

The fine-structure of lambda calculus

Citation for published version (APA):
Nederpelt, R. P. (1992). The fine-structure of lambda calculus. (Computing science notes; Vol. 9207).
Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1992

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/67ab8324-4427-4ead-a1cc-4cd93f1d80b9

Eindhoven University of Technology

Department of Mathematics and Computing Science

The fine-structure of lambda calculus

by

R.P.Nederpelt

Computing Science Note 92/07
Eindhoven, April 1992

92/07

COMPUTING SCIENCE NOTES

This is a series of notes of the Computing
Science Section of the Department of
Mathematics and Computing Science
Eindhoven University of Technology.
Since many of these notes are preliminary
versions or may be published elsewhere, they
have a limited distribution only and are not
for review.
Copies of these notes are available from the
author.

Copies can be ordered from:
Mrs. F. van Neerven
Eindhoven University of Technology
Department of Mathematics and Computing Science
P.O. Box 513
5600 MB EINDHOVEN
The Netherlands
ISSN 0926-4515

All rights reserved
editors: prof.dr.M.Rem

prof.dr.K.M.van Hee.

The fine-structure of lambda calculus

R.P. Nederpelt
Department of Mathematics and Computing Science

Eindhoven University of Technology
Eindhoven, the Netherlands

April 15, 1992

1

Abstract

This paper starts by setting the ground for a lambda calculus no
tation that strongly mirrors the two fundamental operations of term
construction, namely abstraction and application. Such notation sin
gles out those parts of a term, called items in the report, that are added
during abstraction and application. It turns out that this item-based
notation offers many advantages for various notions of the lambda cal
culus. It allows a linear representation of terms and makes it, for
example, straightforward to locate free and bound variables and to
find the binding A-operators relevant to particular occurrences. Fur
thermore, step-wise explicit substitution is easily embeddable in the
lambda calculus using the new notation. The item notation proves to
be a powerful device for the representation of basic substitution steps,
giving rise to different versions of ,a-reduction. Last but not least, the
new notation allows for segment abbreviations, enabling one to pre
vent a lot of duplications in A-terms, while remaining in the general
proposed frame.

In this paper we don't stop at the advantages of the new notation,
but go further to accomlllodate important notions of the lambda calcu
lus in the new framework. We discuss the role of types in the presented
setting and provide a type operator which gives a representative type
for a typeable tenll. Moreover, in accommodating types in our sys
tem, it turns out that a general framework for many typed lambda
calculi can be obtained in the presented setting. Another attraction
of our new approach is that by specifying a number of parameters,
one defines one system of typed lambda calculus or another. In fact, it
turns out that many known systems of typed lambda calculus fit in the
proposed setting, in particular the ones connected with "Barendregt's
cube" [Barendregt 9x]. The general framework leads naturally to a
number of generalizations. It gives much freedom and is at the same
time simple and perspicuous. It allows theorists to compare the differ
ent systems as to important properties and enables practical users to
make their choices at the relevant place.

2

Contents

1 Introduction

2 Term formation
2.1 The item notation
2.2 The inner structure of terms.
2.3 The restriction of a term .. .
2.4 Bound and free variables .. .
2.5 Limiting the set of terms with a view to the types

3 Reduction
3.1 Global vs. local j3-reduction .. .
3.2 Step-wise substitution
3.3 A general step-wise substitution.
3.4 Substitution and j3-reduction
3.5 Matching 8-.\-couples ...
3.6 Strategies for j3-reduction

4 The typing relation
4.1 Degrees
4.2 Canonical types
4.3 A context-free type reduction
4.4 The typing relation in PTS's
4.5 The typing relation in Automath-systems
4.6 Remarks on the conditions in term construction.
4.7 Higher degrees

5 Abbreviations for segments
5.1 The use of segment variables
5.2 Referencing in relation with segment variables.
5.3 Segments and stepwise substitution

6 Parameters for different systems

7 Conclusions

8 Acknowledgements

3

5

9
9

14
17
20
23

26
26
28
31
33
38
44

47
47
49
54

55
59

63
66

69
69
71
72

75

79

83

A An example 84

B An abstract grammar for terms 93

C An alternative step-wise substitution 94

D A comparison with the explicit substitution of Abadi, Cardelli,
Curien and Levy 98

4

1 Introduction

As a discipline, lambda calculus started with Church in the forties, when
he tried to give a foundation for mathematics. In the following decades,
the development of lambda calculus was in the hands of a few specialists,
such as Curry, Hindley, Seldin and B6hm. Despite the important work that
was carried out, lambda calculus remained a rather isolated branch oflogic.
Major results were only valued at their true worth within a small community.

In the beginning of the sixties, there arose a new interest in lambda
calculus from the side of computer science, where functional programming
techniques like McCarthy's LISP borrowed lambda calculus concepts. Since
that time lambda calculus inspired theoretical computer science and vice
versa. The breakthrough became permanent when, in 1981, Barendregt
published the standard work on the (untyped) lamda calculus: "The lambda
calculus - its syntax and semantics"([Barendregt 84]). This presentation of
an extensive and impressive amount of knowledge was very influential.

In the present time, there is a remarkable revival of lambda calculus,
especially in the versions which use types. Recently, both logicians and
computer scientists have developed several branches of typed and untyped
lambda calculus. Also mathematics has benefitted from lambda calculus,
especially since the time (around 1970) where de Bruijn used his lambda
calculus-based Automath for the analysis and checking of mathematical
texts (see [de Bruijn 70J or [de Bruijn 80]).

A system of lambda calculus consists of a set of terms (lambda terms) and
a set of relations between these terms (reductions). Terms are constructed
on the basis of two general principles: abstraction, by means of which free
variables are bound, thus generating some sort offunctions; and application,
being in a sense the opposite operation, formalizing the application of a
function to an argument.

The typing may come in as an additional feature, restricting the set
of terms in a natural nlanner, in correspondence with the "function and
application" -intuition: types are the coding of a sort of "domains" for func
tions, and function applications are restricted to cases were the argument
fits in the domain. Using figurative language, one might say that typing
is intended to domesticate the species of the lambda terms, which con
tains very wild specimens by nature. (For this last observation, again see
[Barendregt 84J, which treats in the first place the untyped lambda calculus.)

The relations (reductions) in lambda calculus are meant to formalize a

5

connection between certain lambda terms that are calculationally compara
ble. "Calculus" is here meant to be an abstract form offunction application,
just as the function "plus" applied to the numbers 12 and 17 gives 29 as a
calculational result.

In this report, we start in Chapter 2 with the investigation of the basic
construction principles of lambda terms, by comparing these principles with
general term construction methods in logic and mathematics. In a natural
manner, we find a close correspondence with well-known tree structures. A
slight change in notation enables us to construct lambda terms in a mod
ular way, in accordance with the demands and needs of a mathematical
entourage. That is to say, in our approach it is easy to develop a lambda
term step by step, thereby accurately reflecting the construction of some
text in mathematics, logic or computer science.

This step-by-step approach, employed throughout this report, is funda
mental for the fine-structure oflambda calculus which we pursue as the main
theme of the present work.

As an alternative to the use of variables, in this report we will be using
de Bruijn-indices. These are natural numbers that do not suffer from the
usual problems with variable names (the danger of "clash of variables", the
need for a-equivalence classes, etc.).

The analysis of the structure of a term leads to a number of syntactical
concepts which identify the different components in an obvious manner. The
notions of itern and segn"tent, both acting as modules in term construction,

play an important role. "Ve discuss the ordinary way of term construction
and we develop an alternative way of term construction, based on three
rules: one for adding variables, one for constructing an abstraction and one
for constructing an application. In the latter option, we take account of the
types, which limit the set of obtainable terms.

En passant, we introduce the process of stepwise shifting, which is meant
to refine reduction procedures. That is to say, in order to establish that
two terms are related by some reduction relation, we develop a method to
transform one term into the other by shifting a certain module through the
term. This step by step process thus builds a chain of intermediate terms
(members of an extended collection of terms) between the original ones.
Since these steps are, in a sense, "minimal", we thus obtain an ultimate
fine-structure of the reduction process.

This stepwise process is first used to "mark" all variables in a term

6

which are bound by a certain abstraction-A. In Chapter 3 we use a similar
process for substitution. Since substitution is the fundamental operation in
,6-reduction, which is, in its turn, the most important relation in lambda
calculus, we are in the heart of the matter. The stepwise substitution is
embedded in the calculus, thus giving rise to what is nowadays called explicit
substitution. It is meant as the final refinement of ,6-reduction, which has -
to our knowledge - not been studied before in this detailed form.

This substitution relation, being the formalization of a process of step
wise substitution, leads to a natural distinction between a global and a local
approach. With globol substitution we mean the intended replacement of a
whole class of bound variables (all bound by the same abstraction-A) by a
gi ven term; for local substitution we have only one of these occurrences in
view. Both kinds of substitution playa role in mathematical applications,
global substitution in the case of function application and local substitution
for the "unfolding" of a particular instance of a defined name.

We discuss several versions of stepwise substitution and the correspond
ing reductions. Our intention is to treat stepwise substitution on a par with
the usual notions of lambda calculus. In making stepwise substitution ex
plicit, we try to treat its syntactic cOlnponellts as "first class citizens" of
the lambda calculus world. In fact, we succeed to a great extent, as we will
show. The final "rehabilitation" of substitution still is a subject for further
study.

We also extend the usual notion of ,6-reduction, an extension which is an
evident consequence afloeal substitution. The framework for the description

of terms, as explained before, is very adequate for this matter.
Finally, we show in Section 3.6 how well-known strategies for componnd

,6-reduction can be expressed in our setting.

In Chapter 4 we concentrate on the typing relation in typed lambda cal
culus. We introduce a canonical type operator, suited for the "calculation"
of one canonical type in the class of all types of a certain (typeable) term.
The typing relation connected with this type operator is presented again by
means of a stepwise "process", which can be described in different manners.
Again, we claim to give the fine-structure of a central subject in lambda
calculus, this time being the typing relation.

We compare the canonical type operator with the usual typing relation
t1 : t2. We discuss the relation between our approach and certain Pure
Type Systems (FTS's), which make use of this typing relation ":". An
important subclass of this class of typed lambda calculi, systematized and

7

studied by Barendregt and others, is relatively easy to embed in our setting.
Again, a number of obvious extensions can be made for different purposes.
We describe a number of Automath-systems in this setting. One of these
possibilities is de Bruijn's system li.A, which is a version of Automath in the
format of typed lambda calculus.

In Chapter 5 we propose a way of abbreviating segments. Since segments
are a generalization of contexts, playing an important role in type systems,
it turns out to be useful to consider these segment abbreviations. Several
arguments are given in favour of such a feature (cf.[Balsters 86]). We can
embody segment abbreviations easily, since our setting deals with segments
in the same way as with terms. This is due to the fact that for terms an
(uncontracted) ,6-redex may act as an abbreviation mechanism, which is not
too hard to extend to segments.

There are, however, a nurnber of cOlnplicatiolls as to the referencing of
variables and to the stepwise substitution introduced before. These compli
cations are discussed and mended, to such an extent that segment abbrevi
ations become incorporable in the fine-structure of typed lambda calculus
which we developed before.

Chapter 6 gives an overview of the various parameters which may be used
to make a choice between systems, with references to the other chapters of
this report. Chapter 7 contains a number of conclusions and results.

The report ends with four appendices. In the first one we give a small
example, which is treated in detail. The second and third appendix give
alternatives for subjects discussed in the report. In the fourth appendix we
compare our approach regarding the substitution operator with the explicit
substitution of Abadi, Cardelli, Curien and Levy.

8

2 Term formation

2.1 The item notation

We construct terms in typed lambda calculus as a free structure. That
is to say, we consider the two main constructive principles for such terms,
viz. abstraction and application, as operations on terms. Moreover, we al
low different kinds of abstractions and applications, denoted by operators
AI, A2, ... for abstraction and 01,02, ... for application.

Variable names can be avoided by means of de Bruijn-indices, as was al
ready demonstrated in ([de Bruijn 72]). We describe these de Bruijn-indices
in the above-given setting.

We consider abstraction as a binary operation, linking types to terms
(in this order; see Example 2.2). Application is a binary operation as well,
linking "argument" to "function" again in this order, that is to say in the
style that writes af instead of fa (or f(a)) for function f applied to argu
ment a. This is not only a matter of taste; it will turn out to have essential
advantages in developing a term, theoretically as well as in practical appli
cations of typed lambda calculi. (This observation is due to de Bruijn, see
[de Bruijn 70J or [de Bruijn 80J.)

Definition 2.1 (terms)
D (or D~.) is a finite set of binary operators which is the union of two

disjoint sets: D~ (the set of A-operators) and D. (the set of o-operators).
We write the opera.tors in infix-notation.

:=: is the set of variables: 3 = {c, 1,2, ... }.
Fn(3) is the free D-structure generated by 3, i.e. the set of symbol strings

obtained in the usual manner on the basis of 3, the operators in D and
parentheses. Elements of Fn(3) are called terms or DM-terms.

Examples of terms are: c, 3, (20(d1)) (where we assume that A E D~
and 0 ED.).

Meta-variables for operators are w,wI, etc., for A-operators: A, AI, etc.,
for 8-operators: 0,81 , etc., for variables: x, Xl, y, etc. and for tenns: t, h, ti,
etc.

As said before, we take numbers 1,2, ... (de Bruijn-indices) for express
ing variables. The variable f: is a special one, to be described later. Because
of its role, we may think of f as being a "constant". In order to keep close
to tradition, we call all of 1,2, ... and c "variables".

9

Note: There can be different (finitely many) A's and/or o's in terms.
For the time being we shall consider only one of each, denoted A and 0,
respecti vely.

Since the operators are binary, we use infix notation. However, we place
parentheses in an unorthodox manner: we write (t1W)t2 instead of (t1Wt2).
This will be called the itemized or item-notation. The reason for using this
format is, that both abstraction and application can be seen as the process
of fixing a certain part (an "item") to a term:

• the abstraction Add is obtained by prefixing the abstraction-item
Ax," to the term t, and

• the application tt' (in "classical" notation) is obtained by postfixing
the argument-item t' to the term t.

In item-notation we write in these cases (t' A)t and (t'o)t, respectively. Here
both items (t'A) and (t'8) are prefixed to the term t.

So the fl.>.o-term (XW1(YW2Z)) becomes in item-notation: (XW1)(YW2)Z.
Analogously, the flM-term ((XW2Y)W1Z) becomes ((XW2)YW!)Z. (More con
cretely: (20(dl)) becomes (20)(cA)l.)

More generally, the following holds. Instead of the "binary product"
(.. .)w(...) in ordinary notation, we put the parentheses thus in item nota-
tion: (... w) Otherwise said: let 81, ... ,Sn be items, let t' be a term,
x a variable and w an operator. Then the term (t'W)SI'" SnX in item
notation, should be read as the binary product (t')W(S1 ... snx). And the
item (81 ... snxw) is a denotation for (81 ... SnX)W, i.e. only the "left hand
side" and the operator of such a product.

(In the Automath-tradition (cf. [de Bruijn 80]), an abstraction-item Ax,"
(or (t' A) in our new notation) is called an abstractor and denoted as [x : t'].
An argument-item t' (or (t'8) in our notation) is called an applicator and
denoted either as {t'} or as <t'>.)

A convention for the use of parentheses, like the item-notation, is of
course only appropriate for linearly written terms. One can also consider
terms as trees, in the usual manner (in this case we shall speak of term
trees). In term trees, parentheses are superfluous. See Figure l.

In this figure, we deviate from the normal way to depict a tree; for
example: we position the root of the tree in the lower left hand corner. We
have chosen this manner of depicting a tree in order to maintain a close

10

(XWl(YW2Z))

(XWtJ (YW2)Z

x

tI--_y

~---_z

((XW2Y)Wl Z)

((XW2)YW l)Z

Figure 1: Term trees, with normal linear notation and item-notation

resemblance with the linear term. This has also advantages in the chapters
to come.

Note that the item-notation suggests a partitioning of the term tree in
vertical layers. For the first of the two terms mentioned above, these layers
are: the parts of the tree corresponding with (xwtJ, (YW2) and z (connected
in the tree with two edges). For the latter example these layers are: the
part of the tree corresponding with ((XW2)YWl) and the one corresponding
with z.

Example 2.2 We give two examples of terms in typed lambda calculus and
how these terms are denoted in our iteln~notation. We also explain the use
of de Bruijn-indices.

Consider the typed lambda term (.\.,y.x)u (in "classical" notation). In
this term, the subscript of .\ contains the information that x has type y.
The x following the subscripted operator .\.," is a variable bound by this
operator.

In item-notation with nalne-carrying variables (we lise x~ y, z ... for
variable-names) this term becomes (uo)(y.\.)x. Note that the argument u
has moved to the front of the term, in the argument-item (1£0). Note also
that the type y of x precedes the .\ having this x as a subscript.

In the item-notation with de Bruijn-indices, the above term is denoted
as (10)(2.\)1. Now the argumentu has become the number 1. The "type"
y has become the number 2 in front of the .\. The bond between the bound
variable x and the operator .\ is expressed by the final number 1. The
position of this number in the term is that of the bound variable x. The

11

value of the number ("one") tells us how to find the binding place, in a
manner which we explain below.

However strange it may look, in the de Bruijn-notation it is the case that
free variables have a binding place, as well. For example, the free variables u
and y in the typed lambda term given above, are translated into the number
1 occurring before the 8 and the number 2: they refer to "invisible" lambda's
that are not present in the term, but may be thought of to preceed the term,
binding the free variables in some arbitrary, but fixed order (these invisible
lambda's form a free variable list).

The described way of omitting binding variables, and rendering bound
and free variables by means of so-called reference numbers, is character
istic for de Bruijn-indices. How the reference can be detected, will be shown
presently.

As a second example we take the typed lambda term u(>'x,y.x), which is
denoted as ((y>'x)x8)u in our name-carrying item-notation and as ((2>.)18)1
in item-llotation with de Bruijll-indices.

The term trees of the mentioned terms are given in Figure 2.

We will now explain how the link between variables (i.e. reference num
bel's) and >. 's takes place. As noted before, these>. 's may be "visible"
(binding bound variables in the original term) 01' "invisible" (binding free
variables) .

In each of the two pictures in Figure 2, the references of the three vari
ables in the term have been indicated: thin lines, ending in arrows, point at
the >.'s binding the variables in question. Note that these lines follow the
path which leads from the variable to the root following the upper-left side
of the branches of the tree. Only the>. 's met on this path do count, the
other >.'s and all 8's do not. The reference for a variable x (Le. the>. which
binds x) is the x'th >. that one comes across following this path.

The free variable list, in the name-carrying version, is >'y, >'u, in both
examples.

The variable e, member of 3, acts as a "supertype", comparable to 0

in [Barendregt 9x] and other papers. With the help of e we can construct
terms without free variables, e.g. (0).)(1>.)(18)((2>.)(1>.)1>.)3. We note that
it may be profitable to use the empty term instead of e, which allows us to
write terms like ().)(1>.)2 01' even (>')(1).), representing the typed lambda
tenns Ay:e.Aa::y.y and Ay:e.Aa::y.t:, respectively. We shall use this convention
especially in the case of an itelll (sw), which we render as (w), for various
operators w.

12

1 2

.~-=e~ J6JI A -. 1

(16)(2,\)1

(1!6)(yA x)x

(A"y.x)1!

2

((2A)10)1

((yAz)x 0)1!

1!(Az, •. x)

Figure 2: Term trees with free variable lists and reference numbers

Notation 2.3 For ease of reading, we occasionally use customary variable
names like x, y, z and 1.l instead of reference numbers, thus creating name
carrying terms in item-notation, such as (1!O)(YA x)x in Example 2.2. The
symbols used as subscripts for ,\ in this notation are only necessary for
establishing the place of reference; they do not "occur" as variables in the
term.

Concatenation of strings is denoted by juxtaposition.

Remark 2.4 The presented way of describing typed lambda calcnlus is
relatively easy to read. Another approach is to define a term in tree format,
e.g. as a set 5 of pairs ((3, ~), where (3 is a finite sequence of zeros and ones
and ~ E ::: u fl. The string (3 codes a root path in the binary tree, starting at
the root. Each 'zero' in the string means: "go upwards and follow an edge
until the next node", each 'one' in the string means: "go to the right and
do the same". The ~ is the label connected with the final node of this path.

(The set 5 should have some obvious additional properties, such as
prefix-closedness: if ((3,0 E 5, then for all prefixes (3' of (3 there must
exist a e such that ((3', e) E 5.) The notions to be defined in the following
chapters can also be expressed in this tree language.

There is one important advantage in using this kind of term trees instead
of terms: one needs not bother about the intended occurrence of a variable
or a subterm. In fact, the (3 of the pair ((3,0 gives the exact location of ~ in
the tree. Hence, in the case that ~ is a variable, the (3 fixes the occurrence

13

of (:; in the case that ~ is an operator, the (3 fixes the location of a sub term
(subtree) with the mentioned (: as its main operator.

In the rest of this report, we use terms and not term trees. This causes
some inconveniences, especially as regards these "occurrences". Neverthe
less, we prefer ordinary terms because they are easier to read than sets of
pairs ((3, (:).

2.2 The inner structure of terms

In this section we give a number of definitions regarding certain substrings
of terms.

First, we give a formal definition of items and segments.

Definition 2.5 (items, segments)
If w is an operatoT' and t a term, then (tw) is an item.
A concatenation of zero or more items is a segment.

(In [de Bruijn 9x] an item is called a wagon and a segment IS called a
train.)

We use s, SI, Si, ... as meta-variables for items and s, 811 Si)'" as meta
variables for segments.

We define a number of concepts connected with terms, items and seg
ments. (A number of these definitions are rephrased in Appendix B on the
basis of an abstract gralnmar.)

Definition 2.6 (main items, 71win segments, empty segments, w-items, WI
... -wn -segments) Each tel'm t is the concatenation of zero aT' more items and
a variable: t '" 8, ... SnX' These items 81 ... Sn are called the main items
oft.

Analogously, a segn"lent S is a concatenation of zero or more items: s ==
S1 .• • 8 n ; again, these items 81 ... Sn (if any) are called the main items,
this time of s.

A concatenation of adjacent main items (in tor s), 8 m .. , 8 m +k, is called
a main segment (in t or s).

An item (t w) is called an w-item. Hence, we may speak about A-items
and 8-items.

If a segment consists of a concatenation of an w, -item up to an Wn -item,
Wi E !1, this segment may be referred to as being an Wl-" .-wn-segment.

14

(An important case is that of a 8-.\-segment, being a 8-item immediately
followed by a .\-item.)

A segment s such that s == 0 is called an empty segment; other seg
ments are non-empty. A context is a segment consisting of only .\-items.

Example 2.7 Let the term t be defined as (d)((18)(d)18)(2.\)1 and let
the segment s be (d)((18)(d)18)(2.\). Then the main items of both t and
s are (f.\), ((lb)(£.\)18) and (2.\), being a '\-item, a b-item, and another .\
item. Moreover, ((18)(6.\)18)(2.\) is an example of a main segment of both
t and S. This main segment is not a context, but a 8-.\-segment. Also, sis
a A-b-A-segment, which is a main segment of t.

Definition 2.8 (body, end variable, end operator)
Let t == sx be a term. Then we call s the body of t, or bOdy(t), and x

the end variable oft, or endvar(t). It follows that t == body(t) endvar(t).
Let s == (tw) be an item. Then we call t the body of s, denoted

body(s), and w the end operator of s, or endop(s). Hence, it holds that
s == (body(s) endop(s)).

Note that we use the word 'body' in two cases: the body of a term is a
segment, and the body of an item is a term.

Example 2.9 In the previous example, s is the body of t and 1 is the end
variable of t. Let s be the item ((lb)(£.\)18). Then (18)(0.\)1 is the body of
sand 8 the end operator of s.

By means of the following definition one ca.n sieve the main items with cer
tain end operator(s) from a given segment or term, forming a new segment:

Definition 2.10 (sieveseg)
Let s be a segment, or let t be a term with body s.
Then sievesegw(s) = sievesegw(t) = the segment consisting of all

main w-items of s, concatenated in the same order in which they appear
in s.

Analogously, sievesegwlI .. .,w
n

(8) 01' sievesegw1, ... ,w
n
(t) "sieves" all main

w-items from s, whem w is one of WI, . .. ,Wnt and combines them into a seg
ment.

Example 2.11 In the term t of Example 2.7, sieveseg~(t) == (d)(2.\) and
sieveseg.(t) == ((18)(f.\)18).

If t == (d')((18)(d1)18)(2.\2)1 (a. term with two different '\'s, viz . .\1

and .\2)' then sieveseg~ ~ (t) == sieveseg~ ~ (t) == (d,)(2.\2)'
1. 2 2, 1

15

For later use, we define different kinds of weight for segments and terms:

Definition 2.12 (weight, w-weight)
The weight of a segment S, weight(s), is the number of main items that

compose the segment.
The weight of a term t is the weight of body(t).
The w-weight weightw(s) of a segment s is the weight of sievesegw(s).
Again, the w-weight of a term t is the w-weight ofbody(t).
Analogously, the W1,'" ,wn-weight of a segment s and a term t are

defined as the weight of sievesegw" ... ,w.(s) or sievesegw" ... ,w,(t), respec
tively.

N ext, we define the relations direct subterm and subterm, denoted by the
relation symbols c and er:

Definition 2.13 (subten1ls, direct subterms)
Ifbody(t) # 0, then t == (tIWJil'. In this case we call t' and til the (left

and right) direct subterms oft. We denote this by t' C t and til C t.
The relation er is the reflexive and transitive closure of C.

We say that h is a subterm of t iJfh er t.

When one says that t' is a subterm of t, one usually has a certain oc
currence of t' in t in mind. (There can be more occurrences of t' in t.) The
precise location of the occurrence meant has not been accounted for in the
definition given above. This shortcoming can be mended by giving a third
argument to C and er, being a code for the path leading from the root of t
to the root of the t' meant (cf. Remark 2.4). See the following example.

Example 2.14 Let t be the term ((X6)(yA x)XAu)(z6)y.
Then x eroo t, x erOl1 t and (YAx)x er01 t.

(Note that t1 is a. direct sub term of t if a.nd only if t1 era t for a = 0 or
a = 1.)

However, we shall not use this way of describing the intended occurrence.
If necessary, we shall "nlark" an occurrence, e.g. with a small circle, 0, or
with ullder- or overlinillg. For exaluple, the first occurrence of x in t (see
Example 2.14) can be fixed by referring to it as XO in ((X08)(yAx)XAu)(z8)y.
And the occurrence of the sub term (YAx)X in this t can be marked as (yAx)X.

(In [de Bruijn 9x], the occurrence of a subterm is called a positioned
subterm.)

16

We can also mark an occurrence of an operator: (yA~)X.

In Section 2.3 we need a notion that relates (left and right) subterms to
an operator:

Definition 2.15 (arguments)
Let (t ' WO)t" cr: t. Then t' is the left argument of WO in t, denoted by

leftarg(wO), and t" is the right argument of WO in t, or rightarg(wO).

It follows from this definition that leftarg(wO) is the left direct subterm
of (t'WO)t" and rightarg(wO) is the right direct subterm of (t'WO)t".

Note that a maximal subterm of a term t (i.e. a sub term that cannot be
extended to the left in t) is either t itself or a left direct sub term of t and
hence the left argument of some operator occurring in t.

Items and segments play an important role in many applications. As
explained before, a A-item is the part joined to a term in an abstraction, and
a 8-item is the part joined in an application. In using typed lambda calculi
for mathematical reasoning, A-items may be used for assumptions or variable
introductions and a 8-A-segment may express a definition or a theorem. We
come back to this in Sections 3.5 and 4.6. See also [Nederpelt 90].

2.3 The restriction of a term

In the present section we explain how to derive the restriction t r x of a term
t to a variable occurrence J: o in t. This restriction is itself a term, consisting
of precisely those "parts" of t that may be relevant for this xO, especially
as regards binding and typing. This section is rather technical and may be
skipped by a reader who is not interested in details.

When a variable x occurs in term t, then it is not the case that all the
"information" contained in t is necessarily relevant for a specific occurrence
XO of X in t. For example, in the term (d.)(xAv)(x8)(cAy)((xAz)y°8)(yAu)u,
only the items (d.), (XAv), (x8), (cAy) and (XA z) are of importance for the
variable occurrence yO. These items are all the items which can be found to
the left of yO. In the traditional notation this is not the case; d. the same
term as above in the usual notation: AX'<.Av,..(Ay,..(Au,y.U)A" •. yO)x.

In order to formalize this intuition we give the following definition.

Definition 2.16 (envelope, dominator, one-step restriction, full restriction)
Let XO be an occurrence of variable x in term t such that XO 't endvar(t).

Then there is an WO in t such that XO == endvar(leftarg(wO)). For this wO,

17

the term 1eftarg(wO) is called the envelope of XO or env(xO). The term
(leftarg(wO) WO) rightarg(wO) is called the dominator of XO or dom(xO).

(Note that the tree of dom(xO) is the subtree with WO as its root and
that env(xO) is, in its turn, the "left direct subtree" of this subtree. See the
example below.)

The one-step restriction of t to xO, denoted t f xO, is:
(I) in case XO io endvar(t): the term obtained from t by replacing dom(xO)
byenv(xO);
(2) in case XO == endvar(t): tfxO == t.

The (full) restriction of t to xO, denoted t txO, is the limit of the se
quence it, t2,"" where t1 == t and ii+l == ti 1Xo.

Example 2.17 Let t be the following term:

(1)

Then the envelope of XO is tl == ("0)(x A,)Xo, since tl == 1eftarg(Ay) and
XO == endvar(tl). Moreover, rightarg(Ay) == (UAz)Y, so the dominator of
XO is t2 == «UO)(XA,)XOAy)("Az)y, See the underlining and the overlining in
equation 2:

(2)

The replacement of t2 (== dom(xO)) by t, (== env(xO)) gives the one·step
restriction t fxo:

(3)

The full restriction t tx of the same xO, obtained after another one-step
restriction, is:

(4)

Now it will be clear that it is very easy to obtain the full restriction
t txo using our item-notation: just take the substring of string t from the
beginning of t until XO and delete all unmatched opening parentheses. This
is an advantage of our new notation.

18

u x

b At x
x U

E Au Ay Az y

x u x

E

€ X U x

lA, lAu I blAt ox

Figure 3: A term and its restriction to a variable

It is illustrative to draw the tree of t (see Figure 3) and to see what
happens when the restriction process is executed with this tree. In the first
one-step restriction in the example given above, the subtree corresponding
with the subterm (ub)(XAt)XO is "pushed down" to the node formerly la
beled Ay, annihilating the rest of the subtree rooting in this node. The full
restriction is the result of a continuation of this process. In Figure 3, the
intended occurrence of XO in the trees is denoted with an open circle.

Intuitively, the body oft rxo is the only thing that matters for XO in t; the
rest of (the tree of) the term t may be neglected, as far as the XO is concerned.
As said before, this is essentially the importance of the restriction: t rx is a

19

term with x as its end variable, that contains all "information" relevant for
x. For example, when x is bound, then the .\ binding this x can be found
in t rx; the same holds for the type of this x. (Note that the bond between
x and the .\ binding this x does not change in the process of restriction;
i.e. corresponding variables x in the described sequence it, t2,' .. refer to
corresponding .\ 's: the number x does not change). Moreover, when x is
a candidate for a substitution caused by a reduction, then the b-.\-segment
connected with this reduction can be found, again, in t rx.

Full restriction is, of course, idempotent; more generally, the following
holds: when y occurs in t, and x occurs in tty, then (t ryHx == nx.

The described notion 'restriction of a term to a variable' has an obvious
generalization: 'restriction of a term to a subterm':

Definition 2.18 (restriction of a tam to a subterm)
Let to be an occurrence of subterm to in term t. Let XO == endvar(to).

Thentrto, trto, env(to) anddom(to) are definedastrxO, trxO, env(xO) and
dom(xO).

Finally, we note the following. We motivated the introduction of the
restriction of a term to a variable or a term, by observing that t r XO or
t rto contain all "information" necessary for XO or to, respectively. This is
the case, but in a sense we are over-general. In particular, some of the
"bachelor b-items" (as defined in the forthcoming Section 3.5) which are
present in the restriction, can never playa role. This matter is explained
and formalized in [de Bruijn 9x].

2.4 Bound and free variables

An important notion in lambda calculus is that of bound and free variables;
for a bound variable the "binding place" is relevant. This can be defined as
follows.

Definition 2.19 (bound and free variables, type, open and closed terms)
Let XO be a variable occurI'ence in t such that x 1= £ and assume that

sieveseg~(t rxO) == s= ... 8, (for convenience numbered downwards). Then
XO is bound in t if x ~ m; the binding item of XO in t is Sx and the .\ that
binds XO in t is endop(sx). The type of XO in t is body(sx). Furthermore,
XO is free in t if x > m.

The variable £ is neither bound nor free in a term.

20

Term t is closed when all occurrences of variables in t different from e
are bound in t. Otherwise t is open or has free variables.

Example 2.20 The term (eA.)(xAv)(x6)(eAy)((xAz)y06)(yAu)u becomes,
in the notation with de Bruijn-indices: t == (A)(lA)(26)(A)((3A)2°6)(lA)1.
Now if2° == (A)(lA)(26)(A)(3A)2°. So sieveseg.\(tr2°) == S483S2S1

(A)(lA)(A)(3A). Hence, 2° is bound in t since 2 ::; weight.\(t r2°) = 4.
Moreover, the type of 2° in t is bodY(S2) == e.

There are no free variables in t, hence t is closed.

We see from this example that one can easily account for free and bound
variables, just by calculation. Note that a variable occurrence in a restriction
is free or bound if and only if the corresponding occurrence in the original
term is free or bound, respecti vely.

There is a simple procedure for finding the variable occurrences bound
by a certain A in a term t. In the following definition this procedure is given
as a step-by-step search, as will become the basic approach in this report.

For this purpose, we temporarily extend the language with a special
search item or (-item and with a new relation, ->(, between (extended)
terms. (We may speak of D.\D(-terms when referring to these extended
terms.)

We write the search item as an indexed item: (((il), with index i. This
index serves for the identification of the proper variable occurrences, as turns
out below. Note that the body of a search item is the empty term.

The (-operation is binary, just as A and 6, but since a (-item always has
e as its body, one may also consider it to be a. unary, prefix operator.

The search begins with the generation of a (-item, just behind the A-item
in question. Thereupon this (-item is pushed through all subterms of the
term "in the scope of" the A-item. The index (i), initialized on 1, increases
with 1 whenever the (-item "passes" a A. When ending at a variable x, the
index i of the (-item decides whether x is bound by the A of the above
mentioned A-item, or not. If this is the case, then the variable is capped
with the symbol'.

The rules are given as a relation between terms, but in a compact format.
Rule s ->(8' states that the relation t ->(tf holds for terms t and tf when
a segment s occurs in t and tf is obtained by replacing this s by 8' in t. (It
is assumed that rules of so-called "compatibility" or "monotonicity" have
been added.)

21

Definition 2.21 ((-reduction)
((-generation rule:)
(t,A) ---+((t1A)(((1))
((-transition rules:)
(((i))(t'A) ---+(((((i))t'A)(((i+I))
(((i))(t'8) ---+(((((i))t'8)(((i))
((-destruction rules:)
(((i))i ---+(;

(((i))x ---+(x if x -I i.

(In order to prevent undesired effects, we only allow an application of
the (-generation rule in a term t when there is no other (-item present in
t).

Example 2.22 If we want to find all variables bound by the third A in
t == (A)(lA)(28)(A)((3A)28)(lA)1, we can apply the following sequence of
(-reductions:

(A)(lA)(28)(A)((3A)26)(lA)1 ---;.(
(A) (lA)(28)(A) ((1))((3A)28)(1 A) 1 ---+ (

(A)(1 A)(28)(A)((((1))(3A)28)((1))(lA)l ---+(

(A)(lA)(28) (A)((((1))3A)((2))28)((1))(1 A) 1 ---+(

(A)(lA)(28)(A)((3A)((2))28)(((1))(1A)1 ---+ (

(A)(lA)(26)(A)((3A)28)(((1))(lA)l ---+(

(A)(lA)(28)('\)((3A)28)((((l))lA)((2))1 ---+(

(A)(lA)(26)(A)((3A)28)(iA)((2))1 ---;.(
(A)(lA)(28)(A)((3A)2,))(iA)1

A similar procedure can be given for searching the A binding a certain
occurrence XO of a variable x (-I £) in a term t. For this purpose we introduce
an inverse search item or (*-item. The inverse search itelll has to move
in the opposite direction, while the index (i.) decreases instead of increases.
A special provision has to be made for the case that the variable in question
happens to be free; in that case the reverse search item becomes the initial
item of the term, and must be destructed. This case is not provided for in
the following definition:

Definition 2.23 ((*-I'eduction)
((.-generation rule:)
XO ---+(* (dz))xO

22

((.-transition rules:)
(t''\)(di)) --+C. ((ii-1))(tl,\) ifi > 1

((di))t''\) --+(. (di))(t''\)
(t I 8)((ii)) --+C. (di))(t'8)
(((Y))t'8) --+C. ((Y))(t'8)
((-destruction rule:)
(tl,\)((11)) --+C. (t/~)

Example 2.24 Again, let t == (,\)(U)(28)(.\)((3,\)2°8)(1,\)1. The search
for the ,\ binding 2° in t can be executed by the following sequence of (*
reductions:
(,\)(1'x) (28)('\)((3'\)2° 8)(1,\)1 -+ (.

(,\)(U)(28)('\)((3'\)(i."P))2° 8)(U)1 ---'C.

(,\)(U)(28)(,\)((d 1
))(3,\)2°8)(U)1 -+(*

(,\)(U)(28)(,\)(d1
))((3'\)2° 8)(1'\) 1 -+(*

('\)(1'\)(28)(~)((3'\)2° 8)(1'\)1

Note that the latter search (for a binding,\) is easier, since it follows only
one path in the term tree, in the direction of the root; the former search
(for all variables bound by a certain ,\) disperses a (-item over all branches
of the subtree with this ,\ as its root.

2.5 Limiting the set of terms with a view to the types

In the previous chapters, the types did not play any role of importance in
the term construction. However, types are meant to restrict the class of
terms in lambda calculus. When used properly, types can provide for some
properties that are desirable in applications, e.g. tennination of reductions
("calculations") .

Given the class of typed lambda terms of the previous chapters, one
can follow two natural ways of using the type information for establishing
the "well-typedness" or "correctness" of the term: firstly, to investigate for
every term that one encounters, before using it, whether the term as a whole
obeys certain type-conditions; secondly, to allow reduction of the term only
when the argument and the function match (this, again, is dependent of
some type-information, but this time only for a part of the term). In the
first case one establishes the "well-typedness" or "correctness" of a full term
before working with it; in the second case one aborts a calculation at the

23

moment that the type-laws are infringed. In the latter case more terms'
are "usable", since improperly typed parts may disappear in the process of
calculation before they are recognized as such.

A different approach is to reconsider term construction, allowing only
those terms to be constructed which are "well-typed". This process is similar
to the first option above, albeit that term construction and type checking
are not performed subsequently, but intermingled. In this manner of term
constructing, it is desirable that type checks occur as few as possible, in
order to avoid unnecessary work. For this purpose we propose the following
system of rules.

variable condition

sl-x

sl-t s(t),) I- t' abstraction condition

s I- (t),)t'

sl-t s(t8) I- t' application condition

s I- (t8)t'

(5)

(6)

(7)

These rules should be read as follows. The symbol '1-' separates an
antecedent, which is an arbitrary segment, and a succedent, being a
term that is all right as far as bound variables, abstraction and function
application are concerned. For the establishment of this "all right-ness" the
type-information will be used.

As can be seen from equations 6 and 7, the succedent grows at the front
side at the cost of the antecedent, by taking over an item from the back side
of the antecedent. The process is finished when the antecedent is empty; I- t
means that term t has been approved.

The segment forming the a.ntecedent of a statement of the form s I- t is
also called a contextual segment, because of its similarity with contexts
in Pure Type Systems (see also Section 4.4). However, (pure) contexts only
consist of),-items, whereas contextual segments may also contain 8-items.
We note that there is a second difference, viz. that the contexts in Pure
Type Systems are not arbitrary, but in agreement with certain rules.

The variable condition is optional. In case one wishes to obtain only
closed terms, this condition should read: x:S lIeight),(s) (count e as zero,
in case x == e). Later we shall discuss other possibilities. The abstraction
condition and the application condition vary from system to system, or may
even be absent. We shall discuss different options for these conditions in

24

Section 4.6. One example: with abstraction condition t == c, tf t c and
no variable condition or application condition, we obtain the syntax of the
untyped lambda calculus.

The variable condition, the abstraction condition and the application
condition may each consist of different parts. The abstraction and appli
cation condition may also depend on the A or IS in question (recall that, in
principle, we allow more than one kind of A and/or IS in a term).

With the use of these rules (provided with the appropriate conditions)
we obtain for each "well-typed" term a construction tree, which contains at
the same time a proof for its "well-typedness". We shall call such a tree a
proof tree for the term.

Example 2.25 The lowest pa.rt of the proof tree of term 1 (see Exam
ple 2.17), based on these rules, is the following:

Tl (cA~) I- (XAu) ((UIS)(XAt)XAy) (UAz)Y (cA~) ((XAu) ((U6)(XA,)XA y) (UAz)y Av) I- U

(sA~) I- ((XAu) ((U6)(XAt)(XAy) (UAz)Y Av)U

Here Tl and T3 are only checks of the appropriate variable conditions
(which we here assume to be empty) and T2 is a part of the tree that is not
displayed.

The completion of the proof tree of the term in the above example will
show a striking similarity with the usual term tree of this term (d. Sec
tion 2.1). Formula's of the form s I- t in the above proof tree correspond
with the labels at the nodes of the term tree.

This observation also holds in general. In particular, the following rela
tion holds: the leaf in the proof tree of term t that corresponds with (the
occurrence of) the variable x in the term tree of t, is labeled s I- x, with
SX == trx.

25

3 Reduction

3.1 Global vs. local f3-reduction

The relation called iJ-reduction is the formalization of the application of a
function to an argument. In common parlance, "reduction of a term" is
considered to be an operation, changing a "function-argument pair" into a
"function value". We have used, and shall use, this colloquial way of speech
throughout this report, in order to explain informally the background and
the "effect" of certain reduction procedures.

On the other hand, at a purely formal level, /3-reduction is nothing more
than a relation between terms, hence with no operational meaning whatso
ever. Being fully aware of this fact, we allow ourselves to mix the operational
and the relational approach at pleasure.

Let us give an example in "classical" lambda calculus, in the "oper
ational" mood. The term (Az,..(XY))u /3-reduces to uy, i.e. the result of
substituting "argument" u for x in xy. In our sugared item-notation this
becomes: (UO)(ZAz)(YO)x reduces to (yo)u. Note that the presence of a O-A
segment S '= (UO)(ZAz) is the signal for a possible iJ-reduction. "Execution"
of this reduction amounts to the following syntactic procedure: replace all
variables x that are bound by the end operator of the A-item of s, by the
body of the o-item of S.

The "unsugared" version reads - under the assumption that the free
variable list is Ay, Az> Au: the term (18)(2A)(40)1 reduces to (30)1. Here the
body of the o-item (40) changes: 4 becomes 3. This is due to the fact that
a A-item, viz. (2A), disappeared (together with the o-item (10)). The end
variable 1 did not change; note, however, that the A binding this end variable
has changed "after" the reduction; it is the last A in the free variable list
("Au") and no longer the A inside the original term ("Az "). The reference
changed, but the number stayed (by chance) the same.

In more complicated examples, there are more cases in which variables
must be "updated". This updating of variables is an unpleasant consequence
of the use of de Bruijn-indices. We shall come to this matter again later on
in this chapter. It is the price we have to pay for the banishing of actual
variable names (taking reference numbers instead).

We can see from the above example that the convention of writing the
argument before the function has a practical advantage: the o-item and the
A-item involved in a iJ-reduction occur adjacently in the term; they are not
separated by the "bulk" of the term, that can be extremely long. It is

26

well-known that such a 8-'x-segment can code a definition occurring in some
mathematical text; in such a case it is desirable for legibility that the coded
definiendum and definiens occur very close to each other in the term.

(Note: the distance between a ,X-item and a corresponding 8-item can
even grow in the traditional notation, for example when the term is extended
with new information, which occurs frequently when the translation of a text
is carried out! See e.g. [Nederpelt 90J.)

The traditional j3-reduction causes a substitution for all variables bound
by a certain ,X. This is not always what is desired. In the case just described,
when a 8-'x-segment codes a definition, it is clear that this kind of j3-reduction
is too radical: one sometimes desires to "unfold" a definition at a certain
place, but such an unfolding should not concern all places where the same
definition is used. For example, the notion "continuity of a function" needs
a rather complicated definition. Now sometiInes, e.g. in a proof, one "goes
back to the definition" by substituting the text body of this definition, in
which the definiens is expressed. In such a case one certainly does not want
as a side effect that the word "continuity" will be replaced by its definiens
at all places in the text where it appears.

That is the reason for admitting another kind of j3-reduction, called
local j3-reduction, where only one bOUlld variable can be replaced. (See
also [de Bruijn 87J.) We will discuss this later. To emphasize the difference
between this local j3-reduction and the usual one, we shall call the latter
global ,13- reduction.

Another wish is to execute substitutions only when necessary. For this
purpose one may decide to postpone substitutions as long as possible ("lazy
evaluations"). This can yield profits, since substitution is an inefficient,
maybe even exploding, process by the many repetitions it causes.

Another approach is to code substitution in such a manner that the
actual "copying" of terms is never executed. There exist different set
tings for this kind of substitution. One of these was used as early as
1972 in the Automath-project by 1. Zandleven, for the construction of a
verifying program. A description of this implementation can be found
in [van Benthem Jutting 88J. Another well-known method is the so-called
graph reduction; see e.g. [Peyton Jones 87J.

We shall describe substitution as a step-by-step procedure, giving the
user the possibilities to use it as he wishes (we do not introduce, however, an
analogue of graph reduction). Our step-wise treatment of substitution and
reduction is connected with the wish to unravel these processes in atomary

27

steps. This is no restriction, since we can also combine these steps into the
ordinary,a-relations.

3.2 Step-wise substitution

In order to be able to push substitutions ahead, step by step, we shall
introduce a new kind of items, called substitution items (or O"-items).
These O"-items can move through the branches of the term, step-wise, from
one node to an adjacent one, until they reach a leaf of the tree. At the leaf,
if appropriate, a O"-item can cause the desired substitution effect.

In this manner these substitution items can bring about different kinds
of ,a-reductions. Note that we have chosen to make substitution a part of
the formal language for the terms; we do not treat it as a meta-operation,
as is usually done.

Definition 3.1 (O"-operators, n>.IiO"-terms) We extend the set n>.1i with the
finite set nO" (the set of O"-operators). The arity of these operators is two.
The new n is called n>.6O".

For the time being, we take nO" to have only one element: 0". We use 0"
as an indexed operator, numbered with upper indices: 0"(1),0"(2),

The notions: term, item, segment etc. take this extended n into account.
Hence, a O"-item has the form: (t,O"(i)). Our terms now are n>.IiO"-terms.

The intended meaning of a O"-item (t'O"(i)) is: term t' is a candidate to
be substituted for one or more occurrence of a certain variable; the index i
selects the appropriate occurrences.

Now we can give the rules for one-step O"-reduction. This relation is
denoted by the symbol -+0". The relation O"-reduction is the reflexive and
transitive closure of one-step substitution. It is denoted by --"+0".

One-step O"-reduction is given below as a relation between segments (cf.
the (-reduction relation of Section 2.4), although it is meant to be a relation
between terms. The rules must be read as follows: rule s -+0" s' states that
t -+0" t' when a segment of the form s occurs in t, where t' is the resnlt of
the replacement of this s by Si.

Definition 3.2 (O"-reduction)
(a-generation rule:)
(t,0)(t2.\) -+0" (t10)(t2'\)(t1a(1))
(O"-transition ndes:)
(t,0"(i))(t2.\) --+0" ((t,0"(i))t2.\) (O"o>.-transition)

28

(t , a(i))(t2A) -+" (t2A)(t,a(i+I)) (aD-transition)
(tla(i))(t2A) -+" ((t , a(i))t2A)(t, a(i+I)) (aoD-transition)
(tla(i))(t26) -+" ((tla(i))t26) (aoo-transition)
(tla(i))(t26) -+" (t26)(tla(i)) (alii-transition)
(t,a(i))(t26) -+" ((t,a(i))t26)(t,a(i)) (aolo-transition)
(a-destruction rules:)
(tla(i))i -+" ud(i)(t,J
(tla(i))x -+" X if x # i.

The following details about these rules are to be noted. Firstly, in
the a-generation rule the so-called 6-A-segment or red uceable segment
(t,6)(t2A) stays where it is; this is different from ordinary fi-reduction, where
both argument and corresponding A disa.ppear. The reason for not removing
this reduceable segment is, of course, that we want to keep a binding A and
the corresponding argument (i.e. 6-item) in a term, as long as there still
are variables in the term that are bound by that A. When the substitution
process is on its way, existing bonds are maintained. Moreover, when we
choose to perform local fi-reduction, then one bound variable disappears in
the substitution process, but other bound occurrences of the same variable,
which are also possible clients for the sa.me substitution, may stay. We shall
see later how we can dispose of a reduce able segment when there are no
more customers for the A involved, i.e. when there is no variable bound by
this A in the term.

Secondly, the O"-transition rules occur in two triples, one triple for the
case where a a-item meets a A-item, and one for the case where a a-item
meets a 6-item. In each triple the following three possibilities are covered:
the a-item can move inside the item met (upwards in the tree; the cases
ao), it can jump over the item (to the right in the tree; a,l, or do both
things at the same time (aOI). For the time being, all possibilities may be
effectuated. Only in the case that the a-item jumps over a A-item (i.e. in
the cases aD and aOI~)' the index of the a increases by one. This is because
that index counts the number of A's actually passed, in order to find the
right (occurrence of the) variable involved. The index is also of use in the
process of updating the substituted term t, (see below).

Thirdly, the a-destruction rules apply when the a-item has reached a
leaf of the tree. When the index i of the a is in accordance with the value of
the variable, then we have met an intended occurrence of the variable; the
substitution of t, for i takes place, accompanied with an updating (ud) of
the variables in t,. This updating is necessary, in order to restore the right

29

correspondences between variables in t} and A's. When the index of u and
the variable in question do not match, then nothing happens to the variable,
and the u-item vanishes without effect.

It is not hard to see that the update function ud(i) should have the
following effect on term h: all free variables in t} must increase by an amount
of i. (The u-generation rule initialized i with value 1, for obvious reasons.)
This updating is a simple process.

We note that our updating is less complicated, but also less general than
in the original treatment of de Bruijn-indices (see [de Bruijn 72]), where
substitution is not presented as a step-wise process. Moreover, in explicit
substitution procedures as in [Abadi et al. 90], the more general, but com
plicated update functions are used.

Our loss of generality has the following cause. Au-item (tu(i)) is sup
posed to be "cut off" from the rest of the term. Variables in t may have lost
their reference value; in case a variable x in t is bound by a A outside t, then
this binding A can only be found by taking also the index i into considera
tion. Ouly after application of the u-destruction rule, the updating restores
the proper value of such variables.

In Appendix C we give another approach, that only works with global
iJ-reduction in mind. There a if-item travels step-wise through the term tree
in order to accomplish the desired substitutions. However, here again one
has to take care of the correct variable bindings.

In Section 3.3 we discuss yet another approach, where the updating can
take place at any stage of a step-wise substitution process.

Again, we shall describe the effect of the update function by means of a
a step-by-step approach. For this purpose we use a (unary, prefix) function
symbol <p(k,i) with two pa.rameters k and i. The intention of the indices is
the following. Index i preserves the variable that has to be replaced by t};

one can also say: i is the number of A's that term h has passed by on his
way from the reduceable segment to the leaf in question (i = 'increment').
Index k counts the A's that are internally passed by in t} (k = 'threshold').

The effect of the updating must be that all free variables in h increase
with an amount of i; the k is meant to identify the free variables in t}.

Now, instead of ud(i)(ttl, we write (<p(O,i))t}. We extend our set n:M <7
with a set of <p-operators nl" As explained above, we use the <p's with a
double index: <p(k,i); k, i E N. We call all (<p(k,i)),s <p.items. Note that the
body of a <p-item is always the empty term. Our terms are now n).6<7I'-terms.

The use of the <p-items is established in the following rules.

30

Definition 3.3 (<p-reduction)
(u-destruction/<p-generation rule:)
(t1U(i))i --+", (<p(O,i))t,
(<p-transition rules:)
(<p(k,i))(t' A) --+", ((<p(k,i))t' A)(<p(hH,i))
(<p(k,i))(t'8) --+ '" ((<p(k,i))t'8)(<p(h,i))
(<p-destruction rules:)
(<p(h,i))x --+", X + i if x > k
(<p(k,i))x --+", X if x ::; k or x '" E.

There are two <p-destruction rules, the first for the case that x is free in
t, (then a real update occurs), the second for the case that x is bound in it
or x '" e (then nothing happens wi th x).

Finally, we note that our transition rules as given here do not allow
for u-items to "pass" other u-items. We come back to this matter in the
following section.

3.3 A general step-wise substitution

In Section 3.2 we mentioned a drawback in our step-wise substitution: vari
ables inside a O"-seglnent are shut off from the "outer world", meaning that
their value need not reflect the exact binding place. Only by the updat
ing after application of the u-destruction rule, these variables regain their
correct value.

In order to repair the drawback mentioned, there is an easy solution. We
just have to add a <p-item (<p(h,i)) inside the u-item, as follows: ((<p(k,i))tuU)).
The <p-item registrates the necessary updating during the process of 17-

transi tiOll.
For convenience' sake, we may drop the first index or both indices of the

<p, according to the following definition:

Definition 3.4 (<p-abbreviation)
For all k E .Ai, <p(k) denotes <p(O,h). Moreover, <p denotes <p(l) (hence

= <p(O,l)).

Now the rules for u-items can be adapted as follows (cf. Definition 3.2):

Definition 3.5 (generalu-reduction)
(general u-generation rule:)

31

(tI8)(t2>.) -+" (t I8)(t2>')((<p)tla(1))
(geneml a-tmnsition rules:)
(t , a(i))(t2>') -+" ((t , a(i))t2>') (ao>.-tmnsition)
(t , a(i))(t2>') -+" (t2>.)((<p)tW(i+!)) (alA-tmnsition)
(t, a(i))(t2 >.) -->" ((t, a(i))t2 >.)((<p)t, a(i+!)) (a01>. -tmnsition)
(t1a(i))(t28) -+" ((t1a(i))t28) (ao.-tmnsition)
(tW(i))(t28) -->" (t28)(iJa(i)) (awtmnsition)
(t1a(i))(t28) -+" ((t,a(i))t28)(t,a(i)) (aowtmnsition)
(geneml a-destruction rules:)
(ha(i))i -+" t,
(t , a(i))x -+" X if xii.

Note that a term t, == t' changes into (<p)t' when passing a >.; see e.g.
the a,.\-rule. The reason is that the free variables in t' must be increased by
an amount of 1 (remember that <p = <p(0,1), hence the increment is 1).

The obtained (<p)t' is again a term, so one may take t, == (<p)t' in the
next step.

Example 3.6 (In this example we only use a01.\- and a01o- transitions):
(18)(2>.)(4>.)2 -->"

(18)(2>.)((<p)1 a(1))(4>')2-+"
(18)(2>.)(((<p)1 a(1))4>.)((<p)(<p)1 a(2))2-+"
(18)(2>.)(4.\)((<p)(<p)1 a(2))2 -+"

(18)(2>.) (4>.)(<p)(<p) 1 --><p

(18)(2>.)(4>.)(<p)2 -+ 'P

(18) (2)')(4>.)3.

It is not hard to see that this definition gives the same results as Defi
nition 3.2 in the case that we apply the <p-transition rules after all possible
a-transition rules have been a,pplied. However, we have now the possibil
ity to "update" the a-item a,t any instance, thus re-establishing the correct
bond between bound variable and binding .\. It is also more easy now to find
the binding>. of a certain variable in t, before updating: following the path
from the variable to the root, we just add j for every (<pU)) encountered.

(The mentioned (<p(j)) may originate as combinations of "simple" <p
items. Let us assume for a moment that only one-step a-reductions are
applied to a given term, and no <p-reductions. Then a a-item, "travelling"
through this term, "collects" as many <p-items (<p) as it has passed >.-items.
These <p-items may be combined, since (<p) ... (<p) (i times) = (<p)i = (<p(i)).)

32

We can make a few more rernarks in this respect.
First, it is not necessary to update tl completely. One can easily convince

oneself that cp-items with equal first index are additive, in the sense that
(cp(k,m))(cp(k,n)) has the same effect as (cp(k,m+n)), for all k,m,n E.N. In
particular, (cp(m))(cp(n)) "is" (cp(m+n)). Hence, one may split up (cpU)) into
(cpU')) and (cpU")) in case j > 1 and j' + j" = j, and update with (cpU")).
This process can be repeated at many places. Moreover, a cp-transition can
be executed for one or more steps, or left alone, whichever one likes.

Things become more complicated if we desire to combine two adjacent
cp-items like (cp(k,i)) and (cp(l,m)), with k oF I, in one new update function.
We do not consider these lnatters, in order to maintain a siInple system.

We also note, that it is quite natural to add a third cp-transition rule for
the case that we desire to update a term starting with a (T-item:

Definition 3.7 (cp-transition rule for (T-items:)
(cp(k,i))(t'a(l)) -+" ((cp(k,i))t'a(l))(cp(k,i)) if I ~ k and
(cp(k,i))(t'a(l)) -+" ((cp(k,i))t'(T(I+i))(cp(k,i)) if I> k.

So far, we showed that a·items and cp-items have obtained the same
status as the original ,,- and 8·items. The a- and cp·items have become,
so to say, "first class citizens". There is, however, still a slight scent of
discrimination, in the sense that some items can blockade the transition of
other items. For example, (T-items cannot pass cp-items. (Later it will turn
out that O"-items rnay not pass T-items, as well.) These matters have to be
investigated, especially as regards the consequences for normalization. At
this moment, these questions are not yet solved.

A final remark in the same field is that we have now a feasible possibility
at our disposal for the addition of a aOlu·transition. We can allow that a
items intrude and step over other a-items:

Definition 3.8 (aolu-transition)
(ita(i))(t2a(k))....,u ((tla(i))t 2a(k))(tl a(i)) ifi i- k

3.4 Substitution and ,B-reduction

In the rest of this report, we shall consider n.\6u,,-terms and the general
step-wise substitution as introduced in the previous section, unless otherwise
stated.

33

We can execute local and global ;'I-reduction with the help of this step
wise substitution, but with certain limitations. Firstly, as mentioned before,
the reduceable segment is not removed. We have to supply the tools for
eliminating useless reduceable segments.

Secondly, the choice we have in the a- transition rules has to be restricted.
For local ;'I-reduction we have to make (repeatedly) a choice between either
aD or ai, both when meeting a A- or a 6-item, in order to follow the right
path to the intended (occurrence of) the variable.

For global ;'I-reduction we also have a choice. Syntactically the sim
plest thing is to choose always the aOl-rules, dispersing the a-item over all
branches to come. However, in the case that we know beforehand which
branches lead to an occurrence of the substitutable variable in question,
and which do not, we can, at each A- or 5-item met, make the appropri
ate choice between aD, al or aOI. The last possibility is efficient as regards
the a-transitions; it depends, however, on the implementation whether the
mentioned information about branches and variables is present. It will be
clear that the generation and maintenance of this information has its price
as well.

Hence, we may distinguish four kinds of step-wise ;'I-reduction:

local, minimal: Choose at each step the appropriate ao- or ai-rule.

local, maximal: Always take a01; restrict the a-destruction rules.

global) rninimal: Choose at each step the appropriate 0"0-, 0"1- or ClOl-Tule.

global, maximal: Always take aOI.

Of course, there are lnany intennediate possibilities between minimal
and maximal reduction, both for local and for global ;'I-reduction. There
also exists a scale of possibilities between local and global: e.g., one may
formalize substitution for a number of designated occurrences of a certain
variable.

A one-step local ;'I-reduction of an n~c-term consists of one a-generation
and a local reduction as described above, with either minimal or maximal
strategy, executed until the a in question (and the corresponding <p's) have
disappeared. A one-step global ;'I-reduction is defined analogously. Note
that, in both cases, the reduce able segment is not yet removed.

A one-step local ;'I-reduction of an n~C<T-term is defined analogously; here
it is understood that the originally present a-items remain undisturbed. For

34

!l>'6u,,-terms we have to decide upon the removal of <p-items, because thes
items blockade <T-items in their transition (ef. Section 3.3).

An option is to distinguish from the beginning between (possible) local
and global ,8-reductions, by using different A's and/or O's. (This possibility
of different A's and/or o's was incorporated in our definition of terms in
Section 2.1; it was, however, not yet used.)

For example, we could use Aloo for a future destination in local reduc
tions and Agl0 for global reductions. A "definition" then could be rendered
as a O-A-segment (t10100)(t2Aloo), ready for local reduction. A "function"
could start with a A-item (t2.\glo), whereas an "argument" for this function
could have the form of aD-item (t1Dglo). (See [NederpeJt 90J for an explana
tion of these notions "definition", "function" and" argument" with respect
to typed lambda calculus.)

Now, for example, the general <T-generation rule of Definition 3.5 obtains
two versions:

Definition 3.9 (local VS. global <T-generation)

(t10;)(t2.\;) ~~ (t1o;)(t2A;)(t1<T!")), for i = loco

(t10;)(t2A;) -+~ (hO;)(t2.\;)(h<TP)), for i = glo.

As regards the <T-transition rules, either the <To-transition or the <Tl"
transition is chosen for <Tloo'S, according to the path in the tree that has
been prescribed. And <To1-transitionis reserved for <Tglo'S. The <T-destruction
rules are adapted with an index to the (J, in an obvious manner.

It will be clear that, in applying local ,8-reduction, we have a certain re
duceable segment and an occurrence of one goal-variable in view, connected
by means of a path in the tree. Hence we know that the reduceable segment
has actual reductional potencies, i.e. the end A of the segment binds at least
one occurrence of a variable.

As regards global ,8-reduction, the situation is different. Here the re
duceable segment may be "without customers". Then <T-generation is un
desirable (especially in the "maximal" -versions) since this leads to useless
efforts. Hence it seems a wise policy to restrict the use of the <T-generation
rule to those cases where the main .\ of the reduceable segment does actually
bind at least one variable. vVhen this is not the case, we shall speak of a
void o-.\-segment.

Such a segment may be removed. One may compare this case to the
application of a constant function to some argument; the result is always
the (unchanged) body of the function in question.

35

For this purpose we define the void ;3-reduction:

Definition 3.10 (void ;3-reduction)
Assume that a 6->.-segment s occurs in a term t, where the final oper

ator >.0 of s does not bind any variable in t. Let t, be the scope of s, i.e.
rightarg(>'O). Then t reduces to the term t', obtained from t by removing
s and replacing t, by (<p(-'))t , .

Notation: t -+0 t'.

(This reduction was introduced in [Nederpelt 73]' where it was called
;32-reduction. De Bruijn defines a mini-reduction as being either a one-step
local fl-reduction or a void reduction; see [de Bruijn 87].)

We can also describe void ;3-reduction in the previously given format:

Definition 3.11 (6->.-destruction rule)
(t'6)(t">.) -+0 (<p(-1)) if (t'6)(t">.) is void

Note the fact that updating here occurs with a negative amount of -l.
This does not corrupt the term, precisely because there are no customers
for the>. in the void segment. The reason is that the disappearance of the
>. has to be compensated.

We note that this negative updating is not without complications. For
example:

• The second rp-transition rule of Definition 3.7 is no longer valid, unless
a-items with index 0 are permitted.

• Additivity of <p-items (see Section 3.3) does not hold for negative in
dices. E.g. (<p(1,1))(<p(1,-1)) is not equal to (<p(1,0)) (the identity), for
example:

• The same example shows that negative indices can have the effect that
different variables become identified:

Hence, updating is no longer an injection, which can be highly unde
sirable.

36

We note, however, that the mentioned unpleasant effects do not occur
in the setting presented above: a <p-item with a negative exponent only
occurs after the clean-up of a void 8-A-segment, hence with a A that does
not bind any variable. Therefore, the injective property of updating is not
threatened.

We can describe the usual one-step iJ-reduction as a combination of rr
steps and <p-steps:

Definition 3.12 (one-step iJ-reduction)
One-step iJ-reduction of an fl>..-term is the combination of the following

steps: one rr-generation from a 8-A-segment s, the transition of the generated
rr-item through the appropriate subterm in a global manner (either minimal
or maximal), followed by one void iJ-reduction for the disposal ofs. Finally,
there follow a number of destructions, until again an fl>.t;-term is obtained
(hence without rr- or <p-items).

(A one-step {3-reduction of an fl>..~-term is defined analogously; c/. one
step local {3-reduction.)

Notation 3.13 As usual, we denote one-step iJ-reduction by t -+/J t', and
(ordinary) iJ-reduction - its reflexive and transitive closure - by t --l+/J t'.
The relation iJ-equality or conversion is the equivalence relation generated
by --l+/J; it is denoted by t =/J t'.

Remark 3.14 About the normalisation properties of our system (concern
ing the termination of iJ-reduction sequences) we note the following.

We first recall some well-known concepts:
A redex in a term is a subterm which starts with a 8-A-segment.
A normal form is a term without a redex (hence without a 8-A-segment).
A term t is strongly normalizing if all iJ-reduction sequences, starting from
t, terminate (in a normal form).
A term t is weakly normalizing if some {3-reduction sequence, starting from
t, does terminate (in a Hennal form).
In general: the property strong normalization refers to the necessary termi
nation, for each term, of aU iJ-reduction sequences starting from that term,
and the property weak normalization refers to the possible termination, for
each term, of a {3-reduction sequence starting from that term.

Now we discuss normalization with respect to our system of rules.
The rr-generation rule, as given in Definition 3.2, can be applied indefi

nitely many times. A similar remark holds for the rrol~-transition rule, which

37

permits an eternal reshuffling between adjacent (T-items. Hence, strong nor
malization is not guaranteed without extra provisions.

This may be an awkward matter, especially in (typed) systems that
"normally" do strongly normalize. Hence, it may be advisable to restrict
the use. of these rules in order to prevent the mentioned effects. For the
latter rule (the (Tolu-transition rule) this is easy: just forbid its use, maybe
with the exception that it can be used in one-step local j1-reductions. For
the former rule one might formulate the condition that a (T-item may only
be generated by a o-A-segment if this segment is not void, and if it cannot
become void by substitutions which are "on the way", i.e. by the application
of <p- and (T- reductions which are due to <p- and (T-items which are already
present in the tenn under consideration.

It will be clear that our rules do not hamper weak normalization. Indeed,
if a tenninating sequence exists, starting from a term t, we can always choose
an appropriate strategy for step-wise substitution in order to "follow the
path" of this normalizing j1-reduction sequence.

3.5 Matching 8-A-couples

The step-wise substitution procedures as described, Can have an undesired
effect on j1-reduction, especially when using lazy evaluation. In that case
one likes to start another reduction before the old ones are fully done with,
that is to say: while some (T-items are still present in the term as "relicts"
of a previous reduction.

In such a case one may be caught. When, for example, a (T-item (t'(T) has
come to a standstill between a 0- and a A-item, then the originalo-A-segment
has been split up and cannot be activated by the (T-generation rule.

A similar situation arises when a void j1-reduction has not been executed.
For example, let (t,0)(t20)(t3A)(t4A) be a segment of term t, and suppose
that (t20)(t3A) is void. Then we desire to start a j1-reduction with (t,0)(t4A),
but this is up to now only allowed after the removal of the void segment.

This observation can also be made in a 1110re general setting: we need
not require that an intermediate segment like (t20)(t3A) is void. It is enough
that such a segment is "well-bala.nced", a notion to be explained below.

In this respect we note the following. When one desires to start a j1-
reduction on the basis of a certain o-item and a A-item occurring in one
segment, the matching of a the 6 and the A in question is the important thing,
even when they are separated by other items. I.e., the relevant question is
whether they may together become a o-A-segment after a number of (j1-,

38

u- or <p-) steps. This depends solely on the structure of the intermediate
segment:

Definition 3.15 (well-balanced segments)
An empty segment is a well-balanced segment;
Au-item (t'u) and a <p-item (<p(k,i)) is a well- balanced segment;
If S is a well-balanced segment, then (t'o)s(til >.) is a well-balanced seg

ment.
The concatenation of well-balanced segments is a well-balanced segment;

A well- balanced segment has the same structure as a matching compos
ite of opening and closing parentheses, each 0- (or >.- litem corresponding
with an opening (resp. closing) parenthesis. For example, the well-balanced
segment (t10)(t20)(t3>')(t40)(tsA)(t6>') has the same "bracketing structure"
as the string '(() ())'. (Well-balanced segments in a typed lambda calculus
without explicit substitution were introduced in [Nederpelt 73J.)

Now we can easily define what matching o->.-couples are:

Definition 3.16 (match, 0->.- or reduceable couple, partner, partnered item,
bachelor item, non-bochelor segment, bachelor segment)

Let t be an f!~.~'P-term (hence possibly containing u- and/or <p-items).
Let s == 81, ... , sn be a segment occurring in t.

Now Si and Sj match, when i < j, Si is a o-item, Sj a >'-item, and the
sequence Si+l, . .. , 8j_1 /o1'1'ns a well-balanced segment.

Such matching Si and Sj are called a o-A-couple or red uceable couple.
Both Si and Sj are called the partners in the 8->.-couple. We also say that
Si and Sj are partnered items.

All A- (or o-) items Sk in t that are not partnered, are called bachelor
>.- (resp. 8-}items.

A segment consisting of partnered items only, is called a non-bachelor
segment; a non-empty, well-balanced segment is a special case of a non
bachelor segrnent, in which the partnered items occur pair-wise.

A segment consisting of bachelor items only, is called a bachelor seg
ment. We define A-bachelor segments and o-bachelor segments similarly.

(De Bruijn uses another terminology; see e.g. [de Bruijn 9xJ. In his
phrasing, o-items are applicators or A's, and A-items are abstractors or T's.
For 8->.-segments he uses the word AT-pair and for 8->.-couples he uses AT
couples. Void j3-reduction he calls AT-removal.)

39

It follows that each o-)..-segment is a particular case of a o-)..-couple (with
an empty, hence well-balanced segment between the 0- and the)..-item). On
the other hand, the o-item and the)..-item in a o-)..-couple may also be
separated by 17- items, <p-items and other o-)..-couples.

Definition 3.17 (sieveseg for bachelor items)
Let t E fl)'6'
The segment 8 consisting of all bachelor)..- (or 0-)items of bOdy(t),

concatenated in the order in which they appear in t, is called the bachelor
)..- (oro-)segment belonging to t, and will be abbreviated as sievesegbac).(t)
(or sievesegbac6(t)).

Similarly, we de/irte sievesegbac-xCs) and sievesegbac8(s) for a segment
8.

Example 3.18 Consider the segment
8 == (t,)..)(t2)..)(t30)(t4)..)(t5)..)(t60)(t70)(t80)(t9)..)(tlO)..)(t"o).

Then (t30) matches with (t4)..); moreover, (t80) matches with (t9)..) and
(t70) with (tlO)..). The segments (t30)(t4)..) and (t80)(t9)..) are b-)..-segments.
The items in. these segments also form o-)..-couples, and there is another
o-)..-couple in 8, viz. the couple of (t70) and (tlO)..)'

The items mentioned just now ((t30), (t4)..), (t70), (t80), (t9)..) and (t lO)..))
are the partnered main items of8. The remaining main items of 8, viz. (t,)..),
(t2)..), (t5)..), (t60) and (t"o), are bachelor items.

The segments (t,)..)(t2)..) and (t5)..)(t60) are examples of bachelor seg
ments, the former being also a)"-bachelor segment. Examples of non
bachelor segments are (t70)(t80)(t9)..) and (t70)(t80)(t9)..)(tlO)..), the latter
also being a well-balanced segment.

Moreover, sievesegbad(s) == (t,)..)(t2)..)(t5)..) and sievesegbad(s) ==
(t6 0)(t,,0).

Now we can ma.ke the important observation that the main items of a
term t may be divided into different classes: the "partnered" items (i.e. the
0- and)..-items which are partners, hence "coupled" to a matching one),
the "bachelors" (i.e. the bachelor)..-items and bachelor a-items) and the
"offspring" (i.e. the 17- and the <p-items).

Now let s be the body of a ("childless") term t E fl)'6' Then the following
holds:

• Each bachelor main)..-item in s precedes each bachelor main o-item in
s.

40

• The removal from s of all bachelor main items, leaves behind a well
balanced segment? (which we denote by sievesegbalAb)'

• The removal from s of all main boA-couples, leaves behind a An_bm_
segment, consisting of all bachelor main A- and b-items (which we
denote by sievesegbac>.b)'

From the above, we may conclude the following. For each non-empty
segment s E flu there is a unique partitioning in segments 81,' ., , Sn, such
that
(l)S'=S1 ... Sn,

(2) each Si is either a bachelor A- or b-segment or a (non-bachelor) well
balanced segment,
(3) if Si (i < n) is a bachelor segment, then Si+1 is a well-balanced segment,
and vice versa (hence, bachelor and well-balanced segments alternate in

81,'" ,Sn),
(4) each bachelor A-segment Sj precedes each bachelor b-segment 8k in s.

(The mentioned partitioning of the sequence of main items of a term t is
called the canonical dissection in [de Bruijn 9x]. In that paper, the sequence
sievesegbacb(t) is called the waiting list of t; the segment s obtained from
t by removing all b-items in sievesegbacb(t) from t and omitting endvar(t)
is called the knowledge frame of t.)

Example 3.19 The segment s of Example 3.18 has the following partition
ing:
bachelor A-segment (t1A)(t2A),
well-balanced segment (t38)(t,A),
bachelor A-segment (t5A),
bachelor b-segment (t6b),
well-balanced segment (t7b)(tsb)(t9A)(tlOA),
bachelor b-segment (t11b).

Moreover,

sievesegbac>. '= (hA)(t2A)(t5A),
sievesegbacb'" (t68)(t118),
sievesegbacU '= (t1A)(t2A)(t5 A)(t6b)(t11b),
sievesegbalA6 '= (t3b)(t,A)(t7b)(tsb)(t9A)(tlOA).

We can extend our notion5 of j3-reduction in this vein. That is to say, we
may allow boA-couples to have the same "reduction rights" as boA-segments.

41

All we need for that, is to give a new generation rule for the step-wise
substitution described in the Section 3.3; the transition and destruction
rules can stay unchanged.

Definition 3.20 (generalized {3-reduction)
For all well-balanced segments s:
(general (J-generation rule:)
(t,O)S(t,A) --7u (t,O)S(t,A)((<p(k+1))t,(J(')), where k = weight),(s).

The new notion of {3-reduction on the basis of these new generation rules,
is called generalized {3-reduction. (The notion of a well-balanced segment
and a notion of generalized {3-reduction as defined above were introduced in
[Nederpelt 73]. The generalized {3-reduction, called {3,-reduction, was used
as an expedient for the proof of strong normalization in a uniformly typed
lambda calculus.)

With this generalized reduction we can choose for delayed substitution
and yet perform reductions in the same order as witb ordinary {3-reduction.
Note, however, that our generation rules give more possibilities than be
fore. Firstly, as said before, the intermediate segment only needs to be
well-balanced; o-A-segments need not to be void. Secondly, with generalized
{3-reduction we may ha.ve more possible reduction paths.

For example, in the term t == (tJo)(t,6)(t3A)(t40)(tsA)(t6A)U there are
three reduceable couples rea.dy for a generalized {3-J'eduction, but only two re
duceable segments. (The three red exes in t corresponding to the reduceable
couples are: t as a whole, (t,O)(t3A)(t40)(tsA)(t6A)U and (t40)(tsA)(t6A)U;
only the last two redexes are '~traditional" redexes, corresponding with re
duceable segments.)

As said before, the pairwise matching 0- and A-items occur in a nested
pattern. If, however, one chooses for the traditional notation, where argu
ments follow the corresponding functions, this nesting property is lost.

\Ve shall explain tllis by means of an example. The term t mentioned
above looks like ((AZ"3'(Ay", .Ad,. U)t4)t,)t, in the traditional notation. Now
the reducable segments (t20)(t3A) and (t40)(ts A) correspond to the redexes
(AZ"3'(A.", .Azo',.U)t4)t2 and (A.", .A"". U)t4. These redexes occur "nested".
The reduceable couple (t,6)(t6A) also has a corresponding ("generalized")
redex in the traditional notation, which is, however, not so easy to find.
The corresponding "traditional" redex will appear after two one-step {3-
reductions, leading to (Ad,.U)t,. (We assume x, y, z and u to be different
variables.)

42

Let us look deeper into this correspondence. Each o-item (tiO) corre
sponds with a subterm ti (in the traditional notation), each A-item (t;A)
with a "term head" Aw,t;. Now we see that the matching in the traditional
notation is no longer nested. The "bracketing structure" of the maximal
main segment of t is not compatible with '(() ())' (see above), but with
'(, (2 (3)2), Ja', where 'V and ')i' match.

Since the notion of o-A-couple is a natural extension in the light of de
layed substitution or local ,B-reduction, the above gives an extra argument
in favour of the convention "argument precedes function".

We may observe that b-items of b->.-couples can occupy different posi
tions in a term, without disturbing the meaning of the term, both semanti
cally and procedurally. For example, the last-mentioned term t is equivalent,
in both aspects, to the term t' defined as t' '" (t20)(t3A)(t46)(t5>')(t,0)(t6>')U
(when we disregard updating). So, in principle there is no objection against
a "re-shuffling" of a well-balanced segment s, in the sense that all o-items in
s are shifted to the right until they meet their >.-partners. If one chooses for
this option, formalizing it into a "b-shift-transition" or "-reduction" in the
obvious manner, then all o-A-couples become o-A-segments, and the general
generation rules are no longer required. (A well-balanced segment then is
the concatenation of b-A-segments.)

This "re-shuffling" leads in the traditional notation from, e.g. the term
((A~'t3.(Ay,t,.AZ<t6.1t)t4)t2)t1 to the term (A~'t3.(Ay,t,.(AZ<t,.1t)t,)t4)t2' Here
the action clearly is more difficult to descri be.

N ate that the proposed a-shift does not disturb the bonds between A'S
and varia,bles (when defined properly, i.e. with appropriate updating 'P-items
in the shifted o-items). However, undesired effects as to binding may arise
in case one would define a comparable .I-shift in the opposite direction, e.g.
when starting with term t' and transforming it into term t as above. For
example, in t' the subterm t, may contain variables bound by the A in (t5A);
this binding would be lost in t.

Also, a "swap" between adjacent boA-segments can, in general, lead to
undesired situations.

Finally, we can specify two different kinds of bound variables:

Definition 3.21 (weakly bound, strongly bound)
Let variable x occur bound in term t.
Then we say that (this occurrence of) x is weakly bound if the binding

A-item of this x is a bachelor item (hence has no matching .I-item in t), and

43

we call x strongly bound if this A-item is partnered (hence does have a
matching o-item).

In the latter case, when t' is the body of the matching b-item, we say that
(the occurrence of) x is bound to this t'.

Another description of local f-reduction now is the following: select a
strongly bound variable x in t and replace x by the term to which x is bound.
And global f-reduction amounts to: select all x's bound to a certain term
t' and replace all these x's by t'.

Semantically, we know "nothing" about a free variable, "a little bit"
about a weakly bound variable (namely its type), and "everything" about a
strongly bound variable (namely its type and its "meaning", being the term
to which it is bound). The words "a little bit" and "everything" should not
be taken too seriously; e.g.: in the term t := (uo)(VA.)X the x is strongly
bound but neither its type (v) nor the term to which it is bound (u) are
very informative, since both are free in t.

By selecting a number of strongly bound variables in a term t, we can
execute all sorts of compound reductions in t by simultaneously replacing
the selected variables by the terms to which they are bound. For example,
when all the selected x's are bound to the same subterm t', we have an
intermediate form between local and global f-reduction. When all strongly
bound variables are selected, we have a generalization of the so-called Gross
Knuth-reduction (see the following section).

3.6 Strategies for ;'i'-reduction

Different strategies are known for applying consecutive f-reductions. A
strategy, in this respect, is a procedure which prescribes the order of the
reductions which have to be "executed" consecutively. Hence, such a strat
egy tells us, at any moment in a more-step reduction, which reduceable
segment(s) is/are selected for "firing", i.e. for performing one or more f
reductions.

We shall describe three of these stra.tegies in our uniform nota.tion. For
further details we refer to [Barendregt 84].

(For the definition of concepts like normal form, red ex and normalization,
see Remark 3.14.)

The following strategies wili be described: head reduction, Gross-Knuth
reduction and normal order reduction. Each of these strategies has certain
advantages. For this we refer again to Barendregt's book.

44

1. Head red uction

Definition 3.22 (head normal form, head segment, head redex, head reduc
tion)

An flM-term t is in head normal form if none of the main segments
of t is a o-A-segment (hence, all main items are bachelors). Otherwise, the
leftmost main o-A-segment is called a head (O-A-)segment. This segment
concatenated with the right argument of its A is the head redex.

A one-step head reduction is a (3-reduction generated by the head
segment.

A (more-step) head reduction is a sequence of one-step head reduc
tions.

Note that a head reduction path is uniquely determined, since each term
has at most one head segment. A terminating head reduction ends in a head
normal form. Such a head normal form is a concatenation of A-items, fol
lowed by 8-items, followed by a variable. Not all head reductions terminate.

2. Gross-Knuth reduction

Definition 3.23 (indeJ;ed segments, indexed terms, Gross-Knuth reduction)
An indexed o-A-segment is a o-A-segment in which the final operator

(A) has been indexed. A (one-step) (3'-reduction is a (3-reduction generated
by an indexed o-A-segment. An indexed term is a term in which one or
more 8-A-segments are indexed. A fully indexed term is a term in which
all o-A-segments are indexed.

A Gross-Knuth reduction of an fl~.-terrn t is a sequence of (3'
reductions according to the following procedure. First index all 8 -A-segments
in t with different indices; then apply (3'-reductions until all indices have
disappeared.

Everyone-step Gross-Knuth reduction actually terminates, since the de
scribed process of completely developing a term t is always finite, and is
independent of the order of application of the (3'-reductions (also in typed
lambda calculus). See [Barendregt 84, pp. 330 ff].

3. Normal order reduction

Definition 3.24 (precede, normal order reduction, quasi normal order re
duction)

45

Let st and S2 be occurrences of nonempty segments in term t. We say
that ~ precedes ~ (01' ~ -< ~)J if env~ is a subterm of envs2°.

A 6->.-segment in t is called a normal order 6->.-segment if it is max
imal in t with respect to -<.

A one-step normal order reduction is a one-step {3-reduction which
is generated by a normal order 6->.-segment. A normal-order reduction
is a sequence of one-step normal order reductions. A quasi normal order
reduction is a sequence of one-step {3-reductions such that each reduction
in the sequence is followed (somewhere in the sequence) by a one-step normal
07'der reduction.

Now it can be shown, as in [Barendregt 84, pp. 326 ffj, that if a term
has a normal form, then every (quasi) normal order reduction is finite.

46

4 The typing relation

4.1 Degrees

Until now, typing did not playa role in the construction oflambda·terms. In
each).·item there is "room" for information about the type of all variables
bound by the). under consideration. But this information has not yet
been explicitly used. We have only provided a possibility for using this
type information. For example, the types can be taken into account in the
abstraction condition and the application condition, which are part of the
term construction process (see Section 2.5).

In this chapter we give examples of how these conditions may actually
restrict the collection of terms obtained. Hence, the type information will
play an essential role. Moreover, in this chapter it turns out to be advan·
tageous to use different).'s and D'S, a possibility that was present from the
beginning, but until now not really employed.

Before going deeper into the matter, we emphasize that there is no fun·
damental difference between types and terms. A term may act as a type of
another term, a term may even have different types or it may happen that
a term has no type at all. But each type is itself a term. Hence, typing is
a relation between terms, and a statement t, : t2 expresses that term t, has
term t2 as (one of its) types.

By the typing relation, there is a kind of hierarchy between terms. A
notion expressing this hierarchy, is the notion of degree. It will turn out, in
the system that we present, that the degree of a "type" is one less than the
degree of a term of this type.

We start with the definition of the degree of a variable and thereupon
we define the degree of a term.

Definition 4.1 (degree of a variable)
The degree of a variable x that is free in term i, is undefined.
The degree deg(£) of every £ occurring in i, is zero.
Assume thai (the occurrence of) x is bound in t and let t' be the type of

x. Further, let y be the end variable of this type t' and assume that deg(y)
is defined. Then deg(x) = deg(y) + 1.

Note that each variable in a closed term has a degree. The set of the
degrees of variables occurring in a tenn, is always a set {O, ... , n} for some
n :0: o.

47

Definition 4.2 (degree of a term)
The degree of a term is the degree of its end variable, if this degree

is defined; otherwise it is undefined. The maximal degree of a term is
the maximal number- that occurs as a degree of a variable occurring in the
term; if there is no such number, then the maximal degree of such a term is
undefined.

Remark 4.3 Many existing definitions of the notion 'degree' count "the
other way round", with the result that the degree of a "type" is one more
than the degree of a term of this type. Our degrees 0, 1, 2, 3 then change
into (e.g.) 3,2, 1, O. In our approach we start with a "top level" having
degree zero, and lower levels are numbered upwards, without restriction.
This makes it easier to discuss the subject of "more degrees". Cf. Section 4.7.

Example 4.4 In Example 2.17 we considered the following liM-term t:

(cAz)((XA,,)((uo)(XAw)XAy)(UAz)YAv)u.
The degrees for the variables occurring in this term are: deg(E) = 0;

deg(x) = 1; deg(u) = 2, except for the free u which is the end variable of
the term: this u has no degree; deg(y) = 2; deg(z) = 3. If w would have
occurred as a variable, then its degree would have been 2. The term itself
has no degree (since its end variable is free). The maximal degree of the
term is 3.

The restriction of a term to a variable (see Section 2.3) does not change
any degree.

Finally, we define two desirable "consistency" properties of typing rela
tions:

Definition 4.5 (degree-consistency)
We call a typing relation on a set of terms degree-consistent if for all

terms t, and t, we have:
if t, : t, and if both deg(t,) and deg(t,) are defined, then deg(t,) =

deg(t,) + 1.

A reduction relation -"pan a set of terms is degree-consistent if the
following holds:
for all t, and t, such that t, -"p t" if deg(t,) is defined, then also deg(t,)
is defined and deg(t,) = deg(t,).

Note: In [Barendregt 9x], a typing relation which is degree-consistent is
called ok.

48

4.2 Canonical types

Variables occurring bound in a term in typed lambda calculus have a "nat
ural" type, as expressed in Definition 2.19. This type is the body of the
.\-item ending in the .\ which binds the variable. We extend this process
of typing to (general) terms by means of a canonical typing function typ,
acting on arbitrary sub terms t' of a term t.

Definition 4.6 (canonical type)
The canonical type typ(t') of a subterm t' of a term t, with x

endvar(t') and x bound in t, is defined as follows:
typ(t') == body(t')(,p<·))t",

where t" is the type of x in t as defined in Definition 2.19.

Clearly, this definition is not very complicated. The canonical type
type t') of a (sub-)term t' is obtained by replacing the end variable of t'
by its type t" (together with some updating of free variables in t").

Following the general style of this report, we can also use a type item
(r) and a type reduction operator -+T instead of the typing function typo
Hence, we extend our set of terms in order to incorporate these T-items (we
now have f!>"6crrpT-tenns).

The search for the canonical type of a sub term t' of t starts with (r)t'; this
term may be transformed to typ(t') by using the following r-reduction rules
for nA• T - terms (so we assume that the term under consideration contains no
a- or <p-items):

Definition 4.7 (r-reduction)
(r-transition rules:)
(r)(tlw) -+T (hw)(r)
(r-destruction rule:)
(r)x -+T (<p(·))t", ift" is the type in t of the x under consideration.

Note that the search for the type t" of x is not yet formalized. The
replacement of this Xo by t" can also be described by means of step-wise
operations, for example as follows. First send an inverse search item from
,,0 "backwards" into t until the .\ binding Xo has been found; then collect
t" == body(s) from the corresponding .\-item s and transport it stepwise
"forwards" to xo. Finally, replace XO by til. This procedure can easily be
formalized. (In a given implementation, there will possibly be a more direct
way to collect the type of ,,0.)

49

In Section 4.3 we give another, more direct solution for this matter.

1. The type of an abstraction

Things become more interesting when we go further into the matter.
Firstly, we regard the type of an abstraction. We recall that we have the
possibility to use different A's. For example, A1 could be used for dependent
product formation (usually denoted as II), and A2 for the - ordinary -
function operator A. This enables us to make a difference between the type
of a II-abstraction on the one hand, and the type of a A-abstraction on the
other hand, as we shall now explain.

Usually, given that the term t' has type t", one defines the type of a
II-abstraction IIx : it . t' to be t", as well. One could say that "the II
item is not accounted for in the type". On the other hand, the type of
a A-abstraction AX : it . t' is the corresponding II-abstraction IIx : t1 . tn

Hence, in calculating the type of a A-abstraction, the A-item changes into
the corresponding II-item, and the rest of the term is replaced by its type.

As a consequence, one may refine the transition rules for A-items as
follows, replacing those of Definition 4.7 for the case that w == A:

Definition 4.8 (T-transition rules for indexed A-items:)
(T)(t1A1) --+7 (T)
(T)(t1A2) --+7 (t1A1)(T)

Note that A1 and A2 behave differently with respect to aT-item.

Here we used A1 for II and A2 for the - ordinary - A. This is not a
In€fe symbol renaming; it also points at a possible generalization. In fact,
we can extend this kind of systems by incorporating more different A's. For
example, with an infinity of A's, viz. Ao, A1, A2, A3 ... , we can give the
following type rules:

Definition 4.9 (T-transition rule for arbitrarily many indexed A-items)
(T)(itAi+1) --"7 (t1Ai)(T), for i = 0,1,2, ...

This is a generalization of Definition 4.8, if we add a reduction rule
stating that (t1AO) reduces to the empty segment.

\Ve may use as many of these Ais as we like. For example, in Defini
tion 4.8 we only use A1, replacing II, and A2, replacing A. However, there
Inay be circumstances in which one desires to have more "layers" of A'S. Cf.
Section 4.7.

50

2. The type of an application

As regards the type of an application, one usually employs a rule of the
following form: given a "function" F of type IIx : t" . t, and an "argument"
t of the appropriate type t" (this is the type or domain which is associated
with this function), then the application term Ft (in our notation: (tt5)F)
has type t,[x := t]. Here [x := t] is a postfix meta-operator standing for the
substitution of t for all free occurrences of x.

In OUI approach, where substitution is treated as a "first class citizen"
(an operation inside the system), the above is not satisfactory. Instead, we
may express the substitution by means of a a-item. Consequently, the type
t,[x := t] is not given immediately, but is the result of a sequence of a
and <p-reductions. (In fact, this only holds when t, is an l1",s.,.-term, hence
originally without <p-items. The reason is, that a-items are not allowed to
"pass" <p-items, as we already noted in Section 3.3.)

For this purpose we maintain Definition 4.8 as regards the A-items, and
we employ the following T-transition rule for o-items (as in Definition 4.7):

Definition 4.10 (T-transition rule for o-iterns)
(T)(t,O)t2 -tr (t,O)(T).

However, we make demands to rule 7 (see Section 2.5), which we repeat
for convenience' sake:

sf- t s(t6) f- t' application condition
.s f- (to)t'

The requirement now is that the following application condition does
hold in this rule:
(T)t' =r,(3 (t"A,)t, and (T)t =r,(3 t".

Now it follows that

(T)(tb)t' -tr (to)(T)t' =r,(3 (to)(t"A,)t, -*<7,<;,0 t,[x:= t] (8)

where the x's are the variables in tl bound by the mentioned AI- Hence, we
obtain the desired result that (tt5)t' "has type" tl[X := t].

Note that we see the Al (i.e., the II) indeed as a kind of A, hence eligible
for an application. This is a quite natural approach. In the usual notation,
this would amount to the introduction of a ,a-reduction caused by a II
application:

51

(IIx : A . B)a -+(3 B[x := a].
Here one may interpret (IIx : A . B)a as the wish to select the "axis" B(a)
in the Cartesian product IIx : A. B.

In our notation, a II -application is characterized by a b- II-segment of the
form (t,b)(t2II) (i.e., (t,8)(t2A'»). We speak about a f36n-reduction when
referring to a f3-reduction generated by such a b-II-segment. Similarly, a
f36!.-reduction is an "ordinary" f3-reduction, generated by a boA-segment (or
8-A2-segment).

Summarizing, we note that there are two possible approaches regarding
II-application:

• Implicit or compulsory 13m-reduction, i.e. for F of type (IIx : A . B)
and a of type A we immediately have that Fa is of type B[x := a],
without intermediate steps. Here II-application is not allowed.

This is the case in PTS's (see Section 4.4) .

• Explicit 13m-reduction, where II-application is allowed. Now we have,
for F and a as above, that Fa has type (IIx : A.B)a, which f36n-reduces
to B[x := a].

The latter option is an extension of the former one. With explicit f3m
reduction one may simulate the effects of implicit f36n-reduction, as we ex
plained above. One might argue that implicit 13m-reduction is closer to
the intuition in the most usual applications. However, experiences with the
Automath-languages, containing explicit 13m-reduction, demonstrated that
there exists no formal or informal objection against the use of this explicit
13m-reduction in natural applications of type systems.

The two options can also be described in our step-wise structure. Our
description of explicit 13m-reduction has been given above. If one desires to
have implicit f36n-reduction as a formalized notion, then we can make use of
the possibility to llave different 8's at our disposal. In that case, a o,-item
(to,) can be used as a signal for forced priority for certain operations which
execute the desired implicit 13m-reduction.

For example, the 8,'s in the chain

(T)(t8,)t' -+7 (tb,)(T)t' =7,(3 (t8,)(t"A,)t, ---""U,'P,0 t,[x:= t]

(cf. equation 8) can be used to enforce with highest priority, i.e. before the
execution of any other '"operation" on the term:
(1) the "calculation" of the type typ(t') obtained by T-reduction of (T)t',

52

(2) the search for a term of the form (t"A1)t1 which is ,6-convertible to (or
a ,6-reduct of) typ(t'),
(3) and the reduction (tbtJ(t"Atlt1 -*u,'P,0 t1 [x := tj, which actually is a
,6-reduction.

By this process we obtain the term ttlx := tj as a necessary and im
mediate result of a T-reduction on (T)(tbtJt'. For ordinary, non-compulsory
,6.-\-reductions, we may employ another b, e.g. b2 •

For simplicity, however, we shall not use these different b's in the follow
ing sections and chapters of this report.

Remark 4.11 In a now commonly accepted setting (see [Barendregt 9xj or
[Barendregt and Hemerik 90]), the typing relation is expressed in the format
r I- t1 : t2' Here r is a context, and the statement t1 : t2 expresses that
t1 has type t2 relative to this context r. Such a context can be considered
as a segment consisting of main A-items, meant to bind all free variables
occurring in it and t2'

For example, in (cA.)(XA y) I- y : x it is stated that y has type x in the
context (d.)(XA y), which is indeed the case, as is visible in the context-item
(XA y). Also, (fA.)(XA y) I- x : f holds.

In order to define the typing relation, one usually starts with the types
of variables, as in the above exa.mple. Subsequently one deduces other state
ments of the form r I- t1 : t2, by regarding more complex terms t1 and their
types t2' Finally, a conversion rule expresses that the types of terms are
given modulo conversion; i.e., if it : t2 and t2 =/l t3, then it : t3. The typing
relation is the smallest relation satisfying these rules.

In our opinion, the sketched approach is, in a sense, not consistent. Note
that with each variable there is associated a preference type, as given either
in the context or in the A- or II-item in which this variable is bound. For
terms in general no preference type has been given, but a whole collection of
types, which are typeable by themselves and linked by means of ,6-reduction.
We think, however, that the canonical type as we introduced above can easily
play the role of a preference type. The typing relation t1 : t2 is then no longer
necessary. The ,6-conversion finds its place in the application condition,
where it naturally belongs. Hence, we need not mix typing with reduction
as in the conversion rule of PTS's, which is a simplification ("separation of
concerns") that may be advantageous.

"Ve note, however, that this matter has not yet been completely worked
out. In particular, the cla.ims above and the precise rela.tion with Pure Type
Systems (see also Section 4.4) are subject for further investigation.

53

4.3 A context-free type reduction

We already noted in the previous section that the T-destruction rule as given
in Definition 4.7 is context sensitive, in the sense that the type of x has to be
found "somewhere else" in the full term t. This we consider an imperfection.
We show below that one can solve this matter by incorporating in aT-item
a segment 8, which contains all the types of the free variables in the rest of
the term. The idea is, that this generalized T-item travels through the term
(from left to right) in the direction of x = endvar(t), collecting all possible
binders for this x. Finally, the correct type is selected in the segment 8.

In this approach, T-items have the form (8T). When using the term
construction as described in Section 2.5, there is a natural 8 at hand, as we
shall show.

The general T-transition rules, as given below, will be obvious. In order
to be able to select the correct type out of S, we introduce 1?-items (s1?(')).
(Formally, we now have 11.>.SuI'Tb-terms.)

The application condition as given in the previous section, now looks as
follows:
(ST)t' =T,b,/3 (t" '\1)tl and (8T)t =T,b,/3 t".

It will be clear that each check of this application condition generates two
T-items. Therefore, the application condition can be considered to represent
the general T-generation rule. The other general ("context-free") rules for
T-items and 1?-items are the following (cf. Definition 4.9; also compare the
1?-rules with the (.-rules of Definition 2.23):

Definition 4.12 (general T-reduction)
(general T-transition rules:)
(8T)(tl'\'+1) -+T (tl.\.)(8(tl.\'+1)T)
(ST)(h 0) -+T (tl0)(ST)
(general T-destruction/1?-generation rule:)
(8T)X -+b (s1?(x))x
(geneml1?-transition rules:)
(8(tl.\.)1?(k))x -+b (s1?(k-l))x if k > 1
(S(tl0)1?(k))x -+b (s1?(k))x
(general1?-destruction rule:)
(S(tl.\.)1?(I))X -+b (<p(x))t1

Note that the proper type for x is selected by erasing main items, one
by one, at the end of the segment S. The upper index k of the 1? is counting
the number of .\-items that have been erased (plus one).

54

Remark 4.13 (1) The rules above can be extended with rules for the tran
sition of r- and il-items over (J- and 'I'-items, if one desires so.

(2) Note that the context-free rules as given above miss the property
that all values of variables reflect the proper binding place: the free variables
in the body s of the traveling r-item are not updated during the step-wise
transition process, but only after the application of the general il-destruction
rule.

In this sense, the transition rules are not general enough. (Cf. the "gen
eral" step-wise substitution of Section 3.3, which do have this desirable prop
erty as regards the binding structure.)

This imperfection can be Inended in a similar manner as in Definition 3.5,

by changing the first general r-transition rule and the general 'I'-destruction
rule into the following rules:

(general r-transition rule for .\, context-free version:)

(sr)(h.\i+1) --7 r (t'.\i)(('I')S(t'.\i+,)r)
(general il-destruction rule, context-free version:)
(s(t,'\;)il('))x --+{J sieveseg",(s)t,
(For sieveseg: see Definition 2.10.)

In the rest of this report, we shall use the context-sensitive r-reduction
as introduced before; that is, we only use r-items of the form (r), and not
r-items of the form (sr). However, all that follows can also be expressed by
means of context-free r-reduction as defined in the present section.

4.4 The typing relation in PTS's

In this section and the following ones we discuss how the canonical type
operator of Section 4.2 is related to the usual typing relation in different
systems. We also show how this typing relation can be expressed with
the help of the r- "operator". The systems that we investigate in these
respects are Pure Type Systems and a few systems which are members of
the Automath-family.

We start with a short summary of so-called Pure Type Systems (PTS's),
as described in [Barendregt and Hemerik 90J; see also [Barendregt 9xJ. We
are only interested in the singly sorted PTS's, where different types of a given
term are always j3-convertible; hence, typable terms are uniquely typed (but
for j3-conversion). Moreover, we require that the typing relation is degree
consistent, thus preventing "inlpredicative typing" like * : *.

55

PTS's do not have the ultimate fine-structure which we described in the
previous chapters. The smallest reduction-"steps" are j3-reduction steps.
There is no explicit substitution in PTS's, hence there is no counterpart of (7-

items. Moreover, PTS's employ ordinary variables, and not de Bruijn-indices
or another referential variable denotation. So also ",-items and updating are
not incorporated. Finally we note that PTS's have a typing relation t, : t2
(i.e. term t, has type t2)' and no canonical type operator as the one explained
in Section 4.2.

First we give the II-formation and II-introduction rules of Pure Type
Systems. These II-rules give the conditions which must be obeyed for the
construction of (A- or II-) abstraction terms. The type information plays
an important role. One can consider the II-rules to embody the abstraction
conditions for PTS's.

Definition 4.14 (II-rules)
(II-formation rule:)

r I- It : 8, r, x : t, I- t2 : S2

r I- (IIx : t, . t2) : 83

(II-introduction rule:)

r I- t, : 8, r, x :t, I- t2 : 82 r, x : t, I- t' : t2

r I- (.\x: t,.t'): (IIx: t,.t2)

In these rnles, r denotes a context, t" t2 and t' are terms and 8" 82

and 83 are so-called sorts. For convenience' sake, we only regard the case
that 82 == 83; these PTS's contain the ones of Barendregt's .\-cube (to be
explained below).

The above rules may only be applied for a given set of triples (8,,82, S3).
See below for a further explanation of these matters.

Note: Do not confuse these sorts 8, and 82 with meta-variables 8, and
82 for items.

The IT-formation and II-introduction rules as given above can be con
densed into one II-rule:

Definition 4.15 (combined II-rule)

r, [x :]t, : s, I- [t' :]t2 : 82

r I- [(.\x : t, . t')] : (IIx : t, . t 2) : 82

56

As already noted in Section 4.2 under the heading "The type of an
abstraction", IT-items are "not counted" when the type of a IT-term is es
tablished. We see this in the IT-formation rule: the type of ITx : t1 . t2 is the
same as the type of t2 by itself (viz. 82)'

When, however, the type of a A-term is desired, then the IT-introduction
rule makes us change the A-item into the corresponding IT-item: the type of
AX : t1 . t' is ITx : t1 . t2, given that the type of t' is t2.

This is also expressed in Definition 4.8, where (r)(t1At) r-reduces to (r)
by itself (the AI-item - i.e. the IT-item - is erased). On the other hand,
(r)(t1A2) r-reduces to (t1At)(r), so the A2-item (an ordinary A-item) changes
into the corresponding AI-item (a IT-item).

Hence, Definition 4.S encorporates the essential part of both IT-rules,
translated in our setting.

In the case of "Barendregt's cube" both 81 and 82 can be either * or 0

(again, see [Barendregt 9x] or [Barendregt and Hemerik 90]). These two are
related by the axiom statement: * : D.

In Automath-like interpretations (cf. [de Bruijn 80], [Nederpelt SO] or
[N ederpelt 90]), * can be interpreted as the class of sets and/or the class of
propositions, and 0 as the "superclass" of these two classes.

In Barendregt's cube, there are eight systems of typed lambda calculus.
They differ in whether * and/or 0 may be taken for 81 and 82, respec
tively. (We recall that we take 82 = 33.) The basic system is the one where
(81,82) = (*, *) is the only possible choice. All other systems have this ver
sion of the two IT-rules, plus one or more other combinations of (*, D), (0, *)
and (0, D) for (81, 82)' The four possible versions of the IT-rule can be listed
as follows:

57

degree 3 2 1 a

(-,-) x tl - 0

t' t2 - 0

(_, D) X tl - 0

t' t2 0

(0, _) x tl 0

t' t2 - 0

(0,0) X tl 0

t' t2 0

The system with only (*, _) for (81,82) is known as A-Church or A-+
(this is essentially the Automath-system AUT-68). The addition of (*, D)
gives AP, which is a system that is rather close to another variant of the
Automath-family, AUT-QE (see [de Bruijn 80]). The addition of (0, *) to
(*, _) gives the second order typed lambda calculus, also called A2. Adding
(0, D) to (*, _), we obtain Af;!. There are three systems that are defined
by adding a combination of two of the three last-mentioned possibilities to
(*, *). When all nlentioned (.51, s2)-combinations are permitted, we have a
version of the Calculus of Constructions (AC) (see [Coquand and Huet 88]).

In our system, we may identify 0 with £ (see Section 2.1). Subsequently,
the axiom * : 0 may be rendered as the A-item (EA.). Thus we can express
all eight systems of Barendregt's cube (and, in fact, many other PTS's) by
adding the appropriate abstraction conditions. (See Section 4.6 below.)

Just as the II-formation and -introduction rules incorporate the PTS
version of the abstraction conditions, the following II-elimination rule con
tains the application condition for PTS's:

Definition 4.16 (IT-elimination rule)

r I- F : (IIx : A . B) r I- a : A
r I- Fa : B[x := a]

Here [x := a] stands for the substitution of a for (free occurrences of) x.
VVe already discussed the contents and the implications of this rule under

the heading "The type of an application" in Section 4.2.

58

Summarizing, it is our opinion that the main rules for term construction
in many PTS's have a natural rendering in our setting. The construction of
abstraction terms can be simulated with the use of A,- and A2-items. Appli
cation terms can be constructed with an appropriate application condition,
which mirrors the IT-elimination rule but for the difference between implicit
(compulsory) and explicit ,am-reduction. However, the latter kind of ,am
reduction, being more general, and fitting naturally in our setting, can be
used to establish the same effects as the former one.

Remark 4.17 The fact that systems with explicit ,a6n-reduction are con
servative over systems with implicit ,am-reduction, has been proven by van
Benthem Jutting (private communication). Hence, there is no technical ob
jection against the definition ofPTS's by means of a canonical type operator.
Note, however, that Jutting did not define types for IT-application terms like
(ITx: A .B)a.

4.5 The typing relation in Automath-systems

In this section we describe the definitions of three Automath-systems in
our setting. These systems do not have the fine-structure which we gave in
previous chapters. Reduction is the ordinary ,a-reduction, substitution is a
meta-operation; hence, we do not take a-items and 'P-items into account.

The systems do have a canonical type operator, albeit not as part of
its Ia;nguage. Consequently, we have 0),5-terms in the language. Moreover,
there is just one Ii and one A, this A taking the role both of the ordinary

functional operator A and the product constructor IT.
In the present section we discuss the systems AUT-68, AUT-QE and A.

All these systems have been developed around 1970. The oldest of the three
is AUT-68, the more powerful variant AUT-QE followed soon. These two
systems are invented by de Bruijn.

The system A was meant to be a simplified and more uniform version
of the two other systems. It was developed slightly later. Nederpelt started
studying these systems in [Nederpelt 71] by putting contexts as A-segments
in front of the A UT- terms and, moreover, identifying the concept "instan
tiation" (of a defined notion with respect to a chain of arguments) with
repeated "A-application" (of a function to a number of arguments). De
Bruijn simplified the system still further by omitting definitions, obtaining
a typed lambda calculus (AUT-SL, called A in [Nederpelt 73]) with lambda
term-like types. Recently, de Groote studied a variant of A in his thesis (see
[de Groote 91]).

59

A much more recent Automath-system, meant to give A the same power
- especially as regards definitions - as e.g. AUT-QE, is the system 6A,
which will be discussed in Section 4.6.

All Automath-systems have the property of degree-consistency (see Sec
tion 4.1), both for the typing relation and for ,iJ-reduction. (The same ob
servation holds for the systems in Barendregt's cube, but not for general
PTS's.)

1. The system AUT-68

The system AUT-68 was meant as a formal system suitable for expressing
large parts of ma.thematics, including all the usual features like:

• the possibility to use it for reasoning, in a logic chosen by the user (e.g.
classical predicate logic, intuitionistic logic); but note that no logical
constants have been built in, the lambda calculus frame itself can be
used for expressing most of the logical notions,

• the possibility (again without built-in constants) of a step-wise devel
opment of a mathematical theory by means of axioms and primitive
notions; lemma's, theorems, corrolaries and their proofs; definitions
and abbreviations,

• an explicit treatment of contexts (assumptions, variable introductions)
for theorem-like and definition-like notions.

(For more details about these matters, see [Nederpelt 90J.)

If we disregard the definition mechanism of AUT-68 (otherwise said: if all
definitions are "unfolded"), then we can give a simple, straightforward de
scription of AUT-68 in our setting by choosing the appropriate parameters l

(in this simple version it is also not possible to use primitive notions in a
certain context).

Beforehand, we note that only degrees 1, 2 and 3 are permitted. Hence,
c (of degree 0) is not an Automath-term. As a consequence, the A-item
(eA.), expressing that * is of type c, is a "meta-axiom", which cannot be
rendered inside one of the described Automath-systems.

The remaining parameters for AUT-68 can be listed as follows:

• The canonical type typ(t') of a term t' can be calculated by means
of the following T-transition rules:

lThis version of AUT-68, together with the following description of AUT-QE, have
been elaborated by Bert van Benthem Jutting

60

(7)(t'\)t' -+T { (t'\)(7)t'

(7)(to)t' -+T (to)(7)t'

if deg(t') = 2
if deg(t') = 3

• As regards the variable construction rule of Section 2.5, namely:

variable condition
sf-x

we have as variable condition that the only variable of degree 1 is •.

• In the abstraction construction rule of Section 2.5, namely:

sf- t s(f,\) f- t' abstraction condition

sf- (tA)t'

we have as abstraction conditions:
(1) Either deg(t) = 2, 01' deg(t) = 1 and s is a context (i.e. a segment
consisting only of ,\·items), and (2) 2 ::: deg(t')::: 3.

• In the application construction of Section 2.5, namely

B f- t B(tO) f- t' application condition

s f- (to)t'

we take the following application condition:

deg(t') = 3 and typ(t') ={3 (typ(t)'\)t" for some t"

(Remark. The given 7·transition rules for AUT·68 can be justified by
the following observation. In AUT·68 the main '\·items in any (sub·)term
of degree 3 play the role of the ordinary functional operator ,\ and in terms
of degree 2 they can be interpreted as the product constructor II.)

2. The system AUT-QE
The system AUT·QE has so· called Quasi Expressions: abstractions over

., functioning as types of dependent products. This extra feature facilitates
the applicability of the system in a mathematical environment.

AUT·QE has, like AUT·68, only terms of degree 1, 2 and 3.
The other parameters for (again) a definition·free version of AUT·QE

are:

61

• (Canonical type) As for AUT-68.

• (Variable condition) As for AUT-68.

• (Abstraction condition 1) As for AUT-68.

• (Abstraction condition 2) Absent.

• (Application condition)
Either deg(t') = 3 and s I- (tb)typ(t'),
or deg(t') = 2 and typ(t') =(3 (typ(t)A)t" for some term til.

Remark 4.18 The uniform behaviour of the type operator in the various
Aut-systems, together with the non-distinction of A and IT, causes difficulties
in practical applications: a consequence is, that the type of a IT-abstraction
is again an abstraction, which is not what one usually desires (the type of
a universally quantified predicate is a proposition, and not a function over
the type of all propositions).

In the original system AUT-QE (with definitions and primitive notions in
a context), there are so-called type-inclusion rules which are meant to undo
these undesired effects caused by the "overloading" of the single A. The rule
enables one to "strike out" certain strings of A-items and/or segments which
immediately precede an x with typ(x) = *.

This is in accordance with the natural definition of types for IT- and
A-abstractions, which we discussed before (see e.g. the paragraph "The type
of an abstraction" in Section 4.2). We recall that, for a term t' of type
til = *, we have that the type of Ax: t, . t' is ITx : t, . *, but the type of
ITx : t, . t' is only *. When identifying A and IT, as is the case in many
Automath-languages, we have that the type of AX: t, . t' is either AX : t, . *
or *. Hence, technically spoken, one desires the possibility to strike out the
A-item AX : t, in the type.

Note that the unicity of types is no longer valid in such a system. More
over, there is a kind of non-determinism since there may be different types
for a certain type.

However, in the simplified AUT-QE version as given above, these prob
lems do not playa role.

3. The system A.

In view of the sketched development of A as a uniform system (how
ever maintaining most of the possibilities for practical applications in logic

62

and mathematics), it will be no surprise that A is the system closest to the
approach that we follow in this report. Moreover, A does not have the simpli
fications that we applied above: abbreviations (i.e. definitions) are possible,
and so are primitive notions in a context. Abbreviations, however, cannot
be used at full capacity. This is partly due to the absence of type- inclusion
(see Remark 4.18), partly to a syntactic feature. The latter restriction can
easily be removed (as has been done in the system ~A, see Section 4.6).

As a matter of fact, A is contained in our description as given before,
with the following parameters:

• There is no restriction on degrees, all degrees 2': 0 are possible.

• There is only one abstraction operator A (hence, there is no II, or
AD, A" A2, ...). This restriction complicates the practical use of A, since
II-abstractions cannot be easily distinguished from A-abstractions (d.
Remark 4.18).

• Application is only restricted in the sense that the general applica
tion condition of Section 4.2 must hold, albeit in a generalized version
(due to the unlimited degrees) which we will discuss in Section 4.6.
Application is allowed for terms of all degrees, so that II-application
(see again Section 4.2) is one of the features: ,8-reduction is treated
similarly for all degrees, in the form (t , b)(t2Ax)t3 ->{3 t3[X := tIl.

• The type operator behaves uniformly, as in Definition 4.7: we have

that (r)(t,w) --+T (tlw)(r), for r == A or r == b. Hence, A has explicit,
and not implicit (compulsory) ,8,m-reduction.

For more details about the behaviour of A (Church-Rosser, normaliza
tion, etc.), see [Nederpelt 73J.

4.6 Remarks on the conditions in term construction

In this section we give more details about a number of possibilities for the
conditions used in the construction of terms, as introduced in Section 2.5.
We shall go into variable conditions, abstraction conditions and application
conditions. The most cOlnmollly used versions of the lastInentioned two con
ditions have been discussed in Section 4.2. Examples of all three conditions
have been given in Section 4.5. One extended application condition that we
describe will lead to a.n adaptation of the system A, called ~A.

63

In this section we will not take (1- and <p-items into account. Hence, we
only regard ilMr-terms.

1. Variable conditions

A variable condition that is often used, is the one that has been explained
in Section 2.5, serving to restrict the collection of terms to closed ones. An
other restriction is often imposed on the degree of a term. For example,
one may require that the degree is always;::: 1 and :": 3 (as it is the case
in AUT-QE and AUT-68; see the preceding section). The reasonableness of
such a requirement is shown in practical applications. For example, large
pieces of mathematical texts have been coded in AUT-QE, thereby demon
strating its utility. (An exception is AUT-4, where degrees range over 1 to
4; d. Section 4.7.)

2. Abstraction conditions

As already mentioned in Section 4.4, both the II-formation and II
introduction rules for PTS's (see Definition 4.14) can be expressed by means
of appropriate abstraction conditions. For ease of reference, we repeat the
construction rule under consideration, as stated in Section 2.5:

s I- t s(t.\) I- t' abstraction condition
s I- (t.\)i'

Now the II-formation rule can be obtained by reading.\1 for.\ and taking
the following abstraction condition (see also Section 4.4):
(r)t ~r,(3 81 and (r)t' --7 r ,(3 82, for SI,S2 E {', D}.

For the II-introduction rule we take .\2 for A and the abstraction condition
(r)i --7 r ,(3 SI and (r)2t' -+r,(3 82·
Here (r)2 is an abbreviation for (r)(r).

The II-formation and II-introduction rule also give information about
the type (via the statements (IIx : it . t2) : 82 and (AX: tl . u) : (IIx : it . t2),
respectively). This is no longer necessary, since we have the canonical type
operator r at our disposal (d. Definition 4.8 and Remark 4.11).

3. Application conditions

As regards the II -elimination rule for PTS's, we can use the appropriate
construction rule from Section 2.5:

s I- t s(to) I- t' application condition
.s I- (to)t'

64

The application condition for the PTS-case should read:
there are til and tt such that (r)tl =T,/3 (t" At)tt and (r)t =T,/3 til.
In words: the type of tl must be fJ-convertible to some At-abstraction (i.e.,
a IT-abstraction); the domain til of this At-abstraction must be such that t
fits into it, i.e., this domain til should be fJ-equivalent to the type of t. (We
explained this before in Section 4.2.)

Again, the type information Fa : B[x := aJ can be extracted from the
definitions concerning the canonical type operator r. As we noted before,
the substitution result B[x:= aJ is rendered as a IT-application (to)(t"Atltt,
which is able to yield a similar substitution result, but only after a fJm
reduction generated by the o-A-segment (to)(t" At).

This version of the application condition only concerns "ordinary func
tions", i.e. F such that F : (ITx : A . B). A more general application
condition, compa.rable with the general typing rule for A-items of Defini
tion 4.9, is based on an iterated version of r. For example, when t : tl, tl : til
and til : (ttAtlt2' then til is some kind of a function, but also tl and t can
be regarded to be "functions", all having "domain" tt. Hence, one might
agree to permit that each of the terms til, tl and t may be applied to a term
having type tt.

In systems without a distinction between A and IT (e.g. A), this can be
solved as follows. Extend the application condition to higher degrees:

There are t2 and j such that (r)jtl =T,/3 ((r)tAt)t2

The iterated r-item here has the usual meaning: (r)O == identity, (r)' == (r),
(r? == (r)(r), and so forth. Instead of (r)j we may also take (r)oo, being
the "highest (r)j possible in the given circumstances".

Note: This maximal j is indeed well-defined, as can easily be seen.
The general application condition in this form can already be found in
[Nederpelt 73J. The r-free term to which (r)ootl r-reduces is called the
final type of tl in [de Bruijn 9xJ.

An application condition similar to those described above, is present in
the system A. This kind of application condition may look very general, but
it misses a feature that is really desirable.

The shortcomings of this kind of application condition are a result of the
fJ-reduction, as present in the application condition (r)jtl =T,/3 ((r)tAt)t2'
Here one does not take into account that the construction rule under con
sideration contains a context s, which may play an essential role in two
respects:

65

• for typing, because s may contain A-items (t,A) which contain a type
for all free variables bound by that A, also in the part of the term after
the f-;

• and for reduction, since a segment s may contain definitional {j-A
segments which may affect the rest of the term.

Hence, segments may cause both weak and strong bindings in the rest of the
term (cf. Section 3.5).

To make things clearer, we discuss the latter case. In s there may occur
o-A-segments, or even {j-A-couples, as main subsegments. Such a {j-A-segment
or -couple may contain a definition: (t,o) ... (t2Az), with matching (t,o) and
(t2Az), which can encode the definition of x as being (an abbreviation for) t,.
Now in the terms behind the symbol f-, both x and t, can occur, being not
,6-convertible as long as s is not taken into account. In meaning, however,
x and t, are "the same", which cannot be established syntactically.

For this reason, de Bruijn always regarded A as being a typed lambda
calculus without definitions, or: a typed lambda calculus for mathematical
theories in which all definitions have been elaborated. This is a correct
observation. In theory this is harmless. In practice, however, it is highly
undesirable to have no definitions at one's disposal, since texts then grow
exponentially in size.

To cope with this inconvenience, de Bruijn proposed L'l.A. The differ
ence is, that the above-mentioned ,6-reduction in the application condition
«T);t' =T,{3 «T)tA,)t2) must be adapted to (TlU' =T,{3 S«T)tA,)t2' This
simple intervention permits ns to use definitional 8-A-segments or -couples
in S in the quest for T-,6-convertibility. See also [de Bruijn 9x].

(Note that the use of the context-free T-reduction of Section 4.3 does
not help here. To be precize: a condition like (ST)jt' =T,{3 «sT)tA,)t2 would
only cause the desired effect if a-items generated as a main item in s could
'pass" the lnentioned T-items.)

4.7 Higher degrees

As already Inentioned in Section 4.6, under cirCUIllstances there Inay be a
desire for higher degrees of terms. As an example we discuss the essential
features of AUT-4, a· member of the Automath-family.

The idea is the following. In the propositions-as-types conception (see
e.g. [Howard 80]), propositions are coded as lambda terms. When t is a term
which is regarded as a proposition, then a.ny "inhabitant" of t - i.e., a term

66

t' such that t' : t - serves as an assertion (a "proof") of that proposition.
There clearly is a strong parallel with sets and elements: when t codes a set,
and when t' is again an inhabitant of t, then t' represents an element of the
set t.

When a term t is considered to represent a set and when it turns out
that t is not inhabited, then t may be considered to represent an empty set.
Analogously, when t codes a proposition and t is not inhabited, then the
proposition t may be considered to be not provable.

(Note: the logical counterpart of this propositions-as-types notion is the
Brouwer-Heyting-Kolmogorov interpretation; for further explanation: see
[Troelstra and van Dalen 88J.)

When t is inhabited, then the comparison does not hold completely. A
set can have many elements, and a. proposition can have many proofs. The
elements of a set are considered to be different, but it may be useful to
identify all proofs of a certain proposition. This is because - from the
point of view of classical logic - the important thing is often whether there
is a proof of a proposition, and not so much what the exact content of the
proof is.

In most of the systems which have been studied up to now, sets and
props occupy the same level in the degree-hierarchy. One presupposes, for
example, a class of sets (*,) and a class of propositions (*p), both inhabitants
of the "super-class" O. The situation then is as follows:

degree II 3 I 0

term a : A: *., : 0

interpr. element set class
of sets

term P: Q: *p : 0

illterpr. proof prop class
of Q of props

In this schema it is possible to treat proofs and elements in a different
manner. For example, one could define an equivalence =i for proofs, viz.
for those terms t of degree 3 for which (T)2t ={J *p.

Another way to identify proofs is the following. In the previous diagram
one shifts the proof-prop row one column to the left, adding a class [:,
between *p and O. Now proofs become the only terms of degree 4:

67

degree II 4 I 1 10
term a: A: *6 : 0

interpr. element set class
of sets

term P: Q: *p: 6: 0

interpr. proof prop class
of Q of props

This is the AUT·4 interpretation (see [de Bruijn 74]). "Irrelevance of
proofs" can now be implemented by a rule of the following form, where =i

is some equivalence:

r f- pi : Q' : *p : 6 Q =(3 Q'
P =i pi

The use of the equivalence =i can best be demonstrated by means of an
example. The natural logarithm In, considered on the domain of the real
numbers, depends essentially on two arguments: a real number and a proof
that this real number is positive. So one has to consider In(x,p) instead of
In(x), identifier p being a (reference to) a proof that x > o.

Now assume one has two proofs of the positiveness of the number 3,
coded as tl and t2, respectively. Then it is desirable to have that In(3, tJ)
and In(3, t2) are "equal". This can be achieved by declaring hand t2 to be
equivalent and adapting the overall equivalence of terms accordingly.

68

5 Abbreviations for segments

5.1 The use of segment variables

In the previous chapter, contexts r (see Section 4.4) and segments s (see Sec
tions 2.5 and 4.6) played a role in the construction of terms. These notions
are also of value in their own right. For example, mathematical phrases like
"Let x be a natural number" or "Assume that P is true" can be expressed
as A-items: (NAz) and (PA,) (d. Section 4.7). A more complicated phrase
like "Let (G,', e, -1) be a group" is basically a segment-like concept: it is
the composition (product) of "Let G be a set, let· be a function G X G -t G,
assume· to be associative, let e be an element of G, assume that e obeys
the properties for a unit element, let -1 be a function G -t G, ... ".

Essentially, syntactic meta-constructs like r f- t : t' or s f- t : t' express
that the statement t : t' "holds" in context r or with context segment s.
Here r (or s) is related to both t and t'. In fact, r f- t : t' expresses that t
relative to r has type t' relative to r. So there is a twofold reference to r.
Without the contextual part "r f-" one would need two copies of r. Hence,
the syntactic constructs r f- t : t' and s f- t : t' contain a device which
prevents us from unnecessary copying a string.

But even with this more concise notation, repeated duplications of seg
ments are unavoidable. For example, when r expresses "Let (G, ·,e,-1) be
a group", then in ordinary circumstances many statements follow in this
context r. For every such statement ti : ti we have to mention the context:
r t- ti : ti for i = 1,2,

In practice, this is a nuisance. Hence, some abbreviation mechanism for
contexts is very welcome. De Bruijn devised a nice context administration
for the main languages of the Automath-family (see [de Bruijn 70]).

When taking the line that typed lambda calculus is an appropriate lan
guage for many purposes concerning the formalization of logical and math
ematical notions and also for concepts from programming languages - as
we do in this report, cf. [Nederpelt 90] - it would be nice to adopt some
kind of context abbreviation in this typed lambda calculus. (Of course, this
is a matter of taste. One is not obliged to do so. Context adnlinistration

can be dealt with at a meta-level, or with a language extension.)
In our conception of what the structure of a typed lambda calculus really

is, there is, at least in principle, no problenl in this respect. In fact, contexts
and segments can be regarded as special terms in the calculus, viz. those
terms ending in E. Now terms can be abbreviated in a definition, as we saw

69

before. Hence, in particular, contexts and segments can be abbreviated.
All this holds under the condition that we consider So to be the same as
s itself. (Remember that we already used the empty term instead of £ in
Section 2.1.)

In this conception, segment s can be called a by adding the "definitional
segment" (SO)(Aa).

There are two remarks in this respect. Firstly, in order to reap full
benefit from the abbreviations, we should allow that segment-abbreviating
variables may occur in the place of actual segments everywhere in a term.
For example, witll the above definition, the term (tAz)a(t' Ay)Z is an abbre
viation for (tAz)S(t'Ay)Z, with s completely copied out (but for the final E:,

which is omitted!). Of course, adjustments are necessary in order to keep the
referencing by means of de Bruijn-indices in order (see Section 5.2 below).

Secondly, the corresponding application condition in the term construc
tion should say something about the type that is expected for s when (so)
is added. Above, we chose the empty term 0, rendered invisibly (cf. Sec
tion 2.1).

The approach described above will be elaborated in the following sec
tions.

Remark 5.1 In a sense, the introduction of segment-abbreviating variables,
as the a in the term (tAz)a(t'Ay)Z discussed above, disturbs our uniform
item-notation, since variables now not only occur at the end of a term, but
also on other places. Otherwise said, it does no longer hold that each term
is the concatenation of a segment and a variable.

A technical solution to this (technical) inconvenience is to introduce a
new kind of items, namely variable items, denoted e.g. as (a..p). The term
above is then written as (iA.)(a..p)(i'Ay)Z, or, if we also "itemize" ordinary
varia.bles: (tAz)(a..p)(t'Ay)(Z..p). With this convention, a term is again a
segment followed by a va.riable, or, in the second case, nothing more than a
segment ending in a va.riable item (x..p) (which can be omitted if x == 0).

Hence, there are three possiblities:

• to use (ordinary) variables and segment-abbreviating variables;

• to use ordinary variables and segment-variable-items;

• to use variable-items for both categories of variables.

70

Since we regard it to be a matter of minor importance which of these
options is chosen, we will, with a view to the foregoing part of this report,
continue employing the first option, hence without variable-items.

5.2 Referencing in relation with segment variables

Things are, however, not so simple as suggested in the previous section. The
main problem is the question of the right referencing. For example, in the
term (O,.)a(t' Ay)Z, where a abbreviates a segment 8, the binding A of the
variable Z may be found "inside" a, e.g. when 8 == (t,Au)(t2Az)(t30). But
neither Au nor Az is "visible" in a. Hence, using de Bruijn-index 2 for Z

would connect this variable with the wrong A (viz. A.).
It will be clear from this example that the A-weight of the abbreviated

segment, i.e. the number of main A-items in the segment, plays an important
role. This number can always be recovered by inspecting the abbreviated
segment. One can imagine, however, that it is more practical to register this
number together with the segment variable. (A circumstance that facilitates
this choice is, that the A-weight of a segment does not change by the local
and global reductions which we described before, provided that one avoids
void reductions; see Section 3.4. This observation can easily be verified.)

Therefore, we add a collection of seglnent variables to our set of variables,
which are pairs of numbers:

Definition 5.2 (segment variables)
We add to ::: a new set I; of segment variables:
~ = {(n;m)Jn = 1,2, ... ;7n= O,l, ... }.
Moreover, we distinguish the A-opemtor Asg as being a binding A for

segment abbreviations. We do not allow that Asg-items occur "on their own".
They should always be a part of a 8-A-segment of the form (88)(Asg), coding
the abbreviation of a segment 8.

In (n; rn), a segment variable iteln, the index n gives a 1'eference to
the binding Asg and m is the A-weight of the abbreviated segment.

Just as local j1-reduction could be used to undo a definition, we can use
local j1-reduction for undoing segment abbreviations. For this purpose we
have to extend our rules for j1-reduction. We use the same u's as before for
substitution items originating from a segment abbreviation. This can give
no confusion, as long as "ordinary" ,\ '8 bind "ordinary" variables and Asg '8

bind segment variables.

71

In our step-wise style, this leads to the following extension of the a-rules
in Definition 3.5 (note that the term tl in the rules below is a segment, so
a term with endvar(ttJ '" f):

Definition 5.3 (general a-reduction for segments)
(general a-generation rule for segments:)
(tlO)(Asg)""'u (tlO)(A sg)((<p)tl a(1))
(general a-transition rule for segment variables:)
(tl aU))(X; n) ""'u (x; n)((<P(n))tla(i+n)) (alsg-transition)
(general a-destruction rule for segment variables:)
(tla(i))(i; n) -+u t l , provided that tl contains no main <p-items.

(In the last-mentioned rule, the end variable f in the right-hand side
term tl should be suppressed, as explained before.)

The proviso in the destruction rule is necessary in order to prevent that
the updating of the free variables in tl has undesired side-effects. To be
precise: a main <p-item in tl does affect all free variables which occur in its
scope. Since (i; n) is embedded in a term like (i; n)t', such an undesired sit
uation may actually happen as soon as It replaces (i; n): some free variables
of t' may then (erroneously) be updated, as well.

The rules above should be added to Definition 3.5 for local substitutions
of segments for segment variables. For global snbstitutions we also need the
following rule, since there may exist more segment variables (j; n) which are
bonnd by the Asg in the original 8-Asg-segment:

Definition 5.4 (second general a-transition rule for segment variables:)
(tla(i))(i; n) -+u tl((<p(n))t l a U+n)) (aolsg-transition)

(Here the same proviso as above must be taken into account.)

Note: we can replace the first destruction rule of Definition 3.5 by the
one in Definition 5.3, by conceiving an ordinary variable X as a special case
of a. segment variable, with irrelevant weight: x'" (x;.).

5.3 Segments and stepwise substitution

In the previous section we saw how segment abbreviations in a 8-Asg-segment
may give rise to a a-item (a-generation rule for segments). This a-item
acts as a stepwise substitution operator, just as with ordinary 8-A-segments,
with only OIle difference: the a~items originating from segment abbreviations
"aim" at segment variables of the form (x; n) and not at ordinary variables.

72

It may happen that a-items occur in an abbreviated segment, either by
being "shifted inside" due to the use of the transition rules, or due to being
generated in that segment. In the case that such a a-item is a main item of
t" the stepwise shift of this a-item through t, may come to a standstill at
the end of the segment.

With the ordinary general a-destruction rules, as introduced in Defini
tion 3.5, the a-item disappears when meeting an c, as implicitly is the case
at the end of a segment. However, this is not what we expect. The substi
tution should also influence all sub terms occurring after a segment variable
(n; m) which refers to the segment under consideration, as can easily be
seen.

In order to treat such a substitution instance properly, we differenti
ate between terms ending in c, and abbreviated segments. For the latter
constructs we add a special transition rule. Furthermore, we restrict the
a-destruction rules of Definition 3.5 to "proper" variables; these being ei
ther a natural number::> 1 or an E which is intended to be the end variable
of a term (and not of a segment). Or, using "v-items: restrict the rules to
variable-items (x; 0), with x E N or x == E. An E marking the end of a
segment then should be denoted differently, e.g., (e; 0)

This leads to the following extra rule:

Definition 5.5 (segment-a-generation rule)
(t'(t,a(k))o)(Asg) ---+q (t'8)(Asg)(t,a("k))

As can be seen in this definition, the a-item now obtains two arguments.
The second, k, is meant to find the right substitution place for t,. This index
is, however, "frozen" until an appropriate segment variable has been found.
This is because the segment abbreviation must be thought of as being apt
for being inserted at the place of a corresponding segment variable. Hence,
the search outside t' for the proper place where t, should be substituted,
starts at the place of the occurrence of such a segment variable.

The first argument of this a(/,kLitem, the I, initialized on 1, is a counter
which locates such an appropriate segment variable. The corresponding
transition rules are quite similar to the a-transition rules of Definition 3.5:

Definition 5.6 (segment-a-tmnsition rules)
(t,a(l,k))(t2A) ---+q ((t,a(l,k))t2A)
(t,a(l,k))(t2A) ---+q (t2A)(t,a(l+l.k))
(t, a(l ,k))(t2 A) ---+ q ((t,a(l ,k))t2 A)(t, a(l+' ,k))

73

(t, U(I,k))(tzO) -'>q ((t, U(/,k))tzO)
(t,U(!,k))(tzO) -'>q (t ZO)(t , U(I,k))

(t , u(l,k))(tzO) -'>q ((t , U(!,k))tzO)(t, U(l,k))

Note that the u(!,kLitem (t1U(!,k)) is isolated from the rest of the term as
regards the correct referencing of free variables inside t" This is necessary,
since some A's binding these variables in the full term may not be present
along the path leading to the root, viz. the A'S in the abbreviated segment.

We also need the following transition rule (cf. Definition 5.4):

Definition 5.7 (special segment-u-tmnsition rule for segment variables)
(t,u(l,k)) (m; n) -'>q (m; n)(t,u(l+n,k))

This rule expresses that a u(!,kLitem may pass a segment variable, pro
vided that the weight of that variable is taken into account. Note that this
also holds when (m; n) is a segment variable bound by the segment abbrevi
ation where the u(l,kLitem came into being! There may be another segment
variable, also bound by this segment abbreviation, that is really intended as
the place where the segment abbreviation should be undone, and it may be
the case that this other segment variable is still to come.

The destruction of a u(!,kLitem, and its replacement by a u(kL item, can
be performed by the following rule.

Definition 5.S (segment-u-destruction rule)
(t,u(l,k)) (I; n) -'>q (I; n)((cp(n,I))t1U(k)) if k ~ n,
(t,U(!,k)) (I; n) -'>q (I; n)((cp(n,I))t,U(k+l)) if k > n

The first of these rules covers the cases that the u(kLitem was generated
inside the o-item of the 6-Asg-item where the u(k,ILitem was generated. The
second rule applies when the u-item has been generated earlier. In case of a
global reduction, we can simplify the latter rule. This is the case since the
u(k)-item will meet the (I; n) anyhow after following another, more direct

path. The segment-u-destruction rules then becomes:

Definition 5.9 (segment-u-destruction rule for global reduction:)
(t,u(l,k)) (l;n) -'>q (/;n) ifk > n.

74

6 Parameters for different systems

In the preceding chapters we sketched the general structure of a system of
typed lambda calculus. We showed that this system has enough expressive
power for the description of various existing system, ranging from Automath
like systems to singly-typed Pure Type Systems.

In order to be able to use our system in different applications, it is
required that a number of parameters is adjusted. In the present chapter we
give an overview of the different parameters, with references to the section
where they are introduced or where a certain choice is made.

1. Operators

The "parameters" regarding operators establish the admitted collection
and the appearance of these operators.

In Section 2.1 we already opened the possibility to use different opera
tors. Both the abstraction operator A and its mirror image, the application
operator 8, can be indexed, if one desires so. In Section 3.4 we used this
possibility for the first time, in distinguishing local and global reduction.
For this purpose we suggested a difference between Aloe and Ag10'

In Sections 4.2, 4.4 and 4.6 we actually employed this possible variation;
firstly, by rendering the II and the A of Pure Type Systems by Al and A2,
respectively, and secondly by regarding an infinity of A'S: AI, A2, In
the same section, we mentioned a possible difference between application
operators 01 and 02'

But apart from the A('S) and the o(,s), we introduced other operators. A
minor extension was caused by the introduction of search items (and (*' as
was done in Section 2.4. A rather central notion, however, is the a-operator,
introduced in Section 3.2. We used this operator with upper indices: a(i).
Another operator, related to the a-operator, is the update operator 'P, used
with a. double upper index: 'P(k,l).

Moreover, in Section 4.2 we employed the type operator T, as an ex
pedient for the construction of the canonical type of a given term. In the
"context free" version of T-reduction (Section 4.3) we also introduced the
operator {j.

Finally, in Chapter .5 we used the operator Asg as a binding A-operator for
segment abbreviations. In Segment 5.3 a variant of the a-operator appeared,
this tilne with two arguments.

By each choice concerning these operators, the system changes. In the
report we lnelltioned n..\6~terms, f!;'cO"Ip-terms and fb"cUIpTiJ-terms. But other

combination are possible, as well.
As soon as an operator like a is incorporated in the system, it becomes

to some extent a first class citizen. The operators A and 8, possibly indexed,
are first-class citizens in every system. But for the other operators one has to
decide to consider them as such. Such a choice will also affect the formation
conditions. For example, for a "first class" a one should add a rule like the
following:

s f- t s(ta(i)) f- tf substitution condition
sf- (ta(i))t f

2. Variables

As to the set of variables, there are also some parameters which have to
be chosen. First, one has to decide whether one desires to adhere to name
carrying variables like x and y, or to use de Bruijn-indices, being natural
numbers (see Section 2.1). Another choice concerns the variable (or is it a
constant?) 6: is 6 a special symbol or is it rendered invisibly? In the latter
case one has to be careful in distinguishing terms ending in s and segments,
as noted in Section 5.l.

Finally, in the same section we suggested the use of variable items instead
of ordinary variables and/or segment variables.

3. Degrees

Different choices are possible as to the degrees permitted. As we demon
strated in Sections 4.4, 4.5, 4.6 and 4.7, one often restricts the degrees. This
subject can be considered a sub-topic of term construction (viz. in the vari
able condition), hence we may skip this paragraph and continue with the
next one.

4. Term construction

Important parameters are the ones required for the selection of the "cor
rect" (or admissible) terms out of the set of all terms. The "correctness
rules" concerning these choices have been introduced in Section 2.5. Here
the variable condition, the abstraction condition and the application condi
tion were meant to select the terms that "behave well" in certain respects,
e.g. as regards the types: is every "argument" (8-item) related to a "func
tion" (A-item) and does the argument match the domain of that function?

Many examples of different versions of these three kinds of conditions
have been discussed in the report. See Sections 2.5, 4.2, 4.4 and 4.5.

76

As noted just now in Subsection 1, there is a possibility to add term
construction rules for e.g. a- and <p-items.

5. Reductions

j3-reduction

An important choice regarding the relation of j3-reduction is, whether
one chooses the standard j3-steps (t1b)(t2Az)t3 -> t3[X := t1], or the fine
structure induced by simple a-steps. In the latter case, one-step j3-reduction
is a composed reduction (see Section 3.4).

Another choice is the one between global and local j3-reduction, as ex
plained in Section 3.1. A combination is possible, as well, as is shown is
Section 3.4. In the same section we introduced void j3-reduction.

Finally, an important decision is whether one desires to use the ordinary
j3- reduction, starting from boA-pairs, or the generalized j3- reduction, which
also allows reductions on the basis of a boA-couple. For this subject, see
Section 3.5.

'I-reduction

In this report, we did not consider extensional or 'I-reduction. The main
rule for one-step 'I-reduction is:
(t1Az)(x5)t2 ->~ t2 if x does not occur free in t2.

Hence, 'I-reduction amounts syntactically to a kind of void A-5-removal,
where the b-item concerned has a special form: its body only consists of a
variable, which is bound by the A-item under consideration.

(The name-free version of this reduction rule is:
(t1A)(lb)t2 ->~ (<p(-1))t2 if t2 contains no reference to the mentioned A.)

It may be considered to be a parameter of the system whether one in
corporates 'I-reduction or not.

a-reduction

As to a-reduction, one has to decide whether the "update-neglecting"
form of Section 3.2 is chosen, or the general, "update-providing" one of
Section 3.3. Yet another version is the a-reduction described in Appendix C.

In making this choice, one also has to consider whether a-items are first
class or second-class citizens, as remarked in Subsection 1 above.

T-reduction

For r-reductions there are many possiblities:
whether to use canonical types or not, with important consequences

for the conditions in term construction (see Sections 4.2, 4.4, 4.5 and 4.6);

77

- whether to allow II-application (and the corresponding Ihrr-reduction),
or not, a decision which again has major consequences (see Section 4.2 ff);

- and, less important, whether to employ ordinary ("context-sensitive")
or general ("context-free") type reduction (see Sections 4.2, 4.3 ff);

-finally, type-inclusion mayor may not playa role (see Remark 4.18).

Again, one has to decide whether r-items are first-class or second-class.
In the former case, they are part of the language and should be treated
consistently as such. In the latter case, T-items are in a sense "meta", which
has consequences for the formulation of the theory.

6. Segment abbreviations

In Chapter 5 we explained why segment abbreviations may be profitable.
Hence, we have here another "parameter" for the system: incorporate seg
ment abbreviations, yes or no. If we do, a differentiation between global and
local substitutions for segments is possible (see Section 5.2).

7. Reduction strategies

A parameter which is not of importance for the system as such, but
which does have consequences for an implementation, is the choice for the
various reduction strategies.

In Section 3.6 we discussed a number of well-known strategies for f)
reduction. However, there are many other strategies, for f)-reduction, but
also for each of the other reduction introduced in the report, and in particu
lar as regards the order in which the different strategies (e.g. for (J-, <p- and
r-reduction) aJ'e intermingled.

We shall not discuss these matters here.

Remark 6.1 It will be clear that not all the parameters sketched above
are independent. The consequences of the different choices and their inter
dependency is a subject for further research.

78

7 Conclusions

In this report it was our intention to investigate some structural aspects
of term construction in typed lambda calculus and to identify a number of
concepts that are of importance for the use of typed lambda calculus.

We started in Chapter 2 with a novel description of term formation, re
garding abstraction and application as binary operations. Two notational
features are of great advantage in this respect: the first is to give the argu
ment prior to (i.e. in front of) the function; the second, of minor importance,
is that a type precedes the typed variable. We also proposed a change in
bracketing with respect to "operators" like .\ and b, writing e.g. (t,.\)t2 in
stead of (t,.\t2)' This gave rise to items like (t,.\), prefixed to a term t2' In
this manner we fostered the modularity of the notation.

The item-notation of terms enabled us to create a term progressively, or
module-like, so to say, in analogy with the manner in which mathematical
and logical ideas are developed. Variables and variable bindings obtained a
natural place in this setting, both in the name-carrying and in the name-free
version, the latter by means of de Bruijn-indices. The notions of segment
and subterm fit nicely in this pattern.

The section on the restriction of a term to a variable shows that these
notational changes have advantages, in particular in establishing which part
of a linearly written term may be of influence for a given variable occurrence:
this part is (but for some brackets) precisely the string of symbols that
precedes this occurrence in the term.

We also gave an alternative way of term construction, limiting the set of
tenns with a view to the types. This way of term construction was based
on three rules, for variables, abstractions and applications, respectively. In
each of these rules certain conditions can be specified in order to restrict the
generation of terms, e.g. with a view to the "well-typedness" of a term.

In Chapter 3 we focussed on the relation of reduction. We differenti
ated between several versions of jJ-reduction, for example between global
jJ-reduction (the ordinary one) and local jJ-reduction, necessary for unfold
ing a defined name in only one place.

In describing these versions of jJ-reduction, we defined the notion of step
wise substitution, being the utlnost refinement of the reduction-concept. For
this step-wise reduction we introduced a-items as a part of the term syntax,
thus making substitution an explicit procedure. The step-wise character of
the corresponding reduction relation and of many other described procedures

79

enables a flexible approach, in the sense that the user may choose how to
combine basic steps into combined ones, depending on the circumstances.
For instance, global iJ-reduction amounts to the generation of one a-item,
and subsequently chasing this item along all possible paths in the direction
of the leaves of the term tree, until no descendants of the original a-item are
left. For local iJ-reduction the a-item has to follow precisely one path, in
the direction of the variable that is chosen as a candidate for substitution.

It is our conviction that the step-wise substitution as introduced in this
report is easier and more manegeable than proposals for explicit substitution
that have recently been given in the literature (see e.g. [Abadi et al. 90)).
Our approach is very close to intuition, yet the formulation remains simple.

When using de Bruijn-indices, we have to make sure that the references
in a term are updated during or after a substitution. For this purpose we
introduced <p-items, which again do their job in a step-wise fashion.

We also gave a general step-wise substitution, with the purpose of keep
ing the references (by de Bruijn-indices) unimpaired, also inside the a-items.
The resulting reduction relations are clear and relatively simple. The rela
tions "behave" nicely, both separately and in combination. (Note, however,
that these matters are more complicated in the usual iJ-reduction setting,
where boA-pairs "disappear" immediately; in Appendix C we will mention a
few difficulties occurring in this case.)

It can be a well-motivated wish to keep a-items at a certain place in a
term, without proceeding with the a-reductions for which they are tailored.
This can be the case with lazy evaluation. Moreover, there can occur a void
boA-segment which is not (yet) removed. In both cases neW iJ-reduction may
be hampered.

Both subjects can be trea.ted by extending the notion of iJ-reduction
in such a manner that not only boA-segments can generate a a-item (or a
iJ-reduction), but such that also boA-couples, consisting of two matching b
and A-items, can do so. The description of this generalized reduction can be
given rather smoothly in item-notation, which is in contrast with the normal
notation, where matching does not occur in a nested way. We demonstrated
this with an exanlple. It is in particular the "argument-before-function"
notation that turns out to be advantageous in this respect.

The generalized form of iJ-reduction is worth to be studied separately.
Part of this work has already been carried out before by the author in his
Ph.D. thesis.

We also showed that the usual strategies for iJ-reduction can be expressed

80

concisely in our setting.

In Chapter 4 we looked at the role of the types. For typable terms we
defined a canonical type, which can be effectively computed in a straightfor
ward manner. The usual relation tl : t2, i.e. term tl has as one of its types
the term t2, can also be expressed by means of this canonical type typ and
,a-reduction, viz. as typ(ttJ ={3 t2'

We showed how type systems such as Barendregt's cube of Pure Type
Systems can also be defined with this typ-operator in a rather uniform
way. We also presented a number of Automath-systems in the proposed
setting, which resulted in concise definitions for complicated systems. Next,
we explained how the abstraction condition and the application condition,
present in oUl' alternative term construction rules, can be phrased in cor
respondence with the PTS-rules. (It seems, however, that only so-called
singly-sorted PTS's fit in this frame. See [Barendregt 9xJ.)

It turned out that oUl' approach is flexible enough for the expression of
many type systems. Also, generalizations, for example leading to higher
degrees, are straightforwardly attainable. A difference between functions
(A-terms) and dependent products (II-terms) can be made by adapting the
appropriate rules, whereas both kinds of abstractions still fit in the Same
framework, since they may be treated as two similar kinds of A-abstraction.
This turned out to hold to such an extent that application and ,a-reduction
become also possible for II-abstractions, thus simplifying and unifying the
patterns. Moreover, generalizations are here possible as well, which may be

advantageous.
We concluded Chapter 4 with a discussion in which we gave arguments

why higher degrees may be useful in applications of typed lambda calculus.

In Chapter 5 we introduced segment variables and segment abbrevia
tions, which are very useful in the development of coded mathematical texts.
We explailVed use and meaning and gave examples about their usefulness.

The abbreviation facilities that we gave fit neatly in oUl' setting. The
result is a simple and direct mecllanism, which, in OUl' opinion, is more
manageable than earlier proposals in this direction (see e.g. [de Bruijn 72J
or [Balsters 86]). There are some complications as to referencing and step
wise substitution, but these can all be solved, again in a straightforward
fashion. It appears that we do not need intricate reference transforming
mappings, since a slight extension of the earlier given rules for <p-items can
do the job as desired. A similar remark holds for the a-items, which only

81

have to be temporarily "frozen" in order to attain the right place in the
term (a segment variable).

Nevertheless, we think that this is one of the parts of the report that is
not yet completely elaborated. We plan to give this subject more attention
in the future.

Finally we demonstrated the power of the proposed setting by listing the
possible "parameters" which enable the customer to adjust the system to
his or her personal taste: everyone can compose one's favourite system.

Concluding, we note two things. The first is that, in our opinion,
we showed that the drawbacks of de Bruijn-indices need not be greater
than those of the usual name-carrying variables (think of name-clashes,
a-reduction, the problems with non-unique binding variables, etc.). This
becomes especially evident in our approach. The advantages of de Bruijn
indices, on the other hand, are obvious, and can be exploited.

As a second remark we emphasize that our report mainly deals with
the exposition of a number of ideas about term construction, reduction,
substitution, typing and segment abbreviation in typed lambda calculus.
The report does not contain any forma'! justification of the soundness of its
proposals. For example, it has not been investigated whether well-known
theorems like the Church-Rosser theorem, the subject reduction theorem
or the strong normalization theorem do hold for any of the systems under
discussion. Especially for extensions like the system with explicit step-wise
substitution and <p-items, or with segment variables and segment abbrevia
tions, this justification work is necessary in order to obtain the conviction
that all these new features are doing what they are supposed to do. A lot
of work in this area still has to be done.

Finally, we refer the reader to the example in Appendix A for getting an
impression of where all the above-described notions may lead to.

82

8 Acknowledgements

First of all, I have to pay my tribute to Dick de Bruijn, who devised the
mathematical language Automath (see [de Bruijn 70]), now approximately
25 years ago. His scientific work in this area inspired a lot of research,
especially in typed lambda calculus. Many ideas exposed in this report
are due to de Bruijn, and my own contributions have benefitted from his
influence.

Secondly, I am most grateful to Bert van Benthem Jutting, who read
several draft versions of this reports very thoroughly, and gave suggestions
for major improvements of various kinds. Moreover, I like to express my
gratitude to my colleagues Kees Hemerik and Fairouz Kamareddine for their
valuable remarks and their contributions to the final result.

Finally, I thank Jan J aap van Horssen for many valuable remarks after a
careful reading of parts of this report, which he did as a student in computer
science.

83

A An example

In order to demonstrate some of the features discussed above, especially
those regarding segment abbreviations, we give a short example. We propose
a system that has in principle similar power as Coquand and Huet's Calculus
of Constructions (or AC, see [Coquand and Huet 88]).

The system in this example has the following general features:

• In order to keep close to this system AC, we do not employ explicit
(step-wise) substitution as explained in this report.

• Hence, we have ordinary ,a-reduction and ,a-conversion (we do not use
the generalized version of ,a-reduction as defined in Section 3.5).

• Moreover, we use variable names like x, y, .. " and no de Bruijn
indices.

• However, we do incorporate segment abbreviations, as discussed III

Chapter 5.

• There is a distinction between II's and A's, (i.e., AI'S and A2's), re
specti vely.

• The maximal degree is three.

• Deviating from AC, we use a canonical type operator typ, with the
usual notational convention that typ2(t) == typ(typ(t)), etc.

• Again deviating from AC, we have II-application and the corresponding
,am-reduction.

Hence, we deviate in several respects from the official AC.
Note that we use three A's, viz. AI, A2 and Asg . (In the second part of

this example, we write II for Al and A for A2.) Moreover, we have one 6,
and as a consequence of what we said in the previous paragraph, there will
be no a's, no <p's and no r's. The last three operators may only be used in
the meta-language.

The rules of this system have all been given and explained before. We
repeat the rules below, referring to the section of this report in which they
have been described.

84

The construction rules for terms are the following. (When we use deg
or typ in a condition, we implicitly require that these operations are indeed
defined for the terms under consideration.)

variable construction:

1 < deg(sx) < 3
sf-x

(Cf. Sections 2.5 and 4.6.)

abstraction construction:

S(tA) f- t'
s f- (tA)t'

abscon

where, for A == Ak and k = 1 or 2, respectively,

abscon IS· .. '
. {typi(t) =f3 0 for i = 1 V i = 2·

t yp3(t') =f3 0 for J = k V J = k + 1

(1)

(2)

This is the same abstraction condition as phrased in Section 4.6, for AC.
However, we do not use 81 and 82. To be precise: in AC both SI and 82 can
be either * or o. We identify 0 with o. Moreover, we assume that * : 0, as
in Section 4.4, and we assume that * is the only inhabitant of o.

Hence, the condition "t : 81" can be replaced by typ(t) ={3 E- (in the case
that 81 == 0) or typ(t) =f3 *, which is equivalent to typ2(t) =f3 £ (in the
case that 81 == *).

Analogously, in the case that A == AI (i.e., II), the condition "t' : S2"

becomes typ(t') =f3 E or typ2(t') =f3 E. In the case that A == A2 (i.e., the
ordinary "functional" A), the conqition "t' : tf! : 82 for some til" becomes
typ2(t') =f3 E or typ3(t') =f3 E.

The calculation of typ(t) should be excuted via the rrules as given in
Def. 4.7 and Def. 4.8 of Section 4.2.

application construction:

sf-t s(to) f- t' appcon
(3)

s f- (t5)t'

where

85

appcon is: typj(t') =f3 (typ(t) A,)t, for some t, and j£{O, 1}.

(Again, the calculation oftyp(...) is based on the T-rules. Cf. Section 4.6
for this version of the application condition.)

It is not hard to see that both the typing relation and the reduction
relations in the presented system are degree-consistent.

The example that we give is very short and is taken from logic. The logic
is based on the CU1'1'y-Howard-De Bruijn isomorphism, that is the notion of
"propositions-as-types". (Cf. Section 4.7.)

The example only concerns the following subjects:
- a class * of propositions is taken as primitive,
- in this class the notion falsum (= absurdity), denoted as .1, is intro-

duced as a primitive notion,
- the axiom scheme *" (for aU propositions a) is stated (i.e. "ex falso

sequitur quodlibet"; when absurdity holds, then every proposition holds),
- next, the notion of implication a =? b is defined as the class of all

mappings from a to b, hence sending proofs of a to proofs of b,
- and the notion of negation ,a is defined as a =? .1,

- finaUy, the following logical theorem is expressed and proved:

a ,a

b

Remark A.I In this example, .1 is introduced as a primitive notion by
Ineans of an axiom. This is, of course, unnecessary in ,\C, since the contra
diction .1 can easily be defined in AC, viz. as (,IIa)a.

However, for the case of the example we introduce .1 as above.

In a kind of "Mathematical Vernacular", adopted from the style of the
Automath-family, this piece oflogico-mathematical text can be expressed as
follows. For the sake of clearness, we divide the text in three parts (although
this is by no means necessary):
1. the axiomatic part,
II. the definitional part,
III. the theorem-and-proof part.

1.
let, be by axiom the class of all propositions.
let .1 be by axiom a proposition.

86

let a be a proposition
and let t be a proof of -1;

then -1-el of a and t is by axiom a proof of a.

II.
let a be a proposition
and let b be a proposition;
then '=;.' of a and b is by definition the class of all mappings from a to
b.
let a be a proposition;
then ',' of a is by definition '=;.' of a and L

III.
let a be a proposition
and let b be a proposition,
let x be a proof of a
and let y be a proof of ',' of a;
then pr of u, b, x and y is by definition -1-el of band y of x,
being a proof of b.

This text will be given, in its entirety, as one term in the system de
scribed above. For convenience' sake, we write this term as a concatenation
of separate items, corresponding with the different axioms, definitions and
theorelns in the text. Ivlol'eover, we assume that the reader who is familiar
with PTS's will be pleased when we write II instead of Al and the ordinary
A instead of A2.

Part I gives the following three A-items:
(A.)
(*-'.L)
((*IIa)(-1IIt)a A1-_<l)

Its intuitive contents will be clear: * is introduced as a term of type £

and -1 as a term of type *; finally, -1-el is presented as being a primitively
given, fixed function, sending u of type * to an element of the set of all
functions from -1 to a (this set is coded as (-1IIt)a). Otherwise said, -1-el is
a function sending a of type * and t of type -1 to a. This function causes
any proposition a to be inhabited as soon as -1, the absurdity, is inhabited.

Part II, coding the definitions of implication and negation, can be ex
pressed by the following four items, being two pairs of ('definitional') 8-A-

87

segments:
((*Aa)(*Ab)(aII~)bb) ((*IIa)(*IIb)* A",,)
((*Aa)(H)(ab) =;. b) ((*IIa) * A~)

Here =;. is defined as the product (*Aa)(*Ab)(aII~)b; this product is 'poly
morphic', in the sense that it only becomes a real product after application,
in this case to two arguments. To be precise, for given c and d of type *, the
term (db)(cb) =;. ,6-reduces to the dependent product (in this case, the set
of all functions) (cII~)d, functions which send inhabitants of c to inhabitants
of d. The type of =;. is (*IIa)(*IIb)*, the class of all functions sending pairs
(a,b) of 'propositions' to a "new" 'proposition' (in this case: a => b).

Similarly, , is defined as the 'polymorphic' negation (*Aa)(l.b)(ab) =;.;
thus, (cb), ,6-reduces to (l.b)(cb)=;.. The type of, is (*IIa)*, the class of
all functions sending a 'proposition' a to a "new" 'proposition' (in this case:
,a).

The reader may check that the following chain of ,6-reductions is correct
with respect to the contextual segment given so far:
, -7fJ

(*Aa)(H)(ab)=;. -7fJ

(*Aa)(Hl(ab)(*Aa)(*Ab)(aII~)b -*fJ

(*Aa)(aII~)l..
Hence,

(ab), =fJ

(aII~)l..
So (ao), (or ,a in prefix-notation) is ,6-convertible to (aII~)l. (or, in

infix-notation, a =;. 1.; it is easy to check that (aIIz)l., in its turn, is ,6-
convertible to (l.b)(ab) =;.).

The final part III of the text can be translated into one b·A-segment:
(('Aa)(* Ab)(aA~)((ab), Ay)((xb)y b)(M)l. - el b)
((*IIa)(*IIb)(aIIz)((ab), IIy)b Ap ,)

The main A-item of this segment contains the theorem:
(*IIa)(*IIb)(aII~l((ab), IIy)b.

The contents of this theorem are that any inhabitant of this term, being
a proof for the theorem, must be a function which, for a and b of type *,
for x of type a and y of type (ab)" gives an inhabitant of (= a proof of)
the type b. Translated in more customary phrasing: the desired function
must be such that for any pair of 'propositions' a and b and for any pair of
'proofs' of a and -,(a), we have a 'proof' of b.

This theorem indeed has an inhabitant (and hence has a proof). This

88

inhabitant can be found in the main 6-item of the 6-A-segment:
(*Aa)(*Ab)(aAz)((a6), Ay)((x6)y 6)(M).l-el.

In order to show that this term is indeed a proof of the theorem, we
have to show that its type is ,a-equivalent to the term coding the theorem.
Otherwise said: we have to demonstrate that this 8-A-segment, in particular,
obeys the application condition. See below.

The obtained coding of the text is, indeed, one long term. For the sake
of completeness, we give the full term:

(A*)
(*A.1)
((*IIa)(.lIIt)a A.1_<l)

((*Aa)(*Ab)(aIIz)b8) ((*IIa)(*IIb)* A=»
((*Aa)(H)(a6)=} 8) ((*IIa)* A_)

((*Aa)(*Ab)(aAz)((a8), Ay)((x8)y 8)(b8).l-el8)

((*IIa)(*IIb)(aIIz)((a8), IIy)b Apr) (4)

It is not hard to check that this terms obeys the conditions for term
construction as given above:

variable condition:
The term is closed and all degrees are::; 3.

abstraction condition:
Left to the reader.

application condition:
Exam pies are:

typ(*Aa)(*Ab)(aIIz)b == (*IIa)(*IIb)*,
since:

(T)(*Aa)(*Ab)(aIIz)b
->r (by DeL 4.9)
(*IIa)(T)(* Ab)(aIIz)b
->r (by Def. 4.9)
(*IIa)(*IIb)(T)(aIIz)b
-+r (by Def. 4.9; (aIIz) reduces to the empty segment)
(*IIa)(*IIb)(T)b
-+r (by Def. 4.7)

89

and

typ(*Aa)(H)(ao) ,",= (*IIa)*,
since:

(T)(*Aa)(H)(ao) '"'
--;7 (by Def. 4.9)
(*IIa)(T)(H)(ao) '"'
-+7 (by Def. 4.7;

(T),", =7 (*IIa,)(*IIb')* =7,/3 ((T)a IIa,)(*IIb,)*, so
(T)(ao) '"' =7 (*IIb,)* =7,(3 ((T).1 IIb,)*)

(*IIa)*

Other checks of the application condition, like the one mentioned above:
typ (*Aa)(*Ab)(aA")((a8)~ Ay)((x8)y 8)(bO).1-el =(3

(*IIa)(*IIb)(aII")((a8)~ IIy)b,
are left as an exercise for the reader.

The complete term 4, as given above, is not very complicated. Yet, there
are already several segment duplications. For example, the segments (*A a)

and (*A a)(*Ab) occur repeatedly; the same is the case for their respective
types: (*IIa) and (*IIa)(*IIb).

We already mentioned in the beginning of Section 5.1, that there is no
duplication of the last kind in the usual PTS-style, since types of segments
are not often represented there. This is a consequence of the use of contexts
r in the format r f- t, : t2' Such a context contains segments like (*Aa)(*Ab).
One could say that such a f has a double function: it incorporates at the
same time a segment like (*A a)(*Ab) and its type (*IIa)(*IIb).

On the other hand, different contexts f" f2, ... , used in a derivation,
present similar duplications as in our system. Hence, for all such systems,
in PTS-style or in our style, context abbreviations are remunerative.

The last-mentioned remark does apply a fortiori when we have terms
translating longer texts than the very short one in the example above. Seg
ments then can easily consist of many items. Moreover, in an average term
translating a piece of mathematical text, the amount of duplications is very
bothersome. In Section 5.1 we explained why duplications may occur so
often.

90

Segments tend to be repeated almost literally. As a matter of fact, it
turns out to be quite natural (as a consequence of the usual structure of
a mathematical reasoning) that different segments occur stackwise in the
complete term; that is to say, an occurrence of a segment (t,A.,) ... (inA ••)
may be followed rather closely by the same segment, or by a segment which
is one item longer: (t,A.,) ... (in+1A •• +,), or by a segment which is one item
shorter: (t,A.,) ... (tn_lA •• _,), and this may happen again and again. (The
same holds if some of the A'S are replaced by II's.)

De Bruijn noted this very early and he took the above into consid
eration when he designed the mathematical language Automath. He in
vented a clever abbreviation mechanism that works nicely, as is e.g. shown
in [van Benthem Jutting 77J.

The segment abbreviations which we proposed in Chapter 5 can solve
the same problem, to a great extend. We shall apply it to the example given
above. Since that example is very simple, the gains, if any, are in this case
only minimal. However, in other circnmstances the profits may be great.

The term given below is the same as term 4, but with segment abbrevi
ations.

We add one more abbreviation in this translation process: when, e.g.
the A-segment (*A.)(*Ab) is abbreviated by (b; 2), then we abbreviate the
corresponding II-segment (*II.)(*IIb) by ((r)b;2). This is quite natural,
since the r-transition rules are such that (r)(*A.)(*Ab)t' """"*7 (*II.)(*IIb)t"
(see Definition 4.8).

We assume that more comments are unnecessary.

(A.)

(*A.L)
((*A.)O) (Asg a)

(((r)a; l)(.lIIt)a A.l.-d)

((a; l)(*Ab)O) (Asg b)

((b; 2)(aII.)b 0) (((r)b; 2) * A=})
((a;1)(H)(a5)=:- 0) (((r)a;l)* A_)

((b; 2)(aA.)((aO)-, Ay) 0) (Asg c)

((c; 4)((x6)y 6)(bD).l-el 6)

(((r)c;4)b Apr)

91

(5)

In a final step, we change the lay-out of this term in such a manner
that it resembles an Automath-text. At the same time, for the sake of
brevity we remove those variable items of the form ((T)x;n) for which the
corresponding variable item (x; n) figures in the same line. Instead, we
shall use a horizontal stroke: _, which should be considered to refer to the
segment variable (x; n), with (T) added in the left-hand side. This is again
a way to avoid unnecessary duplications; the three horizontal strokes in the
version below should read: ((T)b;2), ((T)a;l) and ((T)c;4), respectively.

Thus doing, we come closer to both Automath and to the general PTS
framework, which uses contexts r.

The following version will now speak for itself.

(A.)
(* A.tl
((*Aa) 0) (ASM a)
(((T)a; l)(HIt)a A1._,z)
((a; 1) (*Ab) 0) (As~ b)
((b;2) (aII.)b 0) (-* A=»
((a; 1) (H)(ao) => 0) (-* A~)

((b;2) (aA.)((ao)~ Ay) 0) (Asg c)
((c;4) ((xo)y o)(bb).l-el 0) (_b Apr)

92

B An abstract grammar for terms

We give an alternative definition of terms in the abstract grammarformat as
used e.g. by Barendregt (cf. [Barendregt and Hemerik 90]). Here V stands
for the set of variables, 0 for the set of operators, 7 for the set of terms
and I for the set of items. We use S for the set of segments.

Definition B.l (variables, operYltors, terms, items, segments)

V=cI1121···
0= 81 A I ...
7=VII7
I = (7 0)
S=0I IS

Next, we give an alternative definition of the body (body) and the end
va,riable (endvar) of a term and the body (body) and the end operator
(endop) of an item:

Definition B.2 (body, end variable, end operator)

body(t) = { ~ body(t')
ift E V
if t = it' for some i E I, t' E 7

{
t if t E V

endvar(t) = endvar(t') ift = it' for some i E I, t' E 7

body(i) = t if i = (tw) for some t E 7, w E 0

endop(i) = w ifi = (tw) fOl' some t E 7, w E 0

93

C An alternative step-wise substitution

We mention another possibility for combining the general step-wise substi
tution described in Section 3.3, and ,8-reduction. In this case, we use a-items
instead of a-items. Instead of generating a a-item from a 8-A-segment, we
replace such a 8-A-segment by a a-item, which has a global substitutional
character.

To be precise, we replace the segment (t,8)(t2A) in term t by the 0'

segment (tla(l)). Here the symbol a marks a term (viz. td that has to be
substituted for the appropriate variables.

(Note that the type of these variables, t2, is no longer present in the term
t, since the originaI8-A-segment has been destructed. This type information
may, however, be useful. In case one desires to keep track of these types, one
should choose another solution, for example the generation of a 8-X-segment
instead of a a-item; the rules below then must be adapted in an obvious
lnanner.)

The substitution in this form is immediately suited for the well-known
version of ,8-reduction, in which also an abstraction-application pair in the
redex (we would say: a 8-A-segment) is destructed.

When choosing this type of step-wise substitution, one should take care
of a number of things. Firstly, the bond that the end A of the 8-A-segment
has with some bound variables, should be adopted by the a-item. Secondly,
the other existing bonds between binding A'S and variables should not be
disturbed in the transition of the new a-item through the branches of the
tree. All this can be assured by the procedure described in the following
two definitions.

Definition C.I (a-reduction)
(general a-generation rule:)
(t18)(t2A) ->;y (<p(-1))((<p)t,a(I))
(general a-transition rules:)
(tl a(i))(t2 A) ->;y ((tl 0'(i))t2A)((<p)tl ,,(i+I))
(t,u(i))(t 28) ->;y ((t l"(i))t 20)(t,,,(i))
(a-destruction rules:)
(tla(i))i ->;y tl
(tla(i))x ->;y x if x cJ i.

Note that these rules are adequate for global, maximal ,8-reduction of
terms which originally are in QM. Moreover, a's do not count as A'S in

94

the search for a binding A of a variable occurrence, but note that a's have
binding "power" themselves.

The final problem that we have to consider is, how the bindings between
A's and variables change.

Definition C.2 (the binding A for a bound variable)
In a term t with a-items and ",-items, the binding A for a bound variable

(occurrence) x can be found as follows.
First find t' == t r x.
Now x is bound by the end operator a(i) of a main a-item s' of t', if

there are precisely x - i A-items between s' and x (intermediate a-items are
not counted; main ",(h,il-items count for -i A-items, but only in case the
"counter" has a value greater than k at the moment that it "passes" this
",(h,i) -item during its travel from right to left).

When there is no a(i) binding x, then x can also be bound by the end A of
a main A-item s of t', namely if there are precisely x - 1 A-items between s
and x (again, a-items are not counted and ",(il-items count for -i A-items).

If neither is the case, then x is free.
In the original term t, the variable x is bound by the A or a corresponding

with the one in t r x, or x is free in t if it is so in t r x.

The described search for a A binding an occurrence XO in a term t can
also be described by means of an inverse search item, as in Section 2.4:

Definition C.3 (alternative (.-reduction)
((.-generation rule:)
XO -->(. (d"))xO
((.-transition rules:)

(t'A)(di)) --7(. ((Y-l))(t'A) ifj > 1

(Cdi))t'A) --+C. (di))(t'A)

(t'a(i))((Y)) --+(. (di))(t'a(i)) if j fcc i

(((Y))t'a(i)) --+ (. (di))(t'a(i))

(t'8)((Y)) -+(. ((Y))(t'8)
(((YJ)t' 8) --+c. ((yJ)(t' 8)
(",(h,i))(dil) --+(. ((y+hJ)(",(h,iJ) if j > k,

(",(h,iJ)(diJ) --+(. (diJ)(",(k,i)) if j :S k,
((.-destruction rules:)

95

(t' A)(d')) --+,* (d)
(t'a(i))(cY)) --+,* (t,~(i)) if j "" i.

In a term t with a-items originating from a-generations, every bound
variable has precisely one binding place, which can be either a A or a a.

Remark C.4 With this alternative step-wise substitution, things run not
so smoothly as with the step-wise substitution as described in the body of
this report. The reason is, that the 'I'-items with negative index play an
unpleasant role.

As was shown in [van Horssen 92], there are two kinds of undesired ef
fects. We give an example of both.

(1) Firstly, the transition of a 'I'(-ILitem over a a-item can give rise to
ambiguity in binding. Consider the following 'P-reduction:

(1"(-1))(('1') 10'(1))(1A)((16)2)3 --+",

(('1'(-1))(1") 10'(0))('1'(-1))(1A)((16)2)3 -*",

(10'(0))('1'(-1))(1A)((16)2)3 --+",

(10'(0))(('1'(-1)) 1A) ('1'(1 ,-1))((16)2)3 --+",

(10'(0))(OA)(1"(1 ,-'))((16)2)3 --+",

(10'(0)) (OA)('1'("-'))((16)2)3 --+",

(10'(0))(OA) (('1'(1,-1)) (16)2)(1"(1,-1))3 --*",

(10'(0))(OA)((('1'(1 ,-1)) 16)('1'(1 ,-1))2)2 -*",

(10'(0)) (OA)((16) 1)2

The variable 2 in the last line but one has become (the second) 1 in the
last line. The binder of this 1 should be the 0'(0) in the a-item. However, the
binding has apparently been transferred to the A, which is clearly undesired.
The reason for this mismatch is the index 0 of the 0', caused by the transition
of the 'I'-item. It will be clear that a variable 1 directly after a O'(OL A_
combination is always related to the A, even if the 0'(0) is meant.

Hence, it is undesirable to allow the transition of ('I'(-1)) over a O'(1Litem.
And this is not the only case where the transition of a 'I'-item over a a-item
causes trouble.

(2) There is a second disadvantage in this alternative step-wise substitu
tion, namely that a-conversion returns "in disguise". This is caused by the
fact that a generated O'(iLitem takes over the bindings originally provided
for by the A of a A-6-segment. Consider the following two terms:

t, == (t'O'(5))5,

96

It will be clear that t, and t2 are in a sense equivalent, both reducing in one
step to t'. This equivalence is so strong that one is tempted to identify these
terms. This resembles the strong desire to identify e.g. Az.x and Ay.y, whiclt
is actually the reason for the definition of alpha-conversion. It will be clear
that this "return of alpha-conversion" is against the basic principles of this
report, especially in combination with de Bruijn-indices.

These annoying matters concerning the alternative step-wise substitution
still have to be investigated in greater detail. This is subject for further
research.

A possible solution is to omit the <p(-1l.items, and to give the O'-items the
"update power" of the <p(-I)-item. That is to say, the general O'-generation
rule then becomes:

and the (*- transition rule for a-items changes into the following pair of rules:

(t'cli))(d j)) -"c. ((Y-l))(t'a(i)) if j > i,

(t'cli))((Y)) -"c. (dj))(t'a(i)) if j < i.

The other (*-transition rules a,nd the (*-destruction rule remain unchanged.

N ate, however, that the sketched difficulties do only apply to the alter
native substitution presented in this Appendix. Items of the form (<p(-I))

were also present in the ordinary step-wise substitution, namely in the void
iJ-reduction (see Section 3.4). However, there they were harmless, and ex
actly because of this "voidness": such a <p-item with negative exponent was
only generated in case a boA-segment was destructed were the A did not bind
any variable. That turns out to be crucial for the "decent behaviour" of
these <p-items with exponent -1.

97

D A comparison with the explicit substitution of
Abadi, Cardelli, Curien and Levy

In [Abadi et al. 90], the Aa-calculus is introduced, where explicit substitu
tions are dealt with in an algebraic manner. We give a short survey of the
operators that the authors introduce and we discuss some features of the
equational theory that is proposed in the paper.

The authors use de Bruijn-indices and define substitutions as index
manipulations. A substitution is an infinite list of substitution instruc
tions, one for each natural number greater than o. For example, s =
{a';l, az/2, a3/3, ... } is a notation for the substitution of the terms ai for
the indices i. When s is considered as a function, then s(i), the "substi
tuand" for i, is ai. Another notation for sCi) is i[sJ.

Such an infinite substitution must be thought of as being a simultaneous
substitution of all ai for i.

It will be clear that infinite substitutions are meant as meta-notations for
actual simultaneous substitutions, the latter ones being finite and therefore
executable. In fact, for any term with de Bruijn-indices there is a maximal
number N that can occur as an index; as one can easily see, this number
N is equal to the number of A'S occurring in the term plus the number of
different free variables that occur in the term. Hence, an infinite substitution
for a given term can always be pruned to a finite explicit substitution.

Apart from id - the identity substitution {iii} or {l/l, 2/2, ... } - the
paper [Abadi et al. 90J introdnces three other index manipulations:

• i (shift), the substitution {(i+ l)/i}.

• ., as in a· s, the cons of a onto s; here a is a term and s a substitution.
The substitution a . s is the substitution {a/1, s(i)/(i + 1n, that is to
say: a is alloted to index 1, and all substituands sCi) are alloted to an
index which is one more than the original one (i). For example:
1·1= {1/1, i (1)/2, i (2)/3, ... } = id.

• 0, as in sot, the composition of sand tj here both sand t are substi
tutions, and sot = {t(s(i))/i}. For example:
1 a(a· s) = {(a· 8)(1 (in/i} = {(a· s)(i + l)/i} = {s(i)/i} = s.

(The examples are taken from [Abadi et al. 90J. Note how the operations
can be used for algebraic manipulations.)

98

With the help of our system, we can give a soundness prooffor the equal
ity axioms in [Abadi et al. 90J. Therefore we "translate" the above opera
tions into the notation introduced in the present report. We have no direct
means to render infinite substitutions, but we introduce parallel ,,-items for
this purpose. (As a matter of fact, we use the a-items of Appendix C; but
for convenience' sake, we drop the "overlille".)

Such a parallel ,,-item is an infinity of ,,(iLitems, one for each number
i > O. The notation that we use is (ti,,(i)). The "vector" upper index (,)
abbreviates a universal quantification. By (ti,,(i)) we mean the same as
Abadi et al. mean with the substitution {t1/1, t,/2, . .. }, i.e. the simultane
ous substitution ofti for i for all i. Similarly, (t",(O>1)) denotes the same as
{t,/2, t3/3, .. . }, and so on.

Hence, the definition ofthe parallel ,,-item (t",(i)) is that for any variable
k, (t",('))k = tk.

We may split snch a parallel ,,-item in a finite head and an infinite tail,
connected with the symbol Ell. For example:
(t",(')) = (it,,(l)) Ell (t",(i>l)).

Let a be a term, is] = (t",(i)) and]s'] = (t:,,(i)). Then:

o lid] = (i,,(i)),

o 111= ((i+1),,(i)),

o la· s] = (a,,(1)) Ell (li_1,,(0>1)) and

o Is 0 s'] = (tj,,(J))(ti,,(i)).

It is not hard to see that (tj"Ol)(t",(i)) = ((tj"(J))t,,,(i)), so that we have
an alternative translation for s 0 s'.

Moreover, it will be clear that ('1') and 1 (or (i + 1 ,,(i))) have the same
effect. The same holds, in general, for ('I'(k,l)) and (i + I ,,(O>k)).

We show that we can justify the algebraic manipulations of Abadi et
al. in this setting. When we do not see our system as a semantics for the
system of [Abadi et al. 90], but as a syntactic system in its own right, we
may note the following: the equations that the authors of [Abadi et al. 90J
give as an axiomatic basis for their equational theory, can all be derived in
our approach.

We claim that the introduction of parallel ,,-items is only apparently an
extension of the system that we discussed in the present report:

99

- the infinity of a-items can be reduced to a finite number for every given
term (we explained this above);
- the "parallel" (simultaneous) character of the substitutions is embodied
in our <p-items; this is the only "global" substitution operator for de Bruijn
indices that we need, the a-items being the vehicles for the substitution.

The latter property follows from the fact that we discriminate between
updating of de Bruijn-indices and actual substitutions. This distinction, ab
sent in [Abadi et al. 90J, simplifies matters considerably.

A comparison between the two systems gives the following results:

• The system of Abadi et al. is based on a set of algebraic equality rules,
which are treated with the usual term rewriting techniques. It only
works for the usual (global) ,8-reduction.

• Our system has a wider range of application, since it is also suited
for local reduction. Moreover, it seems that the separation of real
substitution ans simple updates makes things less complex; we also
have the feeling that our system is, in a sense, more "natural".

We give examples of the rules in [Abadi et al. 90J and their justification
in our setting.

• VarCons: l[a· sJ = a.
11[a· sJl = I(a· 8)11 = ((aa(l») Ell (ti_1a(i»))1 ->~ a.

• Abs: ('\a)[sJ = ,\(a[l· (so r)]).
[('\a)[s]] = (t;a(i»)('\)a ->~ ('\)((<P)ti_1a(i>1»)a,
since (tia(i»)('\)a -t~ (,\)((<p)t;a(i+1»)a for each i;
[,\(a[l· (so IlJ[= (,\)((la(1»)Ell ((<p)ti_1a(i>1»))a =
= ('\)((<P)ti_1 a(i>1»)a,
since Iso I[= ((j + 1 a(3»)tia(i») = ((<P)tia(i»).

• SCans: l[sJ· (T os) = s.
[l[sJ· (r os)J = ((t;a(i»)la(1») Ell ((tjam)ia(i>1») =
= (t , a('») Ell (t;a(i>l») = (t;a(i») = Is[.

The traditional rule of ,8-reduction has the following form in our system
(see the a-generation rule in Appendix C):

(t,8)(t2,\) ->~ (<p(-1»)((<p)t , a(1»).

It is not very hard to check that

100

(<p(-'))((<p)t,o-(')) = (t,o-(')) EB (<p(1,-1)):

(<p(-'))((<p)t , o-(')) =
(i-I 0-('))((j + 1 o-()))t,o-(')) =

(compare the effect of this substitution on index 1 with the efffect on
indices> 1)
(i-I 0-('))((j + 1 o-(J))t,o-(')) EB (i-I 0-('>1)) =

(since, as noted above: (t;u('))(tjo-{J)) = ((t;U('))tjo-{J)))
((i-I 0-('))(j + 1 o-(3))t , o-(l)) EB (<p(1,-1)) =

(by additivity, which holds in this case)
((jo-()))t,o-(')) EB (<p(1,-1)) =
(t,o-(')) EB (<p(1,-1)).

This enables us directly to derive the translation of the Beta-rule as given
in [Abadi et 31. 90J:

(),a)b = a[b· idJ:

i(),a)bJ = (b8)(),)a -+a (<p(-l))((<p)bo-(1))a;
(a[b. idJl = ((bo-(l)) EB (i-I o-(i>l)))a =
((bo-(1)) EB (<p(l,-l)))a.

Above, we "translated" the operations of Abadi et al. in our setting. It
is also possible to give a translation the other way round. To achieve that
purpose, we have to express o--items (to-(i)) and <p-items (<p(k,l)) by means of
the operators id, l, . and o. Here below we give these translations, where
we adopt the convention that the .- operation is associating to the right, so
a· b . s means a . (b· s).

Then the following correspondences hold:

• (to-(i))=1.2 ·(i-1).t.(i)i and

• (<p(k,l)) = 1.2 k· CIJk+1•

In particular, (to-(l)) = t· l-
Also, (<p(n)) = (<p(O,n)) = (Tln, (<p) = (<p(1)) =1 and (<p(-1)) = m-1 =

1 . id.

When we define k! to be 1·2· ... ·k, then the above rules can be simplified
to

• (to-(i)) = (i - I)!· t· (i)i and

• (<p(k,l)) = k! . (i)k+l,

101

provided that we add the rule O! . s = s.

Finally, we give the correspondence between our system and the 11"
operator of [Hardin and Levy 90]:

It is worth while to compare the latter term with the general a-rules of
Definition C.l.

102

References

[Abadi et al. 90] Abadi, M., Cardelli, L., Curien, P.-L. and Levy, J.-J., Explicit
substitutions, Rapports de Recherche no. 1176, INRIA, Le Chesnay, 1990.

[Balsters 86] Balsters, H., Lambda calculus "tended with segments, Ph.D. thesis,
Eindhoven University of Technology, Eindhoven, 1986.

[Barendregt 84] Barendregt, H.P., The Lambda Calculus. Its Synta. and Seman
tics, North Holland, Revised edition, 1984.

[Barendregt 9x] Barendregt, H.P., Lambda calculi with types, in: Handbook of
Logic in Computer Science, Eds. S. Abramsky, D. Gabbay and T. Maibaum,
Oxford University Press, Oxford, 199x. To appear.

[Barendregt and Hemerik 90] Barendregt, H. and Hemerik, K., Types in lambda
calculi and programming languages, in European Symposium on Programming,
Copenhagen, Ed. N. Jones, LNCS, 432, Springer, Berlin, 1990, pp. 1-36.

[van Benthem Jutting 77] Benthem Jutting, L.S. van, Checking Landau's "Grund
lagen" in the A UTOMATH system, Ph.D. thesis, Eindhoven University of
Technology, Eindhoven, 1977.

[van Benthem Jutting 88] Benthem Jutting, L.S. van, An implementation of sub
stitution in a A-calculus with dependent types. Philips Research Laboratories
Eindhoven / Eindhoven University of Technology, 1988.

[de Bruijn 70] Bruijn, N.G. de, The mathematical language AUTOMATH, its us
age and some of its extensions, in: Symposium on Automatic Demonstration,
IRIA, Versailles, 1968, Lecture Notes in Mathematics, 125, Springer, Berlin,
1970, pp. 29-61.

[de Bruijn 72] Bruijn, N.G. de, Lambda calculus with nameless dummies, a tool
for automatic formula manipulation, with application to the Church-Rosser
theorem, Indagationes Math. 34, No 5, 1972, pp. 381-392.

[de Bruijn 74] Bruijn, N.G. de, Some extensions of AUTOMATH: the AUT-4 fam
ily, Dept. of Mathematics, Eindhoven University of Technology, 1974.

[de Bruijn 80] Bruijn, N .G. de, A survey of the project AUTO MATH, in To H.B.
Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, Eds.
J.R. Hindley and J.P. Seldin, Academic Press, New York/London, 1980.

[de Bruijn 87] Bruijn, N.G. de, Generalizing Automath by means of a lambda
typed lambda calculus, iIi: Mathematical Logic and Theoretical Computer Sci
ence, Eds D.W. Kueker, E.G.K. Lopez-Escobar and C.H. Smith, Lecture Notes
in Pure and Applied Mathematics, 106, Marcel Dekker, New York, 1987.

[de Bruijn 9x] Bruijn, N.G. de, Algorithmic definition oflambda-typed lambda cal
culus. In preparation.

103

[Coquand and Huet 88J Coquand, T. and Huet, G., The calculus of constructions,
Information and Control 76, 1988, pp. 95-120.

[de Groote 91] Groote, Ph. de, Definition et proprietes d'un meiacalcul de repre
sentation de theories, Ph.D. thesis, Universite Catholique de LOllvain, Louvain
la-Neuve, 1991.

[Hardin and Levy 90J Hardin, Th. and Levy, J .-J., A confluent calculus of substi
tutions, Lecture notes of the INRIA-ICOT symposium, IZll, Japan, November
1989.

[van HOlssen 92J Horssen, J.J. van, Ezplicit substitution in two versions of typed
lambda calcu.lus, Master's thesis, Eindhoven University of Technology, 1992.

(Howard 80] Howard, W.A., The fOlmulae-as-types notion of constructions, in To
H.B. Curry: Essays on Combinatory Logic) Lambda Calculus and Formalism,
Eds. J.R. Hindley and J.P. Seldin, Academic Press, New York/London, 1980.

[Nederpelt 71J Nederpelt, R.P., Lambda-Automath, Internal Report 17, Eindhoven
University of Technology, Dept. of Math., 1971

[Nederpelt 73J Nederpelt, R.P., Strong normalisation in a typed lambda calculus
with lambda structured types, Ph.D. thesis, Eindhoven University of Technol
ogy, Eindhoven, 1973.

[Nederpelt 80J Nederpelt, R.P., An approach to theorem proving on the basis of a
typed lambda-calculus, in 5th Conference on Automated Deduction, Les Arcs,
France, 1980, Eds. W. Bibel and R. Kowalski, LCNS, 87, Springer, Berlin,
1980, pp.182-194.

[Nederpelt 90J Nederpelt, R.P., Type systems - basic ideas and applications, in:
CSN '90, Computing Science in the Netherlands 1 990, Stichting Mathematisch
Centrum, Amsterdam, 1990.

[Peyton Jones 87J Peyton Jones, S.L., The Implementation of Functional Program
ming Languages, Prentice-Hall, Englewood Cliffs, 1987.

[Troelstra and van Dalen 88] Troelstra, A.S. and van Dalen, D., Constructivism in
Mathematics, An Introduction, Vol. 1, North-Holland, Amsterdam etc., 1988.

104

In this series appeared:

89/1 E.Zs.Lepoeter-MoInar

89/2 R.H. Mak
P.Struik

89/3 H.M.M. Ten Eikelder
C. Hemerik

89t4 J.Zwiers
W.P. de Roever

89tS Wei Chen
T.Vemoeff
J.T.Udding

89/6 T.Verhoeff

89n P.Struik

89/8 E.HL.Aarts
A.E.Eiben
K.M. van Hee

89/9 KM. van Hee
P.M.P. Rambags

89/10 S.Ramesh

89tll S.Ramesh

89t12 A. T .M.Aerts
KM. van Hee

89/13 A.T.M.Aerts
KM. van Hee
M.W.H. Hesen

89/14 H.C.Haesen

89tlS J.S.C.P. van
der Woude

89/16 A.T.M.Aerts
KM. van Hee

89/17 M.J. van Diepen
KM. van Hee

Reconstruction of a 3-D surface from its normal vectors.

A systolic design for dynamic programming.

Some category theoretical properties related to
a model for a polymorphic lambda-calculus.

Compositionality and modularity in process
specification and design: A trace-state based
approach.

Networks of Communicating Processes and their
(De-)Composition.

Characterizations of Delay-Insensitive
Communication Protocols.

A systematic design of a parallel program for
Dirichlet convolution.

A general theory of genetic algorithms.

Discrete event systems: Dynamic versus static
topology.

A new efficient implementation of CSP with output
guards.

AlgebraiC specification and implementation of infinite
processes.

A concise formal framework for data modeling.

A program generator for simulated annealing
problems.

ELDA, data manipulatie taal.

Optimal segmentations.

Towards a framework for comparing data models.

A formal semantics for Z and the link between
Z and the relational algebra.

90/1 W.P.de Roever-
H.Barringer-
c.Courcoubetis-D.Gabbay
R.Gerth-B.Jonsson-A.Pnueli
M.Reed-J.Sifakis-J.Vytopil
P.Wolper

90/2 K.M. van Hee
P.M.P. Rambags

90/3 R. Gerth

90/4 A. Peeters

90/5 J.A. Brzozowski
J.C. Ebergen

90/6 A.J.J .M. Marcelis

90n A.J.J.M. Marcelis

90/8 M.B. Josephs

90/9 A.T.M. Aerts
P.M.E. De Bra
K.M. van Hee

90/10 M.J. van Diepen
K.M. van Hee

90/11 P. America
F.S. de Boer

90/12 P.America
F.S. de Boer

90/13 K.R. Apt
F.S. de Boer
E.R. Olderog

90/14 F.S. de Boer

90/15 F.S. de Boer

90/16 F.S. de Boer
C. Palamidessi

90/17 F.S. de Boer
C. Palamidessi

Fonnal methods and tools for the development of
distributed and real time systems, p. 17.

Dynamic process creation in high-level Petri nets,
pp. 19.

Foundations of Compositional Program Refinement
- safety properties - , p. 38.

Decomposition of delay-insensitive circuits, p. 25.

On the delay-sensitivity of gate networks, p. 23.

Typed inference systems : a reference document, p. 17.

A logic for one-pass, one-attributed grammars, p. 14.

Receptive Process Theory, p. 16.

Combining the functional and the relational model,
p. IS.

A fonnal semantics for Z and the link between Z and the
relational algebra, p. 30. (Revised version of CSNotes
89/17).

A proof system for process creation, p. 84.

A proof theory for a sequential version of POOL, p. 110.

Proving tennination of Parallel Programs, p. 7.

A proof system for the language POOL, p. 70.

Compositionality in the temporal logic of concurrent
systems, p. 17.

A fully abstract model for concurrent logic languages, p.
p.23.

On the asynchronous nature of communication in logic
languages: a fully abstract model based on sequences, p.
29.

90/18 J.Coenen
E. v .d.Sluis
E.v.d.Velden

90/19 M.M. de Brouwer
P.A.C. Verkoulen

90/20 M.Rem

90/21 K.M. van Hee
P.A.C. Verkoulen

91/01 D. Alstein

91/02 R.P. Nederpelt
H.C.M. de Swart

91/03 J.P. Katoen
L.A.M. Schoenmakers

91/04 E. v.d. Sluis
A.F. v.d. Stappen

91/05 D. de Reus

91/06 K.M. van Hee

91/07 E.Poll

91/08 H. Schepers

91/09 W.M.P.v.d.Aalst

91/10 R.C.Backhouse
PJ. de Bruin
P. Hoogendijk
G. Malcolm
E. Voermans
J. v.d. Woude

91/11 R.C. Backhouse
P.J. de Bruin
G.Malcolm
E.Voermans
J. van der Woude

91/12 E. van der Sluis

91/13 F. Rietman

91/14 P. Lemmens

Design and implementation aspects of remote procedure
calls, p. 15.

Two Case Studies in ExSpect, p. 24.

The Nature of Delay-Insensitive Computing, p.18.

Data, Process and Behaviour Modelling in an integrated
specification framework, p. 37.

Dynamic Reconfiguration in Distributed Hard Real-Time
Systems, p. 14.

Implication. A survey of the different logical analyses
"iL.,then ... ", p. 26.

Parallel Programs for the Recognition of P-invariant
Segments, p. 16.

Performance Analysis of VLSI Programs, p. 31.

An Implementation Model for GOOD, p. 18.

SPECIFICATIEMETHODEN, een oveIZicht, p. 20.

CPO-models for second order lambda calculus with
recursive types and subtyping, p. 49.

Terminology and Paradigms for Fault Tolerance, p. 25.

Interval Timed Petri Nets and their analysis, p.53.

POLYNOMIAL RELATORS, p. 52.

Relational Catamorphism, p. 31.

A parallel local search algorithm for the travelling
salesman problem, p. 12.

A note on Extensionality, p. 21.

The PDB Hypermedia Package. Why and how it was
built, p. 63.

91/15 A.T.M. Aerts
K.M. van Hee

91/16 A.J.J .M. Marcelis

91/17 A.T.M. Aerts
P.M.E. de Bra
K.M. van Hee

91/18 Rik van Geldrop

91/19 Erik Poll

91/20 A.E. Eiben
R.Y. Schuwer

91/21 J. Coenen
W.-P. de Roever
J.Zwiers

91/22 G. Wolf

91/23 K.M. van Hee
L.J. Somers
M. Yoorhoeve

91/24 A.T.M. Aerts
D. de Reus

91/25 P. Zhou
J. Hooman
R. Kuiper

91/26 P. de Bra
G.J. Houben
J. Paredaens

91/27 F. de Boer
C. Palamidessi

91/28 F. de Boer

91/29 H. Ten Eikelder
R. van Geldrop

91/30 J.C.M. Baeten
F.W. Yaandrager

Eldorado: Architecture of a Functional Database
Management System, p. 19.

An example of proving attribute grammars correct:
tbe representation of aritbmetical expressions by DAGs,
p.25.

Transforming Functional Database Schemes to Relational
Representations, p. 21.

Transformational Query Solving, p. 35.

Some categorical properties for a model for second order
lambda calculus witb subtyping, p. 21.

Knowledge Base Systems, a Formal Model, p. 21.

Assertional Data Reification Proofs: Survey and
Perspective, p. 18.

Schedule Management: an Object Oriented Approach, p.
26.

Z and high level Petri nets, p. 16.

Formal semantics for BRM witb examples, p. 25.

A compositional proof system for real-time systems based
on explicit clock temporal logic: soundness and complete
ness, p. 52.

The GOOD based hypertext reference model, p. 12.

Embedding as a tool for language comparison: On tbe
CSP hierarchy, p. 17.

A compositional proof system for dynamic proces
creation, p. 24.

Correctness of Acceptor Schemes for Regular Languages,
p. 31.

An Algebra for Process Creation, p. 29.

91/31 H. ten Eikelder

91/32 P. Struik

91/33 W. v.d. Aalst

91/34 J. Coenen

91/35 F.S. de Boer
J.W. Klop
C. Palamidessi

92/01 J. Coenen
J. Zwiers
W.-P. de Roever

92/02 J. Coenen
J. Hooman

92/03 J.C.M. Baeten
J .A. Bergstra

92/04 J.P.H. W. v .d.Eijnde

92/05 J.P.H.W.v.d.Eijnde

92/06 J.C.M. Baeten
J.A. Bergstra

92/07 R.P. NederpeJt

92/08 R.P. NederpeJt
F. Kamareddine

92/09 R.C. Backhouse

92/lO P.M.P. Rambags

92/11 R.C. Backhouse
J.S.C.P.v.d.Woude

Some algorithms to decide the equivalence of recursive
types, p. 26.

Techniques for designing efficient parallel programs, p.
14.

The modelling and analysis of queueing systems with
QNM-ExSpect, p. 23.

Specifying fault tolerant programs in deontic logic,
p. 15.

Asynchronous communication in process algebra, p. 20.

A note on compositional refmement, p. 27.

A compositional semantics for fault tolerant real-time
systems, p. 18.

Real space process algebra, p. 42.

Program derivation in acyclic graphs and related
problems, p. 90.

Conservative fixpoint functions on a graph, p. 25.

Discrete time process algebra, pA5.

The fine-structure of lambda calculus, p. llO.

On stepwise explicit substitution, p. 30.

Calculating the Warshall/Floyd path algorithm, p. 14.

Composition and decomposition in a CPN model, p. 55.

Demonic operators and monotype factors, p. 29.

	Abstract
	Contents
	1. Introduction
	2. Term formation
	2.1 The item notation
	2.2 The inner structure of terms
	2.3 The restriction of a term
	2.4 Bound and free variables
	2.5 Limiting the set of terms with a view to the types
	3. Reduction
	3.1 Global vs. local bèta-reduction
	3.2 Step-wise substitution
	3.3 A general step-wise substitution
	3.4 Substitution and bèta-reduction
	3.5 Matching delta-la(m)bda-couples
	3.6 Strategies for bèta-reduction
	4. The typing relation
	4.1 Degrees
	4.2 Canonical types
	4.3 A context-free type reduction
	4.4 The typing relation in PTS's
	4.5 The typing relation in Automath-systems
	4.6 Remarks on the conditions in term construction
	4.7 Higher degrees
	5. Abbreviations for segments
	5.1 The use of segment variables
	5.2 Referencing in relation with segment variables
	5.3 Segments and stepwise substitution
	6. Parameters for different systems
	7. Conclusions
	8. Acknowledgements
	A: An example
	B: An abstract grammar for terms
	C: An alternative step-wise substitution
	D: A comparison with the explicit substitution of Abadi, Cardelli, Curien and Levy
	References

