

A semantics for a fine lambda-calculus with de Bruijn indices

Citation for published version (APA):
Kamareddine, F., & Nederpelt, R. P. (1993). A semantics for a fine lambda-calculus with de Bruijn indices.
(Computing science notes; Vol. 9328). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1993

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/36f81916-1a44-4340-a285-f23c541f7388

Eindhoven University of Technology

Department of Mathematics and Computing Science

A Semantics for a fine A-calculus with
de Bruijn indices

by

F. Kamareddine and R. NederpeIt
93/28

Computing Science Note 93/28
Eindhoven, September 1993

COMPUTING SCIENCE NOTES

This is a series of notes of the Computing
Science Section of the Department of
Mathematics and Computing Science
Eindhoven University of Technology.
Since many of these notes are preliminary
versions or may be published elsewhere, they
have a limited distribution only and are not
for review.
Copies of these notes are available from the
author.

Copies can be ordered from:
Mrs. M. Philips
Eindhoven University of Technology
Department of Mathematics and Computing Science
P.O. Box 513
5600 MB EINDHOVEN
The Netherlands
ISSN 0926-4515

All rights reserved
editors: prof.dr.M.Rem

prof.dr.K.M.van Hee.

A Semantics for a fine A-calculus with de Bruijn indices

Fairouz Kamareddine •
Department of Computing Science

17 Lilybank Gardens
University of Glasgow

Glasgow G12 8QQ, Scotland
email: fairouz<l!dcs.glasgow.ac . uk

and

Rob Nederpelt
Department of Mathemat.ics and Computing Science

Eindhoven University of Technology
r.O.Box 513

5600 MB Eindhoven, the Netherlands
email: wsinrpn<l!win.tue.nl

September 7, 1993

+Kamareddine is grat.eful to the Depart.ment. of Mat.hemat.ics and Comput.ing Science, Eindhoven University
of Technology, for their financial support and hospit.alit.y from Oct.ober t 991 t.o September 1992, and during
the summer of 1993.

1

Name and mailing address of author to whom proofs should be sent:

Fairouz Kamareddine
Department of Computing Science
17 Lilybank Gardens
University of Glasgow
Glasgow G 12 8QQ, Scotland
email: fairouz«!dcs.glasgo ... ac . uk

Contents

1 Introduction

2 The syntax of the calculi
2.1 The calculus A ..
2.2 De Bruijn's indices
2.3 The syntax of n=:

3 Axioms of n=:
3.1 cp-reduction
3.2 (1-reduction
3.3 I'-reduction

3.3.1 Ma.king i negative in (cp(k,i)) .
3.3.2 I'-reduction using (I,(i))

4 Translating A in n=:

5 Translating n=: in A
5.1 The inverse function e
5.2 Variables and lists
5.3 The semantics of n=:-terms: an initia.l account
5.4 Extending the initial a.ccount ..
5.5 The semantics of (1- and cp-terms ..

6 The soundness of (1- and cp-reduction

7 The meaning and soundness of I'-reduction

8 Comparison and conclusions

9 Acknowledgements

A An alternative semantics

2

4

6
6
9

10

13
14
17
19
20
21

22

24

26
27
30
31
35

37

41

44

46

46

Abstract

Most of us who have worked with named variables in the A-calculus must have noticed
how sticky such variables can be. The problem is, that named variables play a very
demanding role in the most basic operations of the .A-calculus, namely: ,B-reduction and
substitution. This has lead to using implicit substitution rather than the explicit one
in most theories of the A-calculus. Variable names however, have one advantage that
should not be underestimated; that is: they facilitate the readability of terms. Now, it
would be very nice if we could write the basic operations of the A-calculus in a precise
way which avoids the messiness of variables. It would be very nice moreover, if we could
sometimes keep the variable names, without having to pay the price usually associated
with them. Our first task in this paper is to get rid of the problematic variable names
and to establish what we believe is the most precise and fine A-calculus, 0". In such
a calculus, de Bruijn's indices are used inst.ead of variable names and substit.ut.ion and
reduction are defined in a step-wise fashion which can be directly implemented without
having to carry out a lot of book-keeping as is usually t.he case in the classical A-calculus.
Most importantly, the substitut.ion in 0,::: is no longer the implicit. substitut.ion but rather
it is the explicit one which is long needed in ma.ny applicat.ions of the A-calculus. Such an
explicit substitution has been facilitated as a result of the fine st.ructure of A-terms that we
propose in this paper and where item notation plays a dominant role. Furthermore, t,he
species of variable names is cult.ivat.ed and ordered so that. a fine inter-marriage between de
Bruijn IS indices and variable names takes place. Such a relationship between de Bruijn's
indices and variable names will be used to show the consist.ency of our fine reduction and
explicit subst.itution in terms of the classical A-calculus. ~TC shall also reflect on the use
and necessity of a-conversion.

Keywords: De Bruijn's indices, va.ria.ble updating, substitution, reduction, sonndness.

3

1 Introduction

We shall start in this paper by discussing a typed A-calculus A which has the following
features:

• There is no distinction between types and terms. This will make the calculus more
general. See for example [Barendregt 91J and [Barendregt 92J where instead of terms
and types, the notion of pseudo-terms is used. See furthermore [de Bruijn 70J where the
Automath system provided is the most abstract formulation of type systems and where
no distinction is made between types and terms. The selected papers in [N GdV 94J
elaborate further on the Automath systems .

.. The argument comes before the function so that instead of (tlt2) we write (t20tl)' This
convention has a practical advantage which we will see below. In particular, it helps to
show clearly which are the ,6-redexes.

• The type comes before the typed variable so that instead of (A v,t,.1'2) we write (tIAvt2)'
This convention is of less importance than the above convention but will playa role in
providing a modular way of representing terms. That is, every non variable term can be
looked at as an w-item followed by a term, where the notion of w-items for w E {Av, o},
is explained below.

• The bracketing of the operators A and 0 are changed so that we write (tIAv)t2 instead
of (tlAvt2) and (tIO)t2 instead of (tlot2).

These conventions together, give rise to items like the A-item (tIAv) and the o-item (tIO).
Moreover, the o-item and the A-item involved in a ,6-reduction occur adjacently in the term;
they are not separated by the "body" of the term, that can be ext.remely long! This fashion
of writing terms is close to the mathematical definitions and theorems as is elaborated in
[Nederpelt 87J. In the system A, the usual implicit substitution of the A-calculus is used.

The item notation enables us to add substitution items (or a-it,ellls) which will have the
same status as the A- and o-items hence making substitution an object level process and
giving substitution items the right to be first-class citi7,ens. In fact., thanks to the item
notation we can provide the fine structure of the A-calculus with various refined forms of
reduction, substitution and term manipulation.

After presenting A, the calculus with item notation but where variable names and implicit
substitution are used, we shall introduce a calculus based on A but. where de Bruijn '8 indices
and explicit substitution are used. For this, we start by introducing de llruijn's indices.
Such indices have the practical advantages that they avoid all the need to deal with variable
renaming in terms (see [de llruijn 72], [Abadi et al. 91], [CII 88J and [KN 93]). The calculus
based on A and on de Bruijn's indices will be called 11" for 3 beiug the set of variables
which are de Bruijn's indices together with E a special variable. In the first instance, 11 is
taken to be {A, o}. In order to accommodate su bstitu tion explicitly and in order to discuss
variable updating and term reduction, 11 is increased to {A, 0, a, <P, It}. "Ve add the a-items for
substitution, the <p-items for va,riable updating and the p-items for ,6-reduction. The <p-items
are written as (<p(k.i)) for i ~ 1 and k ~ O. The superscript k decides which variables are
to be updated. The superscript i decides how much a variable must be updated; namely by
increasing it by i. The a-items are written as (ta(i)) for i ~ 1. (ta(i))!' means: in /.' substitute

4

t for i. The ,,-items are written as (,,(i») for i 2': 1. (,,(i»)t means, decrease all the variables in
t that are > i by l.

We provide the <PO, a-, ,,- and /3-reduction rules in f/2 which are all explicit and step-wise.
Furthermore, these rules may be used to get local and global forms of reduction.

f/2 is the calculus of explicit substitution, which is based on what we call item notation
and on the use of de Bruijn's indices. We provide a method which can take any term of A
into f/2 such that all a-equivalent terms in A are mapped into a unique element of f/2' The
other direction however, of mapping elements of f/2 into elements of A is more difficult. This
is because in f/2, the A's do not have variable names as subscripts and so we have to look
for such subscripts in a way that no free variables in the term get bound. Now, the question
that might be asked is why should we be interested in mapping elements of f/2 into A. After
all, variable names in the A-cakulu" are messy and the idea of the de Bruiju indices is to
be precise and to avoid the clumsiness of variables. Moreover, a term in f/2 represents a
whole class of terms in A; namely all those a-equivalent terms. So, iu taking the term of
f/2 back to A, which of these a-equivalent terms are we going to choose? Are we going to
consider terms of A modulo a-conversion and then choose any term in the equivalence class?
If so, then our work is pointless. In other words, what is the poillt of going from de Druijn's
indices to a-equivalence classes when de Bruijn indices actually represent the a-equivalence
classes? Hence the first conclusion is that, in translating the terms from f/2 to A, we must
avoid a-conversion in A and we Blust associate to each term of 11.=: a unique term of A. This
will also have advantages for implementation. For then, we know exactly which term we are
working with. Now, having such a translation 1-1 from f/2 to A, our task is to show that the
variable updating, the substitution and the reduction rules ill f/ 2 arc sound. We do this by
showing that if t -> t' where -> is either a-, or <p- or I,-reduction (excluding the a- or the
,,-generation and the a-transition rules, see below), then It I == WI. That is, we show that
all the rules which accollnnooate variable updat.ing and subst.itution result. in syntactically
equal terms. We shall moreover, show that if t -> t' where the reduction includes a- or
,,-generation, then ItJ =cfJ It'J. That is, the rules which actually reduce ,8-redexes in f/2 are

nothing more than the ,8 rule in A. Finally if -; is a-transition then ItJ =" It'J. These results
are of course desirable, otherwise how can we check the correctness of our reduction rules.
Furthermore, it should be noted that the semantics that we provide is a. flat semantics. That
is, the reduction steps in the fine A-calculus are mapped to syntactical equa1ity (except in the
cases mentioned above), and not to a corresponding reduction. We provide the fine structure
of the A-calculus which has advantages that range over all areas and disciplines of A-calculi
and type theory, and we give a semantics which shows that, our reduction and substitution
rules are a refinement of those of the classical calculus.

We believe that our approach is the first to be so precise about va.riable manipulation,
substitution and reduction in the A-ca.lculus. There is never a confusion of which variable
is the one manipulated and hence a, machine can easily carry out our reduction strategies
and translate the terms using variables in a straight.forward manner, We believe that the
approach of this paper should be considered in implementations of functional languages and
of theorem provers, Our work here might look too involved, but we have actually carried
out the hard part of manipulating variables once and for all. No further work is needed
aft.erwards on book-keeping of what happens to variables, t.erms or reductions either in proofs
or in implementations. We a.re persuaded that this is the first precise formulation of A-terms,
variables and reductions. Furthermore, we believe tha.t this formula.t.ion not only enables

5

explicit and local substitution as we show in this paper, but also enables a generalisation over
all branches of A-calculus and type theory (see [KN 93J, [NK 9xJ and [KN 9x]).

To sum up, we provide A, a calculus which uses item notation, variable names and explicit
substitution. We extend A to f!=: where item notation is used with de Bruijn indices instead
of variable names and explicit rather than implicit substitution. We provide the translation
between both systems and in both directions. The translation from f!=: to A aims to show
that our explicit and step-wise reduction and substitution rules are sound and are a refinment
of the implicit rules of the A-calculus. Furthermore, such a translation aims at furthering our
understanding of when a·reduction is needed in the A-calculus. In fact, we try to do completely
without a-reduction until we are forced to use it. Moreover, this translation gives to every
term with de Bruijn indices a unique term of II (with no mention of a-conversion).

2 The syntax of the calculi

2.1 The calculus A

We let V, the set of variables of II, be {E} U F, where F = {;r,J,."2, ... } and we take
v,v',V",VI,V2, ... to range over F. The varia.bles a:t,X2,." wi11 be ordered as in Defini
tion 2.16.

Notation 2.1 We take IN to be the set of natural 1l11l1lbers, i.e. > 0, lP to be the set of
positive natural numbers, i.e. > 0 and Z to be the set of illtegcrs.

Definition 2.2 {II}
We define II as follows:

A ::= V I (AATA) I (AbA)

We let t, tl, ... denote terms in II, and use w, w', WI, . .. to range over the so-called operators
{b} U {A v ; v E F}. Moreover, E is never used as a subscript for A. The symbol E can be looked
at as a special variable or as a constant. It. is added because it enables us to generalise the
calculus. In fact, by taking all types of variables after A to be [, we obtain the type free
A-calculus. E has further uses such as the 0 in [Barendregt 91J (see [KN 93J and [NK 9x]).

The term (tIAvt2) is to be understood as the classical A-calculus term (Au",.t2). The term
(t I M2) is to be understood as the classical A-calculus terl11 (/.21.1).

Notation 2.3 {Item Notation}
We shall place parentheses in II in an unorthodox manner: we write (1.1 w)t2 instead of

(tlwt2). The reason for using this forl11at is, that hoth abstraction and application can be
seen as the process of fixing a certain part (an "item") to a term:

• the abstraction Au",.t is obtained by prefixing the abstraction-item Au," to the term t.
Hence, (t' Avt) is obtained by prefixing t' A" to I ..

• the application til (in "classical" notation) is obtained by postfixillg the argument-item
t' to the term t. Now (t'M) is obtained by prefixing /'6 to t.

In item-notation we write in these cases (t' Av)1 a.nd (1.'6)/, respect.ively. Here both (/' Av) and
(t'6) are prefixed to the term t. Moreover, i11 (Iw), if t == £ t.hen it. may be dropped. Tha.t is,
we write (Au) instead of (EAu).

6

Definition 2.4 (Items)
If t is a term in item notation and W IS an opemtor, then (tw) .s an item. We use

s, s" Si, ... as meta-variables for items.

Definition 2.5 (Segments)
A concatenation of zero or more items is a segment.

Notation 2.6 (parentheses)
Note the intended parsing convention:
In the term (s, S2 ... Sn VW)s; s~ ... s:" Vi, the operator w combines the full term S'S2 ... Sn v

with the full term s; s~ ... s:" Vi.

Example 2.7 The term (vw, (V'W2V")) becomes in it.elll-not.at.ion: (VW1)(V'W2)V". Analo
gously, the term ((VW2V')W1 v") becomes ((vW2)v'wIlv".

Lemma 2.8 Every term has the f07"111 (t, W1)(t2W2) ... (t"w,,)v for 1, ,12, ... , t" terms, W1, W2, ... , wn
opemtors, n 2': 0 and v a variable.

Proof: Easy. 0

Based on this lemma, we shall draw the tree of each term (t, wIl(t2w2) ... (t"w,,)v for n 2': 1 as
follows: We position the root of the tree w, in the lower left hand corner. ,Ve have chosen this
manner of depicting a tree in order to maintain a close resemblance with the item notation of
terms. This has also advantages in the sections to come. In fact, the item-notation suggests a
partitioning of the term trees in vertical layers. For (V'W1)(V"W2)V" I

, these layers are: the parts
of the tree corresponding with (V'W1), (v"wz) and v" (connect.ed in the tree with two edges).
For ((V'W2)V"W')V'" these layers are: the part of t.he tree corresponding wit.h ((V'W2)V"W') and
the one corresponding with v"'. Figure 1 is self explanatory.

v' v"

TWI TW2 ~Vlll
(V'W1 (V"W2 V"'))

(v' w,) (v" W2) v'"

Vi

+---e'/)"

... -----e,u'"

((v'wz V")W1 v"')

((v'WZ)V"WI)11'"

Figure 1: Layered trees, with normal layered notation and item-notation

Remark 2.9 Note that every term which is not a variable, has the form (tw)t ' , from Def
inition 2.2 and Notation 2.3. Such a term is moreover, from Lemma 2.8, of the form
(t,w!l(t2W2) ... (tnwn)v. Hence, I =' t"W =' w, and t' =' (tZW2)" . {tnw,,)v.

7

Definition 2.10 (FV(t), for tEA)

FV(E)
FV(v)
FV((tt Av)t2)
FV((tt O)t2)

o
{v} ifv'f-E
FV(ttl U (FV(t2) \ {v})

= FV(ttl u FV(t2)

Remark 2.11 Notice here that this definition might cause some confusion. For example take
the term t to be (vAv)v, then FV(t) = {v}. In fact, (vAv)v will be a-reducible to (vAv')v'
(see axiom (a) below). Such confusion will be avoided using de Bruijn's indices.

Definition 2.12 (BV(t) for tEA)

BV(v)
BV((tt Av)t2)
BV((ttO)t2)

o
BV(ttl u BV(t2) u {v}
BV(ttl u BV(t2)

Note that E is neither free nor bound.

Substitution in the A-calculus is usually defined (up to some varia.tion) as follows (see
[Barendregt 84]):

Definition 2.13 (Substitut.ion in A)
If t, t' are terms in A and v is a variable in V, we define Ihe I'€SU/t of subslituting t' for

all Ihe free occurrences of v in t as follows:

t[v := t'J =df

t'
v'

(12[V:= I'Jo)lt[v:= t'J
(12[V := t'JAv)tt
(t2[V:= t']Av,)tdv:= I'J

ift == v
if I == v' ¢ v

if I == (120)lt
ift == (12Av)tl
if I == (/2Av')I t , v ¢ v',

(v </: FJ!(ll) 01' 11' </: FV(t'))
if I == (t.2Av,)lt,v 'f- v',v E FJ!(tt),

v' E FJ!(t.'), v"is the firsl variable
in :F which does not occur in (t8)t'

The fundamental axioms of the A-calculus are (a) and ((3). Other axioms such as ('7)
(which is needed together with a.nother axiom to derive extensionalit.y) arc optional. For this,
we shall only concentrate on (a) and ((3).

(a) (tAv)t' ---;0 (tAv,)t'[v:= v'J where v' </: FF(t')
((3) (t"o)(tAv)t' ---;f3 t'[v := I"J

Note that a so-called oA-pajr of items: (1"b)(tAv), is a signal for a possible (3-reduction.
This oA-pair precedes the term to which it applies.

We say that t ---;0 I' (respectively t ---'"f3 t') just in case (a) (respectively ((3)) takes I to t'.
Moreover, we assume that ---;0 and ---;f3 are compatible where compatibility over T.\ is given
by the following definition:

8

Definition 2.14 (Compatibility over T>.)
We say that -+r where r E {a, f1} on T>. is compatible if whenever t -+r tf we get:
tt1 ----+r t't1, t1 t ----jor t1 t', Av:t·t1 ----+r AV:t,.t1 and AV:tl.t ----joT Av:tl .t'.

We call the reflexive transitive closure of -+", -+>". Similarly -+>{3 is the reflexive transitive
closure of -+{3. We let =" (respectively =(3) be the least equivalence relation closed under-+>"
(respectively --(3)' Finally, = is the least equivalence relation closed under --" and -+>{3.

As obvious from our definition of substitution, we use == to be syntactic identity which
accounts also for the parenthetes conventions. When t = t f in A, we write I-A t = tf.

2.2 De Bruijn's indices

De Bruijn in [de Bruijn 72] noted that due to the fact that terms as A"I .":1 and A", 'X2 are the
"same" modulo a-conversion, one ca.n find a 'x-notation which expresses t.ha.t similarity. That
is, following de Bruijn, we can abandon varia.bles and usc indices instead. Examples 2.15, 2.17
below show how lambda terms can be denoted using de Bruijn's indices and example 2.18
illustrates how f1-conversion works using such indices.

Example 2.15 Consider the type free lambda t.erm (Axl.xd. In this t.erm, the XI following
AXI is a variable bound by this A. In de Bruijll's not.ation, Axl,XI and all its a-equivalent
expressions can be written as A.1. The bond bet.ween the bound variable XI and t.he operator
A is expressed by t.he number 1; the position of this number in the term is that of the bound
variable x), and the value of the number ("one") tells tIS how many lambda's we have to
count, going leftwards in the term, starting from the mentioned posit.ion, to find the binding
pla,ce (in this case: t.he first A to t.he left is the binding place).

De Bruijn's notation moreover, can be used for the typed A-calculus. We illustrate here
bow the two terms (A X3 ,x,.X3)XI and AA.Axl,A,XI can be represented using de Bruijn's indices.
First, however, we need to account. for the free variables ":1 and :<2. For this, we assume a
free variable list:

Definition 2.16 (Free variable list F)
For all terms, the free variable list is the same arbitrary but fixed, left-infinite list of AiS with
all i different variable names. Such a f"ce vU1'iable list is called F and is given in Fig""e 2.
Of course, for each tam, having a finite number of free v""iables, a fini!,c segment of this list
suffices.

Example 2.17 The term (A x3'X,.X3)XI is written as (A2.!)l. The free variables ."'1 and X2

in the typed lambda term are translated into the Illllllbcr I occurring after the term in
parentheses, and the number 2: they refer to the "ill visible" lambda's that arc not present
in the term, but may be thought, of to J11Yxeed the term in the free variable list F. In this
example, the X3 is b01lnd, hence different from the f"cc "'3 in F. The bound X3 is represented
by the first number l.
The term AA.Ax"A.XI can be represented by A.AI'I.

Some type theories insist on distinguishing A and n. The A beillg used for the fllnction
and II for the function type. Then the typed term AA.Tl xl "t.,7:1 can be written as A.III.l
where the 1 adjacent to II, says t.hat A is the binding operat.or for the type (viz. A) and the
final 1 replaces the variable bound by n.

9

Figure 2: The free variable list. :F

The described way of omit.ting binding variables, and rendering bound and free variables by
means of so-called reference numbers, is precisely how de lJruijn's not.ation works. Next
we see how ,8-reduction works in t.his notat.iou.

Example 2.18 In ordinary lambda calculus, all the t.erms (Ax;,x!.(xix3))x2, for i '" 3, ,8-
reduce to X2X3, i.e. the result of substituting "argument" X2 for Xi in XiX3. In de Bruijn's
notation this becomes - under the assumption that the free variable list is Ax" Ax" Ax!:
(Al.l 4)2 reduces to 23. Here the cont.ents of the subt.erm I '1 changes: 4 becomes 3. This
is due to the fact that a A-item, viz. (AI)' disappeared (toget.her with the a.rgument 1).
Furthermore, 1 changed to 2.

2.3 The syntax of O=:

Now we shall take A but where de Bruijn's indices are used instead of variable names. That
is, we will get rid of the variables in A and replace thelll by de lJruijn's indices. This would
mean of course that we no longer would need each A to cany the subscript Xi for i. E IF or so
on with it, but rather, the number would point t.o which A binds which occurrence. The best
way here is to start with an example.

Example 2.19 We take the term I. == (xlb)(X2Ax,)(x3b)'I:" whose tree is drawn in Figure 3.
We need to remove X4, X3, X2, Xl and to replaec them by lIumbers. For this, as we see that
XI,X2,X3 are free variables, we need to use t.he free variable list (sec Figure 2). We append
dashed lines to our tree in Figure 3 to show t.hat A's on t.he dashed lines are imaginary and
not a part of the term (see Figure 4). Now for each varia.ble, we draw t.hin lines ending in
arrows, pointing at the A binding the variable. These lines follow t.he pat.h which leads from
the variable to the root following the lefl. side of the branches of the tree. In order to find the
index replacing the variable name, we count the A's on t.his pat.h (not. t.he b's). For example,
we draw the thin line going from X4 following the path which leads from X4 to the root, unt.il
we reach Ax., the A binding X4. We end the arrow t.here and as we ha.ve only passed one A, t.he
X4 should be replaced by 1. This is the only X., we have in t.he t.ree, and as t.here arc no more

[0

X4'S bound by this AX., we can safely remove the subscript X4 from Ax,. For X3, in drawing
the thin line going from X3 following the path which leads from X3 to the root, keeping to
the left side of the branches until we reach AX3 , we see that we pass four AS. Hence, the X3
should be replaced by 4. Now replacing XI and X2 will be left as exercises. Figure 4 is now
self explanatory.

As in Example 2.17, the bound variable X4 in t should not be confused with the free X4
in the list F.

A
----e-

Xl X2 X3

---.........:.16 1Ax.______.1 b eX4

1 2 4

_~e A Jl dI L-16--. 1

(Ax. ;X2 .a:4a:3)a:1

(XI b)(X2Ax,)(X3b)X4

(18)(2A)(48) 1

Figure 4: A tree wit.h de Bruijn's indices

Note that we get t.he same de Bruijn t.rees for all terms (a:lb)(:I:2Ax.l(a:3b).ri for i i' 3, i E !P.
This is due to the fad that. de Bruijn's indices give the tenns llIodulo a·conversion. In the
case i = 1, or i = 2, we have here that a: occurs both bound and free. These occurrences
should be separated, as-is actually the case in t.he version with de nruijn's indices. In order
to translate (XIO)(X2AxJ(X38)Xi for the case where i = lor i = 2, we have to rename Xi to
Xj for j > 3.

11

Definition 2.20 (Variables)
As we decided to use indices instead of variables, we take ::::: the set of variables to be
::::: = {c, 1, 2, ... }. Sometimes we will need to use actual variables, but this is not a part of
our syntax. It is only a matter of simplifying the conversation. We use i,j, m, n, ... to denote
elements of {I, 2, ... }.

Using fl = {5, A} and::::: we define our terms to be those symbol strings obtained in the
usual manner on the basis of :::::, the operators in fl and parentheses. That is: fl=: is the free
fl-structure generated by:::::.

Definition 2.21 (fl=:)
We define fl=: as follows:

As in A, we take t, t l , ... to denote terms in fl=:. We call the terms of fl=: in case fl = {A, 6},
fl"s-terms or simply terms. Later on we will increase fl by adding a, 'P and /1 .. fl·-terms will
only be used with fl.\s-terms. An important class of terms however is the flM~I'-terms.

Now we take the same notational conventions as those for A given in Notations 2.3 and 2.6,
and we define items and segments similarly. We take w, w', WI, W2 ••. to range over fl. In the
rest of this paper, we write terms of A and fl=: using the item notation.

Simple examples of terms are: c, 3, (26)(£'\)1. Example 2.22 shows terms represented in
A and fl=:. The tra.nslation function between A a.nd fl=: will be given in the following section.

Example 2.22

• Consider the typed lambda term (xI6)(X2Ax')XS. In fl=:, it. is denoted as (16)(2A)1. The
typed lambda term (XI 6)(X2Ax,)X3 has the same denol.at-ion in fl=:. Note however, that
(XI b)(X2Ax,)xs ¢ (XI b)(':2'\x,)X3 for exa.lIlple, unless (0') is assullled in A.

• The typed lambda term ((';2Ax,)';s8)'~1 in A is writt.en as ((2A)16)1 in fl=:.

• The de Bruijn trees of these lambda terms arc given in Figure 5.

Finally, we define a. number of concepts connected with terms, items and segments. These
will be used in the rest of the paper.

Definition 2.23 (main items, main segments, w-items, WI •• • wn-segments, body, weight)

• Each term t is the concatenat.ion of Z€1'O or 7n07'e items and a variable: t = 8}82" 'SnV'

These items Sl, S2, . .. , s" my; called the main items of I ..

• Analogously, a segment s is a concatenation of ::Cl'O or morc itCIHS: S == 8182" ,sn;
again, these items sl, S2, . .. , Sn (if any) nrc called I.he main items, this I.ime of s.

• A concatenation of adjacent main items (in t. 01' S), 3 m .. • Sm+kI is called a main
segment (in t or s).

12

1 2

_~-=e~J6JIA-el
(16)(2A)1

(x I6)(X2Ax,)xs

(Ax"X2 . Xs)Xt

2

A-A -e- _ :+:::~'====.1

«2A)16)1

« X3Ax,)xs 6)xI

XI(Ax,ox,. '~5)

Figure 5: de Bruijn trees with explicit free variable list.s and reference numbers

• An item (t w) is called an w-item. lIence, we may speak about A-items, b-items (and
later on about a-items and <p-items).

• If a segment consists of a concatenation of an WI -item up to an w,. -itcH}', this segment
may be refeTTed to as being an WI ••• wn-segment.

• An important case of a segment is that of a 6A-segment, being a 6-item immediately
followed by a A-item.

• If t == 8V, then 8 is called the body of t.

• The weight of a segment is the nmnbe1' of its main item

Example 2.24 Let. the term t be defined as (EA)«lo)(EA)lb)(2'x)J and let the segment 8 be
(EA)«16)(cA)16)(2A). Then the main items of both t alld 8 are (EA), «lo)(EA)J6) and (2A),
being a A-item, a o-item, and another A-item. Moreover, (lo)(EA)lo)(2A) is an example of a
main segment of both t and 8, which is a oA-segment. Also, 8 is a AbA-segment., which is a
main segment of t.

Now we define nl which counts the number of A'S in a term.

Definition 2.25 (nl)

nl(E) =df 0
nl«t I 6)t2 =df nl(ll) + 111(t2)
nl«ttA)t2) =df nl(ttl + I + nl(12)

Note that weight(t) is not necessarily t.he sallie as nl(t). For example, weight«(lA)2A)3) = 1
whereas nl«(lA)2A)3) = 2.

3 Axioms of fh:

a-reduction is not. needed for l!", precisely because we no longer have variables (de Bruijn's
indices got rid of t.hem). So now, we no longer have different wa.ys of writing t.he same term

as we have taken the equivalence classes so that AX,'X3,Xh AX,'X3.X2, ... all are represented by
(3A)1. For ,a-reduction, this is a bit more complicated. Let us start by an informal example,
but the mechanical procedure will be given below:

Example 3.1 Now for ,a-reduction, the term (x16)(x2Ax.)(x36)x4 reduces to (X30)X1 (see
Example 2.18 and Figure 6). Note that the presence of a so-called 6A-segment (Le. a 6-item
immediately followed by a A-item), in this example: (XI6)(X2Ax.), is the signal for a possible
,a-reduction. Using de Bruijn's indices, this becomes (remember that the free variable list
ends in Ax" Ax"Ax,): (16)(2A)(46)1 reduces to (36)1. In fact, if you look at Figure 6, you
see that what is happening is that the 6A-segment (16)(2A) has been cut off the tree, and
the remaining term to the right of this segment has shifted to the left so that its root (Le.
the root of its tree) will occupy the place where the 6 of (16)(2A) used to be. That is not all
of course. The 4 has to be decreased t.o 3 as we have lost one A. The I in (46)1 has to be
replaced by the 1 of (16). The result is hence (36)1.

The process could hence be summarised by saying that when cont.racting the redex (t1 6)(t2A)
in (t10)(t2A)t, all free variables in I must be decreased by 1 and all variables in I that. are
bound by the A of (t2A) must be replaced by h. This might be tricky however, for assume
we write

(t10)(t2A)t ->0 t[I:= t1,2:= 1,3:= 2, ... J

where 1[1 := t1, 2 := 1,3 := 2, ... J stands for the term I with 1 replaced by 11 , 2 replaced by
1 and so on. This substitution is moreover simultaneous. Now, assume furthermore that. I is
of the form (cA)I'. Then for the substit.ution 1[1:= 11 ,2:= 1,3:= 2, ... J we must perform
«EA)t')[1 := 11,2:= 1,3:= 2, ... J.

Now, replacing «EA)I.')[1 := 1.',2 := 1,3 := 2, ... J by (EA)I'[1 := tl, 2 := 1,3 := 2, ... J
would not work. Rather it should be:

(cA)I'[1 := 1,2 := t1 [1 := 2,2 := 3, ... J, 3:= 2, ... J.

Based on this observation, we need to increment va.riables correctly in a. term. Therefore
we introduce an updating procedure which we call <p-reductioll.

3.1 <p-reduction

Updating variables in a term will take place for example whell a. term I' is to be substituted
for one or Blany occurrences of a. variable v in a. tertII I. \-Vhat. will then happen is that t'
cannot be just thrown in t at the targeted occurrences of v, because I may have many A'S
to the left of the targeted occurrence of v. This means that I' must be updated to take into
account these extra A'S. The following example illustrates the point.

Example 3.2 Let I '" (2A)2 and let t' '" 3. Now, if we want to replace the second occurrence
of 2 in I by t', we cannot just remove 2 and replace it by 3. If we do so, we would obtain
(2A)3 which is not at all the result of the substitution. The result. of t.he substitut.ion should
be (2A)4. The idea is that, in replacing the second 2 ill (2A)2 by :1, t.he 3 has to be increased
by 1, as it is now in the scope of one ext.ra. A.

In order to update variables in a term, we add a. new kind of items, <p-itenls. Let us for now
assume that we write (<p)/. to increase the variables of I. by 1. So ill the a.bove example, when

14

1 2 4 3

_eL-eA~dL-~O _eL-~O A 1 A A 1 -- e -e- -e- e

(AXi:X2·XiX3)Xl XIX3

(Xl 0)(X2Ax,)(X30)X; (X30)XI

(10)(2A)(40)1 (38)1

Figure 6: ,a-reduction in our notation

replacing the second 2 in (2A)2 by 3, we really want to obtain (2A)(y)3. The process however
is not that simple. Assume we want to replace 2° (where ° points to the particular occurrence
of 2) in (2A)2° by (EA)(10)2. Then, what is the result of (2A)(y)(EA)(JO)2? Which variables
in (cA)(16)2 have to be increased? Of course <: remains untonched. 1 moreover must remain
untouched, as it is connected to the A in (fA). lIence it is only the 2 of (f)(lo)2 which should
be increased to 3. So how do we (in a step-wise fashion) decide which variables in a term are
to be increased and which are not?

Note that all those variables of (d)(18)2 that have to be updated are free variables. Let
us hence index y. That is, we use y as a (unary prefix) function symbol y(k,;) with two
parameters k ~ 0 and i ~ 1. The intention of the superscript.s when (y(k,;») travels through
t1 is the following:

• Superscript i preserves the increment desired for the free va.riables in i1' This super
script does not increase when passing other A'S .

• Superscript k counts the A'S that are internally passed by in t1 (k = 'threshold').
This Superscript increases when passing another A. The idea is that only the variables
greater than k ha.ve to be increased, as those variables ~ k are bound and hence should
not be increased.

The effect of the updating must be that a]] free variables in t, increase with an amount of i;
the k is meant to identify the free variables in i 1 •

Note that the body of a y-item is always the empty t.erm.
Now of course updating va.riables by looking at t.he t.ree is an easy process. Just check

how many A's you have gone through before a free variable ami increase the free variable by
the number of A'S passed. This should happen for all variables in a. term. This is achieved
by letting the <p-items propagate upwards and to the right of the tree scanned. The following
example illustrates the point:

Example 3.3 Assume you want to replace in (cA)(2A)3, the 2 and the 3 by (cA)2. Then
the result should be (cA)((cA)3A)(d)4. I.e. the 2 has been replaced by (fA)3 (due to the one
extra A that is now before (cA)2) and the;) has been replaced by (fA)4 (due t.o the two extra
A'S that are now before (fA)2). Figure 7 is self expla.nat.ory.

15

[2

.~.~)~~IFA~~~FA~~.3
AX2:e.Ax3:Xl·XI

([Ax,)(XIAx,)XI

([A)(2A)3

Ax2 :e .A X3 :(A.r4:" ,XI) .Ax4 :e .XI

([Ax,)(([Ax.)XI Ax,)([Ax.)XI

(E A)((E A)3A)(EA)4

Figure 7: Substitution in our notatioll

The defillition below formalises the updating process.

Definition 3.4 (<.p-rednction)
For k E lN, i E !P, v E :=: and t an Q).8-tcnl!, we have:

(<.p-tmnsition rules:)

(<.p(k,;))(tA) --+op ((<.p(k,;j)tA)(<.p(k+I';))
(<.p(k ,;)) (t<5) --+ 'P ((<.p(k ,;))t<5) (<.p(k ,;))

(<.p-destruction rules:)

(<.p(k,;j)V --+op V + i if v> k
(<.p(k,;))v --+'P V if v ::; k or v == E

The following details about these rules are to be noted .

• A term of the form (<.p(k';))t will be either such that I. is a variable or a A-item or a
a-item. In the case I is a variable, we usc the <.p-destruction rule. In the case of a a-item
or a A-item, we have to update all the variables so that we keep the right references .

• The case where (<.p(k,;)) is to the left of a variable, we usc one of t.wo <.p-destruct.ion rules,
the first for the ca.se that v is free in the origina! t} (then a rea! update occurs), the
second for the case that v is bound in II or v == E (then nothing happens with v).

Remark 3.5 Note t.hat we int.roduce --+op as a. relation betweell segments, a.lt.hough it. is
meant to be a relation between terms. The rules mllst be rea.d as follows: rule s ---+<.p ;; states
t.hat I --+op t' when a. segment. of t.he form s occurs in t, where I.' is the result. of t.he replacement
of this s by s' in t. In ot.her words, we implicit.ly assume compatibility (see [Ba.rendregt 92]).

We denote the reflexive and transit.ive closure of --+'P by -''P'

16

Example 3.6 In substituting (cA)2 for 2 in (cA)(2A)3, we have to compensate for one extra
A: the one preceding the 2 in (cA)(2A)3. This can be done by substituting (cpI0.1))(€A)2 for
this 2. Then:

(cA)((cpI0.1))(cA)2A)3 -+",

(c A)(((cplO.1))d)(cpll.1))2A)3 -*",

(cA)((d)3A)3
Similarly, in the substitution of (cA)2 for 3 in (€A)(2A)3, we have to compensate for two extra
AS:

(cA)(2A)(cpI0.2))(cA)2 -*", (cA)(2A)(cA)4.

Note that cp can be used to increase certain reference numbers. There is a case, however, when
we wish to decrease a reference number: when we remove the oA·segment in a .a·reduction, the
variables in the remaining part of the term in which j3·reduction took place, must be decreased
by 1, because one A has disappeared. We will come back to t.his matt.er in Definit.ion 3.14.

For convenience sake, we may drop the first superscript. or bot.h superscripts of the cp,
according to the following definition:

Definition 3.7 (cp.abbreviation)
For all i 2: 1, cpU) denotes cpIO.i). Mm"eovel", cp denotes cpll) (hence = cpIO.I)).

3.2 a-reduction

In order to be able to push substitutions ahead, step by step, we shall introduce a new kind
of items, called substitution items (or a·items). These a·it.ems can move t.hrough the
branches of the term, step· wise, from one node to an adjacent one, until they reach a leaf of
the tree. At the leaf, if appropriate, a a·item can ca.nse t.he desired substitution effect.

In this manner these substitution it.ems ca.n bring a.hout different kinds of .a-reductions.
Note that we have chosen to make substitution a part of t.he forma] language for t.he terms;
we do not treat it as a. meta-operation, as is usual1y done.

We use a as an indexed operator, numbered with superscript.s: a(l),a I2), lIenee, a
a·item has the form: (t'aU)).

The notions: term, item, segment et.,c. talc t.he ext.cuded n = {A, 6, a, cp} into account.
OUf terms now are O,,\o17rp-tcrms.
The intended meaning of a a·item (1' ali)) is: term I.' is a caJl(lidate t.o be substituted

for one or more occurrence of a certain va,riable; the superscript i selects the appropriat.e
occurrences.

Now we can give the rules for one-step a-7'f;dudion. This relation is denoted by the symbol

-+a. The relation a"'eduction is the reflexive and transitive closure of one·step substitution.
It is denoted by -*a' Similarly to our rema.rk about cp in Hemark 3.5, we introduce -+a as
a relation between segments, a.!though it is meant to be a relation bet.ween terms. The rules
must be read as follows: rule S -+a ? states that t ~a /' when a segmcnt. of the form s occurs
in t, where t' is the result of the replacement of t.his s by ? in t..

We keep to the same meta· level notation as before, but lct W, WI, W2, • •. range over A, 0,
cp and a.

Now, in order to keep the references inside a a·it.em correct. during the process of a·
transition, a cp·item (cplk.i)) with k = 0 and i = 1 is added inside t.he a·item, as follows:
((cp)ta U)). Here are the a·reduction rules:

17

Definition 3.8 (one-step a-reduction)
For i E lP, v E 2, t" 1,2 flAS-terms, we have:

(a-generation rule:)

(a-transition rules:)

(tla U)(t2A) -+0

(tlaU)(t20) -+0

((t, a U)t2A)((<p)tl aU+1
)

((t, aU))t20)(tl aU)

(a-destruction rules:)

(tlaU)i -+0

(tlaU)v -+0

t,
V if 11 -t i

Note that in the a-transition rules, when a. a-it.em jumps over a. A-item, then the superscript
of the a increases by one. This is because that superscript. counts the number of A'S a.ctually
passed, in order to find the right (occulTence of the) variable involved.

The a-destruction rules apply when t.he (T-item has reached a leaf of the tree. When
the superscript i of the" is in accordance with the value of the variable, then we have met
an intended occurrence of the variable; the substitution of tl for i 1.akes place. When the
superscript of a and the variable in question do not mat.ch, then nothing Imppcns to the
variable, and the a-item vanishes without elTect.

Finally, we note that OUT transition rules as given here do not allow for CT-itcms to "pass"
other (T-items.

Compare the a-generation rule with ((3) as defined in Section 2. Our rule, does not get
rid of (t,0)(t2A) but keeps it because we may allow for local (3-reduction by changing the
a-transition rules so some variables will still be bound by the A in (/.2A). We shall see in
Definition 3.14 how we can dispose of a reducible segment when there arc no more customers
for the A involved, i.e. when there is no variable bound by this A in the t.erm.

The following lemma shows that ,,-reduction reaches eventually all occurrences to be
substituted. I.e., there is a path for global (3-reduction.

Lemma 3.9 In (t, 0)(t2A)t3, ,,-,-cduction substitutcs tl for all oec",..,.cnce, of the variables
bound by the A of (t2A) in 13.

Proof: The proof is by an easy induction on 1.3 in (tIO)(t.,'\)((<p)lw(1))t 3 . 0

Lemma 3.10 In (1,,,(i)t2, ,,-reduction 8ubstitutes II for all occunoel/ces of vaT-iables in t2
which are bound by the same A being the i-th entry (f7'Om the right) in the free variable list of
t2· Moreover, the (<p)'s look after the updating oft2.

Proof: By induction on t2, noting that during p7'Opagation, eve,-yl.i",e the (T-item passes
a A, the superscr';pt at the top of" is increased by 1. lienee keeping trad: of the variable to
be substituted for. 0

The example below demonstrates how ,,-reduction works_

18

Example 3.11

1. (2u(1»(4b)1 --->. «2u(1»4b)(2u(I»1 _. (4b)2.

2. «3b)2u(t»(1A)1 --->. «(3b)2u(1»1A)«'P)(3b)2u(2»1 --->." «3b)2A)«4b)3u(2»1 --->. «3b)2A)1.

3. «3b)2u(4»(1A)1 --->. «(3b)2u(4»1A)«'P)(3b)2u(S»1 --->." (U)«4b)3u(S»1 --->. (IA)l.

4. (lb)(2A)(3A)2--->.

(lb)(2A)«'P)1u(1»(3A)2 --->.
(1o)(2A)«('P)lu(1»3A)«'P)('P)lu(2»2 -*.,,,
(lb)(2A)«('P)1 a(1»3A)3--->.

(lb)(2A)(3A)3

Now the following lemma shows that the right bond bctwecn variables and their binding A'S
are maintained.

Lemma 3.12 If S(llb)(t2A)t --->. S(tIO)(l2A)«'P)tJl7(1»1 Ihen in S(tIO)(t2A)«'P)IJl7(1»I, all
variable occurrences are bound by the same A'S which bound Ihem in ,(110)(12A)1.

Proof: We will only show how some cases can be carried Ollt. The ,·e.,1 will be an easy
exercise left to Ihe ,·eader. Let x be a vm'iable in (tIO)U2A)«'P)tJl7(1». There are only two
cases to consider .

• case v occurs in (l10)(t2A), then nothing to p1'Ove, as nolhing has changed for that
occurrence .

• case v occurs in «'P(0,1»)t1u(1», in particlllar in II t.hen a bou"d variable in 11 clem'ly
remains bound by the same A in 11' A free variable 1! in 11 becomes updated by 1 by
the 'P(0,1). This is exactly what is intended, since Ihe,'C is one e,;I"a A Ihal v has 10 go
through on ils way 10 its A. Thai is, the A of (t2A).

o

Finally, we shall not discuss local substitution (the reader is referred to [KN 93]). We sha.1l
however just mention that by adding the u-destructioll rule:

(tlU(i»t --->. t

to Definition 3.8, local substitution becomes a.vailable ill the system. The reader is invited to
check this.

3.3 ;3-reduction

Now let us consider J'-reduction. Recall t.hat in a-generation, we generated a-items. This will
be repeated below:

Definition 3.13 (a-genemtion "epealed)
(t1b)(t2A) --->. (t l b)(t2 A)«'P)t l u(1».

19

Recall that the ('I') is meant to compensate for the "extra" A being passed. Recall moreover
that the oA-pair (tIO)(t2A) is not omitted. This is because we may want local substitution
only.

Now, the reducible segment may be "without customers". Then a-generation is unde
sirable since this leads to useless efforts. Hence it seems a wise policy to restrict the use of
the a-generation rule to those cases where the main A of the red ucible segment does actually
bind at least one variable. When this is not the case, we shall speak of a void oA-segment.
Such a segment may be removed. One may compare this case to the application of a constant
function to some argument; the result is always the (unchanged) body of the function in
question. In this section, we shall present two ways of removing void oA-segments.

3.3.1 Making i negative in ('I'(k,i1)

Up to now, the i-superscript in ('I'(k,i1) has been considered an elelllent of IP. If however, we
allow in ('I'(k,il), i to be negative, we could include the following rule:

Definition 3.14 (oA-destruction ,."Ie)
FOl' all t l , t2 fho-tenns, we have: (t l O)(l.2A) -"0 ('1'(0,-1 1) pmvidcd that the A in (t2A) does not
bind any variable in the term following (tIO)(t.2A), i.e. pmvidcd that (t.IO)(t.2A) is void.
Sometimes we denote -+0 by void ,6-reduction.

It is clear that the provision in this definition is necessary: otherwise, bound variables would
become, unintentiona]ly, free. The updating ('I'(O,-I))-itelll is lIleant to compensate for the
disappearing A. Now, even though the superscript, -1 is negative; t.lds does not cause prob
lems, precisely since the A of (t2A) does not bind any variable in the term following it. In
fact, negative superscripts can have the elTect that di1fel'enl variables become identified:

Hence, updating is no longer an injection, which can be highly undesirable.

We note, however, that the mentioned unplea.sa.nt. effects do not. occur in the setting
presented above: a <p-item with a, negative exponent only occurs after the clean-up of a void
oA-segment, hence with a A that does not bind any variable. Therefore, the injective property
of updating is not threatened,

Now the a-rules together with the oA-destruction rule, enable us to accomplish (the usua])
,6-reduction as a combination of a-steps and <p-steps:

Definition 3.15 (one-step ,6-I'eduction -tiJ')
One-step {3-reduction of an 0.,\o-term is t.he comb£nah:on of Oll€ CT-yeneration front a 8)..

segment s, the tl'ansition of the genemtcd a-it.em t.hrouyh t.he app1'O]Jl'iate Sllblerm in a global
manner, followed by a number of (T-dcst1'11,cl.ions, and updated by 9-ilem.Q unt£[again an fh6-
term is obtained. Finally, there follows one void ,6-l'educlion {i.e. (/ bA-dcstruct.ion) for the
disposal of s, and IVe use the 'I'-I'u/es t,o dispose c011lplelciy of the cp-itc11Is.

Notation 3.16 We denote one-step ,6-reduction using negat.ive superscript.s for 'I' by t -t{3' t',
and (ordinary) ,6-reduction - it.s reflexive and transit.ive closure - by t, -ff/3' t.'. We write
=/3' for the equivalence relation generat.ed by ~(3" Again we usc"" for syntactic identity.
Note that there are no ,6'-items.

20

Example 3.17
(10)(2A)(40)1 ->fl' (30)1 as follows:

(10)(2A)(40)1 ->u (10)(2A)(('")1(7(1))(40)1
->u", (10)(2A)((2(7(1))40)(2(7(1))1
-»u (10)(2A)(40)2
->0 (",(0,-1))(40)2
->", ((",(0,-1))40)(",(0,-1))2

-»", (30)1.

Example 3.18
(lb)(2A)(3A)2 ->fl' (2A)2 as follows:

(10)(2A)(3A)2 -»u", (lb)(2A)(3A)3 (sec Example 3,11,4)
->0 (",(0,-I))(3A)3
->", ((",IO,-I))3A)(",ll,-I))3

-»", (2A)2,

We shall not however in this paper use negative superscripts for", in order to make a clear
distinction between the harmless posit.ive updating and t.he potent.ially dangerous negat.ive
updating (see our remark after Definition 3,14). Hat.her, we shaH int.roduce a new kind of
items (,,(i)) for i E IP with t.he same effect. as (",Ii,-I)) for void reduct.ions. To be precise:
(,,(i)) is equivalent to (",(i-I,-I)); but. in the case of void redllct.ions, (",Ii-I,-I)) has the same
effect as (",(i,-I)), as the reader may easily see.

3.3.2 jJ-reduction using (,,(i))

First we replace the void segment by (,,(I)). Then we let the (,,(i)) scan t.he term to its right
doing the following:

• If (,,(i)) scans a A then i increases by 1.

• If (,,(i)) scans a 0 then nothing happens.

• If (,,(i)) reaches a superscript m then if 111 :S i nothillg happens alld if m > i then m is
decreased by 1.

Now the meaning of {I,(i))t is: decrease all variables in t that. arc greater I.han i by an amount
of 1. Those variables t.hat are smaller or equal to i in t. are hOllnd by some AS in t. and hence
should not be decreased. Now t.he I' rules are defined as follows (recall t.hat (I,(i)) occurs only
in an 1I>,6-term):

Definition 3.19 (I,-reduction)
For all tl, t2, t liAS-terms, v E ::: and i E IF' we have:

(,,-genemtion "ule:)

(tIO)(t2A)t ->" (/,(1))t if (1,0)(t2A) is void inl

(,,-tmnsitio71 rules:)

(,,(i))(tA) ->" ((,,(i))tA)(I'(i+I))
(I,(i))(to) ->" ((I,(i))tO)(I,(i))

21

(/l-destruction rules:)

(/l('»)v ->~ v
(/l('»)v ->~ v-I

if v == £ or v < i
ifi < v

Note in the second /l-destruction rule that v > 1 as i ~ 1. Note moreover that we never reach
the case where we get (/l('»)i (see Lemma 3.22).

Similarly to u- and <p-reduction, we implicitly assume the compatibility rules (see Re
mark 3.5) and we denote the reflexive and transitive closure of ->~ by -»w

The one-step ,a-reduction that we assume in this paper hence will be based on this (/lU»)
and is defined as follows:

Definition 3.20 (One-step iJ-redllct,ion ->/J")

One-step ,a-reduction of an fl>'6-term is the combination of one u-generation from a 6>.
segment s, the transition of the generated u-item Ihmugh Ihe app"op"iale sllblenll in a global
manner, followed by a number of u-destmctions, and updaled by <p-items unlil again an fl AS -

term is obtained. Finally, we replace Ihe now void segmenl s by (1,(I»)t and we use the
/l-reduction rules to dispose completely of I' in (/,(1»)1.

Finally we use the same notation as in Notation 3.16 except that we change,a' to ,a".

Example 3.21 (46)(>.)(1>.)(1>-)3 ->/J" (4)')(1>-)6:

(48)(>.)(1).)(1)-)3 ->q (46)(>.)((<p)4u(1))(1).)(1>-)3
-»q,", (48)(>')(5>')(1>')7
->~ (1,(1»)(5>')(1>')7
->~ ((/,(1»)5>')(1,(2»)(1>-)7
->~ (4)')(11.(2))(1>-)7
-»~ (4)')(1>')(1'(3))7
->~ (4)')(1>-)6

The following lemma is needed when discussing the semantics of I,-reduction:

Lemma 3.22 If t is an fl A6-term and t -»" I' then for all (p.(i»)I" sublerm of t' with t" an
fl>.s-tel'l1l, we have that i does not refer 10 any free variable of tll. In part.ielllar, if t. --'" ~ t'
then we never find in t', (I,(i»)i as a subte,.,ll.

Proof: By induction on -;>". 0

4 Translating A in O=:

Recall that we assume a free variable list F, which is drawn in Figure 2. Let us enumerate
this list in the order in which the variables appear from right to left. We call this enumeration
function t, so that:

tXI = 1, tX2 = 2, tX3 = 3,
We define moreover, for v E F, t>.u to be A, t8 to be f, and to to be E.

Now, let us take each term of A into a term of fl=:. For this we define the following notions:

22

Definition 4.1 (term;)
We define term; to be a partial function which takes non empty segments of A and returns
terms of A as follows:

termI ((tIWtlS) =dj tI,
term;((tIwI)S) =dj term;_1 (s), for i ::0: 2" f- 0

Definition 4.2 (lam;)
We define lam; to be a function which takes a segment S of A and returns the segment
(Av,)(Av,) ... (Av.) obtained by removing all the main 8-items from the first (i-1) main-items
of S and by removing all the t 's from the main A-items (tAv) of these (i - 1) main-items. lam;
is defined as follows:

lam;(s)
lam;((tAv)s)
lam((to),)

=df 0
=df (>.v)lam;_I(s)
=df lames)

for i ::0: 2 and weight(s) ::0: i - 2
for i ::0: 2 awI1llcight.(s) ::0: i - 2

We take Seqf~~(t.iWi) to stand for: (tIWtl(t2W2) ... (tnwn), 11 ::0: o.
Now we define the translation as follows:

Definition 4.3 (b)
For t, t l , t2 E A, v, v' E F, s segment of A, we define b, the t.mn8lation function f1"OTIl A into
!/=: as follows:

bet) =df b'(t,0)
be,) =df body(b(Se))
b'(e, s) =df e
b'(v,0) =df tv (note v 't o)
b'(v,s(Av)) =df 1
b'(v, S(Av')) =df 1 + b'(v,s) if v' 't v
b'((tIAv)t2, s) =df (b'(tI, s)A)b'(t2, S(Av))
b'((tIO)t2,') =df (b' (tI, s)O)b'(t2, s)

Here b'(v, s) finds the de Bruijn number corresponding to 11 whithin context. S (see Exam
ple 4.5). b'((t I Av)t2,S) finds the translat.ion of tl with respect to S amI the translation of t2
with respect tOS(Av). b'((t IO)t2,S) is now obvious.

Lemma 4.4
If Sl, S2 are segments of A, v E F u {c}, then
b'(Siv, S2) = S eqf~~(b'(termi(stl, 82Iami(Si))toPi(Si))b'(v, s2lamn+1 (stl), for 11 = weight·(Si).

Proof: By induction on the length of Si. 0

Essentially, what this lemma is saying is that, given a t.erm t of the form (tlWI)(t2W2) ... (tnwn)v ==
Sl v of A, then b'(t, S2) = (ti t wtl(t~ t W2) ... (t;, t Wn)l1' where Ii == b'(I·i, s2 Iami(stl)
and v' == b'(v,s2Iamn+l(body(t))).

Hence, t and b'(t, 82) will have the same trees, except. that all A'S lose their subscripts and
all variables are replaced by the correct indices. These correct indices are found by tracing
the A'S. That is why, in ti, we had to attach all the AS preceding ti.

Now the following example illustrates how some terms of A can be translated in !/=:.

23

Example 4.5

1. b((XlA x,)(X2Ax3)X4) ;: (b'(Xl> 0)A)(b'(X2, (Ax,))A)b'(X.,(Ax,)(AX3)) ;: (tXl A)(3A)2 ;: (IA)(3A)2.

2. b((Xl 0)(X2Ax.)(X30)X4) ;: (10)(2A)(40)l.

3. b«(X3Ax,)X40)XtJ;: b'«X3Ax,)X4,0)0)b'(xl> 0) ;: «b'(x3,0)A)b'(x4,CAx,))0)1;: «3A)1O)1

Lemma 4.6 For any t in A, bet) is well defined.
Proof: By induction on tEA. o

Note that the translation function b is not injective. This is because b((XlAx,)X2) ;:
b«XlAx3)X3) but (";lA x,)",2 't (XlAx3)'~3' b however is surjective bllt. we will see this in
Section 5 (see Lemma 5.9). For now the following lemma is illformative abollt b.

Lemma 4.7 If t, t' are terms in A such thai I =0 I' Ihen b(t) ;: b(l').
Proof: By induction on t =0 t'. o

5 Thanslating 0 3 in A

Our first step in providing a semantics of substitlltion is to provide a translation of fl" to A.
In carrying out the translation we have to associate to each de Drllijn index a varia.ble, which
will be either free or bound in the ternl. We need to make SlIre of course that if a variable is
free, then it will not become unintentionally bound by ollr choice of the name of a binding
variable.

Example 5.1 In interpreting (A)2, we ma.y choose any of (Ax;)",l for i # 1 to be the corre
sponding A-term. We cannot however take (Axl)Xl.

So as an x for the A, we must choose Xi for i E IP, bllt we mllst. lIlake sure that no free variable
will have the same name as the chosen Xi. There is another case where we have to be careful.
This is given in the following example:

Example 5.2 In interpreting the fl,,-subterms as A-terms, one shollid extend the free vari
able list in an obvious manner. For example, the term I == «lb)2A)(U):l has for any i,j '" 1,
« Xl 0)X2Ax.)(",iAx))X1 as a corresponding A-term. Now the Sll btcnn (U)3 of t should be
considered relative to a. frcc varia.bIe list extended with A..ri : ... I AX4 ' >'X3' AX2 , Axl , AXil and
hence corresponds with (XiAx))X1 for j '" 1.

Now all this need to check whether the variable we choose now as the name of a bound
variable will actually occur free in the term at sOllle stage, pllshes us to choose a less clumsy
approach. The idea is to start from the list F which is given in Figure 2 and to work at a
level between fl" and A. In this m.id-level A, we alwa.ys t.ake the subscripts of A'S to be in
a list! = x',x", ... which is disjoint with F. Now, t.here will be no danger tha.t we might
choose subscripts of A's to be any Xi which wiII eventually occur in t.he term, as F n 1 = 0.

24

Definition 5.3 (1\.) The terms of A are defined similarly to those of A except that all bound
variables are indexed by elements from! instead of elements from :F as in A. Terms of A are
written in the item notation, similarly to the terms of n" and A.

Examples of terms of A are e, (XIAx')X' and (XIAx,)(x'b)x".

The notions of bound and free variables, substitution, 0- and ;1-conversion or reduction,
and == defined for A can be easily extended to A. For example here's how substitution is
extended.

Definition 5.4 (Substitution in A) If t, t' m·e terms in A (i.e. all bound variables are in L
and all free variables are in :F U 1), and if v E :F U L then t[v := t'l' is exactly defined as in
Definition 2.13 except that, [v := t'] is replaced everywhere by [v := t'l', [v' := v"] is replaced
by [v':= v"]' and in the last. clause, F is ,"€placed by 1.

Notation 5.5 Simila.rly to A, we use FV(t) and BV(t.) to filld the free and bound variables
of t in A, even though this is an extension of FV and BV in 1\. We use (t, 7J for the extended
a and p-conversion/reduction, and as we saw above, we nsc 1.[0 := tl]' for subst.itution in /\.

When all de Bruijn's indices in an nAb-term t have been replaced by nallles from :F and!
obtaining a term t' in A, we can easily map the term t' to 1\ by replacing all the variables in
1 by variables in :F which do not occur in the term. Now in order to assure the uniqueness of
the translation (between n", A and A), and in order to avoid binding free variables, we take
the following conventions:

1. We assume that 1 is ordered and that the order is x', .~II,

2. We assume that any two elements of 1 are distillct exactly as all variables in :F are
distinct.

3. We always take the first fresh variable Xi in 1 as a subscript to the A in hand.

Now, we define the translation from a subclass of A to 1\ as follows:

Definition 5.6 (Tmn8lating A in A via T) If t is a term in A such that FV(t) C;; :F and
BV(t) C;; 1 then we translate t to t' by fil·st looking f01· the biggcst free variable in t (r"€cali:F
is ordered). Say this fr"€e variable is Xi for i E IP. Now we take the smallest bound vm·iable in

t (recall! is order·ed). We replace all the occurrences of this bound variable by Xi+l. Then we
replace the second smallest bound variable by :ti+2 and so O1l ul1tilno variables 11'0111 1 appear
in t. We call the translation of the A-ter·m t in LT, T(t.).

Note tha.t this definition only translates t if FV(I.) C;; :F and IJj!(t.) C;; 1- But not every term
of A satisfies this property. All terms of A however which arc translations of terms in n~8d"'~
satisfy this property (see Lemma 5.53).

Example 5.7 The translation of (A)2 in the mid-level A is (Ax')"1
The translation of ((lb)2A)(U)3 in the mid-level A is (("1 b)"2Ax')(x' Ax")XI.
Finally these terms in the mid-level are transformed into t.erllls of 1\ in a unique way as follows:
The greatest variable of:F in (Ax,)XI is Xl, hence x' get.s replaced by "2, giving (Ax,)XI.
The greatest variable of :F in ((XI b)"2Ax')(x' Ax")Xl is "'2, henee all occurrences of ,,', x" get
replaced by X3,X4 respectively giving ((x1b)X2Ax')(X3Ax.)XI·

25

Now, as II and A are very similar, we shall avoid the trivial step of translating between II
and A and shall show the soundness in A. The reader can see however that this simplification
does not affect any of the results of this paper.

But, how do we provide this translation which takes n'\6a'P~-terms to the mid-level? This
we may start as follows:

5.1 The inverse function e

We may give the definition of the function e which takes elements of n~6 to the mid-level
mentioned above as follows:

Definition 5.8 (e)
Let t, t1, t2 E n~6, s be a segment. of A consist.iug of items of I.he form (AX) fo)' X E t, I E
Loo(!),j E !P, v E ::::, X E t. The function e which lakes n.\,I-l.e,.,,,,, iul.o I.e,.,ns in A (which
use variables in :F U 1) is defined as follows:

e(t)
e(v,s,l)
e((110)12, S, I)
e((IIA)12, S, I)
d(j,0)
d(E, s)
d(l, S(AX))
d(n, S(AX))

=dJ e(I,0,tl
=dJ d(v, s)
=dJ (e(II, S, 1)8)e(12, s, t.l"'('d(l))
=dJ (e(II, S, lJAhd'+n'(',)(1))e(12, s(Ahdl+n'(")(1»)' I.l Hnl('d(l))
=dJ Xj
=dJ E

=dJ X
=dJ d(n - 1, s) if n > 1

Here Loo(!) is the set. of those sublists of t which are equal to t with an initial segment
removed (see Definit.ion 5.16). Moreover, we t.ake hd; and 1.1;, for i ~ 1, to be functions
which take lists and return the i'" element of t.he list, respectively the list without its first i
elements (see Section 5.2). Recall moreover that 711(1.) is defined to be t.he number of A'S in t
(see Definition 2.25).

Note that d associat.es with each de Bruijn's index, t.he right. variable in :Fur which should
replace it.

Lemma 5.9 e is well defined and bOT 0 e(t) == I for any I. E n~'
Proof: Easy.

Example 5.10

e((2A)2A)1 == e(((2A)2A)I,0,1)
== (e((2A)2, 0, 1)Ax,,)e(l, (Ax"), {XIII, ,';v, ... })

== ((c(2, 0, 1)Ax')c(2, (Ax')' {,,", ,,"', ... } lA,.")d(1, (Ax"))
== ((d(2, 0)Ax')d(2, (Ax'))Ax"):r"
== ((x2Ax,)d(1,0)Ax")x"
== ((X2Ax')XI Ax")x"

o

(Note that. the first. A to be be named becomes Ax" and not. Ax" due to the fact. t.hat. there is
one A in (2A)2; i.e. nl((2A)2) = 1, hence Ahd'+n'«")2J(]) = AI,,"(]) = Ax".) This A-term may
be replaced by the term ((X2Ax,lXIAx.)X4 in II.

26

Example 5.11

e((A)(IA)(I8)3) == e((A)(IA)(I8)3,0, 1)
== (e(e, 0, !lAx,)e((IA)(18)3, (Ax')' {XU, XIII, ••• })

== (d(e, 0)Ax')(e(I, (Ax')' {XU, XIII, ••• })Ax")e((18)3, (A x')(Ax")' {XIII, ••• })

== (£Ax')(d(I, (Ax'))Ax")(c(1, (Ax')(Ax")' {XIII, .•• })8)e(3, (A x')(Ax")' {XIII, ••• })

'" (£Ax')(x' Ax")(d(I, (Ax')(Ax"))8)d(3, (Ax')(Ax"))
'" (Ax,)(x'Ax,,)(x U8)d(2,(Ax'))
'" (Ax,)(x'Ax,,)(x U6)d(I,0)
'" (A x ')(x' Ax")(XU 6)xI

Finally, we get rid of the variables of 1 in (Ax')("J Ax")(",U 0)"1 by repla.cing every x' by "2 and
every XU by X3 obtaining (Ax2)(x2Ax3)(X36)XI

This e however does not take into account <p-, (J- and /I.-items. In fact, it is difficult. to provide
the translation of <p-items without watching what happens in the lists F and 1- Look at the
following example:

Example 5.12 Take the term in 11" to be (<p(1,2))(18)(2A)3. Now, the translation ofthis term
should be: (x I 6)("4Ax')X4 and will finally be transformed into the A-term ("'10)("4Ax5)X4.
What this really mean is that due to the presence of (<p(1,2)), we translate (Io)(2A)3 not in
terms of F and 1 as we have done so far, but in terms of F' a.nd 1 where F' = ... "5++"4 ++XI·
I.e. the X2 and X3 disappear from F. (For lists notation, sec the following sect.ion.)

This process of removing elements from F must also be extended to 811 blist.s of F u 1 in order
to translate subtenns of terms. Moreover, we need, in order to show the correctness of our
tranlation and the soundness of our reduction rules, to have some basic formulation of lists.
We start therefore by setting t.he ground for these Iist.s.

5.2 Variables and lists

Definition 5.13 (0)
We define the set of var'iables 0 to be J uF. We let 0,01 ,0'2,0'"" mll!]e ave,' 0. Note thai,
e '/: 0. Recall moreover that v, v', VI, 1'2, ... 7'lln!]e over F, tha/. F Ilns '''1, X2,' .. for elements

and that 1 = X',X", Furthc7'71wre, we taA;€ ...'\,...'y/'~Yl,.X2"" to l'unge ove1'!. lVe refer
sometimes to elements of:F as free var'iables and to elements of 1 a~'" bound variables.

Now, we will use lists as an important part of our semantic function. \Ve assume the usual
basic list operations such as concat.enation ++ and head and /.ail, lid and t.l. For i E IP, we
take hd' =df hd and hd;+1 =df hd 0 hd\ and we define /./; similarly. Moreover, the set of
operators \, C, <;; and E are also applicable for lists and we will mix sets and lists at will. We
take v, v', Vlo V2, ... to range over (finite and infinit.e) lists.

As we have seen in Example 5.12, we need to add/remove variables from F due to the
updating function (<pk,;»). Hence we define the following Hot,iollS relat.ed to lists:

Definition 5.14 (reve,-sed list. of va1'iables, lef/. part., ";glll 1'''''1)

27

• Every list is written as the sum of its ordered elements from right to left In particular,
. -r dl 1/ f we wrlte.r as ... + +X2 + +XI an as ... + +X + +X .

• Ifv = ... + +112 + +111, then for m :::: 1, we define v>m to be ... + +lIm+1 + +lIm. v>m
is also called the left part of v starting at m. Note that V"m = t/m-I (v). In particul-;'r,
we define F"m to be ... Xm+1 + +Xm for m :::: 1.

• Ifv = ... + +112 + +111, then for m :::: 1, we define v<m to be 11m- I + +lIm- 2 + + ... + +111,
Note that V<I is the empty list and V<2 = hd(v). v<m is also called the right part of v
ending before m. In particular, we define F<m to be Xm-I + +Xm_2 + + ... + +XI for
m::::1.

Definition 5.15 (£) If A is a set, then we define £(A) to be the set of all finite lists genemted
by A. We assume that all elements a E A occur at most once, in each of these finite lists.
Obviously, the empty list 0 E £(A) for evel'y set A.

Note that £ only generates finite lists. In particular, I <1. £(1).

Definition 5.16 (£oo(v))
We define £oo(v) to be {v,,;; i E lP}. I.e. elements of £oo(v) arc v, t/(v) and so on.

Lists that we will be using often are those for whom a right part is a finite list of elements of
o u {.p} (where .p is a special symbol <1. 0 whose meaning for lists will become clear below),
and a left part is F"m for some m E lP. For this reason, we define the following:

Definition 5.17 (£,pht)
£,pl;t is defined to be: {F"m + +v; Tn E IP, v E £(0 U {</J})}

Hence, if v E L,split then v can be split up in two lists: v == F>m + +v'.

1. The left sublist, is an infinit.e left pa.rt. of F.

2. The right sublist is an element of £(0 U {</)}). That. is, a finite list of clements from
0U{.p}.

Definition 5.18 (£-1(0))
We define £-1(0) to be: {v;v E £,pht f\ V is </)-fn:e}. I.e. clements of £-1(0) are those
elements of £,pht which do not contain '1/"

Definition 5.19 (£v')
We define £,p to be £,plit U £(0 U {.p}).

Now the following function intends to measure the length of finite lists in which </) appears.
From this function, the reader can guess that .p removes an element from the set.

Definition 5.20 The function 11·11 : £(0 U {.p}) Z is defined as follows:
For all v E £(0 U {.p}), II E 0:

11011
Ilv+ HII
11"+ +1111

o
IIvll-l
Ilvll + 1

28

We write Ivl for the length of v (Le. the number of all its elements including 1/J).

Lemma 5.21 ForallvE £(0u {1/J}), Ilvll:::: Ivl. Moreover, ifvE £(0) then IIvll = Ivl.
Proof: Obvious. 0

Moreover, we define the following partial function:

Definition 5.22 (comp) For all v E £",fJ E 0, nEIl':

compl (v + +fJ)
compn+1(v + +fJ)
comPn(v + +fJ + +1/Ji+l)

=df fJ
=df comPn(v)
=df comPn(v + +'I'>i),

Here 1/Jn stands for 'I'> + + ... + +'1'> for n E IN.
, .,

n

i E lN

The idea of comp is to select the appropriate named variable, given a list. of (difrerent) named
variables. We write compn(v) j, when compn(v) is defined.

Lemma 5.23 For all v E £(0 U {1/)}), n E !P, if n :::: Ilvll then comp,,(v) j I\compn(v) E v.
Proof: By induction on Ivl noting that if Ilvll ;:: 1 then 3(J E 0 such that (J E v. 0

Corollary 5.24 F01' all v E £(0), nEIl', if 11 :::: Ivl then comp,,(v) Il\c01llPn(v) E V.
Proof: Obvious, using Lemmas 5.21 and 5.23. 0

Lemma 5.25 For all v E £,plit, n E !P, comp,,(v) i I\comp,,(v) E v.
Proof: By induction on n. D

Note that the only case where comPn(v) is undefined is when n> Ilvll.

Lemma 5.26 For all v E £,plit, n E !P, i E lN, compn(v + +1/,i) = comPn+i(V).
Proof: Easy.

Lemma 5.27 For all v' E £'p(i/,vE £(8 U {1,}),1I E 8,n E fp, and i E IN, we have:

1. lfn > Ilvll;:: 0 then compn(v' + +v) '" c01711'n_II"II(v').

2. lfn > Ilvll;:: 0 then comp,,(v' + +'I'>i + +v) '" C01llPn+i(V' + +v).

3. lfn:::: Ilvll then compn(v' + +v) '" compn(v).

4. compn(v' + +11 + +'1'> + +v) '" compn(v' + +v).

Proof:

1. By induction on Ivl using Lemma 5.26.

2. Using Lemma 5.26 and 1 above.

29

o

3. By induction on Ivl using Lemma 5.26.

4. • Case n :c; Ilvll or n > Ilvll ?: 0, then use the definition of camp and cases 1 and 3
above.

• Case n > Ilvll and Ilvll < 0 then by induction on Ivl.

o

Finally, the following definition takes a segment to the list of variables which are indices of
the AS occurring in the main items of the segment.

Definition 5.28
lfs is a segment, then tile define the list base({ on s t.o be (J.S follollls: sl(0) = 0, sl«(t'16)3') =
sl(3') and sl«tAo)s') = 0 + +sl(3').

5.3 The semantics of !12-terms: an initial account

The method here is \0 provide the semantics of the terms using lists of variables v and v' so
that Iv; v'; t'l where I.' is a subterm of I. searches for the tra.nslation of t.' E n2 using v to give
names to the free variables in t' and v'to give names to the bound varia.hles in t'. Moreover,
v n v' is taken to be 0 in order to avoid binding any free variable.

Now, if we were to determine the semantics of the A- and a-terms only, then it is sufficient
to consider v E £(1) as we have done in the definition of e in Definition 5.S. The list v then
may be considered as the list of named variables to be used for free variables in I.' which are
bound in the original term t; variables free in t obtain their nallles relative to the fixed list
•• , X3 + +X2 + +XI. With variable updating however, we will consider v to be denumerably
infinite and in £split. We start first with only finite lists of elements of! and we provide the
semantics of the A- and 6-terms as follows:

Definition 5.29 (A- and a-semantics)
For all t l , t2 E n~s, v E £(1), v' E £=(1), v n v' = 0, nEIl' U {f},

Iv; v'; (tIA)t21 =df (lv;v';tdAx)lv+ +X;v'>i+1;t2Ifol" i = nl(t,) + I,X = hdi(v')
Iv; v'; (t I6)t21 =df (Iv; v'; td6)lv; V'~i; t21101'-i = nl(tl) + 1

. . {comp,,(v) if n ~ Ivl
Iv; v'; nl =df x"_lvl n> Ivl

E if 11 = E

That is, we save in v all those variables which are now free in the term we are calculating,
but which were bound originally. Note that the condition v n v' = \\ is necessa.ry; otherwise
we would bind variables that are meant to be free.

Example 5.30 (see Example 5.10)

10; 1; «2A)2A)11
(10; 1; (2A)2IAx ,,)lx"; 1>3; 11
«(10; 1; 21Ax')Ix'; 1>2; 2fAx")C01npI (x") =

« x2-10IAx')x2_lx'l),x")x"
« X2Ax')XI Ax")x"

30

Example 5.31 (see Example 5.11)

10; 1; (A)(lA)(lb)31
(10; 1; cIAx,)lx'; 1>2; (IA)(lb)31
(cAx')(Ix'; 1>2; lIAx")lx'x"; 1>3; (lb)31
(cAx')(comp~(x')Ax")(Ix'x"; h3; Ilb)lx'x"; !?:3; 31 -
(cAx')(x' Ax")(compi (x' X")b)X3_lx'x"l
(cAx')(x' Ax")(x" b)xI

If however we calculate Ix';1;(A)(IA)(lb)31, then we would get (cAx')(X'Ax,,)(x"b)x' which
is not the intended meaning for (A)(IA)(lb)3. Note that the list Vi is superfluous when we
always start with 10; 1; n, since then v' == hlvl+1 and remains so.

Lemma 5.32 Foranyv E £(1),v' E £oo(1),vnv' = 0,t E f!~8,FV(lv;V';t.J) ~ vuF.
Proof: By induction on t, recalling that c is neilher' free nor bound. 0

Lemma 5.33 h·;·1 as defined in Definition 5.29 is well de]ined. Thai. is fm· all v E £(1), Vi E

£oo(!),vn v' = 0,t E f!~8, Iv; v'; II is a unique lenll ofA.
Proof: By induclion on t E f!~o using Corollary 5.24. 0

Now we will prove that e and 10; J; ·1 return the sallle A-terms.

Lemma 5.34 For all 1 E f!~6, s segment from Ihe mid-level and v E £ooeD, crt, s, v) _
[sl(s); v; t[.

Proof: By inducl.;oll on t. 0

Corollary 5.35 F01' alii. E f!~6, e(t) == [0; 1; t[.
Proof: Obvious. 0

5.4 Extending the initial account

We have not so far, in either the translation using e or that of I,;,; .[, defined the meaning
of (T-items and cp-items. The meaning of the first. is st.raight.forward. In fact, for i E IP,
t l , t2 E f!~8, v E £(1) and Vi E £00(1), v n v' = 0, we shall ,Iefine:

Iv; Vi; (t 1(TU))t2[=dJ [v; v'; t21[lv; Vi; il := [v; V'?I+nl(t,); tIil'

where tl[V := t2]' is the subst.it.ut.ion in the mid-level A (which uses :F U 1) given in Defini
tion 5.4.

When it comes to the meaning of [v; Vi; (cp(k,i))Ij, t.hen t.hings llIay not be obvious. In
fact, the intended meaning of (cp(k,i))t is: add i to all free variables great.er t.han k, occurring
within term t. Let us moreover sllmmarize wha.t our sema.nt.ic function docs. In Iv; v'; t), the
term t is written exactly as it is (i.e. A'S and b's stay at. their original posit.ions in t). The free

31

variables in t however (which are indices of course) are replaced by variables from v U:F (see
Lemma 5.32). The index itself decides which variable from vu:F is to replace it. For example

Ixlllx"x'; 1>4; (10)(20)31 == (x'o)(x"o)x lll

Ixlllx"x'; 1;4; (10)(2A)11 == (x'O)(X"Ax')X'
Ix'; h2; 21- == XI

Now, when we come to look for the meaning of Iv; v'; (",(k,i)tl, then all those variables in t
which are smaller than or equal to k, take the same value as if we were only calculating
Iv; v'; tl. Those variables bigger than k must not take the original values they would have
taken in Iv; v'; tl. Rather, looking for their corresponding variables in v, we have to shift still
i positions to the left. I.e. if the index is n, where n > k then the variable corresponding to
n is not the nth variable from right to left in V. Rather, it. is t.he (n + i)th variable from the
right. For example:

Ix""xlllx"x'; h5; (",(1,2))(10)21 == (x'b)x""

Hence to calculate, let us say, Iv; v'; (",(k,i))tl, we have t.o consider several Cases:

• Case Ivl ~ k + i. Then the trailing k elements of list v arc to be kept. but t.he next i
elements are to be erased resulting in a list. VI = left(v, Ivl- k - i) + +right(v, k) where
left and right have the obvious meaning. I.e. lcft(v,m) = v::: m , right(v,m) = v<m'
Hence,

For exa.mple: (:z;'lIIx llla;lIx'; 12:5 ; (<p(1,2))21 == Ix''''a;'j 12: 5 ; 2(:;:: ;/.;"".

• Case Ivl < k where v E £(1). Each free va.riable 11 in I, great.er than k has t.o be increased
by i. Now because Ivl < k+i < n+i, such a free variable will be associated wit.h x"-Ivl+i'
For example, Ix'; 1>2; (",(2,3))31 == X5 and 10; 1; (",(2,3))31 == X6. For a free variable n in I
with n :'0 k, not.hing changes: take ':"-Ivl' For example: I·,,'; h2; ",(2,3)21 == XI.

• Case k :'0 Ivl < k + i. This is a mixture of the above t.wo ca.ses. For example

In all these cases, the list v has to be updated, when calculating ",-items. There arc essentially
two ways to update the list so that the a.bove three cases arc accommodated. The first
alternative will be called eager erasing and conceptually consist.s in immediately erasing the
superfluous elements in x. The second a.lternative is a st.epwise approach a.nd will be named
lazy erasing.

Eager erasing just deletes the elements. So, if Ivl ~ k + i, t.hen some function like
Iv; v'; (",(k,i))tl == l(tefl(v, Ivl - k - i) + +right(v, k); 17; II would do t.he job.

Now for lazy erasing, the trick is to allow a special symbol 1/) to become an element of v.
The operational meaning of ,p is: on going left, delete t.he first. named variable. \,ye will use
lazy erasing in this paper. Moreover, as is t.raditional wit.h our approach, we will use 1/) with
superscripts. We write ,pI as ,p and ,po as the empty string 0. 1/'" will be ,p + + ... + +,p.

, ... '

n
Such a ,p, will not only be used to erase variahles but will also say which free variable in :F
correponds to the variable in hall(l.

32

Example 5.36 The idea is that:

1. To calculate Iv; v'; (<,o(k"»)tl where Ivl 2: k + i, v = VI + +V2 and IV21 = k, we calculate
IVI + +1)1' + +V2; v'; tl. Hence when calculating Ix""x'" x"x'; 1>5; (<,0(1,2»)21, we calculate
Ix""x"'x" + +1)12 + +x'; 1>5; 21. Now, this evaluates to Ix"";"'x" + +1)12; 1>5; 11. The
presence of 1)12 means igno~e x"'x". Therefore the result reduces to Ix""; 1>5;-11 which is
x~ -

2. For every n E lN, mE lP, Iv + +1)1n; v'; ml = Iv; v'; n + ml and l1/>n; v'; ml = xn+m.

Looking at the first part of Example 5.36, we see that we need to have v = v, + +V2 where
IV21 = k. Now, we are interested in a stepwise fashion. Moreover, the length of V2 ·has to be
calculated somehow. In other words, we have to go through t.he list v from right to left until
we pass the kth element. In order to accommodate snch a stepwise fashion, we introduce an
extra argument in the semantic meaning of <,o-terms. We will give an example which explains
the point even though it is ahead of its time in the section. We believe however, that the
reader can still follow it, once point 2 of Example 5.36 is remembered.

Example 5.37 Notice how we save x' to usc it. later on:

Ix"x'; 1>3; (<,0(1,2»)(16)21
Ix"; x'; 1>3; (<,0(1,2»)(16)21
Ix" + +,j2 + +x'; 1>3; (16)21
(Ix" + +1/>2 + +x'; 1>3; 116)lx" + +1/>2 + +x'; 1>3; 21
(x'6)lx" + +1/>2; 1>3;-11 -
(x'6)lx"; 1>3; 31 -
(X'6)X2 -

=

For reasons that will become clear below, we extend our lists from being clements of [(1) (as in
Definition 5.29) to being element.s of [split. So not. only we accommodate bound variables and
1/>'s in our lists, but also we include free variables. Those lists moreover become denulJ1erahly
infinite.

Now, here is I,;,; ·Ie, the extended definition of the semantics of A- and ,)-items.

Definition 5.38 (Extended A- and 6-semanlics)
)..fj(7 -

We define I,;,; ·Ie: [split X [00(1) X flO': <P f-+ A, such thai.:
For allt"tz E fl§',vE [split, V' E [oo(1),vnv' = 0,n E II',

Iv; v'; (t, A)t2le
Iv; v'; (116)t2I,
Iv; v'; nle

Iv; v'; [Ie

=dJ (Iv; v'; t,leAx)Iv + +X; V'~i+'; 121< fol' i = 111(1.,) + 1, X = hdi(v')
=dJ (Iv; v'; l,]e6)IV; V'>i; /'21, for i = 11./(1,) + 1

=dJ comPn(v)
=dJ £

The meaning of Ihe remaining fl'Aff<,,-le1'11ls will be given below.

The following lemmas will be used in what. follows:

33

Lemma 5.39 For all v E C.pl;" v' E £00(1), (v + +(1) n v' = 0, II E 8, n, m E JP and k E IN,
we have:

1. Iv + +11; v'; lie = II
2. Iv; v'; n + kle - Iv + +1,k; v'; nle
3. Iv + +11; v'; n + lie - Iv; Vi; nJe
4. IF>m + +'¢k; v'; nle Xn+k+m-l

5. Iv;-;;; nle E v
6. Ifn t- m then Iv; v'; nle ¢ Iv; v'; mle

Proof: Easy, using Lemma 5.26 and the definition of compo o

Lemma 5.40 For all v' E C.p/it,vE £(8u {,¢}),v" E £oo(J),(v'+ +v)nv" = O,11 E 8 and
n, i E JP, we have:

1. If n > Ilvll 2: 0 then lv' + +v; v"; nle == Iv'; v"; 11 - Ilvllle

2. If n > Ilvll 2: 0 then lv' + +1/,i + +v; v"; 1I1e == 117 + +V; v"; 11 + ile .

3. If n :::: IIvll then 117 + +v; v"; nle == C01ll1',,(v)

4. Iv' + +11 + +'¢ + +V; v"; nle == lv' + +V; v"; 1I1e

Proof: This is an obvious c01'01lm'y of Lemma 5.27. o

Corollary 5.41 For all v' E £,plit, v" E £00(1), (v' + +v) n v" = 0, and n, i E IP, we have
for v E £(8):

1. If n > Ivl then lv' + +v; v"; nle == Iv'; v"; 11. - Ivlle
2. If n > Ivl then lv' + +1/,i + +v; v"; 1IIe == 117 + +v; v"; 11. + ile.

3. If n :::: Ivl then lv' + +v; v"; nle == comp,,(v)

Proof: Obvious by Lemmas 5.21 and 5.40. o

Remark 5.42 Note that if v E £,plito v' E £(8 u {1/;}), v" E £00(1), (17 + +v) n v" = 0, n, i E
JP, Ilv'll < 0, then even though n > Ilv'll, it is not necc"arily the case that:

1. Iv + +v'; v"; nle == Iv; v"; n -llv'llle
2. Iv + +'¢i + +v'; v"; nle == Iv + +v'; v"; 11 + ile

This can be seen as follows:

IF + +,¢5x ,; 12:2; lie == x' whereas IF; h2; 1 - IIV)Sx'llle == IF; h2; 51e == XS'

Now the following lemma is needed to show that I·;·; 'Ie is all extension of (-;'; '1.
Lemma 5.43 For all v E £(1), v' E £00(1), vn v' = 0, n E IPu {£}, Iv; v'; nl == IF + +v; v'; nle.

Proof: Left as an eJ:ercise. 0

Finally, here we show that I·;·; 'Ie is an extension of (-;.; ,1.
Lemma 5.44 For' all v E £(1), v' E £00(1), vn v' = 0, t E n~6, Iv; v'; II == IF + +v; v'; tfc.

Proof: By induction on t, using Lemma 5.43. 0

31

5.5 The semantics of a- and <p-terms

Definition 5.45 (a-semantics)
For all tl, t2 E n~8a'P, v E Csp/;<, v' E Coo(t), v n v' = 0, i E lP we define

Iv; v'; (tlaU))t2Ie =df Iv; v'; t2Ie[lv; v'; ile := Iv; V'2:1+nl(t,); tdel'

where tJlv := t21' is the substitution in the mid-level gil1en in Definition 5.4.

Definition 5.46 (<p-semantics)
For all t E n~8a'P, v E Csp/;" v' E C(8), v" E Coo (1), (v + +0) n v" = 0,0 E 8, i E lP, k E IN,
we have:

Iv; v"; (<p(k.i))tl,
Iv; v'; v"; (<p(O,i))tl
(v + +0; v'; v"; (<p(k+l,i)tl
(v + +9 + + 7/) k+ I ; v'; v"; tl

=df Iv; 0; v"; (",(k,i))tl
=dJ Iv + +1,i + +V'; 1Jii; lie
=df Iv; 9 + +v'; v"; (",(k,i))11
=df Iv + +1,k; v'; v"; II

Note here that v" does not playa role because we do not have bound variables that we are
trying to replace by variable names. What the v' docs however is to save the first k variables
of v which are actually the variables in t which should not be updated because they are :0: k.
Once the first k variables of v have been saved in v', we remove the first i variables from the
resulting v. Hence in the end, we get the correct list from which we find the mea.ning of t.

Example 5.47

Xs
2. (F + +,,'; 1>2; (",(2,3))1le ,.'
3. IF; h2; (",(1,2))(",(0,1))11 = "4

Now the following lemma is basic about ",-items.

Lemma 5.48 Fo1' all t E n~8a'P, v E Cpli/, v' E C(8), ,," E Coo Ct) , (v + +v') n v" = 0 and
i E lP, we have:

Iv + +v'; v"; (<p(IV'),i))II, == Iv + +<,&i + +v'; v"; tie

Proof: Easy. First p7'Ove by induction on Iv'l that if v E Csplit, v', "I E C(8) such that
(v + +v' + +VI) n v" = 0 then

Iv + +v'; VI; v"; (",(lV'I,i))tl == Iv; v' + +VI; v"; (",(O,i))11

o

The following lemma opens the road to working with lists which do not. cont.ain VJ.

35

Lemma 5.49 For' all v' E £,pli" v E £(0 U {V)}), VI E £000), (v' + +0 + +v) n VI = 0,0 E 0
and n E IP, we have:

lv' + +0 + +1/) + +v; VI; tie == lv' + +v; VI; tie

Proof: By nested induction. We prove by induction all I. that IHI(t) holds where IHI(t) is:

lv' + +0 + +1/J + +v; VI; tie == lv' + +v; VI; tie

• Case t = n, use case 4 of lemma 5.40.

• Case (t I8)t2 or (tl oX)t2 or (tl a(i))t2 where IIh (11) and IIh (1.2) hold, easy.

• Case (<p(k,i))t. where I HI (t) holds, prove by induction on k that I H 2(k) holds where
IH2(k), for all v" E £(0) is:

case k = 0, use IHI(t).

Assume I H 2(k). Now, prove by induction on Ivl that I II,,(v) holds ",here I II 3(V)
ZS:

lv' + +0 + +1/J + +v; v"; VI; (<p(k+I,i))I·lc == 117 + +v; v"; VI; (<p(k+I,i))tle

* case Ivl = 0, use Definition 5.46.

* Case v+ +0 where 0 E 0 and IlI3(v) holds, usc Definition 5.46 and IIl2(k).

* Case v + +0 + +1/Jj whac 0 E 0,j E 11' and IlI3(v + +1/Jj-l) holds, use
Definition 5.46 and I11o(v + +1)·;-1).

* Case 1/1.1 tllhe7'C j E lP, use Definition .5.46.

o

Now this lemma is very important. It says t.hat all t,he '1/"5 can be removed f1'Om lists.

Lemma 5.50 For all v E £,plit,3v' E £split which is free for' '1/' such that for' all t E
">'sa,,, /I ,. (1) I tl t - n /I - 0 1-' /I, tl - I" /I. I H2 ,v E Loo sue 1 ,w' v v - ,v, v , . e = V 1 V ,t. e.

Proof: We can write vas VI + +0 + +V2 such that 0 E 0,V] E £'plit,V2 E £(0 U {1/J}),
VI is free of 1/J and V2 has 1/J as its leftmost dcmellt. Now, lite 1'l'Oof is by induction on IV21
using Lemma 5.49. Note moreover, that v' is indepelldcnt of t, Ifence, we may assume f7'Om
now on that OU7' start lists do not contain 1/J, 0

Finally, we give the translation of any t.erm I, of n~8"1":

Definition 5.51 (The semantic function)

We define 1·1 : n~6a", >--> A such that f07' all t ill n~8"1", III =df IF; J; tie

Lemma 5.52 1·1 is well defilled. Thai, is, for' all I. E n~8"1", III is a unique term in A.
Proof: By induction on I. E n~6q"" 0

36

Now this is our first lemma towards the correctness of our semantics:

Lemma 5.53 For all t E n~5q'P, we have:

1. BV(lII; v'; tl) C v' for every 11 E Csplit and v' E Coo (1) such that 11 n v' = 0.

2. FV(lII; v'; tl) C 11 for every 11 E C8pht and v' E C oo (1) sitch that 11 n v' = 0.

3. BV(ltl) C 1 and FV((tl) C F.

Proof: 1 and 2 are by induction on t. 3 is a corollary of 1 and 2. o

What this lemma means is that the term (tl in 7\ can be translated using Definition 5.6 to a
term in A.

Let us give now a few examples:

Example 5.54 (Note that we sometimes combine llIany steps in one.)

((<p(2,l »)(115)(2),)31 = IF; 1; (<p(2,1 »)(16)(2),)31,
= IF; 0; 1; (",(2,1»)(10)(2),)31

IF>2; XI; 1; (<p(1,1»)(16)(2.-\)31
IF~3; "'2 + +Xj; 1; (",(0,1»)(16)(2.-\):11

= IF:::3 + +1/) + +"'2 + +"'1; 1; (16)(2.-\)31,
(XI 6)(X2),,,')"'4

I(",(2,3»)(<p(l,2»)(lb)(26)31 = IF; 1; (",(2,3»)(",(I ,2))(16)(2.1)31,
I F>2; ", I; 1; (",(I ,3))(",(I ,2))(16)(26)31
(F~3; X2 + +XI; J; (",(0,3))(",(1,2»)(16)(20')3(
IF~3 + +1)03 + +'''2 + +"'1; J; (",(1,2»)(16)(215)31,

_ IF~3 + +1)03 + +"'2; XI; 1; (",(0,2))(16)(26)31
_ IF~3 + +1)03 + +"'2 + +1/,2 + +",t;l; (16)(2.1)31,

('''1-6)(IF>3 + +1/,3 + +"'2 + +1/)2 + +'''1; 1; 21e6)
IF>3 + +-1/)3 + +":2 + +1/,2 + +":1; 1; 31e
(xl-6)(IF>3 + +1/,3 + +1,"; f; 1I,.I)IF>3 + +1/,3 + +1)0; 1; 21e
(xI.I)(lF~,; J; 1I,o)IF:::;;l; 21e -
(XI 15)(x,6)x8

6 The soundness of (J- and <p-reduction

In this section we will show that if t --> t' where --> is the result. of a "'- transition or destruction
rule, or of a a-destruction rule, then 11.1 == It'l, That. is, we will show t.hat both", and a are
sound in what concerns variable updating and subst.it.ution, We will show moreover, that if
t -->q t' where --> is the firing of the a-generat.ion rule, t.hen It I = It.'I. That. is, a-generation
is a form of ,a-conversion in Ollr system. Furthermore, (T-transit.ion accommoda.t.es in it 0'

conversion. That is, if t -'fa t' where ---tcr is a a-transit.ion rule, t.hell Il) =;::; It'). For this, Jet
us group all the definitions of the meaning of t.he different. t.enlls t.oget.her:

37

Definition 6.1 (Semantics of f'l~8u<P) For all t, tlo t2 E f'l~su<p, v E Lspl;" v' E L(0), v" E
Loo(1), (v + +(1) n v" = 0, /I E 0, i: n E 1P and k E IN, we define:

M1. It I =dl IF; 1; tie

M2. Iv; v"; [Ie
M3. (v; V"; nJe
M4. Iv; v"; (t1 oX)t21
M5. Iv; v"; (t1 6)t21
M6. Iv; v"; (t1a(;»)t21
M7. Iv; v"; (",,(k·;»)tl e

=dl

=dl

=dJ

=dJ

=dJ

=dJ

t:

compn(v)
(Iv; v"; t11oXx)lv + + X; V">;+l; t21!0r i = nl(t1) + 1, X = hd;(v")
(Iv; v"; td6)lv; v">;; t21 for-i = nl(t1) + 1

Iv; v"; t2lelllv; v";"ile := Iv; v">;; tdel' for i = nl(t2) + 1
Iv; 0; v"; (",,(k·;»)tl -

MS. Iv; v'; v"; (",,(0';»)111 =dJ Iv + +1'; + +v'; V"; lie
Mg. Iv + +11; v'; v"; (",,(k+ 1';»)ld =dJ Iv; /I + +11; V"; (",,(k·;»)tl
MID. Iv + +11 + +,pk+1; v'; V"; II =dJ Iv + +1/,k; v'; v"; tl

Let us furthermore recall here that f'l = p, 6, a, ""} and that. f'l", is defined in Definition 2.21.
Finally, the ",,-rules are given in Definition 3.4 and the a-rules are given in Definition 3.S. (We
leave the discussion of I' till the next section.)

Now, the following lemmas inform us about the place of (0) in our system.

Lemma 6.2 If 11. E IP, v E Lsplit, v', v" E Loo(1) and v n v' = v n V" = 0. then Iv; v'; nle =
(v; v"; nJe.

Proof: Obvious. 0

Lemma 6.3 If t E f'l~'u<p, 11 E L,plit, v' E Loo(1) and 11 n v' = 0, then for all v" E Loo(V'),

Iv; v'; tie =0- Iv; v"; tie.
Proof: By induction on t. 0

Now we define the notions of (0-, (3-) soundness:

Definition 6.4

• We say thai a ,-edu.clion rule -> is sOlmd if: (1ft, t', v, 1I)[t ~ t' =} Iv; v'; tie == Iv; v'; t'le]'

• We say that a reduction "ule -; is a-sound if:

(1ft, t', v, v')lt -; t' =} Iv; v'; tie =" Iv; v'; t'le].

• We say that a ,-eduction rule --+ is (3-sound if:

(1ft, I', v, v')[t -; t' =} Iv; v'; tie =7J Iv; v'; t'le].

• We say that a ,-eduction ,.,de -; is 0(3-so1lnd if:

(1ft, t', v, v')[t -; t' =} Iv; v'; tie = Iv; v'; t'le].

38

Lemma 6.5 cp.transition through a b·item is sound. That is, for all tl, t2 E n~8""" VI E
£,plit. v" E £00(1), VI n v" = 0, i E lP, and k E IN, we have:

I VI; v"; (cp(k,i))(tl b)t2le == I VI; v"; ((cp(k,i))tl b)(cp(k,i))t2le
Proof: According to Lemma 5.50, we may assume that VI is 1/)·f1'ee. Assume moreover

that VI = v + +v' such that Iv'l = k.

(Iv + +v'; v"; ((cp(k,i))t I6)(cp(k,i))t2Ie ==j=l+nl('d
(Iv + +v'; v"; (cp(k,i))tde6)lv + +v'; v">j; (cp(k.i))1. 2Ie =Lemma 5.48

(Iv + +"¢i + +v'; v"; tlle6)lv + +"¢i + +v'; v">j; t21e
Iv + +"¢i + +v'; v"; (t I6)t2Ie - ==Lemma 5.48

Iv + +v'; v"; (cp(k,i))(tl 6)t21e

o

Lemma 6.6 cp.trrmsilion Ih1'Ough a A·item is sound. Thai is, fol' all 1'1,12 E n~S""', VI E
.esp/it, V" E L oo (1), VI n V" = 0, i E lP, and k E IN, we have:

I VI; v"; (cp(k.i))(11 A)121e == 1 VI ; v"; ((cp(k,i))1 1 A)(cp(k+ l,i))12Ie
Proof: Similarly to Ihe above lemma, we may assume Ihal. VI is1/l-fr'Ce. Assume m01'e01ler

Ihal VI = v + +v' such that Iv'l = k.

(Iv + +v'; v"; ((cp(k,i))11 A)(cp(k+ 1 ,i))t2le ",j=l+nl('d.X =hd' (0)

(Iv + +v'; v"; (cp(k,i))llleAx)Iv + +v' + + X; v"> j+l; (cp(k+1.i))1. 2Ie =Lemma 5.48

(Iv + +"¢i + +v'; v"; tlleAX)Iv + +"¢i + +17 + +X; V">j+1; 121e =
Iv + +"¢i + +v'; v"; (l.1A)12Ie - ==Lemma 5.'18

Iv + +v'; v"; (cp(k,i))(11 A)t2le

o

Lemma 6.7 cp-deslruction is sound. Thai is, fol' all VI E £,plit, V2 E £00 (I), VI nV2 = 0, n, i E
lP, k E IN, we have:

1. lfn > k Ihenlv1;v2;(cp(k,i))nl == IVI;v2;n + il.
2. lfn:::; k then IV1;v2;(cp(k,i))nle == 1Vi';v2;nle.

Proof: Assume VI is 1/J-/r"ee and VI = V + +v' such I.hal I v'l = !.:.

1. (v++'V'j V2; (<p(k,i))nJe =Lemma 5.48Iv++vJi++v'j '/)2; nlc =CorOI/!lTY 5.41 (V++1)'; V2; n+iJe

2. (v + +v'; V2; (<p(k,i))n)e =Lemma 5.48 (v + +1/)i + +17; 1)2; nl e =Gorollary 5.41

compn(VI) =.Corollary 5.41 Iv + +V'; 172; nlc

o

Lemma 6.8 a-destr'uction is sound. Thai is, for alii. E n~8""', v E £,plit, v' E £00(1), vnv' =
0, i, j E lP, we have:

39

2. Iv; v'; (t17(i»)jl, == Iv; v';jl, if j -# i.

3. Iv; v'; (t17(i»)d, == £.

Proof:

1. Iv; v'; (t17(i»)il e == Iv; v'; il,lIv; v'; ii, := Iv; v'; I.J,], == Iv;,,'; tl,.

2. Iv; v'; (t17(i»)jl, == Iv; v'; jl,[lv; v'; iJe := Iv; v'; tl,]' == Iv; v'; jl" as Iv; v'; jl, -# Iv; v'; ii,
from Lemma 5.39.

3. Iv; v'; (t17(i»)£I, == Iv; v'; £I,[lv; v'; ii, := Iv; 11'; tie]' == £, as £ ~ v, for every v.

o

Lemma 6.9 a-transition is o:-sound. That. is, f07' all v E {,split, v' E Loo (1), vn v' = 0, i E

lP, t 1 , t 2 , t E n~sO'~, we have:

1. Iv; 11'; (tl17(i»)(t2A)tl, =" Iv; 11'; ((tw(i»)t2A)((<p)tW(i+l»)tlc

2. Iv; v'; (tl17(i»)(t2o)tle =" Iv; v'; ((tw(i1)t2A)(tl(T(i1)tlc

Proof: Left to the reader. o

Theorem 6.10 For all t, t' E fl~5ff"', if t --+r t' ",he,,,, I' is any (T- {)7' <p-tmnsition rule, or any
17- or <p-destruction ""le, then It I ==]1.'1.

Proof: This is a corollary of Lemmas 6.5, 6.6, 6.7, 6.8 and 6.9 abolle. 0

The transition and dest.ruction rules of (T and 'I' work like subst.it.ut.ion a.nd variable updat.ing.
Therefore, t.hey should return equivalent t.erms. (T-gcncrat.ion on t.he ot.her hand, accommo
dates in it. ,8-reduction.

Example 6_11

Moreover,

IF; 1; (28)(3A)((<p)217(1»)1Ie
(IF; 1; 2Ieo)(lF; 1; 31,Ax')IF + +":'; h2; (('I')2(T(I l)llc
(IF; 1; 21,o)(lF; 1; 31,Ax')(IF + +x'; 1>2; !J,IIF + +":'; 1>2; lie := IF + +":'; t>2; (<p)21,J' -
(IF; t;21,o)(lF; PI,Ax')(X'[X':= X2]') - -
(IF; 1; 2Ieo)(]F; 1; 31,Ax ')X2
(X20)(X3Ax')X2

Of course (X20)(X3Ax')X' and ('''20)(":3Ax')":2 arc not. n-cquivakllt. but. arc ,8-equivalent.. In
fact.,

40

=

Hence, our task is to show that if t ->. t' where ->. is a-generation, then It I = It'l. This is
done in the following lemma:

Lemma 6.12 a-genemtion is a(3-sound. That is, for all t, II, t2 E n~5.<p, for all v E
.c,pli" v' E .coo (1), such that v n v' = 0, Iv; v'; (tl b)(t2A)tl = Iv; v'; (t I b)(t2 A j(('I')tjC7(1))tl.

Proof: Let i = 1 + nl(tl),j = 1 + nl(I.2),X = hdj(V~i),k = 1 + nl(t).

Iv; v'; (tl b)(12A)(('I')tla(I))tl
(Iv; v'; tlleb)(lv; V'>i; t2leAX)(lv + +X; V'>i+j; (('I')lla(1))lle)

(Iv; v'; tlleb)(lv; V'~i; t21eAX)(Iv + + X; V'~i+J; tle[X := Iv + + X; V'~i+j+k; ('I')tde]')

(Iv+ +X;v'>i+j;tle[X:= Iv;v'>i+j+k;tdeJ'[X:= Iv; v'; tIle]')
(Iv + +X; V';i+j; tle[X := Iv; v';tlle]'[X := Iv; v'; tde]')
Iv+ +X;v'~~+j;tle[X:= Iv;v';tdel'

Moreover,

Iv; v'; (tI6)(t2A)11
(lv;v';tlleb)(lv;v'~i;t2IeAx)lv+ +X;v'~i+j;tl, =If
IV+ +X;v'~i+j;tle[X:= Iv; V'; III,J'

7 The meaning and soundness of ,B-reduction

_ 5.48, 5.49
-If
_Lemma 6.3
-0'
=Lemma 5.53

o

Recall from Definition 3.20 how we defined (3-reduction. There (3-reduction was defined as a
combination of a-, '1'- and Jl-reduction. I1ence, as we have proved the soundness of a- and
'I'-reduction, all we have left to show here is that Jl-reduction is sound, where II.-reduction
has been defined in Definition 3.19. In fact, this is what we will show in this section. More
precisely, we will show that Jl-generation is a(3-sound and t.hat. p-destruction and transition
are sound. Let us first define the meaning of terms wit.h II-leading it.ems.

Definition 7.1 (Jl-semanlicsj
If t is an n.l5-lerm, v E .c-1(0), v' E .c(0), 0 E 0, v" E .coo(f), v n v" = 0, i E IP and i does
not refer to any free variable of I., we define:

(v; v"; (1,(i))I!e
Iv; v'; v"; (,,(I))tl
Iv + +0; v'; v"; (1,(i+I))tl

!v; 0; v"; (t1(i))I!
_ Iv + +hd(v") + +v'; V">2; tie

Iv; 0 + +v'; v"; (p(i))1.1 -

Note here that the provision "i does not refer to a free variahle of I." can be assumed due to
Lemma 3.22. In fact, this is the only case we need to define t.he semantics for. Note moreover
that it is enough to take v E .c-1 (0) (see Definition 5.18), because t is an n,s-terrn, so we
never generate ,p's in the list v.

41

Example 7.2

1. 1(,,(1»)(2A)11
IF; 1; (1,(1»)(2A)lle
IF; 0; 1; (1,(1»)(2A)11
IF + +x'; 1>2; (2A)lle
(IF + +x'; 1>2; 2IeAx,,)IF + +X'; 1>3; lie
(X1 Ax")X" - -

2. 1(,,(2»)(lA)11
IF; 1; (1,(2»)(1A)lle
IF; 0; 1; (p.(2»)(IA)11
IF>2; Xl; 1; (1,(1»)(lA)11

=

=

IF;2 + +x' + +X1; 1>z; (lA)lle
(li>2 + +x' + +X1; 1>2; Ile)Ax")IF>2 + +:,,' + +:1:1 + +.,,"; 1>3; lie -
(Xl XXII)x" - - -

Note that 1(1,(l»)(lA)11 is not allowed, since the superscript I refers to t.he free variable I (the
first I) in (IA)!'

Lemma 7.3 Let t be an n>.o·te,·m. If AO does not bind any var'iable in (A°)(Al)(A2) .. . (Ak)t,
then VV E [-1(8),v" E [(8),v' E [00(1),0,0' E 8, such that (v'++v")nv' = 0,0,0' if.
v u v' U v", [v"l = k, we have:

Iv + +8 + +v"; v'; tie == Iv + +0' + +v"; v'; 1·le

Proof: By induction on I. using Lemmas 5.39 and 6.2. o

Lemma 7.4 If(t1o)(t2A) is void in (t 1o)(/'ZA)t, i = 1+ "IUd,j = 1 + ,,/(t2) then for all v E
[-1(8), v' E [00(1), s1lch that v n v' = 0 and X = hd;+j-l(II'), (Iv; v'; Ideo)(lv; V'>i; t2leAx)
is void in Iv; v'; (t1 0)(tzA)tle • -

Proof: By induction on n M -ter-11!S t. 0

Lemma 7.5 !I-generation is cr(3-s01lnd. That is, for all t1 , I· z, I. n.lo-terms, for all v E
[-1(8),v' E [00(1) such that vnv' = 0, if (tl0)(tZA) is 1I0id in t then: Iv; v'; (tlo)(I'ZA)lle =
Iv; v'; (,,(1»)tle

Proof: By induction on t. Lei. i = 1 + nl(tIl,j = 1+ "/(tz), X = hd;(v'?:j) = hd;+j-1 (v').

• If t == t: then obvi01ls .

• 1ft == m then m > 1. Moreove,', (Iv; v';tdeo)(lv; v'>;; l·zleAx J1v + +X;v'>;+j;rnle ==
(Iv' v" t I o)(lv' v' .. t I A -)Iv' v' ... m - II _[,en"",,, 7.4 -,) 1 e ,~t' 2 e A ,;:::t+J" - e -73

I-V' V' . ",n _ II =Lemmas 5.39a,nd 6.2 ,>t+Jl e -

Iv + +hd(v'); v'?:z; rnle == Iv; V'; (1,(1»)mlc-

42

• Ift '" (t~>')t~ then: Iv;v';(t,6)(t2>')(t~>')t~le ",k=1+nl(t;),X'=hdk
(;!"'+J)

(Iv; v'; t,le6)(lv; V'~i; t2le>'x)(lv++ X; V'~i+j; t~le>'x')1;;-++ X ++ X'; (V'~i+j)~k+'; t~le =~emma 7.4

Iv+ +X;v'>i+j;(t~>')t~le =~emma 6.3

Iv + +X; V';2; (t~>')t~le ",Lemma 7.3

Iv + +hd(v'); V'~2; (t~>')t~le '" Iv; v'; (,,('»)(t~>')t~le

• If t '" (t~ 6)t~ then similar.

o

Remark 7.6 Note that !I-generation is not sound. In particular,

IF; 1; (46)(>.)2Ie '" (X40)(>'x')x, and
IF; 1; (!I('»)2Ie '" IF + +x';h2;21 '" x,

Now (x46)(>.x')x, =(3 x, and (X40)(>'x')'r., ¢ x,.

Lemma 7.7 IL-tmnsition is sound. That is, fol' all lIM-Iel'ms 1,,12 , fol' all v E [-, (0) and
VIII E [00(1) such that v n VIII = 0, fm' all i E IP, if i '" all Fcc variables of (i.,>')t2,k
1 + nl(t,),X = hdk(vlll) then:

1. Iv; VIII; (,,(i»)(/.,>')121,
2. Iv; VIII; (,,(i»)(t,6)t2Ie

Proof:

1. Let v = v' + +v" such that I v"l = i-I
(Iv; VIII; (,,(i))t,I,>'x) Iv + + X; vlll>k+' ; (,,(i+'))1'21,
(I v' + +hd(VIII) + +v"; VIll>2; tJ!e);X)(v' + +hd(Vlll>k+ 1) + +V" + + X; VIll>k+2; t21e
lv' + +hd(vlll) + +V"; Vlll>~; (/.,>')t2Ie - -
Iv; v"'; (1'(;»)(I, >.)t2le -

2. Is similar.
o

Lemma 7.8 l'-destl'llction is sound. Thai. is, fol' all v E [-I (0) and v'" E [000) such Ihat
v n VIII = 0, for all i, m E IP, we have:

• Iv; v"'; (,,(i»)£le '" £.

• Iv; VIII; (JL(i»)m,)c == (v' + +v"j Villi rnlc if m < i.

• (v; Vlllj (It(i»)111')e == lv' + +v"; v"'; fll - lie if 711. > i.
Proof:

• Iv; v"'; ("U»)ele '" e, easy.

• (v; VIII; (Il(i»)m')e == (v' + +hd(VIII) + +1)"; V"'~2; m]e whe1'C v = v' + +v" and Iv"l = i-I

If m, < i then 7n ~ i-I and (v' + +hd(VIII) + +v"; VIll~2; m,le == (v' + +v"; VIII; mJe.

If 111, > i then Tn ~ i + 1 and (v' + +hd(v"') + +v"; V"'>2; m·le == ("Vi + +v"; VIII; 1n -lie.

o

43

=Lem 7.3

8 Comparison and conclusions

In this paper we presented a calculus of substitution which is explicit hence mending the
problem of the implicit substitution of the A-calculus. Our calculus fl" is based on a calculus
A in which terms are written in item-notation. Moreover, fl" uses de ilruijn's indices rather
than variable names. We wrote our calculus in the most general way in order to apply our
results to the various existing A-calculi and type theories. In fact, the item-nota.tion assumed
in this paper has been shown to be genera.l enough to accommodate the type free a.nd all the
systems of the Barendregt cube (see [NK 9x]). We believe that this notation ha.s helped to
define substitution explicitly a.nd in a. modular way with the other terms. Moreover, with our
approach, local reduction and substitution can be accommoda.ted very naturally, something
which is difficult in the classical A-calculus. In fact we have shown tha.t it is enough to add
one reduction Tule in order to obtain local substitution.

In order to show the soundness of OUf ca.1culus we provided a transla.t.ion from fl:::: into X,
a variant of A where bound variables are taken from a particular order'ed list. Our translation
functions are important on their own. First, it is nice to have a mechanical procedure which
takes terms written with variable names a.nd returns terllls wit.h de Bl'uijn'8 indices. Second,
it is equally important and interesting to go the other way. For instance, when translating
a lambda term (with de ilruijn indices) that represents some IIIathematical theory/proof to
a lambda term with named variables, we wa.nt part.idular nallles to be used. In fact, one of
the advantages of de Bruijn's indices is that a-conversion is no longer needed. Now, terms
written with de Bruijn's indices are difficult to ulldersta.nd even for those who are familiar
with them. Variable names on the other hand, clarify the t.erm in hand but cause a lot of
complications when a.pplying reduction and substitution. If however, we order our lists of free
a.nd bound variables, then we can avoid the difficulty caused by varia.ble names. In fact, this
is what we do in this paper. vVe take our lists of variables to be ordered and we translate
every term of fl:=: into a term of Ii. (i.e. using variahle names) in a ullique wa.y via 1-1- When
in Ii., it is up to liS to equate terms modulo a-conversion rather than being forced to do it in
the translation (sec Appendix A).

In order to make substitution explicit and t.o discuss /1-reductioll, we had to add three
kinds of reduction rules: the <p-, G- and I'-reductions. <p updates variables, G substitutes terms
for variables and p. decreases the indices as a result of a /1-conversion which removes a. A from
a term. Each kind of reduction ha.s three rules: generation, tra.nsition and destruction. Now,
substitution and reduction in Ii. arc given similarly to that. of the classical calculus; i.e. implicit
and globaL Therefore, we show that our reduction rules actually do represent reduction and
substitution in A. This shows the soundness of our reduction Tules. In particula.r, we show

that G-, 1'- <p-destruction and <p-, II-transition are sound in that if I ""r t' where,. is one of
these rules, then It I == 11-'1. This is very nice because the corresponding reductions in Ii. also
return equivalent rather than a-equivalent terms. Furthermore, we show that a-transition is
Q-sound in that if t ~(j-tTansit.ion tf then II.) =;:y Il'). vVe a.lso show t.hat u- and p.-generation
are a/1-sound in that if t. ""r t' where,. is one of these two rilles, then It I =0(3 11-'1. Now, we
are satisfied with the result concerning /1-conversion. In fact., these last two rules do actually
represent /1-conversion in fl". What we ha.ve been disappointed wit.lr however is that we had
to use a-conversion rather than equivalence in the soundness proof of a-transition and a- and
It-generation. So even though we have avoided a-conversion in ollr translation function, it still
had to be assumed in the soundness of three reductio" rilles. Look for example at the proof

44

of Lemma 7.5. When t == (t~ A)t~, we had to apply Lemma 6.3 to obtain an a-equivalent term.
This, we have not quite understood yet. Maybe in a- and It-generation and in a-transition, a

conversion is necessary. Or maybe it is possible to complicate even more our lists of variables
and our definition of the semantic functions so that a-conversion is really avoided. This is
a point for further investigation. Finally, note that we did not discuss completeness becanse
this becomes here a trivial matter. In fact, everything that can be shown in the classical
A-calculus can be shown in our own. Even better, our calculus is more expressive in that it
accommodates explicit substitution whereas the classical one does not.

So to summarize, we believe that our item notation used in conjunction with de Bruijn's
indices provide a precise formulation of the A-calculus that can be used efficiently for imple
mentation and theoretical purposes and that can generalise a whole collection of type and
A-theories. The usefulness of the notation is not discussed in this paper but the reader is
referred to [NK 9xJ. This notation however provides an explicit. approa.ch of substitution
which is the most general up to date and which can be used to genera.lise other existing
approaches of explicit substitution as shown in [KN gaJ. Furthermore, the soundness of the
explicit substitution and t.he resulting reductions is shown in t.erms of the classical notions of
substitution and reductions. The translation functions between t.erms written with de Bruijn
indices and t.erms written with variable names are useful and provide a detailled account of
the notion of a-conversion. Fina.lly, we believe that our account. of explicit substitut.ion is the
most general and detailled up to date, frolll the point of view of both syntax and semantics.
Here is a summary of the variolls existing accounts of explicit substitution that we arc awa.re
of and of their relation to our own:

[KN 93J provides an account of explicit. substitution which is used t.o discuss local a.nd
global substitution and reduction. No semant.ics is provided for that account. and the preci
sion of this paper is not assumed there. The reduction rules however of the present paper are
based on [KN 93] even t.hough there, there wa.s 110 p-rcduct.ioll a.nd a-reduction was assumed.
We believe that we have in this paper presented the most ext.ensive approach of variable ma
nipulation, substitut.ion and reduction. Our approach can be easily aud in a stra.ightJorwa.rd
fashion implemented because we have carried out all the difficult work related to variables.
The article [Abadi et a.l. 91J provides an algebraic syntax and semantics for explicit substi
tution where de Bruijn's indices are used. The connection with the classical A-calculus is not
investigated. Furthermore, [KN 93J has shown that the approach in [Abadi ct al. 91J can be
interpreted in [KN 93] and can be further simplified. [llardill and Levy 89] proposes conflu
ent systems of substitution based on the study of categorical colllbilla.1.ors yet. wc believe that
our account is more comprehensive. [Field 90] provides an accollnt. of explicit substitution
similar to that of [Abadi et al. 91] hence it can also be accomlllodat.ed in our account. The
master thesis of [van IIorssen 92J discusses explicit. subst.it.ution in t.he classical notation and
the item notation assumed in this paper. [van IIorssen fl2J deduces t.hat the itcm notation
has advantages over the classical one. The master thesis of [Krah9:J] provides a semantics of
the explicit subst.itut.ion of f!~ which originated frolll OllT function e of t.his paper. [Krab93J
however, ignores to order the list of bound variables which we call 1- This makes it. impossible
for him to impose a-conversion. In appendix A, we will provide a. semant.ics of substitution
where all a-equivalent t.erms are ident.ifiable.

45

9 Acknowledgements

We are grateful for the discussions with Jos Baeten, Henk Barendregt, Erik Barendsen, Inge
Bethke, Tijn Borghuis, Herman Geuvers, Jeroen Krabbendam and Erik Poll, and for the
helpful remarks received from them.

A An alternative semantics

In the definition of the semantic function from n" to A, we took :F and 1 which were both
ordered (see Definition 6.1). This enabled us to translate every term t of n" in a unique term
tf of A which is not equivalent to any other term in the a-equivalence class of tf. The price we
had to pay is of course having to manipulate not only the list of free variables but also the list
of bound ones. This is not a high price to pay if we comparc wit.h t.he substit.ution we have
to manipulate jf we assume a semant.ic function which ident.ifies t.erllls modulo a-conversion.
Moreover, ignoring a-conversion is remaining with the essence of de Bruijn '8 indices and
avoiding all this renaming of variables. Here is how we illustrat.e the point:

Look at Definition 5.29. We could use another semantic function which docs not choose
a particular index for the lambda, but any of the indices which has not been yet used. Here
is this new definition:

Definition A.l (>.- and 8-8emantics) For all tl> t2 E n~~. v E [(Il,lI E IP U {E},

Iv; (tl >.)t21 =,If (Iv; td>'v)lv + +v; t21 whel'e 11 E I\v
Iv; (tl 8)t21 =df (Iv; td8)lv; t21

_. { compn(v) if" slvl
Iv;nl -df Xn_liil n> Ivl

[ifn = E

Example A.2

10; (>.)(1>.)(18)31 ",X,EJ,X, i,",bit""y

(10; EI>'x,)IXI; (1).)(18)31
(E >'x,)(lX I; 11>'x,)IXIX 2; (18)31 =X,E J,X, i., "bit""y,X,,,X,

([>.x,)(compl (XI)>.x,)(IX IX 2; 118)1 X I X 2; 31
(E >'x,)(XI >.x,)(compl (X}J\ 2)8)"3-IX, X, I
([>.x,)(XI>'x,)(X 28).~]

We need the following definit.ion of substitution which defines variable substitution of lists of
variables.

Definition A.3 (Sub8titution in li8ts) Ifv i8 a list of val'iables of A, then we define v[v := v']'
to be the list v but whem all OCC1l1'1'enCe8 of v have been replaced by vf

•

Now the following lemmas arc needed to show that 1·;·1 is well defincd.

Lemma A.4 For any v, t, FV([v; tl) <;; v u :F.
Proof: By induction on t, recalling that E is neither fl'ce 11.01' bound. o

46

Lemma A.5 If X' E 1 \ v, X E v, v E £(1) and t E n~s, then

Iv; tl[X := X']' =" IvlX := X']'; tl.

Proof: By induction on t E n~8.

1. Iv; nI[X:= X']' == IvIX:= X'l'; nIJar n E IP U {E}.

2. Iv; (tIO)tZI[X := X'l' == (([v; tllo)lv; tz[)[X := X'l' ==
(Iv; tll[X := X']'o)lv; tzl[X := X'l' =~H
(IvIX := X']'; tdo)IV[X := X'l'; tz) == IvlX := X'l'; (tlo)tzl·

3. Iv; (tIA)tzI[X := X')' ==X,E!\v,X,tX' ((lv;tdAx,)lv+ +XI;tz[)[X:= X'l' ==
(lv;tdIX:= X'j'Ax,)lv+ +XI;tZI[X:= X']' ==IH
(lvIX:= X'l';tdAx,)I(v+ +XI)[X:= X']';l z) ==
(lv[X := X'l'; tl)AX,)[V[X := X']' + +XI ; Iz) == Iv[X := X']'; (1·IA)tzl.

4. Iv; (1IA)tzI[X := X'l' ==X'E!\V ((Iv; tIIAx')lv + +X'; tz[)[X := X']' ==X"ItFI'([v++X';t,~
(([v;tdAx")lv+ +X';tzI[X':= X"]')[X:= X']' =~"nm" AA,/ll

(([v; IdAx,,)lv + +X'[X':= X"]'; Iz[)[X := X']' == (([v; IdAx")lv + +X"; tz[)[X := X']'
Now, refer 10 case 3 above.

Lemma A.6 (Iv; tllAx,)lv + +XI; tzl =O(lv; tdAx,)lv + +.\2; tz) for XI, X z E J \ v.
Proof: If XI = X z, then nothing to p7'Ove.
If XI # X z, then noting that X 2 ~ FV([v + +XI; tz)) by [,emma A.4, we get:

(Iv;tIIAx,)lv+ +XI;t2)

(Iv; tl)Ax,)lv + +XI; t21[XI := X z]'
(Iv; tdAx,)I(v + +XIl[XI := X 2]'; Iz)
(Iv; tdAx,)lv + +Xz; tzl
Iv; (tl A)tzl

_Lemma A.5
-"
=X1 ,X2 !lli

o

Lemma A.7 1·;·1 as defined in Definition A.I is well defilled. That is for all v,t, Iv; I.) is
unique up to a-conversion, {I.e. does not depend 011 the choice of" in clause 1 of Defini
tion A.i}.

Proof: By inducl.ion on t E n~s, noti1l9 that the ollly iHtcrcstillg case is that of I. == (tIA)t Z'
For this case, we lise Lemma A ,G, 0

Now compare this wit,h the proof of Lemma 5,33. Not.e moreover t.hat. the versions of Lem·
mas 5.34 and 5,35 are:

Lemma A.S For all I E n~s, c(t, s, 1\ sl(,)) =" 181(s); II.
Proof: By induction on t.. o

Lemma A.9 For all t E n~s, e(t) =" 10; II.
Proof: Obvious. o

47

Now the definition which replaces Definition 6.1 is the following:

D fi 't' A 10 (5 t' 1 ">.su,,,) l:' II ttl E ">.su,,, - E .e I E .e(n) () E e m lOn, eman ICS 0,,= r 01' a ,'1,'2 ":=: , v ,ph" V"",

0, i, n E lP, k E IN, we define:

Ml. It I =df IF; tie

M2. Iv; [Ie =df [

M3. Iv; nle =df IcomPn(v)
M4. Iv; (tl A)t2le =df (Iv;tlleAx)lv+ +X;12Ie where X E! \ v
M5. Iv; (t l o)12Ie =df (Iv; tlleo)lv; t21e
M6. Iv; (t I 0"(;))t21 =df Iv; t2le[([v; ile := Iv; tllel'
M7. Iv; (",(k.i))tle =df Iv; 0; (",(k,i))tl

MS. Iv; v'; (",(O,i))t" =dJ Iv + +7/)i + +v'; tie
Iv; 8 + +v'; (",(k,i))/·1
Iv + +7/,k; v'; /·1

Mg. Iv + +(); v'; (",(k+l,i))t" =df

MID. Iv + +8 + +7/,k+I; 17; 1.1 =df

We leave it to the reader to check the soundness of t.lle reduct.ion rules wit.h respect to t.his
definition.

References

[Abadi et al. 91] Abadi, M., Cardelli, L., Curien, P.-L. and Levy, J.-J., (1991) Explicit. subst.it.utions,
Funclional Programming J (4), 375-416.

[Barendregt. 84] Barendregt., II., (1984) Lambda Calcltllts: ils Syntax and Semantics, Nort.h-lIoliand.

[Barendregt 91] Barendregt, H., (1091) Introduct.ion to generalised t,ype syst,ems, Funct.ionai Program
ming 1(2), 125-154.

[Barendregt 92] Barendregt, H., (1992) Lambda caiculi wit.h t.ypes, llandbook of Logic in Computer
Science, volume II, cd. Abramsky S., Gabbay D.Ivl., MaibaullI T.S.E., Oxford University Press.

[de Bruijn 70] Bruijn, N.G. de, (1970) The mathemat.icallauguage AliTOMATIl, it.s usage and some
of its extensions, in: Symposium on Automatic J)cmoll.'i/mliol1,. fRIAr V(Tsaillcs, 1968, Lecture
Notes in Mathematics, 125,29-61, Springer.

[de Bruijn 72] Bruijn, N.G. de, (1972) Lambda calculus wit.h nameless dummies, a t.ool for automat.ic
formula manipulat.ion, wit.h applicat.ion 1,0 t.he Church-Rosser t.heorem, fudagationes Alath.. 34
(5), 381-392.

[Church 40] Church, A., (1940) A formulation of t.he simple theory of t.ypes, Journal of Symbolic Logic
5, 56-68.

[CII 88] Coquand T., and I1uet G., (198S) The caiculus of const.ruct.ions, 11Ifo1'111<1lioll alld Computa
tion 76,95-120.

[Field 90] Field, J., (1000) On laziness and opt.imalit.y in lambda int.erpret.ers: t.ools for specificat.ion
and analysis, 17th A nnual Symposium on Principles of Progm71lming Languages, San Fransisco,
1-15.

[Hardin and Levy 80] I1ardin, Th. and Levy, J.-J., (19S9) A confluent. calculus ofsubst.it.ut.ions, Lec
ture notes of the INRIA-ICOT symposiulll, l7.1I, Japan, November.

48

[van Horssen 92] Horssen, J.J. van, (l992) Explicit substitulion in two "ersions of typed lambda calcu
lus, Master's thesis, Department of Mathematics and Computing Science, Eindhoven University
of Technology.

[KN 93] Kamareddine, F., and Nederpelt, R.P., (1993) On st.epwise explicit substit.ution, International
Journal of Foundations of Computer Science 3.

[KN 9x] Kamareddine, F., and Nederpelt, R.P., (199x) The Beauty of the Lambda Calculus, to appear.

[Krab93] Krabbendam, J., (1993) On the soundness of explicit substitution, Master's thesis, Depart
ment of Mathematics and Computing Science, Eindhoven University of Technology.

[Nederpelt 87] Nederpeit, R.P., (1987) De Taal van de Wiskunde, VerslllYs, Almere.

[NK 9x] Nederpelt, R.P., and Kamareddine, F., (199x) A unified approach to type theory through
a refined 'x-calculus, paper present.ed at. the 1992 conference on Mathematical Foundations of
Programming Semant.ics, submit.ted for publkatioll ill t,he proceedings.

[NGdV 94] Nederpelt, R.P., Geuvers, J.II., and de Vrijer, R.C., cds, (1991) Selected papers on Au
tomath, North-Holland, Amst.erdam.

49

In this series appeared:

91/01 D. Alstein

91/02 RP. Nederpe\t
H.C.M. de Swart

91/03 J.P. Katoen
L.A.M. Schoenmakers

91104 E. v.d. Sluis
A.F. v.d. Stappen

91/05 D. de Reus

91/06 K.M. van Hee

91/07 E.Poll

91/08 H. Schepers

91/09 W.M.P.v.d.Aalst

91110 RC.Backhouse
PJ. de Bruin
P. Hoogendijk
G. Malcolm
E. Voennans
J. v.d. Woude

91/11 RC. Backhouse
PJ. de Bruin
G.Malcolm
E.Voennans
J. van der Woude

91/12 E. van der Sluis

91113 F. Rietman

91/14 P. Lemmens

91/15 A. T.M. Aerts
K.M. van Hee

91/16 A.J.J.M. Marcelis

91/17 A.T.M. Aerts
P.M.E. de Bra
KM. van Hee

Dynamic Reconfiguration in Distributed Hard Real-Time
Systems. p. 14.

Implication. A survey of the different logical analyses
.. if....then p. 26.

Parallel Programs for the Recognition of P-invariant
Segments. p. 16.

Perfonnance Analysis of VLSI Programs. p. 31.

An Implementation Model for GOOD. p. 18.

SPECIFlCATIEMETHODEN. een overzicht. p. 20.

CPO-models for second order lambda calculus with
recursive types and subtyping. p. 49.

Tcnninology and Paradigms for Fault Tolerance. p. 25.

Interval Timed Petri Nets and their analysis. p.53.

POLYNOMIAL RELATORS. p. 52.

Relational Catamorphism. p. 31.

A paraliel local search algorithm for the travelling
salesman problem. p. 12.

A note on Extensionality. p. 21.

The POB Hypenncdia Package. Why and how it was
built. p. 63.

Eldorado: Architecture of a Functional Database
Management System. p. 19.

An example of proving attribute grammars correct:
the representation of arithmetical expressions by DAGs,
p. 25.

Transfonning Functional Database Schemes to Relational
Representations. p. 21.

91/18 Rik van Geldrop

91/19 Erik Poll

91/20 A.E. Eiben
R.V. Schuwer

91/21 l. Coenen
W.-P. de Roever
J.Zwiers

91/22 G. Wolf

91/23 K.M. van Hee
LJ. Somers
M. Voorhoeve

91/24 A.T.M. Aerts
D. de Reus

91/25 P. Zhou
J. Hooman
R. Kuiper

91/26 P. de Bra
G.J. Houben
1. Paredaens

91/27 F. de Boer
C. Palamidessi

91/28 F. de Boer

91/29 H. Ten Eikelder
R. van Geldrop

91/30 J.C.M. Baeten
F.W. Vaandrager

91/31 H. ten Eikelder

91/32 P. Struik

91/33 W. v.d. Aalst

91/34 J. Coenen

91/35 F.S. de Boer
l.W. IGop
C. Palamidessi

Transfonnational Query Solving, p. 35.

Some categorical properties for a model for second order
lambda calculus with subtyping, p. 21.

Knowledge Base Systems, a Fonnal Model, p. 21.

Assertional Data Reification Proofs: Survey and
Perspective, p. 18.

Schedule Management: an Object Oriented Approach, p.
26.

Z and high level Petri nets, p. 16.

Fonnal semantics for BRM with examples, p. 25.

A compositional proof system for real-time systems based
on explicit clock temporal logic: soundness and complete
ness, p. 52.

The GOOD based hypertext reference model, p. 12.

Embedding as a tool for language comparison: On the
CSP hierarchy, p. 17.

A compositional proof system for dynamic proces
creation, p. 24.

Correctness of Acceptor Schemes for Regular Languages,
p. 31.

An Algebra for Process Creation, p. 29.

Some algorithms to decide the equivalence of recursive
types, p. 26.

Techniques for deSigning efficient parallel programs, p.
14.

The modelling and analysis of queueing systems with
QNM-ExSpect, p. 23.

Specifying fault tolerant programs in deontic logic,
p. 15.

Asynchronous communication in process algebra, p. 20.

92/01 J. Coenen
J. Zwiers
W.-P. de Roever

92/02 J. Coenen
J. Hooman

92/03 J.C.M. Baeten
J.A. Bergstra

92/04 J.P.H.W.v.d.Eijnde

92/05 J.P.H.W.v.d.Eijnde

92/06 I.C.M. Baeten
I.A. Bergstra

92/07 R.P. Nederpelt

92/08 RP. Nederpelt
F. Kamareddine

92/09 RC. Backhouse

92/10 P.M.P. Rambags

92/11 RC. Backhouse
J.S.C.P.v.d.Woude

92/12 F. Kamareddine

92/13 F. Kamareddine

92/14 I.C.M. Baeten

92/15 F. Kamareddine

92/16 RR Seljee

92/17 W.M.P. van der Aalst

92/18 RNederpelt
F. Kamareddine

92/19 I.C.M.Baeten
J .A.Bergstra
S.A.Smolka

92{20 F.Kamareddine

92/21 F.Kamarcddine

A note on compositional refinement. p. 27.

A compositional semantics for fault tolerant real-time
systems. p. 18.

Real space process algebra. p. 42.

Program derivation in acyclic graphs and related
problems. p. 90.

Conservative fixpoint functions on a graph. p. 25.

Discrete time process algebra. p.4S.

The fine-structure of lambda calculus. p. 110.

On stepwise explicit substitution. p. 30.

Calculating the Warshall/Aoyd path algorithm. p. 14.

Composition and decomposition in a CPN model. p. 55.

Demonic operators and monotype factors. p. 29.

Set theory and nominalisation. Part I. p.26.

Set theory and nominalisation. Part n. p.22.

The total order assumption. p. 10.

A system at the cross-roads of functional and logic
programming. p.36.

Integrity checking in deductive databases; an exposition.
p.32.

Interval timed coloured Petri nets and their analysis. p.
20.

A unified approach to Type Theory through a refined
lambda-calculus. p. 30.

Axiomatizing Probabilistic Processes:
ACP with Generative Probabilities. p. 36.

Are Types for Natural Language? P. 32.

Non well-foundedness and type freeness can unify the
interpretation of functional application. p. 16.

92/22 R. Nederpelt
F.Kamareddinc

92/23 F.Kamareddine
E.Klein

92124 M.Codish
D.Dams
Eyal Yardeni

92/25 E.Poll

92126 T.H.W.Beelen
W.J.J.Stut
P.A.C.Verkoulen

92/27 B. Watson
G. Zwaan

93/01 R. van Geldrop

93/02 T. Verhoeff

93/03 T. Verhoeff

93/04 E.H.L. Aarts
J.H.M. Korst
P.J. Zwietering

93/05 J.c.M. Baeten
C. Verhoef

93/06 J.P. Veltkamp

93/07 P.D. Moerland

93/08 1. Verhoosel

93/09 K.M. van Hee

93/10 K.M. van Hee

93/11 K.M. van Hee

93/12 K.M. van Hee

93/13 K.M. van Hee

A useful lambda notation, p. 17.

Nominalization, Predication and Type Containment, p. 40.

Bollum-up Abstract Interpretation of Logic Programs,
p. 33.

A Programming Logic for Fro, p. IS.

A modelling method using MOVIE and SimCon!ExSpect,
p. IS.

A taxonomy of keyword pattern matChing algorithms,
p. 50.

Deriving the Aho-Corasick algorithms: a case study into
the synergy of programming methods, p. 36.

A continuous version of the Prisoner's Dilemma, p. 17

Quicksort for linked lists, p. 8.

Deterministic and randomized local search, p. 78.

A congruence theorem for structured operational
semantics with predicates, p. 18.

On the unavoidability of metastable behaviour, p. 29

Exercises in Multiprogramming, p. 97

A Formal Deterministic Scheduling Model for Hard Real
Time Executions in DEDaS, p. 32.

Systems Engineering: a Formal Approach
Part I: System Concepts, p. 72.

Systems Engineering: a Formal Approach
Part II: Frameworks, p. 44.

Systems Engineering: a Formal Approach
Part III: Modeling Methods, p. 101.

Systems Engineering: a Formal Approach
Part IV: Analysis Methods, p. 63.

Systems Engineering: a Formal Approach
Part V: Specification Language, p. 89.

92/22 R. Nederpelt
F.Kamareddine

92/23 F.Kamareddine
E.Klein

92/24 M.Codish
D.Dams
Eyal Yardeni

92/25 E.Poll

92/26 T.H.W.Beelen
W.J.J.Stut
P.A.C.Verkoulen

92/27 B. Watson
G. Zwaan

93/01 R. van Geldrop

93/02 T. Verhoeff

93/03 T. Verhoeff

93/04 E. H.L. Aarts
J.H.M. Korst
P.J. Zwietering

93/05 J.C.M. Baeten
C. Verhoef

93/06 J.P. Veltkamp

93/07 P.O. Moerland

93/08 J. Verhoosel

93/09 K.M. van Hee

93/10 K.M. van Hee

93/11 K.M. van Hcc

93/12 K.M. van Hee

93/13 K.M. van Hee

93/14 J.C.M. Baeten
J.A. Bergstra

A useful lambda notation, p. 17.

Nominalization, Predication and Type Containment, p. 40.

Bottum -up Abstract Interpretation of Logic Programs,
p. 33.

A Programming Logic for F(O, p. IS.

A modelling method using MOVIE and SimCon/ExSpect,
p. 15.

A taxonomy of keyword pattern matChing algorithms,
p. 50.

Deriving the Aho-Corasick algorithms: a case study into
the synergy of programming methods, p. 36.

A continuous version of the Prisoner's Dilemma, p. 17

Quicksort for linked lists, p. 8.

Detenninistic and randomized local search, p. 78.

A congruence theorem for structured operational
semantics with predicates, p. 18.

On the unavoidability of metastable behaviour, p. 29

Exercises in Multiprogramming, p. 97

A Fonnal Detenninistic Scheduling Model for Hard Real
Time Executions in DEDOS, p. 32.

Systems Engineering: a Fonnal Approach
Part I: System Concepts, p. 72.

Systems Engineering: a Fonnal Approach
Part II: Frameworks, p. 44.

Systems Engineering: a Fonnal Approach
Part III: Modeling Methods, p. 101.

Systems Engineering: a Fonnal Approach
Part IV: Analysis Methods, p. 63.

Systems Engineering: a Fonnal Approach
Part V: Specification Language, p. 89.

On Sequential Composition, Action Prefixes and
Process Prefix, p. 21.

93/15 I.C.M. Baeten
J.A. Bergstra
R.N. Bol

93/16 H. Schepers
J. Hooman

93/17 D. Alstein
P. van der Stok

93/18 C. Verhoef

93/19 G-J. Houben

93/20 F.S. de Boer

93121 M. Codish
D. Dams
G. File
M. Bruynooghe

93/22 E. Poll

93/23 E. de Kogel

93/24 E. Poll and Paula Sevcri

93/25 H. Schepers and R. Gerth

93/26 W.M.P. van der Aalst

93127 T. Kloks and D. Kratsch

A Real-Time Process Logic, p. 31.

A Trace-Based Compositional Proof Theory for
Fault Tolerant Distributed Systems, p. 27

Hard Real-Time Reliable Multicast in the DEDaS system,
p. 19.

A congruence theorem for structured operational
semantics with predicates and negative premises, p. 22.

The Design of an Online Help Facility for ExSpect, p.21.

A Process Algebra of Concurrent Constraint Program
ming, p. 15.

Freeness Analysis for Logic Programs - And Correct
ness?, p. 24.

A Typechecker for Bijective Pure Type Systems, p. 28.

Relational Algebra and Equational Proofs, p. 23.

Pure Type Systems with Definitions.

A Compositional Proof Theory for Fault Tolerant Real
Time Distributed Systems, p. 31.

Multi-dimensional Petri nets, p. 25.

Finding all minimal separators of a graph, p. 11.

	Contents
	Abstract
	1. Introduction
	2. The syntax of the calculi
	3. Axioms of o-mega-xi
	4. Translating lambda in o-mega-xi
	5. Translating o-mega-xi in lambda
	6. The soundness of sigma- and theta-reduction
	7. The meaning and soundness of beta-reduction
	8. Comparison and conclusions
	9. Acknowledgements
	A An alternative semantics
	References

