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Abstract 

Most of us who have worked with named variables in the A-calculus must have noticed 
how sticky such variables can be. The problem is, that named variables play a very 
demanding role in the most basic operations of the .A-calculus, namely: ,B-reduction and 
substitution. This has lead to using implicit substitution rather than the explicit one 
in most theories of the A-calculus. Variable names however, have one advantage that 
should not be underestimated; that is: they facilitate the readability of terms. Now, it 
would be very nice if we could write the basic operations of the A-calculus in a precise 
way which avoids the messiness of variables. It would be very nice moreover, if we could 
sometimes keep the variable names, without having to pay the price usually associated 
with them. Our first task in this paper is to get rid of the problematic variable names 
and to establish what we believe is the most precise and fine A-calculus, 0". In such 
a calculus, de Bruijn's indices are used inst.ead of variable names and substit.ut.ion and 
reduction are defined in a step-wise fashion which can be directly implemented without 
having to carry out a lot of book-keeping as is usually t.he case in the classical A-calculus. 
Most importantly, the substitut.ion in 0,::: is no longer the implicit. substitut.ion but rather 
it is the explicit one which is long needed in ma.ny applicat.ions of the A-calculus. Such an 
explicit substitution has been facilitated as a result of the fine st.ructure of A-terms that we 
propose in this paper and where item notation plays a dominant role. Furthermore, t,he 
species of variable names is cult.ivat.ed and ordered so that. a fine inter-marriage between de 
Bruijn IS indices and variable names takes place. Such a relationship between de Bruijn's 
indices and variable names will be used to show the consist.ency of our fine reduction and 
explicit subst.itution in terms of the classical A-calculus. ~TC shall also reflect on the use 
and necessity of a-conversion. 

Keywords: De Bruijn's indices, va.ria.ble updating, substitution, reduction, sonndness. 
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1 Introduction 

We shall start in this paper by discussing a typed A-calculus A which has the following 
features: 

• There is no distinction between types and terms. This will make the calculus more 
general. See for example [Barendregt 91J and [Barendregt 92J where instead of terms 
and types, the notion of pseudo-terms is used. See furthermore [de Bruijn 70J where the 
Automath system provided is the most abstract formulation of type systems and where 
no distinction is made between types and terms. The selected papers in [N GdV 94J 
elaborate further on the Automath systems . 

.. The argument comes before the function so that instead of (tlt2) we write (t20tl)' This 
convention has a practical advantage which we will see below. In particular, it helps to 
show clearly which are the ,6-redexes. 

• The type comes before the typed variable so that instead of (A v,t,.1'2) we write (tIAvt2)' 
This convention is of less importance than the above convention but will playa role in 
providing a modular way of representing terms. That is, every non variable term can be 
looked at as an w-item followed by a term, where the notion of w-items for w E {Av, o}, 
is explained below. 

• The bracketing of the operators A and 0 are changed so that we write (tIAv)t2 instead 
of (tlAvt2) and (tIO)t2 instead of (tlot2). 

These conventions together, give rise to items like the A-item (tIAv) and the o-item (tIO). 
Moreover, the o-item and the A-item involved in a ,6-reduction occur adjacently in the term; 
they are not separated by the "body" of the term, that can be ext.remely long! This fashion 
of writing terms is close to the mathematical definitions and theorems as is elaborated in 
[Nederpelt 87J. In the system A, the usual implicit substitution of the A-calculus is used. 

The item notation enables us to add substitution items (or a-it,ellls) which will have the 
same status as the A- and o-items hence making substitution an object level process and 
giving substitution items the right to be first-class citi7,ens. In fact., thanks to the item 
notation we can provide the fine structure of the A-calculus with various refined forms of 
reduction, substitution and term manipulation. 

After presenting A, the calculus with item notation but where variable names and implicit 
substitution are used, we shall introduce a calculus based on A but. where de Bruijn '8 indices 
and explicit substitution are used. For this, we start by introducing de llruijn's indices. 
Such indices have the practical advantages that they avoid all the need to deal with variable 
renaming in terms (see [de llruijn 72], [Abadi et al. 91], [CII 88J and [KN 93]). The calculus 
based on A and on de Bruijn's indices will be called 11" for 3 beiug the set of variables 
which are de Bruijn's indices together with E a special variable. In the first instance, 11 is 
taken to be {A, o}. In order to accommodate su bstitu tion explicitly and in order to discuss 
variable updating and term reduction, 11 is increased to {A, 0, a, <P, It}. "Ve add the a-items for 
substitution, the <p-items for va,riable updating and the p-items for ,6-reduction. The <p-items 
are written as (<p(k.i)) for i ~ 1 and k ~ O. The superscript k decides which variables are 
to be updated. The superscript i decides how much a variable must be updated; namely by 
increasing it by i. The a-items are written as (ta(i)) for i ~ 1. (ta(i))!' means: in /.' substitute 
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t for i. The ,,-items are written as (,,(i») for i 2': 1. (,,(i»)t means, decrease all the variables in 
t that are > i by l. 

We provide the <PO, a-, ,,- and /3-reduction rules in f/2 which are all explicit and step-wise. 
Furthermore, these rules may be used to get local and global forms of reduction. 

f/2 is the calculus of explicit substitution, which is based on what we call item notation 
and on the use of de Bruijn's indices. We provide a method which can take any term of A 
into f/2 such that all a-equivalent terms in A are mapped into a unique element of f/2' The 
other direction however, of mapping elements of f/2 into elements of A is more difficult. This 
is because in f/2, the A's do not have variable names as subscripts and so we have to look 
for such subscripts in a way that no free variables in the term get bound. Now, the question 
that might be asked is why should we be interested in mapping elements of f/2 into A. After 
all, variable names in the A-cakulu" are messy and the idea of the de Bruiju indices is to 
be precise and to avoid the clumsiness of variables. Moreover, a term in f/2 represents a 
whole class of terms in A; namely all those a-equivalent terms. So, iu taking the term of 
f/2 back to A, which of these a-equivalent terms are we going to choose? Are we going to 
consider terms of A modulo a-conversion and then choose any term in the equivalence class? 
If so, then our work is pointless. In other words, what is the poillt of going from de Druijn's 
indices to a-equivalence classes when de Bruijn indices actually represent the a-equivalence 
classes? Hence the first conclusion is that, in translating the terms from f/2 to A, we must 
avoid a-conversion in A and we Blust associate to each term of 11.=: a unique term of A. This 
will also have advantages for implementation. For then, we know exactly which term we are 
working with. Now, having such a translation 1-1 from f/2 to A, our task is to show that the 
variable updating, the substitution and the reduction rules ill f/ 2 arc sound. We do this by 
showing that if t -> t' where -> is either a-, or <p- or I,-reduction (excluding the a- or the 
,,-generation and the a-transition rules, see below), then It I == WI. That is, we show that 
all the rules which accollnnooate variable updat.ing and subst.itution result. in syntactically 
equal terms. We shall moreover, show that if t -> t' where the reduction includes a- or 
,,-generation, then ItJ =cfJ It'J. That is, the rules which actually reduce ,8-redexes in f/2 are 

nothing more than the ,8 rule in A. Finally if -; is a-transition then ItJ =" It'J. These results 
are of course desirable, otherwise how can we check the correctness of our reduction rules. 
Furthermore, it should be noted that the semantics that we provide is a. flat semantics. That 
is, the reduction steps in the fine A-calculus are mapped to syntactical equa1ity (except in the 
cases mentioned above), and not to a corresponding reduction. We provide the fine structure 
of the A-calculus which has advantages that range over all areas and disciplines of A-calculi 
and type theory, and we give a semantics which shows that, our reduction and substitution 
rules are a refinement of those of the classical calculus. 

We believe that our approach is the first to be so precise about va.riable manipulation, 
substitution and reduction in the A-ca.lculus. There is never a confusion of which variable 
is the one manipulated and hence a, machine can easily carry out our reduction strategies 
and translate the terms using variables in a straight.forward manner, We believe that the 
approach of this paper should be considered in implementations of functional languages and 
of theorem provers, Our work here might look too involved, but we have actually carried 
out the hard part of manipulating variables once and for all. No further work is needed 
aft.erwards on book-keeping of what happens to variables, t.erms or reductions either in proofs 
or in implementations. We a.re persuaded that this is the first precise formulation of A-terms, 
variables and reductions. Furthermore, we believe tha.t this formula.t.ion not only enables 
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explicit and local substitution as we show in this paper, but also enables a generalisation over 
all branches of A-calculus and type theory (see [KN 93J, [NK 9xJ and [KN 9x]). 

To sum up, we provide A, a calculus which uses item notation, variable names and explicit 
substitution. We extend A to f!=: where item notation is used with de Bruijn indices instead 
of variable names and explicit rather than implicit substitution. We provide the translation 
between both systems and in both directions. The translation from f!=: to A aims to show 
that our explicit and step-wise reduction and substitution rules are sound and are a refinment 
of the implicit rules of the A-calculus. Furthermore, such a translation aims at furthering our 
understanding of when a·reduction is needed in the A-calculus. In fact, we try to do completely 
without a-reduction until we are forced to use it. Moreover, this translation gives to every 
term with de Bruijn indices a unique term of II (with no mention of a-conversion). 

2 The syntax of the calculi 

2.1 The calculus A 

We let V, the set of variables of II, be {E} U F, where F = {;r,J,."2, ... } and we take 
v,v',V",VI,V2, ... to range over F. The varia.bles a:t,X2,." wi11 be ordered as in Defini
tion 2.16. 

Notation 2.1 We take IN to be the set of natural 1l11l1lbers, i.e. > 0, lP to be the set of 
positive natural numbers, i.e. > 0 and Z to be the set of illtegcrs. 

Definition 2.2 {II} 
We define II as follows: 

A ::= V I (AATA) I (AbA) 

We let t, tl, ... denote terms in II, and use w, w', WI, . .. to range over the so-called operators 
{b} U {A v ; v E F}. Moreover, E is never used as a subscript for A. The symbol E can be looked 
at as a special variable or as a constant. It. is added because it enables us to generalise the 
calculus. In fact, by taking all types of variables after A to be [, we obtain the type free 
A-calculus. E has further uses such as the 0 in [Barendregt 91J (see [KN 93J and [NK 9x]). 

The term (tIAvt2) is to be understood as the classical A-calculus term (Au",.t2). The term 
(t I M2 ) is to be understood as the classical A-calculus terl11 (/.21.1). 

Notation 2.3 {Item Notation} 
We shall place parentheses in II in an unorthodox manner: we write (1.1 w )t2 instead of 

(tlwt2). The reason for using this forl11at is, that hoth abstraction and application can be 
seen as the process of fixing a certain part (an "item") to a term: 

• the abstraction Au",.t is obtained by prefixing the abstraction-item Au," to the term t. 
Hence, (t' Avt) is obtained by prefixing t' A" to I .. 

• the application til (in "classical" notation) is obtained by postfixillg the argument-item 
t' to the term t. Now (t'M) is obtained by prefixing /'6 to t. 

In item-notation we write in these cases (t' Av)1 a.nd (1.'6)/, respect.ively. Here both (/' Av) and 
(t'6) are prefixed to the term t. Moreover, i11 (Iw), if t == £ t.hen it. may be dropped. Tha.t is, 
we write (Au) instead of (EAu). 
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Definition 2.4 (Items) 
If t is a term in item notation and W IS an opemtor, then (tw) .s an item. We use 

s, s" Si, ... as meta-variables for items. 

Definition 2.5 (Segments) 
A concatenation of zero or more items is a segment. 

Notation 2.6 (parentheses) 
Note the intended parsing convention: 
In the term (s, S2 ... Sn VW )s; s~ ... s:" Vi, the operator w combines the full term S'S2 ... Sn v 

with the full term s; s~ ... s:" Vi. 

Example 2.7 The term (vw, (V'W2V")) becomes in it.elll-not.at.ion: (VW1)( V'W2)V". Analo
gously, the term (( VW2V')W1 v") becomes (( vW2)v'wIlv". 

Lemma 2.8 Every term has the f07"111 (t, W1)( t2W2) ... (t"w,,)v for 1, ,12, ... , t" terms, W1, W2, ... , wn 
opemtors, n 2': 0 and v a variable. 

Proof: Easy. 0 

Based on this lemma, we shall draw the tree of each term (t, wIl(t2w2) ... (t"w,,)v for n 2': 1 as 
follows: We position the root of the tree w, in the lower left hand corner. ,Ve have chosen this 
manner of depicting a tree in order to maintain a close resemblance with the item notation of 
terms. This has also advantages in the sections to come. In fact, the item-notation suggests a 
partitioning of the term trees in vertical layers. For (V'W1 )( V"W2)V" I

, these layers are: the parts 
of the tree corresponding with (V'W1), (v"wz) and v" (connect.ed in the tree with two edges). 
For ((V'W2)V"W')V'" these layers are: the part of t.he tree corresponding wit.h ((V'W2)V"W') and 
the one corresponding with v"'. Figure 1 is self explanatory. 

v' v" 

TWI TW2 ~Vlll 
(V'W1 (V"W2 V"')) 

( v' w,) ( v" W2 ) v'" 

Vi 

+---e'/)" 

... -----e,u'" 

(( v'wz V")W1 v"') 

((v'WZ)V"WI )11'" 

Figure 1: Layered trees, with normal layered notation and item-notation 

Remark 2.9 Note that every term which is not a variable, has the form (tw)t ' , from Def
inition 2.2 and Notation 2.3. Such a term is moreover, from Lemma 2.8, of the form 
(t,w!l(t2W2) ... (tnwn)v. Hence, I =' t"W =' w, and t' =' (tZW2)" . {tnw,,)v. 
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Definition 2.10 (FV(t), for tEA) 

FV(E) 
FV(v) 
FV((tt Av)t2) 
FV((tt O)t2) 

o 
{v} ifv'f-E 
FV(ttl U (FV(t2) \ {v}) 

= FV(ttl u FV(t2) 

Remark 2.11 Notice here that this definition might cause some confusion. For example take 
the term t to be (vAv)v, then FV(t) = {v}. In fact, (vAv)v will be a-reducible to (vAv')v' 
(see axiom (a) below). Such confusion will be avoided using de Bruijn's indices. 

Definition 2.12 (BV(t) for tEA) 

BV(v) 
BV((tt Av)t2) 
BV((ttO)t2) 

o 
BV(ttl u BV(t2) u {v} 
BV(ttl u BV(t2) 

Note that E is neither free nor bound. 

Substitution in the A-calculus is usually defined (up to some varia.tion) as follows (see 
[Barendregt 84]): 

Definition 2.13 (Substitut.ion in A) 
If t, t' are terms in A and v is a variable in V, we define Ihe I'€SU/t of subslituting t' for 

all Ihe free occurrences of v in t as follows: 

t[v := t'J =df 

t' 
v' 

(12[V:= I'Jo)lt[v:= t'J 
(12[V := t'JAv)tt 
(t2[V:= t']Av,)tdv:= I'J 

ift == v 
if I == v' ¢ v 

if I == (120)lt 
ift == (12Av)tl 
if I == (/2Av' )I t , v ¢ v', 

(v </: FJ!(ll) 01' 11' </: FV(t')) 
if I == (t.2Av,)lt,v 'f- v',v E FJ!(tt), 

v' E FJ!(t.'), v"is the firsl variable 
in :F which does not occur in (t8)t' 

The fundamental axioms of the A-calculus are (a) and ((3). Other axioms such as ('7) 
(which is needed together with a.nother axiom to derive extensionalit.y) arc optional. For this, 
we shall only concentrate on (a) and ((3). 

(a) (tAv)t' ---;0 (tAv,)t'[v:= v'J where v' </: FF(t') 
((3) (t"o)(tAv)t' ---;f3 t'[v := I"J 

Note that a so-called oA-pajr of items: (1"b)(tAv), is a signal for a possible (3-reduction. 
This oA-pair precedes the term to which it applies. 

We say that t ---;0 I' (respectively t ---'"f3 t') just in case (a) (respectively ((3)) takes I to t'. 
Moreover, we assume that ---;0 and ---;f3 are compatible where compatibility over T.\ is given 
by the following definition: 
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Definition 2.14 (Compatibility over T>.) 
We say that -+r where r E {a, f1} on T>. is compatible if whenever t -+r tf we get: 
tt1 ----+r t't1, t1 t ----jor t1 t', Av:t·t1 ----+r AV:t,.t1 and AV:tl.t ----joT Av:tl .t'. 

We call the reflexive transitive closure of -+", -+>". Similarly -+>{3 is the reflexive transitive 
closure of -+{3. We let =" (respectively =(3) be the least equivalence relation closed under-+>" 
(respectively --(3)' Finally, = is the least equivalence relation closed under --" and -+>{3. 

As obvious from our definition of substitution, we use == to be syntactic identity which 
accounts also for the parenthetes conventions. When t = t f in A, we write I-A t = tf. 

2.2 De Bruijn's indices 

De Bruijn in [de Bruijn 72] noted that due to the fact that terms as A"I .":1 and A", 'X2 are the 
"same" modulo a-conversion, one ca.n find a 'x-notation which expresses t.ha.t similarity. That 
is, following de Bruijn, we can abandon varia.bles and usc indices instead. Examples 2.15, 2.17 
below show how lambda terms can be denoted using de Bruijn's indices and example 2.18 
illustrates how f1-conversion works using such indices. 

Example 2.15 Consider the type free lambda t.erm (Axl.xd. In this t.erm, the XI following 
AXI is a variable bound by this A. In de Bruijll's not.ation, Axl,XI and all its a-equivalent 
expressions can be written as A.1. The bond bet.ween the bound variable XI and t.he operator 
A is expressed by t.he number 1; the position of this number in the term is that of the bound 
variable x), and the value of the number ("one") tells tIS how many lambda's we have to 
count, going leftwards in the term, starting from the mentioned posit.ion, to find the binding 
pla,ce (in this case: t.he first A to t.he left is the binding place). 

De Bruijn's notation moreover, can be used for the typed A-calculus. We illustrate here 
bow the two terms (A X3 ,x,.X3)XI and AA.Axl,A,XI can be represented using de Bruijn's indices. 
First, however, we need to account. for the free variables ":1 and :<2. For this, we assume a 
free variable list: 

Definition 2.16 (Free variable list F) 
For all terms, the free variable list is the same arbitrary but fixed, left-infinite list of AiS with 
all i different variable names. Such a f"ce vU1'iable list is called F and is given in Fig""e 2. 
Of course, for each tam, having a finite number of free v""iables, a fini!,c segment of this list 
suffices. 

Example 2.17 The term (A x3'X,.X3)XI is written as (A2.!)l. The free variables ."'1 and X2 

in the typed lambda term are translated into the Illllllbcr I occurring after the term in 
parentheses, and the number 2: they refer to the "ill visible" lambda's that arc not present 
in the term, but may be thought, of to J11Yxeed the term in the free variable list F. In this 
example, the X3 is b01lnd, hence different from the f"cc "'3 in F. The bound X3 is represented 
by the first number l. 
The term AA.Ax"A.XI can be represented by A.AI'I. 

Some type theories insist on distinguishing A and n. The A beillg used for the fllnction 
and II for the function type. Then the typed term AA.Tl xl "t.,7:1 can be written as A.III.l 
where the 1 adjacent to II, says t.hat A is the binding operat.or for the type (viz. A) and the 
final 1 replaces the variable bound by n. 
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Figure 2: The free variable list. :F 

The described way of omit.ting binding variables, and rendering bound and free variables by 
means of so-called reference numbers, is precisely how de lJruijn's not.ation works. Next 
we see how ,8-reduction works in t.his notat.iou. 

Example 2.18 In ordinary lambda calculus, all the t.erms (Ax;,x!.(xix3))x2, for i '" 3, ,8-
reduce to X2X3, i.e. the result of substituting "argument" X2 for Xi in XiX3. In de Bruijn's 
notation this becomes - under the assumption that the free variable list is Ax" Ax" Ax!: 
(Al.l 4)2 reduces to 23. Here the cont.ents of the subt.erm I '1 changes: 4 becomes 3. This 
is due to the fact that a A-item, viz. (AI)' disappeared (toget.her with the a.rgument 1). 
Furthermore, 1 changed to 2. 

2.3 The syntax of O=: 

Now we shall take A but where de Bruijn's indices are used instead of variable names. That 
is, we will get rid of the variables in A and replace thelll by de lJruijn's indices. This would 
mean of course that we no longer would need each A to cany the subscript Xi for i. E IF or so 
on with it, but rather, the number would point t.o which A binds which occurrence. The best 
way here is to start with an example. 

Example 2.19 We take the term I. == (xlb)(X2Ax,)(x3b)'I:" whose tree is drawn in Figure 3. 
We need to remove X4, X3, X2, Xl and to replaec them by lIumbers. For this, as we see that 
XI,X2,X3 are free variables, we need to use t.he free variable list (sec Figure 2). We append 
dashed lines to our tree in Figure 3 to show t.hat A's on t.he dashed lines are imaginary and 
not a part of the term (see Figure 4). Now for each varia.ble, we draw t.hin lines ending in 
arrows, pointing at the A binding the variable. These lines follow t.he pat.h which leads from 
the variable to the root following the lefl. side of the branches of the tree. In order to find the 
index replacing the variable name, we count the A's on t.his pat.h (not. t.he b's). For example, 
we draw the thin line going from X4 following the path which leads from X4 to the root, unt.il 
we reach Ax., the A binding X4. We end the arrow t.here and as we ha.ve only passed one A, t.he 
X4 should be replaced by 1. This is the only X., we have in t.he t.ree, and as t.here arc no more 

[0 



X4'S bound by this AX., we can safely remove the subscript X4 from Ax,. For X3, in drawing 
the thin line going from X3 following the path which leads from X3 to the root, keeping to 
the left side of the branches until we reach AX3 , we see that we pass four AS. Hence, the X3 
should be replaced by 4. Now replacing XI and X2 will be left as exercises. Figure 4 is now 
self explanatory. 

As in Example 2.17, the bound variable X4 in t should not be confused with the free X4 
in the list F. 

A 
----e-

Xl X2 X3 

---.........:.16 1Ax.______.1 b eX4 

1 2 4 

_~e A Jl dI L-16--. 1 

(Ax. ;X2 .a:4a:3 )a:1 

(XI b)( X2Ax,)( X3b)X4 

(18)(2A)( 48) 1 

Figure 4: A tree wit.h de Bruijn's indices 

Note that we get t.he same de Bruijn t.rees for all terms (a:lb)(:I:2Ax.l(a:3b).ri for i i' 3, i E !P. 
This is due to the fad that. de Bruijn's indices give the tenns llIodulo a·conversion. In the 
case i = 1, or i = 2, we have here that a: occurs both bound and free. These occurrences 
should be separated, as-is actually the case in t.he version with de nruijn's indices. In order 
to translate (XIO)(X2AxJ(X38)Xi for the case where i = lor i = 2, we have to rename Xi to 
Xj for j > 3. 
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Definition 2.20 (Variables) 
As we decided to use indices instead of variables, we take ::::: the set of variables to be 
::::: = {c, 1, 2, ... }. Sometimes we will need to use actual variables, but this is not a part of 
our syntax. It is only a matter of simplifying the conversation. We use i,j, m, n, ... to denote 
elements of {I, 2, ... }. 

Using fl = {5, A} and::::: we define our terms to be those symbol strings obtained in the 
usual manner on the basis of :::::, the operators in fl and parentheses. That is: fl=: is the free 
fl-structure generated by:::::. 

Definition 2.21 (fl=:) 
We define fl=: as follows: 

As in A, we take t, t l , ... to denote terms in fl=:. We call the terms of fl=: in case fl = {A, 6}, 
fl"s-terms or simply terms. Later on we will increase fl by adding a, 'P and /1 .. fl·-terms will 
only be used with fl.\s-terms. An important class of terms however is the flM~I'-terms. 

Now we take the same notational conventions as those for A given in Notations 2.3 and 2.6, 
and we define items and segments similarly. We take w, w', WI, W2 ••. to range over fl. In the 
rest of this paper, we write terms of A and fl=: using the item notation. 

Simple examples of terms are: c, 3, (26)(£'\)1. Example 2.22 shows terms represented in 
A and fl=:. The tra.nslation function between A a.nd fl=: will be given in the following section. 

Example 2.22 

• Consider the typed lambda term (xI6)(X2Ax')XS. In fl=:, it. is denoted as (16)(2A)1. The 
typed lambda term (XI 6)( X2Ax, )X3 has the same denol.at-ion in fl=:. Note however, that 
(XI b)( X2Ax, )xs ¢ (XI b)( ':2'\x,)X3 for exa.lIlple, unless (0') is assullled in A. 

• The typed lambda term ((';2Ax,)';s8)'~1 in A is writt.en as ((2A)16)1 in fl=:. 

• The de Bruijn trees of these lambda terms arc given in Figure 5. 

Finally, we define a. number of concepts connected with terms, items and segments. These 
will be used in the rest of the paper. 

Definition 2.23 (main items, main segments, w-items, WI •• • wn-segments, body, weight) 

• Each term t is the concatenat.ion of Z€1'O or 7n07'e items and a variable: t = 8}82" 'SnV' 

These items Sl, S2, . .. , s" my; called the main items of I .. 

• Analogously, a segment s is a concatenation of ::Cl'O or morc itCIHS: S == 8182" ,sn; 
again, these items sl, S2, . .. , Sn (if any) nrc called I.he main items, this I.ime of s. 

• A concatenation of adjacent main items (in t. 01' S), 3 m .. • Sm+kI is called a main 
segment (in t or s). 
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1 2 

_~-=e~J6JIA-el 
(16)(2A)1 

(x I6)( X2Ax, )xs 

(Ax"X2 . Xs )Xt 

2 

A-A -e- _ :+:::~'====.1 

«2A)16)1 

« X3Ax, )xs 6)xI 

XI(Ax,ox,. '~5) 

Figure 5: de Bruijn trees with explicit free variable list.s and reference numbers 

• An item (t w) is called an w-item. lIence, we may speak about A-items, b-items (and 
later on about a-items and <p-items). 

• If a segment consists of a concatenation of an WI -item up to an w,. -itcH}', this segment 
may be refeTTed to as being an WI ••• wn-segment. 

• An important case of a segment is that of a 6A-segment, being a 6-item immediately 
followed by a A-item. 

• If t == 8V, then 8 is called the body of t. 

• The weight of a segment is the nmnbe1' of its main item ..... 

Example 2.24 Let. the term t be defined as (EA)«lo)(EA)lb)(2'x)J and let the segment 8 be 
(EA)«16)(cA)16)(2A). Then the main items of both t alld 8 are (EA), «lo)(EA)J6) and (2A), 
being a A-item, a o-item, and another A-item. Moreover, (lo)(EA)lo)(2A) is an example of a 
main segment of both t and 8, which is a oA-segment. Also, 8 is a AbA-segment., which is a 
main segment of t. 

Now we define nl which counts the number of A'S in a term. 

Definition 2.25 (nl) 

nl( E) =df 0 
nl«t I 6)t2 =df nl(ll) + 111(t2) 
nl«ttA)t2) =df nl(ttl + I + nl(12) 

Note that weight(t) is not necessarily t.he sallie as nl(t). For example, weight«(lA)2A)3) = 1 
whereas nl«(lA)2A)3) = 2. 

3 Axioms of fh: 

a-reduction is not. needed for l!", precisely because we no longer have variables (de Bruijn's 
indices got rid of t.hem). So now, we no longer have different wa.ys of writing t.he same term 



as we have taken the equivalence classes so that AX,'X3,Xh AX,'X3.X2, ... all are represented by 
(3A)1. For ,a-reduction, this is a bit more complicated. Let us start by an informal example, 
but the mechanical procedure will be given below: 

Example 3.1 Now for ,a-reduction, the term (x16)(x2Ax.)(x36)x4 reduces to (X30)X1 (see 
Example 2.18 and Figure 6). Note that the presence of a so-called 6A-segment (Le. a 6-item 
immediately followed by a A-item), in this example: (XI6)(X2Ax.), is the signal for a possible 
,a-reduction. Using de Bruijn's indices, this becomes (remember that the free variable list 
ends in Ax" Ax"Ax,): (16)(2A)(46)1 reduces to (36)1. In fact, if you look at Figure 6, you 
see that what is happening is that the 6A-segment (16)(2A) has been cut off the tree, and 
the remaining term to the right of this segment has shifted to the left so that its root (Le. 
the root of its tree) will occupy the place where the 6 of (16)(2A) used to be. That is not all 
of course. The 4 has to be decreased t.o 3 as we have lost one A. The I in (46)1 has to be 
replaced by the 1 of (16). The result is hence (36)1. 

The process could hence be summarised by saying that when cont.racting the redex (t1 6)( t2A) 
in (t10)(t2A)t, all free variables in I must be decreased by 1 and all variables in I that. are 
bound by the A of (t2A) must be replaced by h. This might be tricky however, for assume 
we write 

(t10)(t2A)t ->0 t[I:= t1,2:= 1,3:= 2, ... J 

where 1[1 := t1, 2 := 1,3 := 2, ... J stands for the term I with 1 replaced by 11 , 2 replaced by 
1 and so on. This substitution is moreover simultaneous. Now, assume furthermore that. I is 
of the form (cA)I'. Then for the substit.ution 1[1:= 11 ,2:= 1,3:= 2, ... J we must perform 
«EA)t')[1 := 11,2:= 1,3:= 2, ... J. 

Now, replacing «EA)I.')[1 := 1.',2 := 1,3 := 2, ... J by (EA)I'[1 := tl, 2 := 1,3 := 2, ... J 
would not work. Rather it should be: 

(cA)I'[1 := 1,2 := t1 [1 := 2,2 := 3, ... J, 3:= 2, ... J. 

Based on this observation, we need to increment va.riables correctly in a. term. Therefore 
we introduce an updating procedure which we call <p-reductioll. 

3.1 <p-reduction 

Updating variables in a term will take place for example whell a. term I' is to be substituted 
for one or Blany occurrences of a. variable v in a. tertII I. \-Vhat. will then happen is that t' 
cannot be just thrown in t at the targeted occurrences of v, because I may have many A'S 
to the left of the targeted occurrence of v. This means that I' must be updated to take into 
account these extra A'S. The following example illustrates the point. 

Example 3.2 Let I '" (2A)2 and let t' '" 3. Now, if we want to replace the second occurrence 
of 2 in I by t', we cannot just remove 2 and replace it by 3. If we do so, we would obtain 
(2A)3 which is not at all the result of the substitution. The result. of t.he substitut.ion should 
be (2A)4. The idea is that, in replacing the second 2 ill (2A)2 by :1, t.he 3 has to be increased 
by 1, as it is now in the scope of one ext.ra. A. 

In order to update variables in a term, we add a. new kind of items, <p-itenls. Let us for now 
assume that we write (<p)/. to increase the variables of I. by 1. So ill the a.bove example, when 
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1 2 4 3 

_eL-eA~dL-~O _eL-~O A 1 A A 1 -- e -e- -e- e 

(AXi:X2·XiX3)Xl XIX3 

(Xl 0)( X2Ax,)( X30)X; (X30)XI 

(10)(2A)(40)1 (38)1 

Figure 6: ,a-reduction in our notation 

replacing the second 2 in (2A)2 by 3, we really want to obtain (2A)(y)3. The process however 
is not that simple. Assume we want to replace 2° (where ° points to the particular occurrence 
of 2) in (2A)2° by (EA)(10)2. Then, what is the result of (2A)(y)(EA)(JO)2? Which variables 
in (cA)(16)2 have to be increased? Of course <: remains untonched. 1 moreover must remain 
untouched, as it is connected to the A in (fA). lIence it is only the 2 of (f)(lo)2 which should 
be increased to 3. So how do we (in a step-wise fashion) decide which variables in a term are 
to be increased and which are not? 

Note that all those variables of (d)(18)2 that have to be updated are free variables. Let 
us hence index y. That is, we use y as a (unary prefix) function symbol y(k,;) with two 
parameters k ~ 0 and i ~ 1. The intention of the superscript.s when (y(k,;») travels through 
t1 is the following: 

• Superscript i preserves the increment desired for the free va.riables in i1' This super
script does not increase when passing other A'S . 

• Superscript k counts the A'S that are internally passed by in t1 (k = 'threshold'). 
This Superscript increases when passing another A. The idea is that only the variables 
greater than k ha.ve to be increased, as those variables ~ k are bound and hence should 
not be increased. 

The effect of the updating must be that a]] free variables in t, increase with an amount of i; 
the k is meant to identify the free variables in i 1 • 

Note that the body of a y-item is always the empty t.erm. 
Now of course updating va.riables by looking at t.he t.ree is an easy process. Just check 

how many A's you have gone through before a free variable ami increase the free variable by 
the number of A'S passed. This should happen for all variables in a. term. This is achieved 
by letting the <p-items propagate upwards and to the right of the tree scanned. The following 
example illustrates the point: 

Example 3.3 Assume you want to replace in (cA)(2A)3, the 2 and the 3 by (cA)2. Then 
the result should be (cA)((cA)3A)(d)4. I.e. the 2 has been replaced by (fA)3 (due to the one 
extra A that is now before (cA)2) and the;) has been replaced by (fA)4 (due t.o the two extra 
A'S that are now before (fA)2). Figure 7 is self expla.nat.ory. 
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[ 2 

_.~_.~)~~IFA~~~FA~~.3 
AX2:e.Ax3:Xl·XI 

([Ax,)(XIAx,)XI 

([A)(2A)3 

Ax2 :e .A X3 :(A.r4:" ,XI) .Ax4 :e .XI 

([ Ax,)( ([Ax. )XI Ax,)( [Ax. )XI 

(E A)( (E A )3A )(EA)4 

Figure 7: Substitution in our notatioll 

The defillition below formalises the updating process. 

Definition 3.4 (<.p-rednction) 
For k E lN, i E !P, v E :=: and t an Q).8-tcnl!, we have: 

(<.p-tmnsition rules:) 

(<.p(k,;))(tA) --+op ((<.p(k,;j)tA)(<.p(k+I';)) 
( <.p( k ,;)) ( t<5) --+ 'P ( ( <.p( k ,;) )t<5) ( <.p( k ,;)) 

(<.p-destruction rules:) 

(<.p(k,;j)V --+op V + i if v> k 
(<.p(k,;))v --+'P V if v ::; k or v == E 

The following details about these rules are to be noted . 

• A term of the form (<.p(k';))t will be either such that I. is a variable or a A-item or a 
a-item. In the case I is a variable, we usc the <.p-destruction rule. In the case of a a-item 
or a A-item, we have to update all the variables so that we keep the right references . 

• The case where (<.p(k,;)) is to the left of a variable, we usc one of t.wo <.p-destruct.ion rules, 
the first for the ca.se that v is free in the origina! t} (then a rea! update occurs), the 
second for the case that v is bound in II or v == E (then nothing happens with v). 

Remark 3.5 Note t.hat we int.roduce --+op as a. relation betweell segments, a.lt.hough it. is 
meant to be a relation between terms. The rules mllst be rea.d as follows: rule s ---+<.p ;; states 
t.hat I --+op t' when a. segment. of t.he form s occurs in t, where I.' is the result. of t.he replacement 
of this s by s' in t. In ot.her words, we implicit.ly assume compatibility (see [Ba.rendregt 92]). 

We denote the reflexive and transit.ive closure of --+'P by -''P' 
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Example 3.6 In substituting (cA)2 for 2 in (cA)(2A)3, we have to compensate for one extra 
A: the one preceding the 2 in (cA)(2A)3. This can be done by substituting (cpI0.1))(€A)2 for 
this 2. Then: 

(cA)((cpI0.1))(cA)2A)3 -+", 

(c A)( (( cplO.1 ))d)( cpll.1 ))2A)3 -*", 

(cA)((d)3A)3 
Similarly, in the substitution of (cA)2 for 3 in (€A)(2A)3, we have to compensate for two extra 
AS: 

(cA)(2A)( cpI0.2))(cA)2 -*", (cA)(2A)(cA)4. 

Note that cp can be used to increase certain reference numbers. There is a case, however, when 
we wish to decrease a reference number: when we remove the oA·segment in a .a·reduction, the 
variables in the remaining part of the term in which j3·reduction took place, must be decreased 
by 1, because one A has disappeared. We will come back to t.his matt.er in Definit.ion 3.14. 

For convenience sake, we may drop the first superscript. or bot.h superscripts of the cp, 
according to the following definition: 

Definition 3.7 (cp.abbreviation) 
For all i 2: 1, cpU) denotes cpIO.i). Mm"eovel", cp denotes cpll) (hence = cpIO.I)). 

3.2 a-reduction 

In order to be able to push substitutions ahead, step by step, we shall introduce a new kind 
of items, called substitution items (or a·items). These a·it.ems can move t.hrough the 
branches of the term, step· wise, from one node to an adjacent one, until they reach a leaf of 
the tree. At the leaf, if appropriate, a a·item can ca.nse t.he desired substitution effect. 

In this manner these substitution it.ems ca.n bring a.hout different kinds of .a-reductions. 
Note that we have chosen to make substitution a part of t.he forma] language for t.he terms; 
we do not treat it as a. meta-operation, as is usual1y done. 

We use a as an indexed operator, numbered with superscript.s: a(l),a I2), .... lIenee, a 
a·item has the form: (t'aU)). 

The notions: term, item, segment et.,c. talc t.he ext.cuded n = {A, 6, a, cp} into account. 
OUf terms now are O,,\o17rp-tcrms. 
The intended meaning of a a·item (1' ali)) is: term I.' is a caJl(lidate t.o be substituted 

for one or more occurrence of a certain va,riable; the superscript i selects the appropriat.e 
occurrences. 

Now we can give the rules for one-step a-7'f;dudion. This relation is denoted by the symbol 

-+a. The relation a"'eduction is the reflexive and transitive closure of one·step substitution. 
It is denoted by -*a' Similarly to our rema.rk about cp in Hemark 3.5, we introduce -+a as 
a relation between segments, a.!though it is meant to be a relation bet.ween terms. The rules 
must be read as follows: rule S -+a ? states that t ~a /' when a segmcnt. of the form s occurs 
in t, where t' is the result of the replacement of t.his s by ? in t.. 

We keep to the same meta· level notation as before, but lct W, WI, W2, • •. range over A, 0, 
cp and a. 

Now, in order to keep the references inside a a·it.em correct. during the process of a· 
transition, a cp·item (cplk.i)) with k = 0 and i = 1 is added inside t.he a·item, as follows: 
((cp)ta U)). Here are the a·reduction rules: 
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Definition 3.8 (one-step a-reduction) 
For i E lP, v E 2, t" 1,2 flAS-terms, we have: 

(a-generation rule:) 

(a-transition rules:) 

(tla U)(t2A) -+0 

(tlaU)(t20) -+0 

(( t, a U)t2A)( (<p )tl aU+1
) 

(( t, aU) )t20)( tl aU) 

(a-destruction rules:) 

(tlaU)i -+0 

(tlaU)v -+0 

t, 
V if 11 -t i 

Note that in the a-transition rules, when a. a-it.em jumps over a. A-item, then the superscript 
of the a increases by one. This is because that superscript. counts the number of A'S a.ctually 
passed, in order to find the right (occulTence of the) variable involved. 

The a-destruction rules apply when t.he (T-item has reached a leaf of the tree. When 
the superscript i of the" is in accordance with the value of the variable, then we have met 
an intended occurrence of the variable; the substitution of tl for i 1.akes place. When the 
superscript of a and the variable in question do not mat.ch, then nothing Imppcns to the 
variable, and the a-item vanishes without elTect. 

Finally, we note that OUT transition rules as given here do not allow for CT-itcms to "pass" 
other (T-items. 

Compare the a-generation rule with ((3) as defined in Section 2. Our rule, does not get 
rid of (t,0)(t2A) but keeps it because we may allow for local (3-reduction by changing the 
a-transition rules so some variables will still be bound by the A in (/.2A). We shall see in 
Definition 3.14 how we can dispose of a reducible segment when there arc no more customers 
for the A involved, i.e. when there is no variable bound by this A in the t.erm. 

The following lemma shows that ,,-reduction reaches eventually all occurrences to be 
substituted. I.e., there is a path for global (3-reduction. 

Lemma 3.9 In (t, 0)( t2A )t3, ,,-,-cduction substitutcs tl for all oec",..,.cnce, of the variables 
bound by the A of (t2A) in 13. 

Proof: The proof is by an easy induction on 1.3 in (tIO)(t.,'\)((<p)lw(1))t 3 . 0 

Lemma 3.10 In (1,,,(i)t2, ,,-reduction 8ubstitutes II for all occunoel/ces of vaT-iables in t2 
which are bound by the same A being the i-th entry (f7'Om the right) in the free variable list of 
t2· Moreover, the (<p)'s look after the updating oft2. 

Proof: By induction on t2, noting that during p7'Opagation, eve,-yl.i",e the (T-item passes 
a A, the superscr';pt at the top of" is increased by 1. lienee keeping trad: of the variable to 
be substituted for. 0 

The example below demonstrates how ,,-reduction works_ 
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Example 3.11 

1. (2u(1»(4b)1 --->. «2u(1»4b)(2u(I»1 _. (4b)2. 

2. «3b)2u(t»(1A)1 --->. «(3b)2u(1»1A)«'P)(3b)2u(2»1 --->." «3b)2A)«4b)3u(2»1 --->. «3b)2A)1. 

3. «3b)2u(4»(1A)1 --->. «(3b)2u(4»1A)«'P)(3b)2u(S»1 --->." (U)«4b)3u(S»1 --->. (IA)l. 

4. (lb)(2A)(3A)2--->. 

(lb)(2A)«'P)1u(1»(3A)2 --->. 
(1o)(2A)«('P)lu(1»3A)«'P)('P)lu(2»2 -*.,,, 
(lb)(2A)«('P)1 a(1»3A)3--->. 

(lb)(2A)(3A)3 

Now the following lemma shows that the right bond bctwecn variables and their binding A'S 
are maintained. 

Lemma 3.12 If S(llb)(t2A)t --->. S(tIO)(l2A)«'P)tJl7(1»1 Ihen in S(tIO)(t2A)«'P)IJl7(1»I, all 
variable occurrences are bound by the same A'S which bound Ihem in ,( 110)( 12A)1. 

Proof: We will only show how some cases can be carried Ollt. The ,·e.,1 will be an easy 
exercise left to Ihe ,·eader. Let x be a vm'iable in (tIO)U2A)«'P)tJl7(1». There are only two 
cases to consider . 

• case v occurs in (l10)(t2A), then nothing to p1'Ove, as nolhing has changed for that 
occurrence . 

• case v occurs in «'P(0,1»)t1u(1», in particlllar in II t.hen a bou"d variable in 11 clem'ly 
remains bound by the same A in 11' A free variable 1! in 11 becomes updated by 1 by 
the 'P(0,1). This is exactly what is intended, since Ihe,'C is one e,;I"a A Ihal v has 10 go 
through on ils way 10 its A. Thai is, the A of (t2A). 

o 

Finally, we shall not discuss local substitution (the reader is referred to [KN 93]). We sha.1l 
however just mention that by adding the u-destructioll rule: 

(tlU(i»t --->. t 

to Definition 3.8, local substitution becomes a.vailable ill the system. The reader is invited to 
check this. 

3.3 ;3-reduction 

Now let us consider J'-reduction. Recall t.hat in a-generation, we generated a-items. This will 
be repeated below: 

Definition 3.13 (a-genemtion "epealed) 
(t1b)(t2A) --->. (t l b)(t2 A)«'P)t l u(1». 
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Recall that the ('I') is meant to compensate for the "extra" A being passed. Recall moreover 
that the oA-pair (tIO)(t2A) is not omitted. This is because we may want local substitution 
only. 

Now, the reducible segment may be "without customers". Then a-generation is unde
sirable since this leads to useless efforts. Hence it seems a wise policy to restrict the use of 
the a-generation rule to those cases where the main A of the red ucible segment does actually 
bind at least one variable. When this is not the case, we shall speak of a void oA-segment. 
Such a segment may be removed. One may compare this case to the application of a constant 
function to some argument; the result is always the (unchanged) body of the function in 
question. In this section, we shall present two ways of removing void oA-segments. 

3.3.1 Making i negative in ('I'(k,i1) 

Up to now, the i-superscript in ('I'(k,i1) has been considered an elelllent of IP. If however, we 
allow in ('I'(k,il), i to be negative, we could include the following rule: 

Definition 3.14 (oA-destruction ,."Ie) 
FOl' all t l , t2 fho-tenns, we have: (t l O)(l.2A) -"0 ('1'(0,-1 1) pmvidcd that the A in (t2A) does not 
bind any variable in the term following (tIO)(t.2A), i.e. pmvidcd that (t.IO)(t.2A) is void. 
Sometimes we denote -+0 by void ,6-reduction. 

It is clear that the provision in this definition is necessary: otherwise, bound variables would 
become, unintentiona]ly, free. The updating ('I'(O,-I))-itelll is lIleant to compensate for the 
disappearing A. Now, even though the superscript, -1 is negative; t.lds does not cause prob
lems, precisely since the A of (t2A) does not bind any variable in the term following it. In 
fact, negative superscripts can have the elTect that di1fel'enl variables become identified: 

Hence, updating is no longer an injection, which can be highly undesirable. 

We note, however, that the mentioned unplea.sa.nt. effects do not. occur in the setting 
presented above: a <p-item with a, negative exponent only occurs after the clean-up of a void 
oA-segment, hence with a A that does not bind any variable. Therefore, the injective property 
of updating is not threatened, 

Now the a-rules together with the oA-destruction rule, enable us to accomplish (the usua]) 
,6-reduction as a combination of a-steps and <p-steps: 

Definition 3.15 (one-step ,6-I'eduction -tiJ') 
One-step {3-reduction of an 0.,\o-term is t.he comb£nah:on of Oll€ CT-yeneration front a 8)..

segment s, the tl'ansition of the genemtcd a-it.em t.hrouyh t.he app1'O]Jl'iate Sllblerm in a global 
manner, followed by a number of (T-dcst1'11,cl.ions, and updated by 9-ilem.Q unt£[ again an fh6-
term is obtained. Finally, there follows one void ,6-l'educlion {i.e. (/ bA-dcstruct.ion) for the 
disposal of s, and IVe use the 'I'-I'u/es t,o dispose c011lplelciy of the cp-itc11Is. 

Notation 3.16 We denote one-step ,6-reduction using negat.ive superscript.s for 'I' by t -t{3' t', 
and (ordinary) ,6-reduction - it.s reflexive and transit.ive closure - by t, -ff/3' t.'. We write 
=/3' for the equivalence relation generat.ed by ~(3" Again we usc"" for syntactic identity. 
Note that there are no ,6'-items. 
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Example 3.17 
(10)(2A)( 40)1 ->fl' (30)1 as follows: 

(10)(2A)( 40)1 ->u (10)(2A)( ('" )1(7(1))( 40)1 
->u", (10)(2A)( (2(7(1))40)(2(7(1))1 
-»u (10)(2A)( 40)2 
->0 (",(0,-1))( 40)2 
->", (( ",(0,-1 ))40)( ",(0,-1 ))2 

-»", (30)1. 

Example 3.18 
(lb)(2A)(3A)2 ->fl' (2A)2 as follows: 

(10)(2A)(3A)2 -»u", (lb)(2A)(3A)3 (sec Example 3,11,4) 
->0 (",(0,-I))(3A)3 
->", ((",IO,-I))3A)(",ll,-I))3 

-»", (2A)2, 

We shall not however in this paper use negative superscripts for", in order to make a clear 
distinction between the harmless posit.ive updating and t.he potent.ially dangerous negat.ive 
updating (see our remark after Definition 3,14). Hat.her, we shaH int.roduce a new kind of 
items (,,(i)) for i E IP with t.he same effect. as (",Ii,-I)) for void reduct.ions. To be precise: 
(,,(i)) is equivalent to (",(i-I,-I)); but. in the case of void redllct.ions, (",Ii-I,-I)) has the same 
effect as (",(i,-I)), as the reader may easily see. 

3.3.2 jJ-reduction using (,,(i)) 

First we replace the void segment by (,,(I)). Then we let the (,,(i)) scan t.he term to its right 
doing the following: 

• If (,,(i)) scans a A then i increases by 1. 

• If (,,(i)) scans a 0 then nothing happens. 

• If (,,(i)) reaches a superscript m then if 111 :S i nothillg happens alld if m > i then m is 
decreased by 1. 

Now the meaning of {I,(i))t is: decrease all variables in t that. arc greater I.han i by an amount 
of 1. Those variables t.hat are smaller or equal to i in t. are hOllnd by some AS in t. and hence 
should not be decreased. Now t.he I' rules are defined as follows (recall t.hat (I,(i)) occurs only 
in an 1I>,6-term): 

Definition 3.19 (I,-reduction) 
For all tl, t2, t liAS-terms, v E ::: and i E IF' we have: 

(,,-genemtion "ule:) 

(tIO)(t2A)t ->" (/,(1))t if (1,0)(t2A) is void inl 

(,,-tmnsitio71 rules:) 

(,,(i))(tA) ->" ((,,(i))tA)(I'(i+I)) 
(I,(i))(to) ->" ((I,(i))tO)(I,(i)) 
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(/l-destruction rules:) 

(/l('»)v ->~ v 
(/l('»)v ->~ v-I 

if v == £ or v < i 
ifi < v 

Note in the second /l-destruction rule that v > 1 as i ~ 1. Note moreover that we never reach 
the case where we get (/l('»)i (see Lemma 3.22). 

Similarly to u- and <p-reduction, we implicitly assume the compatibility rules (see Re
mark 3.5) and we denote the reflexive and transitive closure of ->~ by -»w 

The one-step ,a-reduction that we assume in this paper hence will be based on this (/lU») 
and is defined as follows: 

Definition 3.20 (One-step iJ-redllct,ion ->/J") 

One-step ,a-reduction of an fl>'6-term is the combination of one u-generation from a 6>.
segment s, the transition of the generated u-item Ihmugh Ihe app"op"iale sllblenll in a global 
manner, followed by a number of u-destmctions, and updaled by <p-items unlil again an fl AS -

term is obtained. Finally, we replace Ihe now void segmenl s by (1,(I»)t and we use the 
/l-reduction rules to dispose completely of I' in (/,(1»)1. 

Finally we use the same notation as in Notation 3.16 except that we change,a' to ,a". 

Example 3.21 (46)(>.)(1>.)(1>-)3 ->/J" (4)')(1>-)6: 

(48)( >. )(1). )(1)-)3 ->q (46)( >.)( (<p )4u(1 ))(1).)( 1>-)3 
-»q,", (48)(>')(5>')(1>')7 
->~ (1,(1»)(5>')(1>')7 
->~ ((/,(1»)5>')(1,(2»)(1>-)7 
->~ (4)')(11.(2))(1>-)7 
-»~ (4)')(1>')(1'(3))7 
->~ (4)')(1>-)6 

The following lemma is needed when discussing the semantics of I,-reduction: 

Lemma 3.22 If t is an fl A6-term and t -»" I' then for all (p.(i»)I" sublerm of t' with t" an 
fl>.s-tel'l1l, we have that i does not refer 10 any free variable of tll. In part.ielllar, if t. --'" ~ t' 
then we never find in t', (I,(i»)i as a subte,.,ll. 

Proof: By induction on -;>". 0 

4 Translating A in O=: 

Recall that we assume a free variable list F, which is drawn in Figure 2. Let us enumerate 
this list in the order in which the variables appear from right to left. We call this enumeration 
function t, so that: 

tXI = 1, tX2 = 2, tX3 = 3, .... 
We define moreover, for v E F, t>.u to be A, t8 to be f, and to to be E. 

Now, let us take each term of A into a term of fl=:. For this we define the following notions: 
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Definition 4.1 (term;) 
We define term; to be a partial function which takes non empty segments of A and returns 
terms of A as follows: 

termI ((tIWtlS) =dj tI, 
term;((tIwI)S) =dj term;_1 (s), for i ::0: 2" f- 0 

Definition 4.2 (lam;) 
We define lam; to be a function which takes a segment S of A and returns the segment 
(Av,)(Av,) ... (Av.) obtained by removing all the main 8-items from the first (i-1) main-items 
of S and by removing all the t 's from the main A-items (tAv) of these (i - 1) main-items. lam; 
is defined as follows: 

lam;(s) 
lam;( (tAv )s) 
lam((to),) 

=df 0 
=df (>.v)lam;_I(s) 
=df lames) 

for i ::0: 2 and weight(s) ::0: i - 2 
for i ::0: 2 awI1llcight.(s) ::0: i - 2 

We take Seqf~~(t.iWi) to stand for: (tIWtl(t2W2) ... (tnwn), 11 ::0: o. 
Now we define the translation as follows: 

Definition 4.3 (b) 
For t, t l , t2 E A, v, v' E F, s segment of A, we define b, the t.mn8lation function f1"OTIl A into 
!/=: as follows: 

bet) =df b'(t,0) 
be,) =df body( b(Se)) 
b'(e, s) =df e 
b'(v,0) =df tv (note v 't o) 
b'(v,s(Av)) =df 1 
b'( v, S(Av')) =df 1 + b'(v,s) if v' 't v 
b'((tIAv)t2, s) =df (b'(tI, s)A)b'(t2, S(Av)) 
b'((tIO)t2,') =df (b' (tI, s)O)b'(t2, s) 

Here b'(v, s) finds the de Bruijn number corresponding to 11 whithin context. S (see Exam
ple 4.5). b'((t I Av)t2,S) finds the translat.ion of tl with respect to S amI the translation of t2 
with respect tOS(Av). b'((t IO)t2,S) is now obvious. 

Lemma 4.4 
If Sl, S2 are segments of A, v E F u {c}, then 
b'(Siv, S2) = S eqf~~( b'( termi( stl, 82Iami(Si))toPi(Si) )b'( v, s2lamn+1 (stl), for 11 = weight·(Si). 

Proof: By induction on the length of Si. 0 

Essentially, what this lemma is saying is that, given a t.erm t of the form (tlWI )(t2W2) ... (tnwn)v == 
Sl v of A, then b'(t, S2) = (ti t wtl(t~ t W2) ... (t;, t Wn)l1' where Ii == b'(I·i, s2 Iami(stl) 
and v' == b'(v,s2Iamn+l(body(t))). 

Hence, t and b'(t, 82) will have the same trees, except. that all A'S lose their subscripts and 
all variables are replaced by the correct indices. These correct indices are found by tracing 
the A'S. That is why, in ti, we had to attach all the AS preceding ti. 

Now the following example illustrates how some terms of A can be translated in !/=:. 
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Example 4.5 

1. b( (XlA x,)( X2Ax3 )X4) ;: (b'( Xl> 0)A )(b'( X2, (Ax,))A )b'( X.,( Ax,)( AX3 )) ;: (tXl A )(3A)2 ;: (IA )(3A )2. 

2. b( (Xl 0)( X2Ax.)( X30)X4) ;: (10)(2A)( 40)l. 

3. b«(X3Ax,)X40)XtJ;: b'«X3Ax,)X4,0)0)b'(xl> 0) ;: «b'(x3,0)A)b'(x4,CAx,))0)1;: «3A)1O)1 

Lemma 4.6 For any t in A, bet) is well defined. 
Proof: By induction on tEA. o 

Note that the translation function b is not injective. This is because b((XlAx,)X2) ;: 
b«XlAx3)X3) but (";lA x,)",2 't (XlAx3)'~3' b however is surjective bllt. we will see this in 
Section 5 (see Lemma 5.9). For now the following lemma is illformative abollt b. 

Lemma 4.7 If t, t' are terms in A such thai I =0 I' Ihen b( t) ;: b(l'). 
Proof: By induction on t =0 t'. o 

5 Thanslating 0 3 in A 

Our first step in providing a semantics of substitlltion is to provide a translation of fl" to A. 
In carrying out the translation we have to associate to each de Drllijn index a varia.ble, which 
will be either free or bound in the ternl. We need to make SlIre of course that if a variable is 
free, then it will not become unintentionally bound by ollr choice of the name of a binding 
variable. 

Example 5.1 In interpreting (A )2, we ma.y choose any of (Ax;)",l for i # 1 to be the corre
sponding A-term. We cannot however take (Axl )Xl. 

So as an x for the A, we must choose Xi for i E IP, bllt we mllst. lIlake sure that no free variable 
will have the same name as the chosen Xi. There is another case where we have to be careful. 
This is given in the following example: 

Example 5.2 In interpreting the fl,,-subterms as A-terms, one shollid extend the free vari
able list in an obvious manner. For example, the term I == «lb)2A)(U):l has for any i,j '" 1, 
« Xl 0)X2Ax.)( ",iAx) )X1 as a corresponding A-term. Now the Sll btcnn (U)3 of t should be 
considered relative to a. frcc varia.bIe list extended with A..ri : ... I AX4 ' >'X3' AX2 , Axl , AXil and 
hence corresponds with (XiAx))X1 for j '" 1. 

Now all this need to check whether the variable we choose now as the name of a bound 
variable will actually occur free in the term at sOllle stage, pllshes us to choose a less clumsy 
approach. The idea is to start from the list F which is given in Figure 2 and to work at a 
level between fl" and A. In this m.id-level A, we alwa.ys t.ake the subscripts of A'S to be in 
a list! = x',x", ... which is disjoint with F. Now, t.here will be no danger tha.t we might 
choose subscripts of A's to be any Xi which wiII eventually occur in t.he term, as F n 1 = 0. 
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Definition 5.3 (1\.) The terms of A are defined similarly to those of A except that all bound 
variables are indexed by elements from! instead of elements from :F as in A. Terms of A are 
written in the item notation, similarly to the terms of n" and A. 

Examples of terms of A are e, (XIAx')X' and (XIAx,)(x'b)x". 

The notions of bound and free variables, substitution, 0- and ;1-conversion or reduction, 
and == defined for A can be easily extended to A. For example here's how substitution is 
extended. 

Definition 5.4 (Substitution in A) If t, t' m·e terms in A (i.e. all bound variables are in L 
and all free variables are in :F U 1), and if v E :F U L then t[ v := t'l' is exactly defined as in 
Definition 2.13 except that, [v := t'] is replaced everywhere by [v := t'l', [v' := v"] is replaced 
by [v':= v"]' and in the last. clause, F is ,"€placed by 1. 

Notation 5.5 Simila.rly to A, we use FV(t) and BV(t.) to filld the free and bound variables 
of t in A, even though this is an extension of FV and BV in 1\. We use (t, 7J for the extended 
a and p-conversion/reduction, and as we saw above, we nsc 1.[0 := tl]' for subst.itution in /\. 

When all de Bruijn's indices in an nAb-term t have been replaced by nallles from :F and! 
obtaining a term t' in A, we can easily map the term t' to 1\ by replacing all the variables in 
1 by variables in :F which do not occur in the term. Now in order to assure the uniqueness of 
the translation (between n", A and A), and in order to avoid binding free variables, we take 
the following conventions: 

1. We assume that 1 is ordered and that the order is x', .~II, .... 

2. We assume that any two elements of 1 are distillct exactly as all variables in :F are 
distinct. 

3. We always take the first fresh variable Xi in 1 as a subscript to the A in hand. 

Now, we define the translation from a subclass of A to 1\ as follows: 

Definition 5.6 (Tmn8lating A in A via T) If t is a term in A such that FV(t) C;; :F and 
BV(t) C;; 1 then we translate t to t' by fil·st looking f01· the biggcst free variable in t (r"€cali:F 
is ordered). Say this fr"€e variable is Xi for i E IP. Now we take the smallest bound vm·iable in 

t (recall! is order·ed). We replace all the occurrences of this bound variable by Xi+l. Then we 
replace the second smallest bound variable by :ti+2 and so O1l ul1tilno variables 11'0111 1 appear 
in t. We call the translation of the A-ter·m t in LT, T(t.). 

Note tha.t this definition only translates t if FV(I.) C;; :F and IJj!(t.) C;; 1- But not every term 
of A satisfies this property. All terms of A however which arc translations of terms in n~8d"'~ 
satisfy this property (see Lemma 5.53). 

Example 5.7 The translation of (A)2 in the mid-level A is (Ax')"1 
The translation of ((lb)2A)(U)3 in the mid-level A is (("1 b)"2Ax')( x' Ax" )XI. 
Finally these terms in the mid-level are transformed into t.erllls of 1\ in a unique way as follows: 
The greatest variable of:F in (Ax,)XI is Xl, hence x' get.s replaced by "2, giving (Ax,)XI. 
The greatest variable of :F in ((XI b)"2Ax')( x' Ax" )Xl is "'2, henee all occurrences of ,,', x" get 
replaced by X3,X4 respectively giving ((x1b)X2Ax')(X3Ax.)XI· 
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Now, as II and A are very similar, we shall avoid the trivial step of translating between II 
and A and shall show the soundness in A. The reader can see however that this simplification 
does not affect any of the results of this paper. 

But, how do we provide this translation which takes n'\6a'P~-terms to the mid-level? This 
we may start as follows: 

5.1 The inverse function e 

We may give the definition of the function e which takes elements of n~6 to the mid-level 
mentioned above as follows: 

Definition 5.8 (e) 
Let t, t1, t2 E n~6, s be a segment. of A consist.iug of items of I.he form (AX) fo)' X E t, I E 
Loo(!),j E !P, v E ::::, X E t. The function e which lakes n.\,I-l.e,.,,,,, iul.o I.e,.,ns in A (which 
use variables in :F U 1) is defined as follows: 

e(t) 
e(v,s,l) 
e((110)12, S, I) 
e((IIA)12, S, I) 
d(j,0) 
d(E, s) 
d(l, S(AX)) 
d(n, S(AX)) 

=dJ e(I,0,tl 
=dJ d( v, s) 
=dJ (e( II, S, 1)8)e( 12, s, t.l"'('d(l)) 
=dJ (e( II, S, lJAhd'+n'(', )(1) )e( 12, s( Ahdl+n'(" )(1»)' I.l Hnl('d(l)) 
=dJ Xj 
=dJ E 

=dJ X 
=dJ d( n - 1, s) if n > 1 

Here Loo(!) is the set. of those sublists of t which are equal to t with an initial segment 
removed (see Definit.ion 5.16). Moreover, we t.ake hd; and 1.1;, for i ~ 1, to be functions 
which take lists and return the i'" element of t.he list, respectively the list without its first i 
elements (see Section 5.2). Recall moreover that 711(1.) is defined to be t.he number of A'S in t 
(see Definition 2.25). 

Note that d associat.es with each de Bruijn's index, t.he right. variable in :Fur which should 
replace it. 

Lemma 5.9 e is well defined and bOT 0 e(t) == I for any I. E n~' 
Proof: Easy. 

Example 5.10 

e((2A)2A)1 == e(((2A)2A)I,0,1) 
== (e((2A)2, 0, 1)Ax,,)e(l, (Ax"), {XIII, ,';v, ... }) 

== (( c(2, 0, 1)Ax' )c(2, (Ax')' {,,", ,,"', ... } lA,." )d(1, (Ax")) 
== (( d(2, 0)Ax' )d(2, (Ax') )Ax" ):r" 
== ((x2Ax,)d(1,0)Ax")x" 
== (( X2Ax' )XI Ax" )x" 

o 

(Note that. the first. A to be be named becomes Ax" and not. Ax" due to the fact. t.hat. there is 
one A in (2A)2; i.e. nl((2A)2) = 1, hence Ahd'+n'«")2J(]) = AI,,"(]) = Ax".) This A-term may 
be replaced by the term ((X2Ax,lXIAx.)X4 in II. 
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Example 5.11 

e((A)(IA)(I8)3) == e((A)(IA)(I8)3,0, 1) 
== (e( e, 0, !lAx,)e( (IA )(18)3, (Ax')' {XU, XIII, ••• } ) 

== (d(e, 0)Ax')( e(I, (Ax')' {XU, XIII, ••• } )Ax" )e( (18)3, (A x')( Ax")' {XIII, ••• }) 

== (£Ax')( d(I, (Ax' ))Ax")( c( 1, (Ax' )(Ax")' {XIII, .•• } )8)e(3, (A x')( Ax")' {XIII, ••• }) 

'" (£Ax')( x' Ax")( d(I, (Ax')( Ax") )8)d(3, (Ax')( Ax")) 
'" (Ax,)(x'Ax,,)(x U8)d(2,(Ax')) 
'" (Ax,)(x'Ax,,)(x U6)d(I,0) 
'" (A x ')( x' Ax")( XU 6)xI 

Finally, we get rid of the variables of 1 in (Ax')( "J Ax")( ",U 0)"1 by repla.cing every x' by "2 and 
every XU by X3 obtaining (Ax2)( x2Ax3)( X36)XI 

This e however does not take into account <p-, (J- and /I.-items. In fact, it is difficult. to provide 
the translation of <p-items without watching what happens in the lists F and 1- Look at the 
following example: 

Example 5.12 Take the term in 11" to be (<p(1,2))(18)(2A)3. Now, the translation ofthis term 
should be: (x I 6)( "4Ax' )X4 and will finally be transformed into the A-term ("'10)( "4Ax5 )X4. 
What this really mean is that due to the presence of (<p(1,2)), we translate (Io)(2A)3 not in 
terms of F and 1 as we have done so far, but in terms of F' a.nd 1 where F' = ... "5++"4 ++XI· 
I.e. the X2 and X3 disappear from F. (For lists notation, sec the following sect.ion.) 

This process of removing elements from F must also be extended to 811 blist.s of F u 1 in order 
to translate subtenns of terms. Moreover, we need, in order to show the correctness of our 
tranlation and the soundness of our reduction rules, to have some basic formulation of lists. 
We start therefore by setting t.he ground for these Iist.s. 

5.2 Variables and lists 

Definition 5.13 (0) 
We define the set of var'iables 0 to be J uF. We let 0,01 ,0'2,0'"" mll!]e ave,' 0. Note thai, 
e '/: 0. Recall moreover that v, v', VI, 1'2, ... 7'lln!]e over F, tha/. F Ilns '''1, X2,' .. for elements 

and that 1 = X',X", .... Furthc7'71wre, we taA;€ ...'\,...'y/'~Yl,.X2"" to l'unge ove1'!. lVe refer 
sometimes to elements of:F as free var'iables and to elements of 1 a~'" bound variables. 

Now, we will use lists as an important part of our semantic function. \Ve assume the usual 
basic list operations such as concat.enation ++ and head and /.ail, lid and t.l. For i E IP, we 
take hd' =df hd and hd;+1 =df hd 0 hd\ and we define /./; similarly. Moreover, the set of 
operators \, C, <;; and E are also applicable for lists and we will mix sets and lists at will. We 
take v, v', Vlo V2, ... to range over (finite and infinit.e) lists. 

As we have seen in Example 5.12, we need to add/remove variables from F due to the 
updating function (<pk,;»). Hence we define the following Hot,iollS relat.ed to lists: 

Definition 5.14 (reve,-sed list. of va1'iables, lef/. part., ";glll 1'''''1) 
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• Every list is written as the sum of its ordered elements from right to left In particular, 
. -r dl 1/ f we wrlte.r as ... + +X2 + +XI an as ... + +X + +X . 

• Ifv = ... + +112 + +111, then for m :::: 1, we define v>m to be ... + +lIm+1 + +lIm. v>m 
is also called the left part of v starting at m. Note that V"m = t/m-I (v). In particul-;'r, 
we define F"m to be ... Xm+1 + +Xm for m :::: 1. 

• Ifv = ... + +112 + +111, then for m :::: 1, we define v<m to be 11m- I + +lIm- 2 + + ... + +111, 
Note that V<I is the empty list and V<2 = hd(v). v<m is also called the right part of v 
ending before m. In particular, we define F<m to be Xm-I + +Xm_2 + + ... + +XI for 
m::::1. 

Definition 5.15 (£) If A is a set, then we define £(A) to be the set of all finite lists genemted 
by A. We assume that all elements a E A occur at most once, in each of these finite lists. 
Obviously, the empty list 0 E £(A) for evel'y set A. 

Note that £ only generates finite lists. In particular, I <1. £(1). 

Definition 5.16 (£oo(v)) 
We define £oo(v) to be {v,,;; i E lP}. I.e. elements of £oo(v) arc v, t/(v) and so on. 

Lists that we will be using often are those for whom a right part is a finite list of elements of 
o u {.p} (where .p is a special symbol <1. 0 whose meaning for lists will become clear below), 
and a left part is F"m for some m E lP. For this reason, we define the following: 

Definition 5.17 (£,pht) 
£,pl;t is defined to be: {F"m + +v; Tn E IP, v E £( 0 U {</J} )} 

Hence, if v E L,split then v can be split up in two lists: v == F>m + +v'. 

1. The left sublist, is an infinit.e left pa.rt. of F. 

2. The right sublist is an element of £(0 U {</)}). That. is, a finite list of clements from 
0U{.p}. 

Definition 5.18 (£-1(0)) 
We define £-1(0) to be: {v;v E £,pht f\ V is </)-fn:e}. I.e. clements of £-1(0) are those 
elements of £,pht which do not contain '1/" 

Definition 5.19 (£v') 
We define £,p to be £,plit U £(0 U {.p}). 

Now the following function intends to measure the length of finite lists in which </) appears. 
From this function, the reader can guess that .p removes an element from the set. 

Definition 5.20 The function 11·11 : £(0 U {.p}) ........... Z is defined as follows: 
For all v E £( 0 U {.p}), II E 0: 

11011 
Ilv+ HII 
11"+ +1111 

o 
IIvll-l 
Ilvll + 1 
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We write Ivl for the length of v (Le. the number of all its elements including 1/J). 

Lemma 5.21 ForallvE £(0u {1/J}), Ilvll:::: Ivl. Moreover, ifvE £(0) then IIvll = Ivl. 
Proof: Obvious. 0 

Moreover, we define the following partial function: 

Definition 5.22 (comp) For all v E £",fJ E 0, nEIl': 

compl (v + +fJ) 
compn+1(v + +fJ) 
comPn(v + +fJ + +1/Ji+l) 

=df fJ 
=df comPn(v) 
=df comPn(v + +'I'>i), 

Here 1/Jn stands for 'I'> + + ... + +'1'> for n E IN. 
, ., 

n 

i E lN 

The idea of comp is to select the appropriate named variable, given a list. of (difrerent) named 
variables. We write compn(v) j, when compn(v) is defined. 

Lemma 5.23 For all v E £(0 U {1/)}), n E !P, if n :::: Ilvll then comp,,(v) j I\compn(v) E v. 
Proof: By induction on Ivl noting that if Ilvll ;:: 1 then 3(J E 0 such that (J E v. 0 

Corollary 5.24 F01' all v E £(0), nEIl', if 11 :::: Ivl then comp,,(v) Il\c01llPn(v) E V. 
Proof: Obvious, using Lemmas 5.21 and 5.23. 0 

Lemma 5.25 For all v E £,plit, n E !P, comp,,(v) i I\comp,,(v) E v. 
Proof: By induction on n. D 

Note that the only case where comPn(v) is undefined is when n> Ilvll. 

Lemma 5.26 For all v E £,plit, n E !P, i E lN, compn(v + +1/,i) = comPn+i(V). 
Proof: Easy. 

Lemma 5.27 For all v' E £'p(i/,vE £(8 U {1,}),1I E 8,n E fp, and i E IN, we have: 

1. lfn > Ilvll;:: 0 then compn(v' + +v) '" c01711'n_II"II(v'). 

2. lfn > Ilvll;:: 0 then comp,,(v' + +'I'>i + +v) '" C01llPn+i(V' + +v). 

3. lfn:::: Ilvll then compn(v' + +v) '" compn(v). 

4. compn( v' + +11 + +'1'> + +v) '" compn( v' + +v). 

Proof: 

1. By induction on Ivl using Lemma 5.26. 

2. Using Lemma 5.26 and 1 above. 
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3. By induction on Ivl using Lemma 5.26. 

4. • Case n :c; Ilvll or n > Ilvll ?: 0, then use the definition of camp and cases 1 and 3 
above. 

• Case n > Ilvll and Ilvll < 0 then by induction on Ivl. 

o 

Finally, the following definition takes a segment to the list of variables which are indices of 
the AS occurring in the main items of the segment. 

Definition 5.28 
lfs is a segment, then tile define the list base({ on s t.o be (J.S follollls: sl(0) = 0, sl«(t'16)3') = 
sl(3') and sl«tAo)s') = 0 + +sl(3'). 

5.3 The semantics of !12-terms: an initial account 

The method here is \0 provide the semantics of the terms using lists of variables v and v' so 
that Iv; v'; t'l where I.' is a subterm of I. searches for the tra.nslation of t.' E n2 using v to give 
names to the free variables in t' and v'to give names to the bound varia.hles in t'. Moreover, 
v n v' is taken to be 0 in order to avoid binding any free variable. 

Now, if we were to determine the semantics of the A- and a-terms only, then it is sufficient 
to consider v E £(1) as we have done in the definition of e in Definition 5.S. The list v then 
may be considered as the list of named variables to be used for free variables in I.' which are 
bound in the original term t; variables free in t obtain their nallles relative to the fixed list 
•• , X3 + +X2 + +XI. With variable updating however, we will consider v to be denumerably 
infinite and in £split. We start first with only finite lists of elements of! and we provide the 
semantics of the A- and 6-terms as follows: 

Definition 5.29 (A- and a-semantics) 
For all t l , t2 E n~s, v E £(1), v' E £=(1), v n v' = 0, nEIl' U {f}, 

Iv; v'; (tIA)t21 =df (lv;v';tdAx)lv+ +X;v'>i+1;t2Ifol" i = nl(t,) + I,X = hdi(v') 
Iv; v'; (t I6)t21 =df (Iv; v'; td6)lv; V'~i; t21101'-i = nl(tl) + 1 

. . {comp,,(v) if n ~ Ivl 
Iv; v'; nl =df x"_lvl n> Ivl 

E if 11 = E 

That is, we save in v all those variables which are now free in the term we are calculating, 
but which were bound originally. Note that the condition v n v' = \\ is necessa.ry; otherwise 
we would bind variables that are meant to be free. 

Example 5.30 (see Example 5.10) 

10; 1; «2A)2A)11 
(10; 1; (2A)2IAx ,,)lx"; 1>3; 11 
«(10; 1; 21Ax' )Ix'; 1>2; 2fAx" )C01npI (x") = 

« x2-10IAx' )x2_lx'l),x" )x" 
« X2Ax' )XI Ax" )x" 
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Example 5.31 (see Example 5.11) 

10; 1; (A)(lA)(lb)31 
(10; 1; cIAx,)lx'; 1>2; (IA)(lb)31 
(cAx' )(Ix'; 1>2; lIAx")lx'x"; 1>3; (lb)31 
(cAx' )(comp~(x')Ax" )(Ix'x"; h3; Ilb)lx'x"; !?:3; 31 -
(cAx')( x' Ax")( compi (x' X")b)X3_lx'x"l 
(cAx')( x' Ax")( x" b)xI 

If however we calculate Ix';1;(A)(IA)(lb)31, then we would get (cAx')(X'Ax,,)(x"b)x' which 
is not the intended meaning for (A)(IA)(lb)3. Note that the list Vi is superfluous when we 
always start with 10; 1; n, since then v' == hlvl+1 and remains so. 

Lemma 5.32 Foranyv E £(1),v' E £oo(1),vnv' = 0,t E f!~8,FV(lv;V';t.J) ~ vuF. 
Proof: By induction on t, recalling that c is neilher' free nor bound. 0 

Lemma 5.33 h·;·1 as defined in Definition 5.29 is well de]ined. Thai. is fm· all v E £(1), Vi E 

£oo(!),vn v' = 0,t E f!~8, Iv; v'; II is a unique lenll ofA. 
Proof: By induclion on t E f!~o using Corollary 5.24. 0 

Now we will prove that e and 10; J; ·1 return the sallle A-terms. 

Lemma 5.34 For all 1 E f!~6, s segment from Ihe mid-level and v E £ooeD, crt, s, v) _ 
[sl(s); v; t[. 

Proof: By inducl.;oll on t. 0 

Corollary 5.35 F01' alii. E f!~6, e(t) == [0; 1; t[. 
Proof: Obvious. 0 

5.4 Extending the initial account 

We have not so far, in either the translation using e or that of I,;,; .[, defined the meaning 
of (T-items and cp-items. The meaning of the first. is st.raight.forward. In fact, for i E IP, 
t l , t2 E f!~8, v E £(1) and Vi E £00(1), v n v' = 0, we shall ,Iefine: 

Iv; Vi; (t 1(TU))t2[ =dJ [v; v'; t21[lv; Vi; il := [v; V'?I+nl(t,); tIil' 

where tl[V := t2]' is the subst.it.ut.ion in the mid-level A (which uses :F U 1) given in Defini
tion 5.4. 

When it comes to the meaning of [v; Vi; (cp(k,i))Ij, t.hen t.hings llIay not be obvious. In 
fact, the intended meaning of (cp(k,i))t is: add i to all free variables great.er t.han k, occurring 
within term t. Let us moreover sllmmarize wha.t our sema.nt.ic function docs. In Iv; v'; t), the 
term t is written exactly as it is (i.e. A'S and b's stay at. their original posit.ions in t). The free 
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variables in t however (which are indices of course) are replaced by variables from v U:F (see 
Lemma 5.32). The index itself decides which variable from vu:F is to replace it. For example 

Ixlllx"x'; 1>4; (10)(20)31 == (x'o)(x"o)x lll 

Ixlllx"x'; 1;4; (10)(2A)11 == (x'O)(X"Ax')X' 
Ix'; h2; 21- == XI 

Now, when we come to look for the meaning of Iv; v'; (",(k,i)tl, then all those variables in t 
which are smaller than or equal to k, take the same value as if we were only calculating 
Iv; v'; tl. Those variables bigger than k must not take the original values they would have 
taken in Iv; v'; tl. Rather, looking for their corresponding variables in v, we have to shift still 
i positions to the left. I.e. if the index is n, where n > k then the variable corresponding to 
n is not the nth variable from right to left in V. Rather, it. is t.he (n + i)th variable from the 
right. For example: 

Ix""xlllx"x'; h5; (",(1,2))(10)21 == (x'b)x"" 

Hence to calculate, let us say, Iv; v'; (",(k,i))tl, we have t.o consider several Cases: 

• Case Ivl ~ k + i. Then the trailing k elements of list v arc to be kept. but t.he next i 
elements are to be erased resulting in a list. VI = left(v, Ivl- k - i) + +right(v, k) where 
left and right have the obvious meaning. I.e. lcft(v,m) = v::: m , right(v,m) = v<m' 
Hence, 

For exa.mple: (:z;'lIIx llla;lIx'; 12:5 ; (<p(1,2))21 == Ix''''a;'j 12: 5 ; 2(:;:: ;/.;"". 

• Case Ivl < k where v E £(1). Each free va.riable 11 in I, great.er than k has t.o be increased 
by i. Now because Ivl < k+i < n+i, such a free variable will be associated wit.h x"-Ivl+i' 
For example, Ix'; 1>2; (",(2,3))31 == X5 and 10; 1; (",(2,3))31 == X6. For a free variable n in I 
with n :'0 k, not.hing changes: take ':"-Ivl' For example: I·,,'; h2; ",(2,3)21 == XI. 

• Case k :'0 Ivl < k + i. This is a mixture of the above t.wo ca.ses. For example 

In all these cases, the list v has to be updated, when calculating ",-items. There arc essentially 
two ways to update the list so that the a.bove three cases arc accommodated. The first 
alternative will be called eager erasing and conceptually consist.s in immediately erasing the 
superfluous elements in x. The second a.lternative is a st.epwise approach a.nd will be named 
lazy erasing. 

Eager erasing just deletes the elements. So, if Ivl ~ k + i, t.hen some function like 
Iv; v'; (",(k,i))tl == l(tefl(v, Ivl - k - i) + +right(v, k); 17; II would do t.he job. 

Now for lazy erasing, the trick is to allow a special symbol 1/) to become an element of v. 
The operational meaning of ,p is: on going left, delete t.he first. named variable. \,ye will use 
lazy erasing in this paper. Moreover, as is t.raditional wit.h our approach, we will use 1/) with 
superscripts. We write ,pI as ,p and ,po as the empty string 0. 1/'" will be ,p + + ... + +,p. 

, ... ' 

n 
Such a ,p, will not only be used to erase variahles but will also say which free variable in :F 
correponds to the variable in hall(l. 
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Example 5.36 The idea is that: 

1. To calculate Iv; v'; (<,o(k"»)tl where Ivl 2: k + i, v = VI + +V2 and IV21 = k, we calculate 
IVI + +1)1' + +V2; v'; tl. Hence when calculating Ix""x'" x"x'; 1>5; (<,0(1,2»)21, we calculate 
Ix""x"'x" + +1)12 + +x'; 1>5; 21. Now, this evaluates to Ix"";"'x" + +1)12; 1>5; 11. The 
presence of 1)12 means igno~e x"'x". Therefore the result reduces to Ix""; 1>5;-11 which is 
x~ -

2. For every n E lN, mE lP, Iv + +1)1n; v'; ml = Iv; v'; n + ml and l1/>n; v'; ml = xn+m. 

Looking at the first part of Example 5.36, we see that we need to have v = v, + +V2 where 
IV21 = k. Now, we are interested in a stepwise fashion. Moreover, the length of V2 ·has to be 
calculated somehow. In other words, we have to go through t.he list v from right to left until 
we pass the kth element. In order to accommodate snch a stepwise fashion, we introduce an 
extra argument in the semantic meaning of <,o-terms. We will give an example which explains 
the point even though it is ahead of its time in the section. We believe however, that the 
reader can still follow it, once point 2 of Example 5.36 is remembered. 

Example 5.37 Notice how we save x' to usc it. later on: 

Ix"x'; 1>3; (<,0(1,2»)(16)21 
Ix"; x'; 1>3; (<,0(1,2»)(16)21 
Ix" + +,j2 + +x'; 1>3; (16)21 
(Ix" + +1/>2 + +x'; 1>3; 116)lx" + +1/>2 + +x'; 1>3; 21 
(x'6)lx" + +1/>2; 1>3;-11 -
(x'6)lx"; 1>3; 31 -
(X'6)X2 -

= 

For reasons that will become clear below, we extend our lists from being clements of [(1) (as in 
Definition 5.29) to being element.s of [split. So not. only we accommodate bound variables and 
1/>'s in our lists, but also we include free variables. Those lists moreover become denulJ1erahly 
infinite. 

Now, here is I,;,; ·Ie, the extended definition of the semantics of A- and ,)-items. 

Definition 5.38 (Extended A- and 6-semanlics) 
)..fj(7 -

We define I,;,; ·Ie: [split X [00(1) X flO': <P f-+ A, such thai.: 
For allt"tz E fl§',vE [split, V' E [oo(1),vnv' = 0,n E II', 

Iv; v'; (t, A )t2le 
Iv; v'; (116)t2I, 
Iv; v'; nle 

Iv; v'; [Ie 

=dJ (Iv; v'; t,leAx )Iv + +X; V'~i+'; 121< fol' i = 111(1.,) + 1, X = hdi( v') 
=dJ (Iv; v'; l,]e6)IV; V'>i; /'21, for i = 11./(1,) + 1 

=dJ comPn(v) 
=dJ £ 

The meaning of Ihe remaining fl'Aff<,,-le1'11ls will be given below. 

The following lemmas will be used in what. follows: 
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Lemma 5.39 For all v E C.pl;" v' E £00(1), (v + +(1) n v' = 0, II E 8, n, m E JP and k E IN, 
we have: 

1. Iv + +11; v'; lie = II 
2. Iv; v'; n + kle - Iv + +1,k; v'; nle 
3. Iv + +11; v'; n + lie - Iv; Vi; nJe 
4. IF>m + +'¢k; v'; nle Xn+k+m-l 

5. Iv;-;;; nle E v 
6. Ifn t- m then Iv; v'; nle ¢ Iv; v'; mle 

Proof: Easy, using Lemma 5.26 and the definition of compo o 

Lemma 5.40 For all v' E C.p/it,vE £(8u {,¢}),v" E £oo(J),(v'+ +v)nv" = O,11 E 8 and 
n, i E JP, we have: 

1. If n > Ilvll 2: 0 then lv' + +v; v"; nle == Iv'; v"; 11 - Ilvllle 

2. If n > Ilvll 2: 0 then lv' + +1/,i + +v; v"; 1I1e == 117 + +V; v"; 11 + ile . 

3. If n :::: IIvll then 117 + +v; v"; nle == C01ll1',,(v) 

4. Iv' + +11 + +'¢ + +V; v"; nle == lv' + +V; v"; 1I1e 

Proof: This is an obvious c01'01lm'y of Lemma 5.27. o 

Corollary 5.41 For all v' E £,plit, v" E £00(1), (v' + +v) n v" = 0, and n, i E IP, we have 
for v E £(8): 

1. If n > Ivl then lv' + +v; v"; nle == Iv'; v"; 11. - Ivlle 
2. If n > Ivl then lv' + +1/,i + +v; v"; 1IIe == 117 + +v; v"; 11. + ile. 

3. If n :::: Ivl then lv' + +v; v"; nle == comp,,(v) 

Proof: Obvious by Lemmas 5.21 and 5.40. o 

Remark 5.42 Note that if v E £,plito v' E £(8 u {1/;}), v" E £00(1), (17 + +v) n v" = 0, n, i E 
JP, Ilv'll < 0, then even though n > Ilv'll, it is not necc"arily the case that: 

1. Iv + +v'; v"; nle == Iv; v"; n -llv'llle 
2. Iv + +'¢i + +v'; v"; nle == Iv + +v'; v"; 11 + ile 

This can be seen as follows: 

IF + +,¢5x ,; 12:2; lie == x' whereas IF; h2; 1 - IIV)Sx'llle == IF; h2; 51e == XS' 

Now the following lemma is needed to show that I·;·; 'Ie is all extension of (-;'; '1. 
Lemma 5.43 For all v E £(1), v' E £00(1), vn v' = 0, n E IPu {£}, Iv; v'; nl == IF + +v; v'; nle. 

Proof: Left as an eJ:ercise. 0 

Finally, here we show that I·;·; 'Ie is an extension of (-;.; ,1. 
Lemma 5.44 For' all v E £(1), v' E £00(1), vn v' = 0, t E n~6, Iv; v'; II == IF + +v; v'; tfc. 

Proof: By induction on t, using Lemma 5.43. 0 
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5.5 The semantics of a- and <p-terms 

Definition 5.45 (a-semantics) 
For all tl, t2 E n~8a'P, v E Csp/;<, v' E Coo(t), v n v' = 0, i E lP we define 

Iv; v'; (tlaU))t2Ie =df Iv; v'; t2Ie[lv; v'; ile := Iv; V'2:1+nl(t,); tdel' 

where tJlv := t21' is the substitution in the mid-level gil1en in Definition 5.4. 

Definition 5.46 (<p-semantics) 
For all t E n~8a'P, v E Csp/;" v' E C(8), v" E Coo (1), (v + +0) n v" = 0,0 E 8, i E lP, k E IN, 
we have: 

Iv; v"; (<p(k.i))tl, 
Iv; v'; v"; (<p(O,i))tl 
(v + +0; v'; v"; (<p(k+l,i)tl 
(v + +9 + + 7/) k+ I ; v'; v"; tl 

=df Iv; 0; v"; (",(k,i))tl 
=dJ Iv + +1,i + +V'; 1Jii; lie 
=df Iv; 9 + +v'; v"; (",(k,i))11 
=df Iv + +1,k; v'; v"; II 

Note here that v" does not playa role because we do not have bound variables that we are 
trying to replace by variable names. What the v' docs however is to save the first k variables 
of v which are actually the variables in t which should not be updated because they are :0: k. 
Once the first k variables of v have been saved in v', we remove the first i variables from the 
resulting v. Hence in the end, we get the correct list from which we find the mea.ning of t. 

Example 5.47 

Xs 
2. (F + +,,'; 1>2; (",(2,3))1le ,.' 
3. IF; h2; (",(1,2))( ",(0,1))11 = "4 

Now the following lemma is basic about ",-items. 

Lemma 5.48 Fo1' all t E n~8a'P, v E Cpli/, v' E C(8), ,," E Coo Ct) , (v + +v') n v" = 0 and 
i E lP, we have: 

Iv + +v'; v"; (<p(IV'),i))II, == Iv + +<,&i + +v'; v"; tie 

Proof: Easy. First p7'Ove by induction on Iv'l that if v E Csplit, v', "I E C(8) such that 
(v + +v' + +VI) n v" = 0 then 

Iv + +v'; VI; v"; (",(lV'I,i))tl == Iv; v' + +VI; v"; (",(O,i))11 

o 

The following lemma opens the road to working with lists which do not. cont.ain VJ. 
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Lemma 5.49 For' all v' E £,pli" v E £(0 U {V)}), VI E £000), (v' + +0 + +v) n VI = 0,0 E 0 
and n E IP, we have: 

lv' + +0 + +1/) + +v; VI; tie == lv' + +v; VI; tie 

Proof: By nested induction. We prove by induction all I. that IHI(t) holds where IHI(t) is: 

lv' + +0 + +1/J + +v; VI; tie == lv' + +v; VI; tie 

• Case t = n, use case 4 of lemma 5.40. 

• Case (t I8)t2 or (tl oX )t2 or (tl a(i) )t2 where IIh (11) and IIh (1.2) hold, easy. 

• Case (<p(k,i))t. where I HI (t) holds, prove by induction on k that I H 2( k) holds where 
IH2(k), for all v" E £(0) is: 

case k = 0, use IHI(t). 

Assume I H 2( k). Now, prove by induction on Ivl that I II,,(v) holds ",here I II 3(V) 
ZS: 

lv' + +0 + +1/J + +v; v"; VI; (<p(k+I,i))I·lc == 117 + +v; v"; VI; (<p(k+I,i))tle 

* case Ivl = 0, use Definition 5.46. 

* Case v+ +0 where 0 E 0 and IlI3(v) holds, usc Definition 5.46 and IIl2(k). 

* Case v + +0 + +1/Jj whac 0 E 0,j E 11' and IlI3(v + +1/Jj-l) holds, use 
Definition 5.46 and I11o(v + +1)·;-1). 

* Case 1/1.1 tllhe7'C j E lP, use Definition .5.46. 

o 

Now this lemma is very important. It says t.hat all t,he '1/"5 can be removed f1'Om lists. 

Lemma 5.50 For all v E £,plit,3v' E £split which is free for' '1/' such that for' all t E 
">'sa,,, /I ,. (1) I tl t - n /I - 0 1-' /I, tl - I" /I. I H2 ,v E Loo sue 1 ,w' v v - ,v, v , . e = V 1 V ,t. e. 

Proof: We can write vas VI + +0 + +V2 such that 0 E 0,V] E £'plit,V2 E £(0 U {1/J}), 
VI is free of 1/J and V2 has 1/J as its leftmost dcmellt. Now, lite 1'l'Oof is by induction on IV21 
using Lemma 5.49. Note moreover, that v' is indepelldcnt of t, Ifence, we may assume f7'Om 
now on that OU7' start lists do not contain 1/J, 0 

Finally, we give the translation of any t.erm I, of n~8"1": 

Definition 5.51 (The semantic function) 

We define 1·1 : n~6a", >--> A such that f07' all t ill n~8"1", III =df IF; J; tie 

Lemma 5.52 1·1 is well defilled. Thai, is, for' all I. E n~8"1", III is a unique term in A. 
Proof: By induction on I. E n~6q"" 0 
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Now this is our first lemma towards the correctness of our semantics: 

Lemma 5.53 For all t E n~5q'P, we have: 

1. BV(lII; v'; tl) C v' for every 11 E Csplit and v' E Coo (1) such that 11 n v' = 0. 

2. FV(lII; v'; tl) C 11 for every 11 E C8pht and v' E C oo (1) sitch that 11 n v' = 0. 

3. BV(ltl) C 1 and FV((tl) C F. 

Proof: 1 and 2 are by induction on t. 3 is a corollary of 1 and 2. o 

What this lemma means is that the term (tl in 7\ can be translated using Definition 5.6 to a 
term in A. 

Let us give now a few examples: 

Example 5.54 (Note that we sometimes combine llIany steps in one.) 

(( <p(2,l »)( 115)( 2), )31 = IF; 1; ( <p(2,1 »)( 16)( 2), )31, 
= IF; 0; 1; (",(2,1»)(10)(2),)31 

IF>2; XI; 1; (<p(1,1»)(16)(2.-\)31 
IF~3; "'2 + +Xj; 1; (",(0,1»)(16)(2.-\):11 

= IF:::3 + +1/) + +"'2 + +"'1; 1; (16)(2.-\)31, 
(XI 6)( X2),,,' )"'4 

I( ",(2,3»)( <p(l,2»)(lb)(26)31 = IF; 1; (",(2,3»)( ",(I ,2))( 16)(2.1)31, 
I F>2; ", I; 1; ( ",( I ,3))( ",( I ,2))( 16)( 26)31 
(F~3; X2 + +XI; J; (",(0,3))( ",(1,2»)( 16)(20')3( 
IF~3 + +1)03 + +'''2 + +"'1; J; (",(1,2»)(16)(215)31, 

_ IF~3 + +1)03 + +"'2; XI; 1; (",(0,2))(16)(26)31 
_ IF~3 + +1)03 + +"'2 + +1/,2 + +",t;l; (16)(2.1)31, 

('''1-6)(IF>3 + +1/,3 + +"'2 + +1/)2 + +'''1; 1; 21e6) 
IF>3 + +-1/)3 + +":2 + +1/,2 + +":1; 1; 31e 
(xl-6)(IF>3 + +1/,3 + +1,"; f; 1I,.I)IF>3 + +1/,3 + +1)0; 1; 21e 
(xI.I)(lF~,; J; 1I,o)IF:::;;l; 21e -
(XI 15)( x,6)x8 

6 The soundness of (J- and <p-reduction 

In this section we will show that if t --> t' where --> is the result. of a "'- transition or destruction 
rule, or of a a-destruction rule, then 11.1 == It'l, That. is, we will show t.hat both", and a are 
sound in what concerns variable updating and subst.it.ution, We will show moreover, that if 
t -->q t' where --> is the firing of the a-generat.ion rule, t.hen It I = It.'I. That. is, a-generation 
is a form of ,a-conversion in Ollr system. Furthermore, (T-transit.ion accommoda.t.es in it 0'

conversion. That is, if t -'fa t' where ---tcr is a a-transit.ion rule, t.hell Il) =;::; It'). For this, Jet 
us group all the definitions of the meaning of t.he different. t.enlls t.oget.her: 
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Definition 6.1 (Semantics of f'l~8u<P) For all t, tlo t2 E f'l~su<p, v E Lspl;" v' E L(0), v" E 
Loo(1), (v + +(1) n v" = 0, /I E 0, i: n E 1P and k E IN, we define: 

M1. It I =dl IF; 1; tie 

M2. Iv; v"; [Ie 
M3. (v; V"; nJe 
M4. Iv; v"; (t1 oX )t21 
M5. Iv; v"; (t1 6)t21 
M6. Iv; v"; (t1a(;»)t21 
M7. Iv; v"; (",,(k·;»)tl e 

=dl 

=dl 

=dJ 

=dJ 

=dJ 

=dJ 

t: 

compn(v) 
(Iv; v"; t11oXx)lv + + X; V">;+l; t21!0r i = nl( t1) + 1, X = hd;( v") 
(Iv; v"; td6)lv; v">;; t21 for-i = nl( t1) + 1 

Iv; v"; t2lelllv; v";"ile := Iv; v">;; tdel' for i = nl(t2) + 1 
Iv; 0; v"; (",,(k·;»)tl -

MS. Iv; v'; v"; (",,(0';»)111 =dJ Iv + +1'; + +v'; V"; lie 
Mg. Iv + +11; v'; v"; (",,(k+ 1';»)ld =dJ Iv; /I + +11; V"; (",,(k·;»)tl 
MID. Iv + +11 + +,pk+1; v'; V"; II =dJ Iv + +1/,k; v'; v"; tl 

Let us furthermore recall here that f'l = p, 6, a, ""} and that. f'l", is defined in Definition 2.21. 
Finally, the ",,-rules are given in Definition 3.4 and the a-rules are given in Definition 3.S. (We 
leave the discussion of I' till the next section.) 

Now, the following lemmas inform us about the place of (0) in our system. 

Lemma 6.2 If 11. E IP, v E Lsplit, v', v" E Loo(1) and v n v' = v n V" = 0. then Iv; v'; nle = 
(v; v"; nJe. 

Proof: Obvious. 0 

Lemma 6.3 If t E f'l~'u<p, 11 E L,plit, v' E Loo(1) and 11 n v' = 0, then for all v" E Loo(V'), 

Iv; v'; tie =0- Iv; v"; tie. 
Proof: By induction on t. 0 

Now we define the notions of (0-, (3-) soundness: 

Definition 6.4 

• We say thai a ,-edu.clion rule -> is sOlmd if: (1ft, t', v, 1I)[t ~ t' =} Iv; v'; tie == Iv; v'; t'le]' 

• We say that a reduction "ule -; is a-sound if: 

(1ft, t', v, v')lt -; t' =} Iv; v'; tie =" Iv; v'; t'le]. 

• We say that a ,-eduction rule --+ is (3-sound if: 

(1ft, I', v, v')[t -; t' =} Iv; v'; tie =7J Iv; v'; t'le]. 

• We say that a ,-eduction ,.,de -; is 0(3-so1lnd if: 

(1ft, t', v, v')[t -; t' =} Iv; v'; tie = Iv; v'; t'le]. 
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Lemma 6.5 cp.transition through a b·item is sound. That is, for all tl, t2 E n~8""" VI E 
£,plit. v" E £00(1), VI n v" = 0, i E lP, and k E IN, we have: 

I VI; v"; ( cp(k,i))( tl b)t2le == I VI; v"; (( cp(k,i) )tl b)( cp(k,i) )t2le 
Proof: According to Lemma 5.50, we may assume that VI is 1/)·f1'ee. Assume moreover 

that VI = v + +v' such that Iv'l = k. 

(Iv + +v'; v"; ((cp(k,i))t I6)(cp(k,i))t2Ie ==j=l+nl('d 
(Iv + +v'; v"; (cp(k,i))tde6)lv + +v'; v">j; (cp(k.i))1. 2Ie =Lemma 5.48 

(Iv + +"¢i + +v'; v"; tlle6)lv + +"¢i + +v'; v">j; t21e 
Iv + +"¢i + +v'; v"; (t I6)t2Ie - ==Lemma 5.48 

Iv + +v'; v"; (cp(k,i))( tl 6)t21e 

o 

Lemma 6.6 cp.trrmsilion Ih1'Ough a A·item is sound. Thai is, fol' all 1'1,12 E n~S""', VI E 
.esp/it, V" E L oo (1), VI n V" = 0, i E lP, and k E IN, we have: 

I VI; v"; ( cp(k.i))( 11 A )121e == 1 VI ; v"; (( cp( k,i))1 1 A)( cp( k+ l,i))12Ie 
Proof: Similarly to Ihe above lemma, we may assume Ihal. VI is1/l-fr'Ce. Assume m01'e01ler 

Ihal VI = v + +v' such that Iv'l = k. 

(Iv + +v'; v"; (( cp(k,i) )11 A )( cp(k+ 1 ,i) )t2le ",j=l+nl( 'd.X =hd' (0) 

(Iv + +v'; v"; (cp(k,i))llleAx )Iv + +v' + + X; v"> j+l; (cp(k+1.i))1. 2Ie =Lemma 5.48 

(Iv + +"¢i + +v'; v"; tlleAX )Iv + +"¢i + +17 + +X; V">j+1; 121e = 
Iv + +"¢i + +v'; v"; (l.1A)12Ie - ==Lemma 5.'18 

Iv + +v'; v"; (cp(k,i))( 11 A )t2le 

o 

Lemma 6.7 cp-deslruction is sound. Thai is, fol' all VI E £,plit, V2 E £00 (I), VI nV2 = 0, n, i E 
lP, k E IN, we have: 

1. lfn > k Ihenlv1;v2;(cp(k,i))nl == IVI;v2;n + il. 
2. lfn:::; k then IV1;v2;(cp(k,i))nle == 1Vi';v2;nle. 

Proof: Assume VI is 1/J-/r"ee and VI = V + +v' such I.hal I v'l = !.:. 

1. (v++'V'j V2; (<p(k,i))nJe =Lemma 5.48Iv++vJi++v'j '/)2; nlc =CorOI/!lTY 5.41 (V++1)'; V2; n+iJe 

2. (v + +v'; V2; (<p(k,i))n)e =Lemma 5.48 (v + +1/)i + +17; 1)2; nl e =Gorollary 5.41 

compn( VI) =.Corollary 5.41 Iv + +V'; 172; nlc 

o 

Lemma 6.8 a-destr'uction is sound. Thai is, for alii. E n~8""', v E £,plit, v' E £00(1), vnv' = 
0, i, j E lP, we have: 
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2. Iv; v'; (t17(i»)jl, == Iv; v';jl, if j -# i. 

3. Iv; v'; (t17(i»)d, == £. 

Proof: 

1. Iv; v'; (t17(i»)il e == Iv; v'; il,lIv; v'; ii, := Iv; v'; I.J,], == Iv;,,'; tl,. 

2. Iv; v'; (t17(i»)jl, == Iv; v'; jl,[lv; v'; iJe := Iv; v'; tl,]' == Iv; v'; jl" as Iv; v'; jl, -# Iv; v'; ii, 
from Lemma 5.39. 

3. Iv; v'; (t17(i»)£I, == Iv; v'; £I,[lv; v'; ii, := Iv; 11'; tie]' == £, as £ ~ v, for every v. 

o 

Lemma 6.9 a-transition is o:-sound. That. is, f07' all v E {,split, v' E Loo (1), vn v' = 0, i E 

lP, t 1 , t 2 , t E n~sO'~, we have: 

1. Iv; 11'; (tl17(i»)(t2A)tl, =" Iv; 11'; ((tw(i»)t2A)((<p)tW(i+l»)tlc 

2. Iv; v'; (tl17(i»)(t2o)tle =" Iv; v'; ((tw(i1)t2A)(tl(T(i1)tlc 

Proof: Left to the reader. o 

Theorem 6.10 For all t, t' E fl~5ff"', if t --+r t' ",he,,,, I' is any (T- {)7' <p-tmnsition rule, or any 
17- or <p-destruction ""le, then It I == ]1.'1. 

Proof: This is a corollary of Lemmas 6.5, 6.6, 6.7, 6.8 and 6.9 abolle. 0 

The transition and dest.ruction rules of (T and 'I' work like subst.it.ut.ion a.nd variable updat.ing. 
Therefore, t.hey should return equivalent t.erms. (T-gcncrat.ion on t.he ot.her hand, accommo
dates in it. ,8-reduction. 

Example 6_11 

Moreover, 

IF; 1; (28)(3A)((<p)217(1»)1Ie 
(IF; 1; 2Ieo)(lF; 1; 31,Ax' )IF + +":'; h2; (( 'I' )2(T(I l)llc 
(IF; 1; 21,o)(lF; 1; 31,Ax' )(IF + +x'; 1>2; !J,IIF + +":'; 1>2; lie := IF + +":'; t>2; (<p)21,J' -
(IF; t;21,o)(lF; PI,Ax')(X'[X':= X2]') - -
(IF; 1; 2Ieo)(]F; 1; 31,Ax ' )X2 
(X20)( X3Ax' )X2 

Of course (X20)(X3Ax')X' and ('''20)(":3Ax')":2 arc not. n-cquivakllt. but. arc ,8-equivalent.. In 
fact., 
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Hence, our task is to show that if t ->. t' where ->. is a-generation, then It I = It'l. This is 
done in the following lemma: 

Lemma 6.12 a-genemtion is a(3-sound. That is, for all t, II, t2 E n~5.<p, for all v E 
.c,pli" v' E .coo (1), such that v n v' = 0, Iv; v'; (tl b)( t2A )tl = Iv; v'; (t I b )(t2 A j( ( 'I' )tjC7(1) )tl. 

Proof: Let i = 1 + nl(tl),j = 1 + nl(I.2),X = hdj(V~i),k = 1 + nl(t). 

Iv; v'; (tl b)( 12A)( ('I' )tla(I))tl 
(Iv; v'; tlleb)(lv; V'>i; t2leAX )(lv + +X; V'>i+j; (('I')lla(1))lle) 

(Iv; v'; tlleb)(lv; V'~i; t21eAX )(Iv + + X; V'~i+J; tle[X := Iv + + X; V'~i+j+k; ('I' )tde]') 

(Iv+ +X;v'>i+j;tle[X:= Iv;v'>i+j+k;tdeJ'[X:= Iv; v'; tIle]') 
(Iv + +X; V';i+j; tle[X := Iv; v';tlle]'[X := Iv; v'; tde]') 
Iv+ +X;v'~~+j;tle[X:= Iv;v';tdel' 

Moreover, 

Iv; v'; (tI6)(t2A)11 
(lv;v';tlleb)(lv;v'~i;t2IeAx)lv+ +X;v'~i+j;tl, =If 
IV+ +X;v'~i+j;tle[X:= Iv; V'; III,J' 

7 The meaning and soundness of ,B-reduction 

_ 5.48, 5.49 
-If 
_Lemma 6.3 
-0' 
=Lemma 5.53 

o 

Recall from Definition 3.20 how we defined (3-reduction. There (3-reduction was defined as a 
combination of a-, '1'- and Jl-reduction. I1ence, as we have proved the soundness of a- and 
'I'-reduction, all we have left to show here is that Jl-reduction is sound, where II.-reduction 
has been defined in Definition 3.19. In fact, this is what we will show in this section. More 
precisely, we will show that Jl-generation is a(3-sound and t.hat. p-destruction and transition 
are sound. Let us first define the meaning of terms wit.h II-leading it.ems. 

Definition 7.1 (Jl-semanlicsj 
If t is an n.l5-lerm, v E .c-1(0), v' E .c(0), 0 E 0, v" E .coo(f), v n v" = 0, i E IP and i does 
not refer to any free variable of I., we define: 

(v; v"; (1,(i))I!e 
Iv; v'; v"; (,,(I))tl 
Iv + +0; v'; v"; (1,(i+I))tl 

!v; 0; v"; (t1(i))I! 
_ Iv + +hd(v") + +v'; V">2; tie 

Iv; 0 + +v'; v"; (p(i))1.1 -

Note here that the provision "i does not refer to a free variahle of I." can be assumed due to 
Lemma 3.22. In fact, this is the only case we need to define t.he semantics for. Note moreover 
that it is enough to take v E .c-1 (0) (see Definition 5.18), because t is an n,s-terrn, so we 
never generate ,p's in the list v. 
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Example 7.2 

1. 1(,,(1»)(2A)11 
IF; 1; (1,(1»)(2A)lle 
IF; 0; 1; (1,(1»)(2A)11 
IF + +x'; 1>2; (2A)lle 
(IF + +x'; 1>2; 2IeAx,,)IF + +X'; 1>3; lie 
(X1 Ax")X" - -

2. 1(,,(2»)(lA)11 
IF; 1; (1,(2»)(1A)lle 
IF; 0; 1; (p.(2»)(IA)11 
IF>2; Xl; 1; (1,(1»)(lA)11 

= 

= 

IF;2 + +x' + +X1; 1>z; (lA)lle 
(li>2 + +x' + +X1; 1>2; Ile)Ax")IF>2 + +:,,' + +:1:1 + +.,,"; 1>3; lie -
(Xl XXII )x" - - -

Note that 1(1,(l»)(lA)11 is not allowed, since the superscript I refers to t.he free variable I (the 
first I) in (IA)!' 

Lemma 7.3 Let t be an n>.o·te,·m. If AO does not bind any var'iable in (A°)(Al)(A2) .. . (Ak)t, 
then VV E [-1(8),v" E [(8),v' E [00(1),0,0' E 8, such that (v'++v")nv' = 0,0,0' if. 
v u v' U v", [v"l = k, we have: 

Iv + +8 + +v"; v'; tie == Iv + +0' + +v"; v'; 1·le 

Proof: By induction on I. using Lemmas 5.39 and 6.2. o 

Lemma 7.4 If(t1o)(t2A) is void in (t 1o)(/'ZA)t, i = 1+ "IUd,j = 1 + ,,/(t2) then for all v E 
[-1(8), v' E [00(1), s1lch that v n v' = 0 and X = hd;+j-l(II'), (Iv; v'; Ideo)(lv; V'>i; t2leAx) 
is void in Iv; v'; (t1 0)( tzA )tle • -

Proof: By induction on n M -ter-11!S t. 0 

Lemma 7.5 !I-generation is cr(3-s01lnd. That is, for all t1 , I· z, I. n.lo-terms, for all v E 
[-1(8),v' E [00(1) such that vnv' = 0, if (tl0)(tZA) is 1I0id in t then: Iv; v'; (tlo)(I'ZA)lle = 
Iv; v'; (,,(1»)tle 

Proof: By induction on t. Lei. i = 1 + nl(tIl,j = 1+ "/( tz), X = hd;( v'?:j) = hd;+j-1 (v'). 

• If t == t: then obvi01ls . 

• 1ft == m then m > 1. Moreove,', (Iv; v';tdeo)(lv; v'>;; l·zleAx J1v + +X;v'>;+j;rnle == 
(Iv' v" t I o)(lv' v' .. t I A -)Iv' v' ... m - II _[,en"",,, 7.4 -, ) 1 e ,~t' 2 e A ,;:::t+J" - e -73 

I-V' V' . ",n _ II =Lemmas 5.39a,nd 6.2 ,>t+Jl e -

Iv + +hd(v'); v'?:z; rnle == Iv; V'; (1,(1»)mlc-
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• Ift '" (t~>')t~ then: Iv;v';(t,6)(t2>')(t~>')t~le ",k=1+nl(t;),X'=hdk
(;!"'+J) 

(Iv; v'; t,le6)(lv; V'~i; t2le>'x )(lv++ X; V'~i+j; t~le>'x' )1;;-++ X ++ X'; (V'~i+j )~k+'; t~le =~emma 7.4 

Iv+ +X;v'>i+j;(t~>')t~le =~emma 6.3 

Iv + +X; V';2; (t~>')t~le ",Lemma 7.3 

Iv + +hd(v'); V'~2; (t~>')t~le '" Iv; v'; (,,('»)(t~>')t~le 

• If t '" (t~ 6)t~ then similar. 

o 

Remark 7.6 Note that !I-generation is not sound. In particular, 

IF; 1; (46)(>.)2Ie '" (X40)(>'x')x, and 
IF; 1; (!I('»)2Ie '" IF + +x';h2;21 '" x, 

Now (x46)(>.x')x, =(3 x, and (X40)(>'x')'r., ¢ x,. 

Lemma 7.7 IL-tmnsition is sound. That is, fol' all lIM-Iel'ms 1,,12 , fol' all v E [-, (0) and 
VIII E [00(1) such that v n VIII = 0, fm' all i E IP, if i '" all Fcc variables of (i.,>')t2,k 
1 + nl(t,),X = hdk(vlll ) then: 

1. Iv; VIII; (,,(i»)(/.,>')121, 
2. Iv; VIII; (,,(i»)(t,6)t2Ie 

Proof: 

1. Let v = v' + +v" such that I v"l = i-I 
(Iv; VIII; (,,( i) )t,I,>'x ) Iv + + X; vlll>k+' ; (,,( i+') )1'21, 
(I v' + +hd( VIII) + +v"; VIll>2; tJ!e);X )(v' + +hd( Vlll>k+ 1) + +V" + + X; VIll>k+2; t21e 
lv' + +hd(vlll ) + +V"; Vlll>~; (/.,>')t2Ie - -
Iv; v"'; (1'(;»)( I, >. )t2le -

2. Is similar. 
o 

Lemma 7.8 l'-destl'llction is sound. Thai. is, fol' all v E [-I (0) and v'" E [000) such Ihat 
v n VIII = 0, for all i, m E IP, we have: 

• Iv; v"'; (,,(i»)£le '" £. 

• Iv; VIII; (JL(i»)m,)c == (v' + +v"j Villi rnlc if m < i. 

• (v; Vlllj (It(i»)111')e == lv' + +v"; v"'; fll - lie if 711. > i. 
Proof: 

• Iv; v"'; ("U»)ele '" e, easy. 

• (v; VIII; (Il(i»)m')e == (v' + +hd( VIII) + +1)"; V"'~2; m]e whe1'C v = v' + +v" and Iv"l = i-I 

If m, < i then 7n ~ i-I and (v' + +hd( VIII) + +v"; VIll~2; m,le == (v' + +v"; VIII; mJe. 

If 111, > i then Tn ~ i + 1 and (v' + +hd( v"') + +v"; V"'>2; m·le == ("Vi + +v"; VIII; 1n -lie. 

o 
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8 Comparison and conclusions 

In this paper we presented a calculus of substitution which is explicit hence mending the 
problem of the implicit substitution of the A-calculus. Our calculus fl" is based on a calculus 
A in which terms are written in item-notation. Moreover, fl" uses de ilruijn's indices rather 
than variable names. We wrote our calculus in the most general way in order to apply our 
results to the various existing A-calculi and type theories. In fact, the item-nota.tion assumed 
in this paper has been shown to be genera.l enough to accommodate the type free a.nd all the 
systems of the Barendregt cube (see [NK 9x]). We believe that this notation ha.s helped to 
define substitution explicitly a.nd in a. modular way with the other terms. Moreover, with our 
approach, local reduction and substitution can be accommoda.ted very naturally, something 
which is difficult in the classical A-calculus. In fact we have shown tha.t it is enough to add 
one reduction Tule in order to obtain local substitution. 

In order to show the soundness of OUf ca.1culus we provided a transla.t.ion from fl:::: into X, 
a variant of A where bound variables are taken from a particular order'ed list. Our translation 
functions are important on their own. First, it is nice to have a mechanical procedure which 
takes terms written with variable names a.nd returns terllls wit.h de Bl'uijn'8 indices. Second, 
it is equally important and interesting to go the other way. For instance, when translating 
a lambda term (with de ilruijn indices) that represents some IIIathematical theory/proof to 
a lambda term with named variables, we wa.nt part.idular nallles to be used. In fact, one of 
the advantages of de Bruijn's indices is that a-conversion is no longer needed. Now, terms 
written with de Bruijn's indices are difficult to ulldersta.nd even for those who are familiar 
with them. Variable names on the other hand, clarify the t.erm in hand but cause a lot of 
complications when a.pplying reduction and substitution. If however, we order our lists of free 
a.nd bound variables, then we can avoid the difficulty caused by varia.ble names. In fact, this 
is what we do in this paper. vVe take our lists of variables to be ordered and we translate 
every term of fl:=: into a term of Ii. (i.e. using variahle names) in a ullique wa.y via 1-1- When 
in Ii., it is up to liS to equate terms modulo a-conversion rather than being forced to do it in 
the translation (sec Appendix A). 

In order to make substitution explicit and t.o discuss /1-reductioll, we had to add three 
kinds of reduction rules: the <p-, G- and I'-reductions. <p updates variables, G substitutes terms 
for variables and p. decreases the indices as a result of a /1-conversion which removes a. A from 
a term. Each kind of reduction ha.s three rules: generation, tra.nsition and destruction. Now, 
substitution and reduction in Ii. arc given similarly to that. of the classical calculus; i.e. implicit 
and globaL Therefore, we show that our reduction rules actually do represent reduction and 
substitution in A. This shows the soundness of our reduction Tules. In particula.r, we show 

that G-, 1'- <p-destruction and <p-, II-transition are sound in that if I ""r t' where,. is one of 
these rules, then It I == 11-'1. This is very nice because the corresponding reductions in Ii. also 
return equivalent rather than a-equivalent terms. Furthermore, we show that a-transition is 
Q-sound in that if t ~(j-tTansit.ion tf then II.) =;:y Il'). vVe a.lso show t.hat u- and p.-generation 
are a/1-sound in that if t. ""r t' where,. is one of these two rilles, then It I =0(3 11-'1. Now, we 
are satisfied with the result concerning /1-conversion. In fact., these last two rules do actually 
represent /1-conversion in fl". What we ha.ve been disappointed wit.lr however is that we had 
to use a-conversion rather than equivalence in the soundness proof of a-transition and a- and 
It-generation. So even though we have avoided a-conversion in ollr translation function, it still 
had to be assumed in the soundness of three reductio" rilles. Look for example at the proof 
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of Lemma 7.5. When t == (t~ A)t~, we had to apply Lemma 6.3 to obtain an a-equivalent term. 
This, we have not quite understood yet. Maybe in a- and It-generation and in a-transition, a

conversion is necessary. Or maybe it is possible to complicate even more our lists of variables 
and our definition of the semantic functions so that a-conversion is really avoided. This is 
a point for further investigation. Finally, note that we did not discuss completeness becanse 
this becomes here a trivial matter. In fact, everything that can be shown in the classical 
A-calculus can be shown in our own. Even better, our calculus is more expressive in that it 
accommodates explicit substitution whereas the classical one does not. 

So to summarize, we believe that our item notation used in conjunction with de Bruijn's 
indices provide a precise formulation of the A-calculus that can be used efficiently for imple
mentation and theoretical purposes and that can generalise a whole collection of type and 
A-theories. The usefulness of the notation is not discussed in this paper but the reader is 
referred to [NK 9xJ. This notation however provides an explicit. approa.ch of substitution 
which is the most general up to date and which can be used to genera.lise other existing 
approaches of explicit substitution as shown in [KN gaJ. Furthermore, the soundness of the 
explicit substitution and t.he resulting reductions is shown in t.erms of the classical notions of 
substitution and reductions. The translation functions between t.erms written with de Bruijn 
indices and t.erms written with variable names are useful and provide a detailled account of 
the notion of a-conversion. Fina.lly, we believe that our account. of explicit substitut.ion is the 
most general and detailled up to date, frolll the point of view of both syntax and semantics. 
Here is a summary of the variolls existing accounts of explicit substitution that we arc awa.re 
of and of their relation to our own: 

[KN 93J provides an account of explicit. substitution which is used t.o discuss local a.nd 
global substitution and reduction. No semant.ics is provided for that account. and the preci
sion of this paper is not assumed there. The reduction rules however of the present paper are 
based on [KN 93] even t.hough there, there wa.s 110 p-rcduct.ioll a.nd a-reduction was assumed. 
We believe that we have in this paper presented the most ext.ensive approach of variable ma
nipulation, substitut.ion and reduction. Our approach can be easily aud in a stra.ightJorwa.rd 
fashion implemented because we have carried out all the difficult work related to variables. 
The article [Abadi et a.l. 91J provides an algebraic syntax and semantics for explicit substi
tution where de Bruijn's indices are used. The connection with the classical A-calculus is not 
investigated. Furthermore, [KN 93J has shown that the approach in [Abadi ct al. 91J can be 
interpreted in [KN 93] and can be further simplified. [llardill and Levy 89] proposes conflu
ent systems of substitution based on the study of categorical colllbilla.1.ors yet. wc believe that 
our account is more comprehensive. [Field 90] provides an accollnt. of explicit substitution 
similar to that of [Abadi et al. 91] hence it can also be accomlllodat.ed in our account. The 
master thesis of [van IIorssen 92J discusses explicit. subst.it.ution in t.he classical notation and 
the item notation assumed in this paper. [van IIorssen fl2J deduces t.hat the itcm notation 
has advantages over the classical one. The master thesis of [Krah9:J] provides a semantics of 
the explicit subst.itut.ion of f!~ which originated frolll OllT function e of t.his paper. [Krab93J 
however, ignores to order the list of bound variables which we call 1- This makes it. impossible 
for him to impose a-conversion. In appendix A, we will provide a. semant.ics of substitution 
where all a-equivalent t.erms are ident.ifiable. 
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A An alternative semantics 

In the definition of the semantic function from n" to A, we took :F and 1 which were both 
ordered (see Definition 6.1). This enabled us to translate every term t of n" in a unique term 
tf of A which is not equivalent to any other term in the a-equivalence class of tf. The price we 
had to pay is of course having to manipulate not only the list of free variables but also the list 
of bound ones. This is not a high price to pay if we comparc wit.h t.he substit.ution we have 
to manipulate jf we assume a semant.ic function which ident.ifies t.erllls modulo a-conversion. 
Moreover, ignoring a-conversion is remaining with the essence of de Bruijn '8 indices and 
avoiding all this renaming of variables. Here is how we illustrat.e the point: 

Look at Definition 5.29. We could use another semantic function which docs not choose 
a particular index for the lambda, but any of the indices which has not been yet used. Here 
is this new definition: 

Definition A.l (>.- and 8-8emantics) For all tl> t2 E n~~. v E [(Il,lI E IP U {E}, 

Iv; (tl >. )t21 =,If (Iv; td>'v)lv + +v; t21 whel'e 11 E I\v 
Iv; (tl 8)t21 =df (Iv; td8)lv; t21 

_. { compn(v) if" slvl 
Iv;nl -df Xn_liil n> Ivl 

[ ifn = E 

Example A.2 

10; (>.)(1>.)(18)31 ",X,EJ,X, i,",bit""y 

(10; EI>'x,)IXI; (1).)(18)31 
(E >'x, )(lX I; 11>'x,)IXIX 2; (18)31 =X,E J,X, i., "bit""y,X,,,X, 

([ >.x,)( compl (XI )>.x, )(IX IX 2; 118)1 X I X 2; 31 
(E >'x, )(XI >.x,)( compl (X}J\ 2 )8)"3-IX, X, I 
([>.x,)( XI>'x,)( X 28).~] 

We need the following definit.ion of substitution which defines variable substitution of lists of 
variables. 

Definition A.3 (Sub8titution in li8ts) Ifv i8 a list of val'iables of A, then we define v[v := v']' 
to be the list v but whem all OCC1l1'1'enCe8 of v have been replaced by vf

• 

Now the following lemmas arc needed to show that 1·;·1 is well defincd. 

Lemma A.4 For any v, t, FV([v; tl) <;; v u :F. 
Proof: By induction on t, recalling that E is neither fl'ce 11.01' bound. o 
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Lemma A.5 If X' E 1 \ v, X E v, v E £(1) and t E n~s, then 

Iv; tl[X := X']' =" IvlX := X']'; tl. 

Proof: By induction on t E n~8. 

1. Iv; nI[X:= X']' == IvIX:= X'l'; nIJar n E IP U {E}. 

2. Iv; (tIO)tZI[X := X'l' == (([v; tllo)lv; tz[)[X := X'l' == 
(Iv; tll[X := X']'o)lv; tzl[X := X'l' =~H 
(IvIX := X']'; tdo)IV[X := X'l'; tz) == IvlX := X'l'; (tlo)tzl· 

3. Iv; (tIA)tzI[X := X')' ==X,E!\v,X,tX' ((lv;tdAx,)lv+ +XI;tz[)[X:= X'l' == 
(lv;tdIX:= X'j'Ax,)lv+ +XI;tZI[X:= X']' ==IH 
(lvIX:= X'l';tdAx,)I(v+ +XI)[X:= X']';l z) == 
(lv[X := X'l'; tl)AX,)[V[X := X']' + +XI ; Iz) == Iv[X := X']'; (1·IA)tzl. 

4. Iv; (1IA)tzI[X := X'l' ==X'E!\V ((Iv; tIIAx')lv + +X'; tz[)[X := X']' ==X"ItFI'([v++X';t,~ 
(([v;tdAx")lv+ +X';tzI[X':= X"]')[X:= X']' =~"nm" AA,/ll 

(([v; IdAx,,)lv + +X'[X':= X"]'; Iz[)[X := X']' == (([v; IdAx")lv + +X"; tz[)[X := X']' 
Now, refer 10 case 3 above. 

Lemma A.6 (Iv; tllAx,)lv + +XI; tzl =O(lv; tdAx,)lv + +.\2; tz) for XI, X z E J \ v. 
Proof: If XI = X z, then nothing to p7'Ove. 
If XI # X z, then noting that X 2 ~ FV([v + +XI; tz)) by [,emma A.4, we get: 

(Iv;tIIAx,)lv+ +XI;t2 ) 

(Iv; tl)Ax,)lv + +XI; t21[XI := X z]' 
(Iv; tdAx,)I(v + +XIl[XI := X 2 ]'; Iz) 
(Iv; tdAx,)lv + +Xz; tzl 
Iv; (tl A )tzl 

_Lemma A.5 
-" 
=X1 ,X2 !lli 

o 

Lemma A.7 1·;·1 as defined in Definition A.I is well defilled. That is for all v,t, Iv; I.) is 
unique up to a-conversion, {I.e. does not depend 011 the choice of" in clause 1 of Defini
tion A.i}. 

Proof: By inducl.ion on t E n~s, noti1l9 that the ollly iHtcrcstillg case is that of I. == (tIA)t Z' 
For this case, we lise Lemma A ,G, 0 

Now compare this wit,h the proof of Lemma 5,33. Not.e moreover t.hat. the versions of Lem· 
mas 5.34 and 5,35 are: 

Lemma A.S For all I E n~s, c(t, s, 1\ sl(,)) =" 181(s); II. 
Proof: By induction on t.. o 

Lemma A.9 For all t E n~s, e(t) =" 10; II. 
Proof: Obvious. o 
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Now the definition which replaces Definition 6.1 is the following: 

D fi 't' A 10 (5 t' 1 ">.su,,,) l:' II ttl E ">.su,,, - E .e I E .e(n) () E e m lOn, eman ICS 0,,= r 01' a ,'1,'2 ":=: , v ,ph" V"", 

0, i, n E lP, k E IN, we define: 

Ml. It I =df IF; tie 

M2. Iv; [Ie =df [ 

M3. Iv; nle =df IcomPn(v) 
M4. Iv; (tl A )t2le =df (Iv;tlleAx)lv+ +X;12Ie where X E! \ v 
M5. Iv; (t l o)12Ie =df (Iv; tlleo)lv; t21e 
M6. Iv; (t I 0"(;))t21 =df Iv; t2le[([v; ile := Iv; tllel' 
M7. Iv; (",(k.i))tle =df Iv; 0; (",(k,i))tl 

MS. Iv; v'; (",(O,i))t" =dJ Iv + +7/)i + +v'; tie 
Iv; 8 + +v'; (",(k,i))/·1 
Iv + +7/,k; v'; /·1 

Mg. Iv + +(); v'; (",(k+l,i))t" =df 

MID. Iv + +8 + +7/,k+I; 17; 1.1 =df 

We leave it to the reader to check the soundness of t.lle reduct.ion rules wit.h respect to t.his 
definition. 
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