

Ups and downs of type theory

Citation for published version (APA):
Peremans, W. (1994). Ups and downs of type theory. (Computing science notes; Vol. 9414). Technische
Universiteit Eindhoven.

Document status and date:
Published: 01/01/1994

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/675e9f88-c4cb-4fac-b19f-2db420d97536

Eindhoven University of Technology

Department of Mathematics and Computing Science

Ups and Downs of Type Theory

by

W. Peremans

Computing Science NOlC 94/14
Eindhoven, March 1994

94/14

COMPUTING SCIENCE NOTES

This is a series of notes of the Computing
Science Section of the Department of
Mathematics and Computing Science
Eindhoven University of Technology.
Since many of these notes are preliminary
versions or may be published elsewhere, they
have a limited distribution only and are not
for review.
Copies of these notes are available from the
author.

Copies can be ordered from:
Mrs. M. Philips
Eindhoven University of Technology
Department of Mathematics and Computing Science
P.O. Box 513
5600 MB EINDHOVEN
The Netherlands
ISSN 0926-4515

All rights reserved
editors: prof.dr.M.Rem

prof.dr.K.M.van Hee.

Ups and Downs of Type Theory*

\,y. Peremanst

A global hist.orical sketch of the development of formalized type theory in the 20th

century will be given. No surprising historica.l insight.s will be presented as all the

items discussed can be found in the current. lit.erat.ure.

In the beginning of t.he 20th cent.ury, t.ype t.heory was developed to deal with the

paradoxes which were discovered in logic and set theory. This led to a great interest

in types during the first. decennia of this cent.ury. However, t.his int.erest flagged

afterwa.rcls. There were t.wo somewhat relat.ed rea.sons for t.his.

Firstly, type t.heory began t.o playa. less important role ill logic beca.use it became

clear t.hat first-order-logic, which is free of types, sat.isfied many criteria.

In the second place, axiomatic set t.heory had been developed. This theory was free

of types and its aim was to describe "t.he ent,irety of Illatllemat.ics".

As a result, interest in types had diminished considerably by the middle of our cen

tury, It Was the hey-day of 13olll'baki, whose influence on t.he st.yle of thinking and

writing in ma.thematics lllust nol, be underest.ima.ted.

Later, the t,ide turned aga.ill. Satisfaction with sct.-theoretical coding diminished a.nd

its unnatura.lness wa.s more strongly felt.. Furthel'lllore, t.he rise of computer science

sparked a. revival of int.erest in types.

This raises two questions: What arc types'? Why do we restrict ourselves to the 20th

century? Undoubtedly, forllla..Iized type theory is a product. of the 20t.h century, The

intuitive notion of type is not clea.rly defined, but llilcl undoubtedly been viviclllluch

earlier. It was in fact so self-evident, that. there was no need to ma.ke it explicit, It

is simply the awareness t.hat t.here are difkrcnt kinds of ma.thcma,t.ical objects. For

example, a, t.riangle and il, rea.1 lIurnber a.rc nla.titcmal.ical objects. In t.he 19th cen

tury, one woule! not have understood the meaning of {tria.ngle, rea.lnumber}, ane!

'"This t.ext rcflect.s t.he cont:ents or a lecture held Oil :rvfay 18, 1090, ill Eindhoven, which was an
int.roduction t.o a symposium on t.ype t.lleory.

tThc aut.hor is indehted to "MflI'ianne Sanders and Twall Lanu for the t.ranslation from Dutch
of his paper

1

not only because this kind of notation was unknown.

We have been so indoctrinated with set theory that we are used to it. These days,

"everything" is a set. One can wonder whether this is a blessing or not. The set

theoretical coding of mathemat.ics surely is not the ultimate salvation message, but

rather an incident of a temporary natlll'e.

De-typing (the disappearance of t.ypes) was already evident in the 19th century, and

perhaps even earlier. A triangle could be described by its three vertices, giving, with

coordinates in the plane, six realllumbers. The arithmet.izat.ion of mathematics took

place in the 19th cent.ury, introduced by the restra.int. of the crisis in analysis, led

to the tighteuing up of notions such as limit, continuity and rca.] nllmbers (Cauchy,

Dedekind). The goal was t.o reduce everyt.hing to the concept. of natural number.

This reduct.ion, however, was not. canonical; one .iust has t.o rea.lise t.he different ways

in which real numhers can be const.l'llct.ed. The a.nalogy to the set-t.heoretica,] coding

in the 20th cent.ury is striking.

Arithmet.ization is a det.yping which gave the mathcmaticia.ns great sat.isfaction.

Poincare, for example, held a lectl11'e at t.he interne,t.iona! congress of mathematics

in Paris in 1900 in which he st.ated that, mat.hemat,ics waS fina.lly rest.ing on a solid

base: Everything was reduced to Itat.ural nnl'nb8rs. In fact., t.he next crisis in t.he

founda.tions of n1a.then1a.t.lcs was drawing nea,r.

Because of t.he arithmet.i7,ation, t.here was great. interest. in the quest.ion of what

natl11'al numbers really arc. COltsider the works of Dedekind (1888), Peano (1903)

a.nd Frege (18~n-190;3). In Frege's work we a.lso find t.he origin of propositional and

predica.te logic. Besides, Ca.ntor's set t;heory had been developed since 1873.

At the turn of t.he century, cOllt.radict.ions (a.lso called ant.inomies or paradoxes)

were discovered. The oldest. olle is J3urilli-Fort.i's (1897), which did not at.t.ract much

att.ent.ion, maybe because it. refers t.o ordinal numbers, il subject. in which mathe

mat.icians were not much interested in t.hose da.ys. Russell's paradox of 1902 did

attract attention, however, because it ma.de logic as well as set theory topical again.

Dedekind and Frege were shocked, and Poincare changed his posit.ion and became

a.n opponent of set. t.lleory.

There is a logical and a. sct.-theoretical variant. of t.he para.dox. As the first one IS

the most important to liS now, we will discuss it. br·leAy.

Consider properties, or predicates. Tltese ca,1t be sc1f-rcferrenl: or not. For insta.nce,

"red" is not. red, but "ahst.ract" is abst.ract.. 'vVe will call "sell'-rderrent": "predica

ble", and it.s negat.ion: "illlpredicable".

"Impredicable" is ".Iso a predicat.e it.self, a. predicate 011 predicates, t.o be precise.

2

We might wonder whether "impredicable" is predicable or impredicable.

Assume that impredicable is impredicable. Then it refers to itself, so it is predicable.

This is a contradiction. So, the assumption is not right, therefore impredicable is

not impredicable. But that means that impredicable does not refer to itself, so: it

is impredicable. We have another contradiction, but now without an assumption.

It can also be written down in a less verbal manner. Let I denote the predicate "im

predicable". Then, by definition, l(x) ~ ,x(x). Now suppose 1(1) holds, then, by

definition, ,1(1) holds, so: 1(1) does not hold. Contradiction. So: 1(1) is not true.

But that means ,1(I) is true, and, again by definition, 1(1) holds. Contradiction.

During the first decennium of our century, several other antinomies were discovered.

An antinomy of quite another kind than Russell's is Richard's (1905), related to

Berry's paradox (1906):

Consider the real numbers between 0 and 1, which can be described by a finite sen

tence in English. These form a countable set R. Using an enumeration of all the

English sentences, an enumeration of R can be constructed. Using a diagonal argu

ment, one can construct a real number which does not belong to R. Enumeration

and diagonal argument can be described by a finite sentence and therefore provide

a number in R. Contradiction.

Historically, the description above is the oldest one. A variant is as follows: Write

the real numers between 0 and 1 as binary fractions, e.g., .0llOl ... , and interpret

such a sequence as a property of natural numers: If the nth place of the sequence

has a 1 (0) then n has (does not have) the property. Properties of natural numbers

which can be described by finite sentences can be enumerated: Wo, WI, Now

consider ,Wn(n), as a property of n. This property can be formulated by a finite

sentence, so a natural number q exists such that Wq(n) <-> ,Wn(n) for all natural

numbers n. Substituting q for n leads to a contradiction.

Berry's antinomy is as follows. Regard the natural numbers which can be defined

by an English sentence containing no more than 50 words. Because there are only

finitely many of these sentences, this yields a finite collection of natural numbers.

The smallest natural number not belonging to this set results in a contradiction.

We will not discuss other antinomies here. The antinomy of the liar is very old and

well known.

How can these antinomies be avoided? Logic and set theory have each taken their

own lines. We start with logic.

It appears to be troublesome to unbridledly apply principles which used to be al

lowed. We therefore exercise restraint in using logical principles. This is unsatis-

3

fa.etory since we have to do it ad hoc: The antinomies which are to be avoided do

not cogently imply what the rest.rictions should be. One simply imposes restrictions

and sta.tes that, the known arguments which lea.d to the antinomies ca,n no longer

be maintained. This is unsatisfilct.ory on t.wo point.s:

On the one hand, we can wonder whether it could have been done with less. The

choice is sufficient for the ta.rgct we set ourselves, but may not be necessary. This

weighs even more heavily because reasonings which seemed to be "innocent" cannot

be maintained or only maintained with much more effort. Sand has come into the

machinery.

On the other hand, the question whether it. should not be more aTises. The fact that

known antinomies arc eliminat.ed docs not prove t.hat there are no others, which still

can be proved. A consistency proof of the systel1l would be very welcome. However,

this does not appear to be very successful.

In set, theory the soJut,ion has been sought 111 another direction. In logic the for

malism, the language itself, was restrided. On set t.heory the restrictions were not

made on the language but on the axioms, especia,lly when new sets are constructed.

We may ask ourselves what the problelll is. Tn Russell's antinomy, self-reference

comes up. In Richa,rd's pa.radox, we have to do with impredicativit.y. A definition

of a.n object is called impredicat.ive if there is a tot.ality in it, which contains that

object, or a, propert.y fulfilled by that, object.. At. the beginning of t.his century there

wa.s a. lot of discussion 011 tllc perrllissibility or illlpredicative definitiolls. Poinca.re

and Russell, among ot.hers, took part in t.his debat.e. Simply forbidding them is not

very a.ttractive because mat.hematics is full of them. An example is "maximum of a.

continuous function on a closed interval", but. also "the youngest. of the class".

Russell solved the problem by IIOt. allowing self-reJ'erencc a.nel rcstrict.ing impred

icativity. This led to so-called ramified type-t.heory, trca.\.ccl in great deta,il in the

classical three-volume work by \VhiLchead and ilussell, "Principia IVTa.thematica"

(1910-1913). Ramifying has gone ouL of usc, which resulted in simple type theory.

Below is a general descript.ion of the ide,].

There aTe objects of type O. Propert.ies of objects of t.ype 0 have type 1; properties of

properties of objects ha,vc type 2, and so OIl. There arc no ot.her properties. In this

way, self-reference is eliminat.ed and, together wit.h it., Russell's a,ntinomy. Types

which are> 0 arc divided into orders. To simplify l11ilttcrs, le(, us look a.t type 1.

Properties of type 1 which arc defined wit.hout, referring t.o an entiLy of objects are

of order O. Propert.ies containing entit.ies of order ~ k: ill (,heir deJinit,ioll are of orcler

"'+1. As a· consequence, oilly cnt,ities of I)rope!'\,ies of bounded order may occur in

4

the definition of a propert.y.

Thus, Richard's paradox is eliminated, but., in fact., this holds for all impredicative

definitions. Because of tha.t., the system is hardly useful I"or common mathematics.

In "Principia }vlathematica" this problem is solved by a bold intervention, the ax

iom of reducibili/.y: To every property of higher order, there is a property of order

o which is coextensive with the given propert.y.

La.ter, another solut.ion t.o t.he problems was found. It. sta.rt.ed wit.h Ramsey, who, in

1926, divided ant.inomies int.o t.wo classes:

1. Logica.! (e.g., Burali-Fort.i, Russell)

2. Semantical (c.g., Richard, l3erry, t.he Liar)

For logica.l a.ntinomies, ramifying is not necessa.ry, and simple type theory is suffi

cient. SenH1.ntic antinOlnies ha.ve in t,heir la.lIguage references to expressions in tha.t

la.ngua.ge like definability in Lhat. language, or t.rut.h 01" sent.ences in tha.t. la.nguage.

This is what we are going to forbid. We begin with a language. Tha.t. language has

to be spoken about in anot.her la.nguage, wllich will be call eel llleta-Ia.nguage.

This procedure has been cOlllplet.ely accepted nowadays. The hierarchy of orders is

substitut.ed by a hiera.rchy of Jallguages beea.usc t.he process call be iterated: Meta

language has a. metarnetalanguage, and so Oll. ThaI. t.his idea was quickly accepted

was probably due t.o the fact. tha.!. ra.mifying in type t.heory could be thrown over

board.

\Ve now a.rrive at t.he situation in the ':308. But first. something must. be said a.bout

the other development.: set. theory. Tn t.he mea.ni.imc set. theory had grown a.nd ha.d

been perfected (Zennclo, Fraenkel, Von Neumallll, Elemays, Goelel). One saw the

rea.!ization of t.he vision 1.0 refled. and coele "t.he entirety of ma.t.hcma.tics" come

closer. Everyt.hing waS bnilt on the empty set. and t.ypes did not come up at a.ll. At

the end of t.he '~108, t.he Bombaki group started t.lle execution of t.his plan.

On the other hand, the type-theoretical design of logic had also been st.reamlined

and simplified. With the use of subtle tricks it was evell possible i,o build type theory

on a first order language. Even type theory itself al.l.empted 1.0 make the int.uitive

notion of t.ype superfluous.

A well-known and later llluch used way of formalizing (simple) type theory is

Church's (1940). He coullectee! t.ypes with tI,e use of lambda-calculus, which came

to be usua.l in later devel0Plllents as well. Types arc no longer numbers as in "Prin

cipia. Ma.themal.ica.". Type symbols arc used, rdlect.ing composition of functions

and forming of predicates. Furthermore, as usual in lambda-calculus, functions of

more than one variable are considered as functions of one variable by repetition of

function application.

Below is a short sketch of the build-up:

• There are two basic types: l (individuals) and CJ (propositions, truth values).

There are also type symbols:

- land CJ are type-symbols;

if 0< and (3 are type-symbols, then (0<(3) is also a type-symbol. (0<(3) IS

interpreted as the type of functions with domain (3 and range 0<.

The obvious omission rules for brackets are used.

• There are variables and constants, all having a type, written as a subscript.

The following primitive symbols occur:

Improper: A, (,);

Proper: { Naaa , D(1O'(7, IIa(aa) , lO(CTa)

aa
Here 0< can be any type symbol.

constants
variables

• (Well-formed) formulas have a type (written as subscript) and are built up

from primitive symbols using formation rules:

Proper primitive symbols;

(Axi>.Ma), having type 0<(3 for variables Xi> and formulas Ma;

(Fai3Ai3), having type 0< for formulas Fai3 and Ai3 .

The interpretation of the constants is as follows:

Constant Interpretation x x is also written as
Nuu Negation NaoAa [~Aul
Daaa Disjunction DuuuAuBu [Au V Bul
IIu(ua) Universal quantification IIu(ua)(AXaAu) [(Vxa)Au 1
la(ua) Choice-operator la(uapx".Au) [(l-Ta)Aul

In a further construction, combinators, natural numbers of each type, equality, suc

cessorfunction, and so on, are made.

Rules are: lambda conversion, substitution, modus ponens, generalization.

Axioms are the axioms of predicate calculus and the axiom of infinity. For use in

analysis, the -axiom of extensionality and the axiom of choice are added.

6

Another build-up of type theory, stratification (Quine), is not, based on lambdacal

culus, but on a first order predicate logic. It can be found in a simple form in A.

Robinson's book "Non Standa.rd Analysis".

Now, types arc directly connected with predicates with more variables:

• ° is a. type;

• if T1, ... ,Tn are types, t.hen also (Tl ... Tn).

We use a predicate calculus of first order with a (n+1)-a.ry relation symbol <P, for

each type T oF 0; T = (T1, . .. ,Tn). Furthermore, there are varia.bles and constants

(without type).

\Ve assign types to the open places in the relation symbols: If TO = (T1,"" Tn),

then T; is the type of plilce (i+]) in <1>,0' for i = 0, ... , 1/.. Doing so, the thing put

on that place gets a type as well. To do Ihis unambiguously, we restrict ourselves

to stmtificd formulas, i.e., formulas in which each occurring constant and varia.ble

has the same type in each occurrence. Consider the following example: Let x, y be

different variables.

• ('i~:)~<P(O)(x,:z:) is not stratified: In (D(o)(:"':")' the first occurrence of x is of

type (0) and the second one is type O.

In a stratified formula, a type can be assigned 1.0 each va.riable and each constant

appearing ill it. \Vhen we construct il rnoclcl, a preclicat:e of the right structure must

be chosen for each variable.

We will not work this out. in det.a.il.

Because of all these c1evelopJlleril.s, elimination or types was not complcl.e, but it was

fa.r-reaching. Set. theory was cOlllplcl.ely type-free ilnc1 in higher order logic, types

played only a. modest role. A smart modification of the concept of "model" resulted

in a completeness theorem that WiIS also valid ror higher order logics (Henkin 1950),

though, because of Goelel, J 9:31, this is impossible for "ordinary" models. Conse

quently, the concept of "lIon-sta.nda.rd model" became the vogue. III relation to this,

we only mention Skolem's pa.ril.dox a.nd non-st,anchrd a.na.lysis.

There were a. number or circnrnstanccs which led t.o ii. renewed interest in types in

the second half of this cClItury.

Slowly, there grew a. discont.ent witil the straitjacket. of Bourbaki, which prescribed

how mathematics should be pl'ilcl.ised and present.ed. In particular, t:he identification

7

"mathema.tics = set theory" was increasingly cha.llcnged. Pure set theory provides

at most a· coding of mathematics which is sometimes unnatural. A simple example

is the ordered pair (a,b), usually defined as {{a}, {!l,b}} in set. t,heory. The normal

properties of ordered pairs are gua.ranteed by this definition, but one cannot hold

that this i.s the ordered pair, or that t.here is a· compelling reason for defining it in

this way and not in another.

The rise of comput.er science has also been of influence. Types had a.lready appeared

in early programming languages. IV'eanwltilc a complete specialism has developed,

viz., the theory of data types with the corresponding algebras. Typed lambda cal

culus is enjoying growing interes!..

Another line of development originates from practising t.he foundations of mathe

ma.tics. De Bruijn's AUTOMATH project arrived in the process of the development

of a.langua.ge in which this could be rea.lisecl, a.t t.yped larnbda. calculus. Moreover, a

unity of logic and m'a.thernatics carne inl.o existence, in which cla.sses of proofs could

a.lso fUllction as types, and proofs were objeds. This is often indicated as "propo

sitions as types". De Bruijn considers this unfol'l.unat.e. He prefers speaking about

"proofs as objects". At. ".bout the same titTle, t.his t.hought, was il.lSO put. forward by

others.

Ma.rtin-LeI's t.ype theory obt.ained a. great. repn\.a.\.ion because he ma.na.ged to inter

est computer scientist.s for his t.heory.

The notion of "propositions as t;ypes" did 110\, cOlllplet.ely rise from nothing. It is

cOllnected with older development.s in in\.uitionisrn, but. has fo]]owed its own pa.th.

The rela.tion call be seen in I.he so-called Ilil K inl,erprei.a.\.ion of intuit.ionism, where

a. proof of an implica.t.ion A -+ IJ is, in facl., a cOllst.rnct.ion which t.UI'ns every proof

of A into a. proof of B.

Because of these developments, t.ype t.heory is enrrcntiy very much a.live a.ga.in.

\Ve conclude with t.wo remarks.

The first one is that. typed lambda. calculus is also used for t.he analysis of natural

langua.ges in R. lVlontague's school.

Secondly, we want. to call at.tention to t.opos I.heory as an il.lt,ernat.ive for type theory.

A to1'os is a. category satisfying cert.ain ext.ra. conditions. Category theory was esta.b

lished by Eilenbcrg-IVlacLane in 1~)45 iu t.he context of algebra.ic topology. Originally

it was, of course, founded on sel t.heory. Lat.er, t.lte t.hought grew that the category

could serve as a.n ".It.cl'llat.ive for t.he se\. as a. bttilclittg block for mat.hematics. The

breakthrough was rea.lisecl by Lawverc.'s work in 19(i3, introducing the topos as a

category wit.h some ext.ra conclit.ions, analogous t.o t.he Grot.henclieck topos. For

s

Lawvere, topos theory is a kind of higher-order logic. Originally there was not much

response from logicia,ns, A personal memory is that on a. conference on logic in

Varenna (1968), a guest-lecture of Lawvero was hardly understood by the logicians

present. However, afterwards apprcciati011 grew quickly and topos theory became a

recognized specialism in logic. For example, the "Ha.nclbook of Mathematical Logic"

(1977) contains a full chapter on topos theory.

In fact, topos theory as well as type theory is a kind of higher order logic. They can

also be translated into each other, though not easily. Because of the different frame

works, we will not go into detail here. We only mentioned topos theory because it

is an alternative for type thoory which sOllie people consider more natural

Computing Science Notes

In this series appeared:

91/01 D. Alstein

91/02 R.P. Nederpelt
H.C.M. de Swart

91/03 J.P. Katoen
L.A.M. Schocnmakers

91/04 E. v.d. Sluis
A.F. v.d. Stappcn

91/05 D. de Reus

91/06 K.M. van Hee

91/07 E.Poll

91/08 H. Schepers

91/09 W.M.P.v.d.Aalst

91/10 R.C.Backhouse
P.l. de Bruin
P. Hoogendijk
G. Malcolm
E. Voennans
1. v.d. Woude

91/11 R.C. Baekhouse
P.J. de Bruin
G.Malcolm
E.Voennans
J. van der Woudc

91/12 E. van der Sluis

91/13 F. Rietman

91/14 P. Lcmmens

91/15 A.T.M. Aerts
K.M. van Hee

91/16 A.l.l.M. Marcelis

Department of Mathematics and Computing Science
Eindhoven University of Technology

Dynamic Reconfiguration in Distributed Hard Real-Time
Systems, p. 14.

Implication. A survey of the different logical analyses
"if ... ,then ... ", p. 26.

Parallel Programs for the Recognition of P-invariant
Segments, p. 16.

Perfonnance Analysis of VLSI Programs, p. 3l.

An Implementation Model for GOOD, p. 18.

SPECIFICATIEMETHODEN, een over-Licht, p. 20.

CPO-models for second order lambda calculus with
recursive types and subtyping, p. 49.

Tenninology and Paradigms for Fault Tolerance, p. 25.

Interval Timed Petri Nets and their analysis, p.53.

POLYNOMIAL RELATORS, p. 52.

Relational Catamorphism, p. 31.

A parallel local search algorithm for the travelling
salesman problem, p. 12.

A note on Extensionality, p. 21.

The PDB Hypenncdia Package. Why and how it was
built, p. 63.

Eldorado: Architecture of a Functional Database
Management System, p. 19.

An example of proving attribute grammars correct:
the representation of arithmetical expressions by DAGs,
p. 25.

91/17 A.T.M. Aerts
P.M.E. de Bra
K.M. van Hee

91/18 Rik van Geldrop

91/19 Erik Poll

91/20 A.E. Eiben
R.V. Schuwer

91/21 J. Coenen
W.-P. de Roever
J.Zwiers

91/22 G. Wolf

91/23 K.M. van Hee
L.J. Somers
M. Voorhoeve

91/24 A.T.M. Aerts
D. de Reus

91/25 P. Zhou
J. Hooman
R. Kuiper

91/26 P. de Bra
GJ. Houben
J. Paredacns

91/27 F. de Boer
C. Palamidessi

91/28 F. de Boer

91/29 H. Ten Eikelder
R. van Geldrop

91/30 J.C.M. Baeten
F.W. Vaandrager

91/31 H. ten Eikelder

91/32 P. Struik

91/33 W. v.d. Aalst

91/34 J. Coenen

Transforming Functional Database Schemes to Relational
Representations, p. 21.

Transformational Query Solving, p. 35.

Some categorical properties for a model for second order
lambda calculus with subtyping, p. 21.

Knowledge Base Systems, a Formal Model, p. 21.

Assertional Data Reification Proofs: Survey and
Perspective, p. 18,

Schedule Management: an Object Oriented Approach, p.
26.

Z and high level Pelli nets, p. 16.

Formal semanti~s for BRM with examples, p. 25.

A compositional proof system for real-time systems based
on explicit clock temporal logic: soundness and complete
ness, p. 52.

The GOOD based hypertext reference model, p. 12.

Embedding as a tool for language comparison: On the
CSP hierarchy, p. 17.

A compositional proof system for dynamic proces
creation, p. 24.

Correctness of Acceptor Schemes for Regular Languages,
p. 31.

An Algebra for Process Creation, p. 29.

Some algorithms to decide the equivalence of recursive
types, p. 26.

Techniques for designing efficient parallel programs, p.
14.

The modelling and analysis of queueing systems with
QNM-ExSpect, p. 23.

Spcci fying fault tolerant programs in deontie logic,
p. 15.

91/35 F.S. de Boer
J.W. Klop
C. Palamidessi

92/01 J. Coenen
J. Zwiers
W.-P. de Roever

92/02 J. Coenen
J. Rooman

92/03 J.C.M. Baeten
J.A. Bergstra

92/04 J.P.H.W.v.d.Eijnde

92/05 J.P.H.W.v.d.Eijnde

92/06 J. C.M. Baeten
J.A. Bergstra

92/07 R.P. Nederpelt

92/08 R.P. Nederpelt
F. Kamareddine

92/09 R.C. Backhouse

92/10 P.M.P. Rambags

92/11 R.c. Backhouse
J.S.C.P.v.d.Woude

92/12 F. Kamareddinc

92/13 F. Kamareddine

92/14 J.C.M. Baeten

92/15 F. Kamareddine

92/16 R.R. Seljce

92/17 W.M.P. van der Aalst

92/18 R.Ncderpcit
F. Kamareddine

92/19 J.C.M.Baeten
J.A.Bergstra
S.A.Smolka

92/20 F.Kamarcddinc

Asynchronous communication in process algebra, p. 20.

A note on compositional refinement, p. 27.

A compositional semantics for fault tolerant real-time
systems, p. 18.

Real space process algebra, p. 42.

Program derivation in acyclic graphs and related
problems, p. 90.

Conservativc fixpoim functions on a graph, p. 25.

Discrete lime proccss algebra, p.45.

The fine-structure of lambda calculus, p. 110.

On stepwisc cxplicit substitution, p. 30.

Calculating the Warshali/Royd path algorithm, p. 14.

Composition and decomposition in a CPN model, p. 55.

Demonic operators and monOlypc factors, p. 29.

Set theory and nominalisation, Part I, p.26.

Sct theory and nominalisation, Part II, p.22.

The total order assumption, p. 10.

A systcm at the cross-roads of functional and logic
programming, p.36.

Intcgrity chccking in dcductive databases; an exposition,
p.32.

Interval timcd coloured Pctri nets and their analysis, p.
20.

A uni fied approach to Type Theory through a refined
lambda-calculus, p. 30.

Axiomatizing Probabilistic Processcs:
ACP with Gcncrativc Probabilities, p. 36.

Arc Typcs for Natural Language? P. 32.

92/21 F.Kamareddine

92/22 R. Nederpelt
F.Kamareddine

92/23 F.Kamareddine
E.Klein

92/24 M.Codish
D.Dams
Eyal Yardeni

92/25 E.Poll

92/26 T.H.W.Beclen
W.J.J .Stut
P.A.C.Verkoulen

92/27 B. Watson
G. Zwaan

93/01 R. van Geldrop

93/02 T. Verhoefi'

93/03 T. Verhoeff

93/04 E.H.L. Aarts
J.H.M. Korst
P.J. Zwictering

93/05 J.C.M. Baeten
C. Verhoef

93/06 J.P. Veltkamp

93/07 P.D. Moerland

93/08 J. Verhoosel

93/09 K.M. van Hee

93/10 K.M. van Hee

93/11 K.M. van Hee

93/12 K.M. van Hee

93/13 K.M. van Hee

Non well-roundedness and type freeness can unify the
interpretation of functional application, p. 16.

A useful lambda notation, p. 17.

Nominalization, Predication and Type Containment, p. 40.

Bottum-up Abstract Interpretation of Logic Programs,
p. 33.

A Programming Logic for Fm, p. IS.

A modelling method using MOVlE and SimCon(ExSpect,
p. 15.

A taxonomy of keyword pattern matching algorithms,
p. 50.

Deriving the Aho-Corasick algorithms: a case study into
the synergy of programming methods, p. 36.

A continuous version of the Prisoner's Dilemma, p. 17

Quicksort for linked lists, p. 8.

Deterministic and randomized local search, p. 78.

A congruence theorem for structured operational
semantics with predicates, p. 18.

On the unavoidability of metastable behaviour, p. 29

Exercises in Multiprogramming, p. 97

A Formal Deterministic Scheduling Model for Hard Real
Time Executions in DEDOS, p. 32.

Systems Engineering: a Formal Approach
Part I: System Concepts, p. 72.

Systems Engineering: a Fonnal Approach
Part II: Frameworks, p. 44.

Systems Engineering: a Formal Approach
Part III: Modeling Methods, p. 101.

Systems Engineering: a Formal Approach
Part IV: Analysis Methods, p. 63.

Systems Engineering: a Formal Approach
Part V: Specification Language, p. 89.

93/14 1.C.M. Baeten
1.A. Bergstra

93/15 1.C.M. Baeten
1.A. Bergstra
R.N. Bo1

93/16 H. Schepers
1. Hooman

93/17 D. Alstein
P. van der Stok

93/18 C. Verhoef

93/19 G-l. Houben

93/20 F.S. de Boer

93/21 M. Codish
D. Dams
G. File
M. Bruynooghe

93/22 E. Poll

93/23 E. de Kogel

93/24 E. Poll and Paula Severi

93/25 H. Schepers and R. Genh

93/26 W.M.P. van der Aalst

93/27 T. Kloks and D. Kratscl1

93/28 F. Kamareddine and
R. Nederpelt

93/29 R. Post and P. De Bra

93/30 1. Deogun
T. Kloks
D. Kratsch
H. Muller

93/31 W. Korver

93/32 H. ten Eikelder and
H. van Gcldrop

On Sequential Composition, Action Prefixes and
Process Prefix, p. 21.

A Real-Time Process Logic, p. 31.

A Trace-Based Compositional Proof Theory for
Fault Tolerant Distributed Systems, p. 27

Hard Real-Time Reliable Multicast in the DEDOS system,
p. 19.

A congruence theorem for structured operational
semantics with predicates and negative premises, p. 22.

The Design of an Online Help Facility for ExSpect, p.21.

A Process Algebra of Concurrent Constraint Program
ming, p. 15.

Freeness Analysis for Logic Programs - And Correct
ness?, p. 24.

A Typechecker for Bijective Pure Type Systems, p. 28.

Relational Algebra and Equational Proofs, p. 23.

Pure Type Systems with Definitions, p. 38.

A Compositional Proof Theory for Fault Tolerant Real
Time Distributed Systems, p. 31.

Multi-dimensional Petri nets, p. 25.

Finding all minimal separators of a graph, p. 11.

A Semantics for a fine Jc-calculus with de Bruijn indices,
p. 49.

GOLD, a Graph Oriented Language for Databases, p. 42.

On Venex Ranking for Permutation and Other Graphs,
p. II.

Derivation of delay insensitive and speed independent
CMOS circuits, using directed commands and
production rule sets, p. 40.

On the Correctness of some Algorithms to generate Finite
Automata for Regular Expressions, p. 17.

93/33 L. Loyens and J. Moonen

93/34 J.C.M. Baeten and
J.A. Bergstra

93/35 W. Ferrer and
P. Severi

93/36 J.C.M. Baeten and
J .A. Bcrgstra

93/37 J. Brunekreef
J-P. KaLOen
R. Koymans
S. Mauw

93/38 C. Verhoef

93/39 W.P.M. Nuijten
E.H.L. Aarts
D.A.A. van Erp Taalman Kip
K.M. van Hee

93/40 P.D.V. van der Stok
M.M.M.P.J. Ciaesscn
D. Alstein

93/41 A. Bijlsma

93/42 P.M.P. Rambags

93/43 B.W. Watson

93/44 B.W. Watson

93/45 E.J. Luit
J.M.M. Martin

93/46 T. Kloks
D. Kratsch
J. Spinrad

93/47 W. v.d. Aalst
P. De Bra
G.J. Houben
Y. Komatzky

93/48 R. Gerth

lLlAS, a sequential language for parallel matrix
computations, p. 20.

Real Time Process Algebra with Infinitesimals, p.39.

Abstract Reduction and Topology, p. 28.

Non Interleaving Process Algebra, p. 17.

Design and Analysis of
Dynamic Leader Election Protocols
in Broadcast Networks, p. 73.

A general conservative extension theorem in process
algebra, p. 17.

Job Shop Scheduling by Constraint Satisfaction, p. 22.

A Hierarchical Membcrship Protocol for SynChronous
Distributed Systems, p. 43.

Tcmporal operators viewed as predicate transformers,
p. II.

Automatic Verification of Regular Protocols in P(T Nets,
p. 23.

A taxomomy of finite automata construction algorithms,
p. 87.

A taxonomy of finite automata minimization algorithms,
p.23.

A precise clock synchronization protocol,p.

Treewidth and Palwidth of Cocomparability graphs of
Bounded Dimension, p. 14.

Browsing Semantics in the "Tower" Model, p. 19.

Verifying Sequentially Consistent Memory using Interface
Refinement, p. 20.

94/01 P. America
M. van der Kammen
R.P. Nederpclt
O.S. van Roosmalcn
H.C.M. de Swart

94/02 F. Kamareddine
R.P. Nederpelt

94/03 L.B. Hartman
K.M. van Hee

94/04 J.C.M. Baeten
J.A. Bergstra

94/05 P. Zhou
J. Hooman

94/06 T. Basten
T. Kunz
J. Black
M. Coffin
D. Taylor

94/07 K.R. Apt
R. Bol

94/08 O.S. van Roosmalen

94/09 J.C.M. Baeten
J.A. Bergstra

94/10 T. verhoeff

94/11 J. Pelcska
C. Huizing
C. Petersohn

94/12 T. Kloks
D. Kratsch
H. Muller

94/13 R. Seljee

The object-oriented paradigm, p. 28.

Canonical typing and n -conversion, p. 51.

Application of Marcov Decision Processe to Search
Problems, p. 21.

Graph Isomorphism Models for Non Interleaving Process
Algebra, p. 18.

Formal Specification and Compositional Verification of
an Atomic Broadcast Protocol, p. 22.

Time and the Order of Abstract Events in Distributed
Computations, p. 29.

Logic Programming and Negation: A Survey, p. 62.

A Hierarchical Diagrammatic Representation of Class
Structure, p. 22.

Proccss Algebra with Partial Choice, p. 16.

The testing Paradigm Applied to Network Structure.
p. 31.

A Comparison of Ward & Mellor's Transformation
Schema with State- & ActivitycharLS, p. 30.

Dominoes. p. 14.

A New Method for Integrity Constraint checking in
Deductive Databases, p. 34.

	Ups and Downs of Type Theory

