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Mathematics, Logic and Computation 
A workshop in honour of 
N .G. de Bruijn's 85th anniversary 
July 4-5 2003, Eindhoven, The Netherlands 

N.G. de Bruijn was born on .July 9, 1918. He finished school at the age of 16, 
studied Mathematics at Leiden University and received his PhD on modular 
functions at the Free University of Amsterdam in 1943. From 1939 to 1944 
N.G. de Bruijn was a full-time assistant at the Technical University of Delft. 
That period helped him get through a large part of the war without forced 
labour in Germany (Delft was in the hands of the German during the war). De 
Bruijn started his professional career as a researcher at the Philips Research 
Laboratory in Eindhoven from 1944 to 1946, then occupied a full professorship 
at the University of Delft from 1946 until 1952 when he moved to a profes
sorship at the University of Amsterdam. In 1960, N.G. de Bruijn returned to 
Eindhoven University as a professor of Mathematics at Eindhoven University 
of Technology. 

De Bruijn's contributions in the fields of Mathematics and Computer Sci
ence are numerous. His book on advanced asymptotic methods, North-Holland 
1958, was a classic and was subsequently turned into a book by the famous 
Dover books series as a result. His work on combinatorics resulted in influen
tial notions and results of which we mention the de Bruijn-sequences of 1946 
and the de Bruijn-Erdos theorem of 1948. De Bruijn's famous contributions to 
mathematics include his work on generalized function theory, analytic number 
theory, optimal control, quasicrystals, the mathematical analysis of games and 
much more. In each area he approached, he shed a new light and was known 
for his originality. De Bruijn could rightly assume the motto "I did it my way" 
as his own motto. And when it came to automating Mathematics, he again 
did it his way and introduced the highly influential Automath. In the past 
decade he has been also working on the theories of the human brain. 

Due to the varieties of contributions of de Bruijn, the workshop will concen
trate on the computational aspects of Mathematics. 

\Ve arc delighted to have three exceptional speakers at the workshop: Peter 
Aczel, Henk Barendregt and Robert Constable. \Ve are also grateful to the ex
cellent programme committee members: Thierry Coquand, Herman Geuvers, 
Fairouz Kamareddine, .Jean-Louis Krivine, ~1ichael Kohlhase and Rob Neder
pelt \vho dealt so efficiently with the paper submissions. The eight accepted 



papers have all been influenced in one way or another by the work of de Bruijn 
and his influence will continue for years to come. 

We wish N.G. de Bruijn a long and healthy life and long live his powerful 
influence in our field. 

Herman Gcuvers and Fairouz Kamareddine 
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A simple canonical representation of rational 
numbers 

Abstract 

Yves Bertot 112 
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INRIA Sophia Antipolis 

France 

We propose to use a simple inductive type as a basis to represent the field of rational 
numbers. We describe the relation between this representation of numbers and the 
representation as fractions of non-zero natural numbers. The usual operations of 
comparison, multiplication, and addition are then defined in a naive way. The whole 
construction is used to build a model of the set of rational numbers as an ordered 
archimedian field. All constructions have been modeled and verified in the CoQ 
proof assistant. 

This work started as a quest to find a simple language to represent strictly 
positive rational numbers. It started as a reflexion on the proof part of rep
resentations of rational numbers as reduced fractions: the proof must then be 
a proof that the numerator and denominator are respectively prime and this 
proof can be viewed as a trace of Euclid's algorithm to compute the great
est common divisor of two numbers. Looking further, this trace can be used 
directly as a data-structure to represent rational numbers. 

1 From fractions to Qplus and back 

VVe propose to use a very simple formal lang1iage, which we will call Q+, and 
is given by the following syntax: 

;T := l!Nx!D:D 

This language can easily be encoded as a recursively defined type in a func
tional programming language or as an inductive type in a theorem prover. For 
instance, the definition in CoQ [5] is the following one: 

Inductive Qplus : Set := 

1 thanks to Milad l\"iqui and Loic Pottier for many discussions on this subject. 
2 Yves.Bertot©sophia.inria.fr 

This is a preliminary version. The final version will be published in 
Electronic Notes in Theoretical Computer Science 

URL: www.elsevier.nl/locate/ entcs 



BERTOT 

One : Qplus I N : Qplus -> Qplus I D : Qplus -> Qplus. 

Being given a pair of strictly positive natural numbers (p, q), actually rep
resenting the fraction ~' we construct the term in our language by recusively 
applying the following rules: 

• if p = q then the term associated to ~ is 1, q 

• if p > q then the term is Ny where y is the term associated to 
that p - q > 0), 

p-q (note 
q 

• if p < q then the term is Dy where y is the term associated to q~p· 

This recursive technique always terminates: if there is a recursive call, then 
the sum of the two elements in the pair is strictly smaller than the sum of the 
two initial clements. Thus there is a quantity that decreases strictly at each 
recursive step: this ensures termination. 

There may be several pairs of natural numbers representing the same ra
tional number: in this sense the set of strictly positive rational numbers can 
be viewed as a quotient set obtained from a partition of the set of pairs of 
strictly positive rational numbers, but it turns out that the term in Q+ con
structed in this manner does not depend on the pair of numbers that was 
chosen. Here is another formulation of the same algorithm that shows why. 
Now this algorithm is described by a function c: 

• c(l) = 1, 

• if x > 1, c(x) = Nc(x - 1), 

• if x < 1 c(x) = Dc( 1 ~ 1 ). 
x 

It is a simple computation to verify that the two algorithms perform the same 
steps. 

Given a word w in the language Q+, we can interpret this word as a fraction 
using the following recursive algorithm. 

• if w = 1, then the fraction is +, 
• if w = Ny and y can be interpreted as the fraction ~, then w can be 

interpreted as p+q, 
q 

• if w = Dy then w can be inter1>reted as __1!__. . p+q 

The fraction we obtain in this manner is always reduced: the greatest 
common divisor of p and q is 1. This can be proved by recursion over the 
length of w. 

• Base case: if the length is 1, then w = 1, the fraction is+, which is reduced, 

• Let us suppose the length is n + 1, where n ~ 1, let us suppose any word 
of length n is interpreted in a reduced fraction. Now w can have one of two 
forms: 

(i) w = Ny. In this case y can be interpreted in a reduced fraction ~ and w 

is interpreted in p+q. Any divisor common to p + q and q is also common 
q 
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top+ q - q and q: it is a divisor of p and q. Since ~ is reduced this divisor 
can only be 1. 

(ii) w =Du. In this case we can reason symmetrically to the previous case. 

Another way to present the interpretation algorithm is to view it as func
tion returning a rational number and write as a function i. We then have the 
following presentation: 

• i(l) = 1, 

• i(Ny) = 1 + i(y), 

• i(Dy) = I 
1

1 • 
+;(y) 

The functions c and i are clearly inverse to one another: they establish a 
bijection between the set of strictly positive rational numbers and the language 
Q+. 

2 The rationale behind rationals 

At first sight, this looks like a contrived way to compute the greatest common 
divisor of two numbers p and q: just compute c( ~) then interpret it as a 

reduced fraction ~ and the greatest common divisor of p and q is the number 
q 

~ = !J.,. In fact, we have not done anything else than construct a trace of the 
p I/ 

decisions made by a simplified form of the usual algorithm to compute the 
greatest common divisor, known as Euclid's algorithm. 

When given two numbers p and q, the greatest common divisor algorithm 
requires that one divide p by q if p > q. If the remainder r is 0 then the greatest 
common divisor is q, otherwise one should proceed to compute compute the 
greatest common divisor of r and q. If q > p then one should divide q by p 
and proceed by computing the greatest common divisor of p and r. If p = q 
then the greatest common divisor is p. 

A simplified form of this algorithm is the algorithm where one subtract 
q from p when p > q instead of dividing (this is actually the form that was 
described by Euclid). In the long run, this has the same effect as division: one 
eventually reaches a point where either p = q (which would correspond to a 
null remainder in the division) or subtraction has to be done in the other way. 

In the simplified form, there is a three way choice that is made based on 
whether p is larger or smaller than q, or equal to q. The succession of choices 
made in the algorithm is simply what is recorded in the terms of the Q+ 
language. 

This is where the representation comes from: the initial motivation was 
to construct a datastructure to represent rational numbers, so that syntactic 
equality would coincide with the equality as rational numbers. The usual 
datastructure, where rational numbers arc represented as fractions, that is, as 
pairs combining a natural number (for the numerator) and a strictly positive 
natural number (for the denominator) obviously does not fit the requirement: 
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the two fractions i6 and 1
5
1 are not syntactically equal, even though they do 

represent the same rational number (for this number our representation is 
NNDDDDI. 

In type theory, it is usual to manipulate objects that combine data and 
proofs of properties satisfied by this data. Thus, to have fractions where syn
tactic equality is meaningful, it would be relevant to consider only reduced 
fractions, represented by triples where the first two elements would be the 
usual natural numbers, but the third clement would be a proof that the great
est common denominator of the natural numbers is 1. In practice, syntactic 
equality between proofs is even more problematic to use, but it turned out 
that one could forget the first two elements, because the proof structure con
tains enough information to reconstruct them. Hence the idea to represent 
the rational numbers simply by the trace of the computation of the greatest 
common divisor. 

Still, we could have chosen to use the trace of the computation of the 
greatest common divisor using the regular algorithm based on division. We 
will come back to this later. The motivation to take the simplified algorithm 
was to have all computations easily performed by structural recursion over 
Peano representations of natural numbers. This will be important when we 
describe the way Q+ is implemented in a type-theory based theorem prover 
like Coq. 

Because of its simplicity, this representation is not particularly efficient, 
when compared to fraction representations, it is still strictly more efficient than 
a representation where both numerator and denominator are represented as 
peano numbers, where ~ is represented using p + q symbols, while our rep
resentation takes less than (p/q) + q symbols (no gain for natural numbers, 
obviously); it is probably not as efficient as a fraction representation where 
both numerator and denominators are represented as binary numbers, espe
cially for rational numbers with a large integer part (or their inverse), where 
our representation is as inefficient as pcano numbers. For a really efficient 
representation, continued fractions would probably be the best choice. 

3 Order 

If we note N' the function over rational numbers defined by: 

N'(x) = i(N(c(:r))) 

and D' the symmetric function, it is obvious that both N' and D' are strictly 
monotonic functions over the positive rational numbers. Moreover, we have 
the two following inequalities, for any two strictly positive rational numbers 
:r:1 and :r:2: 

N'(:ri) > 1 > D'(:r:2). 

Combining these two facts, we get the following equivalence: 

:r1 > .T2 <=>- c(:r1) >Q+ c(x2) 
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where the order >Q+ is defined by: 

• for any w1 and w2, Nw1 >Q+ 1 >Q+ Dw2, 

• for any w1 and w2, Nw1 >Q+ Nw2 ¢::? w1 >Q+ w2, 

• for any W1 and w2, Dw1 >Q+ Dw2 ¢::? w 1 >Q+ W2. 

To case notations, we shall often write > for >Q+· 

4 Primitive operations 

4.1 Inversion 

The symetry between numerator and denominator exhibited in the Q+ lan
guage can be exploited to construct the inversion function. For instance, 
N DNl is ~' while DN Dl is ~' and N Nl is 3 while DDl is k· We see there 
is a pattern. 

Intuitively, the proof that p and q are relatively prime and the proof that 
q and p are relatively prime are the same, except that all decisions are sym
metric. Thus, constructing the Q+ representation of the inverse of the number 
represented by an arbitrary word in Q+ is simply done with the following inv 
function: 

• inv(l) = 1, 

• inv(N.7:) = D(inv(x)), 

• inv(Dx) = N(inv(x)). 

It is simple to prove by induction on the number of N and D that if i(w) 
returns the fraction p/q, then i(inv(w)) returns the fraction q/p. 

4. 2 Other basic operations 

We do not attempt to provide efficient implementations of addition or mul
tiplication. An interesting, probably efficient, algorithm is presented in [8], 
but we only present naive implementations that use fractions as intermediary 
data. 

We interprete words w and w' in Q+ as reduced fractions ~ and f,, com
puting the result fraction in the usual manner, and then re-constructing the 
result word in Q+ with the c function. 

4.2.1 Addition 
For addition, the result fraction is 

(pq' + p'q) 

qq'. 

It is interesting to prove the following theorem: 

1 +w = Nw 
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Here is a simple proof. If w represents the fraction '!!., then the fraction 
q 

constructed for 1 + w is 
(lxq+pxl) 

1 x q 

p+q 

q 

When constructing the representation for this number the comparison be
tween numerator and denominator yields that the numerator is bigger and 
the resulting word is Nw' where w' is the representation of 

(p+q-q) p 
, 

q q 

that is w' = w. 
This theorem can be used to make addition faster, by adding the integer 

part of rational numbers before resorting to the more complicated general 
solution. When adding an integer to a rational number the general solution 
can simply be avoided. 

It is also easy to prove that addition is commutative and associative, simply 
because addition and multiplication are associative on natural numbers. 

4.2.2 Multiplication 

For multiplication, the result fraction is pp'/ qq'. There is no way to be sure 
that this fraction is already reduced, so we really have to go the interpretation
reconstruction process. However, we can verify that 1 really acts as a neutral 
element for multiplication. The result fraction obtained when multiplying 
with 1 is 

1 x p' 

1 x q' 

and the neutral property is simply inherited from the neutral property of 1 
for the multiplication of natural numbers. 

Here again, it may he interesting to compute a default approximation of 
the product of two rational numbers by first computing the product of their 
integer parts. This will give no gain when multiplying a natural number with 
an arbitrary rational number, because one still need to resort to the general 
solution to compute the multiplication of the integer with the fractional part 
of the other number. 

Having both addition and multiplication, it is interesting to verify that we 
have distributivity. This is done in our formal proof, but we do not describe 
it in details here. 

4.2.8 Subtraction 
Subtracting w' from w is meaningful only when w represents a larger rational 
number than w', this can be checked easily thanks to the comparison procedure 
outlined in section 3. The result fraction is 

(pq' - p'q) 
qq'. 
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There is a question whether pq' -p' q really is a strictly positive natural number, 
but this is a simple consequence of the fact that p/ q > p' / q' (by multiplying 
both sides of the inequality by qq'). 

Zero is not element of the set of strictly positive rational numbers, so it is 
not easy to express that subtraction really is the opposite of addition, still we 
can express it with a theorem that has the following statement: 

\::/w, w' E Q+. ( w + w') - w' = w 

To prove this theorem, we need to show that 

(p" q' - p' q") 

q" q' 

is the same asp/ q, where p" / q" is the reduced fraction of 

(pq' + p'q) 
qq', 

that is, there exists a natural number a such that pq' + p' q = ap" and qq' = aq" 
thus the first fraction can also be written 

a x (p" q' - p' q") ( (pq' + p' q )q' - p' qq') 
aq"q' qq'q' 

5 Encoding the whole rational field 

pq'2 

qq'2 
p 

q 

To encode the whole rational field, we need to add 0 and negative numbers. 
This is easily done by constructing a disjoint sum. In Coq it will be written 
as follows: 

Inductive Q : Set 
Qpos : Qplus -> Q 

I Qzero : Q 
I Qneg : Qplus -> Q. 

Generalizing inversion on this field is trivial, simply lifting the operation de
fined in section 4.1. Generalizing addition, multiplication, and subtraction is 
easily done from the ba,sic operations for strictly positive rationals, taking care 
of signs almost independently of the computation of significative numbers. 

For instance, when adding two positive numbers, the result is positive, and 
the absolute values must be added. On the other hand, when adding a positive 
and the negative value, then the absolute values (in Q+) must be compared. 
If the absoluve value of the positive argument is larger, then the result will be 
positive, but the resulting absolute value is going to be the subtraction of the 
two values. 

Of course, a null value may occur among the operands, but this is easily 
taken care of by expressing the properties of 0 as neutral element for addition 
and as absorbing element for multiplication. Taking the opposite of a rational 
number is a simple syntactic operation: just change the sign, when there is 
one. 

7 
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Comparison can also be extended to the full field. Here also, it is only a 
matter of extending comparison for positive numbers given in section 3 with 
a rule of signs: negative numbers are smaller than 0, which is smaller than 
positive numbers. For numbers of the same sign, we just compare their abso
lute values, not forgetting to invert the results when the compared numbers 
arc negative. 

6 Implementing the functions in CoQ 

The calculus of inductive constructions, as implemented in the CoQ system, 
provides good support for describing and proving properties of structural re
cursive functions. Functions of this kind are easily recognized according to a 
syntactic pattern when using pattern-matching constructs: recursive calls are 
only permitted on direct subterms of a special argument and these subterms 
appear as variables in a pattern. 

The function c that we describe above to construct an element of Q+ 
from a pair of non-zero natural numbers is not structural recursive. There 
are several techniques to handle functions that are not structural recursive, 
several of them include constructing functions that take proofs of termination 
as arguments [1,2]. Herc we have chosen a simpler path: we add a extra 
artificial argument to the function, whose purpose is only to count the number 
of allowable recursive calls. The function we obtain has the following form: 

Fixpoint Qplus_c [p, q, n : nat] : Qplus := 

Cases n of 
0 => One 

I cs n') => 

end. 

Cases (minus p q) of 
0 => 

end 

Cases (minus q p) of 
0 => One 

I v => (D (Qplus_c p v n')) end 
v => (N (Qplus_c v q n')) 

In this function we are computing the representation of p/ q and the result is 
correct only for suitable values of n. A simple analysis of the code shows that 
it suffices that n is larger than the maximum of p and q. 

The use of an artificial argument to the Qplus_c function makes that it 
is also defined when its semantics makes no sense. For instance, if numera
tor or denominator is zero, the value returned is (D (D ... One)) or (N (N 
... One)). ·when stating any proof about this function we need to check that 
we are talking only about meaningful uses. 

For instance, we proved that the function Qplus_c is correct, as stated by 

8 



I3ERTOT 

the following theorem (there are more theorems about addition than about 
maximum in CoQ and we chose to use this as a lower bound of acceptable 
values of n). Herc the fact that p and q are non-zero is ensured by the fact 
that they are computed by Qplus_i. 

Theorem construct_correct: 
V w : Qplus, p, q, n : nat. 
(Qplus_i w) = (p, q) --t (le (plus p q) n) --t 
(Qplus_c p q n) = w. 

\~le can also define a Qplus_c' function that takes only the numerator and 
denominator of the fraction and adds them before calling Qplus_c. Thus, the 
fraction n/rn will be represented by the term (Qplus_c' (n) (m)). 

Defining addition and multiplication by converting terms from Q+ to pairs 
of natural numbers is then an easy example of structural-recursive program
mmg: 

Definition Qplus_add : Qplus -> Qplus -> Qplus := 

[w, w' : Qplus] 
(Cases (Qplus_i w) of 
(p,q) => 

(Cases (Qplus_i w') of 
(p' ,q') => 

(Qplus_c 
(plus (mult p q') (mult p' q)) (mult q q') 
(plus (plus (mult p q') (mult p' q)) (mult q q'))) 

end) 
end). 

Thanks to the use of pure structural recursive programming, the reductions 
rules of the calculus of inductive constuctions can always work on closed term, 
and we can test our addition function on pairs of fractions. 

Definition Qplus_c' [n,m:nat] := (Qplus_c nm (plus n m)). 

Eval Compute in 
(Qplus_i (Qplus_add (Qplus_c' (5) (7)) (Qplus_c' (1) (3)))). 
= ((22),(21}) : nat*nat 

We have followed the same principles for all functions on Qplus and on Q. 
all functions are programmed in structural recursive way, sometimes with an 
extra argument to bound the recursive calls, and the functions have been made 
total by giving an arbitrary value when they should have been undefined. 

7 Constructing the rational number field 

In theorem provers, the tradition is to use a definitional approach, where new 
concepts are defined from old ones. In our case, we want to consider that the 
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natural numbers are given with the basic operations, addition, multiplication, 
subtraction, and comparison, the sets Q+ and Q arc defined as above, trans
lation from words in Q+ to pairs of natural numbers, and the definition of 
basic operations are also given. From this, we want to show that Q satisfies 
the properties of an ordered archimedian field. Thus, we have to redo a whole 
bunch of proofs that were simply solved in the previous section by refereeing 
to the set of mathematical rational numbers, which we should not be using 
now. 

In fact, we only have to prove the 13 axioms that define an ordered archi
median field [4] (there are 14 axioms for a complete ordered archimedian field, 
but obviously we cannot expect completeness). 

Of course, the fact that some functions arc normally not total re-appears in 
the properties with have proved. For instance, the following property expresses 
that inversion is the symetric operation to multiplication, but the zero case 
is clearly avoided in the statement, even though our inversion function docs 
have a value for zero. 

Q_inv _def: Vx : Q. x =/= Zero ----j-

(Q_mul t x (Q_inv x)) = (Qpos One). 

8 Continued fractions 

Readers with enough mathematical background may already have recognized 
simple continued fractions in the Q+ language. When considering long se
quences of the same symbol, it is possible to use natural numbers, as summa
rized by the following equalities: 

D'kx = 1/(k + 1/x) 

Combining these equations to analyze large words, we obtain that the word 

actually represents the number 
1 

ao + -----1~--
a1+------

1 
an+ an+l + 1 

This is known as a finite simple continued fraction. In this sense we redis
cover a fact that is already known: when looking for canonical representation 
for rational numbers, continued function can be used, as long as all the ak's 
arc strictly positive, except for the first one. This representation is actually 
used in algorithms proposed by Kornerup and Matula in [7] where the rep
resentation is also enhanced by looking at the step taken when computing 
the greatest common divisor, but this time when numbers are represented in 
binary format. The algorithms proposed in Korncrup and Matula's work arc 
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"on-line" algorithms, which in a functional programing approach we might 
also want to consider as "laiy" computing algorithms. 

If this construction is preferred to the other one for use in a theorem prover 
or in a functional programming language with recursive types, it is sensible 
to start by representing the rational numbers that arc strictly greater than 
1. In this manner, we avoid taking care of the special case for a0 which does 
not need to be strictly positive. If we only represent numbers that arc greater 
than 1, then a0 also needs to be positive. 

A rational number greater than 1 is necessarily an integer greater or equal 
to 2, or an integer greater or equal to 1 plus the inverse of a natural number, 
or a number of the form 

where a and b arc strictly positive natural numbers, and :r is a rational rnnn
ber greater than 1. This can be described with the following new inductive 
definition. 

Inductive Qplus' : Set := 

Nat : positive -> Qplus' 
I Natinv : positive -> positive -> Qplus' 
I R : positive -> positive -> Qplus'. 

Having this subset of the field of rational numbers, it is a simple matter 
to add 1 and inverses of rationals greater than 1 to get all strictly positive 
rational numbers and to add 0 and opposites of positive rational numbers to 
get all rational numbers, this is done using the following inductive definition: 

Inductive Q' : Set := 

G1 : Qplus' -> Q' 
One' : Q' 
IG1 : Qplus' -> Q' 
Zero' : Q' 
OIG1 : Qplus' -> Q' 
OOne' :Q' 
OG1: Qplus' -> Q'. 

In this description, G1 is used for numbers larger than 1, One' is used for 1, 
IG1 (the I stands for inverse) is used for numbers between 0 and 1, actually 
(IG x) represents the inverse of (G1 x), Zero' stands for 0, OIG1 is used 
for numbers between -1 and 0, actually (OIG1 x) represents the opposite of 
(IG 1 x), OOne' is used for -1, and OG 1 is used for numbers lesser than -1, 
actually (OG1 x) represents the opposite of (G1 x). 

Basic operations can be defined on this structure by following the guide
lines given both by the interpretation of terms in Qplus' as finite continued 
fractions or as compact encodings of terms in Q+, but this work has not been 
done yet. 
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9 Inductive proofs on rational numbers 

Having an inductive structure to describe rational numbers, it can be used to 
guide proofs about these numbers, in the same manner as the peano structure 
of natural numbers guides proofs by providing the usual induction principle 
on these numbers. In this section, we show how this leads us into a new way 
of proving things, that may sometimes turn out to be more efficient. 

9.1 A proof that the square root of 2 is not rational 

The intuition behind this proof is that the square root of two actually is 
represented by the following infinite continued fraction: 

1 
v'2=1+ 1 

2+--1 
2+ -

In other terms, if v'2 were a rational number, then it would be represented 
by the the term: 

J2=NDDNJ2 

This is impossible, because it leads to an infinite element in an inductive type. 
Let us suppose that v'2 is rational, and let us show that 

J2= NDDNJ2. 

The square of 1 is 1 and 1 < 2, since the square function is increasing, then 
v'2 is necessarily of the form N x, NI is 2 and 22 > 2 then v'2 is necessarily of 
the form ND:r', NDl is 3/2 and (3/2) 2 = 9/4 > 2, then v'2 is necessarily of 
the form NDDx", NDDl is 4/3 and (4/3) 2 < 2 then v'2 is necessarily of the 
form N DDNy, where y represents a strictly positive rational number which 
we also denote y. By the definition of interpretation of N and D, we have: 

v'2=1+--l-l_ 
2+-

l+y 

Using a few algebraic transformations that are all licit because y is strictly 
positive, we get the following equality: 

J2 = 3y + 4 
2y+ 3 

After squaring both sides of the equality, multiplying by (2y + 3)2 (a strictly 
positive number), and simplifying, we get: 

2= :il 
This proves that y = v'2 and leads to the contradiction we are looking for. 

The same form of reasoning applies to prove that J3 is not rational, this 
time using the fact that if J3 were rational, it would have to verify the fol-
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lowing equality: 

v'3 = NDN\!3. 

It is even possible to re-do this proof by only following the structure sug
gested by the Q+ language, but without explicitely using the N and D con
structs. Here it is: 

We prove by induction on n, that there is no pair of non zero numbers p 
and q such that p + q s n and p2 = 2q2

. Let us take an arbirtrary n and, as 
induction hypothesis, let us suppose that for all m < n, there is no pair of non 
zero numbers p' and q' such that p' + q' = m and p'2 = 2q'2 . Let us suppose 
we have two non zero numbers p and q such that p + q = n and p2 = 2q2

. Let 
us prove that there is a contradiction. 

Since 12 < 2 < 22, we know that q < p < 2q, let p' = p - q, we know that 
p' < q and since q is non zero, we have p' < p. We also have 

(1) (p'+q)2=2q2. 

If q s 2p' then there exists an .T > 0 such that 2p' 
equality can be transformed into: 

(2p' + 2q)2 = 8q2. 

This gives 

9q2 + 6qx + x2 = 8q2 

and after simplification: 

q2 + qx + x 2 = 0. 

This is not possible if q > 0. 

q + x, the above 

On the other hand, if q > 3p' then there exists an x such that q = 3p' + x 
and we can simplify the equality 1 into the following one: 

16 12 8 I 2 18 12 12 I 2 p + px+x = p + px+x 

and after simplification 

0 = 2p'2 + 12p':c. 

Again, this is not possible if p > 0. Thus, we know that 2p' < q < 3p', let q' 
be the non zero number such that q = 2p' + q' and q' < p. \Ve have 

(2) (3p' + q') 2 = 2 x (2p' + q') 2) 

Now let p" be the strictly positive number p" = p' - q' With this number the 
equation 2 becomes: 

(3p" + 4q') 2 = 2 x (2p11 + 3q') 2 

and after simplification: 

p"2 = 2q'2 

By construction p' < q' < p and q' < q, thus p" + q' < n and by using the 
induction hypothesis, we can deduce that there is a contradiction. The proof 
is over. 

13 
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If we analyze the structure of this proof, it follows directly the structure 
given by Q+ and the previous proof: 

(i) The decision to perform proof by induction on the sum of the numerator 
and denominator is guided by the fact that the function c terminates 
because the sum of the numerator and denominators decreases, 

(ii) the introduction of the number p' corresponds to the application of N 
that is the first element of the segment ND D N that is repeated in the 
continued fraction expansion, 

(iii) the introduction of the number q' corresponds to the two applications of 
the D that occur in N DDN, 

(iv) the introduction of the number p" corresponds to the last N occurring in 
NDDN, 

(v) the concluding use of the induction hypothesis corresponds to the remark 
that the continued fraction for J2 is infinite. 

This proof may look a little more complicated, but we have gone to all 
these tedious steps to show that we have never used any other operations 
that multiplication, addition, and subtractions, and comparisons of natural 
numbers. This is important to show that this proof that square root of 2 is 
not rational is very simple in the amount of mathematical tools it uses. This is 
an important point when considered mechanized proofs, where the full extent 
of mathematical knowledge is rarely available. The usual proof, as proposed 
initially by Euclid, goes through the argument that if p2 = 2q2 , then p2 is 
even, then p is even, then q is even, and the fraction is not reduced. This 
proof usually requires that one define the concept of even numbers and then 
show that if the square of a number is even, this number is also even. Euclid's 
proof carries over to J3 only at the expense of defining the property to be a 
multiple of 3, and with a little efforts it also carries over to a proof that the 
cubic root of 2 or 3 is not rational. Proofs relying on the Q+ structure carry 
easily to the proof that J3 is not rational, but they are not adapted for cubic 
roots. 

10 Related work 

Continued fraction have been used in mathematics for a long time. John vVal
lis, a professor at Oxford in the 17th century actually introduced the name and 
described them. Euler showed that simple continued fraction were in 1-1 cor
respondance with rational numbers. Lagrange showed that roots of quadratic 
equations were either rational numbers or periodic continued fractions. More 
recently, a french dock-maker, Achille Brocot, and the german mathematician 
Moritz Abraham Stern devised a technique to represent rational numbers that 
turns out to represent the same inductive structure as the rational numbers 
in Q+ [9,3] (for an introductory presentation sec [6]). Inline algorithms for 
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the basic operations on continued fractions have been studied by Vuillemin 
[10] and similar algorithms have been devised by Niqui [8] for the structures 
described by Stern and Brocot, which are the same as ours. ~1ilad Niqui 
and the author of these lines plan to collaborate to construct the proofs that 
the algorithms described by Niqui compute the same values as the algorithms 
described naively in this work. 

11 Conclusion 

All proofs described in this paper have been performed using the CoQ system 
and are available from the author on demand. These proofs include a proof 
that Q has a field structure and a new presentation of the proof that V2 is not 
rational. 

We have given a quotient free representation of rational numbers. There ex
ists several other such representations, and actually continued fractions, with 
which our representation is related also provide such a quotient free represen
tation. Another example is where positive rational numbers are represented 
by finite lists of relative numbers, where the kth element describes the power 
of the kth prime number. Such lists may be of practical use if multiplication 
plays a more important role than comparison. However, the mathematical 
background needed to ascertain the validity of this representation is much 
more important than for our notation, as it relies on the fundamental the
orem of arithmetics ( unicity of decomposition of any natural number as a 
product of powers of prime numbers). 

The beauty of our representation is in its simplicity. It is remarkable 
that the positive rational numbers, such a dense set, can be obtained from 
the natural numbers by virtually adding only one inductive constructor. The 
constructor N corresponds to the successor function of peano arithmetics, the 
constructor we add is simply the D constructor, which is simply presented as 
a symmetric to the N constructor. 

Practical applications to this representation seem hard to find, mainly 
because the basic operations are so clumsy. \Ve have shown that the inductive 
structure it gives to the set of rational numbers is well adapted to certain 
kinds of proofs. For instance, proofs that 7f is not rational may possibly be 
made easier thanks to this structure, since some of the known proofs rely on 
the fact that the rational numbers whose sum of numerator and denominator 
is bounded never get close enough to 7f. Also this presentation of rational 
numbers can be used as an intermediary step to prove the correctness of 
efficient algorithms for exact computation on rational numbers and this will 
be used in future collaboration with M. Niqui. 

As a last remark, I would like to point out that the whole elaboration of 
this representation comes directly from a reflection on proof as proof objects 
in type-theory based theorem provers. Although all the statements given 
in this paper can easily be expressed in a wide variety of theorem provers, 
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the guideline for elaborating the data-structure is provided by a study of the 
structure of proofs that two numbers are relatively prime, in other words, a 
study of Euclid's algorithm to compute the greatest common divisor of two 
numbers. 
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(P =? Q) =? P, p =? Q, p 1-- p =?-llefft 
7=-~......,,-'-~-=--=-~..,,,.-=-c-----==?-et 
(P =? Q) =? P, P =? Q, P 1-- Q . l 

(P =? Q) =? P, p =? Q 1-- p =? Q =?-ng it 
(P =? Q) =? P, p =? Q 1-- p =?-left 
(P =? Q) =? P, p =? Q 1-- Q =?-left 

This proof yields the long normal proof-term (y ( x >.z : P (y z))) (with 
.r : (P => Q) =>I' and y: P => Q) where the variable y is used twice. 

Thus, the decidability of intuitionistic propositional logic is not as obvious 
as that of classical propositional logic, and to build a decision algorithm for 
intuitionistic propositional logic or for inhabitation in simply typed lambda
calculus, we need either to use loop checking or to specialize sequent calculus 
to avoid this left rule of the implication [8,4,5]. 

\Vhen we extend classical propositional logic by allowing positive quanti
fiers (i.e. universal quantifiers at positive occurrences and existential quanti
fiers at negative occurrences), we need to introduce two more rules in sequent 
calculus: the right rule of the universal quantifier and the left rule of the ex
istential quantifier. These rules also commute with contraction. Hence, the 
positive fragment of classical predicate logic also is decidable. 

Of course, if we have negative quantifiers also we need to introduce two 
more rules: the left rule of the universal quantifier and the right rule of the 
existential quantifier. These rules do not commute with contraction and the 
decidability result does not extend. The fact that in classical predicate logic, 
contraction needs to be applied only before these two rules can be seen as a 
formulation of Herbrand's theorem. 

When we extend intuitionistic propositional logic with positive quantifiers, 
the situation is again more complicated. For instance in the proof 

(Q::} R) =? Q,(\:/x (P(x) =? Q)) =? R,P(x),Q,P(x') 1-- Q =?-l~ft. h . h 
(Q =? R)::} Q, (Vx (P(x) =? Q)) =? R, P(x), Q 1-- \:/x (P(x) =? Q) -r~gf t, =?-ng t 
-'--"----~( Q"'---=?---'-R--'-) -=?-Q-',--', ('---\:/ x"'---( P-(-"-'x'"-) -::}-Q~) )-=?-'--'-'R-, '-P~( x~)-, Q~I--'-R~~. ~- e t 

(Q =? R) =? Q, (Vx (P(x) =? Q)) =? R, P(x) 1-- Q =? R =?-rligf , 
~~~-=-~--=----c-'---:-~~~~~-=-~-,---~=---=?-et 

(Q =? R) =? Q, (Vx (P(x) * Q)) * R, P(x) 1-- Q V-ri ht =?-ri ht 
(Q =? R) =? Q, (Vx (P(x) =? Q)) =? R 1-- \:/x (P(x) =? Q) lgf ' g 

(Q =? R) =? Q, (\:/x (P(x) =? Q)) =? R 1-- R =?-et 

we need to rename the variable :r into x' when applying the right rule of the 
universal quantifier for the second time. 

Hence the propositions that may occur in the proofs arc not in a finite 
space and even with loop checking, proof search may fail to terminate. For 
instance, searching for a proof of the proposition 

( (\:/x (P(x) => Q)) => Q) => Q 

we develop the following proof attempt where A is the proposition (\:/x (P(x) => 
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Q)) =? Q. 

A, P(x), P(x'), P(x") f-- Q u . h . h 
1 v-ng t, =>-ng t 

A, P(x), P(x) f-- Vx (P(x) => Q) l f 
A,P(x),P(x')f--Q u .*

1
-et . 

1 A, P(x) f-- Vx (P(x) => Q) v-ng it, =>-ng it 

A, P(x) f-- Q ~-left . 
A f-- Vx (P(x) => Q) V-nght, =>-nght 

A f-- Q . =>-left 
f-- A => Q =>-nght 

In this attempt, we accumulate propositions P(x), P(.r'), P(x"), ... and loop 
checking fails to prune this branch. 

Mints [9] proves that, in the positive fragment of intuitionistic logic, a 
provable sequent always has a proof with less than n variables, where n is 
a bound computed in function of the sequent. This way, the search space 
can be restricted to be finite and hence the positive fragment of intuitionistic 
predicate calculus is proved to be decidable. 

\Ve know that, in logic, variable names are irrelevant and that replacing 
named variables by another scoping mechanism, such as de Bruijn indices [1], 
simplifies formalisms very often. The goal of this paper is to replace the eigen
variable condition of sequent calculus, that forces to rename bound variables 
and to invent new variable names, by an alternative scoping mechanism. 

We obtain this way an alternative decision algorithm for the positive frag
ment of minimal intuitionistic predicate logic, where the search space is re
stricted just by a loop checking mechanism, like in the propositional case. A 
naive implementation of this algorithm is given at the end of the paper. 

1 Positive propositions 

A context is a finite multiset of propositions. The set of free variables of a 
context r = {A 1 , ••• ,An} is defined by F\/(f) = F\/(A1) u ... u F\/(An). A 
sequent r I- A is a pair formed with a context and a proposition. A proposition 
in minimal logic is positive if all its quantifier occurrences are positive. More 
precisely, the set of positive and negative propositions arc defined by induction 
as follows. 

Definition 1.1 {Positive proposition) 

• An atomic proposition is positive and negative, 

• a proposition of the form A =? B is positive (resp. negative) if A is negative 
(resp. positive) and B is positive (resp. negative), 

• a proposition of the form Vx A is positive if A is positive. 

A sequent A 1, ••• ,An I-Bis positive if A1 , ... ,An are negative and Bis positive. 

Proposition 1.2 A negative proposition has the form A 1 =? ... =? An =? P 
where P is an atomic proposition. 

3 
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vVc use a cut free sequent calculus for positive propositions in minimal 
logic. Instead of the usual left rule for implication 

r, A=> Bf- A r, A=> B, Bf- c 
r, A=> Bf- C 

we take a more restricted rule 

r, Ai => ... => An => P f- Ai ... f, Ai => ... => An => P f- An 
r, Ai => ... => An => P f- P 

where P is an atomic proposition. This way, proofs can be directly trans
lated to long normal proofs in natural deduction, and the proposition A1 => 
... => Ar, => P is the type of the head variable of the associated proof-term. 
The equivalence of this system with other presentations of minimal logic with 
positive quantifiers is straightforward. 

Definition 1.3 (LJ, A sequent calculus for positive propositions) 

r, Ai => ... => An => P f- Ai . . . r, Ai => ... => An => P f- An 
r, A 1 => ... =>An =>pf- p =>-left 

if P is atomic. 

if x is not free in r. 

2 Bracketing 

ff-A w . h 
f f- Vx A v-ng t 

r,Af-B . h 
r f- A => B =>-ng t 

Definition 2.1 (level of a variable) Let Ebe a positive proposition where 
all the bound variables arc distinct. We associate to each variable x bound in 
E a level in E defined as follows. 

• If E = V:r F then levcl,.;(:r) = 1, 

• if E =Vy F and :r is bound in F then levclE(:r) = 1 + levclF'(.r), 

• if E = F => G and .T is bound in F then level,.~(x) = lcvelF'(x). 

• if E = F => G and xis bound in G then levelp;(x) = levelG(:i:). 

From now on, we consider a fixed closed proposition E where all bound 
variables arc distinct. If :r is a variable bound in E, we write lcvcl(x) for the 
level of x in E, and wherever this variable may occur, we always consider its 
level with respect to E. 

Notice that in any sub-proposition of E of the form Vx A, all the free 
variables have a level strictly smaller than that of .T. 

Definition 2.2 (Bracketed contexts) Bracketed contexts and clusters are 
mutually inductively defined as follows. 

4 
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• A bracketed conte.rt is a finite multisct of clusters, 

• a cluster is either a proposition or of the form [f] 1 where r is a bracketed 
context and l is a natural number. 

The intuition is that in the cluster [f] 1 all the variables free in r and of 
level greater than or equal to l arc bound by the symbol [ ] . When we have a 
sequent r f- P, where all the free variables of P have a level strictly smaller 
than l, we can add brackets of level l to r yielding the equivalent sequent 
[f]1 f- P. This equivalence is made precise in proposition 3.3 and 3.4. 

The key idea in the algorithm, used in rule ::::>--left of definition 2.5, is that 
in a sequent of the form [f] 1, f' f- P where all the free variables of P have a 
level strictly smaller than {, WC can move the brackets from f to f', yielding the 
equivalent sequent r, [r'] 1 f- P. Applying this transformation several times, 
we can pull any proposition out of a bracketed context where it is hidden and 
put it at toplevel to used it. 

Definition 2.3 (Free variables of a bracketed context) The set of free 
variables of a bracketed context r = { A.1, •.. , An} is defined by FV (r) = 
F\f (A.1) U ... U F\l(A.n). The set of free variables of a cluster [f]1 is defined by 
F\f ([f]1) = {:r E F\f (f) I level(:r;) < l}. 

Definition 2.4 (Cleaning contexts) \Ve consider the following terminating 
rules allowing to clean contexts. 

Ifn:S:p 

[r, [~]n]p--+ [r]P, [~]n 

[]n--+ 0 

A.A.--+ A. 

We present now another sequent calculus, where bracketing avoids renam
ing. In this sequent calculus all contexts arc cleaned. Hence in a context of 
the form [ ... [ ...... [ ... ]1,_ 1 ••• ]12 ]1 1 , we have l1 < l2 < ... < li-1· 

Definition 2.5 (LJB, A bracketed sequent calculus) 

where 

f' f- A.1 f' f- An l f 
r f- P ===>--et 

r = r i, [r2, [ ... ri-1, [ri, A.1 ===>- ... ===>- A, ===>- Plt,_1 .. ·l12lti 

r' = [riJ11, [r2]12, ... , lfi-1Ji._1, ri, A.1 ===>- ... ===>-A,===>- P 

Pis atomic, l1 < l2 < ... < li-t and for each variable .r free in P, level(x) < l 1. 

[r]n f- A. w . ht 
r f- \;/:r: A. v-ng . 
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where n = lcvel(:r) and all the free variables of '\/x A have a level strictly 
smaller than n. 

r,Af-B . h 
r f- A * B *-ng t 

Of course, when applying these rules bottom-up, we must clean the contexts 
of the premises if needed. 

Example 2.6 Let us try again to prove the proposition 

((\l:r (P(:r) * Q)) * Q) * Q 

\Ve obtain the following proof attempt, where A is the proposition (V.T (P(x) * 
Q)) * Q. 

_A.-'--', [~P.,.:...( x-'-)=]i_l-_V~x_, ('-P--'-( x--')_=>~Q~) =>-left 
[A]1,[P(x)]i,P(x)l-Q . . 

A, [P(x)]1 I- Vx (P(x) => Q) V-right, =>-nght 
[A]1, P(x) I- Q . =>-left . 

A I- Vx (P(x) => Q) V-right, =>-nght 
A I- Q . =>-left 

I- A => Q =>-right 

Now, instead of accumulating propositions P(x), P(x'), P(x"), ... we 
accumulate clusters [P(x)] 1, that arc collapsed by context cleaning. Thus, the 
sequent A, [P(x)] 1 f- \l:r (P(x) * Q) is repeated and loop checking prunes 
this branch. 

Example 2. 7 Let us try now to prove the proposition 

((\l:r: (P(x) *((Vy (P(y) * Q)) * R) * R)) * Q) * Q 

We obtain the following proof attempt, where A is the proposition (\Ix (P(x) * 
((Vy (P(y) * Q)) * R) * R)) * Q. 

A, [[P(x), (Vy (P(y) => Q)) =>Rh, P(y)]t I- Vx (P(x) =>((Vy (P(y) => Q)) => R) => R) l ft 
[A]i, [[P(x), (Vy (P(y) => Q)) => R]2, P(y)]i, [P(x), (Vy (P(y) => Q)) =>Rh, P(y) I- Q =>V-~i ht =>-ri ht 

[A]t, [[P(x), (Vy (P(y) => Q)) =>Rh, P(y)]1, P(x), (Vy (P(y) => Q)) =>RI- Vy (P(y) => Q) =>lg ft g 
[A]i, [[P(x), (Vy (P(y) => Q)) => R]2, P(y)]t, P(x), (Vy (P(y) => Q)) =>RI- R \-/ . -he . h 

v-rig t =>-rig t 
A, [[P(x), (Vy (P(y) => Q)) =>Rh, P(y)]i I- Vx (P(x) =>((Vy (P(y) => Q)) => R) => R) l ft 

[A]t' [P(x), (Vy (P(y) => Q)) =>Rh, P(y) I- Q V-ri ht =>-ri ht =>- e 
[A]i, P(x), (Vy (P(y) => Q)) =>RI- Vy (P(y) => Q) => lg ft g , 

[A]i, P(x), (Vy (P(y) => Q)) => R 1- R .· - e . 
A 1-Vx (P(x) =>((Vy (P(y) => Q)) => R) => R) V-nlghft =>-right 

A I- Q . =>-et 
I- A => Q =>-right 

Again, loop checking prunes this branch. \Ve can check that the other branches 
are pruned in the same way. Thus, the proposition is not provable. 
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3 Equivalence 

As already said, if :r: is a variable of level 1 and :IJ is a variable of level 2, 
then in the bracketed context [P(:r) => P(y)]i, [P(:r)] 1, the two occurrences 
of x must be considered as distinct exactly as in the context 3:dy (P(x) => 
P(y)), 3:r: P(x). Thus, such a context is equivalent to the context P(.r') => 
P(y'), P(:r"). 

\Ve now introduce a flattening function <P, mapping a bracketed context 
to a non bracketed one, renaming variables to fresh variables when needed. 
This function will be used in the proof of soundness and completeness of the 
system L.JB. 

Definition 3.1 (Flattening contexts) 
<P( {A1' ... ,An})= { <PA1, ... , <PAn}, 
<PA = A if A is a proposition, 

<P([r]n) = <P(r{:r'1/:r: 1 , ... ,x~n/xm}) where x1 , ... ,:rm are the free variables 
of r of level ~ n and .r'1, ... , x~n are fresh variables. 

Example 3.2 If levcl(x) = 1 and level(y) = 2 then 

<P([P(;r) => P(y)] 1, [P(x)]i) = P(.r') => P(y'), P(x") 

<P([[P(;r) => P(y)h, P(x)]i) = P(:r:') => P(y'), P(x') 

Proposition 3.3 If r ---+ r' for the system of definition 2.4, then for every 
proposition A, the sequent <Pr f- A is provable if and only if the sequent <Pr' f
A is and the sequent <Pr' f- A has a proof smaller than or of the same size 
as that of <Pr f- A (notice that the fresh variables used in the definition of <P 
must be fresh in particular with respect to A). 

Proof. For the first rule, we just need to check that the context <P([r, [~]n]p) 
and <P([r]P, [~]n) arc identical modulo a renaming of variables not appearing 
in A. For the second, we use the fact that <P([ ]n) = 0. 

For the third rule, we prove that the sequent <PA, <PA, r f- B is provable if 
and only if the sequent <PA, r f- B is and that <PA, r f- B has a smaller proof 
or a proof of the same size. This is the case because the variables introduced 
by <P arc fresh (even if different variables are used in different applications of 
<P). D 

For instance, we have [P(:r)]i, [P(x)]i ---+ [P(:r)] 1, <P([P(:r:)] 1, [P(x)]i) = 
P(y), P(y') and <P([P(;r)] 1) = P(z). A proposition A is provable in one context 
if and only if it is provable in the other, provided it does not contain free 
variables among y, y', z. 

Proposition 3.4 For every proposition A, whose free variables have a level 
strictly smaller than n, <P([r],,, ~) f- A if and only if <P([r]n, [~]n) f- A (again 
the fresh variables used in the definition of <P must be fresh with respect to A). 
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Proof. The contexts <I>([r]n, ~) and <I>([r]ru [~]n) are identical modulo a re
naming of variables not appearing in A. D 

Proposition 3.5 {Soundness) If the sequent I- E has a derivation in the 
system LJB, then it has also a derivation in the system LJ. 

Proof. We prove, more generally, that if A is a sub-proposition of E, r a 
bracketed context containing only sub-propositions of E and the sequent r 1- A 
has a derivation in the system L.JB, then the sequent <I>r I- A has a derivation 
in the system L.J. We proceed by induction on the structure of the derivation 
of r 1- A, using proposition 3.3 to justify cleaning steps. 

• If the la.st rule is :::}-right, we just apply the induction hypothesis and the 
:::}-right rule of L.J. 

• If the last rule is \I-right 

[r]n 1- B \I . h 
r I- \Ix B -ng t 

by induction hypothesis we have a proof in L.J of <I>([f] 11 ) I- B. The variable 
:c, that has level n, does not occur free in <I>([f] 11 ), hence we can apply 
the \I-right rule of L.J and we obtain a proof of <I>([f] 11 ) I- \Ix B. The 
context <I>([f] 11 ) is a renaming of <I>r involving only variables of level greater 
than or equal to n. As no such variables occur free in \Ix B, the sequent 
<I>([r] 11 ) I- \Ix B is a renaming of <I>r I- \Ix B and we can transform this 
proof into one of <I>r I- \Ix B. 

• If the last rule is :::}-left 

where 

r' I- A 1 r' I- An l f r I- p ::::::}- et 

r = f 1, [r2, [ .. .ri-1, [ri, Ai * ... *An * Pk--1 ···l12l1i 

r' = [riJ1i, [r2]12 , ••• , [ri-il1;_ 1 , ri, A1 * ... *An* P 

P atomic, l1 < /2 < ... < li-t and for each variable x free in P, level(x) < l1, 
then by induction hypothesis we have derivations in L.J of <I>f' I- A 1 , ••• , 

<I>f' I- An. Applying the :::}-left rule of L.J we get a proof of <I>f' I- P. Using 
the proposition 3.4 and an induction on i, we get a proof of <I>f I- P. 

D 

Proposition 3.6 (Completeness) If the sequent I- E has a derivation in 
the system LJ, then it has also a derivation in the system L.JB. 

Proof. We prove, more generally, that if A is a sub-proposition of E, r a 
cleaned bracketed context containing only sub-propositions of E and the se
quent <I>r I- A has a derivation in the system L.J, then the sequent r I- A has 
a derivation in the system L.JI3. We proceed by induction on the size of the 
proof of <I> r I- A. 
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• If the last rule is =>-right 

<I>f, Bf- C . h 
<I>r f- B => c =>-ng t 

then the proposition A has the form B => C and we have a smaller proof 
in L.J of <I>r, B f- C. The context <I>(r, B) is equal to <I>r, B. Thus, the 
sequent <I>(r, B) f- C has a proof of the same size as that of <I>f, B f- C 
and, using proposition 3.3, the sequent <I>f' f- C, where f' is the cleanning 
of r, B, has a smaller proof or a proof of the same size. We apply the 
induction hypothesis to this proof, WC obtain a proof in L.JB of r' f- c and 
we conclude with the =>-right rule of L.JB. 

• If the last rule is \I-right 
<I>ff-B . 

<I>r f- \Ix B V-nght 

then the proposition A has the form \l:i; B and we have a smaller proof in L.J 
of <I>r f- B. The context <I>([f] 11 ) is a renaming of <I>r involving only variables 
of level greater than or equal to n. The only free variable of level n or more 
in Bis x and this variable does not occur in <I>f (eigenvariablc condition), 
thus this renaming does not involve variables free in B and the sequent 
<I>([f]n) f- B is a renaming of the sequent <I>f f- B. Thus, the sequent 
<I>([r]n) f- B has a proof of the same size as that of <I>r f- B and, using 
proposition 3.3 the sequent <I>f' f- B, where r' is the cleanning of [f]n, has a 
smaller proof or a proof of the same size. We apply the induction hypothesis 
to this proof, we obtain a proof in L.JB off' f- B and we conclude with the 
\I-right rule of LJB. 

• If the last rule is =>-left 
<I>r f- A1 ... <I>r f- An 

1 
f 

<I> r f- p =>- e t 

then A is an atomic proposition P, the context <I> r contains a proposi
tion of the form A1 => ... => An => P and we have smaller proofs of 
<I> r f- A I' ... ' <I> r f- Aw Thus, r contains a proposition B' of the form 
U1 => ... => Un => Q, corresponding to A1 => ... => An => P through 
<I> and the context r has the form f1, [f2, [ .. .ri-1, [ri,U1 => ... => Un => 
Qk_ 1 ••• ]1 2 Jti. As this context is clean, we have 11 < l2 < ... < li-1 · Let 
f' = [fi]1 1 , [f2]1 2 , ••• , [ri-il1i_ 1 , ri, U1 => ... =>Un=> P. The function <I> re
names the variables of level greater than or equal to 11 of U1 => ... => Un => Q 
with fresh variables. The renaming of Q with fresh variables yields P that 
is the right hand side of the sequent, so Q is equal to P and it contains 
no renamed variables. Thus, B = U1 => ... => Un => P and, we have 
levcl(.r) < 11 for each variable free in P. The sequent <I>f' f- U1 is a renam
ing of <I> r f- A 1, ... , <I> r' f- Un is a renaming of <I> r f- An. Thus, <I> f' f- U1 , ••• , 

<I> r' f- Un have proofs of of the same size as those of <I> r f- A 1 , ... , <I> r f- A11 

and, using proposition 3.3, the sequents <I>f" f- U1, ••• , <I>f" f- Un, where r" 
is the cleanning of r', have smaller proofs or proofs of the same size. \Ve 
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apply the induction hypothesis to these proofs, we obtain proofs in L.JB of 
r" f- U1, ... , r" f- Un and WC conclude with the =?-left rule of LJB. 

0 

4 Termination 

\Ve now prove that the system LJB is decidable. Let r f- A be a sequent, there 
is only a finite number of cleaned sequcnts that can occur in a proof of r f- A. 
Indeed, as we never rename variables, all propositions arc sub-propositions of 
r f- A and bracketing depth is bound by the highest level of a variable in 
r f- A. Thus the search space is finite and L.JB is decidable. 

More precisely, we can prove that if a sequent has a proof then it has a non 
redundant proof, i.e. a proof where the same sequent docs not occur twice in 
the same branch. Thus bottom-up search with loop checking terminates. 

5 Application to simple type theory and system F 

In [2] we have given a presentation of simple type theory (higher-order logic) 
as a theory in first-order predicate logic. We have also given a presentation 
of this theory in deduction modulo [3] where axioms are replaced by rewrite 
rules. For instance when we have a proposition Vx c(x) and we substitute x 
by the term =*(y, z) we have to normalize the proposition d=*(y, z)) yielding 
c(y) =? c(z). We have shown that simple type theory can be presented with 
rewrites rules only and no axioms. 

When we have a theory in deduction modulo formed with a confluent and 
terminating rewrite system and no axiom, we can decide if a positive normal 
proposition is provable or not in this theory. Indeed, as we never substitute 
variables in a proof, normal propositions remain normal and the rewrite rules 
can never be used. Thus, a normal proposition is provable in this theory if 
and only if it is provable in predicate logic. 

Thus inhabitation in the positive minimal intuitionist fragment of simple 
type theory is decidable. 

We obtain also this way a new decidability proof for the positive fragment 
of system F [7], while the general inhabitation problem for system Fis known 
to be undecidable [6]. 

Proposition 5.1 The positive fragment of system F is decidable. 

Proof. To each type of system F we associate a proposition in minimal logic, 
with a single unary predicate E in the line of [2]. 

w(X) = t:(X) 

w(T ~ U) = w(T) =? w(U) 

w(VX T) = vx w(T) 
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For instance \Il(\fX (X---+ X)) =\IX (E(X) => E(X)). 
As variables are never substituted in the positive fragment, a positive type 

T is inhabited in system F if and only if the proposition \Il(T) is provable in 
minimal intuitionistic logic. Thus inhabitation for positive types in system F 
is decidable. D 

6 An implementation 

This decision algorithm for the positive fragment of minimal intuitionistic logic 
can be easily implemented. For instance, an implementation in ocaml, version 
3.06, is given in figure 1. Using this implementation, we can, for example, 
check that the proposition 

((\Ix (P(x) => ((\fy (P(y) => Q)) => R) => R)) => Q) => Q 

is not derivable 

derivable [("x", 1); ("y" ,2)] 
(Imp(Imp(Forall ("x", Imp(Atomic ( "P'', [Var( "x")]), 

Imp (Imp (Forall ( "y", Imp (Atomic( "P", [Var ( "y")]) , 
Atomic("Q", []))), 

Atomic("R", [])), 
Atomic("R", [])))), 

Atomic("Q",[])), 
Atomic ( "Q" , []))) ; ; 

bool = false 

It is well known that variable names arc irrelevant in logic and that they can 
be replaced by other scoping mechanisms. \Ve have shown in this paper that 
replacing the cigcnvariable condition by an appropriate bracketing mechanism 
simplifies the decision algorithm of the positive part of minimal intuitionistic 
predicate logic. The generality of this bracketing mechanism still needs to be 
investigated. 
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Thus, the roots of AuToMATH are not to be found in logic or type theory, 
but in mathematics and the mathematical vernacular [7]. For some years, de 
Bruijn had been wondering what a proof of a theorem in mathematics should 
be like, and how its correctness can be checked. The development of computers 
in the sixties made him wonder whether a machine could check the proof of a 
mathematical theorem, provided the proof is written in a very accurate way. 
De Bruijn developed the language AuTOMATH for this purpose. This language 
is not only (according to de Bruijn [6]) "a language which we claim to be 
suitable for expressing very large parts of mathematics, in such a way that the 
correctness of the mathematical contents is guaranteed as long as the rules of 
grammar are obeyed' but also "very close to the way mathematicians have 
always been writing". The goals of the AuToMATH project were given as: 

"I. The system should be able to verify entire mathematical theories. 
2. The system should remain very general, tied as little as possible to any set of rules 

for logic and foundations of mathematics. Such basic rules should belong to material 
that can be presented for verification, on the same level with things like mathematical 
axioms that have to be explained to the reader. 

3. The way mathematical material is to be presented to the system should correspond to 
the usual way we write mathematics. The only things to be added should be details 
that are usually omitted in standard mathematics." ([8]; see [24] pp. 209 210) 

Goal 1 was achieved: Van Benthem Jutting [2] translated and verified Lan
dau's "Grundlagen der Analysis" [23] in AuTOMATH and Zucker (29] formalised 
classical real analysis in AuTOMATH. 

As for goal 2, de Bruijn used types and a propositions as types (PAT) 
principle 4 that was so mew hat different from Curry and Howard's [11, 17]. 

De Bruijn spent a lot of effort on goal 3 and studied the language of math
ematics in depth [7]. AuTOMATH features that helped him in goal 3 include: 

• The use of books. Just like a mathematical text, AuTOMATH is written line 
by line. Each line may refer to definitions or results given in earlier lines. 

• The use of definitions and parameters. vVithout definitions, expressions 
become too long. Also, a definition gives a name to a certain expression 
making it easy to remember what the use of the definiens is. 

As AUTOMATH was developed independently from other developments in 
the world of type theory and A-calculus, and as it invented powerful typing 
ideas that were later adopted in influential type systems (cf. [1]), there arc 
many things to be explained in (and learned from) the relation between the 
various AuTOMATH languages and other type theories. Type theory was origi
nally invented by Bertrand Russell to exclude the paradoxes that arose from 
Frege's "Begriffschrift" [14]. It was presented in 1910 in the famous "Principia 
Mathematica" [28] and simplified by Ramsey and Hilbert and Ackermann. In 
1940, Church combined his theory of functions, the A-calculus, with the sim
plified type theory resulting in the influential "simple theory of types" [9]. In 
1!)88-1989, Berardi [4] and Terlouw [27] gave as an extension of Barendregt's 
work [1], a general framework for type systems, which is at the basis of the so-

4 The first practical use of the propositions-as-types principle is found in AUTOMATH. 
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called Pure Type Systems ( PTSs [ 1]). PTSs incl udc many of the type systems 
that play an important role in programming languages and theorem proving. 

In this paper we focus on the relation between AuTOMATll and Pure Type 
Systems (PTSs). Both [1] and [15] mention this relation in a few lines, but as 
far as we know a satisfactory explanation of the relation between AuTOMATH 
and PTSs is not available. Moreover, both [1] and [15] consider AuToMATH 
without one of its most important mechanisms: definitions and parameters. 
But definitions and parameters are powerful in AuToMATH. Even the AuTOMATH 
system PAL, which roughly consists of the definition system of AuToMATII only, 
is able to express some simple mathematical reasoning (cf. Section 5 of [6]). 
According to de Bruijn [8] this is "due to the fact that mathematicians worked 
with abbreviations all the time already'. Moreover, recent developments on the 
use of definitions and parameters in Pure Type Systems [18,26,19,20] justify 
renewed research on the relation between AuTOMATH and PTSs. 

• In Section 2 we give a description of AuT-68, a basic AuToMATH system. 

• In Section 3 we discuss how we can transform AuT-68 into a PTS. In doing 
so, we notice that AuT-68 has some properties that are not usual for PTSs: 
• AuT-68 has 77-reduction; • AuT-68 has TI-application and TI-reduction (as 
it does not distinguish .A and TI); • AuT-68 has a definition system; • AuT-
68 has a parameter mechanism. \Ve do not consider r1-reduction as an 
essential feature of AuTOMATH, and focus on the definition and parameter 
mechanisms, which arc the most characteristic type-theoretical features of 
AuToMATll. In systems with TI-application, TI behaves like .A, and there is a 
rule of TI-reduction: (Tix:A.B)N ---+rr B[x:=N]. In AuToMATH, both Tix:A.B 
and .\x:A.B are denoted by [x:A]B. It is not easy to sec whether [x:A]B 
represents .\:r:A.B or Tix:A.B. Fortunately, this is not a problem for AuT-68. 

• In Section 4, we present a system .\68 that is (almost) a PTS. We show that 
it has the usual properties of PTSs and we prove that .\68 can be seen as 
AuT-68 without 77-rcduction, TI-application and TI-reduction. 

2 Description of AuToMAT11 

During the AuToMATH-project, several AuTOMAT11-languagcs were developed. 
They all have two mechanisms for describing mathematics. The first is es
sentially a typed .A-calculus, with the important features of .A-abstraction, 
.A-application and ,6-rcduction. The second mechanism is the use of defini
tions and parameters. The latter is the same for most AuToMATH-systcms, and 
the difference between the various systems is mainly caused by the .A-calculi 
used. In this section we will describe the system AuT-68 [3,5,12] which not 
only is one of the first AuTOMATH-systems, but also a system with a relatively 
simple typed .A-calculus, which makes it easier to focus on the (less known) 
mechanism for definitions and parameters. We start with a review of PTSs. 
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2.1 Pure T,ype Systems 

Definition 2.1 Let V be a set of variables and C a set of constants (both 
countably infinite). The set 1l'(V, C) (or'][', if it is clear which sets V and Care 
used) of typed lambda terms with variables from V and constants from C is 
defined by the following abstract syntax: ']['::=VIC I TI I .\V:1l'.1l' I IlV:1l'.1l'. 

vVe use :r, y, z, a, (3 as meta-variables over V. In examples, we sometimes 
want to use some specific elements of V; we use typewriter-style to denote 
such specific elements. So: x is a specific element of V; while x is a meta
variable over V. The variables x, y, z are assumed to be distinct clements of 
V (so x-=/=. y etc.), while meta-variables x, y, z, ... may refer to variables in the 
object language that arc syntactically equal. We use A, B, C, ... , a, b, ... as 
meta-variables over 1l'. Fv(A), the set of free variables of A, and substitution 
A[x:=B] arc defined in the usual way. We use= to denote syntactical equality 
between typed lambda terms. Terms that arc equal up to a change of bound 
variables are considered to be syntactically equal. We assume the Barendregt 
Convention [1] where bound variables are chosen to differ from free ones. 

Note 1 • We write AB1 · · · Bn as shorthand for(··· ((AB1)B2) · · · Bn)· 

• We write 7rx:A.B, or 7r£= 1xi:A;.A, as shorthand for 
7rx1:A1.(7rx2:A2.(- · · (7rxn:An-A) ···));for 7r E {A, Il} 

• We use the abbreviation A[xi:=Bi]i=m to denote A[xm:=Bm] · · · [xn:=Bn]. 
Ifm > n then A[x(=Bi]i=m denotes A. We write A[x:=B] for A[xi:=Bi]f=i· 

Definition 2.2 (,B-reduction) The relation --'tfJ is given by the contraction 
rule (.\x:A 1 .A2 )B --'tf3 A2[x:=B] and the usual compatibility. -*f3 is the small
est reflexive transitive relation that includes --'tfJ; =(3 is the smallest equivalence 
relation that includes ---+ /3. By A -----* fi B we indicate that A -----* f3 B, but A -=/=. B. 

A term with no subterms of the form (.\:r:A1 .A2 )B is in ,B-norrnal form, 
or a norrnal form if no confusion arises. \Ve write A ---+~f B (resp. A -*~f B) 
if A --'tf3 B (resp. A -*,'J B) and B is in ,B-normal form. 

Definition 2.3 • A specification is a triple (S, A, R), such that S ~ C, 
A ~ S x S and R ~ S x S x S. The specification is singly sorted if A and 
R arc (partial) function from S ---+ S, and S x S ---+ S resp. We call S the 
set of sorts, A the set of axioms, and R the set of (Il-formation) rules. 

• A context is a finite (maybe empty) list .r 1 :A1, ..• , Xn:An (written x:A) of 
variable declarations. {:r 1, ... , :rn} is the domain ooM (x:A) of the context. 
The empty context is denoted(). vVe USC r, ~as meta-variables for contexts. 

Definition 2.4 (Pure Type Systems) Let 6 = (S, A, R) be a specifica
tion. The Pure Type System .\6 describes how judgements r 1- 6 A : B (or 
r I- A: B, if it is clear which 6 is used) can be derived. r I- A: B states that 
A has type B in context f. The typing rules are given in Figure 1. 

A context r is legal if there are A, B such that r I- A : B. A term A is 
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(start) 

(weak) 

(II) 

(appl) 

(conv) 
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() f- 81 : 82 

ff-A:s 

r,x:A f- :1:: A 

ff-A:B ff-C:s 
r,x:C f- A: B 

r f- A : s1 r, x:A f- B: s2 

r f- (I1:1::A.B) : s3 

r, x:A f- b: B r f- (I1x:A.B) : s 

r f- (,\:r:A.b) : (Ilx:A.B) 

r f- F : (Ilx:A.B) r f- a : A 

r f- Fa: B[:r:=a] 

ff-A:B ff-B':s B =fJ B' 
r f- A: B' 

Fig. 1. The typing rules of PTSs 

'.J: (/_ DOM (f) 

X (/_ DOM (f) 

lcgal if therc are r, B such that r f- A : B or r f- B : A. 
An important class of PTSs is formed by the eight PTSs of the Barendregt 

Cube [1]. These systems all have S = {*, □}, A = {(*: □)}, but differ on R. 

2.2 Book.s, line.c; and c:1:prcssions of AuTOMATH 

In AuTOMATII, a mathematical text is thought of as being a series of consecutive 
"clauses". Each clause is expressed in AuTOMATII as a line. Lines are stored in 
so-called books. For writing lines and books in AuT-68 we need: • The symhol 
type; • A set Vof variables; • A set C of constants; • The symhols ( ) [ ] 

. We assume V and C are infinite, V n C = 0 and type (/_ V U C. 

Definition 2.5 (Expressions) Define the set E of AuT-68-expressions by: 

( variable) If .T E V then :1: E E. 

(parameter) If a E C, n E N (n = 0 is allowed) and E 1 , ... , En E E then 
a(E1, ... , En) E E. \Vc call E1, ... , En the parameters of a(E1, ... , En)-

(abstraction) If x E V, E E EU {type} and n E E then [:r:E]n E E. 

(application) If E 1 , E2 E E then (E2)E1 E E. 

Remark 2.6 • The AuT-68-exprcssion [x:E]n is AuTOMAT11-notation for ah
straction terms. In PTS-notation one would write either À:r::E.n or Il:r::E.n. 
In a relativcly simple AuToMATH-system likc AuT-68, it is easy to determine 
whether À:r:E.D or Il:r:E.n is the correct interpretation for [:E:E]n. This is 
harder in more complex AuTo:v1AT11-systems likc AUT-QE ( sec Section 5). 

• The AuT-68-expression (E2 )E 1 is AuTOMATH-notation for the application of 
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the ''function" E 1 to the "argument" E2 . In PTS-notation: E 1E2 . 5 

We define Fv(A) as for PTSs adding that Fv(a(E1, ... , En))~ u~=I Fv(Ei). 
If D, E1, ... , En are expressions (in &) , and x 1, ••• , Xn are distinct variablcs, 
then D[x1, ... , Xn:=E 1 , ... , En] denotes the cxprcssion n (in &) in which all 
free occurrcnccs of .1: 1, ... , J;n have simultaneously been rcplaccd by E 1 , ... , En. 
Correctness of this definition is shown by induction on the structure of n. vVe 
dcfine type[:z: 1 , ... ,xn:=E1, ... , En] as type. 

Definition 2. 7 (Books/lines) An AuT-68-book ( or book) is a fini te list (pos
sibly empty) of (AuT-68)-lines. If 11, ... , ln are the lincs of book 123, we write 
123 = [1, ... , ln. An AuT-68-line (or line) is a 4-tuplc (f; k; E 1; E2 ) wherc: 

• ris a context, i.e. a finite (possibly empty) list x 1:a1, ... ,xn:an, where the 
XiS are different elements of V and the ais are elements of EU {type}; 

• E 1 can be (only): o The symbol (if k E V); o The symbol PN (if k E C) 
( PN stands for "primitive notion"); o An clement of E (if k E C); 

• k is an clement of VU C; and E2 is an element of EU {type}. 

Remark 2.8 Three sorts of Automath-lines (see Example 2.9): 

(i) (f; k; ; E2 ) with k E V. This is a variable declaration of the variable k 
having type E2 . This does not really add a new statement to the book, 
but these declarations are needed to form contexts. 

(ii) (f; k; PN; E2 ) with k E C. This line introduces a primitive notion: A 
constant k of type E2 . Constant k can act as a primitive notion (e.g., 
introducing the number 0, or the type of natural numbers), or as an 
axiom. The introduction of k is parametri8ed by the context r. For in
stance, when introducing the primitivc notion of "logical conjunction", 
wc do not use a separate primitive notion for each possible conjunction 
and(A, B). Instead, we use one primitive notion and, to which we can add 
two propositions A and Bas parameters when needed to form the proposi
tion and(A, B). Hence, we introduce and in a context r = x:prop, y:prop. 
Givcn propositions A, B we can form the AuT-68-expression and(A, B); 

(iii) (f; k; E 1 ; E 2 ) with k E C and E 1 E E. This line introduces a dcfinition. 
The definiendum k is defined by the definiens E 1 and has type E2 . Defi
nitions are parametrised like primitive notions. They help to clarify the 
book structure, make expression manipulations efficient, and abbrcviate 
long expressions by a name. E.g., 7 names s(s(s(s(s(s(s(o))))))). 

Example 2.9 In Figurc 2 wc give an example of an AUTOMATH-book that 
introduces some elementary notions of propositional logic. We have numbcrcd 
cach line in the example, and use these line numbers for reference in our 

5 Note the unusual order of "function" E 1 and "argument" E2. The advantages of writing 
(E2 )E1 instcad of E 1E2 are cxtensively discussed in [21]. 
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0 prop PN type (1) 

0 x prop (2) 

x y prop (3) 

x,y and P:\ prop (4) 

x proof PN type (5) 

x,y px proof(x) (6) 

x,y,px PY proof(y) (7) 

x,y,px,py and-I PN proof(and) (8) 

x,y pxy proof(and) (9) 

x,y,pxy and-01 PN proof(x) (10) 

x,y,pxy and-02 PN proof(y) (11) 

x prx proof(x) (12) 

x,prx and-R and-I(x,x,prx,prx) proof(and(x,x)) (13) 

x,y,pxy and-S and-I(y,x,and-02,and-01) proof(and(y,x)) (14) 

Fig. 2. Example of an AUTOMATH-book 

comments below. To keep things clear, we have omitted the types of the 
variables in the context. The book consists of three parts: 

• In lines 1-5 we introduce some basic material: 
1. The type prop (of propositions) is a primitive notion. 
2. We declare a variable x of type prop. x will be used in the book; 
3. We define a variable y of type prop within the context x: prop. 
4. Given propositions x and y, we introduce a primitive notion, the conjunc

tion and(x,y) of x and y; 
5. Given a proposition x we introduce the type proof (x) of the proofs of x 

as a primitive notion. 

• In lines 6 11 we show how we can construct proofs of propositions of the 
form and(x, y), and how we can use proofs of such propositions: 

6. Given propositions x and y, we assume that we have a px E V of type 
proof (x). I.e., the variable px represents a proof of x; 

7. We also assume a proof py of y; 
8. Given propositions x and y, and proofs px and py of x and y, we want to 

conclude that and (x, y) holds. This is a natural deduction axiom called 
and-I (and-introduction). and-I(x,y,px,py) is aproofof and(x,y), so 
of type proof (and (x, y)). In line 8, proof (and) is the type of and- I 
instead of proof(and(x,y)). Automath does this to keeps lines short. 

9. To express how we can use a proof of and (x, y), first we introduce a 
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variable pxy that represents an arbitrary proof of and (x, y); 
10. As we want x to hold whenever and(x,y) holds, we introduce an axiom 

and-01 (and-out, first and-elimination). Given propositions x,y and a 
proof pxy of the proposition and (x, y), and-01 (x, y, pxy) is a proof of x; 

11. Similarly, we introduce an axiom and-02 representing a proof of y; 

• We can now derive some elementary theorems: 
12. We want to derive and(x,x) from x. I.e., construct a proof of and(x,x) 

from a proof of x. In line 6, we introduced a variable px for a proof of x 
in the context x,y. As we do not want a second proposition y to occur in 
this theorem, we declare a new proof variable prx, in the context x; 

13. We derive our theorem: The reflexivity of logical conjunction. Given a 
proposition x, and a proof prx of x, we can use the axiom and- I to find 
a proof of and(x ,x): we can use and-I(x ,x ,px ,px) thanks to line 8. We 
give a name to this proof: and-R. If, anywhere in the sequel of the book, E 
is a proposition, and n is a proof of E, we can write and-R(E, n) for a proof 
of and(E, E). This is shorter, and more expressive, than and-I(E, E, n, O); 

14. We show and is symmetric: Whenever and ( x , y) holds, we have and ( y , x) . 
Given propositions x, y and a proof pxy of and (x, y), we can form proofs 
and-01(x,y ,pxy) of x and and-02(x,y ,pxy) of y. We feed these proofs 
"in reverse order" to the axiom and-I: and-I(y ,x,and-02 ,and-01) rep
resents a proof of and(y ,x). The expressions and-02 and and-01 must 
be read as and-02(x,y,pxy) and and-01(x,y,pxy). 

2. 3 Correct books 
Not all books are good books. If (r; k; E 1 ; E 2 ) is a line of a book s:B, the 
expressions E 1 and E 2 (as long as E 1 is not PN or· , and L:2 is not type) must 
be well-defined, i.e. the clements of V U C occurring in them must have been 
established (as variables, primitive notions, or defined constants) in earlier 
parts of s:B. The same holds for the type assignments ;r(O'.i of r. Moreover, if 
E 1 is not PN or -, then E 1 must he of the same type as k, hence E 1 must be 
of type E 2 (within context r). Finally, there should be only one definition of 
any object in a book, so k should not occur in earlier lines. So we need notions 
of correctness and of typing (with respect to a book and/or a context). 

We write s:B; 0 I- oK to indicate that book s:B is correct, and s:B; r I- OK to 
indicate that context r is correct with respect to the (correct) book s:B. 6 We 
write s:B; r I- E 1 : E 2 to indicate that E 1 is a correct expression of type E 2 (or 
simply a correct expression) with respect to s:B and r. We also say E1 : E2 is a 
correct .~tatement with respect to s:B and r. \Ve write 1-AUT-68 if a confusion 
of system arises. The following two interrelated definitions are based on [12]. 

Definition 2.10 (Correct books and contexts) A book s:B and a context 
r are correct if s:B; r I- OK can be derived with the rules below ( = 19ct is given 

6 As the empty context will be correct with respect to any correct book, this does not lead 
to misunderstandings. 
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in Section 2.4. The rules use correct statements of Definition 2.11): 

(axiom) 

(context ext.) 

(book ext.: varl) 

(book ext.: var2) 

(book ext.: pnl) 

(book ext.: pn2) 

(book ext.: defl) 

(book ext.: def2) 

0; 0 f- OK 

;a),~2;ff-0K ~ 1 , (f; :r; 

~,, (f; :r:; ; o:), ~2; f, .T:O: f- OK 

~;ff- OK 

~' (f; :r:; --; type); 0 f- OK 

~; r I- E2 : type 

~' (f; :r:; -- ; E2); 0 I- OK 

~; f I- OK 

~' (r; k; PN; type); 0 I- OK 

~; f I- E2 : type 

~' (f; k; PN; E2); 0 I- OK 

~; r I- EI : type 

~' (r; k; E 1; type); 0 I- oK 

~; r I- E2 : type ~; r I- El : E; ~; r I- E2 =th! E; 

~, (r; k; E,; E2); 0 1-- oK 

In the (book ext.) rules, we assume x E V and k E C do not occur in ~ or r. 

Definition 2.11 (Correct statements) A statement~; f I- E : 0 is correct 
if it can be derived with the rules below (the start rule uses the notions of 
correct context and correct book as given in Definition 2.10). 

(start) 

(parameters) 

(abstr.1) 

(abstr.2) 

(application) 

(conversion) 

~; f 1, :r::o:, f2 f- OK 

~; r 1, :r:a, f 2 I- :r::a 

~ = ~1,(x 1 :n1, ... ,:rn:an;b;O,;D2),~2 

~; f I- Ei:ai[x1, ... , :ri-l :=E1, ... , Ei-1](i = 1, ... , n) 

~; f I- b(E1, ... , L:n): 02[:r1, ... , :Tn:=L:1, ... , En] 

~; r I- E 1:type ~; f,x:E 1 I- 0 1:type 

~; r 1-- [.T:E1]01 : type 

~; r I- El :type ~; r, :J::E1 I- 01 :type ~; f, x:E1 I- E2:0 1 

~; r I- [:r::Ei]E2 : [:r:E,]01 

~; r I- E, : [:r::Oi]02 ~; r I- E2 : 01 

~; f I- (E2)E1 : 02[x:=E2] 

~; r 1-- E: o, 

vVhen using the parameter rule, we assume that ~; r I- oK, even if n = 0. 

Lemma 2.12 The book of Example 2.9 (.<;ee Figure 2} is correct. 
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2.4 Definitional equality 
We need to describe the notion =ed ("definitional equality"). This notion 
is based on both the definition and the abstraction/ application mechanisms 
of AuT-68. The abstraction/ application mechanism provides the well-known 
notion of (J-equality, originating from (E)[x:~h]n 1 -+e ni[x:=E]. We need to 
describe the definition mechanism of Am-68 via the notion of d-equality. 7 

Definition 2.13 (d-equality) Let 123; r f- E : E'. We define the d-norrnal 
form nfd (E) of E with respect to 123 by induction on the length of 123. Assume 
nfd (E) has been defined for all 123' with less lines than 123 and all correct E 
with respect to 123' and a context r. By induction on the structure of E: 

• If E is a variable :r, then nfd (E) ~ x; 

• Now assume E = b(n 1, ••• , nn), and assume that the normal forms of the 
nis have already been defined. Determine a line (.6.; b; 3 1 ; 3 2) in the book 
123 (there is exactly one such line, and it is determined by b). Write .6. = 
x1:0:1, ... , :rn:o:w Distinguish: 
o 3 1 = -. This case doesn't occur, as b EC; 

o 3 1 = PN. Then define nfd(E) ~ b(nf<l(n1), ... , nf<l(On)); 
o 3 1 is an expression. Then 3 1 is correct with respect to a book 123' that 

contains less lines than 123 (123' doesn't contain the line (.6.; b; 3 1; 3 2), and 
all lines of 123' are lines of 123), and we can assume nfd (31) has already been 

defined. Now define nfd(E) ~ nfd(31)[x1, ... , xn:=nfd(n1), ... , nfd(nn)J; 

• If E = [x:ni]n2 then nfd(E) ~r [x:nfd(n1)]nfd(n2); 

• If E = (n2)n1 then nfd(E) ~ (nfd(n2))nfd(n1). 

Write E 1 =c1 E2 if nfc1(E 1) = nfc1(E2) 8 and =ed for the smallest equivalence 
relation containing =e and =d· 

Definition 2.14 E 1 and E2 are called definitionally equal (with respect to a 
book 123) if E1 =ed E2. 

Instead of Definition 2.13, d-equality can be given via a reduction relation. 

Definition 2.15 (o-reduction) Let 123 be a book, r a correct context with 
respect to 123, and E a correct expression with respect to 123; r. We define 
E ---+., n by the usual compatibility rules, and 

7 This definition depends on the definition of derivability f- which in turn depends on the 
definition of =et1· The definitions of correct hook, correct line, correct context, correct 
expression and =3<1 should be given within one definition, using induction on the length of 
the book. This would lead to a correct but very long definition, and that is the reason why 
the definitions are split into smaller parts (in this paper as well as in [12]). 
8 Note that the d-normal form nfd (:E) of a correct expression :E depends on the book !.B, 
and to he completely correct we should write nL1'B (:E) instead of nf.c1 (:E). We will, however, 
omit the subscript 'B as long as no confusion arises. 
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(6) If E = b(E1, ... ,En), and 123 contains a line (:r1:0:1, ... ,:z:n:an;b;:=:1;:=:2) 
where :::'.1 E £,then E -+0 :=:1 [xi, ... , Xn:=E1, ... , En]· 

\Ve say that E is in 6-normal form if for no expression n, E -+8 n, and 
define --*8, --*t and =8 as usual. -+8 depends on 123, but as before, we drop 
123 if no confusion occurs. The relations =d and = 8 are the same: 

Lemma 2.16 1• (Church-Rosser) If A1 = 8 A 2 then there is B .such that 
Ai -+<> B and A2 -+0 B. 2• nfd(E) is the unique 8-normal form of E. 
:l• E =,, n if and only if E =d n. 4• -+8 is .strongly normalising. 

Definition 2 .17 • A book Q3 is part of a book 123', denoted as Q3 ~ 123', if all 
lines of 123 are lines of 123'. 

• A context r is part of a context f', notation r ~ f', if all declarations x:a 
of r are declarations in r'. 

Lemma 2.18 (Weakening) If 113; r f- E : n, Q3 ~ 123', r ~ f' and 113'; f' f
oK then 113'; r' f- E: n. 

3 From Alrr-68 towards a PTS >.68 

To describe AuT-68 as a PTS ,\68, we translate AuT-68-expressions to ,\-terms: 

Definition 3.1 Recall that '][' and V are the set of terms and variables for 
PTSs. We define a mapping [ ... ] from the correct expressions in E (relative 
to a book Q3 and a context r) to ']['. We assume that C U V ~ V. 

_def def - - --def-- --def 
• x = x for x E V; • b(E1, ... , En) = bE1 ···En; • (O)E = E O; •type = *; 

[ l 
def - - . . def - -

• .r:E n = II:z::E.O if [x:E]n has type type, otherwise [:r:E]O = ,\x:E.O; 

\Vith this translation in mind, we want to find a type system ,\68 that 
"suits" AuT68, i.e. if E is a correct expression of type n with respect to a 
book Q3 and a context r, then we want 123', r' f- E : n to be derivable in 
,\68, and vice versa. Herc, 123' and r' are some suitable translations of Q3 and 
r. The search for a suitable ,\68 will focus on three points: II-formation and 
parameter types; constants and variables; and definitions. 

8.1 The choice of the II-formation rules and the parameter types ,:r:A.B 
As type = *, Definition 2.11 clarifies which II-rules are implied by the ab
straction mechanism of AuT-68: 

Th 1 
123; r f- E 1 :type 123; r, x:E 1 f- 0 1 :type 

e ru e ----------------
123; r f- [x:Ei]01 : type 

123, r f- E 1: * 123, f, x:~ f- !:11:* 
translates into the PTSs II-rule(*,*,*)--------------

123, r r- (IIx:E1 .n1) : * 
It is, however, not immediately clear which II-rules are induced by the 

parameter mechanism of A1J'l'-68. Let E = b(E1, ... , En) be a correct ex-
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pression of type n with respect to a book ~ and a context r. By Defi
nition 2.10 there is a line (x 1:o1, ... ,.Tn:on;b;:='.t;:='.2) in~ such that each 
Ei is a correct expression with respect to ~ and r, and has a type that 
is definitionally equal to ai[x 1 , ... ,Xi-J:=E 1, ... ,Ei-l]· We also know that 
n =.ad :='.2[Xt, ... 'Xn:=Et, ... Enl· Now E = bE1 ... En, and, assuming that 
we can derive in ,\68 that Ei has type oi[x 1 , ... ,xi_ 1:=Et, ... , Ei_i], it is not 
unreasonable to assign the type Ilx1 :QI··· Ilxn:ontob.:='.2. We will abbrevi
ate this last term by rr~=I Xi:Oi.:=:2. Then WC can derive (using n times the 
application rule that WC will introduce for >.68) that E has type n in ,\68. 

It is important to notice that the type of b, rr~=l '.E(Oi.:='.2, does not neces
sarily have an equivalent in AuT-68, as in AuT-68 abstractions over type arc 
not allowed (only abstractions over expressions E that have type as type are 
possible -- cf. Definition 2.11). In other words, the type of b, f1~= 1 :i:i:oi.2:2 , is 
not necessarily a first-class citizen of AuT-68 and should therefore have special 
treatment in >.68. This is the reason to create a special sort 6, in which these 
types of AuT-68 constants and definitions are stored. This idea originates from 
van Bent.hem Jutting and was firstly presented in [1]. 

If we construct Ib;n:on-2:2 from 2:2, we must use a rule (s1, s2, s3), where 
St, s2, s3 are sorts. Sort St must be the type of On· As On - type or On 
has type type, we must allow the possibilities s 1 = * and St = D. Similarly, 
2:2 = type or 2:2 has type type, so we also allow s2 = * and s2 = D. As we 
intended to store the new type in sort 6, we take s 3 = 6. 
For similar reasons, we introduce rules (*, 6, 6) and (D, 6, 6) to construct 
f1~= 1 :ri:oi.:='.2 from Ilxn:on-2:2 for n > 1. Hence, we have the II-rules: 
( *, *, * ); ( *, *, 6); (D, *, 6); ( *, D, 6); (D, D, 6); ( *, 6, 6); (D, 6, 6). 

We do not have rules of the form (6, s2 , s3 ) or (s1 , 6, s3 ) with s3 = * or 
s3 = D. So types of sort 6 cannot be used to construct types of other sorts. 
In this way, we can keep the types of the >.-calculus part of AuT-68 separated 
from the types of the parameter mechanism: The last ones arc stored in 6. 

In Example 5.2.4.8 of [1], there is no rule (*, *, 6). In principle, this rule 
is superfluous, as each application of rule (*, *, 6) can be replaced by an 
application of rule ( *, *, *). Nevertheless we maintain this rule as: 

• The presence of both ( *, *, *) and ( *, *, 6) in the system stresses the fact 
that AuT-68 has two type mechanisms: One provided by the parameter 
mechanism and one by the .A-abstraction mechanism; 

• There are technical arguments to make a distinction between types formed 
by the abstraction mechanism and types that appear via the parameter 
mechanism. In this paper, we denote product types constructed by the 
abstraction mechanism in the usual way (so: Ilx:A.B), whilst we will use 
the notation ,x:A.B for a type constructed by the parameter mechanism. 
Hence, we have for the constant b above that b : ,7=1 xi:oi.2:2 9 . As an 
additional advantage, the resulting system will maintain Unicity of Types. 

9 we use~;~, x;:a;.:=:2 as an abbreviation for ~x, :a1 · · · ~x11 :a 11 .:=:2 
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This would have been lost if we use rules (*, *, *) and (*, *, 6) without 
making this difference, as we can then by these rules derive both: 

o::* f-- o: * o::*, x:o: f-- o::* (:X:* f-- o:: * o::*, :r:o f-- o:* 
~~~~~~~~~~~~ and ~~~~~~~~~~~-

o:: * f-- (Ilx: o:.o) : * o::* f-- (Il:r:o:.o:) : 6 

3.2 The different treatment of constant.s and variables 

vVhen we seek to translate the AuT-68 judgement l_B; f f-- 2: : 0 in .A.68, we 
must pay attention to the translation of lB, as there is no equivalent of books 
in PTSs. Our solution is to store the information on identifiers of l23 in a PTS
context. Therefore, contexts of .A.68 will have the form ~; r. The left part ~ 
contains type information on primitive notions and definitions, and can be 
seen as the translation of the information on primitive notions and definitions 
in lB. The right part r has the usual type information on variables. 

The idea to store the constant information of l23 in the left part of the 
context arises naturally. Let l23 be a correct AuT-68 book, to which we add a 
line (f; b; PN; :=2). Then r = x1:o:1, ... , xn:O:n is a correct context with respect 
to lB, and lB; r f-- :=2:type or 3 2 = type. In .A.68 we can work as follows. 
Assume the information on constants in l23 has been translated into the left 
part ~ of a .A.68 context. We have (assuming that .A.68 is a type system that 
behaves like J\UT-68, and Writing f for the translation X1 :0:1, ... , Xn:O:n off): 
~;ff-- 32:s (s = * if lB; f f-- 32:type; s =:= D if 32 =:= type). Applying the 
,_formation rule n times, we obtain ~; 0 f-- , r.32 : 6 (If r is the empty 
context, then , f.32 =:= 32, and 32 has type * or D instead of 6. We write 
,r for ,7= 1 xi:o:i)· As ,f.32 is exactly the type that we want to give to b 
(see the discussion in Subsection 3.1), we use this statement as premise for 
the start rule that introduces b. As the right part r of the original context 
has disappeared when we applied the ,-formation rules, b:, r.:::2 is automat
ically placed at the righthand end of ~: The conclusion of the start rule is 
~' b: ,f.32 f-- b: ,f.32. Adding b: ,f.32 at the end of~ can be compared 
with adding the line (f; b; PN; 3 2) at the end of lB. 

b 1 
~; r f-- 32:s1 ~; f-- , r.32:s2 

This process can be captured y ru c: 
~, b:, r.22; f-- b:, r.22 

Here s1 E {*,D} (compare: 3 2:type or 3 2 _type) and s2 E {*,D,6} 
(usually, s2 = 6; the cases 8 2 = *, D only occur if r is empty). 

3.3 The definition system and the translation using § 

A line (x 1 :o:1 , ... ,xn:o11 ; b;:=1 ; :=2 ), in which bis a constant and :=1 E £, repre
sents the definition: "For all expressions 0 1, ... , On (obeying some type con
ditions), b(01, ... ,011 ) abbreviates 3i[x 1, ... ,:r11 :=01, ... ,011 ], and has type 
32[.r, 1, ... ,:r11 :=0 1, ••• , On]." So in .A.68, the context should have bX1 • • ·Xn "is 
equal to" 31 [x1, ... , :x:n: =X 1, ... , Xn], for all terms X 1, ... , Xn- This can be 
done by writing b:= (.A.~~ 1 :r(oi.31): (,7=1 xi:o:i.32) in the context instead of 
only b: ,7= 1 :ri:o:i.32, and adding a 8-reduction rule which unfolds the definition 
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of b: ~ f-- b --+.5 .A?=I xi:O'.i.:::'.1 whenever b:= (.A?= 1 Xi:ai·~: (,~1= 1 X(O'.i.:='.2) E 
~- Unfolding the definition of bin a term bE1 ···En and applying /)-reduction 
n times gives :::'.1 [x1 :=Ei] · · · [xn:=En]· In AuT-68 10 , this corresponds to 
~ f-- b(E1, ... , En) --7,5 :::'.1[:r1, ... ,Xn:=E1, ... , En]· 

This method, however, has disadvantages: 

• In the AuT-68 line (x1:n1, ... , Xn:an; b; :::'.1; :::'.2), b(E1, ... , En) has bE1 ···En 
as its equivalent in ,\68. If n > 0, the latter ,\68-term has B :::::::: bE 1 • • ·Em 
as a subterm for any m < n. But B has no equivalent in AuT-68: Only after 
B is applied to suitable terms Em+J, ... , En the result BEm+l ···En has 
b(E 1 , ••• , En) as its equivalent in AuT-68. Hence B must not be seen as a 
term directly translatable into AuTOMATH, but only as an intermediate result 
necessary to construct the equivalent of b(E 1, ... , En)· Bis recognisable as 
an intermediate result via its type ,?=m+l xi:ai.:::'.2 , of sort !:::,. (not * or D). 

The method above allows to unfold the definition of b in B, because 
bE1 ···Em can reduce to (.A:1=1 xi:ai.:::'.1) E 1 ···Em, and we can ,8-reduce this 
term m times to (.A?=m+l xi:ai.:=:1) [xf=Ej]J=l · In AuT-68 such unfolding is 
not possible before all n arguments E 1, ... , En are applied to b, so only when 
the construction of the equivalent of b(E1, ... , En) has been completed; 

• .A?=1 X(ai.:='. 1 does not necessarily have an equivalent in AuT-68. Consider 
for instance the constant bin the line (a:type; b; [x:a]x; [x:a]a). In this case, 
,\~1= 1 X(O'i.:='. 1 :::::::: ,\n:*.,\:r:a.x. Its equivalent in AuT-68 is [n:type][.r:a]x, but 
an abstraction [a:type] cannot be made in AuT-68. 11 This is the reason why 
we do not incorporate .A?=1 X(O'.i.:='. 1 as a citizen of ,\68. 

Hence we choose another translation. The line (x1 :a1, ... , Xn:an; b; :::'.1; :::'.2), 
where :::'.1 E £, is translated by taking b:= (§?=1 xi:ai.:=:1) : (,?=1 X(ai.:=:2) 

instead of b:= (.A?=1 X(ai.:=:1) : (,~~ 1 xi:ai.:::'.2 ) in the left part of the context. 
A reduction rule bX1 ···Xn --+6 :::'.i[x1, ... ,:rn:=X1, ... ,Xn] is added for all 
terms X 1, ... , Xn. We use §instead of,\ to emphasise that, though both §x:A 
and ,\x:A are abstractions, they are not the same kind of abstraction. 

4 --\68 

Here, we give ,\68, show that it has the desirable properties of PTSs and that 
it is the PTS version of AuT-68. 

Definition 4.1 (,\68) 

(i) Terms of ,\68 are given by T ::= V I C I S I TT I .AV:T.T I §V:T.T I 
IIV:T.T I ,V:TT, where Sis the set of sorts{*, D, 6}. Free variables 

10 We can assume that the X; do not occur in the :Ej, so the simultaneous substitution 
:=:1 [x1, ... , X11 :=:E1, ... , :E11] is equal to :=:1 [x1 :=:Ei] · · · [xn :=:E,,]. 
11 Compare with the situation of Section 3.1, where we found that the type of b is not 
necessarily a first-da...<Js citizen of AUT-68. There, we could not avoid that the type of b 
became a citizen of -\68 (though we made it second-class by storing it in the sort 6). 

14 
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Fv(T) and "free" constants Fc(T) of term T are defined as usual; 

(ii) We define the notion of context inductively: 
• 0; 0 is a context; DOM (0; 0) = 0; 
• If~; r is a context, x E V, x does not occur in ~; r and A E T, then 
~; r, x:A is a context (:r is a newly introduced variable); DOM(~; r) = 

DOM(~; f) LJ {.r }; 

• If ~; r is a context, b E C, b docs not occur in ~; r and A E T 
then ~' b:A; r is a context (in this case b is a primitive constant; 
DOM(~, b:A; f) =DOM(~; r) U {b }; 

• If~; r is a context, b EC, b docs not occur in~; r, A E 7, and TE T, 
then ~' b:=T:A; r is a context (in this case b is a defined constant; 
DOM(~, b:=T:A; r) =DOM(~; r) u {b}. 

PRIMCONS (~; r) = {b EDOM(~; r) Ibis a primitive constant}; Fv(~; r) = 

DOM(; r) and DEFCONS (~; r) = {b EDOM(~; r) I 1> is a defined constant}. 

(iii) We define 8-reduction on terms. Let ~ be the left part of a context. 
If (b:= (§;'=1 xi:A.T): (,~'= 1 x;:Ai.B)) E ~' and B is not ,y:B1 .B2 , then 
~ f-- bX1 · · ·Xn -+8 T[x1, ... ,x11 :=X1, ... , Xn] for all X1, ... Xn ET. 

We also have the usual compatibility rules on 8-reduction. We use 
notations like ---* 8 , ---* t, = 8 as usual. If no confusion about which ~ 
occurs, we simply write bX1 • • • X 11 -+., T[.r, 1, ••• , :1;11 :=X1, .•. , X 11]; 

(iv) We use the usual notion of ,8-rcduction; 

(v) Judgements in >.68 have the form ~; r f-- A : B, where ~; r is a context 
and A and B are terms. If a judgement ~; r f-- A : B is derivable 
according to the rules below, then ~; r is a legal context and A and B 
are legal terms. \Ve write ~; r f-- A : B : C if both ~; r f-- A : B and 
~; r f-- B : C are derivable in >.68. The rules for >.68 are given in Figure v 
(v, pc, and de are shorthand for variable, primitive constant, and defined 
constant, resp.). The newly introduced variables in the Start-rules and 
\Veakening-rulcs arc assumed to be fresh. Moreover, when introducing a 
variable x with a "pc" -rule or a "de" -rule, we assume x E C, and when 
introducing x via a "v" -rule, we assume x E V. We write ~; r f-->.68 A : B 
instead of ~; r f-- A : B if the latter gives rise to confusion. 

Notice the lack of rule (§) as we do not want that terms of the form§ x:A.B 
be first-class citizens of >.68: they do not have an equivalent in AuTOMATH. 

Example 4.2 The translation of Example 2.9 into >.68 is given in Figure 4. 12 

\Ve sec that all variable declarations of the original book have disappeared in 
the translation. In the original book, they do not add any new knowledge but 
are only used to construct contexts. In our translation, this happens in the 
right part of the context, instead of the left part. 

12 Because of the habit in computer science to use more than one digit for a variable, we~ 
have to write additional brackets around subtcrrns like proof to keep things unambiguous. 
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; f- *: D 

~; r f- A: 8 

~; f,x:A f- .T: A 
~; r f- B : 81 ~; f- , r.B : 82 

~,b:,f.B;f- b: ,f.B 

~; r f- T: B: 81 ~; f-, r.B: s2 

~, b:=(§ r.T):(, r.B); f- b:, r.B 

~; r f- A1: N ~; r f- A: 8 

~;f,.T:Af-M: N 

8 = *,D 

8 1 = *,D 

s = *, D 

(Weak: pc) 
~; f- ,U: N ~; r f- B: 81 ~; f-, r.B: s2 

S1 = *, D 
~, b:, f.B; f- 1\1 : N 

( 
k ) ~; f- 1\1 : N ~; r f- T: B: 81 ~; f-, r.B: 82 

Wea : de ~' b:=(§ f.T):(, f.B); f- 1\1: N 81 = *, D 

(II - form) 
~; r f- A:* ~; r, x:A f- B: * 

~; r f- (IIx:A.B) : * 
~; r f- A: 81 ~; r, x:A f- B: S2 

~; r f- (,x:A.B) : 6 

~; r f- Ilx:A.B: * ~; f,x:A f- F: B 
~; r f- (Ax:A.F) : (IIx:A.B) 

~; r f- M: Ilx:A.B ~; r f- N: A 

~; r f- MN : B[:i::=N] 

~; r f- _M: ,x:A.B ~; r f- N: A 

~; r f- Jvf N : B[x:=N] 

(Conv) 
~; r f- 1\1 : A ~; r f- B : s ~ f- A =136 B 

~;ff- M: B 

Fig. 3. Rules of >.68 

Lemma 4.3 (Free Variable Lemma) 

S1 = *, D 

For~; r f- M: N, ~ = b1 :B1' ... 'bm:Bm and r = :i:1:A1, ... 'Xn:An l:l: 

• The bi, ... , b111 E C and X1, ... , :r:11 E V are all distinct; 

• Fc(l\1),Fc(N) ~ {b1 1 ••• ,bm}; Fv(l\1),Fv(N) ~ {x1 1 ••• ,x11 }; 

• b1:B1, ... ,bi-1:Bi-1;f-B(sifor8i E {*,D,6}; and~;x1:A1, ... ,:rj-1:Aj-1 f
Ai:ti for ti E {*, D}. 

Lemma 4.4 • (Start) Let~; r be a legal context. Then~; ff- * : D, and 
if b:A E ~; r, or c:=T:A E ~' then~; ff- c: A . 

• (Definition) Let ~11 b:= (§~'=] :r:(Ai.T): (,~'=1 Xi:Ai.B) '~2; r f- Jvf : N, 
where B-=/=- ,y:B1.B2. Then ~1; :r:1:A1, ... ,x11 :A11 f-T: B: s for s E {*, D}. 

i:i In .6., also expressions b;:=T;:B; may occur, but for uniformity we leave out the :=T;-paxt. 
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,x:prop.,y:prop.prop, 

,x:prop.*, 

,x:prop. ,y:prop. ,px:(proof )x. ,py:(proof )y .(proof)( ( and)xy), 

, x:prop. ,y:prop. ,pxy:(proof) ( ( and)xy) .(proof )x, 

, x:prop. ,y:prop. ,pxy:(proof) ( (and )xy) .(proof )y, 

§x:prop.§prx :(proof)x.(and-I)xx(prx)(prx): 

,x:prop. ,prx:(proof )x.(proof) ( ( and)xx), 

§x:prop.§y:prop.§pxy:(proof )( ( and)xy). 

(and- I)yx( ( and-02)xy(pxy)) ( ( and-01 )xy(pxy)) 

:,x:prop.,y:prop.,pxy:(proof )( ( and)xy).(proof) ( (and)yx) 

Fig. 4. Tuanslation of Example 2.9 

Definition 4.5 We define: .6.1; r 1 f- .6.2; r 2 if and only if 
•If b:A E .6.2; f2 then .6.,; f 1 f- b:A; •If b:=T:A E .6.2 then .6.1; r, f- b:A; 
• If b:=(§7= 1 :r;i : A;.U):B E .6.2 and U "¥=- § y:B.A' then .6.1 f- b:r1 · · · Xn =fJli U. 

Lemma 4.6 • (Transitivity) Assume .6.1; f 1 f- .6.2; f 2 and .6.2; f 2 f- B: C. 
Then .6.1 ; r 1 f- B : C. 

• (Substitution) If .6.;f1,:r:A,f2 f- B: C and .6.;f1 f- D: A then 
.6.; f 1, f 2[x:=D] f- B[x:=D] : C[:r::=D]. 

• (Thinning) Let .6.1; f 1 be a legal context, and let .6.2; f2 be a legal context 
such that .6.1 ~ .6.2 and f 1 ~ f 2. Then .6.1; f 1 f- A: B =? .6.2; f 2 f- A: B. 

Lemma 4. 7 (Generation Lemma) 
• If x E V and .6.; r f- x:C then :ls E { *, D} and B =r11i C such that 

.6.;f f-B: s andx:B E f; 

• If b E C and .6.; r f- b:C then :ls E S and B =fJli C such that .6.; r f- B : s, 
and either b:B E .6. or 3T such that b:=T:B E .6.; 

• Ifs E S and .6.; r f- s:C thens= * and C =fJo D; 

• If .6.; r f- Jiil N : C then 3A, B such that .6.; r f- Jiil : (Ilr:A.B) or 
.6.; r f- A1: (,x:A.B), and .6.; r f- N:A and C =fJo B[x:=N]; 

• If .6.; r f- (Ax:A.b) : C then 3B such that 
.6.; r f- (Il:r:A.B): *, .6.; r,x:A f- h: Band C =f31i ILr:A.B; 

• If .6.; r f- (ITx:A.B) : C then C =fJo *, .6.; r f- A:* and .6.; r, x:A f- B:*; 

• If .6.: f f- (,x:A.B) : C then C =r1li 6, .6.; r f- A:s1 for s, E { *, D}, and 
.6.; f, :.r::A f- B:s2 for s2 E { *, D, 6}. 

Lemma 4.8 • (Unicity of Types) If .6.; r f- A: B 1 and .6.; r f- A: B 2 then 

B, =r10 B2. 

• (Correctness of Types) If .6.; r f- A : B then there is s E S such that 
B = s or .6.; r f- B : s. 

17 
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• If .6.; r I- A: (Ih::B1 .B2) then .6.; r I- B 1 : *; and .6.; r, x:B1 I- B 2 : *· 

• If .6.; r I- A : (,.r:B1 .B2) then .6.; f I- Bi : si for si E { *, D}; 
and .6.; r, x:B1 I- B2:s2 for some s2. 

In order to show some properties of the reduction relations -+f3, -+8 and 
-+/J8 and as 6-rcduction also depends on books, we first have to give a trans
lation of AuT-68 books and AuT-contexts to .A68-contexts: 

Definition 4.9 • Let r be a AuT-68-cont.cxt. '.E1:o:i, ... ,xn:O'.n. Then r (~ 

• Let IB be a book. We define the left part IB of a cont.ext in .A68: 
- def def- - -

• 0 = 0; • IB, (r; b; rN; n) = IB, b:, r.n; 
def - def - - - - -

• IB, (r; x; --; n) = IB; • IB, (r; b; E; n) = IB, b:= § r.E:, r.n. 

Lemma 4.10 Assume, E is a correct expression with respect to a book IB. 
• 1. E -+/3 E' if and only if E -+13 E'; 
• 2. IB l--Aur-68 E -+8 E' if and only if!B l-->.68 E-+8 E'. 

Theorem 4.11 (Church-Rosser for -+13.,) Let .6. be the left part of a context 
in which fl.1 is typable. If .6. I- fl.1 ---'»-/36 Ni and .6. I- fl.1 ---'»-/36 N 2 then there is 
P such that .6. I- Ni ---'»-/38 P and .6. I- N2 --+>- /36 P. 

Lemma 4.12 (Subject Reduction) Let .6.; r I- A: B. 
1. If A -+13 A' then .6.; r I- A': B. 2. A -+6 A' then .6.; r I- A' : B. :J. If 
A --+>- 13,, A' then .6.; r I- A' : B. 

Lemma 4.13 Assumes ES and fl.1 legal. Then (.6.1-- M =/36 s)::::} A1 _ s. 

Theorem 4.14 (Strong Normalisation) .A68 is {36-strongly normalising. 

The next two theorems formally relate AuT-68 and .A68. 

Theorem 4.15 Let IB be an AuToMATB book and r an AuTOMATH context . 
• If IB; r I- A UT-68 OK then IB; r is legal; 
• If!B;f l--Aur- 68 E: 0 then IB;f l->.68 E: 0. 

Theorem 4.16 Let .6.; r 1-,\68 M : N. There is an AUTOMATH book IB and an 
AUTOMATH context r' .mch that IB; r' I-AUT-68 OK, and IB, f' = .6.; r. Also, 

(i) If N = D then M := *; 

(ii) If .6.; r I->.68 N : D then N = * and there is n E E such that n := ,\1 and 

IB; r' I-AUT-68 n: type; 

(iii) If N = 6. then there is r" = .Ti:E1, ... 'Xn:En, n EE u {type} with: 
• f', r" is correct with respect to IB; • !11 = , f".0; • n = type or 
IB; f' I- AUT-68 0: type; 

(iv) If .6.; r l->.68 N : 6. then there are b E C and E1, ... , En E E such that fl.1 = 
bEi···En- Moreover, IB contains a line (.r,1:n1 1 ••• ,:I:rn:nm;b;:=:i;:=:2) 
such that:• N::::::: (,:~n+I .r(Oi.:=:2) [xi, ... ,xn:=Ei, ... , En];• rn > n; • 
IB; f' I-AUT-r;s E(rli[x1, ... , .Ti-i:=E1, ... , Ei_i] (1 :Si :Sn}; 
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(v) If N := * then there i.s 0 EE where 0 - ,H and 123; f' I- AUT-68 0: type; 

(vi) If .6.; r l->.68 N : * then there are E, n EE .such that E = lvl and n = N, 
and 123; f' I-AUT-(iB E : 0, and 123; f' I-AUT-68 0: type. 

5 Conclusion 
The system Airr-68 is one of several AuToMATII-systems. Another frequently 
used system is AUT-QE. \Ve shall briefly compare Ain-68 to A1rr-QE and de
scribe how we can easily adapt ,\68 to a system ,\QE. The system AuT-QE has 
many similarities with AuT-68 but differs on the following extensions: 

(i) In AuT-QE we can also form the abstraction expression [:z::E]type (thus 
extending Definition 2.5); 

(ii) Inhabitants of types [x:E]type are introduced in AuT-QE by extend
ing abstraction rules 1 and 2 of Definition 2.11 with the AuT-QE rule: 
123; r 1- E 1 :type 123; r, :r:E1 I- E2:type L.k [ ·" ] ·, 

~ f [ " ]" [ l · 1 e type, X.L.JJ type lS not ty-
:v; I- x:u1 u2 : rE1 type 

pable. In a translation to a PTS, these expressions should get type D; 

(iii) In AuT-QE, there is a new reduction --+QE on expressions, given by the 

rule [x1:Ei] · · · [xn:En][y:O]type --+QE [x1:Ei] · · · [xn:En]type (for n 2: 0). 

The first two rules are straightforward. They correspond to an extension of 
,\--+ to ,\P in PTSs. It is easy to extend ,\68 with similar rules; just add the 

( ) 
.6.; r I- A : * .6.; r, x:A I- B : D 

II-formation rule *, D, D : .6.· I- ( ·AB) . . The third rule , f IIx. . . D 
is unusual. It is needed because AuT-QE does not distinguish ,\s and IIs. In 
AUT-68 this did not matter, as we could always derive whether [x:E]n should 
be interpreted as ,\x:E.n or as IIx:E.n. The latter should have type type, and 
the first should not have type type. Though ,\68 docs not have II-conversion, 
it is easy to extend it to a system ,\II68 following the lines of [18] by: 

. . .6.; r I- M : IIx:A.B .6.; r I- N : A 
• Changmg rule (App 1) mto .6.; r I- MN: (II.r:A.B)N 

• Adding a new reduction rule --+n by (IIx:A.B)N --+ 11 B[x:=N]. 

In this paper we described the most basic AuToMATtt-system, AuT-68, in a PTS 
style. Though an attempt at such a description has been given before in [1, 15], 
we feel our description is more accurate and unlike [1,15], pays attention to 
the definition and parameter systems, which are crucial in AuTOMATII. \Ve 
provided a PTS called ,\68 which we showed to he the system AuT-68 written 
as a PTS. Although ,\68 does not include II-conversion (while AuToMATII does), 
it is easy to adapt ,\68 to include II-conversion following the lines of [18]. 

The adaptation of ,\68 to a system ,\QE, representing the AuTOMATH-system 
AuT-QE is not hard, either: It requires adapting the II-formation rule to 
include not only the rule ( *, *, *) but also ( *, D, D) and the introduction of 
the additional reduction rule of type inclusion. We leave this as a future work. 

There is no doubt that AuToMATH has had an ama11,ing influence in the
orem proving, type theory and logical frameworks. AuTOMATll however, was 
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developed independently from other developments in type theory and uses 
a ,\-calculus and type-theoretical style that is unique to AuTOMATH. \Vriting 
AuTOMATH in the modern style of type theory will enable useful comparisons 
between type systems to take place. There arc still many lessons to learn from 
AuTOMATH and writing it in modern style is a useful step in this direction. 

vVhen comparing ,\68 to other type systems with definitions, we find an 
important difference. In ,\68, the correspondence between types of definicn
dum and definiens differs from that of the systems in [26,18]. AuTOMATH allows 
pararncter.'3 to occur in the definiens, and there is no parameter mechanism in 
the PTSs of [1,26,18] althrough this mechansim exists in [22,19,20]. 
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In this paper we discuss the problem of internalizing the meta-level transformations 
between (representations of) incomplete proofs and terms in a theorem prover based 
on Type Theory. These transformations (usually referred to as tactics) can be 
seen as meta-level functions between terms representing the state of the theorem 
prover. Starting with parameterized variables as representations of unknown terms, 
we propose an extension of the Pure Type Systems (PTSs) with parameterized 
abstractions. We show that such a system can adequately represent instances of 
tactics, i.e. the mapping between a state and the state resulting from it by the 
application of a given tactic. 

We establish the important meta-theoretical properties of the extended system 
such as confluence, subject reduction, normalization, etc. 

1 Introduction 

Ever since the ground-breaking work of de Bruijn on AUTOMATH [5] there 
has been intensive work on mechanical tools to formalize and check mathe
matical theories using Type Theory. In interactive theorem provers based on 
Type Theory one tries to construct interactively a term inhabiting a given 
type. Under the formulas-as-types interpretation, such a term would be an 
encoding of a proof of the proposition encoded by the type. Because of the 
undecidability of the inhabitation problem (for interesting enough systems) 
one has to construct the proof-terms interactively and is hence forced to work 
with partially constructed objects. This raises many questions about the rep
resentation and manipulation of incomplete objects in type theory and logic. 
Most of the research effort in the area of open terms has been dedicated to the 
representation problem while the formalization of manipulations of incomplete 
objects has stayed on the meta-level on the background. 
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The formalization of incomplete terms and proofs allows us to treat un
knowns and incomplete terms containing unknowns as first-class objects and 
therefore to model inside a calculus the incomplete objects that one works 
with in a theorem prover. We are able to represent the states of a theorem 
prover by open terms. The manipulations of the incomplete objects however 
are done on the meta-level. This means that we have no formalization of the 
transition between the states of the prover. It is clear that to give full for
malization of the process of interactive term construction one also needs to 
have representation of the transitions between the states. In many systems 
these transitions arc called tactic8 and they may be of significant complexity. 
Some systems use full-blown programming languages (e.g. ML) as a tactic lan
guage. This is not surprising as tactics often involve pattern matching and/or 
unification, recursion, backtracking, complex decision and search procedures, 
failure handling etc. All this however happens at the meta-level outside the 
object calculus that we work with. In this paper we make a first step to
wards internalizing some meta-level transformations by providing a calculus 
that allows us to represent states as terms and transitions between them as 
functional terms. We do that by extending a calculus of open terms with 
abstractions over unknowns and function types over them. On a more tech
nical side, this means that we start with a representation of unknowns by 
parameterized variables (e.g. x[.6.], where .6. is a list of variable declarations) 
in a Pure Type System (PTS) and allow abstractions over them. This lead 
us to a calculus with parameterized .A-abstractions (e.g. .Ax[.6.]:A.M) and 
CT-abstractions (e.g. Ilx[.6.]:A.M). The resulting calculus is not powerful 
enough to describe arbitrary tactics because it lack essential mechanisms for 
doing that (e.g. unification and recursion), but it is capable of describing tac
tic instances, i.e. mappings between individual states arising from a specific 
applications of tactics. 

The paper is organized as follows: in Section 2 we give a brief description 
of the representation of unknowns by (hereditarily) parameterized variables 
and by means of examples we describe the problems and the solutions that 
we propose to address them. After discussing related work in Section 2.3, we 
introduce our extension of PTSs in Section 3 where we define the syntax, the 
reduction rules and the typing system. \Ve establish some meta-properties of 
the system like confluence, subject reduction and normalization. We conclude 
with a discussion on future work in Section 4. 

2 Motivation and Related Work 

2.1 Repre8enting Unknowns in Open Terms by Parameterized Variables 

Throughout this paper we model unknowns that appear in terms by param
eterized variables that we also call meta-variables. This is of course only one 
of the many possibilities that have been studied (see Section 2.3), but we 
choose this approach because it is well-suited for representing incomplete log-
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ical derivations and terms (see [7,8]). In this section we will briefly point to 
the main issues concerning this representation and introduce notation that we 
will use later. 

Meta-variables stem from the use of higher-order variables to represent 
unknown terms in unification algorithms by Miller [13]. Indeed, a parame
terized variable can be seen as a higher-order function of its arguments. vVe 
need the arguments in order to record substitutions carried out in a term as a 
result of /3-reduction. If we would like to model a function of an argument .1; 

of type A with unknown body, we can introduce a meta-variable h[x:A] with 
a parameter of type A representing the unknown body and the function is 
then given by the term ,\.r,:A.h[:r:]. We can apply this function to arguments 
(>.x:A.h[x])b and even compute the result of the beta-reduction: h[b]. We see 
that the parameters help us 'remember' that the unknown represented by h 
was subject to a substitution. This is very important because we would like 
to be able to instantiate h at any time and always get the same result. So, 
if we instantiate h[.r,:A] by :r: before the beta-reduction we get (>.x:A.x)b that 
reduces to b and if we instantiate it in h[b] we get b again. In other words, 
parameter.s make in.stantiation and reduction commute. 

Commutation of instantiation and reduction is obtained also in the other 
systems of open terms known in the literature, but parameters have an advan
tage when one looks at the logical side of the problem. As discussed in .Jojgov 
[8], in incomplete logical terms and proofs there are two kinds of abstractions 
- one is the object-level abstraction and the other one is the meta-level de
pendency of unknown objects on the variables that occur free in them. These 
dependencies need to be kept separate in order to get a faithful extension of 
the formulas-as-types embedding of logic in type theory to incomplete proofs 
and terms. To illustrate this, consider the following incomplete derivations 
and their translations to type theory judgments where meta-variables arc rep
resented by higher-order function variables: 

[A]i ? 

? ? [A]i A---7 B 
A---7 B B . B . fa : A ---7 B I- fa : A ---7 B 

__ i __ i 

A---7 B A---7 B fb: A ---7 BI- >.x:A. (!bx): A ---7 B 

f,: A ---7 BI- >.x:A. Uc:r:): A ---7 B 
(a) (b) (c) 

The '?'-symbols here represent missing part of the proof with conclusion the 
formula given below and assumptions given above the symbol. \Ve notice sev
eral things: first, looking at the representation of the unknowns in the typing 
judgment we cannot distinguish between the three because they arc all repre
sented by a variable of type A ---7 B. This denies us the opportunity to track 
the progress being made towards solving the unknown. Second, we notice that 
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the derivations (b) and ( c), although very different from a logical viewpoint 
(they have different sets of possible completions to finished derivations), have 
identical translations. We can track the problem down to the identification in 
the typing judgment of the object- and meta-level abstractions present in the 
logical system. 

Parameters help us distinguish between the representations of the two 
levels of abstraction. The meta-dependencies arc recorded as parameters. 
This approach has also the advantage that it avoids the need to extend the 
object-level function space to accommodate the meta-level dependencies. The 
above examples translated to a system where unknowns are represented by 
parameteri,,,ed meta-variables look like this: 

ma [] : A ---+ B I-

mb[x : A] : B I- .Ap:A.rnb[p] : A---+ B 

me[]: A---+ BI- AJ::A.(mc[] x) : A---+ B 

A further discussion on the possible forms of incompleteness in logical 
proofs and terms yields terms containing bound variables whose object-level 
binders have not (yet) been constructed. Such terms occur naturally in the 
setting of forward proof constructions that correspond to the building of a 
proof term from the leaves to the root. We can view such incomplete terms as 
unknown terms that have known subterms. As unknowns are represented by 
meta-variables, the known subterms can be given as arguments to the meta
variables. To account for the binding of the variables in the subterms, we need 
to give meta-level binding power to the meta-variables. Then a typical meta
variable instance looks like this m[(~1)M1 ... (~n)Mn]· Each lvli represents a 
known subterm and the variables declared in ~i are those that arc supposed to 
be bound by the yet unconstructed binders. As discussed in [8], to achieve that 
we need to use hereditarily parameterized meta-variableB, i.e. meta-variables 
whose parameters can be parameteri,,,cd themselves. A logic-ba."led argument 
similar to the examples above can be given (see [8]) as to why we need to use 
parameters instead of object-level abstractions that may even be unavailable in 
the system (e.g. higher-order functions in the framework of first-order logic). 

2.2 Representing States and Tactic Instances as Terms 

In the previous section we introduced the parameterized meta-variables as a 
mechanism to model incomplete terms. The process of stepwise construction 
of a (proof) term can be modelled by a sequence of open terms representing the 
incomplete proof at different stages. Let us take a."l an example the following 
problem: Assume that A is a type and a, b and c are terms of this type. 
Assume that R is a binary relation on A that is transitive and for each x 
R(x, b) holds. As a part of a larger proof we would like to prove R(a, c). \Ve 
can reduce this goal to the goal of proving R(b, c) using the assumptions we 
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have. The initial state of the prover can be depicted as: 
thm (x:A) (R x b) 
tr (x,y,z:A)(R x y)->(R y z)->(R x z) 

=========== 
? (R a c) 

The declarations above the line are the assumptions under which we have to 
prove the goal R( a, c). Let us collect them in the context 6.: 

6. = thrn:Ilx:A.Rxb, tr:Ilx, y, z:A.Rxy--+ Ryz--+ R:rz 

We can represent the unknown proof of the goal by a meta-variable rn with 
parameters 6. and type Rae. Then the initial state of the prover can be 
encoded by the judgment 

rn[6.]:Rac f- >..6..rn[thrn, tr] : Rae 

where >..6..!vl of course means >..thrn: .... >.tr: .... M. At this moment we would 
like to use the transitivity of R by instantiating x and z by a and c. This 
produces three new goals to find an instantiation for y in the transitivity, 
and to prove the premises corresponding to Rxy and Ryz: 

tbm thm 
thm 
tr 

tr 
y? A 

=========== =========== 

tr 
y? A 

=========== 
y? A p? (R a y?) q? (R y? c) 

How do we encode this new state and how is it related to the previous one? \Ve 
introduce a new meta-variable for each new goal and in the place of rn[thrn, tr] 
we have an application of tr: 

y?[6.]:A, 

p?[6.]: (Ray'?[thrn, tr]), 

q?[thrn, tr] : (Ry?[thrn, tr] e), 

f- >..6.. (tr a y'?[thrn, tr] c p?[thrn, tr] q'?[thrn, tr]) : Rae 

Now we would like to use our other assumption, thrn, to solve the second goal. 
At this point a theorem prover would use unification to match Ray? to R :r b 
and find out that in order to apply thrn, x has to be instantiated by a and y? 
has to be b. This results in the following state: 

thm 
tr 

=========== 
r? (R b c) 

And it can be represented by the judgment 

r?[6.]:(Rbc) f->..6..(trabc(thrna)r?[thrn,tr]): Rae 
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This docs not complete the proof, but if we have a look at the two transitions 
between the three states, we notice that there are several steps that we do 
on the meta-level that arc not part of our representation. We introduce new 
meta-variables, we use them to give solutions to (some of) the pre-existing ones 
and we propagate these solutions through the representation of the state. All 
these are the meta-steps we make at each of the two transitions. The question 
anses: 

Can we make these meta-transformations explicit by internalizing them in 
the calculus? 

In this paper we will give affirmative answer to this question by extending 
our system with abstractions over meta-variables as means to internalize the 
dependency of the state on its meta-variables. The corresponding application 
operation would play the role of explicit representation of the instantiation 
of meta-variables. In this system a state can be encapsulated in a term by 
abstracting out all its meta-variables. The transformation steps then become 
functions that expect terms of appropriate types matching the types of the 
state terms and can also be encoded by .A-terms. 

As an illustration, using the abstractions and applications that we will in
troduce in Section 3, the first state can be encoded by -Am[~]:Rac.A~.m[thm, tr] 
and its type is ITm[~]:Rac.IT~.Rac. The transformation step leading to the 
second state can be given by: 

.AS: (Ilm[~]:Rac.Il~.Rac). 

-A:1J?[~]:A . 

.Ap?[~] : (Ra y?[thm, tr]) . 

.Aq?[~] : (Ry?[thm, tr] c). 

(S -(.6.) (tr a y?[thm, tr] c p?[thm, tr], q?[thm, tr])) 

If we apply this transformation term to the state term and normalize, we get 
the term 

.Ay?[~]:A. 

.Ap?[~]: (Ray?[thm, tr]) . 

.Aq?[~]: (Ry?[thm, tr] c). 

A~.(tr a y?[thm, tr] cp?[thm, tr] q?[thm, tr]) 

which is exactly the encoding of the second state. 

2.8 Related Work 

The work in this paper builds on several ideas already present in the field 
of open terms. The representation of holes by higher-order functions used 
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in Miller's work [13] on unification is in the basis of our approach to the 
unknowns, but we use it in a modified form because of the need to separate 
object- and meta-level level abstractions (see [8] for a discussion on this). 
This idea has been employed previously in Luo's PAL+ logical framework [10] 
to avoid extending the object-level function space in order to accommodate 
meta-level functions. The handling of the scopes in open terms can be done in 
different ways, ALF [11] and Munoz [14] employ explicit substitutions similarly 
to St.reeker's Typelab [16]. The use of parameters makes explicit the idea that 
is implicit in Typelab's handling of meta-variables where Strecker has noticed 
that it suffices to use explicit substitutions attached to meta-variables only. 
The idea to represent states as terms is introduced in the thesis of McBride 
[12] \vhere he presents the OLEG framework of open terms. He uses binders 
for meta-variables to represent states, but it differs from our approach in 
several aspects. First, the meta-variables that we consider arc parameterized. 
Instead, in OLEG the position of the binder is used to specify the context in 
which the meta-variable should be solved. Second, in our system the binders 
for meta-variables occurring in a term have a corresponding binder in the type. 
This means that the type of a term with a meta-variable binder may depend 
on the meta-variable. This allows us to make functions that expect terms with 
meta-variables as arguments. The corresponding application operation allows 
such a function to explicitly instantiate meta-variables in its arguments. 

Another system that is closely related to our presentation is the .X[]-cube 
of Bognar [4]. In that system we have separate binders both for object-level 
and meta-level binders, and both of them have a corresponding binder on the 
type level. Our system differs from the .X[]-cube in that it allows hereditarily 
parameterized variables to be constructed and abstracted over, while in the 
cube the parameters cannot be parameterized themselves. In that sense our 
system extends the systems of the .X[]-cubc. 

The present work is a continuation of the previous discussions of open 
terms and proofs in higher-order logic by Geuvcrs and Jojgov [7,8] where the 
problem of extending the formulas-as-types embedding to incomplete proofs 
and terms has been discussed. There we internalized the notion of unknown in 
the calculus, in this paper we extend this formalization to the transformations 
of open terms. 

We make heavy use of the parameter mechanism of Bloo, Kamareddine, 
Laan and Nederpelt [3] who extend earlier work of Poll and Severi [15]. 
vVe extend that work by introducing the more general notion of hereditary 
parametrilmtion. The author believes that an extension of the CPDPPTSs 
described in that work to PTS with hereditarily parametrization and param
eterized variables that results in PTS with hereditarily parameterized vari
ables, constants and definitions (V"ChD"PTSs) could be useful for modelling 
of many practical applications. Such an extension would be forthcoming in 
the author's thesis. 

7 



.JO.JGOV 

3 Pure Type Systems with Hereditarily Parameterized 
Variables 

In this section we will present an extension of the Pure Type Systems (PTSs) 
introduced by Berardi [2] and Terlouw [18] as a generalization of the systems 
of Barendregt's .A-cube (see [1]). \Ve assume that the reader is acquainted 
with the background facts about PTSs (see for example [1,6]). 

vVe extend the standard definition of a PTS by adding parametrilmtion 
to the .A- and II-abstractions. A parameterized .A-abstraction .Am[6.]:A.1\1 
represents a term that has abstracted out the meta-variable m[6.] that poten
tially occurs in M. Such a term would have a parameterized II-abstraction 
as a type: IIm[6.]:A.B. As the use of A suggests, we can apply parameter
ized .A-abstractions to arguments and that would act as an explicit notation 
for the instantiation operation. Meta-variables however have parameters that 
can be used in the term that instantiates them. Therefore, we need to intro
duce the parameters of a meta-variable into the argument of an application: 
(.Am[x:A]:A.m[z]) ·(x:A)x. This term represents explicitly the instantiation of 
the meta-variable m[x:A] by :r: in the term m[z] (indeed, we will see that it 
/)-reduces to z as expected). Notice how the extended application M ·(x:A)N 
introduces x in scope for the term N. 

3.1 Syntax 

Every PTS is given by a tuple .AS = (S, A, R) where the elements of S are 
called sorts, A ~ S x S is the set of axioms and R ~ S x S x S is a set 
of triples that restrict the formation of II-types (see e.g.[6]). The set of the 
pseudo-terms of the extended PTS is given by the following grammar: 

T ::=SI .r[(6.)T ... (6.)T] I T·(6.)T I .A.r[6.]:T.T I IIx[6.]:T.T 

~ ::= E I ~' :r[~]:T 

This definition is motivated by the intuitive meaning of the parameterized 
abstractions and application introduced above . .A:E[6.]:A.M and IIx[~]:A.1\1 
introduce the parameterized variable x[~] in 1\1 where it can he used provided 
it is given appropriate arguments. The variables declared in 6. can be used in 
A, but their scope does not extend to lvf. The term N is in the scope of the 
variables in 6. in an application 1\1 ·(6.)N. Similarly, in a variable instance 
x[(6. 1)N1 ..• (6.1i).ZV11 ], each Ni is in the scope of the variables in 6.i. 

In order to ease the notation, we identify the unparameterized variables 
and the variables with empty parameter lists. 

On the level of contexts we define the notion of structural equivalence ~ 
as follows: 

f 1, :r1 [6.i]:A1 ~ f2, :r:2[6.2]:A2 
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The relation .6. ~ 8 should he read as ".6. and 8 have the same struc
ture". Note that the relation states properties of the structure of the contexts 
only. In particular, in the definition above A1 and A2 are not suhjcct to any 
restrictions. We will assume that the names of the parameterized variables de
termine up to ~-equivalence the context describing their parameters. Hence, 
if we talk about a variable x[.6.] then its instances x[(81)t1 ... (8n)tn] must 
have the same number of actual parameters as there are elements in .6. and if 
.6. is the context xi[.6.i]:A1' ... 'Xn[.6.n]:An then .6.i ~ ei. 

Note also that the structural equivalence relation is a weaker notion than 
n-equivalence as contexts that are not o:-convertible can have the same struc
ture. The need to introduce this notion arises from the possibility to do /3-
rcductions in contexts that arc explicitly recorded in terms (see the definition 
of /3-reduction). 

Example 3.1 [Well-formed pseudo-terms] 

• If x[y[z[p:D]:E]:F] is a parameterized variable then the following term is 
well-formed: 

>.Y :(IIz[p:D]:A.B) .x[ (z[p:D]:E)(Y · (p:D)z[p])] 

• If h[p[i:A]:B, q[j:A]:B-+ C]:A-+ C is a parameterized variable then h[(i:A)(a· 
i), (j:A)(b · j)] is a well-formed term. 

Definition 3.2 [Free and bound variables] The set of the free variables FV ( - ) 
of a term or a context is defined as follows: 

FV(c) = 0 
FV(~, x[~']:A) = FV(~) u FV(A) \ dom(~', ~) u FV(S) \ dom(~) 

FV(s) = 0 

FV(x[(~1)M1, ... , (~n)Mn]) = {x} U LJ .(FV(Mj) \ dom(~i) U FV(~i)) 
J 

FV(M ·(~)N) = FV(M) U FV(N) \ dom(~) U FV(~) 

FV(-\x[~]:A.M) = FV(M) \ {x} U FV(A) \ dom(~) U FV(~) 

FV(Ilx[~]:A.M) = FV(M) \ {x} U FV(A) \ dom(~) U FV(~) 

An occurrence of a variable that is not free is bound. We assume that the 
names of the bound variables are always taken to be different from each other 
and from the names of the free variables. 

This definition differs from the standard one in that it defines that the 
scope of the parameters .6. in r, :r[6.]:A, A:I:[6.]:A..!\1 and II:r[6.]:A.B to be 
limited to A and that actual parameters (Mi in :r[(.6.1)M1 ... (6.n)Mn]) and 
arguments of applications (Nin 1\1 ·(.6.)N) are in the scope of extra parameters 
( 6.i and 6. resp.). This shows that the application and variable instances can 
behave as binders. 

The process of filling in a value for a parameterized variable is called in
stantiation. As instances of variables provide actual arguments for formal 
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parameters, we need to propagate the arguments in the term instantiating the 
variable. This leads to the following definition: 

Definition 3.3 [Instantiation] Let~ be the context xi[~1]:A 1 , ... , Xn[~n]:An 
and m[~] : A be a meta-variable. The instantiation of m[~] by an arbitrary 
term N in the term M (notation M { m[~] := N} is defined as follows: 

s{m[Ll] := N} = s 

{m[(81)M1 ... (8n)Mn]){m[Ll] := N} = N{x1 [8i] :=Mi} ... {xn[e;,] := M1~} 

{n[(81)M1, ... , (ek)Mk]){m[Ll] := N} = n[(8i)Mi, ... , (ek)M;J 

{M1·(8)M2){m[Ll] := N} = Mi·( 8*)M2 

(..\y[8]:U. M}{m[Ll] := N} = ..\y[8*]:U*. M* 

{Ily[8]:U. B}{m[Ll] := N} = Ily[8*]:U*. B* 

where for readability A1* abbreviates M { m[~] := N}. 

Note that by the ::::::;-convention on variables ~i ::::::; ei and this allows us to 
form the instantiations { xi[8i *] := ui*} 

The well-foundness of instantiation is not completely self-evident, because 
in the second clause of the definition we apply recursively instantiations to a 
possibly 'larger' term N. Note however that in that case the contexts involved 
in the instantiations become strictly 'smaller' (w.r.t the depth of the context, 
see Definition 3. 7) and that ensures the termination of the process. 

Example 3.4 A few examples of instantiation: 

Term Instantiation Result 

{h0 := t} =t 

h[a] { h[x:A] := x} = a 

h[t, (x:A)p(x, t)] {h[y:A, q[x:A]:P(x, y)] := q[y]} = p(t, t) 

h[g,h[..\y:A.y,s]] {h[f:IIx:A.A,x:A] := fx} = g((..\y:A.y)s) 

Remark 3.5 [Substitution is instantiation with no parameters] Note that if 
~ is empty in an instantiation { :r: [ ~] : = t} then the instantiation of .T by t in 
l'vf is exactly the result of the substitution oft for the free occurrences of x in 
1\1. For example: 

(..\y[z:Ax]:B.x){x := t} = ..\y[z:At]:B.t 

Example 3.6 [Variable Capture] Due to the parameters, some variables may 
get 'captured'. For example in the term 

(..\x:A.h[x]) {h[x:A] := x} = ..\:r::A.x 

10 
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the variable :c is captured by the binder which is in contrast to 

(..\x:A.h[ ]){h[] := :r:} = ..\y:A.:r 

where :r: is still free after the instantiation (Note the renaming). In both cases 
we instantiate h by x but in the first example x is bound and in the second 
is free. We note that only variables that have been declared as parameters can 
get captured. 

The notion of depth reflects the number of levels of parametrization in a 
context or a parameterized variable. 

Definition 3.7 [Depth] The parameter depth of :r[.6.] is by definition d(.6.), 
where the depth d( .6.) of a context .6. is defined as: 

d(c) = 0 

d(r, ;r[.6.]:A) = max( d(f), d(.6.) + 1) 

Example: d(A:*, h[x:A]A-+ A) = 2 and d(A:*, :r::A, h:ITy:A.Bx) = 1 

Proposition 3.8 

(i) If .6. ~ 8 then d(.6.) = d(8). 

(ii) For all 8 we have 8 ~ 8{:i:[.6.] := N}. 

Lemma 3.9 If .6. ~ 8 and dom(.6.) = dom(8) then for all M and N 

_i\1 {:r[.6.] := N} = M {x[8] := N} 

Proof. The proof proceeds by induction on the depth of .6. and a nested 
induction on the structure of _M. D 

3.2 {3-reduction and confluence 

Normally /)-reduction is defined in terms of the capture-avoiding meta-substitution: 

(..\x:A.lvf)t -+fJ M[tj.T] 

We extend this definition to our pseudo-terms as follows: 

(..\:r:[8]:A.M) ·(.6.)t -+fJ 1\1{:r:[.6.] := t} if 8 ~ .6. 

Note that on unparameterized terms the two reduction relations coincide. 
The side condition 8 ~ .6. is needed, because we need to know that the two 
contexts have the same structure in order for the instantiation {x[.6.] := t} to 
be well-defined. 

To establish the confluence property we follow the modular confluence 
proof of Takahashi [17]. Definition 3.10 introduces the notions of parallel 
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reduction ~M ::::> N and complete development #(M) and Lemma 3.11 states 
the relevant properties: 

Definition 3.10 [Parallel reduction M ::::> N and complete development #(.M)] 

b. ::::} b.' A ::::} A' M ::::} M' 
.Ax[b.]:A.M::::} .Ax[b.']:A'.M' 

b. ::::} b..' A ::::} A' B ::::} B' 
IIx[b.]:A.B::::} Ilx[b.']:A'.B' 

M ::::} M' N ::::} N' b. ::::} b.' 
M ·(b.)N::::} M' ·(b.')N' 

M ::::} M' N ::::} N' b. ::::} b.' 
(.Ax[8]:A].M) ·(b,,.)N::::} M'{x[D,,.'] := N'}e ~ b. 

#(s) = .c; 

#(x[(81)t1 ... (811 )t11 ]) = x[(#(8i))#(ti) ... (#(811 ))#(t11 )] 

#(.Ax[b.]:A.M) = .Ax[#(D,,.)]:#(A).#(M) 

#(IIx[b.]:A.B) = Ilx[#(b,,.)]:#(A).#(B) 

#((.Ax[8]:A.M) ·(b.)N) = #(M){x[#(D,,.)] := #(N)} 

#(M ·(b.)N) = #(M) ·(#(b.))#(N) (M not an abstraction) 

Lemma 3.11 (Properties of::::> and #) (i) If Mi ::::} M 2 and Ni ::::> N 2 

then Mi {:r[.6.] :=Ni} => M 2{x[.6.] := N2} 

(ii) If !11 ::::> N then N::::} #(!11). 

(iii) If M ::::> N then !11 -'»f3 N. 

(iv) If ,~1 -7 f3 N then lvf ::::} N. 

From (2) it follows easily that ::::> has the diamond property (i.e. if Jt.1 ::::> P 
and !11 ::::> Q then there is a term N such that P ::::> N and Q ::::> N). Then, 
given Jlvf, P and Q such that Jt.1 -'»(3 P and lvl -'»f3 Q, we have 1111 =>* P and 
Jt.1 ::::} * Q using ( 4). But then iterating the diamond property for ::::> we get a 
term N such that P =>* N and Q =>* N. But then from (3) we have P -'»f3 N 
and Q -'»13 N using the transitivity of -'»19. 

This concludes the proof that /)-reduction is confluent. 

3. 3 Typing system 

The derivation rules of a typing system give an inductive definition of the 
typing relation that assigns types to terms in a given context that specifies 
the types of the free variables. The standard derivation rules for PTSs (see 
e.g. [1,6]) arc parameterized by three sets (S, A, R) and the different PTSs 
can be obtained by giving particular values to the three parameters. S is the 
set of sorts, A is a subset of S x S and its elements are called axioms. The set 
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Risa subset of S x S x Sand its clements are used to restrict the IT-formation 
rule. 

For the purposes of typing terms with parameterized variables we introduce 
one extra set P that would be a subset of S x S and it will be used to denote 
the dependencies between the type of a parameter of a variable and the type 
of the variable itself. Hence a PTS with parametric variables will he given by 
a parametric specification that is a 4-tuple >i.S = (S, A, R, P). 

Notation 3.12 • The notion of convertibility between two contexts (notation 
r 1 =(3 r 2) is d<~fined inductively as follows: 
· E =(3 E 

· iff1 =f3 f2, Li1 =f3 Li2 and A1 =f3 A2 then f1,:r[Lii]:A1 =rj f2,x[Li2]:A2 

• We will write :r;[B~ for :r[(81)t1 ... (8n)tnl· 

• Let Li= 1:1 [Lii]:A1' ... 'Xn[Lin]:An and [ = (t1, ... 'tn)· We will writer f-
Gfii for the conjunction of the judgments r, Eh f- tk:Jk-lAk with k E 

[1 ... n] where Jo= id, Jk+l = Jk 0 {xk+d8k+il := tk+1} and ek =(3 Jk-llik. 

• By {Li := et} we will denote Jn from above and Lili will denote the context 

Below we give the derivation rules for a PTS with hereditarily parameter
ized variables. As usual s and si denote sorts from S. 

Definition 3.13 [Derivation Rules] 

f-- s1:s2 
r, A f-- A:s r f-- Bf A 

r f-- x[(81)t1 ... (8n)tn]:A{A :=Bi} 
r f-- M:B r, A f-- A:s r, Ali f-- Ai:Si 

r, x[6.]:A f-- M:B 
r, A f-- A:s1 r, x[A]:A f-- B:s2 

r f-- IIx[6.]:A.B:s3 
r,x[6.]:A f-- M:B r f-- IIx[A]:A.B:s 

r f-- (-\x[A]:A.M):(II:r[A]:A.B) 
r f-- M:IIx[A]:A.B r, A f-- N:A 

r f-- M ·(A)N:B{x[A] := N} 

r f-- M:A r f-- B:s 
ff--M:B 

(s1,s2)EA 

x[A]:A Er 

A =rj B 

(axiom) 

(start) 

(weak) 

(II) 

(app) 

( conv) 

vVe briefly comment on the modifications to the rules in order to explain 
the intuition behind them. In the (start) rule we type the parameterized 
variables introduced in the context. An instance of a variable is well-typed 
if it has a correct number and type of arguments. The premise r, Li f- A:s 
is necessary in order to ensure that r is a valid context in cases when there 
are no parameters. Each actual parameter ti can be given a context 8i that 
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locally introduces variables that can be used in ti· The context ei is required 
to be /)-convertible, but not necessarily equal to 6i_ 1.6.i because for the Subject 
Reduction property we should be able to type instances in which /)-reductions 
have been executed in ei· 

Using the weakening rule (weak) we can add variables to a context. Note 
that the parameters of the variable can be used in its type. Very much like in 
the CPDPPTSs [3], by a suitable choice of P the condition ( si, s) E P is used 
to restrict the possible parameters that a variable of a given sort can take. 

As usual, the II-formation rule is restricted by R. The new moment is that 
the bound variable may have parameters. Again, the parameters in .6. can be 
used in A (but not in B, see Definition 3.2). 

The ( ,\) rule abstracts parameterized variables. If we want to apply such an 
abstraction to an argument, the argument should be typed in a context that is 
extended with the parameters. This is done by the ( app) rule. Note how the 
application ·(.6.) introduces the parameters in the context of the argument. 

We now proceed by establishing the important meta-properties of the sys
tem. 

Lemma 3.14 {Generation Lemma) Let ,\S = (S, A, R, P) be a paramet
ric specification. Then 

(i) If r f- s:D then there is s' E S such that D =fJ s' and (s, s') E A; 

(ii) !ff f- ::r[en:D then r = r 1, x[.6.]:A, f 2 and there is ans such that r 1, .6. f
A:s, r f- ef.6. and D =fJ A{.6. :=et} 

(iii) If r f- (TI.r[.6.]:A.B):D then there are sorts (s1, s2, s3) E R such that 
r, .6. f- A:s1 and r, :r[.6.]:A f- B:s2 and D =fJ S3. 

(iv) !ff f- (,\x[.6.]:A.l\1):D then there ares and B such that r f- Ilx[.6.]:A.B:s, 
r, x[.6.]:A f- l\1:B and IIx[.6.]:A.B =fJ D 

(v) !ff f-1\1 ·(.6.)N:D then there are A and B such that r f- l\1:II:r[.6.]:A.B, 
r, .6. f- N:B and D =f1 B{:r[.6.] := N}. 

(vi) if r, :r[.6.]:A, r' f- f\;J:D then there are s and Si such that r, .6. f- A:s and 
f,.6.li f-Ai:s;, (s;,s) E P 

Proof. We proceed by induction on the generation of the typing relation f-. 
Consider the possible cases for the last rule of a derivation assuming the lemma 
holds for its subderivations. We treat here only some of the cases: 

(start) This means that D = A{x[.6.] := 8£} and 

r, .6. f- A:s r f- Gf.6. :r[.6.]:A E r 
r f- x[en:A{.6. :=et} 

From the condition x[.6.]:A E r we have r = f 1, x[.6.]:A, f 2 and using (6) 
from the induction hypothesis we have r 1 , .6. f- A:s. 
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(weak) Then the last rule looks like this: 

r f- M:D r, Li f- A:s r, Lili f- A(Si ( ) p 
Si, s E 

r, x[Li]:A f- M:D 

Considering the outermost constructor of M we distinguish five cases and 
apply the induction hypothesis for r f- .M:D. In this way WC prove that the 
conditions (1) (5) hold. For (6) we need to use the induction hypothesis 
and the premises of the rule. 

(,A.) This means that D = TI:r;[Li]:A.B and 

r, :r[Li]:A f- l\1:B r f--- flx[Li]:A.B:s 
r f--- (.Xx[Li]:A.,i\!f):(Tix[Li]:A.B) 

The statement (6) follows from (6) in the induction hypothesis. 

(conv) vVe use the fact that =f3 is transitive. 
D 

Lemma 3.15 (Weakening) If f 0 , f 1 f--- M:B, f 0, Li f--- A:s and f o, Lili f--
A(si then f 0 , x[Li]:A, f 1 f--- M:B where x is a fresh variable and (si, s) E P. 

Lemma 3.16 (Substitution Lemma) If r, x[Li]:A, f' f- M:B and f, Li f--
N:A then r,r'{:r[Li] := N} f---l\1{x[Li] := N}:B{x[Li] := N} 

Proof. By induction on the depth of Li and a nested induction on the deriva
tion. D 

Lemma 3.17 (Correctness of types) If r f--- M:A then either A =f3 s or 
r f- A:s for some s. 

Proof. By induction on the derivation of r f--- l\1:A using Substitution Lemma 
and Generation Lemma. We treat here only the case of the (app) rule. 

By Generation from r f--- .M:Tix[Li]:A.B we get r, :z:[Li]:A f- B:s for some s. 
Hence by Substitution r f--- B{:r[Li] := N}:s. D 

Lemma 3.18 (Subject Reduction) Let r f--- ,,;f:A. Then 

(i) If M -'r13 N then r f--- N:A 

(ii) If r -'rf3 Li then Li f--- ,,1:A 

Proof. We will prove the two statements simultaneously by induction on the 
derivation of r f--- l\1:A. 

• The last rule is (start) 
(i) Then M = .r[en If the redex is in f we apply the induction hypothesis on 

the respective component f, 8k f--- tk:<5k-tAk. If the redex is in 8k we use 
the induction hypothesis for (2) to get r, e~ f--- tk:<5k-tAk· Since ek -'rf3 8~ 
and ek =f3 <5k-tfik we can apply the (start) rule. 

• The la..<;t rule is (weak) 
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2. Then r = r', x[.6.]:A and the redex can be inf', .6. or A. In the first case 
we simply use the induction hypothesis and apply the (weak) rule to the 
result. If .6. --+fJ .6.', then by induction r, .6.' f- A:s and we can apply the 
rule again. If A --+fJ A', then r, .6. f- A:s and from the hypothesis for (1) 
we have r, .6. f- A':s. 

• The last rule is ( app) Let 

r f- P:flx[.6.]:A.B r, .6. f- Q:A 

r f- P·(.6.)Q:B{x[.6.] := Q} 

( i) If the red ex being contracted is in P, .6. or Q, then we can simply apply the 
induction hypothesis. If the redex is P ·(.6.)Q itself then P = >.y[8]:C.R, 
reduces to R{y[.6.] := Q}. Since r f- >.y[8]:C.R:flx[.6.]:A.B is derivable, 
then we go up this derivation until the node in which the>. was introduced: 

f', y[8]:C f- R:D r' f- fly[8J:C.D:s 

f' f- (>.y[8]:C.R):Tiy[8]:C.D 

where r' is an initial segment of rand Bis convertible to D. Using weak
ening we get r, y[8]:C f- R:D and by Substitution we get r f- R{x[.6.] := 
Q}:D{x[.6.] := Q} which (if necessary using the conversion rule) yields 
r f- R{x[.6.] := Q}:B{x[.6.] := Q} 

D 

Definition 3.19 [Functional specification]A specification >.S = (S, A, R, P) 
is called functional if: 

•for all sorts s 1 ,s2 , s' ands" if (s1,s2 ,s') ER and (s 1 ,s2 ,s") ER then 
s' = s"; 

•for all sorts s 1 , s' ands" if (s 1,s') EA and (s 1 ,s") EA thens'= s". 

Lemma 3.20 (Uniqueness of types) If >.S is functional, r f- ~M:A and 
r f- f\1:B then A =fJ B. 

Proof. By induction on I'vf using Generation. The functionality condition is 
used when proving the uniqueness of the types of TI-terms and sorts. D 

Definition 3.21 [Quasi-Completion] Let >.S = (S, A, R) and >.S' = (S', A', R', P'). 
>.S is a quasi-completion of >.S' if the following hold: 

• S' ~ S, A' ~ A and R' ~ R; 

• For each s 1 , s2 ES' there is an s3 ES such that (s 1, s 2 , s3) ES; 

Theorem 3.22 (Strong Normalization) Let >.S' = (S', A', R') be a quasi
completion of >.SP = (S, A, R, P). Then >.SP is strongly normalizing if >.S' 
is strongly normalizing. 

Proof. We define by induction a reduction- and typing- preserving map I - I 
from >.SP into >.S'. Then an assumption that >.SP has an infinite reduction 
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path induces infinite reduction path in >..S' through the map. 

Isl= s lcl = E 

1r,x[~]:AI = jrl,x:lrr~;AI 1.r,[8~1 = x1,\e1;t11 ... 1,\e1;t1I 

IA.r[~]:A.MI = A.r:III~;Al.IMI 

IIIx[~]:A.MI = Ilx:III~;Al.IMI 

IP·(~}QI = IPll,\~;QI 

l''T,x[~]:A;MI = l''T;ax:l 11 ~;Al.MI 

lac; Ml= M 

Then we have 

(i) If r f-,\SP .M:A then !fl f-,\8 1 IA1llAI; 
(ii) If lvf -'tf3 N then IMI -'7% INI. 

For (1), since >..S' is a completion of >..SP, we can form the types generated 
by Ill-; -I and those types can be used to type the terms generated by 1.\-; -1. 
The typability of the rest of the terms is not problematic. As for (2), from 
the definition of 1-1 it is clear that a redex is mapped into a redex. However, 
each occurrence of a paramateri:zed variable after propagating the instantiation 
generates as many redexes as the number of its paramaters. After we reduce 
those, we are done. D 

Corollary 3.23 The systems of the >..-cube e.rtended with hereditary parame
ters are strongly normalizing. 

Proof. The Extended Calculus of Constructions (ECC) of Luo (9] is a quasi
completion of all the systems of the >..-cube with hereditarily parameterized 
variables. Since ECC is strongly normalizing, by Theorem 3.22 each of the 
systems of the cube is strongly normalizing. D 

4 Future Work 

After obtaining a calculus that can express both open terms and the basic 
operations on them explicitly we intend to investigate the possibilities of ex
tending it with operations that could make it applicable for modelling real 
tactics, not only tactic instances. To do that we need to internali'./,c other es
sential operations like unification and recursion. Ultimately we would like to 
be able to have tactic terms like the one below that represents the propsitional 
tactic Apply: 

Apply[<p, ,~;· : Prop, thm : 'tP] : <p := 

(tprv'l/J).thm I 
? A, B : Prop.( 'ljJ"" A -'T B).?m: A.Apply[<p, B, (thm m)] 

\Vhen given two propositions <p and 4J and a proof of 4; this tactic tries to 
unify <p and 'ljJ and if this is successful it returns a proof of 'ljJ that in this case 
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is also a proof of <p. If the unification fails, it checks whether 'l/J is an arrow 
type by trying to unify it with A --+ B where A and B are meta-variables 
freshly introduced by the binder ? A, B : Prop. If this is the case, the tactic 
makes a recursive call by eliminating the argument A with a freshly introduced 
meta-variable m. 

Designing a calculus capable of representing tactics like Apply is a major 
challenge, but we hope that the present paper is the right first step towards 
this goal. 
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On the Structure of Mizar Types 

Grzegorz Bancerek 1 

Faculty of Computer Science 
Bialystok Technical Univer.~ity 

Bialystok, Poland 

The aim of this paper is to develop a formal theory of Mizar types. The examples are 
extracted from Mizar Mathematical Library (MML), some of them are simplified 
or presented in a bit different way. The presented theory is an approach to the 
structure of Mizar types as a sup-semilattice with widening (subtyping) relation as 
the order. It is an abstraction from the existing implementation of the Mizar verifier 
by Andrzej Trybulec and Czeslaw Bylinski. The theory describes the structure of 
types of the base fragment of Mizar language. 

1 Introduction 

The MIZAR language has been developing by Andrzej Trybulec since 1973 
(see [12,13,14]). It is an attempt to approximate in a formal way the com
mon mathematical language ( CML, see [5]) used in mathematical publica
tions. M1zAR inherits a lot from CML's expressibility as well as naturalness and 
freedom/smoothness of reasoning. On the other hand, it is formal 2 enough 
to enable mechanical proof verification and other computer processing. As a 
result, MIZAR is successfully used for the practical formalization of mathemat
ics. The papers [1,2,3,6,10,ll] report on the state-of-art in this area. Mizar 
types are discussed in [3,10,11]. Mizar constructions including types are also 
described in [15] where examples of translation to untyped first-order syntax 
in DFG format are given. Introductory information on MIZAR can also be 
found in [4,9,7,17,8]. 

The goal of this paper is to give some rough description of the structure of 
Mi11ar types used by Mizar verifier which should remain stable notwithstanding 
dynamic changes in the implementation. On the other hand, the theory should 
be rich enough to enable discussion on new features in Mizar language. We do 

1 Email: bancerek©mizar. org 
2 The MIZAR syntax: http://mizar.org/language/syntax.html 
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not intend to investigate Mizar types in the spirit of type theory. Mizar types 
and adjectives correspond, more or less, to nouns and adjectives, respectively, 
in Weak Type Theory [5]. 

Let us mention differences between MIZAR and other systems for the for
malization of mathematics with the computer (nice comparison of MIZAR and 
other 14 system is given in [16]). Firstly, MIZAR should be classified as a 
proof checker (there is no interaction with the user when the Mizar verifier 
provers user's hypotheses and the only answer is correct or not). Secondly, 
MIZAR deals with MML large cumulated human-readable data base of math
ematical knowledge. MML is based on Tarski-Grothendieck set theory and 
Fitch-.Jaskowski proof system with classical logic. These differences have a 
significant impact on used type system. 

The most important role of Mizar types is the following. 

(i) When a variable is introduced its type is given. 

(ii) For a term T Miz:ar verifier computes B(T), a unique type of T. B(T) is 
called the type of T. vVe say that T has type (} if the type of(} widens to 
0, i.e., it is a subtype of 0. 

(iii) Types are used in Qualif1Jing formula of the form 

T is (} 

Note that the formula "Tis(}" might be true even if O(T) and(} are not related. 
Let us list some types occurring in MML chosen in a haphazard way. First, 

types with empty lists of arguments: 

set, non empty set, Relation, 
reflexive transitive antisymmetric Relation, one-to-one Function, 

complete LATTICE, solvable Group 

and types with arguments: 

Function of A,B, sups-preserving map of S,T, 
normal Subgroup of G 

where A and B arc of type set, S and T - complete LATTICE, and G - Group. 
As we see, Mizar types consist of 2 parts: a cluster of adjectives (possibly 
empty) and a radix type. The cluster of adjective for the last type listed 
above consists of one adjective normal and Subgroup of G is the radix type 
of it. 

\Ve must distinguish two concepts: 

radix type the construction, 

mode the constructor. 

And similarly, 
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the construction, 

the constructor. 

MIZAR allows for dependent types. Namely, radix types and adjectives 
depend on terms only. Therefore, we may say that we get a radix type by 
applying a mode to a list of terms. The list has a fixed length and, more 
precisely, it has fixed types. An adjective is obtained by application of an 
attribute to a list of terms extracted from the radix type. But, we may not 
treat adjectives like type modifiers because of Adjective formula of the form 

TIS Q 

where list of terms for adjective a is extracted from 0( T). 
The basic linguistic categories in MIZAR are Type expression, Adjective, 

Term expression, and Formula expression. All of them arc mutually disjoint. 
For our purposes it is sufficient to use the following simplified syntax of Type 
eJ:pression and Term expression. 

Figure 1.1 Simplified syntax 

1',1;pe-expression = Adjective-cluster Radix-type . 

Radix-type= Mode-symbol ["of' Term-expression-list] . 

Adjective-cluster= { Adjective } . 

Term-expression-list = Term-expression { "," Term-expression } . 

Term-expression = Variable . 

The syntax of Mizar types describes only the input for Mizar verifier. The 
verifier translates the input to some abstract form (constructor level in [15]) 
which for global items (theorems and definitions) is available from machine 
readable data base files. The abstract form is different from the input, e.g., 
hidden arguments are recognized and homonyms are distinguished. Therefore, 
Mi;r,ar types (as well as other Mizar object) cannot be treated syntactically. 

2 An example of a type structure 

Let us start the consideration with the following example of a Mizar text. 
Two primitives of set theory, type set and predicate in, are introduced as 

built-in notions. According to MIZAR rules, primitives are introduced techni
cally by definition but without definiens. So, the primitives may be formally 
declared as follows. 
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Figure 2.1 Built-in notions 

definition mode set; end; 

definition 
let x, y be set; 
pred x in y; 

end; 

Mode set has empty list of arguments and then it constructs only one type 
(also denoted by set). Type set is the widest type in MIZAR any Mizar type 
is a subtype of type set. Note that set is not a syntactic category in Mizar 
language unlike Mode and Type expression. 

Now, we define equality= and inclusion c= as predicates, 

Figure 2.2 Equality and inclusion 

definition 
let x, y be set; 
pred x = y means 

for z being set holds z in x iff z in y; 
antonym x <> y; 
pred x c= y means 

for z being set st z in x holds z in y; 
end; 

and attribute empty 

Figure 2.3 Empty 

definition 
let x be set; 
attr x is empty means not ex y being set st y in x; 

end; 

This Attribute definition introduces actually two adjectives: empty and non 
empty. The following Existential registrations 

Figure 2.4 Empty set 

definition 
cluster empty set; 
existence proof ... end; 

cluster non empty set; 
existence proof ... end; 

end; 
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state the existence of objects of types registered. Namely, cluster empty 
set states the existence of a set which is empty and cluster non empty set 
states the existence of a set which is non empty. After these registrations, 
expressions empty set and non empty set become legal types. A Mode defi
nition, as below, requires also a proof of existence of an object which satisfies 
a given condition. 

Figure 2.5 Subset 

definition 
let x be set; 
mode subset of x -> set means it c= x; 
existence proof ... end; 

end; 

Type set is the mother type of the mode subset of . . . . It means that 
subset of x, for any set x, widens to set. In other words, if some term is a 
subset of x it is also a set. 

Next, we have two Existential registrations: 

Figure 2.6 Empty subset 

definition 
let x be set; 
cluster empty subset of x; 
existence proof ... end; 

end; 

definition 
let x be non empty set; 
cluster non empty subset of x; 
existence proof ... end; 

end; 

The following Conditional registration states that every subset of an empty 
set is empty. 

Figure 2. 7 Subset of an empty set 

definition 
let x be empty set; 
cluster -> empty subset of x; 
coherence proof ... end; 

end; 

The registration above includes three elements: the list of antecedents between 
'cluster' and'->', the list of consequents after'->', and the type. In our case, 
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there are not any antecedents and only one consequent - adjective empty. 
The fact that a subset of a subset of a set is a subset of the set, may be 

expressed by the redefinition of the mother type of the mode. 

Figure 2.8 Subset of a subset 

definition 
let x be set; 
let y be subset of x; 

redefine 
mode subset of y -> subset of x; 
coherence proof end; 

end; 

The correctness condition coherence needs the proof of the formula 

for z being subset of y holds z is subset of x 

The redefinition above introduces a variant of the mode subset of ... which 
has one extra implicit argument (x). The implicit argument is recognized 
from the type of the explicit argument (y). In this paper, the variant will be 
indicated by subset (x) of y. There is no such notation in Mizar language, 
but it reflects well the internal representation of the type. 

One more attribute definition: 

Figure 2.9 Proper 

definition 
let x be set; 
let y be subset of x; 
attr y is proper means y <> x; 

end; 

The attribute proper in the definition above has one implicit argument - the 
set x. This argument is inherited from subset of . . . . To avoid misun
derstanding, the argument will be presented explicitly in this paper and the 
adjectives will look like proper (x) and non proper (x). Unfortunately, in 
the current version of Mizar language it is not possible to write arguments of 
adjectives explicitly, and, consequently, to do a conditional registration like 

let x be set; 
let y be subset of x; 
cluster proper(y) -> proper(x) subset of y; 

But we may do the following registrations: 
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Figure 2.10 Proper subset 

definition 
let x be set; 
cluster non proper subset of x; 
existence proof ... end; 

end; 

definition 
let x be empty set; 
cluster -> non proper subset of x; 
existence proof ... end; 

end; 

definition 
let x be non empty set; 
cluster empty -> proper subset of x; 
coherence proof ... end; 

cluster non proper -> non empty subset of x; 
coherence proof ... end; 

cluster proper subset of x; 
existence proof ... end; 

end; 

Let x denote a variable of the type non empty set and let y denote a 
variable of the type non empty subset of x. The structure of widening of 
types with arguments x and y may be expected to look as follows 

Figure 2.11 First attempt to the structure of widening 

where 00 , 01 , and 02 stand for set, subset of x, and subset (x) of y and o:, 
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a, (31, 731, (32 , and 732 stand for empty, non empty, proper(x), non proper(x), 
proper(y), and non proper(y), respectively. 

The type oJ}i, i.e., empty subset of x, is equal to empty proper(x) 
subset of x according to the registration from Figure 2.10. Similarly, the 
type non proper(x) subset of x is equal to non proper(x) non empty 
subset of x, etc. 

Variable y has two types: subset of x and set. The expression 

y qua set 

introduces a term which is equal to y but has only type set. Type 

subset of (y qua set) 

has the argument of type set and, in consequence, does not widen to subset 
of x like subset (x) of y does. However, type subset (x) of y which widens 
to subset of x widens also to subset of (y qua set). The structure in 
Figure 2.11 does not include such types. Eventually, the structure of widen
ing is more complicated. It is presented in Figure 2.12 for types with adjective 
empty and in Figure 2.13 for types with adjective non empty. Type subset 
of (y qua set) is represented by e;. 

Figure 2.12 Structure of widening: empty 
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Figure 2.13 Structure of widening: non empty 

3 Basic concepts 

In this section we give an approach to the widening (subtyping) relation of 
Mizar types and connection of types and adjectives. 

Definition 3.1 An upper-bounded posct S =(Types,~' T) is called a widen
ing structure if 

(u) S is sup-semilattice and 

CWF) Sis Noetherian (the relation ~ is well-founded). 

The ordering relation ~ on Types is called widening relation of the widening 
structure. 

The condition (u) means that each pair { 01 , 02 } of types has the least 
upper bound 01 LJ 02 w.r.t. ~- I.e., 

(1) 

(2) 

for any type 0. 

and 

The condition (WF) means that each non empty set T of types, T ~ Types, 
has maximal element w.r.t. ~. It means, also, that there is no infinite sequence 
of types 

01 -< 02 -< 03 -< ... 
where -< is the irreflexive part of ~' i.e. -< = ~ \ id'l'ypes· 

The greatest (widest) type Tin the example is the type set. The widening 
relation is indicated by arrows, e.g., 

proper(y) subset(x) of y ~ subset(x) of y -< subset of x -< set 
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Fact 3.2 Any ideal I of a widening structure has the maximum, sup IE I. 

Proof. I has maximal element 0 by (WF). The type 0 is the supremum of 
I because for any 0' E I the type 0 LJ O' belongs to I as I is an ideal. Then, 
0 LJ 0' = O' by maximality. So, 0' j 0. D 

Definition 3.3 A tuple A= (Types, Adjs, j, T, non, adjs), where 

non: Adjs -t Adjs, 

adjs : Types -t Fin (A djs) 

is called a structure of types and adjectives or, simply, a TA structure if 

(LJ,WF) S = (Types,~. T) is a widening structure, 

(non) non is an involution without fix points, 

(X) if a E adjs(O), then nono: tj. adjs(O), 

(H) adjs is LJ-homomorphism from S into Fin(Adjs) 0 P. 

Fin(Adjs) is the set of all finite subsets of Adjs and Fin(Adjs )0 P = (Fin(Adjs), :2) 
is the sup-semilatticc opposite to the semilattice of finite subsets with inclu
sion as ordering relation. Adjs is the set of adjectives and adjs( 0) is the set of 
all adjectives possessed by type 0. 

The condition (non) means that for any adjective o: 

(3) non non o: = a 

( 4) non a =!= a 

The condition (H) means that for all types 01 and 02 , 

(5) adjs(01 LJ 02) = adjs(01) n adjs(02) 

and, particularly, adjs is antitone 

(6) 

Note that the condition (H) docs not imply adjs(T) = 0. 
In the example the set of adjectives contains the following adjectives: 

empty,non empty,proper(x),non proper(x),proper(y),andnon proper(y). 
In this ca..'lc the operations from definition 3.3 arc as follows: 

etc. 

non( empty) =non empty 
non( non empty)= empty 

adjs(empty subset(x) of y) = {empty, proper(x), proper(y)} 

adjs(non proper(y) subset(x) of y) ={non empty, non proper(y)} 

Definition 3.4 We say that adjective o: is an adjective of type 0 or that 0 is 
a type with adjective o: if a E adj.5 ( 0). The set of all types with adjective o: is 
denoted by types(o:), 

(7) types(a) = { 0 E T.vpes : o: E adjs(O)}. 
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In the example types (empty) includes 

{empty set, empty subset of x, empty subset of y, empty subset(x) of y} 

As simple conclusions of definitions 3.3 and 3.4 we get the following facts. 

Fact 3.5 Functions adjs and types are conjugate 

(8) n E adjs ( 0) iff 0 E types ( o;) 

and 

(9) adjs(O) = {o: E Adjs: 0 E types(o:)}. 

Fact 3.6 Adjectives o: and non o; cannot appear in the same type, 

(10) types(o:) n type8(nono:) = 0. 

Lemma 3. 7 The set types ( n) is empty or an ideal in S. 

Proof. The set types ( o;) is lower because if O' ::S 0 E types ( (x), then o: E 
adjs(O) ~ adjs(O') by (8) and (6). Thus O' E types(o:) again by (8). The set 
types ( o;) is directed because if 0, O' E types ( o;), then o E adjs ( 0) n adjs ( 0') = 
adjs(O LJ O') by (8) and (5). Eventually, 0 LJ 0' E types(n). D 

4 Applying adjectives 

The applicability of adjectives to types (modification of a type hy an adjective) 
are disscused in this section. 

Definition 4.1 An adjective o: is applicable to the type 0 if there is a type 
O' E types(o:) such that O' ::S 0. 

The adjective o: is applicable to the type 0 if o: E adjs( 0). 
In the example, adjective empty is applicable to all types from Figure 2.12. 

Adjective empty is not applicable to type non proper (x) subset of x. 
Let us note that if o: is applicable to (}, then the set { (}' E types (a) : (}' :::S (}} 

is an ideal, since it is a non empty intersection of two ideals: 

types ( n) and ,).B = {0' E 1',1;pes: O' :::SO}. 

So, the set has the maximum by fact 3.2 and then the following definition is 
correct. 

Definition 4.2 If an adjective o: is applicable to a type 0, then the application 
of 0: to 0 is defined hy 

(11) 

Corollary 4.3 
.rntisjie.s 
(11.1} 
(11.2} 

o: * 0 = sup{O' E types(n): O' :::SO}. 

If the adjective o: is applicable to the type 0, then the type o: * 0 

n*O:::SO, 
a E adj.s(a * 0), 
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n * (} E types (a), 
for each type (}' ::::S (} if a E adjs ( (}'), then (}' ::::S a * (}. 

Corollary 4.4 If a E adjs ( 0), then 
(11.5} a*(}= 0. 

Lemma 4.5 If an adjective a is applicable to a type (} and an adjective (3 is 
applicable to the type a * (}, then (3 is applicable to (}, a is applicable to (3 * (}, 
and 

(12) a * ((3 * 0) = (3 * (a * 0) 

Proof. Sets types( a) n .t.O and types((3) n ..1-(a * 0) are non empty. Therefore 
there exists a type iJ E types(a) n types((3) which widens to 0. It means that 
(3 is applicable to (} and o: is applicable to (3 * 0. 

a* ((3 * 0) =sup{(}' E types(a): (}' ::::S (3 * O)} 
=sup { (}' E types (a) n types ((3) : (}' ::::S O)} 
=sup{(}' E types((3): (}'::::Sa* O)} 
= ;3 * (a * 0) 

D 

In the example every adjective is applicable to set. Particularly, properCx) 
is applicable to set and the result of application is proper Cx) subset of x. 
So, we may apply an adjective with an argument which is not inherited from 
the type to which we apply it. The adjective properCx) is also applicable to 
subset of Cy qua set), 

proper(x) *subset of (y qua set)= proper(x) subset(x) of y. 

The last type is not expressible in Mizar language but it exists in internal 
process of Mizar verifier. These cases suggest that the application should be 
restricted to types widening to a type which can export needed arguments. 
This type will be called a subject type of an adjective. The subject type is the 
type from the definition of the attribute (after appropriate substitution): 

empty and non empty have subject type set, 

properCx) and non properCx) have subject type subset of x, 

proper Cy) and non proper Cy) have subject type subset of Cy qua set). 

The subject type of an adjective a is an upper bound of the sets types ( o:) and 
types(nono:). When both sets are non empty the subject type is equal to 

sup( types (a) U types (non o:)). 

Such situation holds for empty and proper Cx) as below. In the cases of 
properCz), where z denotes set, the set types(proper(z)) is empty (there is 
no existential registration with such an adjective) and 

sup(types(proper(z)) U types(non proper(z))) =non proper(z) subset of z 
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which is not intended to be the subject type of proper(z). On the other 
hand, when e denotes empty set, then non proper(e) E adjs(subset of e), 
then 
types (proper ( e)) = 0 and 

sup(types(proper(e)) U types(non proper(e))) =subset of e. 

Eventually, we introduce the following 

Definition 4.6 A function sub : Adjs ---7 Types is a subject function of a TA 
structure A if for any adjective o: 

(SO) sub absorbs operation non, i.e., sub(n) = sub(non o:) for any o: E Adjs, 

(Sl) sub(n) is an upper bound of the set types(o:) U types(non o:) and, moreover, 

(82) sub(o:) = sup(types(o:)Utypcs(nonn)) when both sets, typcs(o:) and types(nono:), 
are non empty. 

In our example we can use the subject function .sub such that 

sub( empty)= set, 

sub(proper(a)) =subset of (a qua set) 

for any a. If a is a variable of type set, then subset of (a qua set) is equal 
to subset of a. 

Definition 4.7 Let A be a TA structure with subject function sub. An adjec
tive O'. is properly applicable to a type 0 if 0 ~ sub(a) and Clo is applicable to 0. 
The set A of adjectives is properly applicable to 0 if there exists a permutation 
o: 1, ... , o:n of A such that o:1 is properly applicable to 0 and o:i+l is properly 
applicable to O'.i * ( ... * ( o:1*0) ... ) for 1 :::; i < n. The type O'.n * ( ... * ( 0:1*0) ... ) 
is the application of A to 0 and is denoted by A* 0. 

In the example, empty is properly applicable to every type from Figure 
2.12 but proper(y) is properly applicable to types widening; to subset of 
(y qua set) only. 

Definition 4.8 A TA structure A with subject function sub satisfies cornrnu
tativity law if for any types 81 , 82 and any adjective o: such that o: is properly 
applicable to 01 and cH01 ~ 82 , there exists a set of adjectives A properly 
applicable to 81 lJ (}2 satisfying; A * ( 01 lJ 82) = 02. 
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5 Radix types 

Definability of radex types in introduced AT structure are presented in this 
section. 

Definition 5.1 For any types () and ()' we will write () o-t ()' if() widens to ()' 
and there exists an adjective o: E adjs ( 0) such that o: ~ adjs ( ()'), a is properly 
applicable to ()', and a * ()' = (). 

In the example we have: 

empty subset(x) of y o-t proper(x) proper(y) subset(x) of y 

empty subset(x) of y o-t proper(y) subset(x) of y 

empty subset(x) of y o-t subset(x) of y 

proper(x) proper(y) subset(x) of y o-t proper(y) subset(x) of y 

proper(y) subset(x) of y o-t subset(x) of y 

non proper(x) subset(x) of y o-t non empty subset(x) of y 

non proper(x) subset(x) of y o-t subset(x) of y 

non empty subset(x) of y o-t subset(x) of y 

Fact 5.2 Relation o-t ~ -<. In consequence it is terminating. 

Lemma 5.3 Let A be a TA structure with subject function .sub. Assume that 
A satisfies commutativity law. Then the reduction o-t has unique normal form 
property. 

Proof. It is enough to show that o-t has weak Church Rosser property. Then 
let us assume that 01 f--0 () o-t 02 for some types (), 01 , and 02 . So, there exist 
adjectives a and f3 such that a is properly applicable to 01, f3 is properly 
applicable to 02 , and 0'.*01 = () = f3*02 . Hence by commutativity law we may 
find sets A, B ~ adj.s(O) properly applicable to 01LJ()2 such that 02 = B*(01 LJ02) 
and 01 =A* (01 LJ02). We choose A and B to be minimal w.r.t. inclusion. Let 
the permutations a 1, ... , O'.n and /31, ... , f3m of A and B satisfy conditions of 
definition 4. 7: 

Eventually, by minimality of A and B 

() 1 o-t O:ri - 1 * ( · · · * ( 0'.1 * ( () 1 LJ fh) ) ) o-t · · · o-t O'. [ * ( (} 1 LJ (}2) o-t {) 1 LJ (}2 , 

02 o-t !3rn-1 * ( ... * (/31 *(£Ji LJ 02))) o-t ... o-t f31 * (e1 LJ 02) o-t O, LJ B2, 

what ends the proof. D 

Definition 5.4 The radix type of a type(}, denoted by radix(B), is the unique 
normal form of() with respect to the reduction o-t. 

Fact 5.5 For any type(}, 
radix(()) ::S 0. 

Proof. It is an immediate consequence of fact 5.2 and transitivity of ::S (-<).D 
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Theorem 5.6 The radi.r type may be defined by 

(13) radix(O) =sup { ()' E Types : :3A properly applicable to o A*(}'=(}} 

Proof. For a derivation of the normal form of () we have 

(14) (} = n1 *01 o-+ (}1 = a2*B2 o-+ ... o-+ (}n-1 = o:n*(}n o-+ (}n = radix(O) 

Then, the set { a 1, ... , O:n} is properly applicable to radix ( (}) and () = { o: 1, ... , O:n} * 
radix((}). Hence, 

radix ( (}) ::S sup { (}' E Types : :3A properly applicable t.o o A* (}' = B} 

Opposite widening is the result of commutativity law. Namely, let us observe 
that if o: is properly applicable to {) and 0:*19 = () ::S radix ( 0), then there 
exists a set A ~ adj8 ( 0) such that A is properly applicable to {) LJ radix ( B) 
and A*({) LJ radix(B)) = radix(B). This means that adjs(19 LJ radix(B)) = 
adjs(radix((})) as the type radix(O) is a normal form w.r.t. o-+. So, it also 
means that {) LJ radi:r ( 0) = radix ( B) and, consequently, 19 ::S radix ( (}). Hence, 
using induction we may show that every type (}' from the set in (13) widens 
to radix(O). D 

Lernrna 5. 7 Let o: be an adjective properly applicable to a type (). If n*(} ::S 
(}' = radix ( ()'), then (} ::S ()'. 

Proof. As in the observation made in the proof of theorem 5.6, (}LJ radix(O') = 
()' and (} :::; (}'. D 

Lernrna 5.8 Function radix is monotone, 

(15) if() ::S ()', then radi:r(O) ::S radix((}') 

for any types () and B'. 

Proof. Let us assume that (} ::S (}'. Then () ::S radix(O') hy fact 5.5. For type 
()we have a derivation like (14). Applying lemma 5.7 inductively to types (}i 

from the derivation we obtain radi:r((}) ::S radix(B'). D 

Lernrna 5.9 Application of an adjective does not change radix type, 

(16) radi.r (a * 0) = radix ( 0) 

for any adjective a properly applicable to a type (}. 

Proof. o: * () a--+ (} or o: * () = (). Then radi1; (a * (}) = radix ( B) by uniqueness 
of a normal form. D 

6 Further work 

As the further work we want to extend this theory to include other features 
of Mizar language. Simultaneously, the theory is formalized in MIZAR itself. 
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1 Introduction 

Given (>.x.xx)y, one may not be interested in having yy as the result but 
rather only (>.x.yx)y. In other words, only one occurrence of x is substituted 
by y and the substitution can be continued later. Such local substitution is a 
major issue in functional language implementation [15]. Yet, most calculi of 
explicit substitutions are not able to handle this process. This paper presents 
an explicit substitution calculus which is able to handle local substitution. 

There arc two main styles of explicit substitution: the >.a- and the >.se
styles. The >.a-calculus [1] reflects in its choice of operators and rules the 
calculus of categorical combinators [3]. The main innovation of the >.a-calculus 
is the division of terms in two sorts: sort term and sort substitution. >.se [11] 
departs from this style of explicit substitutions in two ways. First, it keeps 
the classical and unique sort term of the >.-calculus. Second, it does not use 
some of the categorical operators, especially those which are not present in 
the classical >.-calculus. The >.se has two new operators which reflect the 
substitution and updating that are present in the meta-language of the >.
calculus, and so it can be said to be closer to the >.-calculus from an intuitive 
point of view, rather than a categorical one. The >.se is based on the >.s
calculus [10] which is a refinement of the calculus of [9] that was influenced 
by the Automath style and, as a result was able to handle local as well as 
global substitutions. The calculus of [9] however does not enjoy confluence and 
termination and refining it into >.s (and >.se) led to loss of local substitutions. 
As far as we know any explicit substitution calculus other than that of [9] 
is unable to handle local substitutions. For a survey of calculi of explicit 
substitutions, and a comparison between both >.a- and >.se-styles, see [13]. 

The >.a- and .Ase-calculi, although in different styles, enjoy some common 
properties: they are both confluent, they both fail to preserve the termination 
of the ,\-calculus, and they both simulate /)-reduction. However, although 
the underlying substitution calculus of >.a is known to be terminating, this 
question remains unsettled for .Ase. This is frustrating. This question has been 
settled for any other calculus of explicit substitutions, so why has it proved 
very hard for .Ase? This paper reports on the status of this question so far. 

Since the calculus of [9] and the calculus of local substitutions we will give 
in this paper arc better described in a notation [8] highly influenced by de 
Bruijn's >.-calculus, we will separate the section dealing with local substitu
tions from that dealing with the termination of Se. 

2 The local substitution calculus 

Since we are going to discuss and continue the work of [9] we shall present 
our calculus in item notation (cf. [8]). In this notation we write ab= (bt5)a, 
>.a= (>.)a, aaib = (bai)a and <pia = (cpi)a. The ai-opcrator is the operator 
for explicit substitution at level i and the <pi-operator stands for the explicit 
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updating. The following nomenclature is used: (b6), (..\), (cai), (<170 arc 
called 'items (6-, ..\-,a- and <p-itcms, respectively) and band c the bodies of the 
respective items. A sequence of items is called a segment. Every term can be 
written as sn, where n is a de Bruijn index, with a convenient segment s. 

In order to treat local substitution [9] proposed the following rules: 

cr06-transition (ccri)(b 6)a --+ ((ccri)b6)a 

cr16-transition ( c cri) (b 6)a --+ (b 6)( c cri)a 

a-destruction 1 (c ai)i --+ c 

er-destruction 2 (cai)j --+ j if j # i 

These rules are enough to prevent confluence. For example: 

(2cr 1)(16)1 ---+ 1708 -tr ( (2a1
) 16)1 ---+<r-desl 1 (26)1 

(2a1)(16)1---+1718 -tr (16)(2cr1)1---+17-desll (16)2 
[9] gave a er-generation rule to start ,8-rcduction by generating a a 1-operator: 

a-generation (b6)(..\)a --+ (b6)(..\)((<p6)ba 1)a 

Note that the starting 6-,\ pair is kept after reduction. This enables the 
reuse of the rule to substitute another occurrence of the intended variable. 

Considering only the rules introduced so far, the calculus presents another 
problem: terms which are strongly normalising in the classical ,\-calculus, lose 
this property in the new calculus, and this occurs even if the application of 
the er-generation rule is restricted to the case when the abstractor binds at 
least one occurrence of a de Bruijn number in a. Here is an example: 

( 1 8)( A)( 28)1 ---+ <r-gen ( 1 8)( A)( ( <176) 1a1)(28)1 ---+ <ro8 -tr 
(18)(..\)(((<p6)1a1)28)1---+17 -dest2 (18)(..\)(28)1---+u-gen ··· 
In order to solve the problem of confluence we will introduce a calculus 

where the rules a06 -transition and a 16 -transition are modified as follows: 

cr-8-transition 1 

cr-8-transition 2 

( c ai)(b 8)a --+ ( c ai)( (c cri)b 6)a 

(ccri)(b8)a --+ (cai)(b8)(cai)a 

Therefore, we shall be keeping the starting cri-item in order to reuse it. But 
we shall need a rule to dispose of this ai-item once all possible substitutions 
have been performed. \Ve could try, for instance, the following: 

er-disposal (cai)a --+ a if i ¢ FV(a) 

But this rule is not enough to get rid of the ai-item. For example: 
( 1a1)(1 8)2 ---+u+tr 1 ( 1 a 1 

)( ( 1a1)1 8)2 ---+u-dest I ( 1a1)(1 8)2 ---+a+tr l • · • 

The problem is that after the substitution is performed on the index 1 we 
have again 1 and hence 1 will always be free in the scope of ( 1a1

). 

\i\!c can try to add the classical a-6-transition rule to ensure that the <Ti
item will be disposed of at some time: 

<T-6-transition 

But the inclusion of this rule forces us to justify the new calculus, since it 
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stands for global substitution and is always needed to dispose of the ai-itcms. 
In principle, we have two choices for the (]-generation rule: either we keep 

it as in [9] (see above) or we decide not to preserve the 8-A-pairs and we state 
it as it is usually given in calculi of explicit substitutions (cf. [10,12]): 

newa-generation (b6)(A)a ---t (ba 1 )a 

If we admit this new a-generation rule and keep our choice of operators, we 
are going to end up with either the As-calculus (cf. [10]) if we decide for global 
updatings, or with the At-calculus (cf. [12]) if we decide for partial updatings. 
But, none of these calculi permit local substitutions. Also, since these calculi 
do not preserve the 8-A-pairs, their a-destruction rules must update the free 
variables and hence in both calculi we have: 

a-destruction 8 if j > i 

But with this rule and the new (J-6-transition rules we lose confluence: 
( 1a1)(36)1 ---+a-.5-tr I ( 1 a 1 

)( ( 1 a 1 )36)1 ---+a-dest 3 ( 1 (Jl) (28)1 ---+a-.5-tr 

( ( 1 a 1 )26)(1a1)1 ---+a-de.~t 3 ( 16)( 1a1)1 ---+a-dest 1 ( 18) 1 
And the following derivation is also available: 
(1a1)(38)1---+a-o-tr ((1a 1)36)(1a1)1---+a-dest3 (26)(1a1)1---+a-destl (26)1 
Therefore, we discard the new a-generation rule in order to avoid (]-

destruction 3 and choose to keep the first version of these rules. 
Finally, since the a-generation rule preserves the 6-A pair we need a rule 

to dispose of the pair once all the possible substitutions have been carried on, 
i.e. when the abstractor in the 6-A pair does not bind any de Bruijn index. 
When discarding the 6-A pair we must update the de Bruijn numbers that 
stand for free variables. We shall perform this updating by introducing a new 
family of operators: /Li and rewriting rules for their propagation. 

2.1 A first attempt 

·with this intuition behind our calculus, we give a formal presentation. 

Definition 2.1 The terms of the calculus are given by the following grammar: 

Aa fL :: = IN I (Aa fL 6)Aa fL I (,\ )Aa fL I (Aa fL (Ji )Aa fL I ('Pk )Aa p, I (pi)A(J fL 

where i ~ 1, k ~ 0. \i\!e let a, b, c, ... range over i\(]JL. 

Note that the updating operators contain only one index. This is because 
our calculus will work with partial updatings and therefore, as for the .\t
calculus [12], the lower index is enough to deal with the updating mechanism. 

The notion of free variable in our calculus needs the following definition: 

Definition 2.2 Let N c IN and k ~ 0. \i\!e define 

(i) N \ k = { n - k : n E N, n > k} , N + k = { n + k : n E N} 

(ii) Npk = {n EN: npk}, where p E { <, ::::;, >, ~}. 

\Ve can define now the free variables of a term in i\(Jµ. 
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Definition 2.3 The set of free variables of a term in Aaµ is defined by: 

FV(n)={n} 

FV((b6)a) = FV(b) U FV(a) 

FV((-\)a) = FV(a) \ 1 

FV(('Pk)a) = FV(a)::;k U (FV(a)>k + 1) 

FV((µi)a) = FV(a)::;i U (FV(ahi \ 1) 

Definition 2.4 The ,\aµ-calculus is the reduction system (Aaµ,-+) where 
-+ is the least compatible relation (with the operators of Aa µ) generated by 
the set ,\aµ of rules in Figure 2.4. The calculus of substitutions associated 
with the ,\aµ-calculus is the reduction system generated by the set -\a11, -
{a-generation, /J,-generation} and we call it the a /J,-Calculus. 

Note that the problem of loss of strong normalisation for terms which are 
strongly normalising in the classical ,\-calculus still persists. For example: 

(1a1)(26)1 -+a-8-trl (1a1)((1a1)2'5)1 -+a-desl, (1a 1)(26)1-+ · · · 
Note also that this calculus is not confluent. E.g., let a= ( ( 16) 1 a 1

) (26)1: 
a-+a-8-tr2 ((16)1a 1)(26)((16)1a 1)1-+rr-dest ((16)1a1)(26)(16)1-+rr-8-tr2 
( (16) 1 a 1 )(2 6)( ( 16) 1a1)(16) 1 -+'trr-8-tr,rr-dest (2 6) ( ( 16) 1J)(16)1 
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But also a ---+a-iHr (((18)1a 1)28)((181)a1)1--'»a-dest (28)(18)1 
Finally, >.aµ not only does not solve the problem of confluence and does not 

preserve strong normalisation, but it also is not a first order rewriting system 
in the classical sense since both generation rules are conditional and extra and 
maybe costly calculations must be performed to evaluate the conditions. 

The only properties that we have proved, concern a subsystem of >.aµ, we 
call it aµ-, and is obtained by deleting a-8-tr 1 and a-8-tr 2 from a/.L. 

Lemma 2.5 aµ- is SN and CR and the set of aµ- -normal forms is exactly 
the set of pure terms. 

Proof. Analogous to the proof of this property for >.t [12]. D 

2.2 A better attempt 

In the previous section we have given several counterexamples, the majority 
of which arc based on the fact that rules like a-8-tr 1 and a-8-tr 2 can be used 
several times to perform the .rnme substitution. Therefore, these rules are not 
adequate to formalise the notion of local substitution. 

In order to prevent a rule like a-8-tr 1 to evaluate the same substitution 
several times we arc going to introduce a unary operator L to mark the term 
where the substitution has been locally performed and we will not allow the 
substitution to be evaluated again on marked terms. Let us try the following: 

preliminary a-8-local 1 (cai)(b8)a --t (cai)((L)(cai)b8)a 

Now this rule poses still the problem of normalisation: 
(cai)(b8)a---+ (cai)((L)(cai)b8)a---+ (cai)((L)(cai)(L)(cai)b8)a---+ · · · 
To prevent this we propose to introduce another family of a-operators that 

we denote a[,
0

c and we modify the rule as follows: 

a-8-local 1 

And to dispose of these new operators we add: 

aLoc-disposal 1 (caLJ((L)b8)a --t (b8)(cai)a 
We must also add the following, in order to be able to perform local sub

stitution in the other branch of the application: 

a-8-local 2 (cai)(b8)a --t (ca},
0
J(b8)(L)(cai)a 

a1,0 c-disposal 2 (caLJ(b8)(L)a --t ((cai)b8)a 
We are approaching the right solution but the confluence problem persist: 
( C aLc)( (L )b 8)(L )a ---+aL,,,,-disp 1 (b 8)(c ai)(L )a 
And on the other hand (caLJ((L)b8)(L)a ---+aJ,,,,,-disp2 ((cai)(L)b8)a 
But this problem has an easy solution: split the family of operators aL,c 

into one family that stands for the local substitution performed in the left 
branch of the application and another family for the right branch. We denote 
these families a}, and ak, respectively. Hence, we propose: 
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(cai)(bo)a --t (cak)((L)(c(Ji)bo)a 

(c(Jk)((L)bo)a --t (bo)(cai)a 

aL-generation (c(Ji)(bo)a --t (ca}J(bo)(L)(cai)a 

aL-destruction (c(Jt)(bo)(L)a --t ((cai)bo)a 

vVith this formulation we solve several problems at the same time: the 
distinction between ak and a}, allow us to obtain confluence for the calculus 
of substitution and the distinction between ai-operators on one hand and ah 
and a}, on the other is a good sign for the preservation of strong normalisation. 
Moreover, with this formulation we are not forced to preserve the O-A pairs 
and hence we do not need to introduce conditions on free or bound variables 
and furthermore we do not need the introduction of the µ-operator and all 
the rules that it generates. Now, we present formally the calculus: 

Definition 2.6 The terms of the calculus arc given by the following grammar: 

AsL ::= IN I (AsL o)AsL I (L)As1, I (A)AsL I (AsL ai)As1, I (<p~)AsL 
where i 2: 1, k 2: 0 

We let a, b, c, ... range over As£. Note that we come back to the updating 
operators of AS. In fact, the calculus we will define is AS where a-o-transition 
is replaced by the four rules above. Note also that Ac As c As1,. 

Definition 2.7 The ASL-calculus is the reduction system (AsL, -+AsJ, where 
-+AsL is the least compatible reduction on AsL generated by the rules in Figure 
2. We use ASL to denote this set of rules. The calculus of substitutions 
associated with the As L -calculus is the reduction system generated by the set 
ASL - {a-generation} and we call it the a1,-calculus. 

Lemma 2.8 shows that the As-calculus can be simulated in the ASL-calculus: 

Lemma 2.8 Let a, b E As, if a --+As b then a --+ASL b. 

Proof. It is enough to show that the a-o-transition rule can be simulated 
in the As 1,-calculus. This may be done by consecutive application either of 
(Ju-generation and an-destruction or a1,-generation and a1,-de8truction. D 

\Ve conclude now that the ASL-calculus simulates classical (3-reduction: 

Corollary 2.9 Let a, b E A, if a -+fJ b then a -+Asi, b. 

Proof. Using the previous lemma and the simulation of f3 in AS (cf. [10]). D 

\Ve are going to prove now confluence and strong normalisation of the 
a 1,-calculus, in order to have existence and uniqueness of aL-normal forms. 

Lemma 2.10 The a1,-calculw; is locally confluent. 
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a-generation (b 8)(.X)a ---+ (ba 1 )a 

a-A-transition (b aJ)(.X)a ---+ (.X)(baH1)a 

a R-generation ( c ai)(b 8)a ---+ ( c ak)( (L )( c ai)b 8)a 

an -destruction (cak)((L)b8)a ---+ (b 8)(c ai)a 

a r, -generation (c ai)(b8)a ---+ (ca},) (b 8) (L) (c ai)a 

aL-destruction (cai)(b8)(L)a ---+ ((cai)b8)a 
~ 

I n - 1 if 
I 

n>j 

a-destruction (baJ)n ---+ ~ (<p~)b if n=J 

ln if n<j 

<p-A-transition ( <pi)(.X)a ---+ (A)( ifJi+1 )a 

<p-8-transition ( <pi)(a18)a2 ---+ ( ( <pi)a18) ( <pi)a2 
,, 

( <pi)n 
n + i - 1 if n>k 

<p-destruction ---+ 
n if n~k 

Fig. 2. The A.9r,-calculus 

Proof. By Knuth-Bendix Theorem it is enough to study the critical pairs. 
There is only one, namely the one generated by the awgeneration and ar,
generation rules. It can be closed using a1,-destruction and awdestruction. D 

The proof of SN is not immediate. We envisage a proof by structural 
induction split in the following lemmas. We note SN the set of terms in AsL 

which arc a,,-strongly normalising. Our aim is to prove that SN= AsL. 

Lemma 2.11 Let a, b E AsL, the following hold: 

(i) (b8)a E SN iff a E SN and b E SN. 

(ii) (.X)a E SN iff a E SN. 

(iii) (L)a E SN iff a E SN. 

Proof. No a,,-rule has an application, an abstraction or a mark at the root.D 

In the following lemmas we use the notation: lg( a) stands for the length of 
term a and is defined as usual, dp(a) stands for the depth of a, i.e. the length 
of the longest derivation to its ar,-normal form. \Ve use dp(a) for a E SN. 

Lemma 2.12 For i 2:: 1 and k 2:: 0, if a E SN then (<pi)a E SN. 

Proof. By induction on the ordinal ( dp( a), lg( a)). 
If (dp(a), lg(a)) = (0, 1) then a= n; obvious. If <pica is a normal form, then 

obvious. Therefore we study all possible reducts of (<pi)a and prove them SN. 
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If (cp1)a-+ (cpt)b, with a-+ b, we conclude by IH since dp(a) > dp(b). 
If the reduction is at the root we must analyse the three possible rules. 

\Ve just study cp-8-tmnsition: vVe have (cpt)((b8)c) -+ ((cpt)b6)(cp1)c. Now 
dp((b6)c) 2: dp(b), dp((b8)c) 2: dp(c), lg((b6)c) > lg(b) and lg((b6)c) > lg(c). 
Hence by IH, (cpi)b E SN and (cp1)c E SN, and we use Lemma 2.11.1. D 

Lemma 2.13 For i 2: 1, if a, b E SN then (bai)a E SN. 

Proof. By induction on the ordinal (dp(a), lg( a), dp(b)). 
If (dp(a), lg(a), dp(b)) = (0, 1, 0), then a= n and bis in normal form. The 

result is obvious if n i- i, whereas if n = i we use the previous lemma. 
The proof follows now the lines of the previous lemma, but an interesting 

case arises when considering the reduction at the root by the awgencmtion 
or the a1,-genemtion rule. Let us study for instance the latter. 

Therefore we have a= (d6)c and (bai)(d6)c-+ (baL)(d8)(L)(bai)c. 
Let us assume that (baL)(d8)(L)(bai)c ti SN. 

Since dp((d 8)c) 2: dp(c) and lg((d 8)c) > lg(c), by IH we have (bai)c E SN 
and by Lemma 2.11.3, L((bai)c) E SN. Now, since a E SN, we have d E SN, 
and by Lemma 2.11.1, we conclude (rH)(L)(bai)c E SN. 

Therefore, since b E SN, there must be an infinite derivation beginning 
at (ba},)(d6)(L)(bai)c which reduces at the root. Furthermore, since there 
are no rules which reduce applications or marks, there exist d', c', b' such that 
d----» d', (bai)c----» r!, b----» b' and (ba},)(d6)(L)(bai)c----» (b' aL)(d' 6)(L)c'-+ 
((b' ai)d' 6)c'-+ · · · But the fact that this derivation is infinite is a contradic
tion because by IH, we have ( b ai) c E SN, and hence c' E SN, and also by IH 
we have (bai)d E SN, and hence (b' ai)d' E SN. Therefore, by Lemma 2.11.1, 
((b' ai)d' 6)c' E SN. We conclude that (bai)(d6)(L)(bai)c must be SN. D 

Lemma 2.14 For i 2: 1, if a, b E SN then (baL)a E SN and (bak)a E SN. 

Proof. By induction on the ordinal (dp(a),dp(b)). Use the previous lemma 
when considering the reduction at the root. D 

Theorem 2.15 The a1,-calculus is strongly normalising. 

Proof. By induction on a we prove that every a E A"h is SN. 
If a= n, it is obviously SN. 
If a= (c6)b or a= (>.)b or a= (L)b, use Lemma 2.11. 
If a= (cpi)b use Lemma 2.12. 
If a= (cai)b use Lemma 2.13. 
If a= (caL)b or a= (cak)b use Lemma 2.14. 

Theorem 2.16 The a,,-calculus is confluent. 

D 

Proof. By Newman's Lemma, the previous lemma and Lemma 2.10. D 
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3 The status of the open question of termination of Se 

The Ase-calculus, like the >..a-calculus, simulates ,B-reduction, is confluent (on 
open terms 3 ) [11] and does not preserve strong normalisation (we say does 
not have PSN) [6]. However, although strong normalisation (SN) of the a
calculus (the substitution calculus associated with the >..a-calculus) has been 
established, it is still unknown whether strong normalisation of the Se-calculus 
(the substitution calculus associated with the Ase-calculus) holds. Only weak 
normalisation of the Se-calculus is known so far [11]. 

The Se-calculus (see Definition 3.8) has the a-a-transition rule which seems 
to be responsible for the difficulties in establishing SN of Se. However, Zantema 
showed that the a-a-transition scheme on its own is SN [11]. 

This section is a discussion of the status of strong normalisation of the 
Se-calculus. We show that the set of rules Se is the union of two disjoint sets 
of rules a-a-tr.+tp-a-tr. and the rest of the rules where each of these two sets 
gives a calculus which is SN. However, commutation does not hold and hence 
modularity cannot be used to obtain SN of se. In addition, the distribution 
elimination [17] and recursive path ordering methods are not applicable and 
we remain unsure whether Se is actually SN or not. 

8.1 The classical >..-calculus in de Bruijn notation 

vVe assume the reader familiar with de Bruijn notation [5]. We define A, the 
set of terms with de Bruijn indices, by: A ::=IN I (AA) I (>..A). 
We use a, b, ... to range over A and rn, n, ... to range over IN (positive natural 
numbers). Furthermore, we a.c;sume the usual conventions about parentheses 
and avoid them when no confusion occurs. Throughout the whole article, 
a = b is used to mean that a and b are syntactically identical. We write 
---+ + and ---+r to denote the transitive and the reflexive transitive closures of a 
reduction notion ---+. \Ve say that a reduction ---+ is compatible on A when for 
all a, b, c E A, we have a ---+ b implies a c ---+ b c, ca ---+ c b and >..a ---+ >..b. 

As ,B-reduction a la de Bruijn involves the substitution of a variable n for 
a term bin a term a, we need to update the terms: 

Definition 3.1 Let the updating functions Uk : A ---+ A for k ;::: 0 be i ;::: 1 be: 

Uk(ab) = Uk(a) Uk(b) . { n + i - 1 if n > k 
Uk(n) = 

n if n ::::; k. 

Definition 3.2 The meta-substitutions at level j, for j ;::: 1, of a term b E A 
in a term a E A, denoted a{{j +--- b » , is defined inductively on a a.c; follows: 

3 The Ase-calculus is confluent on the whole set of open terms whereas Au is confluent on 
the open terms without metavariables of sort substitution as is shown in [16]. 

10 
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(a1a2){{j +-b} = (a1{j +--- b}) (a2{j +-b}) 
n{j +--- b» 

(..\a){{j +--- b} = ,\(a{{j + 1 +--- b») 

n - 1 if n > j 

ug ( b) if n = .J 

n if n < j. 

Definition 3.3 fl-reduction is the least compatible reduction on A generated 
by: (,6-rule) (..\a) b -'tfJ a{ 1 +-b} 
The ,\-calculus a la de Bruijn, is the reduction system with rewriting rule (3. 

3.2 The As- and Ase-calculi 

,\s [10] handles explicitly the meta-operators of definitions 3.1 and 3.2. Hence, 
the syntax of the ,\s-calculus is obtained by adding two families of operators : 

• { O"j lJ:::: 1, which denotes the explicit substitution operators. The term a aj b 
stands for term a where all free occurrences of the variable corresponding 
to de Bruijn index j arc to be substituted by term b. 

• {'Pi h>o i>l, which denotes the updating functions necessary when working 
with de Bruijn numbers to fix the variables of the term to be substituted. 

Definition 3.4 The set As of terms of the As-calculus is given as follows: 

As::= IN I AsAs I ,\As I J\saJJ\s I <piAs where j, i ~ 1, k ~ 0. 

We take a, b, c to range over As. A term of the form a aJ b is called a closure. 
Furthermore, a term containing neither a's nor <p's is called a pure term. 

A reduction -'t on As is compatible if for all a, b, c E As, if a -'7 b then 
a c -'7 b c, ca -'7 c b, ,\a -'7 ,\b, a O"j c -'7 b O"j c, c aJ a -'7 c aJ b and <pia -'7 <pib. 

To a-generation which mimicks the ,B-rule, we add a set of rules which arc 
the equations in definitions 3.1 and 3. 2 oriented from left to right. 

Definition 3.5 The ,\s-calrnlus is the reduction system (As, -'7.x 8 ), where -'t>.s 
is the least compatible reduction on As generated by the set As of the rules of 
Figure 3. The s-calrnlus, the calculus of substitutions associated with the ..\s
calculus, is the reduction system generated by the sets= ,\s-{a-generation}. 

Lemma 3.6 (cf. [10]) The following holds: 

(i) (SN and CR of s) The s-calrnlus is strongly normalising and confluent 
on As. Hence, every term a has a unique s-norrnal form denoted s(a). 

(ii) The set of s-norrnal forms i8 eJ:actly A. 

(iii) For all a, b E As we have: s(a b) = 8(a)s(b) , 
s(<pia) = Uk(s(a)), s(aaJb) = s(a){{j f---8(b)}. 

8(..\a) = ..\(s(a)) , 

(iv) Let a, b E As, if a -'tCT-gen b or a --*>.s b then s(a) --*f3 s(b). 

(v) (Soundness) Let a, b EA, if a --*>.s b then a --*/3 b. 

(vi) (Simulation of ,6-reduction) Let a, b E A, if a -'tf3 b then a --*>.s b. 

(vii) (CR of ,\s) The As-calculus is confluent on As. 

11 
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a-generation (,~a) b --t aa1 b 

a->.-transition (>.a) aib --t >.(aai+ 1b) 

a-app-transition (a1 a2) aib --t (a1 aib) (a2 aib) 

r n ~ 1 if n>j 

a-destruction naib --t l 'Pi. b if n=J 

n if n<j 

rp->.-transition 'Pi (>.a) --t >.(rpi+1 a) 

rp-app-transition rpi(a1 a2) --t (rpi ai) (rpi a2) 
I 

'Pin 
n + i - 1 if n>k 

rp-de.i;truction --t < 

ln if n~k 

Fig. 3. The .As-calculus 

(viii) (Preservation of SN} Pure terms which are strongly normalising in the 
>.-calculus are also strongly normalising in the >.s-calculus. 

Open terms were introduced in the >.s-calculus as follows (see [11]): 

Definition 3. 7 The set of open terms, noted Asap is given as follows: 

Asap::= V I IN I AsapASap I >.Asap I Asap ai Asap I rpiAsap 

where j, i 2: 1, k 2: 0 and where V stands for a set of variables, over which 
X, Y, ... range. We take a, b, c to range over Asop· Furthermore, closures, 
pure terms and compatibility are defined as for As. 

Working with open terms one loses confluence as shown by the example: 

((>.X)Y)a11--t ((>.X)a11)(Ya11) 

and (X a 1Y)a11 and ((>.X)a11)(Ya11) have no common reduct. This example 
also shows that even local confluence is lost. In order to solve this problem, 
[11] added to the >.s-calculus a set of rules that guarantees confluence. 

Definition 3.8 The set of rules >.se is >.s together with the rules of Figure 4. 
The Ase-calculus is the reduction system (Asap' -+>.sJ where -+>.s" is the least 
compatible reduction on As0 P generated by the set of rules >.se. The se
calculus, the calculus of substitutions associated with the Ase-calculus, is the 
rewriting system generated by the set of rules .'ie = >.se - {a-generation}. 

Lemma 3.9 (cf. [11]) The following holds: 

(i) (WN and CR of se) The s,,-calculus is weakly normalising and confluent. 

(ii) (Simulation of /3-reduction} Let a, b E A, if a -tfJ b then a -tt>.s" b. 

(iii) (CR of >.se} The >.se-calculus is confluent on open terms. 

12 
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a-a-transition (aaib) aJ c --+ (aaJ+l c) ai (baJ-i+l c) if 

a-cp-transition 1 ('Pk a) aJ b --+ 'P~-1 a if 

a-cp-transition 2 ('Pi a) aJ b --+ 'Pi(aaJ-i+l b) if 

cp-a -transition 'Pi(aaJb) --+ ('Pi+1 a) aJ ('Pi+i-j b) if 

cp-cp-transition 1 'Pi ('Pi a) --+ 'P{ ('Pi+i-J a) if 

cp-cp-transition 2 'Pi (cp{ a) --+ 
j+i-1 

'Pt a if 

Fig. 4. The extra rules of the Ase-calculus 

(Beta) (,\a) b --t a [b ·id] 

(Var Id} 1 [id] --t 1 

(VarCons) 1 [a· s] --t a 

(App) (a b)[s] --t (a [s]) (b [s]) 

(Abs} (,\a)[s] --t ,\(a [1 ·(sot)]) 

(Clos} (a [s])[t] --t a [sot] 

(IdL) id 0 s --t s 

(Shiftld} t 0 id --t t 

(ShiftCons) fo(a·s) --t s 

(Map} (a·s)ot --t a[t]·(sot) 

( A.58) (s1 o s2) o s3 --t s1o(s2os3) 

Fig. 5. The >.a-calculus 

(iv) {Soundness) Let a, b E A, if a ~>..se b then a ~f:J b. 

3.3 The ,\a-calculus and the termination of the a-calculus 

Definition 3.10 The syntax of the ,\a-calculus [1] is given by: 

Terms 

i ~ j 

k<j<k+i 

k+i~j 

j~k+l 

l + j ~ k 

l-:5:.k<l+j 

Substitutions Aa5 ::=id j t I Aat · Aa" j Aas o Aa5 

The set, denoted ,\a, of rules of the ,\a-calculus is given in Figure 5. 
The set of rules of the a-calculus is ,\a - {(Beta)}. We use a, b, c, ... 

to range over Aat and s, t, ... to range over Aa'. For every substitution s 
we define the iteration of the composition of s inductively as s 1 = s and 
s11 + 1 = s o sn. We use the convention s0 = id. Note that the only de Bruijn 
index used is 1 , but we can code n as 1 [tn- l] . So, A C Aat . 

13 
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Theorem 3.11 The <J-calwlus is strongly norrnalising (SN). 

There arc various proofs of this theorem in the literature: 

(i) The first strong normalisation proof of <J is based on the strong normal
isation of SUB ST [7], which is, within CCL, the set of rewriting rules 
that compute the substitutions. Sec [7]. 

(ii) The proof in [4] shows the termination of <J via a strict translation from <J 
to another calculus <Jo (an economic variant of <J) and the termination of 
<J0 . The calculus <Jo is one sorted and treats both o and [] as o, observing 
that o and [ ] behave in the same way. 

(iii) Zantema gives two proofs in [17,18]. The first is based on a suitable 
generalisation of polynomial orders to show the termination of the cal
culus <Jo given below (and hence the termination of <J). The second uses 
semantic labelling to show the termination of <J. 

We will explain why these techniques for showing SN of <J do not apply to Se· 

Definition 3.12 [The <Jo-calculus] The set of terms A<Jo of the <Jo-calculus 
has the abstract syntax s, t ::= 1 I id I ti ,\s I sot I s · t. 
The set, denoted O"o, of rules of the calculus is the following: 

(Vrld) 1 0 id-+ 1 (Shld) t aid-+ t 

(VrCons) 1 o (s · t) -+ s (Abs) (,\s) o t-+ ,\(so (1 ·(tot))) 

(Sh Cons) t o(s · t) -+ t (Map) (s · t) o u-+ (sou)· (to u) 

(IdL) id 0 s-+ s (Ass) (sot) o u-+ so (to u) 

Remark 3.13 <Jo is a particular case of the system Subst of CCL. Rules 
(V r Id) and ( S hl d) are particular cases of the right identity rule. Hence, the 
techniques of (i) and (ii) above for showing SN for SU BST and <Jo will have 
similar status with respect to Se· 

The methods of techniques (i) .. (iii) above do not apply to se: 

• Problem 1: Unable to use recursive path ordering By taking a look 
at the Se-rules (Definition 3.8), it becomes obvious that the unfriendly rules, 
with respect to SN, are <J-<J-transition and to a lesser extent rp-<J-transition. 
These rules prevent us from finding an order on the set of operators in order 
to solve the normalisation problem with a recursive path ordering (rpo). 

• Problem 2: Unable to use Zantema's distribution elimination 
lemma. The Se-rules "look like" a..<Jsociative rules but unfortunately they 
are not; e.g. in <J-<J-transition one could think the <JJ-opcrator distributes 
over the <Ji-operator, but it is not a "true" distribution: <Jj changes to <JH 1 

when acting on the first term and to <Jj-i+l when acting on the second. This 
prevents use of Zantema's distribution elimination method [17] to show SN. 

Another technique to show SN is modularity where SN is proved for certain 
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subcalculi os se which are shown to satisfy a commutation property. vVc show 
in the next section that indeed se can be divided into two subcalculi which 
are S~, but that unfortunately, the needed commutation results do not hold. 

"3.4 Dividing s,, in two disjoint sets s + *tp and *a 

Definition 3.14 We define the following sets of rules: 
*tp = { a-ip-tr.1, a-ip-tr.2, ip-ip-tr.1, ip-ip-tr.2}, 
*a= {a-a-tr., ip-a-tr.}, 
*tp- = { a-ip-tr.1, :p-:p-tr.2}, *tp-- = { a-ip-tr.2, :p-ip-tr.1 }. 

Note that se = (s+*i.p)+*a. \Ve shall prove in this section that both calculi 
generated by the set of rules s+ *tp (Theorem 3.17) and *a (Theorem 3.28) are 
S:'.\I. Unfortunately, these calculi do not possess the property of commutation 
needed to ensure that their union Se is SN (sec Example 3.31). 

:J.5 SN of s + *tp 

We prove that s + *'P is SN by giving a weight that decreases by reduction. 
We begin by defining two weight functions needed for the final weight: 

Definition 3.15 Let P: Asap-+ IN and W: Asap-+ IN be defined by: 

P(X) = P(n) = 2 W(X) = W(n) = 1 

P(ab) = P(a) + P(b) l¥(ab) = W(a) + W(b) + 1 

P(>.a) = P(a) W(>.a) = W(a) + 1 

P(aaJb) = j * P(a) * P(b) iv·(aaJb) = 2 * W(a) * (W(b) + 1) 

P(cp~a) = (k + 1) * (P(a) + 1) vV(:p~a) = 2 * lV(a) 

Lemma 3.16 For a, b E Asap the following hold: 

(i) If a -+,+*<Pb then l¥(a) ;::: vV(b). 

(ii) If a -+s+*'P- b then l¥(a) > l¥(b). 

(iii) If a -+*op-- b then P(a) > P(b). 

Proof. I3y induction on a: if the reduction is internal, the induction hypoth
esis applies; otherwise, the theorem must be checked for each rule. D 

Theorem 3.17 The s + *:p-calculus is SN. 

Proof. The previous lemma ensures that the ordinal (l¥ (a), P( a)) decreases 
with the lexicographical order for each s + *cp-reduction. D 

:J.6 The >.w- and >.w,,-calculi 

Recall that the *a-calculus consists of the two painful rules a-a-tr. and :p-a-tr. 
which are at the heart of our inability to use the rpo method or the methods 
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of Zantema. In order to establish SN of *a, we will use an isomorphism 
established in [13] between Ase and AWe, a calculus written in the .Aa-style. 

In order to express .As-terms in the .Aa-stylc, [13] split the closure operator 
of .Aa (denoted in a semi-infix notation as -[-]) in a family of closures opera
tors that were denoted also with a semi-infix notation as -[-]i, where i ranges 
on the set of natural numbers. [13] also admitted as basic operators the iter
ations oft and therefore had a countable set of basic substitutions tn, where 
n ranges on the set of natural numbers. By doing so, the updating operators 
of .As become available as -[tnk Finally, [13] introduced a slash operator of 
sort term ---+ substitution which transforms a term a into a substitution a/. 
This operator may be considered as consing with id (in the .Aa-jargon) and 
was first introduced and exploited in the .Av-calculus (cf. [2]). Herc is the 
formalisation of this syntax and the rewriting rules of .Aw: 

Definition 3.18 The set Aw of terms of the .Aw-calculus, is defined as Awt U 

Aw8
, where Awt and Aw8 are mutually defined as follows (j ~ 1 and i ~ 0): 

Terms Awt ::=IN I AwtAwt I .AAwt I Awt[Aw 8]J 

Substitutions Aw" ::=ti I Awt / 

The set, denoted .Aw, of rules of the .Aw-calculus is given as follows: 

a-generation (.Aa) b 

a -app-transition (a b)[s]J 

a-.A-transition (.Aa)[s]J 

a-/-dcstruction n[a/]J 

a-t-destruction 

---7 

---7 

---7 

---7 

a[b/]i 

(a [s]J) (b [s]J) 

.A(a[slJ+1) 

f n -.1 if n > j 
' a[tJ-l]i if n = J 

n if n < j 
~ 

n + i if n ~ j 

l n if n < j 

The set of rules of the w-calculus is .Aw - {a - generation} . \Ve use 
a, b, c, ... to range over Awt and s, t, ... to range over Aw8

• 

Definition 3.19 Let V stand for a set of variables, over which X, Y, ... 
range. The set Aw0 p of open terms, is defined a8 Aw~P U Aw~P' where Aw~P 
and Aw~11 are mutually defined as follows (j ~ 1 and i ~ 0): 

Open Terms Aw~11 ::= V I IN I Aw~PAw~11 I .AAw~P I Aw~11 [Awi11JJ 
Substitutions Aw~P ::=ti I Aw~11/ 

We take a, b, c to range over Aw~11 and s, t, ... over Aw~1r Clo.mres, pure 
tcrm.c; and compatibility are defined as expected. The set -Awe of rules of the 
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>..we-calculus is obtained by adding to ,\w the new following rules: 

a--/ -transition a [b/]k[s]j --+ a [s]j+db[s]j-k+1/]k if k<" _] 

a [ti]k[b/]j 
{ a[b/];-•[t'], if k+i~j 

/-t-transition --+ 
a[ti-Ih if k~j<k+i 

( a[tl]j-dti]k if k+i<j 
t-t-transition a [ti]k WL --+ l a[ti+t]k if k~j~k+i 

The set of rules of the We-calculus is Awe - { a--generation}. 

Remark 3.20 Note that the rule schemes /-t and t-t can be merged into 
the single scheme a [ti]k[s]J -t a[s]j-i[ti]k fork+ i < j but they must be kept 
distinct when k + i = j if SN is to hold. The t-t-scheme, if admitted when 
k + i = j, may generate an infinite loop (e.g., if i = k = l = 1 and j = 2). 

[13] established an isomorphism between Ase and Awe and also between >..s 
and >..w. These isomorphisms translate properties of >..s and Ase to >..w and 
>..we, respectively. Hence, all the results mentioned above concerning ,\s and 
Ase translate into corresponding results for the sort term to >..w and Awe· 

Theorem 3.21 {cf. [13]) The following hold: 

(i) Thew-calculus is SN and confluent on Awt. 

(ii) Let a, b EA. If a ----1>>.w b then a ----1tf3 b. If a -+f3 b then a ----1>>.w b. 

(iii) The Aw-calculus is confluent on J\wt. 

(iv) Pure terms which arc SN in the ,\-calculu8 are al8o SN in the Aw-calculus. 

(v) The We-calculus is weakly normalising and confluent. 

(vi) The >..we-calculus is confluent on open terms. 

(vii) Let a, b E A . If a ----1> >.we b then a ----1> f3 b . If a -t f3 b then a ----1> >.we b . 

3. 7 SN of *a-

To prove SN for *O- we will use the isomorphism presented in Section 3.6 and 
the technique that Zantema used to prove SN for the calculus whose only rule 
is a--a--transition (cf. [11]). Following this isomorphism, the schemes a--a--tr. 
and tp-(J-tr. of Ase both translate into the same scheme of Awe, namely a-
/-transition of Definition 3.19. Hence, to show that *O- is SN, it is enough 
to show that the calculus whose only rule is a--/-tran8ition, let us call it a--/
calculus, is SN. To do so, we use the following Lemma of Zantema (cf. [14]): 

Lemma 3.22 Any reduct-ion relation -t on a set T satisfying the three prop
erties below is strongly nonnal'i.c;ing: 

(i) -t i.c; weakly normalising. 
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(ii) ---+ is locally confluent. 

(iii) ---+is increasing, i.e., 3 function f: T f---f IN where a---+ b =} J(a) < J(b). 

For weak normalisation of the a-/ - calculus we use the technique of [11]: 

Definition 3.23 We say that c E Awt is an external normal form if 
c = a[s1k · · · [sn]i,, where a =I- e[d/]k and if sk =bk/ then ik > ik+l· We denote 
the set of external normal forms EN F. 

Lemma 3.24 Let c = a[si]i 1 • • • [snk E EN F and let in S in+l and Sn = bn/ 
then there exists a a-/-dcrivation c---+ + a[ti]Ji · · · [tn+1k,+1 E EN F such that 
Jn+1 = in and for every r with 1 S r S n + 1 we have either tr = sk for some 
k Sn+ 1 or tr = (ap[sn+1])/ for some Sp= ap/ with 1 Sp S n. 

Proof. By induction on n. D 

Lemma 3.25 Let c = a[s 1k · · · [snk such that a =I- c[d/]k. There exists a 
a-/-derivation c ---+t a[t1]J1 • • • [tn])n E EN F such that for every r with 1 S r S 
n + 1 we have either tr= sk for some k Sn or tr= (apri[.<>pr 2 ]k2 • • • [sPrnlkJ/ 
with 1 S Pr1 S · · · S Pm Sn and with some Sp= aPrif {l SP Sn}. 

Proof. By induction on n, using the previous lemma. 

Lemma 3.26 The a-/-calculus is weakly normalising. 

D 

Proof. Assume a term c not having a normal form for which every term 
smaller (in size) than c admits a normal form. Let c = a[s1k · · · [snk, such 
that a =I- e[d/]k. By Lemma 3.25, c ---+t a[ti]j1 • • • [tn])n E EN F. As a, ti, · · · tn 
are all smaller than c, they admit a normal form. Replacing each of them by 
its normal form in a[ti]j 1 • • • [tnlJ., gives a normal form for c. Absurd. D 

Theorem 3.27 The a-/-calculus is Btrongly normalising on Awt. 

Proof. Use Lemma 3.22. (i) was shown in Lemma 3.26. (ii) follows from a 
critical pair analysis and (iii) is shown by choosing f(a) to be the size of a.D 

Since both rule schemes in *a translate into the single a-/ rule scheme, 
the isomorphism gives: 

Theorem 3.28 The *a-calculus is strongly normalising. 

8.8 Modularity fails 

Now that s + *'P and *a are SN the question arises whether the whole system 
can he shown SN using a modularity result. The answer is negative for the 
classical modularity theorem of Bachmair-Dershowitz, which we recall here. 

Definition 3.29 A rewrite relation R commutes over S if whenever a -ts 
b ---+ R c, there is an alternative derivation a ---+ R d ---+ Rus c. 

Theorem 3.30 (Bachmair-Dershowitz-85) Let R commute over S. The 
combined system RU S is SN iff R and S both are SN. 

18 



KAMAREDDINE AND Rios 

Example 3.31 shows that no commutation exists between s + *1P and *IT 
and so the Bachmair-Dershowitz's Theorem cannot be used to get SN of Se· 

Example 3.31 To show that *O" does not commute over s+*<p, let k+i s j, 
h S j - i + 1 and h > k + 1. Now take the following derivation: 
( cpi (a ah b)) aj c -+*'P cpi ((a ah b) aj-i+lc) -+a-u-tr cpi ( (a aj-i+2c) ah ( b aj-i-h+2c)) 

It is easy to sec that (c.pi(aahb)) aJc does not contain any *O"-redex. 
On the other hand, s + *'P docs not commute over *O" either: 

Let i s j and let us consider the following derivation: 
((.Aa) !Tib) <J1c) -+u-a-tr ((.Aa) a1+1c) <Ji(baj-i+lc) -+s (.A(aa1+ 2c)) <Ji(f><Jj-i+lc) 
But reducing the only s-rcdcx in ((.Aa) aib) aJc) we get (.A(aai+ 1b)) aJc which 
also has a unique s-redex. Reducing it we get .A((aai+1b) a1+1c) and now there 
is only the a-a-transition redex which gives us .A((aa1+2c)ai+1 (ba1-i+ 1c)) 
which has no further rcdexcs. Therefore, (.A(a<J1+2 c)) <Ji(ba1-i+ 1c) cannot be 
reached from ((.Aa) <Jib) aic) with an Se-derivation beginning with ans-step. 

4 Conclusion 
This paper attempted two goals: 

(i) It gave a calculus of explicit substitutions which allows local as well as 
global substitutions. vVe showed that this calculus simulates beta reduc
tion and that the underlying calculus of substitutions is strongly normal
ising and confluent. A calculus of local explicit substitutions was given 
in [9], however that calculus did not enjoy good theoretical properties. 

(ii) It explained the problems faced in showing that the Se-calculus is strongly 
normalising. We are not sure whether the answer is positive or negative 
at this stage. We leave this problem as a challenge to the community. 
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1 Introduction 

1.1 Presentation 

This work is part of a larger project where we arc exploring the possibilities 
of extensions preserving strong normalisation and confluence of standard re
duction systems by new reductions of the form f' (f t) ----+ t where f' is in 
some sense an inverse of f. 

The way this notion of invertibility may be understood is one of the ques
tions we are investigating. A possibility would be to take the invertibility w.r.t 
extensional equality of functions between inductive types. 

Here, we shall consider the simply-typed ,\-calculus, equipped with induc
tive types ( i. e recursive types satisfying a condition of strict positivity) and 
structural recursion schemes on these types. 

In this short paper, we will focus on two particular cases where the use
fulness of this extension seems obvious. Namely, we shall study some isomor
phisms of products (defined as inductive types) and the notion of copy of a 
type 
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1.2 Isomorphisms of Types 

Let us first recall a few facts and definitions about isomorphisms of types. 

Definition 1.1 Consider a typed A-calculus, equipped with an equivalence 
relation ,..,_, on terms, a term idA : A ---+ A for any type A and a composition 
operator o (with suitable typing) verifying the following conditions, for any 
function f : A ---+ B: 

ids of,..,_, f 

Then, two types A and B are said to be isomorphic (written A e:' B) if 
there exist two A-terms f : A ---+ B and g : B ---+ A such that 

In this case, g is often written 1- 1 and called the inverse off. 

Until now, isomorphisms of types have mostly been studied in various first
or second-order A-calculi, where ,..,_, is usually generated by /)77-conversion :1 , 

idA ~ AX : A· x and o ~ Ag : B---+ C · Af : A---+ B ·AX : A· g (! x) (for any 
types A, B, and C). As an example, we have the following result: 

Proposition 1.2 ([20]; [9,11]) All isomorphisms holding in A1/)77-+,x,1, the 
first-order simply-typed A-calculus with binary products and unit type (or, 
equivalently, in cartesian closed categories}, are obtainable by finite compo
sitions of the following "base" of seven isomorphisms: 

AxBe:'BxA Ax (B x C) e:' (A x B) x C 

(A x B) ---+ C e:' A ---+ (B ---+ C) A---+ (B x C) e:' (A---+ B) x (A---+ C) 

Axle:'A 

1. 3 Isomorphisms of Inductive Types 

Now, it is our view that, as long as inductive types arc concerned, intensional 
isomorphisms, in ordinary sense, lack expressivity. To view this problem in a 
larger context, one needs a notion of extensionality. 

Definition 1.3 Two types A and B are extensionally isomorphic (written 
A ::::::'. B) if there exists two A-terms f : A ---+ B and g : B ---+ A such that 

V x : A · g (J :c) ,..,_, x and Vy : B · f (g y) ,..,_, y 

(Note that e:' and ::::::'. are both equivalence relations.) 

3 It was shown in [10] that with ,6-conversion solely, the only invertible term is the identity. 
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Obviously, we have A ~ B ::::} A ~ B, but the converse is usually not true. 
One way to achieve this kind of isomorphisms would be to add extensional 
reduction rules to the calculi, such as T/ rules, surjective pairing, etc. However, 
many calculi don't come equipped with extensional reduction rules, for various 
reasons (decidability, confluence, etc); though some positive results do exist, 
e.g j16,13,15J. Hence, in this paper, we will mainly be interested with (3L
reduction only (where L-reduction is the rule associated to structural recursion 
over inductive types). 

Of course, extensional isomorphisms are provable by induction, but they 
are not computable, i.e, one doesn't have (for example) 

;\J; : A· 1-1 (.f x) -----'Tfh AX : A· :r. 

Without appealing to full extensionality, we think that, if f and f- 1 are 
mutually invertible extensional isomorphisms, it is worth considering the ad
dition of new reduction rules (call them a-reductions, following j6J) as follows: 

1.4 Outline of the paper 

In Sect. 2, we quickly give essential definitions of a simply-typed A-calculus 
with inductive types. 

Then, in Sect. 3, we quickly present a small lemma ("Deferment Lemma") 
that is of interest in the next section. 

In Sect. 4, we illustrate the addition of rewrite rules on n-ary products. 
'vVe show that, for products, strong normalisation and confluence are preserved 
for a rewrite rule corresponding to commutativity, while it is not the case for 
associativity, unless we also add surjective pairing. 

Finally, in Sect. 5, we study the notion of isomorphic copy of a type, and 
how a rewrite rule corresponding to it may or not be added to the calculus. 

2 Simply-Typed >.-Calculus with Inductive Types 

We define the simply-typed A-calculus with inductive types, which may be 
seen as an extension of Godel's system T. Some references on A-calculus and 
inductive types may be found in !4,19,5,22,18,81. Furthermore, most of our 
notations and results concerning rewrite systems arc taken from jlJ. For a 
given reduction -----+ n, we write -----+ ~ for its transitive closure, and -----+'R for 
its reflexive-transitive closure. 

2.1 Types 

Throughout this paper, we consider an infinite set S = {a, (3, ... } of type 
variables. We also consider an infinite set of variables V (with V n S = 0), 

3 



D. CHEMOUIL, S. SOLOVIEV 

and an infinite set C of inductive-type constructors (or introduction operators), 
with C n S = C n V = 0. 

Moreover, as usual in this sort of presentation, we consider all terms and 
types up to o:-convernion, i. e the names of bound variables are irrelevant. 

Note 1 In the following, the sign = will denote syntactic equality, and def
initions will be introduced in the calculus with the sign ~- Furthermore, we 
will use the common notation let x = e1 in e2 for e2[ei/x]. 

Definition 2.1 The set of pre-types is generated by the following grammar 
rules: 

Ty::= o: 

CS::= CL 
(Ty---+ Ty) 

I [ 
CL::= c: Ty c: Ty; CL 

Ind ( o: )[ CS ] 

with c E C (as usual, E denotes the empty word). Of course, we require that 
any constructor belong to only one inductive type. 

Note 2 We consider that---+ is right associative, hence r1 ---+ (r2 ---+ r3 ) will 
be subsequently written r1 ---+ r2 ---+ r3 • 

An inductive type with n constructors c1, ... , Cn in C, each of arity ki (with 
1 ::;; i::;; n), is then of the form 

where the part between brackets is bound by Ind ( o:). Moreover, every ai = 
a} ---+ ... ---+ a~; ---+ o: must verify certain conditions, as explained below. 

Definition 2.2 A strictly positive operator r over a type variable o: (written 
T spos a) is inductively defined by the following rules: 

o: <f_ FV ( ri) 

a spos o: 

Definition 2.3 An (inductive) schema rover a type variable a (written T sch 
a) is inductively defined by the following rules: 

r1 spos o: r2 sch a 

a sch o: T1 ---+ r2 sch a 

Intuitively, a schema a is of the form a 1 ---+ ... ---+ ak ---+ a, where every ai 

is itself: 

• either a type not containing o: (we call this ai a non-recursive operator); 

• or a type of the form ai = v1 ---+ ... -! Vm ---+ o: (we call this ai a strictly 
positive operator), where a does not appear in any Ve. 

4 
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Note 3 Given a schema a= 0"
1 -+ ... -+ O"k -+ a, we will denote by SP 0 (0") 

the set of indices j (with 1 :s;; .j :s;; k) such that O"j is a strictly po8itive op
erator over o:, i.e SP°' (a) = {j I 1 :s;; j :s;; k /\ O"j spos o:}. Thi8 set will be 
U8eful becau8e it corresponds to arguments (of a given constructor) on which 
a recursive call may be carried out. 

Definition 2.4 A type T (written T: *)is inductively defined by the following 
rules: 

a E S T1 : * T2: * 
T1 -+ T2 : * 

ciEC O"i:* aischo: (l:s;;i:s;;n) 

lnd(n)[ C1 : 0"1; ... ; Cn: O"n]: * 

Example 2.5 vVith these rules, it is possible to define the types of natural 
numbers, of Brouwer's ordinals and of lists of natural numbers (normally, 
these inductive types should have different constructor names, we used some 
common names for the sake of readibility): 

Nat:;;, Ind(a)[ 0: a IS: a-+ a] 

Ord:;;, Ind(o:)[O: n 1 S: a-+ a IL: (Nat-+ a)-+ a] 
ListNat :;;, Ind(a) [nil : o: I cons : Nat -+ a -+ a]. 

Note that any inductive type T generates a recursor (or structural-recursion 
operator) RT,K to any type K,. This will be further explained in the next section 
concerned with terms of the language. 

2.2 Terms 

\Ve will now define the terms of our calculus. 

Definition 2.6 The set of terms is generated by the following grammar rule: 

M ::= c x (,\:r: T · M) (1\1 M) 

where :r E V, c EC and T and K, arc types. 

Note 4 Application is lcft-a8sociative, hence ( ... (1\!fi M2) ... ) Mn) can be 
written 1111 ••• 111n. In the same way, abstraction is right-associative, hence 
(A:r1 : r1 · (Ax2: T2 · M)) can be written AX1 : T1 · A:r2: T2 · 111 

We now define a syntactic operation that will be useful to assert typing 
rules for terms. 

Definition 2. 7 Let T be an inductive type, O" = 0" 1 -+ . . . -+ ak -+ o: a 
schema over a in T, and K, a type. Let {j 11 } 11=t,I' =SP 0 (0"). Then, we define 

YT(O", K,) = IT 1[r/a]-+ ... -+ O"k[r/n]-+ O"j 1 [11:/0:]-+ ... ah[K,/o:]-+ /'\,. 

5 



D. CHE:v!OUJL, S. SOLOVIEV 

Definition 2.8 \Ve now present the typing rules for the calculus: 

------(AX) 
r,:r:af---::r:o 

r =Ind( a)[ ... ; c: a; ... ] 
-------------- (CONSTR) 

r f--- c: a[r/a] 

r, .r : r1 f--- M : r2 
-------(A) 
(AX : 'Tj . "M) : 'T1 -+ T2 

r f--- .M : 71 -+ 72 r f--- N : r1 
------------ (APP) 

r f--- (MN): r2 

7 = Ind(a)[c1: a1; .. . ; Cn: an] 

r f--- .Mi : y T ( ai' K) ( 1 ~ 'i ~ n) 
-------------- (ELIM) 

r f--- (RT,K M1 ... Mn): 7-+ K 

2 . .61 Reduction 

Definition 2.9 We define the usual {3-reduction rule as follows: 

(AX : 7 . lvl) N ----+ fJ M [NI x l . 

Now, we define the l-reduction. However, to do so, we first need to make 
a technical definition which will be helpful. 

Definition 2.10 Let v = v1 -+ ... -+ Vm -+ n be a strictly positive operator 
over a. Then, we define 

-=.(R, N, v) = AZ1 : Vj •...• AZm : Vm. R (N Z1 ... Zm) . 

Of course, in the special case where m = 0, we have -=.(R, N, v) _RN. 

Definition 2.11 Now, let a - a 1 -+ ... -+ ak -+ n be a schema over a, and 
let {jµ}p=l,R = SP0 (a). Then, we define l-reduction by 

where N1' = -=.(nT,.. .~11 ... lVln, N1· , a1· ), for all 1 ~ p ~ £. 
p ' p p 

Examples of rules for some basic inductive types are given in Figure 1 on 
the following page. 

Proposition 2.12 For the simply-typed A-calculus with inductive types, (3l
reduction is 8trongly normalising and confluent. 

See for example [8J. 

3 A Deferment Lemma 

There are many lemmas concerning with strong normalisability of a relation 
----+ ns when ----+ R and ----+ s are strongly normalising. Though the lemma we 

6 



D. CHEMOUJL, s. SOLOVIEV 

RNat,K a .f 0 --+,, a 

R~at,K a .f (Sp) --+,, .f p (RNat,K a .f p) 

Rord,K a .f g 0 --+,, a 

Rord,K a .f g (Sp) --+,, .f p (Rorc1,,., a .f g p) 

Rord,K a f g (L k) --+,, g k (.\z: Nat· (Rord,,., a f g (k z))) 

RListNat,K a f nil --+, a 

RList.Nat,,., a f (cons h t) --+,, f h t (RListNat,K aft) 

Fig. 1. Recursion rules for some basic inductive types 

consider below is close to many results in the folklore, we could not find its 
exact formulation in the literature. 

Note also that this lemma is not equivalent to the so-called Postponement 
Lemma for 77-contractions in pure A-calculus, see e.g [3] p. 386. 

Definition 3.1 Let --+n and --+s be two reductions. Then, --+sis defer
able w. r. t --+ R if, for all terms t and u such that t --+ s--+ R u, there is a 
derivation t --+ R--+ Rs u. 

t s/ ··· ... R 

/ ''\ 

~ p. HS 
u * 

Lemma 3.2 {Deferment Lemma) Let --+R and --+s be two strongly nor
malising relat'ions. Then, if --+s is deferable w.r.t --+n, --+Rs is strongly 
normalising. 

Proof. Let --+ u and --+ s be two strongly normalising relations, such that 
--+.'i is defcrable w.r. t --+ R· Let us suppose that --+ ns is not strongly 
normalising, and show that it leads to a contradiction. 

If --+us is not strongly normalising, then --+RS consists of an infinite al
ternation of --+ ;l and --+ ~- Then, one can inductively "lift" --+ wreductions 
by deferring every --+ 5 -reduction followed by an --+ wreduction, thus build
ing an infinite derivation of --+ R steps. This contradicts the fact that --+ R 

is strongly normalising. D 

In fact, we can prove a slightly more pmverful lemma whose premises occur 
however less in practice. 
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Definition 3.3 Let ---'TR and ---'Ts be two reductions. Then, ---'T 8 is 0-
dcfcrable w. r. t ---'TR if, for all terms t and u such that t ---'Ts· u, there is a 
derivation t ---'T R---'T ~8 u. 

t 
R 

s -\ 

;,- RS 
'/J, * 

Lemma 3 .4 ( 0-Deferment Lemma) Let ---'TR and ---'T 8 be two strongly 
normalising relations. Then, if ---'Ts is 0-defcrable w. r. t ---'TR, ---'T RS' is 
strongly normalising. 

Proof. Immediate, because 0-deferment implies deferment. 0 

Remark 3.5 Since the submission of this paper, we found some references 
about what we call Deferment Lemma (cf. 12,141 and most notably 1121). 
While we shall keep calling this property "deferment" in the current paper, 
we intend to use the preferable term "adjournement" afterwards, following 
Delia Kesner (private communication). 

4 Multiproducts 

Let us define a schema of inductive types representing n-ary products: 

with recursion operator q · Dn defined by 

q. Dn : ( A1 ---t ... ---t An ---t B) ---t (IIn A1 ... An ---t B) 

QfDn (a1 · · · an)n ---'71. f a1 .. ·an · 

The projections P7k are defined as Q.Xx 1 : A1 · ... · AXn : An· xkDn· 

Remark 4.1 One may note that the product of morphisms Ji : C ---t A (with 
1 :( i :( n) is definable, without the elimination operator, by 

prodn Ji ... fn ~AZ : c. U1 z, ... 'fn z)n . 

However, many familiar properties of product and projections do not hold 
intensionally. For example, we have (Pi :r, p~ :r)2 i=th x for .r : I12 A B. In 
fact, this property, usually known as surjectivc pairing, stipulates that the 
product is unique. 

4.1 Commutativity of Products 

~ow, let {!be a permutation of { 1, ... , n}. The permutation of IIn A 1 ... Ar. in
duced by(} is denoted 7}, and defined as Q.Xx1 : A1 · .. . ·AXn: An{Ee(t) 1 ••• , Xe(n))nDn-

8 
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Proposition 4.2 For any term t : Tin A1 ... An and permutations e and w 
defined on {l, ... ,n}, the equality eow t =/-Ji {j (wt) is provable. 

Still, while we can prove this proposition by induction, it is important to 
note that the equality is not computable for an arbitrary t, but just when 
t = (t 1, .•• ,tn)n for some n (cf. Sect. 1.3 on page 3). Note also that for 
mutually inverse permutations e and e- 1, {j and e- 1 are mutually inverse 
extensional isomorphisms. 

Now, for given mutually inverse permutations e and e-1
, let us add the 

following rewrite rules to the system of th-reductions: 

e- 1 (e :r) ---+IT :r 

(Note that 7J and e- 1 arc concrete, i. e constant, terms of the calculus.) 

Remark 4.3 To lighten the notation, let us write ?T and ?T1 for {j and e- 1 . vVe 
will also make use of diagrams, as is usually done for this kind of proof. 

Lemma 4.4 a-reduction is strongly normalising. 

Proof. Take the length of terms as an ordering. D 

Theorem 4.5 (3la-reduction is strongly normalising. 

Proof. We show that a-reduction is deferablc w.r.t /)-reduction (case i) and 
w.r.t l-reduction (case ii). 

(i) For /3-reduction. The crucial case is when the a-redex occurs inside a 
/3-rcdex. 
i.l. As a first possibility, we may have t = t'[(,\:r: A·p[?T (?T's)]) q]. Note 

that ?T and ?T1 do not contain variables. 

t = t'[(,\:r;: A· p[?T (?T's)]) q] 

~ 
··.. f3 

2>.. 

t'[(,\:r : A· p[s]) q] t'[(p[?T (?T' s)])[q/x]] 

~ L 

. IT 

t' [ (p[ s]) [q /:r]] 

i.2. We may also have t = t'[(A.1: : A· p) (q[?T (?T' s)])], in which case the 
term p may contain many (or zero) occurrences of :r, which requires 
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to carry as many a-reductions. 

t = t' [ ( ,\:r : A · p) ( q [ 7r ( 7r1 s)])] 

~ .. _,,_ 

t'[(,\x: A· p) (q[s])] t'[p[q[7r (7r' s)] / :r]] 

~ ~·· 

t' [p[q[s]/ x]] 

(ii) For 1,-reduction. 
ii.1. The crucial case occurs when a l-redex may interact with 7r and 7r1

, 

hence we must have t - t'[7r (7r1 (s1, ... , sn)n)]. But then, it is imme
diate to see that t ---+(T t'[ (s 1, ..• , sn)n] can also be performed by the 
derivation: t'[7r (7r1 (s1, ... , sn)n)] ---+1.---+ti t'[(s1, ... , s11 ) 11]. This is 
a trivial case of 0-defcrment. 

ii.2. In other cases, the l-redex doesn't interfere with a-reduction, there
fore deferment is obviously possible. 

D 

Theorem 4.6 /3la-reduction i.<; confluent. 

Proof. First, as /3la-reduction is strongly normalising, it is enough to show 
local confluence (by Newman's Lemma), i.e for all terms t, w, w' such that 
t ---+ fJi<T w and t ---+ fJw w', there exists a term u such that w ---+ ~l(T u and 

I * W ---'t (Jw U. 

By Lemma 2.12, j31,-reduction is confluent. For a-reductions alone, by 
Newman's Lemma it is enough to show local confluence. The critical pairs 
induced by a-reduction are joinable; hence by the Critical Pair Theorem, a
reduction is locally confluent. Therefore, for /ha-reductions there are only 
two extra cases to be considered depending on whether one carries a /3- or 
l-reduction (combined with a-) as a first step. 

(i) If it is a 1,-reduction, then t = t'[7r (7r' s)], and there are 4 possible cases: 
the r-redex is in s, the l-redex has no intersection with 7r (7r' s), the l

redex contains 7r (7r1 s), or the l-redex is in 7r (7r' s) and intersects with 
7r or 7r1

. 

i.1. \Ve have t = t'[7r (7r' (s'[r]))], r being a l-redex. Then, if t 1,-reduces 
to t'[7r (7r' s1[r'])] and a-reduces to t'[s'[r]], it is possible to "close" the 
fork by t'[7r (7r1 s'[r'])] ---+(T t'[s'[r']] and t'[7r (7r1 s'[r'])] ---+i t'[s'[r']]. 

i.2. Once more, the order is indifferent. 
i.3. One hast'= t"[r[7r (7r' s)]]. The upper-left 1,-reduction cannot am~ct 

7r (7r' s) since this part doesn't begin with an introduction operator. 
(In general, the lower-left reduction would possibly be ---+ ~ since the 
number of a-redexcs may change when l-reduction is applied, but it 
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is not the case for products.) 

t' = t"[r[7r (7r' s)]] 

~~ 
t"[r'[7r (7r' s)]] t"[r[s]] 

«" .l 

:-.. ,L 

t"[r'[s]] 

i.4. In fact, the l-redex should coincide with (7r' s), since (7r' s) doesn't 
begin with an introduction operator, so it cannot be 7r (7r' s) (here, 
we use the concrete definition of 7r and 7r1

). Thus, s must be of 
the form (s 1, ... , sn)n- But, for all elements of this form, we have 
7r (7r' (s1, ... , sn)n) ---+i---+%

1
• (s1, ... , sn)n, hence local confluence 

holds trivially in this case. 

(ii) For ,8-reduction, cases ii.1 and ii.2 are similar to cases i.1 and i.2, thus 
treated as above. 
ii.3 If t = t'[(,\x: A· p[7r (7r' s)]) q], and t ----'tf3 t'[(p[7r (7r' s)])[q/x]] and 

t ---+a t'[(,\x : A · p[s]) q], closing the "fork" is straightforward by 
observing that both terms a- and ,8-reduce respectively in one step 
to t'[(p[s])[q/r]]. (Note that this situation appears because 7r and 71"

1 

are closed terms.) 
ii.4 In the last case, where t = t'[(,\:.r : A· p) (q[7r (7r' s)])], the number 

of occurrences of x in p may influence the number of a-reductions to 
perform to close the diagram. Thus, if t ----'tf3 t'[p[q[7r (7r' s)] /x]] and 
t ---+a t'[(.Ax : A· p) (q[s])], we may need a sequence of reductions 
t'[p[q[7r (7r' s)] /:r]] ---+~ t'[p[q[s]/x]] while a one-step /)-reduction only 
would be necessary on the other term: t'[(,\x : A · p) (q[s])] ----'tf3 

t'[p[q[s]/x]]. 
0 

4.2 Associativity of Products 

As just seen, products enjoy the commutativity property. However, the as
sociativity does not hold in general, i.e, it is not the ca'le that, for example, 
TI2 (TI2 A B) C ~ TI2 A (TI2 B C). This is so because there is an occurence 
of TI2 A B (or TI2 B C) inside another TI2. Thus, the "isomorphisms" g and 
g' would be defined in the following way: 

g : TI2 (TI2 A B) C ---+ TI2 A (TI2 B C) 
~ ~.Ap: TI2 A B · ,\c: C · (PT p, (p~ p, c)2)2~ 
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and 

g' : Il2 A (Il2 B C) --+ Il2 (Il2 A B) C 

~ ~Aa: A· Aq: Il2 BC· ((a,pi q)2,P~ q)2D 

Then, for a term (p, c)2, with p: Il2 A B and c: C, one has: 

g' (g (p, c)2) ---*i ---*/3 g' (Pi p, (p~ p, c)2)2 

---*i---*/3 ((Pi p, P~ p)2, c)2 -=/:13,, (p, c)2 

because of the lack of surjective pairing. It is interesting to note that, even 
with cxtensionality on canonical elements, the isomorphism establishing asso
ciativity of binary product docs not hold. 

4 . .61 Retractions 

Now, let us consider some correspondanccs between n-products for different 
n, for example Il3 A B C and Il2 (Il2 A B) C. Define 

f : Il2 (Il2 A B) C --+ Il3 A B C 
~ ~AY: Il2 AB· AZ: C ·(pi y,p~ y, zhD2 

and 

J' : Il3 A B C --+ Il2 (Il2 A B) C 
~ ~Ax : A· Ay : B · AZ : C · ( (x, Y)2, z)2D3 

For (t, u, vh : Il:i A B C, we have: 

However, for (y, z)2 : Il2 (Il2 A B) C, we have: 

J' (J (y, z)2) -71 -713 J' (pi y, p~ y, z)J 

-7,-713 ((pi y, P~ Yb z)2 i:f3i (y, z)2 , 

once again because the type Il2 A B doesn't enjoy surjective pairing. This 
means that even in an extensional sense (on canonical elements), f is only 
a retraction, and not an isomorphism. Of course, the same situation will 
appear if we consider the product of n elements expressed with Iln, and using 
a superposition of Ilk for k < n. While we will not consider deeply the 
case of retractions in this paper, we think they deserve attention for further 
studies: this example suggests that Il3 might be considered as the "canonical" 
representation of triples, for being the retract of all representations of triples. 
One may note that this observation demonstrates the usefulness of adding 
new reductions gradually. The correspondence between products of different 
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arity described above would remain hidden if surjcctive pairing was already 
present. 

4-4 Surjective Pairing 

Let us add the rule (PT x,p§ .r)2 ---+sp :r (iLr is of product type) to the system 
with /)l-reductions. We will now show that the Deferment Lemma may also 
be applied to prove strong normalisation of a system of j:hSP-reductions. 

Consider a SP-reduction followed by some ;J- or r-reduction. 

t[(Pi s,p~ s)2] ---+sp t[s] ---+l t*[s*] . 

If s does not have the form (s 1 , s2 ) 2 or it does but the reduction docs not use 
this occurrence of (-, · )2 then deferment is obviously possible. 

Suppose the reduction that follows SP is l, then t should be a term of the 
form t[(pr s,p~ s)2] = t'[~f~ 2 (PT s,p~ s)2] wheres: Il2 AB, s 1 : A, s2 : B, 
f : A --+ B --+ C and we have 

This can be replaced by 

t' [ ~ n 2 (Pi s, P~ s )2] ---+ 1. t' [f (Pi s) (p~ s)] 

---+1.---+f3 t'[f s1 (p~ s)] ---+l---+f3 t'[f s1 s2] 

(a trivial case of deferment). It is easy to see that local confluence will hold 
as well. 

5 Isomorphic Copies of (Non-)Algebraic Types 

The notion of the copy of a type is a very important one, and occurs quite 
often in many developments. For example, such operations are frequently used 
in tree-processing programs such as compilers. In this section, we study how 
isomorphisms may be used to devise an extended notion of copy, namely the 
isomorphic copy (for want of a better name). 

Let us consider two extensionally isomorphic types A and B with isomor
phisms f: A--+ Band 1- 1 

: B--+ A, and a type 

possibly containing occurrences of A. An isomorphic copy C' of C differs 
by names of introduction operators, e.g c'1, ... , c~,, and by the fact that each 
"atomic" occurrence of A in C is replaced by an occurrence of B in C' (that 
is to say: A will be replaced by B only if it occurs either as a non-recursive 
operator, or as the premise - 't.c, the type of an argument of a strictly 
positive operator). 

13 
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The reader who prefers a less abstract setting may suppose the isomor
phisms between A and B belong to the class studied in section 4. It can be 
also intensional isomorphism, e.g., permutation of premisses of a functional 
type. 

The definitions below also may be modified in such a way that only some 
selected occurrences of A arc considered. 

Now, let us define a function icopy : C --+ C' which converts canon
ical objects from one type to the other. Formally, icopy is of the form 
Rc,c' Af1 ... Mn· For every constructor Ci : af --+ ... --+ a;; --+ C, let 

{jp }p=l,t = SP°' (a) and let us denote every strictly positive operator af P by 
vi,j,l --+ ... vi,j,p;.j --+ n. Then, we have 

where 

{

(a) 

6m = (b) 
(c) 

\ . I \ • I I I 
/\Zl . V; m I · ... · /\Zp . Vim p· · Wm Z1 ... Zp 

"' ' ' ' 1,ni 

f Xm 

:Em 

and, for 1 ::;; r ::;; Pi,m: 

• v' = B and z' = f- 1 z i·f v =A· i,rn,r - r - r r - ' 

• vI,m,r :::::: Vi,m,r and Z~ :::::: Zr otherwise. 

The function icopy- 1 
: C' --+ C is defined similarly. 

if m E j 1, ... , j e; 

if af1 =A; 
otherwise; 

We may now consider the behaviour of icopy and icopy- 1 w.r.t introduction 
operators, assuming that the new a-reductions icopy- 1 (icopy x) --+,,. :r and 
f- 1 (f .T) --+,,. .7: are added. The main observation is that 

. . . - l (. . ( t t ) ) + . t' t' icopy icopy Ci ,1 ... ,k; --+ f3i. <-i 'I · . · k; 

where tj: 
• is t j in case ( c); 

• is f- 1 (f tj) in case (b); 

• and is of the form ,\z1 : Vi,j,J · ... · ,\zp: vi,i,P;.j · icopy- 1 (icopy (tj z~ ... z~)) 
where z~ _ f- 1 (f Zr) if Vr = A, z~ = Zr otherwise, in case (a). 

Now, suppose we have a term of the form q[icopy- 1 (icopy (ci t 1 ... tk;))]. 

14 
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Then, by one single a-reduction, we have 

But we may try to defer this a-reduction. First, we have 

Now, the deferment will depend on which cases the tj arc in. In case (c), we 
have tj = tj, so no more reduction is to be done to close the diagram. If 
case (b) happens, some a-reductions will be needed: 

Finally, if case (a) happens, carrying some a-reductions may lead to an un
closed diagram: 

q[ci t'1 ... t~J --t;; q[<; t'{ ... t%J , 
where t'j may begin by some abstractions. This situation will not happen only 
in the specific case, similar in result to case (b), where a1, is a strictly positive 
operator over a of null arity, i. e a1, = a. For example, this is the case for the 
'S' constructor of ordinals. In the general case however ( i. e with a1, being a 
strictly positive operator over a of non-null arity), the only way to close the 
diagram seems to add further r1-expansions in the following way: 

As an example, we have, for the 'L' constructor of ordinals the following 
reduction graph: 

q[icopy- 1 (icopy (L k))] 

/ ~* 
q[L k] q[L (.\z1 : N. icopy- 1 (icopy (k u-1 (J Z1 )))))] 

~,/ 
q[L (.\z1 : N · k zi)] 

As a conclusion, if we only meet cases (c) and (b), and case (a) with 
only null-arity strictly positive operators, it is always possible to (0-)defer 
a-reductions in the calculus. Thus /)w-reduction is strongly normalising for 
"algebraic" types. Confluence follows easily, with a similar proof as for Theo
rem 4.6 on page 10. 

As we briefly discussed above, our "strategy" is to add new reductions one 
by one. Thus, even the result for algebraic types only opens a large field of 
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applications for icopy, generated by isomorphisms of parameters introduced 
previously. 

The difficult case is when "non-algebraic" types occur. Recently we ob
tained a proof for this case and the system with r1-expansion. 

Definition 5.1 We define r1-cxpansion as follows: 

]\if -+71 AX : A . lvl ;J; if 
{ 

.M is of function type A ---+ B 

M is neither an abstraction nor applied. 

In detailed form the proof is too long to be presented here and we shall 
only give an outline. 

The main observation used in this proof is that if the terms t 1 , __ ., tk; above 
are in r1-expandcd form then 

E.g., the diagram for 'L' constructor may be closed differently: 

q[icopy- 1 (icopy (L k))] 

/ ~* 
q[L k] q[L (.-\z1 : N · icopy- 1 (icopy (k (f- 1 (f z1)))))] 

~ ,/ 
q[L (.-\z1 : N · k z1)] 

Since we consider the system with ry-cxpansions, we need a proof that the 
system with fJr and r1-cxpansions is strongly normalising and confluent (we 
currently have a sketch of this proof). 

To prove strong normalisation of the system extended not only by T/ but 
by a--reductions related to icopy we assume that there is an infinite reduction 
sequence including a- reductions. 

To use the observation above we need a lemma that shows that this re
duction sequence will remain infinite if we insert appropriate ·ry-expansions (to 
make the terms t in case (a) 11-expanded). 

After that, using a modification of deferment (to take into account the 
condition that the terms t are 11-expanded) we show that it would be possible 
to obtain an infinite sequence consisting of (31/l only and this contradiction 
shows that the system with a- is SN. 

The proof is completed by verification of confluence. 
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6 Conclusion 

The systems based on intensional equality (e.g., many proof assistants) often 
puzzle mathematically-oriented users because some familiar functional equali
ties (such as equalities related to commutativity and associativity of product) 
are no more viewed as computational and their use may require additional 
and heavy proof development. The arguments in favor of the equality based 
only on /)L-reduction (or even /)rJl) may look nice from the foundational point 
of view but, pragmatically speaking, there is no harm if an extension of a 
reduction system doesn't destroy properties such as strong normalisation and 
confluence. 

In this short paper, we studied two cases that seem of interest: extensions 
of reduction systems related to products and also to "isomorphic" copies of a 
type. 

As for products, using the Deferment Lemma, we were able to prove that 
adding a rewriting rule corresponding to commutativity of products keeps the 
calculus strongly normalising and confluent. The same lemma also enabled us 
to show that adding surjective pairing to the system of /3l-reductions does not 
break normalisation and confluence properties. 

Secondly the notion of isomorphic copy, is useful for a clean distinction 
between the multiple uses of the type itself and of its copies. E.g., in proof 
assistants, the type of Even numbers is often defined as a copy of type Nat 
together with an appropriate coercion Even --+ Nat. Combining this coer
cion with the isomorphism copy defined above, we may obtain representations 
of classes of numbers modulo 2n. Furthermore, isomorphic copies of non
algebraic types may require a notion of r7-expansion, and hence to show that 
/)T}ur-reduction is strongly normalising and confluent. 

There arc several recent works where normalisation in extended reduction 
systems is considered (e.g., 1211 or [7,81). This makes the perspective seem 
quite optimistic. 

The calculus we considered here (the simply-typed ,\-calculus with induc
tive types) is a compromise between the richness provided by inductive con
structions and the relative simplicity of simply-typed systems. In the case of 
dependent types, one will meet more difficulties because new reductions will 
influence type-equality as well. 

The subject needs more investigation but appropriate methods (e.g., a 
modification of H. Goguen's Typed Operational Semantics, see l17J) will prob-
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ably lead to useful results of the same type as presented here. 
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Abstract 

A formal presentation of the ramified theory of types of the Principia Mathe
matica of Russell and Whitehead is given. The treatment is inspired by but differs 
sharply from that in a recent paper of Kamareddine, Nederpelt and Laan. A com
plete algorithm for determining typability and most general polymorphic types of 
propositional functions of the ramified theory of types is presented, unusual in re
quiring reasoning about numerical inequalities in the course of deduction of type 
judgments (to support unification of orders). Software implementing these algo
rithms has been developed by the author, and examples of the use of the software 
are presented. This is an abridged version of a longer paper which may appear later 
elsewhere. 

This paper was inspired by reading [3], where Kamareddine, Nederpclt 
and Laan present a formalization of the ramified theory of types (usually 
to be abbreviated RTT) of [5], the Principia Mathematica of Russell and 
Whitehead (hereinafter PM). It is surprising that the theory of types of PM 
(the oldest one) is nowhere given a rigorous formal description; in fact, PM 
has no notation for types! There are various formal systems of ramified type 
theory in the literature (the author has even presented one in [1]), hut the one 
in [3] is the only one known to us that is close to PM in details of its notation. 

While reading [3], we developed a type checker ([2]) for its version of RTT. 
We used the same notation for propositional functions that is used in [3] (ex
cept that we were able to omit type labels on quantified variables, which makes 
our notation closer to that of PM), but we took a quite different approach to 
reasoning about types. From the checker it is possible to "reverse engineer" a 
formal treatment of the type system of RTT different from that of [3], which 
we give here. 

This is an abridged version of a longer paper which we hope to publish 
elsewhere. Here we omit a section which discusses differences between the 
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notation of [3] and the original notation of PM. 

The logical world of PM is inhabited by individuals and propositional func
tions. We will usually abbreviate "propositional function" as "pf" (following 
[3]). In this section we introduce notation for these. 

An individual is denoted by one of the symbols a1, a2 , a3 , ••. (in the com
puter implementation, a1, a2, a3 ... ). \Ve call these symbols "individual 
constants" . 

Before we present the notation for propositions, we need to introduce 
variables and primitive relation symbols. A variable is one of the symbols 
x 1 , x2 , x:3, ••• (x1, x2, x3 ... in the computer implementation). A primitive 
relation symbol is a string of upper-case letters with a numerical subscript 
indicating its arity (in the paper, R 1 and 5 2 are primitive relation symbols: 
these would be R1 and S2 in the computer implementation). 

'vVe note that we will freely use the word "term" in the sequel for any piece 
of notation, whether propositional notation, the name of an individual, or a 
variable. 

Now we present the definition of notation for propositions. The notion of 
free occurrence of a variable in a proposition is defined at the same time. It 
is worth noting here that notation for a proposition is usually but not always 
also notation for a propositional function (pf). 

atomic proposition: A symbol R,,(v1, ... , vn) consisting of a primitive rela
tion symbol with arity n followed by a list of n arguments vi, each of which 
is either a variable :cj; or an individual constant aj;, is an atomic proposi
tion. (Ro() is also an atomic proposition in the system of [3], and for us as 
well for now. The software that motivates this paper supports the ability 
to turn on or off a requirement that primitive relation symbols and proposi
tional functions have positive arity). The free occurrences of variables in an 
atomic proposition are exactly the typographical occurrences of variables in 
it. 

negation: If P is a proposition, then -,p ( ,.,._,p in the computer implementa
tion) is a proposition, the negation of the proposition P. The free occur
rences of variables in -,p are precisely the free occurrences of variables in 
P. 

binary propositional connectives: If P and Qare propositions, then (PV 
Q) is a proposition. Other connectives can be defined. In the computer 
implementation, propositional connectives are strings of lower case letters: 
(P v Q) , (P implies Q) , (P and Q) , (P iff Q). The free occurrences 
of variables in (P V Q) are the free occurrences of variables in P and Q; 
defined binary connectives would have the same rule. 

quantifiers: If P is a proposition in which the variable :ci occurs free (this 
condition is what requires us to define "free variable" at the same time as 
"propositional notation"), (\f xi.P) is a proposition (this is written [xi] P in 
the computer implementation). The existential quantifier (::hi.P) (written 
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[Exi] P in the computer implementation) can be introduced by definition. 
The free occurrences of variables in (V:ri.P) are the free occurrences of 
variables other than xi in P (and similarly for any other quantifier). 

In [3], the structure of the typing algorithm required the attachment of 
explicit type labels to variables bound by quantifiers. In our system, this 
is not necessary. This is closer to the situation in PM, where no type 
indices appear (There is no notation for types in PM, so there can't be 
type indices; there are occasional appearances of numerical superscripts 
representing "orders"). 

propositional function application ("matrix" and general): If Xi is a 
variable and A1, ... , An is an argument list in which each Ai is of one of 
the forms aj; (an individual constant), Xj; (a variable) or R (notation for a 
proposition, representing a pf), then xi(A1, ... , An) and xi!(A 1, ... , An) are 
propositions. In the latter notation, the exclamation point indicates that 
the "order" of the type of the variable xi is as low as possible: this will be 
clarified when types and orders are discussed. The notation xi!(A1, ... , An) 
does not appear in [3]; its use in this paper is a generalization of the notation 
for "matrices" (predicative functions) in PM. xi() is also a proposition in 
the system of [3] (the variable xi represents a proposition in this case); xi() 
and xi!() are propositions for us as well for now: if we require that primitive 
relation symbols and pfs have positive arity, then we exclude such proposi
tions). The free occurrences of variables in xi(A1, ... , An) or xi!(A1, ... , An) 
are the head occurrences of .Ti and those Ai's which are variables: note that 
the free occurrences of variables in those Ai 's which are pf notations are not 
free occurrences of variables in Xi(A 1 , ... , An) or xi!(A1, ... , An)-

completeness of definition: All propositional notations are constructed in 
this way. 

As usual, an occurrence of a variable in a proposition which is not free is 
said to be bound. Note that a variable xi is not a propositional notation. 

The notation for a propositional function is the same as the notation for 
a proposition: a pf is construed as a function of the variables which appear in 
it (or rather of the variables which appear free in it). When 0-ary predicates 
are forbidden (this is arguably the case in PM (see remark on p. 38) and is 
supported as an option by our checker), a propositional notation must contain 
a free variable to represent a pf; otherwise a propositional notation without 
free variables will represent a 0-ary propositional function. The full system 
of the checker also allows propositional variables (which are used in PM) but 
does not allow occurrences of propositional variables in pfs. 

Since we do not have head binders in the notation for pfs to determine the 
order of multiple arguments, we allow the order of the indices of the variables 
(which we may refer to occasionally as "alphabetical order") to determine the 
order in which arguments are to be supplied to the function. This follows PM. 

\Ve refer to the atomic propositions and the propositional function applica-
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tion terms as "logically atomic", and to other terms as "logically composite". 
We now give the recursive definition of simultaneous substitution of a list 

of individuals, variables and/ or propositional functions Ak for variables .Tik in 
a proposition P, for which we use the notation P[Ak/.riJ The clauses of the 
definition follow the syntax. It is required that the subscripts ik be distinct 
for different values of k. 

atomic propositions: Let R"n (v1 , ... , vn) be an atomic proposition. For each 
vi and index k, define v~ as Ak if vi is Xik; define v~ as Vi if Vi is not any 
xik. If any v~ is a pf notation, R,, ( v1, ••• , v11 ) [Ad xd is undefined; otherwise 
R,,,,(v1, ... , vn)[Ak/:rik] is defined as R,,(v~, ... , v;J. 

negation: (•P)[Ak/xi,J = •(P[Ak/:riJ) 

binary propositional connectives: (PVQ)[Ak/xik] = (P[Ak/xdVQ[Ak/xi .. D· 
The rule is the same for any binary propositional connective. 

quantification: Let (V:r J. P) be a quantified sentence (the rule is the same 
for any quantifier). Define A~ as x J in case ik = j and as Ak otherwise. 
Then (\/xJ.P)[Ak/xi,J is defined as (VxJ.P[AUxik]). 

pf variable application: Let Xj (Vi, ... , Vn) or 
xJ!(Vi, ... , Vn) be a proposition built by application. Define B' for any nota
tion Bas Ak if Bis xik and as B otherwise. We define XJ(Vi, ... , Vr,)[Ak/xiJ 
as xj(V{, ... , V~) and :rJ!(Vi, ... , Vn)[Ak/xiJ as xj!(V{, ... , ~:)except in the 
case where :rj is a pf notation Q: in this case something rather more com
plicated happens. It will be undefined unless there are precisely n variables 
which occur free in Q. If there are n variables which occur free in Q, define 
tk so that Xt,, is the kth free variable in Qin alphabetical order. Then define 
:rJ(V1, ... , Vn)[Ak/xik] or ;TJ!(Vi, ... , v~)[Ak/xi .. ] as Q[V;/xtk]. 

There is a serious difficulty with this "definition". Consider the pf •x 1 (xi) 
(this certainly is a pf by our definition above). Now substitute •:r 1 (xi) for the 
variable x1 in the proposition •.T 1 (x 1) itself. We will obtain the negation of the 
result of replacing :r 1 with •:r 1 (1: 1) in x 1(x 1). Giving •:r1(x 1) the name R for 
the moment, we sec that the result of the latter substitution will be R[R/.ri]; 
but this is exactly the substitution we started out trying to make, so we have 
landed in an infinite regress. This illustrates the fact that the circularity of 
the proposed "definition" of substitution is essential - in the last clause, there 
is no guarantee that the instance of substitution Q[V;/xtk] to be carried out 
is "simpler" in any way than the original substitution xj(V1, ... , v~)[Ak/xi,J 
being defined, and our example shows that it need not be. 

It is hoped that the reader will notice that this is essentially Russell's 
paradox of naive set theory. Our solution will be the official solution of PM: 
we will impose a type system, under which the term •x 1 (x1) will fail to denote 
a pf, and the problem will disappear. For the moment, we withdraw the 
definition of substitution, and will return to it after we have presented the 
type system. 
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The self-contained approach to the definition of substitution taken here 
may be contrasted with the rather elaborate invocation of A-calculus in [3]. 
Though our definition appears to have failed at this point, the type system 
will allow us to give the definition above as a legitimate inductive definition. 
The reason we can do this and the authors of [3] cannot is that their definition 
of the typing algorithm depends on the notion of substitution, and ours does 
not. (Our algorithm does depend on the notion of substitution into notations 
for types, as we will see below, but the definition of substitution into types 
does not present logical difficulties presented by the definition of substitution 
into propositions or pfs). 

We follow [3] in presenting the simple theory of types without orders first, 
though historically it was presented by Ramsey as a simplification of the ram
ified theory of types of PM. 

The base type of the system of PM is the type 0 inhabited by individu
als. (Nothing prevents the adoption of additional base types, or indeed the 
avoidance of commitment to any base type at all). 

All other types are inhabited by propositional functions. In the simple 
theory of types, the type of a pf is determined precisely by the list of types of 
its arguments. 

We introduce notation for simple types: 

Individuals: 0 is a type notation. 

Propositions: () is a type notation (for the type of propositions). 

Propositional Functions: If t 1 , ••• , tn are type notations, (t1, ... , tn) is a 
type notation. (If pfs were required to have positive arity, we would require 
ti # () here). 

Variable Types: For each variable xi, we provide a type notation [xi]· (This 
notation is an innovation for this paper: it represents an unknown (polymor
phic) type to be assigned to :ri; these types may also be called "polymorphic 
types"). 

Completeness of Definition: All simple type notations are derived in this 
way. 

No Nontrivial Identifications: Types not containing variable types are equal 
precisely if they are typographically identical. 

As is noted in [3], there is no notation for types in PM: this notation is 
apparently due to Ramsey (except for our innovation of variable types, whose 
purpose will become clear below). 

Our aim in this essay is to avoid the necessity of assigning types overtly 
to variables, which is truer to the approach taken in PM itself. It is useful to 
consider what a system with explicit type assignment would look like, though. 

The type assignment is represented as a partial function from terms to 
types: r(xi) is the type to be assigned to Xi, and more generally r(t) is the type 
to be assigned to the individual constant, variable, or propositional function 
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t. Types in the range of T are constant types (they contain no type variables 
[xi]). We require that bound variables be typed as well as free variables, 
and identity of variables implies identity of type regardless of free or bound 
status. We stipulate that every variable is in the range of T and that the 
inverse image of each type under T contains infinitely many variables: this 
has the same effect as providing infinitely many variables labelled with each 
type. The following rules simultaneously tell us which terms are typable (have 
values under T) and how to compute the value of T if there is one. Functions 
T satisfying these rules arc called "type functions on P", where P is a fixed 
proposition or propositional function. 

individuals: If Xi appears as an argument in an atomic subproposition of P, 
T(xi) = 0. T(ai) = 0 for any individual constant <Li· 

propositional functions: If Q is a propositional function appearing as a 
subterm of P, every subterm of Q has a value under T, and then free vari
ables of Q, indexed in increa<;ing order, are xi,,, T(Q) = (T(xiJ, ... , T(;riJ). 
If Q contains no free variables, then T(P) = (). 

variable application: If XJ(A 1, •.• , An) or Xj!(A 1, ••. , An) is a subterm of 
P, then T(XJ) = (T(A1), ... , T(An)). 

These rules arc to be understood as additional restrictions on well-formedness 
of terms: a term Pis to be considered well-formed iff there is a type function 
T on P. Notice that the value of T at every term (or its lack of value) is 
completely determined by the values of T at variables. The process described 
terminates by induction on the structure of propositional notations: to com
pute the type (or assess the typability) of any notation other than a variable 
or individual constant, we appeal only to the types of proper subterms of that 
notation, and we are given types of variables and individual constants at the 
outset. 

\Ve now proceed to develop a system for expressing and reasoning about 
type assignments to subterms of propositional functions, adopting rules on the 
basis of their validity for an intended interpretation in terms of type functions. 

There arc four kinds of type judgments. In the following, P stands for a 
propositional function or proposition, t, u stand for types (variable types [xi] 
are permitted to appear a'> types and as components of complex types) and xi 
stands for a variable. The meanings of these judgments will be modified by a 
redefinition of the notion of "type function on I'" which will be given below. 

ill-typedness: "P is ill-typed" is defined as "there is no type function T on 
P". 

propositional function type assignment: "P has type t" means "for all 
type functions T on P, T(P) = t", where any type [:ri] appearing in t is 
interpreted as T(xi}. 

variable type assignment: ":ri has type t in P" means "for all type furn:
tions T on I', T(:ri) = t", where any type [:rJ] appearing in t is interpreted 
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as T(xj). 

type equality: "t = u in P" is defined as "for all type functions T on P, 
t = u", where any type [xj] appearing int or u is interpreted as T(xj)· 

We now develop rules for deduction about type judgments, showing that 
the rules are valid in the intended interpretation. 

We begin with the observation that the conditions defining a type function 
on P depend only on the appearances of variables in logically atomic subterms 
of P: these conditions assign types to arguments appearing in atomic propo
sitions, to propositional functions, which can only appear as arguments of 
propositional function application terms, and to the head variables of propo
sitional function application terms. It follows immediately from this that T 

is a type function on P under precisely the same conditions under which it 
is a type function on -,p or on (Vxi.P) (if the latter is well-formed), since 
these terms contain precisely the same logically atomic subterms. Further, it 
follows that any type function on (P V Q) is also a type function on P and on 
Q, since it will satisfy the conditions on logically atomic subterms of P and 
Q, since the set of logically atomic sub terms of ( P V Q) is the union of the set 
of logically atomic subtcrms of P and the set of logically atomic subtcrms of 
Q. 

These facts can be expressed as rules for reasoning about type judgments: 

negations: -,p is ill-typed iff P is ill-typed. xi has type t in -,p iff xi has 
type tin P. 

quantification: (Vxi.P) (if well-formed) is ill-typed iff P is ill-typed. Xj has 
type t in (Vxi.P) iff :rj has type t in P. 

binary propositional connectives: If P or Q is ill-typed, (P V Q) is ill
typed. If xi has type t in P or :ri has type t in Q, then xi has type t in 
(P V Q). 

There arc three kinds of occurrences of variables in logically atomic sub
terms: a variable can appear as an argument of an atomic proposition, as the 
head variable of a pf application term, or as an argument of a pf application 
term. The following rules express the type judgments we can make about 
occurrences of variables in each context: 

individual variables: If xi = Ak in H-n (A 1, ••• , An), then xi has type 0 in 
lin (Ai, ... , An). 

applied variables: If A ha.<; type ti for each 'i, then Xj has type (t1, .•• , tn) 
in Xj(A 1, ••• , Ak) or .Tj!(A 1, ... ,Ak). 

argument variables: xi has type [xi] in P for any propositional function P 
(this kind of occurrence gives us no type information). 

In this way a possibly variable type may be assigned to each occurrence of 
a variable on the basis of its logically atomic context. This is called the "local" 
type of the occurrence. However, more than one typographically different type 
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may be assigned to the same variable. For example, :r 1 is assigned type 0 and 
type [:r 1] in R 1 (:r 1) V x2 (xi). Different types assigned to the same variable will 
of course be equal. \Ve can express this in terms of type judgments. 

multiple types: If xi has type t in P and Xi has type u in P then t = u in 
P. 

variable type equations: If [xi] = t in P then Xi has type t in P. 

Definition: We assign an integer arity to each type which is not a type 
variable. 0 has arity -1. () has arity 0. (t 1, ••• , tn) has arity n. Note that 
a type may have variable type components, but it will still have arity if it 
is not itself a type variable. Note also that types which arc equal will have 
equal arity if their arity is defined. 

type distinction: If t and u each have arity and have distinct arities and 
t = u in P, then P is ill-typed. 

absurdity: If P is ill-typed, then P has type t, t = u in P and :ci has 
type t in P for any t, u, and Xi (this is obviously true under the intended 
interpretation - we need it for a completeness result). 

componentwise equality: If (t 1, ••• ,tn) = (u1, ... ,un) in P, then ti= ui 

in P for each i. 

type substitution: If xi has type t in P and Xj has type u in P, then Xj has 
the type u[t/[xi]] obtained by substituting t for all occurrences of [xi] in u. 

A consideration related to type substitution is that no type can be ill
founded: the type of a variable Xi cannot have [xi] as a proper component. 

ill-foundedness: If :r:i has type tin P and t[t/[:ci]] #- t, then P is ill-typed. 

Finally, we need the rule for typing propositional functions. 

propositional function type: If the variables free in P, listed in order of 
increasing index, are (xi 1 , ••• , xiJ and Xik has type tk for each k, then P 
has type (t1, ... , tn). 

An additional rule is stated which we do not use in the computer imple
mentation for simple type theory (though we do use it in ramified type theory), 
but which is needed for a completeness result for type functions as we have 
defined them. 

types from arguments: If :ri ha.'l type tin Ak, then :ri has type tin :cj(A1, ... , An) 
and :Tj!(A1, ... , An). 

It should be clear that each of these rules is sound for the intended inter
pretation. We will prove that this set of rules is complete for the intended 
interpretation as well. 

Theorem: For each propositional function P, there is a type t such that "P 
ha.'l type t" is deducible from the rules above and the types possible as 
values r(P) for a type function T on P are precisely the types obtainable 
by substituting arbitrary types for each type variable appearing in t. 
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Proof of Theorem: vVe describe the computation of the type t. The idea is 
to construct a set of judgments ":ri has type ti" deducible using the type 
judgment rules which satisfies all the rules for a type function except that 
ti's may type variables: arbitrary instantiation of the type variables (and 
extension of the function to variables not appearing in P) then yields a true 
type function. 

I3egin the construction of the set of judgments by computing the "local" 
type of each occurrence of each variable Xi- We prove the theorem by 
structural induction: we assume that each pf argument of pf application 
terms can be assigned a type satisfying the conditions of the theorem (so 
that we can assign types to the head variables of these terms). 

This fails to induce a type function on P (mod instantiation of type 
variables with concrete types) only if more than one type is assigned to the 
same variable. We describe a procedure for resolving such situations. 

If any variable is assigned types of different arities, or if any variable xi 

is assigned a type which contains [xi] as a proper component, the process 
terminates with the judgment that P is ill-typed. 

If xi is assigned any type t which is not a variable type (t may be a 
composite type with variable components) replace all occurrences of [xi] in 
types assigned to other variables with the type t. If xi is assigned type [.Tj] 
(j -I i), replace all occurrences of the type Xmin{iJ} in types assigned to all 
variables with the type Xmax{i,j}· This is justified by the type substitution 
rule. In the process described below, carry out these substitutions whenever 
a new type assignment is made. Notice that such a substitution will occur 
at most once for any given variable xi, since it eliminates the target type 
everywhere. Of course, if [xi] is introduced as a proper component of the 
type of .Ti, terminate with a judgment of ill-typedness. 

If xi is assigned types [xj] and t in P, add the judgment "xj has type t 
in P" and eliminate the type assignment "xi has type [xj] in P" (note that 
all occurrences of [x j] will then be eliminated if t is not a type variable). In 
one special case we proceed differently: if xi is assigned types [xj] and [.r,k], 
we assign Xi, Xj, and Xk the type Xmax{i,j,k}· 

If :ri is assigned types (t1, ... , tn) and ( u 1, ... , un) in P, the judgments 
ti = ui follow for each relevant i. From these equality judgments continue 
to deduce further equality judgments in the same way. This process will 
terminate with either a judgment that P is ill-typed or a finite nonempty 
set of nontrivial judgments of the form [:rk] = vki each of which has "xk has 
type vk" as a consequence, which we add to our list of type assignments. 
Assign to :ri the type which results if all these types xk arc replaced with 
the corresponding vk 's in either of the two types being reconciled (the same 
type results in either case). Note that no new assignment to :ri can result, 
because [xi] cannot be a component of the type assigned to :ri unless P is 
ill-typed. 

This process must terminate, because each step of the process described 

9 



HOLMES 

eliminates at least one variable type [J:i] from consideration or terminates 
with a judgment of ill-typedness. 

When the process terminates, we will either have concluded that P is ill
typed (and this judgment will be honest because the rules arc sound for the 
intended interpretation) or we will have obtained a set of type assignments 
to the variables appearing in P satisfying the conditions for a type function: 
any instantiation of type variables appearing in these types with constant 
types will give a type function on P. 

It is important to note that this is a type algorithm based on the quite 
standard approach of type unification implemented, for example, in the type 
checking of the computer language ML (a standard reference is [4]). 

vVe can now salvage the definition of substitution given above. 

Convention: \iVe stipulate henceforth that propositional notations are well
formed iff they arc well-formed under the original definition and the judg
ment "P is ill-typed" cannot be deduced using the algorithm given above. 

Theorem: P[Ak/xiJ, defined as above, will be well-defined as long as there 
is a fixed set of substitutions a of types for polymorphic type variables such 
that the type of each Ak is the result of applying a to the type of xik in P. 

Proof of Theorem: vVe only need to consider the case in which a proposi
tional function Q is substituted for the variable Xj in a term :rj (A1, ... , An) 
or Xj!(A1, ... , An). 

vVe reproduce the problematic clause from the definition of substitution. 
"Let Xj(Vi, ... , Y~) or Xj!(Vi, ... , v~) be a proposition built by applica

tion. We carry out the substitution of a finite list of terms Ak for correspond
ing variables xik. Define B' for any notation B as Ak if B is typographically 
Xik and as B otherwise. \iVe define Xj(V1, ... 'v~)[Ak/xiJ Cl.'l xj(V{, ... 'v~;) 
and xj!(l1i, ... , l~1 )[Ak/xik] as xj!(V{, ... , v:;) except in the case where xj is 
a pf notation Q: in this case something rather more complicated happens. It 
will be undefined unless there are precisely n variables which occur free in Q. 
If there are n variables which occur free in Q, define tk so that Xtk is the kth 
free variable in Qin alphabetical order. Then define Xj(Vi, ... 'v~)[Ak/xik] 
or Xj!(V1, ... , Vn)[Ak/xi,,] as Q[V;/x1J" 

The type of the pf Q being substituted for :ri in P is the image under 
the fixed substitution a of the type of Xj in P, and so is the image under 
a of a proper component of the type of P. Thus, by a structural induction 
on types, the substitution Q[V;J:r1k]) into Q used to define the substitution 
into P succeeds, because the image under a of the type of Q is simpler than 
the image under a of the type of P. Note that because P is well-typed, 
that substitution Q[V;/ Xtk]) will meet the typing conditions we require for 
substitutions: the fact that Q has the same type that Xj has in P, each 
v; has the same type as Vi in P, and .7: j (Vi, ... , Vr,) is a su bterm of P is 
sufficient to see this. 

So the problem of substitution is solved by the adoption of simple type 
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theory. 
The motivation behind the ramified theory is as follows. The type of a 

pf in STT is determined by the types of its arguments, and all types of its 
arguments must be proper components of its type and thus simpler than its 
type. It can said further (though such qualms are no longer fashionable) 
that understanding the meaning of a pf involves understanding the entire 
type over which any quantified variable appearing in the function ranges, 
so the type of a pf must be more complex than that of any variable over 
which quantification occurs in the pf. More concretely, Russell suggests in 
PM that a quantified sentence is to be understood as expressing an infinitary 
conjunction or disjunction in which sentences referring to every object of the 
type quantified over must occur. If quantified sentences are to be interpreted 
in this way, then the appearance of a quantified variable in a propositional 
function of the same type as the propositional function or of a more complex 
type would lead to formal circularity on expansion to infinitary form. 

The restriction is enforced in RTT by adding to each type a new feature, 
a non-negative integer called its "order". The order of type 0 (the type of 
individuals) is 0 (:r,ero). The type () of propositions in simple type theory 
is partitioned into types on for each natural number n, where the order n 
will be the least natural number greater than the order of the type of any 
variable which occurs in the proposition (including quantified variables). A 
propositional function P containing n free variables xik (listed in increasing 
order) with types tk will have type (t1, ... , tn)m, where m is the smallest 
natural number greater than the order of any of the types tk and the order of 
the type of any variable quantified in P. A similar rule applies to the typing 
of head variables xi in expressions Xi (A 1, ... , An) or Xi! (A 1, .•. , An): the type 
of xi will be (t 1, ••• , tnY where each tk is the type of Ak, and the order r is 
larger than the orders of the tk's; in the term xi!(A 1, ... , An), the order r must 
be the smallest order larger than all orders of tk 's. 

Polymorphic type-checking for this system is made difficult by the fact 
that a polymorphic type [xi] has unknown order (denoted by lxi I) and a term 
xi (A 1, ... , An) has only a lower bound on its order, and so it is necessary to 
do a certain amount of arithmetical reasoning on unknown orders. A typical 
order is the maximum of a natural number n and several expressions of the 
form lxil + m. Unification of orders is a not entirely trivial problem. 

This is all made concrete as follows. vVe begin with the definition of formal 
polymorphic orders. 

Natural numbers are polymorphic orders. l:ril is a polymorphic order for 
each .Ti· Formal maxima of polymorphic orders are polymorphic orders and 
so is the formal sum of a polymorphic order and a natural number. 

Elementary properties of maximum and addition allow us to reduce any 
polymorphic order to a canonical form, which will be the maximum of a single 
natural number (if the natural number is 0 it is omitted) and a list of ex
pressions lxi I + m (if m is 0 it is omitted) presented in ascending order of the 
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parameter i. Adding a natural number to such a standard form and taking 
the maximum of two such standard forms are computable operations. 

If m and n arc polymorphic types, we say m > n when max(m, n + 1) = 
rn. This is not a total order, of course. 

The result u[m/l:r:i IJ of substituting a polymorphic order m for the poly
morphic order l:ri I in a polymorphic order u is the result of replacing the 
occurrence of l.r;j in u (if there is one: otherwise the result of the substitution 
is u) with m, then simplifying to canonical form. 

Substitution into orders is needed to handle changes in order which take 
place when a more detailed type is substituted for a polymorphic type variable. 

Now we are in a position to define ramified types (and their orders, simul
taneously). 

individuals: 0 is a ramified type of order 0. 

propositions: If n is a polymorphic order, on is a ramified type of order n. 

propositional functions: If t 1, ... , tn arc ramified types and mis a polymor-
phic order greater than the order of any of the types tk, then (t1, ... , tn)m 
is a ramified type of order m. 

polymorphic types: For each variable :ri, there is a ramified type [xi] of 
order lxil· 
We present the rules for a term-typing function T as above. Notice that 

here the orders will be fixed non-negative integers. 

individuals: If :ri appears as an argument in an atomic proposition, r(xi) = 
0. r(a;) = 0 if ai appears. 

propositional functions: If P is a propositional function and the n free vari
ables of P, indexed in increasing order, are xi,,, r(P) = ( r(;:rii), ... , r(xiJtn, 
where m is one greater than the maximum of the orders of the types of the 
variables appearing in P (free or bound). If P contains no free variables, 
then r(P) = ()m, where mis one greater than the maximum of the orders 
of the types of the variables appearing in P. 

variable application: If ::rJ!(A1, •.• , An) is a term, then r(.rJ) = (r(A1), ... , r(An))m, 
where m is one plus the maximum of the orders of the types of the Ai 's. 
If XJ(A 1 , ••• , An) is a term, then r(::rJ) = (r(A1), ... , r(An))m, for some m 
greater than the order of the type of any Ai. 

Notice that in the ramified theory there is an additional case where the 
type of a variable cannot be rigidly deduced from its context: as before, the 
type of a variable argument to a pf variable is polymorphic (though it may 
be determined from other features of the context) and in addition the order 
of the type of Xj in a term xJ(A1, ... , An) only has a lower bound, not a fixed 
value (though further information in the context might fix the order or further 
restrict it). This will be reflected in additional appearances of polymorphic 
variables in our algorithm. 
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vVe will regard a pf as well-formed when there is a type function T which 
assigns a type to that function. Some pfs will have many possible types, as 
above, which will be indicated by the appearance of type variables [:ri] and 
order variables !:ri I in the type resulting from the algorithm. 

We now develop rules for deduction about type judgments, showing that 
the rules are valid in the intended interpretation. Our development will be 
parallel to the development for simple type theory above. We present only 
those clauses which differ from the clauses in the development for STT. 

applied variables: If A; has type ti for each i, and the order of tk is ok 

for each k, then Xj has type (t1, ... , tnY in :rj!(A1, ... , Ak), where r = 
1 + max(o1, ... , ok), and Xj has type (t 1, ... , tn)s in Xj(A1, ... , Ak), where 
"'= max(ixjl, 01+1, ... , On+ 1). 

Definition: We assign an integer arity to each type which is not a type 
variable. 0 has arity -1. () has arity 0. (t1, ... , tnr has arity n. Note 
that a type may have variable type components, but it will still have arity 
if it is not itself a type variable. Note also that types which are equal will 
have equal arity if their arity is defined. (this clause appears simply because 
order appears in composite types - note that the order has no effect on the 
arity). 

componentwise equality: If (t 1, ... , tn)m 1 = (u1, ... , un)m2 in P, then ti= 
ui in P for each i. (this clause appears, again, simply because order is 
mentioned; it is also the case that m 1 = m 2 will hold, but we have no 
judgment of this form available to us). 

type substitution: If xi has type tin P and Xj has type u in P, then :J:j has 
the type u[t/[xi]] obtained by substituting t for all occurrences of [xi] in u. 

If :ri has type t in I' and u = v in P, then u[t/[xi]] = v[t/xi] in P. (this 
clause appears because we need substitution into equality judgments; such 
a rule would be valid in STT but is not needed there). 

In the rules above and below, it is important to note that substitution of 
a type t for a type variable [xi] also has the effect of substituting the order of 
t for all occurrences of the order variable !xi 1-

ill-foundedness: If xi has type t in P and t[t/[xi]] #- t, then P is ill-typed. 
(Note that the computation of t[t/[xi]] includes the reduction of its order 
to standard form). 

There is a form of circularity which does not lead to ill-typedness: a vari
able xi may have a type whose order t is a maximum of types including !xii; 
the calculation of t[t/[xi]] includes the simplification of the order oft, which 
will reduce t[t/[:ri]] tot. 

propositional function type: If the variables free in I', listed in order of 
increasing index, are (xi 1 , ••• , xi,.), and the variables quantified in I' arc 
(:rin+i, ... , :Ti

11
J, :ri., has type tk for each k and type tk has order ok for each 

k, then I' has type (t1, ... , tnY, where r = 1 + max(o1, ... , om)· 
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It should be clear from our discussion that each of these rules is sound for 
the intended interpretation. However, this set of rules is not complete. 

We now introduce the notion of "bounding variable" of an order. 

Definition: If an order n is presented in the standard form max(n0 , n 1 + 
lxi 1 I, ... , nk + lxik I), and some nj with (.j #- 0) is equal to 0, then Xij is said 
to be a "bounding variable" of n. 

It is important to observe that the only orders deduced by any of our rules 
which can have bounding variables are the polymorphic orders lxi I themselves 
and the orders assigned to Xj in terms Xj(A 1, .•• , An), which have bounding 
variable jx j I. Any other polymorphic order that we assign is the successor 1 + n 
of some order n, and it is clear that no successor order can have a bounding 
variable. 

Further, the following rule clearly holds for types assigned by our algo
rithm: 

bounding variables: If Xi has type t in P and the order of t has bounding 
variable :rj, then Xj has type t in P. 

The reason for this is that any rule which assigns a type with bounding 
variable Xj in the first instance actually assigns this type to the variable Xj. 

Further, this implies that we can assume that any type with a bounding 
variable has only one, since the types of the bounding variables can be shown 
to be equal by this rule, and type substitution can then be used to eliminate 
one of them. 

We present an incomplete but often successful algorithm for computation of 
the type of a proposition or propositional function P in RTT. This algorithm 
follows the STT algorithm very closely. 

Provisional algorithm: We describe the computation of the type t. The 
idea, as before, is to construct a set of judgments ":ri has type ti'' deducible 
using the type judgment rules which satisfies all the rules for a type function 
except for possibly containing type variables: arbitrary instantiation of the 
type variables then yields a true type function. 

Begin the construction of the set of judgments by computing the "local" 
type of each occurrence of each variable xi. The algorithm is recursive in 
the same way as the STT algorithm: we assume that each pf argument of 
pf application terms has been successfully assigned a type. 

If any variable is assigned types of different arities, or if any variable J;i 

is assigned a type which contains [xi] as a proper component, the process 
terminates with the judgment that Pis ill-typed (note that if xi is assigned a 
type with bounding variable j;Ti j, this docs not lead to forbidden circularity). 

If xi is assigned any type t which is not a variable type (including com
posite types with variable components) replace all occurrences of [xi] in 
types assigned to other variables with the type t. Note that this docs not 
necessarily eliminate all occurrences of x;: if the type of xi has bounding 
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variable :ri, occurrences of lxd will remain. 
The assignment of type [xj] to a variable ;r;i is handled as in the STT 

algorithm. 
Such substitutions will usually occur at most once for any given variable 

.Ti, since the target type is usually eliminated everywhere. Of course, if 
[xi] is introduced as a proper component of the type of xi, terminate with a 
judgment of ill-typedness. The exception in which the variable xi is assigned 
a type with bounding variable :ci remains to be considered. Notice that 
as soon as a variable is assigned a type which does not have a bounding 
variable, any type which that variable may have been assigned which had 
a bounding variable will be converted to a form which does not have a 
bounding variable by the global substitution process. 

If ;r;i is assigned types [.rj] and t in P, add the judgment "xj has type t in 
P" and eliminate the type assignment "xi has type [xj] in P", except in two 
special situations which follow: if xi is assigned types [xj] and [:ck], we assign 
xi, Xj, and Xk the type Xmax{i,j,k}l as in the STT algorithm. If the type t has 
bounding variable Xj, it must be the case that the judgment ".r1 has type 
t in P" has already been made. In this case we define t' as t[[xmax{i,j}]/x1] 
and assign this type to both xi and x1 , replacing all occurrences of [xi] and 
[.r1] in all type judgments with [:rmax{i,j}l· Observe that in each case at least 
one polymorphic type has been eliminated from all type judgments. 

If xi is assigned types (t1 , ... , tn)m 1 and (u1, ... , unr2 in P, the judg
ments ti = ui follow for each relevant i. From these equality judgments 
continue to deduce further equality judgments in the same way, ending up 
with a finite set of nontrivial judgments "xk has type vk" which can be used 
to unify the two composite types just as in the STT algorithm. 

If xi is assigned types (t1, ... , tn)m 1 and (u1, ... , un)m2 in P, or if Xi is 
assigned types orrii and ()m2

' the orders m1 and m2 should be the same. 
If m 1 has bounding variable x1 and m 2 has no bounding variable, we make 
the additional judgment ":r:j has type ( u 1, ••• , un)m2 in P" and replace all 
occurrences of !xii with m2 (other occurrences of [x1] should already have 
been eliminated). We proceed symmetrically if m 2 has a bounding variable 
and m 1 has no bounding variable. If m 1 and m 2 have bounding variables 
Xj and Xk respectively, we make the additional judgments "xi has type 
(u1, ... ,un)m2 in P" and ".Tk has type (t 1, ... ,tn)m 1 in P", then replace 
all occurrences of l.r 1 I and Ix k I (there should be no frank occurenccs of [:r 1] 

or [:rk]) in type judgments with lxmax{j,k} 1- Both of these maneuvers arc 
justified by the bounding variable rule. 

This process must terminate. Each step of the process described elim
inates at least one variable type [xi] from consideration (along with any 
occurrences of \:ril) or terminates with a judgment of ill-typedness. 

When the process terminates, we will either have concluded that P is 
ill-typed (and this judgment will be honest because the rules are sound 
for the intended interpretation) or we will have type assignments to the 
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variables appearing in P almost satisfying the conditions for a type function: 
"almost" because the same variable may be assigned distinct ramified types 
corresponding to the same simple type but having typographically different 
orders. If each variable has been assigned a unique type by the end of the 
process, then the algorithm succeeds in defining a type function T up to 
assignments of concrete type values to type variables, as above. 

This algorithm is still based on the quite standard approach of type uni
fication implemented, for example, in the type checking of the computer 
language ML (see [4]). 

The algorithm above is sound but incomplete. If it yields a type, it will 
always be a correct type, but there arc propositions and pfs which cannot 
be typed by this algorithm but which are typable in RTT. In practice, the 
algorithm is quite good; it is not easy to write a typable term of RTT which 
it will not type (though we shall present an example). 

A complete algorithm requires true order unification. This will depart from 
the usual methods of type checking, because it will require reasoning about 
numerical inequalities. 

It might seem that we would need new judgments "m = n in P", where 
m, n are orders, but in fact the type judgment "Om= on in P" is equivalent. 
We do allow ourselves the abbreviation "rn = n in P" for "Om = on in 
P" where it is clear that orders are being discussed (we call type equality 
judgments of this form "order equality judgments"), but not in the statement 
of the following (obviously sound) additional rules: 

componentwise equality of composite types (order): If (t 1 , ... , tn)m 1 = 
(111, ... ,11n)m2 in P, then omi = (Y"2 in P. 

order substitution: If Xi has type tin P and rn is the order oft, and ()P = ()q 
in P, then ()P(m/lx;I] = ()q(m/x;] in P. 

We outline our basic approach to reasoning about order unification. An 
order equality judgment in standard form will take the form max{n0 , n 1 + 
lxi 1 1, ... ,nk +!xi,.!}= max{mo,rn1 + l:z:J 1 I, .. . ,m1 + lxJ,I}. This is equivalent 
to a disjunction of conditions, each of which asserts the equality of one of the 
terms of the first maximum with one of the terms of the second maximum 
along with the inequalities asserting that the two chosen terms are greater 
than or equal to the other terms of the respective maxima from which they 
arc taken. If one or both of the orders has a bounding variable, the bounding 
variable is the only possible maximum chosen (which simplifies the calculation 
in these cases by reducing the number of cases). 

All of the resulting statements can be expressed using assertions of the 
form !:ri I 2:: n, !:£ii S n, or lxi I - 1-Tj I S n, where n is an integer. Any equation 
or inequality between terms of the forms no or nk + l·Tik I can be converted to a 
conjunction of inequalities of the forms above by substracting an appropriate 
quantity from each side of the equality or inequality and converting an equa
tion to the conjunction of two inequalities in the obvious way. Any conjunct 
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of the form !xii ::; r where r < 0 (which will also be obtained (e.g.) from an 
equation !xi I + m = !xi I + n where m i= n) can be used to conclude that an 
entire conjunction is false. 

We now describe the computation of complete conditions for well-typedness 
of a term from a number of order equality judgments. Convert each order 
equality judgment to a disjunction of conjunctions of inequalities of the forms 
described above. A conjunction of disjunctions of conjunctions is converted 
to a disjunction of conjunctions in the obvious way. 

Now each conjunction of inequalities is processed separately. Present all 
inequalities in a uniform way by rewriting !xi I ::; n, !xi I 2: n as lxi I - 0 ::; n, 
0 - I.Ti I ::; -n, respectively. Every inequality is then written in the form 
A - B S n. For each xi which appears, include 0 - !xii S 0, 0 - 0 S 0 and 
lxil - lxil S 0 in the conjunction. Wherever A - B ::; n1 and A - B S n2 

both appear, retain just A - B ::; min{ n 1, n 2 }. Wherever A - B ::; m and 
B - C::; n both appear, add A - CS m + n to the conjunction. Apply these 
operations repeatedly if necessary. If any conjunct of the form lxi 1-0 ::; r with 
r < 0 or I.Ti 1- lxi I ::; r with r < 0 appears, conclude that the conjunct is false. 
We claim that this procedure will produce a canonical complete conjunction 
equivalent to the conjunction we started with. 

Lemma: Any conjunction of a set of inequalities of the form A - B :::; n, 
where A and B are either 0 or variables with natural number values, is 
converted to a canonical equivalent form by the procedure described above. 

Proof of Lemma: The proof of the Lemma is omitted from this abridged 
version of the paper. 

Conjunctions can then be simplified by eliminating redundant conjuncts (a 
conjunct is redundant if eliminating the conjunct then computing the canoni
cal form gives the same result as computing the canonical form of the original 
conjunction): in practice this gives quite manageable displayed forms for con
ditions. 

Once each disjunct is computed, identical disjuncts or conjunctions weaker 
than other disjuncts can be recognized and eliminated (by comparing canonical 
forms) and a simplified form of the disjunction of conditions under which the 
term is well-typed can be computed (or ill-typcdncss can be reported if all 
conjuncts reduce to falsehood). 

This can be applied to produce a complete algorithm: use the provisional 
algorithm described above to generate a list of type assignments whose failures 
of uniqueness are induced only by failures to unify order, then apply the 
procedure described above to reduce the order equality judgments that are 
required to arithmetic assertions about polymorphic orders. Note that under 
the resulting conditions it is possible to select any of the types given for each 
variable or propositional function as correct, since all types given for any one 
object will be equal under the conditions derived from the unification of the 
orders. 
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The simplification of the arithmetic conditions on polymorphic orders 
made possible by the use of canonical forms for conjunctions combined with the 
elimination of redundant conjuncts and disjuncts is essential for manageable
siJ~cd output (earlier versions showed this) and gives good results. 

The reasoning above was informal arithmetical reasoning. It is theoret
ically interesting to observe that it can be handled by an extension of our 
system of type judgments. This is not how the software does it, and we do 
not discuss the details in this abridged version of the paper. 

Here we omit a section in which comparisons between the system of this 
paper and the system of [3] is found, except for the comment in the following 
paragraph. The other points listed in the section found here in the unabridged 
paper are made (perhaps briefly) elsewhere in the paper. 

The range of terms recognized as well-typed by our system is far larger 
than that recognized by the system of [3], and apparently larger than that 
recognized by PM! The system of [3] only supports types all of whose com
ponent types are "predicative". Probably the modifications of the system 
required to lift this restriction would not be extensive. On reading [3] orig
inally, we thought this was a weakness of their development, but in fact it 
seems to reflect the intentions of the authors of PM: seep. 165. However, we 
think that more complex impredicative pfs would be needed for work in PM 
without the axiom of reducibility (and if one assumes this axiom one might 
as well work in STT). 

We are working in RTT in all examples, but the software does not display 
order superscripts on types when the order is the smallest possible. Some 
features of the output of our software are suppressed. 

Term input: 
S2(a1,a2) 

final type list: 
unconditional type: 

() 

Just as in example 49, clause 1, of [3], the propositional notation S(a 1, a2 ) 

is recognized as a proposition because it contains no free variables. 

Term input: 
(R1(x1) v S1(x1)) 

final type list: 
x1: 0 

unconditional type: 
(0) 

This is parallel to the second example in clause 2 in example 49 of [3]. 

Term input: 
(R1(x1) v S1(x2)) 

final type list: 
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xl: 0 
x2: 0 

unconditional type: 
(0,0) 

HOLMES 

This term R 1 (xi) V R2 (:r 2 ) would be treated quite differently from the 
term above in the system of [3], whereas the treatment of both propositional 
functions in the system of this paper is very similar. In both terms, our checker 
first generates the list of free variables, then each free variables is typed using 
local rules, and the types of the free variables are listed to form the type of 
the pf. 

The system of [3] uses a different (and more usual) kind of context than our 
system. The form of a type judgment of the system of [3] is r f= f : t, where 
f is a term, t is the type assigned to that term, and r, the "context"' is a list 
of assignments of types to variables. In our system, a type judgment about 
an entire term (propositional notation) has no context, while type judgments 
about variables have as context the term in which they appear. 

In the system of [3], the term R 1 (xi) V R2 (xi) is typed by first considering 
the typing of R 1 (a1) V R2 (a1), which is immediately seen to have type(), and 
in which the term a 1 has type 0, then using the rule for typing substitutions 
to insert new component with type 0 into the type () of R 1 (ai) V R2 (ai) to 
obtain the type (0). The term R 1 (x 1) V R2 (x2 ) is typed by observing that the 
two disjuncts have the property that all variables of the first are alphabetically 
prior to the variables of the second, typing the first and the second as (0) in 
the same way we typed the previous term, then concluding that the type of the 
whole is the "product" (0, 0) of two copies of (0) (speaking somewhat loosely). 
This might give some idea of the very different flavor of the two approaches. 

Term input: 
[x 1] ( x 1 ! () v - x 1 ! () ) 

final type list: 
xl: () 

unconditional type: 
0-1 

This is example 51 from [3]. Order is important in this example. Note 
that the variable x 1 represents a proposition (a 0-ary propositional function); 
the order of its type is 0. The entire term is also a proposition (it contains no 
free variables, because .T 1 is bound by the quantifier) but its order is at least 
1, because it must be greater than the order of the quantified variable. It is 
precisely 1 because we used "predicative" pf application. The order 0 of the 
type of x 1 is not displayed because it is as small as possible. 

We can see an explicit polymorphic type by implementing the term in 
Remark 58 of [3], stipulating that the application is predicative. 

Term input: 
x2 ! (xl) 
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final type list: 
xi: [xi] 
x2: ([xi]) 

unconditional type: 
([xi],([xi])) 

HOLMES 

In this term, 1: 1 is of a completely unknown type [:r 1], while 1;2 is seen to 
be of type ([:ri]) (it is a predicate of objects of type [x1]), so the whole term 
is of type ([x 1], ([xi])): the order of the components is determined by the fact 
that x 1 is alphabetically prior to x 2 . 

In [3], two different derivations are given, showing how two different types 
can be assigned to this pf, whereas here we get a single computation yielding 
all types. If we get more information from the context, the type will become 
more specific: 

Term input: 
(x2!(xi) v Si(xi)) 

final type list: 
xi: 0 
x2: (0) 

unconditional type: 
(0, (0)) 

Here we know from local information elsewhere in the term that the type 
of x 1 is 0, so we get a more specific type for the whole pf. 

We now give a large example. There arc two different conditions under 
which the given pf is well-typed. 

Term input: 
(xi!(x2,x2) v xi!([x3] [x5]x3!(x5,x8),[x6] [x9]x6!(x4,x9))) 

unconditional type: 
?I? 

conditional type: 
((([x8])-max(lx51+2, 
lx81+2,2),([x8])-max(lx81+2,lx91+2,2)), 
([x8])-max(lx51+2,lx81+2,2)) 

WITH 

OR 

lx51 <= lx91 and 
lx81 <= lx91 and 
lx91 <= lx51 

lx51 <= lx81 and 
lx91 <= lx81 

In more standard notation, the propositional function is 

.TJ ! (x2, x2) V 1:1 ! ( (VT3. (\ix,5 .. T3 (.7:5, .Ts))), (\i:r5. (\i:rg. (x5! (x4, xg))))) 
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The entire term is a propositional function of the arguments :r1 and x 2 ; 

it is necessary to figure out what the types of x 1 and x2 are. Because of the 
presence of the subterm x1!(x2 ,:r2 ), we know that the two arguments of any 
occurrence of :r 1 must be of the same type. So the propositional functions 
(V:r3 .(Vx5 .x:3(.r5 ,:r8))) and (Vx6 .(\l:r9 .(:r6 !(:r:1 ,x9 ))) are of the same type. Each 
of these is a function of one variable, x8 in one case and x4 in the other, so x4 

and .r8 are of the same type. This base type is polymorphic: we know nothing 
about it. 

Now we need to analyze orders. The order of the type of ('Vx:d'Vx5 .x3 (x5 , x8 ))) 

is two greater than the maximum of the orders of [x5] and [x8]. The increment 
of two is because x 3 has type one greater than this maximum, and the order 
is raised one more because of the quantifier over the type of x:3• Similarly, the 
order of the type of ('Vx6 .(\lx9 .(x6 !(x4 , x9 ))) is two greater than the maximum 
of the order of [x1] = [x8] and the order of [x9 ]. These two orders have to be 
the same. There are two ways for this to happen: either the order of [x5] is 
greater than the order of [x8], in which case the order of [x9] also has to be 
greater than the order of [x8] and actually must be the same as the order of 
[x5], or the order of [x8] is greater than or equal to the orders of [x5] and [x9] 

(which in this case need not be the same). And these two cases are what the 
output above describes. 

The type of :r 1 will be ([x2], [x2]); the type of x2 will be (x8 ). So the 
underlying simple type of this expression is ((([x8]), ([x8])), ([x8])), and this is 
what we see above, adorned with appropriate orders. 

vVe omit a section on applications to proof-checking for PM which will 
appear in the unabridged paper. 
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