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Abstract 

We study the position of AUTOMATH systems within the framework of the Pure Type 
Systems as discussed in [3]. 
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One should not define 
the word ({mathematics" 

by a list of traditional subjects, 
but by the mathematical method 

N. G. de Bruijn. 
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1 Introduction 

The AUTOMATH project wa.s started in 1967 at Eindhoven University of Technology, by N.G. de 
Bruijn. Though AUTOMATH heavily depends on logic and type theory, the rea.sons for its devel
opment are not to be found in these subjects, but in mathematics. Already for some years, de 
Bruijn had been wondering what a proof of a theorem in mathematics should be like, and how 
the correctness of a proof should be checked. The development of computers in the 60s made 
him wonder whether a machine could check the proof of a mathematical theorem, provided the 
proof was written in a very accurate way. De Bruijn developed the language AUTOMATH for this 
purpose. This language is not only (according to de Bruijn in [7]) "a language which we claim to 
be suitable for expressing very large parts of mathematics, in such a way that the correctness of the 
mathematical contents is guaranteed as long as the rules of grammar are obeyed" but also "very 
close to the way mathematicians have always been writing". 
The appearance of types in AUTOMATH finds its roots in de Bruijn's contacts with Heyting, who 
made de Bruijn familiar with the intuitionistic interpretation of the logical connectives (see [241, 
[18]). The interpretation of the proof of an implication A --> B a.s an algorithm to transform any 
proof of A in a proof of B, so in fact a function from proofs of A to proofs of B, gave rise to interpret 
a proposition as a class (a type) of proofs. De Bruijn, who was not influenced by developments 
in A-calculus or type theory when he started his work on AUTOMATH, discovered this notion of 
"proofs as objects", better known as "propositions as types" , independently from Curry [12} and 
Howard [20J. 

As AUTO MATH wa.s developed quite independently from other developments in the world of type 
theory and A-calculus, there are many things to explain in the relation between the various Au
,TOMATH languages and other type theories. 
Type theory was originally invented by Bertrand Russell to exclude the paradoxes that arose from 
Frege's "Begriffschrift" [14J. It wa.s presented in 1910 in the famous "Principia Mathematica" [31], 
and simplified by Ramsey [28J and by Hilbert and Ackermann [19J. In 1940, Church combined his 
theory of functions, the A-calculus ([9, 10]) with the simplified type theory, resulting in the so-called 
"Simple Theory of Types" [l1J. This system ha.s served a.s a ba.sis for the many systems that have 
been developed since then. In 1989, Terlouw [30J presented, as an extension of Barendregt's work 
[3], a general framework for type systems, which is at the basis ofthe so-called Pure Type Systems 
(PTSs; see [16], [3J, [15]). The theory of PTSs nowadays plays a central role in type theory and 
typed A-calculus. 

This paper will focus on the relation of AUTO MATH to PTSs. 
Both [3J and [15J mention this relation in a few lines, but as far as we know a satisfactory expla
nation of the relation between AUTOMATH and PTSs is not available. 
Moreover, both works consider AUTOMATH without one of its most important mechanisms: The 
definition system. Even the system PAL, which roughly consists of the definition system of Au
TOMATH only, is able to express some simple mathematical reasoning (see for instance Section 5 
of [7]). According to de Bruijn [8J this is "due to the fact that mathematicians worked with abbre
viations all the time already". 
Also, recent developments on the use of definitions in Pure Type Systems by Bloo, Kamareddine 
and Nederpelt [6, 21J and Severi and Poll [29J justify renewed research on the relation between 
AUTOMATH and PTSs. 

In Section 2 we give a short overview of Pure Type Systems. In Section 3 we give a description of 
AUT-68. In Section 4 we discuss how we can transform AUT-68 into a PTS. We must notice that 
AUT-68 has some properties that are not usual for PTSs: 

• AUT-68 ha.s 'I-reduction; 

• AUT-68 ha.s IT-application and IT-reduction; 

• AUT-68 has a definition system. 
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In systems with II-application, a term IIx:A.B can be applied to a term N (of type A). This 
results in (IIx:A.B)N. The usual application rule of Pure Type Systems then changes to 

r I- M : IIx:A.B r f- N : A 

r f- M N : (IIx:A.B)N 

In such systems, II behaves like A, and as a consequence, there is also a rule of IT-reduction 

(IIx:A.B)N -->f] B[x:=NJ. 

In AUTOMATH, one even uses the same notation for the terms IIx:A.B and Ax:A.B, namely: 
[x:AJB, and it is not always easy to see whether a term [x:AJB represents '\x:A.B or IIx:A.B. 
For more details on II-application and II-reduction, see [21], [22J and the literature on AUTOMATH 
[26J. 

For reasons of clarity, we only treat the system AUT-68 without 1]-reduction, II-application and 
II-reduction in this paper. In Section 5, we present a system .\68 that is (almost) a PTS. We show 
that it has the usual properties of PTSs and we prove that .\68 is to AUT-68 without ry-reduction, 
II-application and II-reduction. 
In Section 6 we compare the definition system of AUT-58 with several other, more modern, type 
systems with definitions. 

2 Pure Type Systems 

Pure Type Systems (PTSs) were introduced (in a somewhat different way than presented below) 
by Terlouw [30J in 1989 and were also implicitly present in the work of Berardi [5J. Many type 
systems can be described as a PTS and this makes PTSs a central notion in type theory. Below 
we repeat the definition of PTS as presented in [3], In [3], one can also find the basic properties of 
PTSs, and some examples. We assume that we have an infinite set <C of constants, and an infinite 
set V of variables. 

Definition 2.1 (Pure Type Systems) Let S <; <C (the set of sorts), A a set of axioms of the 
form c : s, where C E C and s E S, and n a set of rules of the form (S1! S21 .'13) with Sl, 52, 53 E S. 
The PTS determined by (S, A, R.) is induced as follows: 

• The set of terms '][' is defined by 

']['::='11 q ']['']['1.\'1:']['·']['1 IIV:']['.1r. 

• On terms we have the well-known notions of ,6-reduction (indicated by -->~) and ,6-conversion 
(indicated by =~), defined by the contraction rule 

(.\x:A.B)C -->~ B[x:=Cj. 

• A p5eudocontext is a finite (possibly empty) list of declarations Xl :A 1 J •• _, xn:An with Xi E V
and Ai E '][' for all i. 

• A statement has the form r I- A : B, where r is a pseudo context and A, B E ']['. The 
following rules determine the valid statements of the PTS specified by (S, A, R.) (x ranges 
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over variables; s ranges over sorts): 

(Axiom) I- c: 5 

(Start) 

(Weak) 

(II-form) 

(A) 

(App) 

(Conv) 

r1-A:5 
I',x:A F x: A 

rl-M:N rl-A:s 
r,x:A F M : N 

r I- A : 5, r If:A I- B : 52 

r I- IIx:A. : 53 

r,x:A I- F: B r I- IIx:A.B: 5 

r I- {.\x:A.Fj : (IIx:A.Bj 

r I- M : IIx:A.B r I- N : A 
r r MN: B[x:-N] 

r I- M : A r I- B : 5 A =p B 
I'FM :B 

(c:5EA) 

It is assumed that the newly introduced variables in the Start and Weakening rules do not 
occur in f. 
A pseudo-context r is called a context if there are A, B such that r I- A: B. 

We further introduce some abbreviations: 

Notation 2.2 We write 

as shorthand for IIXI :A I . ... IIxn :An.B and 

as shorthand for AXI :A1 . •.. AXn :An .b. Moreover, if r 
IT~:=:1 xi:Ai.B and "\f.b for ..\i:=:lxi:Ai.b. 

Xl :A I , . .. , xn:An we write IT f.B for 

3 AUT-68: the first AUTOMATH system 

During the AUTOMATH-project, several AUToMATH-Ianguages have been developed. They all 
have two mechanisms for describing mathematics. One of them is a typed A-calculus, with the 
important features of A-abstraction, A-application and p-reduction. The other mechanism is the 
use of definitions. The definition mechanism is the same for most AUTO MATH-systems, and the 
difference between the various systems is mainly caused by different A-calculi that are included 
in them. In this section we will describe the system AUT-58 which not only is one of the first 
AUTOMATH-systems, but also a system with a relatively simple typed A-calculus, which makes it 
eaBier to focus on the (less known) definition mechanism. 
AUT-58 has also some other characteristics that are not present in many type systems: 1]-reduction, 
II-application and II-reduction. In order to keep the attention focussed on the definition system 
without being diverted by these other characteristics, we will look at AUT-58 without 1]-reduction, 
II-application and II-reduction. 
A more extensive description of AUT-68, on which our description below is based, can be found in 
[4]. 

3a Books, lines and expreSSIOns 

Definitions in AUTO MATH-systems are stored in so-called books. For writing books in AUT-68 we 
need 

• The symbol type; 

• A set V of variables (called block openers in [7]); 
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• A set C of constants; 

• The symbols ( ) [] : - and ,. 

We assume that V and C are infinite, or at least offer us as much different elements as needed. We 
also assume that V n C = 0 and that type rt V u C. 
The elements of V U C are called identifiers in [7]. 

Definition 3.1 (Expressions) We define the set £68 of AUT-68 -expressions inductively: 

• !f x E V then x E £68; 

• !fa EC, n E IN (n = 0 is allowed) and E" ... ,En E £68 then a(E" ... ,En) E£68. 

• If x E V, E E £68 U {type} and 0 E £68 then [x:E]O E £68; 

• If E" E2 E £68 then (E2)E, E £68. 

Sometimes we will consider the set £;!8 ~f £68 U {type}. 

[X:I:]f! is AUTO MATH-notation for abstraction terms. In PTS-notation one would write Ax:I:.O or 
TIx:E.O. In a relatively simple AUTOMATH-system like AUT-68, it is easy to determine whether 
Ax:E.O or IIx:E.O is the correct interpretation for [x:E]O. This is harder in more complicated 
systems like AUT-QE. 
(E2)E, is AUToMATH-notation for the application of the function E, to the argument E2 . In 
PTS-notation: E, E2 • 

Definition 3.2 (Free variables) 

• FV(X) ~ {x}; 

• Fv(a(E" ... ,En))~U7=,FV(Ei); 

• Fv([x:E]O) ~ Fv(E) U (FV(O) \ {x}); 

• FV( (E2)Ed ~f Fv(Ed U Fv(E2). 

Convention 3.3 We make the usual convention that names of bound variables in an expression 
differ from the free variables in that expression. 
We use == to denote syntactical equivalence (up to renaming of bound variables) on terms. 

Definition 3.4 If 0, E I , ... , En are expressions, and Xl, ... , Xn are distinct variables, then 

denotes the expression f! in which all free occurrences of Xl J ••• ,Xn have simultaneously been 
replaced by Ell ... ,En . This, again, is an expression (this can be proved by induction on the 
structure of 0). 
type[xI, ... 1 Xn :=.El, ... ) En] is defined as type. 

Definition 3.5 (Books and lines) An AUT-68-book (or book ifno confusion arises) is a non empty, 
finite list of (AUT-68)-lines. 
An AUT-68-line (or line if no confusion arises) is a 4-tuple (f; k; E,; E2). Here, 

• r is a context, i.e. a finite (possibly empty) list XI:O'l, ... , Xn:O'n, where the XiS are different 
elements of V and the O'iS are elements of Eta; 

• k is an element of V U C; 

• .El can be 
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An element of £68 (if k E C); 

The symbol PN (if k E C); 

The symbol - (if k E V) 

• I:z is an element of ff1g. 

Note that, for k E C, there are two possibilities for Ll: 

• :El is an element of [68; then k is a defined constant; 

• EI is the symbol PN; then k is a primitive notion l , 

If k E V (and E, =-), then k is a newly introduced variable. 

Intuitively, a book ~ can be seen as a list of definitions. For E, E £68, a line (f; k; E,; E 2) of 
~ is a definition. k must be interpreted as the definiendum; :El as the definiens, and E2 as the 
type of k. f is the context in which this definition takes place. In two cases, the normal notion of 
"definition" is extended: In the case that El = PN, the line (r; k; E1; E z) is a ((primitive" definition, 
introducing a constant without definiens. In the case that El =-, the line (r; k; Ll; E2) ('defines" 
k to be a new variable. 

Not all books are good books. If (f; k; E,; E2) is a line of a book ~, the expressions E, and E2 
(as long as El isn't pN or -, and E2 isn't type) must be well-defined, i.e. the symbols occurring 
in them must have been defined in previous parts of m-. The same holds for the type assignments 
Xi:ai that occur in r. Moreover, if:El isn't PN or-, then:E 1 must be of the same type as k, hence 
E, must be of type Ez (within the context f). Finally, there should be only one definition of an 
object, so k shouldn't occur in the preceding lines of the book. 
Hence we need notions of correctness (with respect to a book and/or a context) and we need a 
definition of the notion "E, is of type E,' (within a book and a context). They are defined below. 

Definition 3.6 (Correct contexts) Let ~ be a book. 

• The empty context 0 is correct (with respect to 23); 

• If r is a correct context and 23" contains a line (r; x; -; a), then r, X:O' is a correct context 
(with respect to ~). 

Definition 3.7 (Correct books) 

• The empty book (consisting of 0 lines) is correct; 

• If ~ is a correct book and ~' is the book consisting of the lines of~, and finally a new 
line (f; k; E,; E2), then ~' is correct if and only if 

r is correct with respect to 23"; 

k doesn't occur in 23"; 

:E1 == PN, :El == -, or :El is a correct expression with respect to m-- and r; 
:E2 == type, or E2 is a correct expression of type type with respect to 23" and r; 
If:El is an expression, then it has a type that is definition ally equal to :E2. 

The notions "correct expression" and "definitionallyequal" are defined below. 

1 EXaJIlples of prilllitive notions are the axioillatically introduced nUlllber 0 in Jl'.l and the uclassical" axiolll P V ..,p, 
for all propositions p. 
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Definition 3.8 (Correct expressions) Let ~ be a book, r a context that is correct with respect 
to ~. We define the notion ~ is a correct expression of type 0 with respect to ~; r, shorthand: 
'13; r I- ~ : 0, by induction on ~: 

x:a E r 
'13; r I- x:a 

(Xl:al, ... , Xn:anj bj 0 1; O2) E ~ 
~; r ~ ~i:adxl, ... J Xi_l:=E 1, ... , ~i-1] (i = 1, ... , n) 

'13;r I- b(~" ... ,~n): O,[x" ... ,xn:-~"·· .,~nl 
'13; r I- ~,:type '13; r, x:~, I- 0, :type 

'13; r I- [x:~do, : type 

'13; r, x:~, I- 0, :t5pe 
[X:~,]~2 : [x:~;O, 

'13; r I-~, : X:0,02 '13; r I- ~,:O, 
'13; r I- (~2)~' : O2 X:=~, 

'13; r I- 02:type 0, and 0, are definition ally egual 
'13; r I- ~ : 0, 

As was explained before, a line (r; k; ~1; E 2) of a book should be read as ('in context r, k is defined 
as ~, of type ~2'. That is why we did not demand in Definition 3.7 that the type of~, must 
be (syntactically) equal to ~" but only definitionally equal; this also explains the last rule of 
Definition 3.8. 

3b Definitional equality 

We still need to give a definition of "definitional equality". This definition is based on both the 
definition mechanism and the abstraction mechanism of AUT-68. The abstraction mechanism 
provides the well-known notions of ,6-equality and ry-equality, originating from the rules of ,6-
conversion and 1J-conversion: 

(~)[x:02l0, ~f 

[x:O](x)~ -+, (x ¢ FV(~)) 

For the moment, we will regard AUT-68 without ry-equality. We will use notations like --"'p, =p, 
as usual. 

We now describe the definition mechanism of AUT-68 via the notion of d-equality. 

Definition 3.9 (d-equality) Let '13 be a book, r a correct context with respect to '13, and ~ a 
correct expression with respect to '13; r. We define the d-normal form nfd(~) of ~ by induction 
on expressions and on the length of the book 'B . 

• If E is a variable x, then nfd(E) ~f x; 

• Now assume E ;:::::::: b(Ol, ... , On), and assume that the normal forms of the OiS have already 
been defined. 
Determine a line (~; b; 3,; 3,) in the book '13 (There is exactly one such line). 
Write ~;:::::::: Xl:al, ... , xn:an . Distinguish: 

3 1 ;:::::::: -. This case doesn't occur, as b E C; 

3, "" PN. Then define nfd(~) ~f b(nfd(O,), ... , nfd(On))' 

3 1 is an expression. Then SI is correct with respect to a book ~' that contains fewer 
lines than '13 ('13' doesn't contain the line (~; b; 3,; 3,), and all lines of '13' are also 
lines of ~), hence we can assume that nfd(St} has already been defined. Now define 
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• If E == [x:n,]n2 then nfd(E) ~ [x:nfd(n,)]nfd(n,); 

• If E == (n,)n, then nfd(E) ~f (nfd(n2 ))nfd(n,). 

We write E, =d E, when nfd(E,) == nfd(E,). 

As we see, the d-normal form nfd(E) of a correct expression E depends on the book ~, and in 
order to be completely correct we should write nfd!8(E) instead of only nfd(E). We will, however, 
omit the subscript 23 as long as no confusion arises. 

Definition 3.10 (Definitional equality) E, and E, are called definition ally equal (with respect 
to a book ~) if and only if E, =Pd E2 . 

With this definition, the description of AUT-68 is completed. Again, definitional equality of ex
pressions E, and E, depends on the book~, so we should write =Pd!8 instead of =Pd. Again we 
leave out the subscript ~ as long as no confusion arises. 

As an alternative to Definition 3.9, we describe the notion of d-equality via a reduction relation. 

Definition 3.11 Let 23" be a book, r a correct context with respect to 23, and E a correct 
expression with respect to 23; r. We define E -+8 n by the usual compatibility rules, and 

(8) If E = b(E" ... ,En), and ~ contains a line (x, :a" ... ,Xn :an; b; 3,; 3,) where 3, E £;1s, then 

We say that E is in 8-normal form if for no expression !1, E -+6 0, and use notations like ---""'6 and 
---11-t as usual. -+6 depends on 23") but as we did before with nfd and =d we only mention this 
explicitly if it is not clear in relation to which book ~ --+d is considered. 

We have: 

Lemma 3.12 

1. --+, has the Church-Rosser-property; 

2. nfd(E) is the (unique) 6-normal Jorm oJ E; 

3. E =, n iJ and only iJE =d n. 

4· --+{) is strongly normalising. 

PROOF: AUT-68 with -+6 can be seen as an orthogonal term rewrite system. 

o 

l. Such a term rewrite system has the Church-Rosser property (see [23]). 

2. It is not hard to show that E ~,nfd(E). By induction on the definition of nfd(E) one 
shows that nfd(E) is in 8-normal form. The uniqueness of this normal form follows from the 
Church-Rosser property. 

3. E =, n if and only if both E and n reduce to nfd(E), if and only if E =d n. 

4. We already know that --+, is weakly normalising (by 2). Moreover, the definition of nfd(E) in 
3.9 induces an innermost reduction strategy. By a theorem by O'Donnell (see [27], or pages 
75-76 of [23]), --+, is strongly normalising. 
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4 From AUT-68 towards a PTS 

We want to give a more modern description of AUT-68, preferably in the framework of the Pure 
Type Systems. 
First, we must make a translation of the expressions in AUT-68 to typed A-terms. This translation 
is very straightforward: 

Definition 4.1 We define a mapping n from the correct expressions in £68 (relative to a book 
23" and a context r) to 1', the set of terms for PTSs (see Definition 2.1). We aBsume that CUV ~ V 
(V is the set of variables for PTS-terms). 

- def, V 
• x = x lor x E ; 

-[--clef -- [ J ---clef --
• x:EJO = IIx:E.O if x:E 0 has type type, otherwise [x:EJO = -'x:E.O; 

• (O)E~ EO. 

--def 
Moreover) we define: type = *. 
With this translation in mind, we want to find a type system .:\68 that "suits" AUT68, i.e. if E is a 
correct expression of type n with respect to a book ~ and a context r, then we want ~' J r' r E : n 
to be derivable in '\68, and vice versa. Here, m-' and r' are some suitable translations of 23" and r. 
The search for a suitable ..\68 will concentrate on three points, which we first discuss informally. In 
the next section we give a formal definition of ..\68, and prove that it has the property we described 
above. 

4a The choice of the correct formation (II) rules 

The definition of correct expressions 3.8 gives, when we keep in mind that type == *, a clear answer 
on the question of which II-rules are implied by the abstraction mechanism of AUT-68. The rule 

1123", r I- El : type and 23", r, x:E 1 I- 0 1 : type then 23", r I- [x:EdOl : type. 

immediately translates into II-rule (*, *, *) for PTSs. 

It is, however, not immediately clear which II-rules are induced by the definition mechanism of 
AUT-68. 
Let E == b(El" .. , En) be a correct expression of type 0 with respect to a book 23" and a context 
r. There is a line 

in 23" such that Ei is a correct expression with respect to 23" and r, and has a type that is definition
ally equal to O'dXl' ... ,Xi-l :=E1, ... ) Ei-d. We also know that n =/Jd 3 2[Xl, ... , Xn :=El, ... En]. 
Now E == bEl· .. :En, and, assuming that we can derive in .\68 that Ei has type 

it isn't unreasonable to give b as type Il7=1 Xi:O'i.22. Then we can derive (using the application 
rule that we will introduce for -'68 n times) that l5 haB type 0 in -'68. 

It is important to notice that the type of b, Il~=1 Xi:O'i.32, does not necessarily have an equivalent 
in AUT-68, as in AUT-68 abstractions over type are not allowed (only abstractions over expressions 
E that have type as type are possible). This is the reaBon to create a special sort L::" in which the 
possible types of AUT-68 constants and abbreviations are stored. 
To construct IIxn:O'n.32 from 3 2 , we need rules of the form (*, *, SI), (*, OJ S2), (0, *, S3), (0,0, S4). 
A straightforward choice is SI == S2 == S3 == 84 == 6. 
To construct rr~=1 .Xi:ai.22 from IIxn:O'n.32 we introduce rules (*,6,6) and (0,6,6) for similar 
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reasons. 

In Example 5.2.4.8 of [3], there is no rule (*, *, 6). In principle, this rule is superfluous, as types 
constructed with (*, *,.6.) can also be constructed using rule (*, *, *). Nevertheless we want to 
maintain this rule: 

• First of all, the presence of both (*, *, *) and (*, *, 6) in the system stresses the fact that 
AUT-68 has two type mechanisms: one provided by the definition system and one by the 
abstraction mechanism. 

• Secondly, there are technical arguments to make a distinction between types formed by the 
abstraction mechanism and types that appear via the definition mechanism. In this paper, 
we will denote product types constructed 'by the abstraction mechanism in the usual way (so: 
IIx:A.B), whilst we will use the notation 0x:A.B for a type constructed by the definition 
mechanism. Hence, we have for the constant b above that b : ®7=1 Xi :O:i .32• 

• There is another reason to make a distinction between types formed by the abstraction 
mechanism and types that appear in the translation via the definition mechanism. For the 
moment, we consider AUT-68 without so-called II-application. In AUT-68 with II-application, 
however, the application rule of Definition 3.8 

is replaced by 

but the rule describing the type of b(E" .. . , En) is the same as the rule in Definition 3.8. 
This means that in the translation of AUT-68 with II-application, the application rule for 
II-terms has to be different from the application rule for 0-terms. 

4b The different treatment of constants and variables 

When we seek for a translation in >"68 of the AUT-68 judgement 23; r f- ~ : 0, we must pay extra 
attention to the translation of 23", as there is no equivalent of books in PTSs. Our solution is to 
store the type information on constants of 23 in the context. Therefore, contexts of .:\68 will have 
the form ~; r. The left part ~ contains type information on constants, and can be seen as the 
translation of !8. In the right part r we find the usual type information on variables. 
It is natural to store type information on constants in the left part of a context. Let 23 be a correct 
AUT-68 book, to which we add a line (r; b; PN; :=:2), Then r == Xl :0:1, ... , Xn :O:n is a correct context 
with respect to !8, and !8; r I- 3 2 :type (or 3, == type). In .\68 we can work as follows. Assume 
the information on constants in !8 has been translated into the left part Ll of a .\68 context. 
We have (assuming that .\68 is a type system that behaves like AUT-68, and writing r for the 
translation Xl :0:1 , ... , Xn :O:n of f): 

Ll;rl- 3 2 :s 

(s == * if!8; r I- 3 2 :type; s == 0 if 3 2 == type). Applying the 0-formation rule n times, we obtain 

Ll; I- ~r.32 : 6 2 

As ®f.22 is exactly the type that we want to give to b (see the discussion in Subsection 4a), 
we use this statement as premise for the start rule that introduces b. As the right part f of the 
original context has disappeared when we applied the 0-formation rules, the declaration b:®f.32 

is placed at the end of the left part ~ of that context: The conclusion of the start rule is 

Ll, b:~r.32 I- b:~r.32 

2If r is the eIllpty context, then ®r.=2 = 3 2, and 32 has type * or 0 instead of b. 
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Adding b:l8lr.32 at the end of Ll can be compared with adding the line (r; b; PN; 3 2) at the end 
of 'E. 
The process above can be caught in one rule: 

Ll; r r 3,:8, Ll; r I8Ir.32:82 

Ll, b:l8lr.32; r b:l8lr.32 

Here 8, E {.,D} (compare: 3 2:type or 3, := type) and 82 E {', 0, 6} (u8ually, 82 = 6. The 
cases 52 == *,0 only occur if r is empty; see footnote 2). 

4c The definition system 

A line (Xl :0'1, ... , Xn :an ; bi 3 1; 3 2), in which b is a constant and 3 1 E £681 represents a definition. It 
should be read as: For all expressions 011""' On (obeying certain type conditions), b(n 11 ••• , On) 
is an abbreviation for 3 1 (Xl! ... , X n:=Oll ... 1 On], and has type B2 [Xl1 ... , Xn :=011 ••• 1 On]. So in 
'\68, the context should also mention that bX1 ... Xn "is equal to" =1 [Xl) ... 1 Xn:=X 1, ... 1 Xn], for 
all terms Xl, ... 1 X n · The most straightforward way to do this, is to write 

in the context instead of only b:®7=1 Xi :O'i .32) and to add a 8-reduction rule that allows to unfold 
the definition of b: 

~ f-- b ---+8 ,\i=lXi:ai.Bl 

whenever b:= (,\i=lXi:ai.S7): (®7=lXi:ai.B;) E~. 
Unfolding the definition of b in a term br;; ... ~n and applying j3-reduction n times results in 
3, [x, :=~,] ... [xn :=~n]. This procedure corresponds exactly to the 6-reduction of b(~" ... , ~n) 
to BI[Xl, ... , xn:=E1) ... ) En] in AUT-683. 

This method, however, has some disadvantages . 

• Look again at a line (XI:al, ... ,Xn :an ;b;21;32) in some AUT-58 book, and at a term B == 
b:E 1 ... :Ern in .\68 for some m < n. B has no equivalent in AUT-68: Only after B has 
been applied to suitable terms ~m+" ... '~n the term B~m+'···~n has b(~', ... ,~n) as 
its equivalent in AUT-68. B must not be seen as a term of AUTOMATH, but only as an 
intermediate result that is necessary to construct the equivalent of the term b(E 1 , ... , En). 
B is recognizable as an intermediate result via its type ®7=m+l Xi:ai.321 which has sort 6. 
(instead of * or D). 
The method above allows to unfold the definition of b already in B, but it is more in line with 
AUT-68 to make such unfolding not possible before all n arguments E 1 , ... , En have been 
applied to b, and the construction of the equivalent of b(~" .. . , ~n) has been completed . 

• ,\i=1 Xi :ai .31 has not necessarily an equivalent in AUT-58. Take for instance the constant b 
in the line (a:type, b, [x:a]x, [x:a]a). In this case, .\i=lXi:ai.31 == Aa:*.'\x:a.x. Its equivalent 
in AUT-68 would be [c.:type][x:,,]x, but an abstraction [c.:type] cannot be made in AUT-68. 
It is undesirable to allow terms in .\68 that do not have an equivalent in AUT-68. 

Therefore we choose a different translation. The line (Xl:al, ... , Xn:an; b; 3 1; 3 2), where 3 1 E E68 , 

will be translated by putting 

b:=3 t :t<::A~ Xi :ai .32 '6't=1 
in the left part of the translated context ~, and a reduction rule 

is added for all pseudoterms Xl, ... , X n . Note that we make an "abuse of language" in the 
pseudodefinition b:=31: b is not an abbreviation of 3 1 . However, bXI" 'Xn can be seen as an 

3We can assuIlle that the Xi do not occur in the Ej, so the siIllultaneous substitution !:!.l[Xl,"" xn:=E1 , ... , En] 
is equal to 3 1[Xl:=E1] .. ' [Xn:=En] 
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abbreviation of 2 1 , since bXt ... Xn ----+{j 3 1. This is in line with the situation in AUTOMATH, where 
b in the line (Xt:cx1, ... ,xn:cxn;b;3t;32) must be read as b(xt, ... ,xn). On the other hand, the 
type of b is rendered correctly in b:=31:®~=lXi:CXi.32' whereas the type of bXt·· -Xn is 3 2 . 

Note also that 22 is not of the form 0y:M.N, so the number n (necessary for the determination 
of the o-reduction rule for b) can be determined from the context: it is equal to the number of 
0-abstractions at the head of the type of b. 

5 '\68 

5a Definition and elementary properties 

We give the formal definition of .\68, based on the motivation in Section 4. 

Definition 5.1 (.\68) 

1. The pseudoterms of .\68 form a set T defined by 

T ::= V I CIS I TT I AV:T.T I IIV:T.T 10V:T.T 

where S is the set of sorts {.,D,Li}. 
We also define the sets of free variables Fv(T) and ("free,,)4 constants Fc(T) of a term T in 
the straightforward way. 

2. We define the notion of pseudo context inductively. 

• ; is a pseudocontext; DOM(;) = 0. 

• If .6.; r is a pseudocontext, x E V, x doesn't occur in.6.; r and A E T then .6.; r, x:A is 
a pseudo context (x is a newly introduced variable); DOM(Ll.; f) = DOM(Ll.; f) U {x}. 

• If.6.; r is a pseudocontext, b E C, b doesn't occur in .6.; r and A E T then .6., b:A; r is a 
pseudocontext (In this case b is a primitive constant; cf. Section 3a); DOM(Ll., b:A; f) = 
DOM(Ll.; f) U {b}. 

• If .6.; r is a pseudocontext, b E C, b doesn't occur in .6.; f; A E T, and T E T then 
.6., b:=T:A; r is a pseudo context (in this case b is a defined constant); 
DOM(Ll., b:=T:A; f) = DOM(Ll.; f) U {b}. 

Observe that a semicolon is used as the separation mark between the two parts of the context, 
and that a comma is used to separate the different expressions within each of these parts. 
We define 

PRIMCONS(Ll.; f) = {b E DOM(Ll.; f)lb is a primitive constant} 

DEFCONS(Ll.; f) = {b E DOM(Ll.; f)lb is a defined constant} 

3. We define the notion of D-reduction on pseudoterms. Let Ll. be the left part of a pseudocontext. 
If (b:=T:18i7=1 Xi :Ai .B) E Ll., where B is not of the form 0y:B I .B2 , then 

for all Xl, .. . Xn E T. 
We also have the usual compatibility rules on 6-reduction. We use notations like ~{j, ~t, ={j 

as usual. When there is no confusion about which .6. is considered, we simply write 

4. We use the usual notion of j3-reduction. 

40f course, to call a constant "free" is a bit peculiar, since there are no bound constants 
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5. Statements in A68 have the form ~; r f- A : B, where ~; r is a pseudocontext and A and 
B are terms. In the case that a judgement ~; r f- A : B is derivable according to the rules 
below, ~; r is a legal context and A and B are legal terms. 
We write Ll.; r r A : B : C if both Ll.; r r A : Band Ll.; r r B : C are derivable in .\68. 
Here are the rules: 

(Axiom) 

(Start: primeans) 

(Start: defeons) 

(Start: var) 

(Weak: prim cons) 

(Weak: defeans) 

(Weak: var) 

(II-form) 

(@-farm) 

(.\) 

(Appd 

(ApP2) 

(Canv) 

Ll.; r r B : s, Ll.; r I8If.B : S2 (_ ) 
51 = *,0 

Ll., b:I8If.B; r b : @r.B 

=Ll.:.c;~r~r.,.:T:..,.:...: B::;:-.;s~, ~--...:Ll.::c..:.; r~@=r;.B~:~s, (_ ) 
51 = *) 0 

Ll., b:=T:@r.B;r b : @r.B 

Ll.·rrA·s 
, . (s - * 0) 

~;r,x:Af-x:A -, 

Ll.; r M : N 

Ll.;rM:N 

Ll.; r r B : s, Ll.; r @r.B : s, (_ ) 
51 = *, 0 Ll., b:@r.B;r M : N 

Ll.;r r T: B: s, Ll.;r@r.B:s,( _ ) 
to.. s,=*,o 

Ll., b:=T:'<:Jr.B; r M : N 

Ll.;rrM:N Ll.;rrA:s(s=*O) 
Ll.; r, x:A r M : N - , 

Ll.;rrA:* Ll.;r,x:ArB:* 
Ll.; r r IIx:A.B : * 

=Ll.:.c; ~r~r.,.:A..:...:,.: s::.',=-c-_-.:Ll.:..>;-.:,rc..:.' x::::~A~r-,B~: ~S2 (_ ) 
51 = *, 0 Ll.; r r @x:A.B : /'; 

Ll.; r r IIx:A.B : * Ll.; r, x:A r F : B 

Ll.; r r (.\x:A.F) : (IIx:A.B) 

Ll.;rr M: IIx:A.B Ll.;rr N :A 

Ll.; r r M N : B[x:=NJ 

Ll.; r r M : @x:A.B Ll.; r r N : A 

Ll.; r r M N : B[x:=NJ 

Ll.; r r M : A Ll.;rrB:s 
Ll.; r r M : B 

The newly introduced variables in the Start- and Weakening-rules are assumed to be fresh; 
moreover) when introducing a variable x with a Primcons- or Defcons-rule, we assume x E C; 
when introducing x via a Variable-rule, we assume x E V. 

Many basic properties for Pure Type Systems also hold for .\68. Due to the split of contexts and 
the different treatment of constants and variables, these properties are on some points a little bit 
differently formulated than in, for instance, [3J (where these properties are formulated for standard 
PTSs). 

Lemma 5.2 (Free Variable Lemma) Assume Ll.;r r M: N. Write Ll. '" b,:B" ... ,bm:Bm; 
r == Xl :A1' ... ,xn:An (in ~J also expressions bi :=Ti:Bi may occur, but for uniformity of notation 
we leave out the :=T;-part) . 

• b1 ) ... , bm E C are all distinct; Xl) ... ,Xn E V are all distinct. 
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• Fc(M),FC(N) <;; {b l , ... ,bm }; Fv(M), Fv(N) <;; {Xl, ... ,Xn }. 

• bl:Bt,··.,bi_l:Bi_l;1- Bi:Si for a Si E {*,D,.6}; 
~; Xl :A l , ... , Xj _1:Aj -I I- Aj :tj for a tj E {*, D}. 

Lemma 5.3 (Start Lemma) Let ~; r be a legal context. Then~; r I- * : D, and if c:A E ~; r, 
or c:=T:A E ~, then ~; r I- x : A. 

Lemma 5.4 (Definition Lemma) Assume ~1,b:=T:@7=lxi:Ai.B'~2;r I- M: N, where B is 
not of the form 0y:Bl.B2. Then ~1; XI :A l , ... , xn:An I- T : B : s for an s E {*, D}. 

Lemma 5.5 (Transitivity Lemma) Let ~1; r l and ~,; r 2 be contexts, of which ~1; r l is legal. 
Assume that for all c:A E ~2; r 2 and for all c:=T:A E ~" ~1; r l I- c:A. 
Then ~,; r, r B : C => ~1; r l I- B : C. 

Lemma 5.6 (Substitution Lemma) Assume ~; r l , x:A, r, I- B : C and ~; r l I- D : A. Then 

~; r l , r 2[x:=D] I- B[x:=D] : C[x:=D]. 

Lemma 5.7 (Thinning Lemma) Let ~I; r l be a legal context, and let ~,; r, be a legal context 
such that ~1 <;;~, and r l <;; r,. Then ~1;rll- A: B =>~2;r,1- A: B. 

Lemma 5.8 (Generation Lemma) 

• If X E V, ~; r I- x:C then there is s E {*, D} and B =~, C such that ~; r I- B : sand 
x:B E r. 

• If b E C, ~; r I- b:C then there is s E Sand B =M C such that ~; r I- B : s, and either 
b:B E ~ or there is T such that b:=T:B E ~. 

• If s E S, ~; r I- s:C then s '" * and C =~ D. 

• If Ll.; r r M N : C then there are A, B such that Ll.; r r M : Ilx:A.B or~; r I- M : 0x:A.B, 
and ~; r I- N:A and C =~, B[x:=N]. 

• If~; r I- >,x:A.b : C then there is B such that ~; r I- Ilx:A.B : *, ~; r, x:A I- b : Band 
C =~, Ilx:A.B. 

• If~; r I- Ilx:A.B : C then C =~, *; ~; r I- A,. and ~; r, x:A I- B:*. 

• If~; r I- 0x:A.B : C then C =~, 6; ~; r I- A:s l for an SI E {*, D} and ~; r, x:A I- B:s,. 

Lemma 5.9 (Unicity of Types) If~; r I- A: Bl and~; r I- A: B, then Bl =~, B 2. 

Lemma 5.10 If 6; r I- A : B then there is 8 E S such that B '" 8 or 6; r I- B : s. 

Lemma 5.11 If~; r I- A : Ilx:B l .B, then ~; r I- Bl : * and ~; r, x:Bl I- B, : *; 

Lemma 5.12 If~; r I- A : 0x:Bl.B2 then ~; r I- BI : 81 for a SI E {*, D} and ~; r, x:Bl I- B 2:82 
for a sort 52. 

5b Reduction and converSIOn 

In this section we show some properties of the reduction relations -+'{3, -+8 and -+/36. As o-reduction 
also depends on books, we first have to give a translation of AUT-58 books and AUT-contexts to 
>'68-contexts: 

Definition 5.13 Let r be a AUT-68-context Xl :0'1, ... ) xn:an . Then f ~f Xl :Ul, ... 1 xn:an . 

Definition 5.14 Let $" be a book. We define the left part $" of a pseudocontext in >'68: 
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• 0 ~ () (() is the empty list); 

=,--,;;;-;---=-:-:-=def - --
• '.8,(r;b;PN;O) = '.8,b:0r.0; 

• "'.8;::-;-( r""·-x-· ----c. 0=) ~f '.8' 
I I I' I 

=~=-o--=~cc def - - - -
• '.8, (r; b; I:; 0) = '.8, b:=I::0r.0. 

Lemma 5.15 Assume, E is a correct expression with respect to a book ~. 

• I: -->p I:' if and only if I', -->P I:'; 

• I: -->, I:' (with respect to '.8) if and only if I', --'>' I:' (with respect to '.8). 

PROOF: An easy induction on the structure of E. 0 

The Church-Rosser property of -->P' will be proved by the method of Parallel Reduction, invented 
by Martin-Liif and Tait (see Section 3.2 of [2]). 

Definition 5.16 Let II be the left part of a pseudocontext. 
We define a reduction relation ~f36 ("parallel reduction") on the set of pseudoterms T: 

• For x E V, ~ f- x =>136 Xi 

• For b E C, lll- b ~P' b; 

• For s E 8, ~ f-- S =>{36 s; 

• If lll- P ~p, P' and lll- Q ~P' Q' then 

lll- AX:P.Q ~p, AX:P'.Q'; 

lll- ITx:P.Q ~P' ITx:P'.Q'; 

lll- 0x:P.Q ~f' 0x:P'.Q'; 

lll- PQ ~P' P'Q'. 

• If lll- Q ~P' Q' and lll- R ~P' R' then lll- (Ax:P.Q)R ~P' Q'[x:=R']; 

• Ifb:=T:07~jXi:Ai'U E ll, U not oftheform0y:Uj .U" lll- T~p, T' and lll- Mi ~P' Mi 
for i = I, ... I n then ~ f- bMl ... Mn =:::}-{36 T'[Xl, . .. , xn:=ML ... , M~J. 

Some elementary properties of =;'(3fj are: 

Lemma 5.17 (Properties of ~p,) Let II be the left part of a pseudocontext. For all pseudoterms 
M,N: 

1. lll- M ~P' M; 

2. If lll- M -->P' M' then lll- M ~P' M'; 

3. If lll- M ~p, M' then lll- M --»P' M'; 

4. If lll- M ~P' M' and lll- N ~P' N' then lll- M[y:=N] ~P' M'[y:=N']. 

PROOF: All proofs can be given by induction on the structure of M. 0 

We conclude that ---->;"(36 in the context ~ is the reflexive and transitive closure of =;'f36 in ~. 
Therefore, if we want to prove the Church-Rosser theorem for ----*f36, it suffices to prove the Diamond 
Property for =;'f36. We first make some preliminary definitions and remarks: 

Lemma 5.18 Assume, II and ll, ll' are left parts of legal contexts, and Fc(M) ~ DOM(ll). Then 
lll- M ~P' N if and only if ll, ll' I- M ~fi' N. 
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PROOF: By induction on the length of fl. and by induction on the definition of fl. I- M "*~, N. 
All cases in the definition of fl. I- M "*~, N follow immediately from the induction hypothesis on 
.6.. ~ M ~(J6 N 1 except for the case bMl ... Mn =;'f36 T'[Xll ... 1 xn:=M{, . .. , M~J. 
As Fc(M) C; DOM(fl.), bE DOM(fl.). Write fl. '" fl." b:=T:18l7=, Xi:Ai.U, fl. 2 . 

o 

• Notice that T is typable in fl.,; x, :A" ... , Xn :An (Definition Lemma). By the Free Variable 
Lemma: Fc(T) C; DOM(fl.,) By the induction hypothesis on the length of fl. we have fl., l
T "*~, T' iff fl. I- T "*~, T', and fl., I- T "*~, T' iff fl., fl.' I- T "*~, T'. 

• We conclude: fl. I- T "*~, T' iff fl., fl.' I- T "*~, T'. 

• By the induction hypothesis on the definition of fl.1- M "*~, N, we have fl.1- Mi "*~, M[ iff 
.6.., il' r- Mi ==r-f36 M!. 

• As b:=T:18l7=, x,:A,.U is element of both fl. and fl., fl.', and b ~ DOM(fl.') (because fl., fl.' is left 
part of a legal context) we have fl. I- bM, ... Mn "*p, N if and only if fl., fl.' I- bM, ... Mn "*~, 
N. 

For left parts fl. of pseudo contexts and for MET with Fc(M) C; DOM(fl.), we define a term M"'. 
In Ml:!:.) all fJ-redexes that exist in M are contracted simultaneously (this is a usual step in a proof 
of Church-Rosser by Parallel Reduction), but also all D-redexes are contracted. We will show that 
N "*~, M"', for any N with M "*~, N, so M'" helps us to show the Diamond Property for "*~,. 

Definition 5.19 We define, for any left part fl. of a pseudo context and any MET such that 
Fc(M) C; DOM(fl.), M"'. The definition of M'" is by induction on the length of fl. and on the 
structure of M: 

l:!:. clef 
• X = X for any x E V; 

• b'" <!g b for any bEe \ DEFCONS(fl.;); 

A clef S • s = s for any s E ; 

• (Ax:P.Q)'" <!g AX:P'" .Q"'; 
(IIx:P.Q)'" <!g IIx:P'" .Q"'; 

(0 x :P.Q)'" ~f 0x:P"'.Q"'; 

• (PQ)'" ~f P"'Q'" if PQ is not a i'D-redex; 

• ((>.x:P.Q)R)'" ~f Q"'[x:=R"']; 

• If M '" bM,··· Mn , and fl. '" fl." b:=T:18l7=, Xi:Ai .U, fl. 2 , where U is not of the form 
0y:U1 .U2 , then .6.. 1 ;Xl:A1 , ... ,xn :An r- T: U (due to the Definition Lemma), so we can 
assume that Tt::..l has already been defined. 

Define (bM, ... Mn)'" ~f T"" [X" ... , xn:=Mf', . .. , M;-]. 

Lemma 5.20 Let fl. be the left part of a legal context. fl. I- M "*~, M'" for all M with Fc(M) C; 
DOM(fl.). 

PROOF: By induction on the definition of Mt::... 
We only treat the case bM, ... Mn "*p, (bM, ... Mn)"'. 
As in the definition of (bM, ... Mn)'" , write fl. '" fl." b:=T:18l7=, x,:Ai.U, fl. 2 . 

By induction, we may assume that fl., I- T "*p, T"" and fl. I- M, "*~, M,"'. 
By the Definition Lemma, T is typable in Ll1;Xl:Al, ... ,xn:An1 so by the Free Variable Lemma, 
Fc(T) C; DOM(fl.,). By Lemma 5.1S, fl. I- T "*~, T"". 
So ~ r bM1 •·· Mn -=--fj6 T~1[Xl1'" 1 xn:=Mf"'"J M~]. 0 
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Theorem 5.21 Let I'> be the left part of a legal context and assume Fc(M) <;; DOM(I'». Assume 
I'> I- M =;.~, N. Then I'> I- N =;.~, Ml>. 

PROOF: Induction on the the definition of Ml>. 

o 

• M := x. Then N := x and Ml> := x. 

• M := band bEe \ DEFCONS(I'>;). Then N := band Ml> := b. 

• M := s. Then N := sand Ml> := s. 

• M := AX:P.Q. Then N:= AX:P'.Q' for some P', Q' with I'> I- P =;'M P' and I'> I- Q =;.~, Q'. 
By the induction hypothesis on P and Q we find I'> I- p' =;.~, pl> and I'> I- Q' =;.~, Ql>. 
Therefore I'> I- AX:P'.Q' =;.~, AX:Pl>.Ql>. 
The cases M:= IIx:P.Q, M := Q9x:P.Q, and M := PQ where PQ is not a /3-redex, are proved 
similarly. 

• M := (Ax:P.Q)R. Distinguish: 

N:= (Ax:P'.Q')R' for P', Q', R' with I'> I- P =;.~, P', I'> I- Q =;.~, Q' and I'> I- R =;.~, R'. 
By induction, I'> I- Q' =;.~, Ql> and I'> I- R' =;.~, Rl>. Therefore I'> I- N =;.~, Ql>[x:=Rl>J. 

N := Q'[x:=R'J for Q', R' with I'> I- Q =;.~, Q' and I'> I- R =;.~, R'. By induction, I'> I
Q' =;.~, Ql> and I'> I- R' =;.~, Rl>. By Lemma 5.17.4, I'> I- Q'[x:=R'J =;.~, Ql>[x:=Rl>J. 

• M:= bM, ·· ·Mn , 1'>:= 1'>"b:=T:18l7=,xi:Ai.U, 1'>2. Distinguish: 

N == bM{ ... M~ for Mf with .Q. f- Mi -:::::;'(36 ME. By induction, we have .Q. 1- M/ =!;>j36 M/I.. 
By the Definition Lemma, T is typable in a context I'> ,; 1'>, so by the Free Variable 
Lemma, Fc(T) <;; DOM(I'>,). By Lemma 5.20, 1'>, I- T =;.~, Tl>,. By Lemma 5.18, 
I'> I- T =;.~, Tl>,. Hence I'> I- N =;.~, Tl>, [Xl, ... , xn:=Mf', ... , M,f'J. 

N := T'[X1,"" xn:=M{, ... , M~J for a T' with I'> I- T =;.~, T' and for M! with I'> I
Mi :::::}f36 MI· By the Definition Lemma, T is typable in ~1;Xl:Al1""XN:An, so by the 
Free Variable Lemma, Fc(T) <;; DOM(I'>,), By Lemma 5.18, 1'>, I- T =;.~, T'. By the 
induction hypothesis on T, 1'>, I- T' =;.~, Tl>,. As 1'>1 I- T =;.~, T', FC(T') <;; DOM(I'>,), 
so by Lemma 5.18, I'> I- T' =;.~, Tl>,. 
By the induction hypothesis, also .Q. f- M[ =?j36 MiA.. 

By a repeated application of Lemma 5.17.4, we find that5 

.6. l- T'{xl, ... ) xn:=M{ 1" • M~] :::::}(36 Tt:..l [XII"" xn:=Mf, ... 1 M~]. 

Corollary 5.22 (Diamond Property for =;.~,) Let I'> be the left part of a context in which M is 
typable. Assume I'> I- M =;.~, Nl and I'> I- M ~P' N 2 • Then there is P such that I'> I- N, ~~, P 
and I'> I- N2 =;'P' P. 

PROOF: Immediately from the theorem above: Take P:= Ml>. 0 

Corollary 5.23 (Church-Rosser property for =;.~,) Let I'> be the left part of a context in which 
M is typable. If I'> I- M -;;P' N, and I'> I- M -;;~, N2 then there is P such that I'> I- N, -;;~, P 
and I'> I- N2 -;;~, P. 

PROOF: Directly from Corollary 5.22. 0 

5We must remark that 

T'[Xl, ... , xn:=M{, ... , M~J ::= T'[XI :=M{]··· [xn:=M~] 

and 
Tt:.l [Xl>" .,xn:=M{\ .. " M;-l ::= TL'...I[Xl:=Mf"J··· [xn:=M~]. 

This is correct as we can assume that the Xi do not occur in the M: and Mf. 
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5c Subject Reduction 

Lemma 5.24 (Subject Reduction) If 6.; r f- A : B and A ->~ A' then 6.; r f- A' : B. 

PROOF: The proof is as in [3]. 0 

Subject Reduction also holds for the reduction relation ---*6: 

Lemma 5.25 (Subject Reduction for ->,) If 6.; r f- A : B and A ->, A' then 6.; r f- A' : B. 

PROOF: Following the line of [3], we define 6.; r ->, 6.; r ' if r '" r 1, x:A, r 2, and r ' '" r 1, x:A' , r 2, 

and ~ f-- A --+6 A'. We define ~; r --+6.6,'; r similarly, and we simultaneously prove 

6.; r f- A:B and 6. f- A ->, A' ~ 6.; r f- A':B 

6.; r f- A:B and 6.; r ->, 6. ' ; r ~ 6.' ; r f- A:B 

6.; r f- A:B and 6.; r ->, 6.; r ' ~ 6.; r ' f- A:B 

using induction on the derivation of .6.; r I-- A:B. 
We only treat the case in which the last applied rule is the application rule, and only prove the 
first of the three statements for this case. 
We write A[Xi:=B;]?== as a shorthand for A[x=:=Bm][x=+l :=Bm+1]'" [xn:=Bn]. 
We can assume that 

with B 'F 0y:B1.B2 , and that the conclusion of the application rule is 

and therefore 
6. f- bM1 ... Mn ->, T[Xi:=Mi]?=l' 

(1) 

(2) 

We repeatedly apply the Generation Lemma, starting with (1), thus obtaining Knl Kn-l, ... ) /(1, 

K~) [{~-lJ"'J K 1 , LnJ Ln- I , ... , Ll such that 

6.; r f- Mi : Li 

(3) 

(4) 

(5) 

(6) 

We end with 6.; r f- b: (0X1:Li.KD, By the Generation Lemma: 0X1:L1.K( =~, ®';=lxj:Aj.B. 
By the Church-Rosser Theorem we have L1 =~, A1 and K( = ®j=2xj:Aj.B. Hence 

= 

K1 

(0;=2x;:Aj.B) [x1:=Md 

to\ ~ Xi:Ai [Xl :=Md .B[X1 :=Md '6'~=2 

so by the Church-Rosser Theorem L2 ={30 A2 [XI :=Md. Proceeding in this way, we obtain for 
i = 1, .. . ,n: 

Li 

1<; 

Ki 

=~, 

=~, 

=~, 

Ai [Xj:=Mj ];-;;\ 

o ;=i+1 Xj :Aj[x.:=M.]~-;;ll ,Bh :=Mk]~-;;ll 

to\n x,' :A,[x.:=Mk]i_1.B[x.:=M']~_1 '6I j =i+l - -

In particular, 1<n ={3o B[Xi:=Mi]f::::ol· 
By the Definition Lemma on (1) we also have 
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tl; r r- Aj : 81 

~; r, Xt:Al is legal 

tl; r, Xl:Al r- A, : 8, 

~;r,xl:Al,X2:A2 is legal 

By applying the Thinning Lemma to (7) we find: 

(Thinning Lemma) 

(Start Rule) 

(Thinning Lemma) 

(Start Rule) 

(Start Rule) 

(7) 

As tl; r r- Ml : Ll and tl; r r- Al : 81, we have tl; r r- Ml : Al by the Conversion rule, 80 by the 
Substitution Lemma: 

tl; r, x,:A,[Xl:=Md,···, xn:An[Xl:=Md r- T[Xl:=Ml ]: B[Xl:=Md 

tl; r r- A,[Xl:=M!l: 8, 

As tl;r r- M,: L, and A,[Xl:=Md =f' L, we have by conversion tl;r r- M,: A,[Xl:=Md, and 
again by the Substitution Lemma: 

~; r, X3:A3[Xi:=Md7::::1,"" Xn:An[Xi::::::Md7::::1 f-- T[x ··-M·]' . B[x"-M']' t,- 1 i:=:l . ~.- t i=l 

tl; r r- A3 [Xl:=Md[x,:=M2] : 83 

Proceeding in this way we finally find 

tl; r r- T[Xi:=M;]?=1 : B[Xi:=M;]i=I' 

As tl; r r- bMl ··· Mn : Kn we have tl; r r- Kn : 8 by Lemma 5.10. Now use the Conversion Rule 
and the fact that ]{n =f' B[Xi:=Mi ]?=I' 0 

The Subject Reduction Theorem for --+6 is used to prove: 

Lemma 5.26 A88ume 8 E Sand tl; r r- M : N. Then M =f' 8 '* M == 8 and N =f' 8 '* N == s. 

PROOF: First assume 8 E {D, ,c,}. If M =f' 8 then by Church-Rosser M ---"'f' 8, so by Subject 
Reduction tl; r r- 8 : N, contradicting the Generation Lemma. If N =f' sand N 't 8 then we 
have by Lemma 5.10 that ~; r f-- N : P for some P, so again~; r f-- s : P, in contradiction with 
the Generation Lemma. 
Now assume s == *, and M =f38 s. Again by Church-Rosser, M ---'i!-{30 *, say M --+f36 ... --+f3b 

M' ->f' *. By Subject Reduction, tl; r r- M' : Nand tl; r r- * : N. By the Generation Lemma 
N =f3li oJ so N == 0, Distinguish: 

• M' == (Ax:A.B)C and * == B[x:=C]. 
By the Generation Lemma there is B' such that 
tl; r r- (Ax:A.B) : (-n:A.B') and tl; r r- C : A. 
C == 0 contradicts tl; r r- C : A, so B' == D. 
By Lemma 5.11 tl; r r- (7l'x:A.D) : *, so by the 
contradiction . 

B'[x:=C] =f' 0 (hence B'[x:=C] D), 

Generation Lemma ~; r, x:A I- 0 : *, 

• M' == bMl ... Mn and bMl ... Mn -6 T[Xi:=Mi]i=l. The argument is similar as in the case 
M' == (Ax:A.B)C. 

If 8 == * and N =f' 8 then by Lemma 5.10 N == s (and we are done) or tl; r r- N : 8' (which is 
impossible by the above argument). 0 
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5d Strong Normalization 

We prove Strong Normalization for f35-reduction in A68 by mapping a typable term M (in a 
context fl.; r) of A68 to a term IMI" that is typable in a strongly normalizing PTS. The mapping 
is constructed in such a way that if M ~P N, also 1M I" -->P INI", and that if M -->, N, 
1M I" -*t INI,,· This last feature requires special attention for the definition of Ibl" when fl. == 
fl."b:=T:@7~,x;:Ai.U,fl.,. Simply defining Ibl" = Ai~,xi:IAd",.ITI", doesn't give the desired 
result if n = 0: In that case, the o-reduction b ---+0 T results in 0 fi-recluctions in the translation: 
Ibl" == ITI", == ITI" (all definitions ofT are mentioned in fl." so ITI" == ITI",). 
To enforce at least one f3-reduction in this case as well, we define Ibl" = Id(Ai~,x;:IAd",.ITI",), 
where Id is the identity operator on the appropriate type. 

Definition 5.27 Let fl. be the left part of a legal context and let MET. We define IMI" by 
induction on the length of fl. and the structure of M. 

I I 
def 

• X a. = x for x E V; 

• Ibl" ~f b for all bEe \ DEFCONS(fl.;); 

• Ibl" ~ (Ab: (IT~~, Xi: lAd", . lUI",) .b) (Ai = j"Xi: lAd", ·ITI",) 
if fl. == fl." b:=T:@7~, Xi:Ai.U, fl.,. 

I I 
def 

• S.6. = s for s E Sj 

• IAx:P·QI" ~ AX: IPI" ·IQI,,; 

• Illx:P·QI" ~ llx: IPI" ·IQI,,; 

• l@x:P.QI" ~f llx: IPI" .IQI,,; 

• IPQI" ~f IPI" IQI,,; 

The following lemmas are usefull: 

Lemma 5.28 Let fl. be the left pari of a legal context and MET. Then Fv(IMI,,) = Fv(M). 

PROOF: The proof is by induction on the definition of 1M I" and is trivial for all cases except the 
case M == band fl. == fl." b:=T:@r.U,fl., (U 't @y:U1 .u2 ). 

By the Definition Lemma, T is typable in fl. 1; r; therefore Fv(T) ~ DOM(r) (Free Variable Lemma). 
By the induction hypothesis, FV(lTI",) ~ DOM(r) and therefore Fv(lcl,,) = 0. 0 

Lemma 5.29 If fl.1 and fl.2 are left parts of legal contexts and fl., == fl. 1, fl.' then IMI", == 1M I", 
for all MET with Fc(M) ~ DOM(fl.1). 

PROOF: An easy induction on the definition of IMI",. 0 

Lemma 5.30 Let fl. be left part of a legal context. For all M, N: IM[x:=N]I" == IMI" [x:= INI,,]. 

PROOF: By induction on the definition of IMI". In the case M == band b:=T:U E fl., use 
the fact that Fv(IMI,,) = Fv(M) = 0 (Lemma 5.28) and therefore 1M I" [x:= INI"l == 1M I" == 
IM[x:=NJI". 0 

The purpose of the definition of IMI" (and especially the exception that was made for the case 
b:=T:U E fl.) is the following lemma: 

Lemma 5.31 If fl.1- M -->P' N then IMI" ~t INI,,· 

PROOF: We use induction on the structure of M. We treat a few cases: 
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° 

• M '" ()'x:P.Q)R and N '" Q[x:=R]' 

IMI" (),x: IFI" ·IQI,,) IRI" 

• M ",bM,···Mn; 
~ == .6. 1 ) b:=T:®7=1 Xi:Ai.U, ~2; 
N == T[Xl l .. . ,Xn:=M11 .. " Mn]. 

~f IQI" [x:= IRIt.] 
5.30 

IQ[x:=Rll" 

1M I" 
~f 

"""*f 

5.39 

(()'b: (Ir~, xi: IAil", . lUI",) .b) (Ai = jnx;: lAd", .ITI",)) IM,I,,· 'IMnl" 

(Ai = 1nxi: lAd", .ITI,,')IM,I,,·· 'IMnl" 

ITI", [Xi:= IMil"li~, 

ITI" [Xi:= IMd"li~, 
5.30 

IT[xi:=Mili~,I" 

IT[x" . .. , xn:=M" ... , Mnll" 

At the last equivalence, we must make a remark similar to footnote 5. 

Let )'SN be the PTS over )'-terms with variables from Vue and sorts from S, and the following 
rules (we choose the name )'SN because this system will help us in showing that ),68 is SN): 

(.,.,.) 
(.,.,L) (D,.,L) 
(.,0, L) (0,0, L) 
(', L, L) (0, L, L) 
(0,0, D) (6,6,6) 

)'SN is contained in the system ECC (see [25]). As ECC is fJ-strongly normalizing, also )'SN is 
fJ-strongly normalizing. 

We present a translation of A68-contexts to ASN-contexts: 

Definition 5.32 Let L; r be a legal )'68-context . 

• We define ILl by induction on the length of r,: 

101 ~f 0; 
ILl., b:UI ~ 161 ,b: IUlr ,; 

ILl., b:=T:UI ~f 16 1. 

We see that definitions b:=T:U in ~ are not translated into I~I. This corresponds to the fact that 
in 1M I" , all these definitions are unfolded (replaced by their definiendum). 

Now we are able to prove the most important lemma of this subsection: 

Lemma 5.33 If Ll.; r f- M : N then ILl.; rl f- IMI" : INI" is derivable in )'SN. 

PRoOF: The proof is by induction on the derivation of Ll.; r f- M : N. We treat a few cases: 
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(Start: Primitive Constants) 

_~-'-; f_f-;-B-;-:,8~1 ,,-;;:-;-~-,-'-,; f-;o;@~f,cc. B,--,--: 8,-,-' ( ) 
51:::: *,0 

~,b:@f.B; f- b : @f.B 

By the induction hypothesis, I~I f- l@f.BI" : 82, so by the Start rule: 

I~I, b: l@r.BI" f- b: l@f.BI,,· 

Observe that 1~,b:@f.BI '" I~I ,b:l@f.BI", that Ibl",b,<2WB '" b and (by Lemma 5.29) 

l@f.BI" '" l@f.BI",b<2,rB· 
(Start: Defined Constants) 

_~-'-; f----,f-_T,.---: B=-: -o81=-=-=-,-~-c;,--f--=@",=-f-=.B,--: -,,8, ( ) 
51:::: *,0 

~,b:=T : @f.B;f- b : @f.B 

This is the only case in which we really have to work. By induction we have 

so with the weakening rule: 

I~; I, b: l@f.BI" f- l@f.BI" : 8, 
and with rule (8,,8,,82) applied to (8) and (9): 

I~; I f- (lIb: l@f.BI" ·1@r.BI,,) : 8, 
By (8) and the start rule: 

I~; I, b: l@f.BI" f- b: l@f.BI" 
so with the A-abstraction rule applied to (10) and (11): 

(8) 

(9) 

(10) 

(11) 

I~; I f- (Ab: l@f.BI" .b): (lIb: l@f.BI" ·1@r.BI,,) (12) 

By induction, we also have I~; fl f- ITI" : IBI", so (write f '" Xl :Al, ... , xn:An): 

I~I, xl: IAII" , ... , Xn: IAnl" f- ITI" : IBI" (13) 

and by repeatedly applying the A-rule on (13) and using the fact that, by the Induction 
Hypothesis, the types IT;=i Xj: IAjl" ·IBI" are all typable, we find: 

I~; I f- Ai = 1nXi: IAil" ·ITI" : IT7=1 Xi: lAd" ·IBI" (14) 

Notice that IT7=1 Xi: lAd" .IBI" '" l@f.BI" and use application on (12) and (14): 

I~; I f- (Ab: l@f.BI" .b)(Ai = 1nXi: IAil" ·ITI,,) : l@f.BI" 
(as Fv(l@r.BI,,) = 0, the usual substitution after the use of the application rule has no 
effect) and we are done. 

(Application 1) (the Appication 2-case is similar) 

o 

~; f f- lIx:A.B : * ~; f, x:A f- F : B 
~; f f- (Ax:A.F) : (lIx:A.B) 

By the induction hypothesis, we have I~; fI f- IMI" : lIx: IAI" ·IBI" and I~; fI f- INI" : IAI,,· 
The application rule gives 

Use the definition of 1M NI" and Lemma 5.30 to obtain 

1~;fI f-IMNI,,: IB[x:=All,,· 

Corollary 5.34 (Strong Normalization) A68 is f38-strongly normalizing. 

PROOF: Immediately from Lemma 5.31 and Lemma 5.33. 0 
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5e The formal relation between AUT-68 and .\68 

Theorem 5.35 Let m-- be a correct book and r a correct context with respect to m . 
• 2'3; r is legal,' 

• If fE, r f- E : 11 then fE; r f- 1;: IT. 

PROOF: We prove both statements simultaneously, using induction on the number of lines in ~ . 

o 

• fE is empty. All cases can be checked manually. This work is left to the reader . 

• Assume, the lemma has been proved for all books with at most n lines, and assume 23 has 
n+ 1 lines. Let fE' be the book consisting of the first n lines of fE. Focus on the last line of 
fE. 

This line is of the form (r', X,-, 3). Notice that fE' == fE. 
If r is a correct context with respect to 23, then either r is correct with respect to 2;3"' 
(hence fE; f is legal by the induction hypothesis) or f == r', x:3. 

In this last case: Notice that either 3 == type (then notice that fE; r' is legal, hence 
23; r' f- 3:0), or :=: is a correct expression of type type with respect to 23' and r' (and 
then by the induction hypothesis fE; f' f- B,*). By the start rule for variables we can 

deduce: ru-; f', x:3 f- x:3", and we see that 23; r is legal. 
Now assume fE; r f- E: 11. If r 't r',x:3, then fE'; r f- E: 11 and we can use the induc
tion hypothesis to obtain 23; r I- I;:O. If r == r', x:S, use a straightforward induction on 
the structure of E and the Start Lemma. 

- This line is of the form (r', b, PN, 3). Now fE == fE', b:l8if' .B.Notice that 3 == type or 3 
is a correct expression of type type with respect to ~', r', hence: ~'; r' f-- 3:s for s = * 
or s = D. 
As all the types in r' have sort * or 0 (by the Generation Lemma), we can use the 0-
formation rules to deduce fE'; f- I8ir'-B:6, and introduce the constant b: fE; f- b:l8if' .B. 

Using induction on the length of r and the Thinning Lemma, we can prove that fE; f is 
legal. 
fE; f f- }';:IT is, as above, shown by induction on the structure of E. 

This line is of the form (r', b, 3" 3 2). The proof is similar as in the case (r', b, PN, 3). 

It is possible to prove a conservativity theorem (in the style: If~; r f-- E : 0, then 2: is a correct 
expression of type 11 with respect to fE and r), but we want to prove that all the typable terms 
of "\68 have some interpretation in AUT-58, and not only the terms that have an equivalent in 
AUT-68. We have to distinguish 6 different cases, and the interpretation of these 6 cases is given 
after the proof of the theorem. 

Theorem 5.36 Assume ~; r f-- M : N. Then there is a correct book ~J and a context r' correct 
'With respect to ~ such that 23", r':=~; r. Moreover, 

1. If N == 0 then M == *; 

2. If 6; r f- N : 0 then N == * and there is n E £68 such that IT == M and fE; r' f- 11 : type; 

3. If N == 6 then there is r" == x, :E" ... , xn:En and 11 E £;Is such that 

• r', r" is correct 'With respect to ~; 

• M == TI f".IT; 
• 11 == type or fE; r' f- 11 : type. 
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4· If ~; r f- N : 6 then there are bEe and E l , . .. , En E £68 such that M 
M oreaver! 23 contains a line 

such that 

• m> n; 

• ~;r' f- Ei:fli [Xl, ... ,Xi-l:=El , ... ,Ei_d (1:': i:,: n); 

• N::;::; ®:n+l Xi:Oi.S2[Xl, ... , xn:=:E1, ... ,~; 

5. N = *. Then there is fl E £68 such that IT = M and~; r' f- fl : type; 

6. ~; r f- N : *. Then there are E, fl E £68 such that 'E = M and IT = N, and~; r' f- E : fl, 
and ~; r' f- fl : type. 

PROOF: We use induction on the derivation of ~; r r- M : N. We only treat a few cases: 

Start: Defined Constants 

~; r f- B : 51 ~; r f- T: B ~; f- 0r.B : 52 _ 

tV. tV. 51 = *, 0 
~; b:=T: I6'r.B; f- b: I6'r.B 

Determine ~ and r' such that ~; r' = ~; r (we can assume that the induction hypothesis 
on the three premises give the same book ~). Assume 51 = * (the case 81 = 0 is similar). 
Determine E, fl E £68 such that 'E = T and IT = B, and ~; r' f- E : fl. Obtain a book ~' by 
adding a line 

to ~_ Notice that 

(r" b' E' fl) , , , 

!B' _ !B,b:=E:Q9r-.n 

~,b:=T: 0r.B 

If r = 0 then i8)r.B = B and we are in case 6. Notice that ~'; 0 f- b() : fl. 
If r 't 0 then ~';f- i8)r.B : 6 and we are in case 3. We can take n = 0 and r" = r'; we 
can take "I = E and "2 = fl. 

Application 2 

~; r f- M : 0x:A.B ~; r f- N : A 
~; r f- M N : B[x:-NJ 

Determine 23 and r' such that ~; r' == ~; r (again we can assume that the applications of 
the induction hypothesis on both premises result in the same book ~). 
Notice that ~; r f- 0x:A.B : 6. Determine, with the induction hypothesis, E l , ... , En E £68 

and a line 

in ~ such that 

• rn> n; 
• M:;:::; b:E1 "· ·En ; 

• ='r'f-E ·fl_[x··_Eji-l. ::.4J, i· t JO- j j=lJ 

• 0x:A.B == (g(~::n+lxi:Oi':=:2[xr=Ejli=1' 
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o 

Observe: A == On+1 [x;:=I:j]i=l. As !B; r' f- On+1 : type or On+l == type, we have A; r f
On+l : s for an s E {*, o}, and by Substitution Lemma and Transitivity Lemma we have 
A; r f- On+,[Xj:=I:j ]i=1 : s, hence A; r f- A: s. 
With the induction hypothesis we determine I: E [68 such that!B; r' f- I: : On+,[Xj:=I:j]i=l. 
and N == E. We now treat the most important of the cases 1-6: 

4. The only thing that doesn't directly follow from the results above is m > n + 1. Assume, 
for the sake of the argument, m = n + 1. Then B[x:=N] == 3,[xj:=I:j ]j;-{. As A; r f
B[x:=N] : A, 3,[x;:=01j;-{ is of the form 0x : P.Q, which is impossible. 

6. Notice: B[x:=N] == (@i=n+,x i :0;.3,) [Xj:=I:j]j;-{. 

As A; r f- B[x:=N] : *, B[x:=N] cannot be of the form 0y:P.Q, and therefore m = n + 1. 
Therefore, ~;r' ~ b(E1) ... ,En+d: 3 2 [Xl, ... ,Xn+l:=Ll, ... ,:En+d, and this is what 
we wanted to prove. 

Remark 5.37 We give some explanation to the different cases mentioned in the formulation of 
Theorem 5.36. 

• The cases N =::= 0 and .Q.; r I- N : 0 indicate that there are no other terms in .:\68 than * itself 
at the same level as *. This corresponds to the fact that type is the only ('top-expression" 
in AUT-68. 

• The cases N == * and .Q.; r f-- N * give a precise correspondence between expressions of 
AUT-68 and terms of A68: If M : N in A68 then there are expressions I:, 0 in AUT-68 such 
that I: : 0 and E == M; l1 == N. 

• The cases N == A and A; r f- N : 6. cover terms that do not have an equivalent in AUT-68 
but are necessary in ;\68 to form terms that have equivalents in AUT-68. More specific) 
this concerns terms of the form ®7=lXCAi.B (which are needed to introduce constants) and 
terms of the form bMl ... M n , where b is a constant of type ®;:1 Xi :Ai.B for certain rn > n 
(which are needed to construct A68-equivalents of expressions of the form b(I:" ... , I:m )). 

We conclude that A68 and AUT-68 coincide as much as possible, and that the terms in A68 that 
do not have an equivalent in AUT-68 can be traced easily (these are the terms of type 6. and the 
terms of a type M : 6., and the sorts 0 and 6, which are needed to give a type to * and to the 
II-types). 
Notice that the alternative definition of o-reduction in A68, discussed at the end of Subsection 4c, 
would introduce more terms in '\68 without an equivalent in AUT-68, namely terms of the form 
AX,:A,.·· ·AXn : An. B . 

6 Related Works 

Recently, various type systems with definitions in PTS-style have been proposed by, among others, 
Bloo, Kamareddine and Nederpelt ([6, 21]) and by Severi and Poll ([29]). The presentation of 
AUT-68 in the PTS-like system '\68 makes a good comparison between these systems and' the 
definition system in AUT-68 possible. 

6a Comparison with the DPTSs of Severi and Poll 

In [29], Severi and Poll present an extension of PTSs with definitions, thus obtaining Pure Type 
Systems with Definitions (DPTSs). They extend the usual PTS-rules with the following D-rules: 

(D-start) 
rf-a:A 

r, x=a:A f- x : A 
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(D-weak) 

(D-form) 

rf-b:B rf-a:A 

r,x=a:A f- b: B 

r, x=a:A f- B : s 

r f- (x=a:A in B) : s 

(D-intro ) 
r, x=a:A f- b : B r f- (x=a:A in B) : s 

r f- (x_a:A in b) : (x-a:A in B) 

(D-conv) 
rf-b:B rf-B':s r f- B =D B' 

r f- b : B' 

where D-reduction is defined by the following rules: 

r f- (x=a:A in b) ---+D b (x rt Fv(b» 

r, x=a:A f- b ---+D b' 
r f- (x_a:A in b) ---+D (x-a:A in b') 

and the usual compatibility rules. As we see, there is an extra class of terms in DPTSs, namely 
those of the form x=a:A in b. 

When regarding both systems we find that 

• In DPTSs, definitions do not only occur in a context, but may also occur in terms. Moreover) 
definitions may disappear from contexts when they are introduced in terms (e.g. the D-form 
and the D-intro rules, and the last of the three D-reduction rules), and definitions may 
disappear from terms when the definiendum does not occur in that term (the middle D
reduction rule). 
This gives definitions a more temporarily character: we can use them as long as needed, and 
when we do not need them any more, we can remove them from the context. 
Definitions can also playa more local role: A definition that is needed in only one term 
can be imported into that term while it is not necessary to carry it around in the (global) 
context, as well. 
This temporary and local behaviour of definitions is not present in AUTOMATH. 

• Due to the fact that definitions can also playa local role, D-reduction can also unfold defi
nitions which are not present in the (global) context, but which are given within the term. 
For example, we have a:* f-- (id=Ax:a.x in it!) ----*0 Ax:a.x, though there is no definition of 
id in the context a:*. 
Again, this is not possible in AUTOMATH. 

• The start rule for definitions in DPTSs, 

rf-T:B 

r,x_T:B f- x: B 

does not require r f- B : s for a sort s. In .\68 we have the rule (St: def): 

_.6..:..; _r--cf-,--T_: B-=: """Slo-::--=:-:_.6._;:....f-"""i8l?,:-r-::. B_: ....::.S2 ( ) 
81 = *,0 

.6., x:=T:i8lr.B; f- x: i8lr.B 

where we see that both Band i8lr.B need to be of a certain sort (and B must be of sort * 
or D). 

• The start rules for definitions in DPTSs and in '\68 differ in another point, too, namely the 
type of definiens and definiendum. In DPTSs they have the same type (in the notation of 
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the previous paragraph: B), while in A68 the definiens T has type B and the definiendum x 
has type I8Ir2 .B. This topic has already been discussed when we introduced the definition 
mechanism of ,X68 in Section 4c. 

• D-reduction differs from ,s-reduction, also when only global definitions are taken into ac
count. For instance, o-reduction is substitutive, i.e. if.6. r- A --+6 A' then .6. I-- A[x:=b] --+6 

A'[x:=b] (proof: induction on the structure of A). D-reduction is not substitutive: take 
r,= "'*, y=a,*. Then r I- y ---'D a, but r 17' y[a:=M]---'D a[":=M]. 
In A68, this example would look as follows. Take ~ '= y:=a:@a: * .*. Then ~ I- ya ---', " 
and ~ I- ya[,,:=M]-->, a[a:=M]. 
Substitutivity for --+D is lost, because unfolding a definition by D-reduction may introduce 
new free variables in the term. In AUTO MATH, all free variables in the definiens must be 
added as parameters to the definiendum. In A68 this is visible in the Start and Weakening 
rules for defined constants: the right hand side r of the context ~; r that is used to type 
the definiens T in these rules, serves as list of parameters in the definiendum. When an 
AUTO MATH-definition is unfolded, the free variables occurring in the definiens are replaced 
by the parameters. 

• We see that the definition of y in ..\68 in the example above is more general than in the 
corresponding DPTS situation. In the DPTS-example, y D-reduces to one, fixed term x. 
In the A68 version, yM is defined for any (typable) term M. To do something similar in 
DPTSs, one needs to define y as Aa:*.a. In particular, one needs to type the term Ao::*.a, 
which involves the use of rule (0, D), so the use of a higher type system. One could say 
that AUTO MATH and A68 use an implicit A-abstraction where DPTSs need an explicit A
abstraction. On this point, AUToMATH and A68 are more flexible than DPTSs. 

6b Comparison with systems of Bloo, Kamareddine and Nederpelt 

In [21], Bloo, Kamareddine and Nederpelt extend the usual PTSs with both IT-conversion and defi
nitions. Therefore it is useful to take II-conversion into consideration when comparing AUTOMATH 

with A,BII. Though our system A68 does not have II-conversion, it is very easy to extend it to a 
system AIT68 by: 

• Changing rule (App,) into 

~; r I- M : ITx:A.B ~; r I- N : A 
~; r I- M N : (ITx:A.B)N 

(rule (ApP2) remains unchanged - see also the discussion in Section 4aj 

• Adding a new reduction rule --+rr by 

(ITx:A.B)N -->n B[x:=N]. 

The system AIT68 is actually much closer to AUT-68 than A68 as AUT-68 has IT-conversion as well. 
In the rest of this paper we only did not focus on II-conversion in order not to lose the view on 
what is going on in the definition system of AUTOMATH. 

[21] starts with PTSs extended with IT-reduction, but without definitions (see [22]). This system 
(which we will call AjJIT for the moment) does not have the Subject Reduction property. For 
instance, one can derive 

a,*, x:a I- (Ay:a.y)x : (ITy:".a)x 

but it is not possible to derive 
a,*, x:a I- x : (ITy:a.,,)x. 

Adding a definition mechanism results in a system that we will call AjJITd and is the main point of 
interest in [21]. As a sort of "side effect" of adding this definition mechanism, A,BIId has Subject 
Reduction. 
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In -'1168 we do not have Subject Reduction: It is not hard to derive 

; a,*, x:a f- (-'y:a.y)x : (lIy:a.a)x 

in '\'II68. Nevertheless, we can not derive 

;a'*,x:a f- x: (lIy:a.a)x 

(in such a derivation, no definitions can occur: definitions, once they have been introduced, can 
not be removed from the left part of the context any more. When we are not allowed to use 
any definition rules, ,\1168 has not more rules than the system .\,BIT of Bloo, Kamareddine and 
N ederpelt). 
The "restauration" of Subject Reduction in Aj1IId is only due to the special way in which definitions 
are introduced and removed from the context. We do not go into details on this; the interested 
reader can consult [21]. 

Another main difference between -'1168 and -',Blld has already appeared in Section 6a: In -'1168 
there is a different correspondence between the types of definiendum and definiens as in -',Blld. 

7 Conclusions and Future Work 

In this paper we described the most basic AUTO MATH-system, AUT-68, in a PTS style. Though 
such descriptions have been given before in, for example, [3] and [15], we feel that OUf description 
is more accurate than the two ones cited above. Moreover, our description pays attention to the 
definition system, which is a crucial item in AUTOMATH, and the descriptions above don't . 

.\68, the main topic of this paper, doesn't include IT-conversion (while AUTOMATH does). However, 
it is very easy to adapt .\68 to include II-conversion (this was done in Section 6b to compare our 
system to the system in [21]). 

The adapt ion of -'68 to a system -'QE, representing the AUToMATH-system AUT-QE isn't hard, 
either: It requires adaption of the II-formation rule to include not only the rule (*, *, *) but also 
(*,0,0) and introduction of an additional reduction rule (so-called "type inclusion") 

ITx:A.* ---:l-QE * 
.\x:A.* ---:l-QE * 

For more details on this rule, see [13]. Of course, the properties of ),68 presented in Section 5 have 
to be reviewed for these new systems. 

When comparing '\68 to other type systems with definitions, we find an important difference. 
In -'68, the correspondence between types of definiendum and definiens differs from the similar 
correspondence in the systems in [29] and [21]. 
The reason why ..\68 differs from other theories on this point has been discussed in Section 4c: 
the definition system in AUTO MATH allows parameters to occur in the definiens, and there is no 
parameter mechanism in PTSs. We are currently investigating the possibility of extending PTSs 
with such parametric definitions. This is not only interesting with respect to AUTOMATH, but 
also with respect to implementations of some type systems (like Coq and HOL), which also have 
a parameter mechanism. 
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