ri) = αCC
mi

(ri), (9.4)

for the node cost and

CE
mi,mj

(ri, rj) = βCD(ri, rj) + γCRelS
mi,mj

(ri, rj) + θCO
mi,mj

(ri, rj) (9.5)

for the edge cost, respectively, where the parameters α, β, γ, θ are weight-
ing factors which we have set to 1. They can be increased or decreased
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distance between
two sets of regions

distances used for region
coherency computation

q
i

q
j

Figure 9.8: Visualization of computing the distance cost between two sets
of regions. The distance is defined as the minimum distance
cost of all regions pairs (ra ∈ qi, rb ∈ qj) plus the minimum
distance costs between the regions in each set.

depending on the application. For example, when it is a-priori known that
the color may vary because of differing lighting conditions, the weight of
the color cost α should be decreased.

9.5.7 Generalization of costs for 1 : N-matching

For the 1 : N -matching, we generalize the cost measures to handle mappings
from several input regions to a single model region. The measures are
defined such that the cost measures for 1 : 1 matching result as a special
case. We denote the generalized cost definitions with hats on the variable
names. We define the 1 : N -matching cost for model nodes with qi ⊂ R as

ĈN
mi

(qi) =
1∑

r∈qi
|r|
∑
r∈qi

|r| · CC
mi

(r), (9.6)

which is the sum of all node costs for the region in R, weighted with the
region size.

The generalized distance measure has to capture the distance between
two sets of regions. At the same time, it should also prevent that the regions
within one set are itself distributed over the image with large distance.
Hence, we introduce the coherency of a set of regions as the pairwise spatial
proximity of the regions within both sets. This leads to our definition of
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the generalized distance measure, which we compute as (see Fig. 9.8)

ĈD(qi, qj) = min
ra∈qi,rb∈qj

CD(ra, rb)︸ ︷︷ ︸
minimum distance between

both sets of regions

+

1
2

∑
ra∈qi

min
rb∈qi,rb 6=ra

CD(ra, rb)︸ ︷︷ ︸
coherence of region qi

+
1
2

∑
rb∈qj

min
ra∈qj ,ra 6=rb

CD(ra, rb)︸ ︷︷ ︸
coherence of region qj

.

(9.7)

Note that this definition of coherency would assign two distant clusters of
regions a high coherency, which is not desired. However, in the 1 : N -
matching algorithm, regions are added one by one. Consequently, the set
of regions cannot grow easily into two clusters of regions, because the cost
for the first distant regions would be high.

The generalized cost functions for relative region size and orientation
ĈRelS and ĈO are computed by determining the sum of region sizes and
the center of gravity for the set of regions. The generalized total edge cost
ĈE is defined as the weighted sum of the individual costs similar to the
definition of CE in Eq. (9.5), replacing all cost components C with the
generalized counterpart Ĉ.

9.6 Matching algorithm

Graph matching is carried out in a three-step process.

• Step 1 Since the color or size of many of the regions generated by
the automatic segmentation will strongly deviate from the model re-
gions, they can be excluded from the matching process to decrease
the computational time. The first matching step determines for each
model region a subset of input regions and performs the previously
mentioned exclusion of unsuitable regions.

• Step 2 The second matching step involves only the regions of the
selected subset as candidates for a model node. The second matching
step computes a 1 : 1 matching of the model graph skeleton tree using
a dynamic programming approach.

• Step 3 This 1 : 1 matching acts also as the initialization for the
third matching step, where the 1 : 1 matching is enriched to form a
1 : N matching. Enriching means that additional input regions can
be assigned to a single model region to decrease overall cost.
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The three matching steps can also be viewed as incrementally imposing
additional structural information. While the first step (candidate selection)
is completely free from any structural constraints, the 1 : 1-matching obeys
the structure of the model skeleton tree, and the final 1 : N -matching step
considers the full model-graph structure.

9.6.1 Candidate-region selection

The candidate input regions for a model region are selected based on the
color, the region size and the shape feature. The idea of the candidate-
selection step is to sort out regions that have the wrong color, a clearly
wrong size, or a non-compact shape. Two selection strategies are possible:
we can fix the number of candidates NC for each model region and select
the NC best input regions as candidates, or we can set a threshold on the
region similarity and consider all input regions with higher similarity as
candidates. The choice of selection strategy is not critical when the number
of candidates is sufficiently high and the thresholds are set high enough to
ensure that the correct matches are not sorted out. We adopted a strategy
with fixed number of candidates for each model region and observed that
about 10− 20 candidates for each model region are sufficient.

At first, we filter out regions that are a factor θ larger than the cor-
responding model region or that have a significantly different shape. We
apply two thresholds

CS
v (c(v, i)) > θ and fSh(c(v, i)) > ν, (9.8)

which were chosen as θ = 3 and ν = 0.15 in our experiments. These
values can be adjusted or even selected individually for each model region,
depending on the amount this region can change its size in different input
images and on the application or model. Since θ and ν are only used to sort
out clearly non-matching regions, they can be set arbitrary large or even
can be omitted at all (but more candidates would have to be considered
in this case). Since the automatically segmented regions are possibly only
part of a single model-graph region and the total size of the object to be
found in the input image is not known yet, regions that are too small should
not be excluded. The remaining regions are sorted with a mapping

c : VM × {1, 2, . . . , |R|} → R, (9.9)

such that
CC

v (c(v, i)) < CC
v (c(v, j)) → i < j. (9.10)

Hence, c sorts the input regions according to increasing matching costs,
with the best matching region c(v, 1) for model node v, and the worst
matching region that is still considered c(v, |R|).
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Note that the same input region can appear as candidate region for
several model regions. The constraint that the same input region must not
be assigned twice to different model nodes must be satisfied by the following
algorithmic step.

9.6.2 Matching algorithm

The 1 : 1-matching step is the most important step, since it does the
primary localization of the model regions. The found matches are the
seed for the 1 : N -matching step, where they are further extended with
additional input regions.

Weighted graph-matching can be described as finding the maximum
weight clique in the corresponding association graph [144], which is known
to be NP-hard. However, for special classes of graphs, such as e.g. trees,
efficient algorithms exist. Since almost all real-world objects can be accu-
rately described by trees and because efficient algorithms for trees exist, we
restrict our 1 : 1-matching step to finding the best matching tree for the
skeleton tree of a model graph.

Our algorithm is based on a dynamic-programming approach. The ob-
jective is to find the mappingM1:1 : VM → {1, 2, . . . , |NC |} that minimizes
the sum of node costs and edge costs in the tree:

min
M1:1

{ ∑
v∈VM

CN
v

(
c(v,M1:1(v))

)
+

∑
(v1,v2)∈ES

CE
v1,v2

(
c(v1,M1:1(v1)) , c(v2,M1:1(v2))

)}
.

(9.11)

Let us introduce the concept of computing the minimum cost map-
ping with a simple example. Assume that the model tree is e.g. a simple
linear chain (Fig. 9.9(a)). We construct a computation graph by dupli-
cating each model node to NC nodes, each representing the decision that
the model region is mapped to a specific candidate node. The node costs
CN are assigned to the nodes, i.e., the first column of nodes get costs
CN

a (c(a, 1)), CN
a (c(a, 2)), . . . , CN

a (c(a,NC)). Similarly, the edge costs
CE are assigned to the edges. Now minimizing the sum (9.11) is equivalent
to computing the minimum cost path through the resulting computation
graph. To compute the minimum cost path, we proceed column by column
from left to right and determine for each node the predecessor node that
gives the minimum total cost so far. More specifically, we assign attributes
mincost and last to each node in the computation graph. The nodes in
the left column are initialized with mincost equal to their respective node
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Figure 9.9: Object-model skeleton trees with their respective computation
graphs.

costs CN and last = nil. Continuing with the next column to the right, we
calculate for each node the total cost that results from each choice for the
predecessor candidate. This cost consists of the mincost of the predecessor
node, the edge cost CE linking the predecessor node to the current node
and the current node cost CN . The predecessor node that gave the least
cost is stored into last and the corresponding minimum cost in mincost.
When we arrive at the rightmost column, the candidate with the minimum
cost is selected and the minimum cost path is traced back using the last
attributes.

If the model tree contains junctions like shown in Figure 9.9(b), the
algorithm above has to be extended. Since model node c has multiple in-
coming edges, the best predecessor candidate has to be selected from both,
model node b and model node f . Consequently, mincost is now obtained by
minimizing over the sum of all previous nodes and incoming edge costs. The
computation time required therefore increases from N2

C steps for a column
to indegree · N2

C computations (indegree = 2 in our example). However,
the total computation time does not increase, because the total number
of edges in the computation tree remains constant. Hence, the complexity
is O(N2

C · |VM |). The complete matching algorithm is described in Algo-
rithm 1 and 2. Algorithm 1 initializes the pred attributes that define the
order in which the model nodes have to be considered in the calculation.
The set pred(v) of a node v is the set of adjacent nodes that have to be
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Algorithm 1 Initialization of the computation graph for the subsequent
dynamic-programming algorithm.
Require: the model tree VM = {v1, . . . , vN}, ES ⊂ VM × VM

1: pred(v1 ∈ VM )← ∅
2: l← {v1}
3: r ← VM \ {v1}
4: while l 6= ∅ do
5: select an arbitrary v ∈ l and set l← l \ {v}
6: for all (v, w) ∈ ES ∧ w ∈ r do
7: pred(v)← pred(v) ∪ {w}
8: l← l ∪ {w}
9: end for

10: end while

processed prior to node v. This attribute defines the depth-first recursion
order in which the costs for the nodes are calculated. Algorithm 2 performs
the actual 1 : 1 matching. It processes all nodes in the depth-first order
defined by pred(). The algorithm is initialized to start at the tree root:
calccolumn(v1).

In each junction node, instead of only storing a single predecessor, we
haev to store the best candidate node for each incoming model-tree edge.
When tracing back the minimum cost path, we obtain a minimum-cost tree
instead of a linear chain.

The algorithm described thus far has still one drawback. When the same
input region occurs as candidate for different model nodes, the algorithm
may use the same input region more than once. This is not desirable. For
example, consider searching for a human with equal left and right arm (see
Figure 9.10). The model nodes for both arms are the same and both sub-
trees are connected to the same body node. Since either the left or right
arm in the input graph will match better to the model, the algorithm will
assign the best one to both arms of the model.

This problem can be alleviated using two techniques. First, it is possible
to make the edges connecting the arm and the body oriented edges (see
Section 9.5.5) inducing extra cost when the left arm in the input graph
is mapped to the right arm in the model graph and vice versa. However,
this does not work in all situations and we have to extend the algorithm
described previously to prevent double assignments. This can be done by
introducing a blocked attribute to each computation graph node. This
attribute stores the set of input regions that are used so far. In each
junction node v of the computation graph (|pred(v)| > 1), combinations of
previous node candidates k1, k2 that collide (blocked(k1)∩ blocked(k2) 6= ∅)
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Algorithm 2 Compute the minimum cost assignment.
1: procedure calccolumn(v ∈ VM )
2: for all w ∈ pred(v) do
3: call calccolumn(w)
4: end for
5: for n = 1 to NC do
6: if pred(v) = ∅ then
7: mincost(v, n)← CN

v (v, c(v, n))
8: else
9: cost← CN

v (v, c(v, n))
10: for w ∈ pred(v) do
11: cost← cost + mini

(
mincost(w, i) + CE

w,v(c(w, i), c(v, n))
)

12: last(v, n, w) is set to the i that minimized the above sum
13: end for
14: mincost(v, n)← cost
15: end if
16: end for

cannot be selected. Note that since this is a combinatorial problem, the best
candidate node for all preceding nodes cannot be determined independently.
In fact, all combinations are enumerated and checked for validity. The valid
combination with the minimum cost defines the best candidates for the
preceding model nodes.

As an example, consider Figure 9.10. Note that Node 3 selects input
regions a and b as its left arm. Under the assumption that the right arm
looks identical to the left arm in the model, the dynamic-programming
algorithm without blocking attribute would select the same input regions
for the right arm. However, since a and b are contained in the blocked set
of Node 3b and Node 5b, Node 2 has to choose Nodes d and e for the right
arm. Unfortunately, it cannot ensure that both arms are assigned to the
correct side, because the orientation is lost in the graph description. This
orientation ambiguity can be resolved by defining the edges connecting the
arms with the body as oriented edges.

9.6.3 1 : N-matching

Starting with the 1 : 1-matching result, the 1 : N -matching algorithm
assigns additional input regions to model nodes if this decreases the total
cost. We define the 1 : N matching through a mapping M1:N : VM → 2R.
It is initialized with the result of the preceding 1 : 1 matching by

M1:N (mi) :=
{
c(mi,M1:1(mi))

}
. (9.12)
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Figure 9.10: Example calculation for a model graph (left) describing a hu-
man. The arrows denote the order of calculation as induced by
the pred attributes. For simplicity, the computation graph on
the right has been constructed with only two candidate nodes
for each model node. The model nodes are denoted by num-
bers and the input nodes by letters. Selected edges are drawn
with thick arrows and the corresponding blocked attribute is
shown at each node. Calculation proceeds from left to right.
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More input regions are added with a greedy algorithm. In each iteration,
a cost difference δmi(qi, rk) is computed that equals the cost difference
induced from adding input region rk to region set qi. As long as the cost
difference is below zero, the input region with the largest decrease of cost
is added. Otherwise, the algorithm ends. We define the cost difference as

δmi(qi, rk) = ĈN
mi

(qi) +
∑

(mi,mj)∈EM

ĈE
mi,mj

(qi,M1:N (mj))︸ ︷︷ ︸
old node and edge costs for region set qi

−ĈN
mi

(qi ∪ {rk})−
∑

(mi,mj)∈EM

ĈE
mi,mj

(qi ∪ {rk},M1:N (mj))︸ ︷︷ ︸
new node and edges costs for regions set qi plus region rk

−εĈB(qi, rk)︸ ︷︷ ︸
cost reduction be-

cause of common

boundary

,

(9.13)

where the first terms are the generalized node and edge costs as defined in
Section 9.5.6. The last term ĈB decreases the cost for region rk if it shares
a common boundary with the regions in qi (see Fig. 9.11). The weighting
factor ε was set to 0.5 in our experiments.

To calculate ĈB(qi, rk), we consider each pixel on the boundary of rk

and search for the region r′ that is nearest to the pixel among all candidate
regions for all model nodes. ĈB(qi, rk) is set to the fraction of pixels for
which the nearest region r′ ∈ qi. Clearly, if rk is completely surrounded by
regions in qi, then ĈB(qi, rk) = 1.

Finally, we can summarize the effects of the 1 : N matching step with a
simple rule: a region will be added to the set of assigned regions of a model
node if

• the region is mostly surrounded by other regions mapped to the same
model node,

• the region bridges the space between two regions that should be neigh-
boring, or

• the combined region size (or color) matches better to the model node
size.

Figure 9.12 portrays an example showing that 1 : N matching improves the
accuracy of the object-model detection. Since model regions have been split
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(a) Testing region rk for inclusion into re-
gion set qi.

rk

part of qi part of qi

common boundary
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Figure 9.11: (a) In 1 : N matching, the hypothetical cost after adding input
region rk is computed. If the cost difference is lower, rk is
attributed to the model node. (b) Definition of the common
boundary of a region, i.e., the part of a boundary that is inside
the region set.

into several parts by the occlusion of a foreground object, 1 : N matching
is required to cover the whole model region.

9.7 Results

An example matching result for a scene with several objects having similar
characteristics is shown in Figure 9.13. The object defined by the model is
detected correctly. Small errors occur at the left hand of the object since
the algorithm cannot decide whether the fingers are part of the hand or
not. As the size of the hand without fingers matches better to the size
of the jacket, the fingers are discarded. Figure 9.14 shows more detection
results for the same object model.

Another example result is depicted in Figures 9.15 and 9.16. For these
examples, a model of the Goofy cartoon character was generated. Note
that the 1 : 1 matching result that is presented in Figure 9.16(a) does
not cover the complete object, since some regions have remained as several
independent regions in the color segmentation. In the 1 : N matching step,
most of these regions are added to the object.
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9.8 Conclusions

This chapter has presented a new algorithm for the detection of video ob-
jects that are described by manually-defined object models. A graph-based
modeling is used to describe region features and spatial relationships be-
tween regions. Thereby, the model allows for enough flexibility to find
objects, even when they are deformed by articulated motion. The central
matching step is carried out using a fast dynamic-programming algorithm,
which is enabled by restricting the object-graphs to be trees. The com-
putation time is currently about 1 second for a 720 × 576 video frame on
a 550 MHz Pentium-III processor. Most of the time is used for the color
segmentation step. Hence, it is possible to test the same input image for
several object models even faster, because the initial color segmentation
only has to be computed once.

As an alternative to the dynamic-programming based object-detection
algorithm, we have also implemented a direct 1 : N -matching using a ge-
netic programming approach [10]. However, the description of this ap-
proach was omitted here, since the results were inferior compared with the
presented algorithm. Even though the cost function was defined in the
same way, the genetic algorithm did not show robust convergence.

Our experiments for various sequences revealed that the described match-
ing algorithm is robust if the visible object does not deviate too much from
the model and if there is no significant occlusion. Possible errors are mostly
introduced due to an erroneous color segmentation. Sometimes, regions
having the same color are combined into the same region when they are
close to another. Since the matching algorithm can map several input re-
gions to a single model region, but not several model regions to a single
input region, the matching algorithm searches for another region instead
of assigning the undersegmented input region twice. Another major source
of errors are pictures in which parts of the object are occluded, since the
algorithm cannot find matching regions for the occluded parts. The conse-
quence is that either wrong regions from the background are added to the
object, or that the object is not detected at all, since the missing regions
increase the total matching error too much.

Our overall impression is that the proposed approach is applicable for
objects that only move within a plane. When the 3-D view onto the object
is changed, many parts of the object become occluded or change their size.
This leads to high matching errors and the object regions are not assigned
correctly. To resolve this problem, it may be required to use a 3-D model of
the object, such that the computer can reflect the changes from the differing
viewing direction with the model. However, this would also require that
the object pose is estimated, which complicates the matching process.
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(a) 1 : 1-matching.

(b) 1 : N -matching.

Figure 9.12: Matching the object model from Fig. 9.4. The image shown
is part of a larger input image with several other objects. (a)
Result after matching the object skeleton tree. Matched re-
gions are marked. Note that the jacket is not covered com-
pletely since it has been oversegmented into several regions.
(b) Matching results after the 1 : N -matching step. After the
1 : N matching, the jacket is completely covered.
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(a) Input image.

(b) Found object model (second from the right).

Figure 9.13: The object model shown in Figure 9.4 is searched for in an
input image with several similar objects.
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(a)

(b)

Figure 9.14: Detection results for two images with the object model from
Figure 9.4.
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(a) Goofy model.

(b) Detection result.

Figure 9.15: (a) Model of the Goofy cartoon character. (b) Detection result
of a 1 : N matching with several similar objects.
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(a) 1 : 1-matching.

(b) 1 : N -matching.

Figure 9.16: Detection result of Goofy for 1 : 1 matching (a) and 1 : N
matching (b). It can be observed that the 1 : 1 does not include
all regions. The 1 : N matching is almost complete.



Chapter10
Object Detection based on
Graph Models II: Natural

This chapter presents an algorithm for video-object segmentation that com-
bines motion information, a high-level object-model detection, and spa-
tial segmentation into a single framework. This joint approach overcomes
the disadvantages of these algorithms when they are applied independently.
These disadvantages include the low semantic accuracy of spatial color seg-
mentation, the inexact object boundaries obtained from object-model match-
ing and the often incomplete motion information. The described algorithm
alleviates three of the problems that we encountered in the segmentation
system that was described in the first part of the thesis. First, it completes
object areas that cannot be clearly distinguished from the background because
their color is similar to the background color. Second, parts of the object
that were not extracted because they are not moving, are now added to the
object mask. Finally, when several objects are moving, of which only one is
of interest, it is detected that the remaining regions do not fit to any object
model and these regions are removed from the foreground. This suppresses
regions that are considered erroneously as moving, or objects that are mov-
ing but irrelevant to the user.

The function of the expert is not
to be more right than other people,
but to be wrong for more sophisticated reasons.
(David Butler)

295
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10.1 Introduction

Segmentation-techniques can be coarsely classified into spatial and tempo-
ral segmentation. Spatial segmentation includes segmentation based on tex-
ture or simply color. Color segmentation provides accurate region bound-
aries, but since it is working at the signal level, a semantically meaningful
object separation cannot be found without further information. On the
other hand, semantic objects can be identified rather accurately by ob-
serving areas that are moving consistently. Hence, temporal segmentation
techniques can give superior results for separating different objects. The
background-subtraction technique that we used as the core of the segmen-
tation system described in the first part of the thesis, is also a temporal seg-
mentation approach, since it detects only the moving areas. Unfortunately,
temporal segmentation does not always include the complete objects. We
have observed for example, that head-and-shoulder sequences like they are
common in video conferencing or news report scenes, do not yield good
results because large parts of the objects are not moving.

One approach to solve this problem is to combine spatial segmenta-
tion and motion information into a joint segmentation framework. Several
algorithms following this approach have been proposed in the literature.
Fablet et al. [45] propose to apply a neighbourhood graph over spatially
segmented image-regions. A Markovian framework is used to label the re-
gion into foreground and background according to their motion. However,
this approach only differentiates between regions moving compatible with
dominant motion, and regions that do not. Hence, when only part of the
object is moving, the segmentation algorithm will not cover the complete
object. A comparable algorithm that labels the regions into several consis-
tent motion classes has been proposed by Patras et al. [141]. The approach
presented by Alatan et al. in [6] obtains motion information in the form of
change-detection masks [124]. Fusion of motion cues and a spatial color-
segmentation is carried out using a system of hard-coded rules.

A weak point of the previous algorithms is the fact that motion and
spatial information are still fused in a heuristic way, without integrating real
semantic knowledge about the object to be extracted. However, difficult
segmentation problems exist which cannot possibly be solved without this
high-level knowledge. Consider for example a head-and-shoulder sequence,
where only the head is moving and the body is static. Even though every
human would probably consider head and body to be a single object, the
computer has no indication why the body should be assigned to the same
object as the head. Consequently, the body will be treated as background.

To solve this problem, we propose a new algorithm for the fusion of
temporal and spatial segmentation that applies an additional model-based
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Technique Advantage Disadvantage Example

Spatial
segmentation

Accurate
region bound-
aries

Weak semantic
meaning

Temporal
segmentation

Good object
detection

Does not work
with static
objects

Model-based Provides high-
level semantics

Inaccurate
object
boundaries

Table 10.1: Advantages and disadvantages of various segmentation tech-
niques.

approach to combine all three segmentation approaches (Table 10.1). The
object model enables the algorithm to find the complete object even when
parts of it do not move, and using the model, it can lock to a specific
object even when several objects are moving at the same time. We use an
object model based on the graph representation that was introduced in the
previous chapter. In this chapter, we adapt this model and the matching
algorithm to obtain a segmentation framework for natural images.

10.2 Segmentation system architecture

Our segmentation system comprises three main steps, corresponding to
the three approaches spatial, temporal, and model-based segmentation. An
overview flow-graph of the algorithm is depicted in Figure 10.1.

In the first step, a change-detection algorithm is employed to find the
moving regions in the image, giving an approximate location of the object.
The change detection can be computed as long-term change detection, rel-
ative to a globally reconstructed background image (see Chapter 7). In this
case, Step 1 is basically the complete segmentation system as described in
Part I. Alternatively, the change detection can also be computed as short-
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term change detection between pairs of successive frames. The two most
common errors observed in the change detection are incomplete objects,
because of insufficient motion, and detection of uninteresting objects (like
moving trees in the background). Both classes of errors, missing object
parts and uninteresting objects, cannot be removed without further high-
level information about the object’s appearance.

In the second step, we use an object model to search for the location of
the object in the input image. The object model is represented by a graph
similar to that described in the previous chapter. The nodes in the graph
represent homogeneously colored regions and graph-edges indicate spatial
proximity. To generate the object model, we reuse an extended version of
the graphical editor described in the previous chapter. The edited object
model is a general description that can be used throughout the sequence or
even for multiple sequences when the same object appears again, thereby
keeping the need for user intervention low. A matching algorithm searches
for the most likely position of the model in an input frame. The match-
ing uses information about the region color and shape from the model, to
search for a compatible location in the current input image. Differing from
the matching process described in the previous chapter, we now also inte-
grate additional information from the change-detection mask to help the
matching lock to the moving object. Since the motion information provides
us with a good first guess about the object position and object shape, the
model can be fitted even when the scene content is difficult. The output
of this step is an indicator of object location which does not provide exact
object boundaries, but that covers the whole object including parts that
are non-moving.

In a third step, spatial color-segmentation is employed to obtain ex-
act object boundaries. Here, a region-merging algorithm is used (see Ap-
pendix E), starting with the regions obtained from a watershed [189] pre-
segmentation. Usually, region-merging is based solely on color information.
The difficulty with this is that real objects are mostly not uniformly colored.
Color variations inside the object can even be larger than color differences
between the object and its background. This makes it impossible to find
a single threshold at which color segmentation should stop (Fig. 10.8(a)).
Hence, it is important to indicate the object location to the spatial seg-
mentation. In our algorithm, this object-location indicator is taken from
the object-model matching step and it is integrated into the region-merging
criterion. The criterion favors segmentation of regions inside of the object
and prohibits merging of regions crossing the object/background boundary.
Finally, regions which are covered by the object model are combined to give
the final object segmentation-mask.
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Figure 10.1: Overview of the segmentation system incorporating object
models. First an abstract object model is built manually in
a graphical editor (right side). This model is used to help
the automatic segmentation to identify the correct object loca-
tion. The automatic segmentation starts with a change detec-
tion to obtain some indication of the object position. Subse-
quently, the object location is found by fitting the constructed
model onto the image using color information and the change-
detection mask. Finally, a color segmentation is applied to
compute the accurate object boundary.
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10.3 Step 1: motion detection

The purpose of the motion detection is to distinguish static regions in the
image from moving areas. This can be done either in a short-term perspec-
tive by considering two successive frames, or in a long-term perspective by
reconstructing a background which only contains the static parts of the
sequence and computing differences to this background.

Short-term change-detection masks (CDMs) are obtained easily by com-
puting difference-frames between successive frames. If applicable, camera-
motion compensation can be applied prior to computing the difference im-
age. This simple approach shows the problem that occluded areas and
uncovered areas cannot be distinguished in the mask. Moreover, change-
detection masks of neighbouring frames only include the borders around
moving object regions.

The alternative approach is to detect long-term changes relative to a
static background image. This approach has been extensively studied in the
first part of the thesis. The advantage of this approach is that background-
subtraction masks are usually more accurate than the masks obtained from
short-term change detection. However, for some classes of scenes, the se-
quences are too short or do not provide sufficient information for the recon-
struction of the complete background image. Our algorithm can operate
with both kinds of motion-area detection. However, we prefer to use long-
term motion detection, since it provides better estimates of moving regions.

10.4 Step 2: model matching

Our object model describes the appearance of articulated objects inde-
pendent from a special realization in an image. The model defines the
geometric structure of the object, specifying the colors of the main regions
and the neighbourhood relationships. In our approach, we represent object
models with graphs GM = (VM , EM ). Each graph node v ∈ VM repre-
sents one object region with uniform color, while neighbouring regions are
connected with a graph edge e ∈ EM . In this respect, the object models
are similar to the models used in the previous chapter. However, we use
a slightly modified set of features for the graph nodes. Additionally to an
attribute specifying the region’s mean color, we approximate the shape of
a region with an ellipse1. Figure 10.2(c) shows an example object model.
The use of ellipses was motivated by tracking algorithms that use a mixture
of multi-variate Gaussians as object observation model [196]. Ellipses allow

1These ellipses have already been shown in the visualizations in the last chapter, but
they were not actually used in the matching algorithm.
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(a) Manually placed wa-
tershed markers and the
resulting segmentation.

(b) Ellipses, fitted to the
region boundaries.

(c) Extracted
object model.

Figure 10.2: Manual object model creation in the model editor.

to represent compactly the key feature of a compact region such as size,
shape aspect-ratio, and orientation.

10.4.1 Model editor

The graphical editor for defining object models is similar to the editor de-
scribed in the previous chapter. The user places markers in the essential
object regions (Fig. 10.2(a)). These markers are used in a watershed algo-
rithm to extract the region boundaries. After each user modification, the
segmentation boundaries are recomputed, which makes it very easy for the
user to control the segmentation process and correct errors. Additionally to
the object region, the user also defines the graph edges between connected
regions.

Differing from the editor described in the previous chapter, a different
set of features is extracted. First, an ellipse is fitted to the shape of each
object region. This abstraction is a good approximation to most region
shapes and it still allows easy processing. Each ellipse is further attributed
with its mean color of the corresponding region. We denote the color as-
signed to ellipse e(i) as e

(i)
r , e

(i)
g , e

(i)
b when referring to its color components

in RGB space.

Ellipse fitting to region-shape

To obtain the model parameters, the region border resulting from the man-
ual segmentation process, has to be approximated by an ellipse. Our imple-
mentation uses two different representations for ellipses in different parts of
the algorithm, since each may be more suitable in a specific context. One
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representation is the explicit form, where an ellipse is specified by its center
~c and its two principal axes ~a1,~a2. However, ellipse fitting starts with the
implicit form (

x y 1
)A B D

B C E
D E F

x
y
1

 = 0. (10.1)

Formulas for converting a representation to the alternative form can be
found in an appendix section to this chapter (Section 10.8).

The parameter estimation to determine the ellipse parameters A, . . . , F
of Eq. (10.1) proceeds in two steps. The first step uses algebraic minimiza-
tion to obtain a first estimate. This is a very fast approach, but it does
not always yield the expected solution, because a semantically meaning-
less, algebraic residual is minimized. Hence, in a second step, we further
refine the solution using a gradient-descent approach to minimize Euclidean
distances.

Linear estimation

The first step applies an algebraic fitting using the implicit ellipse repre-
sentation, where we apply the normalization A+C = 1 to avoid the trivial
solution (see [200]). To solve for the parameters, an equation system is
constructed by enumerating all pixels (xi, yi) on the region boundary and
appending one equation for each pixel. This results in the overdetermined
system 

x2
0 − y2

0 2x0y0 2x0 2y0 1
x2

1 − y2
1 2x1y1 2x1 2y1 1

x2
2 − y2

2 2x2y2 2x2 2y2 1
...

...
...

...
...




A
B
D
E
F

 =


−y2

0

−y2
1

−y2
2

...

 , (10.2)

which is solved in the least-squares sense, using a Singular Value Decom-
position.

Nonlinear estimation

Since this algebraic optimization may produce inexact results, the parame-
ters are refined with a subsequent gradient-descent process, minimizing the
geometric distance between the region boundary and the ellipse. We use a
symmetric distance measure that consists of the sum of the region-to-ellipse
distances dr→e, and the ellipse-to-region distances de→r:

dgeom = dr→e + de→r. (10.3)
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ellipse

region

(a) Distance dr→e, measured
from region to ellipse.

(b) Example of degenerated fit
for dr→e.

ellipse

region

(c) Distance de→r, measured
from ellipse to region.

(d) Example of degenerated fit
for de→r.

Figure 10.3: If only one of the measures dr→e or de→r would be used, the
result would include undesired fitting results (b), (d). This can
be prevented by combining both distance measures.

The difference between both distances is that in the first case, the region
border is sampled and the corresponding minimum distances to the ellipse
are calculated. In the second case, the ellipse is sampled and nearest region-
border pixel is being searched for. The symmetric distance dgeom results in
better region-shape approximations than an approximation with only one
asymmetric distance (see Figure 10.3).

For the region-to-ellipse distance, we iterate through all point on the
region border and compute the distance of that point to the ellipse. Since
the computation of the distance of a point to an ellipse is computationally
complex, we use an approximation to the point-to-ellipse distance. We
define the approximate point-to-ellipse distance as the distance measured
along the ray from the ellipse center ~c to the point ~pi (Fig. 10.4). To
determine this distance, we first compute the vector ~s−~c. Let M = (~a1 ~a2)
be a matrix consisting of the axes of the ellipse and let ~c be the ellipse
center. By transforming the ellipse back to a unit circle using M−1, we
easily see that in the back-transformed coordinate system, ~s−~c must have
unit length. Hence, by scaling ~pi − ~c with the inverse of the ||~pi − ~c||
in the back-transformed coordinate system, the vector ~s − ~c is obtained.
Consequently, the approximate distance of a point ~pi to the ellipse computes
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approximated distance

exact distance
°

c

pi

1

2a

a

s

Figure 10.4: The distance of a point pi to an ellipse is approximated by the
distance along the ray connecting the point with the ellipse
center c.

as

d(~pi) = ||(~pi − ~c)− (~s− ~c)|| =
∥∥∥∥ ~pi − ~c− (~pi − ~c)

‖M−1(~pi − ~c)‖

∥∥∥∥. (10.4)

This enables the calculation of the region-to-ellipse distance in closed form
as

dr→e =
1

|border|
∑

~pi∈border

d(~pi). (10.5)

The point ~p iterates through all pixels on the region border.
The distance de→r is computed by sampling the ellipse with a sufficient

number of points and each time searching for the nearest region-boundary
pixel. Hence, the ellipse-to-region distance computes as

de→r =
1
N

N−1∑
n=0

min
~p∈border

∥∥∥∥ ~p− ~a1 cos
2πn

N
− ~a2 sin

2πn

N

∥∥∥∥ . (10.6)

An example result of this ellipse-fitting process is shown in Fig. 10.2(b).

10.4.2 Model detection

The purpose of model detection is to find the position of the object model
in an input frame. Remember that in the previous chapter, we applied an
automatic segmentation to the input frame to obtain a graph representa-
tion similar to the object model. Model detection could then be carried
out as a graph-matching problem. This was well possible, since we were
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concentrating on cartoon sequences for which an automatic color segmen-
tation is easy. However, for natural sequences, we cannot rely on a good
color segmentation. Hence, we search for the object model directly in the
input image.

The fitting value of a specific configuration of ellipses is again defined
through a combination of node and edge costs.

• Node costs evaluate the difference between the color of the model
node and the mean color of an area in the image. Additionally, the
node cost is reduced if the considered image area contains moving
image content. This reduction on moving areas gives the algorithm
a preference for locking on moving objects, which will most probably
include the actual object we are searching for.

• Edge costs represent the geometric distance between areas that are
connected in the object model. The larger the distance between these
areas, the higher the edge cost.

Node costs

To define the node cost, let e(i)(x, y, α) denote the set of pixels contained
in the ellipse i, where the ellipse is shifted so that its center is at (x, y)
and where the ellipse is additionally tilted by an angle α. Consequently,
the ellipse area is |e(i)|. We define the node matching-cost for ellipse i at
position (x, y) and angle α as

s(i)(x, y, α) =

∥∥∥∥∥∥∥
1
|e(i)|

 ∑
(x′,y′)∈e(i)(x,y,α)

fr(x′, y′)
fg(x′, y′)
fb(x′, y′)

−
e

(i)
r

e
(i)
g

e
(i)
b


∥∥∥∥∥∥∥︸ ︷︷ ︸

color matching-cost

− γ

|e(i)|
∑

(x′;y′)∈e(i)(x,y,α)

m(x′, y′)

︸ ︷︷ ︸
motion-area bonus

,

(10.7)

where the first term measures the color difference and the second term
reduces the cost for moving areas. The parameter γ is a fixed weighting
factor. Note that the sum over all pixels in the ellipse area can be computed
very efficiently using the scheme presented in the Section 10.8. An example
error-map s(i)(x, y, α) is shown in Figure 10.8(c).
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c(i)
c(j)

correct
distance

approximate
distance

Figure 10.5: Approximate computation of distance between two ellipses.
See Eq. (10.8).

Edge costs

Edge costs are defined as the distance between two ellipses e(i), e(j). This
distance is approximated by the distance along the line connecting the two
ellipse centers (Figure 10.5). The approximation can be computed in closed
form by

d(i,j)(xi,yi, αi, xj , yj , αj) = abs

{ ∥∥∥~c(i) − ~c(j)
∥∥∥︸ ︷︷ ︸

distance between centers

−

∥∥∥∥∥ (~c(i) − ~c(j))

‖M(i)−1(~c(i) − ~c(j))‖

∥∥∥∥∥︸ ︷︷ ︸
center-to-border distance

−

∥∥∥∥∥ (~c(i) − ~c(j))

‖M(j)−1(~c(i) − ~c(j))‖

∥∥∥∥∥︸ ︷︷ ︸
center-to-border distance

}
.

(10.8)

Fitting process

The best matching location of the object model in an input image is de-
termined as the set of ellipse locations {(xi, yi, αi)} that minimizes the
following expression:

min
{(xi,yi,αi)}

∑
k∈VM

s(k)(xk, yk, αk)︸ ︷︷ ︸
node cost (ellipse position)

+
∑

(m,l)∈EM

d(m,l)(xm, ym, αm, xl, yl, αl)︸ ︷︷ ︸
edge cost (ellipse distances)

.

(10.9)
If EM has a tree structure, a dynamic-programming approach similar to the
algorithm described in the previous chapter can be used for an efficient com-
putation of the optimum. This is a generalization of the one-dimensional
shortest-path problem to a minimum-cost tree problem (Figure 10.6). In
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computation graph

candidate ellipse-position

distance between the ellipses

costs s
(k)

(...)

costs d
(k,l)

(...)

minimum cost tree,
defining the
detected object position

Figure 10.6: Dynamic-programming computation-graph example for a sim-
ple model graph (Fig. 9.9(b)).

order to avoid high computational complexity, not all possible positions
are included in the computation graph for dynamic-programming. Instead,
n ≈ 30 candidate positions are selected according to the following process.
First, the costs s(k)(xk, yk, αk) for placing an ellipse k at position (xk, yk)
with angle αk are calculated (Fig. 10.8(c)). All local minimum positions
could be potential candidate positions for the ellipse, but to decrease the
complexity of the matching process, we only select the n best positions.
Positions with a cost exceeding a threshold are not included, which may
decrease the number of candidates further to less than n positions. Fig-
ure 10.8(d) shows all candidate positions for the ellipse corresponding to the
tie in the model of the man. Using the same process, candidate locations for
each model region are extracted. Finally, using the dynamic-programming
algorithm, the best combination of ellipse locations is computed, resulting
in the detection of the object in the input image (Figure 10.8(e)).

10.5 Step 3: spatial segmentation

The automatic spatial segmentation stage uses two sources of information
to compute more accurate object boundaries. The first source is color
information from the current input frame while the second information
comes from the fitted model-location in form of the ellipse parameters.
This high-level knowledge about the approximate object location helps to
control the spatial segmentation, such that areas attributed as foreground
will not be merged with background areas even if color differences are small.

10.5.1 Spatial segmentation algorithm

We apply a two-step approach for spatial segmentation. First, a watershed
pre-segmentation is applied. This is a fast algorithm which usually results
in heavy oversegmentation. The reason for applying this step is that it
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speeds up the subsequent region-merging algorithm, which can now start
with the regions obtained from the watershed pre-segmentation instead of
starting at the pixel level. The region-merging algorithm gradually merges
the two most similar, neighbouring regions together (see Appendix E for a
description of the region-merging algorithm). We use the fast implementa-
tion of region-merging that is described in [46].

10.5.2 Merging criterion

The merging criterion for evaluating region dissimilarity is composed of
two terms. The first is the Ward-criterion, which minimizes the variance
of the luminance component in a region. More clearly, the first term in
Equation (10.10) equals the increase of variance if two regions ri and rj

would be merged. This can be computed efficiently by keeping track of the
mean region-luminances µi, and µj and the region sizes.

S(ri, rj) =
|ri| · |rj |
|ri|+ |rj |

(µi − µj)2︸ ︷︷ ︸
Ward

·

(
max

k

|ri ∩ e(k)|
|ri|

· |rj ∩ e(k)|
|rj |

+ β

)−1

︸ ︷︷ ︸
penalty for crossing object/background border

(10.10)
The second term increases merging cost if one or both regions are not
covered by one of the object-model ellipses. This inhibits merging of regions
inside the object with regions outside of the object. The parameter β > 0
controls the influence of the second term. Since ri ∩ rj = ∅ for i 6= j, it
holds that

|(ri ∪ rj) ∩ e(k)|
|ri ∪ rj |

=
|ri ∩ e(k)|+ |rj ∩ e(k)|

|ri|+ |rj |
(10.11)

and an updated S(ri, rj) can be computed efficiently after each merging
step by keeping track of attributes |ri ∩ e(k)| for each region ri. Region
merging stops as soon as the smallest S(ri, rj) exceeds a threshold.

The final object mask is obtained by joining all regions for which at
least 50% of their area is covered by an object-model ellipse. Small holes
in the masks that can result from non-overlapping model ellipses are filled
up in a final post-processing step.

10.6 Experiments and results

This section presents the performance of the proposed object-detection sys-
tem on various input sequences. The first example is taken from the paris
sequence. This is a head-and-shoulder sequence without camera motion.
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Figure 10.7: The merging criterion also evaluates the position of the re-
gions relative to the covered area of the model ellipse. Merging
of two regions within the covered area is favoured. The num-
bers beneath the regions denote the value of |ri ∩ e(k)|/|ri|.

The two main difficulties with this example are that the body of the man at
the left does not move much, which makes it undetectable for the motion-
segmentation, and that the color difference between the hair of the man
and the background is small. Because of this small difference, a color-
based segmentation without any semantic knowledge usually results in a
wrong segmentation (Fig. 10.8(a)), merging hair and background into the
same region. There are more errors which cannot be seen so clearly: part
of the arm at the left was merged with part of the chair, dark parts in his
hand were merged with shadow, and so on.

We have edited a model of the man (see Fig. 10.2) and applied the
algorithm to frame 20. The detected object is superimposed onto the input
frame in Figure 10.8(e). The model is placed at a sensible configuration,
but the object is still not completely covered by the model, since the use
of ellipses does not fit exactly to the region shape. Figure 10.8(f) shows
the result after a color segmentation that integrated the detected object
location. Almost the complete object is covered in the segmentation mask.
Small parts of the head are missing as these areas are not covered by the
model. On the other hand, a small part of the background was added to
the mask, because the ellipse covering the jacket region is slightly too large.

The second example is taken from the stefan sequence, which has strong
camera-motion. Since the object is small compared to the background
and the object is also moving, the background image can be reconstructed
without error (Fig. 6.22). Nevertheless, the long-term change-detection
mask (Fig. 10.9(a)) does not give a clear result. Three problems can be
identified:

• not all parts of the background vanish in the difference frame, because
of small movements within the audience,

• parts of the tennis player are lost, since they have coincidentally the
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same color as the background, and

• the mask contains both the tennis player and the tennis ball, while
sometimes only one of them may be desired in the output.

We constructed a model of the tennis player and applied the segmentation
algorithm again on frame 177 of the sequence. The result shows that the
tennis player is found, but it also still has inaccuracies, especially at parts
where the object has some fine texture. We also supplied the algorithm
with a model of the tennis ball, which is simply a single graph node. The
result is shown in Fig. 10.9(d).

Another example showing a news report scene is depicted Figure 10.10.
The body of the foreground object is mostly static, but there is strong mo-
tion in the scene background. Still a good segmentation result is obtained.

Figure 10.11 shows example frames from the carphone sequence. It is
visible that the detected object follows the input sequence without ma-
jor problems as long as only articulated motion is present. However, in
frame 180, the size of the object in the input frame is increased because the
man comes closer to the camera. This change of object size is not included
in our model and consequently, the object cannot be covered completely.

Finally, Figure 10.12 presents results for the foreman sequence. At the
end of the sequence, the camera turns and the object leaves the visible area.
During this time, the algorithm has difficulties because not all parts of the
object are visible. Since the algorithm has to find all parts in the input
image, it places some parts at areas beneath the object. In Figure 10.12(d),
it is visible that the complete model is stretched to keep the body part inside
the image as much as possible, while the head moves left.

10.7 Conclusions

This chapter has described a segmentation system that combines motion
detection, spatial segmentation, and model-based object detection into a
single framework. Motion detection is used for an approximate localization
of the object position. The object detection fits a manually defined object
model to the current input frame in order to cover the complete area of the
modeled object. Spatial segmentation is used to refine the object boundary
and to generate accurate segmentation masks.

The object model uses attributed graphs to describe the main regions
of the object and their spatial relationship. Because the spatial relation-
ships are restricted to a tree structure, the matching algorithm can apply
a dynamic programming approach for the efficient detection of the model.
The restriction to tree-shaped graphs is no serious limitation for practice,
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(a) Color only segmentation. Note
the undersegmentation at the head.

(b) Short-term change-detection
mask.

(c) Node matching cost for the region
corresponding to the tie. Brighter
means lower cost. Candidate posi-
tions are marked.

(d) Candidate configurations for the
tie region.

(e) Fitted object model. (f) Final segmentation mask.

Figure 10.8: Frame 20 of the paris sequence.



312 Chapter 10. Object Detection based on Graph Models II: Natural

(a) Long-term change-detection
mask.

(b) Fitted object model.

(c) Final segmentation (player). (d) Final segmentation (ball).

Figure 10.9: Frame 177 of the stefan sequence.

(a) Frame 1. (b) Frame 150.

Figure 10.10: News report. Stong motion also occurs in the background.
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because most natural objects have articulated limbs, but no cycles. The
shape of each object region is described compactly with an ellipse, because
it provides a good compromise between computational simplicity and ac-
curacy of describing the object shape. Note that a too detailed description
of object shape is not desired, since the object shape usually varies consid-
erably when viewing the object from different directions.

The algorithm has the clear advantage over previous techniques in the
sense that it does not solely rely on motion or spatial information to decide
what the object should be. Instead, the user can specify the exact object
that he wants to extract, without doing the segmentation manually. A fur-
ther advantage is that in cases in which only part of the object is moving,
or in cases in which the object is not clearly distinguishable from the back-
ground, the object segmentation can be solved through the combination of
several features.

Problems with the current approach mostly become visible at areas close
to the region boundary, where the region-shape cannot be approximated
well using ellipses. Therefore, future research should consider other repre-
sentations for region shapes. We have conducted first experiments that use
deformable templates for the object regions. This approach seems promis-
ing, since it appears to provide more accurate object boundaries. However,
it is more sensitive to 3-D motion and deformations of the object. Hence,
finding a good model for the objects will be an interesting topic for further
research.

Another possible improvement may be the inclusion of textured regions
in the object model, since our current approach is still limited to uniformly-
colored object regions. Finally, in some cases it would be advantageous
to include ordering constraints into the matching process to disambiguate
situations where the spatial ordering is known. For example, in a human
model, we know that the head will be above the body and we may want
to add this knowledge to help the matching process. However, in most
cases this would introduce additional graph edges which will violate the
tree-structure limitation of our graph-matching algorithm. Thus, future
research should also consider object models for which fitting algorithms
exist that provide a good compromise between accuracy and computational
complexity.
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(a) Frame 1. (b) Frame 90.

(c) Frame 180. (d) Frame 380.

Figure 10.11: Carphone sequence. In (c), the head is not completely covered,
since the size in the image is larger than the size in the model.
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(a) Frame 1. (b) Frame 40.

(c) Frame 80. (d) Frame 280.

Figure 10.12: Foreman sequence. Around frame 280, the object leaves the
visible area and the algorithm cannot localize the complete
model anymore.
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10.8 Appendix: notes on ellipse processing

Converting from implicit to explicit form

The conversion is carried out in three steps. First, we determine the conic
center position. In a second step, the implicit parameters are modified such
that the ellipse is shifted to the origin. Finally, the axes are obtained using
Eigenvector analysis. A conic at the origin is defined as

A′x2 + B′xy + C ′y2 = F ′. (10.12)

Shifting the conic to the center (cx, cy) results in

A′(x− cx)2 + B′(x− cx)(y − cy) + C ′(y − cy)2 = F ′. (10.13)

Comparing this with the general equation for conics (10.1), we obtain the
two equations

D = −(Acx + Bcy) (10.14)
E = −(Ccy + Bcx). (10.15)

From this, we can compute the center of the conic by

cy =
A · E −D ·B
B2 −A · C

, cx = −D + B · cy

A
. (10.16)

Now, the parameters (A′, B′, C ′, D′, E′, F ′) for a conic shifted to the origin
can be obtained from the original parameters using

A′ = A, B′ = B, C ′ = C, D′ = E′ = 0, and

F ′ = F − (Ac2
x + 2Bcxcy + Cc2

y).
(10.17)

This gives us the zero-centered conic equation
(
x y
)
Q
(
x y
)T = 1 with

Q = − 1
F ′

(
A B
B C

)
. (10.18)

By determining the Eigenvectors of Q and scaling according to their Eigen-
values, we obtain the principal axes ~a1,~a2. Hence, we have the explicit
ellipse parameters ~c = (cx cy)T , ~a1, and ~a2.
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Converting from explicit to implicit form

Assume that the ellipse is given in explicit form with center (cx, cy), tilt
angle α and lengths of principal axes a1, a2. To get the implicit form, we
start with (

x′

a1

)2

+
(

y′

a2

)2

= 1 (10.19)

for an ellipse whose axes are aligned to the coordinate axes. After trans-
lating and rotating the coordinate system by(

x′

y′

)
=
(

cos α − sinα
sinα cos α

)(
x− cx

y − cy

)
, (10.20)

we finally obtain

A = a2
2 cos2 α + a2

1 sin2 α

C = a2
2 sin2 α + a2

1 cos2 α

B = (a2
1 − a2

2) cos α sinα

D = a2
2 cos α(−cx cos α + cy sinα)− a2

1 sinα(cx sinα + cy cos α)

E = a2
2 sinα(cx cos α− cy sinα)− a2

1 cos α(cx sinα + cy cos α)

F = a2
2(cx cos α− cy sinα)2 + a2

1(cx sinα + cy cos α)2 − a2
1a

2
2.

(10.21)

Efficient computation of the sum over an elliptical area

Assume that we want to calculate the sum of f(x, y) over the area inside
an ellipse, given in implicit form. In a pre-computation step that has only
to be done once for every f(x, y) and which is independent of the ellipse,
we compute

F (x, y) =
x∑

i=0

f(i, y). (10.22)

Now, the sum over part of a single line can be computed in constant time
as
∑b

x=a f(x, y) = F (b, y) − F (a − 1, y). To sum over the ellipse area, we
proceed line by line, computing the horizontal range [xmin;xmax] on each
scanline. Using Equation (10.1), we obtain for a fixed y

xmin, xmax = −B + D

A
∓

√(
B + D

A

)2

− F + Cy2 + 2Ey

A
. (10.23)
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Chapter11
Manual Segmentation and

Signature Tracking

Numerous applications requiring a high segmentation accuracy exist in var-
ious domains. If these applications permit to compute the segmentation
masks offline, it can be advantageous to use semi-automatic segmentation
techniques. In semi-automatic segmentation, the user controls the segmen-
tation manually, but he is supported by the computer to relieve him from
working at the pixel level. A popular approach to semi-automatic segmen-
tation is the Intelligent Scissors tool, which uses shortest-path algorithms
to locate the object contour between two user-supplied control points. This
chapter proposes a new interactive segmentation algorithm, which is based
on the same idea as Intelligent Scissors, albeit providing a user-interface
without the need for special control points. Instead of placing control points,
the user specifies a rough corridor along the object boundary, in which the
computer searches for a shortest circular path. This provides an intuitive
user interface, which also supports a natural way to iteratively improve the
segmentation by changing the corridor shape. Furthermore, the algorithm
is extended with a tracking component, such that an object that has been de-
fined in one image can be automatically segmented in the successive frames.
However, the algorithm always allows to interactively intervene in the track-
ing and provide corrections when the automatic tracking shows errors.

An adequate notation should be understood by at
least two people, one of whom may be the author.
(Abdus Salam)
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11.1 Introduction

In various applications, the accuracy and reliability of automatic segmenta-
tion algorithms is not sufficient. One of these applications is image editing,
where objects from one image should be copied into another image. Usu-
ally, high-quality results are of primary concern and therefore, it is required
to carry out the segmentation manually. Clearly, a manual segmentation is
possible even for the most difficult input sequences, but the work is tedious.
To relieve the user from working at the pixel-detail level, semi-automatic
segmentation algorithms can be used, since they provide a compromise
between work-flow efficiency and accuracy of the results. With these algo-
rithms, it is sufficient for the user to coarsely mark the object, while the
algorithm extracts the detailed object boundaries at the pixel level.

Various approaches for semi-automatic segmentation have been pro-
posed. They can be coarsely separated in region-oriented algorithms and
edge-based algorithms. We have already presented a simple example of a
region-oriented algorithm in the graph-editor that we described in Chap-
ters 9 and 10. A more advanced region-based algorithm that also supports
textured regions, is GrabCut [158]. The principle of all region-based algo-
rithms is that the user places some markers inside the object and in the
background. Afterwards, the algorithm examines the color and texture
around these markers to separate these regions.

On the other side, there are edge-based algorithms, of which the Intelli-
gent Scissors algorithm [130] is the most prominent one. In this algorithm,
the user traces along the object as if he would cut it out with a pair of
scissors. However, the cutting path is automatically locked to the nearest
strong edge in the image, which is most probably the object contour. From
time to time, the user places control points to fix the contour found so far.
The most frequent problem with this algorithm is that the contour snaps to
high-contrast clutter in the background, instead of a lower-contrast object
edge. If this is discovered too late, it is difficult to make corrections, since
control points have to be moved or inserted.

In this chapter, we propose a new edge-based algorithm, which uses
the same concept as Intelligent Scissors, but which does not require the
user to place control points. Instead, he draws a coarse corridor along the
object boundary, and the computer locates the pixel-accurate path around
the object within this corridor. The central part of this algorithm is a
newly developed shortest circular-path algorithm. This new segmentation
algorithm has two advantages: no control points have to be set and the
segmentation result can be easily improved if the result is not satisfactory
as the corridor can be modified at any time.

Furthermore, we propose an extension to the Corridor Scissors tool for a
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more efficient segmentation of video sequences. The algorithms mentioned
so far are operating on independent single images, which still requires a
large amount of work if an object should be extracted from a video sequence,
since every frame has to be processed independently. This manual work can
be reduced by tracking the user-defined object through the video sequence
to relieve the user from redefining the object in every frame. Should there
be a tracking error, it can still be corrected by user intervention before the
tracking continues with the succeeding frames.

What makes our tracking algorithm special is that it also integrates the
texture information of the object that was found in the previous segmen-
tation. Our algorithm extracts the texture information along the border
of the object and stores it as the object signature. The successive frame is
then searched for a deformable contour that shows a similar signature. To
find the optimum contour location, we again apply a shortest circular-path
algorithm, which now incorporates texture information from the object sig-
nature to detect the same object.

In the successive section, we briefly introduce the Intelligent Scissors
algorithm and describe typical problems of that approach. This leads us
to our proposal of the Corridor Scissors tool. The central algorithm of the
Corridor Scissors is a shortest circular-path search, which is described in
Section 11.3. Finally, in Section 11.4, we extend the tool with tracking
capabilities.

11.2 From Intelligent to Corridor Scissors

11.2.1 Intelligent Scissors algorithm

The Intelligent Scissors tool is an edge-based segmentation algorithm. The
user first selects a start point on the object contour, after which the com-
puter continuously computes the minimum-cost path between the start
point and the current position. A cost function assigns lower cost to
stronger edges in the image, such that the minimum-cost path follows strong
contours in the image (Fig. 11.1). If the user is satisfied with the current
segment, he places a new control point, which ends the current contour
segment and at the same time serves as the new start point. By repeating
this process, the user can define the complete object contour step by step.

To compute the minimum-cost path, the Intelligent Scissors algorithm
considers the input image as a graph, where each image pixel corresponds
to one node in the graph. Graph edges connect nodes that correspond to
neighboring pixels. Weights are assigned to these edges according to the
inverse gradient strength between the two corresponding pixels. Conse-
quently, strong gradients induce small edge weights. The total path cost
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(a) Intelligent Scissors. (b) Edge costs.

Figure 11.1: In the Intelligent Scissors tool (a), the user first selectes a
start point. When he moves the pointer across the image, the
computer draws the minimum-cost path between the start point
and the current position. The cost function (b) assigns lower
costs to stronger edges in the image.

is defined as the sum of the costs of all graph-edges on the path. After
the user has placed the start point for the graph search, the computer can
already begin to compute a full tree of shortest paths to all pixels with the
Dijkstra algorithm [31]. A single run of the Dijkstra algorithm is sufficient,
since it computes inherently all shortest paths from the start position to
all other nodes. The attractive aspect is that the path between the current
pointer position and the start point can be determined instantaneously by
just looking up the minimum-cost path in the full shortest-path tree.

Edge costs

Every edge ei in the graph representation is attributed with a cost ci. In
the original work [130], this cost was composed of a weighted sum of six
different cost components. These include gradient strength, continuity of
gradient direction, and object/background color. However, four of them
have only a small weight (10% each) and according to our experiments,
they have no significant influence on the result. Hence, for simplicity, we
only use the two most significant components of the cost function. These
two cost components are the gradient strength cG and a Laplacian zero-
crossing detector cZ . They are defined by

cG = 1− ||∇I||
max ||∇I||

; cZ =

{
0 at Laplacian zero crossings,
1 otherwise,

(11.1)
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where I denotes the greyscale input image. The combined edge costs are
defined as c = (1−α)cG + αcZ , where α is a user-defined weighting factor.

11.2.2 Problems of the Intelligent Scissors tool

Although the user interface to the Intelligent Scissors algorithm can be un-
derstood quickly by most users, there is the inconvenience that the user
has to place control-points regularly, because with increasing distance be-
tween start and destination point, the extracted path often leaves the object
boundary. This effect is especially strong if there are high-contrast edges
in the background near the foreground object (Fig. 11.2). In this case, the
stronger gradients in the background area lead to a low-cost path. Even
though the cost to reach this background clutter may be high, the lower
cost in the high-contrast background outweighs a slightly higher cost along
the desired object boundary when the path length increases. In the Intel-
ligent Scissors user-interface, this effect shows as a sudden change of the
complete path or as an unstable toggling between alternative paths, and
the user has to add a control point to stabilize the path again.

As a solution for the problem of background-clutter attraction, it is
proposed in [120] to limit the search area to a rectangular area between
the seed and destination position. The width of the rectangle is controlled
by the user (Fig. 11.2(c)). While this approach may ease the segmentation
in some difficult situations, it complicates the interaction process, since
another degree of freedom (width of rectangle) has to be controlled by the
user.

An alternative solution is to use path cooling. In this approach, the cost
of the edges on the current path are gradually decreased. This means that
the parts of the path that remain stable for some time obtain a lower cost,
which again decreases the probability that this part of the path is modified
later. If a part of the path is stable for a longer time, that part is fixed
completely and the start point of the search is moved to the end of this part.
This approach eliminates the need to place special control points. However,
the speed of user interaction is dictated by the path cooling and the user has
to conform to this. Moreover, once the user makes a segmentation error, it
is difficult to undo this error, especially if the error is in the already frozen
part of the path. Finally, this algorithm is also computationally expensive,
since a new shortest-path tree has to be computed after each of the frequent
cooling steps.



324 Chapter 11. Manual Segmentation and Signature Tracking

true object boundary

background clutter
shortest path

(a) The shortest path is distracted from the true object bound-
ary because of near high-contrast background clutter.

(b) Path is distracted by
the high-contrast back-
ground edge.

(c) Restricting the search
area in the Rubberband al-
gorithm.

Figure 11.2: A high-contrast edge in the background that is much stronger
than the true object edge may lead to a wrong object contour.
Even though the cost to reach this high-contrast edge may be
high, this is outweighed by the decreased cost along the con-
tour. The Rubberband algorithm (c) proposes to reduce this
effect by limiting the area of the graph search to a rectangle
between the last control point and the current position.
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Figure 11.3: Segmentation with low object/background contrast.

11.2.3 The Corridor Scissors tool

We propose a new segmentation tool, called Corridor Scissors, that uses
a minimal, yet flexible user interface to define the desired segmentation.
The Corridor Scissors algorithm does not require the explicit setting of
control points, and it provides a simple and intuitive approach to modify the
segmentation result until it is satisfactory. Instead of placing control points
on the object contour, the user coarsely traces along the object contour with
a thick brush. This defines a corridor around the object, in which the true
object boundary can be found (Fig. 11.3). After the circular corridor has
been defined, the computer searches for a shortest circular path inside of
the corridor. The corridor not only prevents that the path is attracted by
distant background clutter, but it also reduces computation time since the
search space is reduced to the corridor area. If the user wants to improve
the segmentation, he can do so by simply changing the shape or width
of the corridor. Whenever the corridor shape is modified, a new shortest
circular-path search is applied to the corridor area. An example for the
problem of snapping to a near high-contrast edge is shown in Figure 11.4.
First, a very wide corridor also covers a high-contrast edge that is not the
object edge. Interrupting that path by narrowing the corridor forces that
a different path (the correct object contour) is taken.

The underlying algorithm of Corridor Scissors is based on the same
graph-search approach as the Intelligent Scissors algorithm. However, in-
stead of searching for ordinary shortest paths, an algorithm for computing
the shortest circular paths has to be applied. A new algorithm for the
shortest circular-path problem, which has a comparable computation time
to an ordinary shortest-path search, is presented in Section 11.3.
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(a) Path is distracted to
strong gradient.

(b) Interruption of the wrong
path leads to the correct seg-
mentation.

Figure 11.4: Improving a segmentation with Corridor Scissors. If the path
is distracted to a higher contrast edge (a), the corridor can be
modified to make this path impossible (b).

11.2.4 Experiments and results with Corridor Scissors

Some segmentation results that were obtained with the Corridor Scissors
algorithm are depicted in Figure 11.5. The left column shows the input
images and the right column the extracted objects, respectively. Superim-
posed onto the input images are the corridors that were used to obtain the
results on the right-hand side. Note that in the image of the squirrel (a),
there is fine texture at the ground and the contour along the hairy tail is
difficult to define. In the image of the rabbit (c), the color of the foreground
object is close to the background color.

It can be seen that the segmentation results were obtained with almost
no manual correction of the corridor. Only at the ears of the squirrel and
the rabbit, as well as the tail of the rabbit, the corridor was made a bit
smaller to get the correct contour.

Our experience with a large variety of input images is that the objects
are generally easy to define. The only difficult case are objects with long
thin structures like antennas, since these thin objects are usually covered
completely by the corridor. In this case, the algorithm prefers to simply let
the path cross the thin object instead of following the long contour on both
sides of the object. These errors are difficult to correct because the only
possibility is to trace both sides of the object contour with the corridor,
without touching itself (no bridge between both sides should be built).
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(a) (b)

(c) (d)

(e) (f)

Figure 11.5: Segmentation results for the Corridor Scissors algorithm. The
marked corridor is depicted on the left, the segmentation re-
sult is on the right. Note the changes of the original corridor
to improve the segmentation result (e.g., at the ears of the
squirrel).
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11.3 Shortest circular paths

The Corridor Scissors algorithm and also the tracking algorithm which is
described in Section 11.4 are built upon an algorithm to compute shortest
circular paths in graphs. This section proposes a new algorithm with low
computational complexity.

11.3.1 Definition of circular paths

In the Corridor Scissors application, it seems intuitive to understand what
we mean by a circular path. However, in the following, we develop an
algorithm that works on general planar graphs. Hence, a clear definition of
circular paths is required. For this reason, we define circular paths formally
using the following two definitions.

Definition (cut path): Let G = (V,E) be a planar graph with nodes V
and edges E. Furthermore, the graph is assumed to be embedded in the
plane with two of its faces denoted as FI , FE , corresponding to the inner
hole of the graph, and the exterior area (see Fig. 11.6). We call any path
connecting FI and FE a cut path p̄.

Definition (circular path): Let G again be a planar graph with two
faces labeled FI , FE . We define a circular path on the graph G as a cyclic
path ṗ = vi  vi, such that ṗ and any cut path p̄ have at least one node in
common.

Two examples of graphs are depicted in Fig. 11.6. The first is a regular
grid graph similar to those types of graphs that occur in the Corridor
Scissors algorithm. These graphs have two large faces which are the inside
area (the object to be segmented) and the exterior area (the background).
The second example is a general planar graph, in which the inside and
exterior faces have been specified in order to be able to define circular
paths. These general graphs usually do not occur in our application, but
we provide the example because our algorithm also works on these general
planar graphs.

Instead of computing a shortest circular path on the original graph, it
is convenient to transform it first into a corridor graph. The construction
of the corridor graph can be imagined as cutting the original ring-shaped
graph apart along a cut path apart to get a lane-shaped graph. Formally,
this construction can be described as follows.

Construction (corridor graph): Let G = (V,E) be a planar graph and
p̄ = v1v2 · · · vN a cut path between FI and FE , consisting of the nodes
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inside

outside

cut

FI

FE

(a) Circular-grid graph.

inside

outside

cut-path

FI

FE

p

(b) General planar graph.

Figure 11.6: Two graphs with examples of valid circular paths (dark nodes).
In each, an example cut path (path between inside and outside
face) is marked. A circular path is defined as a cyclic path
that crosses any arbitrary cut path.
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cut here

v1

vN

v1’

vN’

flap open
flap open

original graph

corridor graph

(a) The circular input graph is cut into a
lane-shaped corridor graph.

VVl Vr

(b) The nodes on the cut and
the left and right neighbors.

VVl VrV’
copy

(c) The nodes on the cut are duplicated
and the graph is cut apart.

Figure 11.7: The input graph is cut apart along a cut path to get a corridor
graph.

V̄ = {v1, . . . , vN}. Furthermore, we assume the following property of G: if
Vn is the set of nodes adjacent to nodes in V̄ , then Vn comprises exactly
two connected components Vl, Vr. If G has this property, we can transform
G into a corridor graph G′ = (V ′, E′) as follows. We set V ′ = V ∪ V̄ ′, where
V̄ ′ = {v′1, . . . , v′N} is a copy of V̄ . The edges are defined as

E′ = (E \(Vr × V̄ )︸ ︷︷ ︸
cut graph be-

tween Vr and V̄

) ∪ {{vi ∈ Vr, v
′
k ∈ V̄ ′}︸ ︷︷ ︸

reconnect Vr with V̄ ′

| {vi, vk} ∈ E}. (11.2)

This copies the nodes V̄ on the cut path to V̄ ′ and reconnects the adjacent
nodes Vl and Vr such that Vl connects to only V̄ and Vr only to V̄ ′. The
construction is visualized in Fig. 11.7.
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Most currently known algorithms for shortest circular paths first trans-
form the input graph to a corridor graph. On the corridor graph, searching
for a circular path can be described easily as searching for a path from
the “left side” V̄ to the right side V̄ ′ with the additional constraint that a
path starting at vi must end in v′i. Even though a general planar graph can
be transformed into a corridor graph by cutting along any arbitrary cut
path, care must be taken because shortest circular-path algorithms that
operate on the corridor graph can only find paths that do not cross the
cut path more than once. One way to minimize this risk is to choose a cut
path which is as short as possible. In Section 11.3.2, we will present a safe
technique to find a cut path that is guaranteed to be crossed only once.

11.3.2 Computation of shortest circular paths

Previous work

In [178], several algorithms for the circular-path search are proposed. The
Multiple Search Algorithm (MSA) uses |V̄ | independent runs of the Dijkstra
algorithm, where |V̄ | is the length of the cut path. Each run uses fixed,
opposing seed and destination nodes at both ends of the graph. After these
runs, the result that gives the minimum cost is selected. This algorithm
always finds the optimal solution, but it is computationally intensive be-
cause the Dijkstra algorithm has to be executed |V̄ | times independently
over the full graph.

The Image Patching Algorithm [178] only gives an approximate solution,
but requires less computation time. In this case, the corridor graph is
enlarged by appending part of the graph from each end to the opposite side.
An ordinary shortest path is then computed through the complete, patched
graph. The part of the shortest path that lies inside of the original graph
is extracted and assumed to be the optimal circular path. However, even
though this heuristic works in many cases, it is not assured that the optimal
circular path is found. Moreover, the algorithm can even lead to non-cyclic
paths. The quality of the result can be increased by enlarging the patched
areas, but the required patch size is not known and the computation time
increases. It is also easily possible to construct examples in which the found
path remains non-circular for arbitrarily long patches.

Finally, a branch-and-bound algorithm has been proposed in [7] that,
on the average, requires only log2 |V̄ | runs of the Dijkstra algorithm on
the input graph. But the worst-case still requires |V̄ | runs of the Dijkstra
algorithm over the full graph.

For planar graphs, a different approach is to view the shortest circular-
path problem as a maximum-flow problem. By adding two dummy nodes
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v1 v1’

Figure 11.8: Example tree of shortest paths as obtained with the Dijkstra al-
gorithm. Consequently, there is a node (marked in the image)
at which all paths to the nodes on the right side are rooted.

vi1

vk1 vkm

vin

u

w

vp vq

s

s

w
u

Figure 11.9: Two minimum-cost paths with at least two common nodes
share the whole subpath between the common nodes.

inside each of the two faces FI and FE , searching for the shortest cir-
cular path is equivalent to a maximum-flow problem between the two
dummy nodes. However, maximum-flow algorithms have a high compu-
tational complexity of O(|V |3) for standard preflow-push algorithms, or
O(|V | · |E| log(|V |2/|E|)) = O(|V |2 log |V |) for the fastest algorithm cur-
rently known [77]. It should also be considered that this fast algorithm
requires a complex implementation.

Preliminary considerations

Our algorithm for computing the shortest circular paths is built upon the
Dijkstra algorithm for ordinary shortest paths. In order to show the cor-
rectness of our algorithm, we will subsequently exploit the following special
property of the Dijkstra algorithm.
Property: The Dijkstra algorithm always builds a complete shortest path
tree, rooted at the seed node (Fig. 11.8). Hence, a single run of the Dijkstra
algorithm does not give only the shortest path to the specified destination,
but also the shortest path to every other node.
Additionally, we need the following theorem about shortest paths that is
easy to derive.
Theorem: Let G = (V,E) with V = {vi}i be a (not necessarily planar)
graph and let u = vi1vi2 . . . vin and w = vk1vk2 . . . vkm be two minimum-cost
paths (see Fig. 11.9). Then we can state that if u and w have two nodes vp
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and vq in common, there is a path w′ = vk1 . . . vkm with the same cost as
w and which has a common subpath su = vp  vq with path u.
Proof: If su and sw have equal cost, there is nothing to show. Hence,
assume that the two subpaths su, sw between vp and vq have different cost.
Then, the cost of either su or sw must be lower than the other. Let us
assume that the cost of su is lower than the cost of sw. Consequently, w
cannot have minimum cost, because the cost can be lowered by replacing
the subpath sw with su. �

As a direct consequence of this theorem, we can state the following two
corollaries, which will be used in the development of the shortest circular-
path algorithm.
Corollary 1: Minimum-cost paths may cross at most once.1

Corollary 2: If two paths share a common seed, then both paths will
share a common subpath to their destination until both paths split. After
the split, the paths will not cross.

In other words, paths with disjoint endpoints may cross once, while
paths with one endpoint in common will never cross.

New shortest circular-path algorithm

We now define a fast algorithm for computing shortest circular paths by ex-
ploiting the properties of the Dijkstra algorithm and the above-mentioned
theorem. The complete circular-path algorithm is divided into two parts.
In almost all practical cases, the first part of the algorithm can already
compute the optimal circular path and the second part of the algorithm
can be omitted. In the practically very rare case that the first part can-
not compute the optimum path, this is detected by the algorithm and the
second part of the algorithm is used instead. This second, alternative algo-
rithm is more computationally complex, but provides an optimal solution
in all cases.

The algorithm is based on the observation that the corridor graphs in
our application are usually much longer than they are wide. Furthermore,
the data within the graph usually shows relatively clear low costs on a
path along the corridor, since the corridor is placed on the object border.
Consequently, the shortest circular-path problem is not difficult in the sense
that the approximate path is clear. Usually, at some distance from the cut,
there is only one “main route” to follow, only close to the cut itself, it is
difficult to predict the path position (see Fig. 11.26). Hence, our algorithm

1In fact, minimum-cost paths can cross more than once, but there is always a path of
similar cost that does not cross more than once. Hence, when searching for a minimum-
cost path, we can assume that they do not cross more than once.
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poor placement
of corridor cut

good placement
of corridor cut

computed
cut-path

FI FE

Figure 11.10: Corridor cuts should be placed at narrow positions, perpendic-
ular to the corridor. Note that the shortest path cannot cross
the cut more than once. We determine a cut path by comput-
ing a shortest path between the two faces FI , FE. This ensures
that it is crossed only once.

tries to identify a common subpath along the corridor that all circular
shortest-paths share. Once this subpath is known, only the ends of this
subpath have to be connected to form a circular path.

Algorithm part I

The first part of the algorithm (in the following called AP1) assumes that
a common subpath can be found in the corridor. If this is not the case,
this will be detected and part 2 of the algorithm (AP2) will be used. AP1
comprises the following four computation steps.

AP1-Step 1: Transform the input graph into a corridor graph. In de-
termining the cut path, it should be noted that the cut path can only be
crossed once by the shortest circular path. Hence, a cut in an acute angle
along the corridor should be prevented (see Fig. 11.10). One simple heuris-
tic solution to this problem is to place the cut such that the cut path is as
short as possible (minimum number of nodes in |V̄ |).
However, it is possible to determine a cut path that will not be crossed by
the shortest circular path more than once as follows. Compute a minimum-
cost path p̄ from the nodes of the face FI to the nodes of the face FE . By
definition, this is a cut path. If the shortest circular path crosses the cut
path p̄ more than once, then this is a contradiction to the above theorem,
since both paths have minimum cost. Consequently, the computed cut path
is only crossed once. Note that it is sufficient to start the computation of the
minimum-cost path at only one arbitrary node of FI instead of considering
all nodes of FI as start node. This significantly reduces the computation
time required to find a cut path.
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best circular path does not cross this area

(a) Step 2.

best circular path does not cross this area
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(b) Step 3.

best circular path does not cross this area

best circular path does not cross this area
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(c) Situation after Step 3.
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(d) Step 4.

Figure 11.11: Illustration of Steps 2-4 of AP1. (a) A shortest path tree
is computed from position v1. This gives all shortest paths
to all nodes in V̄ ′. All these paths share a common subpath
up to a node vr. (b) A shortest-path tree is computed from
position vN . Similarly as in (a), all shortest paths to V̄ ′ share
a common subpath. (c) Both trees computed in Step 2 and 3
join at a common node vl. Because the shortest circular path
cannot pass the area above v1  v′1 and below vN  v′N , it
must contain the subpath vl  vr. (d) Since a subpath of the
shortest circular path is known, only the connection from vr

to vl through the grey area has to be computed.

AP1-Step 2: Perform a Dijkstra-search beginning at node v1 ∈ V̄ , which
is the top-left node of the corridor. This pass will compute at the same time
shortest paths to nodes v′1 and v′N (see Fig. 11.11(a)). Since the starting
point is shared, both paths will share a subpath up to a node vr. Shortest
paths from the left side of the corridor to the right side cannot traverse the
area above v1  v′1, since this would mean that they have to cross v1  v′1
twice, which is not allowed because of the above theorem. Hence, all nodes
above the path v1  v′1 can be ignored in the following steps.

AP1-Step 3: Perform a second Dijkstra-search from node vN to node v′N .
In almost all practical cases of our application, especially if the corridor is
long compared to the corridor width, this path will join the shortest paths
v1  v′1 from the last step at some node vl, where vl is closer to the start as
vr (see Fig. 11.11(b)). If this is the case, then we are sure that all shortest
paths between the left side and the right side share at least the subpath
vl  vr. In the other case that both paths do not join, we cannot use the
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Figure 11.12: Situation at beginning of AP2. The disjoint shortest paths (a)
and (b) are known.

simple AP1 and have to switch to the more general AP2 that is described
below.

AP1-Step 4: Since it is already known that the subpath vl  vr is part
of the shortest circular path, we only have to search for a connection from
vr back to vl to close the cycle. We also know that this connection must
lie between the area of the previously computed shortest paths. Hence, we
perform a third Dijkstra-search from vr to vl over the nodes in the shaded
area depicted in Fig. 11.11(d). Appending this path to the path vl  vr

gives the shortest circular path vl  vr  vl.

Note that the search for vr  vl can be implemented more efficiently by
searching backwards from vl  vr. In this case, the search can be restricted
to the left area, since the shortest-path tree for the right area, rooted at
vr, is already known from the previous search of Step 3.

Algorithm part II

The second part of the algorithm (AP2) is a more complex, generalized
version of AP1. It is used if AP1 detects that there is no common subpath
for all paths along the corridor. In this case, we have the situation of
Fig. 11.12. The shortest path v1  v′1 (a) and the shortest path vN  v′N
(b) is known from the computations of AP1. Both paths are disjoint,
because otherwise AP1 would have found the solution.

AP2 uses a recursive approach to continuously split the graph into
smaller graphs until the shortest circular-path problem can be solved sim-
ilarly as in AP1.

The input of each recursion is an input graph which is bounded to
the top and bottom by shortest paths (a) and (b). Let us denote the
top bounding path (a) as va  v′a and the bottom bounding path (b) as
vb  v′b. The algorithm is initialized with va = v1 and vb = vN , as shown
in the figures. Note that both paths are circular paths. We now compute
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(c)
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(e)
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v1
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vc

v1’

vN’

vc’

vA’

vB’

vl vr

Figure 11.13: A shortest-path tree is computed, starting at vc, which is the
node in the middle of the left side. The bottom-most node
v′i on the right side, for which vc  v′i joins the path (a) is
denoted as v′A and the corresponding path as (d). Similarly,
we obtain v′B as the top-most node on the right side, for which
vc  v′B (e) still joins the path (b). Furthermore, we have
computed the circular path vc  v′c for the center node vc.

(a)

(d)

A A

(f)

vl vr vA’vA

Figure 11.14: Given (a) and (d), we know that all shortest circular paths in
range A include the subpath vl  vr. Hence, we search for a
shortest path starting from vl in the indicated direction to vr.
This is the shortest circular path within range A. Note that
this search can be restricted to the area between (a) and (d).
The path (f) is the shortest circular path vA  v′A, which will
be used as upper-bound path to further reduce the graph size
in the recursion step.

a shortest-path tree, starting from the middle node vc = v(a+b)/2 at the
left side of the graph (Fig. 11.13). In one run of the Dijkstra algorithm,
we obtain all shortest paths to the nodes between v′a and v′b at the right
side. Note that we can limit the computation to the area between the two
bounding paths (a),(b).

If we consider the shortest paths between vc and the right side of the
graph, we see that the path vc  v′a obviously joins with (a). As we consider
destination nodes v′k further down (k > a), there is generally a point from
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(a)

(b)

(c)
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(g)

RECURSE 1

RECURSE 2

Figure 11.15: Regions A and B are already processed, only shortest circular
paths in the range in between are unknown. This range is
processed recursively, first processing the graph between (f)
and (c), and then the graph between (c) and (g).

which onwards the shortest path does not join (a) anymore. In fact, there
is a node v′A, A < c which is the last node (from top to bottom) for which
the shortest path vc  v′A touches (a). Let us denote this path as (d), like
it is depicted in Fig. 11.13. Note that This is a similar situation as in AP1.
Any circular path vi  v′i with a ≤ i ≤ A is known to include the common
subpath of (a) and (d). This range is identified as A = [a;A]. We can now
compute the shortest circular path that starts and ends within range A
in a single step. To close the shortest circular path within the range A,
we compute the connection between vl and vr similarly to AP1-Step 4 (see
Fig. 11.14).

A symmetrical process can be carried out to find the shortest circular
path for the area B at the bottom of the considered graph. When the
shortest circular path in each of the ranges A and B are known, we have
to further consider only the remaining range in between (Fig. 11.15). Since
we also know the path vc  v′c, denoted as (c), we can split the problem for
the remaining range recursively, by first considering the graph between (a)
and (f) with start nodes vA+1, . . . , vc−1, and similarly the graph between (c)
and (g) with start nodes vc+1, . . . , vB−1. Once all shortest circular paths for
all ranges of nodes along the cut are known, we simply select the shortest
of them as the global solution.

Step-by-step examples of the algorithm are provided in the appendix at
the end of this chapter.

11.3.3 Computational complexity

Let us now examine the computational complexity of our shortest circular-
path algorithm. In the case that AP1 succeeds, three ordinary shortest-path
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high cost

low cost

cut

(a) The worst-case.

(b) A nearly worst-case input.

Figure 11.16: In the worst-case, all |V̄ | shortest circular paths starting in the
cut are disjoint (a). For testing, we used also nearly worst-
case inputs in which some noise is added to the worst-case
pattern (b).

searches have to be conducted. Using the Dijkstra algorithm with a heap
implementation, each search takes O(|V | log |V |) time, since the graph is
planar. Hence, the total running time for AP1 is also just O(|V | log |V |).
Note that in almost all practical cases in our application, AP1 is already
sufficient.

The computation time of AP2 is more complicated to determine, be-
cause it is directly depending on the input data. In the worst-case (see
Fig. 11.16(a)), every shortest circular path crossing the cut is independent
and must be computed. However, because the size of the graph in the
recursion is only about half the size of the input graph, computation of
shortest paths becomes faster in later stages of the recursion. This gives a
total number of nodes to be processed of approximately

log |V̄ |∑
i=0

2i |V | log |V |
2i

= |V | · log |V | · (log |V̄ |+ 1). (11.3)

Furthermore, nodes from the ranges A and B can be excluded, so that
the actual computation time is usually lower. Note that the cut is deter-
mined such that it is short, which makes |V̄ | small. For increasing image
resolution, the corridor area |V | increases quadratically compared to the
length |V̄ |, which gives us a worst-case computation time of O(|V | log2 |V |).

In practice, the number of recursion steps that have to be carried out
depends on the complexity of the data in the corridor. If there are clearly
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Figure 11.17: Computation times for input graphs on different types of com-
plicated data. For these complex examples, the computation
time of MSA is O(|V |3/2), whereas it is only O(|V |) for the
proposed algorithm.

superiour paths within the corridor instead of equally good disjoint paths,
a large number of possible paths can be excluded in each step. Since the
global complexity of the content in the corridor does not increase with in-
creasing image resolution, we can assume the number of recursions constant.
Furthermore, the longer the corridor is compared to its width, the higher
the probability that paths join. This leads to a total time for practical data
of only O(|V | log |V |).

Grid graphs

One special, but important case are regular graphs with directed edges, as
shown in Figure 11.18. For this type of graph, the shortest-path search
using the Dijkstra algorithm can be replaced by a more simple dynamic
programming approach, which processes the nodes column by column.
This reduces the computation time for an ordinary shortest-path search to
O(|V |) instead of O(|V | log |V |) for the Dijkstra algorithm on general planar
graphs. In total, we obtain a practical computation time of also only O(|V |)
for the shortest circular-path search and a worst case of O(|V | log |V |).
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Figure 11.18: A planar graph on a regular grid structure. With directed
edges, shortest paths can be found in time O(|V |) using a
dynamic programming approach, compared to O(|V | log |V |)
when applying the Dijkstra algorithm.

Experimental verification

To justify the estimation of computation time, we conducted experiments
with different types of inputs. In the first experiment, we took the pic-
ture shown in Fig. 11.27 as input graph with costs taken from the pixel
luminance. The shortest circular path horizontally crossing the image was
computed for different sizes of the input image. Note that this input is
more complex than the usual case in the Corridor Scissors algorithm, since
the input image is square and thus, the probability that paths across the
image share a common subpath is lower than for the long and narrow cor-
ridors. Moreover, the image content is more complex than in the Corridor
Scissors application, because in the latter case, the input covers mainly a
single object contour.

In the second experiment, we used rectangular grid graphs that are
10 times longer than wide. The edge weights were set to random values.
This is also more complex than the case for Corridor Scissors, since the
input data shows no structure that increases the probability of common
subpaths.

In a final experiment, we synthesized an input that is close to the worst-
case. We generated input images with alternating high-cost and low-cost
rows with an average cost difference of σ and we added uniform random
noise with an amplitude of σ/2. Note that the actual choice of σ > 0 has
no influence on the shortest paths found.

In all experiments, we used edges arranged as in Fig. 11.18, such that
a fast shortest-path search with dynamic programming can be applied.
We measured the number of operations, which we defined as the number
of nodes processed, for the proposed algorithm and the MSA algorithm.
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The measured computation times for both algorithms are depicted in Fig-
ure 11.17. It is clearly visible that the MSA algorithm has a complexity of
O(|V |3/2), while the proposed algorithm runs in only O(|V |) time on nor-
mal inputs. This is remarkable, since the considered input is more complex
than the usual input in practice. A computation time that comes close to
the worst case could only be reached with the synthetically constructed in-
put. Hence, we can conclude that even though the worst-case performance
of the proposed algorithm is O(|V | log |V |), the computation time is linear
in all practical cases.

11.4 Signature tracking

The Corridor Scissors algorithm described in Section 11.2 is a still-image
segmentation algorithm. To process a video sequence, every frame has to be
segmented separately. In this section, we propose an extension to our Cor-
ridor Scissors algorithm that provides object-tracking capabilities. With
object tracking, it is no longer required to edit each frame independently.
Instead, a contour that has been defined once can be tracked through the
sequence automatically. However, in case of tracking errors, our algorithm
supports the manual intervention to correct the segmentation result.

11.4.1 A first tracking algorithm

A popular approach to implement contour tracking is to search the local
neighborhood of the previous contour for the new contour. Depending
on the internal representation of the contour, different tracking algorithms
have been proposed. See, for example, [11] for active contours, [138] for
tracking with a level-set representation, or [197] for graph-cut based active
contours. The algorithm proposed in [197] can essentially also be applied
to our Corridor Scissors framework. By replacing the proposed graph-cut
contour detection with our shortest circular paths, we obtain the following
simple tracking algorithm.

Let us assume that the motion of the object is so small that the largest
distance between contour points in both images is less than w pixels. If we
copy the contour found in the previous frame t− 1 to the current frame t,
and if we augment this contour to a corridor to a width of 2w pixels, then
this corridor contains the object contour in the new frame. To find the new
object contour, we only have to apply the previously described Corridor
Scissors algorithm in this new corridor. The resulting contour can again be
used to generate a new corridor for the successive frame t + 1, and so on.
Note that the user can always intervene this process whenever a tracking
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find match in image

Figure 11.19: The texture around the object is stored in an object-signature
vector. In the successive frame, we search for a closed contour
showing a similar signature along the object border.

error occurs, by simply adapting the shape of the corridor.

11.4.2 Signature tracking algorithm

The above tracking algorithm is very simple to implement and easy to use,
but its tracking robustness is low, since the contour in the new image is
often distracted by background clutter. In this case, the contour quickly
drifts away from the correct object contour and it cannot be found back,
as no information about the object itself is used. However, note that the
tracking algorithm does not use all the information available from the pre-
vious frame. In fact, we can also use the colors along the object contour
as an additional source of information about the object’s appearance. By
searching for exactly the same colors along the object contour as in the
original object, the object-contour detection is more robust, since it can
distinguish background texture from foreground. We denote this texture
information along the object contour as the object signature.

Since pixels exactly at the border between foreground and background
do not provide stable information, we extract for each pixel along the con-
tour a small block of the texture surrounding this pixel. This results in
a signature vector with the length of the object contour, where each en-
try is a texture block from that contour position. The concept is now to
use this signature for replacing the matching cost in the shortest circular-
path search and to find a new object contour which has a similar signature
(Fig. 11.19). The additional information from the signature helps to prevent
that the circular path snaps to high-contrast background clutter, since the
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image content along the contour should fit to the recorded signature. One
problem in the matching is that the object contour in the new image may
be larger or smaller, because of object deformations. Hence, we have to al-
low for some stretching or shrinking of the signature vector. This change of
length is generally non-uniform, i.e., part of the object may become larger,
while another part may get smaller at the same time.

The shortest circular-path search now operates on a graph that we can
visualize best in three dimensions. Two dimensions (x, y) correspond to
the spatial pixel position, just as in the Corridor Scissors above. However,
we introduce a third dimension (z), which corresponds to the pixel position
on the signature. In this sense, we denote the graph nodes as V = {vx,y,z}.
Each graph node v{x,y,z} is attributed with the matching cost between the
texture block at (x, y) in the current frame, and the block that was saved at
signature position z. If the size of the object contour would not be allowed
to stretch or shrink, every step in the x/y plane should be reflected by a
step in z direction. But since the object contour in the new image may be
larger, we also allow to make a step in the x/y plane without advancing in
the z direction. This corresponds to staying at the same contour position
in the original image, while advancing in the current image. On the other
hand, to be able to shrink the object contour, it is allowed to advance two
steps in the z direction in only one step. For all of these possibilities, edges
are introduced in the three-dimensional graph (see Fig. 11.20). Because
the signature is taken from a closed contour, edges are also added from the
last layer of z to the first.

11.4.3 Circular-path search with object signatures

Searching for the new object contour can now be carried out again with
a shortest circular-path search but now within the presented 3-D graph.
Note that in this graph, the edges in z direction are directed, since it is
not allowed to move backwards on the signature. The search in this 3-
D graph poses two main difficulties. First, the number of nodes in the
full three-dimensional graph is so high that the computational complexity
becomes impractical. Second, the graph is non-planar, and the shortest
circular-path algorithm above cannot be applied. An MSA algorithm would
still be possible, but it would increase the computation time even further.
We approach these two problems by first significantly reducing the size of
the graph, and subsequently using a very fast approximation of the above
shortest circular-path algorithm.
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Figure 11.20: A small part of the signature search-graph (Fig. 11.21). Di-
rected edges from one layer to the next (a) are the standard
links. Taking this edge corresponds to going to a neighboring
pixel in the image and making a step to the next position on
the signature. Additionally, edges within one layer represent
steps in the image, without proceeding on the signature (the
contour is stretched). Finally, edges skipping one layer (b)
make a step in the image and skip one position in the signa-
ture (the contour is shrunk).
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Figure 11.21: Instead of considering the complete 3-D graph (2-D image po-
sition + signature position), only the nodes near to the orig-
inal contour are used in the computation. The center of the
spiral corresponds to the previous contour.
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Graph pruning

Carrying out a shortest circular-path search on the three-dimensional graph
as constructed above is intractable, since this graph would consist of W ·H ·
C nodes, where W×H is the image size and C is the object contour length.
However, if we assume that the object motion is limited, we can use the
approach of Section 11.4.1 to restrict the search to a small corridor around
the previous contour. More clearly, this means that all nodes (x, y, z) that
are more than d pixels away from the previous object contour are removed
from the graph. The resulting graph looks like the two-dimensional graph
of the Corridor Scissors algorithm, but every node is duplicated C times in
the z-direction. This can be visualized as a hollow tube, extruded from the
object contour in the z-direction.

Even though this graph is already significantly smaller, we can reduce
the size further by limiting the maximum amount of shrinking and stretch-
ing of the contour. Let Ci = (xi, yi) be the sequence of pixels in the original
contour. Assuming that the new contour has to follow the old contour with
not more stretching or shrinking than an offset of s pixels along the con-
tour, we can also exclude nodes vx,y,z from the graph, if the z-coordinate
of the node deviates more than s from the previous object contour. When
combined, we obtain the following set of remaining nodes.

V = {vx,y,z | ∃(xi, yi) : |xi − x| < d ∧ |yi − y| < d︸ ︷︷ ︸
limited motion

∧ |i− z| < s︸ ︷︷ ︸
limited deformation

}.

(11.4)
The resulting graph has the shape of a spiral with one turn around the
object (Fig. 11.21). The number of nodes in this graph is approximately
Cd2 only.

Fast approximate calculation of shortest circular paths

The graph that we obtain for the object-signature fitting is non-planar,
and we cannot use the algorithm described previously for computing the
shortest circular path. However, for this graph it also holds that the length
of the circular path is large compared to the corridor width. Previously,
we have observed that for these long corridor graphs, there usually exists
a subpath that is common to all shortest paths along the corridor. If we
simply assume that such a common subpath exists, we can define a fast
algorithm for shortest circular paths.

The algorithm is motivated by the AP1 algorithm for planar graphs. We
first conduct an ordinary shortest-path search from the “left” side of the
corridor graph to the “right” side, similar to Step 2 of AP1. Again, we mark
the last possible node at which the shortest-path tree to the destination
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nodes is rooted as vr. In a second step, we conduct a similar shortest-path
search, but now in the opposite direction, starting from the just found node
vr to the “left” side. The node at which the paths to the destination nodes
split is marked with vl. It only remains to connect vr with vl in a similar
way as described in Step 4 of the algorithm for planar graphs.

Assuming that a common subpath exists, this algorithm computes the
correct shortest circular path. Otherwise, the correct solution might not be
found, but it is still nearly optimal, as it is composed of two shortest-path
segments.

11.4.4 Tracking results

This section, presents tracking results for three sequences. The first se-
quence shows a car that is seen in different views throughout the sequence,
while in later parts of the sequence, the car passes behind some trees. The
object contour was initialized at the first frame with the normal Corri-
dor Scissors algorithm. This contour was used to derive the object sig-
nature, and this signature was kept fixed through the complete tracking
(Fig. 11.22). We see that the tracked contour follows the object. It is in-
teresting to notice that the tracked contour keeps locked at the parts of
the car that were defined in the first frame. In later frames, when the
view of the car changes, new parts become visible, but the tracked contour
still follows the originally defined content. This can be observed clearly at
the rear of the car, but also at the back window, which was not visible in
the first frame. The front window, which was present in the first frame,
is occluded in later frames. To compensate for this, the algorithm pushes
the contour away from the car to follow an image texture that is equally
dark as the front window in the first frame. Around frame 40, the tracking
result becomes worse and should be reinitialized or corrected.

In Figure 11.23, a new contour was initialized at frame 50 of the same
sequence as above. During this part of the sequence, the car passes behind
some trees. Since the signature holds information about the correct contour,
the algorithm is not distracted when the car crosses the first tree (frame 70).
However, in later frames (75-90), also the lighting conditions change and
the algorithm loses the object.

Figure 11.24 shows tracking results for the foreman and the paris se-
quence. In the foreman sequence, it is interesting to see that the tracked
contour at the helmet sometimes deviates from the true boundary. The rea-
son is that the signature not only includes texture from the foreground, but
also from the background. Hence, because a dark part of the background
was visible along the top of the helmet in the first frame, the tracking al-
gorithm searches for similar backgrounds in later frames. This leads to the
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tracking error that is visible in frame 100. On the other hand, at the left
side of the helmet in frame 100, the contour is inside of the helmet, because
the algorithm tries to prevent to pass by the dark area in the background.

In the paris sequence, the woman is first tracked successfully, but then,
the algorithm locks to a local optimum around frame 100, because of fast
object motion. However, in a later frame, the algorithm recovers again and
yields the correct contour.

11.5 Summary and conclusions

This chapter has introduced Corridor Scissors as a new technique for semi-
automatic image segmentation. This tool provides an elegant user interface,
in which the object is marked coarsely with a broad corridor around the
object border. Within this corridor, the object border is detected with
pixel accuracy. Since the path within the corridor is adapted each time the
corridor shape is changed, the interface supports incremental modifications
to the segmentation to improve its quality.

The Corridor Scissors tool is based on a newly developed algorithm
for computing shortest circular paths, which was also described in this
chapter. In practical cases, the described algorithm has the same com-
putational complexity as an ordinary shortest-path computation using the
Dijkstra algorithm. The described algorithm is applicable to general planar
graphs and in an approximation also for some types of non-planar graphs.
Consequently, our algorithm is also useful for other applications like shape-
matching [177] or crack detection in borehole core images [7], in which
comparable shortest circular-path problems occur.

Because of the low computation time of the shortest circular-path algo-
rithm and the fact that the algorithm only has to consider the pixels within
the corridor, the user-interface of the Corridor Scissors tool operates in real-
time. Compared to the Intelligent Scissors algorithm, which computes the
shortest paths to all pixels, this provides a significant a-priori reduction of
the data to be processed.

Finally, the Corridor Scissors tool was extended with a tracking algo-
rithm. This tracking algorithm saves the texture around the object outline
in a signature vector, which it is using during the tracking process to in-
crease the robustness of finding the correct object border and decrease the
probability of being irritated by background clutter. The tracking algo-
rithm is also based on the shortest circular-path algorithm, but operating
on a different cost function, which incorporates the signature information.
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11.6 Discussion on the signature tracking tech-
nique

The concept of integrating knowledge about the object texture in the track-
ing process appears promising, since it improved the tracking results. Note
that the object signature used in the tracking can also be considered as
some kind of object model. However, we have observed two problems with
this model that should be considered in future work.

First, the texture blocks in the signature vector include both foreground
content and background content. In many cases (see foreman sequence),
this leads to wrong contours because the algorithm finds a mismatch in the
background texture. We conducted experiments to exclude the background
content in the comparison. This is easily possible, as the foreground object
mask is available from the previous segmentation. However, this resulted
often in the situation that the detected contour moved inside of the object
if it has a uniform color.

The second observation is that the tracking results can be improved by
including also shape information. It is our opinion that this will improve
the robustness against being trapped in a locally optimum contour. Fur-
thermore, this may also help to solve the first problem. To see this, assume
again that we would exclude background texture from the computation of
matching cost. To prevent the contour to move inside the object, we have
to apply some force to push the contour outwards. This force could be
realized by the a-priori shape information. Unfortunately, object shape is
a global feature that is difficult to integrate in the proposed framework.
One promising direction may be to replace the object contour model with
a mesh-based object surface model [21, 44], because this includes more
texture information from the object and a shape-deformation cost can be
defined based on the mesh geometry.
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(a) Frame 1. (b) Frame 10.

(c) Frame 20. (d) Frame 40.

Figure 11.22: Tracking in the vectra sequence. The signature is initialized in
frame 1 and kept fixed throughout the tracking. Because the
3-D view of the car changes but the signature still contains
the object outline from the original view, the computed out-
line differs from the true object boundary. Note especially the
contour changes at the rear of the car and the front window.
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(a) Frame 50. (b) Frame 70.

(c) Frame 75. (d) Frame 90.

Figure 11.23: Tracking the car while it passes behind some trees. The track-
ing is reinitialized at frame 50 of the sequence (a). When the
car passes the first tree trunk (b), the texture information in
the signature prevents the tracking from locking to the trunk
as the new boundary. Later, in (c) and (d), large occlusions
and changes in the lighting let the tracking deteriorate.
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(a) Frame 1. (b) Frame 1.

(c) Frame 100. (d) Frame 100.

(e) Frame 225. (f) Frame 300.

Figure 11.24: Tracking results for the foreman sequence (left column) and
the paris sequence (right column).
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(a) Input image that defines edge costs.

(b) After Step 3 of AP1, a long common subpath is found.

(c) The shortest circular path.

Figure 11.25: An example for which the shortest circular path can be com-
puted with only AP1. Darker colors indicate lower cost.

11.7 Appendix: step-by-step examples

This section illustrates the execution of the proposed shortest circular-path
algorithm (Section 11.3.2) by some example runs. All examples use rect-
angular grid graphs with edges places as shown in Fig. 11.18. The costs
are taken from an input image such that lower luminances correspond to
lower costs. Circular paths are searched for along the horizontal direction
through the rectangle (right column connects to left column). The selection
of the examples does not reflect the typical input in the Corridor Scissors
algorithm, but the examples are selected to clearly illustrate the execution
of the algorithm. From the computational point of view, all examples are
more complex than the typical input in the Corridor Scissors case.

Example 1 (Fig. 11.25)

The first example (Fig. 11.25) uses a low-frequency cost image. In Step 2
and 3, the algorithm computes the minimum-cost paths from the top-left
corner to the top-right corner and, similarly, from the bottom-left corner
to the bottom-right corner. These two paths share a long subpath along
most of the corridor graph. Hence, AP1 can already determine the shortest
circular path by connecting the nodes vr and vl in Step 4. Note that this
step only computes a shortest path in the area composed of the two small
triangles at both sides, since the large black areas can be excluded from the
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Figure 11.26: The shortest-paths trees on both sides of a cut (compare to
Fig. 11.11(c)) for a typical real-world example. It is clearly
visible that all paths join quickly to a common path along most
of the corridor.

computation. This is the typical case as it usually occurs in the Corridor
Scissors algorithm (see also Fig. 11.26).

Example 2 (Fig. 11.27)

In a second experiment, we used a natural image as cost data (but note
that the shortest circular path does not have any semantic meaning here).
The algorithm starts with computing the two shortest paths along the top
and the bottom side of the rectangle (Fig. 11.27(a)). Unlike in the last
example, these two paths do not join, so that we cannot use AP1 compute
the shortest circular path. Hence, we have to use AP2 for this example.

This part of the algorithm starts with the initial recursion step, in
which a shortest-path search is initiated from the middle position on the
left side. Indicated in Fig. 11.27(b) are the two last paths, starting from
the middle position, that still touch the top and bottom paths from the
last step, respectively. For the top path, the last position for which we still
get a touching path, is the middle path itself. Consequently, we have the
situation of two touching paths in the top half of the image and the shortest
circular path in this area can be computed in one step (again by joining vr

and vl). The range of V̄ that is completed is indicated by the bars at the
sides of the image. Unfortunately, the range that could be processed in the
bottom half is very small and further recursions are required.

Since the top part of the image could be completed in one step, we
only have to consider the bottom part in the recursion (Fig. 11.27(c)).
In the remaining area, a shortest-path search is initiated again from the
middle position at the left side. Note that the graph on which the search is
now carried out is much smaller, since the top half can be excluded (black
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(a) The two initial paths do
not touch.

(b) Solution for the upper half
of image is ready, the lower
part needs recursion.

(c) Recur. bottom part of (b). (d) Recur. top part of (c).

(e) Recur. bottom part of (c). (f) Final result.

Figure 11.27: Step-by-step example of the execution of the shortest circular-
path algorithm. The luminance of the input image defines the
cost. Black areas are parts of the graph that could are excluded
from the computation.
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area). In this step, only a small range at the top and a larger region at
the bottom can be completed. Because none of the two halves are finished
completely in this step, both halves are further processed recursively (top
half: Fig. 11.27(d), bottom half: Fig. 11.27(e)). After these steps, all
nodes in V̄ are covered. The globally shortest circular path is selected as
the shortest path of the solution from each of the processed ranges. This
solution is presented in Fig. 11.27(f).

Example 3 (Fig. 11.28)

The input data that was synthesized for this example (Fig. 11.28) was
motivated by the worst-case data (Fig. 11.16(a)) for the algorithm. The
input shows many thin low-cost paths, so that there is no obvious common
shortest subpath. Nevertheless, the two bounding paths (Fig. 11.28(b))
almost touch, and the shortest circular-path problem can be solved in only
four steps of recursion. We made similar observations with input data that
is just random noise. This suggests that the computation time is usually
low, even with complicated input data. An important factor is the ratio
of corridor length to its width, since the probability of joining paths also
increases when this ratio increases.
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(a) Input data.

(b) AP1, since the two paths do not touch.

(c) First recursion step.

(d) Second recursion step.

(e) Third recursion step.

(f) Result after fourth recursion step.

Figure 11.28: An example case that is close to the worst-case pattern shown
in Fig. 11.16. Here, AP2 has to be applied, but the computa-
tion can be completed with only four recursion steps.
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Part III

From Camera Motion to 3-D
Models

359





Chapter12
Estimation of Physical

Camera Parameters

The earlier presented camera-motion estimator is employing projective trans-
forms to describe the geometric mapping between input frames. It was
shown that these transforms are general enough to include all kinds of
motion that occur for a rotational camera with varying focal length. In
fact, when taking a sequence of elementary camera operations, it is easy to
get the corresponding transform between two input images. However, the
inverse problem of calculating the physical transform parameters from the
frame-to-frame homographies is far more complicated. Despite the problems
involved, it is valuable to carry out the estimation of the physical camera
parameters, since it enables a whole new area of applications. Examples
are video content analysis, where camera motion represents a valuable fea-
ture for sequence classification, or augmented-reality applications that insert
computer-generated 3-D objects into a natural scene. This chapter presents
two algorithms for factorizing the projective transforms of the camera mo-
tion into the physically meaningful camera rotation angles and the camera
focal length. The first algorithm applies a linear optimization approach that
is fast, but which has only limited accuracy. The second algorithm uses a
non-linear bundle-adjustment algorithm that provides a high accuracy. Both
algorithms have been combined with our multi-sprite technique of Chapter 6
to support unrestricted camera motion.

The biggest difference between time and space
is that you can’t reuse time.
(Merrick Furst)

361
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12.1 Introduction

In current video coding and video-object segmentation systems, camera-
motion is usually described with the projective motion model with eight
parameters. A prominent example is the sprite-coding tool of the MPEG-4
standard, which uses the projective motion model to align background
frames into a common background sprite image. In our video-object seg-
mentation algorithm, we applied the same motion model, because of its ease
of use and to enable the easy integration of the segmentation algorithm into
MPEG-4 encoders.

In Chapter 2, it was derived that this model can describe any image
motion that results from a rotating camera with varying focal length. Fur-
thermore, the projective motion model also allows the alignment of the
input images to a larger background-sprite image that can be used to re-
construct any arbitrary camera view from this background image. Later,
Chapter 6 clarified that in practice, the principle of background sprites
should be generalized to prevent degenerated transforms. However, with
this multi-sprite generalization, the projective motion model can be applied
to describe any motion of rotatorial cameras.

The parameters of the projective motion model describe the camera
motion in an abstract way, without a direct correspondence to physically
meaningful operations. However, when we derived the projective motion
model for rotational cameras, it was indicated that the model can be con-
sidered as a concatenation of elementary physical operations, like rotating
the cameras, and perspectively projecting the 3-D object onto the image
plane. Unfortunately, it is not obvious how the parameters of these elemen-
tary operations can be recovered from the combined transformation matrix.
In fact, it is not even possible to factorize every projective transformation
into camera rotations and changes of camera zoom, since the general pro-
jective transformation also includes physically impossible transformations
like anisotropic scaling or image skewing.

Nevertheless, it is advantageous or even required for some applications
to describe the camera motion in terms of rotation angles or zoom (change
of focal length). One of these applications is content analysis, where the
camera motion can be used as a feature to help in analysing the video
content. For example, a zoom-in operation should direct the attention of
the viewer to a specific detail in the scene, where the important object is
usually located at the center of the zoom.

Whereas a qualitative analysis of camera motion can be sufficient for
content analysis, there are other applications that require parameters with
a high accuracy. An example is an augmented-reality application, where
virtual 3-D objects are added to a recorded video such that they are seam-
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lessly integrated. This can only be achieved if the view onto the synthetic
3-D objects is synchronized with the current camera view. For the cam-
era control, the current camera rotation-angles and the focal lengths have
to be known. Another application is the creation of cylindrical or spheri-
cal panoramic images [30] from video sequences, where especially the focal
length of the camera is required. These parameters are usually not known
and have to be estimated from the video sequence itself.

In this chapter, we propose two algorithms that factorize projective
motion parameters into a sequence of elementary, physically meaningful
transformations. More clearly, it takes a sequence of projective motion
parameters as input and generates a corresponding sequence of camera ro-
tation angles and focal lengths for each of the input frames. The parameter
estimation is carried out in two steps, where the first is a fast linear calibra-
tion algorithm based on the image of the absolute conic. While the accuracy
of this first step can be sufficient for content-analysis applications, we also
describe an optional refinement step. This refinement step uses a non-linear
optimization algorithm to yield an increased accuracy of the obtained pa-
rameters. Both algorithms incorporate the multi-sprite partitioning of a
sequence and consequently, they have no limitations about the range of
parameters.

The chapter is organized as follows. We begin with a brief repetition of
the global-motion estimation to clarify the notation used in this chapter.
Furthermore, we give a short survey of previous approaches and discuss
their performance. Section 12.3 describes the linear camera-calibration
algorithm that was proposed by Hartley et al. in [85] and we present
our extension of this algorithm to support the generalized multi-sprite ap-
proach. A non-linear calibration is described in Section 12.4, where we
again consider in particular the integration of multi-sprites. Finally, we
present visualizations of results for several sequences in Section 12.5.

12.1.1 Geometry of background image generation

This section gives a brief review of the geometry of rotational cameras to
introduce the notation that we are going to use in this chapter.

Let us define the 3-D world coordinate system such that the camera
is located at its origin. The camera captures a number of images i with
different rotations Ri and focal lengths fi. The optical axis of the camera
intersects the image plane at the principal point ox, oy. The focal length fi

and principal point are collected in an intrinsic camera parameters matrix

Ki =

fi τ ox

0 ηfi oy

0 0 1

 . (12.1)
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Figure 12.1: The camera is located at the origin of the world coordinate
system. The sprite plane is assumed to be orthogonal to the
z-axis. Input images are at a distance to the origin that is
equal to the focal length when the image was captured. A point
(x/w, y/w) on the image is projected onto the sprite position
(x̂/ŵ, ŷ/ŵ).

Additionally, the parameter η denotes the pixel aspect ratio and τ is the
image skew. However, for typical CCD cameras, we can assume zero skew
τ = 0 and square pixels η = 1, so that we obtain the simpler intrinsic
parameters matrix

Ki =

fi 0 ox

0 fi oy

0 0 1

 . (12.2)

Using homogeneous coordinates p = (x, y, w)> for 2-D image positions, we
can obtain the projection of a 3-D point onto the image as p = Ki·(x, y, z)>.
Conversely, we can use the inverse K−1

i to map 2-D points back to 3-D
direction vectors. Concatenating these transforms with an intermediate
3-D rotation matrix Ri gives the transformation between two images or,
similarly, between a background sprite image and an input frame, asx

y
w

 =

fi 0 ox

0 fi oy

0 0 1


︸ ︷︷ ︸

Ki

Ri

1/f̂s 0 −(ôx)s/f̂s

0 1/f̂s −(ôy)s/f̂s

0 0 1


︸ ︷︷ ︸

K̂−1
s

x̂
ŷ
ŵ

 = Hi

x̂
ŷ
ŵ

 .

(12.3)
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This set-up is also visualized in Figure 12.1. Note that we denote all co-
ordinates and parameters related to sprite coordinates with a hat on the
variable name. Moreover, we use indices i for variables relating to input
images and s for variables relating to sprites. Consequently, the transfor-
mation from a sprite s to an image i is denoted as H(s)

i . If the superscript
is omitted, we simply mean the sprite to which the image i was assigned
by the multi-sprite partitioning.

Multiplying the intrinsic and extrinsic transformation matrices together,
we obtain the combined matrix Hi, describing the projection of coordinates
on the background plane onto image i. Writing with inhomogeneous coordi-
nates and normalizing Hi to h22 = 1 gives the inhomogeneous formulation
of the projective motion model

x =
h00x̂ + h01ŷ + h02

h20x̂ + h21ŷ + 1
, y =

h10x̂ + h11ŷ + h12

h20x̂ + h21ŷ + 1
. (12.4)

Taking the sprite-to-image transformations Hi,Hk for two images i,k,
we can obtain the transformation from image k to i by first mapping the
point of image k onto the background and then mapping it back onto image
i. We denote this inter-image transform as Hi;k = HiH−1

k .

12.1.2 Global motion estimation

The input for the camera-calibration algorithm is obtained from our global-
motion estimation, where we use the more accurate parameters after the
direct estimation step (Chapter 5). From this motion estimator, we obtain
the parameters h00, . . . , h21, corresponding to the multiplied matrices of
Eq. (12.3).

For the case that the rotation between two frames is large, Chapter 6
has shown that they cannot be projected onto the same sprite. Following
our multi-sprite technique, those frames are assigned to separate sprites.
In the multi-sprite algorithm, the intention was to minimize the size of the
generated sprite images for improved coding efficiency, but we can also use
the same algorithm without modification to prevent the limitation on the
allowed camera rotations. The result of this multi-sprite partitioning is a
partitioning of the input sequence of length N into M ranges

P = {(1, p2 − 1) , (p2, p3 − 1) , (p3, p4 − 1) , . . . , (pM , N)} , (12.5)

where ps denotes the first frame used in sprite s (s ∈ [1;M ]). Now, instead
of computing motion parameters to a global reference sprite (which is not
possible), we compute the motion parameters for each image relative to the
sprite that it has been assigned to.
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Figure 12.2: Transformations between sprites and input frames. Every im-
age i is connected to its assigned sprite k by the transform
H(k)

i . The first and last images from each partition are also
connected to the previous or next sprite, respectively.

The multi-sprite partitioning assigned the images to separate sprites,
but since we also need to know the geometric relation between images that
are far apart, we also have to connect all the sprites. To achieve this, we
compute for the first frame ps that has been assigned to a sprite s not only
the transform H(s)

ps , but also the transform to the previous sprite s−1, which
we denote by H(s−1)

ps−1 . Similarly, we also compute the transform between the
last frame ps+1−1 of the sprite to the next sprite s+1 (see Fig. 12.2). With
these connecting transforms, we can compute the transformation between
any two frames (e.g., frame i, assigned to sprite s, and frame k, assigned
to sprite s− 1) by

Hi;k =
(
H(s−1)

i

)
·
(
H(s−1)

ps

)−1
·
(
H(s)

ps

)
·
(
H(s)

k

)−1
. (12.6)

For images that are several sprites apart from each other, more transforms
have to be concatenated.

When chaining the inter-sprite transformations, we should to be careful
about the parameterization of the transformations. It is common practice
to normalize the projective transformations H = {hik} to h22 = 1, and we
also apply this normalization in our motion-estimation algorithms. While
this normalization is valid for small camera rotation-angles, it introduces
problems if the rotation angle becomes larger. The problem is that at
90 degrees, we obtain h22 = 0 after the concatenation of the transforms,
which cannot be normalized, and for larger angles, h22 becomes negative.
This will result in a change of orientation that makes it impossible to re-
cover the correct rotation angles. Consequently, we cannot normalize the
transforms to h22 = 1 when they are chained together. Note that it is still
possible to carry out the inter-image motion estimation using normalized
parameters, since the multi-sprite partitioning ensures that the transforms
do not degenerate.
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12.2 Previous work

Camera calibration is an active topic of research and several algorithms
have been proposed to solve the problem. The approaches can be classified
according to the applied camera models. Their main differences are in the
parameters that are assumed to stay fixed, such as, e.g., the focal length
or the principal point.

12.2.1 Estimation of focal length

Once the principal point and the focal lengths are known, it is straight-
forward to compute the camera rotation R by pre- and post-multiplying
the intrinsic parameter matrices to the transform Hk;i, this leading to R =
K−1

k Hk;iKi. Since the principal point is usually near the image center, the
problem reduces to find an estimate for the focal lengths.

In [180], Szeliski et al. described a simple approach for estimating the
focal length from two images that were captured with a rotating camera.
As shown previously, the transformation from frame i to k is then composed
of the elementary transformations Hk;i = KkRK−1

i . Szeliski’s algorithm
assumes that the origin of the image coordinate system is at the principal
point (ox = oy = 0). If this is not the case, the coordinate system can be
shifted easily by factorizing K into K = TK′, with

T =

1 0 ox

0 1 oy

0 0 1

 and K′ =

f 0 0
0 f 0
0 0 1

 , (12.7)

so that we obtain
Hk;i = TK′

kRK′−1
i T−1, (12.8)

or alternatively,
H′

k;i = T−1Hk;iT = K′
kRK′−1

i . (12.9)

Multiplying the rotation matrix R = {rmn} with the intrinsic parameter
matrices gives

H′
k;i =

h00 h01 h02

h10 h11 h12

h20 h21 h22

 ∼
 r00 r01 r02fi

r10 r11 r12fi

r20/fk r21/fk r22fi/fk

 . (12.10)

Since we know that the rows and columns of the rotation matrix {ri} are
orthogonal, we can derive

h00h10 + h01h11 + h02h12/fi
2 = 0 (12.11)
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and
h00h01 + h10h11 + h20h21 · fk

2 = 0. (12.12)

From this, we can determine the focal lengths as

f2
i =

−h02h12

h00h10 + h01h11
and f2

k =
h00h01 + h10h11

−h20h21
. (12.13)

Alternatively, we also can exploit the fact that the rows and columns
of rotation matrices have unit norm. Since the transformation matrix can
be scaled, we cannot test directly for unit norm, but we can still test for
equal norm by

h2
00 + h2

01 + h2
02/f2

i = h2
10 + h2

11 + h2
12/f2

i (12.14)

or
h2

00 + h2
10 + h2

20 · f2
k = h2

01 + h2
11 + h2

21 · f2
k . (12.15)

Again, we can derive equations1 for the focal length as

f2
i =

h2
02 − h2

12

h2
11 − h2

00 + h2
10 − h2

01

and f2
k =

h2
11 − h2

00 + h2
01 − h2

10

h2
20 − h2

21

. (12.16)

In total, we obtained four different equations to compute the focal
lengths. Each of the focal lengths fi, fk can be computed with two ap-
proaches, which we will further denote as the orthogonal approach and the
equal-norm approach. If it is known that the focal length is fixed, the
authors propose to take the geometric mean of the estimates for fi, fk.

Degenerated cases

The described algorithm seems attractive for computing the focal length
since it is easy to implement. However, it turns out to be very numerically
unstable in practice. To get more insight into the behaviour, let us consider
some special (but common) cases.

If the rotation angle between two frames is small, we have hjj ≈ 1,
while for i 6= j, hij ≈ 0. Consequently, all the denominators in Equations
(12.13) and (12.16) approach zero, which makes the estimation unstable,
especially at the presence of noise.

Let us observe the behaviour for rotations around the three coordinate
axes. For the x-axis, it holds that

H′ ∼

1 0 0
0 cos α fi sinα
0 −(1/fk) sinα (fi/fk) cos α

 , (12.17)

1Note that the original article [180] contains several typing errors in the equations.
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(b) Stefan sequence.

Figure 12.3: Estimation of focal length as proposed by Szeliski et al. in
[180]. Even though the considered images were 25 frames
apart, the stability of the obtained estimate is very low.

from which we can derive the constraint of orthogonal columns: 1 · 0 +
0 · cos α + 0 · (−1/fk) sinα = 0. Obviously, this is not sufficient to solve
for fk. Similarly, the constraint for orthogonal rows does not provide fi.
However, using the approach of equal column norms works, since we obtain
f2

i = ((cos α)2 − 1)/(−(sinα)2/f2
k ) = f2

k . For rotation around the y-axis,
similar results are obtained. When there is a pure rotation around the
z-axis, all approaches fail to determine the focal lengths. There are also
rotations around two axes that cause problems for the approach. Consider
a rotation around the z-axis, followed by a rotation around the y-axis. In
this case, the orthogonality approach for determining fi fails, because the
transformation matrix is

H′ ∼

 cos β cos γ cos β sin γ fi sinβ
− sin γ cos γ 0

−1/fk sinβ cos γ −1/fk sinβ sin γ fi/fkcosβ

 (12.18)

and from the orthogonality of rows, it follows that

− sin γ cos β cos γ + sin γ cos β cos γ + 0 = 0. (12.19)

Again, this provides no information about fi.

Evaluation

We used two real-world sequences to evaluate the estimation of focal length
based on Eq. (12.13). The roma sequence shows a pure horizontal pan with
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Figure 12.4: Estimation of focal length for different rotation angles between
the frames for the roma sequence. Larger rotation angles give
a better accuracy. The geometric mean of the two approaches
of row and column norm gives good results, but only works if
the focal length is fixed.

fixed focal length, while stefan has a more complicated camera motion
with varying focal length. The transformations H were estimated with our
global-motion estimator, and the principal point (ox, oy) was assumed to
be in the image center.

To estimate the focal length, we fixed the distance between pairs of pic-
tures to 25 frames, so that the rotation between them is large. Figure 12.3
depicts results for two example input sequences. It is well visible that the
accuracy of the estimation is low and often it degenerates into cases where
the right-hand-side of the equations is negative, which leads to no solution,
since the square-root of negative values is undefined. We only depicted the
results for the column-norm approach. Results for equal row norms are not
very different, and results for the orthogonality approaches are much worse.

In a second experiment, we computed the estimated focal length de-
pending on the rotation angle between the two frames. This experiment
was carried out only with the roma sequence, since this sequence shows a
smooth horizontal pan. The estimation was carried out between the first
frame of the sequence and a later frame. The results (Fig. 12.4) show that
the estimation accuracy increases with a larger rotation angle. Interest-
ingly, the estimation error for the row-norm approach seems to be just the
opposite of the estimation error for the column-norm approach. Hence, we
can get a good estimate even for small rotation angles, when we take the
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Figure 12.5: The absolute conic Ω∞ is transformed to the input frames and
shows there as the IAC ω(i).

geometric mean between the two estimates. Obviously, this is only possible
if the focal length is fixed.

To summarize, we can conclude that Eq. (12.13) can be applied to cases
where the focal length is fixed and the rotation angle between the images is
large. One such application can be image mosaicing from images. However,
for video applications, the algorithm has a number of disadvantages: the
principal point of the image should be known and the estimation accuracy
is low or it even degenerates when the rotation angles are small.

12.3 Linear camera calibration

In the remainder of this chapter, we describe two algorithms for the es-
timation of physical camera parameters. The first algorithm is described
in this section. It is a linear calibration algorithm based on proposal by
Hartley et al. in [85], and which is extended to support multi-sprite motion
estimation.

The next section will present a non-linear calibration algorithm that
yields a higher accuracy. The second algorithm is an iterative optimization
algorithm that can be implemented independently, or it can be initialized
with the result of the first algorithm. The latter approach will provide a
faster convergence of the solution.

12.3.1 Calibration using the image of the absolute conic

The linear calibration algorithm uses the method based on the transforma-
tion of the absolute conic [87, 85]. The absolute conic Ω∞ is defined as the
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points (x, y, z, w)> satisfying

(x, y, z)I(x, y, z)> = 0 and w = 0, (12.20)

with I being the 3 × 3 identity matrix. Hence, because of w = 0, the
absolute conic lies in the plane at infinity π∞ (see Fig. 12.5). Since the
trivial solution x = y = z = w = 0 is not a valid point in projective space,
the conic only consists of imaginary points. Transformed with the camera
transformation Hi = KiRi for view i, the Image of the Absolute Conic
(IAC) ω(i) is

ω(i) = Hi
−>IHi

−1 = Ki
−>Ri

−>Ri
−1Ki

−1 = Ki
−>Ki

−1, (12.21)

where the last equality holds since Ri
> = Ri

−1. Assuming zero skew and
square pixels, ω(i) has the form

ω(i) =

 1/f2
i 0 −ox/f2

i
0 1/f2

i −oy/f2
i

−ox/f2
i −oy/f2

i o2
x/f2

i + o2
y/f2

i + 1

 . (12.22)

Consequently, zero skew leads to the constraint ω
(i)
01 = 0 and the square

pixel assumption gives ω
(i)
00 = ω

(i)
11 .

Now, let us consider several views. The constraints that we derived
previously are true for each of the views (each with its own fi). Let us
select one of the views as the reference view r. With the transformation
Hi;r, we can convert the coordinates of the reference view r to coordinates
of view i. Moreover, we can transform the conic ω(r) from the reference
view to other views according to

ω(i) = H−>
i;r ω(r)H−1

i;r . (12.23)

The idea is now to use this transformation of conics to express the conics
in all views i using the conic parameters of the reference view r. Since the
constraints for zero skew and square pixels must be fulfilled for all IACs
ω(i), we can formulate constraints for all views and express these constraints
in the parameters of the reference view. These equations can then be
stacked into an equation system, from which we subsequently estimate the
parameters of ω(r). Because the constraints of all views are expressed in
the coordinate system of view r, we have enough equations to solve for the
parameters of ω(r). When ω(r) is known, it is easy to obtain the intrinsic
parameters using a Cholesky decomposition.

To exploit the constraints from all the views, the parameters of ω(r) are
collected in a vector

c = (c1 , . . . , c6)> = (ω00, ω01, ω02, ω11, ω12, ω22)>. (12.24)
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Note that ω(r) is symmetric so that c only holds six parameters. Based
on Equation (12.23), we derive a linear equation, which expresses every
component of ω(i) as a linear combination of the parameters of c:

ω
(i)
jk =

∑
n

φn
jk · cn, (12.25)

where φn
jk depend on the transformation matrices H−1

i;r .

The zero-skew assumption ω
(i)
01 = 0 of view i can now be written in

parameters of the reference view as

(φ1
01 , . . . , φ6

01) · c = 0. (12.26)

Similarly, the square-pixel assumption ω
(i)
00 − ω

(i)
11 = 0 can be expressed as

(φ1
00 − φ1

11 , . . . , φ6
00 − φ6

11) · c = 0. (12.27)

This process can be carried out for all views, generating two equations
over ω(r) for each view. Stacking all the equations into a matrix A, we
obtain the overdetermined, homogeneous equation system Ac = 0, which
we can use to calculate c. A least-squares solution for this equation system
can be obtained by carrying out a Singular Value Decomposition and taking
the singular vector that corresponds to the smallest singular value. The
parameter vector c directly gives the IAC ω(i). Remember that ω(i) =
K−>K−1, where K is an upper triangular matrix. To derive Ki from ω(i),
we carry out a Cholesky decomposition.2

Repeating the above algorithm to iterate the reference frame through
each of the views gives us the intrinsic parameters Ki for all views. Once
all the intrinsic parameters are known, we can obtain the camera rotation.
We start with the transformation between two views i and k, given by

Hk;i = HkH−1
i = KkRK−1

i , (12.28)

where R is the rotation between the two views. Since we know the ho-
mographies Hk,Hi and the intrinsic parameter matrices, we recover the
rotation matrix as

R = K−1
k HkH−1

i Ki. (12.29)

2The Cholesky decomposition ω = A>A is often implemented to give lower triangular
matrices A. We use the trick of transposing the matrix ω along the upward diagonal
(ω00 ↔ ω22, ω01 ↔ ω12, ω10 ↔ ω21) before and after the decomposition to find a decom-
position into upper triangular matrices.
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12.3.2 Integration of multi-sprite motion estimation

The algorithm presented so far assumed that accurate inter-image trans-
forms between all pairs of views are available. However, the chaining of
inter-image transforms to obtain transformations between frames that are
further apart leads to an accumulation of errors, which subsequently also re-
sults in an inaccurate parameter estimation. This motivates why we added
an additional motion-estimation step to our feature-based motion estima-
tor. The solution is that instead of chaining inter-image transforms, we
determine long-term motion parameters relative to a global background-
sprite image. This provides high-accuracy parameters between this back-
ground image and a current view. Inter-image transforms between a pair of
views i,k can be obtained from these by just concatenating the two sprite
transforms HiH−1

k . Consequently, there is less accumulation of errors even
for transforms between distant views.

A consequence of using a global background sprite is that the supported
camera motion is limited. Since the background sprite is a planar manifold,
only a (theoretical) maximum of 180 degrees field-of-view can be covered.
Practically, the usable camera rotation-angles are much lower. As a solution
to this problem, we used the multi-sprite approach to partition the video
sequence into sub-sequences and to synthesize a separate background sprite
for each of these sub-sequences. This means that we cannot apply the above
calibration algorithm directly, because the transforms of two views can be
relative to different background sprites.

To obtain inter-image transformations for views that were assigned to
different sprites, we use the approach described in Section 12.1.2. While
the original multi-sprite algorithm computed motion parameters only be-
tween the current view and the sprite to which they were assigned to, we
extend this concept by computing also the transforms to the previous or
successive sprites for the first and last frame of a sub-sequence, respectively.
These transforms allow to chain the transformations between sprites to al-
low for large rotation angles. However, note that the number of chained
transforms is significantly less than when chaining transforms between suc-
cessive images. Typically, we have only about five sprites, which usually
cover up to several thousands of frames. Hence, the error accumulation is
neglegible. Moreover, notice that the motion parameters are obtained with
the long-term motion estimator, such that the parameters have a-priori a
higher accuracy.

To adapt our calibration algorithm to the more general multi-sprite
approach, we explore how Eq. (12.23) is implemented in practice. Because
our long-term motion estimator gives sprite-to-image transforms Hi, we
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write Eq. (12.23) as

ω(i) =
(
HiH−1

r

)−>
ω(r)

(
HiH−1

r

)−1 = H−>
i H>

r ω(r)HrH−1
i , (12.30)

provided that both images i and r are assigned to the same sprite. If they
are not on the same sprite, the inter-sprite transforms have to be used as
demonstrated in Eq. (12.6) to span several sprites.

12.4 Non-linear camera calibration

In this section, we apply a bundle-adjustment algorithm [187] to increase
the accuracy of the camera parameters that we obtained with the linear cal-
ibration algorithm. In the last section, we obtained the calibration in the
linear case with an overdetermined equation system comprising constraints
on the intrinsic parameters matrix. This equation system was solved in the
least-squares sense. Hence, the quantity that is minimized is a physically
meaningless algebraic error. This algebraic error is view-dependent and
biased geometrically. The accuracy of the camera parameters can be in-
creased by replacing this semantical weak error definition with a physically
meaningful measure like Euclidean distance. The non-linear estimation
algorithm resulting from it has the advantage that it allows to integrate
additional constraints, which are difficult to express in the linear parame-
ter estimation. For example, if the principal point is known, it is easy to
integrate this constraint in the optimization.

The non-linear calibration uses also the high-accuracy motion param-
eters that we computed in the long-term motion estimation. Let us first
consider the case in which we have only one sprite. For each view i, there is
one set of motion parameters Hi, mapping coordinates on the sprite to co-
ordinates in image i. This transformation can be decomposed in a sequence
of physically motivated transformations as

Hi = Ki ·Ri · K̂−1. (12.31)

If the sprite is constructed based on an input view r as reference coordinate
system, then K̂ will equal the intrinsic parameters Kr of view r. However,
since our sprite construction algorithm can change the focal length for the
sprite plane (see Section 6.5.4), we use an independent set of parameters
for the sprite projection.

The purpose of the camera-calibration algorithm is to factorize the mo-
tion parameters Hi to the intrinsic parameters Ki and the rotations Ri.
Usually, it will not be possible to find an exact solution, so that a solu-
tion minimizing some error function is desired. In our algorithm, we use
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the backprojection error of the four image corners on the sprite plane. To
compute this, we project the image corners onto the sprite plane using
the estimated transform parameters of the global motion estimation, and
also using the current estimate of the physically camera parameters. The
Euclidean distance between both defines the backprojection error.

More precisely, a pixel p on view i is projected to the sprite position
with the measured motion parameters Hi according to

p̆ = H−1
i p. (12.32)

Similarly, we project the same pixel onto the sprite position using the cur-
rent estimate of the physical camera parameters,

p′ = K̂RiK−1
i p. (12.33)

With d(·, ·) denoting Euclidean distance, we define the error of position p in
view i as the squared distance between both parameterizations (Fig. 12.6),

ei(p) = d(p̆,p′)2. (12.34)

The total error E for all parameters is then simply the sum over all views
i and corner positions n, thus

E =
∑

i

4∑
n=1

d(H−1
i p(n) , K̂RiK−1

i p(n)) = d(p̆(n)
i ,p′(n)

i ), (12.35)

where p(n) denotes the n-th corner position of an input image.

12.4.1 Parameterization

The parameters to be estimated are the intrinsic camera parameters and
the camera rotation. The intrinsic parameters for a camera comprise the
variable focal length fi, and the principal point ox, oy which is assumed
unknown but constant during the observed sequence3. Additionally, we
include parameters for the projection into the sprite coordinate system,
comprising the focal length f̂ and the principal point ôx, ôy in the sprite.

For the subsequent optimization, we need a suitable parameterization
of the camera rotation. A camera rotation has three free parameters, but a
rotation matrix as used previously has nine parameters. Compared to the
three free parameters, this is an unnecessary over-parameterization. An

3Note that the constant principal-point constraint was not applied in the linear cali-
bration algorithm.
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Figure 12.6: The corners of an input image are projected into the sprite co-
ordinate system, once with the global motion parameters and
once with the physical camera parameters. The Euclidean dis-
tance between the respective corner positions define the error
function for the physical camera parameters.

alternative parameterization with Euler angles has only three parameters,
but it shows singularities (see Section 2.4.2) that lead to problems in the
optimization [91]. It has been shown [164] that better numerical stability
(see Section 2.4.2) can be obtained with a parameterization using quater-
nions. A quaternion q can be associated with a rotation, when ||q|| = 1 (see
Section 2.4.2). We parameterize rotations using the four components of the
quaternion, without imposing the unit norm constraint. For all transform
calculations, the quaternion parameters are converted to a rotation matrix.
In this conversion, the quaternion parameters are normalized to unit norm.
Effectively, this means that we have one additional degree of freedom in
the optimization that has no effect on the error.

All camera parameters are stacked into a parameter vector x. In par-
ticular, each image has a quaternion for the rotation and the focal length
parameter. Since the sprite plane serves as the reference, no rotation pa-
rameters are estimated for it. Hence, we only estimate the focal length and
the principal point of the sprite plane. The parameter vector x becomes

x = (q1, f1, q2, f2, . . . , qN , fN , ox, oy︸ ︷︷ ︸
image view parameters

, f̂ , ôx, ôy︸ ︷︷ ︸
sprite param.

)>. (12.36)

With the current vector of physical camera parameters x, we can compute
the projection of the four corners of each input image onto the sprite. Let
us collect the coordinates of these projections in a data vector

y = (p′(1)

1
,p′(2)

1
,p′(3)

1
,p′(4)

1︸ ︷︷ ︸
first view

, . . . ,p′(1)
N

,p′(2)

N
,p′(3)

N
,p′(4)

N︸ ︷︷ ︸
view N

)>, (12.37)
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where p(n)
i denotes the inhomogeneous coordinates of the projection of the

nth image corner in view i. We can also generate a measurement data
vector y̆ of similar layout, for which we obtain the projections of the image
corners from the motion parameters Hi:

y̆ = (p̆(1)
1

, p̆(2)
1

, p̆(3)
1

, p̆(4)
1︸ ︷︷ ︸

first view

, . . . , p̆(1)
N

, p̆(2)
N

, p̆(3)
N

, p̆(4)
N︸ ︷︷ ︸

view N

)>, (12.38)

These three vectors (parameters x, measured point positions y, and point
positions y̆ for the parameter estimate) will be crucial in the optimization
process. In that process, we will optimize the parameter vector x such
that the sum of squared Euclidean distances between the projected corner
coordinates is minimized. Hence, computing

min
x

N∑
i=1

4∑
n=1

d(p′(n)
i , p̆(n)

i )2 = min
x
||y̆ − y||2 (12.39)

provides the solution vector x with the camera-calibration parameters.

12.4.2 Generalizing to multi-sprites

For a possible extension to arbitrary camera rotations, like in the linear cal-
ibration algorithm, we have to generalize the algorithm to multiple sprites.
At first glance, it seems that a solution could be to process each sprite
individually and then concatenate the estimated transforms. However, this
approach cannot work in cases where some sprites are generated only from
a camera-zoom operation (for example, see Figure 6.17 or 6.22(d)). As we
have already seen in the beginning of this chapter, the focal length can
only be estimated if there is some camera rotation present in the sequence.
Although it is not possible to estimate the focal lengths for the images of
a sprite that only shows camera zoom, we can solve it when we use the
information about the focal lengths from a neighboring sprite. Since the
last and first images of every sprite are also projected to the neighboring
sprite, and because the focal length of this image is obviously the same in
both projections, we can use those images as the connection that helps in
the parameter estimation for the sprite showing only the zoom operation.
Similar cases also occur if the estimation in some sprites are difficult to
obtain because the rotation angle is small, or when there are only a small
number of frames in the sprite.

Hence, to provide an approach that works in the general case, we have
to jointly estimate the parameters of all sprites simultaneously. To achieve
this, we build a parameter vector with the following conventions.
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• The image rotations are defined relative to the sprite to which they are
assigned to. This makes the estimation for these images independent
from the location of the other sprite planes.

• Rotations between sprites are parameterized as the rotation between
two consecutive sprites and not to a global reference. This reduces
the interdependency between parameters and leads to a faster con-
vergence in the optimization.

• Backprojection costs are calculated between images and the sprite to
which they are assigned, but additionally, the first and last frame of
each frame is also projected onto the previous and successive sprites,
respectively.

The parameters and costs that are involved in the computations are il-
lustrated in Figures 12.7 and 12.8. All the image and sprite-calibration
parameters are again stacked into an extended parameter vector x such
that we construct a vector of the following layout:

x =(q1, f1, q2, f2, . . . , qN , fN , ox, oy︸ ︷︷ ︸
image-view parameters

,

f̂1, ôx;1, ôy;1, q̂2, f̂2, ôx;2, ôy;2, . . . , q̂M , f̂M , ôx;M , ôy;M︸ ︷︷ ︸
sprite-view parameters

)>.
(12.40)

Note that every sprite has its own estimate of the principal point, but that
all input images are assumed to have to same principal point.

The measurement vectors y and y̆ are constructed similarly as before,
except that the corners of the first and last image of every sprite appear
twice in these vectors, since they are projected onto two different sprites
(Fig. 12.8). Furthermore, because the points are projected onto different
sprites, the coordinates in these vectors are not expressed in the same coor-
dinate system, but each position in the vector is relative to the correspond-
ing sprite coordinate system. This does not change the error definition,
which remains E = ||y − y̆||2.

12.4.3 Optimization algorithm

For the optimization, we apply the Levenberg-Marquardt (LM) algorithm
[151]. This algorithm is a combination of a steepest gradient-descent al-
gorithm and a Gauss-Newton method. It attempts to find the parameter
vector x, for which the data vector y is closest to the observed measure-
ment vector y̆ in terms of minimizing (y̆ − y)>(y̆ − y). Starting with a
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views that have been projected
onto two sprites

y
T=( ...sprite 1... , ....sprite 2... , ...sprite 3...)

xT
=( .... camera parameters ... , sprite param. )

Figure 12.9: Non-zero entries of the Jacobian matrix J.

first estimate of the parameter vector x, the LM algorithm iteratively up-
dates the parameter vector, where a steepest gradient-descent is carried out
while the current estimate is far from the optimum. When the optimum is
approached, the algorithm operates more like a Gauss-Newton algorithm.
In each step, the LM algorithm updates the parameter vector x with an
update δx such that

(J>J + λI)δx = −J>(y̆ − y) (12.41)

where J is the Jacobian matrix ∂y/∂x. The parameter λ is controlled by
the LM algorithm to switch between steepest-descent (large λ) and Gauss-
Newton (λ = 0) behaviour.

Since the camera parameters for a view i only have influence on the
position of the four corner points of that view, the Jacobian matrix J is very
sparse (see Fig. 12.9). Therefore, an optimized implementation [187, 117]
exploiting this spare matrix structure can be used to solve Eq. (12.41).

The non-linear optimization algorithm is initialized with the result of
the linear estimation. This leads to a fast convergence in only a few iter-
ations. We have observed that the non-linear optimization also converges
reliably when it is initialized with zero rotations and a common value for the
focal lengths and principal points. However, this requires more iterations
and leads to a higher total computational complexity.

12.4.4 Recovering rotation angles

For the final algorithm output, we desire to express the output in angles of
an Euler rotation sequence. This requires that we first express all rotations
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relative to a common reference view. Second, we have to convert the inter-
nal quaternion representaton of rotations to the Euler-angle representation.

After selecting a reference view, the rotations to every other view can
be determined easily by a concatenation of rotations. This can be done
directly with the quaternion representation since the multiplicaton of two
quaternions qbqa gives the joint rotation, composed of first qa and then qb.

Using the technique described in Section 2.4.2, it is possible to obtain
Euler rotation angles from a rotation matrix. Instead of first converting the
representation to a rotation matrix using Eq. (2.22) and then extracting
the angles, the steps can be combined and we compute the angles directly
from the quaternion representation as

sinα = 2qwqx − 2qyqz , (12.42)

tanβ =
−2qxqz − 2qwqy

1− 2q2
x − 2q2

y

, tan γ =
2qxqy + 2qwqz

1− 2q2
x − 2q2

y

.

Note that these angles are for the rotation sequence Ry(β)Rx(α)Rz(γ).
The angles are different for other rotation sequences.

12.5 Experimental results

We have applied our algorithm to a number of sequences with varying com-
plexity of camera motion. For each of the sequences, the camera rotations
and the focal lengths have been extracted. The rotations are further fac-
torized to the Euler angles.

Let us first consider the roma sequence, which consists of a pure hori-
zontal camera pan. Figure 12.10 shows the extracted rotation angles. Since
the rotation angle is limited, no multi-sprite partitioning was required. The
figure depicts the results of both the linear calibration step and the non-
linear refinement. The estimated focal length was almost constant through-
out the sequence, with a measured focal length of 593 pixels for the linear
algorithm and 617 pixels for the non-linear optimization. The rotation an-
gles are very close for both estimation algorithms. The difference is mainly
a scaling factor that is due to the different focal length estimate.

For visualization of the results, we have designed an OpenGL-based
program that places the input frames of the sequence at their virtual 3-D
position, using the estimated camera calibration parameters. Figure 12.11
depicts two views onto the 3-D positioned images of the roma sequence. It
is visible that the input frames align nicely into a panoramic view, which
shows that the estimation accuracy is good.

In Figures 12.12 and 12.13, we have repeated the same experiment for
the well-known stefan test-sequence. Since the stefan sequence comprises



12.5. Experimental results 383

-5

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0  50  100  150  200  250

horizontal pan
right

leftro
ta

tio
n 

an
gl

e 
[d

eg
re

es
]

frame number

linear estimate

non-linear estimate

Figure 12.10: Calibration result for the roma sequence, which is a pure hor-
izontal pan.

a wide field of view, a multi-sprite partitioning is required. If we compare
the linear estimation with the non-linear estimation, we can observe the
same behaviour as for the roma sequence. The estimates of the rotation
angles are similar except for a scaling factor, which again is a result of the
differing focal length estimates.

Finally, we have applied the calibration algorithm to sequences with
very complex camera motion. We show here the results for the rail and the
nature-2 sequence, comprising three and seven sprites, respectively. The
corresponding estimated camera-rotation parameters are depicted in Fig-
ure 12.16 and Figure 12.14. The provided results do correspond smoothly
with the camera motion in the scene.

Experiments with several other sequences reveal that the accuracy of the
focal length estimate is numerically more sensitive than the rotation angles.
The linear algorithm alone already succeeds in computing a good estimate
of the angles. However, since the amplitude of the angles is connected to
the focal length, the amplitude of the angles can slightly differ in the result
of the linear algorithm.

To evaluate the robustness of convergence for the non-linear optimiza-
tion algorithm, we have made the experiment to omit the initialization of
the parameters based on the result of the linear estimation algorithm. In-
stead, we started with zero rotation angles and the principal points at the
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(a) Front side.

(b) Back side.

Figure 12.11: Images from the roma sequence, placed at their virtual image
planes. The cube indicates the camera position. It is aligned
to the camera viewing direction of the first frame, which is at
the left side of the pan.
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image centers. The focal length has been set to the length of the image
diagonal. Even with this simple initialization, the non-linear optimization
converged reliably to the same solution for all our test sequences.

So far, the accuracy of the obtained parameters could only be evaluated
by visual inspection. We have used our 3-D visualization to display a virtual
view from the camera position. At this position, all input images should
fit together without seams between the images. Since this is achieved, we
conjecture that the estimated parameters have a high accuracy. Evaluation
of the absolute estimation accuracy requires the ground-truth value for the
camera pose, which we do not have available yet.

12.6 Conclusions

This chapter has described a new algorithm to estimate camera calibration
parameters from a video sequence. The output parameters are expressed in
the physically meaningful units of camera rotation-angles and the varying
focal length.

The difference to the previous algorithm is that it is not required to have
the input sequence itself as input, since our algorithm operats directly on
the projective motion parameters as used in the MPEG-4 sprite coding or
in the MPEG-7 parametric-motion descriptor. Hence, the algorithm can be
used e.g. to transform the parametric-motion descriptors of MPEG-7 to the
physical camera-motion descriptors. Moreover, as a potential application,
the algorithm can be used in an MPEG-4 decoder to derive the camera
motion from the camera-motion parameters and use these e.g. to add
virtual 3-D objects into the scene.

Our algorithm consists of two steps, where the first part determines a
first estimate of the camera parameters. The accuracy of this estimate is
improved in an optional second step. Because the calibration algorithm is
combined with the multi-sprite motion-estimation approach, it is possible
to carry out the estimation for general camera motion without limitation
on the observable field-of-view.

We have observed that especially the camera rotation-angles obtained in
the first step are already closely following the camera motion. The relative
change of focal length is also reproduced accurately, but the absolute value
can differ from the results obtained with the refinement step.

Hence, for applications that do not require absolute values for the cam-
era parameters (like video-content analysis), applying only the first step is
already sufficient. The second step is only required if the application de-
pends on an accurate estimate of the focal length, such as, e.g., augmented-
reality applications.
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Figure 12.12: Camera-calibration results for the stefan sequence. The dotted
vertical lines denote the multi-sprite boundaries. Note that the
last sprite contains only a few frames and shows no camera
rotation. Even in this case, the focal length of all frames could
be estimated successfully.
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(a)

(b)

(c)

Figure 12.13: Illustration of the virtual image planes for the stefan sequence
(every 2nd frame is shown). Different colors of the frames
borders indicate the sprites to which the frames were assigned.
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Figure 12.14: 3-D position of image planes for the nature-2 sequence (every
10th frame is shown).

(a) Sprite 3. (b) Sprite 2.

(c) Sprite 4. (d) Sprite 7 (last). (e) Sprite 1 (first).

Figure 12.15: Background sprites for nature-2 sequence. Sprites 5 and 6 are
not shown
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(a) Nature-2 sequence.
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Figure 12.16: Camera calibration for two sequences with complicated camera
motion.



390 Chapter 12. Estimation of Physical Camera Parameters



Chapter13
Camera Calibration for the

Analysis of Sport Videos

In the previous chapters, the projective motion model was used to describe
rotational camera motion in video sequences. This chapter discusses the ap-
plication of the same motion model to establish a connection between motion
in the video sequence and a fixed real-world coordinate system. Specifically,
the discussion concentrates on camera calibration for the analysis of sport
videos. For the in-depth analysis of sports like tennis or soccer, it is re-
quired to know the positions of the players on the tennis court or soccer
field. To obtain these positions, it is necessary to establish the transfor-
mation between image coordinates and real-world coordinates. Since the
ground of the sport field is flat, the geometric mapping can be described
again with a projective transform. However, in the special case of sport
analysis, a model of the playing field is employed to define the real-world
reference coordinate system. This chapter describes an algorithm that lo-
calize a user-defined geometric model of a sport field in an input image in
order to find the geometric transformation between both. The court model
used in the algorithm can be switched to adapt the algorithm to a variety of
different sports like e.g. tennis, soccer, badminton, or volleyball.

There are no such things as applied sciences,
only applications of science.
(Louis Pasteur)

391
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13.1 Introduction and previous work

Automatic analysis of sport videos is an interesting application of content
analysis, since it enables new applications like automatic summarization
of the highlight scenes of a long sport event, or virtual-view generation
from arbitrary view-points. Moreover, it also enables to analyze a game
with automatically deduced game statistics or to compute statistics about
the performance or strategy of the players. This may help team coaches to
determine strengths and weaknesses of players, or it can be used to entertain
the viewer with additional information. For sports played on a court1,
player positions are semantically important because the player movement
or the static player configuration provides information about the current
action [155, 16, 42, 198, 137]. Clearly, for the analysis of player positions,
it is required to compute the positions of the players on the court in a real-
world coordinate system, rather than their positions in the image. Hence,
the real-world positions should be recovered from the image coordinates.
For this purpose, the camera calibration parameters have to be estimated
from the video input to determine the coordinate-system mapping.

Previous work on camera calibration for sport analysis is based on ad-
hoc algorithms that were tailored to a specific kind of sport. Sudhir et al.
[176] describe a calibration algorithm for tennis courts, using a simplified
camera model that only considers the camera tilt angle, the camera distance
from the court, and the focal length. Moreover, the algorithm requires that
the lower part of the court is non-occluded and a starting position for the
search has to be provided. A different approach for tennis-court calibration
has been proposed by Calvo et al. [16]. They apply a Hough transform on
the Sobel filter output to find the court lines. Assigning the lines to the
court model is implemented with a set of heuristics. These impose tight
restrictions on the sequences that can be processed. For example, it is as-
sumed that the two lines at the net are the two lines with the most votes in
the Hough transform. But in most tennis videos, the net line is not marked
on the court at all. In [102, 195] a more robust detection of the court (for
soccer videos) is described, but it requires a computationally complex ini-
tialization using an exhaustive search through the parameter space. Ekin
and Tekalp [42] propose to use a Hough transform to indicate shots showing
the goal area in soccer videos. However, no camera-calibration parameters
are obtained. A camera-calibration algorithm for soccer is described by
Yamada et al. [198]. The camera model includes two rotation axes, focal
length, and the camera position. However, the camera position must be

1We use the word court as an umbrella term for playfields with clearly defined geo-
metric marks, like tennis courts, soccer fields, volleyball courts.
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Figure 13.1: The geometric specification of a tennis court. Coordinates are
specified in units of feet.

known as it is not estimated by the algorithm. This requires tedious man-
ual measurements to be carried out prior to applying the algorithm. The
search for the remaining three parameters is carried out using a search over
the full parameter space. Especially for the first frame after a cut, when
the playing-field location is unknown, this results in a high computational
cost. Kim and Hong [102] also propose a calibration algorithm for soccer
games based on a pan-tilt camera model. The interframe transformation
is estimated by identifying corresponding lines between frames and using
a nonlinear approach to determine the homography matrix that minimizes
the Euclidean distance between line pairs. Tracking of the camera param-
eters is used to obtain a good initialization for the parameter optimization
in subsequent frames.

In this chapter, we describe a more generic camera calibration algorithm
that can be applied to every sport where the court contains a sufficient num-
ber of straight lines (tennis, football, volleyball, etc.). The configuration of
court lines can be specified by the user and integrated into the algorithm
as a court model (see Fig. 13.1). Based on this model, our algorithm com-
putes the camera parameters for an eight-parameter perspective model. To
obtain the transformation parameters, a set of features at well-known po-
sitions in the model have to be identified in the image. By establishing
correspondences between the detected features and their position in the
model, the transform parameters can be obtained.

Our algorithm was designed to be robust against cases where large
parts of the court are occluded or out of view. Moreover, the algorithm
is optimized for computational efficiency, such that calibration parameters
can be determined in real-time. The next two sections give an overview of
the algorithm and its processing steps. The successive sections then explain
every processing step in more detail. Finally, example results are provided.
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Figure 13.2: The transformation between the court ground-plane and the
image plane is a homography.

13.2 Calibration-algorithm principle

The task of a camera-calibration system is to provide the geometric trans-
formation that maps points in the image to real-world coordinates on the
sport court. Since both the court and the displayed image are planar, this
is a plane-to-plane transformation. Without loss of generality, we can place
the court ground plane at z = 0 and obtain the by geometric transformation

p′ = Hp =

f 0 ox

0 f oy

0 0 1


︸ ︷︷ ︸
internal camera

parameters

r00 r01 r02 tx
r10 r11 r12 ty
r20 r21 r22 tz


︸ ︷︷ ︸

camera rotation,

translation


x
y

z = 0
1

 , (13.1)

which is a homography, represented by the 3× 3 transformation matrix H
(Fig. 13.2). This matrix transforms a point p = (x, y, w)> in real-world
coordinates to image coordinates p′ = (x′, y′, w′)>.

Since H is scaling invariant, eight free parameters have to be deter-
mined. They can be calculated from four points whose positions are both
known in the court model and in the image. Note that these four points
need not be fixed, but should rather be selected on a case-by-case basis, as
some points may be occluded in some views. Instead of using point fea-
tures directly, we base our calibration algorithm on lines, because detecting
the accurate position of a specific point on a court is more difficult than
estimating the position of line segments. Moreover, the detection of lines
is more robust, since they are hardly occluded completely.

The basic approach of the algorithm is to extract a number of straight
lines from the input image, providing a set of court-line candidates. Using
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a combinatorial search, line candidates are assigned to lines in the court
model. For each assignment, the corresponding geometric transformation
can be determined. This transformation is used to project the complete
court model back to image coordinates. Each transformation is rated by
measuring the match between the back-projected model lines and the court
lines in the input image. The transformation with the best match is selected
as the final solution.

13.3 Overview of the calibration system

The complete camera calibration system is depicted in Figure 13.3. It
comprises the following four main algorithm steps.

1. Court-line pixel detection. This step identifies the pixels that
belong to court lines. Since court lines are usually white or bright-
colored, this step is essentially a white-pixel detector. However, white
pixels can also appear on other objects like the players clothes. For
this reason, additional constraints are imposed on the court-pixel can-
didates. White non-court pixels are sorted out with a cascade of filters
with increasing complexity.

2. Line-parameter estimation. Starting with the detected white pix-
els, line parameters are extracted. For doing so, we apply a RANSAC-
based line detector, motivated by [28], which hypothesizes a line using
two randomly selected points. If the hypothesis is verified, all points
along the line are removed and the algorithm is repeated to extract
the remaining dominant lines in the image. We also determine the
extent of the line, to obtain line segments instead of infinite lines.
Knowing the end points of the lines enables a faster model fitting as
only two lines are required for the calibration instead of four.

3. Model fitting. After a set of lines has been extracted from the im-
age, we need to know which line in the image corresponds to which
line in the court model. It may also be the case that lines are detected
other than those present in the model or that some of the lines were
not detected. This assignment is obtained with a combinatorial opti-
mization, in which different configurations are evaluated. We provide
two combinatorial searches, using either a pair of line segments, or
four infinite lines. The first algorithm using line segments is faster,
but not applicable to all situations. The second search using infinite
lines is more robust to occlusions, but it is slower. Consequently, it
is only applied when the first search failed.
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Figure 13.3: Flowchart of the court-tracking algorithm. At the first frame,
the court location has to be initialized. For subsequent frames,
we can use the previous approximate court location and adapt
it to the new frame using a fast local search.

4. Tracking. When the initial position of the court is known, the com-
putation in successive frames can be carried out more efficiently with
a local search. We use a gradient-descent search to minimize the
distance of the court lines to the white pixels in the image.

At the algorithm start and after shot boundaries, Steps 1-3 are carried out
to find the initial location of the court in the first image. For the subsequent
frames, only Steps 1 and 4 are applied, since the court position will be close
to the old position. Because Steps 1 and 4 are computationally cheap, we
achieve a high tracking speed.

An example intermediate step of the model fitting is depicted in Fig-
ure 13.4. In this example, five lines (l′1, . . . , l′5) have been detected in the
input image, and for four of these lines, their corresponding lines in the
court model have been identified (l′1 ↔ l1, l′2 ↔ l2, l′3 ↔ l3, l′4 ↔ l4). Com-
puting pairwise intersection points of the lines results in four independent
feature-points in the image as well as the model. From these four point
pairs, the homography H is computed with Eq. (3.2). Note that the in-
tersection points themselves do not have to lie inside the image area, since
their position can be computed from the line parameters. Moreover, if we
represent all visible line segments in the image as infinite lines, we typi-
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Figure 13.4: The pairwise line intersections define four points that are used
for calibration. The intersection points of the lines l1, l3 and
l2, l4 provide virtual points that are not directly observable.
However, they can still be used for calibration.

cally obtain additional virtual line intersections that can also be used as
calibration points.

The most computation time is spent in the combinatorial search through
all possible geometric configurations in the model-fitting step. In order
to reduce this computation time, we employ two fitting algorithms. The
first, fast method searches for the correspondences of two line segments.
With N detected lines in the input and M lines in the model, O(N2M2)
configurations have to be searched. The second, robust method searches
for the correspondences of four lines. This algorithm is more robust to
occlusions and partial court views, but requires O(N4M4) configurations
to be searched. The more complex robust fitting method is only applied if
the fast fitting was not successful.

13.4 Court-line pixel detection

The processing of each frame starts with detecting the pixels of the court
lines. In all cases that we observed, court lines have a white color. Unfor-
tunately, court lines are usually not the only white objects in the images.
Advertisment logos, parts of the stadium, the audience, or even the play-
ers themselves can have white-colored parts. Especially in tennis, white is
the most common clothing color. If all white pixels would be classified as
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Figure 13.5: (a) Schematic, magnified view of part of an input image con-
taining a court line. Each square represents one pixel. The
central pixel is only classified as court-line pixel if both pixels
marked ’H’ or both pixels marked ’V’ are darker than the cen-
tral pixel. In the shown case, only the ’V’ pixels will be darker.
(b) Corresponding white-pixel classification result. Note that
most of the player pixels are not classified as court-line can-
didates even though the player is dressed in white.

court-line pixels, the subsequent line-detection algorithm would create too
many line candidates, thereby making the fitting of the court model time
consuming and unreliable. Therefore, additional criteria are needed to fur-
ther constrain the set of court-line pixels. Simultaneously, a fast court-pixel
detection algorithm is desired. In order to achieve accurate court-pixel de-
tection with high computational speed, we apply several filters of increasing
complexity, such that the more complex filters are only applied to the re-
maining court-pixel candidates. We apply filters that check the following
assumptions about court lines:

• court lines are bright (white or yellow),

• lines have a limited width, and

• court-lines are in non-textured areas.

13.4.1 Filter 1: luminance threshold

The first filter is a simple luminance threshold that classifies each pixel
(x, y) as court-line pixel candidate (l(x, y) = 1) or not (l(x, y) = 0) based
on its luminance value I(x, y). We set l(x, y) = 1 iff I(x, y) ≥ σl. In the
actual implementation, we store the pixels for which l(x, y) = 1 in a set,
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such that the successive filters have direct access to the white pixels and
the image needs only be scanned once. The luminance threshold was set to
σl = 128 and experiments showed that this setting applies well to a large
variety of sequences with different illumination conditions and court colors.

13.4.2 Filter 2: non-flat regions

Large regions of uniform, bright color passing the first filter impose dif-
ficulties, since the successive line estimator will also detect lines in these
large, uniform regions. However, we desire that the court-line pixel detec-
tor only selects those pixels that are part of the court lines. Based on the
assumption that court lines are typically not wider than τ pixels (τ = 8 in
our set-up), our second filter checks if the brightness levels at a distance of
τ pixels from the four sides of the candidate pixel are considerably darker
than the candidate pixel. Only if they are, the candidate pixel is classified
as a white pixel (Figure 13.5(a)). This filter reduces the set of candidates
l(x, y) to a new set l′(x, y) using

l′(x, y) =



1 l(x, y) = 1 ∧
I(x, y)− I(x− τ, y) > σd ∧
I(x, y)− I(x + τ, y) > σd,

1 l(x, y) = 1 ∧
I(x, y)− I(x, y − τ) > σd ∧
I(x, y)− I(x, y + τ) > σd,

0 else.

(13.2)

In this equation, the first line corresponds to the test if darker pixels can be
found at some horizontal distance, assuming that the court line is mostly
vertical. The second line performs the analogous test in the vertical di-
rection, assuming that the court line is almost horizontal. The minimum
brightness difference was set to σd = 20. Figure 13.5(b) shows a sample
result of the court-pixel detector after the second filter. It is clearly visi-
ble that the additional constraint prevents that the player pixels are also
marked as court-line candidates despite the player’s white clothes.

13.4.3 Filter 3: linear structure

A further problem can occur with small white letters in logos, white areas in
the stadium, or spectators dressed with white clothes, since these pixels in
fine textured areas may still pass the previous filters. To prevent that these
areas cause too many false detections in the line-extraction step, we exclude
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(a) Without line-structure constraint. (b) Including line-structure con-
straint.

Figure 13.6: Detected white pixels with and without applying the line-
structure constraint. (a) Many false positives are found in
the textured areas. (b) The number of false detections is re-
duced by adding the constraint that court-line pixel candidates
are only allowed if the pixel neighborhood shows a linear struc-
ture.

white pixels that are in textured regions. Textured regions are recognized
by observing the two eigenvalues of the structure tensor J, computed over
a small window of size 2b + 1 around each candidate pixel (px, py). The
structure tensor is defined as (see [96])

J =
px+b∑

x=px−b

py+b∑
y=py−b

∇I(x, y) · (∇I(x, y))T . (13.3)

If both eigenvalues of the matrix J, called λ1, λ2 (λ1 ≥ λ2) are large, it
indicates a two-dimensional texture area. If one eigenvalue is large and the
other is small, image gradients are oriented along a common axis. On the
straight court lines, the latter case will apply, which can be exploited to
define an additional rule that removes white pixels if λ1 > 4λ2. Results of
the proposed structure constraint can be seen in Fig. 13.6.

This filter is significantly more computationally expensive than the pre-
vious filters. For this reason, we only apply this filter at the initialization
stage in the first frame. In the subsequent tracking steps, the white-texture
pixels do not affect the solution, since they are usually too far away from
the court area to distract the solution from the (correct) local optimum. In
the flow-graph of Figure 13.3, the court-line pixel detector without Filter 3
is indicated as abbreviated line-pixel detector.
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(a) Lines detected by the Hough
transform.

(b) Lines after parameter refinement
and duplicate removal.

Figure 13.7: Visualization of Hough-transform based court-line candidate
extraction. (a) Thick or slightly bent lines in the input lead
to a bundle of possible lines (e.g., observe that the bent net
produces many candidates). (b) Improved result after least-
squares fitting and duplicate removal.

13.5 Line-parameter estimation

13.5.1 Line detection with the Hough transform

Once the set of court-line pixels is obtained, we extract parametric equa-
tions for the lines. In our first implementation [65], we have used a Hough
transformation to detect lines and determine the line parameters. However,
we observed that the Hough transform has the disadvantage that thick lines
in the input image usually result in a bundle of detected lines, which all lie
closely together (Fig. 13.7(a)). Another disadvantage of the Hough trans-
form is that the accuracy of the determined line parameters is depending
on the quantization accuracy of the accumulator matrix. This problem
cannot be easily solved by decreasing the accumulator matrix quantization
step-size, since this would spread the inexact parameter samples for an in-
put line over a larger area in the accumulator matrix, thereby making the
detection unreliable.

We have reduced the above-mentioned problems by computing a least-
squares fit to the pixels close to the detected line. Furthermore, lines whose
parameters are almost equal are considered duplicates of each other and
only one of them is kept. With these modifications, lines could be detected
robustly (see Fig. 13.7(b)).
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(a) Sample with small support. (b) Sample with large support.

Figure 13.8: Extraction of lines with RANSAC. Two court-line pixels are
randomly selected and a line through the two points is hypoth-
esized. The support (number of white pixels along the line) is
measured and the hypothesis with largest support is selected.

13.5.2 Line detection with RANSAC

Even though the line detection based on the Hough transform with the post-
processing steps could achieve robust detection results, the computation
speed of the Hough transform was not sufficient for a real-time implemen-
tation. For this reason, we replaced the line detection with a RANSAC-like
approach.

RANSAC is a randomized algorithm that hypothesizes a set of model
parameters and evaluates the quality of the parameters. After several hy-
potheses are evaluated, the best one is chosen (see Fig. 13.8). More specif-
ically, we hypothesize a line by randomly selecting two court-line pixels
p = (px, py),q = (qx, qy). From these two points, we determine the param-
eters a,b for the line model{

y = a · x + b if |px − qx| ≥ |py − qy|,
x = a · y + b if |px − qx| < |py − qy|.

(13.4)

The advantage of this line model is that it does not degenerate for vertical
lines (infinite slope) and that it enables a fast approximation to calculate
the distance of a point to the line. We define the approximate distance
d̃(g, x′, y′) between a point (x′, y′) and the line g as

d̃(g, x′, y′) =

{
|a · x′ + b− y′| if |px − qx| ≥ |py − qy|,
|a · y′ + b− x′| if |px − qx| < |py − qy|.

(13.5)
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For each line hypothesis, we compute a score s(g) by
s(g) =

∑
(x′,y′)∈P

max(τ − d̃(g, x′, y′), 0), (13.6)

where P is the set of court-line pixels and τ is the line width from Sec-
tion 13.4.2. This score effectively computes the support of a line hypothesis
as the number of white pixels close to the line, weighted with their distance
to the line. The score and the line parameters are stored and the process
is repeated until about 25 hypotheses are generated randomly. At the end,
the hypothesis with the highest score is selected.

The described process detects the most dominant line in the data-set.
Subsequently, the start and end position of the line segment are determined
as described in the next section and the line parameters are further refined
with a least-squares approximation to the court-line pixels in the vicinity.
Finally, the court-line pixels along the line segment are removed from the
data-set. The complete line-detection process is repeated several times until
no more relevant lines can be found.

This line-detection algorithm operates at about 5 ms per frame on CIF
resolution, while the original Hough-transform based algorithm required
about 180 ms (both on a 2.8 GHz Pentium-IV). Even though this com-
parison may not be completely fair as the implementation of the Hough-
transformation was less optimized for speed, we do not expect that this fast
execution time can be obtained with the Hough-transform algorithm.

13.5.3 Line-segment boundary detection

Up to now, we have obtained the line parameters, but it is not yet known
where the line segment starts and ends. Since this is valuable information
for the subsequent model-fitting process, we also compute the line segment
boundaries.

Scanning along the detected line, we obtain a sequence of L pixels pi

which are either white court-line pixels (pi = 1) or black non-court-line
pixels (pi = 0). Because of classification errors and occlusions, the data
is contaminated with noisy data. Assuming that the line segment starts
at position start and ends at position end, we define the number of errors
as the number of black pixels in the range start – end plus the number of
white pixels outside of the range (Fig. 13.9). Using this error definition, we
place the line-segment boundaries such that the error

E =
∑

i<start

pi +
∑

i>end

pi +
∑

start≤i≤end

(1− pi) (13.7)

is minimized. This optimization has a linear time complexity and can be
carried out with the following algorithm.
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(a) Pixel labels
along line are
scanned.

detected white pixels (with classification errors)

obtained line-segment boundaries

start end

pi=0 pi=1

(b) Pixel labels are separated into three ranges.

Figure 13.9: Detection of line-segment boundaries. At the marked posi-
tions, classification errors occur. The boundaries start and
end are placed to minimize the errors.

Let us first assume that the interval [start; end] is given, and that the
end position is increased by one. If the pixel at the new position is white,
the total error E is decreased by one, since this pixel is now part of the
white line segment. On the other hand, if the pixel is black, the total error
E is increased, since a black pixel is added to the white line segment. We
can cumulate this change of error by setting

c0 = 0 and ci = ci−1 +

{
−1 if pi = 1
+1 if pi = 0

(13.8)

For a fixed start position, the optimal placement of the end position is
where ci is the minimum with i ≥ start. This minimum position can be
obtained in constant time by using an array mi with indices to the minimum
ck for which k ≥ i. This array can be filled in a single pass over ci.

Since we can now compute the optimal end position for a given start
position, we only have to search for the best start position. Clearly, the
best start position must be at a first white pixel after a black pixel. Con-
sequently, we scan pi for black-to-white transitions and for each of them,
we lookup the end position in mstart. For this range, we compute E. Note
that E can also be computed in constant time by using an array storing
the cumulative number of white pixels wi = |{k ≤ i|pk = 1}| by

E = wstart−1︸ ︷︷ ︸
white pixels before segment

+ wL − wend︸ ︷︷ ︸
white pixels after segment

+

end + 1− start− (wend − wstart−1)︸ ︷︷ ︸
black pixels in segment

.
(13.9)
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(a) Input with detected lines. (b) Detected line segments S.

Figure 13.10: Example detection of lines and computation of line segment
boundaries.

The positions for which we obtain the smallest E are the desired line-
segment boundaries. We denote the set of all detected line segments as
S = {(p′i,q′i)}. An example result for a tennis input picture is shown in
Figure 13.10.

13.6 Court-model fitting

A court model consists of the lines that are drawn onto the ground to de-
fine the playfield geometry. The lines are defined in the model coordinate
system, which can be arbitrarily defined. Remember that the result of our
calibration algorithm will define a mapping between the image coordinate
system and the model coordinate system, allowing to express player posi-
tions in model (which are usually real-world) coordinates. When using the
mapping in the opposite direction, we can also mark interesting positions
in the image by specifying their real-world coordinates.

The model-fitting step determines correspondences between the de-
tected lines and the lines in the court model. Once these correspondences
are known, the homography between real-world coordinates and the image
coordinates can be computed. Searching for the best model requires a com-
binatorial search that can be computationally complex. Hence, we first try
a fast fitting approach that works in most cases, but that is not robust for
cases with large occlusions. If the fast algorithm fails, we determine the
model location with a more robust, but also more complex approach. The
following discusses these two model-fitting algorithms and a set of tests
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Figure 13.11: Fast model fitting. Two corresponding line segments are iden-
tified. The transformation parameters are calculated from the
four end points.

that are used to early reject court-model positions that cannot be correct.

13.6.1 Fast fitting method

In the fast fitting method, we find the transformation parameters by iden-
tifying two pairs of corresponding line segments between the image and
the model (Fig. 13.11). To find the best transform, we iterate through all
pairs of line segments in the image and in the model. Configurations with
three collinear points are not considered, since transformation parameters
cannot be determined from these configurations. For each configuration of
lines, we have two end points for each of the two line segments in both the
image and the model. Using these four pairs of points (pi ↔ p′i), we can
determine the homography H with Eq. (3.2).

For each parameter matrix H, we first apply some quick tests to re-
ject impossible configurations with little computational effort (see Sec-
tion 13.6.3). If the homography passes these tests, we compute the complete
model matching error Ef as

Ef =
∑

(p,q)∈M

min(d(p̂′,Hp) + d(q̂′,Hq), em)︸ ︷︷ ︸
fitting error for one segment

),

whereM is the collection of line-segments (defined by their two end points
p,q) in the court model and (p̂′, q̂′) ∈ S is the closest line segment in
the image (Fig. 13.12). The metric d(· , ·) denotes the Euclidean distance
between the two points, and the error for a line segment is bounded by a
maximum value em.

The transformation H that gives the minimum error Ef is selected as
the best transformation. This model-fitting algorithm works well if most
of the court is visible in the image, as it is mostly the case for tennis
broadcasts. For other sports like soccer or volleyball, only small parts
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Figure 13.12: Fitting cost for the fast method. The court model is back-
projected into the image coordinate system. For each model
line segment, the nearest detected line-segment is determined
(dashed) and the distance between the end points is added to
the cost. The cost is limited to em, which effectively denotes
the cost for a non-detected line.

of the court are visible at a time and the court lines are clipped at the
image boundaries. Obviously, these clipped line segments cannot be used
successfully to obtain transformation parameters. However, if parts of the
line segment are occluded by a player, our algorithm for detecting the
segment boundaries will often close these occluded ranges if they are short
compared to the total segment length.

13.6.2 Robust fitting method

If the fast model-fitting method does not yield a good solution, we start a
robust fitting algorithm that also works with large occlusions and in cases
where only a small part of the court is visible. Instead of iterating through
all configurations of two line segments, we iterate through configurations
of four lines in the image as well as in the model (Fig. 13.13). Intersect-
ing the lines gives four intersection points, and we can again compute the
transformation from these four points. Note that this algorithm also works
if the intersection point itself is outside the image or if it is occluded by a
player. Instead of computing the intersection points, we can also compute
H directly from the line parameters by using the technique of Appendix B
simply with line parameters instead of point coordinates. According to
Eq. (2.3), this results in a matrix H−>. By simply swapping image and
model-line parameters, we can furthermore remove the necessity to invert
this matrix, since we obtain directly H>.
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Figure 13.13: Robust model fitting. Four lines are used to calculate the
transformation parameters.

Evaluation of the model support

Each set of camera parameters is rated by projecting the court model onto
the source image and verifying that the model accurately covers the white
pixels. The evaluation process transforms all line segments of the model to
image coordinates according to the estimated homography matrix H. With
p′i = Hpi, each parameter set is rated by computing the matching score

∑
all model line
segments pi, pj

∑
all pixels
(x, y) on
p′ip

′
j


1 if l(x, y) = 1,

−1
2 if l(x, y) = 0,

0 if (x, y) is outside of image.

(13.10)
Each model line pipj is transformed into the image coordinates p′i,p

′
j.

This line segment is sampled at discrete positions along the line and the
evaluation value is increased by one if the pixel is a white court-line candi-
date pixel, or decreased by 0.5 if it is not. Parts of the line segment that are
not visible are not taken into account (Fig. 13.14). Non-matching pixels are
only penalized with half weight since the detection of court-line candidate
pixels is often disturbed by shadows or occlusions. After all calibration
matrices have been evaluated, the matrix with the largest matching score
is selected as the best calibration-parameter setting.

13.6.3 Fast calibration-parameter rejection test

The model-fitting step has to consider a large number of possible line con-
figurations. Whereas the computation of the transformation matrix is fast,
especially the evaluation of the fitting quality is computationally complex.
For this reason, we use several tests that allow to early reject physically
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Figure 13.14: Evaluation of model match. Each pixel that is covered by the
proposed model location contributes +1 if the pixel is a court-
line candidate (marked with bright color), −0.5 if it is not
(dark color), and 0 if the pixel lies outside the visible image
area.

impossible calibration parameters (i.e., wrong configurations) without car-
rying out the complex fitting evaluation.

Court area

The first test checks the area of the court in the image. Based on the four
corner points of the court, we determine the area of the court outline and
reject the transformation if the court area is below one eighth of the image
size.

Bounding-box aspect ratio

Since the court is always on a horizontal ground plane and it is viewed with
a non-tilted camera, the image of the court will always be perspectively
squeezed in the vertical direction. To check this, the bounding-box around
the court is computed in both the image and the model (for the model,
this is a constant). If the bounding-box in the image is taller than in the
model, the calibration parameters are rejected.

Isotropic scaling

Before we begin to describe the isotropic scaling test, let us first make the
observation that our homography matrix has eight degrees of freedom, but
the real-world image formation process has only seven. These comprise
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three for camera position, three for camera rotation, and one for focal
length. The remaining degree can be attributed to non-isotropic scaling,
which refers to unequal scaling in horizontal and vertical directions. If we
consider the individual steps of the image formation process, we get

p′i = Hpi =

f 0 ox

0 f oy

0 0 1


︸ ︷︷ ︸
internal cam-

era

parameters

r00 r01 r02 tx
r10 r11 r12 ty
r20 r21 r22 tz


︸ ︷︷ ︸

camera rotation,

translation


1 0 0 0
0 β 0 0
0 0 1 0
0 0 0 1


︸ ︷︷ ︸

non-

isotropic

scaling


x′

y′

z′ = 0
1

 ,

(13.11)
where f denotes focal length. Non-isotropic scaling is impossible in the real
world. Hence, β should be 1, and we can use this condition as a rejection
rule. To determine β from H, we first compensate the camera principal
point (ox oy), which we assume to be at the image center by multiplying an
appropriate matrix to the left side. Furthermore, we simplify the equations
by exploiting the fact that we construct the court model on the z′ = 0
plane. Consequently, we obtain1 0 −ox

0 1 −oy

0 0 1

H = H′ =

f 0 0
0 f 0
0 0 1

r00 r01 tx
r10 r11 ty
r20 r21 tz

1 0 0
0 β 0
0 0 1


=

fr00 βfr01 ftx
fr10 βfr11 fty
r20 βr21 tz

 .

(13.12)

Since the rotation matrix {rij} is known to be orthonormal, we can deduce
from the unit norm constraint (see Section 12.2.1) that

r2
00 + r2

10 + r2
20 = r2

01 + r2
11 + r2

21

h′200
f2

+
h′210
f2

+ h′220 =
h′201

β2f2
+

h′211

β2f2
+

h′221
β2

(13.13)

and from the orthogonality constraint that

r00r01 + r10r11 + r20r21 = 0
h′00h

′
01

βf2
+

h′10h
′
11

βf2
+

h′20h
′
21

β
= 0.

(13.14)
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Figure 13.15: Predicting the camera parameters for frame t+1 based on the
previously computed parameters for frames t − 1 and t. The
dotted lines indicate predicted values, whereas the solid lines
are computed from actual input data.

Finally, we get

f2 = −h′00h
′
01 + h′10h

′
11

h′20h
′
21

; β2 =
h′201 + h′211 + f2h′221

h′200 + h′210 + f2h′220

. (13.15)

Because the estimated camera parameters are not perfectly accurate and
since the calculation is numerically sensitive, the restriction on β should
not be set too tight. We only accept solutions that have 0.5 < β < 2.

13.7 Model tracking

The previous calibration algorithm only has to be applied in the bootstrap-
ping process when the first frame of a new shot is processed. For subsequent
frames, we can assume that the change in camera motion is small. This
enables the prediction of the camera parameters for the next frame. Since
the prediction provides a good first estimate of the camera parameters, a
local search can be applied to refine the camera parameters to match the
current view.

Let Ht be the camera parameters for frame t. If we know the camera
parameters for frames t and t − 1, we can predict the camera parameters
Ĥt+1 for t + 1 by (see Fig. 13.15)

Ĥt+1 = HtH−1
t−1Ht. (13.16)

The principle of the parameter refinement is to minimize the distance
of the back-projected court model to the court-line pixels in the input im-
age. To this end, white court-line pixels are extracted just as described in
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Figure 13.16: Pixel costs used during the tracking step. White pixels have
zero cost and the cost increases with increasing distance from
the white pixels. To obtain the current total cost, all pixels
along the back-projected court line-segments are added.

Section 13.4. Since we start tracking with a good first estimate of the court
location and only a narrow neighborhood is considered, the accuracy of the
white-pixel detector can be decreased in favour of faster execution. We
therefore disable the final texture filter (Section 13.4.2) during the track-
ing phase. Starting with the detected white court-line pixels, we generate a
distance map D(x, y), where each element stores the distance to the nearest
white pixel. When using the Manhattan distance, this map can be com-
puted efficiently. To further decrease computation cost, we only consider
pixels with a distance of not more than dw pixels to the nearest white pixel.
An example distance map is depicted in Figure 13.16.

The concept of the tracking algorithm is to place the court such that
the distance between its line segments and the white court-line pixels is
minimized. Similarly, we compute a cost by projecting the court model
back into the image using the predicted motion parameters. Subsequently,
the elements of D(x, y) that are covered by the line segments of the court
model are summed up. To refine the transformation parameters, we use
a Quasi-Newton algorithm to minimize this cost function. This process
converges reliably if the prediction error of the court position is less than
dw, i.e., if the predicted lines are within the valleys of the distance map
D(x, y). Also note that a simplified version of the white-pixel detector can
be used in the tracking step, since erroneously detected court-line pixels
that would have been removed by the texture filter (Section 13.4.3) have
generally no influence on the optimization.



13.8. Experiments 413

13.8 Experiments

We have tested the algorithm on 21 sequences that were recorded from
regular DVB television broadcasts or that were recorded on VHS tape and
digitized later. The video resolution was either CIF or PAL/SDTV, the
average sequence length was about 30 minutes. Five of the sequences were
soccer games, four were volleyball games, and the remaining twelve were
tennis games on different court classes (grass, clay, carpet). All algorithm
parameters were kept constant during all experiments, only the correct
court model was preselected.

Figure 13.17 shows a tennis scene onto which the court model has been
superimposed with the estimated calibration parameters. With these pa-
rameters, the input image can also be rectified to a real-world ground-plane
view. Clearly, the rectification is only valid for positions on the ground
plane. The position and height of objects above the ground (e.g., the flying
ball) cannot be extracted from this view. However, the player positions are
available, if their positions are measured at their feet, where they touch the
ground.

Figures 13.18 shows two examples, where some particularly difficult
scenes have been selected. Example 13.18(a) contains a very large shadow
on the court that darkens the image so much that most court-line pixels in
the shadow area cannot not be detected. Nevertheless, the court is detected
successfully. In picture 13.18(b), a superimposed text occludes most of the
court, such that calibration can only be carried out using the two leftmost
lines. Thus, the calibration accuracy is not sufficient for the whole court,
as can be seen in the lower right part. Because of the large occlusion and
many white pixels in the text area, the camera-parameter refinement step
cannot correct this small error.

A collection of various difficult scenes for calibration of tennis scenes
are depicted in Figure 13.19. Note that there is a variation of different
court colors and perspectives. The presented scenes show large occlusions
to examine the limits for which the algorithm still provides correct results.
For usual tennis broadcasts, the occlusions are smaller and the algorithm
shows a very high robustness.

The presented algorithm not only works for tennis videos, but it can be
adapted easily to other sports by simply exchanging the court model. In
Figure 13.20, we have applied the same algorithm to soccer and volleyball
sequences. All algorithm thresholds were kept constant and only the court
model was exchanged. For the soccer video, only scenes showing the goal-
area could be processed, since the middle part of the soccer field does not
contain enough information to carry out a full camera calibration. How-
ever, in this case, camera calibration is generally only possible if further
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constraints are imposed on the camera parameters (e.g., no change of focal
length, or known camera position).

For our test set, the algorithm can find and track the courts very reliably
if the minimum required amount of court lines (two horizontal and two
vertical lines) are clearly visible in the image. In the most common camera
angle that shows an overview of most of the court area, no false calibrations
occurred with our test set. Even in difficult scenes with strong shadows or
large occlusions, the calibration is correct for > 95% of the sequences. The
most common mis-calibration is caused in tennis shots like Fig. 13.19(b),
where the white line at the top of the net was mistakenly assigned to a court
line. On a 2.8 GHz Pentium-4 computer using CIF-resolution input videos,
the computation time for the initialization step (first frame) was between
20 ms and 35 ms, depending on the complexity of the frame. Tracking the
detected court through the sequence required 4-10 ms per frame.

13.9 Conclusions

In this chapter, a new, generic algorithm for camera calibration in sport
videos has been presented. The algorithm can obtain all eight parameters
of a perspective motion model without any user assistance. The geometric
model of the court can be adapted to virtually any kind of sport. The
adaptability to different kinds of sport using definable court models is a
notable improvement of flexibility compared to previously proposed algo-
rithms. Furthermore, it is the first algorithm that applies a combinatorial
search to initialize the camera parameters for the first frame. Previous al-
gorithms concentrated mainly on the tracking step and required a manual
initialization, a computationally expensive exhaustive search through the
parameter space [198], or they applied heuristics that cannot be applied in
the general case [16, 176]. In this context, it is also advantageous that the
proposed algorithm works reliably without the need to tune any further
algorithm parameters like the playfield color. Possible applications for the
algorithm exist in systems for the automatic extraction of game statistics,
detection of interesting scenes, or automatic game summarization.

All steps of the algorithm have been designed for computation efficiency,
such that the algorithm requires only about 30 ms for the first frame and
6 ms during the court tracking. The algorithm is robust even in difficult
scenes with large occlusions or poor lighting conditions, since it adaptively
chooses the lines used for the calibration process. Interestingly, the algo-
rithm also works with dashed lines instead of continuous lines. It should
also be noted that although we apply the same motion model as in ear-
lier chapters for rotational camera motion, this algorithm (including the
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tracking step) also works for arbitrarily moving cameras. This is the case
because we observe a planar scene, for which the motion can be described
with homographies for any arbitrary camera motion (see Section 2.5.4).

Possible enhancements of the algorithm would be the inclusion of curved
line segments into the court model, which would allow calibration in cases
where not sufficient straight lines are visible (e.g., in the center of soccer
fields).

An interesting extension of our algorithm has been proposed by Hayet
et al. in [89]. Instead of using four line-correspondences, they propose
to first estimate the vanishing points for the horizontal and the vertical
lines. With the vanishing points known, only two corresponding points
between the model and the image are required. The points in the image
are obtained by intersecting the detected lines. Each intersection point is
further classified into one of 17 different intersection classes, which enables
a fast detection of corresponding intersections. The authors claim that
with this modification, they could reduce the computation time for the
initialization to 10 ms in typical cases and 50 ms in the most complex
situations, computed on a 1.6 MHz Centrino processor.
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(a) (b)

Figure 13.17: A tennis scene with detected court (a) and the rectified ground-
plane view (b).

(a) Scene with a strong shadow. (b) Large occlusion.

Figure 13.18: Two difficult tennis scenes due to shadows and graphical over-
lay.
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(a) (b)

(c) (d)

(e) (f)

Figure 13.19: Collection of various tennis scenes with difficult calibration.
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(a) (b)

(c) (d)

(e) (f)

Figure 13.20: Soccer and volleyball scenes at different views.



Chapter14
Panoramic Video and

Floor Plan Reconstruction

Previous chapters often used background-sprite images to create a panoramic
overview of the scene environment. The generated background image was
modeled as a single, large image on a plane. However, other representations
of panoramic images are possible that have certain advantages for other
applications. The most frequently-used model is the cylindrical panorama,
which allows to capture a 360-degree horizontal view in a single image. This
chapter describes the geometry of cylindrical panoramic images and presents
various techniques for capturing panoramic images and videos. Since cylin-
drical images are a special kind of image with geometric distortions, their
contents are not always easy to interpret. Therefore, different visualization
techniques are explored providing images that are easier to understand. In
particular, a new visualization technique is proposed that reconstructs the
geometry of the room in which the panoramic image was recorded, and which
uses this room reconstruction to show the panoramic image as texture maps
on this virtual room. Finally, this concept is generalized to reconstruct a
complete floor plan based on multiple panoramic images. Additionally to
the aforementioned improved visualization, this enables new applications
like the presentation of real estate with virtual tours through the appart-
ment.

The important thing in science is not so much to obtain
new facts as to discover new ways of thinking about them.
(Sir William Bragg)

419
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Figure 14.1: Background image models.

14.1 Introduction

14.1.1 From background sprites to panoramic images

Chapter 5 described that global-motion parameters can be used to combine
several images captured from the same scene into a large scene overview
image. A transformation model was used that is compatible with the
MPEG-4 sprite coding tools to use these synthesized background images
in an object-oriented encoding system. Chapter 6 showed that the projec-
tive motion model used in MPEG-4 does not support the synthetization
of images covering a large viewing angle. Since the chosen motion model
was limited by the possibilities of the MPEG-4 standard, we splitted the
background image into several independent images, each covering part of
the scene (Fig. 14.1(a)). However, by choosing a different transformation,
it is indeed possible to combine images captured during a complete 360-
degree pan into a larger panoramic image. One of the most frequently-used
models for this is the cylindrical panorama. The principle is to project
the surrounding scene onto a virtual cylinder surface around the camera
(Fig. 14.1(b)). Unrolling this cylindrical surface gives a rectangular image
that comprises the full 360-degree view.

Cylindrical panoramic images are used in a wide variety of applica-
tions. One of their advantages is that the extended field of view, compared
to the limited view of normal images, fits better to the field of view of
the human eye. Hence, panoramic images provide an ideal visualization of
landscape-type images. Moreover, 360-degree images show the whole sur-
rounding in only one picture. This is ideal for presentations of hotel rooms
or real-estate, because it gives a complete impression of the environment.
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Figure 14.2: The Diver video annotation software. Magnified views can
be extracted from the panoramic video and these clips can be
described with textual annotations.

Finally, since the panoramic image covers the complete environment, it is
not necessary to select a suitable view while the image is captured. In-
stead, events can be recorded in a panoramic video and selections of the
most interesting parts of the scene can be made later. This last aspect has
been extensively studied in the Diver project [142] at the Stanford Center
for Innovations in Learning (to which the author had the possibility to con-
tribute). In this project, panoramic videos of classroom education scenes
were recorded from the full event. Later, psychologists could analyze the
teaching methods and reaction of the students. For this purpose, video
clips can be annotated with comments, where a clip is not only a temporal
selection out of the video material, but also a spatially restricted view into
the full panoramic overview (Fig. 14.2).

14.1.2 Visualization of panoramic images

One important aspect of panoramic imaging is the presentation of the im-
ages to the viewer. Directly showing the texture of the unrolled cylinder
surface results in a rectangular image, but includes geometric distortions.
Moreover, since this image shows all directions around the camera at the
same time, the panoramic image itself can be confusing to the viewer.
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For this reason, panoramic images are often presented with an interactive
panoramic image browser (PIB) application which shows a geometrically
rectified sub-view of the scene, as if it were captured with a user-controlled
virtual camera. The disadvantage of this representation is that it is not
possible to offer a fast overview of the scene, and it is not possible to see
the complete environment on a static medium like a paper copy. In this
chapter, we propose a new visualization technique for panoramic images
that is specialized for images captured inside rectangular rooms, which is
an important special case that covers many application areas like hotel
room advertising or recording of group meetings.

Our visualization is based on an algorithm to reconstruct the 3-D layout
of the rectangular rooms from the panoramic image. Once the geometry of
the room is known, a 3-D model of the room walls can be synthesized and
the wall textures can be added, using the image data from the panoramic
image (Fig. 14.8). The proposed representation provides a flexible way
to visualize the scene. On one hand, the virtual camera can be placed
outside of the room, such that the viewer gets an overview of the full
scene appearance and room layout. On the other hand, the virtual camera
can also be placed at the position of the original camera. Interactively
rotating this virtual camera provides views that equal the output of the
PIB technique.

The room reconstruction requires a minimum of user assistance: the
user only has to indicate the position of the four room corners in the
panoramic image. First, the reconstruction algorithm converts the posi-
tions of the corners into the angle between these corners as observed from
the camera position. Subsequently, the room shape and the camera po-
sition are determined from these angles, and the textured 3-D model is
constructed automatically.

14.1.3 Floor plan reconstruction

Following the same reconstruction principle as for rectangular rooms, we
can extend the reconstruction algorithm to support arbitrary room shapes
or even complete floor plans, comprising several rooms. This floor plan
reconstruction enables new applications additional to the aforementioned
visualization, like the presentation of real estate, providing virtual tours
through an appartment. Generally, for more complicated room shapes or
a reconstruction comprising several rooms, a single panoramic image does
not provide enough information for a reconstruction. For this reason, the
extended algorithm allows the usage of multiple panoramic images for the
reconstruction if required.
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14.1.4 Chapter outline

This chapter first briefly introduces the geometry of cylindrical panoramic
images and describes techniques to compose panoramic images from a col-
lection of small images or to capture panoramic video with specialized
cameras. Section 14.3 discusses different visualization techniques and Sec-
tion 14.4 proposes a new algorithm for the estimation of the wall sizes
of rectangular rooms from captured panoramic images. This algorithm is
generalized in Section 14.5 to support the reconstruction of a collection of
rooms with arbitrary room shapes from multiple panoramic images.

14.2 Capturing panoramic images and video

The most commonly-used model for panoramic images is the projection
onto a cylindrical surface. The cylinder is centered at the camera location
and aligned vertically, such that a horizontal camera pan corresponds to a
rotation of the cylinder axis. To transform the planar image coordinates
(x, y) into cylinder coordinates (θ, h), we use the transformation

tan θ = x/f and h =
y · r√
f2 + x2

, (14.1)

where f is the focal length (the distance of the image plane to the optical
center), and r is the cylinder radius (Fig. 14.3). From these equations, it
can be noticed that the cylindrical transformation depends on the focal
length f that was used to capture the image. Some digital cameras store
the focal length with which an image was recorded in the EXIF metadata.
If this is not available, the focal length should be estimated from the image
data (see Section 12.2.1). The radius of the cylinder surface can be chosen
arbitrarily, since its only effect is a scaling factor for the vertical axis h of the
panoramic image. For a practical implementation, we have to consider that
images are usually stored with integer pixel positions. Hence, in practice,
we set r = f in order to obtain a vertical image resolution in the panoramic
image that is approximately the same as in the input image. Geometrically,
this means that the input image plane is a tangent plane to the cylinder. It
touches the cylinder along x = 0, and it follows from Eq. (14.1) that h = y
along this line. For the other values of x, it holds that |h| < |y|, meaning
that there is some loss of resolution in the cylinder projection.

The horizontal axis in the panoramic image represents the rotation angle
θ, and we have to define a discretization step-size ∆θ. Since it is desired
to preserve the aspect ratio of the input image pixels for the pixels in the
panoramic image, we define the discretization step-size as tan ∆θ = 1/f ,
based on the assumption that the pixel width in the input image is 1.
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Figure 14.3: Projection of image coordinates onto cylindrical coordinates.

14.2.1 Panoramic image generation

A technique to generate panoramic images is to take a sequence of images
while rotating the camera around its vertical axis. It is important to note
that the rotation has to be carried out around the optical center, since
otherwise the images would not fit together (see Section 2.5.3). Each of
these images is first converted to cylindrical coordinates θ, h independently.
Because the images were recorded with different camera rotation angles,
their position on the cylindrical surface is shifted by some amount θi. This
shift can be determined easily with a one-dimensional search over θi to
minimize the image difference

Eij =
1
|Aij |

∑
(θ,h)∈Aij

|Ii(θ − θi, h)− Ij(θ − θj , h)| (14.2)

in the overlapping image area Aij of images i and j.
When stitching the individual images together into a single panoramic

image, the seams between the images are often visible because of small
alignment errors, or because of changes in the illumination conditions be-
tween the images. We apply a cross-blending between the two images to
obtain a smooth transition. More complex techniques have been proposed
for this problem. For example, [34] proposes to determine a path in the
overlapping area Aij from the top to the bottom border that minimizes the
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Figure 14.4: A 360-degree image recorded using a camera with a parabolic
mirror.

sum of luminance differences along this path. The advantage of this ap-
proach is that it also provides a sharp transition if there are moving objects
in the scene.

14.2.2 Cameras for recording panoramic videos

For panoramic still images from static environments, we can capture several
images sequentially and compose them into one panoramic image. For the
recording of panoramic video sequences, the full 360-degree view has to be
captured at the same time. This poses the problem of mechanically mount-
ing the cameras such that they cover the complete 360◦, but also have an
identical optical center. A solution is to place a hyperbolic mirror in front
of a camera. A hyperboloid has two focal points with the property that a
camera at focal point F ′ observes a 360-degree image with virtual optical
center at the other focal point F (Fig. 14.4). The main disadvantage of this
technique is that the image resolution is generally low and unequally dis-
tributed in the image. Moreover, the image resolution is generally highest
at the floor or ceiling, which are areas that are usually not very important.

In the Diver project, we used a second solution that is based on a setup
with several cameras, oriented into different viewing directions to cover the
complete 360 degrees. To enable a collision-free mounting of the cameras,
mirrors are placed in front of the cameras to redirect the incoming light.
With this approach, the cameras can be mounted with sufficient space
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camera 1 camera N

virtual optical center
mirror mirror

Figure 14.5: Images that will be combined into a panoramic image must
be recorded with a unique optical center. For a static setup
with multiple cameras, this is not possible because the cameras
would be located at the same place. One solution is to use
mirrors to redirect the light direction such that the cameras
can be mounted without mechanical problems.

while the virtual optical center of all cameras is still at a joint position
(Fig. 14.5). The advantage of this camera system is a high and uniformly
distributed resolution in the panoramic image. For our experiments, we
used a panoramic camera composed of five independent cameras.

Since the single cameras show significant lens distortions and are not
mounted in perfect geometric alignment, the cylindrical transform cannot
be applied directly. Instead, the transformation between input image and
cylindrical coordinates was provided by the manufacturer as a regular mesh
of calibrated feature-points. Each point in the mesh hereby defines a cor-
responding position between image coordinates and cylinder coordinates.
The transformation for the pixel positions that do not fall exactly on mesh
vertices was obtained by bilinear interpolation. Figure 14.6 depicts the
mesh for one of the cameras. This example shows that this transformation
not only includes the cylinder projection, but also fish-eye lens distortion
and a twisted camera mount.

Another issue of the camera setup was that the single cameras only
provided interlaced video. Because this would introduce severe distortions
at moving objects during the irregular resampling in the dewarping process,
it is important to deinterlace the input image prior to synthesizing the
panoramic image. We implemented a fast ad-hoc deinterlacing algorithm
which carries out deinterlacing selectively for the motion areas only.1

1The algorithm considers small blocks in the image independently. For each block,
it computes the sum of luminance differences between adjacent same-parity field lines
and the sum between adjacent differing-parity lines. If motion is visible in the block, the
differences between lines of differing parity is larger, since the object moved during the
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Figure 14.6: Calibration data for one of the five cameras as it was pro-
vided by the manufacturer. This calibration information is
the direct transformation from the camera image to the cylin-
drical panoramic image. Hence, it includes the correction of
lens distortions, tilted camera mounting, and the transform to
cylinder coordinates.

Because of the high data rate generated by the five cameras at full NTSC
resolution (720 × 486), we first recorded the video stream of each camera
independently. Afterwards, each video stream was deinterlaced, and all
five streams were combined into a panoramic image sequence. The resulting
panoramic video has a resolution of 3552×480 pixels. Figure 14.7(a) shows
an example picture.

14.3 Visualization of panoramic videos

A panoramic image or video is a complete 360-degree view of the environ-
ment around the camera. Hence, it is not an ordinary flat image and a
variety of visualizations for this special images have been proposed. We
briefly introduce the most important in the following, ending with our new

time-difference of the two fields. Hence, if this difference is significantly larger than the
difference between lines of the same parity, the block is deinterlaced by duplicating the
content of on field.



428 Chapter 14. Panoramic Video and Floor Plan Reconstruction

proposal of a visualization employing a 3-D room reconstruction.

• Unwrapped cylinder. The most common display technique for
cylindrical panoramas is to unwrap the cylindrical surface to a flat
image (Fig. 14.7(a)). At first glance, this looks like an image with
very wide field of view. However, there are two properties that dis-
tinguish this image in cylindrical coordinates from a normal, planar
image. First, the image shows a complete 360-degree surrounding,
such that the viewer looks in all directions around him at the same
time. This is an unusual experience, since the normal human view
is limited to about 180-200 degrees (160 degrees with one eye) [100].
Second, straight lines are not preserved by the cylindrical projection.
Hence, geometrical concepts like parallel lines and vanishing points,
which are important for an intuitive understanding of the scene, can-
not be applied easily. As a consequence, this mapping is difficult to
understand and interpret for humans.

• Panoramic image browser (PIB). A visualization technique that
preserves straight lines is the generation of virtual views from the po-
sition of the capturing camera. Based on the cylindrical panoramic
image, the viewer application uses the inverse of Eq. (14.1) to gener-
ate rectified, flat views with a limited field of view from the camera
position. Since these views cannot cover the complete 360 degrees,
the user can interactively turn the displayed view in the left and the
right direction2. The advantage of this technique is that the generated
views look identical to real-world views. Especially, the synthesized
images preserve the straight lines from the real world. However, the
disadvantage of this technique is that a static visualization (e.g., a
printout on paper), of the complete environment is impossible.

• 3-D cylinder projection. A visualization that combines the inter-
activity of the previous method with the possibility to have a quick
scene overview is to display a 3-D view of the cylinder surface with
the panoramic image as texture (Fig. 14.7(b)). This approach can
be used in the following two ways. First, the virtual camera can be
placed at the center of the cylinder, such that the generated views
look similar to the previous PIB approach. The main user inter-
action at this position is to turn the camera to look into different
directions. Second, moving the virtual camera outside of the cylin-
der gives a static scene-overview by showing the complete cylinder at

2This presentation has become popular with Apple’s Quicktime VR standard.
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(a) Unwrapped cylinder.

(b) 3-D cylinder model.

Figure 14.7: The unrolled image from the virtual cylinder (a), and a 3-D
view onto the virtual cylinder (b).

once. The combination of these two possibilities makes the visualiza-
tion very flexible. It is important to note that the global view onto
the cylinder gives some indication of the spatial arrangements in the
scene, but the intuitive perception of this overview is often mislead-
ing. For example, consider that the panoramic image is recorded in
a square room. The intuitive assumption is that every wall should
cover 90 degrees in the panoramic image. However, this is not true,
since the actual angle depends on the camera position. To see this,
assume that the camera is placed close to a wall. Clearly, this wall
will cover almost 180 degrees in the panoramic image. In fact, the
symmetric uniformity of the cylindrical visualization and the absence
of distinguished geometric features is often misleading and actually
complicating an intuitive scene understanding.

• 3-D room projection. Although the previously discussed 3-D cylin-
der projection already combines the advantages of interactive rectified
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views and a scene overview, the overview image is often misleading.
The reason is that the cylinder surface is a virtual object that is not
related to the original scene objects. In man-made environments, es-
pecially indoor locations, the space is usually defined by flat walls,
which are perpendicular to each other. These walls are important for
our orientation, but during the projection onto the 3-D cylindrical
surface, these hints for the human perception are lost; the cylinder
looks the same from every direction.

To provide hints about the scene geometry to the viewer, it is impor-
tant to present the scene overview in a way that mimics the original
geometry. In particular, we propose a new visualization technique for
the special case of indoor scenes where the room walls provide the
main hints for orientation. The difference to the previous approach
is that instead of projecting the surrounding onto a cylinder surface,
we reconstruct the real room shape and use the panoramic image as
wall textures (Fig. 14.8).

From the original camera position, the visualization appears equal to
the PIB technique. However, for a distant camera, the scene geome-
try indicates the layout of the walls and the camera position during
recording. Note that the projection onto flat walls also preserves
straight lines, which makes the wall textures look realistic. How-
ever, the visualization should not be misunderstood as a complete
3-D reconstruction. Changes of depth that are not modeled in the
reconstruction can lead to perspective distortions if the camera was
recording the area in an acute angle. On the other hand, our visu-
alization technique is much easier to implement and use than a full
3-D reconstruction.

In the following, we describe the 3-D room reconstruction technique for
rectangular rooms in more detail. The generalization to arbitrary room
shapes or floor plans follows in Section 14.1.3.
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α0 α1
α2 α3

360 degrees

(a) Unwrapped cylinder with angle measurements.

(b) View from above.

(c) Texture 1. (d) Texture 2. (e) Texture 3. (f) Texture 4.

Figure 14.8: A sample reconstruction of a rectangular room.
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Figure 14.9: The room geometry should be reconstructed from the measured
angles α0, . . . , α3.

14.4 Reconstruction of rectangular rooms

In this section, we consider the problem of determining the wall sizes of
a rectangular room from a cylindrical panoramic image captured in this
room. Once we know the sizes of the walls and the position of the camera,
we can project the panoramic image content onto these virtual walls and
create the geometrical model for our visualization. While the wall sizes and
camera position could be measured by hand, it is more convenient to obtain
these values directly from the recorded image. The idea of our approach is
to derive this information from the angles between the room corners, which
the user has to mark in the image (Fig. 14.8(a)).

Since the panoramic image is given in cylindrical coordinates, the hor-
izontal distance between two corners in the panoramic image corresponds
to the angle between these corners, measured from the camera position
(Fig. 14.9). Knowing these four angles (of which only three are indepen-
dent, since they sum up to 2π), we can determine the ratio of the room
dimensions and the camera position. It is not possible to recover the ab-
solute room size, but this is also not required for the visualization, and we
can simply set the size of one wall to unity.

The reconstruction is carried out in two steps. First the algorithm
makes a preselection of positions that could potentially be the true camera
positions. We derive that the valid camera position must be located on a
circular connecting two room corners. With this information, we restrict
the possible camera positions to a one-dimensional search space. Second,
the algorithm carries out a binary search to determine the specific camera
position on the circular arc. The search in the second step is guided by the
pre-knowledge that the reconstructed room should be rectangular.
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Figure 14.10: Determining the circular arc of valid camera positions.

14.4.1 The circular arc of possible camera locations

Prior to developing the actual algorithm, let us first examine possible po-
sitions of the camera in the reconstructed room. For this, we make use of
the following theorem, which we briefly prove here for the convenience of
the reader.

Theorem: (Euclid, Elements, Book III, Proposition 20.) Given three
points A,B, C on a circular arc ACB with center O. It holds that ∠AOB =
2∠ACB.
Proof: Consider Figure 14.10(a). Since the triangle AOC is an isosceles
triangle, ∠ACO = ∠OAC = φ. But then, ∠AOD = 2φ (consider the
reappearing angles at A). The same construction holds for the triangle
BOC. Hence, the total angle ∠AOB = 2∠ACB. �

Note that in the preceding lemma, the location of C on the circular arc
ACB does not influence ∠AOB. Hence, it also holds that the angle at C is
independent of its position on the arc. This lets us conclude that for fixed
points A,B, all positions of C that have a fixed angle ∠ACB = α lie on a
circular arc. To find the center position and radius of this circular arc, let
us consider the special case where C is on the perpendicular bisection of
AB. Assume that the points A and B have unit distance (Fig. 14.10(b)).
Then, we get the radius from sin α = 1/(2r) and the distance of the center
from tanα = 1/(2s).

Now, we are going to apply this theorem to our estimation problem. Let
us normalize the room size such that the left (and right) wall has unit length
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Figure 14.11: The camera position is located on the circular arc, but its po-
sition is unknown. (a) and (b): A binary search is applied to
find the position for which the error wt − wb is zero. (c) and
(d): the positions for which the rays q1 or q2 are horizontal
define the initial interval for the binary search.

and the top (and bottom) wall has length w (Fig 14.9). We denote the four
angles under which the four room walls are observed with α0, . . . , α3. First,
we concentrate on the left wall AB of unit length, which is observed with
an angle α0. Because of the previously derived theorem, we know that the
camera position C must lie on the circular arc ACB, and we can compute
the position and size of this arc from the angle α0.
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14.4.2 Searching for the camera position

Once we know the circular arc on which the camera is located, the remaining
step is to find its position on the arc. To verify a potential camera position,
we compute the wall sizes that would result for this position and accept
the camera position if the resulting room is rectangular.

We begin the construction with the left wall, which has unit length.
Since the assumption is that the room is rectangular, we know that the
top and bottom wall must be perpendicular to this left wall. The width of
the top and bottom walls are unknown, but their widths should be equal
because the wall on the right side is parallel to the left wall.

Let us choose an arbitrary camera position on the arc and consider this
position. Then, the corner-to-corner angles α1 and α2 define the direction
of two rays q1, q2 emanating from the camera position in the direction of
the room corners (Fig. 14.11). These rays intersect the top and the bottom
walls in a distance wt and wb from the left wall, respectively. Because we
know that the top and bottom wall should have equal length, wt should
equal wb. However, if we have chosen the wrong camera position on the
circular arc, this will not be true.

Notice that if we move the camera upwards along the arc, the top inter-
section point moves to the left (wt decreases), while the bottom intersection
point moves to the right (wb increases). To find the camera position for
which wt = wb, we can exploit this behaviour by applying a binary search
for the correct camera position. If wt > wb, the camera position is further
to the top, while for wt < wb, the camera position is lower.

For some camera position, the ray direction of q1 or q2 becomes hori-
zontal. For these positions (and the more extreme positions), there is no
intersection of the rays with the top or bottom wall. These critical camera
positions can be used to determine an initial interval of camera positions for
the binary search. Starting the search with this interval not only reduces
the number of iterations needed for the binary search, but it also removes
the requirement to handle the special case in which the rays q1, q2 do not
intersect the top or bottom walls.

14.4.3 Creating a virtual room visualization

When the sizes of the room walls and the camera position are known, we
can create a virtual 3-D model of the room and generate textures for the
room walls. To create the texture maps, we scan the 3-D wall plane with
the desired resolution of the texture maps and we compute the respective
pixel position in the panoramic image by using the inverse of Eq. (14.1).

This obtained 3-D room model is rendered using an OpenGL-based
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viewer application. The scene is built with the estimated camera position
as the origin of the 3-D coordinate system. The user can control the rotation
of the scene around the x and y axes, as well as the distance d of the camera
to the origin. The viewing transform is set up as

p′ = K

RxRy p +

0
0
d

 , (14.3)

where p denotes the 3-D point position, Rx,Ry are the rotation matrices
and K is the perspective projection matrix. This particular sequence of
transformations allows for a very intuitive navigation. When the distance
of the camera to the origin is decreased, the program avoids d to become
negative. This makes it very easy to place the camera at the position of
the real camera (move forward until the virtual camera reaches the original
camera position). From that position, the user views the scene just as if he
would be at the camera position in the real world. Panning with the virtual
camera at this special position gives exactly the output as displayed by
popular viewers for panoramic images. The second useful viewing position
is looking down on the complete room from above the scene, since this gives
a quick overview of the general scene layout. An example visualization
created with the described algorithm is depicted in Figure 14.8.

14.5 Reconstruction of floor plans

The reconstruction algorithm described in the previous section was limited
to rectangular rooms. In this section, we extend this algorithm to enable it
to reconstruct the geometry of arbitrary rooms. We keep the principle that
corners are manually marked in panoramic images, and that the algorithm
derives the camera position and wall sizes from the angles between room
corners. The layout of the room walls is also specified by the user. For
more complex rooms, it is often impossible to see all walls in only one
image because of occlusions. In these cases, the algorithm uses several
panoramic images captured from different positions.

14.5.1 Previous work

Several algorithms for 3-D reconstruction have been proposed. They can be
coarsely divided into algorithms without pre-knowledge about the scene and
algorithms making use of a scene model. Algorithms of the first class are
usually very complex to implement [149] and they are probably not robust
enough in cases of low-textured surfaces. Algorithms of the second class
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employ a complete geometric model of the object or scene and they only
adapt the sizes based on the observed images. An algorithm of this second
class is described in [37]. Another algorithm [168] considers specifically the
reconstruction of room shapes from panoramic images. Compared to our
algorithm, it supports more general geometries than a collection of walls,
but compared to our proposal, it is more complex to implement and to use.

14.5.2 Reconstruction algorithm concept

Our floor plan reconstruction is based on the same user interaction as in
the simpler rectangular room case. The user also marks the position of
the room corners in the input image. However, while we previously only
considered reconstruction from a single panoramic image, we now allow for
an arbitrary number of panoramic images. This is necessary since many
room corners can be occluded from some camera positions. The more
panoramic images are used, the more information we have available for
the reconstruction. The less pre-knowledge about the room geometries is
available (non-perpendicular walls, unconnected free-standing walls), the
more images are required.

The algorithm starts with an initial room configuration that defines
the room layout (position of walls and constraints about perpendicular
walls), but that does not yet include the correct wall sizes. For an example,
see Fig. 14.13. This figure shows a user-supplied geometric room model,
where the outline of the room is specified, but the correct wall sizes are still
unknown. The basic principle of the algorithm is to compute the corner-to-
corner angles from the current model and compare them with the measured
angles. A gradient descent search is used to adapt the wall sizes such that
the differences between angles in the model and the measured angles are as
small as possible.

In the following, we describe the algorithm in four steps.

• Section 14.5.3. First, the parameterization of the model is con-
structed. Parameters are chosen such that hard constraints like per-
pendicular or parallel walls are enforced by the parameterization it-
self.

• Section 14.5.4. Second, we present the parameter-estimation algo-
rithm. This step adapts the parameters such that the corner-to-corner
angles in the model fit to the angles measured in the input images.

• Section 14.5.5. The convergence robustness depends on the defi-
nition how measured angles and angles in the model are compared.
We compare an inner-angle definition with an outer-angle definition
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by examining the error function for local minima or plateaus, which
decrease the robustness of the optimization.

• Section 14.5.6. Because the optimization is based on a gradient
descent approach, a good initialization is required. The evaluation of
the error function will show that local minima and plateau region can
be avoided if the initialization satisfies some ordering conditions. In
this last step, we explain how the initialization is obtained.

14.5.3 Modeling the floor plan geometry

The floor plan reconstruction algorithm uses two types of information for
the estimation:

• the angles between room corners measured from their position in the
panoramic images, and

• the predefined geometrical layout of the room. This geometrical
model includes the relative position of the walls, but not their size.
The model also considers pre-knowledge about right angles between
walls.

Let us first consider the number of degrees of freedom when estimating
the floor plan geometry. A floor plan is parameterized by the 2-D positions
of the room corners and the camera positions. The camera positions are
required to carry out the texture mapping.

We start with a simple example of a rectangular room and one camera,
which is similar to the special case that we considered in the previous
section. This configuration gives 4 × 2 parameters for the room corners
plus two parameters for the camera position (Fig. 14.12). However, the
absolute placement of the room in our coordinate system is arbitrary and
we can fix one corner to a predefined position, like (0, 0). Moreover, we can
fix the overall rotation angle of the floor plan, and as absolute size cannot
be determined, we can also fix the length of one wall to, e.g., unity. The
easiest way to do this is to fix the position of a second corner to, e.g., (0, 1).
In total, this reduces the number of degrees of freedoms by four.

The reduction from ten parameters to only six was obtained by elim-
inating superfluous degrees of freedom in the parameterization. On the
other hand, we can add more pre-knowledge about the room geometry. For
example, we can assume that the room shape is rectangular. This pre-
knowledge can be expressed with three constraints, each forcing one wall
to be perpendicular to another wall. These three constraints further re-
duce the number of free parameters from six to three, thereby making a
reconstruction possible.
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Figure 14.12: By adding geometry constraints to remove unnecessary over-
parameterization, we can reduce the number of parameters
from 10 in the general case (a) to only 3 for a rectangular
room (d). The free parameters are indicated with double ar-
rows.

For our general floor plan reconstruction, we enforce the constraints for
perpendicular walls implicitly through the parameterization. We normalize
the rotation of the complete floor plan such that (most) walls will be aligned
along the horizontal and vertical coordinate axes. Each wall that is aligned
to the coordinate axes can be parameterized with only three parameters.
For example, a vertical wall is parameterized by the two corner positions,
but both positions share the same x coordinate. For the right wall in
Fig. 14.12(d), we would get the corner positions (x1, y0) and (x1, y1).

Furthermore, we also add the normalization of the floor plan position
and size as hard constraints in the parameterization. For this, we select
one vertical wall and define one corner postition to (x0, y0) = (0, 0) and the
other corner position to (x0, y1) = (0, 1). Note that using this parameter-
ization for the rectangular-room case, only x1 for the right wall position
and x2, y2 for the camera location remain, so that we can compute these
three free parameters from the three angle measurements.

A more complex example is depicted in Fig. 14.13. The room shape
has eleven walls, but it is parameterized with only six free parameters
x1, . . . , x3, y2, . . . , y4. Additionally, the two camera positions add four pa-
rameters x4, y5, x5, y6. From the image of the left camera, we can obtain
nine angle measurements, since two of the walls are at least partly occluded.
The right camera can contribute seven angle measurements. In total, we
have 16 measurements for 10 parameters and the reconstruction is possible.
Note that a reconstruction would also be possible with only the left camera.
In this case, we would only have nine measurements, but also only eight
parameters, since the position of the right camera is not included. On the
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Figure 14.13: Room corners are specified by coordinates xi, yi. Horizontal
and vertical walls will reuse the same xi or yi coordinate for
both corners. This implicitly encodes the pre-knowledge that
these walls have to be horizontally or vertically aligned. Cam-
era positions are assigned their own pair of xi, yi coordinates.

other hand, a reconstruction from only the right camera is impossible, since
we would have eight parameters to estimate from only seven measurements.
Note that a sufficient number of measurements does not generally assure
that the reconstruction is possible. This is the case when there are more
measurements available than required for some walls and at the same time,
too few measurements for other parts. However, in practice, this is rarely
the case.

14.5.4 Estimating the floor plan parameters

The central task in the floor plan reconstruction is to estimate the model
parameters based on the angle measurements that were taken from the
panoramic images. The model parameters consist of the coordinates xi, yi

of the wall corners and the camera positions. According to the geomet-
ric constraints, some of these coordinates can appear in the specification
of several positions. All coordinate values that appear in the model are
collected in a large parameter vector

v = (x0 = 0, x1, x2, x3, . . . , y0 = 0, y1 = 1, y2, y3, . . .), (14.4)

in which three entries are fixed (namely x0 = y0 = 0, and y1 = 1) to remove
the superfluous degrees of freedom. To find the corresponding coordinates
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for a position pi, we use two index sets mi and ni into the parameter vector
v to define pi = (xmi , yni)

>,
From the captured panoramic images, we obtain a set of angle mea-

surements. Each measurement gives an angle αi,j,k between corners pi and
pj , seen from camera position pk. We denote the set of available measure-
ments as M = {(i, j, k)}. Furthermore, we can compute angles βi,j,k that
correspond to the measured angles from the geometric model as

βi,j,k = arccos
d>ikdjk

||dik|| · ||djk||
, (14.5)

where di = pi − pk and dj = pj − pk are the vectors from the camera
position k to the corners i and j. This equation defines βi,j,k as the inner
angle between these vectors. Actually, we will shortly replace this definition
with a slightly modified one that gives a better convergence behaviour. For
an error-free ideal case, all measured angles αi,j,k should equal the angles
βi,j,k, computed from the adapted model. Because of noisy measurements,
these angles will not be exactly equal, and we define the total error of the
floor plan model as

E =
∑

(i,j,k)∈M

|βi,j,k − αi,j,k|, (14.6)

which we minimize with a Quasi-Newton optimization. The convergence of
this optimization depends on two factors: the smoothness of the cost func-
tion E, and the initialization. We discuss these two topics in the successive
two sections.

14.5.5 Improving the convergence behaviour

When considering again the definition of βi,j,k from Eq. (14.5), we notice
that the definition gives the non-oriented inner angle βi,j,k ∈ [0;π] between
two vectors. During experimenting with this measure in the optimization
process, we occasionally observed that the optimization did not converge.
To see why the above angle definition can cause problems in the optimiza-
tion process, consider the very simple case that there is only one camera
which observes a single wall. Imagine that the camera is moved on a line
perpendicular to the wall from one side of the wall through the wall to
the other side. While approaching the wall, the angle βi,j,k increases to
π and after crossing the wall, it decreases again. For this case, the cost
function E is symmetric to the wall. In the optimization process, this has
the disadvantage that there is a minimum of E on each side of the wall
(Fig. 14.14).
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Figure 14.14: With the non-oriented angle βi,j,k, it cannot be distinguished
on which side of a wall the camera is located. The oriented
angle β′i,j,k has a single minimum at the correct side.

To prevent this effect, we changed the definition of the angle βi,j,k to an
oriented angle. We define the oriented angle β′i,j,k as the angle from corner
pi to corner pj , measured in counter-clock-wise direction (see Fig. 14.15).
The orientation of the two corners is detected by computing the signed
area spanned by the two vectors dik and djk from the camera to the wall
corners. The signed area is obtained easily from the determinant of the
matrix composed of these two vectors. Thus, we can compute the oriented
angles as

β′i,j,k =

{
βi,j,k if det [dik |djk] ≤ 0,

2π − βi,j,k if det [dik |djk] > 0.
(14.7)

In comparison with the previous inner angle definition, the new oriented
angle can distinguish between the camera being on the correct side of a
wall and being on the backside of the wall. Using this angle definition, we
obtain a clear minimum at the correct side of the wall, and the error E
increases monotonically with increasing distance from the optimal position
(Fig. 14.14).

Dependency of the model error on the camera position

Let us now examine a more complex case with a variable camera position
in a rectangular room having fixed walls at x = ±1 and y = ±1. The error
surface of E for the two angle definitions is depicted in Fig. 14.17. In the
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Figure 14.15: Definition of angle differences. While βi,j,k is the inner angle
between the two vectors (a), β′i,j,k is defined as the angle from
pi to pj in counterclockwise direction (b).
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Figure 14.16: Illustration of angles in a plateau area. (a) Moving the camera
within the grey plateau area does not change the total cost E.
(b) In each of the grey areas, αi < βi. The symmetric areas,
mirrored at the walls are not shown.

case of the inner angle definition, we notice that there are plateau regions
around the room walls with constant E. These areas impose difficulties,
since the gradient based optimization can get stuck in this area.

To understand why these plateau regions exist, let us concentrate on
one of these regions as depicted in Figure 14.16(a). The depicted area
corresponds to the area outside of the room, for which αl < βl, which
means that the camera in the model is closer to the wall than in reality.
For simplicity of notation, we use the notation αl = α1,4,5, βl = β1,4,5 as
abbreviation for the angles corresponding to the left wall. We use similar
abbreviations for the top (t), bottom (b), and right (r) walls. For the
considered plateau area at the left wall, βr < αr, βt < αt, βb < αb as
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illustrated in Figure 14.16(b). If we compute the total angle error for all
four walls as

E =|βl − αl|+ |βt − αt|+ |βr − αr|+ |βb − αb|
=|βl − αl|+ |βt − αt|+ |βr − αr|+ |βl − βt − βr − αb|,

(14.8)

we can resolve the absolute-value operators to derive

E =(βl − αl)− (βt − αt)− (βr − αr)− (βl − βt − βr − αb)
=− αl + αt + αr + αb,

(14.9)

which is a constant. This explains the plateaus in the error function at
each wall.

If we consider the same room geometry, but with the oriented angle, we
obtain the error surface as depicted in Figure 14.17(b). This error function
shows neither plateau areas nor local minima for varying camera positions.
Instead, the error surface shows discontinuities whenever the camera crosses
a wall plane, because in this moment, the oriented angle jumps between
0 and 2π. However, these steps in the error function impose no problem
for the gradient descent search, since the step is always downwards in the
direction to the minimum. Consequently, while the optimization can get
stuck on the plateau areas using the inner angle definition, convergence is
ensured with the oriented angle.

Dependency of the model error on the wall positions

A similar behaviour of the model error can be observed when keeping the
camera position constant and varying the wall positions. We examine again
the case of a rectangular room, with walls at x, y = ±1 and the real cam-
era at (0, 0). However, now we consider the position of the right wall as
unknown and variable. Figure 14.18 depicts the resulting model error E
that is obtained for each angle definition. In Figure 14.18(a), the camera
is set to the correct position at (0, 0), while it is set to (−0.5, 0) in Fig-
ure 14.18(b). We can observe that the error function for the non-directed
angles β show larger plateau regions and even local minima. Similar to
the previous example, the directed angle definition β′ leads to steps in the
error function, but no local minima. Note that the left plateau area for
oriented angles starts when the right wall position is moved so far to the
left, that it crosses the left wall such that it is actually left of the left wall.
For non-oriented angles, the plateau region already starts when the wall
crosses the camera position.

We can conclude that the oriented angle β′ shows clear advantages over
the inner angle β. The oriented angle does not result in plateau regions



14.5. Reconstruction of floor plans 445

-4 -3 -2 -1  0  1  2  3  4

-4

-3

-2

-1

 0

 1

 2

 3

 4

 1

 2

 3

 4

 5

total cost E

x

y

(a) Model error E computed with βi,j,k.
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(b) Model error E computed with β′i,j,k.

Figure 14.17: Model error E when moving the camera position while keeping
the wall coordinates constant.
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Figure 14.18: (a) Total model error for a rectangular room, depending on
the position of the right wall. (b) If the order of the left and
right wall is interchanged, it can lead to a constant error E.

for varying camera positions and it provides a clear error minimum. Both
angle definitions lead to plateaus when the order of room walls is swapped,
but for the oriented angles, these regions are smaller.

We conducted the same experiments with defining the error as the sum
of squared angle differences. However, this definition leads to an error
surface with many local minima, so that we did not pursue this further.

14.5.6 Initialization of the floor plan layout

In the last section, we observed that the error surface of E is smooth and
has a unique minimum as long as the cameras are placed within the rooms,
and as long as the order of the room walls are not interchanged. Hence,
the optimization should be started with a configuration in which these
conditions are satisfied to ensure convergence.

We obtain the initial placement of the walls by examining the user-
specified floor plan model. Assuming that the walls are oriented along
north-south or west-east direction, we can determine the direction going
from one wall corner pi to the other corner pj . Diagonal walls are not
considered here. Based on this information, we build a west-east ordering of
the points such that point pi <x pj if corner i is to the west of j. A similar
ordering <y can be defined for the north-south direction. Subsequently,
these orderings can be used to assign increasing coordinates. Note that the
orderings do not necessarily impose a unique valid ascending enumeration
of the coordinates. For example, in Fig. 14.19, the coordinates x2 and x3
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x0=0 x1=1 x2=2 x3=3 x4=4
y0=0

y1=1

y2=2

y3=3

Figure 14.19: An example initialization of a floor plan, based on the pre-
defined ordering. Note that swapping x2 and x3 also gives a
valid ordering.

could also be swapped and still fulfill <x. Any of these admissible orderings
provides a good initialization of the wall positions. Finally, we initialize the
position of the cameras at the center of all wall corners that are seen in
each camera’s image.

14.5.7 Obtaining wall textures from the panoramic images

After the optimization process has converged, the position of the walls and
the cameras are known, and we can generate texture maps for the walls
by projecting the panoramic image content onto the wall planes. Since we
may have several views of the same walls, recorded by different cameras, we
have to decide from which camera image we extract the image data. The
following points have to be considered.

• The wall should be visible. Cameras that are located on the back side
of the wall, or which are occluded by other walls cannot be used.

• The larger the distance of the camera to the wall, the lower the texture
resolution that is obtained.

• If the camera is too close to the wall, parts of it are viewed in an
acute angle. As a result, changes of depth that are not reflected in
the floor plan model can lead to perspective distortion artifacts. This
applies, e.g., to furniture that is not projected orthogonally onto the
wall.

• A wall may not be visible completely in any single camera view. In
this case, the texture information has to be collected from several
camera images.
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The walls are processed independently, where we first determine which
cameras are located at the front side of a wall. This information is obtained
easily using the oriented angle from Eq. (14.7). If β′i,j,k > π, then the
camera pk is located at the backside of wall pi,pj . Cameras that are at
the backside are excluded from the further processing.

To decide from which camera the wall texture should be taken, we
evaluate the expected image quality by determining the deviation of the
camera position from an ideal camera position. For room corners p1,p2,
we define the ideal camera position as pc = 1

2(p1 + p2) + 1
2R⊥(p2 − p1),

where R⊥ is a rotation by π/2. This places the ideal camera position on
the perpendicular bisection of the wall at a distance that is half of the wall
width. All cameras that are not at the backside are ordered according to
the distance of this ideal position. In this ordering, the camera which is
closest to the ideal position, comes first. For every column of texture pixels,
the ray between the first camera and a pixel in the column is checked for
intersection with other walls. If there is an intersection, the second camera
is checked for free sight to the pixel, and so on. Note that only one pixel
in the column has to be checked since all walls are upright planes.

14.6 Experimental Results

Experiments have been carried out for both reconstruction algorithms pre-
sented in this chapter. For the rectangular-room reconstruction, the input
images were captured with the panoramic video camera described in Sec-
tion 14.2.2. These are well calibrated and generate undistorted panoramic
images. An example reconstruction result is shown in Fig. 14.8.

Example results for the floor plan reconstruction are shown in Fig-
ure 14.21 and Figure 14.22. The input images for the floor plan recon-
struction were captured with a digital still camera and combined into a
panoramic image later. The focal length of the camera had to be esti-
mated, since the EXIF data did not contain this information. During the
stitching process, small inaccuracies in the image alignment were observed,
which lead to inaccurate angle measurements. The computation time for
the reconstruction was clearly below one second in all of our examples. The
time for generating the texture maps depends on the required resolution
and the number of walls, and was about one second for our most complex
model. We evaluated the accuracy of the reconstruction result by compar-
ing the normalized size of the walls in the reconstruction with their real
sizes. The average deviation was about 4%, which is probably mainly due
to the inaccurate alignment of the input images. Moreover, for simplicity,
we assumed that the walls itself have zero depth, which is obviously wrong
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in reality and which also leads to small deviations in room size. Note that
these inaccuracies are not obviously visible in the reconstruction, because
the wall textures are stretched by this factor. Corners in the texture image
always map exactly to corners in the geometric model.

14.7 Conclusions

In this chapter, we have described techniques to capture panoramic images
and videos and we have discussed ways for optimal presentation of these
panoramic images to the user. We have proposed a visualization specialized
for panoramic images recorded in a rectangular room, which reconstructs
the room geometry from the panoramic image and presents the panoramic
image as the projection onto the room walls. The reconstruction algorithm
requires only minor user support and is guaranteed to find the optimum
solution. Furthermore, we generalized the concept to the reconstruction
of floor plans, comprising an arbitrary number of arbitrarily shaped rooms
(preferably but not necessarily with perpendicular walls).

Our conclusion is that the proposed visualization can provide a better
understanding of the scene to the user than a flattened panoramic image
or a projection onto a cylinder, where the information about the room ge-
ometry is lost. Applications of our proposal, especially for the floor plan
reconstruction, are also the advertisement of appartments or hotel rooms,
for which virtual tours could be made available online. Another application
could be the reconstruction of scenes in surveillance systems, in which the
objects are extracted from the video and inserted into the 3-D model at
their corresponding real-world position. It should be noted that both re-
construction algorithms can be used directly with panoramic video instead
of single images, providing video textures on the walls of the 3-D model.
Therefore, the geometry model only has to be computed once if the camera
positions are kept fixed.

Future research

In future research, the reconstruction could be extended to a completely
automatic process. Note that in a cylindrical panoramic image of a room,
the vertical lines of the room corners remain straight, while the horizontal
lines at ceiling and the ground become bent (see Fig. 14.8(a)). Tracing
along the bent horizontal lines, it is easy to find the room corners, because
these corners are always located at sudden changes of the line direction.
Depending on the angle in which these lines meet in the corner, it is even
possible to distinguish between concave and convex corners, corresponding
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(a) Room shape.
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(b) Corresponding cylindrical panoramic image.

Figure 14.20: The example room (a) is recorded with a camera located at
the black spot. This results in the panoramic image (b). The
convex corner C is indicated with a dashed line.

(a)

Figure 14.21: Example reconstruction of a single, non-rectangular room
from only one panoramic image.

to an inwards (90 degrees) or outwards (-90 degrees) corner (Fig. 14.20).
Furthermore, corners at occluding walls show as discontinuities between
the bent horizontal lines. If several panoramic images from the same room
are available, corresponding corners could be identified by comparing the
wall texture.
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Figure 14.22: Example reconstruction for a complete appartment.
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Chapter15
Conclusions

This thesis has presented various techniques for video-object segmentation.
An automatic segmentation system for rotating cameras was presented and
extended with object-model controlled segmentation and camera autocalibra-
tion. In this chapter, the achievements are summarized and it is discussed
how these techniques could be enhanced in future research. Finally, inter-
esting research directions are highlighted that may be promising approaches
for future video-segmentation systems.

Plaudite, amici, comedia finita est.
– Applaud, my friends, the comedy is over.
(Ludwig van Beethoven, on his deathbed)

453
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15.1 Discussion on the individual chapters

In the sequel, the achievements of this thesis and ideas for future research
are discussed separately for each of the chapters of this thesis.

15.1.1 Chapter 3 and 4: camera-motion estimation

The first step in the proposed segmentation system is the alignment of all
input frames into a background image. To compensate for camera motion,
a combination of a feature-based motion estimator (Chapter 3 and 4) and a
direct motion estimator (Section 5.2) is proposed. This combination couples
the high accuracy of the direct motion estimation with the robustness to fast
motion because of the feature-based estimator. The separation of object
motion from the camera motion is carried out with a robust-estimation
algorithm (RANSAC). This algorithm has been modified since the original
algorithm does not reach the theoretically predicted performance.

Feature-based vs. direct estimation

In our experiments, the computation speed of the feature-based estimator
reaches real-time execution, while the direct motion estimation is approx-
imately a factor of ten slower. Hence, it would be interesting to explore
if a comparable estimation accuracy can be obtained without the direct
motion estimator. The reader should recall that while the frame-to-frame
parameters of the feature-based estimator can be computed with good ac-
curacy, the error accumulation, when concatenating the motion parame-
ters to long-term frame-to-sprite parameters, reduces the final accuracy. A
possible approach to prevent this drift could be to compute the feature-
based motion parameters directly between the input frames and the sprite
image. Our conjecture is that this approach would reach comparable accu-
rate motion parameters at a computation speed comparable to the current
feature-based estimator, i.e., real-time.

Robustness in difficult scenes

In our experiments, we have occasionally observed sequences, for which the
feature-points are concentrated in one corner of the image. In this case, the
estimation of motion parameters is of low numerical stability and usually
results in skewing motion (k 6= 0 in Table 2.1).

Although this kind of motion is included in the projective motion model,
it represents a physically impossible motion. In fact, compared to the
eight free parameters of the projective motion model, there are only four
varying physical parameters (camera rotation and focal length). Another
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two parameters (principal point) are constant throughout the sequence.
One approach to increase the robustness of the motion estimation may be
to impose constraints or a parameterization that only permits physically
possible motions.

15.1.2 Chapter 5: background estimation

In Chapter 5, a new algorithm for synthesizing a pure background im-
age without foreground objects has been proposed. In contrast to previous
algorithms, which usually estimate a statistical background model, we clas-
sify the content of each frame explicitly into foreground and background
classes. This approach yields better results particularly in short sequences.
For video segmentation, this is particularly important because the input
is often a short scene from a longer movie for which the amount of input
frames is fixed.

The proposed background-estimation algorithm divides the image into
small blocks and determines for each block the periods of time, in which
the image content is stable. Additionally, the pre-knowledge that back-
ground content is visible in comparable periods as in neighboring blocks
is exploited to select those periods during which the background is visible.
The central data-structure in this algorithm is the similarity matrix which
collects information if the block content at two time instants is similar.

Alternative implementation with block-diagonal matrices

While our algorithm uses a combinatorial hill-climbing optimization to find
the periods with high similarity of content, this problem can also be un-
derstood as resorting the matrix into block-diagonal form. An algorithm
to bring a matrix to block-diagonal form has been described in [32] for
the application of multi-object 3-D reconstruction. It will be interesting to
compare both optimization approaches with respect to efficiency.

When the matrix is resorted to block-diagonal form, each block can be
subsumed into one state. Exploiting again the spatial coherency between
blocks, a Markov random field can be applied to determine the background
label for each block.

15.1.3 Chapter 6: multi-sprites

The projective motion model, which is commonly used to describe rota-
tional camera motion, assumes that the scene can be projected on a flat
plane. As shown in Chapter 6, this does not work for large rotation angles.
The proposed multi-sprite technique makes it possible for the first time to
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Figure 15.1: When the 3-D position of the sprite planes is known, the tex-
ture can be projected onto a cube-map.

cover scene backgrounds recorded by arbitrary rotational camera motion.
Rather than of projecting the background scene onto a single plane, the
scene is now covered by a collection of planes. Note that although we know
the homography between these planes, their 3-D positions in space are
unknown. However, these 3-D positions can be computed when the multi-
sprite technique is combined with the camera autocalibration described in
Chapter 12.

Cube maps

A further possible model for scene backgrounds, which is popular in com-
puter graphics, is the cube map model. The cube map is a virtual cube that
encloses the camera. The background scene is projected onto the faces of
the cube, resulting in six square texture images. Compared to a spherical
model, the cube map has the advantage that the homography transform
can be reused and no transcendental functions are required. Compared
to the multi-sprite representation, it has the advantage that it is easier to
work with, since the number of planes and their position is a-priori known,
and because simple homographies can be used as the transforms. On the
other hand, unlike the multi-sprite model, the cube map cannot adapt to
different resolutions that may be required to prevent a loss of detail (e.g.,
the resolution varies during a camera zoom). Moreover, a cube map has
always a constant size, covering every viewing direction, independent of the
actual camera motion, which can also lead to inefficient storage.

Note that it is not possible to estimate the textures of a cube map
directly from the input sequence, because it requires that the camera pa-
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rameters are available in absolute physical units. However, we can start
with a multi-sprite model onto which the camera autocalibration is carried
out to determine the position of the multi-sprite planes in 3-D space. After
this, the multi-sprite representation can be converted to cube map textures
(see Fig. 15.1).

15.1.4 Chapter 7: background subtraction

The proposed video-object segmentation is based on an extended back-
ground-subtraction algorithm. This algorithm compares the input image
with the background image and identifies the changed areas as foreground.
Compared to previously proposed background-subtraction algorithms, we
have added the concept of risk maps to prevent segmentation errors that
are due to misalignment of the input image to the background.

Null-hypothesis vs. object models

In future research, the foreground-object segmentation can be enhanced in
several simple or more fundamental ways. Currently, the segmentation is
carried out independently for each input frame, but improvements might
be obtained by considering several frames at once. This can be modeled,
e.g., with a three-dimensional Markov random field that enforces temporal
stability. This concept can even be extended with a local object-motion
compensation to connect corresponding pixels along the time axis.

A more fundamental change is to redefine the definition of changed pix-
els. In the current system, pixels are compared only to a null-hypothesis
for an unchanged pixel. An alternative formulation would be to also have
a model for the foreground, so that the choice for the best-fitting hypoth-
esis could be made. However, the main difficulty of the two-hypotheses
approach is to obtain an object model, especially for non-rigid objects.

15.1.5 Chapter 9 and 10: graph-based object models

An essential problem in segmentation is to define the object that is in-
tended to be extracted. We have approached this problem by employing
user-defined object models to identify specific objects in the input. A ma-
jor design decision is the choice of representation that should be used for
the object models. We decided to use a graph-based model in which nodes
represent image regions and edges represent spatial proximity. The advan-
tage of this model is that it allows articulated object motion. Moreover,
since we restricted the graph to tree structures, an efficient implementation
of the object detection is possible with a dynamic-programming approach.
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Object-model matching

A principal difficulty in applying object models is the definition of a robust
cost function for object localization. Our cost function is a combination
of region-color differences, region shapes, object deformation, and other
terms (see Eqs. (9.4), (9.5) or (10.9)). Note that an optimal weighting
of these cost contributions cannot easily be derived. Even the sensible
definition of each single cost contribution is difficult. Hence, the definition
of a suitable model is always a compromise between a robust detection
and accurate placement. More insight into this problem can probably be
obtained with a further exploration how the human visual system perceives
its environment.

Object models in the segmentation process

Because the adopted object model allows for some variability, the detected
object position does not cover the real object area accurately. In order
to extract detailed object boundaries, the object detection should be com-
bined with other techniques that operate at the pixel level. In our two
proposals in Chapter 9 and 10, we combined the object detection with a
color segmentation. The primary difference between our two proposals is
that for the object detection in cartoon sequences, color segmentation is
carried out prior to object detection, whereas for natural video sequences,
color segmentation follows the object detection.

In the object-detection system for natural video, we have observed in
our experiments that for textured objects, the object boundaries cannot
be accurately found. For example, in the results shown in Figures 10.11
and 10.12, it is visible that segmentation borders along uniformly-colored
regions are acceptable, whereas the borders at textured regions are poorly
segmented (they appear fringy). The reason is that the color segmentation
splits textured areas into a multitude of small regions. Many of them are
not covered by the object model and consequently, they are excluded from
the object mask. More accurate object boundaries have been obtained with
change-detection masks (CDMs), which work particularly well if the object
is textured. The disadvantage of CDMs is that they can only detect objects
if there is a significant difference to the background or to a preceding frame
(see Fig. 8.14).

Considering these properties of the algorithms, we can propose a promis-
ing object-detection system for further research. The framework of this
system is depicted in Figure 15.2. This segmentation system combines the
following two principal techniques.

• Depicted at the left side is a change-detection algorithm, similar to the
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Figure 15.2: Proposal for a low-latency real-time segmentation system.

system described in Part I of the thesis. However, a major difference
is that the change detection is not based on the comparison to a
scene-background image, but to the previous frame. Note that this
means that all steps of the background synthetization can be omitted,
but the global-motion estimation is still required to compensate the
camera motion of successive frames.

• The remaining part of the system comprises an object-detection al-
gorithm as described in Chapter 9 and 10. The results of both tech-
niques should subsequently be combined such that the object bound-
ary is derived from the CDM and the interior of the object is filled
from the detected object position.

This new alternative segmentation system would have the advantage
that it enables a real-time segmentation with very low delay. Because no
background-sprite is generated, the long latency introduced by this step
vanishes. On the other hand, the segmentation relies to a large extent
on the object-model detection, since the CDM is only computed between
successive frames, leading to incomplete segmentation masks. To achieve
a real-time execution speed and a high temporal consistency, we suppose
that the object model should be further extended with a dynamic model,
describing its possible motions.
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15.1.6 Chapter 11: Corridor Scissors and circular paths

Chapter 11 has approached the segmentation problem with a semi-automatic
segmentation technique. The Intelligent Scissors algorithm has been ex-
tended to a Corridor Scissors tool, in which the user coarsely marks the
outline of the object with a broad corridor. Afterwards, the algorithm
extracts the accurate object contour within the corridor and tracks this
contour through the successive images. The elegancy of the approach is
that the manual segmentation and the tracking step are both based on the
same core algorithm, computing shortest circular paths in graphs. Both
computation processes differ only in the cost definition for the path com-
putation. In the manual segmentation, a cost based on the image gradient
is used. For the tracking, the texture along a previously-segmented contour
is compared with the current image.

The core of the Corrisor Scissors tool is a new algorithm for computing
shortest circular paths in planar graphs. Even though our shortest circular-
path algorithm only guarantees to find the optimum for planar graphs, it
yields a good approximation even for almost planar graphs like grid graphs
with nodes connected to their eight-neighborhood. The approximation is
better when the width of the corridor is small compared to the cycle length.
In fact, we use the approximation for non-planar graphs in the tracking step.
Since the typical cycle length is about 100 times longer than the corridor
width, the optimal solution is usually obtained for the non-planar graph in
the tracking step.

15.1.7 Chapter 12: physical camera-parameter extraction

Part III of the thesis commenced with Chapter 12 by describing an al-
gorithm to convert the projective motion parameters into the physically
meaningful absolute camera rotation-angles and the focal length. The dif-
ference to previous camera-autocalibration algorithms is that the input data
comprises the projective motion parameters as they are stored for example
in the MPEG-4 sprite-motion parameters or the MPEG-7 camera-motion
descriptors. This enables to obtain the physical parameters of coded motion
data without access to the original image data. Note that this is not pos-
sible with previous autocalibration algorithms since they are usually based
on a bundle-adjustment technique, applied to the detected feature-points.
Another speciality of our algorithm is that it also applies the multi-sprite
technique to enable the processing of unrestricted rotational camera mo-
tion.

The current algorithm applies a global optimization over all available
frames. This leads to a high-accuracy calibration, but it introduces long
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processing delays. An interesting future research topic is to find an online
algorithm that does not introduce large delays. The main problem is that
a significant change of rotation angle is required to obtain the parameters
with sufficient accuracy. Especially the estimation of the focal length is
numerically unstable for small rotation angles.

15.1.8 Chapter 13: camera calibration for sport videos

A different kind of physical-parameter estimation is described in Chap-
ter 13. For applications like sport-video analysis, the position of the play-
ers on the screen has to be translated into coordinates in the real-world in
order to derive a semantic meaning. For this special application, we have
proposed a new algorithm that employs a model of the arrangement of lines
on the playing field to establish a correspondence between playing field lines
in the image and the position of lines in the real-world. The advantage of
our algorithm is that it is not affected by secondary features, such as the
court color, varying illumination, or even significant occlusions.

Calibration with insufficient visual markers

A remaining limitation of the calibration is that, similar to the global-
motion estimation, at least four line-correspondences have to be estab-
lished. In situations where only a small part of the playing field is visible
(e.g., only a T-junction of two lines on a soccer field), insufficient informa-
tion is available for a calibration. This is a fundamental problem of any
calibration algorithm and it can only be solved by further restricting the
camera model. A full set of camera parameters involves seven parameters:
three rotation angles, three for the camera position, and the focal length.
However, the cameras are usually mounted at a fixed position, such that
only four parameters remain per frame. Additionally, three parameters for
the position are unknown but constant during the sequence. It is an in-
teresting topic to investigate if a camera calibration can be developed that
uses the restricted set of parameters when insufficient are available. In fact,
Hayet et al. recently proposed an extension to our calibration algorithm
that further restricts the number of camera parameters [88]. Addition-
ally, a dynamic model for camera motion could be employed to extrapolate
the camera motion, in case that insufficient calibration information can be
obtained from the image.



462 Chapter 15. Conclusions

15.1.9 Chapter 14: floor plans from panoramic images

Panoramic background images from rotating cameras are usually visual-
ized in cylindrical panoramic images. This is inconvenient for the viewer
since the image shows the scene background from any direction around the
camera at once. To provide a better orientation for the viewer, a new algo-
rithm was described in Chapter 14. This algorithm reconstructs the shape
of rooms or even complete floor plans from the panoramic images, in which
the user has previously marked the room corners.

Note that the floor-plan reconstruction is conceptually comparable to
the camera calibration for sport sequences. In both approaches, a model
of the observed object is used to connect the real-world geometry with the
observed images. The difference is that for the analysis of sport videos,
the model was fixed, whereas for the floor-plan reconstruction, the camera
positions and the shape of the model are both estimated simultaneously.

15.2 Explicit vs. implicit models

In this thesis, several approaches for video-object segmentation have been
presented. Common to most of these techniques is that they apply ex-
plicit models for describing objects or the camera. Even in the generic
segmentation system described in the first part of the thesis, the objects
are effectively defined with a negative model: everything that differs from
the background should be foreground. Hence, the background synthetiza-
tion defines the foreground objects. Since the background is derived from
the video itself, the approach works only if there is enough video data avail-
able to construct a correct background model. Switching from a background
model that is derived from the sequence itself to an explicitly-defined model,
like the graph-based object models, enables a successful segmentation on
much shorter videos or even single frames, since no model information has
to be derived from the input video.

The choice for a particular approach depends on the typical video con-
tent. For a surveillance-type input, the segmentation system proposed in
Part I proves already very robust. In more general video sequences like
movies, this approach is not satisfactory since single scenes are too lim-
ited in length to derive suitable background models. Moreover, movie se-
quences often comprise non-rotational camera motion, such that a back-
ground sprite cannot be created.

To enable video-object segmentation for general video sequences, we
consider two techniques to be of principal importance. First, we require
a generalized background model that also supports translatorial camera
motion. Probably, this means that a true 3-D model of the background is
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required. Second, we need a good workable definition of an object model
in order to extract objects in scenes with incomplete background informa-
tion. The problem of defining a suitable object model is probably the most
ambitious in segmentation.

15.3 Future of segmentation

As elaborated in the introduction of the thesis, there are numerous ap-
plications that can be enhanced with segmentation. On the other hand,
segmentation will remain a challenging problem for the foreseeable future,
and it is not clear yet whether it can ever be considered solved. Currently,
it appears more probable that instead of a general solution to the segmen-
tation problem, a variety of specialized algorithms will be developed for
specific applications. It should also be considered that many applications
do not require exact segmentation masks, which might be too difficult to
compute. Instead, the detection of video-objects and extraction of some of
their features can often be sufficient (e.g., the motion path of players and
the ball in a sport game is usually sufficient for the analysis). The most
important application requiring accurate segmentation masks are video-
editing applications, but for these applications, the requirements are so
high that segmentation will probably stay a semi-automatic tool to ease
the editing (Intelligent Scissors tools, alpha-channel estimation [26], or re-
construction of 3-D models from still pictures, like for the preservation of
cultural heritage).

Many applications, like video-archive databases and compression sys-
tems, have to deal with general video sequences, for which an automatic
segmentation does not seem tractable. However, for these systems, an ac-
curate segmentation is also less important, as it is only a tool to support
high-level database queries or enable higher compression factors. In this
sense, segmentation-like techniques can be applied for the analysis, but to
yield a high robustness, the system should not depend on an error-free
segmentation. For example, in 3-D compression systems, the separation
into independently-coded objects can help in interpolating new views, but
there are too many special cases (e.g., reflecting surfaces) that should be
processed with content non-adaptive techniques, as one can never rely on a
successful segmentation. In video databases, special object-detection algo-
rithms for specific frequently-occuring queries (e.g., face-recognition) might
replace a generic segmentation-based analysis.

For applications concentrating on sequences of a specific domain, like
specialized video databases, content analysis, or medical image-processing,
more detailed object models will become increasingly important. In the
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near future, there will also be an increasing merge between image-analysis
techniques and computer-generated graphics or visualizations. Early ap-
plications are appearing in the movie industry (e.g., motion capture) and
sports analysis for augmented event-visualization.
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AppendixA
Video-Summarization with

Scene Preknowledge

A.1 Introduction

For long video sequences, it is not easy to quickly get an overview of the
content. Usually, this means browsing through the video in a fast for-
ward mode to save time. To relieve the user from this searching task,
algorithms [115, 104, 78] have been developed to automatically generate
video abstracts, which are short videos extracted from the original to give
a good overview about its content. However, often we desire to have a
static overview of the video either to print it or to present a list of video
sequences that are available in a data-base. In this case, the video content
can be summarized with a collection of representative key-frames.

There’s no sense in being precise when you
don’t even know what you’re talking about.
(John von Neumann)

One approach to extract key-frames is to apply a cut detection to sep-
arate the video into a large number of shots. Key-frames are obtained by
choosing a representative frame of each shot (see [22]). The disadvantage
of this approach is that errors in the cut detection are propagated into the
key-frame selection process. Furthermore, the number of key-frames is di-
rectly coupled to the number of shots and cannot be adjusted by the user.
Even if the content changes much within a single shot (consider a camera
pan), only a single key-frame is extracted for the shot.

A second technique to find a good set of key-frames is to extract a
feature-vector that describes the image content in a low dimensional space.

467



468 Appendix A. Video-Summarization with Scene Preknowledge

The features should be chosen such that images from the same scene are
mapped to similar feature-vectors. Usually, some kind of color histogram
is used to describe the rough image content. Feature-vectors belonging to
the same scene can be grouped with clustering algorithms. Finally, some
of the feature-vectors are selected as key-frames.

Various work has been carried out to find key-frames which show espe-
cially important scenes, or which are very charateristic for the input video.
However, the evaluation, which scenes are representative is very subjective
and on a high semantic level, that cannot easily be automatized. In fact,
our experiments have shown that it is difficult to distinguish summaries
that were generated with sophisticated algorithms from summaries that
simply take pictures randomly or at regular intervals.

However, there are four kinds of key-frames that should be avoided,
since they show an obviously bad selection of images:

• Repetitions. Several images that show almost similar input images.
These do not provide any new information. Usually, repetitions can
be avoided by a well designed clustering process.

• Cross-fades, wipes. The transition between scenes is usually edi-
tied as a short cross-fade between the two scenes. Pictures from these
transitions show a mixture of two scenes and are not meaningful when
viewed statically. Unfortunately, these frames are often selected in
a clustering process, because their feature-vector is clearly different
from both scenes and as such, the algorithm treats the transition like
a scene of its own.

• Black or white frames. Sometimes there are ranges where the
video is simply black or white to have a pause between two scenes.
These kind of pictures with no information should be excluded from
the summary. This class of undesired images also includes pictures
that are too bright because of some flashlights.

• Uninteresting scenes. For some applications, it may be known
beforehand that some of the scenes are not essential and they should
be excluded from the summary. One example are scenes showing the
news-speaker or the weather chart in news broadcasts, while we are
mainly interested in the reports in between.

This appendix presents a new clustering-based algorithm, providing a
solution to these problems. The problem of frames selected out of transi-
tions is solved by a two-stage clustering process. The first stage provides
a soft form of shot separation, determining periods of stable image content
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with good key-frame candidates. These candidates are then used in the
second clustering stage to select the final set of key-frames. Image content
which is not desired in the summary can be explicitly excluded by provid-
ing domain-knowledge in form of sample images of shots to exclude. This
aspect is solved by modifying the clustering step to circumvent the building
of clusters for these shots.

A.2 Summarization algorithm

Our algorithm is composed of three steps which operate from low-level
features to semantically more meaningful data structures. As a first step,
a small set of features is extracted from each input frame. These feature
vectors are subsequently used to determine similarity between frames. The
second step then groups time consecutive feature vectors to small segments.
We define a segment as a short period in the video sequence (usually even
smaller than a shot) such that the content in the segment is as static as
possible. More specifically, no cut should be present in a segment. The
third step combines the segments to clusters such that as much as possible
of the input video content is covered by the clusters. Domain-knowledge is
integrated by inhibiting the building of clusters in areas of the feature-space
which are known to be irrelevant.

A.2.1 Feature extraction

For each input frame n, a feature vector fn is extracted. The subsequent
steps of our algorithm work on arbitrary feature vectors. Thus, a variety
of features can be used, provided that an appropriate distance measure
||fa; fb|| can be defined which corresponds to visual similarity.

For our implementation, we have chosen to use quantized luminance
histograms as feature vectors fn = (h1, ..., hm). We are using two different
distance measures for the segment positioning and clustering steps. In
segment positioning, the sum of absolute difference measure (SAD) is used,
which is defined as

||fa; fb||SAD =
m∑

i=1

|fa(i)− fb(i)|. (A.1)

For the clustering step, the Earth-Mover’s Distance (EMD) is used. This
measure has been used by several authors in the context of image retrieval
from large databases; see [160] for an in-depth description. In the one-
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dimensional case, the EMD can be determined efficiently as

||fa; fb||EMD =
m∑

x=1

∣∣∣ x∑
i=1

fa(i)− fb(i)
∣∣∣. (A.2)

The reason for using two different distance measures is that the two
steps operate on different time-scales. In short periods of time, the im-
age contents varies less. Hence, the more sensitive SAD measure is used
to accurately segment slow transitions. From a global perspective, shots
with large distances in time can show large differences even when the se-
mantic content is comparable. Therefore, the more liberal EMD is more
appropriate for the high-level clustering step.

A.2.2 Determining segment boundaries

Video sequences may contain gradual transition effects like fades and wipes
between shots. It is desired that video frames from these transitions are
not present in the final video summary. However, when two subsequent
shots are grouped into the same cluster, clustering algorithms usually tend
to select the transition frames as cluster centers because these features are
mixtures of the features from both shots. To avoid the selection of those
frames, we split the input video into short segments of about 4 seconds
length. The objective of the first clustering step is to position the segment
boundaries such that they are favourably positioned at cuts and within
transitions. The intention is to obtain small segments of video with almost
homogeneous content (see Fig. A.1). Consequently, the frame in the middle
of each segment will be a good key-frame candidate.

Our algorithm for positioning the segment boundaries is motivated by
the time-constrained clustering technique described in [153]. However, that
paper used the clustering technique to generate hierarchical summaries of
existing key-frames, whereas we are using it for the low-level placement of
segment boundaries.

Let pi be the first frame of segment i. To determine the positions pi,
the total sum of inhomogeneity over all N segments is minimized. The

1 2 3 N-10 ...
p p p p
0 1 2 N

p
N-1

Figure A.1: The input video is divided into a large number of segments
(N). Segment boundaries are positioned such that they coin-
cide with cuts or that they are placed in the middle of transi-
tions between shots (shown as shaded areas).
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inhomogeneity of a segment i is determined by summing up the distances
between all frames in the segment and the mean feature vector si of the
segment with

si =
1

pi+1 − pi

∑
n∈[pi ; pi+1)

fn. (A.3)

The positions of the segment boundaries pi are chosen to minimize the total
segment inhomogeneities:

min
p1,...,pN−1

∑
i∈[0;N)

∑
n∈[pi ; pi+1)

||si; fn||SAD.

︸ ︷︷ ︸
inhomogeneity of segment i︸ ︷︷ ︸

minimized over all segments

(A.4)

If there are enough segments available, the above optimization will place
segment boundaries into transitions between shots. In the usual case in
which many more segments are available than shots, long shots will be
split into several segments. According to the optimization criterion, the
segment length will depend on the amount of change in the video. Static
parts will be assigned longer segments, while fast changing parts will be
split into shorter segments.

Since the computational complexity of an exact optimization would be
too high for practical implementations, we are using a time-continuous vari-
ant of the k-means algorithm for optimization. The algorithm approaches
the global optimum by performing many local optimizations as follows (see
Fig. A.2):

1. Distribute pi equally spaced over the full length of the video;

2. for all pairs of adjacent segments [pi−1 ; pi) and [pi ; pi+1) set pi to

argmin
pi

∑
n∈[pi−1 ; pi)

||si−1; fn||SAD︸ ︷︷ ︸
left segment inhomogeneity

+

∑
n∈[pi ; pi+1)

||si; fn||SAD;

︸ ︷︷ ︸
right segment inhomogeneity

3. repeat step 2 until convergence is reached.
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p p
i-1 i

p
i+1

Figure A.2: Local optimization step. The boundary between two adjacent
segments is moved to a position such that the homogeneity of
the segments on both sides is maximized.

Usually, the solution found does not exactly correspond to the global op-
timum, however at cuts, the segment boundaries are positioned reliably
between shots. This property makes the solution sufficient for later steps
of the algorithm. From each segment i, the frame at the middle of the seg-
ment (at position mi = (pi+pi+1)/2) is taken as the representative frame of
that segment and as a later key-frame candidate. Further processing steps
operate only on the feature vectors K = {ki = fmi}, leading to a significant
reduction of computation time compared to clustering algorithms using all
input frames.

A.2.3 Clustering

Our clustering algorithm is based on the approach described in [134, 38],
which is outlined in the following. Differing from the algorithm described in
the literature, we are using the EMD distance as clustering criterion which
results in perceptually more reasonable clusters. Moreover, we observed
that an arbitrary initialization of cluster centers sometimes results in bad
convergence. Hence, we perform a gradual increase of the number of cluster
centers and initiate new centers into areas where new clusters are most likely
to be found.

The basic principle is to find a predetermined number of clusters (cor-
responding to the number of key-frames) such that the dissimilarity of the
frames in each cluster is minimized. To define this more formally, let ci

be the set of M cluster centers and let K = {ki} be the set of key-frame
candidates extracted in the last step of the algorithm. For each cluster
center, we define its neighbourhood Nci as:

Nci =
{

k ∈ K
∣∣∣ ∀j : ||k; ci||EMD ≤ ||k; cj ||EMD

}
, (A.5)

meaning that each feature vector is assigned to the neighbourhood of the
nearest cluster-center (according to the EMD-distance).
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We say that a set of cluster centers is optimal iff they fulfill

min
c0,...,cM−1

∑
i∈[0;M)

∑
s∈Nci

||s ; ci||EMD.

︸ ︷︷ ︸
dissimilarity of cluster i︸ ︷︷ ︸

summed over all clusters

(A.6)

The clustering is carried out by a k-means algorithm without the time-
consecutiveness constraint used in the last step. Our experiments have
shown that the k-means algorithm works best when the initial cluster cen-
ters are not chosen randomly, but rather added one at a time. Each new
cluster center is initialized to the ki with the largest distance to any existing
cluster center. The overall clustering algorithm can be summarized as:

1. Set c1 to a random ki (e.g. k1), set n = 1;

2. determine the neighbourhood Nci for all clusters;

3. reassign ci to ci := 1
|Nci |

∑
k∈Nci

k;

4. continue at step 2 until convergence is reached;

5. if n = M stop the algorithm, else set n := n + 1, set
cn = argmaxki

mincj ||ki; cj ||EMD and continue at step 2.

For each cluster obtained from the last step, the ki which is nearest to
the cluster center is selected as a key-frame. The selected ki are sorted to
the correct temporal order, and the input frames corresponding to the ki

are composed to the final summary.

A.2.4 Integration of domain-knowledge

In this section, we modify the clustering step from the last section to insert
domain-knowledge about irrelevant video scenes. To prevent these scenes
from occuring in the summary, we compute the feature vectors for all scenes
to be excluded. These feature vectors can also be provided by the user if he
detects an image in the summary that he wants to exclude. After feeding
this information back into the algorithm, a new summary can be computed
without the undesired scenes. After a period of interactivity with the user,
the classes of scenes to be excluded are known to the system, and summaries
will only contain the desired scenes.

Exclusion of the scenes is accomplished by introducing the feature vec-
tors ui of uninteresting scenes as additional cluster centers (see Figure A.3).
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Figure A.3: Schematic example of the clustering process with integrated
domain-knowledge. The lengthy report scene is divided into
two separate clusters while the repeated anchorman scenes are
combined into a single cluster. Black and white frames are
removed by the predefined clustering centers. User defined
domain-knowledge has been applied by adding a cluster-center
to remove the weather chart scene from the summary.

They are treated the same as the ci with the exception that the position of
ui is fixed and that no key-frames will be generated for their clusters. The
consequence in the clustering process is that the ui centers grab the feature
vectors of scenes near the ui vectors. These vectors will have no influence
on the clustering because they are contained in the neighbourhood of a
vector ui. The total number of generated key-frames will remain the same.

A.3 Evaluation

We demonstrate the behaviour of our algorithm with two test sequences.
The first is the well-known Foreman sequence. This sequence is 400 frames
long and contains no cuts. Its plot is depicted in Figure A.4(a). After
showing the speaking man for over half of the sequence, the camera pans
to the right and shows a building. Note that even though there are no cuts,
our algorithm finds the three most important parts in the video. Algorithms
that are based on cut detection fail on this sequence.
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man speaking building

selected key-frames

camera pan

(a) Test sequence plot.

(b) Summary (three key-frames).

Figure A.4: Summary of the Foreman sequence.

report weather chart

anchorman logo

selected key-frames

(a) Test sequence plot.

(b) Without domain-knowledge: 1× anchorman, 1× report, 3× weather chart,
1× logo.

(c) With knowledge to ignore weather chart: 1× anchorman, 4× report, 1× logo.

Figure A.5: Summary of the last two minutes of a news broadcast.
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The second video contains the last two minutes of a news broadcast.
Again, the video plot is shown in Figure A.5(a). First, we started our
algorithm without any domain-knowledge (Figure A.5(b)). Note that the
news anchorman only appears once in the summary even though he ap-
pears three times in the input sequence. Since the weather chart contains
very different image content, the summary contains three pictures of it
but only one picture of the preceding report. Let us now suppose that we
are not interested in the weather chart. So we provided some pictures of
the chart as domain-knowledge in a succeeding experiment and restarted
the algorithm (Fig. A.5(c)). All key-frames of the weather-chart were re-
moved, and additionally, more meaningful key-frames of the news report
were generated.

A.4 Conclusions

We have described a new algorithm for automatic generation of video sum-
maries. User domain-knowledge about the video-content can be provided to
improve the quality of the generated summary. We consider the approach
of a modified clustering step superior to specialized filters for excluding
undesired frames because our generic approach can be adapted to new ap-
plication areas by simple user interaction. A topic of further research may
be to integrate an algorithm for automatic detection of irrelevant feature-
vectors.

Finally, the fact that our algorithm does not depend on an accurate
cut detection algorithm (known to have difficulties with soft cuts) increases
robustness and enables the summarization of video material without scene
changes.

Our algorithm has been integrated into the video-database of the L3

project (LifeLong Learning) for learning-videos (see Figure A.6) and the
ECHO project (European CHronicles On-line) to generate abstracts for
four major national audio-visual archives (Italy, France, the Netherlands,
Switzerland). The L3 video-database application is based on the open-
source Scientific Image Data-Base (SIDB) project, which we extended for
video-sequences.
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(a) Summary display of a video sequence.

(b) List of available sequences in the data-base.

Figure A.6: Integration of the video abstracting algorithm in a web-based
video database application.
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AppendixB
Efficient Computation of

Homographies From Four
Correspondences

The usual way to compute the parameters of a projective transform from
four point coordinates is to use the inhomogeneous formulation of the pro-
jective transform (Eq. (2.11)). Using four point-correspondences pi ↔ p̂i,
we can set up an equation system (Eq. (3.2)) to solve for the homography
matrix H. However, this requires the solution of an 8× 8 equation system.

The next best thing to being clever is being able
to quote someone who is.
(Mary Pettibone Poole)

Efficient algorithm

An algorithm to obtain these parameters requiring only the inversion of a
3 × 3 equation system is as follows. From the four point-correspondences
pi ↔ p̂i with (i ∈ {1, 2, 3, 4}), compute h1 = (p1 × p2) × (p3 × p4), h2 =
(p1×p3)× (p2×p4), h3 = (p1×p4)× (p2×p3). Also compute ĥ1, ĥ2, ĥ3

using the same principle from the points p̂i. Now, the homography matrix
H can be obtained easily from

H ·
[
h1 h2 h3

]
=
[
ĥ1 ĥ2 ĥ3

]
, (B.1)

which only requires the inversion of the matrix
[
h1 h2 h3

]
.
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Proof

The validity of the efficient algorithm can be proven as follows.
First, it can be shown easily that

u× (v ×w) = (w>u)v − (v>u)w. (B.2)

Furthermore, it is known that for the triple scalar product [u,v,w] =
u>(v × w) it holds that [u,v,w] = det(u,v,w). Because det(AB) =
det(A) · det(B), it also holds that

[Hu,Hv,Hw] = det(H) · [u,v,w]. (B.3)

If we now compare

H((a× b)× (c× d)) = H(d>(a× b)c− c>(a× b)d)
= H([d,a,b]c− [c,a,b]d)
= det(d,a,b)Hc− det(c,a,b)Hd

(B.4)

with

(Ha×Hb)× (Hc×Hd) = Hd>(Ha×Hb)Hc−Hc>(Ha×Hb)Hd
= [Hd,Ha,Hb]Hc− [Hc,Ha,Hb]Hd

= det(H)
(
det(d,a,b)Hc− det(c,a,b)Hd

)
,

(B.5)

we see that

H
(
(a× b)× (c× d)

)
=

1
det(H)

(
(Ha×Hb)× (Hc×Hd)

)
. (B.6)

Considering again the problem to compute the parameters of the homo-
graphy transform, we can state the problem as finding the matrix H such
that

Hp1 = c1p̂1, Hp2 = c2p̂2, Hp3 = c3p̂3, Hp4 = c4p̂4, (B.7)

where ci are unknown constants that provide suitable scaling for the ho-
mogeneous coordinates. These four matrix equations have 9 + 4 = 13 un-
knowns, but since they give only 3× 4 = 12 constraints, any scaled version
of H is a solution.

Since the actual value of the constants ci do not matter, the trick is to
reduce the equations such that the ci are removed to only a single scaling
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Figure B.1: Location of the three points h1,h2,h3.

constant λ that we can choose arbitrarily. This can be achieved by consid-
ering the product (p1 × p2)× (p3 × p4) and all permutations up to a sign
change, which gives us the vectors h1,h2,h3 which were defined previously.
But because of Eq. (B.6),

Hh1 = H
(
(p1 × p2)× (p3 × p4)

)
=

1
det(H)

(Ha×Hb)× (Hc×Hd)

=
1

det(H)
(
(c1p̂1 × c2p̂2)× (c3p̂3 × c4p̂4)

)
=

c1c2c3c4

det(H)︸ ︷︷ ︸
λ

·
(
(p̂1 × p̂2)× (p̂1 × p̂2)

)
= λ · ĥ1,

(B.8)

where we can set λ = 1, since any scaled version of H is a valid solu-
tion. Similar, we get Hh2 = ĥ2,Hh3 = ĥ3. These three equations can be
combined into one equation system, giving Eq. (B.1).

It is interesting to note that the three points correspond to the intersec-
tion points of the opposite sides and the diagonals of a quadrilateral, made
from the four points pi (remember that the cross product of two points
defines a line, and the cross product of two lines defines a point). This
is visualized in Figure B.1. Clearly, the inverse is not possible, i.e., the
homography cannot be determined unambiguously from just these three
points.
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AppendixC
Robust Motion Estimation

with LTS and LMedS

In Chapter 4, we employed the RANSAC algorithm to calculate global-
motion parameters for a set of point-correspondences between two images.
A robust estimation algorithm is required for this problem, since the input
is a mixture of foreground object motions and the camera motion. Addi-
tionally, the input data is contamined with erroneous correspondences.

It would be possible to describe everything scientifically,
but it would make no sense; it would be without meaning,
as if you described a Beethoven symphony as a variation of wave pressure.
(Albert Einstein)

One disadvantage of the RANSAC algorithm is its dependence on the
threshold ε, which decides on how close a point-correspondence must be to
the computed model to be considered an inlier. To relieve from the depen-
dency on this threshold, modifications of the RANSAC algorithm have been
proposed that do not require an explicit inlier threshold. We will discuss
two algorithms, which are based on a common principle: Least-Median-
of-Squares (LMedS), and Least-Trimmed-Squares (LTS). Both algorithms
are similar to RANSAC with the only exception that Steps 3 and 4 are
modified. Since LMedS and LTS are very similar, we will describe them
together in the following.

We start again by drawing a random subset of input data to compute
a motion model candidate H. After this, we also compute the residuals
between all input correspondences and the model H. However, the differ-
ence is that we do not mark the data with high residuals as outliers, but
that we sort the input data according to increasing residual errors. More
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specifically, let again C = {pi ↔ p̂i} be the input correspondences, then
we impose an ordering r(i) on the input data such that

d(p̂i,Hpi) ≤ d(p̂k,Hpk)↔ r(i) ≤ r(k). (C.1)

The LMedS algorithm repeats the random sampling process and selects the
motion model, for which the median of the residuals

d(p̂m,Hpm) with the median position m = o(|C|)/2 (C.2)

is lowest. Under the assumption that at least half of the feature-points will
be moving according to the global motion, LMedS will select the correct
global motion model.

The LTS algorithm [159] computes the same ordering r(i) over the input
data. However, not only the median of the residual errors is considered to
select the best transform, but a fixed percentage of the best ranked input
data. This subset of the input data is considered the inliers, even though
they might only be part of the real inlier data. On this inlier data, an
additional compaction step (CSTEP) is carried out. This is a refinement of
the estimated motion model on the selected inlier set, comparable to Step 5
of the RANSAC algorithm. The CSTEP can even be applied several times
where the set of inliers is adapted to the refined motion model in each
iteration. The complete LTS algorithm can then be summarized as follows.

1. Draw a random subset S from the input data as in the RANSAC
algorithm.

2. Compute the motion model H0 based on the drawn subset S.

3. Rank the input data to increasing residual errors and determine the
inlier set I1 = {cr(k) | k ≤ p · |C|} so that it includes a fixed fraction
p of the correspondences ci ∈ C with lowest error. Compute a refined
motion model H1 using a least-squares approximation to I1. Let the
total residual error be Q1 =

∑
pi↔p̂i∈I1

d(p̂i,Hpi). Based on the
new motion model, compute a new set of inliers I2 and a new motion
model H2 and residual Q2. Iterate this process until Qk−1 = Qk.

4. Repeat Steps 1-3 N times and choose the motion model, for which
Qk was lowest.

Comparing the LTS algorithm with RANSAC, we see that no threshold
ε is required any more, but on the other hand, we have to specify a percent-
age p which is equal to the minimum fraction of inlier data. The LMedS
does not have a comparable parameter, but since the median of the resid-
uals is taken, it implicitly assumes that the inlier fraction is at least 50%.
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(a) RANSAC (b) LTS

Figure C.1: Examples of inlier classification for (a) RANSAC, and (b)
LTS. Inliers are marked in black, outliers are drawn in white.

However, it is obvious that the LMedS algorithm can be generalized for
other inlier fractions by not considering the median residual but a different
position in the ranked list of residuals.

Evaluation

Compared to the RANSAC algorithm, LTS and LMedS did not show clear
advantages. In fact, the accuracy of the obtained motion parameters were
even slightly worse than with RANSAC. For LTS, this can be explained as
follows. We have seen in the evaluation of the RANSAC algorithm that
the accuracy improves with an increasing number of refinement iterations,
where the image area which is supported by inliers gets larger in each step.
Note that this iterative refinements are comparable to the compaction steps
of LTS. However, LTS only includes a fixed percentage of best fitting data
into the refinement. The effect is that the covered set of the inlier data does
not grow larger than this fraction and the final model estimate is based on
a smaller set of input samples. It is a good model for this subset, but not
for all the inliers. A similar reasoning also holds for LMedS.

An example comparison between RANSAC and LTS is depicted in Fig-
ure C.1. It is clearly visible that RANSAC achieves an accurate separation
of background motion and foreground motion. The LTS algorithm does
not give this clear separation, but all selected inlier vectors are part of
the background motion. Consequently, LTS also successfully locked to the
correct background motion.
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AppendixD
Additional Test Sequences

These test-sequences were recorded from DVB broadcasts and downsam-
pled to CIF resolution (one field of the interlaced sequence was extracted
and horizontally reduced by a factor of two).

All science is either physics or stamp collecting.
(Ernest Rutherford)

Roma - 210 frames

frame 1 frame 100 frame 200

Slow horizontal camera pan, no foreground objects. See also Figure 12.11
and Figure 4.12.

Opera4 - 90 frames

frame 1 frame 45 frame 90

Vertical camera pan. No foreground objects and very low texture. See also
Figure 4.5.
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Rail - 140 frames

frame 1 frame 70 frame 140

Complex camera rotation at medium speed. No foreground objects. See
also Figures 4.4 and 6.18 to 6.20.

Nature2 - 400 frames

frame 1 frame 200 frame 400

Zoom in at right side, rotate to the left, and zoom out again. No foreground
objects. See also Figures 12.14 and 12.15.

Hurdles - 200 frames

frame 1 frame 100 frame 200

Camera is tracking the athlets. Completely textured image at the begin-
ning, but large green areas at the end of the sequence. See also Figure 8.15.



AppendixE
Color Segmentation Using

Region Merging

E.1 Introduction

Color segmentation is the process of segmenting an image into homogeneously-
colored regions. In most cases, a color segmentation alone cannot yield a
semantically good segmentation, but it can be useful as a preprocessing step
to transform an image into a set of regions that are processed further in
successive stages. We apply region merging in the automatic segmentation
step of our object-model detection algorithm (Chapter 9). Furthermore, in
Chapter 10, we integrate object-model knowledge and motion information
in the region-merging algorithm to obtain a semantically meaningful result.

segmentation fault
(UNIX OS)

In this appendix, we briefly introduce the region-merging algorithm and
present several merging criteria and evaluate their performance in terms
of noise robustness and subjective segmentation quality. Furthermore, we
introduce a new merging criterion yielding a better subjective segmentation
quality, and propose to change to merging criterion during processing to
further increase the overall robustness and segmentation quality.

E.1.1 The region-merging algorithm

The objective of region merging is to group image pixels to regions which
are similar with respect to a predetermined criterion. The algorithm pro-
ceeds by sequentially merging the two most similar neighbouring regions.
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rj rk

(a) Initial regions.

rn

(b) Merging step 1. (c) Merging step 2.

Figure E.1: Two steps of a region-merging process. Thicker edges repre-
sent more similar regions.

The merging process stops when no more regions are found with sufficient
similarity, or the minimum number of regions is reached.

Region merging can be viewed as an algorithm working on a graph,
where the nodes represent regions of pixels and the edges indicate a neigh-
bouring relationship. We assign edge weights to the edges to represent the
dissimilarity between adjoining regions. Let P = {pi} be the set of pixels
in the input image with corresponding luminance I(pi). Furthermore, let a
neighbouring-relation n(pi, pj) be true iff pi and pj are neighbours; however
note that n(pi, pi) = false.

The input of the region-merging algorithm is a set of regions R = {ri}
with ri ⊂ P ,

⋃
ri = P and ri ∩ rj = ∅ for i 6= j. The initial set of regions

can be obtained in a several different ways. The regions can be the result
of a preceding segmentation step such as watershed segmentation, they can
be chosen arbitrarily (e.g. blocks of fixed size), or in the extreme case, each
input pixel can be considered as a separate region.

The algorithm first builds a neighbourhood graph G = (R,E) with
edges E = {(ri, rj) | ∃pk ∈ ri, pl ∈ rj : n(pk, pl) = true}. Additionally, we
define an edge weight w on the edges w : E→R which describes a measure
of dissimilarity of the regions connected by the edge. The definition of the
edge weights (i.e. the merging criterion) is the crucial part of the algorithm,
directly affecting the quality of the segmentation result.

Region merging is a greedy algorithm following the intuitive process
to continuously merge the two most similar regions into a single region.
Merging stops when the lower bound of regions #rmin is reached or the
minimum edge weight exceeds a threshold wmax. The algorithm is outlined
in Algorithm 3 and illustrated in Figure E.1.



E.2. Merging criteria 491

Algorithm 3 Basic merging algorithm
while |R| > #rmin do

emin = (rj , rk)← argmin
e∈E

w(e)

if w(emin) > wmax then
STOP

else
Join regions rn ← rj ∪ rk

Update edges E ← E∪
(
Enew = {(rn, ri)|(rj , ri) ∈ E∨(rk, ri) ∈ E}

)
Remove old edges E ← E ∩ {R \ {rj ;rk}} × {R \ {rj ;rk}}
Remove regions rj and rk R← R \ {rj ;rk}
for all e ∈ Enew do

Update edge weight w(e)
end for

end if
end while

E.2 Merging criteria

A merging criterion consists of two parts: a region model, describing each
image region with a set of features, and a dissimilarity measure, defin-
ing a metric on the features of the region model. The range of possible
region models reaches from simple models like uniform luminance up to
texture, shape or motion parameters. In the following, we will concentrate
on low-level features which are applied at early stages of the algorithm.
Furthermore, we only consider greyscale images. However, all presented
critera can be readily generalized to work on color images.

The better a region model matches the real image-data, the longer the
minimum edge-weights remain small and the steeper is the relative increase
in region dissimilarity as soon as the segmentation has reached its final
state. This makes the segmentation process more robust to the selection of
the fixed threshold for the stopping condition.

E.2.1 Mean luminance difference

The simplest region model is to describe each region ri by its mean lumi-
nance µi. A straightforward possibility to define a dissimilarity measure
for this model is to use the squared difference, from now on referred to as
the Mean-criterion

wM
ij =

(
µi − µj

)2
. (E.1)
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E.2.2 Ward’s criterion

Another measure which operates on the mean-luminance model is the Ward-
criterion [193]. The idea is to consider the model error for a region ri,
defined as Ei =

∑
p∈ri

(
I(p) − µi

)2. The dissimilarity associated with a
pair of regions is defined as the additional total error that is introduced by
merging the two regions: wW

ij = Eij −Ei−Ej (with Eij being the error after
a hypothetical merge of ri and rj). After elementary simplifications, this
can be expressed as

wW
ij =

|ri| · |rj |
|ri|+ |rj |

(
µi − µj

)2
. (E.2)

E.2.3 Mean/Ward mixture

As will become clear in the following section, neither the Mean-criterion nor
the Ward-criterion produce a subjectively approporiate segmentation. A
better criterion may be a compromise between the characteristics of Mean
and Ward. For this reason, we introduce the geometrical mean of both
criteria (wG

ij = (wM
ij · wW

ij )1/2) as a new Mean-Ward criterion. Since the
absolute value of the criterion is not important, the square-root can be
ignored, resulting in

wG
ij =

|ri| · |rj |
|ri|+ |rj |

(
µi − µj

)4
. (E.3)

E.2.4 Linear-luminance model

Because of illumination effects, natural images seldomly consist of com-
pletely homogeneous regions. Almost all regions that we perceive as ho-
mogeneous, contain a small luminance gradient. Therefore, it is sensible to
use a region model that is capable of describing slowly varying luminance
gradients. A possible region model defines the luminance distribution as
I ′(x, y) = α + βx + γy with the three parameters α, β, γ. For each indi-
vidual region, these parameters are estimated from the image data, using
a least-squares approach. Comparable to the Ward-criterion, we define the
model error as EL

i =
∑

p∈ri

(
I(x, y)− I ′(x, y)

)2 and the region dissimilarity
as

wL
ij = EL

ij − EL
i − EL

j . (E.4)

E.2.5 Border criterion

Although the linear-luminance model handles well most regions occurring
in natural images, the model has two main drawbacks: it is rather compu-
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(a) Input image. (b) Mean criterion.

(c) Ward criterion. (d) Linear-Luminance criterion.

Figure E.2: Performance of several criteria for an unsharp edge (50 re-
gions remaining).

tationally intensive, and it still cannot handle all cases of small luminance
variations. Especially curved surfaces have complicated luminance distri-
butions. Both problems can be circumvented by using the following Border
criterion.

Let Bij = {(pk, pl)} be the set of pairs of pixels along the common
boundary between region ri and rj (with pk ∈ ri and pl ∈ rj). We define
the Border-criterion as the sum of squared differences along the boundary

wB
ij =

1
|Bij |

∑
(pk,pl)∈Bij

(
I(pk)− I(pl)

)2
. (E.5)

Note that this criterion only considers how the regions fit together along
the border, not considering the interior of the region area.

E.3 Criteria properties

E.3.1 General behaviour

Figure E.2 depicts a detail view of an image containing an unsharp edge.
As the image is part of a real-world image, it contains a hardly visible
luminance gradient in the “flat” image regions and some camera noise.
The image has been segmented independently with the Mean, Ward, and
Linear-Luminance criterion until only 50 regions were remaining.

It is easily visible that the Ward criterion favours the removal of small
noisy areas instead of combining large, but only slightly different regions.
This occurs because the Ward criterion considers the total error and small
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criterion Mean Ward Mean- Linear- Border Water-
problem class Ward Lum. shed
noise − ++ + − − −
blurred edges − + + + −− +
double edges − + + − − +
illumination − −− + ++ ++ +
subjective eval. + −− ++ + + −
stopping criterion −− + ++ + + N/A
comp. complexity + + + −− + ++

Table E.1: Comparison of the performance of different criteria on a num-
ber of typical problem classes.

differences in very large regions outweigh larger differences in very small
regions. The Mean criterion does not show this effect, because it does not
take region size into account. Similarly, the Linear-Luminance criterion
can adapt its model to approximate the gradient with sufficient accuracy.
Furthermore, it is also capable to model the unsharp edge itself and does
not lead to the oversegmentation with many narrow regions, as is the case
with the other two criteria.

E.3.2 Comparison

In natural image segmentation, several classes of commonly occuring diffi-
culties can be identified. The robustness of each criterion1 on the problem
classes was evaluated and is depicted in Table E.1. In the following, some
problem classes are described in more detail.

• Noise. Camera noise has a well visible effect at the beginning of the
segmentation process. Dissimilarity measures which are normalized to
their region sizes, like Ward’s criterion, give superior results, because
single noisy pixels introduce no large overall error.

• Blurred edges and double edges. Objects which are out of camera
focus appear with blurred edges in the image. This can lead to an
oversegmentation into many thin rings around the object boundary.
The Linear-Luminance criterion can approximate the blurred edge
with a single region if the object boundaries are straight lines. Curved
boundaries can be handled by the border criterion.

However, the more general model of the Border criterion has the
disadvantage to ignore the pixels inside a region. Thus, it is possible

1See section E.4.1 for more information on the watershed-presegmentation column.
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for an object to grow along its unsharp border until it is completely
merged with the background (see Figure E.4(c)).

Almost all sharp edges in real-world images consist of pixels midway
between the colors of the two regions. After a segmentation with a
too low threshold, objects seem to have double edges. Because of its
tendency to merge small regions, the Ward-criterion can remove these
double edges well.

• Illumination effects. Large regions in natural images usually have
differing brightness because the lighting is not strictly uniform. If the
region model assumes a uniform region color, these areas are split into
several pieces (see Fig. E.5). This is not the case if the region model
allows brightness gradients, or if only the border between regions is
considered.

• Subjective evaluation. As can be seen in Figure E.3, the Ward
criterion has a tendency to split large regions into several segments,
whereas the Mean criterion removes large regions equally likely as
small regions. Figure E.3(d) shows the segmentation using the Mean-
Ward criterion. The result is much more subjectively pleasing as the
large regions are preserved, and much of the text is kept. The same
effect is shown in the natural image in Figure E.6.

E.4 Multi-stage merging

As discussed in the last sections, each criterion shows both advantages and
disadvantages. Choosing a single criterion for the complete segmentation
process results in a dissatisfactory segmentation. This motivates a multi-
stage approach. A criterion is used as long as it can well handle the current
configuration. Afterwards, the criterion is exchanged by another one. By
using several stages, the selection of an appropriate threshold in the stop-
ping criterion is not critical. The threshold should be chosen sufficiently
low to ensure that control is passed on to the next criterion, before the sit-
uation exceeds the capabilities of the criterion’s region model. A sequence
of criteria that produced good segmentation results was:

1. Ward, removing much of the image noise and eliminating double
edges,

2. Mean-Ward, which does the main work, before finally

3. Border merges regions in which illumination effects play a central
role.
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(a) Input image. (b) Mean criterion.

(c) Ward criterion. (d) Mean-Ward criterion.

Figure E.3: Segmentation results for three criteria, 50 regions remaining.
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(a) Input image. (b) Watershed segmentation.

(c) Without watershed. The right ob-
ject is removed by the Border crite-
rion.

(d) With watershed. The right object
is correctly segmented due to a lower
threshold.

Figure E.4: Effect of applying a watershed presegmentation.

E.4.1 Applying a watershed presegmentation

Instead of starting the algorithm with single-pixel regions, it is possible
to perform a presegmentation with the watershed algorithm on a gradient
map of the input image.

This presegmentation has the advantage to considerably reduce the
computational complexity, as the watershed transform is a fast algorithm
and reduces the amount of input regions. Furthermore, it alleviates the
problem of the Border criterion to destroy complete objects having unsharp
boundaries (see Figure E.4). The watershed transform splits these blurred
areas at the object boundaries along the position of the maximum gradi-
ent into only two regions. For this reason, the threshold in the stopping
condition for the Border criterion can be set to a lower value.

The disadvantage of applying this presegmentation is that small image
structures may be deteriorated or even vanish. Additionally, in the presence
of camera noise, smooth edges in the image can become “fuzzy” in the
segmentation.
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(a) Input image. (b) Segmentation with Ward crite-
rion.

Figure E.5: Even though the sky looks like a homogeneous color, it is ac-
tually a gradient that is split into several regions by the Ward
criterion.

E.5 Results and conclusions

We have described region-merging as an image-segmention algorithm where
merging criteria play a key role for improving the segmentation result.
Several low-level merging criteria have been evaluated for application in
natural image segmentation. Based on the properties of the criteria, a
multi-stage approach has been presented. The Ward criterion is used in
the first stage to reduce the influence of image noise. The subsequent
Mean-Ward stage performs the actual color segmentation, and finally, the
Border criterion reduces oversegmentation due to illumination effects.

Figure E.7 shows a sample image with the results of the multi-stage
segmentation algorithm. Neither the Mean criterion, nor the Ward criterion
alone achieves acceptable segmentation results. Only by using a multi-stage
approach of Ward, Mean-Ward, and Border (Figure E.7(d)), a subjectively
superior object separation is obtained.
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(a) Input image. (b) Mean criterion.

(c) Ward criterion. (d) Mean-Ward criterion.

Figure E.6: Example segmentation result with various merging criteria.
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(a) Input image. (b) Mean criterion.

(c) Ward criterion. (d) Multi-stage.

Figure E.7: Segmentation results for three different criteria using an im-
age of several objects on a table.



AppendixF
Shape-Based Analysis of

Object Behaviour

Once the shapes of the video objects have been determined by an auto-
matic segmentation algorithm, it is interesting to apply further processing
to extract semantically high information. For example, the obtained object
masks can be used to identify the object and assign it to classes like human,
car, bird, and so on. Furthermore, objects usually do not appear static, but
they perform some action in the video sequence, which can also be analysed
and assigned to sub-classes like “walking human”, “standing human”, or
“sitting human”. The analysis of the sequence of object sub-classes over
time can be considered as extraction of object behaviour.

If there are no stupid questions, then what
kind of questions do stupid people ask?
Do they get smart just in time to ask questions?
(Scott Adams)

In this appendix, experiments are described that we conducted to ex-
tract a description of the object behaviour based on the object shape. For
the analysis, we combined a classification of the object shape into several
pre-defined classes with a model of the transition probability between these
classes over time. Having a model that describes the transitions between
classes makes the classification more robust than an independent classi-
fication for each input frame, because occasional false classifications are
avoided by small transition probabilities.
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Figure F.1: Best database match for some automatically segmented object
masks. The query masks as shown in the top row and the best
matching shape is depicted in the bottom row, respectively.

F.1 Classification of object shapes

A popular technique to classify objects based on their shape is the Cur-
vature Scale Space (CSS) technique [128, 4]. Essentially, this technique
represents the shape of an object with a low-dimensional feature-vector.
The representation makes it easy to obtain rotation and scaling-invariant
feature vectors. To classify a specific object, we use a database of manually-
classified objects, in which the CSS feature-vector and the class identifier
is saved for each object. Using a specifically designed distance function
for CSS feature-vectors [62, 105], we compare the shape of the segmented
object with all objects in the database. For an independent classification,
we would select the object class with the smallest CSS distance value. Un-
fortunately, segmentation errors can distort the shape of the object, and
also the CSS technique itself has a certain error rate. Both can lead to
false classifications. An example of independent classification is depicted
in Figure F.1.

To increase the robustness, we do not perform an independent classi-
fication for the shape extracted from each frame, but we use contextual
information from other frames to make the classification more robust. In
order to do this, we compute for each input frame f the CSS distances of
the query shape to each object class c and store it as dc(f).
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walking
human

carsitting
humanstanding standing up

sitting down

Figure F.2: Transitions between various object classes. Bolder arrows in-
dicate more probable transitions.

F.2 Simple model for object behaviour

Real-world objects cannot suddenly change their class in an arbitrary way.
For example, a human can never become a car for just a couple of frames,
even if its shape suggests this. But, if we further subdivide each class into
behaviour sub-classes, transitions may occur. Usually, even though an ob-
ject can appear in all sub-classes, there are restrictions for state changes.
In Figure F.2, transitions between some sub-classes for human motion and
an independent car class are shown. According to this model, a human can
walk, stand, and sit, but prior to sitting, he has to pass the sitting-down
state first. The possible transitions can also be weighted, such that sitting-
down has a higher cost (because it is not so probable) as just continuing
to walk. More formally, the weights for all transitions from a general state
i to state k can be collected in a state transition matrix wi,k. For our ex-
periments, we have manually edited this transition matrix based on typical
error values as observed in the CSS shape matching step.

F.3 Behaviour analysis

Having the independent shape-matching costs and the state-transition costs
available, we can compute the most probable class labels cf for each frame
f by minimizing the total cost

min
(cf )f

{
dc1(1) +

N∑
k=2

(dck
(k) + wck−1,ck

)

}
, (F.1)

where N is the total number of frames. This minimization problem can be
solved by considering it a minimum-cost path problem in a graph with nodes
V =

⋃
f Vf composed of columns Vf = {(c, f)}c and edges E =

⋃
f Vf×Vf+1
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Figure F.3: Computation graph for the classification of object shapes. The
minimum-cost path in the graph defines the class for each
frame.

between successive columns. Nodes (c, f) are attributed with costs dc(f)
and edges ((ci, f), (ck, f + 1)) with wi,k. The resulting graph is depicted in
Figure F.3 for the example outlined above.

Results for the described example model are depicted in Figure F.4. The
results for both humans were obtained with the same model without any
parameter adaptation. We consider the presented algorithm and example
result as a proof-of-concept implementation. Future work should replace
the heuristic cost functions with experimentally-determined probabilities
pf (c) instead of dc(f), and transition probabilities p(cf |cf−1). Similarly to
Eq. (F.1), we obtain the total probability

min
(cf )f

{
p1(c1) ·

N∏
k=2

(p(ck|ck−1)pk(ck))

}
. (F.2)

The products in this equation can be transformed to sums by considering
the log-likelihoods. This results in an optimization problem similar to the
above shortest-path problem.
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sitting

standing up

standing

walking

standing

(a)

sitting

standing up

walking

standing

walking

(b)

Figure F.4: Example results for automatic classification of object be-
haviour for the human-motion model of Fig. F.2.
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marbeit, Universität Mannheim, Dec. 2002.

[108] J. B. Kuipers. Quaternions and Rotation Sequences. Princeton Uni-
versity Press, 1998.

[109] T. Kurita. An efficient clustering algorithm for region merging. In
IEICE Trans. of Information and Systems, volume E78-D, No. 12,
1995.

[110] R. Laganière and É. Vincent. Wedge-based corner model for widely
separated views matching. In IEEE International Conference on Pat-
tern Recognition, volume 3, pages 672–675, 2002.

[111] M. C. Lee, W. Chen, C. B. Lin, C. Gu, T. Markoc, S. I. Zabinsky,
and R. Szeliski. A layered video object coding system using sprite
and affine motion model. IEEE Trans. on Circuits and Systems for
Video Technology, 7(1):130–145, Feb. 1997.

[112] J. Li, J. Z. Wang, and G. Wiederhold. IRM: Integrated region match-
ing for image retrieval. In ACM Multimedia, pages 147–156, 2000.

[113] L. Li and M. Leung. Integrating intensity and texture differences for
robust change detection. IEEE Transactions on Image Processing,
11:105–112, 2002.

[114] S. Z. Li. Markov Random Field Modeling in Computer Vision.
Springer, 1995.

[115] R. Lienhart, S. Pfeiffer, and W. Effelsberg. Video abstracting. In
Communications of the ACM, volume 40, pages 55–62, 1997.

[116] Y. Liu, Q. Huang, Q. Ye, and W. Gao. A new method to calculate
the camera focusing area and player position on playfield in soccer
video. In SPIE Visual Communications and Image Processing, 2005,
pages 1524–1533, July 2005.

[117] M. I. A. Lourakis and A. A. Argyros. The design and implementa-
tion of a generic sparse bundle adjustment software package based



518 References

on the levenberg-marquardt algorithm. Technical report, Institute of
Computer Science of the Foundation for Research and Technology -
Hellas FORTH, Aug. 2004.

[118] Y. Lu, W. Gao, and F. Wu. Sprite generation for frame-based video
coding. In Proc. IEEE International Conference on Image Processing
(ICIP), volume 1, pages 473–476, 2001.

[119] Y. Lu, W. Gao, and F. Wu. Efficient background video coding with
static sprite generation and arbitrary-shape spatial prediction tech-
niques. IEEE Trans. on Circuits and Systems for Video Technology,
13(5):394–405, 2003.

[120] H. Luo and A. Eleftheriadis. Rubberband: An improved graph search
algorithm for interactive object segmentation. In Proc. IEEE Inter-
national Conference on Image Processing (ICIP), volume 1, pages
101–104, 2002.

[121] J. Maciel and J. P. Costeira. A global solution to sparse correspon-
dence problems. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence (PAMI), 25(2):187–199, Feb. 2003.

[122] S. Mann and R. W. Picard. Video orbits of the projective group:
A simple approach to featureless estimation of parameters. IEEE
Transactions on Image Processing, 6(9), Sept. 1999.

[123] M. Massey and W. Bender. Salient stills: Process and practice. IBM
Systems Journal, 35(3&4):557–573, 1996.

[124] R. Mech and M. Wollborn. A noise robust method for segmentation
of moving objects in video sequences. In IEEE Int. Conf. on Acous-
tics, Speech, and Signal Processing (ICASSP), pages 2657–2660, Apr.
1997.

[125] B. T. Messmer and H. Bunke. A new algorithm for error-tolerant
subgraph isomorphism detection. IEEE Trans. on Pattern Analysis
and Machine Intelligence (PAMI), 20(5):493–504, May 1998.

[126] K. Mikolajczyk and C. Schmid. An affine invariant interest point de-
tector. In European Conference on Computer Vision (ECCV), pages
128–142. Springer, 2002. Copenhagen.

[127] R. Mohr and B. Triggs. Projective geometry for image analysis; a
tutorial given at ISPRS, Vienna, Sept. 1996.



References 519

[128] F. Mokhtarian and A. K. Mackworth. A theory of multiscale,
curvature-based shape representation for planar curves. IEEE
Transactions on Pattern Analysis and Machine Intelligence (PAMI),
14:789–805, Aug. 1992.

[129] H. Moravec. Visual mapping by a robot rover. In Proceedings of the
6th International Joint Conference on Artificial Intelligence, pages
599–601, August 1979.

[130] E. N. Mortensen and W. A. Barrett. Interactive segmentation with
intelligent scissors. Graphical Models and Image Processing, 60:349–
384, 1998.

[131] Y. Morvan, D. Farin, and P. H. N. de With. Matching-pursuit dic-
tionary pruning for MPEG-4 video object coding. In Internet and
multimedia systems and applications, volume 1, pages 476–481, Feb.
2005.

[132] D. Mumford and J. Shah. Optimal approximations by piecewise
smooth functions and associated variational problems. Communi-
cations in Pure and Applied Mathematics, 42(5):577–685, 1989.

[133] J. Nesvadba, P. Fonseca, A. Sinitsyn, F. de Lange, M. Thijssen,
P. van Kaam, H. Liu, R. van Leeuwen, J. Lukkien, A. Korostelev,
J. Ypma, B. Kroon, H. Celik, A. Hanjalic, U. Naci, J. Benois-Pineau,
P. de With, and J. Han. Real-time and distributed AV content analy-
sis system for consumer electronics networks. In IEEE International
Conference on Multimedia and Expo (ICME), July 2005.

[134] C.-W. Ngo, T.-C. Pong, and H.-J. Zhang. On clustering and retrieval
of video shots. In ACM Multimedia, pages 51–60, 2001.

[135] H. Nicolas. Optimal criterion for dynamic mosaicking. In Proc.
IEEE International Conference on Image Processing (ICIP), vol-
ume 4, pages 133–137, Oct. 1999.

[136] P. Nunes and F. M. Pereira. Scene level rate control algorithm for
MPEG-4 video coding. In SPIE Visual Communications and Image
Processing (VCIP), pages 194–205, 2001.

[137] Y. Ohno, J. Miura, and Y. Shirai. Tracking players and estimation
of the 3D position of a ball in soccer games. In ”Proc. International
Conference on Pattern Recognition (ICPR), volume 1, pages 145–148,
Sept. 2000.



520 References

[138] N. Paragios and R. Deriche. Geodesic active contours and level sets
for the detection and tracking of moving objects. IEEE Transactions
on Pattern Analysis and Machine Intelligence (PAMI), 22:266–280,
Mar. 2000.

[139] M. Pastrnak, D. Farin, and P. H. N. de With. Adaptive decoding of
MPEG-4 sprites for memory-constrained embedded systems. In 26th

Symposium on Information Theory in the Benelux, pages 137–144,
May 2005.

[140] M. Pastrnak, P. Poplavko, P. H. N. de With, and D. Farin. Data-flow
timing models of dynamic multimedia applications for multiprocessor
systems. In 4th IEEE International Workshop on System-on-Chip for
Real-Time Applications (SoCRT), pages 206–209, July 2004.

[141] I. Patras, E. A. Hendriks, and R. L. Lagendijk. Video segmentation by
MAP labeling of watershed segments. IEEE Transactions on Pattern
Analysis and Machine Intelligence (PAMI), 23(3):326–332, 2001.

[142] R. Pea, M. Mills, J. Rosen, K. Dauber, W. Effelsberg, and E. Hof-
fert. The diver project: Interactive digital video repurposing. IEEE
Multimedia, 11(11):54–61, 2004.

[143] H. Peinsipp. Implementation of a Java applet for demonstration of
block-matching motion-estimation algorithms. Studienarbeit, Uni-
versität Mannheim, Oct. 2003.

[144] M. Pelillo, K. Siddiqi, and S. W. Zucker. Matching hierarchical struc-
tures using association graphs. Technical report, Yale University,
Center for Computational Vision & Control, Nov. 1997.

[145] M. Pelillo, K. Siddiqi, and S. W. Zucker. Continuous-based heuristics
for graph and tree isomorphisms, with application to computer vision.
In NIPS 99 Workshop on Complexity and Neural Computation, Dec.
1999.

[146] M. Pfeffer. Entwicklung eines Algorithmus zur benutzerunterstützten
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Summary

Practically established video compression and storage techniques still pro-
cess video sequences as rectangular images without further semantic struc-
ture. However, humans watching a video sequence immediately recognize
acting objects as semantic units. This semantic object separation is cur-
rently not reflected in the technical system, making it difficult to manipulate
the video at the object level. The realization of object-based manipulation
will introduce many new possibilities for working with videos like compos-
ing new scenes from pre-existing video objects or enabling user-interaction
with the scene.

Moreover, object-based video compression, as defined in the MPEG-4
standard, can provide high compression ratios because the foreground ob-
jects can be sent independently from the background. In the case that the
scene background is static, the background views can even be combined
into a large panoramic sprite image, from which the current camera view is
extracted. This results in a higher compression ratio since the sprite image
for each scene only has to be sent once.

A prerequisite for employing object-based video processing is automatic
(or at least user-assisted semi-automatic) segmentation of the input video
into semantic units, the video objects. This segmentation is a difficult prob-
lem because the computer does not have the vast amount of pre-knowledge
that humans subconsciously use for object detection. Thus, even the simple
definition of the desired output of a segmentation system is difficult. The
subject of this thesis is to provide algorithms for segmentation that are ap-
plicable to common video material and that are computationally efficient.

The thesis is conceptually separated into three parts. In Part I, an
automatic segmentation system for general video content is described in
detail. Part II introduces object models as a tool to incorporate user-
defined knowledge about the objects to be extracted into the segmentation
process. Part III concentrates on the modeling of camera motion in order
to relate the observed camera motion to real-world camera parameters.
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The segmentation system that is described in Part I is based on a
background-subtraction technique. The pure background image that is
required for this technique is synthesized from the input video itself. Se-
quences that contain rotational camera motion can also be processed since
the camera motion is estimated and the input images are aligned into a
panoramic scene-background. This approach is fully compatible to the
MPEG-4 video-encoding framework, such that the segmentation system
can be easily combined with an object-based MPEG-4 video codec.

After an introduction to the theory of projective geometry in Chap-
ter 2, which is required for the derivation of camera-motion models, the
estimation of camera motion is discussed in Chapters 3 and 4. It is im-
portant that the camera-motion estimation is not influenced by foreground
object motion. At the same time, the estimation should provide accu-
rate motion parameters such that all input frames can be combined seam-
lessly into a background image. The core motion estimation is based on a
feature-based approach where the motion parameters are determined with
a robust-estimation algorithm (RANSAC) in order to distinguish the cam-
era motion from simultaneously visible object motion. Our experiments
showed that the robustness of the original RANSAC algorithm in practice
does not reach the theoretically predicted performance. An analysis of the
problem has revealed that this is caused by numerical instabilities that can
be significantly reduced by a modification that we describe in Chapter 4.

The synthetization of static-background images is discussed in Chap-
ter 5. In particular, we present a new algorithm for the removal of the
foreground objects from the background image such that a pure scene
background remains. The proposed algorithm is optimized to synthesize
the background even for difficult scenes in which the background is only
visible for short periods of time. The problem is solved by clustering the
image content for each region over time, such that each cluster comprises
static content. Furthermore, it is exploited that the times, in which fore-
ground objects appear in an image region, are similar to the corresponding
times of neighboring image areas.

The reconstructed background could be used directly as the sprite image
in an MPEG-4 video coder. However, we have discovered that the coun-
terintuitive approach of splitting the background into several independent
parts can reduce the overall amount of data. In the case of general camera
motion, the construction of a single sprite image is even impossible. In
Chapter 6, a multi-sprite partitioning algorithm is presented, which sepa-
rates the video sequence into a number of segments, for which independent
sprites are synthesized. The partitioning is computed in such a way that
the total area of the resulting sprites is minimized, while simultaneously
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satisfying additional constraints. These include a limited sprite-buffer size
at the decoder, and the restriction that the image resolution in the sprite
should never fall below the input-image resolution. The described multi-
sprite approach is fully compatible to the MPEG-4 standard, but provides
three advantages. First, any arbitrary rotational camera motion can be
processed. Second, the coding-cost for transmitting the sprite images is
lower, and finally, the quality of the decoded sprite images is better than
in previously proposed sprite-generation algorithms.

Segmentation masks for the foreground objects are computed with a
change-detection algorithm that compares the pure background image with
the input images. A special effect that occurs in the change detection is
the problem of image misregistration. Since the change detection com-
pares co-located image pixels in the camera-motion compensated images,
a small error in the motion estimation can introduce segmentation errors
because non-corresponding pixels are compared. We approach this prob-
lem in Chapter 7 by integrating risk-maps into the segmentation algorithm
that identify pixels for which misregistration would probably result in er-
rors. For these image areas, the change-detection algorithm is modified to
disregard the difference values for the pixels marked in the risk-map. This
modification significantly reduces the number of false object detections in
fine-textured image areas.

The algorithmic building-blocks described above can be combined into a
segmentation system in various ways, depending on whether camera motion
has to be considered or whether real-time execution is required. These
different systems and example applications are discussed in Chapter 8.

Part II of the thesis extends the described segmentation system to con-
sider object models in the analysis. Object models allow the user to specify
which objects should be extracted from the video. In Chapters 9 and 10,
a graph-based object model is presented in which the features of the main
object regions are summarized in the graph nodes, and the spatial relations
between these regions are expressed with the graph edges. The segmenta-
tion algorithm is extended by an object-detection algorithm that searches
the input image for the user-defined object model. We provide two object-
detection algorithms. The first one is specific for cartoon sequences and
uses an efficient sub-graph matching algorithm, whereas the second pro-
cesses natural video sequences. With the object-model extension, the seg-
mentation system can be controlled to extract individual objects, even if
the input sequence comprises many objects.

Chapter 11 proposes an alternative approach to incorporate object mod-
els into a segmentation algorithm. The chapter describes a semi-automatic
segmentation algorithm, in which the user coarsely marks the object and
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the computer refines this to the exact object boundary. Afterwards, the
object is tracked automatically through the sequence. In this algorithm,
the object model is defined as the texture along the object contour. This
texture is extracted in the first frame and then used during the object track-
ing to localize the original object. The core of the algorithm uses a graph
representation of the image and a newly developed algorithm for computing
shortest circular-paths in planar graphs. The proposed algorithm is faster
than the currently known algorithms for this problem, and it can also be
applied to many alternative problems like shape matching.

Part III of the thesis elaborates on different techniques to derive infor-
mation about the physical 3-D world from the camera motion. In the seg-
mentation system, we employ camera-motion estimation, but the obtained
parameters have no direct physical meaning. Chapter 12 discusses an ex-
tension to the camera-motion estimation to factorize the motion parameters
into physically meaningful parameters (rotation angles, focal-length) using
camera autocalibration techniques. The speciality of the algorithm is that
it can process camera motion that spans several sprites by employing the
above multi-sprite technique. Consequently, the algorithm can be applied
to arbitrary rotational camera motion.

For the analysis of video sequences, it is often required to determine and
follow the position of the objects. Clearly, the object position in image co-
ordinates provides little information if the viewing direction of the camera
is not known. Chapter 13 provides a new algorithm to deduce the transfor-
mation between the image coordinates and the real-world coordinates for
the special application of sport-video analysis. In sport videos, the camera
view can be derived from markings on the playing field. For this reason, we
employ a model of the playing field that describes the arrangement of lines.
After detecting significant lines in the input image, a combinatorial search
is carried out to establish correspondences between lines in the input image
and lines in the model. The algorithm requires no information about the
specific color of the playing field and it is very robust to occlusions or poor
lighting conditions. Moreover, the algorithm is generic in the sense that it
can be applied to any type of sport by simply exchanging the model of the
playing field.

In Chapter 14, we again consider panoramic background images and
particularly focus ib their visualization. Apart from the planar background-
sprites discussed previously, a frequently-used visualization technique for
panoramic images are projections onto a cylinder surface which is un-
wrapped into a rectangular image. However, the disadvantage of this ap-
proach is that the viewer has no good orientation in the panoramic image
because he looks into all directions at the same time. In order to provide
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a more intuitive presentation of wide-angle views, we have developed a vi-
sualization technique specialized for the case of indoor environments. We
present an algorithm to determine the 3-D shape of the room in which the
image was captured, or, more generally, to compute a complete floor plan
if several panoramic images captured in each of the rooms are provided.
Based on the obtained 3-D geometry, a graphical model of the rooms is
constructed, where the walls are displayed with textures that are extracted
from the panoramic images. This representation enables to conduct virtual
walk-throughs in the reconstructed room and therefore, provides a better
orientation for the user.

Summarizing, we can conclude that all segmentation techniques employ
some definition of foreground objects. These definitions are either explicit,
using object models like in Part II of this thesis, or they are implicitly
defined like in the background synthetization in Part I. The results of this
thesis show that implicit descriptions, which extract their definition from
video content, work well when the sequence is long enough to extract this
information reliably. However, high-level semantics are difficult to integrate
into the segmentation approaches that are based on implicit models. Intead,
those semantics should be added as postprocessing steps. On the other
hand, explicit object models apply semantic pre-knowledge at early stages
of the segmentation. Moreover, they can be applied to short video sequences
or even still pictures since no background model has to be extracted from
the video. The definition of a general object-modeling technique that is
widely applicable and that also enables an accurate segmentation remains
an important yet challenging problem for further research.
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Samenvatting

De huidige praktisch bewezen videocompressie- en opslagtechnieken be-
werken videosequenties nog steeds als rechthoekige beelden zonder enige
semantische structuur. Echter, mensen die naar sequenties van video-
beelden kijken, nemen onmiddellijk de daarin optredende objecten als se-
mantisch relevante eenheden waar. Deze semantische objectherkenning
wordt niet gereflecteerd in de technische implementatie, zodat het moeilijk
is om videobeelden te manipuleren op objectniveau. De realisatie van ob-
jectmanipulatie zal veel nieuwe mogelijkheden introduceren om met video-
beelden te werken, zoals het samenstellen van nieuwe scènes van reeds
bestaande video-objecten en speciale gebruikersinteractie met de gerepre-
senteerde scène.

Daarnaast kan objectgebaseerde videocompressie zoals gedefinieerd in
de MPEG-4 standaard, tot hoge compressiefactoren leiden, omdat de ob-
jecten op de voorgrond onafhankelijk van de achtergrond kunnen worden
verzonden. In het geval van een statische achtergrond in de scène kun-
nen de verschillende achtergrondbeelden worden gecombineerd in een groot
panoramisch beeld, genaamd sprite-beeld, waarvan het actuele camera-
blikveld kan worden geëxtraheerd. Dit concept resulteert in een hogere
compressiefactor, omdat het sprite-beeld voor elke scène slechts eenmaal
hoeft te worden verzonden.

Een voorwaarde voor het gebruiken van objectgebaseerde videobewer-
king is automatische (of op zijn minst met hulp van de gebruiker semi-
automatische) segmentatie van de videobeelden aan de ingang in seman-
tische eenheden, ook wel video-objecten genoemd. Deze segmentatie is
een complex probleem, omdat een computer niet de enorme voorkennis
heeft, die mensen onbewust gebruiken voor het detecteren van objecten.
Zelfs een eenvoudige definitie van het gewenste uitgangsresultaat van het
segmentatiesysteem is moeilijk. Het onderwerp van dit proefschrift is om
algoritmen te ontwikkelen voor segmentatie die toepasbaar zijn voor ge-
bruikelijk videomateriaal en die rekenkundig gezien efficiënt zijn.

Het proefschrift is conceptueel gesplitst in drie delen. In Deel I wordt
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een automatisch segmentatiesysteem voor generieke beeldinhoud in de-
tail beschreven. Deel II introduceert objectmodellen als gereedschap om
voorkennis van de gebruiker toe te voegen over de te extraheren objecten
in het segmentatieproces. Deel III concentreert zich op het modelleren van
camerabeweging om de geobserveerde camerabeweging te relateren aan de
werkelijke, fysische cameraparameters.

Het segmentatiesysteem dat wordt beschreven in Deel I is gebaseerd
op een techniek met achtergrond-subtractie. Het pure achtergrondbeeld
dat nodig is voor deze techniek, is gesynthetiseerd van het ingangsvideosig-
naal zelf. Sequenties van videobeelden die een draaiende camerabeweging
bevatten kunnen ook worden bewerkt, omdat de camerabeweging wordt
geschat en de ingangsbeelden in een panoramische achtergrond van de
scène worden samengesteld. Deze benadering is volledig compatibel met de
MPEG-4 videocodering, zodat het segmentatiesysteem probleemloos kan
worden gecombineerd met een objectgebaseerde MPEG-4 videocoder.

Na een introductie in de theorie van projectieve geometrie in Hoofd-
stuk 2, die nodig is voor de afleiding van camerabewegingsmodellen, wordt
de schatting van camerabeweging besproken in de Hoofdstukken 3 en 4.
Het is belangrijk dat de schatting van de camerabeweging niet wordt bëın-
vloed door de objectbeweging op de voorgrond van de scène. Tegelijker-
tijd moet de schatting tot nauwkeurige bewegingsparameters leiden, zo-
danig dat alle ingangsbeelden naadloos kunnen worden samengevoegd in
het achtergrondsbeeld. De bewegingsschatting is in de kern een feature-
gebaseerde benadering, waarin de bewegingsparameters worden bepaald
met een robuust schattingsalgoritme (RANSAC), om een onderscheid te
maken tussen camerabeweging en de gelijktijdig zichtbare objectbeweging.
Experimenten hebben aangetoond dat het originele RANSAC-algoritme de
theoretische voorspelde robuustheid in de praktijk niet realiseert. Een ana-
lyse van dit probleem heeft opgeleverd dat dit door numerieke instabiliteiten
wordt veroorzaakt. Deze kunnen significant worden gereduceerd door een
algoritmemodificatie die in Hoofdstuk 4 wordt beschreven.

De synthetisatie van beelden met statische achtergrond wordt beschreven
in Hoofdstuk 5. Een bijzondere bijdrage is een nieuw algoritme voor het
verwijderen van objecten op de voorgrond in het achtergrondbeeld, zodat
een pure scène-achtergrond overblijft. Het voorgestelde algoritme is geop-
timaliseerd om de achtergrond reconstrueren, zelfs voor moeilijke scènes
waarin de achtergrond slechts korte tijd zichtbaar is. Dit probleem is
opgelost door de beeldinhoud van een gebied temporeel zodanig te klus-
teren dat elk kluster een statische beeldinhoud heeft. Tevens wordt benut
dat de tijden waarin voorgrondobjecten in een gebied zichtbaar zijn gelijk-
waardig zijn aan de corresponderende tijden van naburige beeldgebieden.
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De gereconstrueerde achtergrond zou direct kunnen worden gebruikt
als sprite beeld in een MPEG-4 videocoder. Het is echter een interessante
ontdekking dat een anti-intüıtieve benadering, om de achtergrond te split-
sen in verscheidene onafhankelijke delen, de totale hoeveelheid beelddata
kan verminderen. In het geval van generieke camerabeweging is de con-
structie van een enkel sprite-beeld zelfs onmogelijk. In Hoofdstuk 6 wordt
een multi-sprite partitioneringsalgoritme gepresenteerd, dat de sequentie
van videobeelden verdeeld in een aantal segmenten waarvoor onafhankelijke
sprites worden opgebouwd. De partitionering wordt zodanig berekend, dat
de totale oppervlakte van de resulterende sprites wordt geminimaliseerd,
terwijl gelijktijdig extra voorwaarden worden gerealiseerd. Deze voorwaar-
den zijn een beperkte sprite buffergrootte in de decoder en de beperking
dat de beeldresolutie in de sprite nooit lager mag zijn dan de ingangsbeeld-
resolutie. De beschreven multi-sprite benadering is volledig compatibel met
de MPEG-4 standaard, maar heeft desondanks drie voordelen. Ten eerste
kan elke draaiende camerabeweging worden gebruikt. Ten tweede zijn de
coderingskosten voor het overdragen van de sprite-beelden lager en ten
derde, is de kwaliteit van de gedecodeerde sprite-beelden beter dan dat van
eerdere algoritmen voor spritegeneratie.

Segmentatiemaskers voor de voorgrondobjecten worden bepaald met
een algoritme voor het detecteren van veranderingen, dat het pure achter-
grondbeeld vergelijkt met de ingangsbeelden. Een speciaal effect dat op-
treedt in de veranderingsdetectie is het probleem van foutieve beeldposi-
tionering. Omdat de veranderingsdetectie overeenkomstige beeldelementen
in de camerabewegingsgecompenseerde beelden vergelijkt, kan een kleine
fout in de bewegingsschatting leiden tot segmentatiefouten. De reden hier-
voor is dat niet-corresponderende beeldelementen worden vergeleken. In
Hoofdstuk 7 wordt dit opgelost door zogenaamde risicomaskers in het
segmentatie-algoritme te integreren, die beeldelementen identificeren waar-
voor foutieve beeldpositionering waarschijnlijk zal resulteren in fouten. Voor
deze beeldgebieden is het veranderingsdetectie-algoritme gemodificeerd zo-
danig dat de beeldverschillen van deze beeldelementen niet worden ge-
bruikt. Deze modificatie vermindert het aantal verkeerde objectdetecties
aanzienlijk in beeldgebieden met veel detailinformatie.

De hierboven beschreven algoritmemodules kunnen op verschillende ma-
nieren in het segmentatiesysteem worden gecombineerd, afhankelijk van of
camerabeweging moet worden gëıntegreerd of wanneer real-time executie
noodzakelijk is. Deze verschillende systemen en voorbeeldtoepassingen wor-
den bediscussiëerd in Hoofdstuk 8.

Deel II van het proefschrift verbreedt het segmentatiesysteem door ob-
jectmodellen mede in de analyse te betrekken. Objectmodellen maken
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het mogelijk voor de gebruiker om te specificeren welke objecten uit het
videosignaal moeten worden onttrokken. In de Hoofdstukken 9 en 10 wordt
een graafgebaseerd objectmodel gepresenteerd, waarin de eigenschappen
van de belangrjkste objectgebieden worden samengevat in de knooppunten
van de graaf en de spatiële relaties tussen deze gebieden worden uitgedrukt
door de verbindingen van de graaf. Het segmentatie-algoritme is uitge-
breid met een objectdetectie-algoritme dat in het ingangsbeeld zoekt naar
het door de gebruiker gedefiniëerde objectmodel. Twee algoritmen voor
objectdetectie zijn ontwikkeld. Het eerste is specifiek geschikt voor teken-
filmbeelden en gebruikt een efficiënt deelgraaf-zoekalgoritme, het tweede
objectdetectie-algoritme kan daarentegen algemene videobeelden bewerken.
Door de uitbreiding met het objectmodel kan het segmentatiesysteem wor-
den gecontroleerd om individuele objecten te extraheren, zelfs wanneer de
ingangsbeeldsequentie veel objecten bevat.

Hoofdstuk 11 stelt een alternatieve benadering voor om objectmodellen
te integreren in een segmentatie-algoritme. Dit hoofdstuk beschrijft een
semi-automatisch segmentatie-algoritme, waarin de gebruiker globaal het
object markeert en de computer dit verfijnt tot de exacte objectcontour.
Hierna wordt het object gevolgd gedurende de beeldsequentie. In dit algo-
ritme is het objectmodel gedefinieerd als de beeldstructuur (textuur) langs
de objectcontour. Deze textuur wordt onttrokken in het eerste beeld en
dan gebruikt gedurende het volgen van het object om het originele object
te localiseren. De kern van het algoritme gebruikt een graafrepresentatie
van het beeld en een nieuw ontwikkeld algoritme voor het berekenen van
de kortste rondgaande paden (cykels) in planaire graven. Het voorgestelde
algoritme is sneller dan de algemeen bekende algoritmen voor dit probleem
en het kan ook worden toegepast voor veel alternatieve problemen, zoals
het vergelijken van objectvormen.

Deel III van het proefschrift gaat dieper in op verschillende technieken
om informatie over de fysische 3-D wereld af te leiden van de camerabe-
weging. In het segmentatiesysteem gebruiken we camerabewegingsschat-
ting, maar de verkregen parameters hebben geen directe fysische betekenis.
Hoofdstuk 12 behandelt een uitbreiding naar camerabewegingsschatting
om de bewegingsparameters te factoriseren naar fysisch zinvolle parame-
ters (draaihoek, brandpuntsafstand), die zijn gebaseerd op zelf-calibratie.
Het speciale element in het algoritme is dat sequenties kunnen worden be-
werkt met een camerabeweging die zich over verscheidene sprites uitstrekt,
wanneer de eerder genoemde multi-sprite techniek wordt gebruikt. De con-
sequentie is dat het algoritme kan worden toegepast voor generiek draaiende
camerabewegingen.

Voor de analyse van videosequenties is het vaak nodig om de object-
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posities te bepalen en te volgen. Het is duidelijk dat de objectpositie in
beeldcoördinaten weinig informatie geeft wanneer het blikveld van de ca-
mera onbekend is. Hoofdstuk 13 bespreekt een nieuw algoritme om de
transformatie tussen beeldcoördinaten en de wereldcoördinaten af te lei-
den voor de speciale toepassing van video-analyse van sportwedstrijden. In
sportbeelden kan het blikveld van de camera worden bepaald via markering-
en op het speelveld. Om deze reden is een model van het speelveld gebruikt,
dat de inrichting van de veldlijnen beschrijft. Nadat de significante lijnen
in het beeld zijn gedetecteerd, wordt een combinatorische zoekstrategie uit-
gevoerd om overeenkomsten tussen lijnen in het beeld en veldlijnen in het
model te vinden. Het algoritme heeft geen informatie nodig over de speci-
fieke kleur van het speelveld en het is zeer robuust tegen afdekkingen van
objecten of slechte belichtingscondities. Bovendien is het algoritme generiek
toepasbaar voor elke andere sport door eenvoudigweg het speelveldmodel
te verwisselen.

In Hoofdstuk 14 beschouwen we opnieuw panoramische achtergrond-
beelden en focusseren in het bijzonder op hun visualisatie. Behalve de
eerder besproken vlakke achtergrond sprites, is het projecteren op een cilin-
deroppervlak een gebruikelijke visualisatietechniek, waarbij het oppervlak
wordt afgerold tot een vlak rechthoekig beeld. Het nadeel van deze tech-
niek is echter dat de kijker geen goede oriëntatie heeft in het panoramische
beeld, omdat hij alle richtingen tegelijk observeert. Om te kunnen voorzien
in een meer gebruikersvriendelijke visualisatie van panoramische beelden, is
een techniek ontwikkeld die speciaal geschikt is voor inpandige ruimtes. We
presenteren een algoritme om de 3-D vorm van de kamer waar het beeld was
opgenomen te bepalen, of meer algemeen, het berekenen van het complete
vloerplan wanneer panoramische beelden van elke ruimte ter beschikking
staan. Gebaseerd op de verkregen 3-D geometrie wordt een grafisch model
geconstrueerd, waarbij de muren worden getoond met de beeldstructuur die
is geëxtraheerd van de panoramische beelden. Deze visualisatie maakt het
mogelijk om virtuele wandelingen in de gereconstrueerde kamer te maken
en voorziet daardoor in een betere oriëntatie voor de gebruiker.

Samenvattend kan worden geconcludeerd dat alle segmentatietechnieken
een zekere definitie van voorgrondobjecten toepassen. Deze definities zijn
ofwel expliciet, gebruik makend van objectmodellen zoals in Deel II van dit
proefschrift of zij zijn impliciet gedefiniëerd, zoals bijvoorbeeld de achter-
grondsynthetisatie in Deel I. De resultaten van dit proefschrift tonen aan
dat impliciete modellen die hun definitie onttrekken aan de video-inhoud,
goed werken wanneer de beeldsequentie lang genoeg is om deze informatie
betrouwbaar te extraheren. Semantiek op hoog niveau is echter moeilijk
te integreren in segmentatiebenaderingen die gebaseerd zijn op impliciete
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modellen. In plaats daarvan moet deze semantiek in nabewerkingsstappen
worden toegevoegd. Expliciete objectmodellen passen daarentegen seman-
tische voorkennis toe in de aanvangsstappen van de segmentatie. Boven-
dien kunnen deze modellen worden toegepast voor korte videosequenties
of zelfs individuele beelden, omdat geen achtergrondmodel hoeft te worden
geëxtraheerd van het videosignaal. De definitie van een algemene object-
modelleringstechniek die breed toepasbaar is en die ook een nauwkeurige
segmentatie mogelijk maakt, blijft een belangrijk doch uitdagend probleem
voor verder onderzoek.



Zusammenfassung

Die gegenwärtig in der Praxis verwendeten Videokompressions- und Spei-
chertechniken verarbeiten die Videosequenzen nach wie vor als rechteckige
Bilder ohne weitere semantische Struktur. Andererseits nehmen wir als
Menschen sofort die agierenden Objekte als semantische Einheiten wahr.
Diese Zerlegung in semantische Objekte wird momentan auf der techni-
schen Seite nicht durchgeführt, was die Manipulation des Videos auf Ob-
jektebene erschwert. Die Realisierung objektbasierter Manipulation wird
neue Möglichkeiten für die Verarbeitung von Videos erlauben, wie z.B. das
Zusammensetzen neuer Szenen aus vorgefertigten Videoobjekten oder die
Interaktion des Benutzers mit der dargestellten Szene.

Desweiteren kann objektbasierte Videokompression, wie sie im MPEG-4-
Standard definiert wurde, hohe Kompressionsfaktoren erreichen, da die
Objekte im Vordergrund unabhängig vom Hintergrund übertragen werden
können. Für den Fall dass der Szenenhintergrund statisch ist, können die
Hintergrundansichten sogar in ein großes Panoramabild (Sprite) zusam-
mengefügt werden, vom dem die aktuelle Kameraansicht wieder extrahiert
wird. Dies resultiert in einem erhöhten Kompressionsfaktor, da das Sprite-
Bild für jede Szene nur einmal gesendet werden muss.

Eine Voraussetzung für objektbasierte Videoverarbeitung ist die au-
tomatische (oder zumindest benutzerunterstützte, halbautomatische) Seg-
mentierung des Eingabevideos in semantische Einheiten; den Videoobjek-
ten. Diese Segmentierung ist ein schwieriges Problem, da der Computer
nicht das unermessliche Vorwissen zur Verfügung hat, das Menschen un-
terbewusst für die Objekterkennung benutzen. Daher ist schon eine ein-
fache Definition der erwünschten Ausgabe eines Segmentierungssystems
schwierig. Das Thema dieser Dissertation ist es, Algorithmen für die Seg-
mentierung zu entwickeln, die für gewöhnliches Videomaterial geeignet und
effizient in der Berechnung sind.

Diese Dissertation ist konzeptuell in drei Teile gegliedert. In Teil I wird
ein automatischen Segmentierungssystem für allgemeine Videoinhalte de-
tailliert beschrieben. Teil II führt Objektmodelle als ein Werkzeug ein,
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um benutzerdefiniertes Wissen über die zu extrahierenden Objekte in den
Segmentierungsprozess einfließen zu lassen. Teil III beschreibt die Model-
lierung der Kamerabewegung, um die beobachtete Kamerabewegung mit
den realen physischen Kameraparametern in Zusammenhang zu bringen.

Das in Teil I beschriebene Segmentierungssystem basiert auf der Tech-
nik der Hintergrundssubtraktion. Das reine Hintergrundbild, welches für
diese Technik benötigt wird, wird aus dem Eingabevideo selbst synthetisiert.
Sequenzen, in denen drehende Kamerabewegungen enthalten sind, können
auch verarbeitet werden, da die Kamerabewegung geschätzt wird und die
Eingabebilder in ein Panoramabild des Szenenhintergrunds zusammenge-
setzt werden. Dieser Ansatz ist voll kompatible zum MPEG-4 Video-
kompressionsverfahren, so dass das Segmentierungssystem problemlos mit
einem objektbasierten MPEG-4 Videocodec kombiniert werden kann.

Nach einer Einführung in die Theorie der projektiven Geometrie in
Kapitel 2, was für die Herleitung der Kamerabewegungsmodelle benötigt
wird, wird die Schätzung der Kamerabewegung in den Kapiteln 3 und 3
diskutiert. Es ist wichtig, dass die Schätzung der Kamerabewegung nicht
durch gleichzeitig vorhandene Bewegungen von Vordergrundobjekten bee-
influßt wird. Andererseits sollte sie präzise Bewegungsparameter bestim-
men, so dass alle Eingabebilder nahtlos in ein Hintergrundbild zusam-
mengefügt werden können. Der Kern der Bewegungsschätzung verwen-
det einen featurebasierten Ansatz, bei dem die Bewegungsparameter mit
einem robusten Schätzalgorithmus (RANSAC) bestimmt werden, um die
Kamerabewegung von gleichzeitig sichtbarer Objektbewegung unterschei-
den zu können. Unsere Experimente zeigten, dass die Robustheit des
ursprünglichen RANSAC-Algorithmus in der Praxis nicht die theoretisch
vorausgesagte Leistung erreicht. Eine Analyse des Problems ergab, dass
dies in numerischen Instabilitäten begründet liegt, die durch eine in Kapi-
tel 4 beschriebene Modifikation des Algorithmus erheblich reduziert werden
können.

Die Synthese statischer Hintergrundbilder wird in Kapitel 5 diskutiert.
Dabei präsentieren wir im speziellen einen neuen Algorithmus für das Ent-
fernen von Vordergrundobjekten aus dem Hintergrundbild, so dass der
reine Szenenhintergrund verbleibt. Der vorgeschlagene Algorithmus ist
daraufhin optimiert, den Hintergrund auch in schwierigen Szenen rekon-
struieren zu können, in denen er nur für kurze Zeiträume sichtbar ist. Das
Problem wird gelöst, indem die Bildinhalte einer Region zeitlich so zu Clus-
tern gruppiert werden, dass die Cluster jeweils einem statischen Bildinhalt
entsprechen. Desweiteren wird ausgenutzt, dass die Zeiten, in denen in einer
Region Vordergrundobjekte sichtbar sind, ähnlich sind wie die entsprechen-
den Zeiten der benachbarten Bildregionen.
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Der rekonstruierte Hintergrund könnte direkt als Sprite-Bild in einem
MPEG-4 Videocoder verwendet werden. Allerdings haben wir herausgefun-
den, dass der unintuitive Ansatz, den Hintergrund in mehrere unabhängige
Teile zu zerlegen, die gesamte Datenmenge reduzieren kann. Im allge-
meinen Fall unbeschränkter Kamerabewegung ist die Konstruktion eines
einzelnen Sprite-Bildes sogar unmöglich. In Kapitel 6 wird ein Algorith-
mus zur Multi-Sprite Zerlegung präsentiert, welcher die Videosequenz in
eine Anzahl Segmente unterteilt, für die dann unabhängige Sprites er-
stellt werden. Die Zerlegung wird so bestimmt, dass die Gesamtfläche
des resultierenden Sprites minimiert wird, während gleichzeitig zusätzliche
Nebenbedingungen erfüllt werden müssen. Dazu zählt eine Limitierung der
Größe des Sprite-Bildspeichers im Decoder und die Einschränkung, dass
die Bildauflösung im Sprite niemals unter die Auflösung des Eingabebildes
sinken darf. Der beschriebene Multi-Sprite Ansatz ist vollständig kom-
patibel zum MPEG-4 Standard, aber bietet drei Vorteile. Erstens erlaubt
er die Verarbeitung beliebiger drehender Kamerabewegungen. Zweitens
sind die Kodierungskosten für die Übertragung des Sprite-Bildes geringer,
und schliesslich ist die Qualität des dekodierten Sprite-Bildes besser als in
früheren Algorithmen zur Spritegenerierung.

Die Segmentierungsmasken der Vordergrundobjekte werden mit einem
Algorithmus zur Detektion von Änderungen zwischen dem reinen Hinter-
grundbild und den Eingabebildern bestimmt. Ein spezieller Effekt, der
in der Änderungsdetektion auftritt, ist das Problem der Fehlausrichtung
der Bilder. Da die Änderungsdetektion Bildpunkte an korrespondierenden
Bildpositionen vergleicht, kann ein kleiner Fehler in der Bewegungsschätz-
ung zu Segmentierungsfehlern führen, falls Pixel verglichen werden, die
nicht korrespondieren. Wir gehen dieses Problem in Kapitel 7 dadurch
an, Risikomasken in den Segmentierungsalgorithmus einzuführen, welche
diejenigen Bildpunkte markieren, für welche eine Fehlausrichtung der Bilder
wahrscheinlich zu Fehlern führen würde. Für diese Bildbereiche wird der
Algorithmus zur Änderungsdetektion so modifiziert, dass er die Bilddif-
ferenzen für diese Bildpunkte nicht beachtet. Diese Modifikation reduziert
die Anzahl der Fehldetektionen von Objekten in feintexturierten Bildberei-
chen erheblich.

Die oben beschriebenen Algorithmenmodule können auf verschiedene
Weise in ein Segmentierungssystem kombiniert werden, abhängig davon, ob
ggf. Kamerabewegungen beachtet werden müssen oder ob eine Ausführung
in Echtzeit benötigt wird. Diese unterschiedlichen Systeme und Beispielan-
wendungen werden in Kapitel 8 diskutiert.
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Teil II der Arbeit erweitert das beschriebene Segmentierungssystem so,
dass Objektmodelle in die Analyse einbezogen werden. Objektmodelle er-
lauben es dem Benutzer, die Objekte, die aus dem Video extrahiert werden
sollen, zu spezifizieren. In den Kapiteln 9 und 10 wird ein graphenbasiertes
Objektmodell präsentiert, in dem die Eigenschaften der elementaren Objek-
tregionen in den Knoten des Graphen zusammengefasst sind und die räum-
lichen Beziehungen zwischen den Regionen mit Kanten im Graph repräsen-
tiert werden. Der Segmentierungsalgorithmus wird mit einer Objektdetek-
tion erweitert, welche im Eingabebild nach dem benutzerdefinierten Ob-
jektmodell sucht. Wir präsentieren zwei Algorithmen zur Objektdetektion.
Der erste ist spezialisiert auf Zeichentricksequenzen und benutzt einen Al-
gorithmus zur effizienten Suche von Teilgraphen, wohingegen der zweite
reale Videosequenzen verarbeitet. Mit der Erweiterung um Objektmodelle
kann das Segmentierungssystem so kontrolliert werden, dass es individu-
elle Objekte extrahiert, selbst wenn die Eingabesequenz mehrere Objekte
enthält.

Kapitel 11 schlägt einen alternativen Ansatz vor um Objektmodelle
in einen Segmentierungsalgorithm zu integrieren. Das Kapitel beschreibt
einen halbautomatischen Segmentierungsalgorithmus, bei dem der Benutzer
das Objekt grob markiert und der Computer dies zur exakten Objekt-
kontur verfeinert. Anschliessend wird das Objekt automatisch durch die
Sequenz verfolgt. In diesem Algorithmus wird das Objektmodell als die
Textur entlang der Objektkontur definiert. Diese Textur wird im ersten
Bild extrahiert und dann während der Objektverfolgung benutzt, um das
ursprüngliche Objekt wiederzufinden. Der Kern des Algorithmus benutzt
eine Graphdarstellung des Bildes und einen neu entwickelten Algorith-
mus zur Berechnung kürzester zirkulärer Pfade in planaren Graphen. Der
vorgeschlagene Algorithmus ist schneller als die derzeit bekannten Algo-
rithmus für dieses Problem und er kann ebenso für viele andere Probleme
benutzt werden, wie z.B. dem Vergleich von Objektformen.

Teil III der Arbeit widmet sich verschiedenen Techniken um Informa-
tionen über die physische 3-D Welt aus der Kamerabewegung abzuleiten.
Im Segmentierungssystem haben wir die Bewegung der Kamera geschätzt,
allerdings hatten die berechneten Parameter keine direkte physikalische Be-
deutung. Kapitel 12 diskutiert eine Erweiterung für die Schätzung der
Kamerabewegung, um die Bewegungsparameter mit Techniken der Selbst-
kalibrierung in physikalisch bedeutungsvolle Parameter (wie Drehwinkel
oder Brennweite) zu faktorisieren. Die Spezialität des Algorithmus ist,
dass er mit Hilfe der Multi-Sprite-Technik Kamerabewegungen verarbeiten
kann, die sich über mehrere Sprites erstrecken. Folglich kann der Algorith-
mus für beliebige drehende Kamerabewegungen angewendet werden.
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Für die Analyse von Videosequenzen ist es oft erforderlich, die Position
von Objekten zu bestimmen und zu verfolgen. Natürlich liefert die Objekt-
position in Bildkoordinaten wenig Informationen falls die Blickrichtung der
Kamera unbekannt ist. Kapitel 13 beschreibt einen neuen Algorithmus um
die Transformation zwischen Bildkoordinaten und Weltkoordinaten für die
Spezialanwendung der Sportvideoanalyse zu bestimmen. In Sportvideos
kann die Kameraansicht von Markierungen auf dem Spielfeld abgeleitet
werden. In diesem Sinne benutzen wir ein Modell des Spielfeldes, welches
die Anordnung der Linien beschreibt. Nach der Extraktion der wesentlichen
Linien im Eingabebild wird eine kombinatorische Suche durchgeführt um
Korrespondenzen zwischen den Linien im Eingabebild und den Linien im
Modell herzustellen. Der Algorithmus benötigt keine Information über die
spezifische Spielfeldfarbe und ist sehr robust gegenüber Verdeckungen oder
ungünstigen Beleuchtungsverhältnissen. Des weiteren ist der Algorithmus
generisch in dem Sinne, dass er an jede Sportart angepasst werden kann,
indem lediglich das Spielfeldmodell ausgetauscht wird.

In Kapitel 14 betrachten wir wieder Hintergrundpanoramas and konzen-
trieren uns dabei speziell auf deren Visualisierung. Abgesehen von den
ebenen Hintergrund-Sprites, die oben diskutiert wurden, sind Projektio-
nen auf Zylinderoberflächen, die danach zu einem rechteckigen Bild aus-
gerollt werden, eine gebräuchliche Darstellungstechnik. Der Nachteil dieses
Ansatzes ist jedoch, dass der Betrachter sich im Panoramabild nicht gut ori-
entieren kann, da er gleichzeitig in alle Richtungen schaut. Um eine intuiti-
vere Darstellung für weitwinklige Ansichten bereitzustellen, haben wir eine
Darstellungstechnik entwickelt, die für Innenraumansichten spezialisiert ist.
Wir präsentieren einen Algorithmus, um die 3-D Form des Raumes zu be-
stimmen, in dem das Bild aufgenommen wurde, oder, allgemeiner, um den
kompletten Grundriss zu berechnen, falls Panoramabilder von jedem der
Räume zur Verfügung stehen. Basierend auf der ermittelten 3-D Geome-
trie wird ein graphisches Modell des Raumes erstellt, wobei die Wände Tex-
turen aus den Panoramabildern zugewiesen bekommen. Diese Darstellung
erlaubt es, virtuelle Begehungen im rekonstruierten Raum durchzuführen
und ermöglicht dadurch dem Betrachter eine verbesserte Orientierung.

Zusammenfassend können wir feststellen, dass sämtliche Segmentierungs-
techniken eine gewisse Definition für Vordergrundobjekte benutzen. Diese
Definitionen sind entweder explizit durch Objektmodelle gegeben, wie in
Teil II der Arbeit, oder sie sind implizit definiert, wie z.B. durch die Hin-
tergrundssynthese aus Teil I. Die Ergebnisse dieser Arbeit zeigen, dass
implizite Beschreibungen, die ihre Definition aus dem Videoinhalt selbst
ableiten, gut funktionieren, wenn die Sequenz lang genug ist, diese In-
formation zuverlässig zu extrahieren. Es ist jedoch schwierig, höhere Se-



mantik in Segmentierungsansätze zu integrieren, die auf impliziten Mo-
dellen aufbauen. In diesem Fall sollte die Semantik stattdessen in Nachver-
arbeitungsschritten hinzugefügt werden. Explizite Objektmodelle brin-
gen dagegen das semantische Vorwissen früh in den Segmentierungsvor-
gang ein. Desweiteren können sie auf kurze Videosequenzen oder sogar
Standbilder angewendet werden, da kein Hintergrundmodell aus dem Video
extrahiert werden muss. Die Definition einer allgemeinen Objektmodel-
lierungstechnik, die breit anwendbar ist und die auch eine genaue Segmen-
tierung ermöglicht, bleibt ein wichtiges aber anspruchsvolles Problem für
die weitere Forschung.
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Käsemann [64], Susanne Krabbe [107], Stefan Birringer [10], Stefan Seedorf
[165], Tobias Gleixner [75], Holger Peinsipp [143], Magnus Pfeffer [146],
Christian Thiel [181], and Sascha Finke [71].

It is also noteworthy that all research and writing of this thesis was car-
ried out exclusively with open-source software. I am indebted to everyone
working on these wonderful software projects, especially the programs gcc,
emacs, the Linux kernel, LaTeX, and tgif.

Finally, I want to thank the promotion committee for reviewing the
thesis. In particular, the very detailed reading and endless flow of comments
provided by Peter de With and Wolfgang Effelsberg were very helpful. I
take full responsibility for any remaining non-conform hyphenation and
misplaced comma.



Biography

Dirk Farin was born in Tübingen, Germany in 1973.
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I
Since a segmentation system for natural video is based on various algorithms applying
different mathematical techniques at the same time, such as optimization, clustering, or
statistics, the main problem in segmentation is not the ultimate cleverness of any of these
algorithms, but the complexity to combine them into a robust system.

Thesis Part I and Chapter 13.

II
Although coding people have adopted the projective motion model for sprite generation
to cover rotational camera motion, it is surprising to see that it was not noticed that
the model implicitly imposes a restriction on the maximum rotation angle between two
frames.

See [122] and Chapter 6.

III
A desired segmentation result can be defined either explicitly by describing the object
itself with application preknowledge, or it can be found as the difference to a background
model that is usually extracted from the input itself. The shorter the input sequence, the
more preknowledge should be added to the object model, in order to compensate for the
reduced amount of information obtained from the input data.

Chapters 5 and 7 on background models versus Chapters 9 and 10 on object models.

IV
While most people work on optimizing optimization algorithms, it is often possible and
more successful to optimize the optimization goal.

For example, Chapter 14, where the observation angle is redefined to improve the conver-
gence behaviour.

V
Whenever content analysis is used in order to raise the level of semantic understanding of
the input data, the user should be aware that the analysis will partly fail in finding the
correct semantics. In this aspect, the robustness of the analysis can only be increased by
further constraining the application domain.

Chapter 8 and Chapter 13.

VI
The accuracy of analysis is typically increased by including more model knowledge and
more advanced processing techniques, but it can be more effective to simply adopt a more
suitable input sensor.

E.g., using radar instead of computer vision for measuring the distance to close vehicles.

VII

The most insightful ideas for image understanding can be obtained when one is fooled by
the human visual system, as this is the unique moment in which unconscious processes
become visible.

VIII

Many algorithms feature the adjustability of a plurality of algorithm parameters (e.g.,
thresholds) for adapting to varying input conditions. However, well-designed algorithms
should either apply parameters that are derived from measurable input properties, or the
setting should be non-critical within a wide range, independent of the input.

At best, any well-designed program code should be based only on fundamental constants
and the numbers 0 (for initializations), 1 (for iterations), and 2 (for decisions).

IX

Commercial software is of inherently lower quality than comparable open-source software,
because it is developed by people who are paid for writing software, instead of people who
are fascinated about finding the best solution.

X

While mathematics is the art of denoting different things with the same name, research
funding can be raised more easily by giving new names to existing concepts.

Extending a quote of Jules Henri Poincaré.

XI

The query-by-humming algorithms are a nice tool to search music databases, but it has
not been solved yet how one should hum the Scriabin sonatas.

XII

In computer graphics and electronic music, we should not strive to imitate the real, but
instead explore the creation of new forms of art.

XIII

The Dutch lunchrooms show that the food supply may be optimized with respect to
preparation time or walking distance, but they also show that more subjective properties,
like taste, are not so easy to integrate into the optimization.

XIV

Noticing that you do not miss something can be more worrying than actually missing it.
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