25 research outputs found

    A useful lambda notation

    Get PDF

    A unified approach to type theory through a refined lambda-calculus

    Get PDF

    A semantics for a fine lambda-calculus with de Bruijn indices

    Get PDF

    Ups and downs of type theory

    Get PDF

    Formal verification of concurrent programs

    Get PDF
    Interactive theorem proving provides a general approach to modeling and verification of both finite-state and infinite-state systems but requires significant human efforts to deal with many tedious proofs. On the other hand, model-checking is limited to some application domain with small finite-state space. A natural thought for this problem is to integrate these two approaches. To keep the consistency of the integration and ensure the correctness of verification, we suggest to use type theory based theorem provers (e.g. Lego) as the platform for the integration and build a model-checker to do parts of the verification automatically. We formalise a verification system of both CCS and an imperative language in the proof development system Lego which can be used to verify both finite-state and infinite-state problems. Then a model-checker, LegoMC, is implemented to generate Lego proof terras for finite-state problems automatically. Therefore people can use Lego to verify a general problem with some of its finite sub-problems verified by LegoMC. On the other hand, this integration extends the power of model-checking to verify more complicated and infinite-state models as well. The development of automatic techniques and the integration of different reasoning methods would directly benefit the verification community. It is expected that further extension and development of this verification environment would be able to handle real life systems. On the other hand, the research gives us some experiences about how to automate proofs in interactive theorem provers and therefore will improve the usability and applicability of the theorem proving technology

    LFTOP: An LF based approach to domain specific reasoning

    Get PDF
    Specialized vocabulary, notations and inference rules tailored for the description, analysis and reasoning of a domain is very important for the domain. For domain-specific issues researchers focus mainly on the design and implementation of domain-specific languages (DSL) and pay little attention to the reasoning aspects. We believe that domain-specific reasoning is very important to help the proofs of some properties of the domains and should be more concise, more reusable and more believable. It deserves to be investigated in an engineering way. Type theory provides good support for generic reasoning and verification. Many type theorists want to extend uses of type theory to more domains, and believe that the methods, ideas, and technology of type theory can have a beneficial effect for computer assisted reasoning in many domains. Proof assistants based on type theory are well known as effective tools to support reasoning. But these proof assistants have focused primarily on generic notations for representation of problems and are oriented towards helping expert type theorists build proofs efficiently. They are successful in this goal, but they are less suitable for use by non-specialists. In other words, one of the big barriers to limit the use of type theory and proof assistant in domain-specific areas is that it requires significant expertise to use it effectively. We present LFTOP ― a new approach to domain-specific reasoning that is based on a type-theoretic logical framework (LP) but does not require the user to be an expert in type theory. In this approach, users work on a domain-specific interface that is familiar to them. The interface presents a reasoning system of the domain through a user-oriented syntax. A middle layer provides translation between the user syntax and LF, and allows additional support for reasoning (e.g. model checking). Thus, the complexity of the logical framework is hidden but we also retain the benefits of using type theory and its related tools, such as precision and machine-checkable proofs. The approach is being investigated through a number of case studies. In each case study, the relevant domain-specific specification languages and logic are formalized in Plastic. The relevant reasoning system is designed and customized for the users of the corresponding specific domain. The corresponding lemmas are proved in Plastic. We analyze the advantages and shortcomings of this approach, define some new concepts related to the approach, especially discuss issues arising from the translation between the different levels. A prototype implementation is developed. We illustrate the approach through many concrete examples in the prototype implementation. The study of this thesis shows that the approach is feasible and promising, the relevant methods and technologies are useful and effective

    AUTOMATH and pure type systems

    Get PDF

    The fine-structure of lambda calculus

    Get PDF
    corecore