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Resume

Dans la plupart des codec video standard, 1'estimation des mouvements entre deux images se

fait generalement par 1'algorithme de concordance des blocs ou encore BMA pour « Block

Matching Algorithm ». BMA permet de representer 1'evolution du contenu des images en

decomposant normalement une image par blocs 2D en mouvement translationnel. Cette

technique de prediction conduit habituellement a de severes distorsions de 1'artefact de bloc

lorsque Ie mouvement est important. De plus, la decomposition systematique en blocs

reguliers ne dent pas compte nullement du contenu de 1'image. Certains parametres associes

aux blocs, mais inutiles, doi vent etre transmis; ce qui resulte d'une augmentation de debit de

transmission.

Pour paillier a ces defauts de BMA, on considere les deux objectifs importants dans Ie

codage video, qui sont de recevoir une bonne qualite d'une part et de reduire la transmission

a tres bas debit d'autre part. Dans Ie but de combiner les deux exigences quasi

contradictoires, il est necessaire d'utiliser une technique de compensation de mouvement qui

donne, comme transformation, de bonnes caracteristiques subjectives et requiert uniquement,

pour la transmission, 1'information de mouvement. Ce memoire propose une technique de

compensation de mouvement en concevant des mailles 2D triangulaires a partir d'une

segmentation de 1'image. La decomposition des mailles est constmite a partir des noeuds

repartis irregulierement Ie long des contours dans 1'image. La decomposition resultant est

ainsi basee sur Ie contenu de 1'image. De plus, etant donne la meme methode de selection des

noeuds appliquee a 1'encodage et au decodage, la seule information requise est leurs vecteurs

de mouvement et un tres bas debit de transmission peut ainsi etre realise. Notre approche,

comparee avec BMA, ameliore a la fois la qualite subjective et objective avec beaucoup

moins d'informations de mouvement.

Dans la premier chapitre, une introduction au projet sera presentee. Dans Ie deuxieme

chapitre, on analysera quelques techniques de compression dans les codec standard et,

surtout, la populaire BMA et ses defauts. Dans Ie troisieme chapitre, notre algorithme

propose et appele la conception active des mailles a base de segmentation, sera discute en

detail. Ensuite, les estimation et compensation de mouvement seront decrites dans Ie chapitre

4. Finalement, au chapitre 5, les resultats de simulation et la conclusion seront presentes.



Abstract

In most video compression standards today, the generally accepted method for temporal

prediction is motion compensation using block matching algorithm (BMA). BMA

represents the scene content evolution with 2-D rigid translational moving blocks. This

kind of predictive scheme usually leads to distortions such as block artefacts especially

when the motion is important. In addition, because the block decomposition is not content

adapted, some useless block parameters may be transmitted and consequently result in

increasing bit-rate cost.

The two most important aims in video coding are to receive a good quality on one hand and

a low bit-rate on the other. To combine these almost contradictory requirements, it is

necessary to use a motion compensation technique which has good subjective

transformation characteristics and does not need the transmission of much more than

motion information. This thesis proposes a motion compensation scheme using

segmentation-based 2-D triangular mesh design method. The mesh is constructed by

irregularly spread nodal points selected along image contour. Based on this, the generated

mesh is, to a great extent, image content based. Moreover, the nodes are selected with the

same method on the encoder and decoder sides, so that the only information that has to be

transmitted are their motion vectors, and thus very low bit-rate can be achieved. Compared

with BMA, our approach could improve subjective and objective quality with much less

motion information.

In the first chapter, an introduction of the project is given. In the second chapter, we

analyse the techniques of some existing video coding standards and the widely used motion

estimation method — BMA. Afterwards, our approach to overcome drawbacks of BMA for

video coding is proposed. In chapter 3, our algorithm, called segmentation-based active

mesh design, is discussed in detail. Then, motion estimation and compensation are

described in chapter 4. Finally, in chapter 5, the simulation results and conclusion are

presented.
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Chapter 1. Introduction

With the increasing importance of digital television, teleconferencing, and multimedia

applications, video coding has become a highly active research area. In most video coding

standards, motion compensated prediction and transform coding are used to reduce

temporal and spatial redundancy in the video signal. The success of the temporal prediction

method is essential for the overall coding result. The generally accepted algorithm of

motion compensation for temporal prediction is the block matching algorithm (BMA). It

divides a given frame into small non-overlapping rectangular blocks and assumes that all

the pixels in a block undergo the same translation. The translation or displacement vector

for each block is conventionally determined by an exhaustive search. The strength of the

BMA is that the underlying motion model is very simple and can be efficiently determined

and specified. When the block size is sufficiently small, this model is surprisingly powerful

and works well for most blocks.

However, if a block contains more than one object moving in different directions, one

motion vector will result in inaccurate motion estimation of moving objects, and the

prediction error will be large in that block. Consequently, more bits are needed to code the

prediction error, and block artefacts will become visible if the algorithm is designed for a

low-bit-rate application.

To avoid the block effect, some new segmentation-based coding techniques [1-5] have been

proposed. In these methods either the still image or the difference of two successive frames



in a video sequence is first segmented into a number of regions. The region texture and

boundary information is then coded for transmission. The segmentation-based techniques

are considered very promising. Compared with block-based motion compensation,

segmentation-based motion compensation has two advantages: the first is that it produces

fewer motion parameters and the second is that no block artefacts are created in

reconstructed images. However, the performance of this approach is limited by two facts.

Firstly, contours of segmentation maps typically require more bits to be encoded. Secondly,

commonly used motion models cannot accurately describe complex motion in a region of

irregular shape.

One way to avoid contour coding is to segment the reconstructed frame (image) at time t-1,

instead of the original frame at time t in both encoder and decoder. There is no need to

transmit the region shape information. To overcome the second drawback of segmentation-

based method, we need to find a more appropriate region shape for the modelling of the

motion field. One of the promising approaches is compensation based on control nodes

interpolation [5-7, 11-13]. Such nodal approaches are used for global deformation

estimation as well as for piecewise bilinear transformation estimation, where images are

partitioned in a set of patches. Two types of meshes have been used for image partition,

namely quadrangular meshes [5-7] and triangular meshes [11-13]. Recently, triangular

mesh has been defined in a content-adaptive way in order to improve the motion estimation

quality and decrease the motion representation cost.

In this thesis, a segmentation-based triangular mesh design for motion estimation scheme is

proposed. The proposed method takes into account image contours. The image contours are

obtained by using watershed-based [8] segmentation algorithm. It can guarantee that each

element of the image mesh structure has an homogenous intensity distribution. To estimate

motion vectors, our goal is to generate an active triangular mesh. So the control nodes are

selected along with the image contour, and then triangulation is implemented based on

these nodes. Because this segmentation-based mesh is content-adaptive, compared with

blocks of BMA, much less control nodes need to be selected for motion estimation. To

further reduce the bit rate, we propose a triangle reduction algorithm based on exploiting



image statistics of each triangle. Thus, the low bit-rate objective can be achieved.

Moreover, to improve the image quality of reconstructed frames, an iterative algorithm [11,

13] based on minimizing the prediction error is used to refine the motion vectors of control

nodes. Such an approach could improve subjective and objective quality of reconstructed

images.

The thesis is as follows. Chapter 2 gives an analysis of video compression standards and

techniques, and proposes a segmentation-based mesh design scheme for motion estimation.

In chapter 3, the triangular mesh model is described, and the mesh generation is performed

with a triangle fusion algorithm. The motion estimation based on control nodes is given in

chapter 4. Chapter 5 shows simulation results, and a conclusion is drawn.



Chapter 2. Analysis and Proposal of Video Compression
Techniques

In this chapter, we present an overview of the most popular compression techniques and

standards, as well as motion estimation techniques. Finally, a segmentation-based mesh

design for motion estimation scheme is given.

2.1 Video Compression Basics

2.1.1 Image Sequence Model

In the still image case, we can observe that image data tend to have a high degree of spatial

redundancy. Consider now the problem of capturing the movements of a 3-D object

through time (Figure 2.1). In the first image, we capture a spatial projection of the object,

say, in region A. Since this projection is comprised of pixels from the object, we expect

correlation within the image. If the object is moving, it will yield a spatial projection in the

next image as well, say in region X. Thus, we would expect a high degree of temporal

redundancy between neighbour images as well; that is, there is strong correlation between

pixels in region A in one image and in region X in the next image. The goal of video

compression algorithm is to exploit both the spatial and the temporal redundancy within an

image sequence for optimum compression.



Space

Time

Figure 2.1 Temporal correlation in an image sequence.

2.1.2 Spatial Redundancy Reduction Scheme

The generic form of the spatial redundancy reduction scheme is shown in Figure 2.2. This

diagram represents the core computation pipeline employed in all the lossy images and

video compression standards discussed afterward.

Image

Spatial-to-DCT
domain

transformation
8x8 DCT

-> Quantization -+

Lossless coding
of DOT domain

samples
Entropy Coding

Lossy
compressed

data

Figure 2.2 Generic DCT-based coding scheme.

Denote the spatial-domain samples in the 8 X 8 block shown in Figure 2.2 as (xy). The

spatial-to-DCT (discrete cosine transformation) domain transformation expressed in

Equation (2.1) yields an 8 X 8 block (yki) in the DCT domain.
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ifk=0
cW=\ V2 "^ " ^"

1 otherwise

The choice of DCT is motivated by the many benefits it offers:

• For highly correlated image data, the compaction efficiency due to the use of a DCT is

close to that obtained with the optimum transform, namely, the Karhunen-Loeve

Transform (KLT).

• The DCT is a unitary orthogonal transform. Thus, if in matrix form the DCT output is Y

= T^XT, then the inverse transform is X = T^YT.

• DCT gives real output.

• The DCT basis is image independent. This is an important issue in compression, since

an image-dependent basis would imply that additional information need to be sent to

the receiver for establishing the varying basis.

For DCT-based image coding system, the DCT process in the encoder transforms each 8 x

8 block X into a set of DCT coefficients Y. Each of these coefficients is the weight

associated with the corresponding DCT basis waveform. In the lossy compression mode,

weights will be quantized and transmitted to the receiver. The quantization process is a

lossy and irreversible process. It is the main source of picture degradation in a DCT coding

scheme.

After quantization, the quantized yu values are then compressed in a lossless manner using

an entropy coder.



2.1.3 Spatial -Temporal Redundancy Reduction Scheme

In image sequences, there is significant spatial and temporal correlation. The DCT coding

scheme of Figure 2.2 exploits the spatial redundancies within an image. In order to exploit

both the spatial and temporal redundancy, one might suggest that using a 3-D DCT instead

of 2-D DCT. This approach has been shown [10] to be quite effective from the compression

viewpoint; however, the excessive complexity of a 3-D DCT renders this approach

impractical. Instead, most video coders use a two-stage process to achieve good

compression. The first stage uses a method that exploits the temporal redundancy between

frames. The output of this stage is followed by a coding method (such as DCT) that exploits

spatial redundancy within the frame. The basic two-stage process is illustrated in Figure

2.3.

frame (t-1)

_i_
Processing for reducing temporal

I
Frame difference

I

_L
edundancy

Processing for reducing spatial redundancy

Figure 2.3 Two-stage video coding process.

In order to create the difference frame of Figure 2.3, the temporal redundancy processor

may have to track every pixel from frame to frame. This is computationally intensive;

hence, video compression standards only allow tracking information for 16 X 16 pixel

regions, commonly referred to as macroblocks. The macroblock dimension of 16 X 16 is

chosen because it provides a good compromise between providing efficient temporal

redundancy reduction and requiring moderate computational requirement.



Let the two contiguous frames in Figure 2.3 be denoted asframe^t - 7) and/mme(?). In the

first stage, we segment frame(t) into non-overlapping 16x16 blocks and determine a

corresponding 16 X 16 pixel region mframe^t - 7) ( for the time being, we ignore how one

can find such a region.)

Using the corresponding 16 X 16 pixel region fromframe^t - 1\ the temporal redundancy

reduction processor generates a representation for frame{t) that contains only the changes

between the two frames. If the two frames have a high degree of temporal redundancy, then

the difference frame would have a large number of pixels that have values near zero. Thus,

the output image of stage 1 has lower energy than the original frame and is more amenable

to compression. On the other hand, ifframe{f) were completely different than frame(t - 7),

then the temporal redundancy reduction processor may fail to find corresponding regions

between the two frames. In this case, one would not expect any benefit with respect to

compression from using the process in stage 1.

In video compression terminology, a compression method that employs only temporal

redundancy reduction is referred to as an interframe coder; and a compression method that

employs only spatial redundancy reduction is referred to as an intraframe coder. The

combination of interframe and intraframe coding, is referred to as a hybrid

(intraframe/interframe) coding method.

The process of computing changes among frames by establishing correspondence between

frames is referred to as temporal prediction with motion compensation. We define motion

compensation as the process of compensating for the displacement of moving objects from

one frame to another. In practice, motion compensation is preceded by motion estimation,

the process of finding corresponding pixels among frames. If the temporal redundancy

reduction processor employs motion compensation, then we can express its output as

e{x, y, t) = I(x, y, f) - / (x - u, y-v, t - 7) (2.3)



Where I(x, y, f) are pixel values at spatial location (x, y) mframe{f) and I(x-u, y - v, t - 1)

are corresponding pixel values at spatial location (x - u, y- v) mframe(t -1). The output of

the motion estimator, coordinates {u, v), defines the relative motion of a block from one

frame to another and is referred to as the motion vector for the block at (x, y). I(x -u, y -v,

t - 1) is referred to as the motion-compensated prediction of I(x, y, f), and e(x, y, t) is the

prediction residual for I(x, y, t).

Note that the notion of temporal prediction and the formation of the difference signal e(x, y,

f) is very similar to the differential coding scheme DPCM (differential pulse code

modulation). So we call the process of Figure 2.3 as temporal DPCM scheme.

In the next section, it should be useful to consider some practical standard video codecs,

namely, JPEG, P x 64, and MPEG.

2.2 Video Compression Standards

2.2.1 JPEG Image Compression and Motion JPEG

The JPEG standard specification defines a family of encoding/decoding algorithms for

continuous-tone still images and a data-stream architecture for encapsulating and describing

the compressed data. JPEG stands for Joint Photographic Experts Group, the name of the

original ISO working group interested in continuous-tone image compression. JPEG was

the first international compression standard for still images including both gray scale and

colour images. The JPEG still picture compression standard has been extremely successful,

having been implemented on virtually all platforms. This standard is fairly simple to

implement, is not computationally complex, and gets 10:1 to 15:1 compression ratios

without significant visual artifacts. This standard is based upon entropy encoding of

quantized coefficients of the DCT of 8x8 blocks of pixel data, as discussed in section 2.1.
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Figure 2.4 Block diagram of JPEG encoder/decoder.

Figure 2.4 shows the block diagram of both the JPEG compression and decompression

algorithms. A single frame is subdivided into 8x8 blocks, each of which is independently

processed. Each block is transformed into DCT space, resulting in an 8x8 block of DCT

coefficients. Computation of the DCT of each block is followed by quantization of the DCT

coefficients. In the quantization step each of the 64 DCT coefficients is divided by a user-

selectable quantizer step-size constant and rounded to the nearest integer. The quantizing

constant for each DCT coefficient is chosen to produce minimal visual arifacts, while

maximally reducing the representational entropy of the coefficients. The quantized

coefficients are then entropy coded into a compressed data stream. The reduced entropy of

the quantized coefficients is reflected in the higher compression ratio of the data.

The motion JPEG (M-JPEG) uses the JPEG compression for each frame. It provides

random access to individual frames, however the compression ratios are too low (same as

in JPEG) because the technique does not take the advantage of the similarities between

adjacent frames.

10



2.2.2 The P x 64 Compression Standard

In the late 1980s, collaboration among telecommunication operators and manufacturers of

videoconferencing equipment led to the development of the H.320 video conferencing

standard by the TTU (International Telecommunication Union). The video component of

this standard is known as H.261, which is also known as the Px64 standard because it

describes video coding and decoding methods at the rates Px64 kbits/s, where P is an

integer from 1 to 30. For P = 1 to 2, due to limited available bandwidth, only a low quality

video signal for picture phone and desktop face-to-face visual communications can be

implemented using this compression algorithm. For P > 6, more complex pictures for video

conferencing can be transmitted.

The Px64 algorithm operates with two picture formats adopted by the CCFTT, Common

Intermediate Format (CBP), and Quarter-CIF (QCIF), as illustrated in Table 2.1.

Table 2.1 Parameters of CJF and QCIF video formats.

Luminance (Y)

Chrominance (Cb)

Chrominance (Cr)

GIF

Lines/frame

288

144

144

Pixel/line

352

176

176

QCIF
Lines/frame

144

72

72

Pixel/line

176

88

88

The Px64 video compression algorithm combines intraframe and interframe coding to

provide fast processing for on-the-fly video. This is kind of a temporal DPCM coding

scheme as described in the last section. The algorithm creates two types of frames:

(1) DCT-based intraframes, compressed using DCT, quantization, and entropy coding

(similar to JPEG), and

(2) Predictive interframes, compressed using DPCM and motion estimation.

11



The block diagram of the video encoder is shown in Figure 2.5. The Px64 coding algorithm

begins by coding an intraframe block and then sends it to the video multiplex coder. The

same frame is then decompressed using the inverse quantizer and inverse DCT, and then

stored in the frame memory for interframe coding.

Predictive
frame

Loop filter
(Low-pass)

Decoder

Motion
Compensation

Motion
Estimation

IQ

I DOT

VLC Encoder

Frame Memory

Compressed
video stream

Motion Vectors

Figure 2.5 Diagram of the Px64 encoder/decoder.

During the interframe coding, the prediction based on the temporal DPCM algorithm is

used to compare every macro block of the actual frame with the available macro blocks of

the previous frame (we will describe this in details in the next section). To reduce the

encoding delay, only the closest previous frame and present frame are used for prediction.

Then, the difference, denoted as error terms, is DCT-coded and quantized, and sent to the

video multiplex coder together with the motion vectors. At the final step, variable-length

coding (VLC), such as an Huffman encoder, is used to produce a more compact code. An

optional loop (low-pass) filter can be used to minimize the prediction error by smoothing

the pixels in the previous frame.

12



The main part ofPx64 video decoder is shown inside the dotted line region in Figure 2.5.

Note that the standard H.263, a more advanced version than the H.261, exists for low bit-

rate video compression.

2.2.3 MPEG Video Compression Standard

The Motion Picture Experts Group, from which the MPEG standard derives its name, has

defined video compression techniques that make use of the temporal redundancy inherent

in sequence of full-motion video. The compression method uses interframe compression

and can achieve compression ratios of 200:1 through storing only the differences between

successive frames.

The MPEG first-phase standard (MPEG-1) is targeted for compression of full motion video

at rates of 1 to 1.5 Mbps in applications, such as interactive multimedia video. MPEG-2

features higher data rates, with a similar architecture. It specifies compressed bit streams

for high-quality digital video at the rate of 2-80 Mbps. The MPEG-2 supports interlaced

video formats and a number of features for HDTV. The MPEG-4 standard is intended for

compression of full-motion video consisting of small frames and requiring slow updating.

The data rate required is 9-40Kbps, and the target applications include tele-surveillance,

interactive multimedia and video telephony.

In the MPEG standard, the video compression scheme is also the temporal DPCM scheme,

which is similar to Px64. For the purpose of full motion compression, frames in a sequence

are coded using three different algorithms, as illustrated in Figure 2.6.

I frames (intra frames) are self-contained and coded using a DCT-based technique similar

to JPEG. I frames are used as random access points in MPEG streams, and they give the

lowest compression ratios within MPEG.
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P frames (predicted frames) are coded using forward predictive coding, where the actual

frame is coded with reference to a previous frame (I or P). This process is similar to Px64

coding. Figure 2.7 illustrates the MPEG compression algorithm for predictive frames.

The compression ratio of P frames is significantly higher than that of I frames.

B frames (bidirectional or interpolated frames) are coded using two reference frames, a past

and a future frame (which can be I or P frames). Bidirectional, or interpolated coding

provides the highest amount of compression.

Forward prediction P=f(l) Forward prediction P=f(P)

B

->'<-

B B

>iK-^-
Bidirectional prediction

B=f(l,P)

B B
B

->><-

-^<-

r'o,,_.,Bidirectional prediction
B=f(P,P)

Figure 2.6 Types of frames in the MPEG standard.

The MPEG application determines a sequence of I, P, and B frames. If there is a need for

fast random access, the best resolution would be achieved by coding the whole sequence as

I frames (MPEG becomes identical to Motion JPEG). However, the highest compression

ratio can be achieved by incorporating a large number of B frames. I frames are created

similarly to JPEG encoded pictures, P frames are encoded based on forward prediction

technique, and finally B frames are encoded in terms of previous and future frames. The

motion vector is estimated for the P and B frames, and the difference between the predicted
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and actual blocks (error terms) are calculated. The error terms are then DCT encoded and

the entropy encoder is used to produce the compact code.

2.3 Block Matching Algorithm for Motion Estimation

The interframe DPCM coding method is quite effective for video compression. Most video

standards are based on this method. One of the most computadon-intensive operations in

inter-frame coding is the motion estimation process. In this section, we will describe in

more details the motion estimation process and the widely used Block Matching Algorithm

(BMA).

2.3.1 Principles

Current Frame

(a)
Reference Frame

Search .r&gion

(x,y) X
(x-lm, y^-v)
Best

Match

(b) Motion vector (u, v)

Reference Frame
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-Pl

(x' y)|
N P^

-p
i"K---------

M

. p

v
[p, p] Search region

-p

i
v -p

+
p

u

p

+

(c)

Figure 2.7 Motion estimation process.

Figure 2.7 illustrates the motion estimation problem as it is posed in the video coding

standards. Given a reference picture and an N x M macroblock in a current picture, the
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objective of motion estimation is to determine the N x M block in the reference picture that

better matches (according to a given criterion) the characteristics of the macroblock in the

current picture. As current image, we define an image or frame at time t. As reference

picture, we define an image or frame either at past time t - n, for forward motion

estimation, or at future time t + k, for backward motion estimation. In the more general

case of motion estimation, the geometry of the matching block at reference picture need not

be the same as the geometry of the block in the current picture, since objects in the real

world undergo scale changes as well as rotation and warping (as the proposed new

approach in the next section). However, in the video standards, only the translational

motion model is assumed for objects in the scene, and thus a rectangular geometry is

adopted.

The location of the macroblock regions is given usually by the (x, y) coordinates of their

left-top comer. Ideally, we would like to search the whole reference picture for the best

match; however, this is impractical. Instead, we restrict the search to a [-p, p] search region

around the original location of our macroblock in the current picture. (Many

implementations restrict the search range to [- p, p - 1]. Both definitions are equally

common.) Let (x + u, y + v) be the location of the best matching block in the reference

picture (Figure 2.8 b). In motion compensation terminology, the vector from (x, y) to (x +

u, y + v) is referred to as the associated motion vector in relative coordinates; that is, we

assume that (x, y) is at location (0, 0), and thus the motion vector is simply expressed as (u,

V).

Note that, our assumption for a common displacement (u, v) for all pixels in the

macroblock implies that we are essentially imposing a local smoothness constraint on the

motion vector field. The local smoothness constraint is only satisfied for small macroblock

sizes. The choice of the dimensions of the macroblock is the result of tradeoffs among three

conflicting requirements. Specifically,

1. Small values for N and M (from four to eight) are preferable, since the smoothness

constraint would be easily met at this resolution.
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2. Small values for N and M reduce the reliability of the motion vector (u, v), since few

pixels participate in the matching process; and

3. Fast algorithms for finding motion vectors are more efficient for large values of N and

M.

In the video coding standards, N= M = 16.

The coordinate system associated with the motion vector is shown in Figure 2.7 (b). For the

search region shown in Figure 2.7 (a), - p < u < p and - p < v < p. For broadcast TV, good

performance is obtained at p = 15 for head-and-shoulder type video scenes, and at p = 63

for sporting events (high motion).

2.3.2 The Matching Criterion

The block matching motion estimation algorithms allows us to obtain the motion vector by

minimizing a cost function. Various cost functions have been proposed and analyzed in the

literature. They differ in their complexity and their efficiency to find the global minimum.

Let the pixels of the macroblock in the current frame be denoted as C(x + k,y + l~) and the

pixels in the reference picture be denoted as R(x + i + k, y + j + /). The following cost

functions have been proposed in the literature:

(a) The Mean Absolute Difference (MAD), or Mean Absolute Error (MAE) cost function is

defined as:

M-lN-l

MAD(i,j)=—^Yy^C<ix+k,y+l)-R{x+i+k,y+j+l)\ (2.4)
MN^fS

where i and j are defined in - p < i < p and - p < j < p.

We define as the best matching block, the block R(x + i, y + j) for which MAD(?, j) is

minimized. Thus, the coordinates (?', 7) for which MAD is minimized define also the motion

vector.

(b) The Mean Squared Difference (MSD), or Mean Squared Error (MSE) cost function is

defined as:
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MSD{i,j)=-^^^[C(ix+k,y+l)-R(x+i+k,y+j+lf (2.5)MN^tSL

(c) The Cross-Correlation Function (CCF) is defined as:

CCF<ji,j)= ^k^ic(ix+k'y+WX+i+k^y+J+^ (2.6)
(^^C\x+k,y+l)]/2(^^R\x+i+k,y+j+l)]/2

The mean absolute difference (MAD) cost function is considered as a good candidate for

video applications due to its computational simplicity. The other two cost functions, MSD

and CCF, can be more efficient, however they are too complex for computation and

hardware implementations. Within a typical coding system, the MAD cost function

performs just as well. So we choose MAD as the matching criterion.

In video coding terminology, since the match is being performed between rectangular

regions, this is referred to as a block matching criterion, and search techniques to find the

motion vector (u, v) that yields the smallest MAD are referred to as block matching

algorithms (BMA). In the next section, we describe algorithms for block matching motion

estimation.

2.3.3 Motion Vector Search Algorithm

Many block matching techniques for motion vector estimation have been developed and

evaluated in the literatures. They are as follows:

• The full search algorithm;

• The three-step search algorithm;

• The two-dimensional search algorithm;

• The conjugate direction search algorithm;

• The parallel hierarchical one-dimensional search algorithm;

• The hierarchical motion estimation algorithm, etc.
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In this thesis, we will focus only on the full search algorithm. It is the most obvious search

technique for finding the best possible weight in the search area. The ISO MPEG

specification refers to this implementation as the full search technique. The algorithm is

actually quite simple. All possible displacements in the search range are evaluated using the

block matching criteria, that is, using (2.1) to compute MAD(i, j) at each location in the

search area. That means that no specialized algorithm is required, it is just a two-

dimensional search. Within our work, we use a full search algorithm in the subsequent

chapters.

2.4 Segmentatlon-based Mesh Design Scheme for Video Compression

In the last sections, we discussed video coding techniques and BMA for motion estimation

in most video coding standards. As mentioned in Chapter 1, although BMA has a good

overall performance, it usually leads to distortions such as motion block artefacts,

especially when the motion is important, and the frame rate is low. For instance during

forward motion compensation, the projection from frame t-1 to frame t may create some

empty areas where no values are assigned, and some conflict areas where more than one

value is assigned to one pixel, as shown in Figure 2.8.

Motion vector

I û
UlljjlU

Empty area

_\_

Conflict area

J_~^

I I

Frame t-1 Frame t

Figure 2.8 Motion block artefacts.

To overcome the drawback of block effect, some new segmentation-based coding

techniques [1-5] incorporating image stmcture information have been proposed. The
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segmentation-based techniques are considered very promising. The techniques in this

approach can be arranged in two classes: The first class starts from motion estimation by

pixel recursive or block matching algorithm, then segments the resulting motion vector

fields. The second class first segments an image into homogeneous regions, then motion

estimation and compensation are performed on the basis of region. With this approach,

contours in segmentation maps and motion parameters have to be transmitted to the

receiver for reconstructing images. Compared with block-based motion compensation,

segmentadon-based motion compensation has two advantages: one is that it produces fewer

motion parameters and the other is that no block artefacts are created in reconstructed

images. However, the performance of this approach is limited by the following facts:

1) Contours of segmentation maps may require a significant number of bits to be

transmitted.

2) A commonly used motion model cannot accurately describe complex motion in a region

of irregular shape, especially if shape deformation takes place in the region.

One way to avoid contour coding is to segment the reconstmcted frame (image) at time t-1,

instead of the original frame at time t on both encoder and decoder, so that the only

information that has to be transmitted are motion vectors. However, in the compensation

procedure, the projection of frame t-1 into frame t may create some empty areas and

conflict areas, similar to BMA as mentioned above (Figure 2.9). That is representative of

the second drawback of the segmentation-based approach. The conflict and empty areas,

existing even in BMA technique, require a large proportion of the total codec bit-rate.

Frame t - 1

Motion vector

Compensation of frame t
Empty area

Conflict area

Figure 2.9 Problems of motion compensation based on region.
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Therefore, in order to reach an acceptable coded image quality at very low bit-rate, more

appropriate modelling of motion field is needed. One of the promising approaches is

compensation based on control nodes interpolation [5-7, 11-13]. Such nodal approaches are

used for global deformation estimation as well as for piecewise bilinear transformation

estimation, where images are partitioned in a set of patches. Two types of mesh have been

used for image partition, namely quadrangular mesh [5-7] and triangular mesh [11-13]. The

main advantages of this approach reside in the following facts:

1) This approach is capable of modelling shape deformation as well as translational

motion.

2) It preserves continuity and connectivity in compensated images, thus avoiding the

problem of empty and conflict areas.

Compare with quadrangular mesh, triangular mesh is more flexible. Triangular mesh is

usually built from a spatially uniform distribution of nodes. Recently, triangular mesh has

been defined in a content-adaptive way in order to improve the motion estimation quality

and decrease the motion representation cost.

fw 0 Error coding
Coded error

Error decoding

-X +

Motion compensation

Decoder

Frame memory

/(M)

Triangulation
based on

control nodes

Motion estimation
based on control

nodes

Selection of
contour control

nodes

Image
segmentation

and
simplification

Motion vectors

Figure 2.10 Segmentation-based triangular mesh design scheme.
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Based on the above analysis, in this thesis we introduce the principle of compensation

based on active triangular mesh into segmentation-based scheme. The general structure of

this scheme is described in Figure 2.10.

y<

Let f(f) and / (Q denote, respectively, the original frame and the reconstructed frame at

time t. In the new scheme, reconstructed frame f (t - 1), is first segmented into

homogeneous regions. Since f (t - 1) has been known in the receiver, the contours in the

segmentation map do not need to be transmitted. The points where two or more contours

intersect and where contours have great curvature are taken as control nodes of contours.

An active triangular mesh can be obtained from these control nodes. Motion and

deformation estimation is then performed from f (t - 1) toward f(f) on the basis of control

nodes. That is to say, each control node is associated with a motion vector. The motion and

deformation in a triangle are described by an affine model based on those motion vectors of

control nodes, which are vertices of triangles. Since the control nodes are selected on image

contours, so that the active mesh structure is image content-adaptive, the segmentation map

of reconstructed image at time t-1, denoted as S{t - 1), can be approximated by triangles.

Because the affine model can describe deformation between two triangles of current frame

and reference frame, and also preserves image connectivity, so from f {t - 1) and the

motion vector field we can reconstruct f{t\ as shown in Figure 2.11. Hence, the problem of

empty and conflict area can be avoided.

Frame t

Rl

-L^-

R2

^T
Motion vector

Control node

R3

^~

^

^>

Compensation of frame t

Figure 2.11 Compensation of motion and deformation based on contour control nodes.
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Because the triangular mesh structure is content-adaptive, some flat area, especially the

background regions, contain no control nodes, so compared with block numbers of BMA,

the number of control nodes is much less. To further reduce the control nodes, we also

propose an algorithm of triangle fusion. That is to say, within a frame, adjacent triangles

that have similar statistical properties can be fused together. Thus, some nodes of these

triangles can be deleted, which means that even less motion vectors are needed, or that the

bit-rate is further reduced.

Moreover, to improve image quality of reconstructed frames, an iterative algorithm [11-13]

based on minimising prediction error is used to refine the motion vectors of control nodes.

Such approach could improve subjective and objective quality of reconstructed images.
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Chapter 3. Active Mesh Model and Generation

3.1. Existing Transformation Models

Motion compensation methods can be defined as techniques that divide images into local

regions (blocks or patches) and estimate for each region a set of motion parameters. The

procedure that synthesizes the predicted image of the nth frame Z,i(x, y~) from the decoded

image of the previous frame I,i-i{x', y') can be regarded as an image warping [22] process.

This process can be written as

Ux,y)=In.i(x', y') (3.1)

where the geometric relationship between In(x, y) and In-i{x', y') is defined by the

displacement functions u(x, y) = x'- x and v(x, y) = y' - y. When (x', y'~) is not a sampling

point of the image, the intensity value In-i(x', y'} is obtained by interpolation.

In BMA, where the displacement is supposed to be translation al, the transformation

functions for the pixels in the ?th block of the image are

'i\ VA19 y/ — -A' —-A/ '— i/i^

vi(x,y)=y' -y=Vi (3.2)
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in which (uj, v,) is the estimated motion vector of the rth block.

Various motion compensation methods can be composed by adopting different

transformation functions. It is obvious that the properties of the transformation functions

are important factors that determine the performance of these motion compensation

methods. What is required for the transformation function is not only to approximate the

original motion vector field precisely with a smaller number of parameters, but also with a

smaller amount of computation. The problem of adopting the proper transformation

function is difficult since a complicated transformation function, which gives a very

accurate approximation, is generally expensive in computation.

Image warping can be considered as a sum of the following three processes:

a) computation of the motion parameters (displacement functions),

b) computation of motion compensation, and

c) interpolation of intensity values.

Among these factors, b) and c) are important since they are performed for each pixel. The

computation cost of b) depends on the existence of an effective scan line algorithm, which

scans the image computing x' and y' for each pixel. We will discuss them in the next

chapter.

In the following discussions, we assume that the patches are polygons. The motion

parameters are estimated by first extracting the motion vectors of the vertices of a patch and

then computing the parameters of the patch from these motion vectors. Considering the

above-mentioned conditions, from among many of the transformation functions studied in

the field of computer graphics [22], we examine the following three functions.

1) Affine transformation: the transformation functions for the pixels included in the rth

patch of the image are
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u(x, y~) = 07 + 6^ + ajy

v(x, y) = 04 + asx + a^y (3.3)

where ai ~ as are the six motion parameters of the patch. Since there are six degrees of

freedom in this transformation, the parameters can be determined from motion vectors of

three vertices. Therefore the patches of this transformation are triangles. One of the

advantages of this method is that the cost in computing the motion parameters remains low

regardless of the shape of the patch. An effective scan line algorithm exists for this

transformation, which requires only two additions for each pixel.

2) Bilinear transformation: the transformation functions are

u{x, y) = ai + a2X + asy + a^pcy

v(^, y)= as+ 06X+ ayy + asxy (3.4)

Where ai ~ as denote the eight parameters of this transformation. Since there are eight

degrees of freedom, this transformation requires a quadrilateral patch. However, only

rectangular patches are allowable since otherwise the computation of the motion parameters

becomes complicated. An effective scan line algorithm with two additions per pixel exists

for this transformation.

3) Perspective transformation: the transformation functions are

u(x, y~) = (ai + 0.2 x + ajy)/( 1 + ay x + agy)

v(x, y) = {0,4 + asx + a^y)/( 1 + a-jx + agy) (3.5)

where aj ~ as denote the eight parameters of this transformation. As in bilinear

transformation, the patches are quadrilaterals. The disadvantage of this transformation is

the computational cost of the scan line algorithm: it requires two divisions for each pixel.

Despite this disadvantage, that transformation is used in many systems because of the fact

that it describes the motion of a rigid plan ar patch when perspective projection is assumed.
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Some algorithms [22] that approximate the transformation function with efficient

computation have been proposed.

3.2. A f fine Transformation Mesh Model

The choice of a particular transformation model for motion estimation depends on the

considered application. Within the context of coding, the two-dimensional motion model

should be able to represent many kinds of motions with low representation and computation

costs. The motion model we chose for this work is a piecewise affine transform. Such

transformation is content adaptive, and can mimic higher-order transformation when many

patches are placed in a region where deformation is complex. For each point (;c, y~) of a

considered triangle e, the corresponding transformed position (xf, y'~) is given by (3.3)

i.e.

d(x,y)=
u{x,y)
v(x,y)

1 x y 0 0 0
000 1 x y

a,

(3.6)

where the a; coefficients are the six motion parameters of the considered triangle e. As

discussed in the last section, the motion parameters are determined from motion vectors of

triangle vertices.

In order to express the displacement d(x, y) as a function of nodal vectors, let us consider

that (3.6) is available in each vertex (xi, yi), {x-z, y2\ (xj, ys) of e:
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u{x^y^

u{x^,y^)

u{xy,y^

v(.^,y^

v(^,y^
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0
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a,

^2

a,

a,

a5

a6.

0 0
0 €»

[a] (3.7)

By rewriting the vector [a]e as a function of [<&] , Eq. (3.6) becomes

d{x,y)=
u{x,

v(x,

y)
y)

1
0

x

0
y
0

0
1

0
x

0

y

Q-1

0
0

Q-1

where

[or = 1
det(€>)

^2 V3 - X3 Vl X3 Yl - x\ Y3 xl Vl - X2 Yl

Vi -V3 Y3- Yi Yi - );2

(3.8)

A A A
7i rz n.

and det(Q) = x^-y^ + ^2 + xiy2 - X2yi - Xj^ - xiys.

Finally, the displacement d(x, y) can be expressed as follows:

3

d{x,y)=^(pk{x,y)d^ (3.9)
k=l

where, (pk{x, y) = a^ + Ax + TkV (3.10)

and Ok, Pk and % depend on vertices location. Then it has been shown that d(x, y) can be

formulated as a function of nodal displacements and vertices location. In order to know the

motion at each point, we have to estimate motion at nodal points. Thus, motion estimation

is realised in two steps: first nodal points are detected, and then displacements at these

points are estimated.
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3.3 Content-based Mesh Generation

In the previous sections, we proposed a segmentation-based mesh design scheme, and we

chose the affine mesh model for motion estimation. The following work in this section will

be focused on segmentation based mesh design, which is one of the most important sections

throughout our work.

This section will be divided into 4 parts as follows:

1. Image segmentation;

2. Image simplification;

3. Selection of control node;

4. Triangulation with triangle fusion.

3.3.1 Image Segmentation

Image segmentation is an essential step for many image analysis tasks, such as object

recognition, computer vision and image compression as in our case. The goal of image

segmentation is to partition an image into homogeneous regions and locate the contours of

the regions as accurately as possible. Among a large number of techniques and algorithms

for image segmentation, those based on watershed transformation can potentially provide

accurate segmentation with very low computational cost. In this section, we will perform

image segmentation by using a multiscale gradient algorithm based on watersheds [8].

Watershed transformation starts with the gradient of the image to be segmented. It views

the gradient image as a three-dimensional surface (3-D) where gradient values act as

surface heights. Intensity edges in the image to be segmented generally have high gradient

values which appear as watershed lines (also known as mountain ridges) on the 3-D

surface, while the interior of each region usually has a low gradient value which is

considered as a catchment basin on the 3-D surface. The watershed lines partition the
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gradient image into different catchment basins which correspond to homogeneous regions

of the image to be segmented.

Watershed transformation involves a search for watershed lines in the gradient image.

Therefore, the performance of a watershed-based image segmentation method depends on

the algorithm used to compute the gradient. Conventional gradient algorithms exhibit a

serious weakness for watershed-based image segmentation. A conventional gradient

operator, such as the first partial derivation of Gaussian filter [32] and morphological

gradient operators [33], produce too many local minima because of noise quantization error

within homogenous regions, which result in over-segmentation. And conventional gradient

operators produce low gradient values at blurred edges, even though the intensity change

between the two sides of an edge may be high. In [8], a multi-scale gradient algorithm

based on morphological operators for watershed-based image segmentation was proposed.

This algorithm efficiently enhances blurred edges while being very robust to multi-edge

interactions. This enhancement increases the gradient value for blurred edges above those

caused by noise and quantization error. So we can eliminate the local minima produced by

noise and quantization error.

Basic Morphological operations

Before discussing multi-scale Gradient algorithm, we first introduce the basic

morphological operations. Most morphological operations can be defined in terms of two

basic operations, erosion and dilation [34]. Suppose the object X and the structuring

element B are represented as sets in two-dimensional Euclidean space. Let Bx denote the

translation of B so that its origin is located at x. Then the erosion of X by B is defined as

the set of all points x such that Bx is included in X, that is,

Erosion: XQB = { x: B^ c:X} (3.11)

Similarly, the dilation of X by B is defined as the set of all points x such that Bx hits X, that

is, they have a nonempty intersection:
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Dilation: X@B = { x:B^r^X^(f)} (3.12)

From the definition, we know that erosion is a shrinking operation, whereas dilation is an

expansion operation.

The Multiscale Gradient Algorithm

Many gradient operators and edge detection algorithms have been based on the step edge

model. However, ideal step edges do not exist in natural images since every edge is blurred

to some extent. A blurred edge can be modelled by a ramp and the intensity change

between two sides of the edge is referred to as edge height. For a ramp edge, the output of a

conventional gradient operator, such as Prewitt gradient [34], is the slope of the edge.

Hence, the ramp edge cannot be separated from noise and quantization error by

thresholding if the slope of the edge is small. Figure 3.1 shows a 1-D example where a

ramp edge and step edge are digitized in order to illustrate the effect of quantization error.

The ideal gradient operator for watershed transformation is the one whose output is equal to

the input edge height, but not the edge slope.

f{x)

quantization error

ramp
edge

d
step
edge

gradient magnitude of f{x)

n_
x

Figure 3.1 Output of conventional gradient operators.

The morphological gradient operators used in reference [32] can be described as

G(f)=(f@B)-(f©B) (3.13)
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This gradient operator is referred to as mono-scale morphological gradient operator. Its

performance depends on the size of structuring element B. If B is large, the output of this

gradient operator for a ramp edge is equal to the edge height. Unfortunately, large

stmcturing elements result in serious interaction among edges which may lead to gradient

maxima not coinciding with edges. However, if the structuring element is very small, this

gradient operator has a high spatial resolution, but produces a low output value for ramp

edges.

In order to exploit the advantage of both small and large structuring elements, we propose a

multiscale morphological gradient algorithm. Let Bf, for 0 < i < n, denotes a group of square

structuring elements. The size of Bi is (2i + 1) X (2i + 1) pixels, i.e. Bo contains only one

pixel and Bj is a 3 X 3 square and so on. The multiscale gradient is defined by

MG(jO=^[((/©5,)-0©^.))G2?,_J (3.14)
n^

For a step edge, the operation ((/" ® 5;) - (f 0 5,)) G5,-7 produces a line of two pixels wide

which coincides with the edge. The intensity (height) of the line is equal to the edge height.

Hence, the multiscale gradient algorithm is equivalent to the mono-scale morphological

gradient operator in this case. In practice, it is more robust to noise due to the averaging

operation used in the algorithm.

For a ramp edge, we denote respectively the edge width and height by \v and h, as shown in

Figure 3.2. The operation ((f @ 5;) - (f © 5,)) G5,.7 produces a line coinciding with the

edge. The cross section of the line appears as a trapezoid if i < (w + 2) / 4 and as a triangle

otherwise. The width of the bottom side of the trapezoids or triangles is always equal to w +

2 pixels. The height of the trapezoid is 2ih I w and that of the triangle is h(yv + 2) / (2w),

which are greater than the edge slope h I w. The value of MG(/) approaches to h(yv + 2) /

(2w) if n is large enough. Therefore, the multiscale algorithm responds effectively to ramp

edges without enlarging edges.
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Figure 3.2 Result of the multiscale gradient algorithm for ramp edges.

Elimination of Small Local Minima

Small local minima are defined as local minima consisting of a small number of pixels or

having a low contrast with their neighbors. This kind of local minima in gradient images is

generally caused by noise or quantization error, and therefore should be eliminated.

Local minima consisting of a small number of pixels are eliminated by dilation with a

square structuring element Bs of 2 x 2 pixels, denoted by (MG(/)) © Bs. To remove the

local minima with a low contrast, a constant denoted by h is first added to the dilated

gradient image. Then the local minima with a contrast lower than h can be filled using the

reconstruction by erosion of MG(/) from (MG(/)) <9 Bs + h. Hence, the final gradient image

can be expressed as

<^rec)[(MG(/)) © B, + h, MG(/)].
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Figure 3.3 Elimination of small local minima.

This algorithm is illustrated in Figure 3.3, where M.G(f) has six local minima. Local minima

(LM) 3 and 5 consisting of one pixel are removed by dilation, while local minima 2, 4 and

6 having a contrast lower than h are eliminated using reconstruction by erosion. Local

minimum 1 is not removed because it is both wide and deep. The constant h is used to

control the number of segmentation regions. As h increases, the number of regions

produced decreases. The reconstruction by erosion fills all of the local minima where the

contrast is lower than h, irrespective of their absolute values. However, thresholding

removes only the minima with low absolute value.

The above-mentioned algorithm followed by watershed transformation can produce

meaningful image segmentations. The experimental results for image sequences Miss

America and Forman are shown in section 3.3.4.

3.3.2 Image Simplification

Principle
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We have obtained image contours after image segmentation as described in the last section.

Our goal is analyzing the contours and extracting the control nodes, which we need for

motion estimation. However, the control node extraction of image contour is based on the

single-pixel-wide contour segment. Thus, image simplification is necessary before the

extraction of control nodes. In this section, we will briefly describe the process of image

simplification, or thinning of image.

In general, a thinning operator extracts a network of thin curve from a bilevel image. The

thin curve should be placed "about in the middle" of the objects and should describe the

"skeleton" of the objects. This skeleton characterizes the shape of the object regions.

General strong criteria about the quality of the resultant images do not exist because of the

broad variety of object shapes and specific aims of image processing. However the

following requirements specify some properties which are widely accepted to be typical for

skeletons:

(1) The skeleton should consist of curves with a width of single image pixel (curve

thickness property);

(2) The topological connected relations of the skeleton should be identical to those of the

original image, i.e. the number of 8-components of object segments should remain the

same (topology preserving property).

(3) The skeleton curves should lie in the middle of the objects (medial axis property).

(4) In the case of thick or rugged objects there should not be too many irrelevant "skeleton

branches" (noise robustness property);

(5) The skeletonization process should converge to a stable skeleton after a certain number

of iterations (convergence property).

A skeleton procedure deletes step-by-step all "superfluous" object points in an image for

achieving these aims. The medial axis property (3) leads to the conclusion that only border

points of objects should be deleted during the repeated iterations of a skeletonization

procedure.
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Criterion and IVlethod

We shall introduce two kinds of connectivity before defining the simplification criterion.

Conceptually, image boundaries can be found by tracing the connected edges. On a

rectangular grid a pixel is said to be four- or eight-connected when it has the same

properties as one of its nearest four or eight neighbours, respectively (Figure 3.4).

A A

(a) (b)

Figure 3.4 Image connectivity, (a) 4-connected (b) 8-connected

The connectivity number of four- or eight-connected segments inside a placed 3x3

window is a value of a window function which can be used as deletion criterion. If this

value is equal to 1 , then the current point p can be deleted, provided that p is no curve end

point.

P4

P5

P6

P3

p

P7

P2

P1

P8

Figure 3.5 Eight neighbour points of a given point p.

The function of connectivity number F(p) can be defined as follows. Given a point p, we

define its 8 neighbour pixels as pi, p2, ..., ps, as denoted in Figure 3.5, where pi is the right

neighbour, and p2 to ps are obtained by counter-clockwise as shown. And then, F(p) for 8-

connected and 4-connected segments are:
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F(P\= ^Pk-PkPk^Pk^
^=1,3,5,7 \.-:1-

F(P\ = l[(l-Pt)-(l-^)(l-^,)(l-^)]
fc=l,3,5,7

Note that pi ~ ps are all binary numbers, the value is 1 if pixel intensity value is greater than

0, and the value is 0 if pixel intensity value is equal to 0. So before starting with the

thinning, the program converts the image intensity to 0, 1 values. And in our case, we

choose the 8-connected method.

Because the image contours obtained from the last section are almost single pixel segments,

the simplification procedure is very easy and fast to implement.

3.3.3. Selection of Control nodes

This section is concerned with the choice of a representative set of points whose motion

will be estimated. These nodal points play the same role as control grid in [5]. In this thesis,

we choose the control nodes by means of the following method.

Given a segmentation map, control nodes are extracted for motion prediction in video

compression. In order to get an accurate prediction, control nodes should be situated on the

contours of the segmentation map. In this algorithm, the border of the image is also

considered as contour and every region is therefore surrounded by one or more closed

contours. A closed contour may not intersect with other contours.

The control nodes in this algorithm consist of two classes, which will be described in

details in the following sections.

First Class of Control Nodes
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The first class of control nodes is extracted from contour intersections because each contour

intersection is associated with more than two regions. This class of control nodes can be

easily determined from the segmentation map. However, it should be noticed that:

(i) Four corner points will also be defined as first class of key nodes;

(ii) A closed contour may not intersect with any other contours.

Therefore, the algorithm to determine this class of control nodes is performed in the

following steps:

(1) Set four comer points as control nodes;

(2) Search for all contour intersections in the segmentation map;

(3) If a closed contour does not intersect with any other contours (isolated contour), the

first contour point according to the scanning order is taken as a control node.

These three kinds of nodes are illustrated in Figure 3.6

First point of
isolated contour

Intersection nodes

Corner Nodes

Figure 3.6 The first class of Control nodes.
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The first step is so easy that we just set the four corner points as control nodes. For the

second step, a function of Cross Number will be used to detect the intersections of image

contours. Cross number, is the value of a window function CRN(p). Given a point p, as

illustrated in Figure 3.5, it has eight neighbours, from p\ to pg. CRN(p) is the summary of

transition number from pi ~ ps, which can be expressed in the following equation.

CRNW=^\p,-p^\ (3.16)
k=\

where 779 = p\.

After obtaining the cross number of non-zero pixels, we can easily determine if a pixel is an

intersection or not by using the following criteria.

CRN(p) =0: p is an isolate point;

CRN(p) = 1: p is an start point;

CRN(p) > 2: p is an intersection point.

For the third step of determining the first class of control nodes, the major point is how to

detect the isolated contours. The method we used is to delete all the contours that intersect

with other contours, so only isolated contours are left. To achieve this goal, we shall delete

all intersection points and their neighbours within a 3 x 3 window at first. So all intersected

contours are disjointed into non-closed segments. After that, we eliminate these segments

pixel by pixel using contour tracking method.

Because of the simplification of image contour, all the segments are single-pixel-wide. So

the non-intersection points of the contour image have only one neighbour inside a 3 X 3

window. It is easy to trace and delete the open segments beginning with a start point. The

flow chat of tracing and eliminating is illustrated as in Figure 3.7.
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Start

I
Delete all

intersections and
their 8 neighbours

1
Calculate CRN of
all non-zero pixels

Delete p

:ind p's adjacent
pixel p'

Y

p=p'

End

Figure 3.7 Flow chat of segments tracing and eliminating.

Finally, we have only all the isolated closed contours, their first points will be detected

using a scan line method, and be set as first kind of control nodes.

Second Class of Control Nodes

The first class of control nodes may not be dense enough for accurate motion prediction.

Since intersection nodes alone cannot accurately represent image contour, so the high

curvature points should be detected and set as control nodes to approximate contour

segments. High curvature points are the inflection points on the image contour. On the
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other hand, the distance between two adjacent control nodes of the first class may be too

large. Hence, additional control nodes should be inserted between them.

The principle of detecting and inserting high curvature nodes is the following:

(1) Approximate the contour segments as straight lines. That is, straight lines are drawn

between every two consecutive control nodes.

(2) For each contour point between two adjacent control nodes, the separation, or distance

from the point to the approximated straight line is calculated. We call this distance the

approximated error E. If the maximum value of E exceeds a given threshold Te, a new

control node is inserted at the point where the maximum approximation error takes

place.

(3) If a contour segment is connected to only one control node, namely single-node-

connected contour, then the distance from each point of this contour to the single

control node is calculated. The point that has maximum distance is considered as

another control node (see Figure 3.8).

(4) Repeat recursively step (1) and (2) until the maximum approximation error for every

two adjacent control nodes is smaller than Te.

Single-node-connected
contour

Figure 3.8 Insert high curvature nodes.

This process is illustrated in Figure 3.8. For the implementation, an iterative method is

applied. The flag counter is used to indicate the number of inserted new nodes during one
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iteration loop. The process will terminate when the counter is equal to zero. The detailed

procedure is shown by the flow chat in Figure 3.9.

Order all control points and
their adjacent points

Reorder control points and
their adjacent points

Set counter = 0
Find first point P

Find first adjacent
point Pa of P

Approximate straight line
between P1 and P2

Trace segment P1P2 and calculate
distance between all points adn I,
select maximum distance as E,

save its position (x, y) Find next adjacent
point Pa' of P1

Find next ^^.Y
next point P

N"
Insert a control point at (x, y)

counter = counter+1

Figure 3.9 Flow chat of inserting high curvature control points.

Intersections and high curvature points may be sufficient to represent image contour,

however, if the length of an image segment is very large, the area between two distant

control nodes is generally difficult to predict with these two control nodes. Thus it is

necessary to insert some nodes between these two distant nodes. The principle is as

follows: (Figure 3.10)
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(1) Calculate the contour length L between every two adjacent control nodes.

(2) If L is equal to or larger than a predetermined threshold 2*Ti, insert N new control

nodes (with equal distance) between the adjacent control nodes so that L/N > Ti and

U{N+\}<TI.

Figure 3.10 Insert nodes to long segments.

Since L/N > Ti and Z/(A^+1) < Ti, so (L/ Ti - 1) <N<L/ Ti. Because N should be equal to

or larger 1, so we take the threshold strategy as : L > 2*T1. And to determine the value of

N, we use the following criterion:

N = LL/TI + 0.5 J - 1, where bd denotes the largest integer smaller or equal than x.

Since L/T1 may not be an integer, and its residual may be > 0.5, we add a constant 0.5 to

L/T1 in order to round it toward its nearest integer. The operation - 1 at the end of the

equation is due to the interval number between two distant nodes is N + 1.

Until now two kinds of control nodes have been selected. However, two control nodes,

especially the contour intersections, may be close to each other. The motion described by

these intersections may be highly coherent and it is not efficient to take all of them as
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control nodes. Hence, a post-processing should be taken to eliminate these unnecessary

nodes.

(1) Determine the distance between every two adjacent nodes ( which are connected by a

contour segment);

(2) If the distance between two adjacent nodes is too small (less than a threshold Td), one of

the nodes is not considered as a control node. All other nodes are taken as control

nodes.

We have all the control nodes so far, so the next step is triangular mesh generation based on

these control nodes, which will be shown in the following section.

3.3.4. Triangular Mesh Generation with Triangle Reduction

After a successful selection of control nodes, the mesh generation is performed using the

method of Delaunay triangulation. Del aun ay triangulation is a well-known triangulation

method in the field of computational geometry and provides meshes with several nice

properties, e.g., it maximizes the minimal angle between triangle edges [23].

Although Delaunay triangulation has good performance, it does not take the image data into

account. Ordinary Delaunay triangulation algorithm inputs the selected nodes, and outputs

the Delaunay triangulation without considering image contours, so the triangle edges may

cross over image contours, as shown in Figure 3.11 (a). In this case, one triangle consists of

image pixels of two or more regions, but different regions may undergo different motions,

so the motion information of this triangle can not be accurately estimated. To solve this

problem, a constrained Delaunay triangulation should be employed to construct a content-

based triangular mesh. The solution is to link every two adjacent control nodes by straight

lines. These straight lines can form polygons. So the image contours are approximated by

the produced polygons. Then the edges of the polygon are used as constrains in the

triangulation to make sure that polygon edges become the edges of generated triangles, as
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shown in Figure 3.11 (b). This way, no triangle will cross over a contour, each triangle only

represents one or part of one object.

Control point

Contour

Figure 3.11 Triangulation constraint: no contour cross, (a) triangles across over a contour;

(b) not across over the contour.

Triangle Fusion

After applying the constrained Delaunay triangulation method, we can obtain a content-

based triangular mesh structure. Each triangle contains uniformly distributed image pixels.

However, if we continue to study the properties of the triangles, we can find that some

adjacent triangles are very similar, especially in the regions where we insert the second

class of control nodes on the long contour segments. Because we insert the nodes at equal

distance, the triangles produced by these nodes cannot accurately reveal image content,

some adjacent triangles may share the same or similar properties. Thus, these similar

triangles can be fused together to form a new polygon, which is image intensity

homogeneous. In fact, to form this polygon, some nodes are unnecessary, since some

consecutive edges may have the same or very close slopes, so these edges can be

approximated by one straight line, and the nodes between the vertices of this line can be

deleted. After this approximation, only vertex nodes of this polygon are kept. Based on

these retained nodes and the polygon map, we reapply the constrained Delaunay

triangulation method and the final triangular mesh structure is achieved.
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In order to estimate the similarity between two adjacent triangles, we shall exploit the

statistical properties of triangular image patches. It is well known that an image can be

considered as a set of random signals. Mean and variance are two important factors to

estimate a signal's statistical property. So, let x denote the image pixel series of a triangle,

and ILL and (f denote the mean and variance of this triangle, we will then have:

^=E(X)=^1
Nt-k=\

o-2=E[(x-EW)2]=E<ix2)-E\x)=^I2,-^
k=l

(3.17)

(3.18)

where E and I denote the mathematics expectancy and image pixel intensity.

Then, let i and j be the number of adjacent triangles. We shall define the following criterion

to determine the triangle fusion:

if A^ = I {li - p,j I < T^ and A<^ = I <^; - o^' I < Ta then, triangle ? and j can be

merged.

Where T^i and To-are two thresholds for mean and variance values.

(a) (b)

Figure 3.12 Triangle reduction, (a) before fusion (b) after fusion.

The example is illustrated in Figure 3.12, let T and P denote triangle and control node

respectively. At first, we calculate the mean and variance of all triangles within an image

frame. Then, we compare these two statistics for any two adjacent triangles following the

above criterion. In Figure 3.12, triangle sets {Ti, T2, Ts} and {T4, T5, T6} satisfy the above
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criterion, so they are fused together and become a new polygon. After triangle emerging,

some control nodes located on the same straight segments can be deleted, such as points Pi,

?2, and Ps in Figure 3.12 (a). Then we reapply Delaunay triangulation and obtain a new

mesh structure like Figure 3.12 (b). The new stmcture represents the same image intensity

distribution, but need less control points, which leads to the low bit-rate.

The simplified flow chat of triangle fusion and node reduction is shown in Figure 3.13.

Start
Point number=Np

Label all triangles with distinct
value within an image

Point number N=1

Find Nth point's all adjacent triangles,
(number=Nt) to form a Polygon(PG)

Triangle number i=1

N=N+1

Find ith triangle Ti's neighbour
triangle Tj inside PG

Compare statistics properties
of Ti & Tj (Mean and Varience)

i=i+1

ind next neighbou
triangle Tj of Ti

Change Tj's value as Ti's

Inside considered image,
use emerged triangles to

form pglygons

Delete the inner nodes
which locate at same lines

N

End

Figure 3.13 Flow chat of triangle fusion and node reduction.
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The result of triangle fusion and node reduction is shown in Table 3.1. The image

sequences to be used for simulation are Miss America and Foreman. The image size is 352

x 288. For selecting control nodes, the three thresholds are set as: Td= 4, Te= 5, Ti= 24.

For triangle fusion, the thresholds are set as: T^=5, T(j=200, and T|^=IO, To=300 for Miss

America and Foreman respectively. Because of triangle fusion, the average node number is

reduced from 148 to 116 for Miss America, and from 226 to 176 for Foreman, so the

reduction ratio is around 22%.

Table 3.1 Node number of Miss America and Foreman.

Miss America

Seq. No.

1

2

3

4

5

6

7

8

9

10

Average

Node number
Before

triangle fusion

155

153

144

156

138

153

142

151

153

157

148

Node number
after

triangle fusion

117

120

115

121

101

121

108

117

119

120

116

Foreman

Seq. No.

23

24

25

26

27

28

29

30

31

32

Average

Node number
before

triangle fusion

222

235

228

226

225

219

222

221

226

225

226

Node number
after

triangle fusion

172

185

185

181

180

164

175

170

177

170

176

Figure 3.14 illustrates the generated active mesh structure, the first row represents the

original images of Miss America and Foreman with contour segments, and the second row

represents the mesh structure before triangle fusion, the last row represents the mesh



structure after triangle fusion. From the figures of mesh structure, it can be clearly

recognized that most triangles have a uniformly distributed luminance value, so the mesh is

content-adaptive.

Figure 3.14 Results of triangulation for sequence Miss America and Foreman.
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3.4. Spatial-Temporal Gradients Method of Mesh Design

Y. Altunbasak, and A. Murat Tekalp have proposed another content-based mesh design

method [29-30], which is called the spatial-temporal gradient (STG) based approach. This

algorithm also consists of a nonuniformly spaced node point selection procedure, followed

by triangulation using the selected node points. The procedure aims to partition the image

into triangles in such a way that a predefined function of the displaced frame difference

(DFD) within each patch attains approximately the same value. An outline of the algorithm

is as follows:

1. Estimate a 2-D dense motion field between the present and reference frames. Label all

pixels as "unmarked";

2. Compute DFDavg given by

^DFD(x,y)Y
DFD=^x'y^^^'" (3.19)

K

where the summation is over all unmarked points, K is a number of unmarked points,

and p is a positive number.

3. Compute a cost function C{x, y) associated with each unmarked pixel as a predefined

function of spadal-temporal intensity gradients.

4. Find the unmarked pixel with the highest C(jc, y) which is not closer to any other

previously selected node point than a prespecified distance. Label this point as a node

point.

5. Grow a region about this node point until ^L(DFD(x, yVf in this region is greater than

DFDavg. Label all pixels within this region as "marked".

6. Go to 2 until a desired number of node points, N, are selected.

7. Given the selected node points, apply a triangulation procedure to obtain a content-

based mesh.

Comparing the STG based approach and our intensity segmentation-based approach, we

can see some differences. The STG approach uses motion intensity gradient and a cost

function to determined node points. Although this method results in motion content-based
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triangular mesh, and the node number can be fixed, it also has some disadvantages. First, in

many cases, the points with same gradient derivation may concentrate on some areas,

which leads to many node points locate at some local regions. Since DFDavg is computed

on unmarked pixels and if image has a uniform background, after the high gradient points

have been selected in the foreground area, many node points will also be detected in the

background area (see result of [29]). In fact, these nodes are redundant since many triangles

in background area have the same image intensity. To sum up, though the selected nodes

have high gradient, but they may not lie on a region boundary (contour), the generated

triangular patch may cover different regions and, as mentioned in last section, the motion

vectors cannot be accurately estimated.

In contrast to the STG based method, using the proposed intensity segmentation-based

mesh design method, the most selected nodes are image contour intersections and high

curvature points on the contours. So after employing constrained triangulation the mesh

structure nearly coincides with image contour, and each triangular patch consists of only

one segmented region or part of one region. For one region, the translation and deformation

can be accurately estimated, which can result in precise image prediction. Moreover, due to

the triangle fusion algorithm, the node number can be reduced to a great extent. Less

prediction error and small amount of motion vectors fit the low bit-rate requirement.

After mesh generation, the next step will be motion estimation for nodal points and image

prediction based motion estimation and compensation, which will be described in the

subsequent chapter.
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Chapter 4. Motion Estimation

Successive images of a video sequence are strongly correlated and the motion estimation

and compensation between consecutive frames aim at reducing the spatial-temporal

redundancies by exploiting this strong correlation. Motion compensation using 2D mesh

requires computation of the parameters of a spatial transformation within each mesh

element (patch). It is well known that the parameters of an affine mapping can be uniquely

estimated from three corresponding points (e.g. at the three vertices of a triangular patch, as

described in section 3.2). Therefore, in order to estimate the affine mapping parameters for

motion compensation of each patch, it suffices to estimate the motion vectors at the nodal

points. If the displacements of nodal points can be precisely determined, the quality of

image prediction would be perfect. So, here, the algorithm of block matching is initially

applied to estimate the displacements of nodal points, then, an iteration algorithm

corresponding to the refinement of the displacement vectors will be developed.

4.1. Initialization by Block Matching

The goal of this stage is to find the initial motion vector for each control node, which is

obtained from the last chapter. The chosen algorithm is similar to the above-mentioned

block matching algorithm (BMA).
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Before starting motion estimation, we first introduce the classification of control nodes. We

divide the control nodes into three kinds as follows (Figure 4.1 (a)):

1) Inner nodes (Pi). Nodes that are inside the image frame.

2) Boundary nodes (Pa). Nodes that are on the boundaries of the image frame.

3) Comer nodes (Pc). Nodes that are on the 4 comers of the image frame.

To coarsely estimate the motion vector, we first use a square block to enclose each node,

and the node is located at the centre of this block. Then we search the optimal matching

block in the reference image to get the translational motion vector. We also call it block

matching algorithm since it is nearly the same as BMA in section 2.3. Since the block is

centered at the control node, the block size must be an odd number. We take it as 15 x 15,

and the search range is [-p, p], where we use p = 7.
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Figure 4.1 Image Enlargement.

It should be noticed that the block matching algorithm we applied is different from the

traditional BMA. For conventional BMA, to keep the size and shape of the image

framework, the comer nodes are assigned zero motion vectors, and boundary nodes can
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only move along image border, so they have only horizontal or vertical motion

displacement. This method is not sufficient for some cases. For example, an object in the

current frame of a video sequences, may move outside the image boundary in the future

frame, or an object in a past frame may move inside a current frame. To cope with the

problems of comer and boundary nodes, we propose an approach that is to enlarge the

original reference image as illustrated in Figure 4.1. The extending method is shown in

Figure 4.1 (b), the border image intensities are copied to the extended area, and the width of

the extended area should be equal to (block size/2 + p). This way, any block in an image

can find its best matching position in the reference image. Thus each node can have its

most suitable displacement.

4.2. Avoiding Triangle Inconsistency

P'o

Frame k Frame k+1

Figure 4.2 Illustration of inconsistent motion vectors.

After initialization of the motion vectors, we can reconstruct the image by compensating

the obtained motion vectors. However, it is possible that motion vectors may be

inconsistent in the sense that they do not preserve the connectivity of the mesh structure.

This is illustrated in Figure 4.2, where the node Po in frame k is connected with its

neighbour nodes which form the polygon. The motion vector at the node Po must move it
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inside the polygon in frame k+1. However, because the motion estimation method utilized

to compute the node-point motion vector at the node Po does not employ such a constraint,

this condition may be violated as shown in Figure 4.2. The displaced node P'o lies outside

its displacement support region. When such a condition occurs, the estimated vector should

be replaced by a motion vector that is interpolated from those of the surrounding nodes, or

alternatively, a local search may be conducted to estimate the motion vectors at such nodes.

Therefore, we use a motion vector post-processing (after block matching) algorithm to

preserve the connectivity of the triangle patches. In case of a motion vector crossover, it

will be replaced by a motion vector that is interpolated from those of the surrounding N

nodes, through the following procedure:

1. Process the nodes in the order of scan line to detect nodes with inconsistent motion

vectors as follows: At each node Po,

(a) Find all the nodes connected to node Po, and label them as P;, i = 1, ..., K, where K

is the number of nodes connected to Po.

(b) Find the motion compensated node locations P,, i= 1, ..., K, in frame t+1 using the

motion vectors at the nodes P;. Form the polygon defined by P;, i= 1, ..., K.

(c) Motion compensate the node Po to find Po . If Po is inside the polygon, go to next

node in order. Otherwise,

2. Interpolate the motion of the node from its neighbours as follows:

^u,

u =

IL

_^id,

-J_^̂
v..

(4.1)

._^d, (4.2)
V=~K^

^d,

where (M,, vi) is the node-motion vector at the node P,, and J; is the distance between the
node Pi and Po.
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This way, the connectivity can be kept by avoiding triangle inconsistency. Thus the

procedure provides increased robustness to errors in motion estimation. In fact, throughout

our experiment, this condition rarely occurs.

Until now, from these translation vectors, one can reconstruct a prediction. However, if the

movement of the objects present in the image is not only translational, the movement will

be described only coarsely and the quality of the reconstructed image will be poor. So we

will use motion refine algorithm to get the accurate motion vectors of the nodal points.

4.3. Refinement by Deformation of the Triangulation

In the preceding paragraph, a grid of control nodes to which a triangulation of Delaunay is

applied, was used to describe the reference image at time t - dt. Each node has a translation

vector, found at the stage of initialization by block matching, to approximate the movement

between the reference image and the image to be predicted. These vectors can model only

translations and do not take into account the deformation of the objects. This is why they

must be refined in order to possibly model the movement to maximize the image quality

after motion compensation. The problem thus consists in estimating these displacements.

The following proposes a method of searching optimal displacement of each node based on

a local deformation of the triangulation.

4.3.1. Principle

In reference to Figure 4.3, which illustrates the mesh deformation according to a node

displacement in the image plane, the main principle of the proposed mesh refinement can

be described as the procedure which is composed of an iterative process as follows:

1) considering a given node, fix the location of the surrounding nodes;
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2) move the considered node in a given neighbourhood inside the support region, and

synthesize the predicted image in the polygon defined by the surrounding nodes

according to this displacement;

3) calculate the prediction error inside the polygon: keep the displacement that minimizes

this error,

4) update the displacement of the considered node with this refinement.

5) Considering the next node, go to step 1).

Figure 4.3 Refinement process: Po is the considered node, Po' is its new location.

After each refinement, the difference between the current image and the predicted image

either decreases or remains unchanged. Therefore, the refinement process can be iterated

until all the control nodes converge to either local or global minima. The refinement

process is applied to the considered node when its displacement was refined at the previous

iteration or if the displacement of at least one of the surrounding nodes was refined at the

previous iteration. Thus, in most cases the number of the mesh nodes to which the

refinement process is applied decreases as the iteration goes on.

4.3.2. Support Region and Search Region for a Node

Before the location of a given node can be refined, the support region and search region

associated with the given node are to be determined. The definition of support region and
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search region for a node, and the process for obtaining them are presented here for the

inner, boundary and comer nodes.

Let P denote an arbitrary inner node in a triangular mesh, let K denote the number of

patches that are connected to P, and let Si, ..., SK denote these patches. A search for the

refined position of P is conducted within the region S = uA;=j SK , which is referred as the

"support region" of P, as shown in Figure 4.4 (a). The node P may be allowed to take on

any location in the support region S. However, to simplify the computation, we define a

square window that is centered around node P as the "search region" of node P (Figure 4.4

(a)). The constrained condition is that the search region must be enclosed in the support

region. The maximum size of the search region, denoted as Ms, is predefined, and the

maximum size of the square window inside the support region is denoted as Mw. Then the

search range [-Sz, Sz] is defined as follows:

S.=JM-/2
'2=1X../2

ifM,<M,,;

if Ms > Mw. (4.3)

Note that Sz is an integer.

Support region Support region

S1

32

36

S3

Pl':^

sc

S4

Original image boundary

Search region Enlarged image boundary

(a) (b)

Figure 4.4 Support region and search space, (a) inner node; (b) comer and boundary nodes.
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However, for a corner or boundary node, the situation is different. If we define the "support

region" for these nodes as the union of associated triangular patches, which is the same as

for inner nodes, then the considered nodes are located on the edge of this region (also the

boundary of image). In some publications [14, 15], a search for a refined position of

boundary nodes is constrained to only the corresponding image boundary segments, and for

comer nodes, even zero motion is mandatorily applied to them. As said in the initialization

part, the approach is not sufficient when an object moves out or inside the image boundary

from frame to frame. So we will use the enlargement algorithm again to solve this problem.

At first, we rebuild the image based on the obtained motion vectors. Because the comer and

boundary nodes may move outside of the image border, the new image size Sn may be

larger than the original image size So. We define the maximum search region size Ms as the

same as for the inner nodes. Thus, the width of the extended region Re in Figure 4.4 (b)

should be (Sn - So + Ms) /2. The support region for corner and boundary nodes can then be

expressed as S = u^i=i SK u Re. The support region and search region for comer and

boundary nodes are shown in Figure 4.4 (b).

Second iterationFirst iteration

•I

^

< >

_f

-El

• : Position to be tested; P : Considered node;
0 : Optimal position; P : New node position.

Figure 4.5 Search range of a considered node.
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As shown in Figure 4.4, the search space of a control node is defined as a square window.

During motion refinement, the considered node may move to any location in the search

space. So we use a full search algorithm to find the optimal displacement of the considered

node within one iteration. However, a full search algorithm is computation expensive, and

after one iteration, the nodes have moved towards their optimal position. So it is not

necessary to keep the same search size during the subsequent iteration. Thus, we adopt a

kind of hierarchical method, as shown in Figure 4.5, that is, after one iteration, the search

size is divided by two. This way, each control node can rapidly converge to its local or

global minima.

4.3.3. Refining

After determining a search space for a node, we can start to refine the location of this node.

In order to find the optimum displacement of No, we employ the MSE criterion defined as:

Es =l;^(l{p+dW,t-dt)-I(ip,t))2
peS

=-^VI
N^s\

=E^V)

^| I(p+^(pe^p)d^^,t-dt)-Kip,t)
pee \ k=[

(4.4)

where N denotes the number of pixels within the support region of point p=(x, y) , S is

support region of P. According to (3.9) which formulates the displacement of each point in

a given element e as a function of the displacement of the considered element vertices,

ver(e, k) corresponds to the fcth vertex of the element e, and V={di, ... , d,i) to the complete

nodal motion vector field.

The energy minimization is realized by estimating the optimal set of nodal motion vectors.

The motion estimation approach described below considers successively the influences of
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each node displacement on the global error criterion. The nodal vector field V is

determined iteradvely, and the way to obtain V(fe+7) from V~k) is as follows:

di(k+l) is estimated for ^=1, then 2, ..., until n such as:

E(d,{k+l),...dw\d^w,...,d^)

SS £?(t+l),... d,/t+l), d,(':)+v,, ..., ^t) ) Vv,6 F (4.5)

where F contains the set of acceptable vectors defined by the application context, i.e.

d^ = J,W + arg {min £.^(,)(v,), (v,e 5)} (4.6)

where

^p,,(,)^,)=J7 S ]s(/(p+^w)(p)^l+';,^-A)-^oT
eesupp(i)\ pee

ind{e, i) <= {1, 2, 3} indicates the index of the vertex of the triangle e whose index within

the global triangulation is i, and supp(i) is composed of the triangles which include the

vertex i. This process is also a proof of principle of refinement mentioned-above.

Original image boundary

ROI

(a)

Original image boundary

Discovered region

(b)

Figure 4.6 (a) Problem of ROI, (b) Problem of discovered region.
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Note that when one calculates the error Es, only those spatial positions that map onto the

ROI (region of interested) of frame at time t, are included in the calculation. This is

illustrated in Figure 4.6. In our case, the ROI is inside the original image frame. The region

mapped outside of image boundary is abandoned. On the other hand, if a boundary node of

a past frame moves inside the current frame, it will cause a blank region in the ROI of the

predicted image; we call it a discovered region. Figure 4.6. (b) illustrates the discovered

region caused by inward motion of boundary node. When this is the case, we fill the

discovered region with the corresponding pixel intensity of the reference image, or with the

projection of the boundary pixel intensity of the reference image. It should be noticed that

the discovered region is a part of ROI, that is to say, it is included for error calculation.

4.3.4. Application

Whole Procedure

As indicated and shown in the preceding paragraphs, refinement is an iterative procedure,

and it will converge to steady state. Taking computation cost into consideration, a

maximum search size is predefined and it will be divided by two after each iteration. To

make the implementation efficient, we assign a marker to each node, to present the status of

displacement of the treated node. For the start of the iteration, all markers are all initially

set to zero. When the displacement of the treated node is updated, the markers of this node

and all its adjacent nodes are set to one. Otherwise, if the motion vector remains

unchanged, the marker is set to zero. The algorithm stops when all markers are zero or the

search size is equal to one. The whole procedure of motion vector refinement is illustrated

in Figure 4.7.
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Start

Find all neighbour nodes and triangles of
every node (node number = Nd), set all
markers of nodes as 0. Set maximum
iteration number N and search size Sz

nd & all its neighbor node's
makers are equal to 1

motion displacement
dx = -Sz, dy = -Sz

change dx or dy to
another position

inside search space

Image prediction by motion compensation.
calculate the prediction error E within the polygor)

(union of all neighbour triangles of nd)

Find the minimum value of E
and its position dx, dy

update motion vector of
nd: u = u + dx; v = v+dy

markers of all node
are equal to 1

Y

Figure 4.7 Flow chat of motion vector refinement.

63



Motion Compensation

The prediction error in the polygon is calculated according to (4.4). From (4.4), we can see

that the prediction error is the mean squared difference between the predicted

(reconstructed) current image at time t and the reference image at time t - dt within the

treated polygon. The prediction of the current image is constructed by using motion

compensation for the reference image:

Kp, t)= I(p + d(p\t - df)

Where J(p) is the motion vector of the point p(x, y).

(4.7)

Based on the knowledge introduced in section 3.2, nodal motion vectors interpolation

within motion compensation, described by (3.10), is used to compensate luminance values.

Since the aim consists in determining a luminance value for each point of the sampling grid

at time t, a backward motion compensation is considered, that is nodal location pi become

pi+di and nodal motion vectors di become -di. Then, since the scanning is done on the

sampling grid at the time t, every pixel in the frame t has a corresponding vector and can be

affected with a luminance value of time t-dt. In short, nodal point motion vectors establish a

set of point correspondences from frame t-dt to frame t, which are used to determine a set

of backward afine transformation from frame t to t-dt (see Figure 4.8).

(xi,yi
(x'i,y'i)

(X2, y2
(x's, y's)

Frame t-dt Frame t

Figure 4.8 Backward Affine transformation.
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Now knowing the motion vector of each point of a given triangle, the motion compensation

can be carried out easily. Previously, each triangle should be marked by different values in

order to build a correspondence between the image pixels and the motion model. And to

increase speed, the processing of a considered triangle should be limited to a minimum

rectangular region. The process proceeds in three stages:

1. Define a minimum rectangular region which can enclose this triangle. As shown in

Figure 4.9, the coordinates of up-left and down-right comers of the rectangle, (Xmin,

Ymin) and (Xmax, ymax), ai'e determined from the coordinates of three vertices of the

considered triangle. Where Xmin = min(xi, Xz, Xs), ymin = min(yi, 72, ys), Xmax = max(xi,

X2, xs), and ymax= (yi, V2, ys).

2. For the considered triangle T, link its three vertices to get three edges. Fill the triangular

area with a particular value using scan line algorithm. That is, first detect two edge

points Pl and P2 by scanning order, then mark all pixels between Pl and P2 by a

special value. (Figure 4.9)

3. Process this marked triangle inside the defined rectangle.

^Xmin, ymin

(X2, y2)

(X3, ya)

Xmax, ymax)

Figure 4.9 Detection of treated triangle.
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Interpolation of Image Intensity

Notice that when the motion vector indicates a position which does not correspond to a

point in the sampling grid, the reconstructed image intensity value is obtained from a

bilinear interpolation of the four nearest pixels. With this, the intensity value at point (x\

y') is obtained by:

In(x', y') = {\-a} {(\-P)In.i(x, y) + /3ln.i(x+l, y)) + 6<(l-^)J^(x, y+1)
+/3ln^x+\,y+l)) (4.5)

Where (x, y) is the integral part and (a, /3) is the fractional part of the co-ordinate (x', y'Y

This method requires six multiplifications for each pixel. Various fast algorithms to speed

up the computation of (4.5) have been proposed.

4.5. Image Reconstruction

Image reconstruction is the final step of video coding and takes place at the encoder and

decoder sides. The process is the same as the motion compensation mentioned above.

During the motion estimation, motion compensation is implemented within the support

region of the considered node. For image reconstruction, we have found the motion vectors

of all the control nodes, so we compensate the previous image for all pixels triangle by

triangle. The flow chat of image reconstruction is shown in Figure 4.10.



Start

I
List all the triangles represented by their
three vertices, total triangle number is Nt

I:
Label all the triangles using

distinct values

J_
Triangle number i=0

<-
v

Calculate Affine model parameters of
the /'th triangle

Calculate

r̂

late motion vectors of interior points o1
this triangle

r̂

Image reconstruction for this triangle by
motion compensation

i Nt

I = i + 1

A

Ji-

L

End

Figure 4.10 Flow chat of image reconstruction.

We have described each step of a segmentation-based mesh design for motion estimation

scheme so far. The next chapter will be the simulation results and conclusion.
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Chapter 5. Simulation Results and Conclusion

In the previous chapters, a segmentation-based mesh design for motion estimation scheme

has been proposed and all the phases have been described. The objective of this project is to

get the reconstructed image by motion compensation and compare it with BMA. In this

chapter, we present the simulation results and give a final conclusion.

5.1. Simulation Results

The simulations are performed using two test image sequences (Miss America and

Foreman) in GIF format (352 x 288 pixels / frame). Only the luminance is processed.

Backward prediction is simulated, i.e., each frame is predicted (reconstructed) from its

previous frame. In order to evaluate purely the prediction precision (i.e., excluding the error

propagation effect), the original image of the previous frame is used to predict the current

frame. Image quality is evaluated by peak signal-to-noise ratio (PSNR), given by

,2

PSNR=mog^^: (5.1)
vw MSE

Where MSE represents the mean square error between the original and reconstructed

frames, it is given by

MSE=^^(0(i,j)-R(i,j^ (5.2)
(=0 .,'=0
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Where I x J represents the frame size, and 0{i, 7) and R{i, 7) denote original and

reconstructed images, respectively.

The performance of the segmentation-based mesh design for motion estimation and

compensation is compared to that of conventional motion compensation using block

matching. The full search algorithm with the mean absolute difference as the block

matching error criterion is used. The block size of BMA is 16 x 16 pixels, and search range

used by BMA is ±7 pixels in both vertical and horizontal dimensions. With the proposed

scheme, an initial estimate is first obtained by the BMA and then updated iteratively, as

described in the previous chapter. For the BMA of initialization process, the block size is

15 X 15 pixels since the block is centered around a control node, and the search range is ±7

pixels. For the refinement process, the search range is initialized as ±7 pixels, and after

each iteration, this range is divided by 2, so the iteration number is restricted to at most 3.

Table 5.1 gives the PSNR results of BMA and proposed method. Figure 5.1 shows the

PSNR curves.

Miss America

34567

Frame No.

Foreman

23 24 25 26 27 28 29 30 31 32

Frame No.

(a) (b)

Figure 5.1 PSNR curves obtained by proposed method and BMA, (a) Miss America; (b)

Forman.
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Miss America
Seq. No.

1

2

3

4

5

6

7

8

9

10

Table t

PSNR
Of

BMA
38.776302

39.454369

39.541801

39.064316

38.259865

37.551235

39.689461

39.082512

38.957756

39.398514

1 PSNR of BMA and proposed method.

PSNR of
Proposed

method
39.886181

40.210739

40.270092

39.981239

39.157368

38.357059

40.066349

39.623711

39.787331

40.124088

Foreman

Seq. No.

23

24

25

26

27

28

29

30

31

32

PSNR
of

BMA
32.466370

32.594524

33.169453

33.395699

38.065998

36.728539

37.801094

35.137424

34.101692

33.362087

PSNR of
Proposed

method
33.856060

34.028569

34.601997

34.651287

38.821270

37.674125

38.585281

36.091587

35.159222

34.403877

CD
~0

CE
z
0)
Q-

40

39

38

37

36

35

34 4

33
Miss America Istframe

w
Miss America 1st frame
Foreman 26th frame

38.740295 39.660522 39.887386

.....Foreman 26th frame |33.230938 |34.432892 |34.648132134,652203 |34.652229|34.652229 |34.652229

39.891911 39.893562 39.893562 39.893562

Iteration

Figure 5.2 Refinement algorithm convergence.

As mentioned in the last chapter, the iterative algorithm of motion refinement will always

converge, at least to a local minimum. The rate of convergence of this algorithm is shown
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in Figure 5.2 for the 1 frame of Miss America and for the 26 frame of Forman; the search

range is fixed to ±7 pixels. From Figure 5.2, we can see that the refinement normally

converges in 4 iterations, the PSNR after the 3 iteration is nearly same as after the 4th

iteration, and the results of fix search range and varied search range (divided by 2) is almost

the same. So we use the latter method because it can significantly reduce the computation

cost and be implemented much faster.

Since the block size of BMA is 16 X 16, and the image size is 352 X 288, the block number

of each frame is 18 X 22= 396. In contrast, by using the segmentation-base mesh design

scheme, the average numbers of control nodes are 116 and 176 for Miss America and

Foreman respectively (table 3.1). So, the node numbers are only about 29% and 44% of the

block numbers of BMA, the number of transmitted motion vectors is thus greatly reduced.

From the first two chapters, we know that BMA can bring motion block effects, especially

when motion is important and frame rate is low. Figure 5.3 shows the original images and

reconstructed images by BMA and proposed method. The left and right columns are Miss

America and Foreman respectively. The first row represents the original images (the 4

frame of Miss America and the 26 frame of Foreman). The second row represents the

reconstructed images by BMA (Miss America is reconstructed from the 1 frame, Foreman

is reconstructed from 23 frame). The third row represents the reconstructed images by the

proposed method. The images are zoomed out in order to have a better visual effect. From

the Figure 5.3, it is clear that the proposed method can outperform BMA for the motion

block artefacts and highly improves the subjective image quality.

From [29, 30], the PSNR of the reconstructed 4 frame of Miss America from the 1st frame

is around 37.44, but using our algorithm, the PSNR is 39.06, so the proposed segmentation-

based mesh design scheme for motion estimation is better than STG-based mesh design

scheme.
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Figure 5.3 Original and reconstructed images, left: Miss America; right: Forman.
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5.2. Conclusion

In this thesis, we have proposed a segmentadon-based mesh design scheme for motion

estimation between image frames. The current frame is reconstructed by motion

compensating previous image based on a mapping of a selected set of image points (control

nodes) between the previous and the current frames. Triangular mesh stmcture and affine

motion model are chosen for representation of the motion of frames. The content-based

triangular mesh generation is based on image segmentation followed by selection of control

nodes. An important novel property of the proposed method is that it selects the control

nodes on the image contours, after constrained Delaunay triangulation and triangle fusion

algorithm, each triangular patch is nearly homogenous, so its motion vectors can be

accurately estimated.

Simulation results indicate that this method performs better than classical motion

estimation algorithm like BMA. Objectively, the PSNR is higher. Subjectively, this method

can improve the motion block effects produced by BMA.

Since the generated mesh structure coincides with image contours, particular objects can be

easily identified, so this method is suitable for object-oriented process. This will be the

subject of future work.
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