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Abstract

The past decade has seen major improvements in the capabilities
and availability of imaging sensor systems. Commercial satellites
routinely provide panchromatic images with sub-meter resolution.
Airborne line scanner cameras yield multi-spectral data with a
ground sample distance of 5 cm. The resulting overabundance of
data brings with it the challenge of timely analysis. Fully auto-
mated processing still appears infeasible, but an intermediate step
might involve a computer-assisted search for interesting objects.
This would reduce the amount of data for an analyst to examine,
but remains a challenge in terms of processing speed and working
memory.

This work begins by discussing the trade-offs among the various
hardware architectures that might be brought to bear upon the
problem. FPGA and GPU-based solutions are less universal and
entail longer development cycles, hence the choice of commodity
multi-core CPU architectures. Distributed processing on a cluster is
deemed too costly. We will demonstrate the feasibility of processing
aerial images of 100 km × 100 km areas at 1 m resolution within
2 hours on a single workstation with two processors and a total
of twelve cores. Because existing approaches cannot cope with
such amounts of data, each stage of the image processing pipeline
– from data access and signal processing to object extraction and
feature computation – will have to be designed from the ground up
for maximum performance. We introduce new efficient algorithms
that provide useful results at faster speeds than previously possible.

Let us begin with the most time-critical task – the extraction
of ‘object’ candidates from an image, also known as segmentation.
This step is necessary because individual pixels do not provide
enough information for the screening task. A simple but reason-
able model for the objects involves grouping similar pixels together.
High-quality clustering algorithms based on mean shift, maximum
network flow and anisotropic diffusion are far too time-consuming.
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We introduce a new graph-based algorithm with the important
property of avoiding both under- and oversegmentation. Its distin-
guishing feature is the independent parallel processing of image
tiles without splitting objects at the boundaries. Our efficient
implementation takes advantage of SIMD instructions and out-
performs mean shift by a factor of 50 while producing results of
similar quality. Recognizing the outstanding performance of its
microarchitecture-aware virtual-memory counting sort subroutine,
we develop it into a general 32-bit integer sorter, yielding the fastest
known algorithm for shared-memory machines.

Because segmentation groups together similar pixels, it is help-
ful to suppress sensor noise. The ‘Bilateral Filter’ is an adaptive
smoothing kernel that preserves edges by excluding pixels that are
distant in the spatial or radiometric sense. Several fast approxi-
mation algorithms are known, e.g. convolution in a downsampled
higher-dimensional space. We accelerate this technique by a factor
of 14 via parallelization, vectorization and a SIMD-friendly approx-
imation of the 3D Gauss kernel. The software is 73 times as fast as
an exact computation on an FPGA and outperforms a GPU-based
approximation by a factor of 1.8.

Physical limitations of satellite sensors constitute an additional
hurdle. The narrow multispectral bands require larger detectors
and usually have a lower resolution than the panchromatic band.
Fusing both datasets is termed ‘pan-sharpening’ and improves the
segmentation due to the additional color information. Previous
techniques are vulnerable to color distortion because of mismatches
between the bands’ spectral response functions. To reduce this
effect, we compute the optimal set of band weights for each input
image. Our new algorithm outperforms existing approaches by a
factor of 100, improves upon their color fidelity and also reduces
noise in the panchromatic band.

Because these modules achieve throughputs on the order of
several hundred MB/s, the next bottleneck to be addressed is I/O.
The ubiquitous GDAL library is far slower than the theoretical
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disk throughput. We design an image representation that avoids
unnecessary copying, and describe little-known techniques for
efficient asynchronous I/O. The resulting software is up to 12
times as fast as GDAL. Further improvements are possible by
compressing the data if decompression throughput is on par with
the transfer speeds of a disk array. We develop a novel lossless
asymmetric SIMD codec that achieves a compression ratio of 0.5 for
16-bit pixels and reaches decompression throughputs of 2 700 MB/s
on a single core. This is about 100 times as fast as lossless JPEG-
2000 and only 20–60% larger on multispectral satellite datasets.

Let us now return to the extracted objects. Additional steps
for detecting and simplifying their contours would provide use-
ful information, e.g. for classifying them as man-made. To allow
annotating large images with the resulting polygons, we devise a
software rasterizer. High-quality antialiasing is achieved by deriv-
ing the optimal polynomial low-pass filter. Our implementation
outperforms the Gupta-Sproull algorithm by a factor of 24 and
exceeds the fillrate of a mid-range GPU.

The previously described processing chain is effective, but
electro-optical sensors cannot penetrate cloud cover. Because much
of the earth’s surface is shrouded in clouds at any given time, we
have added a workflow for (nearly) weather-independent synthetic
aperture radar. Small, highly-reflective objects can be differentiated
from uniformly bright regions by subtracting each pixel’s back-
ground, estimated from the darkest ring surrounding it. We reduce
the asymptotic complexity of this approach to its lower bound by
means of a new algorithm inspired by Range Minimum Queries.
A sophisticated pipelining scheme ensures the working set fits in
cache, and the vectorized and parallelized software outperforms
an FPGA implementation by a factor of 100.

These results challenge the conventional wisdom that FPGA
and GPU solutions enable significant speedups over general-
purpose CPUs. Because all of the above algorithms have reached
the lower bound of their complexity, their usefulness is decided

xi



by constant factors. It is the thesis of this work that optimized
software running on general-purpose CPUs can compare favorably
in this regard. The key enabling factors are vectorization, paral-
lelization, and consideration of basic microarchitectural realities
such as the memory hierarchy. We have shown these techniques to
be applicable towards a variety of image processing tasks. How-
ever, it is not sufficient to ‘tune’ software in the final phases of its
development. Instead, each part of the algorithm engineering cycle
– design, analysis, implementation and experimentation – should
account for the computer architecture. For example, no amount
of subsequent tuning would redeem an approach to segmentation
that relies on a global ranking of pixels, which is fundamentally
less amenable to parallelization than a graph-based method. The
algorithms introduced in this work speed up seven separate tasks
by factors of 10 to 100, thus dispelling the notion that such efforts
are not worthwhile. We are surprised to have improved upon
long-studied topics such as lossless image compression and line
rasterization. However, the techniques described herein may allow
similar successes in other domains.
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Chapter 1

Introduction

This chapter sets the stage by briefly reviewing fundamentals of
digital imaging, explaining the need for automation, and introduc-
ing our processing chain for image analysis.

1.1 Fundamentals

We begin with electro-optical imaging, in which an array of de-
tector elements measure the intensity of certain frequencies of
electromagnetic radiation (e.g. visible light) that fall upon their
surface. Each detector yields a digital number, referred to as pixels
(picture element) because they are typically combined to form a
two-dimensional image. When the detectors are sensitive to all
frequencies of visible light, the image is described as ‘panchro-
matic’. Placing filters in front of some of the detectors allows them
to ascertain the contribution of a certain [spectral] ‘band’ – a range
of frequencies, e.g. what we perceive as blue. Images in which
each pixel consists of multiple components (per-band intensity
measurements) are termed ‘multispectral’. This work is primarily
concerned with such images because their color information is
particularly useful for automated analysis. However, clouds or rain
can obscure objects behind them because visible light is scattered
by water molecules or other particles [1].
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By contrast, synthetic aperture radar (SAR) is nearly unaffected
by atmospheric conditions and weather. These systems illuminate
scenes with an antenna and record the multiple echoes. Sophis-
ticated post-processing combines these signals into what might
have been measured by a large antenna, which allows the gen-
eration of an image with relatively high resolution compared to
conventional radar. [2] Because electro-optical and radar images
have different and perhaps complementary advantages, this thesis
also gives attention to the analysis of SAR data.

1.2 The Need for Speed

The past decade has seen significant improvements in the capabili-
ties of imaging sensor systems. For example, the recently launched
WorldView-2 imaging satellite boasts a ground sample distance
(GSD)1 of only 46 cm [3]. This corresponds to NIIRS (National
Image Interpretability Rating Scale) level 6 of 9 [4], indicating the
images are suitable for a wide range of interpretation tasks. Large
format cameras on airborne platforms operating at much lower
altitudes and movement speeds allow even finer resolutions, e.g.
17 mm for the DMC II 250 [5]. Such increases in technical capability
are invariably accompanied by greater expectations. For example,
an image analyst has expressed a desire to count the number of
individual dwellings in an area spanning hundreds of square kilo-
meters. Computer assistance is an absolute necessity for tasks of
such magnitude [6]. Human analysts remain indispensable, but
their workload could be reduced by screening images for relevant
objects. Assuming the detection probability is sufficiently high,
other regions need not be examined by the analyst. However, even
basic screening approaches for wide-area data are challenging in
terms of processing time and memory requirements. The author
participated in a study of existing algorithms and modules for im-
age interpretation, including co-registration, screening for objects

1For convenience, we often refer to this as the ‘[spatial] resolution’ of an image.
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such as vehicles, storage tanks and airplanes, and terrain passabil-
ity analysis. In 2009, we measured throughputs between 0.01 and
3 MPixel/s on a X5365 CPU for nine software modules delivered
by various firms. Let us contrast this with the data rates of recent
cameras. The DMC II captures a 252 MPixel image every 1.7 s,
and a JAS-150s system scans nine 12 000 pixel lines 800 times per
second [5]. Real-time processing entails speeding up the existing
software by a factor of 100 to 10 000. To at least minimize the
additional processing time and thereby enable swift responses in
disaster relief [7] and other time-critical applications, this thesis
develops new, highly efficient algorithms capable of throughputs
in excess of 40 MPixel/s.

1.3 Image Processing Chain

We have designed a general image processing chain suitable for
various applications such as screening images for certain types of
objects, classifying them, or reporting changes with respect to a pre-
vious image. It begins with receiving data from satellites or other
sources, performs noise reduction, extracts objects and computes
their features. Because the computational cost of existing algo-
rithms is far too high, each link of the chain has been redesigned
from the ground up for efficiency. Chapter 2 gives an overview
of computer architectures and explains low-level techniques for
maximizing performance. Our processing chain is engineered to
take advantage of them, and reduces the pixels to a more compact
object-based representation. Subsequent analysis applications no
longer require expensive per-pixel operations and therefore need
not be as concerned with performance.

The following chapters of this thesis are devoted to the individ-
ual links of the processing chain:
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Chapter 3 describes our image representation and framework for
transferring to and from block storage devices, with em-
phasis on avoiding copies and maximizing throughput via
asynchronous input/output (I/O).

Chapter 4 introduces a novel algorithm for lossless asymmetric
compression that accelerates I/O by reducing the amount
of data to be transferred. Its decompression is faster than
copying the original data in memory.

Chapter 5 presents an efficient approach for fusing high resolution
panchromatic and lower resolution multispectral satellite
images. A fast edge-preserving filter reduces noise. Objective
quality metrics report improved color fidelity in comparison
to current algorithms.

Chapter 6 develops a high-quality algorithm for extracting objects
from images. Our graph-based approach enables paralleliza-
tion without any tiling artifacts. It tends to avoid excessive
subdivision and merging of objects despite making only local
decisions.

Chapter 7 introduces a software line rasterizer, e.g. for separately
extracted segment contours, that outperforms the fillrate of a
mid-range graphics processor. We derive the optimal cubic
polynomial filter for antialiasing, which respondents in a
subjective survey preferred over existing approaches.

Chapter 8 presents a highly efficient algorithm for finding point-
like objects in infrared and radar images.

Chapter 9 concludes this work by discussing the resulting perfor-
mance gains and proposing avenues for future work.
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Chapter 2

Computer Architecture

As always, high performance comes at a price, including paying
careful attention to the computer architecture. This chapter sets
forth several options, explains our choice and discusses the impli-
cations for our algorithms.

2.1 Brief Architecture Descriptions

We first introduce and briefly describe several possible computer
architectures.

Digital Signal Processors (DSP) are tailored towards low-latency
signal processing applications. Their specialized architectures
often include hardware acceleration for loops, multiply-add
sequences and data copying. Single Instructions that ap-
ply the same operation to Multiple ‘lanes’ of Data (SIMD)
increase the computational throughput. The deliberate omis-
sion of complicated hardware for out-of-order execution and
virtual memory management significantly reduces power and
cooling requirements, making DSPs suitable for embedded
systems. [8]

Graphics Processing Units (GPU) have evolved from graphics ac-
celerator chips towards general-purpose processing. Their
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design emphasizes aggregate throughput, utilizing hundreds
of SIMD lanes and over a thousand independent threads of
execution to hide memory latency [9]. Multiple interfaces to
high-performance GDDR5 memory [10] provide increased
bandwidth. The recent Fermi architecture includes several
major advances, including full-fledged and fast floating point
arithmetic, caches, and error-correction codes for memory.
Its unified 64-bit address space and improved support for
higher-level languages continues the trend of convergence
towards general-purpose architectures. [11]

Field Programmable Gate Arrays (FPGA) encompass blocks of
programmable logic (typically lookup tables) and config-
urable interconnects. Their inherent parallelism enables ma-
jor speedups in comparison to serial processing. Because
‘instructions’ are implicit in the programmed structure, they
need not be fetched from memory nor decoded [12]. Al-
though area and power requirements are an order of mag-
nitude higher than application-specific integrated circuits,
FPGAs shorten development time and offer the intriguing
possibility of runtime adaptive reconfiguration [13].

Central Processing Units (CPU) are understood to be general-
purpose microprocessors. Decades of effort have gone into
improving their serial performance by means of caches, pre-
diction and super-scalar pipelining with out-of-order exe-
cution [14][p. 1314]. These facilities enable a flexible and
simple programming model. However, physical limitations
motivated a paradigm shift towards parallelism in the form
of multiple processors/cores and SIMD [15]. Recently, spe-
cial hardware support has been added for applications such
as video encoding, cryptography and checksums [16][p. 13],
thus blurring the distinction between CPUs and accelerators.
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2.2 Datasheet Comparison

To gain further insight into the strengths of each architecture, we
compare several of their key characteristics. Table 2.1 lists the total
cache and memory size available to each architecture. The CPU

Table 2.1: Total size of the architectures’ caches (or block RAM in
the case of FPGAs) and external memory.

Arch. Model Cache [MiB] Mem. [GiB]

DSP TI TMS320C6678 6.50 8
GPU NVidia GF100 Fermi 1.75 6

FPGA Xilinx Virtex-7 10.63 (?)
CPU Intel Sandy Bridge 9.25 192

devotes a significant proportion of its transistors to the cache [17].
Although the DSP lacks a third level cache, its other levels match
the CPU’s capacity [18]. With the advent of 16 GiB DDR3 modules,
commodity workstations can accommodate 192 GiB of memory [19].
The limit for a custom FPGA memory interface is unknown, but
both other architectures are restricted to a few gigabytes [18, 20].
This is of particular concern for image segmentation, which re-
quires large amounts of ‘random-access’ memory (c.f. Chapter 6).

Table 2.2 provides a rough estimate of attainable performance
by listing the advertised1 floating-point operations per second
(FLOPS). The GPU and especially FPGA boast higher values than
the other processors due to their massive parallelism [22, 23]. How-
ever, despite multiple memory interfaces, their memory bandwidth
lags far behind the raw computational power [20, 23]. Amdahl
suggested a rule of thumb for balanced computer designs: “1 byte
of memory and 1 byte per second of I/O are required for each
instruction per second” [11]. Interestingly, the CPU is much closer
to meeting these guidelines than the other architectures [24, 25].

1The CPU’s entry is an actual measurement on an overclocked system [21].
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Table 2.2: Key performance indicators for each architecture.
‘[SIMD] Lanes’ are understood to be CUDA cores (DSP slices)
in the case of GPUs (FPGAs).

Arch. Lanes Mem. BW [GB/s] GFLOPS

DSP 128 12 160
GPU 512 144 1 500

FPGA 5 280 233 6 737
CPU 64 29 130

That aside, FLOPS are an incomplete characterization of perfor-
mance. We also wish to provide a measure that is less dependent
on the clock rate. It is difficult to compare the irregular execution
units of a DSP to the plentiful but severely restricted ‘CUDA cores’
on a GPU, or simple ‘DSP slices’ (a multiplier combined with an
adder/subtracter and multiplexer) in FPGAs to complex, high
performance CPU cores. However, we can consider ‘lanes’, the
aggregate number of values that can be computed per clock. There
is about a tenfold increase from CPU to GPU to FPGA [9, 23, 26].
This yields the important insight that GPUs and especially FPGAs
require large amounts of parallelism to realize their full potential.

Despite our focus on performance, the suitability of an architec-
ture depends heavily on other factors, some of which are listed in
Table 2.3. For example, the estimated cost of a Virtex-7 FPGA [27]

Table 2.3: Non-performance-related characteristics that also affect
an architecture’s real-world suitability.

Arch. Process [nm] Power [W] Transistors ×106 Price [€]

DSP 40 10 (?) 110
GPU 40 225 3 000 3 500

FPGA 28 40 (?) 19 000
CPU 32 95 995 220
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is about 100 times the price of a DSP or CPU [26]. A more cost-
effective means of matching the FPGA’s FLOPS may involve an
array of DSP boards or a CPU cluster. The high-end Quadro 6000
GPU is also comparatively expensive, presumably due in part to
its relatively large GDDR5 memory capacity.

Power requirements are another important consideration. The
DSP is quite efficient in this regard [28], making it suitable for
embedded systems. Conversely, the GPU draws twice the CPU’s
power [20, 26] and uses three times as many transistors [9, 17]. A
fair comparison between GPU and CPU should therefore involve
at least a dual-CPU system. The FPGA has been optimized for
low power and is extremely efficient in terms of FLOPS/Watt [29].
However, let us note that it is manufactured on a smaller process
node [30]. This advantage may soon be reversed, because CPUs
with 22 nm physical gate lengths are expected to be available by
2012 [31].

2.3 Our Choice

Having seen the relative strengths and weaknesses of each architec-
ture, we now present a perhaps controversial case for a CPU-based
approach. Our envisioned large-scale image analysis pipeline re-
quires the development of new algorithms and approaches for
coping with the flood of data. As famously remarked by Werner
Freiherr von Braun: “Basic research is what I am doing when I
don’t know what I am doing” [32]. This uncertainty calls for ex-
ploration, i.e. the development of prototypes. CPUs’ flexibility and
ease of programming greatly simplify this task. An initial software
implementation that ignores performance can often be constructed
and tested more rapidly than an FPGA, and probably developed
at lesser cost than GPU or DSP software.

Aside from productivity concerns, recent studies have also
dampened the enthusiasm for GPU acceleration. A survey of 14
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data-parallel kernels found that a GPU is only about 2.5 times
as fast when both implementations are optimized [33]. However,
even this advantage is negated by the above argument that a fair
comparison (in terms of price, transistors and power dissipation)
requires at least two CPUs. The conventional wisdom that GPUs
provide a large speedup seems to be a self-fulfilling prophecy,
because it leads to an increased awareness of GPU optimization
techniques. Indeed, a Google Scholar search in June 2011 for
‘GPGPU’ (general purpose GPU) returned 437 works from that
year, whereas only 82 contained the words ‘optimized, SSE, SIMD’.
Heeding guidelines for CPUs may be dismissed as ‘tuning’ that
only slightly decreases constant factors. However, the optimization
techniques are fundamentally related in that they both call for
explicit vectorization [34]. A study taking this into account found
that GPUs are only as fast as one or two CPUs in traditional high-
performance computing applications [35].

Why does the actual performance of GPUs lag so far behind
their theoretical power? A recent simulation found that a represen-
tative set of non-graphics applications only used 45% of the GPU’s
computational resources on average, with a worst case of 5% for
one bioinformatics algorithm. Three main causes were identified.
The first is waiting for data from memory. GPUs attempt to hide
this latency by performing other work in the meantime, but algo-
rithms do not always provide enough parallelism. The second is
similar: computations that depend on previous operations must
wait for them to have been completed. The final pitfall concerns
conditionally executed logic. If the threads in a GPU-defined group
(‘warp’) differ in terms of the path taken, they are executed sequen-
tially! [36] These observations confirm the well-known fact that
peak FLOPS are an inadequate predictor of performance.

However, there is a more important conclusion to be drawn
from these studies. Because similar performance was reported for
equally optimized CPU and GPU implementations, the benefits
and costs of optimizing an algorithm for a particular architecture

12



should carefully be considered. We believe CPUs hold much un-
tapped potential in this regard. Let us now return to the initial
productivity argument. It is relatively easy to transform and op-
timize software implementations for CPUs. Verifying correctness
with built-in logic checks and comparisons with the previous itera-
tion improves reliability. Measuring the actual improvement at each
step enables informed decisions when exploring the design space.
This cycle of design, analysis, implementation and measurements is
the defining characteristic of the emerging discipline of algorithm
engineering [37]. It facilitates novel algorithmic transformations
that might not arise during straightforward, hardware-oriented de-
velopment efforts. The following chapters describe multiple cases
in which the resulting software surpasses the stated performance
of a GPU or FPGA implementation.

Although it is often possible to achieve additional speedups
by means of distributed-memory algorithms designed for clusters
(multiple independent computers connected by a network), we
are somewhat constrained by power, cooling and space considera-
tions. Some applications (e.g. in mobile ground control stations)
only permit the use of a single computer. We therefore target
commercially available off-the-shelf workstations with dual CPUs.
Unless otherwise noted, the test platform is a Dell T5500 with two
X5690 CPUs (3.6 GHz) and 48 GiB DDR3 memory running 64-bit
Windows 7. With the stated exceptions, our software is compiled
with ICC 12.0.1.096 /Ox /Ob2 /Oi /Ot /GA /GR- /GS- /Gy /EHsc

/MD /Qipo /QxSSE4.1 /Qopenmp /Qstd=c++0x. The resulting exe-
cutables also run on AMD processors that support the requisite
SSE3 instruction set.

2.4 Consequences for the Algorithms

What implications does our choice of architecture bring about?
Because we are not dealing with compute clusters, our algorithms
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can be designed for the simpler shared memory model instead
of having to communicate by passing messages. The prevalent
Intel architecture also provides a favorable, i.e. strict, memory
consistency model in which processors see memory writes oc-
cur in a total global order [38]. Apart from these simplifications,
there are three major peculiarities of CPUs to be taken under
consideration: a memory hierarchy, SIMD extensions, and multi-
ple cores/processors. These are discussed in the following sub-
sections.

Memory Hierarchy

Current semiconductor technology allows certain levels of integra-
tion and signal propagation times. This entails a trade-off between
storage size and access latency. In an attempt to bridge the growing
gap between computational power and memory bandwidth, CPUs
provide a hierarchy of storage including cache and main memory.
Caches are small and fast, whereas memory provides plentiful but
slow storage. Let us examine their properties in turn.

Cache

Caches are storage areas managed by the CPU that enable faster
access to frequently-used data. For concreteness, current microar-
chitectures provide 32 KiB L1D (first level data) caches with an
aggregate thoughput of 650 GB/s and 256 KiB L2D capable of
435 GB/s [39]. A comparison with the 29 GB/s memory band-
width [24] underscores the importance of making good use of the
cache. We therefore strive to minimize ‘misses’, i.e. cases where
the desired data is not stored within any ‘line’ (a fixed-size portion
of the cache). To that effect, let us address each of the potential
causes: compulsory, capacity, and conflict [40].
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Compulsory. Even an infinite-sized cache would incur ‘compul-
sory’ misses when data is first accessed. Their latency can be
hidden by ‘prefetching’, i.e. accessing memory before it is actu-
ally needed. However, this is not always feasible or worthwhile;
a more practical workaround is to downsize the data. This may
involve the use of smaller types (e.g. single precision instead of
double) or compression. For example, small flags or indices can be
embedded into the lower bits of pointers, because their values are
generally a multiple of the processor’s word size. A series of large,
slowly varying values can be delta-encoded, storing the differences
between individual values. The addition of occasional full-sized
‘keyframes’ enables efficient random access by accumulating deltas
since the previous value. In the case of 64-bit values with 32 8-
bit deltas between keyframes, the data is reduced by a factor of
six, and the average access is still faster than a cache miss. Even
more spectacular savings are enabled by probabilistic counting,
which approximates sums ≤ n while using only log log n bits. It
has been shown that incrementing the truncated logarithm blog nc
with probability inversely proportional to n yields an unbiased
estimator for n [41].

Capacity. A finite cache size and imperfect replacement strategy
give rise to so-called capacity misses when lines are evicted in favor
of newer data. The previously mentioned compression improves
the utilization of a particular cache. However, algorithms must
also exhibit locality of reference to derive any benefit. Temporal
locality (i.e. re-using the same memory locations within a short
timespan) increases the likelihood of data still residing in the cache.
Similarly, spatial locality (accessing nearby locations) decreases
the number of cache lines to populate, thus reducing evictions
of previous data. Caches are designed to exploit both of these
properties. However, their behavior is suboptimal for sequential
write-only access patterns. The memory to be written is first
loaded into a cache line, which ‘pollutes’ the cache by replacing
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its previous contents with data that will not be accessed again.
Loading from memory is also unnecessary if the entire cache line
will be overwritten. To avoid these problems, algorithms should
implement write-only transfers via special instructions that bypass
the cache and write directly to memory.

Conflict. Cache lines are associated with a memory location by
means of ‘tags’ that indicate the address. Because it is difficult to
examine each line’s tag when checking whether data is present in
the cache, CPUs typically provide a fixed mapping of addresses
to ‘sets’ of lines. Their cardinality (the cache ‘associativity’, e.g.
8) therefore determines the number of memory locations that can
map to the same set without evicting a line. Examples of access
patterns that exceed this limit include iterating over power-of-two
sized matrix rows and writing data to multiple destinations with
the same alignment. These problems can be mitigated by offsetting
the various addresses by random multiples of the cache line size.

Memory

To a lesser extent, memory also exhibits some of the same charac-
teristics as the cache. It is faster to access nearby locations in the
same row of memory cells that is currently ‘open’ [42][pp. 8–9].
Non-uniform memory access (NUMA) systems are also character-
ized by variable latency. For example, the integration of memory
controllers into the CPU has resulted in faster accesses to ‘local’
memory managed by the current processor. Software implemen-
tations should be aware of this issue and explicitly allocate their
memory from ‘nearby resources’, i.e. the current NUMA proximity
domain. It is interesting to observe that the memory hierarchy
encourages local data accesses despite the trend towards ever
larger memory sizes. Reducing data sizes – even with non-trivial
(de)compression overhead – generally also speeds up a program!
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SIMD

‘Superscalar’ CPUs enable the concurrent execution of multiple
instructions per clock cycle. However, this comes at the cost of
complicated control circuitry and only allows a limited degree of
parallelism. Many architectures have therefore added support for
SIMD extensions such as 3DNow!, AltiVec, MAX, MDMX, MMX,
MVI, SSE, VIS [43] and more recently, AVX, LRBni and NEON.
The instructions concurrently apply operations to all elements
(typically 4 or 8) of a short vector, thus significantly increasing
peak FLOPS. Algorithms should therefore be designed to utilize
these capabilities. However, automatic vectorization of existing
software is a challenge [44] and compilers cannot always transform
code into a form suitable for the often incomplete and irregular
instruction sets. A library solution for Java only resulted in a 34%
speedup due to significant overhead and additional memory traf-
fic [45]. We therefore utilize ‘intrinsics’, special functions known
to the major C++ compilers that typically result in the generation
of single SIMD instructions. Although avoiding the inconve-
nience of assembly language and manual register allocation, the
syntax is somewhat verbose, as exemplified by multiplication us-
ing Intel’s Streaming SIMD Extensions (SSE) instruction set:
__m128 product = _mm_mul_ps(input, multiplier).
Where possible, we use compiler-provided short vector classes with
overloaded functions, which affords more convenient notation:
F32vec4 product = multiplier * multiplicand. This
also allows generating both vector and scalar (single-operand)
variants of the same code by means of C++ templates, which is
helpful for testing and benchmarking. Besides differing syntax,
SIMD raises challenges concerning dependencies and alignment.

Dependencies. Algorithms must be structured so that operations
can proceed in parallel. Although SIMD cannot significantly de-
crease the latency of tasks such as polynomial evaluation that
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involve dependencies on previous or intermediate values, it does
increase throughput by computing several results in parallel. Even
seemingly sequential tasks such as updating a sum can be done in
parallel using prefix sums.

Alignment. To simplify the hardware, instruction sets may re-
quire operands to be ‘aligned’, i.e. residing at addresses that are a
multiple of the vector size. Later revisions of the SSE instruction
set provide separate instructions for loading aligned and possibly
unaligned operands. Their relative cost and possible workarounds
are discussed in Section B.2. If possible, algorithms should be
designed to load and store aligned vectors.

Parallelization

It is well-known that single-core improvements such as speculation,
caches and superscalar pipelines have reached the point of dimin-
ishing returns. CPU architects therefore began allocating available
transistors towards multiple cores and logical processors. [15] This
has also been motivated by power and cooling, the importance of
which was highlighted when the Pentium 4 processor exceeded a
hot plate’s thermal power density by a factor of ten [46]. Because
dynamic power is proportional to frequency × voltage2, a common
argument proposes running several processors at a fraction of the
frequency, thus also allowing lower voltages [47]. This has the po-
tential for near-cubic reductions in ‘power’ and may even increase
performance. However, both of these assumptions are flawed. First,
dynamic power consumption excludes various kinds of leakage in
semiconductors. Such ‘static power’ already accounted for 40% of
the total dissipation in a 90 nm process and increases with smaller
gate lengths [48]. Subthreshold leakage also grows exponentially
with a decrease in threshold voltage [49]. Second, algorithms may
require communication or synchronization between processors,
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thus eroding any performance gains. Amdahl’s well-known argu-
ment also limits the parallel speedup to the reciprocal of the serial
portion of an algorithm.

Looking beyond power, which affects cooling requirements,
energy (i.e. power × time) is also a critical factor. One study has
found that lower frequencies increase the total energy consumption
because other system components are used for a longer period
of time [50]. These arguments notwithstanding, our algorithms
should make full use of the available hardware, including multiple
cores and logical processors. Unfortunately, parallelization also
brings with it two challenges: correctness and infrastructure.

Correctness. It is difficult to guarantee the correctness of parallel
programs running on multiple processors. Algorithms must first
split up the data into (preferably entirely independent) subtasks
and dispatch them to the processors. If the tasks depend on a
certain order of execution, the software must take care of synchro-
nization, typically via mutual exclusion or lock-free algorithms.
However, the former is prone to deadlocks (multiple processes
waiting on each other), whereas the latter requires awareness of the
exact memory ordering guarantees made by the compiler and CPU.
To avoid most of these difficulties, we strive to process portions
of the inputs independently and later accumulate the individual
results.

Infrastructure. Traditional software development tools often pro-
vide only limited support for parallelization. For example, the 2003
revision of the C++ standard (ISO/IEC 14882) makes no mention
of multiple threads, memory consistency nor ordering guaran-
tees. Efforts have been undertaken to develop library solutions,
including parallel variants of C++ standard library functions [51]
and ‘Threading Building Blocks’ suitable for common parallel id-
ioms [52]. Although useful, these do not provide the full degree
of control necessary to maximize performance. For example, a
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End
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Figure 2.1: Fork-join parallelization model.

parallelization scheme should take into account the NUMA and
cache topology, e.g. when mapping threads to processors. We
provide infrastructure for this purpose that is shared between all
parallel algorithms. It is based on the fork-join paradigm (Fig-
ure 2.1), which is characterized by one or more ‘phases’ consisting
of initialization, parallel work and sequential reduction. This al-
lows synchronization and safe handling of dependencies between
parts of an algorithm while hiding implementation details. In fact,
the algorithms can be expressed as if they ran serially, as shown by
Figure 2.2. Each worker thread executes Assist, which receives
an indication of the phase number and the thread’s ID. When all
are finished, Supervise is called on a single thread and decides
whether to continue. Finally, a reduction is performed by suc-
cessive calls to Accumulate; this example records the latest time
reported by any thread. We use OpenMP parallel regions to launch
(‘fork’) the worker threads, which has the advantage of avoiding
platform-specific implementations. Threads can also be combined
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void Assist(size_t phase, size_t id) {
if(phase == 2) LocalLSD(id);
else LocalMSD(id); }

static Status Supervise(size_t phase) {
if(phase == 2) return DONE;
else return ComputeGlobalRanks(); }

void Accumulate(const Group& rhs) {
endTime = std::max(endTime, rhs.endTime); }

Figure 2.2: Simplified example of parallel C++ code using the
fork-join model.

into ‘groups’, which can work together on the same subset of data.
This improves resource utilization when the group’s processors
share caches or NUMA memory.

2.5 Discussion

We have chosen to develop image processing algorithms for general-
purpose CPUs because they are more flexible and require less
development effort than specialized architectures. Recent advances
in CPU designs have also provided the potential for significant
computational power. In contrast to the ‘free lunch’ previously
offered by increasing clock rates [15], developers must take action
and account for SIMD parallelization and the memory hierarchy. It
may even be difficult to adapt existing designs towards these new
requirements. Instead, they are best considered during the design
phase.

At this point, three concerns might be raised. Would the addi-
tional effort exceed the design and validation cost incurred on other
architectures such as FPGAs? We argue that successively refined
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software has valuable side effects. Prototyping avoids wasting ef-
fort on optimizing algorithms that might turn out to be unsuitable,
and allows verifying the correctness of each transformation along
the way. We do not believe the rather complex Hotspot algorithm
described in Chapter 8 would have been forthcoming – or even fea-
sible – without such an approach. A second potential interjection is
that these techniques can only improve performance by a constant
factor. That is true, but no other improvements are possible for
algorithms that are already at the lower bound of their complexity.
The previous sections have also hinted at the magnitude of the
potential speedups: 4 to 16 for vectorization, 4 to 12 for paralleliza-
tion, and up to 22 from the cache. In our opinion, such factors are
highly relevant. A final concern relates to obsolescence: will these
considerations still apply to future microarchitectures? The past
being our best predictor of the future, let us examine the evolution
of CPUs over the last 10 years. Cache line sizes are an important
parameter for cache-aware algorithms, and have remained constant
at 64 bytes [53]. The SSE2 SIMD instruction set is still useful, and
code written with intrinsics would even benefit from new capa-
bilities in the AVX instruction set after a recompile. Efforts are
also underway to develop auto-tuning mechanisms for adapting
algorithms to the target hardware [54].

Maximizing performance currently requires an awareness of the
system internals, which typically entails manual intervention by the
developer. However, it is the thesis of this work that such efforts
may be richly rewarded. In the subsequent chapters, note the
multiple cases in which our algorithms – running on commodity
CPUs – outperform specialized hardware.
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Part II

Main Course
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Chapter 3

Input/Output

The first and last links of the image processing chain involve load-
ing the pixels into memory and storing them to disk. This chapter
describes our representation of images and how to efficiently trans-
fer them to and from block storage devices such as hard disk drives
(HDD).

3.1 Image Representation

Images are typically two-dimensional arrays of pixels. In accor-
dance with the C++ standard [55, 8.3.4], we mandate a ‘row-major’
layout in which the row indices vary faster than column indices.
In other words, the pixels constituting a row are stored before
those of the next row. An additional constraint arises from SIMD
instruction sets. They often require or at least benefit from natural
alignment, i.e. ensuring addresses are integral multiples of the
operand size. Because we wish to allow parallel processing of
images, with each processor responsible for an arbitrary interval of
the image rows, the starting address of each row should be aligned
to the vector size.

It is convenient and efficient to represent the image as a contigu-
ous virtual address range together with a ‘step’, i.e. the offset to
the next row. Row n is reached by adding n× step to the starting
address. This is expected to be at least as fast as a table lookup
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[56] and certainly more economical in terms of cache usage. The
Intel Performance Primitives (IPP) library [57] also uses such a
representation.

Because image processing algorithms often require access to
neighboring pixels or each band at a certain pixel position, we
choose a band-interleaved-by-pixel layout in which the first pixel’s
components are followed by those of the next pixel in the row
(Figure 3.1). This representation corresponds to some simple file

(1,y)R (1,y)G (1,y)B (· · ·) (w,y)R (w,y)G (w,y)B

Figure 3.1: R/G/B component ordering for the w pixels (x, y) in
row y.

formats such as PM (c.f. Section 3.3), which allows reading an entire
image into memory and storing it to disk without any reshuffling.
We are therefore only concerned with sequential, not random, I/O.
However, the row-major layout has poor locality for some access
patterns because vertically adjacent pixels are stored far apart. This
is particularly relevant for compression, which benefits from spatial
locality. A common workaround involves splitting the image into
small square ‘tiles’, each of which is stored in row-major order.
Locality is improved because most vertically adjacent pixels are
now only spaced one tile row apart. GPU-based rendering of large
images also requires splitting the image into tiles due to limits on
the maximum texture size. We therefore use a tiled representation
for the final result image that is to be compressed and displayed in
a viewer (c.f. Section 3.3).

3.2 Efficient I/O

In our applications, storage devices are accessed through the file
system. However, modern operating systems provide multiple
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I/O interfaces. The chief distinction is whether the application
can proceed while a transfer is in progress (asynchronous), as
opposed to waiting inside the operating system kernel until I/O
is complete (synchronous). Which of these is better suited for our
needs, and what techniques can further improve performance?
These questions are addressed in the following sections.

Synchronous vs. Asynchronous

Let us measure the rate at which data can be written to disk
(‘throughput’) with the synchronous and asynchronous I/O meth-
ods provided by the ATTO Disk Benchmark 2.46. The test platform
consists of a W3550 CPU running Windows 7 with the pagefile
disabled and a WD6400AAKS HDD. Due to various resource limits
in the application, operating system, drivers and hardware, I/O
requests will eventually be split into blocks. Table 3.1 shows in-
creasing throughputs for larger application-requested block sizes
due to amortization of overhead. There are further, nearly neg-
ligible improvements for even larger blocks. However, 1 MiB is

Table 3.1: Conventional and asynchronous write throughput mea-
sured with the ATTO benchmark on a WD6400AAKS HDD for
various block sizes.

size [KiB] write MB/s async MB/s

4 24.9 45.2
8 42.8 75.6
16 68.5 100.9
32 91.5 105.2
64 103.3 107.9

128 105.7 108.9
256 104.9 108.5
512 105.5 108.2

1 024 106.1 107.4
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a reasonable cutoff point (c.f. Section 3.2). As found in previ-
ous work [58], asynchronous writes are faster to converge to the
disk’s maximum throughput. This is because the disk controller
can immediately begin the next transfer after the previous one
completes without requiring the application to first transition into
kernel mode. Asynchronous I/O generally involves higher CPU
overhead [59][p. 381], especially on Windows, which only provides
Fast I/O driver entry points for synchronous I/O [60]. However,
it has the major advantage of allowing the application to perform
work (e.g. compression) while waiting on previous transfers. We
therefore prefer it to the more commonly used synchronous access
method.

Block Size

We wish to maximize disk throughput while overlapping computa-
tion with I/O. It is straightforward to interleave these two tasks by
splitting transfers into blocks. Computations can be carried out for
a completed block while waiting for subsequent I/Os. The block
size is bounded by the following considerations: Transfers are
carried out via Direct Memory Access hardware, which requires
contiguous physical memory. Drivers must therefore represent the
application-provided memory buffer as a list of physical pages
(scatter-gather list). These are stored in nonpaged pool – a small
memory area set aside by Windows – and are therefore restricted
to 255 entries [61]. The resulting limit is 1 MiB given a 4 KiB page
size. Although it is desirable to amortize system call overhead over
large requests, those exceeding this limit incur additional over-
head due to splitting. Conversely, there must be a minimum block
size because the number of pending I/O requests may be finite.
Windows also requires transfer sizes to be sector-aligned, and the
Advanced Format industry initiative [62] has introduced drives
with 4 KiB sectors, so we consider that to be the minimum. Ta-
ble 3.2 shows the read and write throughputs measured by ATTO
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on the previously mentioned HDD and a 128 GB Crucial C300
Solid-State Disk (SSD) over this range of block sizes. Although

Table 3.2: Asynchronous read and write throughput [MB/s] mea-
sured with ATTO on a WD6400AAKS HDD and C300 SSD for
various block sizes.

size [KiB] HD write HD read SSD write SSD read

4 45.2 102.9 126.9 202.9
8 75.6 102.4 134.2 253.9

16 100.9 98.4 135.3 284.1
32 105.2 101.7 129.4 304.8
64 107.9 77.4 139.8 214.3
128 108.9 77.7 142.1 326.6
256 108.5 83.2 141.7 323.4
512 108.2 83.6 141.3 325.8

1 024 107.4 83.8 140.5 326.6

SSD read throughput tends to increase with larger block sizes,
the bar plot representation of these numbers in Figure 3.2 makes
apparent a sharp drop at 64 KiB. The cause is unclear; perhaps
transfers are being split up due to scatter-gather list limitations
or other inefficiencies within the driver or controller. However,
write throughputs remain nearly constant. Interestingly, HDD
writes can outperform reads due to caching by the controller. We
choose 128 KiB blocks as a reasonable compromise that provides
good throughput without requiring large buffers that exceed the
L2 cache size. Note that this discussion presumes sequential I/O,
which is justified in Section 3.1. Random I/O may require larger
block sizes to amortize the cost of HDD ‘seeks’1.

1Repositioning the read/write head in preparation for reading or writing from
another location.
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Figure 3.2: Bar-plot representation of HDD and SSD read/write
throughputs.

Implementation Details

Let us now briefly examine details of our I/O implementation.
To ensure source code portability, we adhere to the POSIX asyn-
chronous I/O interface, which is codified in the 2004 edition of
IEEE Standard 1003.1 [63]. These functions are not included with
Windows, but the Intel Compiler’s libicaio library [64] provides
replacements. The implementation in version 12.0 (Parallel Stu-
dio 2011) appears to be based on synchronous I/O in helper
threads2. This approach does not maximize disk throughput, al-

2We observed thread suspend/resume operations and found that the functions fail
when applied to files opened for Windows asynchronous I/O.

30



though it does avoid the restrictions mentioned below. We in-
stead implement the POSIX functions in terms of Windows asyn-
chronous I/O. This entails specifying FILE_FLAG_OVERLAPPED
and FILE_FLAG_NO_BUFFERING when opening the file. Win-
dows then requires addresses, sizes and offsets to be a multi-
ple of the volume sector size. Our low-level functions pass on
these constraints to their callers, which can handle them with-
out penalty. Several lesser-known tricks [65] have also been ap-
plied. Contiguous storage for OVERLAPPED structures, the Win-
dows equivalent of POSIX aiocb (asynchronous I/O control blocks),
allows pinning them in the kernel address space by means of the
SetFileIoOverlappedRange API. This means I/O completion
can be handled by any thread, which avoids an asynchronous pro-
cedure call and the associated context switch and locking in the
kernel. SetFileCompletionNotificationModes is used to
avoid unnecessary completion notifications. Finally, disk space is
preallocated via SetEndOfFile and SetFileValidData. With-
out the latter, all writes that extend a file are forced to complete
synchronously, which prevents overlapping I/O with computation
(e.g. checksums) [66]. To avoid exposing previous disk contents,
we deny read sharing when opening files.

Having gone to great lengths to ensure an efficient implemen-
tation of the POSIX aio interface, the application logic is compar-
atively simple. A ring buffer holds aiocb control blocks. Block
I/Os are issued up to a default maximum queue depth of 32. We
use aio_suspend to wait until the next I/O is complete and then
invoke a user-specified callback (specified as a C++ function ob-
ject template to avoid call overhead). The loop terminates when
all block I/Os have completed. The Windows alignment require-
ments (similar considerations apply when using the equivalent
Linux/BSD O_DIRECT functionality) are satisfied by the memory
allocator, which also expands block buffers to a multiple of the
sector size. After writing, we trim any excess padding at the end
of the file by calling truncate.
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Throughput

To determine the effectiveness of our implementation techniques,
we compare the resulting throughput to the output of the ATTO
and CrystalDisk 3.0.1 x64 benchmarks. Note that ATTO only allows
a queue depth of 10, which may limit performance. CrystalDisk
is run in sequential mode with 500 MB blocks, because it cannot
match the 256 MB used by both other programs. Our ‘waio’ (POSIX
aio for Windows) implementation and ATTO are configured for the
128 KiB block size established in Section 3.2. To ensure this value is
not specific to a particular system configuration, we use different
hardware for these tests: dual X5690 CPUs running Windows 7 x64
with a Hitachi HDS721010CLA HDD and Samsung PM810 SSD.
Note that ATTO and waio write zero-valued data, whereas Crys-
talDisk defaults to random-valued data. Disk controllers based
on SandForce chipsets improve read and write performance for
repetitive data by means of compression [67]. However, to the
best of our knowledge, the C300’s 88SS9174-BJP2 and PM810’s
S3C29MAX controllers do not include such an optimization.

As seen in Table 3.3, our waio outperforms both benchmarks in
all respects. Despite the straightforward nature of sequential I/O

Table 3.3: Read and write throughputs [MB/s] reported by our
implementation and the ATTO and CrystalDisk benchmarks on a
PM810 SSD and HDS721010CLA HDD.

Benchmark HD write HD read SSD write SSD read

CrystalDisk 145.00 146.00 233.70 241.20
ATTO 144.89 143.34 250.58 255.98
waio 151.35 146.07 252.75 256.73

and previous efforts to maximize write throughput, we have im-
proved it by 4%. Measurements of ATTO’s memory usage indicate
block buffers are being reused, whereas our implementation reads
the entire file into memory, which is more expensive. However,
waio’s reads still turn out to be faster.
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3.3 File Format

With the in-memory image representation and I/O method es-
tablished, we may now decide upon the format of the files to
read/write. A multitude of image file formats have been devised.
However, our applications and large amounts of data impose exact-
ing requirements, including minimal conversion overhead, support
for relevant pixel formats, compression, tiling, ‘image pyramids’3

and flexible ‘metadata’4. Let us briefly review a selection of existing
formats and evaluate them in light of these requirements:

PM is a simplistic format that only specifies one or more planes of
band-interleaved pixels without any additional features [68].
Application-specific metadata could be stored in the free-
form comment field, but we would prefer a standardized
approach.

OpenEXR is a newer format for High Dynamic Range (HDR)
images that unfortunately lacks support for 8 or 16-bit inte-
gers [69].

HFA/IGE are the feature-rich internal file formats of the ERDAS
IMAGINE framework for geospatial image processing [70].
However, the HFA format is quite complex and somewhat
inefficient (c.f. Section 3.4).

NITF is a standardized interchange format that is even more com-
plex than HFA, but limited to 10 GB and lacking support
for embedded image pyramids. Note that NSIF (NATO Sec-
ondary Image Format) corresponds to NITF with a different
version field in the header. [71]

3A series of successively spatially subsampled versions of the image, also known as
mipmaps. Subsequent to the ‘base’ (the original image), each ‘level’ typically halves the
resolution. A viewer can reduce the overhead of ‘minifying’ many image pixels to few
screen pixels by interpolating between the two levels whose resolutions are closest to
the desired zoom scale.

4Literally “data about data”, here understood to be additional information about
the image such as its geographic location.
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BigTIFF expands the well-known TIFF format to 64-bit offsets [72],
but inherits its major ‘disadvantage’ of allowing non-native
byte orders and non-tiled pixel formats, which would require
expensive conversion when loading.

Unfortunately, each of these formats is either prone to ineffi-
ciency, or lacks some of the required features. We have devised a
flexible new format designed with knowledge of low-level details
such as SIMD vector and disk sector alignment requirements. It
provides support for tiled pyramids ordered according to a novel
space-filling curve, the new lossless compression scheme described
in Chapter 4, and user-defined metadata. Details are given in
Appendix B.3. However, we recognize the value of interoperability
and wish to support existing applications and viewers, particu-
larly ERDAS IMAGINE. We therefore provide fast methods for
writing NITF and IGE files. The key enabling factor of their high
performance is assembling the file in memory and writing it to
disk in large chunks. Avoiding unnecessary copying of the data
and additional allocations (e.g. for headers) also saves time.

3.4 Performance

Let us now study the real-world performance attained by the
methods described in this chapter. We compare the total time
required to write NITF and IGE images with our software and the
ubiquitous Geospatial Data Abstraction Library (GDAL), version
1.7.3.

To avoid favoring a particular tile size, we generate images with
random dimensions in the interval

[
2i, 2i+1

)
for 10 ≤ i < 15. The

resulting values are given in Table 3.4. Table 3.5 compares the
relative costs of our NITF and IGE codecs vs. GDAL. The current
balance of CPU performance and disk throughput means writing
NITF images takes about 5–25% longer because pixels must be
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Table 3.4: Randomly chosen image dimensions [pixels] for the
write throughput test.

Dataset Width Height

0 1 140 1 917
1 3 039 3 752
2 8 084 7 505
3 8 921 10 251
4 24 608 19 359

Table 3.5: Normalized cost of the formats – elapsed times for NITF
and IGE are divided by the I/O time, GDAL measurements are
relative to our implementation.

Drive Dataset NITF IGE GDAL NITF GDAL HFA

HD 0 1.62 2.61 3.97 3.84
HD 1 1.12 1.36 5.55 5.82
HD 2 1.05 1.47 5.34 5.06
HD 3 1.07 1.41 5.44 5.42
HD 4 1.12 1.49 5.90 3.20

SSD 0 1.42 2.50 4.31 5.19
SSD 1 1.15 1.38 11.99 7.53
SSD 2 1.24 1.45 6.88 7.45
SSD 3 1.22 1.55 8.26 7.40
SSD 4 1.20 1.35 7.53 4.04

reshuffled into a tiled layout5. The relative cost of this computation
is higher on the smallest dataset because less time is required for
I/O (possibly due to caching in the disk controller). Our IGE
writer performs much more work: computing and storing an
image pyramid as well as statistics (standard deviation, minimum,

5Our normative reference for NITF is NATO Standardization Agreement 4545,
which requires NSIF images with a dimension exceeding 8 192 pixels to be split into
tiles. We use a fixed tile dimension of 256.
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maximum, mean, median, mode and histogram of each band’s
values). This only requires 35–50% more time than I/O due to
our efficient vectorized and parallelized implementation. However,
the overhead appears particularly large on the smallest image
because the cost of writing the extra metadata file is not amortized.
Our NITF implementation is roughly five times as fast as GDAL’s
when writing to the HDD, and up to 12 times as fast on the SSD
(whose higher throughput increases the relative cost of GDAL’s less
efficient pixel copying). Our IGE writer is ‘only’ about 5 times as
fast as GDAL on the HDD and 7 times as fast on the SSD because
GDAL does not compute image statistics. For reasons unknown,
GDAL’s throughput increases on the largest (3.8 GB) image. The
width is a multiple of 32, but a block size of 64 is used. Figure 3.3
shows the speedups vs. GDAL. Although mere constant factors,
we believe a 3 to 12-fold improvement to be of major practical
relevance.

3.5 Conclusion

This chapter has described a technique for asynchronous I/O that
avoids various inefficiencies at the hardware/operating system
level, thereby outperforming existing benchmarks by 4%. We build
upon this foundation with efficient routines for writing common
image file formats. The result is a 3 to 12-fold speedup vs. the
well-established GDAL library. Finally, the aligned image lay-
out discussed herein serves to avoid penalties when accessing
individual rows via SIMD instructions, thus enabling the high
performance of the subsequent modules.
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Chapter 4

Lossless Asymmetric SIMD
Compression

This chapter introduces a new lossless asymmetric SIMD codec
(LASC) designed for extremely efficient decompression of large
satellite images. A throughput in excess of 3 GB/s allows decom-
pression to proceed in parallel with asynchronous transfers from
fast block devices such as disk arrays. This is made possible by a
simple and fast SIMD entropy coder that removes leading null bits.
Our main contribution is a new approach for vectorized prediction
and encoding. Unlike previous approaches that treat the entropy
coder as a black box, we account for its properties in the design
of the predictor. The resulting compressed stream is 1.2 to 1.5
times as large as JPEG-2000, but can be decompressed 100 times as
quickly – even faster than copying uncompressed data in memory.
Applications include streaming decompression for out of core vi-
sualization. To the best of our knowledge, this is the first entirely
vectorized algorithm for lossless compression.

This chapter has been published in the “Software: Practice
and Experience” journal [73] and is reproduced here with minor
formatting and wording clarifications.
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4.1 Introduction and Related Work

Displaying images that are too large to fit within main memory
necessitates streaming, that is, loading sections of the data from
a slower storage medium when they are needed. For interactive
performance, it is important to minimize the latency of these re-
quests. Asynchronous I/O allows computation to proceed while
waiting on the storage medium. However, panning a 2 560× 1 600
pixel viewport such that 10% of the 16-bit, four component pix-
els are updated every 16 ms requires a sustained throughput of
196 MB/s, which exceeds the capability of current magnetic me-
dia [74]. Such data rates are enabled by drive arrays and top of the
line solid-state disks, but these are not always available. Instead,
a common remedy involves compression of the data. In contrast
to the entertainment sector, some medical and automated image
analysis applications cannot tolerate any loss of information.

Lossless Image Compression

By 1993, a general framework for lossless image compression had
been established that is still useful today. The intensity of the
next pixel to encode is predicted using a context of previously
seen pixels. The resulting residuals, that is, prediction errors, are
relayed to a statistical coder that may act upon knowledge of their
distribution [75]. These components are all interdependent; we
briefly discuss them in increasing order of complexity. In most
cases, the simple and intuitive raster scan order is used. Surpris-
ingly, the order induced by a Hilbert space-filling curve can increase
the residuals’ entropy [76], and the ‘rain scan order’ only yields
a 4% improvement [77]. The circular dependency between pre-
diction and coding is often resolved by assuming that prediction
errors follow a Laplacian distribution [78], for which a variant
of Golomb coding is optimal [79]. With the entropy coder thus
established, most efforts have been directed at prediction – using
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larger contexts [80], combining various predictors [77] or minimiz-
ing the squared or absolute prediction error [81]. However, this
does not necessarily result in optimal compressed sizes [82], and
conventional entropy coders are too slow for our application. A
highly-optimized implementation of Rice’s independently discov-
ered subset of Golomb codes only decodes 200 MIntegers/s [83].
Prior work on reducing branches in a Huffman decoder reached
90.95 MPixel/s (including a fast DCT) [84]. However, this algorithm
is not well-suited for acceleration via GPU, which only manages
570–750 MB/s [85]. Note that Huffman codes are equivalent to
a restricted case of arithmetic coding [86], so the latter cannot be
expected to be faster. Dictionary-based approaches are neither sig-
nificantly better in terms of performance [87], nor are they ideally
suited for this task because residuals are not drawn from a small
alphabet.

Entropy Coding

Having ruled out conventional entropy coders, we must consider al-
ternatives. Variable-length codes are generally inefficient to decode
because of their bit-level accesses, and even table-based approaches
are not much faster [88]. We therefore turn to fixed-length codes.
One interesting approach involves packets of compressed fields and
a selector indicating their length [89]. Recently, a similar scheme
using 64-bit words with support for values spanning multiple pack-
ets was also proposed [90]. These are faster than variable-length
codes and improve upon the compression of byte-aligned codes,
but suffer from several drawbacks. Extracting the fields still re-
quires bit arithmetic. The varying number of output values per
packet complicates single instruction multiple data (SIMD) writes.
A single large residual increases the size of all fields in the packet.
The latter issue can be addressed by storing ‘exceptions’, that is,
a list of values to overwrite after decompression and their loca-
tions [91]. However, this is unlikely to be useful for 16-bit values
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because the reduction in size for small packets is roughly equal
to the encoded size of an exception. The main aspect of the pre-
viously cited work is optimization for superscalar processors that
can execute more than one instruction per clock cycle. Whereas
this enables a throughput of 1 GB/s, we believe the key to fully
utilizing modern CPUs lies in SIMD. Recently, two such schemes
for compression by omitting the most-significant zero-valued bits
(null suppression [92]) have been introduced. The first [93] uses
multiplication and complex alignment logic for SIMD extraction
of variable-length fields, which restricts it to 32-bit values due to
limitations in the instruction set. The second approach [94] relies
on a new instruction for permuting bytes, which requires relatively
large lookup tables and is unable to compress fields to less than
8 bits. In Section 4.2, we describe a surprisingly simple but faster
alternative that is also suitable for 16-bit pixels and requires no
additional memory.

Asymmetric Compression

Our primary focus is on decompression speed, which must match
the throughput of high-end solid-state disks. We are willing to
accept an asymmetric coder/decoder (codec) that spends more
time on compression, because large datasets usually require con-
siderable time to generate anyway. Ideally, the offline encoder
would choose the best predictor for each pixel. Despite potentially
reducing the encoded size of the prediction errors, the savings
are unlikely to exceed the cost of transmitting so much additional
information to the decoder. This overhead can be greatly reduced
by quantizing predictor vectors to a ‘codebook’ of frequently used
entries [82]. The high computational cost of this method can be
reduced by predicting entire 2-D blocks of pixels, similar in prin-
ciple to video motion compensation. A recent approach employs
a brute-force search for matching blocks [95]. The compression
time is reduced by resorting to CALIC’s prediction of individual
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pixels [96] in smooth image regions. However, even a simple func-
tion of neighboring pixels is relatively costly for the decoder to
compute. We propose to eliminate this step entirely and rely upon
efficient SIMD matching in a sliding window to maintain accept-
able compression throughput. To further speed up the algorithm,
we deal with 1-D tuples (as many pixels as will fit in a SIMD reg-
ister) instead of 4× 4 blocks. In contrast to previous approaches,
the predictor is designed with full knowledge of the subsequent
entropy coder. Section 4.3 introduces our new algorithm, which
we believe to be the first SIMD sliding window compressor. The
result is a twofold reduction in image size with decompression
that outperforms a state-of-the-art integer coder [94].

4.2 Fast SIMD Integer Packing

Let us define packing as reducing an n bit two’s complement rep-
resentation of a value in

[
−2m−1, 2m−1

)
to m bits, as shown in

Figure 4.1. This section addresses the question of how to pack

FFF8

8

0000

0

FFFF

F

0002

2

0007

7

FFF9

9

Figure 4.1: Hexadecimal representation of six n = 16 bit values,
each packed into m = 4 bits by omitting the 12 most significant bits
because they carry no information.

(and conversely ‘unpack’) tuples of values as quickly as possible
using the ubiquitous SSE2 instruction set [97]. In fact, our terminol-
ogy derives from its mnemonics, which include PACK instructions
from n ∈ {16, 32} to m = n/2 and UNPCK instructions that inter-
leave m bit values for purposes of sign- or zero-extension. With
their aid, two- and fourfold packing/unpacking of 32-bit values
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is straightforward. The latency of two back-to-back pack/unpack
instructions is higher than a single PSHUFB universal shuffle, but
the more recent SSE4.1 instruction set provides for sign-extending
8-bit values to 16 or 32 bits via PMOVSX. Both methods avoid the
need for loading shuffle control masks from memory, and more
importantly, allow m < 8. For example, we can unpack from m = 4
to n = 16 as expressed by the following intrinsics1:

typedef __m128i V;
V hi_lo16 = _mm_unpacklo_epi8(in, in);
V lo16 = _mm_slli_epi16(hi_lo16, 4);
V left16 = _mm_unpacklo_epi16(lo16, hi_lo16);
return _mm_srai_epi16(left16, 12);

The final arithmetic right shift sign-extends the values to 16-bits.
Packing from n = 16 to m = 4 is somewhat more involved:

typedef Iu16vec8 V;
V zero = _mm_setzero_si128();
V values8 = _mm_packs_epi16(values, zero);
V hi = (values8 & _mm_set1_epi16(0x0F00)) >> 4;
V lo = (values8 & _mm_set1_epi16(0x000F));
return _mm_packus_epi16(hi | lo, zero);

The latter code uses the more convenient notation afforded by C++
vector classes with operator overloading. Similar functions for
packing/unpacking of other data types are expressed as template
specializations so that their caller can simply invoke, for example
Pack2x without any additional type dispatching.

1Functions built into three major C++ compilers (GCC, Intel and Microsoft) that
generate SIMD instructions while relieving the programmer of instruction scheduling
and register allocation.
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4.3 SIMD Sliding-Window Compression

We now derive a codec designed for an extremely high decompres-
sion throughput while retaining a reasonable compression ratio.
Our chief interest lies in compressing high-resolution satellite im-
ages, which typically consist of 4 or 8 spectral bands of 16-bit
samples. The bands are often interleaved by pixel, for example,
Blue0 Green0 Red0 NIR0, Blue1 Green1 Red1 NIR1, · · ·, where NIR is
the near-infrared spectral band. Because inter-band correlation
is weaker than spatial correlation [98], and interleaved pixels can
more readily be displayed by graphics hardware, we avoid con-
verting to a planar representation. The raw data is not amenable
to null suppression, so we combine the previously introduced en-
tropy coder with a predictor. Making full use of the transistors in
modern CPUs requires SIMD processing. However, even compar-
atively simple predictors such as LOCO-I [99] are not suitable in
this regard because they access multiple (unaligned) neighbors. We
instead predict a tuple of values from a single previous (aligned)
tuple. This is effective at reducing spatial redundancy, but assumes
that the number of bands evenly divides the SIMD width. Images
obtained via synthetic aperture radar, laser scanners and current
high-resolution imaging satellites meet this requirement. Other-
wise, prediction would rely on the weaker inter-band correlation. It
is too expensive to encode an offset for each tuple, so we combine
them into larger units called ‘blocks’ (not to be confused with the
2-D blocks in [95]). Because these are always accessed as a unit, we
define them to match the L1 cache line size.

What we have, thus far, is a block of values and a previous
block as a frame of reference. In contrast to PFOR [91], each
component of a pixel has its own reference value. How, then,
is the reference block to be chosen? It is here that we tailor the
predictor to fit the entropy coder. Because our maximum packing
of n = 16 bit prediction errors allows for the m = 4 bit interval
[−8, 8), it would be misleading to minimize the sum of absolute
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prediction errors as in [95]. Instead, we define the goal function as
the actual packed size of the block for a given choice of reference
block. This directly minimizes the compressed size instead of just
assuming the entropy coder will handle ‘small’ prediction errors
efficiently. The packed size is computed by checking whether all
n bit values in a tuple can be packed into m = n/2 or n/4 bits
(that is, whether each value plus 2n−1 is zero when shifted right
by m bits). This biased representation of signed numbers allows
hardware-assisted decoding via right arithmetic bit shifts, unlike
the ‘sign in the lowest bit’ encoding [100]. Our search for the
reference block yielding the smallest packed size breaks ties in favor
of the most recent block, which is less likely to have been evicted
from the decoder’s cache. To further improve temporal locality,
we restrict the search to a sliding window of the previous outputs.
Note the resulting similarity to the Lempel-Ziv family of adaptive
dictionary coders, with the distinction that our matches are fixed-
length (helpful for SIMD) and approximate (due to the properties
of the subsequent entropy coder). Larger sliding windows allow
additional matches but decrease encode throughput. We will
examine this trade-off in Section 4.4.

It remains to be seen how the decoder is notified of the tuples’
packing. To maintain the word-alignment of the encoded stream,
which avoids microarchitecture-specific penalties2, we combine
several blocks into a ‘group’ described by a word-sized header.
However, binary encodings of three values (two- or fourfold pack-
ing and uncompressed) are wasteful or slow. Because it is rare to
encounter a block for which no similar blocks exist, we require
all tuples within such blocks to be stored uncompressed. This is
communicated by an illegal value (0) for the reference block’s offset.
Otherwise, a bit field indicates which tuples in a block are packed
by a factor of four. To reduce the number of conditional branches

2Unaligned memory accesses that straddle a cache line or page boundary may
incur significant delays depending on the CPU. For example, the Intel Core 2 appears
to bypass the L1 cache and TLB in such cases (c.f. Section B.2).
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and also avoid misalignment, we disallow combinations with odd
parity (that is, the number of bits with the value one). The encoder
maps the bit field to a 4-bit ‘selector’ indicating the method for
unpacking an entire block. This makes decoding blocks extremely
efficient, because only one indirect branch, 2–4 word-aligned mem-
ory accesses and 8–16 instructions are required. The selector is
stored in the lower bits of the 16-bit reference offset, which are
zero because blocks are naturally aligned (residing at addresses
that are a multiple of their size). Our implementation currently
provides for the selectors listed in Table 4.1. For example, selector 4

Table 4.1: Selectors are a convenient representation of a bit field
indicating whether each of the four tuples in a block is packed
fourfold. Our implementation allows the following values:

Selector Meaning

0 isPacked4x = 0000
1 isPacked4x = 0011
2 isPacked4x = 0101
3 isPacked4x = 0110
4 isPacked4x = 1001
5 isPacked4x = 1010
6 isPacked4x = 1100
7 isPacked4x = 1111
8 Block residuals are 0 and not stored in stream
9 Stream holds an uncompressed block

indicates the first and fourth tuples in a block are packed fourfold,
whereas the second and third are packed twofold.

A final extension simplifies decoding while waiting for the next
asynchronous I/O to complete. Combining groups into ‘chunks’
that fit within an I/O request guarantees each group can be de-
coded without any bounds checking or copying. The decoder
requires an indication of where the chunk ends, for which we
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prepend its compressed size to the stream. Note that this does not
consume any additional space, per the following argument. The
first block is always stored uncompressed because there are no pre-
ceding blocks to serve as reference values. We copy uncompressed
blocks via SIMD instructions that require the operands to be natu-
rally aligned. The group header introduces an 8-byte misalignment
and is normally followed by 8 bytes of padding. However, we can
use this space within the first block of every chunk to store the
compressed size. To clarify the operation of the codec, Figure 4.2
shows an annotated compressed representation of a four band,
16-bit synthetic gradient image in which band i ∈ [1, 4] of pixel
n ∈ [0, 32) is 1 000× i− n.

0000000000000080
0047004700470009
0FA00BB807D003E8
0F9F0BB707CF03E7
0F9E0BB607CE03E6
0F9D0BB507CD03E5
0F9C0BB407CC03E4
0F9B0BB307CB03E3
0F9A0BB207CA03E2
0F990BB107C903E1
8888888888888888
8888888888888888
8888888888888888
8888888888888888
8888888888888888
8888888888888888

Compressed size = 128
Group: 4× 16-bit offset + selector
d

Block 1 of 4:

header[0]⇒ offset 0 + selector 8
offset 0⇒ no reference block
selector 9⇒ uncompressed data
(64 bytes; address ∼= 0 (mod 16))

c
d Block 2: offset (-)64 + selector 7

32× 4-bit residuals -8 c
d Block 3 of 4: same as Block 2

(residuals relative to prev. block)c
d Block 4 of 4: same as Block 3

(selector, offset from header[3]) c
Figure 4.2: Annotated encoding of a 256 byte gradient image. The
16 hexadecimal digits on each line represent 8 bytes stored in little-
endian format.

To summarize, the encoded stream is organized according to
the following Extended Backus-Naur Form grammar:
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Stream = {Chunk}-;
Chunk = CompressedSize, {Group}-, ChunkPadding;
CompressedSize = {Bit}*64;
ChunkPadding = {{Bit}*8} (* < 128 KiB *);
Group = GroupHeader, {PackedBlock}*4;
GroupHeader = {Match}*4;
Match = Offset, Selector (* added together *);
(* offsets are multiples of 16 bytes *)
Offset = {Bit}*16 (* backwards distance *);
Selector = {Bit}*4 (* see Table I *);
PackedBlock = {PackedTuple}*4;
(* omitted if selector = 8 *)
PackedTuple = ‘packed 1x|2x|4x’;
Bit = ‘unsigned integer bit’;

4.4 Measurements

This section presents measurements of the speed and compres-
sion ratio of our new algorithm for purposes of comparison with
existing approaches.

Hardware and Software

The test platform consists of dual W5580 CPUs (3.2 GHz) run-
ning Windows XP x64, 48 GiB DDR3-1066 memory and an
80 GB Fusion IO card. Our implementation is compiled with
ICC 12.0.1.096 /Ox /Ob2 /Oi /Ot /GA /GR- /GS- /Gy /EHsc /MD

/Qipo /QxSSE4.1 /Qopenmp /Qstd=c++0x. We use lossless JPEG-
2000 and Lempel-Ziv Markov chain compression as a basis for
comparison. The former is provided by GeoJasper 1.3.1 [101], com-
piled with nearly identical settings (our algorithm is not influenced
by string merging nor floating-point arithmetic, but we enable /GF

/fp:fast=2 for GeoJasper while omitting /Qopenmp /Qstd=c++0x,
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because it does not use those features). LZMA is represented by
the public 64-bit release of 7-Zip, version 9.2 [102]. Both of these
algorithms are run with their default parameters.

Datasets

The codec is primarily intended for compression of images with
four 16-bit bands. We arbitrarily chose four pan-sharpened [103]
satellite datasets and extracted subsets of increasing size based
on the interesting areas in the image. Each contains a mix of
urban and natural terrain (Figure 4.3). A 16-bit panchromatic
Quickbird image of Frankfurt, Germany, is also included. Because

Figure 4.3: Screen capture of 16-bit, 4 channel subsets of pan-
sharpened Quickbird images. Clockwise from top left: Wangen
(Switzerland) and Neureut, Dorsten, Ettlingen (Germany). Copy-
right DigitalGlobe Incorporated.
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8-bit and/or RGB images are in widespread use, we implement
a preliminary test that zero-expands the pixels to 16-bit, adds a
fourth component, and then applies the same codec. Searching
for large, publicly available images, we found two 8-bit grayscale
lunar mosaics [104, 105], two large images (hs-1999-14-b and hs-
2004-52-a) from the Hubble spacecraft, two mosaics of the Stanford
Memorial Church [106], and the PIA13804 panorama from the
Mars Phoenix lander. Their dimensions and format are listed in
Table 4.2.

Table 4.2: Test images and their abbreviated identifiers, dimensions,
number of bands and bit depth.

Dataset ID Width Height Bands Bits

QB Wangen QW 2 274 1 123 4 16
QB Neureut QN 3 735 2 230 4 16
QB Ettlingen QE 5 808 3 692 4 16
QB Dorsten QD 7 232 6 029 4 16

QB Frankfurt QF 10 336 10 520 1 16
LunarMosaic1 LM1 11 000 11 000 1 8
LunarMosaic2 LM2 24 000 24 000 1 8

Hubble1 H1 4 189 2 624 1 8
Hubble2 H2 4 136 3 813 3 8

MemChuNight MCN 11 184 7 456 3 8
MemChu MC 16 965 8 230 3 8
PIA13804 P1 26 180 6 180 3 8

Throughput

After loading the pixels in 256 × 256 band-interleaved tiles by
means of the GDAL library [107], we measured the in-memory
encode and decode throughputs on a single CPU core (Table 4.3).
The latter varies between 2 600 and 3 000 MB/s, which exceeds
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Table 4.3: Single-threaded encode/decode throughput for tiled
images.

Dataset Encode MB/s Decode MB/s

QB Wangen 230.61 2 650.22
QB Neureut 192.41 2 701.95
QB Ettlingen 191.40 2 750.07
QB Dorsten 165.11 2 674.20

QB Frankfurt 207.13 2 828.23
LunarMosaic1 198.68 2 995.02
LunarMosaic2 194.11 2 953.05

Hubble1 241.77 2 689.83
Hubble2 168.74 3 033.28

MemChuNight 171.29 3 044.30
MemChu 189.66 3 132.61
PIA13804 165.95 3 070.56

our design goal of keeping up with a 16-drive array (1 GB/s) and
Fusion-io Duo (1.4 GB/s). Decompression is 13 to 18 times as fast as
compression, underscoring the asymmetric nature of the algorithm.
Both compression and decompression throughput increases when
the image contains more homogeneous regions.

For a fair comparison with the times reported by GeoJasper’s
-verbose mode, we also write and read the encoded data to/from
disk. Decoding is overlapped with asynchronous reads. The
resulting elapsed times and speedups vs. GeoJasper are shown in
Table 4.4. LASC compression is 13 to 20 times as fast as JPEG-2000
on the four-band datasets, and decompression is more than 100
times as fast.

Because the 7-Zip executable lacks instrumentation, we record
its total execution time and therefore also include I/O in the LASC
timings. Tiles are read from image files by means of the GDAL
library, which is not optimized for speed and falls far short of the
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Table 4.4: Elapsed times [s] for compressing data from memory
and decompressing from file and the speedup vs. GeoJasper (GJ).

Dataset Encode+I/O vs. GJ I/O+Decode vs. GJ

QB Wangen 0.117 20.4 0.018 114.6
QB Neureut 0.472 14.8 0.062 100.0
QB Ettlingen 1.058 19.4 0.166 111.5
QB Dorsten 2.385 13.3 0.274 103.4

QB Frankfurt 1.221 16.5 0.199 88.1
LunarMosaic1 1.294 8.3 0.136 69.6
LunarMosaic2 6.559 13.0 0.885 85.9

Hubble1 0.109 9.3 0.013 63.7
Hubble2 0.842 8.2 0.083 72.3

MemChuNight 4.286 5.0 0.424 46.4
MemChu 6.478 5.3 0.695 45.4
PIA13804 8.674 6.2 0.883 52.4

disk throughput. However, as shown in Table 4.5, LASC compres-
sion is still between 33 and 72 times as fast as 7-Zip on the satellite
data. There is less of a speedup on the other datasets because we
expanded them to 16-bit and/or four bands. However, for reasons
unknown, 7-Zip is also surprisingly efficient on the Hubble and
MemChu datasets. LASC decompression is 15 to 20 times as fast
on the multispectral datasets. Note that the LZMA algorithm is
partially parallelized, whereas the above LASC results are for a sin-
gle core. This is important because 60% of surveyed PCs are single-
or dual-core [108]. However, more cores might be available for
compression, so we process tiles in parallel. This enables a through-
put of 1 212.46 MB/s on the Ettlingen dataset and 1 122.01 MB/s on
Dorsten. Because tiles are tightly-packed within the output stream,
each thread must encode into a temporary buffer and later copy
it to the destination. This additional overhead explains why the
eight cores only achieve a respective speedup of 6.3 and 6.8 over
single-threaded compression. We have not implemented parallel
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Table 4.5: Elapsed times [s] for compressing and decompressing
files and the speedup vs. 7-Zip (7z).

Dataset Encode+I/O vs. 7z I/O+Decode vs. 7z

QB Wangen 0.211 35.8 0.048 20.8
QB Neureut 0.935 33.4 0.151 17.4
QB Ettlingen 1.654 49.5 0.393 16.9
QB Dorsten 3.521 44.5 0.731 15.2

QB Frankfurt 1.558 72.1 0.484 12.3
LunarMosaic1 2.362 29.4 0.441 6.9
LunarMosaic2 11.247 19.0 2.332 10.1

Hubble1 0.311 1.9 0.044 8.5
Hubble2 1.805 1.9 0.251 7.4

MemChuNight 7.243 9.1 1.289 4.3
MemChu 11.237 6.2 2.144 4.3
PIA13804 14.038 15.6 2.573 6.7

decompression because the single-core throughput already vastly
exceeds the I/O bandwidth on our system.

Compression Ratio

Whereas the algorithm is certainly fast, its usefulness hinges on rea-
sonable compression ratios. Table 4.6 lists the resulting sizes after
compressing each image with the three contenders. The bar-plot
representation of the compression ratios in Figure 4.4 puts these
numbers in perspective. LASC is between 1.2 and 1.5 times as large
as JPEG-2000 on the multispectral satellite images that were our
primary focus. We believe these results are applicable to other im-
ages of the same pixel format, provided they possess a reasonable
degree of spatial redundancy. Random images with uncorrelated
pixels are, of course, incompressible. Our algorithm also appears
suitable for compressing some grayscale images, even 8-bit, with
results between 1.59 and 1.92 times as large as JPEG-2000. However,
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Figure 4.4: Bar plot of JPEG-2000, LZMA and LASC compression
ratios (compressed divided by original size) on all datasets, whose
abbreviations are defined in Table 4.2.
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Table 4.6: Compressed sizes [bytes] for lossless JPEG-2000, 7-Zip
LZMA and LASC.

Dataset JP2K LZMA LASC

QB Wangen 7 943 805 8 394 604 9 520 256
QB Neureut 22 404 146 30 579 292 33 274 056
QB Ettlingen 70 959 054 78 730 161 86 682 152
QB Dorsten 100 733 299 108 713 351 134 249 560
QB Frankfurt 63 273 877 81 755 880 102 217 840
LunarMosaic1 30 277 033 41 976 100 58 110 352
LunarMosaic2 262 841 520 304 749 383 417 357 096
Hubble1 2 636 372 3 552 316 4 652 632
Hubble2 21 475 077 24 870 958 38 893 272
MemChuNight 59 279 177 74 055 192 179 736 160
MemChu 84 643 231 119 494 493 274 525 352
PIA13804 161 150 453 226 358 586 413 182 168

note that all of these images contain no-data regions in the corners,
which results in space savings of 12 to 34.2% due to the additional
all-zero-residual selector. The right half of the plot clearly shows
the shortcomings of our preliminary approach that expands RGB
to four components. It is actually surprising that compression was
attained despite having expanded the original data by a factor of
2.6. The future work section proposes an approach for avoiding
this overhead. As it is, the algorithm typically results in a two-fold
reduction of multispectral data; grayscale images may be reduced
by a factor between 1.4 and 2.4.

Further Experiments

Table 4.7 shows the increase in compressed size of the Neureut
image for various tile dimensions. Given a 16 KiB sliding window,
the largest tile size (512× 512) allows access to 512× 4 neighboring
pixels – an imbalance that noticeably impacts compression. The
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Table 4.7: Increase in compressed size for various tile dimensions
compared to the baseline of 256.

tileDim ∆ size

64 14.2%
128 0.2%
256 0.0%
512 10.0%

smallest (64× 64) tiles provide a 64× 32 window, which is ap-
parently too narrow to exploit much of the horizontal correlation
in the image. To better understand these effects, we measured
the distribution of match offsets (Figure 4.5) with a tile size of
256× 256. The left and upper neighbors of the current block are
the most commonly used. However, about 1/3 of the blocks are a
closer match with other blocks on the same line, thus underscoring
the importance of arbitrary offsets. Because previous lines are not
referenced as often, we restrict the sliding window to 2 KiB (the
size of a tile line). Each halving of the original 16 KiB size nearly
doubled encode throughput while increasing size by about 0.7%.

4.5 Conclusion

This chapter demonstrates the feasibility of lossless asymmetric
SIMD compression (LASC). We propose a new entropy coder based
on null suppression via PACK instructions. Despite its simplic-
ity, this approach enables a higher throughput than two recently
proposed SIMD integer codecs and is not limited to 32-bit data
types. A novel predictor designed with full knowledge of the coder
reduces the spatial and intra-band redundancy of band-interleaved
pixels. We avoid intricate computation and accesses to multiple
neighboring values, instead predicting entire tuples of values by
means of component-wise subtraction from a previous tuple. The
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Figure 4.5: Distribution of match offsets on the Neureut image. To
preserve detail, we cut off the peaks of 31× 104 and 38× 104 at
offsets 64 (previous block) and 2 048 (previous line).

resulting decompressor is faster than copying the uncompressed
data. In contrast to previous approaches that only minimize predic-
tion errors, we use the actual compressed size as the goal function.
This results in outputs 20 to 50% larger than lossless JPEG-2000,
but two orders of magnitude faster to decompress. Whereas ad-
ditional parallelization is possible, the single-core throughput of
over 2 600 MB/s is sufficient for streaming decompression from
fast storage media such as Fusion-io solid state disks.
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Future Work. Our LASC algorithm enables extremely fast com-
pression and especially decompression, but many avenues for im-
proving its compression remain to be explored. We currently avoid
transmitting all-zero blocks, but extending this to individual tuples
should improve compression of synthetic images, which often con-
tain exact matches. Ideally, any combination of uncompressed, all-
zero, two- and fourfold packed tuples would be allowed. Because
44 selectors overly burden the CPU’s indirect branch predictor, the
encoder can indicate which subset is the most useful for a par-
ticular input dataset. A similar analysis of which reference block
offsets are the most frequent could enable a smaller encoding of the
matches, significantly speed up the compressor (by checking those
offsets first) and also reduce cache evictions in the decompressor. If
the encoder explicitly models these evictions, the sliding window
could be enlarged (thereby improving compression) without any
cost to the decoder. The resulting increase in compression time
can be reduced by means of a constant-time search for previous
matching blocks, for example, via hashing. Three-component RGB
images, for example, from digital cameras, currently require in-
troducing an additional band, which increases the compressed
size by a factor of about 7/6. This overhead could be avoided
by storing an integral number of RGB triplets in each block and
temporarily expanding them to a four-component representation
in the predictor. Finally, the codec should be evaluated for data
types other than 16-bit values. Adding support for 32-bit integers
(useful for document indexing or images from laser scanners) is
straightforward. Null suppression of floating-point data is also
challenging, but it may be helpful to XOR the representations of
the current and previous values [109].
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Chapter 5

Pan Sharpening

Imaging satellites typically capture separate high-resolution
panchromatic and lower-resolution multispectral datasets. Combin-
ing them into a single ‘pan-sharpened’ image provides subsequent
image analysis tasks with color and structural information. This
topic has been the focus of extensive research. However, personal
communication indicating the operations of an international agency
are limited by the speed of its pan-sharpening software has moti-
vated the development of a much faster algorithm. We build upon
the ‘Fast IHS’ technique, using a weighted linear combination of
the upsampled multispectral bands to derive a composite image
closer to what the panchromatic sensor had seen. The difference to
the actual panchromatic image approximates the high-frequency
detail signal and is injected into the multispectral bands. However,
the fixed band weights typical of previous commercially available
algorithms cannot account for differing atmospheric conditions.
To further reduce color distortion, we compute the optimal band
weights for a given data set in the sense of minimizing the mean-
square difference between the composite and panchromatic images.
Because the (possibly multiplicative) noise in the panchromatic im-
age impairs the subsequent graph-based segmentation algorithm
described in Chapter 6, an additional denoising step is applied
before fusion. We introduce an improved approximation of the
Bilateral Filter, which preserves edges and requires only one fast it-
eration. Both algorithms are shown to be extremely efficient – large
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satellite images can be processed within seconds. The quality of the
fused image is evaluated in a comparative study of pan-sharpening
algorithms available in ERDAS IMAGINE 9.3. Objective metrics
such as the ‘Q4’ quality index show improvements in color fidelity.

This chapter is a major revision of a contribution to the Earth
Resources and Environmental Remote Sensing/GIS Applications
conference, co-authored by S. Laryea [103].

5.1 Introduction and Related Work

Imaging satellites such as IKONOS provide panchromatic (pan)
imagery with sub-meter resolution [110]. However, segmenta-
tion benefits from multispectral (MS) information [111]. Limiting
photons to individual bands requires larger detectors, so the MS
resolution is typically between two and five times as coarse. In the
common case where the satellite records both panchromatic and
MS images, they can be fused into a high-resolution output that
also includes color information. This is called resolution merge
or ‘pan sharpening’ (PS), for which many approaches have been
proposed. The popular IHS approach involves transforming colors
to Intensity, Hue and Saturation. Principal Component Analysis
(PCA) and the related Gram-Schmidt transformation are examples
of statistical approaches. The Brovey transformation and wavelet-
based techniques are examples of numerical methods. Finally,
the Ehlers approach is a combination of IHS with Fast Fourier
Transform-based prefiltering [112].

Each of the previously mentioned algorithms have limitations
or drawbacks. A common problem relates to color distortion vs.
the original MS image, which is caused by the spectral mismatch
between the pan and MS bands. The IHS and PCA methods are par-
ticularly vulnerable, because they replace a transformed band with
the original pan image. The mismatch can be reduced somewhat by
equalizing the pan histogram before merging [113]. Another prob-
lem relates to the sensor’s spectral response function. In the case of
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the IKONOS satellite, the pan band extends past the NIR frequen-
cies (c.f. Figure 5.1). Because the basic IHS transform ignores the

Figure 5.1: IKONOS spectral response function [114]. Note that Pan
extends beyond NIR, and that Blue and Green have a significant
overlap.

NIR band entirely, colors are perceived as distorted, especially in
regions with green vegetation [115]. Weighting the MS bands can
mostly compensate for this effect [116]. However, knowledge of the
sensor’s spectral response is required, and fixed weights cannot
account for changes in viewing conditions [117]. Whereas Earth
observation satellites often operate in sun-synchronous orbits [110],
such that each pass occurs at the same local solar time, differences
in atmospheric conditions may still affect the spectral response.
We avoid these issues by estimating the optimal weights for each
input image, as discussed in Section 5.2. The quality metrics in
Section 5.5 indicate this decreases the color distortion.
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Another important issue concerns noise in the panchromatic
image, because its signal-to-noise ratio [118] may be worse than
that of the lower-frequency bands [110]. Section 5.3 proposes
edge-preserving filtering of the pan image to avoid injecting noise
into the MS bands. Section 5.4 shows the resulting increase in
smoothness, which is beneficial for the subsequent segmentation
step.

High computational cost is the final drawback of the existing
approaches. Section 5.6 compares execution times and finds that
our new approach is orders of magnitude faster.

5.2 Algorithm

Our algorithm is based on the Fast IHS transformation [115]. The
multispectral bands are first upsampled to the resolution of the
panchromatic band via cubic convolution. In contrast to the fixed
weights of previous IHS-based schemes, we compute the optimal
band weights for the given image by minimizing the MSE (mean
squared error) between the pan image and a linear combination
of the multispectral bands [119, 117]. As its name suggests, the
MSE is the mean squared difference between an estimation X̂ and
the true value X: E[(X̂ − X)2]. There is a closed-form solution
for minimizing this metric. Let X := [B1, B2, B3, B4, P]T denote
the components of each pixel, i.e. the multispectral bands Bi and
panchromatic band P. We seek the vector of weights a such that

P̂ =
4

∑
i=1

aiXi (5.1)

is an optimal (in terms of MSE) estimation of P. By the orthogonal-
ity principle, we have XTXa = XT [120]. The optimal band weights
a are therefore (XTX)−1XT. Interestingly, they may be negative,
which is plausible because the spectral response functions of some
bands overlap (c.f. Figure 5.1). The difference P− P̂ contains detail
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information from the panchromatic image and is injected back into
each MS band to yield the final fused band B̂i = Bi + P− P̂.

This algorithm is simple and efficient, but the excellent perfor-
mance of our implementation is due in large part to additional
numerical optimizations. Because the outer product (XTX) is
symmetric, we avoid redundant multiplications by computing
PBi, B4B1, B3B1, B2B3, B1B2, B4B2, B3B4, BiBi (i ∈ [0, 3]). This only
requires two SIMD shuffles and four multiplications per pixel.
After reassembling the outer product matrix from these terms,
we finish the computation of a with the aid of IPP’s optimized
matrix inversion and multiplication routines. The time-critical
computation of P̂ is accelerated by means of the SSE4.1 DPPS1

instruction. When combined with parallelization, these techniques
yield a 20-fold speedup, which is of major practical relevance. Note
that the negative weights and differences between MS and P may
result in values of B̂ outside the input data range, which causes
problems for the subsequent filtering step. We avoid this issue by
clamping all bands, i.e. assigning the nearest permissible value:
B̂ := min(max(0, B̂), max P).

5.3 Noise Reduction

We suppress noise in the panchromatic image by applying a fast
approximation of the Bilateral Filter. This adaptive nonlinear filter
smoothes pixels, but preserves strong edges. Let Ip denote the
pixel value at position p. The unnormalized filter result Fp for a
pixel with coordinates p is a weighted average of pixels at nearby
locations q:

Fp = ∑
q

Gs(‖p− q‖)Gr(
∣∣Ip − Iq

∣∣)Iq (5.2)

Normalization entails division by the sum of weights Wp:

Wp = ∑
q

Gs(‖p− q‖)Gr(
∣∣Ip − Iq

∣∣) (5.3)

1Dot Product of Packed Single-precision values.
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The name ‘Bilateral’ arises because the influence of a pixel is de-
termined by both its spatial (s) and radiometric (r) distance to
the central pixel. Gs,r are Gaussians whose respective standard
deviations σs,r determine the neighborhood size and sensitivity to
intensity differences. [121]

In this form, the filter is rather expensive to compute. However,
it has recently been recast as a linear 3D convolution followed by
nonlinearities (division for normalization and sampling the result
at the original location). The third dimension is introduced by
augmenting a pixel’s x and y coordinates with its intensity value i.
To speed up the convolution, this 3D space is first downsampled
into coarse bins. However, an efficient SIMD-capable algorithm is
identified as an “exciting avenue for future work” [122]. We take
up this suggestion. The bins can be viewed as small cubes of the
3D space, i.e. volumetric picture elements (voxels). Each counts the
number of pixels that fall within its area and stores the sum of their
intensities. For an image of W × H pixels with maximum intensity
R, we allocate dW/σse × dH/σse × dR/σre bins. Pixel coordinates
(x, y, i) are mapped to bin coordinates by multiplying with the
reciprocal of (σs, σs, σr) and truncating to integers. Providing two
empty padding bins in each dimension avoids the need for bounds
checking. Each processor is assigned a strip of the image and
populates the bins with pixels. We propose a further acceleration
of the subsequent 3D Gaussian convolution of the bin counts and
sums. Because only ≈10% of bins are observed to be occupied
(5 of R=2047

σr=40 ), the kernel can be approximated by separated 1D
second-order binomial filters. The central pixel is weighted by a
factor of two and added to its left and right neighbors. However,
we store bins as an array of row-major matrices, thus making for
poor locality when iterating over the second and third dimensions.
We instead compute the weighted sums of each central pixel and
its six nearest 3D neighbors in a single pass. Because the resulting
values are written sequentially, we use non-temporal streaming
stores to avoid cache pollution by writing directly to memory (see

66



Appendix A.2 for a more detailed discussion). Perhaps surprisingly,
these numerical and data-layout optimizations have resulted in
a 5-fold speedup vs. the separated convolutions. The next step
involves normalization, i.e. dividing each bin’s intensity sum by
the number of pixels they contain. We speed up the division
by multiplying with the approximate reciprocal. Masking avoids
the singularity at zero. Finally, the filtered pixels are obtained
via trilinear interpolation of the average intensities in the eight
nearest bins. Our carefully engineered algorithm achieves a 14-fold
speedup vs. the reference implementation of the approximated
Bilateral Filter [122].

We also measured the throughput for 16-bit satellite images of
varying sizes on our test system (c.f. Section 2.3). The results are
shown in Table 5.1. Performance increases slightly for larger image

Table 5.1: Throughput of our approximated Bilateral Filter for
16-bit satellite images.

Satellite MPixel MPixel/s

IKONOS 54 242
QuickBird 74 304
QuickBird 109 327
QuickBird 136 316
QuickBird 229 335

GeoEye 240 336

sizes due to amortization of startup overhead. For comparison
purposes, a Virtex-4 FPGA implementation of bilateral background
subtraction processes 4.6 MPixel/s [123]. A separated approxima-
tion of the Bilateral Filter running on an NVIDIA GeForce 8800
GTX reaches 189 MPixel/s [124]. The measured throughput of our
software implementation exceeds their respective performance by
factors of 73 and 1.8.

67



5.4 Results

We first assess the quality of our new ‘MSP’ (MultiSpectral Prepro-
cessing) algorithm by means of a visual comparison of its results
to the output of commercially available software. The Modified
IHS transformation and Ehlers Fusion algorithms will serve as
a basis for comparison. Both are included in version 9.3 of the
well-established ERDAS IMAGINE framework.

Modified IHS [116] improves upon the spectral fidelity of classic
IHS fusion. The Pan channel is adjusted to match the intensity
of the multispectral input imagery. It then replaces the I channel,
after which the IHS representation is converted back to RGB. The
method may be extended to more than three bands by substituting
one of the input bands and repeating the process.

Ehlers Fusion [112] is also based on the IHS transformation with
additional filtering in the frequency domain. The I component is
filtered with a low pass kernel, whereas the panchromatic band
goes through a high pass filter. The results are then transformed
back to the spatial domain, after which the low-frequency multi-
spectral and high-frequency panchromatic signals are combined
to yield the new intensity component. Finally, IHS is transformed
back to RGB.

We run the algorithms on two satellite datasets of Karlsruhe
and Feyzabad, recorded by the IKONOS satellite system [110] on
2003-08-06 and 2004-07-05. The 4 m MS images are resampled
to 1 m by means of cubic convolution, except for Modified IHS
with the Karlsruhe dataset, which requires bilinear interpolation
to avoid an apparent software error in ERDAS that causes severe
color distortion.

A visual assessment of the results would ideally involve display-
ing them under identical conditions. The intention was to stretch
each histogram by the same function. However, the green band
of the Ehlers Fusion differed significantly, causing a noticeable
color shift. We therefore computed the histograms of the Ehlers
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and IHS outputs via ERDAS with bin function ‘direct’, skip factor
1 and including all values. The results are shown in Figure 5.2.
Although the cause of the IHS plateau between 0 and 63 is un-

(a) IHS (b) Ehlers

Figure 5.2: Histogram plot indicating the frequencies of intensity
values [0, 2048) in the green bands of the IHS and Ehlers outputs.
A substantial shift is observed.

known (no such pixel values were observed), the shift between
the two histograms is immediately apparent. This seems to indi-
cate a flaw in the Ehlers algorithm, which may have been hidden
by the default ERDAS viewer behavior of stretching images for
display (i.e. adjusting their histograms). To enable a side-by-side
comparison, we display all images with this stretch mode enabled.
The resulting screen captures are shown in Figures 5.3 and 5.4.
All algorithms provide reasonable outputs, but also include blue
borders at the edges of buildings and trees. This effect is caused
by the imprecise co-registration of the bands. The reduced noise
level in our output (Figure 5.3(d)) is seen when comparing with the
panchromatic image and the other results, particularly in the water
areas. However, the borders of the fields in Figure 5.3(d) indicate a
loss of detail due to excessive smoothing, which can be reduced by
choosing smaller σs,r. Upon closer inspection of the Ehlers result
in Figure 5.3(b), we note a color shift – the country roads appear
darker than in the original.
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(a) MS (b) Ehlers

(c) ModIHS (d) MSP

Figure 5.3: Screen captures of the Karlsruhe dataset and the algo-
rithms’ outputs.
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(a) MS (b) Ehlers

(c) ModIHS (d) MSP

Figure 5.4: Screen captures of the Feyzabad dataset and the algo-
rithms’ outputs.
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5.5 Quality Metrics

The preceding qualitative assessment gives a rough indication of
how successfully an algorithm preserves the multispectral charac-
teristics of a dataset while improving its spatial resolution. How-
ever, we also provide objective measurements by means of the
following similarity metrics:

PD The Per-pixel Deviation is the difference of each component c
of the pixels at coordinates i, j in the multispectral input B vs.
those in the pan-sharpened output F after resampling to the
original resolution. It is normalized according to the image
dimension N ×M and number of components C. The best
value is zero. [112]

PD =

C

∑
c=1

M

∑
i=1

N

∑
j=1

∣∣Bi,j,c − Fi,j,c
∣∣

NMC
(5.4)

RMSE Root Mean Square Error is simply the square-root of the
MSE between the fused image and the original multispectral
image. Smaller values are better.

RMSEc =

√√√√√√
M

∑
i=1

N

∑
j=1

(
Bi,j,c − Fi,j,c

)2

NM
(5.5)

CC Correlation Coefficient expresses the correlation between the
original and fused images and ranges from -1 to +1. Values
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near 1.0 indicate the images are highly correlated and sim-
ilar. [125] Let F̄c denote the average intensity ∑i,j Fi,j,c/N of
each pixels’ component c in F, and similarly B̄c for B.

Corrc =

M

∑
i=1

N

∑
j=1

(Bi,j,c − B̄c)(Fi,j,c − F̄c)√√√√ M

∑
i=1

N

∑
j=1

(Bi,j,c − B̄c)
2

M

∑
i=1

N

∑
j=1

(Fi,j,c − F̄c)
2

(5.6)

ERGAS The relative dimensionless global error in fusion summa-
rizes the errors in all bands. Smaller values indicate higher
image quality. The scaling factor h

l corresponds to the ratio
of pixel sizes in the pan and MS imagery. [126]

ERGAS = 100
h
l

√
1
C

C

∑
c=1

(
RMSEc

B̄c

)2

(5.7)

Q The Universal Image Quality Index incorporates loss of correla-
tion, luminance distortion, and contrast distortion. It ranges
between 0 and 1 and is maximized when the images are
identical. [127]

Qc =
4B̄cF̄c ∑i,j (Bi,j,c − B̄c)(Fi,j,c − F̄c)

(B̄2 + F̄2)
[
∑i,j (Bi,j − B̄c)2 + ∑i,j (Fi,j − F̄c)2

] (5.8)

Q4 The ‘Quaternions Theory Based Quality Index’ is a generaliza-
tion of the Q index to four bands via quaternions, computed
on non-overlapping 32× 32 blocks. The best value is 1. [128]
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Table 5.2: Per-band metrics for the Karlsruhe and Feyzabad
datasets. The best value of each metric is encircled.

Karlsruhe Feyzabad

CC Ehlers ModIHS MSP Ehlers ModIHS MSP

B 0.926 0.927 0.956 0.986 0.968 0.979
G 0.956 0.956 0.982 0.993 0.978 0.991
R 0.971 0.970 0.986 0.997 0.984 0.993

NIR 0.743 0.950 0.992 0.994 0.957 0.987
mean 0.899 0.951 0.979 0.992 0.972 0.988

RMSE Ehlers ModIHS MSP Ehlers ModIHS MSP

B 0.330 19.58 13.69 0.713 9.55 5.899
G 1.840 24.06 13.96 1.010 13.42 6.378
R 3.001 23.55 14.66 1.155 14.29 7.035

NIR 0.631 60.13 22.46 1.197 23.30 9.493
mean 1.451 31.83 16.19 1.019 15.14 7.201

Q Ehlers ModIHS MSP Ehlers ModIHS MSP

B 0.417 1.000 1.000 0.944 1.000 1.000
G 0.554 0.999 1.000 0.961 1.000 1.000
R 0.430 0.867 0.942 0.982 1.000 1.000

NIR 0.488 0.929 0.994 0.990 1.000 1.000
mean 0.472 0.949 0.984 0.969 1.000 1.000

The values of the per-band metrics are given in Table 5.2. As
expected, most outputs are highly correlated to the inputs. How-
ever, the NIR band of the Ehlers result for the Karlsruhe dataset
apparently includes some discrepancies, because its correlation
coefficient is only 0.7428. RMSE is higher for the IHS-based al-
gorithms. Especially large differences in the ModIHS NIR band
are likely due to the original IHS strategy of obtaining the fourth
band by substituting for another band and repeating the algorithm.
Our approach avoids this issue by adding detail information to all
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MS bands simultaneously. Although the resulting RMSE is still
higher than the Ehlers output, the image quality is not necessarily
inferior [126]. For example, the underlying L2 norm unduly penal-
izes outliers. By contrast, the Q index provides a more accurate
indication of actual information loss [127]. According to this metric,
the IHS-based approaches significantly outperform the Ehlers Fu-
sion. As expected, our optimal weight estimation scheme improves
upon the fixed-weight ModIHS in all measurements. Let us now
examine the global metrics across all bands, given in Table 5.3.
The Ehlers Fusion results in the best ERGAS. However, this metric

Table 5.3: Global metrics for the Karlsruhe and Feyzabad datasets.
The best value of each metric is encircled.

Karlsruhe Feyzabad

Metric Ehlers ModIHS MSP Ehlers ModIHS MSP

PD 0.025 15.908 7.722 0.015 7.838 2.817
ERGAS 0.140 1.749 0.953 0.045 0.662 0.316

Q4 0.084 0.724 0.788 0.433 0.891 0.940

cannot rule out spectral distortion [125]. By contrast, the Q4 index
accounts for differences in spectral angle by computing the actual
multivariate correlation coefficient [119]. Our method significantly
outperforms the Ehlers Fusion in terms of this metric. Because
the Ehlers algorithm’s Q results exceed the values of Q4, we can
infer that a spectral shift has occurred. In summary, the Ehlers
Fusion yields better values of RMSE, PD and ERGAS, whereas
our approach rates higher according to Q and Q4. This kind of
discrepancy has motivated the pessimistic conclusion that current
metrics are not capable of reliably measuring image quality or even
similarity [125]. However, we believe the simplistic RMSE, PD and
ERGAS metrics have less bearing on perceived quality than the
more elaborate Universal Quality index and Q4.
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5.6 Performance

In designing and implementing our approach, we emphasized
efficiency. To gain a first impression of the resulting performance,
let us compare the run times for each of the three methods on a
X5365 CPU (3.0 GHz, 32 GiB FB-DDR2 RAM), shown in Table 5.4.
Our approach is about 40 times as fast as ModIHS despite doing

Table 5.4: Elapsed time [s] for the three methods and two datasets.

Algorithm Karlsruhe Feyzabad

Ehlers 1 235 31 721
ModIHS 359 285

MSP 9 6

more work (computing the band weights). Because the algorithms
are very similar, the difference is largely due to implementation
techniques – vectorization, parallelization and optimizing the nu-
merical calculations. The run time of the Ehlers algorithm is much
higher still. It is unclear why the smaller 61 MPixel Feyzabad
image required 25 times as long as the 87 MPixel Karlsruhe dataset.
Even disregarding this difference, our algorithm remains over 100
times as fast. We have also measured the throughput of our algo-
rithm on the more recent test system (c.f. Section 2.3), shown in
Table 5.5. As with the Bilateral Filter, performance tends to increase
on larger images due to amortization of overhead. Our software
outperforms a similar algorithm’s Matlab implementation [119] by
a factor of 1134.
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Table 5.5: Throughput of our pan-sharpening algorithm for 16-bit,
4 band satellite datasets.

Satellite MPixel MPixel/s

IKONOS 54 211
QuickBird 74 212
QuickBird 109 230
QuickBird 136 226
QuickBird 229 238

GeoEye 240 234

5.7 Conclusion

This chapter has described an IHS-based pan-sharpening algo-
rithm that is capable of processing gigapixel-scale imagery within
seconds. Despite requiring two orders of magnitude less com-
putational time, objective metrics indicate its quality is at least
comparable to current approaches. In particular, the correlation
coefficient and Q4 quality index attest to a higher color fidelity
than the Ehlers Fusion. This is made possible by the estimation of
optimal band weights for each input image.

We have also proposed edge-preserving pre-filtering of the
panchromatic image by means of a fast new approximation of the
bilateral filter. A subjective evaluation has shown its usefulness for
reducing noise in the output.

Future work may include an additional sub-pixel registration
of the pan and multispectral images to avoid artifacts at object
boundaries.
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Chapter 6

Image Segmentation

The next pipeline stage is responsible for automatically partitioning
images into regions (‘segmentation’). This chapter introduces a
Minimum Spanning Tree-based algorithm with a novel graph-
cutting heuristic, the usefulness of which is demonstrated by
promising results obtained on standard images. In contrast to
data-parallel schemes that divide images into independently pro-
cessed tiles, the algorithm is designed to allow parallelization
without truncating objects at tile boundaries. A fast parallel imple-
mentation for shared-memory machines is shown to significantly
outperform existing algorithms. It utilizes a new microarchitecture-
aware single-pass sort algorithm, presented in Appendix A, that is
likely to be of independent interest.

An initial version of this chapter appeared in the proceedings of
the 13th International Conference on Computer Analysis of Images
and Patterns [129].

6.1 Introduction and Related Work

Segmentation is an important early stage of some image processing
pipelines, e.g. object-based change detection. The final results of
such applications are often strongly dependent on the quality of
the initial segmentation. Because subsequent processing steps can
use higher-level region information instead of having to examine
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all pixels, the segmentation may also be the limiting factor in terms
of performance. Many algorithms have been proposed, but good
quality results often come at the price of high computational cost.

One extreme example of this is a multi-scale watershed ap-
proach (MSHLK) [130]. Repeated applications of anisotropic diffu-
sion smooth the image and reduce the tendency of the watershed
transform to return excessive numbers of segments (oversegmenta-
tion). The resulting subjective quality is very good, but its process-
ing speed (1 kPixel/s) is unacceptably low.

An alternative approach uses the Mean-Shift (MS) [131] proce-
dure to locate clusters within a higher-dimensional representation
of the image. This is guaranteed to converge on the densest regions
in this space and yields good results in practice, but the processing
rate (100 kPixel/s) is still inadequate.

In previous work, we have shown that Maximally Stable Ex-
tremal Regions (MSER) [132] can be applied towards segmentation
of gradient images. Although more efficient (2 MPixel/s), this
scheme only detects high-contrast segments and does not provide
full coverage of the image. It also seems ill-suited for paralleliza-
tion because the criterion for ‘stable’ depends on a global ordering
of pixels.

Graph-based segmentation (GBS) [133] increases the amount of
data to be handled (multiple graph edges per pixel) but has several
attractive properties. Viewing pixels as nodes of a graph allows
the reduction of segmentation to cutting a Minimum Spanning
Tree (MST). Defining edge weights as some function of the pixels’
per-band intensity differences enables the use of color information
without having to compute image gradients1. Finally, an MST can
be assembled from partial sub-trees, which provides the possibility
of parallelization. In Section 6.2, we develop a new online graph-
cutting heuristic for MST-based segmentation. Section 6.3 shows
the promising results obtained on well-known images. Section 6.4

1A measure of the change in intensity for each pixel, e.g. by computing differences
to neighboring pixels.
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introduces ‘PHMSF’ (Parallel Heuristic for Minimum Spanning
Forests) , which we believe to be the first non-trivially-parallel seg-
mentation algorithm. Perhaps most importantly, Section 6.6 shows
it to significantly outperform existing segmentation techniques.

6.2 Algorithm

Segmentation algorithms require (often application-dependent)
definitions of ‘image region’. We believe ‘homogeneity’ and high
contrast to surrounding pixels are reasonable criteria [134]. Ho-
mogeneity can be computed as distances between (vector-valued)
pixels; we find the L2 norm to yield better results than L1 or
pseudo-norms. Prior work [133] has advocated separate segmenta-
tion of the R/G/B component images and intersecting the results.
Because object edges are not always visible in all multi-spectral
bands [135], it is safer (and certainly faster) to segment once using
all bands. Recalling the graph segmentation framework, the above
homogeneity measure defines the weight of edges. It remains to
be seen how an online graph-cutting heuristic should partition the
MST depending on edge weight. A mere threshold is insufficient
because it fails to account for noise or the overall homogeneity of a
region. One possible solution [133] involves an adaptive threshold
that is incremented by a linearly decreasing function of the region
size2. The function’s slope is a user-defined parameter that must be
determined by experimentation because it has no physical expla-
nation. This scheme also underestimates a region’s homogeneity
by defining it as the maximum weight in its MST, thus tending
towards oversegmentation. We suggest the adoption of an idea
from Canny’s detector for image edges [136]. In the context of com-
putational edge detection, pixels with large gradient magnitudes
are likely to correspond to edges within the image, but there is no

2This unduly penalizes the growth of large segments; we saw slightly better results
when dividing by the logarithm of the region size.
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single level at which this ceases to be the case. Applying a relatively
strict threshold finds safe candidates, which can be augmented by
nearby pixels that lie above a second, more generous limit. Return-
ing to segmentation terminology, regions connected by low-weight
graph edges represent likely candidates that can subsequently be
expanded by following adjoining graph edges with somewhat
higher weights. Figure 6.1 illustrates how a region is formed by
expanding the initial candidate. To avoid potentially unbounded

Figure 6.1: A region is obtained by expanding an initial candidate
formed from homogeneous pixels.

growth, we institute a ‘credit’ limit on the sum of edge weights
that may be added to a candidate region. The motivating principle
– how much water can be filled into a basin without overflowing –
is shown in Figure 6.2. Because a circle is the most compact two-
dimensional shape [137], its circumference

√
4π × regionSize

constitutes a lower bound on the perimeter (minPerimeter) of
a region whose area is regionSize pixels. Let us also assume
additive white Gaussian noise with variance σ2

n, for which several
estimators have been proposed [138, 139]. With an eye towards
the Gaussian cumulative distribution function, we choose 2σn as
an arbitrary cutoff point. It is unlikely for any larger intensity
differences to arise from noise. We therefore define minContrast
as the smallest edge weight along the border of any ‘interesting’
region minus 2σn. Putting both these pieces together, the function
ComputeCredit := minContrast × minPerimeter estimates
the total weight of edges whose endpoint pixels can be added
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Figure 6.2: Motivation for the credit computation. The gray area
denotes a region being filled with water. Spilling beyond its bounds
can only occur if the total volume exceeds a function of the perime-
ter and the minimum wall height (the red lines of varying height
suggest boundary edges and their weights).

to a region without inadvertently expanding beyond its bounds.
This property is important because subsequent region merge deci-
sions can be based upon region features (discussed in Section 6.5),
whereas splitting requires re-examination of the pixels or edges.
However, the resulting regions are not necessarily too fine because
pixels connected by low-weight edges are always merged. We
have therefore averted global under- and oversegmentation of the
image while using only local information. The algorithm first
forms candidate regions by merging the endpoints of low-weight
edges, computes their credit, and then calls a simple heuristic (Al-
gorithm 6.1) in increasing order of the remaining edges’ weights.
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Algorithm 6.1: EdgeHeuristic(edge)
1 region1, region2 := Find(edge.endpoints);
2 if region1 6= region2 then
3 credit := min {region1.credit, region2.credit};
4 if credit > edge.weight then
5 survivor := Union(region1, region2);
6 survivor.credit := credit− edge.weight;
7 end
8 end

Implementation Details

We represent edges as 30-bit integers indicating the index of their
originating node together with a 2-bit encoding of their four possi-
ble directions3.

Nodes (pixels) are organized into ‘disjoint sets’ (regions) by
means of the Union-Find (UF) data structure [140]. Each node is as-
sociated with a 32-bit value that typically points to its parent node.
The root of each subtree (i.e. region) is termed the ‘[canonical]
representative’ and holds the index of the corresponding region
data structure, which stores credit and size in 32-bit integers.
We differentiate parents and representatives by means of their sign
bit. This avoids the need for auxiliary storage during the initial
region merging, because credit is not yet needed and the rep-
resentative stores the (negated) size. Find traverses the parent
links and returns the representatives of the regions adjoining the
given edge. To speed up these relatively expensive (due to their
poor locality) searches, we halve the subsequent path length in
every iteration by reassigning nodes’ parents to their grandparents.
Union merges two regions; choosing the larger one as the parent
also serves to decrease path lengths [140]. We introduce an addi-
tional optimization that avoids needing to initialize the parent array

3Each node has eastern, southern, southwestern and southeastern connections to
its neighbors, thus yielding an eight-connected grid graph.
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and halves the number of allocated region structures. Because Win-
dows’ VirtualAlloc returns zeroed memory, we consider 0 to
be a valid region index. Recall that nonpositive 32-bit indices are
interpreted as representatives. We allocate enough virtual address
space to treat indices as unsigned 32-bit offsets and then map a
single (read-only) page of zeroed memory at the address of region
0. When a node is first merged, its size therefore appears to be
zero, thus causing it to be linked to the (larger) parent. We only
need to allocate a region structure when the parent also reports a
size of zero. Physical memory for subsequent region structures is
committed as needed.

6.3 Results

To demonstrate the usefulness of the new segmentation results, we
compare them to the outputs of existing algorithms on standard
images [141], the results of which are shown in Figures 6.3 and
6.4. MSHLK [130] is known for high-quality results and provides
excellent smoothing of the walls (b) but merges the eaves into the
sky segment. We also call attention to the oversegmentation of
the second image and shock effects [142] in the background (b).
MS [131] is more successful at merging the individual objects (c)
but also splits some of them (e.g. below the P); spurious segments
near edges (c) are its only visible flaws. As with MSHLK, seg-
ment borders are delineated by black pixels. MSER [132] produces
mostly adequate label images, though the wall is not considered to
be a stable region (d); the effects of the gradient filter are clearly
visible (d). GBS [133] is satisfactory but results in undersegmenta-
tion near the roof lines and oversegmentation of the sky and wall
(e). It also merges different-colored objects (e) but fails to return a
uniform background. Our new PHMSF algorithm provides results
comparable to MSHLK and MS and requires only 1/4 000 and 1/50
the computation time, respectively (c.f. Section 6.6). The black pix-
els (f) indicate surface irregularities that resulted in regions smaller
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(a) Image (b) MSHLK

(c) MS (d) MSER

(e) GBS (f) PHMSF

Figure 6.3: Segmentation results of the new PHMSF algorithm and
others on USC SIPI [141] image 4.1.05 (‘House’).
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(a) Image (b) MSHLK

(c) MS (d) MSER

(e) GBS (f) PHMSF

Figure 6.4: Segmentation results of the new PHMSF algorithm and
others on USC SIPI [141] image 4.1.07 (‘Jelly beans’).
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than the minimum size. The segmentation in (f) is quite accurate,
correctly separating different-colored objects without introducing
spurious boundaries.

6.4 Parallel Algorithm

Despite the efficiency of the new segmentation algorithm, a highly-
tuned sequential implementation is still far slower than the collec-
tion rates of commercial imaging satellites (e.g. IKONOS with up to
90 km2/s [110]). Because significant reductions of the algorithm’s
constant factors or major increases in single-core CPU performance
(c.f. Section 2.4) appear unlikely, our self-set performance goal of
10 MPixel/s requires parallelization. However, ‘embarrassingly
parallel’ schemes that simply split the input into independent tiles
are not acceptable because they do not correctly handle objects
straddling a border. Nor are overlapping tiles sufficient because
there is no upper bound on the size of objects of interest (e.g. rivers
or roads). Our first attempt at parallelization addressed the MST
computation. The recently introduced Filter-Kruskal scheme [143]
combines ideas from Quicksort and Kruskal’s algorithm and dis-
cards non-MST edges without having to sort them. This ‘filter’
operation, partitioning and sorting can all be parallelized. How-
ever, the total speedup on a quad-core system is only 1.5 – chiefly
due to the sequential portion of the algorithm, but also because our
eight-connected grid graphs are too sparse to derive much benefit
from discarding edges. Our second approach (Algorithm 6.2) is
designed to allow independent processing of image tiles, but still
ensures consistent results irrespective4 of the number of processors
P. The key observation is that Kruskal’s MST algorithm can run in
a data-parallel fashion until encountering an edge that crosses a tile

4We ignore the effects of ‘unstable’ parallel sorting. The relative order of items with
the same key depends on the number of processors and the arbitrary manner in which
the grid graph is constructed. However, neither appears to have a relevant influence on
the results.
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Algorithm 6.2: Parallel Segmentation
1 parallel foreach tile do
2 sort edges in ascending order of weight;
3 immediately merge regions connected by edges of weight

< minWeight;
4

5 foreach borderEdge do // connect and mark cross-border
regions

6 region1, region2 := Find(borderEdge.endpoints);
7 survivor := Union(region1, region2);
8 Mark(survivor);
9 tile.regions := tile.regions∪ {survivor};

10 end
11 parallel foreach tile do
12 foreach r ∈ tile.regions do

r.credit := ComputeCredit(r.size); // see Section 6.2
13

14 parallel foreach tile do
15 foreach edge in ascending order of weight do
16 region1, region2 := Find(edge.endpoints);
17 if edge crosses border then

Mark(region1), Mark(region2);
18 else if IsMarked(region1) or IsMarked(region2)

then tile.delayQ.Push (edge) ;
19 else EdgeHeuristic(edge); // see Section 6.2
20 end
21

22 foreach tile do
23 foreach edge ∈ tile.delayQ do EdgeHeuristic(edge);
24 end
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Figure 6.5: Top view of a graph representing two square tiles within
the input image. Nodes are located at the intersections of the dotted
lines, and non-discarded MST edges are rendered as colored lines.
Processors can run Kruskal’s algorithm independently on their tiles
until reaching one of the red edges (i.e. those directly or indirectly
connected to a cross-tile edge).

border (c.f. Figure 6.5). From then on, MST components using such
edges and in turn their incident edges must be ‘delayed’ until the
partial MSTs of both tiles are available. This can be accomplished by
adding edges to per-tile queues that are processed in a subsequent
sequential phase5. We also Mark any regions reachable via delayed
edges by setting the most-significant bit of their size, which can
be queried by IsMarked. It remains to be seen how many edges
are delayed – a long cross-border region of homogeneous pixels
could affect a large proportion of a tile. However, high-weight
edges at the boundary of such regions often serve as a ‘firewall’ be-
cause they can be discarded without affecting neighboring regions.
Only about 5% of edges are delayed in practice, making Amdahl’s

5This would be parallelizable if edges indicate which border they cross, but our
implementation cannot spare any space within the 32-bit representation.
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argument less of a factor than real-world limits on memory band-
width and P. To avoid scheduling and locality issues, the manually
partitioned loops reside in a single OpenMP parallel region (c.f.
Section 2.4). A novel variant of counting sort uses paged virtual
memory to simulate bins of unlimited size and thus dispenses with
a separate counting phase. An explicit buffering technique further
increases performance by enabling write-combining without cache
pollution. Details are given in Appendix A.2.

6.5 Region Features

The algorithm also computes region features. However, it would be
wasteful to allocate records for the numerous small regions that are
often ignored by applications anyway. We therefore only consider
regions whose size lies within a user-defined interval [min, max].
This entails relabeling the per-tile regions and replacing them
with a new set of contiguous indices, which is accomplished by
Algorithm 6.3. Its separate and very efficient count phase seems
preferable to updating the per-tile region count when cross-border
merges are performed by our parallel Kruskal algorithm. One of
the typical outputs of a segmentation algorithm is a label image –
the value of a pixel indicates the region to which it belongs. We
therefore ‘collapse’ the array of Union-Find parents such that each
node points directly to its representative once all regions have been
re-labeled.

Let us now examine the data structure referenced by the new
indices. Maintaining a list of member pixels for each region would
be costly in terms of time and space. We instead iterate over the
image pixels and ascribe their properties to the corresponding
region. This improves locality when the region features require
less storage than the pixels themselves6. Updating the features

6Our region descriptors currently occupy 64 bytes, whereas a pixel comprises
4 components of 2-byte numbers, and regions usually encompass more than 8 pixels.
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Algorithm 6.3: Parallel Relabeling
1 parallel foreach tile do // compress regions
2 foreach r ∈ tile.regions do

r.isValid := r.size ∈ [min, max];
3

4 parallel foreach tile do // count regions
5 tile.numRegions := 0;
6 foreach pixel do
7 if IsRepresentative(pixel) and Find(pixel).isValid

then
8 tile.numRegions := tile.numRegions + 1;
9 end

10 end
11

12 for i := 0 to |tiles| − 1 do
13 tiles [i] .startIndex := ∑0≤j<i tiles [j] .numRegions;
14 end
15 parallel foreach tile do // re-label regions
16 foreach pixel do
17 if IsRepresentative(pixel) and Find(pixel).isValid

then
18 parents [pixel] := tile.startIndex;
19 tile.startIndex := tile.startIndex + 1;
20 end
21 end
22

after visiting each pixel may be quite costly, so we provide for
‘accumulators’ of intermediate values that will later be refined
into the actual features. The sum of each band’s pixel intensities
∑ Bi and the sum of their squares ∑ B2

i will yield the standard
deviation. Fitting an ellipse to each region allows inferring their
orientation and eccentricity (the ratio of major to minor axes). We
seek an ellipse with identical moments and therefore accumulate
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mp,q = ∑ XpYq (p, q ∈ N0, p + q ≤ 2) for each of the region’s
pixels with coordinates (X, Y). [144] These values are stored as
64-bit floating point numbers to mitigate precision issues while
still enabling vectorization via SSE2 instructions. It is also possible
to estimate the region perimeter from a single sequential scan of
its pixels. To that end, we count numEqual, the number of edges
whose endpoints have the same label. The central pixel is copied
into each lane of a vector and compared to a vector comprising the
four surrounding pixels. This results in 32-bit masks with all bits
set if the corresponding value was equal. After packing the masks
into 16-bit representations, we compute their byte-wise horizontal
sum by means of the PSADBW7 SSE2 instruction. A final set of
accumulators involve the maximum X and Y coordinates, which
will be used to construct the axis-aligned bounding box (AABB).
As with the parent indices, we can avoid explicit initialization of
the accumulators if their initial values are zero. This is the case for
accumulators representing counters or maximum values. However,
AABBs also require the minimum coordinates. To avoid a special
case for their initial values, we instead track the maximum additive
complement of the coordinates. Their values can be represented as
floats without loss, so we are able to update the four maxima with
a single SIMD MAXPS8 instruction.

Each CPU core is assigned a strip of the image, for which it
updates a set of accumulators. Pairs of accumulator arrays are
successively reduced to a single global array by taking the max-
imum of the coordinates, and adding all other values. We then
compute each region’s features from its accumulator. Let n = m0,0

denote the region size. The i-th band average µi is ∑ Bi/n, with

standard deviation ∑ B2
i −nµ2

i
n . The centroid, i.e. center of mass, is

(
m1,0

n , m0,1
n ). For the ellipse fit, we require the normalized sam-

ple central moments µ1,1 =
m1,1

n − m1,0m0,1, µ2,0 =
m2,0

n − m1,0m1,0

and µ0,2 =
m0,2

n − m0,1m0,1. The orientation is then given by
7Packed Sum of Absolute Differences (Byte to Word).
8MAXimum Packed Single-precision value.
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1
2 arctan( 2µ1,1

µ2,0−µ0,2
) [145]. To form an equal-area ellipse, we divide

the moments by µ2,0µ0,2 − µ1,1µ1,1 [146, p. 283]. Solving for the

major and minor axes yields
√

8
a+c∓d , with d =

√
(a− c)2 + 4b2

[147]. The AABB is constructed from the X, Y maxima and the
difference between the largest possible value and the accumulated
maxima of the coordinates’ complements. Finally, a measure of the
region’s compactness is useful for differentiating ragged natural
structures from more regular man-made objects. The isoperimetric
quotient 4πn

L2 is frequently used in this context [148]. Its maximum
of 1.0 is reached in the case of a circle. To estimate the perimeter
L, let us review the properties of an 8-connected grid graph. A
region touches 8n edges, and each boundary pixel accounts for 1
to 7 of them. We assume an average of two such edges for every
pixel-width segment along the region’s boundary. numEqual is
obtained by dividing the PSADBW accumulator by 510, because it
is the horizontal sum of pairs of 8-bit mask halves, each of which
are 0 or 255. Therefore, L ≈ 8n−numEqual

2 .

6.6 Performance

We first examine the complexity of the proposed algorithm. Count-
ing sort is O(n). Region merges via Union-Find are effectively
O(1) for all practical input sizes9 [150]. All other operations are
also constant-time and reside in loops with iteration counts in
O(n), so the complexity is (quasi-)linear in the input size. Because
this also applies to the MSER and GBS algorithms, we must com-
pare their implementations. Table 6.1 lists the performance10 of
each algorithm for a representative 8.19 MPixel subset of a 16-bit,

9We view the inverse Ackermann function as a constant ≤ 5 for n < 1080. Note
that an attempt at replacing Union-Find with a ‘true linear algorithm’ [149] introduces
a constant factor of 8.

10Measured on a X5365 CPU (3.0 GHz, 32 GiB FB-DDR2 RAM) running Windows
XP x64. Our implementation is compiled with ICC 11.0.066 /Ox /Og /Ob2 /Oi /Ot
/fp:fast /GR- /Qopenmp /Qftz /QxSSSE3.

94



Table 6.1: Performance comparison of various segmentation algo-
rithms.

Algorithm MPixel/s

MSHLK N/A
MS 0.09
GBS 0.45

MSER 2.53
PHMSF 12.80

4-component (RGB + NIR) Quickbird image of Karlsruhe. Our
PHMSF algorithm does more work (computing region features
and processing the original four-component 16-bit pixels rather
than an 8-bit RGB version), yet significantly outperforms the other
algorithms. In this test it is 138 times as fast as MS [151], 28 times
as fast as GBS [152] and 5 times as fast as our similarly optimized
implementation of MSER. Note that (32-bit) MSHLK exhausted its
address space after a single diffusion iteration. Our PHMSF imple-
mentation requires much less memory: the working set is about
7.1 GB for a 1.97 GB image, which equates to 13.5 bytes/pixel. Its
parallel speedup varies between 2 and 3.2 when using four cores.
In the latter case, sequential processing only accounts for 2% of pro-
cessing time; the limiting factor is memory bandwidth. RightMark
Memory Analyzer [153] measures read and write throughputs of
roughly 3 500 MB/s and 2 500 MB/s on this system. Having ana-
lyzed the elapsed times and minimum amounts of data that must
be transferred to/from memory during the credit computation,
region compression/counting/relabeling and feature computation
phases, we can conclude that each is at least 85% efficient. Further
increases in performance or scalability are contingent on additional
memory bandwidth.

We have therefore measured the performance on our newer
dual-CPU system. As shown in Table 6.2, the throughput has
improved by a factor of two to four. Our NUMA-aware imple-
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Table 6.2: Performance on large 16-bit satellite images, prepro-
cessed by the pan sharpening algorithm of Chapter 5.

Satellite MPixel MPixel/s

IKONOS 54 28.6
QuickBird 74 43.2
QuickBird 136 50.4
QuickBird 229 46.2
QuickBird 937 48.3

mentation benefits from the higher memory bandwidth enabled
by the system’s dual memory controllers. Larger images also of-
fer increased parallelism because tile interiors grow faster than
their borders. Note that the largest, near gigapixel-scale image is
processed within 20 seconds!

6.7 Conclusion

We have presented a new (quasi-) linear-time segmentation algo-
rithm that provides useful results at previously unmatched speeds.
Applications include automatic wide-area appraisal of the suit-
ability of roofs for solar panels, object-based change detection,
environmental monitoring and rapid updates of land-use maps.
From an algorithm engineering standpoint, we believe this to be
the first non-trivially-parallel segmentation algorithm. Its scalabil-
ity is chiefly limited by the memory bandwidth of current SMP
systems. Future work includes statistical estimation of the edge
weight thresholds and efficiently computing a segment neighbor-
hood graph. We are also interested in applying this algorithm
towards segment-based fusion of high-resolution electro-optical
and hyperspectral imagery.
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Chapter 7

Antialiased Line Rasterization

This chapter presents an efficient, high-quality software line ras-
terizer for annotating very large images with segment contours.
Although many fast line drawing algorithms are known, most
produce thin and ‘jagged’ lines due to aliasing. Wu’s algorithm
includes a crude approximation of antialiasing, which still includes
noticeable step edges. Even hardware multisampling cannot en-
tirely eliminate aliasing. Instead, the proper solution is to remove
high-frequency components by pre-filtering the lines. We improve
upon previous ad-hoc filters by deriving the optimal (in the sense
of minimizing aliasing) cubic polynomial filter. When combined
with our new, optimized variant of the Gupta-Sproull line draw-
ing algorithm, this outperforms Wu’s fast approximation while
delivering much higher-quality results.

A preliminary version of this chapter appeared in the proceed-
ings of the Fourth Pacific-Rim Symposium on Image and Video
Technology [154].

7.1 Introduction and Related Work

Scan-converting line segments for raster-based displays or images
is a basic building block of many computer graphics tasks. One
application involves plotting the contours of image segments to
aid human recognition of man-made objects. Current CPUs can
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easily annotate high-definition video frames, but the timely pro-
cessing of gigapixel-scale imagery remains an interesting challenge.
GPUs cannot yet handle such large amounts of data due to texture
dimension and memory size1. We therefore consider software line
drawing approaches from the literature.

Fast Line Drawing Algorithms

Bresenham’s Midpoint algorithm [155] is the foundation of most
subsequent line-drawing schemes. The Digital Differential Ana-
lyzer is similar, but avoids conditional branches, which are expen-
sive given the deep pipelines of modern CPUs. Several further
attempts have been made to speed up the underlying algorithm.
Gardner [156] and Boyer/Bourdin [157] take advantage of symme-
try by simultaneously drawing from both ends of the line segment.
Although the iteration count is halved, this leads to more complex
memory access patterns, which may be problematic for hardware
prefetchers. Rokne [158] additionally considers two pixels at a
time, again halving the iteration count at the expense of many
mispredicted conditional branches. Bresenham’s run-length slice
algorithm [159] avoids redundant per-pixel decisions by comput-
ing the length of horizontal pixel runs. However, special cases for
every possible run-length [160] would greatly increase the code
size. These optimizations appear to be intended for long lines, but
a survey of applications [161] has found that 87% of line segments
are less than 17 pixels long. This suggests favoring simple main
loops over complex strategies for reducing the iteration counts.
With regard to output quality, all of the above algorithms produce
thin lines with ‘jaggies’ (a stairstep effect due to aliasing).

1The 4 GiB memory limit on current GPUs is due to DRAM density and interface
width. It can be doubled by means of the recent GDDR5 standard’s clamshell mode [10],
but still falls far short of the 192 GiB available to commodity workstations.
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Antialiasing

Antialiasing is desirable because it removes spurious information
and enables subpixel accuracy localization by the human visual
system [162]. The cause of aliasing is shown by the sampling the-
orem, which indicates a function may be faithfully reconstructed
from samples spaced 1

2 fN
apart if it has no energy in frequencies

≥ fN. Otherwise, the higher frequencies are aliased to lower fre-
quencies. There are three ways to mitigate this [163]. Pre-filtering
the image prior to reconstruction can reduce the effects of aliasing,
at the cost of losing detail and sharpness. However, we are not
willing to presuppose specific reconstruction filters [164] for the
monitor/printer/eye. Sampling at a higher resolution is exem-
plified by hardware multisampling, but has practical limits and
cannot entirely avoid aliasing. Instead, pre-filtering the continuous
objects prior to sampling is the most promising route.

Wu’s antialiasing technique [165] involves shading pairs of pix-
els straddling a line in proportion to their vertical distance from the
line. This corresponds to a box filter – a crude approximation of the
requisite low-pass filter that allows some high frequencies to pass
through [166]. However, the algorithm has found widespread use
due to its simplicity and speed, and efficient implementations [167]
using fixed-point arithmetic are available.

Gupta and Sproull (GS) [168] propose low-pass filtering with
a conical point-spread function (PSF). Being radially symmetric,
its convolution with a line only depends on the perpendicular
distance to the line. The distance is incrementally computed by an
algorithm similar to Bresenham’s, and the result of the convolution
retrieved from a small lookup table. This framework is useful
because it allows antialiasing with any radially symmetric PSF
at little additional cost. However, it is unclear why a conical
PSF was chosen – perhaps the numerical integration of a more
complex function was too expensive at the time. The use of ad-hoc
PSFs is also exemplified by more recent GPU-based prefiltering
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approaches [169, 170, 171] using conical, Gaussian and exponential
PSFs. We point out their weaknesses and derive an optimal PSF
(in the sense of minimizing aliasing) in Section 7.4.

Chen [172] suggests a variant of the GS algorithm that supports
floating-point endpoint coordinates, which do not arise in our
application, and slightly accelerates the main loop by computing
perpendicular distances via trigonometry.

We describe further major optimizations that result in a 24.6-
fold speedup in Section 7.2. Our implementation therefore out-
performs Wu’s fast approximation according to the measurements
in Section 7.3. However, the new PSF yields much higher-quality
lines, as shown by Section 7.5.

7.2 Algorithm

We begin with Chen’s [172][p. 23] improved version of GS (Algo-
rithm 7.1). The underlying assumption that lines reside in the
first octant can be avoided by transposing/mirroring. To avoid
redundant pointer arithmetic, we combine the x, y arguments of
IntensityPixel (defined in Section 7.4) into a current-position
pointer; incrementing y is accomplished by adding ‘pitch’ (the size
of a scanline). Expensive bounds checks for every pixel are avoided
by special-casing horizontal and vertical lines and otherwise disal-
lowing points lying on the image border. Our main improvement
is avoiding the mispredicted conditional branch in line 10 by using
a bitmask derived from the sign of the discriminator d to select
between possible summands for d and D (the signed perpendicular
distance from the line, c.f. Algorithm 7.1). In fact, the common
subexpressions allow unconditionally adding the first term 2∆y
to d (∈ Z) and then subtracting (2∆x) & mask. Doing the same
for D is safe because the IEEE-754 floating-point representation
of 0.0 is all zeros. Negating the discriminator d allows obtaining
the mask via signed right shift, which replicates the sign bit. We
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Algorithm 7.1: DrawLineChen(x0, y0, x1, y1)
1 x := x0; y := y0; ∆x := x1− x0; ∆y := y1− y0;
2 d := 2∆y− ∆x ; // discriminator
3 D := 0 ; // signed perp. distance
4 (sinα, cosα) := (∆y, ∆x)/

√
∆x2 + ∆y2;

5 while x ≤ x1 do
6 IntensifyPixel(x, y− 1, D + cosα);
7 IntensifyPixel(x, y, D);
8 IntensifyPixel(x, y + 1, D− cosα);
9 x := x + 1;

10 if d ≤ 0 then
11 D := D + sinα;
12 d := d + 2∆y;
13 end
14 else
15 D := D + sinα − cosα;
16 d := d + 2(∆y− ∆x);
17 y := y + 1;
18 end
19 end

use SSE’s fast but approximate reciprocal square root instruction
to compute 1/

√
∆x2 + ∆y2. For details, please refer to the C++

source code [173].
These low-level optimizations are specific to the SSE instruction

set and require arithmetic bit shifts. However, both are supported
by a large proportion of current and future computer systems,
and the overall 24.6-fold speedup (see Section 7.3) may be the
decisive factor in determining the feasibility of this algorithm for
demanding applications.
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7.3 Performance

The complexities of the GS variants and Wu algorithm are linear,
because each coordinate on the major axis is visited exactly once
and all operations are O(1). However, their constant factors vary
according to the number of pixels shaded and the efficiency of
the loop bodies. These effects are best observed by measuring2

the time required to draw many long lines, thus de-emphasizing
function call and setup overhead. Table 7.1 shows the resulting
‘fillrates’ when drawing 64 Ki parallel lines (sorted by increasing y
coordinate) with slope ≈ −1/8 and length ≈ 8 Ki. Note the large

Table 7.1: Performance (peak fillrate) of various line rasterizers.

Algorithm MPixel/s

Original GS (Table) 107
Parallel GS (Table) 847

Wu (2 pixels) 1898
Optimized GS (Table) 2387

Optimized GS (Polynomial) 2634

ratio of 24.6 between the ‘original’ (Chen’s improved variant of the
GS algorithm) and our final optimized version. Shared-memory
parallelization achieves a nearly linear speedup for all algorithms
(processors can draw lines independently unless they write to the
same cache line, in which case hardware cache coherency incurs
some overhead). A careful implementation [167] of Wu’s simple
line drawing algorithm is 2.2 times as fast, because it only requires
a few fixed-point operations per loop and shades two instead of
three pixels. However, our optimized variant of GS is even faster,
outperforming the original version by a factor of 2.8 and Wu’s

2Test platform: dual W5580 CPUs (3.2 GHz, 48 GiB RAM) run-
ning Windows XP x64. Compiler: ICC 11.1.082 /Ox /Og /Ob2 /Oi
/Ot /Qipo /GA /MD /GS- /fp:fast=2 /GR- /Qopenmp /QxSSE4.1
/Quse-intel-optimized-headers.
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algorithm by 1.3. Its performance is on par with the fillrate of a
mid-range GPU (NVIDIA GeForce 9600 GT) [174].

Table lookup versus arithmetic

Interestingly, the final version of our implementation is an addi-
tional 10% faster due to SIMD-based evaluation of the cubic poly-
nomial. This result deserves closer analysis, because conventional
wisdom suggests that (small) lookup tables outperform arithmetic.
The dependency chain of a Horner scheme ((h3x + h2)x + h1)x + h0

involves three additions and multiplications. These instructions
have had fairly consistent latencies of 3 or 4 cycles in the x86 mi-
croarchitectures of the past 10 years [56], for a total of ≈ 24. This
is in contrast to a table lookup that only requires a multiplica-
tion, rounding/truncation and load. Whereas memory latency
continues to increase with respect to the CPU clock [42], a small,
frequently accessed table can be assumed to reside in the L1 cache.
The total latency is therefore on the order of ≈ 12 cycles. A first
attempt to close this gap might involve vector instructions to speed
up the computation of < (h0, h1, h2, h3)T, (1, x, x2, x3)T >. However,
the high latency of the SSE4.1 instruction set’s horizontal dot prod-
uct erodes any benefits. To realize the full potential of SIMD, the
application must compute several independent results in parallel.
When amortized over the four operations per SSE instruction, each
evaluation of the polynomial only requires 6 cycles. In this case,
we are limited to the three pixels straddling the line, because the
computation of subsequent pixels requires different operands. In
general, we recommend replacing table lookups with (e.g. cubic)
interpolation polynomials whenever multiple independent results
can be computed in parallel.
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7.4 ‘Optimal’ Antialiasing

It remains to be seen how IntensifyPixel computes a pixel’s
intensity as a function of r, the distance from the line. The antialias-
ing framework of Section 7.1 calls for convolving the line L(x, y)
with a radially symmetric PSF h(r). Because the line’s orientation
does not affect h, we can assume a vertical line L(x, y) = δ(x− r).
Under the common assumption that pixels are regularly-spaced
infinitesimal points, the line’s influence on them is∫ ∞

−∞

∫ ∞

−∞
L(x, y)h(

√
x2 + y2) dxdy (7.1)

=
∫ ∞

−∞
h(
√

r2 + u2) du (7.2)

Following Turkowski [175], we refer to this function as the “radial
line transformation” RLT(r). As explained in Section 7.3, approxi-
mating it with a cubic polynomial allows for efficient computation.
We therefore integrate numerically for 1 000 uniformly spaced
values of r between 0 and our application’s maximum distance
R =
√

2 and compute the least-squares fit. This yields the function

RLT(r) = 0.5344r3− 1.4886r2 + 0.0086r + 1.0014 (7.3)

for use in the modified GS scheme (Algorithm 7.2). Note that

Algorithm 7.2: IntensifyPixel(x, y, r)
1 intensity := 210× RLT(|r|);
2 SetPixel(x, y, intensity);

the intensity remains well within its 8-bit range despite RLT(0)
exceeding 1.0 because the chosen scaling factor of 210 is fairly low
(we find overly bright lines subjectively less appealing). For reasons
of efficiency, there is currently no special handling of overlapping
lines by blending or setting a pixel to the maximum of the previous
and current intensity.
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We now derive the optimal polynomial (‘optPoly’) PSF h that
was used to compute the above RLT(r). The ideal low-pass filter
multiplies a function’s Fourier transform by a rectangle function,
which corresponds to convolution with sinc(x) := sin(πx)

πx . This is
not possible in practice due to its infinite support, and truncating it
yields a function whose Fourier transform has considerable ripples
in the passband [166]. Another means of constructing a low-pass
filter involves minimizing the aliasing energy [164]∫ ∞

−∞
|F(ω)H(ω)|2 dω−

∫ Ω

−Ω
|F(ω)H(ω)|2 dω (7.4)

for Ω = π
1[pixel] , a filter h(r), the image f (ξ) and their respective

Fourier transforms H(ω) and F(ω). The prolate-spheroidal wave
function is known to concentrate its energy within a minimal inter-
val [−Ω, Ω]2 in the spectral domain [176]. However, these functions
are difficult to compute and have negative side lobes, which is prob-
lematic because negative pixels cannot be represented by current
display technology. Barkans [177] proposes a positive bias to allow
for pixels darker than the (gray) background, but notes that this
workaround reduces the contrast. Clipping negative values incurs
ringing [164], and an iterative scheme for diffusing the resulting
error to neighboring pixels [178] is too slow. We currently only
render white-on-black lines, but wish to leave open the possibility
of drawing in color via alpha-blending and therefore require a
nonnegative filter kernel. The existence of minimax polynomials
with arbitrarily low approximation error [179] motivates restricting
our analysis to this simpler class of functions. We build upon the
energy concentration approach of Lin et al. [180], which uses the
method of Lagrange multipliers for maximization. Please refer to
the Mathematica scripts [173] for details. Our more accurate nu-
merical integration yields a difference of 6% vs. the values given for
a circular filter with radius R = 2. The largest eigenvalue indicates
99.25% of the filter’s energy is concentrated in the lower frequen-
cies, which justifies the simplifying assumption of a non-negative
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cubic polynomial. However, instead of the stated normalization
criterion, we ensure

∫ R
−R h(r) dr = 1; the corresponding author has

confirmed this was also their intention. For R =
√

2, we obtain the
normalized function

h(r) = 0.2824r3− 0.6819r2 + 0.0120r + 0.5999 (7.5)

This function is plotted alongside other ad-hoc PSFs in Figure 7.1,
and their respective RLTs are shown in Figure 7.2. The cone’s RLT
(a) falls off rather quickly, leading to thinner lines (c.f. Section 7.5).
The Exp2 function (b) has an undesirable rise near the distance cut-
off. Mitchell and Netravali’s cubic polynomial (c) admits negative
values, which is unacceptable per the discussion above.

0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.1

0.2

0.3

0.4

(a) Cone [168]

0.5 1.0 1.5

0.2

0.4

0.6

0.8

1.0

(b) Exp2 [169]

0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.2

0.4

0.6

0.8

(c) MN 1
3 , 1

3 [181]
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.1

0.2

0.3

0.4

0.5

0.6

(d) h(r) (New)

Figure 7.1: Our optimal filter polynomial and other ad-hoc kernels;
note the differing (application-defined) domains.
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Figure 7.2: Radial line transforms (RLT) for the above filter kernels.

7.5 Results

Evaluating the quality of an antialiasing scheme would ideally be
accomplished by comparing the reconstruction of point samples
to the original continuous object representation. However, the
reconstruction filter depends on the particular output device. Com-
paring the sampled points to a supersampled output requires a
decimation filter, the choice of which is also tied to the reconstruc-
tion. In addition, a perceptual similarity metric remains elusive.
We therefore resort to a survey among the research staff. When
presented with the randomly ordered algorithms’ results3 at three
zoom scales (Figure 7.3), 4 of 39 preferred the Wu lines, 11 favored
GS, and the rest (61%) voted for the proposed approach. In a direct
comparison, 25 of 33 respondents described our line as thicker or
darker than GS. 14 perceived it to be smoother or more uniform

3Pixels are inverted for better visualization on white backgrounds.
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Figure 7.3: The results of the Wu, GS and optPoly algorithms at 1x,
2x and 4x magnification with nearest-neighbor resampling.

and 2 reported the opposite. Conversely, 9 of 30 indicated GS
was thinner, and 8 noticed more ‘jaggies’. Our line is perceived
as more uniform because its gaps between the middle pixels are
less severe, as shown by the difference image in Figure 7.4. The

Figure 7.4: GS result subtracted from the optPoly output; darker
pixels indicate larger differences.

maximum deviation of 45 gray levels is reached at the edges and
is caused by our line’s increased thickness. Although beneficial for
a subsequent segmentation (contours are more likely to be closed),
the corresponding blurriness might be deemed detrimental to the
human vision system’s positional acuity. However, this is not the
case – intensity gradients are in fact the basis for sub-pixel object
localization [162]. It is therefore natural to consider the number
of distinct gray levels, of which ≈ 64 may be distinguished [182].
The GS approach is obviously limited by its 24-entry table. Wu’s
algorithm generates 38 values, whereas our wider kernel and
floating-point arithmetic allow for 55 values, thus explaining the
increased ‘smoothness’ of the resulting lines. Additional results3

for various slopes are shown in Figure 7.5.
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(a) Wu [165]

(b) GS [168]

(c) optPoly

Figure 7.5: Results for lines with slopes ±1,±1/3,±3, 0, ∞.
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7.6 Conclusion

This chapter has described a highly-optimized variant of the Gupta-
Sproull line drawing algorithm. Its value lies in outperforming
even Wu’s fast approximation algorithm while enabling high-
quality antialiasing, which can reduce eyestrain when analyzing
large datasets.

An analysis of convolution with an ideal line has demonstrated
the flaws of commonly used ad-hoc point spread functions. We
instead derive an optimal polynomial filter (in the sense of mini-
mizing aliasing) and show the resulting improvement in quality.

The filter kernel is equally applicable towards CPU and GPU-
based algorithms. Interestingly, our software implementation’s
throughput reaches the fillrate of a mid-range GPU. This is made
possible by SIMD operations, which are now widely available and
invalidate some previous design and implementation tradeoffs (e.g.
table lookups vs. arithmetic).

Applications of the new, highly efficient algorithm include
annotating gigapixel-scale images with segment contours to aid
human recognition of man-made objects, or plotting the many
productions of the GESTALT system [183]. To ease its adoption
and allow for reproducing our results, the source code [173] is
being made available.

Future work may involve special-case handling of the line end-
points, and using blending to avoid artifacts in overlapping lines.
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Chapter 8

Synthetic Aperture Radar

We have considered the problem of automatically screening for
man-made objects (MMO) in infrared (IR) videos and synthetic
aperture radar (SAR) imagery. Because such objects are often
highly reflective in SAR and distinctive in IR, both problems can be
reduced to finding point-like objects. Thresholding (usually locally
adaptive) only utilizes the radiometric information and ignores the
maximum object size, which means reflection artifacts or large re-
gions often cause ‘false alarms’, that is, reporting a point-like object
where none exists. Recently, a level-set approach has been pro-
posed that takes speckle (multiplicative noise in SAR images) into
account and reliably separates targets from the background [184].
However, its computational cost is almost certainly too high for
large datasets or real-time video analysis. An alternative model
called the “hotspot transform” was developed for IR Search and
Track applications [185]. This operator (defined in Section 8.1)
searches for local maxima that are entirely surrounded by a ring
of darker pixels, thus suppressing bright but non-point-shaped
regions. Its computational cost for n pixels and maximum tar-
get size R is O(nR2). We believe this technique to be suitable for
screening in both IR and SAR data and have developed a novel
algorithm that reduces its complexity to the lower bound of O(nR).
Our sophisticated implementation, described in Section 8.2, reuses
previously computed intermediate results, ensures the working
set fits in caches via pipelining, and achieves an additional 27-fold
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speedup via vectorization and parallelization. The attained process-
ing rate of 72 MPixel/s on a single workstation enables screening
entire satellite datasets within seconds (c.f. Section 8.4). Results
are given for airborne SAR images in Section 8.3. The algorithm
is suitable for detection of MMO and as a pre-processing step for
multi-class target recognition via support vector machine (SVM).

An earlier version of this chapter was presented at the Ad-
vanced Maui Optical and Space Surveillance Technologies confer-
ence [186].

8.1 Hotspot Operator

The hotspot operator for extracting point-like regions and sup-
pressing background pixels was introduced in [185]. Because the
point texture and shape are generally highly variable, template-
based pattern matching cannot be applied. Instead, the hotspot
model considers interest points to be pixels that are (without loss
of generality) brighter than their surroundings. With the point size
unknown (bounded only by a maximum), we consider multiple
neighborhoods of concentric square ‘shells’

S(xc, yc, r) = {I(y, x) | ‖(xc, yc)− (x, y)‖∞ = r}

centered on the pixel I(yc, xc) in the image I . Their maximum
pixel values are compared with the central pixel. Negative differ-
ences indicate the pixel is surrounded by uniformly darker pixels,
thus attesting to a point region within that shell. The hotspot trans-
formation is defined by the largest of these values for all shells up
to a maximum radius R (clamping negative values to zero):

hotspot(xc, yc) = max
[
I(yc, xc)−

R
min
r=1

max S(xc, yc, r), 0
]

This operator suppresses background pixels and thus enhances
freestanding point-like regions as desired. It is simple and intuitive,
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requiring no parameters other than R, which is defined by the
maximum object size and sensor resolution. Unfortunately a naïve
implementation has complexity proportional to R2. This can be
improved by taking advantage of a property of the minimum and
clamping operations shown in Lemma 8.1:

∃b ∈ S(xc, yc, r) > I(yc, xc)⇒ (8.1)
hotspot(xc, yc) = 0∨
minMax(xc, yc) < b ≤ max S(xc, yc, r)

If a shell contains a pixel brighter than the central pixel, then it will
not affect the hotspot value and the rest of its pixels can be skipped.
This has been observed to be 18 times as fast as the original im-
plementation, although the exact speedup depends on the data.
Whereas the worst-case quadratic complexity remains unchanged,
it is difficult to construct such inputs and they will certainly not
be encountered in practice. A drawback of this algorithm is that
it cannot make effective use of vectorization due to its reliance
on conditional branches. Accumulating shell maxima via 16-way
SIMD only resulted in a speedup of two due to unaligned memory
access penalties and the overhead of copying ranges into registers.

8.2 Algorithm

We will now build upon related theoretical work to engineer a new
and improved algorithm for computing hotspots.

Recall the computation of the maximum of the 8r pixels that
constitute a shell of radius r. Given a transposed copy of the image,
this operation can be reduced to four “Range Maximum Queries”
RMQ(i, j) = maxj

k=i A[k] in an array or image row/column A. Alon
and Schieber have shown that such queries (generalizable to any
semigroup) can be answered in O(1) time after near-linear time
preprocessing [187]. The hotspot operator’s complexity is therefore
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bounded by O(n log n + nR), a significant improvement versus the
previous algorithm’s O(nR2) cost.

We refer to [188] for a complete presentation of the RMQ algo-
rithm. The basic idea is to pre-calculate the maxima of power-of-
two intervals. Each query can be split into two (possibly overlap-
ping) intervals; the result is the larger of the two maxima. Katriel
et al. suggest an efficient scheme for preprocessing that computes
prefix and suffix maxima and interleaves them into a single ar-
ray [189]. This only requires O(n log R) preprocessing time and
space, because the query lengths are bounded by 2R + 1. Bender
and Farach-Colton also describe a scheme that first divides the
input array into blocks of size O(log n) [188]. This reduces the pre-
processing time to O(n) at the price of more complicated queries
with separate handling of inter- or intra-block queries. Fischer
and Heun have recently introduced a similar succinct algorithm
with optimal space requirements [190], but its queries are also too
expensive in practice.

A disadvantage shared by all of these RMQ-based approaches
is their mediocre locality – both interval length and the query in-
dices affect the location of the preprocessed value, which makes
for non-sequential accesses. One alternative would be to cast the
hotspot operator as a stencil computation, maintaining four sepa-
rate maximum accumulators for overlapping left, right, up, down
intervals. Hotspot values would be computed as the maximum of
these shell components, thus achieving the desired and optimal
complexity of O(nR). A disadvantage of this method lies in its
high space requirements.

To bridge the gap between the redundant calculations of the
existing method and the practical costs of theoretically motivated
approaches, we have engineered a new algorithm that combines
ideas from RMQ and stencil computation. The first key change
is to store only a single set of row- and column interval maxima.
These are used to generate all shells of a certain range of sizes
and are then combined in-place to yield intervals of twice the
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length. Besides folding preprocessing into the main algorithm
and reducing memory use, this also improves locality. The second
important step is to organize the algorithm as a pipeline so that
the working set fits entirely into common L2 caches. We iterate
over image rows exactly once; starting from the current row, previ-
ously calculated interval maxima of successively increasing lengths
are used to compute the shells for previous rows. The resulting
tentative shell maxima are accumulated into the output buffer.
This principle is illustrated by Figure 8.1. Because only the last

iterate over rows

Wavefront



2: update minMaxima

1: read IM; 3: combine IM

1: read IM

Figure 8.1: Pipelined iteration loop (‘wave’) over rows: read interval
maxima, use them to update the central row’s minMaxima, and
then combine the oldest (no longer needed) interval maxima.

4R + 2 rows are accessed, a cache of that size can entirely absorb
the cost of repeated accesses. Algorithm 8.1 gives an overview of
computing the hotspot image H. The actual transformation occurs
in Algorithm 8.2, which builds upon Algorithm 8.3 for finding the
maximum value on a given shell in constant time. Algorithm 8.4
then combines interval maxima to double their lengths.
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ShellMax{4, 8} computes the maximum pixel value on a shell
from row- and column interval maxima, as shown in Figure 8.2.
In this case, r = 2 and IL = 4. Because a radius-r shell consists

r = 2

Figure 8.2: Assembling a shell from four 1-D intervals.

of 8r pixels and interval lengths are powers of two, it is easy to
see that this scheme applies to all shells of radius r = 2i(i ∈ N0).
Each of the remaining R − log2 R shells requires eight interval
maxima – their four sides are pieced together from the maxima of
two overlapping intervals.

Analysis

Our new scheme requires 2n values of auxiliary storage for the
row- and column interval maxima. Because the inputs are copied
there and not used afterwards, their storage can be reused for
accumulating the minMaxima outputs. The pipelined nature of the
algorithm enables a further reduction to 4R + 2 rows by organizing
them as a sliding window, but that would require computing the
row’s position within the window during every access.

We now examine the running time of the algorithm, which
is somewhat obscured due to the four nested loops: height ×
dlog2 Re ×width× numIM(IL). Note that rearranging their order is
possible because the innermost loop does not depend on width, so
we combine that and height into a factor n. The number of interval
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Algorithm 8.1: Hotspot (I 7→ H)
1 for (x, y) do minMax [y, x] := ∞;
2 MinMaxima(I);
3 for (x, y) do
4 H [y, x] := max(I [y, x]−minMax [y, x] , 0);
5 end

Algorithm 8.2: MinMaxima
// Compute length 2 interval maxima

1 RM := I , CM := I ;
2 for y := 1 to height do CombineIntervalMaxima(y, 1);

// Pipelined iteration over rows
3 for wavefront := 1 to height do
4 row := wavefront;
5 for L := 1 to dlog2 Re do
6 IL := 2L; // intervalLength
7 for x := 1 to width do ShellMinMaxima ((row, x), IL)

;
8 oldestRow := row− IL/2;
9 CombineIntervalMaxima(oldestRow, IL);

10 row := oldestRow− 2IL;
11 end
12 end

Algorithm 8.3: ShellMinMaxima
input : pos, IL
// Compute min S for interval maxima of length IL

1 minMax [pos] := min(minMax [pos] ,ShellMax4 (pos, IL));
2 for r := IL/2 + 1 to IL− 1 do
3 minMax [pos] :=

min (minMax [pos] ,ShellMax8 (pos, r));
4 end
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Algorithm 8.4: CombineIntervalMaxima
input : y, IL

1 for x := 1 to width do
2 RM [y, x] := max (RM [y, x] , RM [y, x + IL]);
3 CM [y, x] := max (CM [y, x] , CM [y + IL, x]);
4 end

// Postcondition: IL now doubled

maxima accesses is defined by ShellMinMaxima: numIM(IL) =
4 + 8(IL/2− 1) = 4IL− 4, so:

timePerPixel =
dlog2 Re

∑
L=1

4(2L)− 4 = O(R)

The total complexity is therefore O(nR), which is optimal because
the transformation must examine each shell and pixel.

Further Improvements

Although the new algorithm is asymptotically optimal, there re-
mains significant room for improvement. The Random-Access
Machine (RAM) model underlying typical complexity measures
has the virtue of simplicity but often mis-characterizes the real-
world performance [191]. With cache misses now two orders of
magnitude more expensive than basic operations1, these effects
can no longer be ignored. We will discuss some low-level issues
in the context of the hotspot operator, but the existence of such
techniques and the magnitude of the resulting improvements are
likely to be of independent interest.

As explained in Chapter 2, unlocking the full potential of CPUs
requires vectorization and parallelization. In this case, the result
was a 27-fold speedup. Local filters are generally suitable for data-
parallel processing, but the hotspot operator is limited by memory

1DDR3 memory modules’ 60 ns latency equates to 160 cycles at 2.66 GHz [192].
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bandwidth due to its numerous and non-sequential memory ac-
cesses. Figure 8.3 shows the scalability of the new algorithm on
three different SMP systems. Parallel efficiency is only 50% on
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Figure 8.3: Scalability of the new algorithm on three SMP systems.
Memory bandwidth is the limiting factor and is more plentiful on
the AMD system.

a 16-core Intel machine. The memory bottleneck hypothesis is
confirmed by better scalability on an AMD machine with multiple
memory controllers and correspondingly higher bandwidth. Note
that such systems have NUMA characteristics, which requires care
to ensure each thread’s working set is in local memory [193].

The next step is vectorization, which is possible because the
per-pixel computations are independent and can be mapped to the
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SSE2 instruction set. We obtain an additional speedup of 3.6 via
8-way SIMD, which is helpful but surprisingly low. It turns out
that the cause is a limitation in the Intel Core 2 microarchitecture
regarding the handling of unaligned loads, an issue that will be
discussed in depth in Appendix B.2. The takeaway is that the
new algorithm will benefit from improvements in this area and the
move towards multiple memory controllers, further improving its
performance and scalability.

Another detail that has been considered is the overhead of so-
called page walks. Each memory access requires virtual-to-physical
address translation in the memory mapping unit (MMU), which in-
volves examining multi-level page tables. A Translation Look-aside
Buffer (TLB) serves to decrease this overhead by storing the result
of the translation for a small number of recently-accessed memory
pages. This specialized cache has strict latency requirements and
can therefore only accommodate a few entries. If it is overloaded
by random accesses in a large memory region, overhead increases
dramatically because several accesses to memory are needed [42].
The TLB coverage could be increased by using large memory pages
(e.g. 4 MiB instead of 4 KiB on x86 architectures). However, our
algorithm rarely accesses memory because it is designed to operate
in-cache.

One final microarchitectural issue that has affected the design
of the algorithm is also cache-related. The Intel i7 and AMD fam-
ily 10h processors include a shared L3 cache, whereas Intel Core 2
CPUs consist of logical processor pairs sharing an L2 cache. In
both cases, the caches are unpartitioned; unnecessary evictions can
result from threads stealing each other’s space. Having processors
that share a cache work together on a task is about 7% faster in
some cases due to the reduction in contention. Even if partitioning
strategies are improved, the cooperative scheme has the advan-
tage of avoiding replication of common data and increasing the
effective size of the cache. For working sets approaching a logical
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processor’s share of the cache, the cache-aware method achieves a
speedup of 1.45 due to its avoidance of thrashing.

8.3 Results

We show the results of the hotspot transformation on a Dornier-
SAR image of Kühlsheim (Figure 8.4(a)), a scene containing both
man-made objects and vegetation. We are particularly interested

(a) Logarithm of input (b) Hotspot-transform

Figure 8.4: Airborne SAR image of Kühlsheim (65 cm resolution)
and the result of the hotspot transformation.

in vehicles and other compact objects. The hotspot transformation
(radius R = 32) suppresses uniformly bright regions, because
such pixel’s shells are generally not darker than the center pixel.
After the hotspot transformation, vehicle pixels and the remaining
background pixels differ by three orders of magnitude (107 vs. 104).
To improve the visualization, we compute connected components of
nonzero pixels and discard objects smaller than an arbitrary cutoff
of 12.7 m2. The result is shown in Figure 8.4(b). Subsequent steps
in the image processing pipeline examine the candidate regions,
e.g. classifying them via SVM.
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8.4 Performance

The point of developing a new algorithm for the hotspot operator
was to enable near-real-time processing of large datasets. Its success
is determined by a performance comparison with the previous
‘skip-shell’ algorithm, which depends on the properties of the input
data. To ensure relevant findings, we measure the throughput for
a set of seven ‘typical’ high-resolution SAR images of different
areas captured by air- and spaceborne sensors. The results are
shown in Table 8.1 and indicate a maximum speedup of 14.7.
Note that the image dimensions influence the running time of

Table 8.1: Comparison of throughputs on various SAR datasets.
Our new algorithm is up to 14.7 times as fast as the skip-shell
algorithm.

Dataset Width Height Old MPixel/s New MPixel/s

Diepholz 2 928 28 810 13.9 205.4
Kühlsheim 4 096 30 791 27.2 131.8

K. 0162 4 096 34 415 27.3 123.1
K. 1882 2 928 35 560 14.3 203.4

Walldürn 4 096 20 656 25.8 131.6
TSX579 11 328 6 246 35.4 72.2
TSX580 10 752 6 122 33.2 72.7

our algorithm. Wider datasets increase the working set size, and
dimensions divisible by multiples of the cache line size may lead to
associativity conflicts. However, the slowest recorded throughput
is still 102 times as fast as an in-house FPGA implementation of
the basic algorithm on a Virtex-II.

8.5 Conclusion

Automatic screening for man-made objects in SAR or IR datasets
entails detecting compact pixel clusters. The hotspot transforma-

122



tion successfully suppresses other pixels, but is computationally
expensive. We have introduced a new algorithm with linear com-
plexity in the pixel count and object size, which is asymptotically
optimal. Our sophisticated implementation avoids redundant com-
putations by means of a divide and conquer scheme and organizes
its memory accesses so the working set fits in the cache. Paral-
lelization and vectorization yield a combined 27-fold speedup. A
single workstation is able to process 72 MPixel/s, which allows
rapid screening of large datasets. The algorithm is used as a pre-
processing step for multi-class target recognition in MSTAR SAR
data via support vector machine.
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Chapter 9

Discussion

This work has described techniques for maximizing performance
on modern CPUs, namely vectorization, parallelization and ac-
counting for the memory hierarchy. They have given rise to 10–
100x speedups in seven separate algorithms, thus emphasizing
their practical relevance and wide applicability. In several cases,
the resulting software exceeds the reported performance of special-
ized hardware. This provides somewhat unexpected input to the
current discussion of which computer architecture is suitable for
a given task. General-purpose CPUs can still compare favorably,
even when performance goals are ambitious. Although some of
our techniques are designed for specific microarchitectures, the
past has shown that their basic principles remain valid for a decade
or more.

The above conclusions stand for themselves, but our main objec-
tive was to design and implement an efficient processing chain for
image analysis. Although this work does not constitute progress on
understanding the image contents, nor realize a full-fledged demon-
stration application, it provides useful building blocks for the
increasingly accepted object-based image analysis paradigm [194].
We have introduced new algorithms for each step that significantly
outperform previous approaches while maintaining high-quality
results. This is important because modern imaging sensors deliver
ever-increasing amounts of data. Our results demonstrate the feasi-
bility of processing aerial imagery of 100 km × 100 km areas at 1 m
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resolution within minutes, which goes far beyond our initial goal
of 2 hours.

Each link of the chain is designed as part of a coherent whole.
For example, the pan sharpening algorithm arranges for edge-
preserving smoothing to aid the subsequent segmentation, and our
image I/O module includes support for statistics and tiled pixel
formats to allow for better viewing of large images. The processing
chain serves to shoulder the brunt of the expensive pixel-based
processing required for various image analysis tasks. Subsequent
applications need not be as concerned with performance, because
they can draw upon a more compact and higher-level object-based
representation of the image. This general approach of optimizing
relatively small modules responsible for most of the execution time
provides major performance benefits at a reasonable cost.

However, much remains to be done. Building further appli-
cations besides our change-detection prototype would indicate
whether the current set of image features is sufficient for a wider
range of tasks. In particular, extracting and simplifying segment
contours would be helpful for matching and classifying objects. We
have developed algorithm prototypes for both problems (including
vectorization of the inherently sequential polygon simplification
task) that lead us to believe a throughput comparable to the rest of
the processing chain may be attained.

Some applications also require accuracy guarantees. An anal-
ysis of the maximum deviation in the pan-sharpening stage and
an error model for the segmentation could prove useful. Both of
these steps also require user-defined parameters for the degree of
smoothing and minimum object contrast, respectively. It would be
helpful to automatically derive both from the input datasets.

Returning once again to the general issue of performance,
we believe that many of the techniques developed herein are
broadly applicable to other domains. For example, efficient asyn-
chronous transfers can speed up I/O-intensive applications, includ-
ing external-memory algorithms. An awareness of the memory
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hierarchy, especially working set size and cache pollution, should
improve nearly any algorithm that frequently accesses memory.
Finally, modern multi-core CPUs with SIMD instruction sets offer
a surprising degree of parallelism. The combination of optimized
algorithms and a balanced architecture (including high single-core
performance for the serial portion of parallel algorithms) can allow
a CPU to remain competitive with other specialized architectures.
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Appendix A

Virtual-Memory Counting Sort

We present a fast radix sorting algorithm that builds upon a
microarchitecture-aware variant of counting sort. Taking advan-
tage of virtual memory and making use of write-combining yields
a per-pass throughput corresponding to at least 89% of the sys-
tem’s peak memory bandwidth. Our implementation outperforms
Intel’s recently published radix sort by a factor of 1.64. It also
compares favorably to the reported performance of an algorithm
for Fermi GPUs when data-transfer overhead is included. These re-
sults indicate that scalar, bandwidth-sensitive sorting algorithms re-
main competitive on current architectures. Various other memory-
intensive applications can benefit from the techniques described
herein.

This chapter has undergone minor revisions since its publica-
tion at Euro-Par 2011 [195].

A.1 Introduction

Sorting is a fundamental operation that is a time-critical compo-
nent of various applications such as databases and search engines.
The well-known lower bound of Ω(n log n) for comparison-based
algorithms no longer applies when special properties of the keys
can be assumed. In this work, we focus on 32-bit integer keys,
optionally paired with a 32-bit (or larger) value. This simplifies the
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implementation without loss of generality, because applications
can often replace large records with a pointer or index [196]. The
radix sort algorithm is commonly used in such cases due to its
O(n) complexity. In this report, we present a 1.64-fold performance
increase over results recently published by Intel [197].

The remaining sections are organized in a bottom-up fashion,
with Section A.2 dedicated to the basic realities of current and
future microarchitectures that affect memory-intensive programs
and motivate our approach. We build upon this foundation in
Section A.3, showing how to speed up counting sort by taking
advantage of virtual memory and write-combining. Section A.4
applies this technique towards a novel variant of radix sort. The per-
formance of our implementation is evaluated in Section A.5. Band-
width measurements indicate the per-pass throughput is nearly
optimal for the given hardware. Its two CPUs outperform a Fermi
GPU when accounting for data-transfer overhead.

A.2 Software Write-Combining

We begin with a description of basic microarchitectural realities that
are likely to have a serious impact on applications with numerous
memory accesses, and show how to avoid performance penalties
by means of Software Write-Combining. These topics are not new,
but we believe they are often not adequately addressed.

The first problem arises when writing items to multiple streams.
An ideal cache with at least as many lines could exploit the writes’
spatial locality and entirely avoid non-compulsory misses. How-
ever, perfect hit rates are not achievable in practice due to limited
ways of associativity a [198]. Because only a lines can be mapped
to a cache set, any further allocations from that set would result in
the eviction of one of the previous lines. If possible, applications
should avoid writing to many different streams. Otherwise, the
various write positions should map to different sets to avoid thrash-
ing and conflict misses. For current L1 caches with a = 8 ways, size
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C = 32 KiB and lines of B = 64 bytes, there are S = C
aB = 64 sets,

and bits [lg B, lg B + lg S) of the destination addresses should dif-
fer (e.g. by ensuring the write positions are not a multiple of
SB = 4 KiB apart).

A second issue is provoked by a large number of write-only
accesses. Even if an entire cache line is to be written, the previous
destination memory must first be read into the cache. Although
the corresponding latency may be partially hidden via prefetch-
ing, the cache line allocations remain problematic due to capacity
constraints and eviction policy. Instead of displacing write-only
lines that are not accessed after having been filled, the widespread
(pseudo-)Least-Recently-Used strategy displaces previously cached
data due to their older timestamp. An attempt to avoid these
evictions by explicitly invalidating cache lines (e.g. with the IA-32
CLFLUSH instruction) did not yield meaningful improvements.
Instead, applications should use non-temporal streaming store instruc-
tions that write directly to memory, thus avoiding cache pollution
because they circumvent the cache.

This leads directly to the next concern: single memory accesses
involve significant bus overhead. The architecture therefore com-
bines neighboring non-temporal writes into a single burst transfer.
However, currently microarchitectures only provide four to ten
write-combine (WC) buffers [199]. Non-temporal writes to multi-
ple streams may force these buffers to be flushed to memory via
‘partial writes’ before they are full. The application can prevent
this by making use of Software Write-Combining [200]. The data
to be written is first placed into temporary buffers, which almost
certainly reside in the cache because they are frequently accessed.
When full, a buffer is copied to the actual destination via consec-
utive non-temporal writes, which are guaranteed to be combined
into a single burst transfer.

This scheme avoids reading the destination memory, which
may incur relatively expensive Read-For-Ownership transactions
and would only pollute the cache. It works around the limited
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number of WC buffers by using L1 cache lines for that purpose.
Interestingly, this is tantamount to direct software control of the
transparently managed cache.

We recommend the use of such Software Write-Combining
whenever a core’s active write destinations outnumber its write-
combine buffers. Fortunately, this can be done at a fairly high
level, because only the buffer copying requires special vector loads
and non-temporal stores (which are best expressed by the SSE2
intrinsics built into the major compilers).

A.3 Virtual-Memory Counting Sort

We now review Counting Sort of n elements with keys in [0, m) and
describe an improved variant that makes use of virtual memory
and write-combining.

The naïve algorithm first generates a histogram of the n keys.
After computing the prefix sum to yield the starting output location
for each key, each value is written at its key’s output position, which
is subsequently incremented.

Our first optimization goal is to avoid the initial counting pass.
We could instead insert each value into a per-key container, e.g.
a list of data blocks. However, this incurs some overhead for
checking whether the current bucket is full. Preallocating space
for m arrays of size n is more efficient, because items can simply
be written to the next free position (c.f. Algorithm A.1, introduced
in [201]). This algorithm only writes and reads each item once,
a feat that comes at the price of nm space. Although this appears
problematic in the Random-Access-Machine model, it is easily
handled by 64-bit CPUs with virtual memory organized into pages
of size p. Physical memory is only mapped to pages when they are
first accessed1, thus reducing the actual memory requirements to

1Accesses to non-present pages result in a page fault exception. The application
receives such events via signals (POSIX) or Vectored Exception Handling (Windows)
and reacts by committing memory, after which the faulting instruction is repeated.
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Algorithm A.1: Single-pass counting sort
1 storage := ReserveAddressSpace(nm);
2 for i := 0 to m− 1 do next [i] := in;
3 foreach key,value do
4 storage [next [key]] := value;
5 next [key] := next [key] + 1;
6 end

O(n + mp). The remainder of the initial allocation only occupies
address space, of which multiple terabytes are available on 64-bit
systems.

Having avoided the initial counting pass, we now show how
to efficiently write values to storage using the write-combining
technique described in Section A.2. Our implementation initializes
the next pointers to consecutive, naturally aligned, cache-line-sized
buffers. A buffer is full when its (post-incremented) position is
evenly divisible by its size. When that happens, an unrolled loop
of non-temporal writes copies the buffer to its key’s current output
position within storage. These output positions are also stored in
an array of pointers.

A.4 Radix Sort

After a brief review of radix sorting, we introduce a new vari-
ant based on the virtual-memory counting sort described in Sec-
tion A.3.

A radix sort successively examines D-bit ‘digits’ of the K-bit
keys. They are characterized by the order in which digits are
processed: starting at the Least Significant Digit (LSD), or Most
Significant Digit (MSD).

An MSD radix sort partitions the items according to the current
digit, then recursively sorts the resulting buckets. Although it no
longer needs to move items whose previously seen key digits are
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unique, this is not especially helpful when the number of passes
K/D is small. In fact, the overhead of managing numerous (nearly
empty) buckets makes MSD radix sort less suited for relatively
small n.

By contrast, each iteration of the LSD variant partitions all items
into buckets by the current key digit. This amortizes the bucket
setup cost over the number of elements and avoids the possibility
of load imbalance for parallelization at the price of increased data
copying.

To reduce this overhead and also parallel communication, we
make use of “reverse sorting” [202], in which one or more MSD
passes partition the data into buckets, which are then locally sorted
via LSD. This turns out to be even more advantageous for NUMA
systems because each processor is responsible for writing a contigu-
ous range of outputs, thus ensuring the operating system allocates
those pages from the processor’s NUMA node [193].

Let us now examine the pseudocode of the radix sort (Algo-
rithm A.2), choosing K = 32 for brevity and D = 8 to allow
extracting key digits without masking. Each Processing Element
(PE) first uses counting sort to partition its items into local buckets
by the MSD (digit = 3). Note that items consist of a key and value,
which are adjacent in memory (ideally within a native 64-bit word,
but larger combinations are possible in our implementation via
larger user-defined types). When all are finished, the output index
of the first item of a given MSD is computed via prefix sum. Each
PE is assigned a range of MSD values, sorting the buckets from
all PEs for each value. Skewed MSD distributions can cause load
imbalance. However, this could be resolved via special treatment
of large buckets2. The local sort entails K/D− 1 iterations in LSD
order. The first copies all other PEs’ buckets into local memory. The
second to last pass also computes the last digit’s histogram, which
allows writing directly to the output positions in the final pass.
Note that three sets of buckets are required, which makes heavy

2Sorting buckets larger than n/|PE| using multiple PEs.
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Algorithm A.2: Parallel Radix Sort
1 parallel foreach item do
2 d := Digit(item, 3);
3 buckets3 [d] := buckets3 [d] ∪ {item};
4

5 Barrier;
6 foreach i ∈

[
0, 2D

)
do

7 bucketSizes [i] := ∑PE |buckets3 [i]|;
8 end
9 outputIndices := PrefixSum(bucketSizes);

10 parallel foreach bucket3 ∈ buckets3 do
11 foreach item ∈ bucket3 ∀PE do
12 d := Digit(item, 0);
13 buckets0 [d] := buckets0 [d] ∪ {item};
14 end
15 foreach bucket0 ∈ buckets0 do
16 foreach item ∈ bucket0 do
17 d := Digit(item, 1);
18 buckets1 [d] := buckets1 [d] ∪ {item};
19 d := Digit(item, 2);
20 histogram2 [d] := histogram2 [d] + 1;
21 end
22 end
23 foreach bucket1 ∈ buckets1 do
24 foreach item ∈ bucket1 do
25 d := Digit(item, 2);
26 i := outputIndices [d] + histogram2 [d];
27 histogram2 [d] := histogram2 [d] + 1;
28 outputArray [i] := item;
29 end
30 end
31
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use of virtual memory (3× 2D × |PE| = 6144 times the input size).
Whereas 64-bit Linux grants each process 128 TiB address space,
Windows limits this to 8 TiB, which means only about 1.4 GiB of
inputs can be sorted3.

We briefly discuss additional system-specific considerations.
The radix 2D was motivated by easy access to each digit, but is also
limited by the cache and TLB size. Because of the many required
TLB entries, we map the buckets with small pages, for which the
Intel i7 microarchitecture has 512 second-level TLB entries. To
increase TLB coverage, we use large pages for the inputs. The
working set consists of 2D buffers, buffer pointers, output positions,
and 32-bit histogram counters. This fits in a 32 KiB L1 data cache if
the software write-combine buffers are limited to a single 64-byte
cache line. To avoid associativity and aliasing conflicts, these arrays
are contiguous in memory. Interestingly, these optimizations do
not detract from the readability of the source code. Knowledge
of the microarchitecture can also be applied towards middle-level
languages and enables principled design decisions.

A.5 Performance

We characterize the performance of our sorting implementa-
tion by its throughput, defined as n

t1−t0
, where n is the num-

ber of items and t0 and t1 are the earliest and latest start and
finish times reported by any thread. The test platform con-
sists of dual W5580 CPUs (3.2 GHz, 48 GiB DDR3-1066 mem-
ory) running Windows XP x64. Our implementation is compiled
with ICC 11.1.082 /Ox /Og /Oi /Ot /Qipo /GA /GR- /GS- /EHsc

/Qopenmp /QaxSSE4.2. When sorting 350 M uniformly distributed
32-bit keys generated by the WELL512 algorithm [203], the basic
algorithm (‘VM only’) reaches a throughput of 391 M items/s, as

3This limitation could be circumvented by estimating bounds for bucket sizes via
sampling. In the unlikely case that they are exceeded, a new sample would be drawn
and the process repeated.
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Table A.1: Throughputs [million items per second] for 32-bit keys
and optional 32-bit values.

Algorithm K=32,V=0 K=32,V=32

VM only 391 238
Intel x2 400 307

GPU+PCIe 501 303
KNF MIC 560 (?)
VM+WC 657 452

shown in the second column of Table A.1. After enabling write-
combining (‘VM+WC’), performance nearly doubles to 657 M/s.
Intel has reported 240 M/s for the same task and a single but iden-
tical CPU [197]. For a fair comparison with our dual-CPU system,
we doubled their throughput, which optimistically assumes their
algorithm is NUMA-aware, scales perfectly and is not running
at a lower memory clock (because our DDR3-1066 is at the lower
end of currently available frequencies). We must also divide their
result by the given speedup of 1.2 due to hyperthreads, because
those are disabled on our machine. This (‘Intel x2’) yields 400 M/s;
the proposed algorithm is therefore 1.64 times as fast. A separate
publication has also presented results [204] for the Many Integrated
Cores architecture. The Knights Ferry processor provides 32 cores,
each with four threads and 16-wide SIMD. The simulation (‘KNF
MIC’) shows a throughput of 560 M/s. Our scalar implementation
is currently 1.17 times as fast when running on 8 cores.

Recently, a throughput of 1 005 M/s was reported on a GTX
480 (Fermi) GPU [205]. However, this excludes driver and data-
transfer overhead. For applications in which the data is generated
and consumed by the CPU, we must include at least the time re-
quired to read and write data over the PCIe 2.0 bus. Assuming
the peak per-direction bandwidth of 8 GB/s is reached, the aggre-
gate throughput (‘GPU+PCIe’) is 501 M/s. Our implementation,
running on two CPUs, therefore outperforms this algorithm on
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a current top-of-the-line GPU by a factor of 1.31 despite lower
transistor counts (2× 731 M vs. 3 000 M) and thermal design power
(2× 130 W vs. 275–300 W).

Similar measurements and extrapolations for the case of 32-
bit keys associated with V = 32-bit values are given in the third
column of Table A.1. Because the slowdown is less than a factor
of two, the implementations are at least partially limited by com-
putation instead of bandwidth. Intel’s algorithm is more efficient
in this regard, with only a 1.3-fold decrease vs. our factor of 1.45.
The additional data transfers over PCIe render the GPU algorithm
uncompetitive.

Because radix sort is bandwidth-sensitive, it is also interesting
to examine performance for a varying number of processors. We
manually distribute OpenMP threads across CPU packages and
cores (in that order) to make use of all available memory controllers.
Our NUMA-aware implementation scales linearly with the number
of threads, as shown by Figure A.1. To explain the 95% parallel
efficiency, we measured the total traffic at each socket’s memory
controller. Because this information is not available from current
profilers such as VTune (which use per-core performance coun-
ters), we have developed a small kernel-mode driver to provide
access to the model-specific performance counters in the Intel i7
uncore4. Uncached writes constitute the bulk of the write combin-
ers’ memory traffic and are therefore of particular interest. They
are apparently reported as Invalid-To-Exclusive transitions and
can thus be counted as the total number of reads minus ‘normal’
reads [206]. We find that 2 041 MiB are written, which corresponds
to 64 Mi items × 8 bytes per item × 4 passes (slightly less because
our final pass cannot use non-temporal writes when the output po-
sition is not aligned). Surprisingly, 2 272 MiB are read – about 10%
more than expected. This amount seems to be influenced by the
number of threads. Possible causes may include coherency traffic
or page walks and will be investigated in future work. However,

4The part of the socket not associated with a particular core.
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Figure A.1: Linear scalability on two quad-core CPUs with a
NUMA factor of 1.5.

we can provide a conservative estimate of the bandwidth utiliza-
tion. Given the pure read and write bandwidths (38 687 MB/s and
28 200 MB/s) measured by RightMark [153], the minimum time
required for 4 reads and writes of 175 M 8-byte items is 343 ms,
which is 89% of the total measured time. This calculation does not
include write-to-read turnaround [207, p. 486], so there is even less
room for improvement than indicated.

The previous measurements concern large numbers of items.
We now study performance over a wider range of input sizes. The
elapsed time per item, shown in Figure A.2, varies inversely with
the number of items n due to amortization of thread-startup over-
head. Performance is within 10% of the best measurement when
n ≥ 26 Mi, or n ≥ 21 Mi in the case of the approximated Gaussian
distribution [208]. It is initially surprising that this distribution
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does not require more time to sort than uniformly distributed num-
bers. However, interleaving buckets in the LSD passes (successive
buckets are assigned to different threads) reduces load imbalance,
and increased occupancy of the central buckets improves locality
at the memory page level.
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Figure A.2: Time per item for various input sizes and distributions.

A.6 Conclusion

We have introduced improvements to counting sort and a novel
variant of radix sort for integer key/value pairs. Bandwidth mea-
surements indicate our algorithm’s throughput is within 11% of
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the theoretical optimum for the given hardware. It outperforms
the recently published results of Intel’s radix sort by a factor of
1.64 and also outpaces a Fermi GPU when data transfer overhead
is included. These results indicate that scalar, bandwidth-sensitive
sorting algorithms still have their place on current architectures.
However, achieving this level of performance requires awareness of
the underlying microarchitecture and some degree of tuning. Our
implementation encompasses 5 700 lines of C++ (including tests),
plus 40 000 lines of shared infrastructure. A demo executable [209]
capable of generating or reading 32-bit integers, sorting and effi-
ciently writing them to disk is being made available so that our
measurements may be reproduced.

Future Work. Although carefully engineered, our implementa-
tion is not yet a general solution for all possible sorting applications.
Radix sort is limited to relatively small integer keys, and we also as-
sume at least one of the key digits (e.g. MSB) is reasonably equally
distributed. Skewed (e.g. constant) distributions currently result in
load imbalance. This could be avoided by sorting extremely large
buckets from the MSD phase using multiple processors.

We are also interested in testing on larger multi-socket ma-
chines with higher NUMA factors5 and investigating details of
the memory subsystem that reduce effective bandwidth. Finally,
we believe the general software write-combining technique can
provide similar speedups for other memory-intensive applications.
In particular, comparison-based sample sort is also expected to
benefit from our implementation techniques.

5The ratio between remote and local memory latency.
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Appendix B

Implementation Details

B.1 Software Engineering

Building the image processing chains described in this work from
the ground up was a sizable undertaking spanning 2008–2011. The
author developed over 100 000 lines of C++ code (LOC), which
are organized into 12 dynamic-link libraries to avoid repetitive
compilation. This allows a full rebuild of optimized binaries within
90 s using the Intel compiler on a 12-core system equipped with
an SSD. The Microsoft Visual Studio 2010 integrated development
environment (IDE) is augmented with Intel’s Parallel Studio 2011,
which encompasses a compiler, tools for detecting race conditions
or memory errors, and a profiler (formerly known as VTune) for
measuring where execution time is spent and reading the proces-
sor’s performance counters.

Eight standalone applications have been developed for testing
the modules in isolation. The Subversion (SVN) software con-
figuration management system was used to maintain versioning
information, recording a total of 38 992 file changes in 2 767 revi-
sions. Besides providing information security, this was valuable
for showing what changed since the last known-good version and
reverting edits made during failed experiments. Extensive pre- and
postcondition checks and self-tests built into the software exposed
many errors early on. A custom ASSERT macro enabled easier
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analysis of the problem (even in optimized builds) by displaying
error messages with a record of the previously called subroutines
and the values of their local variables.

As mentioned in Section 4.2, we use special C++ functions
(‘SIMD intrinsics’) and classes provided by the compiler to generate
SIMD code. Please refer to the commented source code of the line
rasterizer [173] for a complete example of their syntax and some
low-level optimization techniques.

B.2 Unaligned Memory Accesses

It was mentioned in Section 8.4 that vectorization of the hotspot
operator yields a surprisingly low speedup and that the cause is
related to Intel CPUs’ poor handling of unaligned memory accesses.
Because this issue seriously impacts performance and is likely to
affect other applications as well, we will now delve into the details.
A preliminary version of this section appeared in [186].

The Intel Core 2 microarchitecture delays SIMD load operations
that cross a cache line boundary (‘splits’) [53, p. 83] by 12 cycles.
This issue is documented in [200, p. 5-38], which recommends us-
ing LDDQU1 to load two aligned vectors and shift the data into place,
thus avoiding a cache line split. An unfortunate design trade-off in
the Core 2 microarchitecture has replaced the implementation of
this instruction with that of the architecturally equivalent MOVDQU2,
which remains affected by splits. The newer Intel i7 microarchitec-
ture reduces the cost of splits to 2 cycles.

In the meantime, several workarounds have been attempted for
the hotspot operator: substituting two 64-bit loads to decrease the
probability of splits is consistently 4% slower. Using PALIGNR3 to
emulate LDDQU works but requires the misalignment to be known

1LoaD Double-Quad Unaligned.
2MOVe Double-Quad Unaligned.
3Packed ALIGN Right.
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at compile-time. Realizing that access patterns for each interval
length are fixed, several ShellMax functions were generated via
templates and called through function pointers. This turns out to
be 20% slower, probably due to mis-predicted indirect branches. A
final alternative lies in manually aligning accesses, which is feasible
because shell maxima computations only require three distinct
misalignments. Unfortunately the SSE instruction set does not
allow variable shifts of full registers and restricting all operations
to the lower halves of registers decreases performance by about
25%. Regardless, the cost of two aligned loads, two shift and one
OR-operation vastly outweighs the expense of cache line splits. It
appears that straightforward use of MOVDQU is currently the best
option, especially because AMD microarchitectures also handle
unaligned loads with only slight penalties.

We now show the performance impact of cache line and page
splits on Core 2 CPUs in the context of the hotspot operator. As-
suming 2-byte values and 64-byte L1D cache lines, 7 out of the
32 possible misalignments should cross a cache line boundary.
Instrumentation shows that the actual number is 22.13%. This is
slightly more than expected because the misalignments are not
quite uniformly distributed. Similar arguments apply for page
splits; assuming sizes of 4 KiB, we expect a ratio of 7 out of 2 048
and observe 0.34%, which is in good agreement. Using the per-split
costs of 12 and 224 cycles given in [210] and supposing a 3 GHz
processor, we therefore expect 1.42 s of CPU time to be lost due to
the splits. A variant of the hotspot algorithm that rounds down
all addresses to their natural alignment runs 1.33 s faster than the
normal single-core version. This measurement matches the above
prediction save for a slight difference due to the overhead of mask-
ing the lower address bits. Cacheline- and page split penalties
have therefore been shown to be responsible for increasing total
computation from 2 223 ms to 3 641 ms, i.e. a factor of 1.63!

To gain a better understanding of the cause, we have used the
VTune profiler to observe certain CPU performance counters. The
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first surprising observation is a large amount of L1D misses despite
the fact that these accesses are local. This and a cache line split
penalty equal to the L2 access latency leads to the presumption that
such loads are simply not serviced by the L1 cache and must go
through L2. Page splits apparently have a different effect because
they do not cause an excessive amount of L2 misses. Instead
we note a significant number of TLB misses even though large
pages are used and working set does not exceed TLB capacity.
This seems to point towards page splits requiring a page walk,
especially because the overhead is similar to that reported in [42, p.
21]. These findings are in accordance with [210].

Although the above discussion may be deemed highly system-
specific, it is also quite relevant for real-world performance. It
is safe to say that processors will generally — and perhaps to a
surprising degree — penalize unaligned memory accesses. Because
access patterns are intimately tied to the design of algorithms, this
issue must be kept in mind during their design.

B.3 LVT File Format

Section 3.3 stated our requirements for an image file format, par-
ticularly integer and floating-point data types, compression, tiling,
image pyramids and flexible metadata. We are not aware of an
existing format that covers these needs, aligns data for efficient
access and avoids conversion overhead. This has motivated the
development of a new Lossless Virtual Texture (LVT) layout. Let
us emphasize that it is not intended to replace existing formats.
Instead, it can be seen as an optimized alternate representation that
provides rapid access to image tiles, thus enabling smooth naviga-
tion and zooming within the full-resolution pixels. Its high-level
structure is straightforward: the image tiles are followed by an
arbitrary number of variable-sized ‘sections’ containing metadata.
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In the following, we provide precise definitions of these compo-
nents and our design rationale. The data structures are described
via C++ syntax, with u8, u16, u32 and u64 respectively denoting
unsigned 8, 16, 32 and 64-bit integer fields.

Tiled Pyramid

To allow smooth navigation within large images at low zoom scales,
the format provides for a multi-resolution pyramid of ‘levels’. Level
0 is defined as the original image embedded within a square whose
dimensions are a power of two. Subsequent levels are half as wide
and high as their predecessor. Each level is split into individual
tiles. We truncate the pyramid after a level fits into a single tile
because subsequent levels are never used.

It is important to carefully arrange tiles to improve locality and
enable a parallel external-memory algorithm for computing the
pyramid from the original image. A level’s tiles can be ordered
according to a 2-D Space Filling Curve (SFC) [211], thus decreasing
the average distance of nearby tiles within the file, which may
reduce the number and cost of disk seeks. A 3-D mapping obtained
by including the level would be wasteful, because the pyramid
only fills a small part of the 3-D space. By contrast, contiguous tile
indices (the number corresponding to a tile’s position on the space-
filling curve) would allow simple and efficient lookups of a tile’s
location. More importantly, defining the curve to match the order
in which higher-level tiles are generated from their predecessors
would minimize memory use when creating the image pyramid.
We introduce a novel mapping with both of these properties.

Consider a 2× 2 quartet of level 0 tiles, denoted ‘quad’, from
which one level 1 tile may be computed via downsampling. Af-
terwards, the quad’s four tiles are no longer needed and may be
removed from memory once they have been written to the file. The
curve we seek must first visit the quad, the resulting level 1 tile,
three other neighboring quads and their level 1 tiles, and then the
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resulting level 2 tile. Let us begin with a 2-D Z-order curve (the
‘Peano’ curve of [211] rotated 90 degrees clockwise). In accordance
with standard practice, we transform X and Y coordinates to a Z
index by interleaving their bits via SIMD [212]. The resulting value
is shifted left by dlog(numLevels+ 3)e bits. In the lower bits,
we encode either the quadrant [0,3] of the level 0 tiles, or 3 plus
the level index of any higher-level tiles generated from the quad.
Indices of tiles above level 0 are offset by the cumulative sum of
the distance between Z neighbors in previous levels, thus shaping
the 3-D space into a pyramid. A tile at level i + 1 immediately
follows the level i tile that is its fourth and final quadrant, which
is the desired property that allows constructing the pyramid with
minimal memory use.

Tiles are stored in the order induced by this curve. Depending
on the tileEncoding field, each either consists of uncompressed,
band-interleaved pixels, or the compressed variable-length LASC
representation of them. Because the next tile’s offset is determined
from its predecessor’s size, the tiles are stored back-to-back. This
requires a parallel compression pipeline to stall until the sizes of all
preceding tiles are known. We prefer the resulting slight increase
in compression time over larger file sizes because generating large-
scale images is usually an off-line process.

Sections

Metadata within the file is organized into variable-length ‘sections’.
Each is identified by a four-character code. Applications may define
for their own use any sequence beginning with ‘~’ and continuing
with three uppercase letters. This definition of the LVT file format
includes six built-in section types, which shall be discussed in turn.
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LVTD

To allow rapid localization of sections without incurring expensive
hard-disk seek operations, version 3 of the “LVTD” section is a
directory of fixed-length entries – one per section, including its own.
Entries must be sorted by increasing file offset, and the directory
must reside immediately prior to the end of the file. The number
of entries is derived from the section size, and each includes the
following fields:

u8 identifier[4];
u32 version;
u32 encoding;
u32 checksum;
u64 size;
u64 offset;

identifier is an application-defined character sequence or one
of the paragraph headings in this text. version indicates the
version number of the section definition. Because the format is in-
tended as a simple intermediate representation, we do not provide
for backward nor forward compatibility. A 32-bit integer is larger
than necessary, but we prefer to use a processor’s native integer
type to avoid more complicated instruction encodings for software
reading the fields. encoding must be 0, indicating the section is
uncompressed. checksum must be 0 and is reserved for possible
verification of section integrity in future versions. size indicates
the length [bytes] of the actual section. offset points to its lo-
cation in the file. To simplify asynchronous I/O (c.f. Section 3.2),
both of these values must be a multiple of sectionAlignment,
which is currently 4 KiB. 64-bit integers avoid restrictions on the
size and position of sections in large files. Note the deliberate
power-of-two size of the directory entries, which simplifies address
computations.
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PARA

Version 3 of the “PARA” section indicates the parameters that
governed the creation of the LVT file:

u32 interpolation;
u32 tileEncoding;
float noDataValue;
float ignoreValue;
u32 binFunction;
u32 numThreads;

interpolation specifies the interpolation method when down-
sampling: nearest neighbor (0) or bilinear (1). tileEncoding in-
dicates whether tiles are uncompressed (0) or encoded with LASC
(1), described in Chapter 4. noDataValue is the pixel component
value used to initialize pixels that lie outside the original image.
Tiles whose pixel components are all equal to this value are omit-
ted from the file. Setting it in accordance with the most common
luminance in the image may reduce the file size. ignoreValue
allows ignoring all pixel components with a certain value when
computing statistics. To avoid this, specify an ‘impossible’ value
that does not occur in the image. binFunction indicates whether
the histogram bin function is linear (0) or logarithmic (1) with base
e. numThreads specifies the maximum number of threads in the
parallel pipeline for computing the image pyramid. This value
is of no use to readers of an LVT file, but is written to disk for
convenience.

STAT

Version 1 of the “STAT” section begins with basic image character-
istics: u32 width, height, pixelFormat;
width and height indicate the number of valid pixels in each
dimension, which need not be a multiple of tileDim (256).
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pixelFormat is a convenient and compact encoding of the ‘com-
ponent type’ (the representation of a digital number indicating the
intensity within a spectral band for each pixel) and the number of
components per pixel. The size of the component type is stored
within the lower 8 bits to allow efficient computation of storage
requirements. To distinguish between 32-bit integers and single-
precision floating-point numbers, exactly one of three additional
bits must be set. Bit 15 (32 768) indicates an unsigned integer, bit 14
denotes a signed integer and bit 13 signals a floating-point number.
The number of components (up to 4 096) is stored in bits 16 and
above. The section also stores statistics for each band:

float ignoreValue;
u64 numIgnored;
double min, max, mean, stddev, median, mode;
u64 histogram[256];

ignoreValue specifies the value of a component to ignore when
computing the statistics. This is useful for images with background
or no-data areas, which would otherwise affect the mean value. To
avoid branching or code duplication, this functionality is always
present. However, it can effectively be disabled by specifying ‘im-
possible’ values such as infinity. numIgnored counts the number
of components that were ignored. min and max are the minimum
and maximum component values encountered. They are initialized
to the largest positive and smallest negative value representable
as a double, respectively, and remain unchanged if all values are
ignored. mean, stddev (standard deviation) and median are the
eponymous statistical measures. mode is the most frequent value,
computed as the lower bound of the histogram bin whose count is
the largest. histogram indicates how many components’ values
fall into each of its bins, which are equal-width subdivisions of the
interval [min, max]. The use of 64-bit integers avoids overflow and
inexact counts.
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RANG

Version 6 of the “RANG” section is a compressed representation of
the range (i.e. offset and size) each tile occupies in the file. Because
tile sizes are always multiples of tileAlignment (which again
corresponds to the minimum 4 KiB sector size), we divide by that
value and store the results in unsigned 16-bit integers referred to as
quantized sizes. Tile indices include small gaps of unused values
because not all quads generate tiles of levels > 1. To avoid storing
ranges for such indices, we introduce ‘groups’ of quads denoted
QuadGroup. The data structure describing them is designed to fit
within a single cache line:

u64 firstTileOffset;
u16 quadSizes[4];
u16 tileSizes[24];

firstTileOffset is the file offset of the first tile in this group.
Being a multiple of tileAlignment, we let the lower 12 bits
denote whether this group includes tiles of level > 5. quadSizes
are the quantized total sizes of each quad in the group. tileSizes
stores the quantized sizes of 4+1 tiles in 3 quads, and a total of
4+5 tiles’ sizes for the last quad, because it is the only one that
may generate multiple higher-level tiles. The offset of a tile of a
given index is retrieved by advancing to the group’s first offset,
skipping past prior quads within the group and then previous tiles
inside the quad. If the tile’s level does not exceed the array capacity,
its size is also retrieved from tileSizes. Otherwise, the tile is
assumed to be uncompressed and its size is computed from the
image pixel format. However, the lower bits of firstTileOffset
allow eliding tiles whose pixels are all equal to the no-data value;
their sizes are considered to be zero.

Although QuadGroup minimizes wasted space due to non-
present high-level tiles, embedding images within a square power-
of-two grid for the sake of simple Z coordinate computation may
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also lead to large ranges of unused indices. We mitigate this with
an additional QuadChunk data structure:

u64 firstGroupOffset;
u64 unused;
u16 sizes[8];
u32 validGroups[8];

firstGroupOffset is the offset of the first of eight 32-group
clusters that constitute a chunk. sizes holds the total sizes of
each cluster. validGroups is a bit field indicating which of each
cluster’s groups are present. The QuadGroup governing a given
tile is located by starting at the first offset, skipping previous clus-
ters and then adding the size of QuadGroup times the number of
prior nonzero bits in the cluster’s validGroups field. This data
structure enables 256-fold compression of unused QuadGroup at
the expense of a single cache-line access and some minor com-
putation. The “RANG” section consists of QuadChunk instances
covering all possible tile indices followed by as many QuadGroup
as needed.

PROJ

To allow associating pixels with geographic coordinates, version 1
of the optional “PROJ” section stores information about the map
projection:

double ulx, uly, lrx, lry;
i32 zone;
char band;

ul and lr denote the upper-left and lower-right corners, for
which we store x and y coordinates. zone is -1 if the other
values are invalid/unknown, -2 to indicate the coordinates are
latitude/longitude, or a zone in [1, 60] for Universal Transverse
Mercator (UTM) coordinate systems. band is ‘?’ if unknown,
otherwise a Military Grid Reference System (MGRS) latitude band.
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CELL

Version 2 of the optional “CELL” section provides support for com-
bining presentation slides or other pictures into one large image.
This allows zooming in on individual slides without requiring
separate LVT files. Each slide resides in a square ‘cell’, and the im-
age consists of a square cell matrix with power-of-two dimensions.
Cells are described by the following:

u32 flags;
u32 cellDim;
u32 upperLeftX, upperLeftY;
u32 elementWidth, elementHeight;
u32 marginLeft, marginUpper;

flags has bit 0 set if the cell should not be zoomed. cellDim
indicates the width and height in pixels of the cell, and must be
divisible by tileDim. Each cell must have the same dimension.
upperLeftX and upperLeftY are the coordinates of the cell’s
top left pixel within the entire image and are therefore multiples of
cellDim. Cells are arranged according to a ‘C-Scan’ [211]. Rows
alternate between left to right and right to left ordering; this enables
a simple sliding transition animation without bringing any other
cells into view. elementWidth and elementHeight describe
the size (in pixels) of the image that is embedded within the cell
and must not exceed cellDim. marginLeft and marginUpper
indicate the number of no-data pixels on the left and upper border
of the cell. They must be non-zero multiples of tileDim.

Concluding Notes

The LVT file format has been designed for efficiency and flexibility,
including a multitude of pixel formats. Extensibility is ensured
via versioning and allowing for additional application-defined
metadata. Storing a tiled pyramid allows smooth navigation in
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terapixel-scale images. A novel space-filling curve minimizes mem-
ory requirements when creating the pyramid, which is written
sequentially without any disk seeks.

An awareness of low-level alignment issues reduces overhead.
Each section and tile resides in its own disk sector, thus enabling
direct I/O without additional copying (c.f. Section 3.2). This also
ensures the SIMD alignment requirements are met when decom-
pressing tiles. A compact directory avoids seeks when finding
sections. The compressed tile lookup data structure allows re-
trieving the size of any tile after only two cache line accesses and
modest computation.

It was a pleasure to design a capable, yet simple and highly
efficient layout that avoids the shortcomings of previous formats.
Although chiefly intended as an optimized internal representation
for an image viewer, its efficiency may also lend itself to other
applications.
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SVM (Support Vector Ma-

chine), 112
SVN (Subversion), 145
SWWC (Software Write-

Combining), 133
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TLB (Translation Look-aside
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Trilinear interpolation, 67

UF (Union-Find), 84
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VirtualAlloc (Windows), 85
VM (Virtual Memory), 134
Voxel, 66
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Wu (line rendering), 99

Z-order (SFC), 150
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Zusammenfassung

In den letzten Jahren schritt die Entwicklung der bildgebenden
Sensorik erheblich voran. Großformat-Luftbildkameras ermögli-
chen eine Bodenauflösung im Millimeterbereich. Mit den neuen
technischen Möglichkeiten wachsen aber auch die Erwartungen.
Da solche Datenmengen kaum noch manuell auswertbar sind, wird
zumindest eine teilweise Automatisierung unerlässlich. Der Bild-
auswerter ist weiterhin unverzichtbar, kann aber durch Screening
entlastet werden. Hierbei werden die Daten so reduziert, dass idea-
lerweise nur relevante Gebiete betrachtet werden müssen. Selbst
diese intuitiv als einfach einzuschätzende Aufgabe stellt für mo-
derne Systeme eine Herausforderung bezüglich Rechenzeit und
Speicherverbrauch dar.

Die vorliegende Arbeit diskutiert zunächst die Vor- und Nach-
teile einiger Hardwarearchitekturen. FPGA und GPU-basierte Sys-
teme sind weniger anpassungsfähig und verursachen höhere Ent-
wicklungskosten, sodass ein handelsüblicher PC vorgezogen wird.
Es wird gezeigt, dass ein Luftbild mit 100 × 100 km Gebiets mit 1 m
Auflösung innerhalb von 2 Stunden auf einem Arbeitsplatzrech-
ner ausgewertet werden kann. Da bestehende Verfahren weitaus
langsamer sind, werden sämtliche Glieder der Bildverarbeitungs-
kette von Grund auf neu entwickelt mit dem Anspruch, deren
Laufzeit zu minimieren. Es werden Algorithmen vorgestellt, die
nützliche Ergebnisse bei bislang unerreichten Geschwindigkeiten
ermöglichen.

Die Bildsegmentierung, bei der ‘Objekte’ im Bild extrahiert
werden, ist ein zeitkritischer Bestandteil der Verarbeitungskette.
Dieser Schritt ist eine notwendige Voraussetzung für viele Aus-
werteaufgaben, da einzelne Pixel nicht aussagekräftig genug sind.
Ein naheliegendes Modell für die Segmente sieht vor, farblich ähn-
liche Pixel zusammenzuschließen. Hierfür existieren theoretisch
fundierte Algorithmen wie Mean-Shift, anisotrope Diffusion und
Maximum-Network-Flow, die für große Datenmengen jedoch zu



rechenaufwändig sind. Es wird ein neues Verfahren vorgestellt,
dessen Heuristik tendenziell zu kleine und zu große Segmente ver-
meidet. Die wichtigste Neuerung besteht darin, eine unabhängige
Verarbeitung einzelner Bildkacheln zu gewährleisten, jedoch oh-
ne Objekte an den Grenzen aufzuspalten. Aufgrund der dadurch
ermöglichten Parallelisierung und der SIMD-Pixelverarbeitung
ist der Algorithmus 50-mal so schnell wie Mean-Shift, wobei die
Ausgaben ähnlich sind. Das hochoptimierte Unterprogramm des
Segmentierers zur Sortierung von Ganzzahlen hat sich als derart
leistungsfähig herausgestellt, dass eine Weiterentwicklung davon
derzeit als weltschnellstes Verfahren zum Sortieren von 32-bit Zah-
len auf einem Shared-Memory-Rechner gilt. Dies geschieht unter
Zuhilfenahme von virtuellem Speicher und Details der Prozessor-
Mikroarchitektur.

Da die Segmentierung ähnliche Pixel gruppiert, ist es von Vor-
teil, Sensorrauschen vorher zu reduzieren. Das Bilateral-Filter eig-
net sich hierfür besonders, da bereits eine Iteration eine Glättung
bewirkt, ohne starke Kanten zu schwächen. Der Filterkern ge-
wichtet Pixel anhand ihrer Ähnlichkeit und Entfernung. Es sind
einige Approximationsalgorithmen zur Beschleunigung der Fil-
terung bekannt, beispielsweise eine Faltung in einem unterabge-
tasteten mehrdimensionalen Raum. Dieses Verfahren wird etwa
um den Faktor 14 beschleunigt durch Parallelverarbeitung, SIMD-
Anweisungen und eine Annäherung des Gauß-Kerns mit verbes-
serter Lokalität. Laut veröffentlichten Leistungsdaten ist der neue
Algorithmus 73-mal so schnell wie ein FPGA und 1,8-mal so schnell
wie eine GPU-basierte Approximation.

Neben dem Rauschen muss eine weitere Eigenschaft heutiger
Satellitensysteme berücksichtigt werden: Um Mehrkanalbilder zu
erhalten, werden Filter vorgeschaltet, sodass eine größere Detektor-
fläche erforderlich wird. Ein Multispektralbild hat also in der Regel
eine geringere Auflösung als ein Grauwertbild. Die jeweiligen Vor-
teile der zwei Bildtypen können durch Fusion kombiniert werden.
Ein ‘pan-geschärftes’ Bild beinhaltet sowohl hochaufgelöste Details
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als auch Farbinformation, was der Segmentierung zugutekommt.
Allerdings führen die unterschiedlichen Detektorempfindlichkei-
ten zu Farbverschiebungen. Es wird ein Algorithmus beschrieben,
der dieses Problem durch Schätzung der optimalen Gewichte der
einzelnen Kanäle lindert. Neben der besseren Farbwiedergabe un-
terdrückt das Verfahren das Rauschen und ist zudem 100-mal so
schnell wie bestehende Software.

Da die bisher vorgestellten Verarbeitungsstufen einen Durch-
satz im Bereich von mehreren Hundert MB/s erreichen, sollen auch
die Datentransfers beschleunigt werden. Die verbreitete GDAL-
Bibliothek liest und schreibt diverse Bildformate, erreicht aber
nicht annähernd den Spitzendurchsatz einer Festplatte. In der
vorliegenden Arbeit werden Techniken beschrieben, um effiziente
asynchrone Transfers durchzuführen und unnötiges Kopieren von
Daten zu vermeiden. Die resultierende Software ist bis zu 12-mal
so schnell beim Schreiben wie GDAL. Weitere Steigerungen sind
durch Kompression möglich, sofern das Entpacken weniger Zeit
als das Lesen beansprucht. Es wird ein neues Kompressionsverfah-
ren eingeführt, das 16-bit Multispektralbilder verlustfrei um die
Hälfte verkleinert und unter Verwendung eines einzelnen Rechen-
kerns mit einem Durchsatz von 2 700 MB/s entpackt. Dies ist etwa
100-mal so schnell wie JPEG-2000 und lediglich 20-60% größer.

Nach der Extraktion der Objekte wären zusätzliche Schritte
zur Konturextraktion und -vereinfachung nützlich, insbesondere
zur Erkennung anthropogener Strukturen. Um große Bilder mit
solchen Polygonen annotieren zu können, wurde ein Algorithmus
zur Rasterung von Linien entwickelt. Die Herleitung des optimalen
polynomiellen Tiefpassfilters gewährleistet ein hochwertiges Anti-
Aliasing. Das Verfahren ist 24-mal so schnell wie der Gupta-Sproull-
Ansatz und übertrifft sogar die Leistung einer Mittelklassen-GPU.

Die vorgestellte Verarbeitungskette für elektro-optische Bilder
ist nützlich, steht allerdings vor dem Problem, dass Objekte von
Wolken und Nebel verschleiert werden können. Beinahe wetterun-
abhängige Aufnahmen sind mit Radar möglich. Man-Made-Objects,
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beispielsweise Fahrzeuge, strahlen deren Mikrowellen oft stark zu-
rück, sodass ein Verfahren zur Detektion heller punktförmiger
Objekte von Interesse ist. Die Hotspot-Transformation unterdrückt
durchgängig helle Gebiete, indem Pixelwerte um die Helligkeit des
dunkelsten sie umgebenden Rings verringert werden. Es wird ein
Algorithmus beschrieben, der die Komplexität dieses Verfahrens
mittels einer besonderen Variante von Range-Minimum-Queries
auf die untere Schranke reduziert. Eine ausgefeilte Umstellung
der Zugriffe stellt eine hohe Cache-Lokalität sicher, sodass die
vektorisierte, parallelisierte Software die Leistung einer FPGA-
Realisierung um den Faktor 100 übertrifft.

Die Ergebnisse der beschriebenen Optimierungen stellen die
gängige Meinung infrage, derzufolge FPGA und GPU ‘auto-
matisch’ zu hohen Beschleunigungen gegenüber einer CPU-
Implementierung führen. Da sämtliche betrachteten Algorithmen
bereits die gemäß O-Kalkül untere Schranke ihrer Komplexität
erreicht haben, können nur noch die konstanten Faktoren ver-
bessert werden. Es hat sich herausgestellt, dass handelsübliche
Mikroprozessoren weiterhin wettbewerbsfähig sind. Die wichtigs-
ten Voraussetzungen dafür sind Vektorisierung, Parallelisierung
und die Berücksichtigung grundlegender Eigenschaften der Rech-
nerstruktur wie etwa der Speicherhierarchie. Es wurde gezeigt,
dass diese Maßnahmen auf eine Vielfalt von Bildverarbeitungsauf-
gaben übertragbar sind. Nachträgliches ‘Tuning’ ist jedoch nicht
hinreichend. Stattdessen muss Hardware-Wissen in alle Stufen
des Algorithm-Engineering-Zyklus einfließen – Design, Analyse,
Implementierung und Experimente. Zum Beispiel wurde ein hoch-
optimierter Segmentierungsalgorithmus, der eine Totalordnung
der Pixel voraussetzt, von einem komplexeren aber parallelisierba-
ren Verfahren übertroffen. Die praktische Bedeutung dieser Maß-
nahmen wird dadurch hervorgehoben, dass die hier vorgestellten
Algorithmen sieben verschiedene Verfahren um das 10- bis 100fa-
che beschleunigen. Es vermag zu überraschen, dass Fortschritte
in bereits über lange Zeit untersuchten Themen wie verlustfreier
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Kompression und Rasterung von Linien erzielt werden konnten.
Die hier vorgestellten Techniken lassen sich jedoch auch auf andere
Arbeitsgebiete übertragen.
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