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Ups and Downs of Type Theory* 

\,y. Peremanst 

A global hist.orical sketch of the development of formalized type theory in the 20th 

century will be given. No surprising historica.l insight.s will be presented as all the 

items discussed can be found in the current. lit.erat.ure. 

In the beginning of t.he 20th cent.ury, t.ype t.heory was developed to deal with the 

paradoxes which were discovered in logic and set theory. This led to a great interest 

in types during the first. decennia of this cent.ury. However, t.his int.erest flagged 

afterwa.rcls. There were t.wo somewhat relat.ed rea.sons for t.his. 

Firstly, type t.heory began t.o playa. less important role ill logic beca.use it became 

clear t.hat first-order-logic, which is free of types, sat.isfied many criteria. 

In the second place, axiomatic set t.heory had been developed. This theory was free 

of types and its aim was to describe "t.he ent,irety of Illatllemat.ics". 

As a result, interest in types had diminished considerably by the middle of our cen

tury, It Was the hey-day of 13olll'baki, whose influence on t.he st.yle of thinking and 

writing in ma.thematics lllust nol, be underest.ima.ted. 

Later, the t,ide turned aga.ill. Satisfaction with sct.-theoretical coding diminished a.nd 

its unnatura.lness wa.s more strongly felt.. Furthel'lllore, t.he rise of computer science 

sparked a. revival of int.erest in types. 

This raises two questions: What arc types'? Why do we restrict ourselves to the 20th 

century? Undoubtedly, forllla..Iized type theory is a product. of the 20t.h century, The 

intuitive notion of type is not clea.rly defined, but llilcl undoubtedly been viviclllluch 

earlier. It was in fact so self-evident, that. there was no need to ma.ke it explicit, It 

is simply the awareness t.hat t.here are difkrcnt kinds of ma.thcma,t.ical objects. For 

example, a, t.riangle and il, rea.1 lIurnber a.rc nla.titcmal.ical objects. In t.he 19th cen

tury, one woule! not have understood the meaning of {tria.ngle, rea.lnumber}, ane! 

'"This t.ext rcflect.s t.he cont:ents or a lecture held Oil :rvfay 18, 1090, ill Eindhoven, which was an 
int.roduction t.o a symposium on t.ype t.lleory. 

tThc aut.hor is indehted to "MflI'ianne Sanders and Twall Lanu for the t.ranslation from Dutch 
of his paper 
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not only because this kind of notation was unknown. 

We have been so indoctrinated with set theory that we are used to it. These days, 

"everything" is a set. One can wonder whether this is a blessing or not. The set

theoretical coding of mathemat.ics surely is not the ultimate salvation message, but 

rather an incident of a temporary natlll'e. 

De-typing (the disappearance of t.ypes) was already evident in the 19th century, and 

perhaps even earlier. A triangle could be described by its three vertices, giving, with 

coordinates in the plane, six realllumbers. The arithmet.izat.ion of mathematics took 

place in the 19th cent.ury, introduced by the restra.int. of the crisis in analysis, led 

to the tighteuing up of notions such as limit, continuity and rca.] nllmbers (Cauchy, 

Dedekind). The goal was t.o reduce everyt.hing to the concept. of natural number. 

This reduct.ion, however, was not. canonical; one .iust has t.o rea.lise t.he different ways 

in which real numhers can be const.l'llct.ed. The a.nalogy to the set-t.heoretica,] coding 

in the 20th cent.ury is striking. 

Arithmet.ization is a det.yping which gave the mathcmaticia.ns great sat.isfaction. 

Poincare, for example, held a lectl11'e at t.he interne,t.iona! congress of mathematics 

in Paris in 1900 in which he st.ated that, mat.hemat,ics waS fina.lly rest.ing on a solid 

base: Everything was reduced to Itat.ural nnl'nb8rs. In fact., t.he next crisis in t.he 

founda.tions of n1a.then1a.t.lcs was drawing nea,r. 

Because of t.he arithmet.i7,ation, t.here was great. interest. in the quest.ion of what 

natl11'al numbers really arc. COltsider the works of Dedekind (1888), Peano (1903) 

a.nd Frege (18~n-190;3). In Frege's work we a.lso find t.he origin of propositional and 

predica.te logic. Besides, Ca.ntor's set t;heory had been developed since 1873. 

At the turn of t.he century, cOllt.radict.ions (a.lso called ant.inomies or paradoxes) 

were discovered. The oldest. olle is J3urilli-Fort.i's (1897), which did not at.t.ract much 

att.ent.ion, maybe because it. refers t.o ordinal numbers, il subject. in which mathe

mat.icians were not much interested in t.hose da.ys. Russell's paradox of 1902 did 

attract attention, however, because it ma.de logic as well as set theory topical again. 

Dedekind and Frege were shocked, and Poincare changed his posit.ion and became 

a.n opponent of set. t.lleory. 

There is a logical and a. sct.-theoretical variant. of t.he para.dox. As the first one IS 

the most important to liS now, we will discuss it. br·leAy. 

Consider properties, or predicates. Tltese ca,1t be sc1f-rcferrenl: or not. For insta.nce, 

"red" is not. red, but "ahst.ract" is abst.ract.. 'vVe will call "sell'-rderrent": "predica

ble", and it.s negat.ion: "illlpredicable". 

"Impredicable" is ".Iso a predicat.e it.self, a. predicate 011 predicates, t.o be precise. 
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We might wonder whether "impredicable" is predicable or impredicable. 

Assume that impredicable is impredicable. Then it refers to itself, so it is predicable. 

This is a contradiction. So, the assumption is not right, therefore impredicable is 

not impredicable. But that means that impredicable does not refer to itself, so: it 

is impredicable. We have another contradiction, but now without an assumption. 

It can also be written down in a less verbal manner. Let I denote the predicate "im

predicable". Then, by definition, l(x) ~ ,x(x). Now suppose 1(1) holds, then, by 

definition, ,1(1) holds, so: 1(1) does not hold. Contradiction. So: 1(1) is not true. 

But that means ,1(I) is true, and, again by definition, 1(1) holds. Contradiction. 

During the first decennium of our century, several other antinomies were discovered. 

An antinomy of quite another kind than Russell's is Richard's (1905), related to 

Berry's paradox (1906): 

Consider the real numbers between 0 and 1, which can be described by a finite sen

tence in English. These form a countable set R. Using an enumeration of all the 

English sentences, an enumeration of R can be constructed. Using a diagonal argu

ment, one can construct a real number which does not belong to R. Enumeration 

and diagonal argument can be described by a finite sentence and therefore provide 

a number in R. Contradiction. 

Historically, the description above is the oldest one. A variant is as follows: Write 

the real numers between 0 and 1 as binary fractions, e.g., .0llOl ... , and interpret 

such a sequence as a property of natural numers: If the nth place of the sequence 

has a 1 (0) then n has (does not have) the property. Properties of natural numbers 

which can be described by finite sentences can be enumerated: Wo, WI, .... Now 

consider ,Wn(n), as a property of n. This property can be formulated by a finite 

sentence, so a natural number q exists such that Wq(n) <-> ,Wn(n) for all natural 

numbers n. Substituting q for n leads to a contradiction. 

Berry's antinomy is as follows. Regard the natural numbers which can be defined 

by an English sentence containing no more than 50 words. Because there are only 

finitely many of these sentences, this yields a finite collection of natural numbers. 

The smallest natural number not belonging to this set results in a contradiction. 

We will not discuss other antinomies here. The antinomy of the liar is very old and 

well known. 

How can these antinomies be avoided? Logic and set theory have each taken their 

own lines. We start with logic. 

It appears to be troublesome to unbridledly apply principles which used to be al

lowed. We therefore exercise restraint in using logical principles. This is unsatis-
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fa.etory since we have to do it ad hoc: The antinomies which are to be avoided do 

not cogently imply what the rest.rictions should be. One simply imposes restrictions 

and sta.tes that, the known arguments which lea.d to the antinomies ca,n no longer 

be maintained. This is unsatisfilct.ory on t.wo point.s: 

On the one hand, we can wonder whether it could have been done with less. The 

choice is sufficient for the ta.rgct we set ourselves, but may not be necessary. This 

weighs even more heavily because reasonings which seemed to be "innocent" cannot 

be maintained or only maintained with much more effort. Sand has come into the 

machinery. 

On the other hand, the question whether it. should not be more aTises. The fact that 

known antinomies arc eliminat.ed docs not prove t.hat there are no others, which still 

can be proved. A consistency proof of the systel1l would be very welcome. However, 

this does not appear to be very successful. 

In set, theory the soJut,ion has been sought 111 another direction. In logic the for

malism, the language itself, was restrided. On set t.heory the restrictions were not 

made on the language but on the axioms, especia,lly when new sets are constructed. 

We may ask ourselves what the problelll is. Tn Russell's antinomy, self-reference 

comes up. In Richa,rd's pa.radox, we have to do with impredicativit.y. A definition 

of a.n object is called impredicat.ive if there is a tot.ality in it, which contains that 

object, or a, propert.y fulfilled by that, object.. At. the beginning of t.his century there 

wa.s a. lot of discussion 011 tllc perrllissibility or illlpredicative definitiolls. Poinca.re 

and Russell, among ot.hers, took part in t.his debat.e. Simply forbidding them is not 

very a.ttractive because mat.hematics is full of them. An example is "maximum of a. 

continuous function on a closed interval", but. also "the youngest. of the class". 

Russell solved the problem by IIOt. allowing self-reJ'erencc a.nel rcstrict.ing impred

icativity. This led to so-called ramified type-t.heory, trca.\.ccl in great deta,il in the 

classical three-volume work by \VhiLchead and ilussell, "Principia IVTa.thematica" 

(1910-1913). Ramifying has gone ouL of usc, which resulted in simple type theory. 

Below is a general descript.ion of the ide,]. 

There aTe objects of type O. Propert.ies of objects of t.ype 0 have type 1; properties of 

properties of objects ha,vc type 2, and so OIl. There arc no ot.her properties. In this 

way, self-reference is eliminat.ed and, together wit.h it., Russell's a,ntinomy. Types 

which are> 0 arc divided into orders. To simplify l11ilttcrs, le(, us look a.t type 1. 

Properties of type 1 which arc defined wit.hout, referring t.o an entiLy of objects are 

of order O. Propert.ies containing entit.ies of order ~ k: ill (,heir deJinit,ioll are of orcler 

"'+1. As a· consequence, oilly cnt,ities of I)rope!'\,ies of bounded order may occur in 
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the definition of a propert.y. 

Thus, Richard's paradox is eliminated, but., in fact., this holds for all impredicative 

definitions. Because of tha.t., the system is hardly useful I"or common mathematics. 

In "Principia }vlathematica" this problem is solved by a bold intervention, the ax

iom of reducibili/.y: To every property of higher order, there is a property of order 

o which is coextensive with the given propert.y. 

La.ter, another solut.ion t.o t.he problems was found. It. sta.rt.ed wit.h Ramsey, who, in 

1926, divided ant.inomies int.o t.wo classes: 

1. Logica.! (e.g., Burali-Fort.i, Russell) 

2. Semantical (c.g., Richard, l3erry, t.he Liar) 

For logica.l a.ntinomies, ramifying is not necessa.ry, and simple type theory is suffi

cient. SenH1.ntic antinOlnies ha.ve in t,heir la.lIguage references to expressions in tha.t 

la.ngua.ge like definability in Lhat. language, or t.rut.h 01" sent.ences in tha.t. la.nguage. 

This is what we are going to forbid. We begin with a language. Tha.t. language has 

to be spoken about in anot.her la.nguage, wllich will be call eel llleta-Ia.nguage. 

This procedure has been cOlllplet.ely accepted nowadays. The hierarchy of orders is 

substitut.ed by a hiera.rchy of Jallguages beea.usc t.he process call be iterated: Meta

language has a. metarnetalanguage, and so Oll. ThaI. t.his idea was quickly accepted 

was probably due t.o the fact. tha.!. ra.mifying in type t.heory could be thrown over

board. 

\Ve now a.rrive at t.he situation in the ':308. But first. something must. be said a.bout 

the other development.: set. theory. Tn t.he mea.ni.imc set. theory had grown a.nd ha.d 

been perfected (Zennclo, Fraenkel, Von Neumallll, Elemays, Goelel). One saw the 

rea.!ization of t.he vision 1.0 refled. and coele "t.he entirety of ma.t.hcma.tics" come 

closer. Everyt.hing waS bnilt on the empty set. and t.ypes did not come up at a.ll. At 

the end of t.he '~108, t.he Bombaki group started t.lle execution of t.his plan. 

On the other hand, the type-theoretical design of logic had also been st.reamlined 

and simplified. With the use of subtle tricks it was evell possible i,o build type theory 

on a first order language. Even type theory itself al.l.empted 1.0 make the int.uitive 

notion of t.ype superfluous. 

A well-known and later llluch used way of formalizing (simple) type theory is 

Church's (1940). He coullectee! t.ypes with tI,e use of lambda-calculus, which came 

to be usua.l in later devel0Plllents as well. Types arc no longer numbers as in "Prin

cipia. Ma.themal.ica.". Type symbols arc used, rdlect.ing composition of functions 



and forming of predicates. Furthermore, as usual in lambda-calculus, functions of 

more than one variable are considered as functions of one variable by repetition of 

function application. 

Below is a short sketch of the build-up: 

• There are two basic types: l (individuals) and CJ (propositions, truth values). 

There are also type symbols: 

- land CJ are type-symbols; 

if 0< and (3 are type-symbols, then (0<(3) is also a type-symbol. (0<(3) IS 

interpreted as the type of functions with domain (3 and range 0<. 

The obvious omission rules for brackets are used. 

• There are variables and constants, all having a type, written as a subscript. 

The following primitive symbols occur: 

Improper: A, (, ); 

Proper: { Naaa , D(1O'(7, IIa(aa) , lO(CTa) 

aa 
Here 0< can be any type symbol. 

constants 
variables 

• (Well-formed) formulas have a type (written as subscript) and are built up 

from primitive symbols using formation rules: 

Proper primitive symbols; 

(Axi>.Ma), having type 0<(3 for variables Xi> and formulas Ma; 

(Fai3Ai3), having type 0< for formulas Fai3 and Ai3 . 

The interpretation of the constants is as follows: 

Constant Interpretation x x is also written as 
Nuu Negation NaoAa [~Aul 
Daaa Disjunction DuuuAuBu [Au V Bul 
IIu(ua) Universal quantification IIu(ua)( AXaAu) [(Vxa)Au 1 
la(ua) Choice-operator la(uapx".Au) [(l-Ta)Aul 

In a further construction, combinators, natural numbers of each type, equality, suc

cessorfunction, and so on, are made. 

Rules are: lambda conversion, substitution, modus ponens, generalization. 

Axioms are the axioms of predicate calculus and the axiom of infinity. For use in 

analysis, the -axiom of extensionality and the axiom of choice are added. 
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Another build-up of type theory, stratification (Quine), is not, based on lambdacal

culus, but on a first order predicate logic. It can be found in a simple form in A. 

Robinson's book "Non Standa.rd Analysis". 

Now, types arc directly connected with predicates with more variables: 

• ° is a. type; 

• if T1, ... ,Tn are types, t.hen also (Tl ... Tn). 

We use a predicate calculus of first order with a (n+1)-a.ry relation symbol <P, for 

each type T oF 0; T = (T1, . .. ,Tn). Furthermore, there are varia.bles and constants 

(without type). 

\Ve assign types to the open places in the relation symbols: If TO = (T1,"" Tn), 

then T; is the type of plilce (i+]) in <1>,0' for i = 0, ... , 1/.. Doing so, the thing put 

on that place gets a type as well. To do Ihis unambiguously, we restrict ourselves 

to stmtificd formulas, i.e., formulas in which each occurring constant and varia.ble 

has the same type in each occurrence. Consider the following example: Let x, y be 

different variables. 

• ('i~:)~<P(O)(x,:z:) is not stratified: In (D(o)(:"':")' the first occurrence of x is of 

type (0) and the second one is type O. 

In a stratified formula, a type can be assigned 1.0 each va.riable and each constant 

appearing ill it. \Vhen we construct il rnoclcl, a preclicat:e of the right structure must 

be chosen for each variable. 

We will not work this out. in det.a.il. 

Because of all these c1evelopJlleril.s, elimination or types was not complcl.e, but it was 

fa.r-reaching. Set. theory was cOlllplcl.ely type-free ilnc1 in higher order logic, types 

played only a. modest role. A smart modification of the concept of "model" resulted 

in a completeness theorem that WiIS also valid ror higher order logics (Henkin 1950), 

though, because of Goelel, J 9:31, this is impossible for "ordinary" models. Conse

quently, the concept of "lIon-sta.nda.rd model" became the vogue. III relation to this, 

we only mention Skolem's pa.ril.dox a.nd non-st,anchrd a.na.lysis. 

There were a. number or circnrnstanccs which led t.o ii. renewed interest in types in 

the second half of this cClItury. 

Slowly, there grew a. discont.ent witil the straitjacket. of Bourbaki, which prescribed 

how mathematics should be pl'ilcl.ised and present.ed. In particular, t:he identification 
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"mathema.tics = set theory" was increasingly cha.llcnged. Pure set theory provides 

at most a· coding of mathematics which is sometimes unnatural. A simple example 

is the ordered pair (a,b), usually defined as {{a}, {!l,b}} in set. t,heory. The normal 

properties of ordered pairs are gua.ranteed by this definition, but one cannot hold 

that this i.s the ordered pair, or that t.here is a· compelling reason for defining it in 

this way and not in another. 

The rise of comput.er science has also been of influence. Types had a.lready appeared 

in early programming languages. IV'eanwltilc a complete specialism has developed, 

viz., the theory of data types with the corresponding algebras. Typed lambda cal

culus is enjoying growing interes!.. 

Another line of development originates from practising t.he foundations of mathe

ma.tics. De Bruijn's AUTOMATH project arrived in the process of the development 

of a.langua.ge in which this could be rea.lisecl, a.t t.yped larnbda. calculus. Moreover, a 

unity of logic and m'a.thernatics carne inl.o existence, in which cla.sses of proofs could 

a.lso fUllction as types, and proofs were objeds. This is often indicated as "propo

sitions as types". De Bruijn considers this unfol'l.unat.e. He prefers speaking about 

"proofs as objects". At. ".bout the same titTle, t.his t.hought, was il.lSO put. forward by 

others. 

Ma.rtin-LeI's t.ype theory obt.ained a. great. repn\.a.\.ion because he ma.na.ged to inter

est computer scientist.s for his t.heory. 

The notion of "propositions as t;ypes" did 110\, cOlllplet.ely rise from nothing. It is 

cOllnected with older development.s in in\.uitionisrn, but. has fo]]owed its own pa.th. 

The rela.tion call be seen in I.he so-called Ilil K inl,erprei.a.\.ion of intuit.ionism, where 

a. proof of an implica.t.ion A -+ IJ is, in facl., a cOllst.rnct.ion which t.UI'ns every proof 

of A into a. proof of B. 

Because of these developments, t.ype t.heory is enrrcntiy very much a.live a.ga.in. 

\Ve conclude with t.wo remarks. 

The first one is that. typed lambda. calculus is also used for t.he analysis of natural 

langua.ges in R. lVlontague's school. 

Secondly, we want. to call at.tention to t.opos I.heory as an il.lt,ernat.ive for type theory. 

A to1'os is a. category satisfying cert.ain ext.ra. conditions. Category theory was esta.b

lished by Eilenbcrg-IVlacLane in 1~)45 iu t.he context of algebra.ic topology. Originally 

it was, of course, founded on sel t.heory. Lat.er, t.lte t.hought grew that the category 

could serve as a.n ".It.cl'llat.ive for t.he se\. as a. bttilclittg block for mat.hematics. The 

breakthrough was rea.lisecl by Lawverc.'s work in 19(i3, introducing the topos as a 

category wit.h some ext.ra conclit.ions, analogous t.o t.he Grot.henclieck topos. For 
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Lawvere, topos theory is a kind of higher-order logic. Originally there was not much 

response from logicia,ns, A personal memory is that on a. conference on logic in 

Varenna (1968), a guest-lecture of Lawvero was hardly understood by the logicians 

present. However, afterwards apprcciati011 grew quickly and topos theory became a 

recognized specialism in logic. For example, the "Ha.nclbook of Mathematical Logic" 

(1977) contains a full chapter on topos theory. 

In fact, topos theory as well as type theory is a kind of higher order logic. They can 

also be translated into each other, though not easily. Because of the different frame

works, we will not go into detail here. We only mentioned topos theory because it 

is an alternative for type thoory which sOllie people consider more natural 
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