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Abstract 

Interactive theorem proving provides a general approach to modeling and 

verification of both finite-state and infinite-state systems but requires significant 

human efforts to deal with many tedious proofs. On the other hand, model-

checking is limited to some application domain with small finite-state space. A 

natural thought for this problem is to integrate these two approaches. To keep 

the consistency of the integration and ensure the correctness of verification, we 

suggest to use type theory based theorem provers (e.g. Lego) as the platform for 

the integration and build a model-checker to do parts of the verification auto

matically. 

We formalise a verification system of both CCS and an imperative language in 

the proof development system Lego which can be used to verify both finite-state 

and infinite-state problems. Then a model-checker, LegoMC, is implemented 

to generate Lego proof terms for finite-state problems automatically. Therefore 

people can use Lego to verify a general problem with some of its finite sub-

problems verified by LegoMC. On the other hand, this integration extends the 

power of model-checking to verify more complicated and infinite-state models as 

well. 

The development of automatic techniques and the integration of different rea

soning methods would directly benefit the verification community. It is expected 

that further extension and development of this verification environment would 

be able to handle real life systems. On the other hand, the research gives us 

some experiences about how to automate proofs in interactive theorem provers 

and therefore will improve the usability and applicability of the theorem proving 

technology. 
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Part I 

Introduction 



Chapter 1 

Introduction 

Along with the rapid growth of computer application in our daily life, it becomes 

essential to ensure the correctness of certain computer or computer-embedded 

systems because of safety, security or cost concerns. Formal verification has be

come an important technique to ensure the correctness of computer software or 

hardware. There are roughly three categories of approaches of formal verifica

tion, interactive theorem proving, automatic model-checking and proof search. 

Recent researches suggest that the integration of first two approaches would be 

an effective method to verify complicated systems. Following this idea, this thesis 

presents a verification environment based on type theory based theorem prover, 

Lego. 

1.1 Formal Verification 

More and more devices, equipment and machines such as airplanes, cars, etc. 

are controlled by computers. Along with the growth of complexity in electronic 

circuits, computer software and computer-controlled systems, it becomes very 

difficult to ensure that the systems behave as intended. The discovery of 'bugs' 
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in commercial software is very common and therefore companies usually set up 

a bug report channel. None can claim that their programs are bug-free and 

computer users have got used to discovering minor bugs. Although bugs for most 

commercial software can be just an inconvenience to the user, it could be a disaster 

for hardware or software systems used to monitor and/or control some physical 

systems such as a nuclear plant and an airplane. Even for a microprocessor 

design or a financial transaction system, a design error can cost the company 

huge money. 

A typical approach to enhance the correctness of designs is testing or simu

lation, in which test data are given to a model of the design and the results are 

analyzed against the specification. However, exhaustive testing is impractical for 

many systems since the possible input combinations can be very huge and even 

infinite. The assurance therefore relies on a very careful choice of some input 

data that is supposed to exercise all the features of the design. As the complex

ity increases, it becomes more difficult to select test data with a good coverage. 

Moreover, some testing models and environments can cost a lot and some cannot 

even be built. 

Formal verification is another approach to ensure correctness. The approach 

is to represent and analyse systems formally (mathematically) by proving that 

a system satisfies its functional specification or some critical properties. The 

systems can be hardware systems such as electronic circuits, software systems 

such as computer programs or reactive systems such as controlling systems. The 

system is usually modeled using a system description language such as transition 

graph, CCS [Mil89], CSP [Hoa85], or even a programming language. The spec

ification is written using some specification languages such as Z [Spi88], VDM 

[Jon86] and OBJ [GM96]. The verification is to prove that the model of the real 

system satisfies the specification. 

The foundation of verification traces back to Floyd and Hoare's work [Flo67, 

3 



Hoa69] on sequential programs. Now they are known as Hoare's logic [Hoa69, 

Apt81, dB80]. A sequential program is usually regarded as a mathematical func

tion over memory states. Given a function, we can always deduce the final state 

from the start state. The memory is subservient to the program. The story is 

completely different if other agents, e.g. programs or environments, may interfere 

and change the state of memory while the program is running. In a concurrent 

environment with two or more agents interfering with each other, the final state 

is not only dependent on the start state but on the behaviours of all the agents 

in the systems. Therefore, the verification of concurrent systems is more com

plicated than sequential systems and more difficult to deal with. The testing in 

concurrent systems is more difficult as well and therefore it is more necessary to 

use verification. 

In the early stages, the formal verification is carried on paper and pencil 

method. Several theorems are proposed to reason about the correctness of pro

grams. The increase in complexity of programs rapidly becomes unmanageable 

without computer assistance. The development in automatic proving algorithms 

and interactive theorem provers makes formal verification more practical in appli

cation. A popular automatic verification technique, model-checking, is introduced 

in next section. A general introduction to the application of interactive theorem 

proving to verification is presented in section 1.3. 

1.2 Model-Checking 

Over the last decade model-checking has emerged as a powerful technique for 

automatically verifying concurrent systems [CE81, QS81, CES86, VW86, Cle90, 

And92]. Many different model-checking techniques emerged and various commu

nication protocols and electronic circuits have been verified by model-checkers. 

The improvement in efficiency has successfully extended the application to more 
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laxge-scale and complicated systems such as circuits with 102 0 states [BCM+92] 

and PDP-11 sized processor [BB94]. It has been extended to probabilistic [Var85, 

PZ86, CY90] and real time programs and logics [ACD90, AH90, HLP90]. 

The basic idea is to determine whether or not a system satisfies a property 

typically expressed as a temporal logic formula by searching the state space of 

the system thoroughly. When systems have finite state space, model-checking 

algorithms can be used to verify the system completely automatically. The re

striction is that the state space should be finite. If the model-checking algorithm 

is efficient, this approach is potentially of wide applicability since a large class 

of concurrent systems has finite state space. A potentially serious drawback to 

the entire model-checking approach is the state-explosion problem that the size of 

the global state transition graph grows exponentially while the size of the system 

grows linearly. 

Several techniques have been introduced to cope with the state-explosion prob

lem. Local model-checking [Lar90, SW91, Win89] or on-the-fly [H0I8I, Hol85] 

model-checking attempts to build only part of the state space of the system, 

while still maintaining the ability to check the properties of interest. Partial-

order techniques attempt to avoid the wasteful representation of concurrency by 

interleaving [GW93]. Abstraction techniques replace the system to be checked 

by a simpler one in which the details irrelevant for the property to be checked 

have been suppressed [Kur94, CGL92, GL93]. Another direction called symbolic 

approach is to represent implicitly rather than explicitly the states and transi

tion relations of systems [BCM+92]. The usual implicit representation is Binary 

Decision Diagrams(BDDs) [Bry92] so that the temporal formulas can be model-

checked directly on the BDD representation, without ever building an explicit 

representation of the state space. 

Although the improvement in efficiency has significantly widened the appli

cation of model-checking techniques, the state enumeration, which is the basic 
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principle of model-checking, stil l limits i t to finite state systems. Moreover, the 

above techniques to improve model-checking efficiency still need to be formally 

proved. A hand written proof attached to an algorithm is not always sufficient. 

Certain techniques such as abstraction technique involve creating another sim

pler system to replace the original system. The process of abstraction needs to 

be formally proved to ensure the correctness of the whole verification. Interactive 

theorem proving can be used in at least two aspects to benefit model-checking 

community: 

1. I t can be used to decompose a verification problem into sub-problems so 

that each is manageable by one of the two methods. 

2. I t can be used to formally prove the meta-theory of model-checking. 

1.3 Interactive Theorem Proving 

Instead of checking the state space exhaustively, interactive theorem proving de

duces the result by inference rules guided interactively by human beings. There

fore, users can choose different reasoning methods which are more suitable for 

their verification target. The rich built-in library can also simplify their task. 

Most of the thcorem-provers are called LCF-style theorem provcrs [GMW79], 

including HOL [GM93], PVS [ORS92], Nuprl [C+86], Coq [D+91], Lego [LP92], 

Isabelle [PN90], etc. 

Edinburgh LCF was developed by Robin Milner and his colleagues around 

1977 [GMW79]. Edinburgh LCF was programmable. The user could write pro

grammable meta-language (called M L ) functions to process terms, formulae, and 

theorems. Theorems were not simply created, but proved. Type checking ensures 

that theorems are only proved by applying rules to axioms and other theorems. 

I t uses tactics for backward proof. Each tactic specifies a backward proof step, 
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reducing a goal that is the conjecture to be proved to sub-goals. A LCF tactic 

is a function that reduces a goal to zero or more sub-goals. Once all the sub-

goals have been proved, some mechanism constructs the corresponding forward 

proof and yields the desired theorem. Tacticals permit the combination of sev

eral tactics in various ways. Tactics and tacticals constitute a powerful control 

language, which can describe search methods. Users choose the tactics to apply 

and computers reduce goals by applying assigned tactics and return sub-goals to 

be further proved. In the whole process, users prove theorems by interaction with 

computers. 

The HOL system [GM93], based upon the LCF system, is another interactive 

theorem prover using classical higher order logic. The deductive machinery is 

natural deduction proof using the meta language M L for defining tactics and tac

ticals. Theorems can only be introduced into the system using formal proofs that 

rely upon the theorems and axioms which are already present wi thin the system. 

However, subtypes and dependent types are not supported and the insistence on 

resolving proofs into simple primitive inferences can make HOL slow. 

The major feature of PVS [ORS92], beside the common features of LCF-style 

theorem provers, is a powerful base of primitive inference rules for various decision 

procedures and rewriting to automate proofs. PVS has also a strategy language 

for combining inference steps into more complicated proof strategies which are 

similar to tactics and tacticals. Among decision procedures, there is a symbolic 

model-checker builded in PVS [RSS95]. 

Nuprl [C + 86] is based on Martin Lof type theory [ML84]. One of the features 

of type theory based theorem provers is that the logic and the system take account 

of the computational meaning of assertions and proofs. For instance, given a 

constructive existence proof the system can use the computational information 

in the proof to build a representation of the object, which demonstrates the 

t ru th of the assertion. Such proofs can thus be used to provide data for further 
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computation or display. 

Coq [D + 91] is an implementation of the Calculus of Inductive Constructions, 

which is a non-conservative extension of the Calculus of Constructions wi th in

ductive types. I t is a goal-directed tactics theorem provcr, with a set of predefined 

tactics, including an Auto tactic which tries to apply previous lemmas declared 

as hints. The logic mixes a constructive logic and a classical logic. The system 

automatically extracts the constructive contents of proofs as an executable M L 

program that permits the development of programs provably consistent wi th their 

specification. 

Lego is an interactive proof development system designed and implemented by 

Randy Pollack in Edinburgh [LP92]. I t implements several related type systems-

thc Edinburgh Logical Framework [HHP92], the calculus of constructions [CH88], 

the Extended Calculus of Constructions [Luo94], and a unifying theory of depen

dent types (UTT) [Luo94]. Lego is a powerful tool for interactive proof devel

opment in the natural deduction style and supports refinement proof as a basic 

operation and a definitional mechanism to introduce definitional abbreviations. 

Lego also allows the user to specify new inductive data types (computational 

theories), which support the computational use of the type theory. General ap

plications of Lego at the moment are to formalise a system and reason about its 

properties, such as the verification of proof checkers [Pol95]. 

Although theorem proving is more general in applications, i t requires inten

sive human guidance and only experienced experts can use interactive theorem 

provers effectively. Rigorous theorem proving requires the user to consider every 

detail including some obvious assumptions, which is usually omitted in manual 

proving. I t is observable that some proving tasks can be carried out completely 

by automatic techniques such as model-checking. On the other hand, model-

checking is limited to some application domain wi th small finite-state space. A 

natural thought for this problem is to integrate those two approaches. 
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1.4 Integration 

Many real life systems arc very complicated and therefore are very difficult to be 

dealt with merely by one verification technique. There are in practice demands 

to divide a complicated problem to smaller parts and then use different verifica

tion methods to tackle individual parts. The verification results for individual 

parts can then be integrated to finish the whole verification task. Many tech

niques such as deduction, composition, abstraction and induction are proposed 

and corresponding tools are developed to deal wi th various classes of infinite-state 

systems. I t is believed that the integration of the above techniques and various 

automatic techniques would enhance dramatically the application of those indi

vidual techniques and therefore be able to deal wi th real-life problems. 

Interactive theorem provers are suitable candidates to serve as the platform 

of the above integration because most of them are based on higher order logic 

and therefore easy to encode other logics. Moreover, the inductive data type 

mechanisms in many theorem provers provide a very convenient way of formalising 

systems. However, interactive theorem proving requires significant human efforts 

to deal with many tedious proofs. Even a simple model like the 2-process mutual 

exclusion problem is fairly complicated to verify. To be used in practice, i t is 

necessary to borrow some automatic techniques, e.g. model-checking. 

Wolper and Lovinfosse [WL89] and Kurshan and McMillan [KM89] extended 

model-checking for inductive proofs by using an invariant to capture the induction 

hypothesis in the inductive step. Joyce and Seger [JS93] used HOL theorem prover 

to verify formulas which contain uninterpreted constants as lemmas which are 

verified by Voss model-checker. Kurshan and Lamport [KL93] proved a multiplier 

where the 8-bit multiplier can be verified by COSPAN model-checker [Kur94] 

and the n-bit multiplier composed from 8-bit multipliers can be verified by T L P 

theorem prover [EGL92]. In principle, these approaches are to divide the whole 
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problem to separated sub-problems and then use different tools to solve individual 

problems. Their works based on paper and pencils are the early attempts of 

combining theorem proving and model-checking. 

However, the integration of these two approaches is stil l not tight enough. 

Miiller and Nipkow [MN95] used HOL theorem prover to reduce the alternat

ing bit protocol expressed in I / O automata to a finite state one to be verified 

by their own model-checker. The PVS proof checker [ORS92] even includes a 

model-checker as a decision procedure which presents the possibility of combining 

theorem proving and model-checking in a smooth and tight way [RSS95]. How

ever, the correctness of model-checkers is still a big concern since model-checkers 

themselves are computer software, which could contain bugs. The output of most 

model-checkers including the model-checker of PVS for a correct system is only 

a "TRUE." People can only choose to believe that "TRUE" as a pure action of 

faith, or not at all. 

On the other hand, the proofs of type theory based theorem provers, such 

as Lego [LP92], A L F [ACN90, Mag92], Coq [D+91] and Nuprl [C+86], are proof 

terms which in principle can be justified by different proof checkers so that people 

can have more confidence in formal proofs. Moreover, proof terms provide a 

common interface for different tools so that we can easily integrate various tools 

to complete more complicated proofs. The integration based on proof terms can 

also ensure consistency between different verification techniques. Another issue 

is that the user interface of general theorem provers seems very complicated for 

people merely doing verification. 

I t is believed that for the verification to be realised for industrial applications, 

a domain-specific verification environment should be developed to 

1. support high level user-familiar and domain-specific languages for problem 

description at the appropriate level of abstraction, 
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2. integrate different methods of reasoning useful and suitable for the par

ticular domains concerned (e.g. inductive reasoning, semantics reasoning, 

abstraction, composition, and automatic proof generation), 

3. provide a relatively high degree of automation. 

1.5 Our Approach 

Our approach towards the above goals is using type theory based theorem prover, 

Lego, as the platform for the integration, and a domain-specific interface and 

automatic tools are buil t to generate parts of the proof. The interface uses general 

programming language syntax so that programmers do not have to learn a new 

syntax dedicated to theorem proving. A model-checker is implemented to do the 

verification automatically for systems or sub-systems wi th finite state space. The 

integration is based on explicit proof terms, which ensure the correctness and 

consistency of the integration. 

One of the major differences between type theory based theorem provers wi th 

other theorem provers and automatic verifiers is the proof terms. Proof terms are 

X-terms of which the correctness can be checked by type checking algorithms and 

therefore give us more confidence on the proof. The proof checking of Lego helps 

to ensure the correctness of the verification. The expressive higher order logic 

and inductive data type mechanism in Lego enables us to embed specification 

languages and formalise system description languages very easily. 

The achievement of this thesis in the above direction is building the kernel of 

a verification environment based on Lego. This involves 

1. adapting proof techniques which are usually carried out by hand to theorem 

provers, 
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2. developing automatic techniques to help the proof in the theorem provers, 

3. integrating various proof techniques and automatic algorithms on a consis

tent platform. 

The system structure is as Fig. 1.1. 

Model: CCS, ICPL 

Leg users users 

Lego proof terms 
domain-specific Lego syntax 

syntax 

Logics-calculus 

Figure 1.1: The system structure of LegoMC 

We have implemented both message-passing and shared-memory models of 

concurrent systems. For the message-passing model, the Calculus of Communi

cating Systems (CCS) [Mil89] is used. Wc also define a simple imperative and 

concurrent programming language (ICPL) to model the shared-memory systems. 

We use the propositional /n-calculus [Koz83] to express temporal properties and 

specifications and define other temporal logics, C T L and L T L , as syntax abbrevi

ation of ^-calculus formulas. CCS, the imperative language and propositional / i -

calculus are formalised and inference rules are proved in Lego to verify both finite 

and infinite state systems. A model-checker (LegoMC) [YL97] is implemented to 

automatically verify finite part of a verification problem. I t is expected that our 
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approach wil l provide a more general and efficient framework for the verification 

of concurrent programs. 

Using this environment, we have successfully verified some finite-state CCS 

processes automatically such as the ticking clock, the vending machine, 2-proccss 

mutual exclusion, etc. We have also verified some finite examples in the imper

ative and concurrent language such as several algorithms for mutual exclusion, 

the dining philosophers problem. For infinite state problems, we have verified 

an n-process mutual exclusion problem by integrating LegoMC wi th inductive 

reasoning. The same example has also been verified by combining LegoMC with 

abstraction method. We have also verified an endless counter by semantics with 

the help of LcgoMC to simplify parts of the proof process. The counter example 

has also been verified by composition method wi th the assistance of LegoMC. 

The Major Contribution 

The major contribution of this thesis can be summarized in three parts as follows. 

1. The formalisation of a verification environment 

• The formalisation of //-calculus, CCS and an imperative and concur

rent language. 

• The formal proving of related axioms, inference rules, lemmas and 

theorems. 

2. The implementation of LegoMC 

• A domain specific interface 

• Automatic proof term generation 

3. The integration of various verification techniques 

13 



• The formal proving of axioms and inference rules of various verification 

systems. 

• The exploration of the integration of various verification techniques. 

1.6 Structure of the Thesis 

This thesis is divided into four parts. The first part gives an overall introduction 

and the preliminary of this thesis. Part I I introduces the specification language 

and description languages and their formalisation in Lego. In part I I I , LegoMC 

and some examples are presented. Part I V discusses the automation issues and 

future research. 

The present chapter gives an overview, background information, specific prob

lems to tackle and our approaches. 

Chapter 2 gives the preliminary materials used in the thesis. We introduce 

some concepts in type theory U T T [Luo94] including higher order logic and in

ductive data types which are related to our work. We also introduce some Lego 

notions. As examples of formalisation in Lego, we formalize set theory and fixed 

points which wi l l be used in the formalisation of //-calculus presented in chapter 

3. 

Chapter 3 introduces the temporal logics, which we wi l l use to specify sys

tems. We present the syntax and semantics of //-calculus and its formalisation in 

Lego. Two sets of inference rules for finite-state systems and infinite-state sys

tems respectively are then formally proved in Lego. There is an implicit premise 

about monotonicity in those inference rules. We developed a monotonicity prover 

to prove the monotonicity automatically. Following //-calculus, three temporal 

logics, PLTL, C T L and CTL* are introduced and finally their embeddings in 

//-calculus are discussed. 

14 



Chapter 4 presents CCS. The syntax and semantics of CCS are introduced. 

Subsequently their formalisation in Lego is described. Several lemmas and equiv

alence rules, which arc formally proved in Lego, arc then presented. Finally, a 

simple example is given to explain how verification can be done wi th the formal

isation directly. 

Chapter 5 presents an imperative and concurrent programming language (ICPL). 

We describe the syntax of ICPL and its formalisaion in Lego. We then define the 

transitional semantics of ICPL and present its formalisation. Finally an example 

is given. 

Chapter 6 presents LegoMC. After a brief introduction to model-checking, the 

structure of LegoMC is then described. The implementation is then discussed. 

We also present the user interface of LegoMC. Two examples for CCS and ICPL 

respectively are then used to demonstrate the verification process of LegoMC. 

Chapter 7 presents two examples wi th finite state-space. The first example is 

a simple communicating protocol. We model i t in both CCS and ICPL and then 

use LegoMC to verify the desired properties. This example shows the comparison 

of verification on CCS and ICPL and demonstrates the process of improving a 

system design by LegoMC. The second example is a class of mutual exclusion 

algorithms. Since we use ICPL as the description language and use LegoMC to 

do verification automatically, we can easily formally verify all of those mutual 

exclusion algorithms. This example shows how easily LegoMC can be used to 

analyse and compare a group of similar algorithms. 

Chapter 8 presents infinite state-space examples. Two examples are given to 

demonstrate the verification by semantics and induction. The first example is an 

infinite counter, which has an evolving structure. The second example is a token-

ring network which has many identical workstations connected in a network. The 

introduction of a compositional method follows and the counter example is re-
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verified by this compositional method. The abstraction technique is presented 

and we re-do the verification of token-ring example by abstraction. Finally, some 

discussion is given. 

Chapter 9 gives a general discussion about automatic proof term generation 

in Type Theory. A general introduction to proof terms has been given in chapter 

2. This chapter focuses on automation related issues. A general presentation 

about the construction of proof terms for assertions is given. We then discuss the 

automatic methods to construct proof terms. Some efficiency issues are discussed. 

Finally, some remarks are given. 

Other automation issues are discussed in chapter 10. Many decision proce

dures for data domain are based on equational rewriting. Therefore, we first 

discuss the equality in type theory and cquational rewriting techniques based on 

proof term generation. Binary decision diagram (BDD) technique is then dis

cussed which has been claimed as an efficient technique to manipulate boolean 

expressions or propositional formulas. Finally, arithmetic decision procedures are 

discussed which can deal with arithmetic operations on natural numbers. 

Finally, conclusions are presented and some areas for further research are 

mentioned in chapter 11. 
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Chapter 2 

Preliminaries 

We use the Lego proof checker [LP92] as the platform to implement the verifica

tion environment. Two important features in Lego help us to formalize systems 

very easily, higher order logic and inductive data types. The expressive higher 

order logic simplifies the encoding of temporal logics and several concepts such as 

set, relation, predicate and fixed points. The inductive data type is quite useful 

to formalize data types. 

Lego is based on type theory UTT [Luo94]. Type theory offers a coherent 

treatment of two related but different fundamental notions in computer science: 

computation and logical inference so that one can program and prove at the same 

time. Therefore, type theory may be used as a uniform language for programming, 

specification and reasoning. I t also has good abstraction and modularisation 

mechanism so that one can develop programs in the large as in the small and 

allow direct operational understanding and easy implement on the computer. 

This chapter presents the concepts of higher order logic and inductive data 

types in U T T and introduces some Lego notions. As examples of formalisation 

in Lego, we also formalize set theory and fixed points which wi l l be used to the 

formalisation of /x-calculus presented in chapter 3. 

17 



2.1 Inductive Data Types 

Objects and types arc two basic concepts in type theory. The relationship between 

objects and types is represented by the judgements of the form 

a : A 

that asserts that "object a is of type A " Some objects of a type are called 

canonical objects, which are the values of objects of the type under computation. 

A canonical object cannot be further computed and has itself as value. A n object 

a being of type A means that a computes into a canonical object of type A. 

A new type is defined by the formation rules, introduction rules, elimination 

and computation rules. The formation rules define what the types are and the 

introduction rules determine what the canonical objects are. The elimination 

rules determine how one can use a correctly asserted judgement a : A to assert 

other judgements by introducing a recursive operator. The computation rules 

determine the computational meaning of the recursive operator by specifying 

how computation performs when the recursive operator is applied to a canonical 

object. 

For example, an inductive type N of natural numbers can be introduced by 

the following rules: 

the formation rule 

• N is a type. 

the introduction rule 

1. 0 is of type N. 

2. I f n is of type N, so is suc(n). 

the elimination rule introduces a recursion operator Rec^ such that 
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• for any family of types C[x] indexed by natural numbers x, any object of 

C[0], and any function / that returns an object f{m,c) of type C[suc(m)] 

for any objects m of type N and c of type C[m], i?ec#(c, / ) is a function 

which for any natural number n returns an object of type C[n]. 

The computation rules give the computational meaning of Rec^ as follows: 

1. RecN(c, / ) (0 ) computes to c. 

2. Recn{c, f)(suc(n)) computes to f(n,Reciv(c,f)(n)). 

Lego has implemented a mechanism to simplify the definition of inductive 

data types which is presented in section 2.3. 

Computation 

One of the major features of type theory is that i t is itself a computational 

language which enables us to do computing and logical reasoning on the same 

platform. The notion of computation and computational equality are basic con

cepts in type theory, which are captured by reduction and conversion, respectively. 

The computation rules, such as /3-reduction, can be regarded as expressing cer

tain schemata of definitions, and computation may be regarded as evaluation of 

a defined function when applied to its arguments. 

An important property of the computation in type theory, called strong nor

malisation property, is that: 

Every well-typed object is strongly normalisable (i.e. every computa

tion starting from a well-typed object terminates). 

The computation in type theory is very useful for automatic proof generation 

techniques which are presented in chapter 9. 
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2.2 Internal Higher Order Logic 

Proof Terms 

Proof terms are A terms which are the proof objects in type theory. Logical 

formulae or propositions and logical inference in type theory are achieved by the 

idea of propositions-as-types, discovered by Curry [CF58] and Howard [How80]. 

This idea states that any proposition P corresponds to a type P r f ( P ) , the type 

of its proofs, and a proof of P corresponds to an object of type P r f ( P ) . To 

assert that a proposition is true, one have to find (construct) a proof object of 

the proposition. For example, the conjunction 

Pi A P 2 

has its type P r f ( P i A P2) as 

V X : Prop. (Fx D P 2 D X ) ^ X . 

One of its proof objects is 

XX : PropXh : Pt ->• P 2 - * X. h a b 

where a is a proof object of P x and b a proof object of P 2 . 

Since every object in type theory can be computed into a unique canonical 

object, an object being a proof of a proposition P means that i t computes into 

a canonical proof of P as well. A proposition P is true i f and only i f there is 

a canonical proof of i t . To determine whether a given proof is indeed a proof 

of a given proposition is decidable and can be checked by type checking algo

rithms. Therefore, the proofs can be checked rigorously by computers to ensure 

the correctness of proofs. The details of proof checking and correctness issues are 

discussed in the next sub-section. 

Therefore, the proof task for a proposition P is to find or construct a proof 

term which can compute into a canonical proof of P . Although they can compute 
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into a unique value, the proof terms for a proposition can have different forms. 

Find a proof term of a proposition is not easy in general and therefore some 

interactive theorem provcrs arc developed to guide users to construct proof terms. 

The details of proof term construction are given in chapter 9. 

Logical Proposition 

Based on the principle of propositions-as-types and viewing logical formulae as 

types, the notion of formula in the internal logic is given by the notion of proposi

tion. The usual logical operators and propositional equality can be defined using 

the universal quantifier, represented by the dependent type constructor n, and 

universe Prop. The type universes constitute a hierarchy of type structure as 

follows: 

Prop : Type(0) : Type{\) . . . . . 

That is, Prop is of type Type(O), Type(O) is of type T y p e ( l ) , . . . etc. Ant term 

which has a universe as its type is called a type. When a term has type Prop, i t is 

called a proposition. Their type-theoretic equivalents are briefly listed as follows 

and refer to [Luo94] for details. 

Mx : A.P(x) =df Ux : : A.P(x) 

Pi D P* =df Mx : P1.P2 

t r u e =df MX : Prop.X D X 

false =df MX : Prop.X 

Pi A P 2 =df MX : Prop{Px DP2DX)DX 

Pi V P 2 =df MX : Prop.{Pi D X ) D ( P 2 D X ) D X 

- P i =df Pi D false 

3a;: A.P{x) =df MX : Prop.(Mx : A.(P(x) D X)) D X 

a=Ab =df MP : : A -> Prop.P{a) D P{b) 
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The internal higher order logic is very convenient to be used to encode other 

logic concepts. We have used higher order logic to code set theory, fixed point 

and /^-calculus. A formula is provable i f and only i f i t is inhabited by some object 

which is called the proof term. 

Proof Checking 

There are two issues about proof terms that are essential for verification. One 

is the correctness of the proof, another one is the consistency of the integration 

between various verification techniques. Before discussing the correctness of proof 

terms, we first discuss some concepts about " p r o o f . 

"Proofs" are the evidences used to convince others that an argument is cor

rect. To accept a proof depends on one's confidence on the evidences. There 

are basically three forms of "proof in computer aided theorem proving: t ru th 

value, proof derivations and proof terms. Truth value is the answer produced by 

automatic reasoning tool, which wil l be an answer of "true" or "false" according 

their buil t- in algorithms. People have to believe the algorithm and its implemen

tation to accept the "p roof . Proof derivations are the reasoning sequence from 

axioms and primitive inference rules to conclusions. People accept the "proof" by 

checking the correctness of the reasoning sequence. HOL's proofs belong to this 

category and the correctness of their proof derivations can be checked by ML's 

type checking mechanism. 

The proofs in type theory arc proof terms which have their intended propo

sitions as their types. The correctness of proofs can be checked by type checking 

algorithms. Because the correctness of the final generated proof term can always 

be type checked rigorously by computers, we can implement more efficient algo

rithms for automatic generation of proof terms or more sophisticated interfaces 

for interactive generation of proof terms without losing the correctness of proof 
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terms. 

Another important issue is the consistency of the integration of different veri

fication techniques. To be able to verify real life systems, i t is necessary to apply 

various verification techniques and integrate them together. One problem for the 

integration is usually the consistency between different techniques. Because they 

have different assumptions, axioms and inferences rules, i t is very easy to have 

inconsistency between them. PVS has implemented many automatic techniques 

in the same platform and they claim they have to be very careful to integrate 

those techniques to maintain their consistency. 

Our implementation does not have this problem. We formally encode the 

semantics of a verification system by the internal higher order logic of Lego. The 

axioms and inference rules are formally proved in Lego. Different axioms and 

inference rules from different verification systems have their own proof objects. 

The integration is therefore combining those proof objects in certain ways and 

the final proofs to original verification problems are bigger proof terms of which 

the correctness can be type checked. 

In summary, we can say the correctness of our verification result is ensured 

by type checking algorithm. Since assertion p : P means proof object p is an 

object of proposition P, the correctness of p can be checked by the type checking 

algorithm to see i f p indeed has type P. Given any term and any context (see 

section 2.3), the type checking algorithm checks whether the term is well typed in 

the context, and i f so, i t computes the principal type of the term in the context. 

2.3 Lego Notations 

This section introduces some Lego notations and terminology which wil l be used 

in the thesis. 
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Type Universes 

Prop, Typc(n) (n > 0 is a natural number), and Type represent type universes. 

Type is the type of all types and is the type of itself. 

n-types 

{x :A}B is the notation for dependent Il-types (Hz; : A.B) in type theory. {x :A}B 

is often written as A->B when the identifier x does not occur free in B. When 

{ x : A}B is a proposition, i t intuitively stands for "Va;: A.B". I f both A and B are 

propositions, the proposition A->B intuitively means "A implies B. When {x :A}B 

is not a proposition, i t intuitively denotes a class of function / wi th domain A such 

that for a : A, f(a) is of type B[a/x], which is the term obtained by substituting 

all free occurrences of x by a in B. I f neither A nor B is a proposition, A->B 

intuitively stands for the function type from A to B. 

A-abstraction and Pairs 

[x:A]M is the notation for A-form (Xx : A.M). [x:A]M intuitively denotes a 

function which returns the value of M[a/x] for a : A. We can write [_:A]M when 

x does not appear in M. 

M N intuitively denotes the result of function application of function M to 

value N. We use N. M to abbreviate (M N). 

[x I A] M is used to define polymorphic functions [ x : A] M. When Lego can de

duce the appropriate types x from M, we can omit an argument x while applying 

this function to terms. 

a,b is the form of a pair in Lego. The type of a,b is A#B where A and B are 

types of a and b respectively. 
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Declarations, Definitions and Contexts 

A declaration [x:M] declares that x is of type M. 

A definition [c C = M : A] defines c under the context (sec below) C to be 

M wi th type A where A is optional. Suppose C is of the form 

61 62 . . . bn 

where bi is either a declaration or a definition. Then [c C = M : A] is equivalent 

to 

[c = b l b2 . . . bn(M : A)] 

Contexts are (possibly empty) sequences of declarations and definitions. 

Inductive Data Types in Lego 

There is an Induc t ive command in Lego [Pol94] to simplify the declaration of 

inductive types and relations by automatically constructing the basic Lego syntax 

from a 'high level' presentation. The syntax is as follows. 

Induc t ive [T1:M1] . . . [Tm:Mm] 

Constructors [C0NS1:L1] . . . [CONSnrLn] 

<Qptions> 

This command declares the mutually recursive data type T l . . . Tm wi th the 

constructors C0NS1 . . . CONSn which have corresponding types L I . . . Ln. 

There arc several Options for declaring a recursive data type. Option Parameters 

is used to give parameters for inductive data type. Option Theorem is used to 

generate some corresponding axioms and theorems for the constructors. Option 

ElimOver is used to define the type universe of inductive data type. Lego wil l 

automatically generate corresponding recursive operators. 
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Lego has built in many inductive data types as libraries. We list natural 

numbers, booleans, lists and logical definitions in appendix A. 

Record Type 

The is a record type to simplify the definition of inductive data type with only 

one constructor. There is no document about the details of record types in Lego. 

2.4 Set Theory 

Set theory is a very useful concept which has many application in various area. 

In Lego, the objects in the universe are categorised into different types and there 

is no overlap between distinct types. Therefore, the set theory we use is typed set 

theory. We use logical predicates to represent sets. Therefore, in the following 

discussion, the notation of sets wi l l be A.pred which means a set wi th elements 

of type A satisfying pred. 

First, we define predicate operators as follows. 

[Pred = [A:Type(0)]A->Prop] ; 

[True [A:Type(0)] = [ s :A] t rueProp : A .Pred] ; 

[False [A:Type(0)] = [s :A]absurd : A .Pred] ; 

[ Imply [A:Type(0)] [C,D:A.Pred] = [s :A]s .C->s .D : A .Pred] ; 

[ I f f [A:Type(0)] [C,D:A.Pred] = [s :A]and (Imply C D s ) (Imply D C s ) 

[And [A:Type(0)] [C,D:A.Pred] = [s :A]and s.C s.D : A.Pred] ; 

[Or [A:Type(0)] [C,D:A.Pred] = [ s : A ] o r s.C s.D : A .Pred] ; 

[Not [A:Type(0)] [C:A.Pred] = [ s :A]no t s.C : A .Pred] ; 

Then, the various concepts of sets can be defined over the predicate operators 
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as follows. 

(* SET as predicates *) 

[ F u l l s e t - T r u e ] ; 

[Emptyset = F a l s e ] ; 

[Union = O r ] ; 

[Meet = And]; 

[Minus [A:Type(0)] [C,D:A.Pred] = And C (Not D)] ; 

[ S i n g l [ A : T y p e ( 0 ) ] [ x : A ] = Eq x : A.Pred] ; 

[Subset [A:Type(0)] [C,D:A.Pred] = { x : A } x . C - > x . D ] ; 

[Eqset [A:Type(0)] [C,D:A.Pred] = and (Subset C D) (Subset D C ) ] ; 

We can therefore prove some properties of set operators as follow. 

• unionjassoc : VA : Type(0)VC, D, E : A.Pred 

Eqset(Union C(Union D E))(Union(Union C D)E) 

• singl Jemma : MA: Type(Q)\/x, s : AVC : A.Pred 

(not(Eq x s)) —> x.{Union C s.Singl) -> x.C 

• uniondemmal : V^4 : Type(0)\fB, C : A.Pred 

Subset B (Union B C) 

• minus Jemmal : WL: Type(0)VB, C, D : A.Pred 

(Subset B C) -> Subset (Minus B D)C 

• minusJemma2 : VA : Type(0)VB,C : A.Pred 

Subset (Minus B C) B 

• minus.union Jemma : VA : Type(0)V£, C, D : A.Pred Vs : A 

(Subset (Minus B C) D) Subset (Minus B(Union C(s.Singl))) D 
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2.5 Fixed Points 

The theorems of fixed points arc very useful in computer science, giving semantics 

of programming languages, program analysis, program verification, etc. In this 

section, we formalise some definitions and formally prove some theorems in Lego. 

D e f i n i t i o n 2.5.1 (Prefixed point and postfixed point) 

Let E be a set and $ be a function, a subset S C E is a prefixed point of <3? i f 

$(S) C S 

and a postfixed point of $ i f 

5 C $ (5 ) . 

S is a fixed point of <3> i f S is both a prefixed point and postfixed point of $. 

T h e o r e m 2.5.1 (Ta r sk i [Tar55]) Let E be a set, P(E) be the power set of E 

and $ : P(E) -» P{E) be a monotonic function i.e. 

SCS'^ $(S) C $(S') 

for all S, S' € P(E). Then $ has a minimum fixed point fiS.^(S) and a maximum 

fixed point vS.$(S) given by 

HS.$(S) = n{S' C £ | $ ( S ' ) C S'} 

vS.Q(S) = U { 5 ' C E\S' C $ ( 5 ' ) } 

/z5.$(5) is the least prefixed point since i t is the meet of all the prefixed point. 

i /5.$(5) is the greatest postfixed point since i t is the union of all the postfixed 

points. 

We have formally proved many theorems of fixed point in Lego. The set is 

defined as a predicate over a data type A. Therefore for a monotonic function F, 

we can define its prefixed point and postfixed point as 
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[ p r e f p [F:A.Pred->A.Pred][P:A.Pred] = Subset P.F P ] ; 

[ p o s t f p [F:A.Pred->A.Pred][P:A.Pred] = Subset P P . F ] ; 

We can then define its least fixed point as 

C l fp [F:A.Pred->A.Pred] = [ x : A ] { P : A . P r e d } ( p r e f p F P)->x.P:A.Pred] 

And prove the following theorems of least fixed point. 

Theorem 2.5.2 For every prefixed point P, least fixed point is a subset of P. 

VP.prefp(F, P) -> lfp(F) C P 

Theorem 2.5.3 Least fixed point is a prefixed point. 

prefp{F,lfp{F)) 

Theorem 2.5.4 Least fixed point is a postfixed point. 

postfp{F,lfp{F)) 

The greatest fixed point can be defined as 

[ g f p [F:A.Pred->A.Pred] = [x:A]Ex [P:A.Pred]and(P.Subset P .F) (x .P) 

: A.Pred] 

Theorem 2.5.5 Every postfixed point P is a subset of greatest fixed point. 

\/P.postfp{F, P ) - ) P C gfp(F) 

Theorem 2.5.6 Greatest fixed point is a postfixed point. 

postfp(F,gfp(F)) 
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Theorem 2.5.7 Greatest fix point is a prefixed point. 

prefp(F, gfp(F)) 

Using the above formalisation, we can prove in Lego the following lemma and 

theorems, which wi l l be used to prove model-checking rules presented in chapter 

3. 

Theorem 2.5.8 (Reduction lemma [Koz83, Win89]) 

VP.P C gfp(F) o P C F{gfp{XQ.{P U F{Q)))). 

Theorem 2.5.9 (Least fixed point fold and unfold) 

V P P C lfp(F) o P C F(lfp{F) U P) 

Theorem 2.5.10 (Greatest fixed point base) 

VP.P C P ' - ^ P C gfp{XQ.(P' U F(Q))). 

Theorem 2.5.11 (Greatest fixed point fold and unfold) 

VP.P C gfp(F) O P C F(gfp(F) U P) 
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Part I I 

Formalisation 
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Chapter 3 

Temporal Logics 

This chapter presents our formalisation of temporal logics in Lego. Temporal logic 

is a special branch of modal logic that deals wi th the t ru th values of assertions 

which change over time. Whereas an ordinary logic is adequate for describing 

a static situation, temporal logic enables us to discuss how a situation changes 

due to the passage of time. An execution of a program is precisely a chain 

of situations, called execution states. That suggests that temporal logic is the 

appropriate tool for reasoning about the execution of programs. 

Concurrent programs have long been a difficult subject to formalise and have 

often been dealt wi th by the methods that worked perfectly for sequential pro

grams. Temporal logic offers special advantages for the formalisation and analysis 

of the behaviour of concurrent programs since i t is designed to reason about the 

on-going behaviour as sequences of actions or state changes. 

Temporal logics can be classified as linear temporal logic and branching tem

poral logic. The first one regards the sequences of time as linear: at each moment 

there is only one possible future moment. The other one is that time has a branch

ing, tree-like nature: at each moment, time may split into alternate sequences 

representing different possible futures. Both approaches have been applied to 
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program reasoning, and i t is a matter of debate as to say whether branching or 

linear time is preferable [EH86, Lam80, Pnu85]. 

Kozen's (propositional) modal //-calculus {fiK) [Koz83] has expressive power 

subsuming many modal and temporal logics such as LTL and C T L [BCM + 92 , 

CGH94, EL85]. Therefore, i t is a natural choice to use //-calculus to specify 

the properties. However, i t can be difficult to express properties in //-calculus 

since its semantics is not natural in terms of people's understanding. One way to 

tackle this problem is to give the translations from various perhaps more easily 

accessible temporal logics [EL85, Dam90, Sti92]. 

In the next section the syntax and semantics of //-calculus are presented. Their 

formalisation in Lego is then presented in section 3.2. Subsequently two proof 

systems for finite and infinite state models are introduced. The inference rules 

of both systems have been formally proved in Lego. There is an implicit premise 

about monotonicity in those inference rules. We have developed a monotonicity 

prover to prove the monotonicity automatically. Following //-calculus, three tem

poral logics, PLTL, CTL and CTL* are introduced and finally their embeddings 

in //-calculus are discussed. 

3.1 ^-calculus 

Because the double negation rule in classic logic does not exist in intuitionistic 

logic such as type theory, we have to adapt /i-calculus to positive version which 

does not contain negation operators. Theoretically all formulae with negation 

operators can be transformed to some kind of normal form with negation opera

tors only occuring before atomic formulae [Wal95], therefore positive //-calculus 

should be enough to express all the temporal properties we need. We also use 

Winskel's construction of tagging fixed points [Win89] to simplify the formalisa-
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tion of inference rules. 

The assertions are constructed from the following grammar: 

$ : := 4 | Z | $ V $ | * A $ | (K)$ | [K]$\nZ.U$ \ vZ.US 

where U is called tag which is a subset of states, A ranges over atomic assertions, 

Z ranges of variables used for recursion and K ranges over subsets of labels. The 

tag-free fixed points and vZ.Q are special cases wi th empty tag. 

Semantics 

Atomic formulae, variables, conjunction A and disjunction V are interpreted in 

the obvious fashion. For modal proposition (K)$ and [K]$, s satisfies (K)$ i f 

i t has a transition by a label in K into a state satisfying $, while s satisfies [K]$ 

i f each of its successor states transited by a label in K satisfies uZ.UQ is the 

greatest fixed point of Z -¥ {{^\y/Z^p U?7), while nZ.U$ is the least fixed point 

oi Z ^ mV/Z]l\U). 

The operational semantics of /z-calculus formulae is given via a labeled transi

tion system 

( 5 , L , { 4 : t € L } ) 

which consists of a set 5 of states, a set L of transition labels, and a transition 

relation -4c S x S for each t € L. We shall use the notation s -A s' for (s, s') € A 

and use s A s' to abbreviate 3a € K.s A s'. The semantics of assertions 

C S is given by induction on the structure of $ as follows. 

\(K)*\P = {« e S\3s' e S.s 4 S ' and s' € [*]_} 
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[[*]*], = 
lvZ.U$\p = 

lnz.u$\p = 

{s G S\W G S.s 4 s' implies s' G 

{ 5 G S|3P C S.P C I $ [ P / Z ] | , U { / and s G P } 

{s G S|VP C 5. MP/Z}]p\U C P implies s G P } 

where the map p is an evaluation function which assigns to each atomic assertion 

A a subset of S. In the following discussion, we shall omit p when the evaluation 

function for atomic assertions is not a major concern. $[P/Z] is the substitution 

of Z by P in $. Satisfaction between a state s and an assertion <£ is now defined 

by: 5 | = p * i f f 

Some Useful Assertions 

Some other useful assertions can be abbreviated as follows. 

• t t =def uZ.Z, true formula 

• f f —def 11Z.Z, false formula 

• able K =<&/ (AT)tt, a capability for performing the labels in K 

• inable K =def [K]S, an inability to perform the labels in K 

• deadlock [—]fF, cannot perform any labels 

• deadlockfree =def vZ.([—]Z A (—)tt), always can perform some labels. 

• only K —def (—) t tA[—K]S , only K can be performed 

• [ " I * =def [L]*, ( - > * =de/ (L)* 

• [-K]Q [L\K}$,{-K)<Z> = d e f (L\K)<b 

In section 3.4 we wi l l find the other temporal logic properties can be defined in 

/^-calculus as well. 
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3.2 Formalisation of ^-calculus 

This section presents the fonnalisation of ^-calculus in Lego. Some syntax is 

adapted to a more readable form. The whole of Lego environment is presented 

in appendix C. 

State, Label, Trans 

The semantics of fj, is determined via a given labeled transition system as men

tioned in section 3.1. Therefore, we only declare the types of them as follows. 

State : Type{0) 

Label : Type(0) 

Trans : Label— > State— > State— > Prop 

Modality 

First of all, we formalise the label sets of [ ] and ( ) operators as an inductive 

data type Modality. The modality type has two constructors, Modal and Neg-

modal, which correspond to the positive operator [K] and negative operator [-K], 

respectively. 

Induc t ive [Modal i ty :Type(0) ] ElimOver Type 

Constructors [ M o d a l : ( l i s t Labe l ) ->Modal i ty ] 

[Negmodal : ( l i s t L a b e l ) - > M o d a l i t y ] ; 
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In this formalisation, we use lists to represent finite sets of labels. To prevent 

doing induction in proving the membership of the finite set, we define a compu

tational function Modal_check(a,M) to check whether label a is in modality M 

and return a corresponding boolean value. 

Goal modal_check: { 1 : LabelHM: Modal i ty}Prop; 

i n t r o s _; Ref ine Moda l i ty_e l im [M:Modal i ty]Prop; 

i n t r o s ; Refine i s . t r u e (member Eq_Label 1 x 2 ) ; 

i n t r o s ; Refine i s _ f a l s e (member Eq_Label 1 x l ) ; 

Save; 

where function member(a,K) checks whether a is a member of list K and return 

a boolean value. 

Therefore, we can define the transition relation MTrans(K, s, s') which rep
resents s 4 s ' a s follows. 

[MTrana [K:Modality][s, s': State] = [a:Label] and (Eq (Hodal\_check a X) true) (Trans a s a')] 

where Trans(a, s, s') represents s A s'. 

//-calculus 

In our previous paper [YL97], we formalise the syntax of //-calculus by an in

ductive data type and use de Bruijn index to deal with variable binding. Since 

the variables which are denoted by natural numbers wi l l change when doing vari

able substitution, i t is very complicated to do reasoning. We therefore re-define 

the syntax of //-calculus by encoding the semantics in Lego's internal higher order 

logic. Using the notation of set defined in previous chapter, the set of tags Tag and 

the set of //-calculus formulae Form are defined as subsets of states St a te . Pred. 

The //-calculus operators are defined as follows. 
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Or(A, B : Form)= Union(A, B) 

And{A, B : Farm) = Meet(A, B) 

Dia(K : Modality, P : Form) 

= As : State3s' : State.and(MTrans(K,s,s'))s'.P 

Box(K : Modality, P : Form) 

«= As : Staters' : State(MTrans(K, s, s')) ->• s'.P 

Tnu(T : Tag, F : Form -> Form) 

= As : StateBP : Form.and{P.Subset{{FP).Union T))s.P 

Tmu(T : Tag, F : Form -> Form) 

= As : State.VP : For.m.{((FP).MinusT).Subset P) -» s.P 

Using the above forraalisation of syntax and semantics, we have proved in Lego 

the inference rules and the lemmas, nu_base, nu_unfold, mu_unfold, lemma_box 

and lemma_dia as introduced in the next section. The Lego scripts are presented 

in appendix B. Furthermore, it is easier to extend with more operators simply by 

encoding them as Lego propositions as well. 

3.3 Inference Rules 

Finite-State Systems 

This section presents a sound proof system for the //-calculus adapted from [BS92] 

to reason about finite-state systems. The judgements take the form 

s i -

which means that property $ is satisfied at state s. We have formally proved the 

soundness in Lego. The rules are presented in natural deduction style as follows. 
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s e p(A) , , . . . . 
— : — — (A is an atomic assertion) 

s h 4 
s I- $ s h * 

s I- $ A # 
S h $ (a G K and s' € {s'|s A a'}) 

(a € K and {sx, . . . , s n} = {s'|s A s'}) s \- [K]$ 
self s\- Q[vZ.(Uu{s})Q/Z] 

s h vZ.U$ s \- vZ.U$ 
seu s h $[/iZ.(u u {s})$/z] 

s \f nZ.US s h iiZ.U® 

For [ ] and ( ) operators, to simplify the reasoning, we defined two functions 

Succ and F i l t e r . Succ(s) generates a list of successor (label-state) pairs of a 

state s. F i l t e r ( / f , s l i s t ) filters the states with corresponding labels in the 

Modality K from s l i s t . We can then prove lemma_dia and lemma.box as follows. 

lemma-dia 

s h (K)$ 
lemma-box 

(s' € Filter K (Succ s)) 

s \- [K\$ ^ S u ' ' ' ' S n ^ = F H t e r K ^SuCC S^ 
Because Succ function is used to get a finite list of successor states, these two 

lemmas can only be used to systems with a finite-branching structure. 

We have also proved the following useful lemmas. 

lemma_True 

Vs.s h tt 

lemmaJFalse 

Vs.styff 
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Infinite State Systems 

Wc have also formally proved in Lego a sound proof system for reasoning about 

infinite-state systems which is adapted from [BS92] for tagged ^/-calculus. The 

judgement is defined as 

e 1- $ iff Vs € e.s h $ 

where e is a set of states and s is a state. The inference rules are as follows. 

£ Q P ( A ) * • 
;—:— A is an atomic assertion 

eh A 
6h $ e h * 

£ h $ A * 
£l h $ £ 2 h * 

£ h $ V # 
e ' h $ 

(e = ei U e2) 

e h (K)${£ Q { S £ 5 | 3 S ' G £ ' 3 a € K S A S ' } ) 

eCU er -$[ i /Z . (£ /Ue )*/Z] 
e H i/Z.17$ £ I- i /Z. t /* 

£ C [/ e l -$ fcZ. ( t /Ue )$ /Z] 
e \f fiZ.U® e h nZ.U® 

e' U e h $ 

(eg 17) 

£ h $ 

where (e A ) denotes the subset of states that can be reached through an action 

in K from a state in e. 

Monotonicity 

The above inference rules for v and fi constructors have the implicit monotonic

ity premise that all the functors which are defined by means of the /i-calculus 
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operators are monotonic. The mono tonicity of functors for predicates over A is 

defined is defined as follows: 

Mono(F : A.Pred -»• A.Pred) =\/C,D: A.Pred{C C D ) 4 (F(C) C F(D)) 

To complete the rigorous proof in Lego, we cannot simply ignore that premise. 

Fortunately, the proof can be automated by proving the following rules for in

dividual constructor of //-calculus and developing an algorithm which can apply 

those rules to prove the monotonicity automatically. The algorithm is presented 

in Appendix B. 

• MonoJriv : VF.Mono XZ.F(Z is not bound in F) 

• Mono-Var : Mono XZ.Z 

• Mono-Andl : VFVQ(Mono F) ->• Mono (XZ.(FZ) A Q) 

• Mono.And2 : \/FVQ(Mono F) -> Mono (XZ.Q A (FZ)) 

• Mono-And : VFVG(M<mo F) {Mono G) -> Mono(XZ.(FZ) A (GZ)) 

• MonoDr : VFNG(Mono F) -> (Mono G) -> Mono(XZ.{FZ) V (GZ)) 

• Mono-Box : \tFVK(Mono F) -> Mono (XZ.[K](FZ)) 

• MonoJDia : VFVK(Mono F) Mono (AZ.(M)(FZ)) 

• Mono-Nu : VFVT(VX.Mono FX) -> Mono {XZ.uY.T(FYZ)) 

• MonoMu : VFVTfyX.Mono F X ) -> Mono (AZ.AiKT(fYZ)) 

3.4 Embedding of Temporal Logics 

The above formalisation is expressive enough for us to reason about various tem

poral properties. However, the //-calculus is not natural to capture people's un

derstanding of properties. Therefore, it is better to define other temporal logics 
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as abbreviations of /^-calculus. The Propositional Linear Temporal Logic (PLTL) 

is one of linear temporal logics advocated by Manna and Pneuli [MP92]. Com

putation Tree Logic (CTL) [CE81, CES86] is a branching time temporal logic. 

CTL * was proposed as an unifying framework subsuming both CTL and PLTL 

[EH86]. Since CTL* subsumes PLTL and CTL, it should be enough to embed 

CTL* in //-calculus. 

CTL* 

CTL severely restricts the type of formula that can appear after a path quantifier, 

i.e. only single linear time operator, F, G, X , or U can follow a path quantifier. 

By distinguishing two types of formulae: state formulae and path formulae, CTL* 

permits an arbitrary formula of linear time logic to follow a path quantifier. 

state-formula($) ::= A|$ A $|-i$|E* 

path-formula(#) ::= $[T |# A ^ h ^ l X ^ I ^ U * 

where A ranges over atomic assertions. The other operators are defined as syntax 

abbreviation as follows. 

A $ = ->E-i$ 

Note that if we define path formulae as X $ and «3>UvI> only, the set of state 

formulae forms CTL. Also note that the set of path formulae yields PLTL. 

Given a transition system M = (S,—•,/>) as defined above, a full path of 

it is an infinite sequence s0, «i, s 2 , . . . of states such that Vi.s< -» s i + i . We use 

x = (SQ, si, S2, • •.) denotes a full path, x(i) denotes S j , and that xx denotes the 

suffix path (sj, S j+ i , S j + 2 , . . . ) . The notation s (= $ means that state s satisfies 
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formula x (= \1> means that full path x satisfies formula \l>. 

s (= A iff s e P{A) 

s [ = $ i A $ 2 
iff s (= and s |= $ 2 

5 (= -i$ iff s H=$ 

5 f=E# iff 3x.x(0) = s and x )= * 

iff x(O) (= $ 

X |= * i A * 2 
iff x |= and x |= * 2 

x (= iff x ^ $ 

X (= * X U * 2 iff 3i.x' |= ^2 and V J . J < i implies x J (= * 

x (=X* iff x 1 (= * 

Embedding 

To describe the embedding we need a weak version of diamond-operator {—)'<& = 

(—)$ V [ — ] / / and a strong version of box-operator [—]'$ = [—]$ A (—)tt which 

originate from [And93]. The embedding is presented in Table 3.1 where e.p.o.w 

should be read as "exists a path on which" and o.a.p should be read as "on all 

paths". For the proof of such embedding the reader is referred to [EC80, Koz83, 

EL85, Dam90, Sti92]. 

In later discussion of this thesis, I shall use "always" to denote A G , "eventu

ally" to denote E F and "next" to denote X. 
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CTL* /i-calculus Meaning 

E X $ 

A X $ 

E G $ 

A G S 

EF<E» 

A F $ 

E G F $ 

A G F $ 

E F G $ 

A F G * 

<->* 

vz.{-yz/\$ 
vZ.[-]Z/\$ 

nZ.[-yzv$ 
i / ^ K ( - ) r v ( ( - ) ' ^ A $ ) 

A G ( A F $ ) 

E F ( E G $ ) 

nX.uY.[-]Y A ([-]'X V $ ) 

e.p.o.w $ at next state 

o.a.p. $ at next state 

e.p.o.w always $ 

o.a.p. always $ 

e.p.o.w. eventually $ 

o.a.p. eventually $ 

e.p.o.w. infinitely often $ 

o.a.p. infinitely often $ 

e.p.o.w eventually always $ 

o.a.p. eventually always $ 

Table 3.1: Embedding of CTL* in ̂ -calculus 
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Chapter 4 

System Modeling and CCS 

The usual way of modeling a system in most of model-checkers and interactive 

theorem provers is to use a labeled state-transition graph (explicit or implicit). 

The transition relation of a system can be defined as an inductive relation in 

theorem provers. Although the mechanism to define inductive data types in 

many theorem provers helps to reduce human effort significantly, it is very time-

consuming and error-prone for a large system. 

Another alternative approach is to formalise the syntax and semantics of a 

system description language and then use this system description language to 

describe systems. It is believed that this approach is more natural and easier to 

model systems and therefore gives a better user interface. Moreover, an interface 

with exactly the syntax of description language and specification language will 

further simplify the verification job. 

We have formalised two description languages: CCS [Mil89] and an imperative 

and concurrent language (ICPL). This chapter gives a general introduction about 

concurrent systems and then presents CCS and our formalisation of CCS in Lego. 

ICPL is presented in chapter 5. 
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4.1 Concurrent Systems 

Concurrency can be represented by interleaving [MP92]. Therefore, a concurrent 

system can be regarded as a system in which there are several entities (called 

agents) in progress at the same time by interleaved execution sequences of the 

atomic instructions of sequential agents. Concurrent systems are different from 

sequential systems in at least two ways: agents compete for access to shared 

resources and they exchange messages. Therefore there are two general points 

of view of modeling communication in concurrent systems: shared variable model 

and message passing model. 

The shared variable model considers parallel agents of the form Pi\P2 \ • • - \Pn 

consisting of a finite set of sequential agents Pi, P2,..., Pn running together 

in parallel. There is an underlying set of variables V\,...,vm that are shared 

among the processes in order to provide for inter-process communication and co

ordination. We define a simple imperative and concurrent programming language 

to model shared variable systems in chapter 5. 

The message passing model can be blocking or non-blocking. We consider 

only blocking here. The message passing model has its own set of local variables 

Vi, - • • ,Vn for each process that cannot be accessed by other processes. All inter

process communication is performed by message passing primitives. CSP [Hoa85] 

and CCS [Mil89] are best examples of this model. We use CCS to model message 

passing systems. 

4.2 CCS: Calculus of Communicating System 

In this thesis, we consider pure CCS, which does not involve value passing. The 

expressions of CCS, which are called agents, are used to model systems of commu

nicating processes. A process uses actions to communicate with other processes 
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where each action is associated with a name. There is a special action r which 

models idling or invisible or internal actions. Let Act be a set of actions defined 

as follows. 

1. r : internal or idling action 

2. a : base action 

3. a : complement action 

where a ranges over the names of actions. The complement action has the prop

erty that U — a. 

The expressions of CCS are defined as follows. 

• Nil: empty agent, a process which cannot perform any actions 

• X: agent variable 

• a.E : prefix, a process which can only perform action a and thereafter 

behave as the process described by E. 

• Ei+E2 : choice, a process which behaves as either the process described by 

Ei or as the process described by E2. 

• Ei\E2 : parallel composition, a process which consists of two process de

scribed by Ei and E2, which can have independent behaviours or commu

nication through complement actions. 

• E\K : hiding, a process behaves likes E but cannot perform any actions in 

K or their complement actions. 

• E[f] : renaming, a process behaves like E with its names of actions renamed 

by function f 
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• rec X.E : recursion, a recursive process which behaves like the agent E with 

X substituted by rec X.E 

where a ranges over actions, E, Ex, E2 range over agents, K is a subset of base 

actions, / is a relabeling function from Act to Act with f(a) — f(a) and f(r) = r. 

The syntax can be summarized as the following grammar: 

E ::= Nil \ X \ a.E \ Ex + E2 \ E\K \ E[f] \ EX\E2 \ recX.E 

Formalisation 

We use natural numbers to represent the base names of actions: Base = nat and 

then define the types of actions as follows. 

Inductive [ActB : TYPE(O)] ElimOver Type 

Constructors [base : Base->ActB][comp : Base->ActB]; 

Inductive [Act : TYPE(O)] ElimOver Type 

Constructors [ tau:Act][act : ActB->Act]; 

The notion of complement can then be defined as a function from ActB to ActB 

as follows. 

Comp (base a) = comp a 

Comp (comp a) = base a 

We can then prove the property S = a as \/a.Comp(Comp a) = a by doing 

inductive reasoning over the type ActB. 

We use lists to represent sets and natural numbers to represent the process 

variables: Var = nat and then define the type of processes as follows. 
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Inductive [Process : TYPE(O)] ElimOver Type 

Constructors 

[ N i l : Process] 

[dot : Act->Process->Process] 

[cho : Process->Process->Process] 

[par : Process->Process->Process] 

[hide: Process->(list ActB)->Process] 

[ren : Process->(Base->Base)->Process] 

[var : Var->Process] 

[rec : Process->Process]; 

In the above, the natural way to express rec constructor should be 

[rec : (Process —¥ Process) —> Process]. 

However, Lego docs not allow this sort of expressions since in general they could 

introduce paradox [Luo94]. Instead, we use de Bruijn's index [dB72] to deal with 

variable binding. Since de Bruijn's index is complicated and difficult for general 

users to use and understand, we have implemented an interface in LegoMC where 

the user does not use de Bruijn's index, while the machine translates the user 

notation into de Bruijn's notation. LegoMC is discussed in chapter 6. 

4.3 de Bruijn's Index 

Instead of using names to express variables, the method of de Bruijn's index uses 

natural numbers which denote their reference depth (the number of A between 

variables and their binders plus one). This representation avoids all the renaming 

problems associated with actual names (a conversion). For example, the following 

A term, 

Xx(xXy(y x)) 
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can be represented by de Bruijn's index as 

A(l A(l 2)). 

The distance of the first x with its binder is 1, whereas the second a; is 2 because 

there is one A between the second x and its binder Xx. Although this method is 

very convenient for implementation, it is easy to confuse people since the same 

variables are represented by different numbers. 

The substitution operation of A terms expressed in de Bruijn's indexes needs 

the weakening operation. They are defined as follows. 

• weaken(n, x) adds one to the variables in term x which are bigger than n. 

• subst(x, n, A) replace the variables in term x which are equal to n with A. 

If x has the form Xy, then A should be weaken by the depth(^l). 

• depth(A) is the maximum reference depth of variables in A. 

depth, weaken and subst are defined as functions which are then used for 

the substitution operation in the formalisation of transitional relations of CCS 

described in the next section. 

4.4 Semantics of CCS 

The operational semantics of CCS agents is given via a labeled transition system 

(S,L,{\.teL}) 

which consists of a set S of states, a set L of transition labels, and a transition 

relation -4c S x S for each t € L. In CCS, we shall take S to be E, the agent 

expressions, and L to be Act, the actions. The transition relations are given by 

the following transition rules in terms of the structure of agent expressions. 

Prefix a.E-^E 
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E\ A E' E2 A E' 
Oho £ t + £ 2 A E' B, + £ 2 A E> 

Ei A E' E2 A E' 
Par 

£, |£ 2 A E'\E2 Ei\E2 A Ex\E' 

Par (Com) 
Ei —)• E[ E2 —y E'2 

Ei\E2^E\\E'2 

Hide — „ —(a, a f . K) 
E\KAE'\KK ' ' E\K^E'\K 

E^E' 
Ren 

E[f) ^ E'[f] 

R e c E[(Rec X.E)/X] A E' 
Rec X.E A E' 

Whenever E A E', we call the pair (a, E') an immediate derivative of E, a 

an action of E, and E' an a-derivative of E. 

Formalisation 

The transition relation can be defined as an inductive relation with each of the 

constructors in the definition corresponding to one or two rules as follows. 

Inductive [TRANS : Act->Process->Process->Prop] Relation 

Constructors 

[Dot : {a:Act}{p:Process} 

( + _ *) 

TRANS a (dot a p) p 

] 

[ChoL : {a:ActHpl,p2,p:Process} 

(TRANS a p i p)-> 

(* *) 

(TRANS a (cho p i p2) p) 
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] 

[ChoR : {a:Act}{pl,p2,p:Process} 

(TRANS a p2 p)-> 
(* *) 

(TRANS a (cho p i p2) p) 

] 

[ParL : {a:ActMpl,p2,p:Process} 

(TRANS a p i p)-> 
(* *) 

(TRANS a (par p i p2) (par p p2)) 

] 

[ParR : {a:Act}{pl,p2,p:Process} 

(TRANS a p2 p)-> 
(* *) 

(TRANS a (par p i p2) (par p i p)) 

] 

[Taul : {n:BaseHpl,p2,ql ,q2: Process} 

(TRANS n.base.act p i ql)->(TRANS n.comp.act p2 q2)-> 
(• *) 

(TRANS tau (par p i p2) (par q l q2)) 

] 

[Tau2 : {n:BaseHpl,p2,ql,q2:Process} 

(TRANS n.comp.act p i ql)->(TRANS n.base.act p2 q2)-> 
(* *) 

(TRANS tau (par p i p2) (par q l q2)) 

] 

[Hide : {a:ActB}{p,q:ProcessHR:list ActB} 

(TRANS a.act p q)-> 

( i s . f a l s e (orelse(member a R)(member a.comple R)))-> 
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(* *) 

(TRANS a.act (hide p R) (hide q R)) 

] 

[Ren : {a : ActHp,q:Process}{f :Base->Base} 

(TRANS a p q)-> 

( * _ *) 

(TRANS (rename f a) (ren p f ) (ren q f ) ) 

] 

[TauH : {p,q:Process}{R:l ist ActB} 

(TRANS tau p q)-> 
(* *) 

(TRANS tau (hide p R) (hide q R)) 

] 

[Rec : {a :Ac tHp .p ' :Process} 

(TRANS a (subst p one p.rec) p ' ) -> 
(* *) 

(TRANS a p.rec p ' ) ] ; 

where Relation is one of the options of inductive data type which is used to define 

inductive relation, rename ( f , a) is a higher order function that will rename a by 

the mapping function f . (subst p one p.rec) is p[(rec x.p)/x] represented by 

de Bruijn's index, which is described in previous section. We use two rules Taul 

and Tau2 to represent parallel composition Par(Com) because E\ A E[ E2-^ 

E'2 and E2 •% E2 E\ A E[ are different in syntax. 

For instance, the constructor of rule Dot: a.P A P is 

[Dot : {a:Act}{p:Process} 
(* _ *) 

TRANS a (dot a p) p 
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] 

which means Va € Acfip E Process (p is an a-derivative of a.p). The constructor 

of rule ChoL : is 

[ChoL : {a :Ac tHp l ,p2 ,p :P rocess} 

(TRANS a p i p ) -> 

(* *) 

(TRANS a (cho p i p2) p) 

] 

which means Va € .Acf Vp,pl ,p2 G Process (if p is an a-derivative of p i , then p 

is an a-derivative of p i + p 2 ) . 

4.5 Lemmas and Theorems 

Based on the above formalisation of CCS, we have formally proved the following 

inversion lemmas which are useful to reason about the transition relation. The 

inversion lemmas can be used to infer the premise from the conclusion under the 

inductive relation definition. For example, for the following inference rule 

A 
B ' 

the inversion lemma could be " i f B is provable, then A should be provable". 

lemma-nil Nil -fo E 

lemma_nil' E E' implies E ^ Nil 

lemma-dot a.E A F implies a = b and E = F 

lemma_cho Pi + P2 A P implies A A P or P 2 A P 

lemma_par Pi |P 2 A P implies 
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(3P'.PL A P' v P 2 4 P ' )v 

(if a = r then BP;, 6 . ^ 4 P | A F 2 A P£) V (P x 4 P( A P2 4 i * ) 

lemma_hide P\/sT 4 P ' implies 3P;.(P' = P{\K)A 

(if a = actb then (6 £ tf) A (P A P/)) A ( if a = r then P A Px') 

lemma_rec rec X.P 4 P' implies P[rec X.P/X] 4 P ' 

4.6 Example: a Ticking Clock 

We present an example to explain how the formalisation of CCS and tempo

ral logics presented in previous chapter are used to do verification. This is the 

example of a ticking clock taken from [Sti92]. 

CI = tick.Cl 

The only action this process wi l l perform is t i c k and i t wi l l t i c k forever. The 

CCS model of the clock in our formalisation is as follows. 

[ t i c k = act (base z e r o ) ] ; 

[CI = rec ( t i c k . d o t o n e . v a r ) ] ; 

Here we define t i c k as action zero and define the clock by the expression with 

de Bruijn's index as rec t i c k . 1 which equals to CCS syntax rec x t i c k . x . We 

first t ry a simple property: the clock is able to t i c k . 

P r o o f 

CI \- (tick)tt 

Refine by lemma_dia rule and instantiated by CI, the goal becomes 

CI h tt 

CI € Filter(tick, Succ CI) 
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Sub-goal 4.1 can be proved by lemrna_True and sub-goal 4.2 can be proved by 

Member_head rule. 

The second property is deadlock freedom which is L>Z.([—]Z A (—)tt). 

P r o o f 

CI h uZ.([~]Z A (-)tt) 

Refine by nu.unfold and pair rules, we get the following two sub goals 

CI, h [-](vZ.{Cl}[-]Z A (-)tt) (4.3) 

CI h (-)tt (4.4) 

Sub-goal 4.3 can be proved lemma_box and nuJbase rules. Sub-goal 4.4 can be 

refined by lemma_dia and instantiated by CI and get the following two sub-goals. 

CI h tt (4.5) 

CI € Filter(-, Succ CI) (4.6) 

Sub-goal 4.5 can be proved by lemma_True. Sub-goal 4.6 can be proved by 

MemberJiead rule. 
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Chapter 5 

An Imperative and Concurrent 

Programming Language (ICPL) 

Using ICPL to model a system has at least four advantages. 

1. I t can simplify the modeling job. 

2. I t can reduce the mistakes during modeling. 

3. I t is easier for programmers to use verification tools. 

4. I t can be used to verify real programs. 

In the following section, we describe the syntax of ICPL and its formalisation 

in Lego. We then define the transitional semantics of ICPL and present its 

formalisation in section 5.2. An example is given in section 5.3. 

5.1 The Syntax 

We consider a concurrent program as several sequential processes in progress at 

the same time by interleaved execution sequences of the primitive statements. 
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There is an underlying set of global variables that are shared among the pro

cesses for inter-process communication and synchronization. Each set of global 

variables ranges over a data type and has an init ial value before the program 

starts to execute. Hooman and Roever have developed a real time programming 

language to deal with imperative and concurrent programs [HdR90]. Their lan

guage is based on real-time variations of CSP [Hoa78]. Our language is different 

from theirs. The syntax of our language can be described as follows, where M 

ranges over natural numbers, V ranges over natural number variables, BE ranges 

over boolean expressions and ME ranges over natural number expressions, w a i t 

and signal are semaphore statements. 

1. natural number expressions 

j V : : = 0 | 1 | 2 |.... 

ME ::= M | V | ME + ME \ ME - ME \ ME x ME 

2. boolean expressions 

BE : := t r u e | false | BEkkBE \ BE \\ BE \ -> BE \ ME - - ME | ME < ME 

3. semaphores 

Sem : := V 

4. primitive statements 

Primitive : := V := ME \ sk ip | awai t BE \ wa i t Sem | s ignal Sem 

5. processes 
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Process ::=Primitive | E m p t y | I f B£ t h en Process else Process 

| W h i l e B£ do Process \ Process; Process 

Program ::= Process \ Process\Program 

Formalisation 

Each of the expression types is defined as an inductive data type, consisting of 

constants, variables and operators to construct expressions. The type of natural 

number expressions may be represented as the following inductive data type. 

Induc t ive [NatExp : Type(O)] ElimOver Type 

Constructors 

[natConst : nat->NatExp] 

[natVar : Var->NatExp] 

CnatAdd : NatExp->NatExp->NatExp] 

[natMinus : NatExp->NatExp->NatExp] 

[natTimes : NatExp->NatExp->NatExp]; 

where nat is the type of natural numbers, Var is a type of variables represented 

by nat. We shall use the following abbreviations. 

[ONE = natConst zero.sue] 

[ZERO = natConst zero] 

The type of boolean expressions may be represented as the following inductive 

data type. 

Induc t ive [BoolExp : Type(O)] ElimOver Type 

Constructors 
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[boolConst : bool->BoolExp] 

[boolAnd : BoolExp->BoolExp->BoolExp] 

[boolOr : BoolExp->BoolExp->BoolExp] 

CboolNot : BoolExp->BoolExp] 

[natEq : NatExp->NatExp->BoolExp] 

[natLess : NatExp->NatExp->BoolExp]; 

where bool is the type of boolean values (i.e. true and false). 

Primitives can be defined as an inductive data type as well. The assignment 

is represented by a pair of variables and natural number expressions. We only 

allow assignment statements of natural number expressions at the moment. The 

semaphore is represented by variable type. The formalisation is as follows. 

[Assignment= Var#NatExp] ; 

[Semaphore = Var] ; 

Induc t ive [ P r i m i t i v e : Type(O)] 

Constructors 

[assign : Assignment->Primit ive] 

[ sk ip : P r i m i t i v e ] 

[await : BoolExp->Pr imi t ive] 

[wai t : Semaphore->Primitive] 

[ s i g n a l : Semaphore->Primitive]; 

Labeled Processes 

To provide a unique and convenient identification and reference to the positions 

of processes, we label processes with line numbers similar to [MP92]. Wc label 

all statements except sequential composition Comp statement which does not 
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need labels obviously. A labeled program is the program of which processes are all 

labeled. We use natural numbers to represent the line numbers: lno = nat. The 

labeling is gone by a function and therefore users don't have to label the process 

manually. The formalisation of processes and programs are as follows. 

Induc t ive [Process : Type(O)] ElimOver Type 

Constructors [Prim : Pr imit ive->Process] 

[Empty : Process] 

[ I f : BoolExp->Process->Process->Process] 

[While : BoolExp->Process->Process] 

[Comp : Process->Process->Process]; 

Induc t ive [Program : Type(O)] ElimOver Type Double Theorems 

Constructors [PROC : Process->Program] 

[PAR : Program->Program->Program]; 

We shall use the following abbreviations. 

(* abbrevia t ions f o r processes *) 

[Assign [x :Var] [e :NatExp] = ( x , e ) . a s s i g n . P r i m ] ; 

[Skip = s k i p . P r i m ] ; 

[Await [b:BoolExp] = b . a w a i t . P r i m ] ; 

[Wait [S:Semaphore] = S . w a i t . P r i m ] ; 

[S igna l [S:Semaphore] = S . s i g n a l . P r i m ] ; 

(* abbrevia t ions f o r programs *) 

[ASSIGN [x :Var] [e :NatExp] = (x,e) .assign.Prim.PROC]; 

[SKIP = skip.Prim.PROC]; 

[AWAIT [b:BoolExp] = b.await.Prim.PROC] ; 
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[WAIT [S:Semaphore] = S.wait.Prim.PROC]; 

[SIGNAL [S:Semaphore] = S.signal.Prim.PROC] ; 

[ I F [b :BoolExp][pi ,p2:Process] = ( I f b p i p2).PR0C]; 

[WHILE [b:BoolExp][p:Process] = (While b p).PR0C]; 

[COMP [pi ,p2:Process] = (Comp p i p2).PROC]; 

[EMPTY = Empty.PROC]; 

A function process_label(p) is defined to get the line number of a process p 

in a state. We label all the top statements first and then the statements under top 

statements. For example, here is a labeled program with two labeled processes. 

p i = 1: While t r u e do 

2: (While s==l do 

5: s k i p ) ; 

3: s k i p ; (* c r i t i c a l sec t ion *) 

4: s := 1 

p2 = 1: While t r u e do 

2: (While s==0 do 

5: s k i p ) ; 

3: s k i p ; (* c r i t i c a l sec t ion *) 

4: s := 0 

Therefore we can express the mutual exclusion property as "There is not a state 

in which p i is at position 3 and p2 is at position 3". 

A function th_process(k,P) is defined to get the kth process of a program 

P. 
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5.2 Shared Memory and Transitional Semantics 

Wc define a state as a pair (P,M), consisting of a labeled program P, which 

represents the labeled program text to be further executed, and a memory Af. 

The memory is a table containing the current values of variables denoted as a 

list of (Variable, Value) pair. We shall use M(e) to denote the value of e under 

evaluation in memory M and M% to denote changing the value of x to M (e) 

in memory M. Therefore, we can define the operational semantics of ICPL via 

a labeled transition system as follows, where the transition labels are primitive 

statements or boolean expressions and e is the Empty statement and e\p = p\e = p. 

M(b) = true 

{ x : = e> M ) 2=4 ( C | M * ) ( s k i p j M ) th% ( e > M ) { a w a i t { b ) > M ) a w ^ b ) ( e , M ) 

M{s) > 0 

{wait(s), M) W^4] (e, Mt_y) {signals), M) " 9 - ^ a ) (e, M * + 1 ) 

M{b) = true M(b) — false 

(if 6 then p i else p 2 , A f ) -^-» (pu Af) (if b then pi else P2, Af) (p2, M) 

M{b) = true M(b) = false 

(while b do p, M) (p; while b do p, Af) (while b do p, M) - A (e, M) 

( p 1 , M ) - ^ ( e , M ' ) ( P l , M ) - U ( p , M ' ) 
(P ^ e ) 

( p i ; p 2 ) M ) ( p 2 , M ' ) ( p i ; p 2 , M ) -U ( p ;p2 ,M ' ) 

( p 1 , M ) - ^ ( € , M ' ) ( p t.Afl-^foAp 
(pilft, M) - U (p 2 , A f ) ( P l | p 2 , Af ) - A (p|p 2, A f ) 

J p 2 , A / ) - ^ ( e , A f ' ) ( p 2 , M ) - U ( p , A / ' ) 

tpup2,M)-^(puM') ( p i | P 2 , M ) - U ( p 1 | P , M ' ) 

The Formalisation of Semantics 

Memories can be defined as a function of type Var—• nat. However, since the 

memory wc wil l consider is always a finite set, wc can use lists to represent 
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memories to simplify the memory manipulation. Also i t is easier to define the 

equivalence by lists. Therefore, memories are represented as a list of pairs of 

variables and values as follows. 

[Memory = l i s t (Var#nat)] 

The evaluation of NatExp and BoolExp in memory, M(e), are defined as func

tion natsEval:Memory —>NatExp—>-nat and boolEval:Memory—^BoolExp—»bool 

respectively. Another function Change: Memory—^Var—^nat—^Memory is defined 

for changing the current value of variables, A/*. 

The type of states, s ta te , can be defined as a record type as follows. 

Record [State : Type(O)] 

F ie lds [program : Program] 

[memory : Memory] 

Lego wil l generate a function make_State: Program—^Memory—estate which 

forms a state by taking a program and a memory. The equivalence of states then 

involves program equivalence and memory equivalence. 

The labels are defined as follows. 

Induc t ive [Label : Type(O)] 

Constructors [boo l_ l abe l : BoolExp->Label] 

[ p r i m . l a b e l : P r imi t i ve ->Labe l ] ; 

The transition relation TRANS can be defined as an inductive relation with 

each of the constructors in the definition corresponding to one or two rules as 

follows. 

Induc t ive [TRANS : Label->State->State->Prop] Re l a t i on 
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Constructors 

[ruleASSIGN : 

{M: MemoryHx: V a r H e : NatExp} 

TRANS ( x , e ) . a s s i g n . p r i m _ l a b e l 

(make.State (ASSIGN x e) M) 

(make.State EMPTY (Change M x (natsEval M e ) ) ) 

] 

[ruleSKIP : 

{M:Memory} 

TRANS s k i p . p r i m . l a b e l 

(make_State SKIP M) 

(make.State EMPTY M) 

] 
[ r u l e l F l : 

{M: Memory}{b: BoolExpHpl ,p2: Process} 

(Eq (boolEval M b) t r u e ) -> 

TRANS b .boo l_ l abe l 

(make_State ( IF b p i p2) M) 

(make.State pi.PROC M) 

] 
[ r u l e I F 2 : 

{M:MemoryHb:BoolExp}{pl,p2:Process} 

(Eq (boolEval M b) f a l s e ) -> 

TRANS b . b o o l . l a b e l 

(make.State ( IF b p i p2) M) 

(make_State p2.PR0C M) 
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CruleWHILEl : 

{M: MemoryMb: BoolExpHp: Process} 

(Eq (boolEval M b) t r ue ) -> 

TRANS b . b o o l . l a b e l 

(make.State (WHILE b p) M) 

(make_State (COMP p (While b p ) ) M) 

] 
[ruleWHILE2 : 

{M: MemoryMb: BoolExpHp: Process} 

(Eq (boolEval M b) f a l s e ) -> 

TRANS b . b o o l . l a b e l 

(make_State (WHILE b p) M) 

(make_State EMPTY M) 

] 
[ruleAWAIT : 

{M: MemoryMb: BoolExp} 

(Eq (boolEval M b) t r u e ) -> 

TRANS b . a w a i t . p r i m _ l a b e l 

(make.State (AWAIT b) M) 

(make.State EMPTY M) 

] 
[ruleCOMPl : 

{M,M' :MemoryHpl ,p2 :Process}{L:Label} 

(TRANS L 

(make.State pi.PROC M) 

(make_State EMPTY M ' ) ) -> 
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TRANS L 

(make_State (COMP p i p2) M) 

(make.State p2.PR0C M') 

] 
[ruleC0MP2 : 

{ M . M ' : Memory H p , p i ,p2:ProcessHL: Label} 

(TRANS L 

(make.State pl.PROC M) 

(make.State p.PROC M ' ) ) -> 

TRANS L 

(make.State (COMP p i p2) M) 

(make.State (COMP p p2) M') 

] 
CruleWAIT : 

{M:MemoryHS:Semaphore} 

(L t zero (natsEval M S.natVar)) -> 

TRANS S .wa i t . p r im_ labe l 

(make.State (WAIT S) M) 

(make.State EMPTY (Change M S (natsEval M S.na tVar) .pred) ) 

] 
[ruleSIGNAL : 

•CM: MemoryMS: Semaphore} 
(it***********************************************) 

TRANS S . s i g n a l . p r i m . l a b e l 

(make.State (SIGNAL S) M) 

(make.State EMPTY (Change M S (natsEval M S.natVar) .sue)) 
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] 
[ ru lePARl l : 

{M,M':MemoryMP,PI,P2:ProgramML:Label} 

(TRANS L 

(make.State PI M) 

(make.State EMPTY MO) -> 

TRANS L 

(make_State (PAR PI P2) M) 

(make_State P2 M') 

] 
[rulePARl : 

{ M , M ' : Memory}{P,PI, P2: ProgramML: Label} 

(TRANS L 

(make_State PI M) 

(make.State P M ' ) ) -> 

TRANS L 

(make_State (PAR PI P2) M) 

(make_State (PAR P P2) M') 

] 
[rulePAR21 : 

{M, M ' : MemoryMP, P1, P2: ProgramRL: Labe 1} 

(TRANS L 

(make.State P2 M) 

(make_State EMPTY M ' ) ) -> 

TRANS L 

(make.State (PAR PI P2) M) 
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(make.State PI M') 

] 
[rulePAR2 : 

{M, M ' : Memory H P , P I , P2: ProgramHL: Label} 

(TRANS L 

(make.State P2 M) 

(make_State P M ' ) ) -> 

(********^*********************************) 

TRANS L 

(make_State (PAR PI P2) M) 

(make_State (PAR PI P ) M') 

] ; 

For instance, the constructor of rule Assign : (x := e, M) x^e (e, M f ) is 

[ruleASSIGN : 

{M:MemoryHx:VarHe:NatExp} 

TRANS ( x , e ) . a s s i g n . p r i m _ l a b e l 

(make.State (ASSIGN x e) M) 

(make_State EMPTY (Change M x (natsEval M e ) ) ) 

] 

The constructor of rule IF1 : —— MW=l™ i s 

(if 6 then pi else P2,M)MPI>M) 

[ r u l e l F l : 

{M:MemoryHb:BoolExp}{pl,p2:Process} 

(Eq (boolEval M b) t r ue ) -> 

TRANS b . b o o l . l a b e l 

(make_State ( IF b p i p2) M) 
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(make_State pl.PROC M) 

] 

Atomic formulae 

To reason about properties related to the position of programs and data-dependent 

properties, wc introduce the atomic formulae and then give the following as se

mantics. 

At(pno,lno) = A s:State. 

Eq processJabel(th_process(pno, s.program)) lno 

NotAt(pno,lno) = A s:State. 

not (Eq processJabel (th_process(pno, s.program)) lno) 

Bool(b) = A s:State. Eq (boolEval(s.memory, b)) true 

where pno is the process number and Ino is the line number and s is the state 

which is a pair of memory and program. At(2, 3) means "process 2 at line 3" and 

NotAt(l, 4) means "process 1 not at line 4". Bool is used to specify the boolean 

properties such as "a > 3". 

5.3 Example - A Mutual Exclusion Algorithm 

One of important properties of concurrent programs is mutual exclusion of 

critical sections. Typical critical sections involve access to non-sharable resources 

such as printers; only one process is allowed to access at every single moment. 

Since there are many processes executing at the same time in a concurrent system 

which compete for resources, it is essential to have a certain strategy to control 

the access of critical sections for processes. To ensure the correctness of those 
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p l = p2= 

1: while true do 1: while true do 

2: await turn = = 0; 2: await turn — — 1; 

3: critical section; 3: critical section; 

4: turn :— 1 4: turn := 0 

5: done;; 5: done;; 

Figure 5.1: A solution for the mutual exclusion problem 

strategies, it is important to have those strategies formally verified. Mutual 

exclusion states that at most one process is allowed to be in its critical section 

at any time, that is, for all reachable states only one process is in the critical 

section. 

The above algorithm is a simple solution for mutual exclusion of a two-process 

system [Ray86]. There is a variable turn to control the access of the critical 

section. The statements in the above algorithm have their usual meanings except 

await which means "wait at that position until the boolean expression becomes 

true". The mutual exclusion property for this algorithm would be 

"In every reachable state, it is not true that pi is at position 3 and 

p2 is at position 3." 

Using the syntax presented in this section, the algorithm can then be described 

as follows. 

[turn = one]; [turn' = natVar turn] ; 

[pi = While TRUE 

(((Await (boolEq turn' ZER0)).Comp 

Skip).Comp 

(Assign turn ONE))]; 
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[p2 = While TRUE 

(((Await (boolEq turn' 0NE)).Comp 

Skip).Comp 

(Assign turn ZERO))]; 

[Pro = (Proc p i ) . P a r (Proc p2)] ; 

[ i n i t = (one,one).singleton:Memory]; 

The program of 2-process is Pro = [pl,p2]. The initial value of variable turn 

is 1, init — [(turn, 1)]. The mutual exclusion property is me = AG(NotAt(l, 3) V 

NotAt(2,3)). 

Proof 

{init, Pro) h vZ.\-\Z A (NotAt(l, 3) V NotAt(2,3)) 

The proof is represented as the following proof tree with P^ represents process 

Pi at line j and me represents (NotAt{l, 3) V NotAt(2,3)). 

(init, Pro) h vZ.\—\Z A me 

(init, Pro) h Pro)}[-]Z A me) A me 

(init, Pro) h [—](i/Z.{(im^, P r o ) } [ - ] Z A me) (zmi, Pro) h me 

(1) (2) 

(1) 

(ira*,P 1 2 |P 2 i) t" K .{( ini i ,Pn))}[-]2Affle) 
(tmf,P 1 2 |P 2 i) h \-\(vZ.{(init, Pro), (init,Pn P 2 i ) } [ - ]Z A m e ) A m e 

(tnrt, P12IP21) I- {-}(vZ.{(init, Pro), (init, Pg\Pn)}[-\Z A roe) (i'ra^P^IPn) h me 

(3) (4) 

The node (init, Pro) h me is true because process 1 is at line 1 and process 2 

is at line 2 in program Pro. The node (init, P12IP21) \~ me is true as well. 
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Most of the proof tree is similar to the above and therefore we can simply 

denote them as the following traveling tree with (i, j, k) representing the value of 

turn is i, process one is at j and process two is at k. 

(1,1,1) -> (1,1,2) -)• (1,1,3) -> (1,1,4) -> (0,1,1) -> (0,1, 2) 

(1,2,1) -> (1,2,2) -+ (1,2,3) -> (1,2,4) -> (0,2,1) -+ (0,2,2) 

I 4-
(0 ,3 ,1)-* (0,3,2) 

I 4 
(0,4,1) -> (0,4,2) 

I I 
(1,1,1)(1,1,2) 

The leaves in the proof tree are (1,1,1), (1,1,2) and nodes of me assertions. 

Nodes (1,1,1) and (1,1,2) have appeared before in the proof tree. Therefore, the 

states should be in the tag of assertions. We can then use nu.base rule to prove 

them. We can find (0,3,3) and (1,3,3) do not appear in the tree and therefore 

all the me assertion nodes are true. 
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Part I I I 

LegoMC 
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Chapter 6 

The Model-Checker, LegoMC 

We can verify finite and infinite problems using the formalisation in Part II al

ready. However, there are so many tedious and trivial proof steps; we expect to 

use model-checking to develop parts of the proofs automatically. We have im

plemented a model-checker called LegoMC in ML language. A domain specific 

interface is created so that the user can define their model and specification in 

the syntax that they are familiar with and then use simple commands to verify 

properties and generate proof terms. After a brief introduction to model-checking 

in the next section, the structure of LegoMC is described in the subsequent sec

tion. The implementation is then discussed in section 6.3. Section 6.4 presents 

the user interface of LegoMC. Two examples for CCS and I C P L respectively are 

then used to demonstrate the verification process of LegoMC. 

6.1 Model-Checking 

Over the last decade model-checking has emerged as a powerful technique for 

automatically verifying concurrent systems [CES86, VW86, Cle90, And92]. The 

basic idea is to determine whether or not a system satisfies a property typically 
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expressed as a temporal logic formula by searching the state space of the system 

thoroughly. When systems have finite-state space, model-checking algorithms can 

be used to verify the system completely automatically. 

Two major categories of model-checking algorithms have been developed: 

global and local model-checking. Global model-checking requires the a priori 

construction of the entire state space of the system being analyzed and then a 

subsequent pass over the state space determines the truth or falsity of the for

mula. Although exhibiting good worst-case behavior, in practice the overhead 

of computing the whole state space is unnecessary, as the answer can often be 

deduced from a small part of it. Local model-checking remedies this shortcoming 

by exploring the state space in demand-driven fashion but has poor worst-case 

behavior compared with global model-checking. We use local model-checking 

because it is easier to be formalised in theorem proving settings. 

In contrast to model-checking, interactive theorem proving gives a general 

approach to modeling and verification of both hardware and software systems but 

requires significant human efforts to deal with many tedious proofs. Even a simple 

model like the 2-process mutual exclusion problem can be fairly complicated to 

verify. If we can adapt model-checking techniques into theorem proving settings, 

wc should be able to simplify the verification dramatically. 

The idea is to adapt a model-checking algorithm to generate proof terms for 

finite-state system verification. This model-checker should be able to verify finite-

state systems completely automatically. We can also use Lego to decompose a 

large system (could be infinite) to several smaller sub-systems. Among those 

smaller sub-systems, the model-checker can be used to generate proof terms for 

them if they have finite-state spaces. The proof terms from each part of sub

systems can then be integrated to complete the whole proof. LegoMC is imple

mented in functional language ML with two versions, one for C C S and another 

one for the imperative and concurrent programming language ( I C P L ) . The overall 
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system structure of LegoMC is described in the next section. 

6.2 System Structure and Inference Rules 

LegoMC is an independent program with the user interface in the syntax of 

CCS or the imperative language and propositional /^-calculus. The system can 

be modeled using CCS or the imperative language and the properties can be 

expressed using /x-calculus. LegoMC will compute answers of whether a system 

satisfies certain properties and return proof terms in the syntax of Lego if the 

system does satisfy the properties. The proof terms can then be integrated with 

other proof terms to complete a larger proof. Other temporal logics such as L T L 

and C T L are defined as the abbreviations of ft-calculus. The system structure is 

shown in Fig. 6.1. 

Given as input the definition of a finite model and a specification (formula) 

in the syntax described in section 6.4, LegoMC will produce the proof term in 

Lego syntax which could be put into Lego to complete a larger proof if the model 

satisfies the specification. If the model does not satisfy the specification, LegoMC 

simply produces an error message. If an infinite model is given, LegoMC will run 

forever. We leave the decision whether or not to interupt the execution of LegoMC 

to users because it is difficult to judge if a model has a large state space or infinite 

state space. 

At the moment, the connection between Lego and LegoMC is through "copy 

& paste". During the Lego proof session, the proof terms generated from LegoMC 

are copied and pasted into Lego. 
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users! | Lego 

t 
Lego syntax 

Model: CCS, I C P L 

LegoMC J users 
Lego proof terms / \ 

domain-specific 
syntax 

Logics-calculus 

Figure 6.1: The system structure of LegoMC 

Inference Rules 

One difficulty for adapting model-checking algorithms into type theory based 

theorem proving settings is that almost all the model-checking techniques are 

based on classic logic and therefore we have to change the inference rules and 

algorithms to positive forms (without negation operators). The model-checking 

algorithm is based on several inference rules for finite-state systems which are 

formally proved in Lego as section 3.3. 

Proof Terms 

The rules for generating proof terms, which use the above inference rules, are 

described as follows, where p : P(s) means p is a proof term of predicate P on 

state s and 
P : P(a) 
q : Q(s) 
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means if p is a proof term of P(s) then q is a proof term of Q(s). 

O R 

P-P q-Q 
inl p : P V Q inr q : P V Q 

A N D 

p : P g : Q 
pair p q : P AQ 

B O X 

Pi :$(.<?!), . . . , p n : $ ( s n ) 
: - A\si> • • • J snt = Filter K (Succ s)) 

lemma-box prove_stateJist: [ K ] $ ( s ) v l 5 v " 

where prove_state_list=[s':State]mem_ind p\... memind pn(not_mem_nil s 

D I A 

p' : P(s') •(s' e Filter K (Succ s)) 
lemma_dia (pair prove_member p') : (K)P(s) 

where prove_member= (Member.tail . . . Member.tail Member Jiead) 

N U 

nu_base : vZ.U$(s) nu.unfold p : i/Z.U$(s) 
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M U 

p:*\jiZ.UU{8}*/Z]{8) 
mu.unfold p : fj,Z.U^(s) { * ' 

In the above rules, inr and inl are the or-introduction proof operators, pair is 

for and-introduction, Exlntro for exists-introduction, memJnd for the member

ship induction rule and not.memjnil for the rule that no element is the member 

of an empty set, Member .tail for the rule that an element is a member of the 

tail of a list, Member .head for the rule that an element is the head of a list. 

Atomic formulae 

Besides the above regular /u-calculus properties, there are also properties which 

are specific to the description languages such as At in I C P L for describing the 

location counters of processes. The proof terms for those properties vary for 

different properties and different description languages. One way of simplifying 

proof term generation for atomic formulae is using computational functions. 

For example, At property is defined as 

At(pno, Ino) = As : State.Eq (processlabel (th-process pno s.program)) Ino 

where pno is process number, Ino is line number and processdabel and thjprocess 

are computational functions, (processJabel (thjprocess pno s.program)) will 

compute to a natural number, the same type as Ino. Therefore the proof term 

is simply "Eqjrefl /no". This example also demonstrates how computational 

functions can simplify an external program as described in chapter 9. 
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6.3 The Implementation 

Wc have implemented LcgoMC as a separate program in ML. The entities of 

CCS, I C P L and /^-calculus are defined as inductive data types which are similar 

to the formalisation of Lego presented in part II . It is obviously very inconvenient 

and error prone for users to use de Bruijn's indexes. Therefore, an interface with 

CCS syntax is defined and translation mechanism is implemented to translate 

terms in C C S syntax into the internal terms with de Bruijn's indexes. 

Proof Term Generation 

The proof term generation of LegoMC uses "Separating search from justification" 

technique [Bou93]. The basic idea is dividing proof construction into two passes, 

one for proof search and another one for proof term generation. The motivation 

for this technique is to avoid constructing proof terms for unsuccessful branches 

of a search. The first pass is implemented as a function Check which only returns 

a boolean value "true" or "false". The second pass is another function Prove 

which then performs the task of proof term generation. O R and A N D operators 

are quite straightforward. The other operators are described as follows. Note: 

the exact syntax of the proof term has been changed to make them more under

standable. 

D I A 

Assume we want to find a proof term p of (K)P(s). We check individual state 

in F i l t e r K (Succ s) until we find a state s' with the proof term p' of P(s'). 

If we can find s', then p is "lemma_dia (pair (Member.tail... Member_tail Mem

ber .head) p'". 

B O X 
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Assume we want to find a proof term p of [K]P(s). We check all the states in 

F i l t e r K (Succ s ) . If all the states s \ , s n with the corresponding proof term 

P i , . . . ,p„ of P(si), • • •, P{s„) then pis "lcmma.box [s'rStatcjmcmJndpx... memJnd 

pn(not_mem_nil s')". 

N U 

Assume we want to find a proof term p of vZ.U$(s), we check whether s 6 U 

first. If s G U, the proof term p is "nu.base". If s & U, we try to find the proof 

term p' of $[i/Z.U U { s }$ /Z(s ) ] . If we can find p', then p is "nu_unfold p"\ 

M U 

Assume we want to find a proof term p of p,Z.U$(s), we check whether s e U 

first. If s € U, the proof fails and we return "false". If s £ U, we try to find the 

proof term p' of $[p,Z.U U { s }$ /Z(s ) ] . If we can find p', then p is "mu.unfold 

p"\ 

Atomic Formulae 

As the statement in Section 6.2, atomic formulae are used to specifiy the specific 

properties of description languages. Therefore the proof term generation depends 

on the specification languages. 

6.4 User Interface 

This section presents the syntax of user interface for users to model their systems 

in C C S or I C P L and define the temporal properties they want to verify. 
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6.4.1 CCS 

LcgoMC uses the following syntactic couventions for CCS agents. 

• Identifiers: consist of sequences of printable characters, where the first char

acter must be a letter. There are some characters which cannot be used as 

part of an identifier. These are: . , = () [ ] { } \ / + l ' and space, tab, carriage 

return. 

• Actions: consist of sequences of printable characters (excluding those ex

cluded for identifiers above), The internal or idling action r is represented 

as Tau. The complement actions, which are indicated by an overbar (e.g. 

a), are formed by single quotation mark postfixing, (e.g. a') . 

The CCS agent constructors are as follows. 

1. Nil: The constant Ni l is the CCS agent Ni l . 

2. Action prefixing: If a is an action and P is an agent, then a.P is an agent. 

3. Summation: If P I . . . . ,Pn are agents, then P1+.. .+Pn is an agent. 

4. Parallel composition: If P I , . . . ,Pn are agents, then PI I . . . I Pn is an agent. 

5. Restriction: If P is an agent, a l , . . . , an are actions except r , then P \ { a l , . . . , 

is an agent. 

6. Relabelling: If P is an agent, and a l , . . . . a n . b l , . . . , b n are actions, then 

P [ a l / b l , . . . ,an/bn] is an agent. 

7. Recursion: If x is an identifier, P(x) is an agent with x as free variables, 

then Rec x P(x) is an agent. 

Here is an agent example of three cell buffer in the syntax of LegoMC. 
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c e l l = Rec x a .b ' .x ; ; 

cO = c e l l [ c / b ] ; ; 

c l = c e l l [ c / a , d / b ] ; ; 

c2 = c e l l [ d / a ] ;; 

buffer3 = (CO I C l I C 2 ) \ { c , d } ; ; 

6.4.2 I C P L 
LegoMC uses the following syntactic conventions for I C P L programs. 

• Identifiers: consist of sequences of printable characters, where the first char

acter must be a letter. There are some characters which cannot be used as 

part of an identifier. These are: . , = () [ ] { }+ -* I \ and space, tab, carriage 

return. 

The I C P L natural number expressions are as follows. 

1. Constants: general natural numbers such as 0 , 1 , 2 , 3 , . . . . 

2. Variables: unused identifiers. 

3. Plus: If a and b are natural number expressions, then a+b is a natural 

number expression. 

4. Minus: If a and b are natural number expressions, then a-b is a natural 

number expression. 

5. Times: If a and b are natural number expressions, then a*b is a natural 

number expression. 

The I C P L boolean expressions are as follows. 
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1. Constants: true , fa lse . 

2. Negation: If a is a boolean expressions, then - a is a boolean expression. 

3. Conjunction: If a and b are boolean expressions, then a&ftb is a boolean 

expression. 

4. Disjunction: If a and b are boolean expressions, then a I I b is a boolean 

expression. 

5. Natural number Equality: If a and b are natural number expressions, then 

a==b is a boolean expression. 

6. Natural number Less: If a and b are natural number expressions, then a<b 

is a boolean expression. 

The I C P L primitive statements are as follows. Variable declaration is imple

mented implicitly by LegoMC and therefore users do not need to declare variables. 

1. Skip: skip is a primitive statement. 

2. Assignment: if a is an identifier and b is a natural number expression, then 

a:=b is a primitive statement. 

3. Boolean Await: if a is a boolean expression, then await a is a primitive 

statement. 

4. Semaphore Wait: if a is a identifier, then wait a is a primitive statement. 

5. Semaphore Signal: if a is an identifier, then s ignal a is a primitive state

ment. 

The I C P L sequential process and program constructors are as follows. 

1. Empty process: The constant Empty is the empty process e. 

85 



2. Primitive statement: I f a is a primitive statement, then a is a process. 

3. I f statement: I f a is a boolean expression, PI and P2 are processes, then i f 

a then PI else P2 endi f is a process. 

4. While statement: I f a is a boolean expression, P is a process, then whi le a 

do P done is a process. 

5. Sequential composition: I f PI and P2 are processes, then PI ;P2 is a process. 

6. Single process program: I f P is a process, then P is a program. 

7. Parallel composition: I f PI is a process and P2 is a program, then PI |P2 is 

a program. 

The memory and states are constructed as follows. 

• Memory: I f VI . . .Vn are program variables and Nl . . .Nn are natural 

numbers, then { ( V 1 , N 1 ) , . . . , (Vn.Nn)} is the memory. 

• State: I f M is memory and P is a program, then (M,P) is a state. 

Here is an example program. 

(* semaphore based on busy-wait *) 

p = whi le t r u e do 

wai t s; 

s k i p ; 

s i g n a l s 

done;; 

pro = p i p ; ; 

i n i t = { ( s , l ) } ; ; 

i n i t l = { ( s , 0 ) } ; ; 
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6.4.3 Temporal Logics 

LcgoMC uses the following syntactic conventions for temporal logic formulae. 

1. Identifiers: consist of sequences of printable characters, where the first char

acter must be a letter. There are some characters which cannot be used as 

part of an identifier. These are: . , = ( ) [ ] { } + - * I \ / ' and space, tab, carriage 

return. 

2. Or: I f P and Q arc formulae, so is P\/Q. 

3. And: I f P and Q are formulae, so is P/\Q. 

4. Dia: I f P is a formula and a . a l , a 2 , . . . , a n are actions, then <a>P, <->P 

and <al , a 2 , . . . ,an>P are formulae. 

5. Box: I f P is a formula and a , a l , a 2 , . . . ,an are actions, then [a]P, [ - ]P 

and [ a l , a2 , . . . , an] P are formulae. 

6. Nu: I f P is a formula and Z is an unused identifier, then nu Z P is a formula. 

7. Mu: I f P is a formula and Z is an unused identifier, then mu Z P is a formula. 

8. True: t t is a formula. 

9. False: f f is a formula. 

10. Free from deadlock: deadlockf ree is a formula. 

11. Always: I f P is a formula, so is AG P. 

12. Eventually: I f P is a formula, so is EF P. 

13. Able: I f a, a l , a 2 , . . . , an are actions, then able [a] and able [ a l , a 2 , . . . , an] 

are formulae. 
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14. Inable: I f a , a l , a 2 , . . . ,an are actions, then i n a b l e [ a ] and inab le [ a l , a 2 , . . . ,an] 

are formulae. 

The following two syntax of formula is for ICPL only. 

1. At : a t (pno , lno ) is a formula where pno and lno are natural numbers. 

2. Not At : no ta t (pno , lno ) is a formula where pno and lno are natural num

bers. 

6.4.4 Commands, Comments and Abbreviations 

At present, only two commands are defined as follows. 

1. Check: I f s is a state and P is a formula, then Check s P wi l l give an 

answer of "true" or "false". 

2. Prove: I f s is a state and P is a formula, then Prove s P wi l l return a 

proof term i f Check s p returns "true". 

Comments can be made by (* . . . *) 

The Identifiers can also be used to abbreviate a process or formula. I f A is an 

identifier, P is a process or formula, then A can be an abbreviation of P defined 

as: 

Abbreviation: A = P. 

The end of a command and abbreviation is represented by double semi-colon: 

1 1 • 
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6.5 Examples 

This section presents two simple verification examples of using LcgoMC. More 

complicated case studies and the integration with other methods to verify infinite 

state cases are presented in the next two chapters. 

The first example is a ticking clock modeled in CCS. The second example is a 

solution for 2-process mutual exclusion problem by using semaphores. Beside the 

automation, the user interfaces wi th domain-specific syntax make the verification 

easier and more readable. 

Example 1: Ticking Clock Modeled in CCS 

This example is taking from [Sti92]. There are three versions of ticking clocks. 

The first one Cll shows a clock can only tick and tick forever. The second clock 

C12 can tick and also tock alternately. The third one C13 can tick but can go dead 

as well. We can verify those properties and generate the proof terms completely 

automatically in LegoMC. 

Below is a sample input and output of LegoMC. We use Check to check the 

property first and then use Prove to generate proof terms. 

c l l = Rec x t i c k . x ; ; 

Check c l l dead lockf ree ; ; (* f r e e f rom deadlock => t r u e *) 

Check c l l ( < t i c k > t t ) ; ; (* able t o t i c k => t r u e *) 

Check c l l (EF [ t i c k ] f f ) ; ; (* even tua l ly inable t o t i c k => f a l s e *) 

(* pe rpe tua l l y t i c k s and can do no th ing else => t rue*) 

Check c l l (AG ( < - > t t / \ [ - ( t i c k ) ] f f ) ) ; ; 

Prove c l l dead lockf ree ; ; 
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# Refine (Nu.unfo ld ? [ V I .-Form] ((Dia(Negmodal A c t . n i l ) t t ) . A n d F (Box(Negmodal 

A c t . n i l ) V I ) ) ) ( p a i r (lemma.dia (Negmodal A c t . n i l ) ( ( a c t O . d o t one .va r ) . r ec ) 

( (ac tO.dot o n e . v a r ) . r e c ) ( p a i r (Member_headI?I?I?)(lemma.True ?)))(lemma_boxI 

(Negmodal A c t . n i l ) | ? | ( ( a c t O . d o t one .va r ) . r ec ) ( [ s ' :S ta t e ] ( [h :Member s ' 

(cons ( ( (ac tO.do t o n e . v a r ) . r e c ) ) ( S t a t e . n i l ) ) ] M e m _ i n d l h ( [ h : Member s' 

( n i l S ta t e ) ] not_Member_nil h ((Nu [VI :Fo rm] ( (Dia (Negmodal A c t . n i l ) t t ) . A n d F 

(Box (Negmodal A c t . n i l ) V I ) ) ) s ' ) ) ( [ h : E q ( (ac tO.dot one .va r ) . r ec ) s ']Eq_subst 

h ([2:State] (Nu [VI :Form] ( (Dia (Negmodal A c t . n i l ) t t ) . A n d F (Box (Negmodal 

A c t . n i l ) V I ) ) ) z) (Nu_base ( [ V I : F o r m ] ( ( D i a (Negmodal A c t . n i l ) t t ) . A n d F 

(Box (Negmodal A c t . n i l ) V I ) ) ) ) ) ) ) ) ) ; - : u n i t = ( ) 

Prove e l l ( < t i c k > t t ) ; ; 

# Refine (lemma.dia (Modal (cons actO A c t . n i l ) ) ( ( a c t O . d o t one .va r ) . r ec ) 

( (ac tO.dot o n e . v a r ) . r e c ) ( p a i r (Member_headI?I?I?)(lemma_True ? ) ) ) ; -

: u n i t = () 

Prove e l l (AG ( < - > t t / \ [ - ( t i c k ) ] f f ) ) ; ; 

# Refine (Nu_unfold ? [ V I : F o r m ] ( ( ( D i a (Negmodal A c t . n i l ) t t ) . A n d F (Box 

(Negmodal (cons actO A c t . n i l ) ) f f ) ) . A n d F (Box (Negmodal A c t . n i l ) V I ) ) ) ( p a i r 

( p a i r (lemma.dia (Negmodal A c t . n i l ) ( ( a c t O . d o t o n e . v a r ) . r e c ) ( ( a c t O . d o t one.var] 

( p a i r (Member.headI?I?I?)(lemma.True ?)))(lemma.boxI(Negmodal (cons actO 

A c t . n i l ) ) | ? | ( ( a c t O . d o t one .va r ) . r ec ) ( [ s ' : S t a t e ] ( [ h : Member s' ( n i l S t a t e ) ] 

not_Member_nil h ( f f s ' )))))( lemma_box|(Negmodal A c t . n i l ) | ? | ( ( a c t O . d o t 

one .va r ) . r ec ) ( [ s ' :S ta te ] ( [h :Member s ' (cons ( ( ( ac tO .do t o n e . v a r ) . r e c ) ) 

( S t a t e . n i l ) ) ] M e m _ i n d l h ( [ h : Member s ' ( n i l S t a t e ) ] not .Member_nil h ((Nu 

[ V I : F o r m ] ( ( ( D i a (Negmodal A c t . n i l ) t t ) . A n d F (Box (Negmodal (cons actO A c t . n i l ) 

f f ) ) . A n d F (Box (Negmodal A c t . n i l ) V I ) ) ) s ' ) ) ( [ h : E q ( (ac tO.dot one .va r ) . r ec ) 

s ']Eq_subst h ([2:State] (Nu [ V I : F o r m ] ( ( ( D i a (Negmodal A c t . n i l ) t t ) . A n d F 

(Box (Negmodal (cons actO A c t . n i l ) ) f f ) ) . A n d F (Box (Negmodal A c t . n i l ) V I ) ) ) 
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z) (Nu.base ( [ V I : F o r m ] ( ( ( D i a (Negmodal A c t . n i l ) t t ) . A n d F (Box (Negmodal 

(cons actO A c t . n i l ) ) f f ) ) . A n d F (Box (Negmodal A c t . n i l ) V I ) ) ) ) ) ) ) ) ) ; -

: u n i t = ( ) 

c l 2 = Rec x t i c k . t o c k . x ; ; 

(* even tua l ly inable to tock *) 

Check c l 2 (EF [ t o c k ] f f ) ; ; 

Prove c l 2 (EF [ t o c k ] f f ) ; ; 

# Ref ine (Mu.unfold ? [VI:Form]((Box (Modal (cons a c t l A c t . n i l ) ) f f ) . 0 r F 

((Box (Negmodal A c t . n i l ) VI) .AndF (Dia (Negmodal A c t . n i l ) t t ) ) ) ) ( i n l 

(lemma_box|(Modal (cons a c t l A c t . n i l ) ) | ? | ( ( a c t O . d o t ( a c t l . d o t one .va r ) ) . r e c ) 

( [ s ' : S t a t e ] ( [ h : Member s' ( n i l S t a t e ) ] not_Member_nil h ( f f s ' ) ) ) ) ) ) ; - : u n i t 

c l 3 = Rec x t i c k . x + t i c k . N i l ; ; 

(* I t i s poss ib le t ha t the c lock t i c k f o r e v e r . *) 

Check c l 3 (nu Z ( < t i c k > Z ) ) ; ; 

Prove c l 3 (nu Z ( < t i c k > Z ) ) ; ; 

# Ref ine (Nu_unfold ? [VI :Form](Dia (Modal (cons actO A c t . n i l ) ) V l ) ) ( l e m m a _ d i a 

(Modal (cons actO A c t . n i l ) ) ( ( ( a c t O . d o t one.var) .cho (actO.dot N i l ) ) . r e c ) 

( ( ( ac tO .do t one.var) .cho (actO.dot N i l ) ) . r e c ) ( p a i r (Member_head|?|?|?)(Nu_base 

( [ V I : F o r m ] ( D i a (Modal (cons actO A c t . n i l ) ) V I ) ) ) ) ) ; - : u n i t = ( ) 
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Example 2: Semaphore Solution for 2-process Mutual Ex

clusion Problem 

Even this is a simple example, the presentation and indeed the verification process 

of a similar algorithm in chapter 5 are very complicated. Here we can easily check 

many properties and generate proof terms by LegoMC. 

(* semaphore based on busy-wait *) 

p = whi le t r u e do 

wa i t s; 

s k i p ; (* c r i t i c a l sec t ion *) 

s i g n a l s 

done;; 

pro = p i p ; ; 

i n i t = { ( s , l ) } ; ; (* i n i t i a l memory *) 

(* mutual exc lus ion p roper ty , c r i t i c a l s ec t ion i s a t p o s i t i o n 3 *) 

me = AG ( n o t a t ( l , 3 ) \ / n o t a t ( 2 , 3 ) ) ; ; 

(* another represen ta t ion of mutual exc lus ion p roper ty *) 

a l t e r = AG([skip] nu Z ( [ s k i p ] f f / \ [ - ( s i g n a l s ) ] Z ) ) ; ; 

Check ( i n i t , p r o ) me;; (* t r u e *) 

Check ( i n i t , p r o ) a l t e r ; ; (* t r u e *) 

Check ( i n i t , p r o ) dead lockf ree ; ; (* t r u e *) 

(* whenever process one wants t o enter i t s c r i t i c a l s e c t i o n , 

i t can even tua l ly do *) 

Check ( i n i t , p r o ) AG ( n o t a t ( l , 2 ) \ / ( E F a t ( l , 3 ) ) ) ; ; (* t r u e *) 

Prove ( i n i t , p r o ) me;; 
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Prove ( i n i t . p r o ) a l t e r ; ; 

Prove ( i n i t . p r o ) dead lockf ree ; ; 

Prove ( i n i t . p r o ) AG ( n o t a t ( 1 . 2 ) \ / ( E F a t ( l , 3 ) ) ) ; ; 
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Chapter 7 

Finite-State Examples 

This chapter demonstrates how to use LegoMC to verify finite state systems. 

Since model checking can be used to verify finite-state systems completely auto

matically, the examples in this chapter are verified automatically by LegoMC. 

A system analysis process includes the following steps. 

1. System Modeling. 

2. System Specification. 

3. Verification and Analysis 

4. System Improvement 

5. Re-Analysis 

In LegoMC, ICPL and CCS are used to model systems and temporal logics are 

used to specify system properties. The automation in LegoMC makes verification 

only by a command Check. System improvement and re-analysis are easy as 

well by simply modifying the model and executing Check again. Once users are 

satisfied wi th the result, they can then use command Prove to generate the proof 
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terms for the final model to be type checked by Lego to further ensure their 

confidence in the verification result. Therefore, LegoMC has the advantage of 

early debugging and also final rigorous proofs. Wc shall show how LegoMC is 

used to verify systems through several examples. 

The first example is a simple communicating protocol. We model i t in both 

CCS and ICPL and then use LegoMC to verify the desired properties. This 

example shows the comparison of verification on CCS and ICPL and demonstrates 

the process of improving a system design by our tool. The second example is 

a class of mutual exclusion algorithms. Since we use ICPL as the description 

language and use LegoMC to do verification automatically, we can easily formally 

verify all of those mutual exclusion algorithms. This example shows how easily 

to use LegoMC to analyse and compare a group of similar algorithms. 

7.1 A Simple Communicating Protocol 

This example, which is taken from [Wal87], is an extremely simple communica

tion protocol wi th sender entity Sender and receiver entity Receiver, intercon

nected wi th a medium. I t takes into account the possibility that a message may 

be lost during transmission. Sender transmits the message through Medium 

to Receiver. On receiving a message, Receiver wi l l send an acknowledgement 

through Medium to Sender. After receiving such an acknowledgement, Sender 

may send another message. The Medium is not a reliable medium which may 

lose the message. 

This example was used by Walker to explain its divergent behaviour. In our 

analysis, we divide this into 3 phases and explain the improvement process of this 

protocol design. First, we assume the medium is a reliable medium which wi l l 

not lose messages. Then, we release the assumption and analyse this protocol 

wi th losing medium. Finally, we add a timer to enable the sender to re-send the 
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message once the message is lost. We assume the acknowledge channel is safe 

and omit the data flow in this analysis. 

We use both ICPL and CCS to model this protocol and compare them. 

7.1.1 Modeling in I C P L 

System Modeling 

The system can be modeled in ICPL as Fig. 7.1. We use a semaphore vari

able msg to model the transport medium and a shared variable ack, which has 

two states, empty and ok, to model the acknowledge channel. The difference 

of semaphore variables and shared variables is that semaphore variables execute 

variable access and variable updating in a single primitive statement whereas 

shared variables execute them by two separated primitive statements. I f variable 

access and variable updating are executed in two separated primitive statements, 

other processes may access the variable. We don't need to declare msg, ack and 

time explicitly because the program can identify variables implicitly. 

System Specification 

There are three important properties about this protocol that we want to prove 

as follows. 

Property 1 

This protocol is free from deadlock. 

deadlock free 
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(* msg : Sem => message channel i s a semaphore *) 
(* ack : Var => acknowledge channel i s a variable*) 
empty = 0;; 
ok = 1;; (* two possible states of acknowledge channel *) 
(* time : Var => time is a variable *) 
timeout =3;; (* timeout i s a constant, we set i t to 3 here 
sender = While true do 

await ack==ok; 
ack := empty; 
signal msg (* send the message *) 

done;; 
senderl= While true do 

await ack==ok && timeout < time; 
ack := empty; 
time := 0; 
signal msg (* send the message *) 

done;; 
medium = While true do 

wait msg (* the message i s lost *) 
done;; 

receiver = While true do 
wait msg; (* get the message *) 
ack := ok 

done;; 
timer = While true do 

await time < timeout; 
time := time + 1 

done;; 
protocoll = sender I receiver 
protocol2 = sender I receiver I medium 
protocol3 = senderlI receiver ImediRjm I timer 
i n i t = {(msg.O),(ack,ok),(time.O)} (* i n i t i a l state *) 

Figure 7.1: A simple transport protocol 



Property 2 

After putting the message iu the medium, the program can not put messages in 

unless the ack channel becomes ok. 

AG([signal msg]vZ(inable[signal msg] A ([—(ack := ok)]Z))) 

Property 3 

After sending, the receiver eventually receives, which means the process 2, re

ceiver, is at line number 3. 

AG([signal msg]EF(kt 2 3))) 

Verification and Analysis 

We can prove protocoll satisfies all of the above three properties by LegoMC 

automatically. 

(init, protocoll) h deadlock free 

(init, protocoll) h AG([signal msg]vZ(inable[signal msg] A ([—(ack := ok)]Z))) 

(init,protocoll) h AG([send]EF(At 2 3))) 

The transport protocol is however not safe and therefore the message can be 

lost during the transport. We use another entity medium to model the losing 

medium which wi l l consume the message in med. The protocol is protocol! in 

Fig. 7.1. Although protocol! can stil l satisfy property 2 and 3, i t fails in property 

1 because neither receiver nor sender can proceed anymore once the message in 

the medium is lost. 
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(init,protocol2) \f deadlock free 

(init,protocol) h AG([signal med]uZ(inable[signal med] A ([— (ack := ok)\Z))) 

(init, protocol) h AG([send]EF(At 2 3))) 

Improvement and Re-analysis 

We add another entity, timer, to allow sender to re-send the message after time

out. The protocol is protocols. The sender becomes sender! which wi l l set 

timer to zero before sending a message and wi l l re-send the message once the 

timer reaches timeout. After this improvement, the protocol can satisfy all of 

three properties. 

(init, protocols) h deadlock free 

(init,protocols) h AG([signal med\uZ(inable[signal med} A ([—(ack := ok)]Z))) 

(init, protocols) h AG ([sendjEF (At 2 3))) 

7.1.2 Modeling in CCS 

Walker modeled this protocol in CCS as follows. 

Sending = rec x (ms.sm'.x + rs.rece.sm'.x) 
Sender = rece.sm'.Sending 
Mediuml = rec x (mr'.sm.x + tau.ms'.sm.x) 
Medium = sm.Mediuml 
Receiver = rec x mr.send'.rs'.x 

protocol = (Sender I Medium I Receiver)\{sm,ms.mr,rs};; 

99 



The Sender receive a data rece to transmit, i t then send i t to medium by 

action sm' and then become state Sending. State Sending can either get an 

acknowledge r s from receiver and then wait for next data or get a timeout message 

ms from medium and re-transmit the data. After receiving a data from Sender 

sm, the medium can either send this data to receiver and then wait for next data 

or pass the time t au and then send a timeout ms' to sender. Receiver can receive 

a data from medium and then send an acknowledgement r s ' to sender. 

The three properties now become 

Property 1 

This protocol is free from deadlock. 

deadlock free 

Property 2 

After putting the message in the medium, the program can not put messages in 

unless the ack channel becomes OK. 

AG([rece]vZ(inable{rece} A ([—send]Z))) 

Property 3 

After sending, the receiver eventually receives. 

AG([rece]EF{able{send}))) 

We can also verify this protocol in CCS version by LegoMC automatically. 

protocol h deadlock free 
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protocol h AG([sm']i/Z(inable{sm'} A {\-rs\Z))) 

protocol h AG{[sm']EF{able{mr}))) 

7.1.3 Comparison 

Wc consider three aspects, modeling, specification and verification, to compare 

CCS and ICPL in analysing systems in our verification environment. 

Modeling 

ICPL should be easier for programmers to model their systems. In the future, 

i t has the potential that programmers can use their programs directly rather 

than translate their programs to other description languages. However, CCS 

can be more concise for certain small systems. ICPL is not good for modeling 

synchronous communication. 

Specification 

The position property of ICPL provides an easy way to specify position. For 

example, the mutual exclusion property for two processes should be "There is no 

state in which more than one process at the critical section." Suppose the critical 

section is at line four of programs, this property can be expressed in ICPL as 

follows: 

AG Not(At(l,4) AAt(2.4)) 

which means "There is no state in which process one is at line four and process 

two is at line four." 
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The property in CCS should look like 

protocol h AG([sm']uZ(inable{sm'} A ([-rs]Z))) 

which means "After sending a message, the protocol cannot send again unless 

sender get an acknowledgement from receiver" which doesn't quite catch the 

original meaning of mutual exclusion property. 

Verification 

Since we are using automatic tools, the verifications in both C C S and I C P L are 

similar by using the commands Check and Prove. 

7.2 Mutual Exclusion Algorithms 

Mutual exclusion is an essential property for concurrent systems. The difficulty in 

reasoning reliably about concurrent algorithms has long been recognized. There 

are many algorithms in the literature to solve mutual exclusion problems. There 

are basically three properties wc expect for these algorithms, mutual exclusion, 

deadlock freedom and fairness (non-starvation). There are two versions of fairness 

property, weak fairness and strong fairness. 

Weak fairness, which is also referred to as justice [MP92], is based on the 

assumption of hardware fairness which means the hardware is a fair device so 

that all concurrent processes have the same possibility to access processors, i.e. 

no single process is consistently neglected. Weak fairness can be expressed in 

temporal logic as "Whenever a process attempts to enter its critical section, 

there exists a path on which a process can eventually enter critical section." 

Since hardware is a fair device, it should be possible to choose the path which a 

process can reach its critical section. For a process, e.g. process one, if its critical 
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section is at position 3, the weak fairness property can be denoted as follows: 

AG(notat{l,3) V (EF ai(l ,4))) 

where we use "notat(l, 3)v(EF at(l,4))" to replace "a*(l,3) implies (EF af(l,4))" 

because we do not have implies operator in positive version of //-calculus. 

Strong fairness, which is also referred to as compassion [MP92], is based on the 

assumption that the hardware could be unfair and it is possible that hardware 

always grants access to some processes and completely ignores the requests of 

other processes. Strong fairness can be expressed in temporal logic as "Whenever 

a process attempts to enter its critical section, for all paths on which a process 

can eventually enter critical section." Since the hardware is unfair, to satisfy non-

starvation requirement a process should reach its critical section on all paths. For 

the same process as above, the strong fairness property can be denoted as follows: 

AG(notat(l,3) V (AF at(l,4))). 

This section presents the verification of several larger algorithms for two-

process mutual exclusion. LegoMC is a very suitable tool for analysing and com

paring several similar algorithms, implementations or systems since the modeling 

and verification in LegoMC are easy and therefore help people to focus on the 

algorithms and their properties. Most of the formulations of the algorithms are 

taken from RaynaPs book [Ray86]. 

7.2.1 Dekker's Algorithm 

The first algorithm to solve two-process mutual exclusion problem was designed 

by T . Dckker. There are two processes p i and p2, two boolean variables f l ag l 

and f lag2 whose initial values are fa l se , and a variable turn whose value can 

be 1 or 2. 

103 



(* Dekker's Algorithm for 2-process mutual exclusion *) 

O The formulation here i s taken from Raynal's book *) 

(* f l a g l , f l a g 2 : boolean with fa l se i s 0, true i s 1 *) 

(* turn can be 1 or 2 *) 

c r i l = sk ip; ; (* c r i t i c a l section *) 

c r i 2 = sk ip; ; (* c r i t i c a l section *) 

p i = while true do 

f l a g l := 1; 

while flag2==l do 

i f turn==2 then 

f l a g l := 0; 

await turn==l; 

f l a g l := 1 

else 

skip 

endif 

done; 

c r i l ; 

turn := 2; 

f l a g l := 0 

done;; 

p2 = while true do 

flag2 := 1; 

while flagl==0 do 

i f turn==l then 

flag2 := 0; 
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await turn==2; 

flag2 := 1 

else 

skip 

endif 

done; 

c r i 2 ; 

turn := 1; 

f lag2 := 0 

done;; 

pro = p l l p 2 ; ; 

i n i t l = { ( f l a g l , 0 ) , ( f l a g 2 , 0 ) , ( t u r n , l ) > ; ; (* i n i t i a l memory *) 

i n i t 2 = { ( f l a g l . O ) , ( f l a g 2 , 0 ) , ( t u r n , 2 ) } ; ; (* i n i t i a l memory *) 

me = notat ( l ,4 ) \ / notat (2 ,4) ; ; 

Check ( i n i t l , p r o ) AG me;; (* true *) 

Check ( in i t2 ,pro) AG me;; (* true *) 

Check ( i n i t l , p r o ) deadlockfree;; (* true *) 

Check ( in i t2 ,pro) deadlockfree;; (* true *) 

(* check weak fa irness => true *) 

Check ( i n i t l , p r o ) AG (notat( l ,4) \ / (EF a t ( l , 5 ) ) ) ; ; 

(* check weak fa irness => true *) 

Check ( in i t2 ,pro) AG (notat(2,4) \ / (EF a t ( 2 , 5 ) ) ) ; ; 

(* check strong fa irness => fa l se *) 

Check ( i n i t l , p r o ) AG (notat( l ,4) \ / (AF a t ( l , 5 ) ) ) ; ; 

(* check strong fa irness => f a l s e *) 
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Check ( in i t2 ,pro) AG (notat(2,4) \ / (AF a t ( 2 , 5 ) ) ) ; ; 

The critical section is position 4. The mutual exclusion property is therefore 

either process 1 not at position 4 or process 2 not at position 4. The processes at

tempt to enter their critical sections at position 4 and leave their critical section at 

position 5. We can prove that under both initial conditions (turn=l or turn=2), 

Dekker's algorithm satisfies mutual exclusion and deadlockfree. Dekker's algo

rithm can satisfy weak fairness but not strong fairness. 

7.2.2 Dijkstra's Algorithm 

Dijkstra [Dij65] generalized Dekker's solution to the case of n processes. We 

adapted the algorithm for two processes from Raynal's book [Ray86]. Vari

able turn is the same as Dekker's algorithm but f l a g l and flag2 take 3 values 

(passive, requesting and in_cs) with initial values as passive. 

(* D i j k s t r a ' s Algorithm for 2 process mutual exclusion *) 

(* The formulation here i s taken from Raynal's book *) 

passive = 1;; 

requesting = 2;; 

in_cs = 3 ; ; 

c r i l = sk ip; ; (* c r i t i c a l section *) 

c r i 2 = sk ip; ; (* c r i t i c a l section *) 

pi = while true do 

f l a g l := requesting; 

while turn==2 do 

i f flag2==passive then 

turn := 1 

106 



else 

skip 

endif 

done; 

f l a g l := in_cs; 

while flag2==in_cs do 

f l a g l := requesting; 

while turn==2 do 

i f flag2==passive then 

turn := 1 

else 

skip 

endif 

done; 

f l a g l := in_cs 

done; 

c r i l ; 

f l a g l := passive 

done;; 

p2 = while true do 

f lag2 := requesting; 

while turn==l do 

i f flagl==passive then 

turn := 2 

else 

skip 

endif 

done; 
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f lag2 := in_cs; 

while flagl==in_cs do 

flag2 := requesting; 

while turn==l do 

i f flagl==passive then 

turn := 2 

else 

skip 

endif 

done; 

flag2 := in_cs 

done; 

c r i 2 ; 

f lag2 := passive 

done;; 

pro = p l | p 2 ; ; 

i n i t l = { ( f l a g l , 0 ) , ( f l a g 2 , 0 ) , ( t u m , l ) } ; ; (* i n i t i a l memory *) 

in i t2 = { ( f l a g l . O ) , ( f l a g 2 , 0 ) , ( t u r n , 2 ) } ; ; (* i n i t i a l memory *) 

me = nota t ( l , 6 ) \ / notat (2 ,6) ; ; 

Check ( i n i t l , p r o ) AG me;; (* true *) 

Check ( in i t2 ,pro) AG me;; (* true *) 

Check ( i n i t l , p r o ) deadlockfree;; (* true *) 

Check ( in i t2 ,pro) deadlockfree;; (* true *) 

(* check weak fa irness => true *) 

Check ( i n i t l , p r o ) AG (notat( l ,6) \ / (EF a t ( l , 7 ) ) ) ; ; 

108 



(* check weak fa irness => true *) 

Check ( in i t2 ,pro) AG (notat( l ,6) \ / (EF a t ( l , 7 ) ) ) ; ; 

(* check strong fa irness => fa l se *) 

Check ( i n i t l . p r o ) AG (notat( l ,6) \ / (AF a t ( l , 7 ) ) ) ; ; 

(* check strong fairness => fa l se *) 

Check ( in i t2 ,pro) AG (notat( l ,6) \ / (AF a t ( l , 7 ) ) ) ; ; 

The critical section is position 6. The mutual exclusion property is therefore 

either process 1 not at position 6 or process 2 not at position 6. The processes 

attempt to enter their critical sections at position 6 and leave at position 7. 

We can prove that under both initial conditions (turn=l or turn=2), Dijkstra's 

algorithm satisfies mutual exclusion and deadlockfree. Dijkstra's algorithm can 

satisfy weak fairness but not strong fairness. 

7.2.3 Hyman's Algorithm 

Hyman's algorithm [Hym66] tried to simplify Dijkstra's algorithm in the case of 

two processes. However, Hyman's simplification is not entirely satisfactory. The 

variable f lag l , f lag2 and turn are the same as Dekker's algorithm. 

(* Hyman's Algorithm for 2 process mutual exclusion *) 

(* Raynal's book *) 

(* f l a g l , f l a g 2 : boolean with fa l se i s 0, true i s 1 *) 

(* turn can be 1 or 2 *) 

c r i l = sk ip; ; (* c r i t i c a l section *) 

cr i2 = sk ip; ; (* c r i t i c a l section *) 

p i = while true do 

f l a g l := 1; 
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while - turn==l do 

await flag2==0; 

turn := 1 

done; 

c r i l ; 

f l a g l := 0 

done;; 

p2 = while true do 

flag2 := 1; 

while - turn==2 do 

await flagl==0; 

turn := 2 

done; 

c r i 2 ; 

f lag2 := 0 

done;; 

pro = p l |p2 ; ; 

i n i t l = { ( f l a g l , 1 ) , ( f l a g 2 , 1 ) , ( t u r n , 1 ) } ; ; (* i n i t i a l memory *) 

in i t2 = { ( f l a g l , 1 ) , ( f l a g 2 , l ) , ( t u r n , 2 ) } ; ; (* i n i t i a l memory *) 

me = notat ( l ,4 ) \ / notat (2 ,4) ; ; 

Check ( i n i t l , p r o ) AG me;; (* fa l se *) 

Check ( in i t2 ,pro) AG me;; (* fa l se *) 

Check ( i n i t l , p r o ) deadlockfree;; (* true *) 

Check ( in i t2 ,pro) deadlockfree;; (* true *) 
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(* check weak fa irness => true *) 

Check ( i n i t l . p r o ) AG (notat( l ,4) \ / (EF a t ( l , 5 ) ) ) ; ; 

(* check weak fa irness => true *) 

Check ( in i t2 ,pro) AG (notat(2,4) \ / (EF a t ( 2 , 5 ) ) ) ; ; 

(* check strong fa irness => fa l se *) 

Check ( i n i t l . p r o ) AG (notat( l ,4) \ / (AF a t ( l , 5 ) ) ) ; ; 

(* check strong fa irness => fa l se *) 

Check ( in i t2 ,pro) AG (notat(2,4) \ / (AF a t ( 2 , 5 ) ) ) ; ; 

The critical section is position 4. The mutual exclusion property is therefore 

either process 1 not at position 4 or process 2 not at position 4. The processes 

attempt to enter their critical sections at position 4 and leave their critical sec

tions at position 5. We can prove that under both initial conditions (turn=l 

or turn=2), Hyman's algorithm does not satisfy mutual exclusion but does sat

isfy deadlockfree. Hyman's algorithm can satisfy weak fairness but not strong 

fairness. 

7.2.4 Knuth's Algorithm 

Knuth's protocol [Knu66] was the first strong fair solution. The variable f l ag l , 

f lag2 and turn are the same as Dijkstra's algorithm. 

(* Knuth's Algorithm for 2 process mutual exclusion *) 

(* The formulation here i s taken from Raynal's book *) 

(* f l a g l : passive, requesting, in_cs *) 

(* turn can be 1 or 2 *) 

passive = 1;; 

requesting = 2;; 
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in_cs 
c r i l = 
c r i 2 = 

= 3; ; 

skip;; 
skip;; 

(* c r i t i c a l section *) 
(* c r i t i c a l section *) 

p i - while t r u e do 
f l a g l := requesting; 
await turn==l I I f lag2==passive; 
f l a g l := in_cs; 
while f lag2==in_cs do 

f l a g l := requesting; 
await turn==l I I f lag2==passive 
f l a g l := in_cs 

done; 
t u r n := 1; 

c r i l ; 

t u r n := 2; 

f l a g l := passive 
done;; 

p2 = while t r u e do 
f lag2 := requesting; 
await turn==2 I I flagl==passive; 
f lag2 := in_cs; 
while f l a g l = = i n _ c s do 

f lag2 := requesting; 
await turn==2 I I flagl==passive 
f lag2 := in_cs 

done; 

t u r n := 2; 
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c r i l ; 

turn := 1; 

f lag2 := passive 

done;; 

pro = p l |p2; ; 

i n i t l = { ( f l a g l , 1 ) , ( f l a g 2 , 1 ) , ( t u r n , 1 ) } ; ; (* i n i t i a l memory *) 

in i t2 = { ( f l a g l , 1 ) , ( f l a g 2 , l ) , ( t u r n , 2 ) } ; ; (* i n i t i a l memory *) 

me = notat ( l ,7 ) \ / notat (2 ,7) ; ; 

Check ( i n i t l , p r o ) AG me;; (* true *) 

Check ( in i t2 ,pro) AG(me);; (* true *) 

Check ( i n i t l , p r o ) deadlockfree;; (* true *) 

Check ( in i t2 ,pro) deadlockfree;; (* true *) 

(* check weak fa irness => true *) 

Check ( i n i t l , p r o ) AG (notat( l ,7) \ / (EF a t ( l , 8 ) ) ) ; ; 

(* check weak fa irness => true *) 

Check ( in i t2 ,pro) AG (notat(2,7) \ / (EF a t ( 2 , 8 ) ) ) ; ; 

(* check strong fa irness => true *) 

Check ( i n i t l , p r o ) AG (notat( l ,7) V (AF a t ( l , 8 ) ) ) ; ; 

(* check strong fa irness => true *) 

Check ( in i t2 ,pro) AG (notat(2,7) \ / (AF a t ( 2 , 8 ) ) ) ; ; 

The critical section is position 7. The mutual exclusion property is therefore 

either process 1 not at position 7 or process 2 not at position 7. The processes 

attempt to enter their critical sections at position 7 and leave their critical sec

tion at position 8. We can prove that under both initial conditions (turn=l or 
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turn=2), Knuth's algorithm satisfies mutual exclusion, deadlockfree, weak fair

ness and strong fairness. 

7.2.5 Peterson's Algorithm 

Peterson [Pet81] gave an elegant and simple solution to mutual exclusion problem. 

The variables f lag l , f lag2 and turn are the same as Dckker's algorithm. 

(* Peterson's Algorithm for 2 process mutual exclusion *) 

(* The formulation here i s taken from Raynal's book *) 

(* f l a g l , f l a g 2 : boolean with f a l s e i s 0, true i s 1 *) 

(* turn can be 1 or 2 *) 

c r i l = sk ip; ; (* c r i t i c a l section *) 

cr i2 = sk ip; ; (* c r i t i c a l section *) 

pi = while true do 

f l a g l : - 1; 

turn := 1; 

await flag2==0 I I turn==2; 

c r i l ; 

f l a g l := 0 

done;; 

p2 = while true do 

flag2 := 1; 

turn := 2; 

await f lagl==0 11 turn—1; 

c r i 2 ; 
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f lag2 := 0 

done;; 

pro = p l |p2 ; ; 

i n i t l = { ( f l a g l . O ) , ( f l a g 2 , 0 ) , ( t u r n , l ) } ; ; (* i n i t i a l memory *) 

i n i t 2 = { ( f l a g l . O ) , ( f l a g 2 , 0 ) , ( t u r n , 2 ) } ; ; (* i n i t i a l memory *) 

me = notat ( l ,5 ) \ / notat (2 ,5) ; ; 

Check ( i n i t l , p r o ) AG me;; (* true *) 

Check ( in i t2 ,pro) AG me;; (* true *) 

Check ( i n i t l , p r o ) deadlockfree;; (* true *) 

Check ( in i t2 ,pro) deadlockfree;; (* true *) 

(* check weak fa irness => true *) 

Check ( i n i t l , p r o ) AG(notat(l ,5) \ / EF a t ( l , 6 ) ) ; ; 

(* check weak fa irness => true *) 

Check ( in i t2 ,pro) AG(notat(2,5) \ / EF a t ( 2 , 6 ) ) ; ; 

(* check strong fa irness => true *) 

Check ( i n i t l , p r o ) AG(notat(l ,5) V AF a t ( l , 6 ) ) ; ; 

(* check strong fa irness => true *) 

Check ( in i t2 ,pro) AG(notat(2,5) \ / AF a t ( 2 , 6 ) ) ; ; 

The critical section is position 5. The mutual exclusion property is therefore 

either process 1 not at position 5 or process 2 not at position 5. The processes 

attempt to enter their critical sections at position 5 and leave their critical sec

tions at position 6. We can prove that under both initial conditions (turn=l 

or turn=2), Peterson's algorithm satisfies mutual exclusion, deadlockfree, weak 

fairness and strong fairness. 
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7.2.6 Lamport's Algorithm 

Lamport's one-bit algorithm [Lam86] uses only one variable for each process. The 

variables f lag l and f lag2 are the same as Dekker' algorithm. 

(* Lamport's Algorithm for 2 process mutual exclusion *) 

(* f l a g l , f l a g 2 : boolean with fa l se i s 0, true i s 1 *) 

c r i l = sk ip; ; (* c r i t i c a l section *) 

c r i 2 = sk ip; ; (* c r i t i c a l section *) 

p i = while true do 

f l a g l := 1; 

await flag2==0; 

c r i l ; 

f l a g l := 0 

done;; 

p2 = while true do 

f lag2 := 1; 

while f lagl==l do 

f lag2 := 0; 

await flagl==0; 

f lag2 := 1 

done; 

c r i 2 ; 

f lag2 := 0 

done;; 

pro = p l |p2 ; ; 
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i n i t = { ( f l a g l . O ) , ( f l a g 2 , 0 ) } ; ; (* i n i t i a l memory *) 

me = notat ( l ,4 ) \ / notat (2 ,4) ; ; 

Check ( in i t ,pro ) AG me;; (* true *) 

Check ( in i t ,pro ) deadlockfree;; (* true *) 

(* check weak fa irness => true *) 

Check ( in i t ,pro ) AG ( n o t a t ( l , 4 ) \ / ( E F a t ( l , 5 ) ) ) ; ; 

(* check strong fa irness => true *) 

Check ( in i t ,pro ) AG ( n o t a t ( l , 4 ) \ / ( A F a t ( l , 5 ) ) ) ; ; 

(* check weak fa irness => true *) 

Check ( i n i t , p r o ) AG (nota t (2 ,4 ) \ / (EF a t ( l , 5 ) ) ) ; ; 

(* check strong fa irness => fa l se *) 

Check ( i n i t , p r o ) AG (notat(2 ,4) \ / (AF a t ( l , 5 ) ) ) ; ; 

The critical section is position 4. The mutual exclusion property is therefore 

either process 1 not at position 4 or process 2 not at position 4. Lamport's al

gorithm is not symmetric. The processes attempt to enter their critical sections 

at position 4 and leave at position 5. We can easily prove that under initial con

ditions, Lamport's algorithm satisfies mutual exclusion, deadlockfree and weak 

fairness. The process one satisfies strong fairness, whereas the process two does 

not. 

7.2.7 Results and Comments 

The tabic below summarizes the results obtained from previous sub-sections. 

* "Yes" for the first process and "No" for the second process. 
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Algorithm Mutual 

Exclusion 

Deadlock 

Freedom 

Weak 

Fairness 

Strong 

Fairness 

Dekker Yes Yes Yes No 

Dijkstra Yes Yes Yes No 

Hyman No Yes Yes No 

Knuth Yes Yes Yes Yes 

Peterson Yes Yes Yes Yes 

Lamport Yes Yes Yes Yes/No* 

Table 7.1: Verification results of mutual exclusion algorithms 

Compared with Walker's analysis [Wal89] of mutual exclusion algorithms using 

CCS and Concurrency Workbench [CPS93], the modeling in ICPL is much simpler 

and the ICPL presentation is clearer than CCS presentation. Further simplifica

tion can be made by creating syntax abbreviation for repeat . . . u n t i l and f o r 

loop statements. 
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Chapter 8 

Infinite-State Case Studies 

As shown in previous chapter, LegoMC provides a convenient way to do verifi

cation for systems with finite state space. One feature of our verification envi

ronment is the possibility of integrating a model-checker with other verification 

methods to verify infinite state systems. This chapter shows how LegoMC is used 

with Lego to analyse systems with infinite state space. 

The most basic verification method is through the semantics of description 

languages and specification languages by doing inductive reasoning over the tran

sitional structure of systems. This method sometimes can have very elegant and 

straightforward proofs. It is especially useful for parameterized processes, which 

have many identical processes executing concurrently. 

The compositional method provides another alternative for verification. By 

decomposing a system into several sub-systems, we can then verify the whole 

system by verifying individual sub-systems. The specification for such a system 

can also be decomposed into properties that concern only those sub-systems. 

We have to prove that the conjunction of local properties implies the overall 

specification. 

Another method is trying to reduce the complexity of a verification task by 
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abstraction. By proving that an abstraction mapping preserves the properties to 

be verified, one can work on the simpler abstract system instead of the original 

more complicated system. However, sometimes it is not so easy to find a suitable 

abstract system and prove the property is preserved. 

The inference rules of the above verification techniques can be formally proved 

in Lego as libraries. The verification of infinite state systems is carried out in 

Lego. Users are free to choose different methods by invoking their inference rules 

in the libraries. They can use LegoMC to generate some parts of proofs and 

then insert those proofs into Lego to complete the whole proof. In this way, we 

can then combine various verification techniques with LegoMC to form a general 

framework which can be used to verify more complicated or infinite state systems 

in a more efficient way. 

In the next section, two examples are given and formally proved in Lego to 

demonstrate the verification by semantics and induction. The first example is an 

infinite counter, which has an evolving structure. The second example is a token-

ring network which has many identical workstations connected in a network. The 

introduction of compositional method follows in section 8.2. The counter example 

is re-verified by compositional method. The abstraction technique is presented in 

section 8.3. We also re-do the verification of token-ring example by abstraction. 

Finally, some discussion is given in section 8.4. 

8.1 Proving by Semantics and Induction 

This section presents two examples of proving by semantics and induction. The 

same examples will be verified by compositional method and abstraction in sub

sequent two sections. 
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8.1.1 Example : an Infinite Counter 

This example is taken from [Dam95], a counter can count forever. We want to 

prove that the counter is always able to "up" and is free from deadlock. 

Counter = rec x.up.(x\down.Nil) 

Since this is an evolving system with infinite state space, we cannot use merely 

LegoMC to prove it . This infinite counter has been verified purely by semantics 

in Lego. It can also be verified by compositional method which is presented in 

next section. 

Always Able to Up 

We want to prove the property $ = AG(able{up}) which is vZ.{up)True A [—]Z. 

Counter h $ (8.1) 

Expand by the semantics of v operator, that means 3P.P C ((up)True A [—]P) 

and Counter € P. We take this P as the infinite set {cnt(i)\i € not}, i.e. 

P = Xp : ProcessBn : nat.Eq p cnt(n) 

where cni(O) = Counter, cnt{\) = Counter\(down.Nil),..., cnt(i+l) = cnt(i)\(down.Nil). 

Therefore, the original goal is reduced to the following three sub-goals. 

P C {up)True (8.2) 

P C [-]P (8.3) 

Counter € P (8.4) 

Sub-goal (8.4) is true by the membership of P. By the semantics of ( ) operator, 

sub-goal (8.2) is Vp € P3j/.p ^ pf and pt 6 True. Take p' as p\down.Nil, sub-
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goal (8.2) arrives 

Vp e P.p ^ p\down.Nil (8.5) 

p\down.Nil G True (8.6) 

Sub-goal (8.6) is proved by LegoMC. Sub-goal (8.5) can be proved by inductive 

reasoning over natural number i. The only sub-goal left now is (8.3). By the 

semantics of [ ] operator, sub-goal (8.3) is Vp € PVp'3a,p A p' implies p' G P 

which can be proved by inductive reasoning over natural number i. 

Therefore, we finish the proof by means of the semantics of //-calculus formulas 

and induction. 

Deadlock Freedom 

Another property we want to prove is deadlock freedom which is vZ.(—)True A 

HZ-

By the syntax of formula we can find that this property is similar to the 

previous one and therefore we only have to prove the following formula 

Vp € P3a,p'.p p' 

Take a as up , the formula becomes Vp € PBp'.p ^ p' which we have proved in 

proving the previous property. 

8.1.2 Example: a Token Ring Network 

Assume there are n workstations in a ring network as Fig 8.1. Every workstation 

which wants to enter its critical section should hold a token which passes around 

the ring. The workstation which holds the token can also merely do nothing and 

pass out the token. I f the workstation enters its critical section, it can only exit 
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the critical section but still keep the token. The whole model can be expressed 

in CCS as follows: 

/ = pass.IT 

IT = enter.exit.IT + pass.I 

Ring(n) = (IT\I\... \I)\{pass} with n + 1 Is— at least two processes 

where / is the idle workstation and IT is the workstation which holds the token. 

I 0 0 i i 

0 0 i i pas 

enter 0 i IT 
exit 

0 0 i i 

0 0 i i 
i 

Figure 8.1: A token ring network with 12 workstations 

We first prove some transition relations as lemmas. We will need some inver

sion lemmas which are presented in chapter 4. Lego scripts of lemma 8.1.1 are 

presented in appendix D. The others are omited. 

Lemma 8.1.1 \/n.Ring(n) A P implies (o = r A P = Ring{n)) V (a = enter A 

123 



P = Ringenter{n)), where Ringenter(n) = (exit.IT\I\... \I)\{pass} 

Proof Using lemmaJiide and the premise, we can have two sub-goals depending 

on whether a = r. 

Case 1. a / r 

We are going to prove a = enter A P = RingenterW)- This can be proved by 

induction over n. 

Base case: Ring(0) P implies P = Ringenter(0) 

That is IT\I e ^ T P implies P = exit.IT\I. Since / cannot perform enter, only 

IT can enter and by lemma_cho and lemma_dot the enfer-derivative state of IT 

is exit.IT. Therefore P = exit.IT\I 

Induction case: (Ring(n) e r ^ r P implies P = Ring(n)enter) implies (Ring(n+ 

1) e ^ r P implies P = Ring(n + l ) e n t e r ) 

We refine the goal by lemma_par. Since / cannot enter, P depends on the 

enter—derivative of Ring(n) which, by induction assumption, is Ring(n)enter-

Therefore P = Ring(n + l ) e n t e r 

Case 2. a = r 

We still do induction over n . 

Base case: Ring(0) ^ P implies P = Ring(0) 

The only r transition of Ring{0) is IT ^ / and / P -T IT. Therefore P is I\IT 
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which equals to IT\I. 

Induction case: (R.ing(n) A P implies P = Ring(n)) implies (Ring(n+1) -A 

P implies P = Ring(n + 1)) 

We refine the goal by lemma_par. There are only one possible r-transitions of 

Ring(n + 1) which is Ring(n + 1) A Ring(n + 1). Therefore P is Ring(n + 1). 

• 

Lemma 8.1.2 Vn.i?mg e n t e r(n) A P implies a = exit A P = Ring(n), where 

Ringenter(n) = (exrf . /T | / | . . . |/)\{pass} 

Proof Using lemmaJiide and the premise, we can have two sub-goals depending 

on whether a = r. 

Case 1. o ^ r 

We are going to prove a = exit A P = Ring{n). We do induction over n. 

Base case: Ringenter{Q) e ^ P implies P = Ring(0) 

That is exit.IT\I ^ P implies P = IT\I. Since J cannot perform exit, only 

exit.IT can exit and by lemma_dot the eiit-derivative of exit.IT is IT. There

fore P = IT\I 

Induction case: (Ringenter(n) ^ P implies P = Ring(n)) implies (Ringenter(n+ 

1) c 4 * P implies P = #m5(n + 1)) 
We refine the goal by lemma_par. Since / cannot exit, P depends on the exit-
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derivative of Ringenter(n) which, by induction assumption, is Ring(n). Hence 

P = Ring(n + 1). 

Case 2. a = r 

When a = r, we are going to prove that the promise Ringenter(n) P is false. 

Since exit.It can only perform exii and / can only perform pass and exii and 

pass are not complement, i?m<7enter(n) can not perform r. 

• 

Lemma 8.1.3 Ring(n) ^ Ring(n)enter 

Proof I f Ring(n) = Ring{n)enteT, then i T = exit.IT, which is /a/se. Therefore 

Ring{n) ^ Ringin)^^ 

• 

Theorem 8.1.1 (Mutual exclusion property) If the process perform enter, 

it can not enter again except it perform exit. 

Ring(n) h vZi.([enter](vZ2.{[enter]f alse A [-exit]Z2)) A \—\Z\) 

Proof Wc shall use $ to abbreviate [enter){vZ2.{[enter]false A [-exit\Z2)). 

By ^-unfold, A-rule and lemma 8.1.1, we can get the following two sub-goals. 

Ring enter {n) l~ uZ2{[enter)f'alse A [—exit]Z2) (8.7) 

Ring(n) h [-]i/Zi{/Jin^(n)}(* A [-]Zi) (8.8) 

Using j/-unfold and A-rule, sub-goal 8.7 can arrive two sub-goals as follows 

Ringenter(n) h [enter]false (8.9) 

Ringenter(n) \- [—exit\uZ2{Ringenter{n)}{[enter\false A [—exit]Z2 (8.10) 
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By lemma 8.1.2, the only action Ring(n)enteT can perform is exit. Therefore, the 

above two sub-goals are true by the semantics of Box operator. 

By the semantics of Box operator and lemma 8.1.1, sub-goal 8.8 can be reduced 

to 

Ring{n) h vZx.{Ring{n)}($ A \-]Zx) (8.11) 

Ringenler(n) h vZx.{Ring{n)}{$ A [-}ZX) (8.12) 

Sub-goal 8.11 can be proved by v-ba.se rule. Using ^-unfold and A-rule, sub-goal 

8.12 can be reduced to 

RingenUr(n) h $ (8.13) 

Ringenurin) h [-]i/Zx{Ring{n), RingenleT(n)}{<& A \-}Zx) (8.14) 

By lemma 8.1.2, the only action that Ringenter{ri) can perform is exit. Therefore 

sub-goal 8.13 is true because Ringenter{n) cannot perform enter. 

By the semantics of Box operator and lemma 8.1.2, sub-goal 8.14 can be 

reduced to 

Ring(n) \- vZx{Ring{n), Ringenter{n)}($ A {-)ZX) (8.15) 

which can be proved by i/-base rule. 

• 

Theorem 8.1.2 The deadlock free property: 

Ring{n) h vZ.((—)true A [—]Z) 

Proof By i/-unfold and A-rule, the goal can be reduced to the following two 

sub-goals. 

Ring(n) h {-)true (8.16) 

Ring(n) h [~\{vZ.{Ring{n)}{(-)true A \-]Z)) (8.17) 
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By lemma 8.1.1, Ring(n) can perform enter and therefore (-)true is true. 

From lemma 8.1.1, the successor state of Ring(n) is either Ring(n) or i?m^ e n £ e r ( 

Therefore sub-goal 8.17 can be reduced to 

Ring{n) h uZ.{Ring{n)}({-)true A \-\Z) (8.18) 

Ringenter(n) h vZ.{Ring(n)}{{-)true A [-]Z) (8.19) 

Sub-goal 8.18 can be proved by i/-base rule. Using f-unfold and A rule again, 

sub-goal 8.19 arrives 

Ringenter{n) h (-)true (8.20) 

Ringenter(n) h [-](i/Z.{/?m 5(n), J 2 m 5 e n t e r ( n ) } ( ( - ) ^ « e A [-]Z)) (8.21) 

By lemma 8.1.2, Ringenter(n) can ea;it and therefore (-)true is true. By 

lemma 8.1.2, Ringenter(n) has only one successor state which is performing exit 

to become Ring(n). The sub-goal becomes 

Ring(n) h vZ.{Ring(n), Ringenter(n)}({-)true A [ - ]Z) (8.22) 

which can be proved by f-base rule. 

• 

8.2 Composition 

A concurrent system usually consists of many processes running in parallel. The 

interleaved execution between individual processes causes the state space to grow 

exponentially. Therefore a natural solution would be to decompose a system into 

several sub-systems. The specification for such a system can also be decomposed 

into properties that concern only those sub-systems. If we know that the conjunc

tion of the local properties implies the overall specification, we can then verify 

the whole system by verifying individual sub-systems. 
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By exploring the modular structure of a complex system, compositional tech

niques [Sti85, Win85, AW92, Lon93, And93, ASW94] use the divide-and-conquer 

approach to decompose the system and the properties into simpler ones. The 

compositional approach reasons in the structure of the states and works purely 

on the syntax of states. By a sequence of reductions on the top-level operator 

of the state, the compositional method decomposes a problem into equivalent 

sub-problems for the immediate sub-components. 

For instance, suppose we want to verify a communication protocol consisting 

of three processes: a sender, a communication media and a receiver. One of 

the properties about the communication protocol is the deliveribility: data is 

eventually transmitted correctly from the sender to the receiver. Deliveribility 

property can be decomposed into two local properties. First, the data should 

be eventually transferred correctly from the sender to the media. Second, the 

data should eventually be transferred correctly from the media to the receiver. 

Since the first property involves only the sender and the media. We should be 

able to verify the first property using only the sender and the media. In the 

same way, we should be able to verify the second property using only the media 

and the receiver. By decomposition, we transform a three-process verification 

problem into a two-process verification problem. The state space of the latter 

should normally be smaller. 

The local properties are usually only true under certain conditions. Therefore, 

we have to make some assumptions about the environment of the components to 

be verified. Those assumptions, which represent requirements on other compo

nents, should be verified as well. Finally, we have to show that the conjunction 

of those local properties implies the original specification. 

Compositionality provides many useful features. First, it allows better struc

turing and decomposition of verification task so that only changed parts have 

to be re-done when modifying a system. Secondly, the decomposition deduces 
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a complicated verification task to several simpler tasks and therefore overcomes 

part of the state-exploration problem. Thirdly, the verified components can be 

reused when they are used to build a larger system and therefore it is possible 

to build a library of verified standard components for others to use. Fourthly, it 

is possible to design a system with some undefined parts and still to be able to 

reason about some properties of it. Finally, by assuming some properties of indi

vidual components, we can design and reason about individual parts of a system 

and therefore support group work. 

Since the compositional techniques concern mainly the syntax of system de

scription languages, there should be different inference rules for different descrip

tion language (e.g. automata, process algebra, imperative programming language, 

petri net, etc.). We take CCS as an example to experiment the application of our 

framework to compositional techniques. Due to the characters of composition, 

we can extract parts of verification tasks to be proved automatically by LegoMC. 

The other parts of verification tasks and those composition rules are proved in 

Lego. 

8.2.1 Compositional Rules for CCS 

To have a sound theorem, we formally prove the compositional rules in Lego by 

the semantics of /i-calculus and CCS. The following rules for CCS are adapted 

from Dam's work [Dam95] and Anderson's work [And93]. 

The rules for boolean connectives and fixed points operators are the same as 

the model checking rules in section 3.3. For the modality operators, the rules can 

be classified into two categories as follows. 
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Dynamical Rules The decomposition for dynamical rules can always remove 

the top operators of CCS. 

Nil - Box———jv^ Dot - Dia—* h,f.. . (a € K) Nil h [K]$ a.x h {K)$v ' 

Cho - Dial X h { K ) * , Cho - Dial- V *~ 
~x + y\-(K)$ x + yh{K}$ 

Rec 

x + y\-
x[rec x.s/x] h $ 

rec x.s h $ 

Static rules For the rules of static operators, we take Anderson's extension 

[And93] of /i-calculus for expressing the "pre-images" of the corresponding process 

operators. 

* : = . . . | * [ /pVL | $ / t 

Their semantics is as follows. 

w]jP = {Mi) € mP} 
[ * \ L ] , = {s\s\L € [*],} 

[*/*], = {*W« e [*],} 

Therefore, the static rules can be proved as follows. 

s [ f \ W $ «[/ ] I" » I " $ [ / ] 

Rcc D i a S h { K \ L ) ^ L Res - BoxS-±V^*±L s\L\-$ 
H e S D m s\L\-(K)$ K e S B ° X s\L\-[K}$ **V*\L 

si\s2 h [K]$ si h <f>/s2 
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8.2.2 Example 

By composition, we can get a more concise proof for the counter example pre

sented in section 8.1. 

Counter = rec x.up.(x\down.Nil) 

The property of "Always able to up" is proved as follows 

Counter h AG(able{up}) (8.23) 

Using i/-unfold and A-rule, we arrive at two sub-goals 

Counter h able{up} (8.24) 

Counter h [up]uZ{Counter}{able{up}) (8.25) 

Sub-goal 8.24 can be proved by LegoMC. Using Dot-Boxl, sub-goal 8.25 become 

Counter\down.Nil h i/Z{Counter}(able{up}) (8.26) 

which can then be reduced by Par rule to 

Counter]- {vZ{Counter}{able{up}))/down.Nil (8.27) 

We can move in the pre-image operator of Par by lemma 

s h {vZ.U $ ) / t « « h uZ.U {$/t). 

The goal now becomes 

Counter h i>Z{Counter}{{able{up})/down.Nil) (8.28) 

which can then be proved using LegoMC. 
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8.3 Abstraction 

One way to tackle with the state explosion problem is trying to replace a large 

system by a smaller abstract system which either is equivalent to original system 

and preserves the same properties or preserves the properties to be verified. The 

abstraction can be used to reduce the complexity of systems, and as a result, it 

is much simpler to verify properties of the abstract system. Lego can be used 

to prove that the abstraction reserves the properties to be verified, and then 

LegoMC can be used to prove the abstract finite-state model. 

8.3.1 Strong Bisimulation 

One of the popular equivalence relation used in verification is bisimularity [Par81, 

Mil83] that is an abstract equivalence on processes to state that two processes 

have the same operational behaviour. It can be used to transform a complicated 

model to its equivalent abstract model. There are several bisimulation relations 

and I am going to discuss only strong bisimulation in this thesis. I t is believed 

the treatment of other bisimulation relations is similar. 

The equivalence based on strong bisimulation is: P and Q are equivalent iff, 

for every action a, every a-derivative of P is equivalent to some a-derivative of 

Q, and conversely. This can be defined formally as follows. 

Definition 8.3.1 [Mil89] A strong bisimulation S is a set of pairs of processes, 

such that whenever (P, Q) € S implies, Va e Act, 

(i) Whenever F A P ' then, 3Q', Q A Q' and (P', Q') € S 

(ii) Whenever Q A Q ' then, 3P', P A P' and {P',Q') € S 

The processes P and Q are bisimular if (P, Q) G some bisimulation. 
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Definition 8.3.2 [Mil89] P and Q are strong equivalent, written as P ~ Q, iff, 

Va G /let, 

(i) Whenever P A P ' then, 3Q'.Q A Q' and P' ~ Q' 

(ii) Whenever Q A Q ' then, 3P' .P A P' and P' ~ Q' 

Theorem 8.3.1 / / P and Q are strong equivalent, they will preserve the same 

properties [MU89J. 

I f P ~ Q then V$ .P (= $ f=> $ 

Under this theorem, we can then use the abstract model instead of original model 

if we can prove they are strong equivalent. 

8.3.2 Abstraction Mapping 

Sometimes equivalence does not result in a significant reduction in the number of 

states. For some properties, abstract mapping should be enough if the abstraction 

preserves the properties. This approach is based on the observation that the 

specifications of systems usually involve only some components of the systems or 

simple relationships among the system components. It is particularly essential for 

verifying programs with properties related to data flow. If the properties we want 

to verify are data-independent, we can create an abstract model with only control 

flow. If the properties are data-dependent, we can still try to find an abstract data 

domain with fewer values which is enough to describe the relationship between 

original data values. 

For a system with infinite data values, the specification could only involve 

simple relation among those data values. Therefore, instead of examining every 

data value, we can give a mapping between the actual data values and a smaller 

set of abstract data values (e.g. boolean) and then create an abstract model of 
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the original system. For example, assume we are only interested in if a natural 

number x € M is 0, we can create a domain Ax with values {true, false} and 

define a mapping hx from jV to Ax as follows: 

true, if x = 0 

false, if a; > 0. 
hx(d) = < 

As an example of abstract technique, we shall verify the same token ring 

example which is verified in section 8.1 by creating an abstract model under 

bisimularity. 

8.3.3 An Example 

/ = pass.IT 

IT = enter.exit.IT + pass.I 

Ring(n) = (IT\I\... \I)\{pass} with n + 1 Is— at least two processes 

where / is the idle workstation, IT is the workstation which holds the token. 

If we regard Ring(n) as a whole, we have another proof based on bisimulation. 

The successor state of Ring(n) is through r to Ring(n) or through enter to 

Ringenter{n). The only successor state of i?m^ enter(") is Ring(n). We can then 

find that the abstract model 

Ringabst = r.Ringabst + enter, exit. Ringabst 

is strongly equivalent to Ring(n). The Bisimulation is 

{{Ringabst, Ring(n)), (exit.Ringabst, Ringenter{n))} 

which has been formally proved in Lego. Ringabst has a finite state space and 

therefore we can use LegoMC to verify Ringabst- That is, we integrate Lego with 

LegoMC by proving the abstraction relation in Lego and verifying the abstract 

system by LegoMC. 
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8.4 Discussion 

We have demonstrated how our system is used to verify infinite state systems. 

The infinite counter is an example of evolving systems. The token ring is an 

example of parameterized systems. Although these two examples have infinite 

state space, their structures are very simple and therefore can be handled by 

CCS. For more complicated systems, the modeling will become complicated and 

therefore it is better to use imperative languages. 

Our demonstrations combine semantics reasoning, induction, abstraction and 

composition methods with LegoMC to verify infinite systems. All of the lemmas 

and inference rules behind individual verification technique are formally proved 

in Lego and therefore form a coherent system that firmly ensures the correct

ness of proofs. More case studies have to be carried for the verification of more 

complicated systems. 
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Part IV 

Proof Generation and Future 

Research 
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Chapter 9 

Automatic Generation of Proof 

Terms 

The core technique in our automation is the automatic generation of proof terms. 

Proof terms in type theory have their intended types that can be checked by 

simple type checking algorithms to ensure the correctness of the proofs. We can 

therefore implement more efficient and possibly more complicated algorithms to 

generate the proof terms without worrying about the correctness since the final 

results can always be checked by computers. 

Although our techniques arc experimented and implemented in the Lego proof 

checker, it is believed that these techniques are general and therefore can be 

adapted to other type theory based theorem provers very easily. Therefore, 

"Lego" in my following discussion can be regarded as general type theory based 

theorem provers such as Coq and Alf. 

A general introduction to proof terms has been given in chapter 2. This 

chapter focuses on automation related issues. A general presentation about the 

construction of proof terms for assertions is given in section 9.1. Section 9.2 will 

focus on the automatic methods to construct proof terms. Some efficiency issues 
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are discussed in section 9.3. Finally, some remarks are given in section 9.4. 

Part of this chapter has been published in [YL98]. 

9.1 Proof Term Construction 

Proof terms are A-terms which are the proof objects in type theory. Logical 

formulas or propositions and logical inference in type theory are based on the 

idea of propositions-as-types, discovered by Curry [CF58] and Howard [How80]. 

According to this idea, any proposition P corresponds to a type P r f ( P ) , the 

type of its proofs, and a proof of P corresponds to an object of type P r f ( P ) . To 

assert that a proposition is true, one has to find (construct) a proof object of the 

proposition. For example, in an impredicative type theory, the disjunction A\/B 

is defined as 

V C : Prop.(A ->• C) -> [B -» C) -> C. 

If a and 6 are proof objects of type Prf(A) and Prf(B) , respectively, then the 

following is a proof object of type Prf(^4 V B)\ 

AC : PropXhi : A -> CXh2 : B -»• CM a 

The inference rules of logical connectives can be classified as introduction 

rules and elimination rules. The introduction rules reflects how to prove a logical 

formula with the operator concerned as the main connective, and the elimination 

rules reflect how to use such a formula to deduce other logical consequences. The 

proof objects of inference rules are listed as follows. 

• True: The proof object of true is 

Propld XX : PropXx : X.x 
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False: (93^) false has no proof objects in the empty context, and it implies 

every formula, if / is a proof of false, then 

absurd-elim(f, R) f(R) 

is a proof of R. 

A-introduction: (p\^p\) If Pi I S a proof of P\ and p 2 is a proof of P 2 , then 

pair(pi,p2) XX : PropXh : Pi -> P2 -> X.h(pi,p2) 

is a proof of Pi A P 2 . 

A-elimination: ( P i £ P i , E l p f z ) If h is a proof of P\ A P 2 , then 

/sf(/i) = d / h(Pu XPl : P J Ap 2 : P2.P1) 

is a proof of Pi, and similarly 

snd(/i) = d / /i(P 2 , Apt : PiAp 2 : P2V2) 

is a proof of P2. 

V-introduction: [ P ^ p 2 , P ^ P 2 ) If Pi is a proof of Pi , then 

inl{pi) =4 XX : PrapXhi : Pi -> XXh2 : P 2 -» X.hi(pi) 

is a proof of Pi V P 2 . Similarly, if p 2 is a proof of P 2 , then 

mr(p 2) =df XX : PropXhx : Px XXh2 : P 2 -+ X / i 2 ( p 2 ) 

is a proof of Pi V P 2 . 

V-elimination: ( P l V ^ ' P l ^ f l ' P 2 " > f i ) If / i is a proof of P x V P 2 and r< is a proof 

of Pi -> P(z = 1,2), then 

or-elim(h,rx,r2) =df h(R,rx,r2) 

is a proof of P. 
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• V-introduction: (r^vi^t.p^)) If P is a proof of P(x) in T,x : A, then 

Ax : A.P{x) 

is a proof of Vx : A.P(x). 

• V-elimination: ( V a ; ^ W ) If p is a proof of Vx : A.P(x) and a is an object 

of type A, then 

AllElim(p, a) p(a) 

is a proof of P(a). 

• 3-introduction: ( 3 x .^p( z )) If p is a proof of P{a), where a is an object of 

type A, then 

ExIntro{a,p) =df XX : PropXh : (Vx : A.P(x) -» X)./i(a,p) 

is a proof of 3x : A.P(x). 

• 3-elimination: (r^*--A-pW ^-Ap-.P^R^ u h i s a p r o o f o f 3 x . i n 

T and r is a proof of R in T,x : A,p : P(x), then 

ExElim(h,r) =<v h(R,Xx : AXp : P{x).r) 

is a proof of R in I \ 

• -i-introduction: ( ^ ^ r 5 2 ) If r is a proof P —>• false, then r is a proof of 

- .P . 

• -<-eIimination: ( p _ ^ T l s e ) If r is a proof -*P, then r is a proof of P —> false. 

Although proof terms provide a more concrete media for people to accept a 

proof, it is difficult to construct proof terms directly. Therefore, the common 

way to construct a proof term for an assertion at present is to communicate 

interactively with a theorem prover to construct the proof terms. Interactive 

theorem provers provide some guides to help the reasoning and finally construct 
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proof terms. Users can choose the best strategy by their experience and heuristic 

knowledge. The users just have to follow the reasoning in their mind. They are 

not even conscious of proof terms. Some theorem provcrs have also implemented 

some tactics to do parts of the proof automatically. 

An example 

We use a proof of the commutativity of disjunction to explain the process of proof 

term construction. 
Pi V-P2 
P2VP1 

can be constructed by the following procedures. From Pi, we can infer P2 V Pi 

by inr rule and get the proof object Xpi : Pi.inr(pi). Similarly, from P2, we can 

infer P 2 V Pi by inl rule and get the proof object Xp2 : P2.inl(p2). From the above 

two scripts and the premise P\ V P2, we can conclude P2 V Pi by or.el im rule. 

The final proof term is therefore applying those rules as follows. 

Xh : or Pi P2. or.elim(h, Xpi : Pi. inr{p\), Ap2 : Pi- inl{p2)) 

Some Remarks 

The rigorous proofs in theorem provers usually include many trivial and tedious 

proof tasks. Our work shows that some decidable algorithms can be adapted to 

generate proof terms automatically, which will reduce the human effort in the 

process of doing formal proof. Compared with pure automatic tools, which use 

those decidable algorithms as well, automatic proof term generation can give not 

only the answer of "true" or "false" but also proof terms which can further ensure 

the correctness of the answer. 

Automatic theorem provers use depth-first or breadth-first search method to 
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search all possible solutions. Therefore the proof terms constructed by automatic 

algorithms are not the best in general, although they are automatically done by 

computers. Some automatic theorem provers can also integrate the heuristics 

to the search strategy and therefore improve the efficiency. Some may use data 

structure techniques or tricks to improve their algorithms. However, it is quite 

difficult to adapt those more efficient algorithms to generate proof terms and 

therefore certain changes of the original algorithms are necessary. 

Unlike special purpose automatic tools, in which the correctness of tools usu

ally is proved on paper, in our settings the inference rules or theorems behind 

the decidable algorithms have to be formally proved in a theorem prover. An 

automatic tool then applies those proven rules and follows the algorithms to con

struct the whole proof term. There are several ways to generate proof terms 

automatically in Lego, which are described individually in next section. 

9.2 Automatic Generation of Proof Terms 

There are at least four ways to generate the proof terms automatically in a type 

theory based theorem prover such as Lego. 

1. Define computational functions of Lego to encode proof generation algo

rithms. 

2. Use a tactical language. 

3. Create an external program to generate Lego proof scripts which can be fed 

into Lego to generate proof terms. 

4. Develop an external program to generate proof terms directly. 

In the following sub-sections, we shall discuss these alternatives individually and 

analyse their advantages and disadvantages. 
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9.2.1 Use of Internal Functions 

The first method is the simplest one since we implement algorithms for proof 

generation completely in Lego. One of the major features of type theory is that 

it is itself a computational language which enables us to do computing and logical 

reasoning in the same platform. By mixing the computational function with logic 

terms, parts of a reasoning task can be transformed into computations to simplify 

the reasoning task. This technique is similar to Oostdijk's Internalization [Oos98] 

presented at the Type'98 conference. 

If we want to prove formulas of the form P(a) where P : T —> Prop is a 

predicate over type T, we can try to find a function / : T —> bool and prove the 

following theorem which states the correctness of the function: 

bool2prop : Va : T.(Eq / (a) true) P(a), 

For an object a of type T , if / (a ) can compute into true, the proof term of P(a) 

is then 

hooVlprop a (Eqjrefl true). 

Once we have proved the correctness of function / and / (a) can compute to 

true for an object a of type T, a proof of the form P a : Prop can be transformed 

to Eq true true which have proof term Eq_ref 1 true. 

There are two essential jobs in the process of the transformation: 

1. Find a suitable function / . 

2. Prove the correctness of function / . 

In our implementation of LegoMC, we used many internal functions such as 

computing successor states to simplify the construction of proof terms. Although 

this approach can simplify the subsequent proof process, the above two jobs are 
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not easy in general. The first job is limited by the limitation of function definition 

in type theory. Some sorts of functions and techniques such as partial functions, 

dynamic programming and non-terminating functions are not definable. The 

second job involves complicated and tedious inductive reasoning. 

Another problem with this approach is that computational speed of type the

ory based theorem provers is not satisfactory at present. However, this problem 

may be overcome gradually with the progress of the techniques of theorem provers. 

9.2.2 Use of Tacticals 

Lego, like some theorem provers such as Coq, has a simple tactical language. The 

tacticals are used to define sequences of commands to be executed. The syntax 

is as follows. 

EXPRSN1 Then EXPRSN2 evaluate EXPRSN1, i f e v a l u a t i o n succeeds, 

evaluate EXPRSN2 

EXPRSN1 E l s e EXPRSN2 evaluate EXPRSN1, i f e v a l u a t i o n f a i l s , 

backtrack and evaluate EXPRSN2 

For n EXPRSN evaluate EXPRSN Then EXPRSN Then ... 

(n times) 

Repeat EXPRSN evaluate EXPRSN Then EXPRSN Then 

and backtrack l a s t f a i l u r e 

Succeed t h i s t a c t i c a l doesn't do anything 

F a i l t h i s t a c t i c a l always f a i l s 

Try EXPRSN evaluate EXPRSN and backtrack 

i f e v a l u a t i o n f a i l s 

(EXPRSN) evaluate EXPRSN 
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For example, if we want to construct a proof term of (Aar.Eq a x V Eq b x V 

Eq c x) a, we can use tactical 

(Repeat (Refine i n l ) ) Then (Refine i n r ) . 

This method is very slow and obviously not powerful enough to deal with 

more complicated algorithms. 

9.2.3 Use of External Programs to Generate Proof Scripts 

This method is to develop an external program to generate the proof scripts of 

Lego. These scripts can then be used to guide Lego to generate the proof terms. 

In developing LegoMC, which has been discussed in chapter 6, we first used this 

technique. With the aid of proof term construction mechanism in Lego, this 

technique is much easier than external proof term generation presented in the 

next sub-section. 

For example, to use or.elim rule, we only have to generate proof script Refine 

or.elim without worrying about the parameters after or_elim. The unification 

mechanism in Lego will generate corresponding parameters automatically. How

ever this method would be limited by the syntax of Lego commands. If the 

definition of Lego commands change, we have to change the external programs. 

Furthermore, it also has the limitation that it is too sensitive to the subtlety of 

the implementation of the command language of Lego. 

9.2.4 External Programs to Generate Proof Terms 

This method is to develop an external program by adapting automatic algorithms 

to directly generate the proof terms of Lego based on the proof generation tech

niques. The task consists of two phases. 
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1. Formally prove the axioms and inference rules behind the algorithms. 

2. Adapt the algorithms to generate proof terms by applying the inference 

rules. 

Because many existing algorithms are based on classical logics, we have to change 

the axioms and inference rules to meet the intuitionistic logics of type theory. 

Obviously the algorithms have to be changed as well. Once their inference rules 

have been proved formally in Lego, the generation of proof terms is then applying 

those inference rules recursively. Compared with the other methods, direct proof 

term generation is most complicated and difficult. However, it has the best speed 

performance and transferability. We can change the syntax generation part to fit 

to other theorem provers. In practice, there are many efficiency issues to be dealt 

with. We discuss them in the next section. 

9.3 Efficiency Issues 

Many decidable algorithms have been improved using some heuristics, tricks or 

the techniques of programming such as dynamic programming, data structure, 

etc. It is not easy to adapt those more efficient algorithms to generate proof 

terms. Another problem is that the functionality of external programming lan

guage can be different from Lego's and therefore can have different formalisations 

between these two platforms. In our experience, the efficiency issues can be partly 

overcome by reducing the size of proof terms. 

The Size of Proof Terms 

The proof terms which are generated by automatic tools are usually very big. 

This would be a problem because type-checking these generated proof terms can 

147 



be very slow. Therefore, we must develop methods and techniques to reduce the 

size. In our work of automatic proof generation, the following four ways of size 

reduction have been used: 

1. Abbreviations 

In automatically generated proof terms, there are usually many repeated 

sub-terms. Instead of fully expansion of proof terms, making definitional 

abbreviations can usually reduce the size effectively. 

2. Internal functions 

Another useful way is using internal functions as mentioned in previous 

section to transform a complicated sub-term to be a function name with 

parameters. 

3. Pre-proved lemmas 

Pre-proved lemmas are also a good way to reduce the size but we need to 

find essential lemmas in advance. 

4. On-the-fly lemma generation 

The last but very important technique is what we call on-the-fly lemma 

generation. It can not only reduce the size of proof terms but also increase 

the efficiency of algorithms. We discuss this method in an independent 

paragraph. 

The idea of on-the-fly lemma generation is very simple. For example, Fig 

9.1 is a part of a proof tree with nodes as formulas to prove during the proof 

search process. Node a is like V or A formulas with two branches. After several 

intermediate nodes, it is possible that two branches meet again at node b. The 

proof after b is the same for two branches and therefore the second branch can 

re-use the results from the first branch. 
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More precisely, we can store the proofs of some critical sub-trees as lemmas 

and refer to those lemmas in the subsequent proof processes. On the one hand, we 

can save the time to repeat the identical proofs. On the other hand, by referring 

to on-the-fly generated lemmas, we do not have to insert the same poof sub-term 

and therefore reduce the size of the whole proof term. We have reduced a proof 

term with 1.2 megabytes to about 300 kilobytes. 

a (V,A,V,3) 

Figure 9.1: On-the-fly lemma generation 

9.4 Discussion 

In practice, it is better to combine the internal functions with external programs 

to get the benefits of both sides. The internal function can be used to define 

simple functions and external programs can be used to define more complicated 

149 



functions or some functions which are undefinable in Lego. Moreover, further 

improvement of internal functions in type theory would be helpful to further 

simplify proof term generation. The implementation of computation in theorem 

provers is also essential for better speed performance. 

The computational power of type theory has many advantages over other 

theorem provers. Because part of the proof can be transformed to computational 

function, the proof process can be simplified. I t is also helpful for developing 

external programs to generate proof terms since computational functions simplify 

the proof terms. 

One challenge for the correctness is that the computation mechanism and type 

checking is implemented by computer programs which may contain bugs as well. 

One way to further increase our confidence is to check the proof by different type 

theory based theorem provers. Because they all use A-terms as proof objects, by 

syntax translation, we can put the same proofs to be checked by different theorem 

provers to make us more confident about the proofs. 
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Chapter 10 

Other Automation Issues 

Most model-checkers have difficulties to deal wi th properties which are highly 

data-dependent. One way to tackle such problems is to integrate other automatic 

techniques which are suitable for data manipulations, e.g. arithmetic decision 

procedures. Because most of the decision procedures for arithmetic manipulations 

are based on classical logic, those techniques are very difficult to be adapted to 

generate proof terms for general propositions of type theory, which is based on 

intuitionistic logic. However, i t is no problem to use those procedures to deal 

with the boolean data type that is enough for us to verify properties related to 

data types. 

The general form of boolean properties is like: 

r h Eq p true 

where p is a boolean expression. The proof process is then trying to simplify p to 

boolean constant "true" by a sequence of inference rules, p can contain boolean 

operators and natural number operators and therefore the simplification process 

includes boolean expression simplification and natural number expression simpli

fication. This chapter describes the possibility of applying proof term generation 

techniques described in the previous chapter to do these simplifications. Some 
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preliminary research and experiments are done but the implementation is beyond 

the scope of this thesis. 

Many decision procedures for data domain are based on equational rewriting. 

Therefore, I wi l l discuss the equality in type theory and equational rewriting 

techniques based on proof term generation in next section. In section 10.2, Binary 

decision diagram (BDD) technique is discussed which has been claimed as an 

efficient technique to manipulate boolean expressions or propositional formulas. 

In section 10.3, arithmetic decision procedures are discussed which can deal wi th 

arithmetic operation of natural numbers. 

There are two sorts of equalities: intensional equality and extensional equality. 

The computational equality is intensional and means that two objects are equal i f 

and only i f they can be computed to the same canonical objects. For the compu

tational equality, rewriting can be done automatically through computation, and 

we do not have to develop an external program to do its rewriting. For instance, 

the following example is taken from Boulton's PhD thesis [Bou93]; there he im

plemented some conversion functions to rewrite the terms. Suppose we want to 

rewrite the term: 

10.1 Equational Rewriting 

An.(n * 0) + (n * 4) (10.1) 

using the following equations: 

x * y = y * x (10.2) 

0*x = 0 (10.3) 

0 + x — x (10.4) 

In type theory, Eqn. 10.3 and Eqn. 10.4 are computational equalities which 
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mean the terms in the left hand side of the equations and the terms in the right 

hand side can be computed into the same canonical objects. Therefore, we do 

not have to develop any external programs for computational equalities. 

On the other hand, extcnsional equality concerns equality between functions. 

A notion of equality is extensional i f for any functions / and g of the same type, 

/ equals g provides that f(a) and g(a) are equal for every object o of the domain 

type. For example, Eqn. 10.2 corresponds to the following two functions: 

timesi =df Xx : NXy : N.x * y and 

times2 =df Xx : NXy : N.y * x 

which are extensionally equal since they return the same value for every two 

natural numbers but not intensionally equal because they are different canonical 

terms. For this sort of equality, we do need explicit term rewriting. 

Propositional Equality 

The propositional equality in type theory can be defined as the Leibniz equality 

which means that two objects of the same type are equal i f and only i f they 

cannot be distinguished by any property. 

D e f i n i t i o n 10.1.1 (Leibniz equality) Let A be a type. The Leibniz equality over 

A, notation = A , is the binary relation over A defined as follows: 

=A =<tf Xx : AXy : A.WF : A -> Prop.F(a;) -> F(y). 

We shall write a =A b for =A (a, 6). 

Leibniz equality has the following properties. 

• Eq_refl = Xt: TXP : T -»• PropA/i: Pt. h 

: V« : T.t =T t 
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• Eqjsym = \t, u : TXg : t =T u.g(Xx : T.x = r i)(Eq_refl t) 

: V£, u : T(t =T u) —»• u =T t 

• Eq_trans = Xt, u, v : TXp : t =T uXq : u = r v\P : T -> Prop.Ax : 

T.(q P(pP x)) 

: Vf, u, u : T.(t =T u) -> (u = r u) -»• t =T v 

Explicit Rewriting 

The rewriting is based on the substitution rule: for any predicate P over a type 

A, i f formulas P(a) and a =A b are provable, then so is P(b). 

Eq_subst = Xa, b : AXh : Eq a bXP : A -> PropAp : P(a). h{P,p) 

: Vo, b : >4(Eq a 6) -+ VP : A -> PropP(a) -> P(6) 

In other word, for any proof p of P(a) and proof h of CL=A b, 

Eq_subst(a, b, h, P, p) 

, which can compute into h(P,p), is a proof of P(b). 

In the above example, we only have to rewrite Eqn. 10.2 which can be achieved 

by apply 

Eq_subst(x *y,y*x, Eqn.10.2) 

There is a command Qrepl in Lego to do this rewriting. However, since we want 

to generate the proof term externally, we have to use the above Eq_subst rule. 

Although computational function can perform rewriting automatically, some

times we would stil l use explicit term rewriting for computing speed concern. 

The computational function is defined by recursive function that takes a long 

time while computing a big term such as larger natural numbers. For instance, 
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the following equation can be proved simply by Eq_ref 1 rule. 

1234*4321 = 4321 * 1234 

However, the computer wi l l need quite a long time to check this proof. Instead 

we can use the above rule to rewrite the equation to 

4321 * 1234 = 4321 * 1234 

and then apply Eq_ref 1 rule. 

10.2 BDD Propositional Simplifier 

The boolean properties for imperative programs in chapter 5 can be defined as 

follows. 

Bool(6,5) = Eq (eval b (memory s)) true 

where b is a boolean expression, s is a state, eval and memory are defined in 

chapter 5. For any boolean expression b, eva l b (memory s) wi l l compute to a 

boolean value t r u e or f a l s e . Therefore, to prove a boolean property which has 

a true value is just to apply the Eqj re f 1 rule. However, for complicated boolean 

expressions, which are very common in real life systems, i t takes a very long 

time for type theory based theorem prover to compute the value of a boolean 

expression. 

The efficiency of Binary Decision Diagrams (BDDs) technique to deal wi th 

boolean computation draws the attention of many researchers in this decade. 

Therefore, BDD technique should be a considerable alternative to computational 

functions. This section describes the possibility to apply proof term generation to 

create a BDD propositional simplifier. Harrison has implemented B D D technique 

in HOL [Har95] that can be a good reference for the implementation issue. 
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BDD 

The basic idea of BDDs is to build up a "binary decision diagram" with the 

variables at the nodes and either 1 (true) or 0 (false) at the leaves. Each node 

has two branches which represent the expressions formed by substituting the 

variable to be true or false, respectively. The increase of efficiency of BDDs 

actually comes from techniques of variable ordering [Lee59, Ake78] and variable 

reducing [Bry86] . 

Variable reducing is using directed acyclic graphs to share common sub

expressions in the diagram. Variable ordering is choosing a better ordering of 

the variables to reduce the size of the BDDs produced. Some heuristics on vari

able ordering can be found on the paper by Butler, Ross, Kapur and Mercer 

[BRKM91], Such structures are formally called as reduced ordered binary deci

sion diagrams (ROBDDs) but are usually called BDDs for short. 

The construction of a BDD from a boolean expression proceeds as follows. The 

nodes of the BDD are constructed in the same order as they would be visited by 

A depth-first traversal of the boolean expression. Whenever a new node is to be 

created, 

1. check whether i t is equivalent to a node already created by looking among 

the existing nodes with the same variable as label and checking whether 

they have 0- and 1- branches identical to the branches of the node under 

consideration. 

2. check whether the two branches are identical and the node therefore super

fluous. 

The purpose of the first step is to reduce the store space and the size of proof 

terms. Since i t is equivalent to a node which has been traveled, we can use on-the-

fly lemma generation as described in previous chapter to use the stored lemma. 
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The second step is used to eliminate variables. 

Following our approach of proof term generation, we have to find the inference 

rules behind the DDD reasoning and then implement a program to mimic the 

BDD algorithm to generate proof terms by applying those inference rules. 

Equivalence Rules 

Before introducing the equivalence rules, some notations have to be defined first. 

D e f i n i t i o n 10.2.1 (If Normal Form) t —>• < 0 ,* i is an if-then-else operator defined 

by 

« -+<o , t i =df (t A t 0 ) V (-it A ti) 

where t is called test expression. A l l operators can be expressed using only the 

if-then-else operator and the constants 0 and 1 that represent "false" and "true" 

correspondingly. An If-then-else Normal Form (INF) is a boolean expression 

built entirely from the if-then-else operator and the constants 0 and 1 such that 

all tests are performed only on variables. 

The basic BDD algorithm is based on the following two equivalence rules. 

• Any boolean expression is equivalent to an INF (t -» xl,x2) which can be 

done by transformation rule bdd_trans. 

bdd.trans : V* : bool -» Tix : bool.Eq t(x) ( if x i(true) t(false)) 

• (x —> y, y) is equivalent to y 

if-absorbs : V6 : boolVx : T.Eq (if b x x) x 

Having the above equivalence rules, we can design a program to mimic B D D 

procedures that can automatically apply those equivalence rules to simplify propo

sitional formulas. The procedure is to rewrite the variable using bdd_trans rule 
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repeatedly to transform a boolean expression to its equivalent INF and then use 

if.absorts rule to reduce the variable until i t reaches "true" or "false". 

Example 

This example shows x V - a can be simplified to "true". 

\/x : bool. Eq (orelse(x, inv(x))) true (10.5) 

P r o o f Rewrite "Eq (orelse(x,inv(x)) true" by 

bdd.trans (Xx : bool.(orelse(x,inv(x)))x, the goal becomes 

Va;: 600/ Eq i f x(orelse(true,inv(true)))(orelse(false,inv(false)) true 

Because orelse and inv are both computational function, both ( t r u e . o r e l s e 

t r u e . i n v ) and ( f a l s e . o r e l s e f a l s e . i n v ) are computed to canonical object 

"true". Therefore, the goal become 

Va;: bool Eq (if x true true) true. 

By rule iLabsorts, we can rewrite ( i f x t r u e t r u e ) by t r ue . The goal becomes 

Va; : bool Eq true true 

which can be proved by Eq_ref 1 rule. 

10.3 Arithmetic Decision Procedures 

These are some decision procedures to prove arithmetic relation, array and tuples 

automatically. We can use the same method to develop a program to mimic those 

decision procedures to generate proof terms. 

The decision procedure discussed here is based on the variable elimination 

method for natural numbers, which has been implemented by Boulton in HOL 
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[Bou93]. Boulton's procedure operates in two phases. The first phase normalises 

the negation of the formula. The second phase is trying to simplify the normalised 

term until "true" or "false". The first phase proceeds as follows: 

1. The logical implications and equivalences are replaced by conjunctions, dis

junctions and negations. 

2. The negations are then pushed as far down the term as possible. 

3. The term is put into disjunction normal form (DNF). 

4. Each disjunction is now the conjunction of inequalities which can then be 

normalised to < inequalities. 

5. The resulting inequalities are further normalised so that each variable ap

pears at most once in each inequality, and on the appropriate side of the 

relation for its coefficient to be positive. 

The second phase of the procedure tries to eliminate variables unti l all of the 

inequalities contain only constants which can then be evaluated to either true or 

false. A false inequality completes the proof of a conjunction. A true inequality 

can be discarded. I f all of the disjunctions are proved to be false which means the 

negation of the original formula is false. We can then conclude that the original 

formula is true. 

Inference Rules 

The normalisation to DNF is based on the following equivalence rules. 

x => y = ->x V y 

x •o- y = {->x V y) A (->y V x) 

—i—\X = x 

159 



->(a; A y) = -ix V ->y 

->(x V y) = ->x A ->y 

This algorithm normalises each inequality to < inequalities using the following 

rules. 

(m < n) = (1 + m < n) 

(m = n) — (m < n) A (n < m) 

(m > n) = -i(m < n) 

The second phase, variable elimination, is based on the following rules. 

Va : not m<n = a*m<a*n (10.6) 

Va : not m<n = a + m<a + n (10.7) 

Vp,q:bool pAq = pApAq (10.8) 

\/a,b:nat a + b = b + a (10.9) 

Va, 6, c, d, e, f,g : not (a<b + c)A(c + d<e) = a + d<b + e (10.10) 

The above equivalence rules have been formally proved in Lego. The imple

mentation is then following the algorithm and applying the above equivalence 

rules to generate proof terms. Here is an example to show the procedure for 

variable elimination. 

Examples 

Suppose we want to prove 

Eq (m + n < p) A (2m < l + n ) A ( 3 + p < 3m) false, 

the proof can be proceeded as follows. 
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P r o o f Rewrite by the rule ?, we can get the following goal: 

(m + 2m < p + 1) A (3 + p < 3m) 

Rewrite by rule ?, we can get the following goal: 

(m + 2m + 3 < 3m + 1) 

(3m + 3 < 3m + 1) 

(3 < 1) 

which can be computed to "false". 
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Chapter 11 

Conclusion 

In the conclusion, a summary of the thesis is presented. Finally, possible future 

researches are suggested. 

11.1 Summary 

We have described a formal development of a framework for the verification of 

concurrent programs in Lego system. Since we use CCS and an imperative lan

guage as the description language, the system modeling job is pretty easy. Ad

ditionally, LegoMC can do the verification of finite systems automatically which 

improve the efficiency dramatically. Infinite system verification can be carried 

out in Lego with the aid of LegoMC for parts of proofs. 

The second part of this thesis describes how we formalise description languages 

and specification languages in Lego. One essential feature of our framework is 

that all of the inference rules are formally proved and proof-checked in Lego. 

This feature ensures the correctness of individual verification methods and the 

consistency of their integration. The description languages are formalised by 

deep embedding, whereas specification language, i.e. /Lt-calculus, is formalised by 
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shallow embedding which make the extension of specification languages and the 

integration of various verification methods easier. 

The third part is focused on LegoMC. We have successfully developed a model 

checker, LegoMC, which can be used to verify finite state systems and generate 

proof terms automatically. The interface of LegoMC allows users to use the 

syntax which they are familiar with. We have used LegoMC to analyse a transport 

protocol. Several mutual exclusion algorithms have also been verified. We also use 

two infinite state examples to demonstrate the integration of various verification 

methods within this verification environment. 

The final part summarises the techniques of automatic proof term generation 

that we got during the development of LegoMC. Besides model-checking, we have 

also studied the application of proof term generation to Binary Decision Diagram 

and arithmetic decision procedures. 

In practice, we can use LegoMC as a debugging tool that can be used to find 

the counter example for a false system. After several modification and then get a 

complete system, we can then use LegoMC to generate proof terms which is then 

put into Lego to be type checked to further ensure the correctness of the results. 

11.2 Future Research 

This thesis has created a solid base for an effective and efficient domain-specific 

verification based on type-theory proof checkers. The future work wil l further 

enrich this framework to be able to deal with wider classes of systems. 
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Extension with Real Time, Data Type, Functions 

The current system for CCS is pure CCS (without value passing), i t can be further 

extended to value pass CCS. The data type of ICPL is only natural number, we 

can extend i t with more data type or abstract data type (e.g. array, list, etc.) and 

real time reasoning. Furthermore, to be able to incorporate future changes and 

extensions to other description languages, we can develop a tool similar to [Bou96] 

so that we can formalise languages in Lego from given specifications of the syntax 

and the operational semantics of the languages. Besides the formalisation, this 

tool should generate the relevant theorems and computational functions necessary 

to reason about the logical properties. 

Implement Other Automatic Techniques and the Integra

tion with Model Checking 

In chapter 10, we have proved the inference rules of the BDD and arithmetic 

decision procedures. Further work would be implementing a suitable algorithm 

based on our proof term generation techniques in chapter 9. Certain adjustment 

would be necessary to fit into type theory setting. How to integrate BDD and 

arithmetic decision procedures with LegoMC to form a powerful tool is also a 

challenging research direction. 

Efficiency and Background Proof Generation. 

Efficiency is a key issue in automated proof generation. This can be tackled in 

at least two respects. First, more efficient algorithms can be investigated and 

implemented. Using the technique of on-the-fiy lemma generation described in 

chapter 9, we have improved the efficiency of LegoMC dramatically: the state-

space of a problem with several hundred thousand travel states was reduced to just 
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several thousand. This is very promising, and we can continue this investigation 

and study its suitability in a more general context. 

Secondly, we can explore another important idea - background proof genera

tion. As some of the work experience shows (both in our work in type theory and 

the work in HOL [Bou93], for example), a ful ly expansive theorem prover could 

be less efficient in general. In the interactive environment of proof development, 

automated proof generation can be done in the background. In other words, we 

can use multi-thread techniques to hide the proof term generation in the back

ground and keep the interactive user interface progressing fluently by means of 

fast classical methods. Theoretic justification of such a technique should be stud

ied; for example, we can show that a decidable formula is true by a classical BDD 

method i f and only i f there is a proof of the formula in the type theory. 

Composition Rules and Equivalence Rules of I C P L 

Some of inference rules such as composition rules and equivalence rules of CCS 

have been proved and used to verify small infinite-state systems in chapter 9. 

Since ICPL is easier and clearer to describe more complicated systems, i t would 

be interesting to develop composition rules and equivalence rules for infinite-

state systems modeled in ICPL. We can also consider larger examples and case 

studies to demonstrate how different methods can be combined to solve problems 

efficiently. 

Domain Specific Interface 

The current human machine interface of LcgoMC is a domain-specific inter

face wi th purely the syntax of description languages and specification languages. 

Therefore general programmers and system analysts can easily use this system 
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to do verification by the syntax they are familiar with instead of learning Lego. 

However, LegoMC can only handle finite state systems and therefore users have 

to use Lego if they want to verify infinite state systems. It is expected an in

tegrated domain-specific interface for various verification techniques, both finite 

and infinite state, will further extend the usage of this framework. 

Proof Explanation 

Automatic theorem proving techniques have the advantage of efficiency. We can 

use them to verify a lot of complicated systems automatically. However, a draw

back is no explanation about the proof. Some model checkers can generate counter 

examples when a system fail on the desired property but no clue about the proof 

once the system does satisfy the property. Our verification environment based 

proof terms has the potential to tackle this problem by extracting proof explana

tion from generated proof terms. 
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Appendix A: Lego Libraries of some inductive 

data types 

Natural Numbers 

Inductive Cnat:Type(0)] 
Constructors [zero mat][sue:nat->nat]; 

[nat.rec = [T|Type]nat_elim ([_:nat]T) 
: {T|Type}T->(nat->T->T)->nat->T ] 

[na t . i t e r = [T|Type][x:T][f:T->T]nat_rec x ( [ _ : n a t ] f ) 
: {T|Type}T->(T->T)->nat->T ] 

[plus = [m,n:nat] nat_iter n sue m : nat->nat->nat ] 
[times = [m,n:nat] nat_it e r zero (plus n) m : nat->nat->nat ] 
[pred = nat_rec zero [n,_:nat]n (* truncated pred *) : nat->nat ] 
[minus = [m,n:nat] nat_iter m pred n : nat->nat->nat ] 

where nat.elim is the recursive operator of natural numbers, which is generated 
by Lego. 

Booleans 

Inductive [bool: type(O)] 
Constructors [true: bool][false:bool]; 

[bool _rec = [TIType]bool_elim ([_:bool]T) 
: {T|Type}T->T->bool->T ] 

[ i f = [tlType][b:bool][tCase.fCase:t] bool.rec tCase fCase b 
: {t|Type}bool->t->t->t ] 
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[andalso = [a,b:bool] i f a b false : bool->bool->bool ] 
[orelse = [a,b:bool] i f a true b : bool->bool->bool ] 
[inv = [u:bool] i f u false true : bool->bool ] 
[implies = [a,b:bool] i f b true ( i f a false true) 

: bool->bool->bool ] 
[is.true = [b:bool] Eq b true : bool->Prop ] ; 
[is_false = [b:bool] Eq b false : bool->Prop ] ; 

where bool.elim is the recursive operator of booleans, which is generated by 
Lego. 

Lists 

Inductive [list:Type(0)] Parameters [t:Type(0)] 
Constructors [ n i l : l i s t ] [ c o n s l : t - > l i s t - > l i s t ] ; 

[cons [t|Type(0)][x:t] [ l r l i s t t ] = consl t x 1]; 

[ e x i s t _ l i s t (* decide whether a l i s t has a member with a given property *) 
= [t|Type(0)][P:t->bool] l i s t _ i t e r false ([x:t][b:bool]orelse 

: {t|Type(0)}(t->bool)->(list t)->bool] 

[ member = [t|Type(0)][eq:t->t->bool][x:t]exist_list (eq x) 
: {t|Type(0)}(t->t->bool)->t->(list t)->bool] 

Some Logical Definitions 
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[A,B,C,D,E,F,G|Prop] 
[T,S,U,V,W,X|Type(0)]; 
[a:A] Cb:B] [c:C] [d:D] [e:E] [ f :F] Cg:G] ; 
[trueProp = {P:Prop}P->P : Prop ] 
[Id = [ t : T ] t : T->T ] 
[Propld = [a:A]a : A->A ] 
[absurd = {A:Prop}A : Prop ] 
[not = [A:Prop]A->absurd : Prop->Prop ] ; 
[and = [A,B:Prop]{C|Prop}(A->B->C)->C : Prop->Prop->Prop]; 
[or = [A,B:Prop]{C|Prop}(A->C)->(B->C)->C : Prop->Prop->Prop]; 
[pair = [CIProp][h:A->B->C]h a b : and A B ] ; 
[ i n l = [C|Prop][h:A->C][_:B->C]h a : or A B ] 
[ i n r = [CIProp][_:A->C][h:B->C]h b : or A B ] ; 
[ f s t = [h:and A B]h ([g:A] L:B]g) : (and A B)->A ] 
[snd = [h:and A B]h ([_:A] [g:B]g) : (and A B)->B ] ; 
[ i f f = [A,B:Prop]and (A->B) (B->A) : Prop->Prop->Prop] 
[ A l l = [P:T->Prop]{x:T}P x : (T->Prop)->Prop ] 
[Ex = [P:T->Prop]{B:Prop}({t:T}(P t)->B)->B : (T->Prop)->Prop] 
[Exlntro = [wit:T][P:T->Prop][prf:P wit][B:Prop][gen:{t:T} 

(P t)->B]gen wit prf 
: {wit:THP:T->Prop}(P wit)->Ex P ] 

[ExElim = [P|T->Prop][M:Ex P][NI Prop][prf:{t:T}(P t)->N]M N prf 
: {P|T->Prop}(Ex P)->{N|Prop}({t:T}(P t)->N)->N]; 

[Eq = [x,y:T]{P:T->Prop}(P x)->P y 
: T->T->Prop]; 
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Appendix B: The Formalisation of /^-calculus 

Modality 

Inductive [Modality:SET] ElimOver Type 
Constructors [Modal:(list Label)->Modality] 

[Negmodal:(list Label)->Modality]; 

Goal partlistl:{A,B|SET} ( l i s t (A#B))->list A; 
intros __; Refine l i s t _ e l i m (A#B)[1:(list (A#B))]list A; 
Refine n i l ; 
intros; Refine cons x l . l x2_ih; 
Save; 

Goal partlistr:{A,B|SET} ( l i s t (A#B))->list B; 
intros __; Refine l i s t . e l i m (A#B) [ 1 : ( l i s t (A#B))]list B; 
Refine n i l ; 
intros; Refine cons xl.2 x2_ih; 
Save; 

Goal f i l t e r : M o d a l i t y - > ( l i s t (Label#State))->list State; 
Refine Modality.elim [M:Modality](list (Label#State))->list State; 
intros allowed; 
Refine l i s t _ e l i m (Label#State)[lrlist (Label#State)]list State; 
Refine n i l ; 
intros b xs _; 
Refine i f (member Eq.Label b. l allowed) (cons b.2 x2_ih) x2_ih; 
intros forbidden; 
Refine l i s t . e l i m (Label#State)[l:list (Label#State)]list State; 
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Refine n i l ; 
intros b xs _; 
Refine i f (member Eq_Label b . l forbidden) x2_ih (cons b.2 x2_ih); 
Save; 

Goal MTrans:Modality->State->State->Prop; 
Refine Modality_elim [M:Modality]State->State->Prop; 
intros; Refine Ex[1:Label]and (Member 1 x2)(Trans 1 H HI); 
intros; Refine Ex[1:Label](and (Trans 1 H HI))(not (Member 1 x l ) ) ; 
Save; 

Goal modal.check: { 1 : LabelHM: Modality}Prop; 
intros _; Refine Modality_elim [M:Modality]Prop; 
intros; Refine is_true (member Eq_Label 1 x2); 
intros; Refine is.false (member Eq_Label 1 x l ) ; 
Save; 
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Monotonicity 

Goal Mono [Z:Form]Z; 
Intros ; Refine H; Refine HI; 
Save Mono_Vax; 

Goal {F:Form}Mono [_:Form]F; 
Intros; Refine HI; 
Save Mono_triv; 

Goal {A|SETMF|A.Pred->A.PredHQlA.Pred}F.Mono->Mono ([Z:A.Pred]And Z.F Q); 
intros; Intros ; Refine pair; 
Refine H C; 
Refine HI; 
Refine H2.fst; 
Refine H2.snd; 
Save Mono_Andl; 

Goal {AlSETHF|A.Pred->A.PredHQ|A.Pred}F.Mono->Mono ([Z:A.Pred]And Q Z.F); 
intros; Intros ; Refine pair; 
Refine H2.fst; 
Refine H C; 
Refine HI; 
Refine H2.snd; 
Save Mono_And2; 

Goal {A|SETHF,G|A.Pred->A.Pred}F.Mono->G.Mono->Mono ([Z:A.Pred]And Z.F Z.G); 
intros; Intros ; Refine pair; 
Refine H C; 
Refine H2; 
Refine H3.fst; 
Refine HI C; 
Refine H2; 
Refine H3.snd; 
Save Mono_And; 
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Goal {A|SETHF,G|A.Pred->A.Pred}F.Mono->G.Mono->Mono ([Z:A.Pred]Or Z.F Z.G); 
intros; Intros ; Refine H3; 
intros; Refine i n l ; Refine H C; Refine H2; Refine H4; 
intros; Refine inr; Refine HI C; Refine H2; Refine H4; 
Save Mono_0r; 

Goal {F|State.Pred->State.Pred}{M|Modality}F.Mono->Mono ([Z:State.Pred]Box H Z.F); 
intros; Intros ; Intros ; 
Refine H C; 
Refine HI; 
Refine H2; 
Refine H3; 
Save Mono_Box; 

Goal {F|State.Pred->State.Pred}{MIModality}F.Mono->Mono ([Z:State.Pred]Dia M Z.F); 
intros; Intros ; Refine H2; 
intros; Refine Exlntro t ; 
Refine pair H3.fst; 
Refine H C; 
Refine HI; 
Refine H3.snd; 
Save Mono_Dia; 

Goal {F|Form->Fora->ForaHT|Tag}({X:FormKF X) .Mono)->Mono ( [Z:Form]Tnu T [Y:Form] (F Y Z)); 
intros; Intros ; 
Refine H2; 
intros; 
Refine Exlntro t ; 
Refine pair ? H3.snd; 
Intros ; Refine H3.fst x l ; 
Refine H4; 
intros; Refine i n l ; Refine H5; 
intros; Refine inr; Refine H t C; Refine HI; 
Refine H5; 
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Save Mono_Tnu; 

Goal {F|Form->Form->FormHT|Tag}({X:Form}(F X).Mono)->Mono ([Z:Form]Tmu T [Y:Form](F Y Z)); 
intros; Intros ; Intros ; 
Refine H2; 
Intros ; 
Refine H3; 
Refine pair ? H4.snd; 
Refine H ? C; 
Refine HI; 
Refine H4.fst; 
Save Hono_Tmu; 
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Some Abbreviations 

[ t t = Nu [Z: Form] Z : Form] ; 
[ f f = Mu [Z:Form]Z : Form]; 

[able [X:list Label] = Dia (Modal X) t t ] ; 
[inable [X:list Label] = Box (Modal X) f f ] ; 
[allaction = Negmodal ( n i l Label)]; 
[only [X:list Label] = (Dia allaction tt).And (Box (Negmodal X) f f ) ] ; 
[deadlock = Box allaction f f ] ; 
[aly [X:Form] = Nu [Z:Form] (X.And (Box allaction Z))] ; 
[evn [XrForm] = Mu [Z:Form] (X.Or ((Dia allaction tt).And (Box allaction Z ) ) ) ] ; 
[deadlockfree = aly (Dia allaction t t ) ] ; 
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/i-calculus 

[Form=State.Pred]; 
[Box [M:Modality][A:Form] = [s:State]Subset (MTrans M s) A : Form]; 
[Boxl [1:Label] [A:Form] = [s:State]Subset (Trans 1 s) A :Form]; 
[Dia [M: Modality] [A: Form] = [s: State] Ex (And (MTrans M B) A) : Form]; 
[Dial [1:Label][A:Form] = [s:State]Ex (And (Trans 1 s) A) :Form]; 

(* tagged operators due to Winskel *) 
(* Tag is a predicate of states *) 

[Tag = Form]; [empty.tag = State.Emptyset : Tag]; 
[Tnu [T:Tag][F:Form->Form] = [s:State]Ex [P:Form](and (Subset P (Union T P.F)) s.P ): Form] 
[Tmu [T:Tag][F:Form->Form] = [s:State]All[P:Form](Subset (Minus (F P) T) P) -> s.F : Form] 
[Mu [F:Form->Form]= Tnu empty_tag F : Form]; 
[Mu [F:Form->Form]= Tmu empty_tag F : Form]; 

[state_decidable : {s,s':State}or (Eq s s') (not (Eq s s ' ) ) ] ; (* decidable state eq *) 

Goal Tnu.lemma : {T:Tag}{F:Form->Form>-(P:FormKF.postfp P)->Subset P (Tnu T F) ; 
intros; Intros ; Refine Exlntro P; 
Refine pair; Intros ; Refine inr; Refine H; Refine H2; 
Refine HI; 
Save; 

Goal Tnu_base : {T: TagHF: Form->FormHs: State}s. T->s. (Tnu T F) ; 
intros; Refine Exlntro T; Refine pair ? H; 
Intros ; Refine i n l HI; 
Save; 

Goal Tnu_base_set:{T:TagHF:Fom->ForaHs:Form}(Subset s T)->Subset s (Tnu T F) ; 
intros; Intros ; Refine Tnu_base; Refine H; Refine HI; 
Save; 

176 



Goal Tnu.unfold : {T: TagHF :Form->FormMs:State}F.Mono-> 
s.(F (Tnu (Union T s.Singl) F))->s.(Tnu T F); 

intros F_mono _; [Ks = Tnu (Union T s.Singl) F]; Refine Exlntro Ks; 
Refine pair; Refine -0 Tnu_base; Refine -0 inr; Refine -0 Eq_refl; 
Intros ; Refine state.decidable x s; 
intros; Qrepl H2; Refine inr; Refine H; 
intros; Refine HI; intros S _; 
Claim x.(Union (F S) T); Refine ?+l; 
intros; Refine inr; Refine F_mono S; Refine -0 H4; 
Intros ; Refine Exlntro S; 
Refine pair; Refine -0 H5; Refine H3.fst; 
intros; Refine i n l ; Refine H4; 
Refine H3.fst; Refine x; Refine H3.snd; 
intros; Refine inr; Refine singl_lemma ? ? ? H2; Refine H4; 
intros; Refine i n l ; Refine H4; 
Save; 

(* without unfolding state s *) 
Goal Tnu_unfoldl : {T | TagHF I Form->FormHs I State}F. Mono-> 

s.(F (Tnu T F))->s.(Tnu T F); 
intros; Refine Tnu_unfold; 
Refine H; Refine H; 
Refine Tnu T F; 
Refine -0 HI; 
Intros ; Refine H2; intros; Refine Exlntro t ; 
Refine pair; Refine -0 H3.snd; 
Intros ; Refine H3.fst; Immed; 
intros; Refine i n l ; Refine i n l ; Refine H5; 
intros; Refine inr; Refine H5; 
Save; 

Goal lemma.tnu : {TI TagHF I Fo:ra->ForniHt: Form} (Subset t (Union T (F t)))->Subset t (Tnu T F. 
intros; Intros ; Refine Exlntro t ; Refine pair; Refine -0 HI; 
Intros ; Refine H; Refine H2; 
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Save; 

Goal Tmu.base : {T: TagHF :Form->FormHs:State}s.T->not s.(Tmu T F) ; 
intros; Intros _; Refine lemma_Not; Refine State; Refine s; Refine T; Refine H; Refine HI 
Intros ; Refine H2.snd; 
Save; 

Goal Tmu_unfold : 
{T: TagHF: Form->FormHs: State}F. Mono-> 
(not s.T)->s.(F (Tmu (Union T s.Singl) F))->s.(Tmu T F); 

introa; [Ks = Tmu (Union T a.Singl) F]; 
Intros ; Refine H3; 
Refine pair ? HI; Refine H Ks; Refine -0 H2; 
Intros; Refine H4 x; 
Refine minus_union_lemma; Refine H3; 
Save; 

Goal Tmu_unfoldl : 
{T: TagHF :Form->Form>{s: State} 
(not s.T)->F.Mono->s.(F (Tmu T F))->s.(Tmu T F); 

intros; Intros ; Refine H3; 
Refine pair; Refine -0 H; 
Refine HI; Refine Tmu T F; Refine -0 H2; 
Intros ; Refine H4; Refine H3; 
Save; 

(* no successor states *) 
Goal lemma_Boxl:{s:State>{K:list LabelHF:Form}({a:LabelHs': State} (Member a K) 
->not (Trans a s s')) ->Box (Modal K) F s; 
intros; Intros ; Refine HI; 
intros; Refine H; 
Refine t ; Refine x; Refine H2.fst; Refine H2.snd; 
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Save; 

(* no successor states : another expression *) 
Goal lemma_Box:{s:StateMK:list LabelHF:Form}(not (Ex2[a:Label] [s':State] 
and (Member a K)(Trans a s s*)))->Box (Modal K) F s; 
intros; Intros ; Refine HI; 
intros; Refine H; 
Refine Ex2Intro ?|t|x; 
Refine H2; 
Save; 
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Appendix C: The Algorithm to Prove Monotonic-

ity 

l e t rec prove_mono 1 v = match 1 with 
(Atom y) -> "(Hono.triv ?)" 

I (Var a) -> i f v=a then "Mono_Var" else "(Mono_triv (Var a))" 
I (And(y,z)) -> "(Mono_And ""(prove_mono y v)~" ""(prove_mono z v ) " " ) " 
I (Or(y,z)) -> "(Mono_0r ""(prove_mono y v)"" ""(prove_mono z v ) " " ) " 
I (Box (y,z)) -> "(Mono_Box ""(prove.mono z v ) " " ) " 
I (Dia (y,z)) -> "(Mono_Dia ""(prove_mono z v ) " " ) " 
I (Nu (t,z)) -> 

i f z=(Var 1) then "(Mono_triv ?)" else "(Mono_Tnu' ""(prove.mono z (v+1))"")" 
I (Mu (t,z)) -> 

i f z=(Var 1) then "(Mono_triv ?)" else "(Mono.Mu ""(prove_mono z (v+1))"")";; 
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Appendix D: The Lego Proof of Lemma 8.1.1 

Goal lenuna811:{a|Act>{P|ProcessHnlnat}(Trana a n.Ring P)-> 
or ((Eq a enter).and (Eq P n.Ring_enter)) 

((Eq a tau).and (Eq P n.Ring)); 
intros; Refine lemma_hide H; 
(* a=act *) 
intros; Refine i n l ; Refine HI; intros; Refine H2; intros; Qrepl H5; Refine pair; Next +1; 
Refine Eq_resp2; Refine -1 Eq_refl; Refine snd; Refine (Eq a enter); 
Refine -0 ?+0.fst; Qrepl H3; 
Refine nat_elim [n|nat]{P:Process>(Trans (act t ) (Ring' n) P)->and (Eq (act t ) enter) 
(Eq P (Ring'_enter n)); 
Qrepl -0 H3.Eq_sym; Refine -0 H6; 
(* base case *) 
intros; Refine lemma_par H7; 
(* pari *) 
intros; Refine H8; intros; Refine lemma_dot H9.fst; intros; 
Claim not (is_false (orelse (member.act t (cons pass_b (nil|ActB))) 
(member_act (comple t ) (cons pass.b (ni l l A c t B ) ) ) ) ) ; 
Refine ?+l; Refine H4; Qrepl ( a c t _ i s _ i n j _ x l pass_b t H10).Eq_sym; Refine true_not_false; 
(* par2 *) 
intros; Refine H8; intros; 
Claim Trans (act t ) ((enter.dot (exit.dot IT)).cho (zero.comp.act.dot I ) ) t l ; 
Refine lemma.cho ?+l; 
intros; Refine lemma.dot H10; intros; Refine pair Hll.Eq.sym; Qrepl H9.snd; 
Refine Eq_resp2; Refine Eq_refl; Refine H12.Eq_sym; 
intros; Refine lemma.dot H10; intros; 
Claim not (is_false (orelse (member.act t (cons pass.b (nillActB))) 
(member.act (comple t ) (cons pass_b (ni l l A c t B ) ) ) ) ) ; 
Refine ?+l; Refine H4; Qrepl ( a c t _ i s _ i n j _ x l zero.comp t Hll).Eq_sym; Refine true_not_false 
Refine lemma_rec H9.fst; 
(* par_com *) 
intros; Refine tau_not_Eq_act t H8.fst.Eq_sym; 
(* induction case *) 
intros _; Qrepl par_trans xl.IRing' I IT; Qrepl par_eql11 IT; 
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Qrepl (par_trans x l . I R i n g ' I T I).Eq_aym; i n t r o s ; Refine lemma_par H7; 
(* p a r i *) 
i n t r o a ; Refine H8; i n t r o s ; Refine x l _ i h t l H9.fst; i n t r o s ; Refine p a i r H10; Qrepl H9.snd; 
Qrepl M l ; Qrepl (par_trans x l . I R i n g ' (exit.dot IT) I ) ; Qrepl par_eq|(exit.dot I T ) 1 1 ; 
Refine (par_trans x l . I R i n g ' I (exit.dot IT)).Eq_sym; 
(* par2 *) 

i n t r o s ; Refine H8; i n t r o s ; Refine lemma_dot H9.fst; i n t r o s ; 
Claim not ( i s . f a l s e ( o r e l s e (member.act t (cons paas_b ( n i l | A c t B ) ) ) 
(member_act (comple t ) (cons pass_b ( n i l | A c t B ) ) ) ) ) ; 
Refine ? + l ; Refine H4; Qrepl ( a c t _ i s _ i n j _ x l zero.base t H10).Eq_sym; Refine t r u e _ n o t _ f a l s e ; 
(* par_com *) 

i n t r o s ; Refine tau_not_Eq_act t H8.fst.Eq_sym; 

(* a=tau *) 

i n t r o s ; Refine i n r ; Refine HI; i n t r o s ; Refine H2; i n t r o s ; Refine p a i r H3; Qrepl HB; 
Refine Eq_resp2; Refine -0 E q _ r e f l ; 
Refine nat_elim [n:nat]-[t:Process} (Trans tau (Ring' n) t)->Eq t (Ring' n ) ; 
Qrepl -0 H3.Eq_sym; Immed; 
(* base case *) 
i n t r o s ; Refine lemma.par H6; 
(* p a r i *) 
i n t r o s ; Refine H7; i n t r o s ; Refine lemma_dot H8.fst; i n t r o s ; Refine tau_not_Eq_act zero.base 
Refine H9.Eq_sym; 
(* par2 *) 
i n t r o s ; Refine H7; i n t r o s ; 
Claim Trans tau ((enter.dot (exit.dot IT)).cho (zero.comp.act.dot I ) ) t 2 ; 
Refine lemma_cho ? + l ; 
i n t r o s ; Refine lemma_dot H9; i n t r o s ; Refine tau_not_Eq_act one.base; Refine H10.Eq_sym; 
i n t r o s ; Refine lemma_dot H9; i n t r o s ; Refine tau_not_Eq_act zero.comp; Refine H10.Eq_sym; 
Refine lemma_rec H8.fst; 
(* par_com *) 
i n t r o s ; Refine H7.snd; i n t r o s ; Refine H8.fst; 
(* par_coml *) 
i n t r o s ; Refine lemma_dot H9.fst; i n t r o s ; 
Claim Trans (act (comple u)) ((enter.dot (exit.dot IT)).cho (zero.comp.act.dot I ) ) s; 
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Refine lemma_cho ?+l; Refine -0 lemma_rec H9.snd; 

(* chol *) 

i n t r o s ; Refine lemma_dot H12; i n t r o s ; Refine base_not_Eq_comp zero one; 

Qrepl ( a c t _ i s _ i n j _ x l one.base u.comple H13); 

Qrepl ( a c t _ i s _ i n j _ x l u zero.base H10.Eq_sym); Refine E q _ r e f l ; 

(* cho2 *) 

i n t r o s ; Qrepl H8.snd; Refine lenuna_dot H12; i n t r o s ; Qrepl par_eq|t2ls; Refine Eq_resp2; 

Refine H14.Eq_sym; Refine Hll.Eq_sym; 

(* par_com2 *) 

i n t r o s ; Refine lemma_dot H9.fst; i n t r o s ; 

Claim Trans (act u) ((enter.dot (exit.dot IT)).cho (zero.comp.act.dot I ) ) s; 

Refine lemma_cho ?+i; Refine -0 lemma_rec H9.snd; 

(* chol *) 

i n t r o s ; Refine lemma_dot H12; i n t r o s ; Refine base_not_Eq_comp one zero; 

Qrepl ( a c t _ i s _ i n j _ x l zero.base u.comple H10); Qrepl ( a c t _ i s _ i n j _ x l u one.base H13.Eq_sym); 

Refine E q _ r e f l ; 

(* cho2*) 

i n t r o s ; Qrepl H8.snd; Refine lemma.dot H12; i n t r o s ; Qrepl par_eq|t2|s; Refine Eq_resp2; 

Refine H14.Eq_sym; Refine Hll.Eq_sym; 

(* induction case *) 

i n t r o s ; Qrepl par_trans x l . I R i n g ' I IT; Qrepl par_eq|I|IT; 

Qrepl (par_trans x l . I R i n g ' IT I).Eq_sym; i n t r o s ; Refine lemma.par H6; 

(* p a r i *) 

i n t r o s ; Refine H7; i n t r o s ; Qrepl H8.snd; Refine Eq_resp2; Refine -0 E q . r e f l ; 

Refine x l _ i h t 2 H8.fst; 

(* par2 *) 

i n t r o s ; Refine H7; i n t r o s ; Refine lemma_dot H8.fst; i n t r o s ; Refine tau_not_Eq_act zero.base 

Refine H9.Eq_sym; 

(* par_com *) 

i n t r o s ; Refine HT.snd; i n t r o s ; Qrepl H8.snd; Refine H8.fst; 

(* par_coml *) 

i n t r o s ; Refine lemma.dot H9.snd; i n t r o s ; Qrepl par.trans (IRing' x l ) I T I ; 

Qrepl par_eq|IT|I; qrepl (par.trans (IRing' x l ) I IT).Eq_sym; Refine Eq_resp2; 

Refine -0 Hll.Eq.sym; Claim (TRANS pass.b.comple.act (par (IRing* x l ) I T ) t 2 ) ; 

Refine lemma21 Refine pass; Claim Eq (comple pass.b) u; Qrepl ? + l ; Refine H9.fst; 
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Refine ActB_elim [u:ActB] (Eq pass (act (comple u)))->Eq (comple pass_b) u; 

Refine -0 H10; 

i n t r o s ; Refine base_not_Eq_comp x2 zero; Refine a c t _ i s _ i n j _ x l ; Refine H12; 

i n t r o s ; Equiv Eq zero.comp xll.comp; Refine Eq_resp; Refine b a s e _ i s _ i n j _ x 2 ; 

Refine a c t _ i s _ i n j _ x l ; Refine H12; 

(* par_com2 *) 

i n t r o s ; Refine lemma_dot H9.snd; i n t r o s ; Qrepl par_trans (IRing' x l ) IT I ; 

Qrepl par_eq|IT|I; qrepl (par_trans (IRing' x l ) I IT).Eq_sym; Refine Eq_resp2; 

Refine -0 Hll.Eq.sym; Claim (TRANS pass_b.comple.act (par ( I R i n g ' x l ) I T ) t 2 ) ; 

Refine lemma21 ?+l; Refine pass; qrepl ( a c t _ i s _ i n j _ x l zero.base u H10); Refine H9.fst; 

Save; 
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