
Durham E-Theses

Formal veri�cation of concurrent programs

Yu, Shen-Wei

How to cite:

Yu, Shen-Wei (1999) Formal veri�cation of concurrent programs, Durham theses, Durham University.
Available at Durham E-Theses Online: http://etheses.dur.ac.uk/4366/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, Durham University, University O�ce, Old Elvet, Durham DH1 3HP
e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/4366/
 http://etheses.dur.ac.uk/4366/
htt://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

Formal Verification of Concurrent Programs

in Type Theory

The copyright of this thesis rests with
the author. No quotation from it should ,
be published in any form, including Shen-Wei Yu
Electronic and the Internet, without the
author's prior written consent. All
information derived from this thesis
must be acknowledged appropriately.

Ph.D. Thesis

Department of Computer Science

University of Durham

February 1999

13 J U L 2001

Abstract

Interactive theorem proving provides a general approach to modeling and

verification of both finite-state and infinite-state systems but requires significant

human efforts to deal with many tedious proofs. On the other hand, model-

checking is limited to some application domain with small finite-state space. A

natural thought for this problem is to integrate these two approaches. To keep

the consistency of the integration and ensure the correctness of verification, we

suggest to use type theory based theorem provers (e.g. Lego) as the platform for

the integration and build a model-checker to do parts of the verification auto

matically.

We formalise a verification system of both CCS and an imperative language in

the proof development system Lego which can be used to verify both finite-state

and infinite-state problems. Then a model-checker, LegoMC, is implemented

to generate Lego proof terms for finite-state problems automatically. Therefore

people can use Lego to verify a general problem with some of its finite sub-

problems verified by LegoMC. On the other hand, this integration extends the

power of model-checking to verify more complicated and infinite-state models as

well.

The development of automatic techniques and the integration of different rea

soning methods would directly benefit the verification community. It is expected

that further extension and development of this verification environment would

be able to handle real life systems. On the other hand, the research gives us

some experiences about how to automate proofs in interactive theorem provers

and therefore will improve the usability and applicability of the theorem proving

technology.

Acknowledgements

First and foremost, I would like to thank my supervisors Zhaohui Luo and

Keith Bennett. My work owes a great deal to insights and ideas which Zhaohui

shared with me in numerous stimulating and productive discussions. Without

Zhaohui's careful guidance and conscientious reading, this thesis would not have

been possible. Keith gave me many administrative support including applying

the Overseas Research Students Awards.

I would also like to thank my PhD proposal examiners, Cornelia Boldyreff

and Maria Fox, for their valuable advice in the very beginning of my research.

The Lego club in Durham, Alexander Jones, Paul Callaghan, James McKinna,

Steven Bradley, Sanjay Poria, gave me many helpful suggestions and many of my

ideas come from stimulating discussions with them.

I would sincerely like to thank all my friends in Durham and my landlord.

Their great help and friendships make my life in this city so interesting, inspiring

and enjoyable.

My parents gave me not only financially support but also constant encourage

ment.

My wife, Jiuan-jiuan, has given me great emotional support through her love

and patience. She also take care of my daily life and my lovely daughter so that

I can concentrate on my work.

My research was supported in part by Overseas Research Students Awards

ORS96012011.

Declaration

The material contained within this thesis has not previously been submitted for a

degree at the University of Durham or any other university. The research reported

within this thesis has been conducted by the author unless indicated otherwise.

Copyright Notice

The copyright of this thesis rests with the author. No quotation from it should

be published without his prior written consent and information derived from it

should be acknowledged.

i i

Contents

I Introduction 1

1 Introduction 2

1.1 Formal Verification 2

1.2 Model-Checking 4

1.3 Interactive Theorem Proving 6

1.4 Integration 9

1.5 Our Approach 11

1.6 Structure of the Thesis 14

2 Preliminaries 17

2.1 Inductive Data Types 18

2.2 Internal Higher Order Logic 20

2.3 Lego Notations 23

2.4 Set Theory 26

2.5 Fixed Points 28

ii i

II Formalisation 31

3 Temporal Logics 32

3.1 /j-calculus 33

3.2 Formalisation of /^-calculus 36

3.3 Inference Rules 38

3.4 Embedding of Temporal Logics 41

4 System Modeling and C C S 45

4.1 Concurrent Systems 46

4.2 CCS: Calculus of Communicating System 46

4.3 de Bruijn's Index 49

4.4 Semantics of CCS 50

4.5 Lemmas and Theorems 54

4.6 Example: a Ticking Clock 55

5 An Imperative and Concurrent Programming Language (I C P L) 57

5.1 The Syntax 57

5.2 Shared Memory and Transitional Semantics 63

5.3 Example - A Mutual Exclusion Algorithm 70

I I I LegoMC

6 The Model-Checker, LegoMC

iv

74

75

6.1 Model-Checking 75

6.2 System Structure and Inference Rules 77

6.3 The Implementation 81

6.4 User Interface 82

6.4.1 CCS 83

6.4.2 ICPL 84

6.4.3 Temporal Logics 87

6.4.4 Commands, Comments and Abbreviations 88

6.5 Examples 89

7 Finite-State Examples 94

7.1 A Simple Communicating Protocol 95

7.1.1 Modeling in ICPL 96

7.1.2 Modeling in CCS 99

7.1.3 Comparison 101

7.2 Mutual Exclusion Algorithms 102

7.2.1 Dekker's Algorithm 103

7.2.2 Dijkstra's Algorithm 106

7.2.3 Hyman's Algorithm 109

7.2.4 Knuth's Algorithm I l l

7.2.5 Peterson's Algorithm 114

7.2.6 Lamport's Algorithm 116

v

7.2.7 Results and Comments 117

8 Infinite-State Case Studies 119

8.1 Proving by Semantics and Induction 120

8.1.1 Example : an Infinite Counter 121

8.1.2 Example: a Token Ring Network 122

8.2 Composition 128

8.2.1 Compositional Rules for CCS 130

8.2.2 Example 132

8.3 Abstraction 133

8.3.1 Strong Bisimulation 133

8.3.2 Abstraction Mapping 134

8.3.3 An Example 135

8.4 Discussion 136

IV Proof Generation and Future Research 137

9 Automatic Generation of Proof Terms 138

9.1 Proof Term Construction 139

9.2 Automatic Generation of Proof Terms 143

9.2.1 Use of Internal Functions 144

9.2.2 Use of Tacticals 145

9.2.3 Use of External Programs to Generate Proof Scripts 146

vi

9.2.4 External Programs to Generate Proof Terms 146

9.3 Efficiency Issues 147

9.4 Discussion 149

10 Other Automation Issues 151

10.1 Equational Rewriting 152

10.2 BDD Propositional Simplifier 155

10.3 Arithmetic Decision Procedures 158

11 Conclusion 162

11.1 Summary 162

11.2 Future Research 163

vii

List of Figures

1.1 The system structure of LegoMC 12

5.1 A solution for the mutual exclusion problem 71

6.1 The system structure of LegoMC 78

7.1 A simple transport protocol 97

8.1 A token ring network with 12 workstations 123

9.1 On-the-fly lemma generation 149

viii

List of Tables

3.1 Embedding of CTL* in ^-calculus 44

7.1 Verification results of mutual exclusion algorithms 118

ix

Part I

Introduction

Chapter 1

Introduction

Along with the rapid growth of computer application in our daily life, it becomes

essential to ensure the correctness of certain computer or computer-embedded

systems because of safety, security or cost concerns. Formal verification has be

come an important technique to ensure the correctness of computer software or

hardware. There are roughly three categories of approaches of formal verifica

tion, interactive theorem proving, automatic model-checking and proof search.

Recent researches suggest that the integration of first two approaches would be

an effective method to verify complicated systems. Following this idea, this thesis

presents a verification environment based on type theory based theorem prover,

Lego.

1.1 Formal Verification

More and more devices, equipment and machines such as airplanes, cars, etc.

are controlled by computers. Along with the growth of complexity in electronic

circuits, computer software and computer-controlled systems, it becomes very

difficult to ensure that the systems behave as intended. The discovery of 'bugs'

2

in commercial software is very common and therefore companies usually set up

a bug report channel. None can claim that their programs are bug-free and

computer users have got used to discovering minor bugs. Although bugs for most

commercial software can be just an inconvenience to the user, it could be a disaster

for hardware or software systems used to monitor and/or control some physical

systems such as a nuclear plant and an airplane. Even for a microprocessor

design or a financial transaction system, a design error can cost the company

huge money.

A typical approach to enhance the correctness of designs is testing or simu

lation, in which test data are given to a model of the design and the results are

analyzed against the specification. However, exhaustive testing is impractical for

many systems since the possible input combinations can be very huge and even

infinite. The assurance therefore relies on a very careful choice of some input

data that is supposed to exercise all the features of the design. As the complex

ity increases, it becomes more difficult to select test data with a good coverage.

Moreover, some testing models and environments can cost a lot and some cannot

even be built.

Formal verification is another approach to ensure correctness. The approach

is to represent and analyse systems formally (mathematically) by proving that

a system satisfies its functional specification or some critical properties. The

systems can be hardware systems such as electronic circuits, software systems

such as computer programs or reactive systems such as controlling systems. The

system is usually modeled using a system description language such as transition

graph, CCS [Mil89], CSP [Hoa85], or even a programming language. The spec

ification is written using some specification languages such as Z [Spi88], VDM

[Jon86] and OBJ [GM96]. The verification is to prove that the model of the real

system satisfies the specification.

The foundation of verification traces back to Floyd and Hoare's work [Flo67,

3

Hoa69] on sequential programs. Now they are known as Hoare's logic [Hoa69,

Apt81, dB80]. A sequential program is usually regarded as a mathematical func

tion over memory states. Given a function, we can always deduce the final state

from the start state. The memory is subservient to the program. The story is

completely different if other agents, e.g. programs or environments, may interfere

and change the state of memory while the program is running. In a concurrent

environment with two or more agents interfering with each other, the final state

is not only dependent on the start state but on the behaviours of all the agents

in the systems. Therefore, the verification of concurrent systems is more com

plicated than sequential systems and more difficult to deal with. The testing in

concurrent systems is more difficult as well and therefore it is more necessary to

use verification.

In the early stages, the formal verification is carried on paper and pencil

method. Several theorems are proposed to reason about the correctness of pro

grams. The increase in complexity of programs rapidly becomes unmanageable

without computer assistance. The development in automatic proving algorithms

and interactive theorem provers makes formal verification more practical in appli

cation. A popular automatic verification technique, model-checking, is introduced

in next section. A general introduction to the application of interactive theorem

proving to verification is presented in section 1.3.

1.2 Model-Checking

Over the last decade model-checking has emerged as a powerful technique for

automatically verifying concurrent systems [CE81, QS81, CES86, VW86, Cle90,

And92]. Many different model-checking techniques emerged and various commu

nication protocols and electronic circuits have been verified by model-checkers.

The improvement in efficiency has successfully extended the application to more

4

laxge-scale and complicated systems such as circuits with 102 0 states [BCM+92]

and PDP-11 sized processor [BB94]. It has been extended to probabilistic [Var85,

PZ86, CY90] and real time programs and logics [ACD90, AH90, HLP90].

The basic idea is to determine whether or not a system satisfies a property

typically expressed as a temporal logic formula by searching the state space of

the system thoroughly. When systems have finite state space, model-checking

algorithms can be used to verify the system completely automatically. The re

striction is that the state space should be finite. If the model-checking algorithm

is efficient, this approach is potentially of wide applicability since a large class

of concurrent systems has finite state space. A potentially serious drawback to

the entire model-checking approach is the state-explosion problem that the size of

the global state transition graph grows exponentially while the size of the system

grows linearly.

Several techniques have been introduced to cope with the state-explosion prob

lem. Local model-checking [Lar90, SW91, Win89] or on-the-fly [H0I8I, Hol85]

model-checking attempts to build only part of the state space of the system,

while still maintaining the ability to check the properties of interest. Partial-

order techniques attempt to avoid the wasteful representation of concurrency by

interleaving [GW93]. Abstraction techniques replace the system to be checked

by a simpler one in which the details irrelevant for the property to be checked

have been suppressed [Kur94, CGL92, GL93]. Another direction called symbolic

approach is to represent implicitly rather than explicitly the states and transi

tion relations of systems [BCM+92]. The usual implicit representation is Binary

Decision Diagrams(BDDs) [Bry92] so that the temporal formulas can be model-

checked directly on the BDD representation, without ever building an explicit

representation of the state space.

Although the improvement in efficiency has significantly widened the appli

cation of model-checking techniques, the state enumeration, which is the basic

5

principle of model-checking, stil l limits i t to finite state systems. Moreover, the

above techniques to improve model-checking efficiency still need to be formally

proved. A hand written proof attached to an algorithm is not always sufficient.

Certain techniques such as abstraction technique involve creating another sim

pler system to replace the original system. The process of abstraction needs to

be formally proved to ensure the correctness of the whole verification. Interactive

theorem proving can be used in at least two aspects to benefit model-checking

community:

1. I t can be used to decompose a verification problem into sub-problems so

that each is manageable by one of the two methods.

2. I t can be used to formally prove the meta-theory of model-checking.

1.3 Interactive Theorem Proving

Instead of checking the state space exhaustively, interactive theorem proving de

duces the result by inference rules guided interactively by human beings. There

fore, users can choose different reasoning methods which are more suitable for

their verification target. The rich built-in library can also simplify their task.

Most of the thcorem-provers are called LCF-style theorem provcrs [GMW79],

including HOL [GM93], PVS [ORS92], Nuprl [C+86], Coq [D+91], Lego [LP92],

Isabelle [PN90], etc.

Edinburgh LCF was developed by Robin Milner and his colleagues around

1977 [GMW79]. Edinburgh LCF was programmable. The user could write pro

grammable meta-language (called M L) functions to process terms, formulae, and

theorems. Theorems were not simply created, but proved. Type checking ensures

that theorems are only proved by applying rules to axioms and other theorems.

I t uses tactics for backward proof. Each tactic specifies a backward proof step,

6

reducing a goal that is the conjecture to be proved to sub-goals. A LCF tactic

is a function that reduces a goal to zero or more sub-goals. Once all the sub-

goals have been proved, some mechanism constructs the corresponding forward

proof and yields the desired theorem. Tacticals permit the combination of sev

eral tactics in various ways. Tactics and tacticals constitute a powerful control

language, which can describe search methods. Users choose the tactics to apply

and computers reduce goals by applying assigned tactics and return sub-goals to

be further proved. In the whole process, users prove theorems by interaction with

computers.

The HOL system [GM93], based upon the LCF system, is another interactive

theorem prover using classical higher order logic. The deductive machinery is

natural deduction proof using the meta language M L for defining tactics and tac

ticals. Theorems can only be introduced into the system using formal proofs that

rely upon the theorems and axioms which are already present wi thin the system.

However, subtypes and dependent types are not supported and the insistence on

resolving proofs into simple primitive inferences can make HOL slow.

The major feature of PVS [ORS92], beside the common features of LCF-style

theorem provers, is a powerful base of primitive inference rules for various decision

procedures and rewriting to automate proofs. PVS has also a strategy language

for combining inference steps into more complicated proof strategies which are

similar to tactics and tacticals. Among decision procedures, there is a symbolic

model-checker builded in PVS [RSS95].

Nuprl [C + 86] is based on Martin Lof type theory [ML84]. One of the features

of type theory based theorem provers is that the logic and the system take account

of the computational meaning of assertions and proofs. For instance, given a

constructive existence proof the system can use the computational information

in the proof to build a representation of the object, which demonstrates the

t ru th of the assertion. Such proofs can thus be used to provide data for further

7

computation or display.

Coq [D + 91] is an implementation of the Calculus of Inductive Constructions,

which is a non-conservative extension of the Calculus of Constructions wi th in

ductive types. I t is a goal-directed tactics theorem provcr, with a set of predefined

tactics, including an Auto tactic which tries to apply previous lemmas declared

as hints. The logic mixes a constructive logic and a classical logic. The system

automatically extracts the constructive contents of proofs as an executable M L

program that permits the development of programs provably consistent wi th their

specification.

Lego is an interactive proof development system designed and implemented by

Randy Pollack in Edinburgh [LP92]. I t implements several related type systems-

thc Edinburgh Logical Framework [HHP92], the calculus of constructions [CH88],

the Extended Calculus of Constructions [Luo94], and a unifying theory of depen

dent types (UTT) [Luo94]. Lego is a powerful tool for interactive proof devel

opment in the natural deduction style and supports refinement proof as a basic

operation and a definitional mechanism to introduce definitional abbreviations.

Lego also allows the user to specify new inductive data types (computational

theories), which support the computational use of the type theory. General ap

plications of Lego at the moment are to formalise a system and reason about its

properties, such as the verification of proof checkers [Pol95].

Although theorem proving is more general in applications, i t requires inten

sive human guidance and only experienced experts can use interactive theorem

provers effectively. Rigorous theorem proving requires the user to consider every

detail including some obvious assumptions, which is usually omitted in manual

proving. I t is observable that some proving tasks can be carried out completely

by automatic techniques such as model-checking. On the other hand, model-

checking is limited to some application domain wi th small finite-state space. A

natural thought for this problem is to integrate those two approaches.

8

1.4 Integration

Many real life systems arc very complicated and therefore are very difficult to be

dealt with merely by one verification technique. There are in practice demands

to divide a complicated problem to smaller parts and then use different verifica

tion methods to tackle individual parts. The verification results for individual

parts can then be integrated to finish the whole verification task. Many tech

niques such as deduction, composition, abstraction and induction are proposed

and corresponding tools are developed to deal wi th various classes of infinite-state

systems. I t is believed that the integration of the above techniques and various

automatic techniques would enhance dramatically the application of those indi

vidual techniques and therefore be able to deal wi th real-life problems.

Interactive theorem provers are suitable candidates to serve as the platform

of the above integration because most of them are based on higher order logic

and therefore easy to encode other logics. Moreover, the inductive data type

mechanisms in many theorem provers provide a very convenient way of formalising

systems. However, interactive theorem proving requires significant human efforts

to deal with many tedious proofs. Even a simple model like the 2-process mutual

exclusion problem is fairly complicated to verify. To be used in practice, i t is

necessary to borrow some automatic techniques, e.g. model-checking.

Wolper and Lovinfosse [WL89] and Kurshan and McMillan [KM89] extended

model-checking for inductive proofs by using an invariant to capture the induction

hypothesis in the inductive step. Joyce and Seger [JS93] used HOL theorem prover

to verify formulas which contain uninterpreted constants as lemmas which are

verified by Voss model-checker. Kurshan and Lamport [KL93] proved a multiplier

where the 8-bit multiplier can be verified by COSPAN model-checker [Kur94]

and the n-bit multiplier composed from 8-bit multipliers can be verified by T L P

theorem prover [EGL92]. In principle, these approaches are to divide the whole

9

problem to separated sub-problems and then use different tools to solve individual

problems. Their works based on paper and pencils are the early attempts of

combining theorem proving and model-checking.

However, the integration of these two approaches is stil l not tight enough.

Miiller and Nipkow [MN95] used HOL theorem prover to reduce the alternat

ing bit protocol expressed in I / O automata to a finite state one to be verified

by their own model-checker. The PVS proof checker [ORS92] even includes a

model-checker as a decision procedure which presents the possibility of combining

theorem proving and model-checking in a smooth and tight way [RSS95]. How

ever, the correctness of model-checkers is still a big concern since model-checkers

themselves are computer software, which could contain bugs. The output of most

model-checkers including the model-checker of PVS for a correct system is only

a "TRUE." People can only choose to believe that "TRUE" as a pure action of

faith, or not at all.

On the other hand, the proofs of type theory based theorem provers, such

as Lego [LP92], A L F [ACN90, Mag92], Coq [D+91] and Nuprl [C+86], are proof

terms which in principle can be justified by different proof checkers so that people

can have more confidence in formal proofs. Moreover, proof terms provide a

common interface for different tools so that we can easily integrate various tools

to complete more complicated proofs. The integration based on proof terms can

also ensure consistency between different verification techniques. Another issue

is that the user interface of general theorem provers seems very complicated for

people merely doing verification.

I t is believed that for the verification to be realised for industrial applications,

a domain-specific verification environment should be developed to

1. support high level user-familiar and domain-specific languages for problem

description at the appropriate level of abstraction,

10

2. integrate different methods of reasoning useful and suitable for the par

ticular domains concerned (e.g. inductive reasoning, semantics reasoning,

abstraction, composition, and automatic proof generation),

3. provide a relatively high degree of automation.

1.5 Our Approach

Our approach towards the above goals is using type theory based theorem prover,

Lego, as the platform for the integration, and a domain-specific interface and

automatic tools are buil t to generate parts of the proof. The interface uses general

programming language syntax so that programmers do not have to learn a new

syntax dedicated to theorem proving. A model-checker is implemented to do the

verification automatically for systems or sub-systems wi th finite state space. The

integration is based on explicit proof terms, which ensure the correctness and

consistency of the integration.

One of the major differences between type theory based theorem provers wi th

other theorem provers and automatic verifiers is the proof terms. Proof terms are

X-terms of which the correctness can be checked by type checking algorithms and

therefore give us more confidence on the proof. The proof checking of Lego helps

to ensure the correctness of the verification. The expressive higher order logic

and inductive data type mechanism in Lego enables us to embed specification

languages and formalise system description languages very easily.

The achievement of this thesis in the above direction is building the kernel of

a verification environment based on Lego. This involves

1. adapting proof techniques which are usually carried out by hand to theorem

provers,

11

2. developing automatic techniques to help the proof in the theorem provers,

3. integrating various proof techniques and automatic algorithms on a consis

tent platform.

The system structure is as Fig. 1.1.

Model: CCS, ICPL

Leg users users

Lego proof terms
domain-specific Lego syntax

syntax

Logics-calculus

Figure 1.1: The system structure of LegoMC

We have implemented both message-passing and shared-memory models of

concurrent systems. For the message-passing model, the Calculus of Communi

cating Systems (CCS) [Mil89] is used. Wc also define a simple imperative and

concurrent programming language (ICPL) to model the shared-memory systems.

We use the propositional /n-calculus [Koz83] to express temporal properties and

specifications and define other temporal logics, C T L and L T L , as syntax abbrevi

ation of ^-calculus formulas. CCS, the imperative language and propositional / i -

calculus are formalised and inference rules are proved in Lego to verify both finite

and infinite state systems. A model-checker (LegoMC) [YL97] is implemented to

automatically verify finite part of a verification problem. I t is expected that our

12

approach wil l provide a more general and efficient framework for the verification

of concurrent programs.

Using this environment, we have successfully verified some finite-state CCS

processes automatically such as the ticking clock, the vending machine, 2-proccss

mutual exclusion, etc. We have also verified some finite examples in the imper

ative and concurrent language such as several algorithms for mutual exclusion,

the dining philosophers problem. For infinite state problems, we have verified

an n-process mutual exclusion problem by integrating LegoMC wi th inductive

reasoning. The same example has also been verified by combining LegoMC with

abstraction method. We have also verified an endless counter by semantics with

the help of LcgoMC to simplify parts of the proof process. The counter example

has also been verified by composition method wi th the assistance of LegoMC.

The Major Contribution

The major contribution of this thesis can be summarized in three parts as follows.

1. The formalisation of a verification environment

• The formalisation of //-calculus, CCS and an imperative and concur

rent language.

• The formal proving of related axioms, inference rules, lemmas and

theorems.

2. The implementation of LegoMC

• A domain specific interface

• Automatic proof term generation

3. The integration of various verification techniques

13

• The formal proving of axioms and inference rules of various verification

systems.

• The exploration of the integration of various verification techniques.

1.6 Structure of the Thesis

This thesis is divided into four parts. The first part gives an overall introduction

and the preliminary of this thesis. Part I I introduces the specification language

and description languages and their formalisation in Lego. In part I I I , LegoMC

and some examples are presented. Part I V discusses the automation issues and

future research.

The present chapter gives an overview, background information, specific prob

lems to tackle and our approaches.

Chapter 2 gives the preliminary materials used in the thesis. We introduce

some concepts in type theory U T T [Luo94] including higher order logic and in

ductive data types which are related to our work. We also introduce some Lego

notions. As examples of formalisation in Lego, we formalize set theory and fixed

points which wi l l be used in the formalisation of //-calculus presented in chapter

3.

Chapter 3 introduces the temporal logics, which we wi l l use to specify sys

tems. We present the syntax and semantics of //-calculus and its formalisation in

Lego. Two sets of inference rules for finite-state systems and infinite-state sys

tems respectively are then formally proved in Lego. There is an implicit premise

about monotonicity in those inference rules. We developed a monotonicity prover

to prove the monotonicity automatically. Following //-calculus, three temporal

logics, PLTL, C T L and CTL* are introduced and finally their embeddings in

//-calculus are discussed.

14

Chapter 4 presents CCS. The syntax and semantics of CCS are introduced.

Subsequently their formalisation in Lego is described. Several lemmas and equiv

alence rules, which arc formally proved in Lego, arc then presented. Finally, a

simple example is given to explain how verification can be done wi th the formal

isation directly.

Chapter 5 presents an imperative and concurrent programming language (ICPL).

We describe the syntax of ICPL and its formalisaion in Lego. We then define the

transitional semantics of ICPL and present its formalisation. Finally an example

is given.

Chapter 6 presents LegoMC. After a brief introduction to model-checking, the

structure of LegoMC is then described. The implementation is then discussed.

We also present the user interface of LegoMC. Two examples for CCS and ICPL

respectively are then used to demonstrate the verification process of LegoMC.

Chapter 7 presents two examples wi th finite state-space. The first example is

a simple communicating protocol. We model i t in both CCS and ICPL and then

use LegoMC to verify the desired properties. This example shows the comparison

of verification on CCS and ICPL and demonstrates the process of improving a

system design by LegoMC. The second example is a class of mutual exclusion

algorithms. Since we use ICPL as the description language and use LegoMC to

do verification automatically, we can easily formally verify all of those mutual

exclusion algorithms. This example shows how easily LegoMC can be used to

analyse and compare a group of similar algorithms.

Chapter 8 presents infinite state-space examples. Two examples are given to

demonstrate the verification by semantics and induction. The first example is an

infinite counter, which has an evolving structure. The second example is a token-

ring network which has many identical workstations connected in a network. The

introduction of a compositional method follows and the counter example is re-

15

verified by this compositional method. The abstraction technique is presented

and we re-do the verification of token-ring example by abstraction. Finally, some

discussion is given.

Chapter 9 gives a general discussion about automatic proof term generation

in Type Theory. A general introduction to proof terms has been given in chapter

2. This chapter focuses on automation related issues. A general presentation

about the construction of proof terms for assertions is given. We then discuss the

automatic methods to construct proof terms. Some efficiency issues are discussed.

Finally, some remarks are given.

Other automation issues are discussed in chapter 10. Many decision proce

dures for data domain are based on equational rewriting. Therefore, we first

discuss the equality in type theory and cquational rewriting techniques based on

proof term generation. Binary decision diagram (BDD) technique is then dis

cussed which has been claimed as an efficient technique to manipulate boolean

expressions or propositional formulas. Finally, arithmetic decision procedures are

discussed which can deal with arithmetic operations on natural numbers.

Finally, conclusions are presented and some areas for further research are

mentioned in chapter 11.

16

Chapter 2

Preliminaries

We use the Lego proof checker [LP92] as the platform to implement the verifica

tion environment. Two important features in Lego help us to formalize systems

very easily, higher order logic and inductive data types. The expressive higher

order logic simplifies the encoding of temporal logics and several concepts such as

set, relation, predicate and fixed points. The inductive data type is quite useful

to formalize data types.

Lego is based on type theory UTT [Luo94]. Type theory offers a coherent

treatment of two related but different fundamental notions in computer science:

computation and logical inference so that one can program and prove at the same

time. Therefore, type theory may be used as a uniform language for programming,

specification and reasoning. I t also has good abstraction and modularisation

mechanism so that one can develop programs in the large as in the small and

allow direct operational understanding and easy implement on the computer.

This chapter presents the concepts of higher order logic and inductive data

types in U T T and introduces some Lego notions. As examples of formalisation

in Lego, we also formalize set theory and fixed points which wi l l be used to the

formalisation of /x-calculus presented in chapter 3.

17

2.1 Inductive Data Types

Objects and types arc two basic concepts in type theory. The relationship between

objects and types is represented by the judgements of the form

a : A

that asserts that "object a is of type A " Some objects of a type are called

canonical objects, which are the values of objects of the type under computation.

A canonical object cannot be further computed and has itself as value. A n object

a being of type A means that a computes into a canonical object of type A.

A new type is defined by the formation rules, introduction rules, elimination

and computation rules. The formation rules define what the types are and the

introduction rules determine what the canonical objects are. The elimination

rules determine how one can use a correctly asserted judgement a : A to assert

other judgements by introducing a recursive operator. The computation rules

determine the computational meaning of the recursive operator by specifying

how computation performs when the recursive operator is applied to a canonical

object.

For example, an inductive type N of natural numbers can be introduced by

the following rules:

the formation rule

• N is a type.

the introduction rule

1. 0 is of type N.

2. I f n is of type N, so is suc(n).

the elimination rule introduces a recursion operator Rec^ such that

18

• for any family of types C[x] indexed by natural numbers x, any object of

C[0], and any function / that returns an object f{m,c) of type C[suc(m)]

for any objects m of type N and c of type C[m], i?ec#(c, /) is a function

which for any natural number n returns an object of type C[n].

The computation rules give the computational meaning of Rec^ as follows:

1. RecN(c, /) (0) computes to c.

2. Recn{c, f)(suc(n)) computes to f(n,Reciv(c,f)(n)).

Lego has implemented a mechanism to simplify the definition of inductive

data types which is presented in section 2.3.

Computation

One of the major features of type theory is that i t is itself a computational

language which enables us to do computing and logical reasoning on the same

platform. The notion of computation and computational equality are basic con

cepts in type theory, which are captured by reduction and conversion, respectively.

The computation rules, such as /3-reduction, can be regarded as expressing cer

tain schemata of definitions, and computation may be regarded as evaluation of

a defined function when applied to its arguments.

An important property of the computation in type theory, called strong nor

malisation property, is that:

Every well-typed object is strongly normalisable (i.e. every computa

tion starting from a well-typed object terminates).

The computation in type theory is very useful for automatic proof generation

techniques which are presented in chapter 9.

19

2.2 Internal Higher Order Logic

Proof Terms

Proof terms are A terms which are the proof objects in type theory. Logical

formulae or propositions and logical inference in type theory are achieved by the

idea of propositions-as-types, discovered by Curry [CF58] and Howard [How80].

This idea states that any proposition P corresponds to a type P r f (P) , the type

of its proofs, and a proof of P corresponds to an object of type P r f (P) . To

assert that a proposition is true, one have to find (construct) a proof object of

the proposition. For example, the conjunction

Pi A P 2

has its type P r f (P i A P2) as

V X : Prop. (Fx D P 2 D X) ^ X .

One of its proof objects is

XX : PropXh : Pt ->• P 2 - * X. h a b

where a is a proof object of P x and b a proof object of P 2 .

Since every object in type theory can be computed into a unique canonical

object, an object being a proof of a proposition P means that i t computes into

a canonical proof of P as well. A proposition P is true i f and only i f there is

a canonical proof of i t . To determine whether a given proof is indeed a proof

of a given proposition is decidable and can be checked by type checking algo

rithms. Therefore, the proofs can be checked rigorously by computers to ensure

the correctness of proofs. The details of proof checking and correctness issues are

discussed in the next sub-section.

Therefore, the proof task for a proposition P is to find or construct a proof

term which can compute into a canonical proof of P . Although they can compute

20

into a unique value, the proof terms for a proposition can have different forms.

Find a proof term of a proposition is not easy in general and therefore some

interactive theorem provcrs arc developed to guide users to construct proof terms.

The details of proof term construction are given in chapter 9.

Logical Proposition

Based on the principle of propositions-as-types and viewing logical formulae as

types, the notion of formula in the internal logic is given by the notion of proposi

tion. The usual logical operators and propositional equality can be defined using

the universal quantifier, represented by the dependent type constructor n, and

universe Prop. The type universes constitute a hierarchy of type structure as

follows:

Prop : Type(0) : Type{\)

That is, Prop is of type Type(O), Type(O) is of type T y p e (l) , . . . etc. Ant term

which has a universe as its type is called a type. When a term has type Prop, i t is

called a proposition. Their type-theoretic equivalents are briefly listed as follows

and refer to [Luo94] for details.

Mx : A.P(x) =df Ux : : A.P(x)

Pi D P* =df Mx : P1.P2

t r u e =df MX : Prop.X D X

false =df MX : Prop.X

Pi A P 2 =df MX : Prop{Px DP2DX)DX

Pi V P 2 =df MX : Prop.{Pi D X) D (P 2 D X) D X

- P i =df Pi D false

3a;: A.P{x) =df MX : Prop.(Mx : A.(P(x) D X)) D X

a=Ab =df MP : : A -> Prop.P{a) D P{b)

21

The internal higher order logic is very convenient to be used to encode other

logic concepts. We have used higher order logic to code set theory, fixed point

and /^-calculus. A formula is provable i f and only i f i t is inhabited by some object

which is called the proof term.

Proof Checking

There are two issues about proof terms that are essential for verification. One

is the correctness of the proof, another one is the consistency of the integration

between various verification techniques. Before discussing the correctness of proof

terms, we first discuss some concepts about " p r o o f .

"Proofs" are the evidences used to convince others that an argument is cor

rect. To accept a proof depends on one's confidence on the evidences. There

are basically three forms of "proof in computer aided theorem proving: t ru th

value, proof derivations and proof terms. Truth value is the answer produced by

automatic reasoning tool, which wil l be an answer of "true" or "false" according

their buil t- in algorithms. People have to believe the algorithm and its implemen

tation to accept the "p roof . Proof derivations are the reasoning sequence from

axioms and primitive inference rules to conclusions. People accept the "proof" by

checking the correctness of the reasoning sequence. HOL's proofs belong to this

category and the correctness of their proof derivations can be checked by ML's

type checking mechanism.

The proofs in type theory arc proof terms which have their intended propo

sitions as their types. The correctness of proofs can be checked by type checking

algorithms. Because the correctness of the final generated proof term can always

be type checked rigorously by computers, we can implement more efficient algo

rithms for automatic generation of proof terms or more sophisticated interfaces

for interactive generation of proof terms without losing the correctness of proof

22

terms.

Another important issue is the consistency of the integration of different veri

fication techniques. To be able to verify real life systems, i t is necessary to apply

various verification techniques and integrate them together. One problem for the

integration is usually the consistency between different techniques. Because they

have different assumptions, axioms and inferences rules, i t is very easy to have

inconsistency between them. PVS has implemented many automatic techniques

in the same platform and they claim they have to be very careful to integrate

those techniques to maintain their consistency.

Our implementation does not have this problem. We formally encode the

semantics of a verification system by the internal higher order logic of Lego. The

axioms and inference rules are formally proved in Lego. Different axioms and

inference rules from different verification systems have their own proof objects.

The integration is therefore combining those proof objects in certain ways and

the final proofs to original verification problems are bigger proof terms of which

the correctness can be type checked.

In summary, we can say the correctness of our verification result is ensured

by type checking algorithm. Since assertion p : P means proof object p is an

object of proposition P, the correctness of p can be checked by the type checking

algorithm to see i f p indeed has type P. Given any term and any context (see

section 2.3), the type checking algorithm checks whether the term is well typed in

the context, and i f so, i t computes the principal type of the term in the context.

2.3 Lego Notations

This section introduces some Lego notations and terminology which wil l be used

in the thesis.

23

Type Universes

Prop, Typc(n) (n > 0 is a natural number), and Type represent type universes.

Type is the type of all types and is the type of itself.

n-types

{x :A}B is the notation for dependent Il-types (Hz; : A.B) in type theory. {x :A}B

is often written as A->B when the identifier x does not occur free in B. When

{ x : A}B is a proposition, i t intuitively stands for "Va;: A.B". I f both A and B are

propositions, the proposition A->B intuitively means "A implies B. When {x :A}B

is not a proposition, i t intuitively denotes a class of function / wi th domain A such

that for a : A, f(a) is of type B[a/x], which is the term obtained by substituting

all free occurrences of x by a in B. I f neither A nor B is a proposition, A->B

intuitively stands for the function type from A to B.

A-abstraction and Pairs

[x:A]M is the notation for A-form (Xx : A.M). [x:A]M intuitively denotes a

function which returns the value of M[a/x] for a : A. We can write [_:A]M when

x does not appear in M.

M N intuitively denotes the result of function application of function M to

value N. We use N. M to abbreviate (M N).

[x I A] M is used to define polymorphic functions [x : A] M. When Lego can de

duce the appropriate types x from M, we can omit an argument x while applying

this function to terms.

a,b is the form of a pair in Lego. The type of a,b is A#B where A and B are

types of a and b respectively.

24

Declarations, Definitions and Contexts

A declaration [x:M] declares that x is of type M.

A definition [c C = M : A] defines c under the context (sec below) C to be

M wi th type A where A is optional. Suppose C is of the form

61 62 . . . bn

where bi is either a declaration or a definition. Then [c C = M : A] is equivalent

to

[c = b l b2 . . . bn(M : A)]

Contexts are (possibly empty) sequences of declarations and definitions.

Inductive Data Types in Lego

There is an Induc t ive command in Lego [Pol94] to simplify the declaration of

inductive types and relations by automatically constructing the basic Lego syntax

from a 'high level' presentation. The syntax is as follows.

Induc t ive [T1:M1] . . . [Tm:Mm]

Constructors [C0NS1:L1] . . . [CONSnrLn]

<Qptions>

This command declares the mutually recursive data type T l . . . Tm wi th the

constructors C0NS1 . . . CONSn which have corresponding types L I . . . Ln.

There arc several Options for declaring a recursive data type. Option Parameters

is used to give parameters for inductive data type. Option Theorem is used to

generate some corresponding axioms and theorems for the constructors. Option

ElimOver is used to define the type universe of inductive data type. Lego wil l

automatically generate corresponding recursive operators.

25

Lego has built in many inductive data types as libraries. We list natural

numbers, booleans, lists and logical definitions in appendix A.

Record Type

The is a record type to simplify the definition of inductive data type with only

one constructor. There is no document about the details of record types in Lego.

2.4 Set Theory

Set theory is a very useful concept which has many application in various area.

In Lego, the objects in the universe are categorised into different types and there

is no overlap between distinct types. Therefore, the set theory we use is typed set

theory. We use logical predicates to represent sets. Therefore, in the following

discussion, the notation of sets wi l l be A.pred which means a set wi th elements

of type A satisfying pred.

First, we define predicate operators as follows.

[Pred = [A:Type(0)]A->Prop] ;

[True [A:Type(0)] = [s :A] t rueProp : A .Pred] ;

[False [A:Type(0)] = [s :A]absurd : A .Pred] ;

[Imply [A:Type(0)] [C,D:A.Pred] = [s :A]s .C->s .D : A .Pred] ;

[I f f [A:Type(0)] [C,D:A.Pred] = [s :A]and (Imply C D s) (Imply D C s)

[And [A:Type(0)] [C,D:A.Pred] = [s :A]and s.C s.D : A.Pred] ;

[Or [A:Type(0)] [C,D:A.Pred] = [s : A] o r s.C s.D : A .Pred] ;

[Not [A:Type(0)] [C:A.Pred] = [s :A]no t s.C : A .Pred] ;

Then, the various concepts of sets can be defined over the predicate operators

26

as follows.

(* SET as predicates *)

[F u l l s e t - T r u e] ;

[Emptyset = F a l s e] ;

[Union = O r] ;

[Meet = And];

[Minus [A:Type(0)] [C,D:A.Pred] = And C (Not D)] ;

[S i n g l [A : T y p e (0)] [x : A] = Eq x : A.Pred] ;

[Subset [A:Type(0)] [C,D:A.Pred] = { x : A } x . C - > x . D] ;

[Eqset [A:Type(0)] [C,D:A.Pred] = and (Subset C D) (Subset D C)] ;

We can therefore prove some properties of set operators as follow.

• unionjassoc : VA : Type(0)VC, D, E : A.Pred

Eqset(Union C(Union D E))(Union(Union C D)E)

• singl Jemma : MA: Type(Q)\/x, s : AVC : A.Pred

(not(Eq x s)) —> x.{Union C s.Singl) -> x.C

• uniondemmal : V^4 : Type(0)\fB, C : A.Pred

Subset B (Union B C)

• minus Jemmal : WL: Type(0)VB, C, D : A.Pred

(Subset B C) -> Subset (Minus B D)C

• minusJemma2 : VA : Type(0)VB,C : A.Pred

Subset (Minus B C) B

• minus.union Jemma : VA : Type(0)V£, C, D : A.Pred Vs : A

(Subset (Minus B C) D) Subset (Minus B(Union C(s.Singl))) D

27

2.5 Fixed Points

The theorems of fixed points arc very useful in computer science, giving semantics

of programming languages, program analysis, program verification, etc. In this

section, we formalise some definitions and formally prove some theorems in Lego.

D e f i n i t i o n 2.5.1 (Prefixed point and postfixed point)

Let E be a set and $ be a function, a subset S C E is a prefixed point of <3? i f

$(S) C S

and a postfixed point of $ i f

5 C $ (5) .

S is a fixed point of <3> i f S is both a prefixed point and postfixed point of $.

T h e o r e m 2.5.1 (Ta r sk i [Tar55]) Let E be a set, P(E) be the power set of E

and $: P(E) -» P{E) be a monotonic function i.e.

SCS'^ $(S) C $(S')

for all S, S' € P(E). Then $ has a minimum fixed point fiS.^(S) and a maximum

fixed point vS.$(S) given by

HS.$(S) = n{S' C £ | $ (S ') C S'}

vS.Q(S) = U { 5 ' C E\S' C $ (5 ') }

/z5.$(5) is the least prefixed point since i t is the meet of all the prefixed point.

i /5.$(5) is the greatest postfixed point since i t is the union of all the postfixed

points.

We have formally proved many theorems of fixed point in Lego. The set is

defined as a predicate over a data type A. Therefore for a monotonic function F,

we can define its prefixed point and postfixed point as

28

[p r e f p [F:A.Pred->A.Pred][P:A.Pred] = Subset P.F P] ;

[p o s t f p [F:A.Pred->A.Pred][P:A.Pred] = Subset P P . F] ;

We can then define its least fixed point as

C l fp [F:A.Pred->A.Pred] = [x : A] { P : A . P r e d } (p r e f p F P)->x.P:A.Pred]

And prove the following theorems of least fixed point.

Theorem 2.5.2 For every prefixed point P, least fixed point is a subset of P.

VP.prefp(F, P) -> lfp(F) C P

Theorem 2.5.3 Least fixed point is a prefixed point.

prefp{F,lfp{F))

Theorem 2.5.4 Least fixed point is a postfixed point.

postfp{F,lfp{F))

The greatest fixed point can be defined as

[g f p [F:A.Pred->A.Pred] = [x:A]Ex [P:A.Pred]and(P.Subset P .F) (x .P)

: A.Pred]

Theorem 2.5.5 Every postfixed point P is a subset of greatest fixed point.

\/P.postfp{F, P) -) P C gfp(F)

Theorem 2.5.6 Greatest fixed point is a postfixed point.

postfp(F,gfp(F))

29

Theorem 2.5.7 Greatest fix point is a prefixed point.

prefp(F, gfp(F))

Using the above formalisation, we can prove in Lego the following lemma and

theorems, which wi l l be used to prove model-checking rules presented in chapter

3.

Theorem 2.5.8 (Reduction lemma [Koz83, Win89])

VP.P C gfp(F) o P C F{gfp{XQ.{P U F{Q)))).

Theorem 2.5.9 (Least fixed point fold and unfold)

V P P C lfp(F) o P C F(lfp{F) U P)

Theorem 2.5.10 (Greatest fixed point base)

VP.P C P ' - ^ P C gfp{XQ.(P' U F(Q))).

Theorem 2.5.11 (Greatest fixed point fold and unfold)

VP.P C gfp(F) O P C F(gfp(F) U P)

30

Part I I

Formalisation

31

Chapter 3

Temporal Logics

This chapter presents our formalisation of temporal logics in Lego. Temporal logic

is a special branch of modal logic that deals wi th the t ru th values of assertions

which change over time. Whereas an ordinary logic is adequate for describing

a static situation, temporal logic enables us to discuss how a situation changes

due to the passage of time. An execution of a program is precisely a chain

of situations, called execution states. That suggests that temporal logic is the

appropriate tool for reasoning about the execution of programs.

Concurrent programs have long been a difficult subject to formalise and have

often been dealt wi th by the methods that worked perfectly for sequential pro

grams. Temporal logic offers special advantages for the formalisation and analysis

of the behaviour of concurrent programs since i t is designed to reason about the

on-going behaviour as sequences of actions or state changes.

Temporal logics can be classified as linear temporal logic and branching tem

poral logic. The first one regards the sequences of time as linear: at each moment

there is only one possible future moment. The other one is that time has a branch

ing, tree-like nature: at each moment, time may split into alternate sequences

representing different possible futures. Both approaches have been applied to

32

program reasoning, and i t is a matter of debate as to say whether branching or

linear time is preferable [EH86, Lam80, Pnu85].

Kozen's (propositional) modal //-calculus {fiK) [Koz83] has expressive power

subsuming many modal and temporal logics such as LTL and C T L [BCM + 92 ,

CGH94, EL85]. Therefore, i t is a natural choice to use //-calculus to specify

the properties. However, i t can be difficult to express properties in //-calculus

since its semantics is not natural in terms of people's understanding. One way to

tackle this problem is to give the translations from various perhaps more easily

accessible temporal logics [EL85, Dam90, Sti92].

In the next section the syntax and semantics of //-calculus are presented. Their

formalisation in Lego is then presented in section 3.2. Subsequently two proof

systems for finite and infinite state models are introduced. The inference rules

of both systems have been formally proved in Lego. There is an implicit premise

about monotonicity in those inference rules. We have developed a monotonicity

prover to prove the monotonicity automatically. Following //-calculus, three tem

poral logics, PLTL, CTL and CTL* are introduced and finally their embeddings

in //-calculus are discussed.

3.1 ^-calculus

Because the double negation rule in classic logic does not exist in intuitionistic

logic such as type theory, we have to adapt /i-calculus to positive version which

does not contain negation operators. Theoretically all formulae with negation

operators can be transformed to some kind of normal form with negation opera

tors only occuring before atomic formulae [Wal95], therefore positive //-calculus

should be enough to express all the temporal properties we need. We also use

Winskel's construction of tagging fixed points [Win89] to simplify the formalisa-

33

tion of inference rules.

The assertions are constructed from the following grammar:

$: := 4 | Z | $ V $ | * A $ | (K)$ | [K]$\nZ.U$ \ vZ.US

where U is called tag which is a subset of states, A ranges over atomic assertions,

Z ranges of variables used for recursion and K ranges over subsets of labels. The

tag-free fixed points and vZ.Q are special cases wi th empty tag.

Semantics

Atomic formulae, variables, conjunction A and disjunction V are interpreted in

the obvious fashion. For modal proposition (K)$ and [K]$, s satisfies (K)$ i f

i t has a transition by a label in K into a state satisfying $, while s satisfies [K]$

i f each of its successor states transited by a label in K satisfies uZ.UQ is the

greatest fixed point of Z -¥ {{^\y/Z^p U?7), while nZ.U$ is the least fixed point

oi Z ^ mV/Z]l\U).

The operational semantics of /z-calculus formulae is given via a labeled transi

tion system

(5 , L , { 4 : t € L })

which consists of a set 5 of states, a set L of transition labels, and a transition

relation -4c S x S for each t € L. We shall use the notation s -A s' for (s, s') € A

and use s A s' to abbreviate 3a € K.s A s'. The semantics of assertions

C S is given by induction on the structure of $ as follows.

\(K)*\P = {« e S\3s' e S.s 4 S ' and s' € [*]_}

34

[[*]*], =
lvZ.U$\p =

lnz.u$\p =

{s G S\W G S.s 4 s' implies s' G

{ 5 G S|3P C S.P C I $ [P / Z] | , U { / and s G P }

{s G S|VP C 5. MP/Z}]p\U C P implies s G P }

where the map p is an evaluation function which assigns to each atomic assertion

A a subset of S. In the following discussion, we shall omit p when the evaluation

function for atomic assertions is not a major concern. $[P/Z] is the substitution

of Z by P in $. Satisfaction between a state s and an assertion <£ is now defined

by: 5 | = p * i f f

Some Useful Assertions

Some other useful assertions can be abbreviated as follows.

• t t =def uZ.Z, true formula

• f f —def 11Z.Z, false formula

• able K =<&/ (AT)tt, a capability for performing the labels in K

• inable K =def [K]S, an inability to perform the labels in K

• deadlock [—]fF, cannot perform any labels

• deadlockfree =def vZ.([—]Z A (—)tt), always can perform some labels.

• only K —def (—) t tA[—K]S , only K can be performed

• [" I * =def [L]*, (- > * =de/ (L)*

• [-K]Q [L\K}$,{-K)<Z> = d e f (L\K)<b

In section 3.4 we wi l l find the other temporal logic properties can be defined in

/^-calculus as well.

35

3.2 Formalisation of ^-calculus

This section presents the fonnalisation of ^-calculus in Lego. Some syntax is

adapted to a more readable form. The whole of Lego environment is presented

in appendix C.

State, Label, Trans

The semantics of fj, is determined via a given labeled transition system as men

tioned in section 3.1. Therefore, we only declare the types of them as follows.

State : Type{0)

Label : Type(0)

Trans : Label— > State— > State— > Prop

Modality

First of all, we formalise the label sets of [] and () operators as an inductive

data type Modality. The modality type has two constructors, Modal and Neg-

modal, which correspond to the positive operator [K] and negative operator [-K],

respectively.

Induc t ive [Modal i ty :Type(0)] ElimOver Type

Constructors [M o d a l : (l i s t Labe l) ->Modal i ty]

[Negmodal : (l i s t L a b e l) - > M o d a l i t y] ;

36

In this formalisation, we use lists to represent finite sets of labels. To prevent

doing induction in proving the membership of the finite set, we define a compu

tational function Modal_check(a,M) to check whether label a is in modality M

and return a corresponding boolean value.

Goal modal_check: { 1 : LabelHM: Modal i ty}Prop;

i n t r o s _; Ref ine Moda l i ty_e l im [M:Modal i ty]Prop;

i n t r o s ; Refine i s . t r u e (member Eq_Label 1 x 2) ;

i n t r o s ; Refine i s _ f a l s e (member Eq_Label 1 x l) ;

Save;

where function member(a,K) checks whether a is a member of list K and return

a boolean value.

Therefore, we can define the transition relation MTrans(K, s, s') which rep
resents s 4 s ' a s follows.

[MTrana [K:Modality][s, s': State] = [a:Label] and (Eq (Hodal_check a X) true) (Trans a s a')]

where Trans(a, s, s') represents s A s'.

//-calculus

In our previous paper [YL97], we formalise the syntax of //-calculus by an in

ductive data type and use de Bruijn index to deal with variable binding. Since

the variables which are denoted by natural numbers wi l l change when doing vari

able substitution, i t is very complicated to do reasoning. We therefore re-define

the syntax of //-calculus by encoding the semantics in Lego's internal higher order

logic. Using the notation of set defined in previous chapter, the set of tags Tag and

the set of //-calculus formulae Form are defined as subsets of states St a te . Pred.

The //-calculus operators are defined as follows.

37

Or(A, B : Form)= Union(A, B)

And{A, B : Farm) = Meet(A, B)

Dia(K : Modality, P : Form)

= As : State3s' : State.and(MTrans(K,s,s'))s'.P

Box(K : Modality, P : Form)

«= As : Staters' : State(MTrans(K, s, s')) ->• s'.P

Tnu(T : Tag, F : Form -> Form)

= As : StateBP : Form.and{P.Subset{{FP).Union T))s.P

Tmu(T : Tag, F : Form -> Form)

= As : State.VP : For.m.{((FP).MinusT).Subset P) -» s.P

Using the above forraalisation of syntax and semantics, we have proved in Lego

the inference rules and the lemmas, nu_base, nu_unfold, mu_unfold, lemma_box

and lemma_dia as introduced in the next section. The Lego scripts are presented

in appendix B. Furthermore, it is easier to extend with more operators simply by

encoding them as Lego propositions as well.

3.3 Inference Rules

Finite-State Systems

This section presents a sound proof system for the //-calculus adapted from [BS92]

to reason about finite-state systems. The judgements take the form

s i -

which means that property $ is satisfied at state s. We have formally proved the

soundness in Lego. The rules are presented in natural deduction style as follows.

38

s e p(A) , ,
— : — — (A is an atomic assertion)

s h 4
s I- $ s h *

s I- $ A #
S h $ (a G K and s' € {s'|s A a'})

(a € K and {sx, . . . , s n} = {s'|s A s'}) s \- [K]$
self s\- Q[vZ.(Uu{s})Q/Z]

s h vZ.U$ s \- vZ.U$
seu s h $[/iZ.(u u {s})$/z]

s \f nZ.US s h iiZ.U®

For [] and () operators, to simplify the reasoning, we defined two functions

Succ and F i l t e r . Succ(s) generates a list of successor (label-state) pairs of a

state s. F i l t e r (/ f , s l i s t) filters the states with corresponding labels in the

Modality K from s l i s t . We can then prove lemma_dia and lemma.box as follows.

lemma-dia

s h (K)$
lemma-box

(s' € Filter K (Succ s))

s \- [K\$ ^ S u ' ' ' ' S n ^ = F H t e r K ^SuCC S^
Because Succ function is used to get a finite list of successor states, these two

lemmas can only be used to systems with a finite-branching structure.

We have also proved the following useful lemmas.

lemma_True

Vs.s h tt

lemmaJFalse

Vs.styff

39

Infinite State Systems

Wc have also formally proved in Lego a sound proof system for reasoning about

infinite-state systems which is adapted from [BS92] for tagged ^/-calculus. The

judgement is defined as

e 1- $ iff Vs € e.s h $

where e is a set of states and s is a state. The inference rules are as follows.

£ Q P (A) * •
;—:— A is an atomic assertion

eh A
6h $ e h *

£ h $ A *
£l h $ £ 2 h *

£ h $ V #
e ' h $

(e = ei U e2)

e h (K)${£ Q { S £ 5 | 3 S ' G £ ' 3 a € K S A S ' })

eCU er -$[i /Z . (£ /Ue)*/Z]
e H i/Z.17$ £ I- i /Z. t /*

£ C [/ e l -$ fcZ. (t /Ue)$ /Z]
e \f fiZ.U® e h nZ.U®

e' U e h $

(eg 17)

£ h $

where (e A) denotes the subset of states that can be reached through an action

in K from a state in e.

Monotonicity

The above inference rules for v and fi constructors have the implicit monotonic

ity premise that all the functors which are defined by means of the /i-calculus

40

operators are monotonic. The mono tonicity of functors for predicates over A is

defined is defined as follows:

Mono(F : A.Pred -»• A.Pred) =\/C,D: A.Pred{C C D) 4 (F(C) C F(D))

To complete the rigorous proof in Lego, we cannot simply ignore that premise.

Fortunately, the proof can be automated by proving the following rules for in

dividual constructor of //-calculus and developing an algorithm which can apply

those rules to prove the monotonicity automatically. The algorithm is presented

in Appendix B.

• MonoJriv : VF.Mono XZ.F(Z is not bound in F)

• Mono-Var : Mono XZ.Z

• Mono-Andl : VFVQ(Mono F) ->• Mono (XZ.(FZ) A Q)

• Mono.And2 : \/FVQ(Mono F) -> Mono (XZ.Q A (FZ))

• Mono-And : VFVG(M<mo F) {Mono G) -> Mono(XZ.(FZ) A (GZ))

• MonoDr : VFNG(Mono F) -> (Mono G) -> Mono(XZ.{FZ) V (GZ))

• Mono-Box : \tFVK(Mono F) -> Mono (XZ.[K](FZ))

• MonoJDia : VFVK(Mono F) Mono (AZ.(M)(FZ))

• Mono-Nu : VFVT(VX.Mono FX) -> Mono {XZ.uY.T(FYZ))

• MonoMu : VFVTfyX.Mono F X) -> Mono (AZ.AiKT(fYZ))

3.4 Embedding of Temporal Logics

The above formalisation is expressive enough for us to reason about various tem

poral properties. However, the //-calculus is not natural to capture people's un

derstanding of properties. Therefore, it is better to define other temporal logics

41

as abbreviations of /^-calculus. The Propositional Linear Temporal Logic (PLTL)

is one of linear temporal logics advocated by Manna and Pneuli [MP92]. Com

putation Tree Logic (CTL) [CE81, CES86] is a branching time temporal logic.

CTL * was proposed as an unifying framework subsuming both CTL and PLTL

[EH86]. Since CTL* subsumes PLTL and CTL, it should be enough to embed

CTL* in //-calculus.

CTL*

CTL severely restricts the type of formula that can appear after a path quantifier,

i.e. only single linear time operator, F, G, X , or U can follow a path quantifier.

By distinguishing two types of formulae: state formulae and path formulae, CTL*

permits an arbitrary formula of linear time logic to follow a path quantifier.

state-formula($) ::= A|$ A $|-i$|E*

path-formula(#) ::= $[T |# A ^ h ^ l X ^ I ^ U *

where A ranges over atomic assertions. The other operators are defined as syntax

abbreviation as follows.

A $ = ->E-i$

Note that if we define path formulae as X $ and «3>UvI> only, the set of state

formulae forms CTL. Also note that the set of path formulae yields PLTL.

Given a transition system M = (S,—•,/>) as defined above, a full path of

it is an infinite sequence s0, «i, s 2 , . . . of states such that Vi.s< -» s i + i . We use

x = (SQ, si, S2, • •.) denotes a full path, x(i) denotes S j , and that xx denotes the

suffix path (sj, S j+ i , S j + 2 , . . .) . The notation s (= $ means that state s satisfies

42

formula x (= \1> means that full path x satisfies formula \l>.

s (= A iff s e P{A)

s [= $ i A $ 2
iff s (= and s |= $ 2

5 (= -i$ iff s H=$

5 f=E# iff 3x.x(0) = s and x)= *

iff x(O) (= $

X |= * i A * 2
iff x |= and x |= * 2

x (= iff x ^ $

X (= * X U * 2 iff 3i.x' |= ^2 and V J . J < i implies x J (= *

x (=X* iff x 1 (= *

Embedding

To describe the embedding we need a weak version of diamond-operator {—)'<& =

(—)$ V [—] / / and a strong version of box-operator [—]'$ = [—]$ A (—)tt which

originate from [And93]. The embedding is presented in Table 3.1 where e.p.o.w

should be read as "exists a path on which" and o.a.p should be read as "on all

paths". For the proof of such embedding the reader is referred to [EC80, Koz83,

EL85, Dam90, Sti92].

In later discussion of this thesis, I shall use "always" to denote A G , "eventu

ally" to denote E F and "next" to denote X.

43

CTL* /i-calculus Meaning

E X $

A X $

E G $

A G S

EF<E»

A F $

E G F $

A G F $

E F G $

A F G *

<->*

vz.{-yz/\$
vZ.[-]Z/\$

nZ.[-yzv$
i / ^ K (-) r v ((-) ' ^ A $)

A G (A F $)

E F (E G $)

nX.uY.[-]Y A ([-]'X V $)

e.p.o.w $ at next state

o.a.p. $ at next state

e.p.o.w always $

o.a.p. always $

e.p.o.w. eventually $

o.a.p. eventually $

e.p.o.w. infinitely often $

o.a.p. infinitely often $

e.p.o.w eventually always $

o.a.p. eventually always $

Table 3.1: Embedding of CTL* in ̂ -calculus

44

Chapter 4

System Modeling and CCS

The usual way of modeling a system in most of model-checkers and interactive

theorem provers is to use a labeled state-transition graph (explicit or implicit).

The transition relation of a system can be defined as an inductive relation in

theorem provers. Although the mechanism to define inductive data types in

many theorem provers helps to reduce human effort significantly, it is very time-

consuming and error-prone for a large system.

Another alternative approach is to formalise the syntax and semantics of a

system description language and then use this system description language to

describe systems. It is believed that this approach is more natural and easier to

model systems and therefore gives a better user interface. Moreover, an interface

with exactly the syntax of description language and specification language will

further simplify the verification job.

We have formalised two description languages: CCS [Mil89] and an imperative

and concurrent language (ICPL). This chapter gives a general introduction about

concurrent systems and then presents CCS and our formalisation of CCS in Lego.

ICPL is presented in chapter 5.

45

4.1 Concurrent Systems

Concurrency can be represented by interleaving [MP92]. Therefore, a concurrent

system can be regarded as a system in which there are several entities (called

agents) in progress at the same time by interleaved execution sequences of the

atomic instructions of sequential agents. Concurrent systems are different from

sequential systems in at least two ways: agents compete for access to shared

resources and they exchange messages. Therefore there are two general points

of view of modeling communication in concurrent systems: shared variable model

and message passing model.

The shared variable model considers parallel agents of the form Pi\P2 \ • • - \Pn

consisting of a finite set of sequential agents Pi, P2,..., Pn running together

in parallel. There is an underlying set of variables V\,...,vm that are shared

among the processes in order to provide for inter-process communication and co

ordination. We define a simple imperative and concurrent programming language

to model shared variable systems in chapter 5.

The message passing model can be blocking or non-blocking. We consider

only blocking here. The message passing model has its own set of local variables

Vi, - • • ,Vn for each process that cannot be accessed by other processes. All inter

process communication is performed by message passing primitives. CSP [Hoa85]

and CCS [Mil89] are best examples of this model. We use CCS to model message

passing systems.

4.2 CCS: Calculus of Communicating System

In this thesis, we consider pure CCS, which does not involve value passing. The

expressions of CCS, which are called agents, are used to model systems of commu

nicating processes. A process uses actions to communicate with other processes

46

where each action is associated with a name. There is a special action r which

models idling or invisible or internal actions. Let Act be a set of actions defined

as follows.

1. r : internal or idling action

2. a : base action

3. a : complement action

where a ranges over the names of actions. The complement action has the prop

erty that U — a.

The expressions of CCS are defined as follows.

• Nil: empty agent, a process which cannot perform any actions

• X: agent variable

• a.E : prefix, a process which can only perform action a and thereafter

behave as the process described by E.

• Ei+E2 : choice, a process which behaves as either the process described by

Ei or as the process described by E2.

• Ei\E2 : parallel composition, a process which consists of two process de

scribed by Ei and E2, which can have independent behaviours or commu

nication through complement actions.

• E\K : hiding, a process behaves likes E but cannot perform any actions in

K or their complement actions.

• E[f] : renaming, a process behaves like E with its names of actions renamed

by function f

47

• rec X.E : recursion, a recursive process which behaves like the agent E with

X substituted by rec X.E

where a ranges over actions, E, Ex, E2 range over agents, K is a subset of base

actions, / is a relabeling function from Act to Act with f(a) — f(a) and f(r) = r.

The syntax can be summarized as the following grammar:

E ::= Nil \ X \ a.E \ Ex + E2 \ E\K \ E[f] \ EX\E2 \ recX.E

Formalisation

We use natural numbers to represent the base names of actions: Base = nat and

then define the types of actions as follows.

Inductive [ActB : TYPE(O)] ElimOver Type

Constructors [base : Base->ActB][comp : Base->ActB];

Inductive [Act : TYPE(O)] ElimOver Type

Constructors [tau:Act][act : ActB->Act];

The notion of complement can then be defined as a function from ActB to ActB

as follows.

Comp (base a) = comp a

Comp (comp a) = base a

We can then prove the property S = a as \/a.Comp(Comp a) = a by doing

inductive reasoning over the type ActB.

We use lists to represent sets and natural numbers to represent the process

variables: Var = nat and then define the type of processes as follows.

48

Inductive [Process : TYPE(O)] ElimOver Type

Constructors

[N i l : Process]

[dot : Act->Process->Process]

[cho : Process->Process->Process]

[par : Process->Process->Process]

[hide: Process->(list ActB)->Process]

[ren : Process->(Base->Base)->Process]

[var : Var->Process]

[rec : Process->Process];

In the above, the natural way to express rec constructor should be

[rec : (Process —¥ Process) —> Process].

However, Lego docs not allow this sort of expressions since in general they could

introduce paradox [Luo94]. Instead, we use de Bruijn's index [dB72] to deal with

variable binding. Since de Bruijn's index is complicated and difficult for general

users to use and understand, we have implemented an interface in LegoMC where

the user does not use de Bruijn's index, while the machine translates the user

notation into de Bruijn's notation. LegoMC is discussed in chapter 6.

4.3 de Bruijn's Index

Instead of using names to express variables, the method of de Bruijn's index uses

natural numbers which denote their reference depth (the number of A between

variables and their binders plus one). This representation avoids all the renaming

problems associated with actual names (a conversion). For example, the following

A term,

Xx(xXy(y x))

49

can be represented by de Bruijn's index as

A(l A(l 2)).

The distance of the first x with its binder is 1, whereas the second a; is 2 because

there is one A between the second x and its binder Xx. Although this method is

very convenient for implementation, it is easy to confuse people since the same

variables are represented by different numbers.

The substitution operation of A terms expressed in de Bruijn's indexes needs

the weakening operation. They are defined as follows.

• weaken(n, x) adds one to the variables in term x which are bigger than n.

• subst(x, n, A) replace the variables in term x which are equal to n with A.

If x has the form Xy, then A should be weaken by the depth(^l).

• depth(A) is the maximum reference depth of variables in A.

depth, weaken and subst are defined as functions which are then used for

the substitution operation in the formalisation of transitional relations of CCS

described in the next section.

4.4 Semantics of CCS

The operational semantics of CCS agents is given via a labeled transition system

(S,L,{\.teL})

which consists of a set S of states, a set L of transition labels, and a transition

relation -4c S x S for each t € L. In CCS, we shall take S to be E, the agent

expressions, and L to be Act, the actions. The transition relations are given by

the following transition rules in terms of the structure of agent expressions.

Prefix a.E-^E

50

E\ A E' E2 A E'
Oho £ t + £ 2 A E' B, + £ 2 A E>

Ei A E' E2 A E'
Par

£, |£ 2 A E'\E2 Ei\E2 A Ex\E'

Par (Com)
Ei —)• E[E2 —y E'2

Ei\E2^E\\E'2

Hide — „ —(a, a f . K)
E\KAE'\KK ' ' E\K^E'\K

E^E'
Ren

E[f) ^ E'[f]

R e c E[(Rec X.E)/X] A E'
Rec X.E A E'

Whenever E A E', we call the pair (a, E') an immediate derivative of E, a

an action of E, and E' an a-derivative of E.

Formalisation

The transition relation can be defined as an inductive relation with each of the

constructors in the definition corresponding to one or two rules as follows.

Inductive [TRANS : Act->Process->Process->Prop] Relation

Constructors

[Dot : {a:Act}{p:Process}

(+ _ *)

TRANS a (dot a p) p

]

[ChoL : {a:ActHpl,p2,p:Process}

(TRANS a p i p)->

(* *)

(TRANS a (cho p i p2) p)

51

]

[ChoR : {a:Act}{pl,p2,p:Process}

(TRANS a p2 p)->
(* *)

(TRANS a (cho p i p2) p)

]

[ParL : {a:ActMpl,p2,p:Process}

(TRANS a p i p)->
(* *)

(TRANS a (par p i p2) (par p p2))

]

[ParR : {a:Act}{pl,p2,p:Process}

(TRANS a p2 p)->
(* *)

(TRANS a (par p i p2) (par p i p))

]

[Taul : {n:BaseHpl,p2,ql ,q2: Process}

(TRANS n.base.act p i ql)->(TRANS n.comp.act p2 q2)->
(• *)

(TRANS tau (par p i p2) (par q l q2))

]

[Tau2 : {n:BaseHpl,p2,ql,q2:Process}

(TRANS n.comp.act p i ql)->(TRANS n.base.act p2 q2)->
(* *)

(TRANS tau (par p i p2) (par q l q2))

]

[Hide : {a:ActB}{p,q:ProcessHR:list ActB}

(TRANS a.act p q)->

(i s . f a l s e (orelse(member a R)(member a.comple R)))->

52

(* *)

(TRANS a.act (hide p R) (hide q R))

]

[Ren : {a : ActHp,q:Process}{f :Base->Base}

(TRANS a p q)->

(* _ *)

(TRANS (rename f a) (ren p f) (ren q f))

]

[TauH : {p,q:Process}{R:l ist ActB}

(TRANS tau p q)->
(* *)

(TRANS tau (hide p R) (hide q R))

]

[Rec : {a :Ac tHp .p ' :Process}

(TRANS a (subst p one p.rec) p ') ->
(* *)

(TRANS a p.rec p ')] ;

where Relation is one of the options of inductive data type which is used to define

inductive relation, rename (f , a) is a higher order function that will rename a by

the mapping function f . (subst p one p.rec) is p[(rec x.p)/x] represented by

de Bruijn's index, which is described in previous section. We use two rules Taul

and Tau2 to represent parallel composition Par(Com) because E\ A E[E2-^

E'2 and E2 •% E2 E\ A E[are different in syntax.

For instance, the constructor of rule Dot: a.P A P is

[Dot : {a:Act}{p:Process}
(* _ *)

TRANS a (dot a p) p

53

]

which means Va € Acfip E Process (p is an a-derivative of a.p). The constructor

of rule ChoL : is

[ChoL : {a :Ac tHp l ,p2 ,p :P rocess}

(TRANS a p i p) ->

(* *)

(TRANS a (cho p i p2) p)

]

which means Va € .Acf Vp,pl ,p2 G Process (if p is an a-derivative of p i , then p

is an a-derivative of p i + p 2) .

4.5 Lemmas and Theorems

Based on the above formalisation of CCS, we have formally proved the following

inversion lemmas which are useful to reason about the transition relation. The

inversion lemmas can be used to infer the premise from the conclusion under the

inductive relation definition. For example, for the following inference rule

A
B '

the inversion lemma could be " i f B is provable, then A should be provable".

lemma-nil Nil -fo E

lemma_nil' E E' implies E ^ Nil

lemma-dot a.E A F implies a = b and E = F

lemma_cho Pi + P2 A P implies A A P or P 2 A P

lemma_par Pi |P 2 A P implies

54

(3P'.PL A P' v P 2 4 P ')v

(if a = r then BP;, 6 . ^ 4 P | A F 2 A P£) V (P x 4 P(A P2 4 i *)

lemma_hide P\/sT 4 P ' implies 3P;.(P' = P{\K)A

(if a = actb then (6 £ tf) A (P A P/)) A (if a = r then P A Px')

lemma_rec rec X.P 4 P' implies P[rec X.P/X] 4 P '

4.6 Example: a Ticking Clock

We present an example to explain how the formalisation of CCS and tempo

ral logics presented in previous chapter are used to do verification. This is the

example of a ticking clock taken from [Sti92].

CI = tick.Cl

The only action this process wi l l perform is t i c k and i t wi l l t i c k forever. The

CCS model of the clock in our formalisation is as follows.

[t i c k = act (base z e r o)] ;

[CI = rec (t i c k . d o t o n e . v a r)] ;

Here we define t i c k as action zero and define the clock by the expression with

de Bruijn's index as rec t i c k . 1 which equals to CCS syntax rec x t i c k . x . We

first t ry a simple property: the clock is able to t i c k .

P r o o f

CI \- (tick)tt

Refine by lemma_dia rule and instantiated by CI, the goal becomes

CI h tt

CI € Filter(tick, Succ CI)

55

(4.1)

(4.2)

Sub-goal 4.1 can be proved by lemrna_True and sub-goal 4.2 can be proved by

Member_head rule.

The second property is deadlock freedom which is L>Z.([—]Z A (—)tt).

P r o o f

CI h uZ.([~]Z A (-)tt)

Refine by nu.unfold and pair rules, we get the following two sub goals

CI, h [-](vZ.{Cl}[-]Z A (-)tt) (4.3)

CI h (-)tt (4.4)

Sub-goal 4.3 can be proved lemma_box and nuJbase rules. Sub-goal 4.4 can be

refined by lemma_dia and instantiated by CI and get the following two sub-goals.

CI h tt (4.5)

CI € Filter(-, Succ CI) (4.6)

Sub-goal 4.5 can be proved by lemma_True. Sub-goal 4.6 can be proved by

MemberJiead rule.

56

Chapter 5

An Imperative and Concurrent

Programming Language (ICPL)

Using ICPL to model a system has at least four advantages.

1. I t can simplify the modeling job.

2. I t can reduce the mistakes during modeling.

3. I t is easier for programmers to use verification tools.

4. I t can be used to verify real programs.

In the following section, we describe the syntax of ICPL and its formalisation

in Lego. We then define the transitional semantics of ICPL and present its

formalisation in section 5.2. An example is given in section 5.3.

5.1 The Syntax

We consider a concurrent program as several sequential processes in progress at

the same time by interleaved execution sequences of the primitive statements.

57

There is an underlying set of global variables that are shared among the pro

cesses for inter-process communication and synchronization. Each set of global

variables ranges over a data type and has an init ial value before the program

starts to execute. Hooman and Roever have developed a real time programming

language to deal with imperative and concurrent programs [HdR90]. Their lan

guage is based on real-time variations of CSP [Hoa78]. Our language is different

from theirs. The syntax of our language can be described as follows, where M

ranges over natural numbers, V ranges over natural number variables, BE ranges

over boolean expressions and ME ranges over natural number expressions, w a i t

and signal are semaphore statements.

1. natural number expressions

j V : : = 0 | 1 | 2 |....

ME ::= M | V | ME + ME \ ME - ME \ ME x ME

2. boolean expressions

BE : := t r u e | false | BEkkBE \ BE \\ BE \ -> BE \ ME - - ME | ME < ME

3. semaphores

Sem : := V

4. primitive statements

Primitive : := V := ME \ sk ip | awai t BE \ wa i t Sem | s ignal Sem

5. processes

58

Process ::=Primitive | E m p t y | I f B£ t h en Process else Process

| W h i l e B£ do Process \ Process; Process

Program ::= Process \ Process\Program

Formalisation

Each of the expression types is defined as an inductive data type, consisting of

constants, variables and operators to construct expressions. The type of natural

number expressions may be represented as the following inductive data type.

Induc t ive [NatExp : Type(O)] ElimOver Type

Constructors

[natConst : nat->NatExp]

[natVar : Var->NatExp]

CnatAdd : NatExp->NatExp->NatExp]

[natMinus : NatExp->NatExp->NatExp]

[natTimes : NatExp->NatExp->NatExp];

where nat is the type of natural numbers, Var is a type of variables represented

by nat. We shall use the following abbreviations.

[ONE = natConst zero.sue]

[ZERO = natConst zero]

The type of boolean expressions may be represented as the following inductive

data type.

Induc t ive [BoolExp : Type(O)] ElimOver Type

Constructors

59

[boolConst : bool->BoolExp]

[boolAnd : BoolExp->BoolExp->BoolExp]

[boolOr : BoolExp->BoolExp->BoolExp]

CboolNot : BoolExp->BoolExp]

[natEq : NatExp->NatExp->BoolExp]

[natLess : NatExp->NatExp->BoolExp];

where bool is the type of boolean values (i.e. true and false).

Primitives can be defined as an inductive data type as well. The assignment

is represented by a pair of variables and natural number expressions. We only

allow assignment statements of natural number expressions at the moment. The

semaphore is represented by variable type. The formalisation is as follows.

[Assignment= Var#NatExp] ;

[Semaphore = Var] ;

Induc t ive [P r i m i t i v e : Type(O)]

Constructors

[assign : Assignment->Primit ive]

[sk ip : P r i m i t i v e]

[await : BoolExp->Pr imi t ive]

[wai t : Semaphore->Primitive]

[s i g n a l : Semaphore->Primitive];

Labeled Processes

To provide a unique and convenient identification and reference to the positions

of processes, we label processes with line numbers similar to [MP92]. Wc label

all statements except sequential composition Comp statement which does not

60

need labels obviously. A labeled program is the program of which processes are all

labeled. We use natural numbers to represent the line numbers: lno = nat. The

labeling is gone by a function and therefore users don't have to label the process

manually. The formalisation of processes and programs are as follows.

Induc t ive [Process : Type(O)] ElimOver Type

Constructors [Prim : Pr imit ive->Process]

[Empty : Process]

[I f : BoolExp->Process->Process->Process]

[While : BoolExp->Process->Process]

[Comp : Process->Process->Process];

Induc t ive [Program : Type(O)] ElimOver Type Double Theorems

Constructors [PROC : Process->Program]

[PAR : Program->Program->Program];

We shall use the following abbreviations.

(* abbrevia t ions f o r processes *)

[Assign [x :Var] [e :NatExp] = (x , e) . a s s i g n . P r i m] ;

[Skip = s k i p . P r i m] ;

[Await [b:BoolExp] = b . a w a i t . P r i m] ;

[Wait [S:Semaphore] = S . w a i t . P r i m] ;

[S igna l [S:Semaphore] = S . s i g n a l . P r i m] ;

(* abbrevia t ions f o r programs *)

[ASSIGN [x :Var] [e :NatExp] = (x,e) .assign.Prim.PROC];

[SKIP = skip.Prim.PROC];

[AWAIT [b:BoolExp] = b.await.Prim.PROC] ;

61

[WAIT [S:Semaphore] = S.wait.Prim.PROC];

[SIGNAL [S:Semaphore] = S.signal.Prim.PROC] ;

[I F [b :BoolExp][pi ,p2:Process] = (I f b p i p2).PR0C];

[WHILE [b:BoolExp][p:Process] = (While b p).PR0C];

[COMP [pi ,p2:Process] = (Comp p i p2).PROC];

[EMPTY = Empty.PROC];

A function process_label(p) is defined to get the line number of a process p

in a state. We label all the top statements first and then the statements under top

statements. For example, here is a labeled program with two labeled processes.

p i = 1: While t r u e do

2: (While s==l do

5: s k i p) ;

3: s k i p ; (* c r i t i c a l sec t ion *)

4: s := 1

p2 = 1: While t r u e do

2: (While s==0 do

5: s k i p) ;

3: s k i p ; (* c r i t i c a l sec t ion *)

4: s := 0

Therefore we can express the mutual exclusion property as "There is not a state

in which p i is at position 3 and p2 is at position 3".

A function th_process(k,P) is defined to get the kth process of a program

P.

62

5.2 Shared Memory and Transitional Semantics

Wc define a state as a pair (P,M), consisting of a labeled program P, which

represents the labeled program text to be further executed, and a memory Af.

The memory is a table containing the current values of variables denoted as a

list of (Variable, Value) pair. We shall use M(e) to denote the value of e under

evaluation in memory M and M% to denote changing the value of x to M (e)

in memory M. Therefore, we can define the operational semantics of ICPL via

a labeled transition system as follows, where the transition labels are primitive

statements or boolean expressions and e is the Empty statement and e\p = p\e = p.

M(b) = true

{ x : = e> M) 2=4 (C | M *) (s k i p j M) th% (e > M) { a w a i t { b) > M) a w ^ b) (e , M)

M{s) > 0

{wait(s), M) W^4] (e, Mt_y) {signals), M) " 9 - ^ a) (e, M * + 1)

M{b) = true M(b) — false

(if 6 then p i else p 2 , A f) -^-» (pu Af) (if b then pi else P2, Af) (p2, M)

M{b) = true M(b) = false

(while b do p, M) (p; while b do p, Af) (while b do p, M) - A (e, M)

(p 1 , M) - ^ (e , M ') (P l , M) - U (p , M ')
(P ^ e)

(p i ; p 2) M) (p 2 , M ') (p i ; p 2 , M) -U (p ;p2 ,M ')

(p 1 , M) - ^ (€ , M ') (p t.Afl-^foAp
(pilft, M) - U (p 2 , A f) (P l | p 2 , Af) - A (p|p 2, A f)

J p 2 , A /) - ^ (e , A f ') (p 2 , M) - U (p , A / ')

tpup2,M)-^(puM') (p i | P 2 , M) - U (p 1 | P , M ')

The Formalisation of Semantics

Memories can be defined as a function of type Var—• nat. However, since the

memory wc wil l consider is always a finite set, wc can use lists to represent

63

memories to simplify the memory manipulation. Also i t is easier to define the

equivalence by lists. Therefore, memories are represented as a list of pairs of

variables and values as follows.

[Memory = l i s t (Var#nat)]

The evaluation of NatExp and BoolExp in memory, M(e), are defined as func

tion natsEval:Memory —>NatExp—>-nat and boolEval:Memory—^BoolExp—»bool

respectively. Another function Change: Memory—^Var—^nat—^Memory is defined

for changing the current value of variables, A/*.

The type of states, s ta te , can be defined as a record type as follows.

Record [State : Type(O)]

F ie lds [program : Program]

[memory : Memory]

Lego wil l generate a function make_State: Program—^Memory—estate which

forms a state by taking a program and a memory. The equivalence of states then

involves program equivalence and memory equivalence.

The labels are defined as follows.

Induc t ive [Label : Type(O)]

Constructors [boo l_ l abe l : BoolExp->Label]

[p r i m . l a b e l : P r imi t i ve ->Labe l] ;

The transition relation TRANS can be defined as an inductive relation with

each of the constructors in the definition corresponding to one or two rules as

follows.

Induc t ive [TRANS : Label->State->State->Prop] Re l a t i on

64

Constructors

[ruleASSIGN :

{M: MemoryHx: V a r H e : NatExp}

TRANS (x , e) . a s s i g n . p r i m _ l a b e l

(make.State (ASSIGN x e) M)

(make.State EMPTY (Change M x (natsEval M e)))

]

[ruleSKIP :

{M:Memory}

TRANS s k i p . p r i m . l a b e l

(make_State SKIP M)

(make.State EMPTY M)

]
[r u l e l F l :

{M: Memory}{b: BoolExpHpl ,p2: Process}

(Eq (boolEval M b) t r u e) ->

TRANS b .boo l_ l abe l

(make_State (IF b p i p2) M)

(make.State pi.PROC M)

]
[r u l e I F 2 :

{M:MemoryHb:BoolExp}{pl,p2:Process}

(Eq (boolEval M b) f a l s e) ->

TRANS b . b o o l . l a b e l

(make.State (IF b p i p2) M)

(make_State p2.PR0C M)

65

CruleWHILEl :

{M: MemoryMb: BoolExpHp: Process}

(Eq (boolEval M b) t r ue) ->

TRANS b . b o o l . l a b e l

(make.State (WHILE b p) M)

(make_State (COMP p (While b p)) M)

]
[ruleWHILE2 :

{M: MemoryMb: BoolExpHp: Process}

(Eq (boolEval M b) f a l s e) ->

TRANS b . b o o l . l a b e l

(make_State (WHILE b p) M)

(make_State EMPTY M)

]
[ruleAWAIT :

{M: MemoryMb: BoolExp}

(Eq (boolEval M b) t r u e) ->

TRANS b . a w a i t . p r i m _ l a b e l

(make.State (AWAIT b) M)

(make.State EMPTY M)

]
[ruleCOMPl :

{M,M' :MemoryHpl ,p2 :Process}{L:Label}

(TRANS L

(make.State pi.PROC M)

(make_State EMPTY M ')) ->

66

TRANS L

(make_State (COMP p i p2) M)

(make.State p2.PR0C M')

]
[ruleC0MP2 :

{ M . M ' : Memory H p , p i ,p2:ProcessHL: Label}

(TRANS L

(make.State pl.PROC M)

(make.State p.PROC M ')) ->

TRANS L

(make.State (COMP p i p2) M)

(make.State (COMP p p2) M')

]
CruleWAIT :

{M:MemoryHS:Semaphore}

(L t zero (natsEval M S.natVar)) ->

TRANS S .wa i t . p r im_ labe l

(make.State (WAIT S) M)

(make.State EMPTY (Change M S (natsEval M S.na tVar) .pred))

]
[ruleSIGNAL :

•CM: MemoryMS: Semaphore}
(it***)

TRANS S . s i g n a l . p r i m . l a b e l

(make.State (SIGNAL S) M)

(make.State EMPTY (Change M S (natsEval M S.natVar) .sue))

67

]
[ru lePARl l :

{M,M':MemoryMP,PI,P2:ProgramML:Label}

(TRANS L

(make.State PI M)

(make.State EMPTY MO) ->

TRANS L

(make_State (PAR PI P2) M)

(make_State P2 M')

]
[rulePARl :

{ M , M ' : Memory}{P,PI, P2: ProgramML: Label}

(TRANS L

(make_State PI M)

(make.State P M ')) ->

TRANS L

(make_State (PAR PI P2) M)

(make_State (PAR P P2) M')

]
[rulePAR21 :

{M, M ' : MemoryMP, P1, P2: ProgramRL: Labe 1}

(TRANS L

(make.State P2 M)

(make_State EMPTY M ')) ->

TRANS L

(make.State (PAR PI P2) M)

68

(make.State PI M')

]
[rulePAR2 :

{M, M ' : Memory H P , P I , P2: ProgramHL: Label}

(TRANS L

(make.State P2 M)

(make_State P M ')) ->

(********^*********************************)

TRANS L

(make_State (PAR PI P2) M)

(make_State (PAR PI P) M')

] ;

For instance, the constructor of rule Assign : (x := e, M) x^e (e, M f) is

[ruleASSIGN :

{M:MemoryHx:VarHe:NatExp}

TRANS (x , e) . a s s i g n . p r i m _ l a b e l

(make.State (ASSIGN x e) M)

(make_State EMPTY (Change M x (natsEval M e)))

]

The constructor of rule IF1 : —— MW=l™ i s

(if 6 then pi else P2,M)MPI>M)

[r u l e l F l :

{M:MemoryHb:BoolExp}{pl,p2:Process}

(Eq (boolEval M b) t r ue) ->

TRANS b . b o o l . l a b e l

(make_State (IF b p i p2) M)

69

(make_State pl.PROC M)

]

Atomic formulae

To reason about properties related to the position of programs and data-dependent

properties, wc introduce the atomic formulae and then give the following as se

mantics.

At(pno,lno) = A s:State.

Eq processJabel(th_process(pno, s.program)) lno

NotAt(pno,lno) = A s:State.

not (Eq processJabel (th_process(pno, s.program)) lno)

Bool(b) = A s:State. Eq (boolEval(s.memory, b)) true

where pno is the process number and Ino is the line number and s is the state

which is a pair of memory and program. At(2, 3) means "process 2 at line 3" and

NotAt(l, 4) means "process 1 not at line 4". Bool is used to specify the boolean

properties such as "a > 3".

5.3 Example - A Mutual Exclusion Algorithm

One of important properties of concurrent programs is mutual exclusion of

critical sections. Typical critical sections involve access to non-sharable resources

such as printers; only one process is allowed to access at every single moment.

Since there are many processes executing at the same time in a concurrent system

which compete for resources, it is essential to have a certain strategy to control

the access of critical sections for processes. To ensure the correctness of those

70

p l = p2=

1: while true do 1: while true do

2: await turn = = 0; 2: await turn — — 1;

3: critical section; 3: critical section;

4: turn :— 1 4: turn := 0

5: done;; 5: done;;

Figure 5.1: A solution for the mutual exclusion problem

strategies, it is important to have those strategies formally verified. Mutual

exclusion states that at most one process is allowed to be in its critical section

at any time, that is, for all reachable states only one process is in the critical

section.

The above algorithm is a simple solution for mutual exclusion of a two-process

system [Ray86]. There is a variable turn to control the access of the critical

section. The statements in the above algorithm have their usual meanings except

await which means "wait at that position until the boolean expression becomes

true". The mutual exclusion property for this algorithm would be

"In every reachable state, it is not true that pi is at position 3 and

p2 is at position 3."

Using the syntax presented in this section, the algorithm can then be described

as follows.

[turn = one]; [turn' = natVar turn] ;

[pi = While TRUE

(((Await (boolEq turn' ZER0)).Comp

Skip).Comp

(Assign turn ONE))];

71

[p2 = While TRUE

(((Await (boolEq turn' 0NE)).Comp

Skip).Comp

(Assign turn ZERO))];

[Pro = (Proc p i) . P a r (Proc p2)] ;

[i n i t = (one,one).singleton:Memory];

The program of 2-process is Pro = [pl,p2]. The initial value of variable turn

is 1, init — [(turn, 1)]. The mutual exclusion property is me = AG(NotAt(l, 3) V

NotAt(2,3)).

Proof

{init, Pro) h vZ.\-\Z A (NotAt(l, 3) V NotAt(2,3))

The proof is represented as the following proof tree with P^ represents process

Pi at line j and me represents (NotAt{l, 3) V NotAt(2,3)).

(init, Pro) h vZ.\—\Z A me

(init, Pro) h Pro)}[-]Z A me) A me

(init, Pro) h [—](i/Z.{(im^, P r o) } [-] Z A me) (zmi, Pro) h me

(1) (2)

(1)

(ira*,P 1 2 |P 2 i) t" K .{(ini i ,Pn))}[-]2Affle)
(tmf,P 1 2 |P 2 i) h \-\(vZ.{(init, Pro), (init,Pn P 2 i) } [-]Z A m e) A m e

(tnrt, P12IP21) I- {-}(vZ.{(init, Pro), (init, Pg\Pn)}[-\Z A roe) (i'ra^P^IPn) h me

(3) (4)

The node (init, Pro) h me is true because process 1 is at line 1 and process 2

is at line 2 in program Pro. The node (init, P12IP21) \~ me is true as well.

72

Most of the proof tree is similar to the above and therefore we can simply

denote them as the following traveling tree with (i, j, k) representing the value of

turn is i, process one is at j and process two is at k.

(1,1,1) -> (1,1,2) -)• (1,1,3) -> (1,1,4) -> (0,1,1) -> (0,1, 2)

(1,2,1) -> (1,2,2) -+ (1,2,3) -> (1,2,4) -> (0,2,1) -+ (0,2,2)

I 4-
(0 ,3 ,1)-* (0,3,2)

I 4
(0,4,1) -> (0,4,2)

I I
(1,1,1)(1,1,2)

The leaves in the proof tree are (1,1,1), (1,1,2) and nodes of me assertions.

Nodes (1,1,1) and (1,1,2) have appeared before in the proof tree. Therefore, the

states should be in the tag of assertions. We can then use nu.base rule to prove

them. We can find (0,3,3) and (1,3,3) do not appear in the tree and therefore

all the me assertion nodes are true.

73

Part I I I

LegoMC

74

Chapter 6

The Model-Checker, LegoMC

We can verify finite and infinite problems using the formalisation in Part II al

ready. However, there are so many tedious and trivial proof steps; we expect to

use model-checking to develop parts of the proofs automatically. We have im

plemented a model-checker called LegoMC in ML language. A domain specific

interface is created so that the user can define their model and specification in

the syntax that they are familiar with and then use simple commands to verify

properties and generate proof terms. After a brief introduction to model-checking

in the next section, the structure of LegoMC is described in the subsequent sec

tion. The implementation is then discussed in section 6.3. Section 6.4 presents

the user interface of LegoMC. Two examples for CCS and I C P L respectively are

then used to demonstrate the verification process of LegoMC.

6.1 Model-Checking

Over the last decade model-checking has emerged as a powerful technique for

automatically verifying concurrent systems [CES86, VW86, Cle90, And92]. The

basic idea is to determine whether or not a system satisfies a property typically

75

expressed as a temporal logic formula by searching the state space of the system

thoroughly. When systems have finite-state space, model-checking algorithms can

be used to verify the system completely automatically.

Two major categories of model-checking algorithms have been developed:

global and local model-checking. Global model-checking requires the a priori

construction of the entire state space of the system being analyzed and then a

subsequent pass over the state space determines the truth or falsity of the for

mula. Although exhibiting good worst-case behavior, in practice the overhead

of computing the whole state space is unnecessary, as the answer can often be

deduced from a small part of it. Local model-checking remedies this shortcoming

by exploring the state space in demand-driven fashion but has poor worst-case

behavior compared with global model-checking. We use local model-checking

because it is easier to be formalised in theorem proving settings.

In contrast to model-checking, interactive theorem proving gives a general

approach to modeling and verification of both hardware and software systems but

requires significant human efforts to deal with many tedious proofs. Even a simple

model like the 2-process mutual exclusion problem can be fairly complicated to

verify. If we can adapt model-checking techniques into theorem proving settings,

wc should be able to simplify the verification dramatically.

The idea is to adapt a model-checking algorithm to generate proof terms for

finite-state system verification. This model-checker should be able to verify finite-

state systems completely automatically. We can also use Lego to decompose a

large system (could be infinite) to several smaller sub-systems. Among those

smaller sub-systems, the model-checker can be used to generate proof terms for

them if they have finite-state spaces. The proof terms from each part of sub

systems can then be integrated to complete the whole proof. LegoMC is imple

mented in functional language ML with two versions, one for C C S and another

one for the imperative and concurrent programming language (I C P L) . The overall

76

system structure of LegoMC is described in the next section.

6.2 System Structure and Inference Rules

LegoMC is an independent program with the user interface in the syntax of

CCS or the imperative language and propositional /^-calculus. The system can

be modeled using CCS or the imperative language and the properties can be

expressed using /x-calculus. LegoMC will compute answers of whether a system

satisfies certain properties and return proof terms in the syntax of Lego if the

system does satisfy the properties. The proof terms can then be integrated with

other proof terms to complete a larger proof. Other temporal logics such as L T L

and C T L are defined as the abbreviations of ft-calculus. The system structure is

shown in Fig. 6.1.

Given as input the definition of a finite model and a specification (formula)

in the syntax described in section 6.4, LegoMC will produce the proof term in

Lego syntax which could be put into Lego to complete a larger proof if the model

satisfies the specification. If the model does not satisfy the specification, LegoMC

simply produces an error message. If an infinite model is given, LegoMC will run

forever. We leave the decision whether or not to interupt the execution of LegoMC

to users because it is difficult to judge if a model has a large state space or infinite

state space.

At the moment, the connection between Lego and LegoMC is through "copy

& paste". During the Lego proof session, the proof terms generated from LegoMC

are copied and pasted into Lego.

77

users! | Lego

t
Lego syntax

Model: CCS, I C P L

LegoMC J users
Lego proof terms / \

domain-specific
syntax

Logics-calculus

Figure 6.1: The system structure of LegoMC

Inference Rules

One difficulty for adapting model-checking algorithms into type theory based

theorem proving settings is that almost all the model-checking techniques are

based on classic logic and therefore we have to change the inference rules and

algorithms to positive forms (without negation operators). The model-checking

algorithm is based on several inference rules for finite-state systems which are

formally proved in Lego as section 3.3.

Proof Terms

The rules for generating proof terms, which use the above inference rules, are

described as follows, where p : P(s) means p is a proof term of predicate P on

state s and
P : P(a)
q : Q(s)

78

means if p is a proof term of P(s) then q is a proof term of Q(s).

O R

P-P q-Q
inl p : P V Q inr q : P V Q

A N D

p : P g : Q
pair p q : P AQ

B O X

Pi :$(.<?!), . . . , p n : $ (s n)
: - A\si> • • • J snt = Filter K (Succ s))

lemma-box prove_stateJist: [K] $ (s) v l 5 v "

where prove_state_list=[s':State]mem_ind p\... memind pn(not_mem_nil s

D I A

p' : P(s') •(s' e Filter K (Succ s))
lemma_dia (pair prove_member p') : (K)P(s)

where prove_member= (Member.tail . . . Member.tail Member Jiead)

N U

nu_base : vZ.U$(s) nu.unfold p : i/Z.U$(s)

79

M U

p:*\jiZ.UU{8}*/Z]{8)
mu.unfold p : fj,Z.U^(s) { * '

In the above rules, inr and inl are the or-introduction proof operators, pair is

for and-introduction, Exlntro for exists-introduction, memJnd for the member

ship induction rule and not.memjnil for the rule that no element is the member

of an empty set, Member .tail for the rule that an element is a member of the

tail of a list, Member .head for the rule that an element is the head of a list.

Atomic formulae

Besides the above regular /u-calculus properties, there are also properties which

are specific to the description languages such as At in I C P L for describing the

location counters of processes. The proof terms for those properties vary for

different properties and different description languages. One way of simplifying

proof term generation for atomic formulae is using computational functions.

For example, At property is defined as

At(pno, Ino) = As : State.Eq (processlabel (th-process pno s.program)) Ino

where pno is process number, Ino is line number and processdabel and thjprocess

are computational functions, (processJabel (thjprocess pno s.program)) will

compute to a natural number, the same type as Ino. Therefore the proof term

is simply "Eqjrefl /no". This example also demonstrates how computational

functions can simplify an external program as described in chapter 9.

80

6.3 The Implementation

Wc have implemented LcgoMC as a separate program in ML. The entities of

CCS, I C P L and /^-calculus are defined as inductive data types which are similar

to the formalisation of Lego presented in part II . It is obviously very inconvenient

and error prone for users to use de Bruijn's indexes. Therefore, an interface with

CCS syntax is defined and translation mechanism is implemented to translate

terms in C C S syntax into the internal terms with de Bruijn's indexes.

Proof Term Generation

The proof term generation of LegoMC uses "Separating search from justification"

technique [Bou93]. The basic idea is dividing proof construction into two passes,

one for proof search and another one for proof term generation. The motivation

for this technique is to avoid constructing proof terms for unsuccessful branches

of a search. The first pass is implemented as a function Check which only returns

a boolean value "true" or "false". The second pass is another function Prove

which then performs the task of proof term generation. O R and A N D operators

are quite straightforward. The other operators are described as follows. Note:

the exact syntax of the proof term has been changed to make them more under

standable.

D I A

Assume we want to find a proof term p of (K)P(s). We check individual state

in F i l t e r K (Succ s) until we find a state s' with the proof term p' of P(s').

If we can find s', then p is "lemma_dia (pair (Member.tail... Member_tail Mem

ber .head) p'".

B O X

81

Assume we want to find a proof term p of [K]P(s). We check all the states in

F i l t e r K (Succ s) . If all the states s \ , s n with the corresponding proof term

P i , . . . ,p„ of P(si), • • •, P{s„) then pis "lcmma.box [s'rStatcjmcmJndpx... memJnd

pn(not_mem_nil s')".

N U

Assume we want to find a proof term p of vZ.U$(s), we check whether s 6 U

first. If s G U, the proof term p is "nu.base". If s & U, we try to find the proof

term p' of $[i/Z.U U { s }$ /Z(s)] . If we can find p', then p is "nu_unfold p"\

M U

Assume we want to find a proof term p of p,Z.U$(s), we check whether s e U

first. If s € U, the proof fails and we return "false". If s £ U, we try to find the

proof term p' of $[p,Z.U U { s }$ /Z(s)] . If we can find p', then p is "mu.unfold

p"\

Atomic Formulae

As the statement in Section 6.2, atomic formulae are used to specifiy the specific

properties of description languages. Therefore the proof term generation depends

on the specification languages.

6.4 User Interface

This section presents the syntax of user interface for users to model their systems

in C C S or I C P L and define the temporal properties they want to verify.

82

6.4.1 CCS

LcgoMC uses the following syntactic couventions for CCS agents.

• Identifiers: consist of sequences of printable characters, where the first char

acter must be a letter. There are some characters which cannot be used as

part of an identifier. These are: . , = () [] { } \ / + l ' and space, tab, carriage

return.

• Actions: consist of sequences of printable characters (excluding those ex

cluded for identifiers above), The internal or idling action r is represented

as Tau. The complement actions, which are indicated by an overbar (e.g.

a), are formed by single quotation mark postfixing, (e.g. a') .

The CCS agent constructors are as follows.

1. Nil: The constant Ni l is the CCS agent Ni l .

2. Action prefixing: If a is an action and P is an agent, then a.P is an agent.

3. Summation: If P I ,Pn are agents, then P1+.. .+Pn is an agent.

4. Parallel composition: If P I , . . . ,Pn are agents, then PI I . . . I Pn is an agent.

5. Restriction: If P is an agent, a l , . . . , an are actions except r , then P \ { a l , . . . ,

is an agent.

6. Relabelling: If P is an agent, and a l , a n . b l , . . . , b n are actions, then

P [a l / b l , . . . ,an/bn] is an agent.

7. Recursion: If x is an identifier, P(x) is an agent with x as free variables,

then Rec x P(x) is an agent.

Here is an agent example of three cell buffer in the syntax of LegoMC.

83

c e l l = Rec x a .b ' .x ; ;

cO = c e l l [c / b] ; ;

c l = c e l l [c / a , d / b] ; ;

c2 = c e l l [d / a] ;;

buffer3 = (CO I C l I C 2) \ { c , d } ; ;

6.4.2 I C P L
LegoMC uses the following syntactic conventions for I C P L programs.

• Identifiers: consist of sequences of printable characters, where the first char

acter must be a letter. There are some characters which cannot be used as

part of an identifier. These are: . , = () [] { }+ -* I \ and space, tab, carriage

return.

The I C P L natural number expressions are as follows.

1. Constants: general natural numbers such as 0 , 1 , 2 , 3 ,

2. Variables: unused identifiers.

3. Plus: If a and b are natural number expressions, then a+b is a natural

number expression.

4. Minus: If a and b are natural number expressions, then a-b is a natural

number expression.

5. Times: If a and b are natural number expressions, then a*b is a natural

number expression.

The I C P L boolean expressions are as follows.

84

1. Constants: true , fa lse .

2. Negation: If a is a boolean expressions, then - a is a boolean expression.

3. Conjunction: If a and b are boolean expressions, then a&ftb is a boolean

expression.

4. Disjunction: If a and b are boolean expressions, then a I I b is a boolean

expression.

5. Natural number Equality: If a and b are natural number expressions, then

a==b is a boolean expression.

6. Natural number Less: If a and b are natural number expressions, then a<b

is a boolean expression.

The I C P L primitive statements are as follows. Variable declaration is imple

mented implicitly by LegoMC and therefore users do not need to declare variables.

1. Skip: skip is a primitive statement.

2. Assignment: if a is an identifier and b is a natural number expression, then

a:=b is a primitive statement.

3. Boolean Await: if a is a boolean expression, then await a is a primitive

statement.

4. Semaphore Wait: if a is a identifier, then wait a is a primitive statement.

5. Semaphore Signal: if a is an identifier, then s ignal a is a primitive state

ment.

The I C P L sequential process and program constructors are as follows.

1. Empty process: The constant Empty is the empty process e.

85

2. Primitive statement: I f a is a primitive statement, then a is a process.

3. I f statement: I f a is a boolean expression, PI and P2 are processes, then i f

a then PI else P2 endi f is a process.

4. While statement: I f a is a boolean expression, P is a process, then whi le a

do P done is a process.

5. Sequential composition: I f PI and P2 are processes, then PI ;P2 is a process.

6. Single process program: I f P is a process, then P is a program.

7. Parallel composition: I f PI is a process and P2 is a program, then PI |P2 is

a program.

The memory and states are constructed as follows.

• Memory: I f VI . . .Vn are program variables and Nl . . .Nn are natural

numbers, then { (V 1 , N 1) , . . . , (Vn.Nn)} is the memory.

• State: I f M is memory and P is a program, then (M,P) is a state.

Here is an example program.

(* semaphore based on busy-wait *)

p = whi le t r u e do

wai t s;

s k i p ;

s i g n a l s

done;;

pro = p i p ; ;

i n i t = { (s , l) } ; ;

i n i t l = { (s , 0) } ; ;

86

6.4.3 Temporal Logics

LcgoMC uses the following syntactic conventions for temporal logic formulae.

1. Identifiers: consist of sequences of printable characters, where the first char

acter must be a letter. There are some characters which cannot be used as

part of an identifier. These are: . , = () [] { } + - * I \ / ' and space, tab, carriage

return.

2. Or: I f P and Q arc formulae, so is P\/Q.

3. And: I f P and Q are formulae, so is P/\Q.

4. Dia: I f P is a formula and a . a l , a 2 , . . . , a n are actions, then <a>P, <->P

and <al , a 2 , . . . ,an>P are formulae.

5. Box: I f P is a formula and a , a l , a 2 , . . . ,an are actions, then [a]P, [-]P

and [a l , a2 , . . . , an] P are formulae.

6. Nu: I f P is a formula and Z is an unused identifier, then nu Z P is a formula.

7. Mu: I f P is a formula and Z is an unused identifier, then mu Z P is a formula.

8. True: t t is a formula.

9. False: f f is a formula.

10. Free from deadlock: deadlockf ree is a formula.

11. Always: I f P is a formula, so is AG P.

12. Eventually: I f P is a formula, so is EF P.

13. Able: I f a, a l , a 2 , . . . , an are actions, then able [a] and able [a l , a 2 , . . . , an]

are formulae.

87

14. Inable: I f a , a l , a 2 , . . . ,an are actions, then i n a b l e [a] and inab le [a l , a 2 , . . . ,an]

are formulae.

The following two syntax of formula is for ICPL only.

1. At : a t (pno , lno) is a formula where pno and lno are natural numbers.

2. Not At : no ta t (pno , lno) is a formula where pno and lno are natural num

bers.

6.4.4 Commands, Comments and Abbreviations

At present, only two commands are defined as follows.

1. Check: I f s is a state and P is a formula, then Check s P wi l l give an

answer of "true" or "false".

2. Prove: I f s is a state and P is a formula, then Prove s P wi l l return a

proof term i f Check s p returns "true".

Comments can be made by (* . . . *)

The Identifiers can also be used to abbreviate a process or formula. I f A is an

identifier, P is a process or formula, then A can be an abbreviation of P defined

as:

Abbreviation: A = P.

The end of a command and abbreviation is represented by double semi-colon:

1 1 •

88

6.5 Examples

This section presents two simple verification examples of using LcgoMC. More

complicated case studies and the integration with other methods to verify infinite

state cases are presented in the next two chapters.

The first example is a ticking clock modeled in CCS. The second example is a

solution for 2-process mutual exclusion problem by using semaphores. Beside the

automation, the user interfaces wi th domain-specific syntax make the verification

easier and more readable.

Example 1: Ticking Clock Modeled in CCS

This example is taking from [Sti92]. There are three versions of ticking clocks.

The first one Cll shows a clock can only tick and tick forever. The second clock

C12 can tick and also tock alternately. The third one C13 can tick but can go dead

as well. We can verify those properties and generate the proof terms completely

automatically in LegoMC.

Below is a sample input and output of LegoMC. We use Check to check the

property first and then use Prove to generate proof terms.

c l l = Rec x t i c k . x ; ;

Check c l l dead lockf ree ; ; (* f r e e f rom deadlock => t r u e *)

Check c l l (< t i c k > t t) ; ; (* able t o t i c k => t r u e *)

Check c l l (EF [t i c k] f f) ; ; (* even tua l ly inable t o t i c k => f a l s e *)

(* pe rpe tua l l y t i c k s and can do no th ing else => t rue*)

Check c l l (AG (< - > t t / \ [- (t i c k)] f f)) ; ;

Prove c l l dead lockf ree ; ;

89

Refine (Nu.unfo ld ? [V I .-Form] ((Dia(Negmodal A c t . n i l) t t) . A n d F (Box(Negmodal

A c t . n i l) V I))) (p a i r (lemma.dia (Negmodal A c t . n i l) ((a c t O . d o t one .va r) . r ec)

((ac tO.dot o n e . v a r) . r e c) (p a i r (Member_headI?I?I?)(lemma.True ?)))(lemma_boxI

(Negmodal A c t . n i l) | ? | ((a c t O . d o t one .va r) . r ec) ([s ' :S ta t e] ([h :Member s '

(cons (((ac tO.do t o n e . v a r) . r e c)) (S t a t e . n i l))] M e m _ i n d l h ([h : Member s'

(n i l S ta t e)] not_Member_nil h ((Nu [VI :Fo rm] ((Dia (Negmodal A c t . n i l) t t) . A n d F

(Box (Negmodal A c t . n i l) V I))) s ')) ([h : E q ((ac tO.dot one .va r) . r ec) s ']Eq_subst

h ([2:State] (Nu [VI :Form] ((Dia (Negmodal A c t . n i l) t t) . A n d F (Box (Negmodal

A c t . n i l) V I))) z) (Nu_base ([V I : F o r m] ((D i a (Negmodal A c t . n i l) t t) . A n d F

(Box (Negmodal A c t . n i l) V I))))))))) ; - : u n i t = ()

Prove e l l (< t i c k > t t) ; ;

Refine (lemma.dia (Modal (cons actO A c t . n i l)) ((a c t O . d o t one .va r) . r ec)

((ac tO.dot o n e . v a r) . r e c) (p a i r (Member_headI?I?I?)(lemma_True ?))) ; -

: u n i t = ()

Prove e l l (AG (< - > t t / \ [- (t i c k)] f f)) ; ;

Refine (Nu_unfold ? [V I : F o r m] (((D i a (Negmodal A c t . n i l) t t) . A n d F (Box

(Negmodal (cons actO A c t . n i l)) f f)) . A n d F (Box (Negmodal A c t . n i l) V I))) (p a i r

(p a i r (lemma.dia (Negmodal A c t . n i l) ((a c t O . d o t o n e . v a r) . r e c) ((a c t O . d o t one.var]

(p a i r (Member.headI?I?I?)(lemma.True ?)))(lemma.boxI(Negmodal (cons actO

A c t . n i l)) | ? | ((a c t O . d o t one .va r) . r ec) ([s ' : S t a t e] ([h : Member s' (n i l S t a t e)]

not_Member_nil h (f f s ')))))(lemma_box|(Negmodal A c t . n i l) | ? | ((a c t O . d o t

one .va r) . r ec) ([s ' :S ta te] ([h :Member s ' (cons (((ac tO .do t o n e . v a r) . r e c))

(S t a t e . n i l))] M e m _ i n d l h ([h : Member s ' (n i l S t a t e)] not .Member_nil h ((Nu

[V I : F o r m] (((D i a (Negmodal A c t . n i l) t t) . A n d F (Box (Negmodal (cons actO A c t . n i l)

f f)) . A n d F (Box (Negmodal A c t . n i l) V I))) s ')) ([h : E q ((ac tO.dot one .va r) . r ec)

s ']Eq_subst h ([2:State] (Nu [V I : F o r m] (((D i a (Negmodal A c t . n i l) t t) . A n d F

(Box (Negmodal (cons actO A c t . n i l)) f f)) . A n d F (Box (Negmodal A c t . n i l) V I)))

90

z) (Nu.base ([V I : F o r m] (((D i a (Negmodal A c t . n i l) t t) . A n d F (Box (Negmodal

(cons actO A c t . n i l)) f f)) . A n d F (Box (Negmodal A c t . n i l) V I))))))))) ; -

: u n i t = ()

c l 2 = Rec x t i c k . t o c k . x ; ;

(* even tua l ly inable to tock *)

Check c l 2 (EF [t o c k] f f) ; ;

Prove c l 2 (EF [t o c k] f f) ; ;

Ref ine (Mu.unfold ? [VI:Form]((Box (Modal (cons a c t l A c t . n i l)) f f) . 0 r F

((Box (Negmodal A c t . n i l) VI) .AndF (Dia (Negmodal A c t . n i l) t t)))) (i n l

(lemma_box|(Modal (cons a c t l A c t . n i l)) | ? | ((a c t O . d o t (a c t l . d o t one .va r)) . r e c)

([s ' : S t a t e] ([h : Member s' (n i l S t a t e)] not_Member_nil h (f f s ')))))) ; - : u n i t

c l 3 = Rec x t i c k . x + t i c k . N i l ; ;

(* I t i s poss ib le t ha t the c lock t i c k f o r e v e r . *)

Check c l 3 (nu Z (< t i c k > Z)) ; ;

Prove c l 3 (nu Z (< t i c k > Z)) ; ;

Ref ine (Nu_unfold ? [VI :Form](Dia (Modal (cons actO A c t . n i l)) V l)) (l e m m a _ d i a

(Modal (cons actO A c t . n i l)) (((a c t O . d o t one.var) .cho (actO.dot N i l)) . r e c)

(((ac tO .do t one.var) .cho (actO.dot N i l)) . r e c) (p a i r (Member_head|?|?|?)(Nu_base

([V I : F o r m] (D i a (Modal (cons actO A c t . n i l)) V I))))) ; - : u n i t = ()

91

Example 2: Semaphore Solution for 2-process Mutual Ex

clusion Problem

Even this is a simple example, the presentation and indeed the verification process

of a similar algorithm in chapter 5 are very complicated. Here we can easily check

many properties and generate proof terms by LegoMC.

(* semaphore based on busy-wait *)

p = whi le t r u e do

wa i t s;

s k i p ; (* c r i t i c a l sec t ion *)

s i g n a l s

done;;

pro = p i p ; ;

i n i t = { (s , l) } ; ; (* i n i t i a l memory *)

(* mutual exc lus ion p roper ty , c r i t i c a l s ec t ion i s a t p o s i t i o n 3 *)

me = AG (n o t a t (l , 3) \ / n o t a t (2 , 3)) ; ;

(* another represen ta t ion of mutual exc lus ion p roper ty *)

a l t e r = AG([skip] nu Z ([s k i p] f f / \ [- (s i g n a l s)] Z)) ; ;

Check (i n i t , p r o) me;; (* t r u e *)

Check (i n i t , p r o) a l t e r ; ; (* t r u e *)

Check (i n i t , p r o) dead lockf ree ; ; (* t r u e *)

(* whenever process one wants t o enter i t s c r i t i c a l s e c t i o n ,

i t can even tua l ly do *)

Check (i n i t , p r o) AG (n o t a t (l , 2) \ / (E F a t (l , 3))) ; ; (* t r u e *)

Prove (i n i t , p r o) me;;

92

Prove (i n i t . p r o) a l t e r ; ;

Prove (i n i t . p r o) dead lockf ree ; ;

Prove (i n i t . p r o) AG (n o t a t (1 . 2) \ / (E F a t (l , 3))) ; ;

93

Chapter 7

Finite-State Examples

This chapter demonstrates how to use LegoMC to verify finite state systems.

Since model checking can be used to verify finite-state systems completely auto

matically, the examples in this chapter are verified automatically by LegoMC.

A system analysis process includes the following steps.

1. System Modeling.

2. System Specification.

3. Verification and Analysis

4. System Improvement

5. Re-Analysis

In LegoMC, ICPL and CCS are used to model systems and temporal logics are

used to specify system properties. The automation in LegoMC makes verification

only by a command Check. System improvement and re-analysis are easy as

well by simply modifying the model and executing Check again. Once users are

satisfied wi th the result, they can then use command Prove to generate the proof

94

terms for the final model to be type checked by Lego to further ensure their

confidence in the verification result. Therefore, LegoMC has the advantage of

early debugging and also final rigorous proofs. Wc shall show how LegoMC is

used to verify systems through several examples.

The first example is a simple communicating protocol. We model i t in both

CCS and ICPL and then use LegoMC to verify the desired properties. This

example shows the comparison of verification on CCS and ICPL and demonstrates

the process of improving a system design by our tool. The second example is

a class of mutual exclusion algorithms. Since we use ICPL as the description

language and use LegoMC to do verification automatically, we can easily formally

verify all of those mutual exclusion algorithms. This example shows how easily

to use LegoMC to analyse and compare a group of similar algorithms.

7.1 A Simple Communicating Protocol

This example, which is taken from [Wal87], is an extremely simple communica

tion protocol wi th sender entity Sender and receiver entity Receiver, intercon

nected wi th a medium. I t takes into account the possibility that a message may

be lost during transmission. Sender transmits the message through Medium

to Receiver. On receiving a message, Receiver wi l l send an acknowledgement

through Medium to Sender. After receiving such an acknowledgement, Sender

may send another message. The Medium is not a reliable medium which may

lose the message.

This example was used by Walker to explain its divergent behaviour. In our

analysis, we divide this into 3 phases and explain the improvement process of this

protocol design. First, we assume the medium is a reliable medium which wi l l

not lose messages. Then, we release the assumption and analyse this protocol

wi th losing medium. Finally, we add a timer to enable the sender to re-send the

95

message once the message is lost. We assume the acknowledge channel is safe

and omit the data flow in this analysis.

We use both ICPL and CCS to model this protocol and compare them.

7.1.1 Modeling in I C P L

System Modeling

The system can be modeled in ICPL as Fig. 7.1. We use a semaphore vari

able msg to model the transport medium and a shared variable ack, which has

two states, empty and ok, to model the acknowledge channel. The difference

of semaphore variables and shared variables is that semaphore variables execute

variable access and variable updating in a single primitive statement whereas

shared variables execute them by two separated primitive statements. I f variable

access and variable updating are executed in two separated primitive statements,

other processes may access the variable. We don't need to declare msg, ack and

time explicitly because the program can identify variables implicitly.

System Specification

There are three important properties about this protocol that we want to prove

as follows.

Property 1

This protocol is free from deadlock.

deadlock free

96

(* msg : Sem => message channel i s a semaphore *)
(* ack : Var => acknowledge channel i s a variable*)
empty = 0;;
ok = 1;; (* two possible states of acknowledge channel *)
(* time : Var => time is a variable *)
timeout =3;; (* timeout i s a constant, we set i t to 3 here
sender = While true do

await ack==ok;
ack := empty;
signal msg (* send the message *)

done;;
senderl= While true do

await ack==ok && timeout < time;
ack := empty;
time := 0;
signal msg (* send the message *)

done;;
medium = While true do

wait msg (* the message i s lost *)
done;;

receiver = While true do
wait msg; (* get the message *)
ack := ok

done;;
timer = While true do

await time < timeout;
time := time + 1

done;;
protocoll = sender I receiver
protocol2 = sender I receiver I medium
protocol3 = senderlI receiver ImediRjm I timer
i n i t = {(msg.O),(ack,ok),(time.O)} (* i n i t i a l state *)

Figure 7.1: A simple transport protocol

Property 2

After putting the message iu the medium, the program can not put messages in

unless the ack channel becomes ok.

AG([signal msg]vZ(inable[signal msg] A ([—(ack := ok)]Z)))

Property 3

After sending, the receiver eventually receives, which means the process 2, re

ceiver, is at line number 3.

AG([signal msg]EF(kt 2 3)))

Verification and Analysis

We can prove protocoll satisfies all of the above three properties by LegoMC

automatically.

(init, protocoll) h deadlock free

(init, protocoll) h AG([signal msg]vZ(inable[signal msg] A ([—(ack := ok)]Z)))

(init,protocoll) h AG([send]EF(At 2 3)))

The transport protocol is however not safe and therefore the message can be

lost during the transport. We use another entity medium to model the losing

medium which wi l l consume the message in med. The protocol is protocol! in

Fig. 7.1. Although protocol! can stil l satisfy property 2 and 3, i t fails in property

1 because neither receiver nor sender can proceed anymore once the message in

the medium is lost.

98

(init,protocol2) \f deadlock free

(init,protocol) h AG([signal med]uZ(inable[signal med] A ([— (ack := ok)\Z)))

(init, protocol) h AG([send]EF(At 2 3)))

Improvement and Re-analysis

We add another entity, timer, to allow sender to re-send the message after time

out. The protocol is protocols. The sender becomes sender! which wi l l set

timer to zero before sending a message and wi l l re-send the message once the

timer reaches timeout. After this improvement, the protocol can satisfy all of

three properties.

(init, protocols) h deadlock free

(init,protocols) h AG([signal med\uZ(inable[signal med} A ([—(ack := ok)]Z)))

(init, protocols) h AG ([sendjEF (At 2 3)))

7.1.2 Modeling in CCS

Walker modeled this protocol in CCS as follows.

Sending = rec x (ms.sm'.x + rs.rece.sm'.x)
Sender = rece.sm'.Sending
Mediuml = rec x (mr'.sm.x + tau.ms'.sm.x)
Medium = sm.Mediuml
Receiver = rec x mr.send'.rs'.x

protocol = (Sender I Medium I Receiver)\{sm,ms.mr,rs};;

99

The Sender receive a data rece to transmit, i t then send i t to medium by

action sm' and then become state Sending. State Sending can either get an

acknowledge r s from receiver and then wait for next data or get a timeout message

ms from medium and re-transmit the data. After receiving a data from Sender

sm, the medium can either send this data to receiver and then wait for next data

or pass the time t au and then send a timeout ms' to sender. Receiver can receive

a data from medium and then send an acknowledgement r s ' to sender.

The three properties now become

Property 1

This protocol is free from deadlock.

deadlock free

Property 2

After putting the message in the medium, the program can not put messages in

unless the ack channel becomes OK.

AG([rece]vZ(inable{rece} A ([—send]Z)))

Property 3

After sending, the receiver eventually receives.

AG([rece]EF{able{send})))

We can also verify this protocol in CCS version by LegoMC automatically.

protocol h deadlock free

100

protocol h AG([sm']i/Z(inable{sm'} A {\-rs\Z)))

protocol h AG{[sm']EF{able{mr})))

7.1.3 Comparison

Wc consider three aspects, modeling, specification and verification, to compare

CCS and ICPL in analysing systems in our verification environment.

Modeling

ICPL should be easier for programmers to model their systems. In the future,

i t has the potential that programmers can use their programs directly rather

than translate their programs to other description languages. However, CCS

can be more concise for certain small systems. ICPL is not good for modeling

synchronous communication.

Specification

The position property of ICPL provides an easy way to specify position. For

example, the mutual exclusion property for two processes should be "There is no

state in which more than one process at the critical section." Suppose the critical

section is at line four of programs, this property can be expressed in ICPL as

follows:

AG Not(At(l,4) AAt(2.4))

which means "There is no state in which process one is at line four and process

two is at line four."

101

file://{/-rs/Z

The property in CCS should look like

protocol h AG([sm']uZ(inable{sm'} A ([-rs]Z)))

which means "After sending a message, the protocol cannot send again unless

sender get an acknowledgement from receiver" which doesn't quite catch the

original meaning of mutual exclusion property.

Verification

Since we are using automatic tools, the verifications in both C C S and I C P L are

similar by using the commands Check and Prove.

7.2 Mutual Exclusion Algorithms

Mutual exclusion is an essential property for concurrent systems. The difficulty in

reasoning reliably about concurrent algorithms has long been recognized. There

are many algorithms in the literature to solve mutual exclusion problems. There

are basically three properties wc expect for these algorithms, mutual exclusion,

deadlock freedom and fairness (non-starvation). There are two versions of fairness

property, weak fairness and strong fairness.

Weak fairness, which is also referred to as justice [MP92], is based on the

assumption of hardware fairness which means the hardware is a fair device so

that all concurrent processes have the same possibility to access processors, i.e.

no single process is consistently neglected. Weak fairness can be expressed in

temporal logic as "Whenever a process attempts to enter its critical section,

there exists a path on which a process can eventually enter critical section."

Since hardware is a fair device, it should be possible to choose the path which a

process can reach its critical section. For a process, e.g. process one, if its critical

102

section is at position 3, the weak fairness property can be denoted as follows:

AG(notat{l,3) V (EF ai(l ,4)))

where we use "notat(l, 3)v(EF at(l,4))" to replace "a*(l,3) implies (EF af(l,4))"

because we do not have implies operator in positive version of //-calculus.

Strong fairness, which is also referred to as compassion [MP92], is based on the

assumption that the hardware could be unfair and it is possible that hardware

always grants access to some processes and completely ignores the requests of

other processes. Strong fairness can be expressed in temporal logic as "Whenever

a process attempts to enter its critical section, for all paths on which a process

can eventually enter critical section." Since the hardware is unfair, to satisfy non-

starvation requirement a process should reach its critical section on all paths. For

the same process as above, the strong fairness property can be denoted as follows:

AG(notat(l,3) V (AF at(l,4))).

This section presents the verification of several larger algorithms for two-

process mutual exclusion. LegoMC is a very suitable tool for analysing and com

paring several similar algorithms, implementations or systems since the modeling

and verification in LegoMC are easy and therefore help people to focus on the

algorithms and their properties. Most of the formulations of the algorithms are

taken from RaynaPs book [Ray86].

7.2.1 Dekker's Algorithm

The first algorithm to solve two-process mutual exclusion problem was designed

by T . Dckker. There are two processes p i and p2, two boolean variables f l ag l

and f lag2 whose initial values are fa l se , and a variable turn whose value can

be 1 or 2.

103

(* Dekker's Algorithm for 2-process mutual exclusion *)

O The formulation here i s taken from Raynal's book *)

(* f l a g l , f l a g 2 : boolean with fa l se i s 0, true i s 1 *)

(* turn can be 1 or 2 *)

c r i l = sk ip; ; (* c r i t i c a l section *)

c r i 2 = sk ip; ; (* c r i t i c a l section *)

p i = while true do

f l a g l := 1;

while flag2==l do

i f turn==2 then

f l a g l := 0;

await turn==l;

f l a g l := 1

else

skip

endif

done;

c r i l ;

turn := 2;

f l a g l := 0

done;;

p2 = while true do

flag2 := 1;

while flagl==0 do

i f turn==l then

flag2 := 0;

104

await turn==2;

flag2 := 1

else

skip

endif

done;

c r i 2 ;

turn := 1;

f lag2 := 0

done;;

pro = p l l p 2 ; ;

i n i t l = { (f l a g l , 0) , (f l a g 2 , 0) , (t u r n , l) > ; ; (* i n i t i a l memory *)

i n i t 2 = { (f l a g l . O) , (f l a g 2 , 0) , (t u r n , 2) } ; ; (* i n i t i a l memory *)

me = notat (l ,4) \ / notat (2 ,4) ; ;

Check (i n i t l , p r o) AG me;; (* true *)

Check (in i t2 ,pro) AG me;; (* true *)

Check (i n i t l , p r o) deadlockfree;; (* true *)

Check (in i t2 ,pro) deadlockfree;; (* true *)

(* check weak fa irness => true *)

Check (i n i t l , p r o) AG (notat(l ,4) \ / (EF a t (l , 5))) ; ;

(* check weak fa irness => true *)

Check (in i t2 ,pro) AG (notat(2,4) \ / (EF a t (2 , 5))) ; ;

(* check strong fa irness => fa l se *)

Check (i n i t l , p r o) AG (notat(l ,4) \ / (AF a t (l , 5))) ; ;

(* check strong fa irness => f a l s e *)

105

Check (in i t2 ,pro) AG (notat(2,4) \ / (AF a t (2 , 5))) ; ;

The critical section is position 4. The mutual exclusion property is therefore

either process 1 not at position 4 or process 2 not at position 4. The processes at

tempt to enter their critical sections at position 4 and leave their critical section at

position 5. We can prove that under both initial conditions (turn=l or turn=2),

Dekker's algorithm satisfies mutual exclusion and deadlockfree. Dekker's algo

rithm can satisfy weak fairness but not strong fairness.

7.2.2 Dijkstra's Algorithm

Dijkstra [Dij65] generalized Dekker's solution to the case of n processes. We

adapted the algorithm for two processes from Raynal's book [Ray86]. Vari

able turn is the same as Dekker's algorithm but f l a g l and flag2 take 3 values

(passive, requesting and in_cs) with initial values as passive.

(* D i j k s t r a ' s Algorithm for 2 process mutual exclusion *)

(* The formulation here i s taken from Raynal's book *)

passive = 1;;

requesting = 2;;

in_cs = 3 ; ;

c r i l = sk ip; ; (* c r i t i c a l section *)

c r i 2 = sk ip; ; (* c r i t i c a l section *)

pi = while true do

f l a g l := requesting;

while turn==2 do

i f flag2==passive then

turn := 1

106

else

skip

endif

done;

f l a g l := in_cs;

while flag2==in_cs do

f l a g l := requesting;

while turn==2 do

i f flag2==passive then

turn := 1

else

skip

endif

done;

f l a g l := in_cs

done;

c r i l ;

f l a g l := passive

done;;

p2 = while true do

f lag2 := requesting;

while turn==l do

i f flagl==passive then

turn := 2

else

skip

endif

done;

107

f lag2 := in_cs;

while flagl==in_cs do

flag2 := requesting;

while turn==l do

i f flagl==passive then

turn := 2

else

skip

endif

done;

flag2 := in_cs

done;

c r i 2 ;

f lag2 := passive

done;;

pro = p l | p 2 ; ;

i n i t l = { (f l a g l , 0) , (f l a g 2 , 0) , (t u m , l) } ; ; (* i n i t i a l memory *)

in i t2 = { (f l a g l . O) , (f l a g 2 , 0) , (t u r n , 2) } ; ; (* i n i t i a l memory *)

me = nota t (l , 6) \ / notat (2 ,6) ; ;

Check (i n i t l , p r o) AG me;; (* true *)

Check (in i t2 ,pro) AG me;; (* true *)

Check (i n i t l , p r o) deadlockfree;; (* true *)

Check (in i t2 ,pro) deadlockfree;; (* true *)

(* check weak fa irness => true *)

Check (i n i t l , p r o) AG (notat(l ,6) \ / (EF a t (l , 7))) ; ;

108

(* check weak fa irness => true *)

Check (in i t2 ,pro) AG (notat(l ,6) \ / (EF a t (l , 7))) ; ;

(* check strong fa irness => fa l se *)

Check (i n i t l . p r o) AG (notat(l ,6) \ / (AF a t (l , 7))) ; ;

(* check strong fairness => fa l se *)

Check (in i t2 ,pro) AG (notat(l ,6) \ / (AF a t (l , 7))) ; ;

The critical section is position 6. The mutual exclusion property is therefore

either process 1 not at position 6 or process 2 not at position 6. The processes

attempt to enter their critical sections at position 6 and leave at position 7.

We can prove that under both initial conditions (turn=l or turn=2), Dijkstra's

algorithm satisfies mutual exclusion and deadlockfree. Dijkstra's algorithm can

satisfy weak fairness but not strong fairness.

7.2.3 Hyman's Algorithm

Hyman's algorithm [Hym66] tried to simplify Dijkstra's algorithm in the case of

two processes. However, Hyman's simplification is not entirely satisfactory. The

variable f lag l , f lag2 and turn are the same as Dekker's algorithm.

(* Hyman's Algorithm for 2 process mutual exclusion *)

(* Raynal's book *)

(* f l a g l , f l a g 2 : boolean with fa l se i s 0, true i s 1 *)

(* turn can be 1 or 2 *)

c r i l = sk ip; ; (* c r i t i c a l section *)

cr i2 = sk ip; ; (* c r i t i c a l section *)

p i = while true do

f l a g l := 1;

109

while - turn==l do

await flag2==0;

turn := 1

done;

c r i l ;

f l a g l := 0

done;;

p2 = while true do

flag2 := 1;

while - turn==2 do

await flagl==0;

turn := 2

done;

c r i 2 ;

f lag2 := 0

done;;

pro = p l |p2 ; ;

i n i t l = { (f l a g l , 1) , (f l a g 2 , 1) , (t u r n , 1) } ; ; (* i n i t i a l memory *)

in i t2 = { (f l a g l , 1) , (f l a g 2 , l) , (t u r n , 2) } ; ; (* i n i t i a l memory *)

me = notat (l ,4) \ / notat (2 ,4) ; ;

Check (i n i t l , p r o) AG me;; (* fa l se *)

Check (in i t2 ,pro) AG me;; (* fa l se *)

Check (i n i t l , p r o) deadlockfree;; (* true *)

Check (in i t2 ,pro) deadlockfree;; (* true *)

110

(* check weak fa irness => true *)

Check (i n i t l . p r o) AG (notat(l ,4) \ / (EF a t (l , 5))) ; ;

(* check weak fa irness => true *)

Check (in i t2 ,pro) AG (notat(2,4) \ / (EF a t (2 , 5))) ; ;

(* check strong fa irness => fa l se *)

Check (i n i t l . p r o) AG (notat(l ,4) \ / (AF a t (l , 5))) ; ;

(* check strong fa irness => fa l se *)

Check (in i t2 ,pro) AG (notat(2,4) \ / (AF a t (2 , 5))) ; ;

The critical section is position 4. The mutual exclusion property is therefore

either process 1 not at position 4 or process 2 not at position 4. The processes

attempt to enter their critical sections at position 4 and leave their critical sec

tions at position 5. We can prove that under both initial conditions (turn=l

or turn=2), Hyman's algorithm does not satisfy mutual exclusion but does sat

isfy deadlockfree. Hyman's algorithm can satisfy weak fairness but not strong

fairness.

7.2.4 Knuth's Algorithm

Knuth's protocol [Knu66] was the first strong fair solution. The variable f l ag l ,

f lag2 and turn are the same as Dijkstra's algorithm.

(* Knuth's Algorithm for 2 process mutual exclusion *)

(* The formulation here i s taken from Raynal's book *)

(* f l a g l : passive, requesting, in_cs *)

(* turn can be 1 or 2 *)

passive = 1;;

requesting = 2;;

111

in_cs
c r i l =
c r i 2 =

= 3; ;

skip;;
skip;;

(* c r i t i c a l section *)
(* c r i t i c a l section *)

p i - while t r u e do
f l a g l := requesting;
await turn==l I I f lag2==passive;
f l a g l := in_cs;
while f lag2==in_cs do

f l a g l := requesting;
await turn==l I I f lag2==passive
f l a g l := in_cs

done;
t u r n := 1;

c r i l ;

t u r n := 2;

f l a g l := passive
done;;

p2 = while t r u e do
f lag2 := requesting;
await turn==2 I I flagl==passive;
f lag2 := in_cs;
while f l a g l = = i n _ c s do

f lag2 := requesting;
await turn==2 I I flagl==passive
f lag2 := in_cs

done;

t u r n := 2;

112

c r i l ;

turn := 1;

f lag2 := passive

done;;

pro = p l |p2; ;

i n i t l = { (f l a g l , 1) , (f l a g 2 , 1) , (t u r n , 1) } ; ; (* i n i t i a l memory *)

in i t2 = { (f l a g l , 1) , (f l a g 2 , l) , (t u r n , 2) } ; ; (* i n i t i a l memory *)

me = notat (l ,7) \ / notat (2 ,7) ; ;

Check (i n i t l , p r o) AG me;; (* true *)

Check (in i t2 ,pro) AG(me);; (* true *)

Check (i n i t l , p r o) deadlockfree;; (* true *)

Check (in i t2 ,pro) deadlockfree;; (* true *)

(* check weak fa irness => true *)

Check (i n i t l , p r o) AG (notat(l ,7) \ / (EF a t (l , 8))) ; ;

(* check weak fa irness => true *)

Check (in i t2 ,pro) AG (notat(2,7) \ / (EF a t (2 , 8))) ; ;

(* check strong fa irness => true *)

Check (i n i t l , p r o) AG (notat(l ,7) V (AF a t (l , 8))) ; ;

(* check strong fa irness => true *)

Check (in i t2 ,pro) AG (notat(2,7) \ / (AF a t (2 , 8))) ; ;

The critical section is position 7. The mutual exclusion property is therefore

either process 1 not at position 7 or process 2 not at position 7. The processes

attempt to enter their critical sections at position 7 and leave their critical sec

tion at position 8. We can prove that under both initial conditions (turn=l or

113

turn=2), Knuth's algorithm satisfies mutual exclusion, deadlockfree, weak fair

ness and strong fairness.

7.2.5 Peterson's Algorithm

Peterson [Pet81] gave an elegant and simple solution to mutual exclusion problem.

The variables f lag l , f lag2 and turn are the same as Dckker's algorithm.

(* Peterson's Algorithm for 2 process mutual exclusion *)

(* The formulation here i s taken from Raynal's book *)

(* f l a g l , f l a g 2 : boolean with f a l s e i s 0, true i s 1 *)

(* turn can be 1 or 2 *)

c r i l = sk ip; ; (* c r i t i c a l section *)

cr i2 = sk ip; ; (* c r i t i c a l section *)

pi = while true do

f l a g l : - 1;

turn := 1;

await flag2==0 I I turn==2;

c r i l ;

f l a g l := 0

done;;

p2 = while true do

flag2 := 1;

turn := 2;

await f lagl==0 11 turn—1;

c r i 2 ;

114

f lag2 := 0

done;;

pro = p l |p2 ; ;

i n i t l = { (f l a g l . O) , (f l a g 2 , 0) , (t u r n , l) } ; ; (* i n i t i a l memory *)

i n i t 2 = { (f l a g l . O) , (f l a g 2 , 0) , (t u r n , 2) } ; ; (* i n i t i a l memory *)

me = notat (l ,5) \ / notat (2 ,5) ; ;

Check (i n i t l , p r o) AG me;; (* true *)

Check (in i t2 ,pro) AG me;; (* true *)

Check (i n i t l , p r o) deadlockfree;; (* true *)

Check (in i t2 ,pro) deadlockfree;; (* true *)

(* check weak fa irness => true *)

Check (i n i t l , p r o) AG(notat(l ,5) \ / EF a t (l , 6)) ; ;

(* check weak fa irness => true *)

Check (in i t2 ,pro) AG(notat(2,5) \ / EF a t (2 , 6)) ; ;

(* check strong fa irness => true *)

Check (i n i t l , p r o) AG(notat(l ,5) V AF a t (l , 6)) ; ;

(* check strong fa irness => true *)

Check (in i t2 ,pro) AG(notat(2,5) \ / AF a t (2 , 6)) ; ;

The critical section is position 5. The mutual exclusion property is therefore

either process 1 not at position 5 or process 2 not at position 5. The processes

attempt to enter their critical sections at position 5 and leave their critical sec

tions at position 6. We can prove that under both initial conditions (turn=l

or turn=2), Peterson's algorithm satisfies mutual exclusion, deadlockfree, weak

fairness and strong fairness.

115

7.2.6 Lamport's Algorithm

Lamport's one-bit algorithm [Lam86] uses only one variable for each process. The

variables f lag l and f lag2 are the same as Dekker' algorithm.

(* Lamport's Algorithm for 2 process mutual exclusion *)

(* f l a g l , f l a g 2 : boolean with fa l se i s 0, true i s 1 *)

c r i l = sk ip; ; (* c r i t i c a l section *)

c r i 2 = sk ip; ; (* c r i t i c a l section *)

p i = while true do

f l a g l := 1;

await flag2==0;

c r i l ;

f l a g l := 0

done;;

p2 = while true do

f lag2 := 1;

while f lagl==l do

f lag2 := 0;

await flagl==0;

f lag2 := 1

done;

c r i 2 ;

f lag2 := 0

done;;

pro = p l |p2 ; ;

116

i n i t = { (f l a g l . O) , (f l a g 2 , 0) } ; ; (* i n i t i a l memory *)

me = notat (l ,4) \ / notat (2 ,4) ; ;

Check (in i t ,pro) AG me;; (* true *)

Check (in i t ,pro) deadlockfree;; (* true *)

(* check weak fa irness => true *)

Check (in i t ,pro) AG (n o t a t (l , 4) \ / (E F a t (l , 5))) ; ;

(* check strong fa irness => true *)

Check (in i t ,pro) AG (n o t a t (l , 4) \ / (A F a t (l , 5))) ; ;

(* check weak fa irness => true *)

Check (i n i t , p r o) AG (nota t (2 ,4) \ / (EF a t (l , 5))) ; ;

(* check strong fa irness => fa l se *)

Check (i n i t , p r o) AG (notat(2 ,4) \ / (AF a t (l , 5))) ; ;

The critical section is position 4. The mutual exclusion property is therefore

either process 1 not at position 4 or process 2 not at position 4. Lamport's al

gorithm is not symmetric. The processes attempt to enter their critical sections

at position 4 and leave at position 5. We can easily prove that under initial con

ditions, Lamport's algorithm satisfies mutual exclusion, deadlockfree and weak

fairness. The process one satisfies strong fairness, whereas the process two does

not.

7.2.7 Results and Comments

The tabic below summarizes the results obtained from previous sub-sections.

* "Yes" for the first process and "No" for the second process.

117

Algorithm Mutual

Exclusion

Deadlock

Freedom

Weak

Fairness

Strong

Fairness

Dekker Yes Yes Yes No

Dijkstra Yes Yes Yes No

Hyman No Yes Yes No

Knuth Yes Yes Yes Yes

Peterson Yes Yes Yes Yes

Lamport Yes Yes Yes Yes/No*

Table 7.1: Verification results of mutual exclusion algorithms

Compared with Walker's analysis [Wal89] of mutual exclusion algorithms using

CCS and Concurrency Workbench [CPS93], the modeling in ICPL is much simpler

and the ICPL presentation is clearer than CCS presentation. Further simplifica

tion can be made by creating syntax abbreviation for repeat . . . u n t i l and f o r

loop statements.

118

Chapter 8

Infinite-State Case Studies

As shown in previous chapter, LegoMC provides a convenient way to do verifi

cation for systems with finite state space. One feature of our verification envi

ronment is the possibility of integrating a model-checker with other verification

methods to verify infinite state systems. This chapter shows how LegoMC is used

with Lego to analyse systems with infinite state space.

The most basic verification method is through the semantics of description

languages and specification languages by doing inductive reasoning over the tran

sitional structure of systems. This method sometimes can have very elegant and

straightforward proofs. It is especially useful for parameterized processes, which

have many identical processes executing concurrently.

The compositional method provides another alternative for verification. By

decomposing a system into several sub-systems, we can then verify the whole

system by verifying individual sub-systems. The specification for such a system

can also be decomposed into properties that concern only those sub-systems.

We have to prove that the conjunction of local properties implies the overall

specification.

Another method is trying to reduce the complexity of a verification task by

119

abstraction. By proving that an abstraction mapping preserves the properties to

be verified, one can work on the simpler abstract system instead of the original

more complicated system. However, sometimes it is not so easy to find a suitable

abstract system and prove the property is preserved.

The inference rules of the above verification techniques can be formally proved

in Lego as libraries. The verification of infinite state systems is carried out in

Lego. Users are free to choose different methods by invoking their inference rules

in the libraries. They can use LegoMC to generate some parts of proofs and

then insert those proofs into Lego to complete the whole proof. In this way, we

can then combine various verification techniques with LegoMC to form a general

framework which can be used to verify more complicated or infinite state systems

in a more efficient way.

In the next section, two examples are given and formally proved in Lego to

demonstrate the verification by semantics and induction. The first example is an

infinite counter, which has an evolving structure. The second example is a token-

ring network which has many identical workstations connected in a network. The

introduction of compositional method follows in section 8.2. The counter example

is re-verified by compositional method. The abstraction technique is presented in

section 8.3. We also re-do the verification of token-ring example by abstraction.

Finally, some discussion is given in section 8.4.

8.1 Proving by Semantics and Induction

This section presents two examples of proving by semantics and induction. The

same examples will be verified by compositional method and abstraction in sub

sequent two sections.

120

8.1.1 Example : an Infinite Counter

This example is taken from [Dam95], a counter can count forever. We want to

prove that the counter is always able to "up" and is free from deadlock.

Counter = rec x.up.(x\down.Nil)

Since this is an evolving system with infinite state space, we cannot use merely

LegoMC to prove it . This infinite counter has been verified purely by semantics

in Lego. It can also be verified by compositional method which is presented in

next section.

Always Able to Up

We want to prove the property $ = AG(able{up}) which is vZ.{up)True A [—]Z.

Counter h $ (8.1)

Expand by the semantics of v operator, that means 3P.P C ((up)True A [—]P)

and Counter € P. We take this P as the infinite set {cnt(i)\i € not}, i.e.

P = Xp : ProcessBn : nat.Eq p cnt(n)

where cni(O) = Counter, cnt{\) = Counter\(down.Nil),..., cnt(i+l) = cnt(i)\(down.Nil).

Therefore, the original goal is reduced to the following three sub-goals.

P C {up)True (8.2)

P C [-]P (8.3)

Counter € P (8.4)

Sub-goal (8.4) is true by the membership of P. By the semantics of () operator,

sub-goal (8.2) is Vp € P3j/.p ^ pf and pt 6 True. Take p' as p\down.Nil, sub-

121

goal (8.2) arrives

Vp e P.p ^ p\down.Nil (8.5)

p\down.Nil G True (8.6)

Sub-goal (8.6) is proved by LegoMC. Sub-goal (8.5) can be proved by inductive

reasoning over natural number i. The only sub-goal left now is (8.3). By the

semantics of [] operator, sub-goal (8.3) is Vp € PVp'3a,p A p' implies p' G P

which can be proved by inductive reasoning over natural number i.

Therefore, we finish the proof by means of the semantics of //-calculus formulas

and induction.

Deadlock Freedom

Another property we want to prove is deadlock freedom which is vZ.(—)True A

HZ-

By the syntax of formula we can find that this property is similar to the

previous one and therefore we only have to prove the following formula

Vp € P3a,p'.p p'

Take a as up , the formula becomes Vp € PBp'.p ^ p' which we have proved in

proving the previous property.

8.1.2 Example: a Token Ring Network

Assume there are n workstations in a ring network as Fig 8.1. Every workstation

which wants to enter its critical section should hold a token which passes around

the ring. The workstation which holds the token can also merely do nothing and

pass out the token. I f the workstation enters its critical section, it can only exit

122

the critical section but still keep the token. The whole model can be expressed

in CCS as follows:

/ = pass.IT

IT = enter.exit.IT + pass.I

Ring(n) = (IT\I\... \I)\{pass} with n + 1 Is— at least two processes

where / is the idle workstation and IT is the workstation which holds the token.

I 0 0 i i

0 0 i i pas

enter 0 i IT
exit

0 0 i i

0 0 i i
i

Figure 8.1: A token ring network with 12 workstations

We first prove some transition relations as lemmas. We will need some inver

sion lemmas which are presented in chapter 4. Lego scripts of lemma 8.1.1 are

presented in appendix D. The others are omited.

Lemma 8.1.1 \/n.Ring(n) A P implies (o = r A P = Ring{n)) V (a = enter A

123

P = Ringenter{n)), where Ringenter(n) = (exit.IT\I\... \I)\{pass}

Proof Using lemmaJiide and the premise, we can have two sub-goals depending

on whether a = r.

Case 1. a / r

We are going to prove a = enter A P = RingenterW)- This can be proved by

induction over n.

Base case: Ring(0) P implies P = Ringenter(0)

That is IT\I e ^ T P implies P = exit.IT\I. Since / cannot perform enter, only

IT can enter and by lemma_cho and lemma_dot the enfer-derivative state of IT

is exit.IT. Therefore P = exit.IT\I

Induction case: (Ring(n) e r ^ r P implies P = Ring(n)enter) implies (Ring(n+

1) e ^ r P implies P = Ring(n + l) e n t e r)

We refine the goal by lemma_par. Since / cannot enter, P depends on the

enter—derivative of Ring(n) which, by induction assumption, is Ring(n)enter-

Therefore P = Ring(n + l) e n t e r

Case 2. a = r

We still do induction over n .

Base case: Ring(0) ^ P implies P = Ring(0)

The only r transition of Ring{0) is IT ^ / and / P -T IT. Therefore P is I\IT

124

which equals to IT\I.

Induction case: (R.ing(n) A P implies P = Ring(n)) implies (Ring(n+1) -A

P implies P = Ring(n + 1))

We refine the goal by lemma_par. There are only one possible r-transitions of

Ring(n + 1) which is Ring(n + 1) A Ring(n + 1). Therefore P is Ring(n + 1).

•

Lemma 8.1.2 Vn.i?mg e n t e r(n) A P implies a = exit A P = Ring(n), where

Ringenter(n) = (exrf . /T | / | . . . |/)\{pass}

Proof Using lemmaJiide and the premise, we can have two sub-goals depending

on whether a = r.

Case 1. o ^ r

We are going to prove a = exit A P = Ring{n). We do induction over n.

Base case: Ringenter{Q) e ^ P implies P = Ring(0)

That is exit.IT\I ^ P implies P = IT\I. Since J cannot perform exit, only

exit.IT can exit and by lemma_dot the eiit-derivative of exit.IT is IT. There

fore P = IT\I

Induction case: (Ringenter(n) ^ P implies P = Ring(n)) implies (Ringenter(n+

1) c 4 * P implies P = #m5(n + 1))
We refine the goal by lemma_par. Since / cannot exit, P depends on the exit-

125

derivative of Ringenter(n) which, by induction assumption, is Ring(n). Hence

P = Ring(n + 1).

Case 2. a = r

When a = r, we are going to prove that the promise Ringenter(n) P is false.

Since exit.It can only perform exii and / can only perform pass and exii and

pass are not complement, i?m<7enter(n) can not perform r.

•

Lemma 8.1.3 Ring(n) ^ Ring(n)enter

Proof I f Ring(n) = Ring{n)enteT, then i T = exit.IT, which is /a/se. Therefore

Ring{n) ^ Ringin)^^

•

Theorem 8.1.1 (Mutual exclusion property) If the process perform enter,

it can not enter again except it perform exit.

Ring(n) h vZi.([enter](vZ2.{[enter]f alse A [-exit]Z2)) A \—\Z\)

Proof Wc shall use $ to abbreviate [enter){vZ2.{[enter]false A [-exit\Z2)).

By ^-unfold, A-rule and lemma 8.1.1, we can get the following two sub-goals.

Ring enter {n) l~ uZ2{[enter)f'alse A [—exit]Z2) (8.7)

Ring(n) h [-]i/Zi{/Jin^(n)}(* A [-]Zi) (8.8)

Using j/-unfold and A-rule, sub-goal 8.7 can arrive two sub-goals as follows

Ringenter(n) h [enter]false (8.9)

Ringenter(n) \- [—exit\uZ2{Ringenter{n)}{[enter\false A [—exit]Z2 (8.10)

126

By lemma 8.1.2, the only action Ring(n)enteT can perform is exit. Therefore, the

above two sub-goals are true by the semantics of Box operator.

By the semantics of Box operator and lemma 8.1.1, sub-goal 8.8 can be reduced

to

Ring{n) h vZx.{Ring{n)}($ A \-]Zx) (8.11)

Ringenler(n) h vZx.{Ring{n)}{$ A [-}ZX) (8.12)

Sub-goal 8.11 can be proved by v-ba.se rule. Using ^-unfold and A-rule, sub-goal

8.12 can be reduced to

RingenUr(n) h $ (8.13)

Ringenurin) h [-]i/Zx{Ring{n), RingenleT(n)}{<& A \-}Zx) (8.14)

By lemma 8.1.2, the only action that Ringenter{ri) can perform is exit. Therefore

sub-goal 8.13 is true because Ringenter{n) cannot perform enter.

By the semantics of Box operator and lemma 8.1.2, sub-goal 8.14 can be

reduced to

Ring(n) \- vZx{Ring{n), Ringenter{n)}($ A {-)ZX) (8.15)

which can be proved by i/-base rule.

•

Theorem 8.1.2 The deadlock free property:

Ring{n) h vZ.((—)true A [—]Z)

Proof By i/-unfold and A-rule, the goal can be reduced to the following two

sub-goals.

Ring(n) h {-)true (8.16)

Ring(n) h [~\{vZ.{Ring{n)}{(-)true A \-]Z)) (8.17)

127

http://v-ba.se

By lemma 8.1.1, Ring(n) can perform enter and therefore (-)true is true.

From lemma 8.1.1, the successor state of Ring(n) is either Ring(n) or i?m^ e n £ e r (

Therefore sub-goal 8.17 can be reduced to

Ring{n) h uZ.{Ring{n)}({-)true A \-\Z) (8.18)

Ringenter(n) h vZ.{Ring(n)}{{-)true A [-]Z) (8.19)

Sub-goal 8.18 can be proved by i/-base rule. Using f-unfold and A rule again,

sub-goal 8.19 arrives

Ringenter{n) h (-)true (8.20)

Ringenter(n) h [-](i/Z.{/?m 5(n), J 2 m 5 e n t e r (n) } ((-) ^ « e A [-]Z)) (8.21)

By lemma 8.1.2, Ringenter(n) can ea;it and therefore (-)true is true. By

lemma 8.1.2, Ringenter(n) has only one successor state which is performing exit

to become Ring(n). The sub-goal becomes

Ring(n) h vZ.{Ring(n), Ringenter(n)}({-)true A [-]Z) (8.22)

which can be proved by f-base rule.

•

8.2 Composition

A concurrent system usually consists of many processes running in parallel. The

interleaved execution between individual processes causes the state space to grow

exponentially. Therefore a natural solution would be to decompose a system into

several sub-systems. The specification for such a system can also be decomposed

into properties that concern only those sub-systems. If we know that the conjunc

tion of the local properties implies the overall specification, we can then verify

the whole system by verifying individual sub-systems.

128

By exploring the modular structure of a complex system, compositional tech

niques [Sti85, Win85, AW92, Lon93, And93, ASW94] use the divide-and-conquer

approach to decompose the system and the properties into simpler ones. The

compositional approach reasons in the structure of the states and works purely

on the syntax of states. By a sequence of reductions on the top-level operator

of the state, the compositional method decomposes a problem into equivalent

sub-problems for the immediate sub-components.

For instance, suppose we want to verify a communication protocol consisting

of three processes: a sender, a communication media and a receiver. One of

the properties about the communication protocol is the deliveribility: data is

eventually transmitted correctly from the sender to the receiver. Deliveribility

property can be decomposed into two local properties. First, the data should

be eventually transferred correctly from the sender to the media. Second, the

data should eventually be transferred correctly from the media to the receiver.

Since the first property involves only the sender and the media. We should be

able to verify the first property using only the sender and the media. In the

same way, we should be able to verify the second property using only the media

and the receiver. By decomposition, we transform a three-process verification

problem into a two-process verification problem. The state space of the latter

should normally be smaller.

The local properties are usually only true under certain conditions. Therefore,

we have to make some assumptions about the environment of the components to

be verified. Those assumptions, which represent requirements on other compo

nents, should be verified as well. Finally, we have to show that the conjunction

of those local properties implies the original specification.

Compositionality provides many useful features. First, it allows better struc

turing and decomposition of verification task so that only changed parts have

to be re-done when modifying a system. Secondly, the decomposition deduces

129

a complicated verification task to several simpler tasks and therefore overcomes

part of the state-exploration problem. Thirdly, the verified components can be

reused when they are used to build a larger system and therefore it is possible

to build a library of verified standard components for others to use. Fourthly, it

is possible to design a system with some undefined parts and still to be able to

reason about some properties of it. Finally, by assuming some properties of indi

vidual components, we can design and reason about individual parts of a system

and therefore support group work.

Since the compositional techniques concern mainly the syntax of system de

scription languages, there should be different inference rules for different descrip

tion language (e.g. automata, process algebra, imperative programming language,

petri net, etc.). We take CCS as an example to experiment the application of our

framework to compositional techniques. Due to the characters of composition,

we can extract parts of verification tasks to be proved automatically by LegoMC.

The other parts of verification tasks and those composition rules are proved in

Lego.

8.2.1 Compositional Rules for CCS

To have a sound theorem, we formally prove the compositional rules in Lego by

the semantics of /i-calculus and CCS. The following rules for CCS are adapted

from Dam's work [Dam95] and Anderson's work [And93].

The rules for boolean connectives and fixed points operators are the same as

the model checking rules in section 3.3. For the modality operators, the rules can

be classified into two categories as follows.

130

Dynamical Rules The decomposition for dynamical rules can always remove

the top operators of CCS.

Nil - Box———jv^ Dot - Dia—* h,f.. . (a € K) Nil h [K]$ a.x h {K)$v '

Cho - Dial X h { K) * , Cho - Dial- V *~
~x + y\-(K)$ x + yh{K}$

Rec

x + y\-
x[rec x.s/x] h $

rec x.s h $

Static rules For the rules of static operators, we take Anderson's extension

[And93] of /i-calculus for expressing the "pre-images" of the corresponding process

operators.

* : = . . . | * [/pVL | $ / t

Their semantics is as follows.

w]jP = {Mi) € mP}
[* \ L] , = {s\s\L € [*],}

[*/*], = {*W« e [*],}

Therefore, the static rules can be proved as follows.

s [f \ W $ «[/] I" » I " $ [/]

Rcc D i a S h { K \ L) ^ L Res - BoxS-±V^*±L s\L\-$
H e S D m s\L\-(K)$ K e S B ° X s\L\-[K}$ **V*\L

si\s2 h [K]$ si h <f>/s2

131

8.2.2 Example

By composition, we can get a more concise proof for the counter example pre

sented in section 8.1.

Counter = rec x.up.(x\down.Nil)

The property of "Always able to up" is proved as follows

Counter h AG(able{up}) (8.23)

Using i/-unfold and A-rule, we arrive at two sub-goals

Counter h able{up} (8.24)

Counter h [up]uZ{Counter}{able{up}) (8.25)

Sub-goal 8.24 can be proved by LegoMC. Using Dot-Boxl, sub-goal 8.25 become

Counter\down.Nil h i/Z{Counter}(able{up}) (8.26)

which can then be reduced by Par rule to

Counter]- {vZ{Counter}{able{up}))/down.Nil (8.27)

We can move in the pre-image operator of Par by lemma

s h {vZ.U $) / t « « h uZ.U {$/t).

The goal now becomes

Counter h i>Z{Counter}{{able{up})/down.Nil) (8.28)

which can then be proved using LegoMC.

132

8.3 Abstraction

One way to tackle with the state explosion problem is trying to replace a large

system by a smaller abstract system which either is equivalent to original system

and preserves the same properties or preserves the properties to be verified. The

abstraction can be used to reduce the complexity of systems, and as a result, it

is much simpler to verify properties of the abstract system. Lego can be used

to prove that the abstraction reserves the properties to be verified, and then

LegoMC can be used to prove the abstract finite-state model.

8.3.1 Strong Bisimulation

One of the popular equivalence relation used in verification is bisimularity [Par81,

Mil83] that is an abstract equivalence on processes to state that two processes

have the same operational behaviour. It can be used to transform a complicated

model to its equivalent abstract model. There are several bisimulation relations

and I am going to discuss only strong bisimulation in this thesis. I t is believed

the treatment of other bisimulation relations is similar.

The equivalence based on strong bisimulation is: P and Q are equivalent iff,

for every action a, every a-derivative of P is equivalent to some a-derivative of

Q, and conversely. This can be defined formally as follows.

Definition 8.3.1 [Mil89] A strong bisimulation S is a set of pairs of processes,

such that whenever (P, Q) € S implies, Va e Act,

(i) Whenever F A P ' then, 3Q', Q A Q' and (P', Q') € S

(ii) Whenever Q A Q ' then, 3P', P A P' and {P',Q') € S

The processes P and Q are bisimular if (P, Q) G some bisimulation.

133

Definition 8.3.2 [Mil89] P and Q are strong equivalent, written as P ~ Q, iff,

Va G /let,

(i) Whenever P A P ' then, 3Q'.Q A Q' and P' ~ Q'

(ii) Whenever Q A Q ' then, 3P' .P A P' and P' ~ Q'

Theorem 8.3.1 / / P and Q are strong equivalent, they will preserve the same

properties [MU89J.

I f P ~ Q then V$.P (= $ f=> $

Under this theorem, we can then use the abstract model instead of original model

if we can prove they are strong equivalent.

8.3.2 Abstraction Mapping

Sometimes equivalence does not result in a significant reduction in the number of

states. For some properties, abstract mapping should be enough if the abstraction

preserves the properties. This approach is based on the observation that the

specifications of systems usually involve only some components of the systems or

simple relationships among the system components. It is particularly essential for

verifying programs with properties related to data flow. If the properties we want

to verify are data-independent, we can create an abstract model with only control

flow. If the properties are data-dependent, we can still try to find an abstract data

domain with fewer values which is enough to describe the relationship between

original data values.

For a system with infinite data values, the specification could only involve

simple relation among those data values. Therefore, instead of examining every

data value, we can give a mapping between the actual data values and a smaller

set of abstract data values (e.g. boolean) and then create an abstract model of

134

the original system. For example, assume we are only interested in if a natural

number x € M is 0, we can create a domain Ax with values {true, false} and

define a mapping hx from jV to Ax as follows:

true, if x = 0

false, if a; > 0.
hx(d) = <

As an example of abstract technique, we shall verify the same token ring

example which is verified in section 8.1 by creating an abstract model under

bisimularity.

8.3.3 An Example

/ = pass.IT

IT = enter.exit.IT + pass.I

Ring(n) = (IT\I\... \I)\{pass} with n + 1 Is— at least two processes

where / is the idle workstation, IT is the workstation which holds the token.

If we regard Ring(n) as a whole, we have another proof based on bisimulation.

The successor state of Ring(n) is through r to Ring(n) or through enter to

Ringenter{n). The only successor state of i?m^ enter(") is Ring(n). We can then

find that the abstract model

Ringabst = r.Ringabst + enter, exit. Ringabst

is strongly equivalent to Ring(n). The Bisimulation is

{{Ringabst, Ring(n)), (exit.Ringabst, Ringenter{n))}

which has been formally proved in Lego. Ringabst has a finite state space and

therefore we can use LegoMC to verify Ringabst- That is, we integrate Lego with

LegoMC by proving the abstraction relation in Lego and verifying the abstract

system by LegoMC.

135

8.4 Discussion

We have demonstrated how our system is used to verify infinite state systems.

The infinite counter is an example of evolving systems. The token ring is an

example of parameterized systems. Although these two examples have infinite

state space, their structures are very simple and therefore can be handled by

CCS. For more complicated systems, the modeling will become complicated and

therefore it is better to use imperative languages.

Our demonstrations combine semantics reasoning, induction, abstraction and

composition methods with LegoMC to verify infinite systems. All of the lemmas

and inference rules behind individual verification technique are formally proved

in Lego and therefore form a coherent system that firmly ensures the correct

ness of proofs. More case studies have to be carried for the verification of more

complicated systems.

136

Part IV

Proof Generation and Future

Research

137

Chapter 9

Automatic Generation of Proof

Terms

The core technique in our automation is the automatic generation of proof terms.

Proof terms in type theory have their intended types that can be checked by

simple type checking algorithms to ensure the correctness of the proofs. We can

therefore implement more efficient and possibly more complicated algorithms to

generate the proof terms without worrying about the correctness since the final

results can always be checked by computers.

Although our techniques arc experimented and implemented in the Lego proof

checker, it is believed that these techniques are general and therefore can be

adapted to other type theory based theorem provers very easily. Therefore,

"Lego" in my following discussion can be regarded as general type theory based

theorem provers such as Coq and Alf.

A general introduction to proof terms has been given in chapter 2. This

chapter focuses on automation related issues. A general presentation about the

construction of proof terms for assertions is given in section 9.1. Section 9.2 will

focus on the automatic methods to construct proof terms. Some efficiency issues

138

are discussed in section 9.3. Finally, some remarks are given in section 9.4.

Part of this chapter has been published in [YL98].

9.1 Proof Term Construction

Proof terms are A-terms which are the proof objects in type theory. Logical

formulas or propositions and logical inference in type theory are based on the

idea of propositions-as-types, discovered by Curry [CF58] and Howard [How80].

According to this idea, any proposition P corresponds to a type P r f (P) , the

type of its proofs, and a proof of P corresponds to an object of type P r f (P) . To

assert that a proposition is true, one has to find (construct) a proof object of the

proposition. For example, in an impredicative type theory, the disjunction A\/B

is defined as

V C : Prop.(A ->• C) -> [B -» C) -> C.

If a and 6 are proof objects of type Prf(A) and Prf(B) , respectively, then the

following is a proof object of type Prf(^4 V B)\

AC : PropXhi : A -> CXh2 : B -»• CM a

The inference rules of logical connectives can be classified as introduction

rules and elimination rules. The introduction rules reflects how to prove a logical

formula with the operator concerned as the main connective, and the elimination

rules reflect how to use such a formula to deduce other logical consequences. The

proof objects of inference rules are listed as follows.

• True: The proof object of true is

Propld XX : PropXx : X.x

139

False: (93^) false has no proof objects in the empty context, and it implies

every formula, if / is a proof of false, then

absurd-elim(f, R) f(R)

is a proof of R.

A-introduction: (p\^p\) If Pi I S a proof of P\ and p 2 is a proof of P 2 , then

pair(pi,p2) XX : PropXh : Pi -> P2 -> X.h(pi,p2)

is a proof of Pi A P 2 .

A-elimination: (P i £ P i , E l p f z) If h is a proof of P\ A P 2 , then

/sf(/i) = d / h(Pu XPl : P J Ap 2 : P2.P1)

is a proof of Pi, and similarly

snd(/i) = d / /i(P 2 , Apt : PiAp 2 : P2V2)

is a proof of P2.

V-introduction: [P ^ p 2 , P ^ P 2) If Pi is a proof of Pi , then

inl{pi) =4 XX : PrapXhi : Pi -> XXh2 : P 2 -» X.hi(pi)

is a proof of Pi V P 2 . Similarly, if p 2 is a proof of P 2 , then

mr(p 2) =df XX : PropXhx : Px XXh2 : P 2 -+ X / i 2 (p 2)

is a proof of Pi V P 2 .

V-elimination: (P l V ^ ' P l ^ f l ' P 2 " > f i) If / i is a proof of P x V P 2 and r< is a proof

of Pi -> P(z = 1,2), then

or-elim(h,rx,r2) =df h(R,rx,r2)

is a proof of P.

140

• V-introduction: (r^vi^t.p^)) If P is a proof of P(x) in T,x : A, then

Ax : A.P{x)

is a proof of Vx : A.P(x).

• V-elimination: (V a ; ^ W) If p is a proof of Vx : A.P(x) and a is an object

of type A, then

AllElim(p, a) p(a)

is a proof of P(a).

• 3-introduction: (3 x .^p(z)) If p is a proof of P{a), where a is an object of

type A, then

ExIntro{a,p) =df XX : PropXh : (Vx : A.P(x) -» X)./i(a,p)

is a proof of 3x : A.P(x).

• 3-elimination: (r^*--A-pW ^-Ap-.P^R^ u h i s a p r o o f o f 3 x . i n

T and r is a proof of R in T,x : A,p : P(x), then

ExElim(h,r) =<v h(R,Xx : AXp : P{x).r)

is a proof of R in I \

• -i-introduction: (^ ^ r 5 2) If r is a proof P —>• false, then r is a proof of

- .P .

• -<-eIimination: (p _ ^ T l s e) If r is a proof -*P, then r is a proof of P —> false.

Although proof terms provide a more concrete media for people to accept a

proof, it is difficult to construct proof terms directly. Therefore, the common

way to construct a proof term for an assertion at present is to communicate

interactively with a theorem prover to construct the proof terms. Interactive

theorem provers provide some guides to help the reasoning and finally construct

141

proof terms. Users can choose the best strategy by their experience and heuristic

knowledge. The users just have to follow the reasoning in their mind. They are

not even conscious of proof terms. Some theorem provcrs have also implemented

some tactics to do parts of the proof automatically.

An example

We use a proof of the commutativity of disjunction to explain the process of proof

term construction.
Pi V-P2
P2VP1

can be constructed by the following procedures. From Pi, we can infer P2 V Pi

by inr rule and get the proof object Xpi : Pi.inr(pi). Similarly, from P2, we can

infer P 2 V Pi by inl rule and get the proof object Xp2 : P2.inl(p2). From the above

two scripts and the premise P\ V P2, we can conclude P2 V Pi by or.el im rule.

The final proof term is therefore applying those rules as follows.

Xh : or Pi P2. or.elim(h, Xpi : Pi. inr{p\), Ap2 : Pi- inl{p2))

Some Remarks

The rigorous proofs in theorem provers usually include many trivial and tedious

proof tasks. Our work shows that some decidable algorithms can be adapted to

generate proof terms automatically, which will reduce the human effort in the

process of doing formal proof. Compared with pure automatic tools, which use

those decidable algorithms as well, automatic proof term generation can give not

only the answer of "true" or "false" but also proof terms which can further ensure

the correctness of the answer.

Automatic theorem provers use depth-first or breadth-first search method to

142

search all possible solutions. Therefore the proof terms constructed by automatic

algorithms are not the best in general, although they are automatically done by

computers. Some automatic theorem provers can also integrate the heuristics

to the search strategy and therefore improve the efficiency. Some may use data

structure techniques or tricks to improve their algorithms. However, it is quite

difficult to adapt those more efficient algorithms to generate proof terms and

therefore certain changes of the original algorithms are necessary.

Unlike special purpose automatic tools, in which the correctness of tools usu

ally is proved on paper, in our settings the inference rules or theorems behind

the decidable algorithms have to be formally proved in a theorem prover. An

automatic tool then applies those proven rules and follows the algorithms to con

struct the whole proof term. There are several ways to generate proof terms

automatically in Lego, which are described individually in next section.

9.2 Automatic Generation of Proof Terms

There are at least four ways to generate the proof terms automatically in a type

theory based theorem prover such as Lego.

1. Define computational functions of Lego to encode proof generation algo

rithms.

2. Use a tactical language.

3. Create an external program to generate Lego proof scripts which can be fed

into Lego to generate proof terms.

4. Develop an external program to generate proof terms directly.

In the following sub-sections, we shall discuss these alternatives individually and

analyse their advantages and disadvantages.

143

9.2.1 Use of Internal Functions

The first method is the simplest one since we implement algorithms for proof

generation completely in Lego. One of the major features of type theory is that

it is itself a computational language which enables us to do computing and logical

reasoning in the same platform. By mixing the computational function with logic

terms, parts of a reasoning task can be transformed into computations to simplify

the reasoning task. This technique is similar to Oostdijk's Internalization [Oos98]

presented at the Type'98 conference.

If we want to prove formulas of the form P(a) where P : T —> Prop is a

predicate over type T, we can try to find a function / : T —> bool and prove the

following theorem which states the correctness of the function:

bool2prop : Va : T.(Eq / (a) true) P(a),

For an object a of type T , if / (a) can compute into true, the proof term of P(a)

is then

hooVlprop a (Eqjrefl true).

Once we have proved the correctness of function / and / (a) can compute to

true for an object a of type T, a proof of the form P a : Prop can be transformed

to Eq true true which have proof term Eq_ref 1 true.

There are two essential jobs in the process of the transformation:

1. Find a suitable function / .

2. Prove the correctness of function / .

In our implementation of LegoMC, we used many internal functions such as

computing successor states to simplify the construction of proof terms. Although

this approach can simplify the subsequent proof process, the above two jobs are

144

not easy in general. The first job is limited by the limitation of function definition

in type theory. Some sorts of functions and techniques such as partial functions,

dynamic programming and non-terminating functions are not definable. The

second job involves complicated and tedious inductive reasoning.

Another problem with this approach is that computational speed of type the

ory based theorem provers is not satisfactory at present. However, this problem

may be overcome gradually with the progress of the techniques of theorem provers.

9.2.2 Use of Tacticals

Lego, like some theorem provers such as Coq, has a simple tactical language. The

tacticals are used to define sequences of commands to be executed. The syntax

is as follows.

EXPRSN1 Then EXPRSN2 evaluate EXPRSN1, i f e v a l u a t i o n succeeds,

evaluate EXPRSN2

EXPRSN1 E l s e EXPRSN2 evaluate EXPRSN1, i f e v a l u a t i o n f a i l s ,

backtrack and evaluate EXPRSN2

For n EXPRSN evaluate EXPRSN Then EXPRSN Then ...

(n times)

Repeat EXPRSN evaluate EXPRSN Then EXPRSN Then

and backtrack l a s t f a i l u r e

Succeed t h i s t a c t i c a l doesn't do anything

F a i l t h i s t a c t i c a l always f a i l s

Try EXPRSN evaluate EXPRSN and backtrack

i f e v a l u a t i o n f a i l s

(EXPRSN) evaluate EXPRSN

145

For example, if we want to construct a proof term of (Aar.Eq a x V Eq b x V

Eq c x) a, we can use tactical

(Repeat (Refine i n l)) Then (Refine i n r) .

This method is very slow and obviously not powerful enough to deal with

more complicated algorithms.

9.2.3 Use of External Programs to Generate Proof Scripts

This method is to develop an external program to generate the proof scripts of

Lego. These scripts can then be used to guide Lego to generate the proof terms.

In developing LegoMC, which has been discussed in chapter 6, we first used this

technique. With the aid of proof term construction mechanism in Lego, this

technique is much easier than external proof term generation presented in the

next sub-section.

For example, to use or.elim rule, we only have to generate proof script Refine

or.elim without worrying about the parameters after or_elim. The unification

mechanism in Lego will generate corresponding parameters automatically. How

ever this method would be limited by the syntax of Lego commands. If the

definition of Lego commands change, we have to change the external programs.

Furthermore, it also has the limitation that it is too sensitive to the subtlety of

the implementation of the command language of Lego.

9.2.4 External Programs to Generate Proof Terms

This method is to develop an external program by adapting automatic algorithms

to directly generate the proof terms of Lego based on the proof generation tech

niques. The task consists of two phases.

146

1. Formally prove the axioms and inference rules behind the algorithms.

2. Adapt the algorithms to generate proof terms by applying the inference

rules.

Because many existing algorithms are based on classical logics, we have to change

the axioms and inference rules to meet the intuitionistic logics of type theory.

Obviously the algorithms have to be changed as well. Once their inference rules

have been proved formally in Lego, the generation of proof terms is then applying

those inference rules recursively. Compared with the other methods, direct proof

term generation is most complicated and difficult. However, it has the best speed

performance and transferability. We can change the syntax generation part to fit

to other theorem provers. In practice, there are many efficiency issues to be dealt

with. We discuss them in the next section.

9.3 Efficiency Issues

Many decidable algorithms have been improved using some heuristics, tricks or

the techniques of programming such as dynamic programming, data structure,

etc. It is not easy to adapt those more efficient algorithms to generate proof

terms. Another problem is that the functionality of external programming lan

guage can be different from Lego's and therefore can have different formalisations

between these two platforms. In our experience, the efficiency issues can be partly

overcome by reducing the size of proof terms.

The Size of Proof Terms

The proof terms which are generated by automatic tools are usually very big.

This would be a problem because type-checking these generated proof terms can

147

be very slow. Therefore, we must develop methods and techniques to reduce the

size. In our work of automatic proof generation, the following four ways of size

reduction have been used:

1. Abbreviations

In automatically generated proof terms, there are usually many repeated

sub-terms. Instead of fully expansion of proof terms, making definitional

abbreviations can usually reduce the size effectively.

2. Internal functions

Another useful way is using internal functions as mentioned in previous

section to transform a complicated sub-term to be a function name with

parameters.

3. Pre-proved lemmas

Pre-proved lemmas are also a good way to reduce the size but we need to

find essential lemmas in advance.

4. On-the-fly lemma generation

The last but very important technique is what we call on-the-fly lemma

generation. It can not only reduce the size of proof terms but also increase

the efficiency of algorithms. We discuss this method in an independent

paragraph.

The idea of on-the-fly lemma generation is very simple. For example, Fig

9.1 is a part of a proof tree with nodes as formulas to prove during the proof

search process. Node a is like V or A formulas with two branches. After several

intermediate nodes, it is possible that two branches meet again at node b. The

proof after b is the same for two branches and therefore the second branch can

re-use the results from the first branch.

148

More precisely, we can store the proofs of some critical sub-trees as lemmas

and refer to those lemmas in the subsequent proof processes. On the one hand, we

can save the time to repeat the identical proofs. On the other hand, by referring

to on-the-fly generated lemmas, we do not have to insert the same poof sub-term

and therefore reduce the size of the whole proof term. We have reduced a proof

term with 1.2 megabytes to about 300 kilobytes.

a (V,A,V,3)

Figure 9.1: On-the-fly lemma generation

9.4 Discussion

In practice, it is better to combine the internal functions with external programs

to get the benefits of both sides. The internal function can be used to define

simple functions and external programs can be used to define more complicated

149

functions or some functions which are undefinable in Lego. Moreover, further

improvement of internal functions in type theory would be helpful to further

simplify proof term generation. The implementation of computation in theorem

provers is also essential for better speed performance.

The computational power of type theory has many advantages over other

theorem provers. Because part of the proof can be transformed to computational

function, the proof process can be simplified. I t is also helpful for developing

external programs to generate proof terms since computational functions simplify

the proof terms.

One challenge for the correctness is that the computation mechanism and type

checking is implemented by computer programs which may contain bugs as well.

One way to further increase our confidence is to check the proof by different type

theory based theorem provers. Because they all use A-terms as proof objects, by

syntax translation, we can put the same proofs to be checked by different theorem

provers to make us more confident about the proofs.

150

Chapter 10

Other Automation Issues

Most model-checkers have difficulties to deal wi th properties which are highly

data-dependent. One way to tackle such problems is to integrate other automatic

techniques which are suitable for data manipulations, e.g. arithmetic decision

procedures. Because most of the decision procedures for arithmetic manipulations

are based on classical logic, those techniques are very difficult to be adapted to

generate proof terms for general propositions of type theory, which is based on

intuitionistic logic. However, i t is no problem to use those procedures to deal

with the boolean data type that is enough for us to verify properties related to

data types.

The general form of boolean properties is like:

r h Eq p true

where p is a boolean expression. The proof process is then trying to simplify p to

boolean constant "true" by a sequence of inference rules, p can contain boolean

operators and natural number operators and therefore the simplification process

includes boolean expression simplification and natural number expression simpli

fication. This chapter describes the possibility of applying proof term generation

techniques described in the previous chapter to do these simplifications. Some

151

preliminary research and experiments are done but the implementation is beyond

the scope of this thesis.

Many decision procedures for data domain are based on equational rewriting.

Therefore, I wi l l discuss the equality in type theory and equational rewriting

techniques based on proof term generation in next section. In section 10.2, Binary

decision diagram (BDD) technique is discussed which has been claimed as an

efficient technique to manipulate boolean expressions or propositional formulas.

In section 10.3, arithmetic decision procedures are discussed which can deal wi th

arithmetic operation of natural numbers.

There are two sorts of equalities: intensional equality and extensional equality.

The computational equality is intensional and means that two objects are equal i f

and only i f they can be computed to the same canonical objects. For the compu

tational equality, rewriting can be done automatically through computation, and

we do not have to develop an external program to do its rewriting. For instance,

the following example is taken from Boulton's PhD thesis [Bou93]; there he im

plemented some conversion functions to rewrite the terms. Suppose we want to

rewrite the term:

10.1 Equational Rewriting

An.(n * 0) + (n * 4) (10.1)

using the following equations:

x * y = y * x (10.2)

0*x = 0 (10.3)

0 + x — x (10.4)

In type theory, Eqn. 10.3 and Eqn. 10.4 are computational equalities which

152

mean the terms in the left hand side of the equations and the terms in the right

hand side can be computed into the same canonical objects. Therefore, we do

not have to develop any external programs for computational equalities.

On the other hand, extcnsional equality concerns equality between functions.

A notion of equality is extensional i f for any functions / and g of the same type,

/ equals g provides that f(a) and g(a) are equal for every object o of the domain

type. For example, Eqn. 10.2 corresponds to the following two functions:

timesi =df Xx : NXy : N.x * y and

times2 =df Xx : NXy : N.y * x

which are extensionally equal since they return the same value for every two

natural numbers but not intensionally equal because they are different canonical

terms. For this sort of equality, we do need explicit term rewriting.

Propositional Equality

The propositional equality in type theory can be defined as the Leibniz equality

which means that two objects of the same type are equal i f and only i f they

cannot be distinguished by any property.

D e f i n i t i o n 10.1.1 (Leibniz equality) Let A be a type. The Leibniz equality over

A, notation = A , is the binary relation over A defined as follows:

=A =<tf Xx : AXy : A.WF : A -> Prop.F(a;) -> F(y).

We shall write a =A b for =A (a, 6).

Leibniz equality has the following properties.

• Eq_refl = Xt: TXP : T -»• PropA/i: Pt. h

: V« : T.t =T t

153

• Eqjsym = \t, u : TXg : t =T u.g(Xx : T.x = r i)(Eq_refl t)

: V£, u : T(t =T u) —»• u =T t

• Eq_trans = Xt, u, v : TXp : t =T uXq : u = r v\P : T -> Prop.Ax :

T.(q P(pP x))

: Vf, u, u : T.(t =T u) -> (u = r u) -»• t =T v

Explicit Rewriting

The rewriting is based on the substitution rule: for any predicate P over a type

A, i f formulas P(a) and a =A b are provable, then so is P(b).

Eq_subst = Xa, b : AXh : Eq a bXP : A -> PropAp : P(a). h{P,p)

: Vo, b : >4(Eq a 6) -+ VP : A -> PropP(a) -> P(6)

In other word, for any proof p of P(a) and proof h of CL=A b,

Eq_subst(a, b, h, P, p)

, which can compute into h(P,p), is a proof of P(b).

In the above example, we only have to rewrite Eqn. 10.2 which can be achieved

by apply

Eq_subst(x *y,y*x, Eqn.10.2)

There is a command Qrepl in Lego to do this rewriting. However, since we want

to generate the proof term externally, we have to use the above Eq_subst rule.

Although computational function can perform rewriting automatically, some

times we would stil l use explicit term rewriting for computing speed concern.

The computational function is defined by recursive function that takes a long

time while computing a big term such as larger natural numbers. For instance,

154

the following equation can be proved simply by Eq_ref 1 rule.

1234*4321 = 4321 * 1234

However, the computer wi l l need quite a long time to check this proof. Instead

we can use the above rule to rewrite the equation to

4321 * 1234 = 4321 * 1234

and then apply Eq_ref 1 rule.

10.2 BDD Propositional Simplifier

The boolean properties for imperative programs in chapter 5 can be defined as

follows.

Bool(6,5) = Eq (eval b (memory s)) true

where b is a boolean expression, s is a state, eval and memory are defined in

chapter 5. For any boolean expression b, eva l b (memory s) wi l l compute to a

boolean value t r u e or f a l s e . Therefore, to prove a boolean property which has

a true value is just to apply the Eqj re f 1 rule. However, for complicated boolean

expressions, which are very common in real life systems, i t takes a very long

time for type theory based theorem prover to compute the value of a boolean

expression.

The efficiency of Binary Decision Diagrams (BDDs) technique to deal wi th

boolean computation draws the attention of many researchers in this decade.

Therefore, BDD technique should be a considerable alternative to computational

functions. This section describes the possibility to apply proof term generation to

create a BDD propositional simplifier. Harrison has implemented B D D technique

in HOL [Har95] that can be a good reference for the implementation issue.

155

BDD

The basic idea of BDDs is to build up a "binary decision diagram" with the

variables at the nodes and either 1 (true) or 0 (false) at the leaves. Each node

has two branches which represent the expressions formed by substituting the

variable to be true or false, respectively. The increase of efficiency of BDDs

actually comes from techniques of variable ordering [Lee59, Ake78] and variable

reducing [Bry86] .

Variable reducing is using directed acyclic graphs to share common sub

expressions in the diagram. Variable ordering is choosing a better ordering of

the variables to reduce the size of the BDDs produced. Some heuristics on vari

able ordering can be found on the paper by Butler, Ross, Kapur and Mercer

[BRKM91], Such structures are formally called as reduced ordered binary deci

sion diagrams (ROBDDs) but are usually called BDDs for short.

The construction of a BDD from a boolean expression proceeds as follows. The

nodes of the BDD are constructed in the same order as they would be visited by

A depth-first traversal of the boolean expression. Whenever a new node is to be

created,

1. check whether i t is equivalent to a node already created by looking among

the existing nodes with the same variable as label and checking whether

they have 0- and 1- branches identical to the branches of the node under

consideration.

2. check whether the two branches are identical and the node therefore super

fluous.

The purpose of the first step is to reduce the store space and the size of proof

terms. Since i t is equivalent to a node which has been traveled, we can use on-the-

fly lemma generation as described in previous chapter to use the stored lemma.

156

The second step is used to eliminate variables.

Following our approach of proof term generation, we have to find the inference

rules behind the DDD reasoning and then implement a program to mimic the

BDD algorithm to generate proof terms by applying those inference rules.

Equivalence Rules

Before introducing the equivalence rules, some notations have to be defined first.

D e f i n i t i o n 10.2.1 (If Normal Form) t —>• < 0 ,* i is an if-then-else operator defined

by

« -+<o , t i =df (t A t 0) V (-it A ti)

where t is called test expression. A l l operators can be expressed using only the

if-then-else operator and the constants 0 and 1 that represent "false" and "true"

correspondingly. An If-then-else Normal Form (INF) is a boolean expression

built entirely from the if-then-else operator and the constants 0 and 1 such that

all tests are performed only on variables.

The basic BDD algorithm is based on the following two equivalence rules.

• Any boolean expression is equivalent to an INF (t -» xl,x2) which can be

done by transformation rule bdd_trans.

bdd.trans : V* : bool -» Tix : bool.Eq t(x) (if x i(true) t(false))

• (x —> y, y) is equivalent to y

if-absorbs : V6 : boolVx : T.Eq (if b x x) x

Having the above equivalence rules, we can design a program to mimic B D D

procedures that can automatically apply those equivalence rules to simplify propo

sitional formulas. The procedure is to rewrite the variable using bdd_trans rule

157

repeatedly to transform a boolean expression to its equivalent INF and then use

if.absorts rule to reduce the variable until i t reaches "true" or "false".

Example

This example shows x V - a can be simplified to "true".

\/x : bool. Eq (orelse(x, inv(x))) true (10.5)

P r o o f Rewrite "Eq (orelse(x,inv(x)) true" by

bdd.trans (Xx : bool.(orelse(x,inv(x)))x, the goal becomes

Va;: 600/ Eq i f x(orelse(true,inv(true)))(orelse(false,inv(false)) true

Because orelse and inv are both computational function, both (t r u e . o r e l s e

t r u e . i n v) and (f a l s e . o r e l s e f a l s e . i n v) are computed to canonical object

"true". Therefore, the goal become

Va;: bool Eq (if x true true) true.

By rule iLabsorts, we can rewrite (i f x t r u e t r u e) by t r ue . The goal becomes

Va; : bool Eq true true

which can be proved by Eq_ref 1 rule.

10.3 Arithmetic Decision Procedures

These are some decision procedures to prove arithmetic relation, array and tuples

automatically. We can use the same method to develop a program to mimic those

decision procedures to generate proof terms.

The decision procedure discussed here is based on the variable elimination

method for natural numbers, which has been implemented by Boulton in HOL

158

[Bou93]. Boulton's procedure operates in two phases. The first phase normalises

the negation of the formula. The second phase is trying to simplify the normalised

term until "true" or "false". The first phase proceeds as follows:

1. The logical implications and equivalences are replaced by conjunctions, dis

junctions and negations.

2. The negations are then pushed as far down the term as possible.

3. The term is put into disjunction normal form (DNF).

4. Each disjunction is now the conjunction of inequalities which can then be

normalised to < inequalities.

5. The resulting inequalities are further normalised so that each variable ap

pears at most once in each inequality, and on the appropriate side of the

relation for its coefficient to be positive.

The second phase of the procedure tries to eliminate variables unti l all of the

inequalities contain only constants which can then be evaluated to either true or

false. A false inequality completes the proof of a conjunction. A true inequality

can be discarded. I f all of the disjunctions are proved to be false which means the

negation of the original formula is false. We can then conclude that the original

formula is true.

Inference Rules

The normalisation to DNF is based on the following equivalence rules.

x => y = ->x V y

x •o- y = {->x V y) A (->y V x)

—i—\X = x

159

->(a; A y) = -ix V ->y

->(x V y) = ->x A ->y

This algorithm normalises each inequality to < inequalities using the following

rules.

(m < n) = (1 + m < n)

(m = n) — (m < n) A (n < m)

(m > n) = -i(m < n)

The second phase, variable elimination, is based on the following rules.

Va : not m<n = a*m<a*n (10.6)

Va : not m<n = a + m<a + n (10.7)

Vp,q:bool pAq = pApAq (10.8)

\/a,b:nat a + b = b + a (10.9)

Va, 6, c, d, e, f,g : not (a<b + c)A(c + d<e) = a + d<b + e (10.10)

The above equivalence rules have been formally proved in Lego. The imple

mentation is then following the algorithm and applying the above equivalence

rules to generate proof terms. Here is an example to show the procedure for

variable elimination.

Examples

Suppose we want to prove

Eq (m + n < p) A (2m < l + n) A (3 + p < 3m) false,

the proof can be proceeded as follows.

160

P r o o f Rewrite by the rule ?, we can get the following goal:

(m + 2m < p + 1) A (3 + p < 3m)

Rewrite by rule ?, we can get the following goal:

(m + 2m + 3 < 3m + 1)

(3m + 3 < 3m + 1)

(3 < 1)

which can be computed to "false".

161

Chapter 11

Conclusion

In the conclusion, a summary of the thesis is presented. Finally, possible future

researches are suggested.

11.1 Summary

We have described a formal development of a framework for the verification of

concurrent programs in Lego system. Since we use CCS and an imperative lan

guage as the description language, the system modeling job is pretty easy. Ad

ditionally, LegoMC can do the verification of finite systems automatically which

improve the efficiency dramatically. Infinite system verification can be carried

out in Lego with the aid of LegoMC for parts of proofs.

The second part of this thesis describes how we formalise description languages

and specification languages in Lego. One essential feature of our framework is

that all of the inference rules are formally proved and proof-checked in Lego.

This feature ensures the correctness of individual verification methods and the

consistency of their integration. The description languages are formalised by

deep embedding, whereas specification language, i.e. /Lt-calculus, is formalised by

162

shallow embedding which make the extension of specification languages and the

integration of various verification methods easier.

The third part is focused on LegoMC. We have successfully developed a model

checker, LegoMC, which can be used to verify finite state systems and generate

proof terms automatically. The interface of LegoMC allows users to use the

syntax which they are familiar with. We have used LegoMC to analyse a transport

protocol. Several mutual exclusion algorithms have also been verified. We also use

two infinite state examples to demonstrate the integration of various verification

methods within this verification environment.

The final part summarises the techniques of automatic proof term generation

that we got during the development of LegoMC. Besides model-checking, we have

also studied the application of proof term generation to Binary Decision Diagram

and arithmetic decision procedures.

In practice, we can use LegoMC as a debugging tool that can be used to find

the counter example for a false system. After several modification and then get a

complete system, we can then use LegoMC to generate proof terms which is then

put into Lego to be type checked to further ensure the correctness of the results.

11.2 Future Research

This thesis has created a solid base for an effective and efficient domain-specific

verification based on type-theory proof checkers. The future work wil l further

enrich this framework to be able to deal with wider classes of systems.

163

Extension with Real Time, Data Type, Functions

The current system for CCS is pure CCS (without value passing), i t can be further

extended to value pass CCS. The data type of ICPL is only natural number, we

can extend i t with more data type or abstract data type (e.g. array, list, etc.) and

real time reasoning. Furthermore, to be able to incorporate future changes and

extensions to other description languages, we can develop a tool similar to [Bou96]

so that we can formalise languages in Lego from given specifications of the syntax

and the operational semantics of the languages. Besides the formalisation, this

tool should generate the relevant theorems and computational functions necessary

to reason about the logical properties.

Implement Other Automatic Techniques and the Integra

tion with Model Checking

In chapter 10, we have proved the inference rules of the BDD and arithmetic

decision procedures. Further work would be implementing a suitable algorithm

based on our proof term generation techniques in chapter 9. Certain adjustment

would be necessary to fit into type theory setting. How to integrate BDD and

arithmetic decision procedures with LegoMC to form a powerful tool is also a

challenging research direction.

Efficiency and Background Proof Generation.

Efficiency is a key issue in automated proof generation. This can be tackled in

at least two respects. First, more efficient algorithms can be investigated and

implemented. Using the technique of on-the-fiy lemma generation described in

chapter 9, we have improved the efficiency of LegoMC dramatically: the state-

space of a problem with several hundred thousand travel states was reduced to just

164

several thousand. This is very promising, and we can continue this investigation

and study its suitability in a more general context.

Secondly, we can explore another important idea - background proof genera

tion. As some of the work experience shows (both in our work in type theory and

the work in HOL [Bou93], for example), a ful ly expansive theorem prover could

be less efficient in general. In the interactive environment of proof development,

automated proof generation can be done in the background. In other words, we

can use multi-thread techniques to hide the proof term generation in the back

ground and keep the interactive user interface progressing fluently by means of

fast classical methods. Theoretic justification of such a technique should be stud

ied; for example, we can show that a decidable formula is true by a classical BDD

method i f and only i f there is a proof of the formula in the type theory.

Composition Rules and Equivalence Rules of I C P L

Some of inference rules such as composition rules and equivalence rules of CCS

have been proved and used to verify small infinite-state systems in chapter 9.

Since ICPL is easier and clearer to describe more complicated systems, i t would

be interesting to develop composition rules and equivalence rules for infinite-

state systems modeled in ICPL. We can also consider larger examples and case

studies to demonstrate how different methods can be combined to solve problems

efficiently.

Domain Specific Interface

The current human machine interface of LcgoMC is a domain-specific inter

face wi th purely the syntax of description languages and specification languages.

Therefore general programmers and system analysts can easily use this system

165

to do verification by the syntax they are familiar with instead of learning Lego.

However, LegoMC can only handle finite state systems and therefore users have

to use Lego if they want to verify infinite state systems. It is expected an in

tegrated domain-specific interface for various verification techniques, both finite

and infinite state, will further extend the usage of this framework.

Proof Explanation

Automatic theorem proving techniques have the advantage of efficiency. We can

use them to verify a lot of complicated systems automatically. However, a draw

back is no explanation about the proof. Some model checkers can generate counter

examples when a system fail on the desired property but no clue about the proof

once the system does satisfy the property. Our verification environment based

proof terms has the potential to tackle this problem by extracting proof explana

tion from generated proof terms.

166

Appendix A: Lego Libraries of some inductive

data types

Natural Numbers

Inductive Cnat:Type(0)]
Constructors [zero mat][sue:nat->nat];

[nat.rec = [T|Type]nat_elim ([_:nat]T)
: {T|Type}T->(nat->T->T)->nat->T]

[na t . i t e r = [T|Type][x:T][f:T->T]nat_rec x ([_ : n a t] f)
: {T|Type}T->(T->T)->nat->T]

[plus = [m,n:nat] nat_iter n sue m : nat->nat->nat]
[times = [m,n:nat] nat_it e r zero (plus n) m : nat->nat->nat]
[pred = nat_rec zero [n,_:nat]n (* truncated pred *) : nat->nat]
[minus = [m,n:nat] nat_iter m pred n : nat->nat->nat]

where nat.elim is the recursive operator of natural numbers, which is generated
by Lego.

Booleans

Inductive [bool: type(O)]
Constructors [true: bool][false:bool];

[bool _rec = [TIType]bool_elim ([_:bool]T)
: {T|Type}T->T->bool->T]

[i f = [tlType][b:bool][tCase.fCase:t] bool.rec tCase fCase b
: {t|Type}bool->t->t->t]

167

[andalso = [a,b:bool] i f a b false : bool->bool->bool]
[orelse = [a,b:bool] i f a true b : bool->bool->bool]
[inv = [u:bool] i f u false true : bool->bool]
[implies = [a,b:bool] i f b true (i f a false true)

: bool->bool->bool]
[is.true = [b:bool] Eq b true : bool->Prop] ;
[is_false = [b:bool] Eq b false : bool->Prop] ;

where bool.elim is the recursive operator of booleans, which is generated by
Lego.

Lists

Inductive [list:Type(0)] Parameters [t:Type(0)]
Constructors [n i l : l i s t] [c o n s l : t - > l i s t - > l i s t] ;

[cons [t|Type(0)][x:t] [l r l i s t t] = consl t x 1];

[e x i s t _ l i s t (* decide whether a l i s t has a member with a given property *)
= [t|Type(0)][P:t->bool] l i s t _ i t e r false ([x:t][b:bool]orelse

: {t|Type(0)}(t->bool)->(list t)->bool]

[member = [t|Type(0)][eq:t->t->bool][x:t]exist_list (eq x)
: {t|Type(0)}(t->t->bool)->t->(list t)->bool]

Some Logical Definitions

168

[A,B,C,D,E,F,G|Prop]
[T,S,U,V,W,X|Type(0)];
[a:A] Cb:B] [c:C] [d:D] [e:E] [f :F] Cg:G] ;
[trueProp = {P:Prop}P->P : Prop]
[Id = [t : T] t : T->T]
[Propld = [a:A]a : A->A]
[absurd = {A:Prop}A : Prop]
[not = [A:Prop]A->absurd : Prop->Prop] ;
[and = [A,B:Prop]{C|Prop}(A->B->C)->C : Prop->Prop->Prop];
[or = [A,B:Prop]{C|Prop}(A->C)->(B->C)->C : Prop->Prop->Prop];
[pair = [CIProp][h:A->B->C]h a b : and A B] ;
[i n l = [C|Prop][h:A->C][_:B->C]h a : or A B]
[i n r = [CIProp][_:A->C][h:B->C]h b : or A B] ;
[f s t = [h:and A B]h ([g:A] L:B]g) : (and A B)->A]
[snd = [h:and A B]h ([_:A] [g:B]g) : (and A B)->B] ;
[i f f = [A,B:Prop]and (A->B) (B->A) : Prop->Prop->Prop]
[A l l = [P:T->Prop]{x:T}P x : (T->Prop)->Prop]
[Ex = [P:T->Prop]{B:Prop}({t:T}(P t)->B)->B : (T->Prop)->Prop]
[Exlntro = [wit:T][P:T->Prop][prf:P wit][B:Prop][gen:{t:T}

(P t)->B]gen wit prf
: {wit:THP:T->Prop}(P wit)->Ex P]

[ExElim = [P|T->Prop][M:Ex P][NI Prop][prf:{t:T}(P t)->N]M N prf
: {P|T->Prop}(Ex P)->{N|Prop}({t:T}(P t)->N)->N];

[Eq = [x,y:T]{P:T->Prop}(P x)->P y
: T->T->Prop];

169

Appendix B: The Formalisation of /^-calculus

Modality

Inductive [Modality:SET] ElimOver Type
Constructors [Modal:(list Label)->Modality]

[Negmodal:(list Label)->Modality];

Goal partlistl:{A,B|SET} (l i s t (A#B))->list A;
intros __; Refine l i s t _ e l i m (A#B)[1:(list (A#B))]list A;
Refine n i l ;
intros; Refine cons x l . l x2_ih;
Save;

Goal partlistr:{A,B|SET} (l i s t (A#B))->list B;
intros __; Refine l i s t . e l i m (A#B) [1 : (l i s t (A#B))]list B;
Refine n i l ;
intros; Refine cons xl.2 x2_ih;
Save;

Goal f i l t e r : M o d a l i t y - > (l i s t (Label#State))->list State;
Refine Modality.elim [M:Modality](list (Label#State))->list State;
intros allowed;
Refine l i s t _ e l i m (Label#State)[lrlist (Label#State)]list State;
Refine n i l ;
intros b xs _;
Refine i f (member Eq.Label b. l allowed) (cons b.2 x2_ih) x2_ih;
intros forbidden;
Refine l i s t . e l i m (Label#State)[l:list (Label#State)]list State;

170

Refine n i l ;
intros b xs _;
Refine i f (member Eq_Label b . l forbidden) x2_ih (cons b.2 x2_ih);
Save;

Goal MTrans:Modality->State->State->Prop;
Refine Modality_elim [M:Modality]State->State->Prop;
intros; Refine Ex[1:Label]and (Member 1 x2)(Trans 1 H HI);
intros; Refine Ex[1:Label](and (Trans 1 H HI))(not (Member 1 x l)) ;
Save;

Goal modal.check: { 1 : LabelHM: Modality}Prop;
intros _; Refine Modality_elim [M:Modality]Prop;
intros; Refine is_true (member Eq_Label 1 x2);
intros; Refine is.false (member Eq_Label 1 x l) ;
Save;

171

Monotonicity

Goal Mono [Z:Form]Z;
Intros ; Refine H; Refine HI;
Save Mono_Vax;

Goal {F:Form}Mono [_:Form]F;
Intros; Refine HI;
Save Mono_triv;

Goal {A|SETMF|A.Pred->A.PredHQlA.Pred}F.Mono->Mono ([Z:A.Pred]And Z.F Q);
intros; Intros ; Refine pair;
Refine H C;
Refine HI;
Refine H2.fst;
Refine H2.snd;
Save Mono_Andl;

Goal {AlSETHF|A.Pred->A.PredHQ|A.Pred}F.Mono->Mono ([Z:A.Pred]And Q Z.F);
intros; Intros ; Refine pair;
Refine H2.fst;
Refine H C;
Refine HI;
Refine H2.snd;
Save Mono_And2;

Goal {A|SETHF,G|A.Pred->A.Pred}F.Mono->G.Mono->Mono ([Z:A.Pred]And Z.F Z.G);
intros; Intros ; Refine pair;
Refine H C;
Refine H2;
Refine H3.fst;
Refine HI C;
Refine H2;
Refine H3.snd;
Save Mono_And;

172

Goal {A|SETHF,G|A.Pred->A.Pred}F.Mono->G.Mono->Mono ([Z:A.Pred]Or Z.F Z.G);
intros; Intros ; Refine H3;
intros; Refine i n l ; Refine H C; Refine H2; Refine H4;
intros; Refine inr; Refine HI C; Refine H2; Refine H4;
Save Mono_0r;

Goal {F|State.Pred->State.Pred}{M|Modality}F.Mono->Mono ([Z:State.Pred]Box H Z.F);
intros; Intros ; Intros ;
Refine H C;
Refine HI;
Refine H2;
Refine H3;
Save Mono_Box;

Goal {F|State.Pred->State.Pred}{MIModality}F.Mono->Mono ([Z:State.Pred]Dia M Z.F);
intros; Intros ; Refine H2;
intros; Refine Exlntro t ;
Refine pair H3.fst;
Refine H C;
Refine HI;
Refine H3.snd;
Save Mono_Dia;

Goal {F|Form->Fora->ForaHT|Tag}({X:FormKF X) .Mono)->Mono ([Z:Form]Tnu T [Y:Form] (F Y Z));
intros; Intros ;
Refine H2;
intros;
Refine Exlntro t ;
Refine pair ? H3.snd;
Intros ; Refine H3.fst x l ;
Refine H4;
intros; Refine i n l ; Refine H5;
intros; Refine inr; Refine H t C; Refine HI;
Refine H5;

173

Save Mono_Tnu;

Goal {F|Form->Form->FormHT|Tag}({X:Form}(F X).Mono)->Mono ([Z:Form]Tmu T [Y:Form](F Y Z));
intros; Intros ; Intros ;
Refine H2;
Intros ;
Refine H3;
Refine pair ? H4.snd;
Refine H ? C;
Refine HI;
Refine H4.fst;
Save Hono_Tmu;

174

Some Abbreviations

[t t = Nu [Z: Form] Z : Form] ;
[f f = Mu [Z:Form]Z : Form];

[able [X:list Label] = Dia (Modal X) t t] ;
[inable [X:list Label] = Box (Modal X) f f] ;
[allaction = Negmodal (n i l Label)];
[only [X:list Label] = (Dia allaction tt).And (Box (Negmodal X) f f)] ;
[deadlock = Box allaction f f] ;
[aly [X:Form] = Nu [Z:Form] (X.And (Box allaction Z))] ;
[evn [XrForm] = Mu [Z:Form] (X.Or ((Dia allaction tt).And (Box allaction Z)))] ;
[deadlockfree = aly (Dia allaction t t)] ;

175

/i-calculus

[Form=State.Pred];
[Box [M:Modality][A:Form] = [s:State]Subset (MTrans M s) A : Form];
[Boxl [1:Label] [A:Form] = [s:State]Subset (Trans 1 s) A :Form];
[Dia [M: Modality] [A: Form] = [s: State] Ex (And (MTrans M B) A) : Form];
[Dial [1:Label][A:Form] = [s:State]Ex (And (Trans 1 s) A) :Form];

(* tagged operators due to Winskel *)
(* Tag is a predicate of states *)

[Tag = Form]; [empty.tag = State.Emptyset : Tag];
[Tnu [T:Tag][F:Form->Form] = [s:State]Ex [P:Form](and (Subset P (Union T P.F)) s.P): Form]
[Tmu [T:Tag][F:Form->Form] = [s:State]All[P:Form](Subset (Minus (F P) T) P) -> s.F : Form]
[Mu [F:Form->Form]= Tnu empty_tag F : Form];
[Mu [F:Form->Form]= Tmu empty_tag F : Form];

[state_decidable : {s,s':State}or (Eq s s') (not (Eq s s '))] ; (* decidable state eq *)

Goal Tnu.lemma : {T:Tag}{F:Form->Form>-(P:FormKF.postfp P)->Subset P (Tnu T F) ;
intros; Intros ; Refine Exlntro P;
Refine pair; Intros ; Refine inr; Refine H; Refine H2;
Refine HI;
Save;

Goal Tnu_base : {T: TagHF: Form->FormHs: State}s. T->s. (Tnu T F) ;
intros; Refine Exlntro T; Refine pair ? H;
Intros ; Refine i n l HI;
Save;

Goal Tnu_base_set:{T:TagHF:Fom->ForaHs:Form}(Subset s T)->Subset s (Tnu T F) ;
intros; Intros ; Refine Tnu_base; Refine H; Refine HI;
Save;

176

Goal Tnu.unfold : {T: TagHF :Form->FormMs:State}F.Mono->
s.(F (Tnu (Union T s.Singl) F))->s.(Tnu T F);

intros F_mono _; [Ks = Tnu (Union T s.Singl) F]; Refine Exlntro Ks;
Refine pair; Refine -0 Tnu_base; Refine -0 inr; Refine -0 Eq_refl;
Intros ; Refine state.decidable x s;
intros; Qrepl H2; Refine inr; Refine H;
intros; Refine HI; intros S _;
Claim x.(Union (F S) T); Refine ?+l;
intros; Refine inr; Refine F_mono S; Refine -0 H4;
Intros ; Refine Exlntro S;
Refine pair; Refine -0 H5; Refine H3.fst;
intros; Refine i n l ; Refine H4;
Refine H3.fst; Refine x; Refine H3.snd;
intros; Refine inr; Refine singl_lemma ? ? ? H2; Refine H4;
intros; Refine i n l ; Refine H4;
Save;

(* without unfolding state s *)
Goal Tnu_unfoldl : {T | TagHF I Form->FormHs I State}F. Mono->

s.(F (Tnu T F))->s.(Tnu T F);
intros; Refine Tnu_unfold;
Refine H; Refine H;
Refine Tnu T F;
Refine -0 HI;
Intros ; Refine H2; intros; Refine Exlntro t ;
Refine pair; Refine -0 H3.snd;
Intros ; Refine H3.fst; Immed;
intros; Refine i n l ; Refine i n l ; Refine H5;
intros; Refine inr; Refine H5;
Save;

Goal lemma.tnu : {TI TagHF I Fo:ra->ForniHt: Form} (Subset t (Union T (F t)))->Subset t (Tnu T F.
intros; Intros ; Refine Exlntro t ; Refine pair; Refine -0 HI;
Intros ; Refine H; Refine H2;

177

Save;

Goal Tmu.base : {T: TagHF :Form->FormHs:State}s.T->not s.(Tmu T F) ;
intros; Intros _; Refine lemma_Not; Refine State; Refine s; Refine T; Refine H; Refine HI
Intros ; Refine H2.snd;
Save;

Goal Tmu_unfold :
{T: TagHF: Form->FormHs: State}F. Mono->
(not s.T)->s.(F (Tmu (Union T s.Singl) F))->s.(Tmu T F);

introa; [Ks = Tmu (Union T a.Singl) F];
Intros ; Refine H3;
Refine pair ? HI; Refine H Ks; Refine -0 H2;
Intros; Refine H4 x;
Refine minus_union_lemma; Refine H3;
Save;

Goal Tmu_unfoldl :
{T: TagHF :Form->Form>{s: State}
(not s.T)->F.Mono->s.(F (Tmu T F))->s.(Tmu T F);

intros; Intros ; Refine H3;
Refine pair; Refine -0 H;
Refine HI; Refine Tmu T F; Refine -0 H2;
Intros ; Refine H4; Refine H3;
Save;

(* no successor states *)
Goal lemma_Boxl:{s:State>{K:list LabelHF:Form}({a:LabelHs': State} (Member a K)
->not (Trans a s s')) ->Box (Modal K) F s;
intros; Intros ; Refine HI;
intros; Refine H;
Refine t ; Refine x; Refine H2.fst; Refine H2.snd;

178

Save;

(* no successor states : another expression *)
Goal lemma_Box:{s:StateMK:list LabelHF:Form}(not (Ex2[a:Label] [s':State]
and (Member a K)(Trans a s s*)))->Box (Modal K) F s;
intros; Intros ; Refine HI;
intros; Refine H;
Refine Ex2Intro ?|t|x;
Refine H2;
Save;

179

Appendix C: The Algorithm to Prove Monotonic-

ity

l e t rec prove_mono 1 v = match 1 with
(Atom y) -> "(Hono.triv ?)"

I (Var a) -> i f v=a then "Mono_Var" else "(Mono_triv (Var a))"
I (And(y,z)) -> "(Mono_And ""(prove_mono y v)~" ""(prove_mono z v) " ") "
I (Or(y,z)) -> "(Mono_0r ""(prove_mono y v)"" ""(prove_mono z v) " ") "
I (Box (y,z)) -> "(Mono_Box ""(prove.mono z v) " ") "
I (Dia (y,z)) -> "(Mono_Dia ""(prove_mono z v) " ") "
I (Nu (t,z)) ->

i f z=(Var 1) then "(Mono_triv ?)" else "(Mono_Tnu' ""(prove.mono z (v+1))"")"
I (Mu (t,z)) ->

i f z=(Var 1) then "(Mono_triv ?)" else "(Mono.Mu ""(prove_mono z (v+1))"")";;

180

Appendix D: The Lego Proof of Lemma 8.1.1

Goal lenuna811:{a|Act>{P|ProcessHnlnat}(Trana a n.Ring P)->
or ((Eq a enter).and (Eq P n.Ring_enter))

((Eq a tau).and (Eq P n.Ring));
intros; Refine lemma_hide H;
(* a=act *)
intros; Refine i n l ; Refine HI; intros; Refine H2; intros; Qrepl H5; Refine pair; Next +1;
Refine Eq_resp2; Refine -1 Eq_refl; Refine snd; Refine (Eq a enter);
Refine -0 ?+0.fst; Qrepl H3;
Refine nat_elim [n|nat]{P:Process>(Trans (act t) (Ring' n) P)->and (Eq (act t) enter)
(Eq P (Ring'_enter n));
Qrepl -0 H3.Eq_sym; Refine -0 H6;
(* base case *)
intros; Refine lemma_par H7;
(* pari *)
intros; Refine H8; intros; Refine lemma_dot H9.fst; intros;
Claim not (is_false (orelse (member.act t (cons pass_b (nil|ActB)))
(member_act (comple t) (cons pass.b (ni l l A c t B))))) ;
Refine ?+l; Refine H4; Qrepl (a c t _ i s _ i n j _ x l pass_b t H10).Eq_sym; Refine true_not_false;
(* par2 *)
intros; Refine H8; intros;
Claim Trans (act t) ((enter.dot (exit.dot IT)).cho (zero.comp.act.dot I)) t l ;
Refine lemma.cho ?+l;
intros; Refine lemma.dot H10; intros; Refine pair Hll.Eq.sym; Qrepl H9.snd;
Refine Eq_resp2; Refine Eq_refl; Refine H12.Eq_sym;
intros; Refine lemma.dot H10; intros;
Claim not (is_false (orelse (member.act t (cons pass.b (nillActB)))
(member.act (comple t) (cons pass_b (ni l l A c t B))))) ;
Refine ?+l; Refine H4; Qrepl (a c t _ i s _ i n j _ x l zero.comp t Hll).Eq_sym; Refine true_not_false
Refine lemma_rec H9.fst;
(* par_com *)
intros; Refine tau_not_Eq_act t H8.fst.Eq_sym;
(* induction case *)
intros _; Qrepl par_trans xl.IRing' I IT; Qrepl par_eql11 IT;

181

Qrepl (par_trans x l . I R i n g ' I T I).Eq_aym; i n t r o s ; Refine lemma_par H7;
(* p a r i *)
i n t r o a ; Refine H8; i n t r o s ; Refine x l _ i h t l H9.fst; i n t r o s ; Refine p a i r H10; Qrepl H9.snd;
Qrepl M l ; Qrepl (par_trans x l . I R i n g ' (exit.dot IT) I) ; Qrepl par_eq|(exit.dot I T) 1 1 ;
Refine (par_trans x l . I R i n g ' I (exit.dot IT)).Eq_sym;
(* par2 *)

i n t r o s ; Refine H8; i n t r o s ; Refine lemma_dot H9.fst; i n t r o s ;
Claim not (i s . f a l s e (o r e l s e (member.act t (cons paas_b (n i l | A c t B)))
(member_act (comple t) (cons pass_b (n i l | A c t B))))) ;
Refine ? + l ; Refine H4; Qrepl (a c t _ i s _ i n j _ x l zero.base t H10).Eq_sym; Refine t r u e _ n o t _ f a l s e ;
(* par_com *)

i n t r o s ; Refine tau_not_Eq_act t H8.fst.Eq_sym;

(* a=tau *)

i n t r o s ; Refine i n r ; Refine HI; i n t r o s ; Refine H2; i n t r o s ; Refine p a i r H3; Qrepl HB;
Refine Eq_resp2; Refine -0 E q _ r e f l ;
Refine nat_elim [n:nat]-[t:Process} (Trans tau (Ring' n) t)->Eq t (Ring' n) ;
Qrepl -0 H3.Eq_sym; Immed;
(* base case *)
i n t r o s ; Refine lemma.par H6;
(* p a r i *)
i n t r o s ; Refine H7; i n t r o s ; Refine lemma_dot H8.fst; i n t r o s ; Refine tau_not_Eq_act zero.base
Refine H9.Eq_sym;
(* par2 *)
i n t r o s ; Refine H7; i n t r o s ;
Claim Trans tau ((enter.dot (exit.dot IT)).cho (zero.comp.act.dot I)) t 2 ;
Refine lemma_cho ? + l ;
i n t r o s ; Refine lemma_dot H9; i n t r o s ; Refine tau_not_Eq_act one.base; Refine H10.Eq_sym;
i n t r o s ; Refine lemma_dot H9; i n t r o s ; Refine tau_not_Eq_act zero.comp; Refine H10.Eq_sym;
Refine lemma_rec H8.fst;
(* par_com *)
i n t r o s ; Refine H7.snd; i n t r o s ; Refine H8.fst;
(* par_coml *)
i n t r o s ; Refine lemma_dot H9.fst; i n t r o s ;
Claim Trans (act (comple u)) ((enter.dot (exit.dot IT)).cho (zero.comp.act.dot I)) s;

182

Refine lemma_cho ?+l; Refine -0 lemma_rec H9.snd;

(* chol *)

i n t r o s ; Refine lemma_dot H12; i n t r o s ; Refine base_not_Eq_comp zero one;

Qrepl (a c t _ i s _ i n j _ x l one.base u.comple H13);

Qrepl (a c t _ i s _ i n j _ x l u zero.base H10.Eq_sym); Refine E q _ r e f l ;

(* cho2 *)

i n t r o s ; Qrepl H8.snd; Refine lenuna_dot H12; i n t r o s ; Qrepl par_eq|t2ls; Refine Eq_resp2;

Refine H14.Eq_sym; Refine Hll.Eq_sym;

(* par_com2 *)

i n t r o s ; Refine lemma_dot H9.fst; i n t r o s ;

Claim Trans (act u) ((enter.dot (exit.dot IT)).cho (zero.comp.act.dot I)) s;

Refine lemma_cho ?+i; Refine -0 lemma_rec H9.snd;

(* chol *)

i n t r o s ; Refine lemma_dot H12; i n t r o s ; Refine base_not_Eq_comp one zero;

Qrepl (a c t _ i s _ i n j _ x l zero.base u.comple H10); Qrepl (a c t _ i s _ i n j _ x l u one.base H13.Eq_sym);

Refine E q _ r e f l ;

(* cho2*)

i n t r o s ; Qrepl H8.snd; Refine lemma.dot H12; i n t r o s ; Qrepl par_eq|t2|s; Refine Eq_resp2;

Refine H14.Eq_sym; Refine Hll.Eq_sym;

(* induction case *)

i n t r o s ; Qrepl par_trans x l . I R i n g ' I IT; Qrepl par_eq|I|IT;

Qrepl (par_trans x l . I R i n g ' IT I).Eq_sym; i n t r o s ; Refine lemma.par H6;

(* p a r i *)

i n t r o s ; Refine H7; i n t r o s ; Qrepl H8.snd; Refine Eq_resp2; Refine -0 E q . r e f l ;

Refine x l _ i h t 2 H8.fst;

(* par2 *)

i n t r o s ; Refine H7; i n t r o s ; Refine lemma_dot H8.fst; i n t r o s ; Refine tau_not_Eq_act zero.base

Refine H9.Eq_sym;

(* par_com *)

i n t r o s ; Refine HT.snd; i n t r o s ; Qrepl H8.snd; Refine H8.fst;

(* par_coml *)

i n t r o s ; Refine lemma.dot H9.snd; i n t r o s ; Qrepl par.trans (IRing' x l) I T I ;

Qrepl par_eq|IT|I; qrepl (par.trans (IRing' x l) I IT).Eq_sym; Refine Eq_resp2;

Refine -0 Hll.Eq.sym; Claim (TRANS pass.b.comple.act (par (IRing* x l) I T) t 2) ;

Refine lemma21 Refine pass; Claim Eq (comple pass.b) u; Qrepl ? + l ; Refine H9.fst;

183

Refine ActB_elim [u:ActB] (Eq pass (act (comple u)))->Eq (comple pass_b) u;

Refine -0 H10;

i n t r o s ; Refine base_not_Eq_comp x2 zero; Refine a c t _ i s _ i n j _ x l ; Refine H12;

i n t r o s ; Equiv Eq zero.comp xll.comp; Refine Eq_resp; Refine b a s e _ i s _ i n j _ x 2 ;

Refine a c t _ i s _ i n j _ x l ; Refine H12;

(* par_com2 *)

i n t r o s ; Refine lemma_dot H9.snd; i n t r o s ; Qrepl par_trans (IRing' x l) IT I ;

Qrepl par_eq|IT|I; qrepl (par_trans (IRing' x l) I IT).Eq_sym; Refine Eq_resp2;

Refine -0 Hll.Eq.sym; Claim (TRANS pass_b.comple.act (par (I R i n g ' x l) I T) t 2) ;

Refine lemma21 ?+l; Refine pass; qrepl (a c t _ i s _ i n j _ x l zero.base u H10); Refine H9.fst;

Save;

184

Bibliography

[ACD90] R. Alur, C. Courcoubetis, and D. Dill. Model-checking for real-time

systems. In proceedings of the 5th Symposium on Logic in Computer
s

Science, pages 414-425, Philadelphia, June 1990.

[ACN90] L . Augustsson, Th. Coquand, and B. Nordstrom. A short description

of another logical framework. In G. Huet and G. Plotkin, editors,

Preliminary Proc. of Logical Frameworks, 1990.

[AH90] R. Alur and T . Henzinger. Real-time logics: complexity and expres

siveness. In Proceedings of the 5th Symposium on Logic in Computer

Science, pages 390-401, Philadelphia, June 1990.

[Ake78] S.B. Akers. Binary decision diagrams. ACM Transations on Com

puters, C-27:509-516, 1978.

[And92] H.R. Andersen. Model checking and boolean graphs. In B. Krieg-

Bruckner, editor, Proceedings of the Fourth European Symposium on

Programming, volume 582 of Lecture Notes in Computer Science.

Springer Verlag, February 1992.

[And93] H.R. Andersen. Verification of Temporal Properties of Concurrent

Systems. PhD thesis, Aarhus University, Denmark, June 1993.

[Apt81] K . R. Apt. Ten years of Hoare's Logic. ACM Transactions on Pro

gramming Language and System, 3:431-483, 1981.

185

[ASW94] Henrik Reif Andersen, Colin Stirling, and Glynn Winskel. A com

positional proof system for the modal ^-calculus. Technical Report

RS-94-34, BRICS, 1994. Extended abstract appears in Proc. LICS'94.

[AW92] H.R. Andersen and G. Winskel. Compositional checking of satisfac

tion. Formal Methods In System Design, 1(4), 1992.

[BB94] Derek L . Beatty and Randal E . Bryant. Formally verifying a mi

croprocessor using a simulation methodology. In Proceedings of the

31st Design Automation Conference, pages 596-602. Association for

Computing Machinery, June 1994.

[BCM+92] J.R. Burch, E.M. Clarke, K . L . McMillan, D.L. Dill, and L . J . Hwang.

Symbolic model checking: 10 2 0 states and beyond. Information and

Computation, 98(2):142-170, June 1992.

[Bou93] R . J . Boulton. Efficiency in a fully-expansive theorem prover. Tech

nical Report TR337, University of Cambridge Computer Laboratory,

1993. Author's PhD thesis.

[Bou96] R . J . Boulton. A tool to support formal reasoning about computer

languages. Technical Report TR405, University of Cambridge Com

puter Laboratory, 1996.

[BRKM91] K.M. Butler, D .E . Ross, R. Kapur, and M.R. Mercer. Heuristics

to compute variable orderings for efficient manipulation of Ordered

Binary Decision Diagrams. In Proceedings of 28th ACM/IEEE Design

Automation Conference, pages 417-420, 1991.

[Bry86] R . E . Bryant. Graph-based algorithms for boolean function manipu

lation. IEEE Transactions on Computers, C-35(8), 1986.

[Bry92] R . E . Bryant. Symbolic boolean manipulation with ordered binary-

decision diagrams. ACM Computing Surveys, 24(3):293-318, 1992.

186

[BS92] Julian Bradfield and Colin Stirling. Local model checking for infinite

state spaces. Theoretical Computer Science, 96:157-174, 1992.

[C +86] R. L . Constable et al. Implementing Mathematics with the NuPRL

Proof Development System. Pretice-Hall, 1986.

[CE81] E.M. Clarke and E .A. Emerson. Design and synchronization skeletons

using Branching Time Temporal Logic, volume 131 of Lecture Notes

in Computer Science, pages 52-71. Springer Verlag, Berlin, 1981.

[CES86] E .M. Clarke, E .A . Emerson, and A.P. Sistla. Automatic Verification

of Finite-State Concurrent Systems Using Temporal Logic Specifi

cations. ACM Transition on Programming Languages and Systems,

8(2):244-263, April 1986.

[CF58] Haskell B. Curry and Rebort Feys. Combinatory Logic, volume I.

North-Holland, 1958.

[CGH94] E.M. Clarke, 0. Grumberg, and K. Hamaguchi. Another look at L T L

model checking. In D.L. Dill, editor, Proc. 6th Conference on Com

puter Aided Verification, volume 818 of Lecture Notes in Computer

Science, pages 415-427, Stanford, CA, June 1994. Springer Verlag.

[CGL92] E .M. Clarke, 0. Grumberg, and D.E . Long. Model checking and ab

straction. In Proc. 19th ACM Symposium on Principles of Program

ming Languages, pages 343-354, Albuquerque, New Mexico, 1992.

[CH88] Th. Coquand and G. Huet. The Calculus of Constructions. Informa

tion and Computation, 76(2/3), 1988.

[Cle90] R. Cleaveland. tableau-based model checking in the propositional

mu-calculus. Acta Informatica, 27(8):725-747, 1990.

187

[CPS93] R. Cleaveland, J . Parrow, and B. Steffen. The concurrency work

bench: A semantics-based verification tool for the verification of con

current systems. ACM Transactions on Programming Languages and

Systems, 15(l):36-72, January 1993.

[CY90] C Courcoubetis and M. Yannakakis. Markov decision process and

regular events. In Proc. 17th Int. Coll. on Automata Languages and

Programming, volume 443, pages 336-349, Coventry, July 1990. Lec

ture Notes in Computer Science.

[D+91] G. Dowek et al. The Coq Proof Assistent: User's Guide (version 5.6).

INRIA-Rocquencourt and CNRS-ENS Lyon, 1991.

[Dam90] Mads Dam. Translating C T L * into the modal ^-calculus. Technical

Report ECS-LFCS-90-123, L F C S , University of Edinburgh, Novem

ber 1990.

[Dam95] Mads Dam. Compositional Proof System for Model Checking Infi

nite State Processes. In I. Lee and S.A. Smolka, editors, Proc. CON

CUR'95, volume 962 of Lecture Notes in Computer Science, pages 12-

26, Philadelphia, Pennsylvania, USA, August 1995. Springer-Verlag.

[dB72] Nicolaas G. de Bruijn. Lamda calculus notation with nameless dum

mies, a tool for automatic formula manipulation, with application to

the Church-Rosser theorem. Indag. Math., 34:381-392, 1972.

[dB80] J.W. de Bakker. The Mathematical Theory of Program Correctness.

Prentice-Hall, 1980.

[Dij65] E .W. Dijkstra. Cooperating sequrntial processes. In F . Genuys, edi

tor, Programming Languages. Academic Press, 1965.

[EC80] E . Allen Emerson and Edmund M. Clarke. Characterizing correctness

properties of parallel programs using fixpoints. In J.W. de Bakker and

188

J . van Leeuwen, editors, Automata, Languages and Programming,

ICALP'80, volume 85 of Incs, pages 169-181. Springer-Verlag, 1980.

[EGL92] Urban Engberg, Peter Gronning, and Leslie Lamport. Mechanical

verification of concurrent systems with T L A . In G.V. Bochmann and

D.K. Probst, editors, Computer-Aided Verification 92, volume 663

of Lecture Notes in Computer Science, pages 44-55. Springer-Verlag,

1992.

[EH86] E .A . Emerson and J . Y . Halpern. "sometimes" and "not never" re

visited: on branching versus linear time temporal logic. Journal of

ACM, 33(1):151-178, 1986.

[EL85] E .A. Emerson and C . L . Lei. Efficient model checking in fragments of

the propositional mu-calculus. In Proceedings of the 10th Symposium

on Principles of Programming Languages, pages 84-96, New Orleans,

L A , January 1985. Association for Computing Machinery, also in

Proceedings of the First Annual Symposium om Logic in Computer

Science, I E E E Computer Society Press, June, 1986.

[Flo67] Robert W. Floyd. Assigning Meanings to Programs. In Proceedings

of Symposia in Applied Mathematics XIX, pages 19-32. American

Mathematical Society, 1967.

[GL93] S. Graf and C. Loiseaux. A tool for symbolic program verification and

abstraction. In Computer Aided Verification, Proc. 5th Int. Work

shop, volume 697 of Lecture Notes in Computer Science, pages 71-84,

Elounda, Greece, June/July 1993. Springer Verlag.

[GM93] M.J.C. Gordon and T . F . Melham. Introduction to HOL: A Theorem-

proving Environment for Higher-Order Logic. Cambridge University

Press, 1993.

189

[GM96] Joseph Goguen and Grant Malcolm. Algebraic Semantics of Impera

tive Programs. MIT Press, 1996.

[GMW79] Michael J . C. Gordon, Robin Milner, and Christopher P. Wadsworth.

Edinburgh LCF: A Mechanised Logic of Computation, volume 78 of

Lecture Notes in Computer Science. Springer-Verlag, 1979.

[GW93] P. Godefroid and P. Wolper. Partial-order methods for temporal veri

fication. In Proc. CONCUR '93, volume 715 of Lecture Notes in Com

puter Science, pages 233-246, Hildesheim, August 1993. Springer-

Verlag.

[Har95] John Harrison. Binary Decision Diagrams as a HOL Derived rule.

The Computer Journal, 38(1), 1995.

[HdR90] J J M Hooman and W P de Roever. Design and verification in

real-time distributed computing: an introduction to compositional

methods. In E Brinksma, G Scollo, and C A Vissers, editors, Proto

col Specification, Testing and Verification IX, pages 37-56. Elsevier,

1990.

[HHP92] R. Harper, F . Honsell, and G. Plotkin. A framework for defining

logics. Journal of the ACM, 40(1):143-184,1992. Preliminary version

in LICS'87.

[HLP90] E . Harel, O. Lichtenstein, and A. Pnueli. Explicit-clock temporal

logic. In proceedings of the 5th Symposium on Logic in Computer

Science, pages 402-413, Philadelphia, June 1990.

[Hoa69] C.A.R. Hoare. A axiomatic basis for computer programming. Com

munication of the ACM, 12:576-583, October 1969.

[Hoa78] C.A.R. Hoare. Communicating sequential processes. Communications

of the ACM, 21(8):666-677, 1978.

190

[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall,

1985.

[H0I8I] G.J . Holzmann. Pan: a protocol specification analyzer. Technical

Report TM81-11271-5, AT&T Bell Laboratories, March 1981.

[Hol85] G.J . Holzmann. Tracing protocols. AT&T Technical Journal,

64:2413-2434, December 1985.

[How80] William A. Howard. The formulae-as-types notion of construction. In

Jonathan P. Seldin and J . Roger Hindley, editors, To H.B. Curry: Es

says on combinatory logic, lambda calculus and formalism. Academic

Press, 1980.

[Hym66] H. Hyman. Comments on a problem in concurrent programming

control. Comm. ACM, 9(1):45, 1966.

[Jon86] C.B. Jones. Systematic Software Development Using VDM. Prentice

Hall, 1986.

[JS93] Jeffrey J . Joyce and Carl-Johan H. Seger. Linking Bdd-based sym

bolic evaluation to interactive theorem proving. In Proceedings of

the 30th Design Automation Conference. Association for Computing

Machinery, 1993.

[KL93] R. Kurshan and L . Lamport. Verification of a multiplier: 64 bits and

beyond. In Costas Courcoubetis, editor, Computer-Aided Verification

93, volume 697 of Lecture Notes in Computer Science, pages 166-179,

Elounda, Greece, June/July 1993. Springer Verlag.

[KM89] R.P. Kurshan and K. McMillan. A structural induction theorem for

processes. In 8th ACM Symposium on Principles of Distributed Com

puting, pages 239-248, Edmonton, Albera, Canada, August 1989.

191

[Knu66] D .E . Knuth. Additional Comments on a Problem in Concurrent Pro

graming Control. Comm. ACM, 9(5), 1966.

[Koz83] Dexter Kozen. Results on the propositional mu-calculus. Theoretical

Computer Science, 27:333-354, 1983.

[Kur94] Robert P. Kurshan. Computer-Aided Verification of Coordinating

Processes: The Automata-Theoretic Approach. Princeton University

Press, Princeton, New Jersey, 1994.

[Lam80] L . Lamport. Sometimes is sometimes "not never" —)• on the temporal

logic of programs. In Proc. 7th Ann. ACM Symp. on Principles of

Programming Languages, pages 174-185, 1980.

[Lam86] L . Lamport. The Mutual Exclusion Problem Part II - Statement and

Solutions. J. ACM, 33(2), 1986.

[Lar90] Kim G. Larsen. Proof systems for satisfiability in hennessy-milner

logic with recursion. Theoretical Computer Science, 72:265-288,1990.

[Lee59] C . Y . Lee. Representation of switching circuits by binary-decision

programs. Bell System Technical Journal, 38:985-999, 1959.

[Lon93] D.L. Long. Model Checking, Abstraction, and Compositional Reason

ing. PhD thesis, Carnegie Mellon University, 1993.

[LP92] Z. Luo and R. Pollack. L E G O Proof Development System: User's

Manual. L F C S Report ECS-LFCS-92-211, Department of Computer

Science, University of Edinburgh, 1992.

[Luo94] Z. Luo. Computation and Reasoning: A Type Theory for Computer

Science. International Series of Monographs on Computer Science.

Oxford University Press, 1994.

192

[Mag92] L . Magnusson. The new implementation of A L F . In Informal Pro

ceedings of Workshop on Logical Frameworks, Bastad, 1992.

[Mil83] R. Milner. Calculi for synchrony and asynchrony. Theoretical Com

puter Science, 25, 1983.

[Mil89] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[ML84] Per Martin-L6f. Intuitionistic Type Theory. Bibliopolis, Naples, 1984.

Based on a set of notes taken by Giovanni Sambin of a series of

lectures given in Padova, June 1980.

[MN95] Olaf Miiller and Tobias Nipkow. Combining Model Checking and

Deduction for I/O-Automata. In Tools and Algorithms for the Con

struction and Analysis of Systems, volume 1019 of Lecture Notes in

Computer Science, pages 1-16. Springer-Verlag, 1995.

[MP92] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Con

current Systems: Specification. Springer-Verlag, New York, 1992.

[Oos98] Martijn Oostdijk. Proof automation in type theory by internaliza

tion. In Preliminary Programme of Type 98 workshop, Kloster Irsee,

Germany, 1998.

[ORS92] S. Owre, J.M. Rushby, and N. Shankar. PVS: A prototype verifi

cation system. In Deepak Kapur, editor, 11th International Confer

ence on Automted Deduction(CADE), volume 607 of Lecture Notes

in Artificial Intelligence, pages 748-752, Saratoga, NY, June 1992.

Springer-Verlag.

[Par81] D. Park. Concurrency and automata on infinite sequences. In Proc.

of 5th GI Conf, volume 104 of Lecture Notes in Computer Science,

1981.

193

[Pet81] G. L . Peterson. Myths about the mutual exclusion problem. Inf.

Proc. Lett, 12(3), 1981.

[PN90] L . Paulson and T . Nipkow. Isabelle tutorial and user's manual. Tech

nical Report 189, University of Cambridge, Computer Lab., 1990.

[Pnu85] A. Pnueli. Linear and branching structures in the semantics and logics

of reactive systems. In Proc. 12th International Coll. on Automata,

Languages and Programming, pages 15-32. Springer-Verlag, Berlin,

1985.

[Pol94] Randy Pollack. Incremental Changes in LEGO: 1994, May 1994.

Available by ftp with L E G O distribution.

[Pol95] Robert Pollack. A Verified Typechecker. In M. Dezani-Ciancaglini

and G. Plotkin, editors, Proceedings of the Second International Con

ference on Typed Lambda Calculi and Applications, volume 902 of Lec

ture Notes in Computer Science, Edinburgh, 1995. Springer-Verlag.

[PZ86] A. Pnueli and L . Zuck. Probabilistic verification by tableaux. In

Proceedings of the First Symposium on Logic in Computer Science,

pages 322-331, Cambridge, June 1986.

[QS81] J.P. Queille and J . Sifakis. Specification and verification of concurrent

programs in C E S A R . In Proc. 5th Internat. Symp. on Programming,

volume 137 of Lecture Notes in Computer Science, pages 195-220.

Springer, Berlin, 1981.

[Ray86] M. Raynal. Algorithms for Mutual Exclusion. The MIT Press, 1986.

[RSS95] S. Rajan, N. Shankar, and M. K. Srivas. An Integration of Model

Checking with Automated Proof checking. In Computer Aided Ver

ification, Proc. 7th Int. Conference, volume 939 of Lecture Notes in

194

Computer Science, pages 84-97, Liege, Belgium, July 1995. Springer-

Verlag.

[Spi88] J.M. Spivey. Understanding Z: A specification Language and its For

mal Semantics. Cambridge University Press, 1988.

[Sti85] C. Stirling. A complete compositional modal proof system for a subset

of ccs. In volume 194 of LNCS, pages 475-486. Springer-Verlag, 1985.

[Sti92] C. Stirling. Modal and temporal logics. In S. Abramsky, D. Gabbay,

and T . Maibaum, editors, Handbook of Logic in Computer Science.

Oxford University Press, 1992.

[SW91] C. Stirling and D. J . Walker. Local model checking in the modal

mu-calculus. Theoretical Computer Science, 89(1):161-177, October

1991.

[Tar55] A. Tarski. A lattice-theoretical fixpoint theorem and its applications.

Pacific Journal of Mathematics, 25(2):285-309, 1955.

[Var85] M. Vardi. Automatic verification of probabilistic concurrent finite-

state programs. In Proc. 26th IEEE Symp. on Foundations of Com

puter Science, pages 327-338, Portland, October 1985.

[VW86] Moshe Y . Vardi and Pierre Wolper. An automata-theoretic approach

to automatic program verification (preliminary report). In Proceed

ings, Symposium on Logic in Computer Science, pages 332-344, Cam

bridge, Massachusetts, June 1986. I E E E Computer Society.

[Wal87] David Walker. Introduction to a calculus of communicating systems.

Technical Report ECS-LFCS-87-22, L F C S , University of Edinburgh,

1987.

195

[Wal89] David Walker. Automated analysis of mutual exclusion algorithms

using ccs. Technical Report ECS-LFCS-89-91, L F C S , University of

Edinburgh, 1989.

[Wal95] Igor Walukiewicz. Notes on the propositional /i-calculus: Complete

ness and related results. Technical Report NS-95-1, BRICS, Denmark,

1995.

[Win85] Glynn Winskel. On the composition and decomposition of assertions.

Technical Report TR-59, Computer Laboratory, University of Cam

bridge, 1985.

[Win89] Glynn Winskel. A note on model checking the modal i/-calculus. In

G. Ausiello, M. Dezani-Ciancaglini, and S. Ronchi Delia Rocca, ed

itors, Proceedings of the Sixteenth International Colloquium on Au

tomata, Languages, and Programming, volume 372 of Lecture Notes

in Computer Science, pages 761-772. Springer-Verlag, 1989.

[WL89] P. Wolper and V. Lovinfosse. Verifying properties of large sets of

processes with network invariants. In J . Sifakis, editor, International

Workshop on Automatic Verification Methods for Finite State Sys

tems, volume 407 of Lecture Notes in Computer Science, pages 68-80,

Grenoble, France, June 1989. Springer-Verlag.

[YL97] Shenwei Yu and Zhaohui Luo. Implementing a Model Checker for

L E G O . In John Fitzgerald, Cliff B. Jones, and Peter Lucas, editors,

FME'97: Industrial Applications and Strengthened Foundations of

Formal Methods, volume 1313 of Lecture Notes in Computer Science,

pages 442-458, Graz, Austria, September 1997. Springer-Verlag.

[YL98] Shenwei Yu and Zhaohui Luo. Automated Proof Term Generation.

In Typr'98, Kloster Irsee, Germany, 1998.

196

