

A useful lambda notation

Citation for published version (APA):
Nederpelt, R. P., & Kamareddine, F. (1992). A useful lambda notation. (Computing science notes; Vol. 9222).
Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1992

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/43e51ce5-0588-48a4-a62e-3fbb53b99e41

Eindhoven University of Technology

Depanment of Mathematics and Computing Science

A useful lambda notation

by

Rob Nedetpelt Fairouz Kamareddine

Computing Science Note 92{22
Eindhoven, September 1992

92{22

COMPUTING SCIENCE NOTES

This is a series of notes of the Computing
Science Section of the Department of
Mathematics and Computing Science
Eindhoven University of Technology.
Since many of these notes are preliminary
versions or may be published elsewhere, they
have a limited distribution only and are not
for review.
Copies of these notes are available from the
author.

Copies can be ordered from:
Mrs. F. van Neerven
Eindhoven University of Technology
Department of Mathematics and Computing Science
P.O. Box 513
5600 MB EINDHOVEN
The Netherlands
ISSN 0926-4515

All rights reserved
editors: prof.dr.M.Rem

prof.dr.K.M.van Hee.

• •

A useful lambda notation

Rob Nederpelt
and

Fairouz Kamareddine

Department of Mathematics and Computing Science
Eindhoven University of Technology

Eindhoven, the Netherlands

September 15, 1992

1

, ,

Abstract

Lambda Calculus is fundamental for the foundation of Logic, Mathematics, Computer
and Cognitive Science. This makes it indispensable to formalise the Lambda Calculus in a
way which avoids most of the complications associated with, among others, substitution,
variable renaming, the search of bound and free occurrences of variables. Combinatory
Logic could be seen as an attempt to do so, but is not as intuitive as the lambda calculus.
This paper provides a new formulation of the A-calculus. Such a formulation is shown to
be useful for term and variable manipulation and for locating the type of a term. This will
have advantages on all areas of the A-calculus including substitution (global and local),
unification and typing.

Keywords: Lambda Calculus, Term Restriction, Types, Bound and Free Variables

1 Introduction

As a discipline, lambda calculus started with Church in the forties, when he tried to give a
foundation for mathematics. In the following decades, the development of lambda calculus
was in the hands of a few specialists, such as C)lrry, Hindley, Seldin and B6hm. Despite the
important work that was carried out, lambda calculus remained a rather isolated branch of
logic. Major results were only valued at their true worth within a small community.

In the beginning of the sixties, there arose a new interest in lambda calculus from the side of
computer science, where functional programming techniques like McCarthy's LISP borrowed
lambda calculus concepts. Since that time lambda calculus inspired theoretical computer
science and vice versa. The breakthrough became permanent when, in 1981, Barendregt
published the standard work on the (untyped) lambda calculus ([Bar84J). This presentation
of an extensive and impressive amount of knowledge was very influential.

In the present time, there is a remarkable revival of lambda calculus, especially in the
versions which use types. Recently, both logicians and computer scientists have developed
several branches of typed and untyped lambda calculus. Also mathematics has benefited from
lambda calculus, especially since the time (around 1970) where de Bruijn used his lambda
calculus-based Automath for the analysis and checking of mathematical texts (see [deB70] or
[deB80J).

A system of lambda calculus consists of a set of terms (lambda terms) and a set of relations
between these terms (reductions). Terms are constructed on the basis of two general principles:
abstraction, by means of which free variables are bound, thus generating some sort offunctions;
and application, being in a sense the opposite operation, formalising the application of a
function to an argument.

The relations (reductions) in lambda calculus are meant to formalise a connection between
certain lambda terms that are calculationally comparable. "Calculus" is here meant to be an
abstract form of function application, just as the function "plus" applied to the numbers 12
and 17 gives 29 as a calculational result.

Based on these observations, we start in Section 2 with the investigation of the basic
construction principles of lambda terms, by comparing these principles with general term

2

construction methods in logic and mathematics. In a natural manner, we find a close corre
spondence with well-known tree structures. A slight change in notation enables us to construct
lambda terms in a modular way, in accordance with the demands and needs of a mathematical
entourage. That is to say, in our approach it is easy to develop a lambda term step by step,
thereby accurately reflecting the construction of some text in mathematics, logic or computer
science.

This step-by-step approach, employed throughout this paper, is fundamental for the fine
structure of lambda calculus which we pursue.

As an alternative to the use of variables, in this paper we will be using de Bruijn-indices.
These are natural numbers that do not suffer from the usual problems with variable names
(the danger of "clash of variables", the need for appropriate renaming, etc.).

The new notation introduced in section 2 is very advantageous and should be seen as an
alternative to the usual A-calculus notation. We claim that this new formulation can avoid
many of the complications associated with the old formulation. For the purpose of this paper,
we aim to show the usefulness of the new notation for variable and term manipulation and
for typing. This will be done in section 3.

2 Term formation

2.1 De Bruijn's indices

In the type free A-calculus, we have the following three ways of forming terms:
t ::= x I (Ax.t) I (t1t2).1
The basic axiom of such a calculus is the following:
(lJ) (Ax .t1)t2 = t1[X := t2]

where substitution has been defined in a way which deals with the problem of variable clashes.
For example, (Ax.Ay.XY)Y = (Ay.XY)[x := y] = Az.XY[Y:= z][x := y] = Az.XZ[X := y] = Az.YZ.
As it can be seen from this example, the y in Ay.XY had to be renamed to z before we could
substitute Y for the free occurrences of x in Ay.XY; otherwise the Y replacing x would have
become bound when it should not be. This process gets more complicated and cumbersome
when we work with more involved A-terms.

De Bruijn in [deB72] proposes a solution to such a problem by the use of indices instead
of variables. Moreover, in this manner he avoids a-conversion, where a-conversion is given
by the axiom:

(a) Ax.t = Ay.t[X := y] for y not free in t.
That is terms such as Ax.X and Ay.Y are the "same", and the use of x, Y or any other

variable does not change the semantic meaning of the function denoted by this term (the
identity function). The identity function using indices (called de Bruijn's indices) will be
denoted by A.l. The bond between the bound variable x and the operator A is expressed by
the number 1; the position of this number in the term is that ofthe bound variable x, and the
value of the number ("one") tells us how many lambda's we have to count, going leftwards
in the term, starting from the mentioned position, to find the binding place (in this case: the
first A to the left is the binding place).

De Bruijn's notation can also be used for the typed A-calculus. For instance the identity
function above could have been identity over a particular type Y (let us say) written as Ax,y.X.

1 Parenthesis are omitted if no confusion can arise.

3

In such a case y is a free variable and the function is denoted by: (Al.1). The free variable
y in the typed lambda term is translated into the first number 1. Such a number refers in
this case to an "invisible" lambda that is not present in the term, but may be thought of to
proceed the term, binding the free variable. 2 The number 1 next to the A tells us how many
AS we have to count from (and excluding3) this A. (The variable x, as before, is translated in
the second number l.)

To demonstrate how {j-reduction works in this notation we consider the term (Ax'Z.(XY))u
which ,a-reduces to uy. Under the assumption that the free variable list is Ay, A" Au, this
reduction using de Bruijn's indices can be represented as: (A2.1 4)1 reduces to 1 3. Here the
contents of the subterm 14 changes: 4 becomes 3. This is due to the fact that A2, disappeared
(together with the argument 1). The first variable 1 did not change; note, however, that the
A binding this variable has changed "after" the reduction; it is the last A in the free variable
list ("Au") and no longer the A inside the original term ("Ax"). The reference changed, but
the number stayed (by chance) the same.

The notation that we will introduce in the following section makes use of de Bruijn's
indices but assumes a linear representation of terms which groups term constituents (so
called "items") together in a novel way. This new notation will prove powerful for many
applications, of which we study term and variable manipulation, and types in detail in this
paper.

2.2 The new notation

Let us look again at the syntax of A-terms given in 2.l. If we forget variables (as we shall
when we use de Bruijn's indices), then we begin with natural numbers and all that remains
is abstraction and application. We shall consider these to be the basic operations on terms
and shall use A to refer to the first and 6 to refer to the second. Note that both operators
are binary. That is, in the typed A-calculus, A links a type to a term, (think of Ax,y.x which
is Al.1) and application links a function to an argument. We will use a typed A-calculus
notation which is also suitable to write type free terms. This will be done via our special
index c below.

Now our terms are application terms such as t a.pplied to t' and abstraction terms such
as At.t'. We shall not assume the uniqueness of the A and the 6 operators.4 Rather we
consider A, A" A2, ..• for abstraction, and 6,6, ,62 , ••• for application. We use w, W" W2, •.. as
meta-variables for both kinds of operators. \Ve refer to the set of A-operators by n.\ and to
the set of 6-operators by ns. We assume that n.\ and ns are disjoint and finite and write
n (or nAs) for their union. As we decided to use indices instea.d of variables, we take :=: the
set of variables to be:=: = {c,1,2, ... }. Sometimes we will need to use actual variables, but
this is not a part of our syntax. It is only a matter of simplifying the conversation. We use
x, Xl, y, . .. to denote variables.5 Using nand :=: we define our terms (which we denote t, tI, .. .)

2If we had more than one free variable, we have to know which one comes before the other. For this, we
assume an arbitrary, but fixed order so that these invisible lambda's form a free variable list.

3This technical peculiarity disappears in the new notation of section 2.2.
4This is to enable OUf system to be general enough to represent a. whole variety of type systems. For

example to accommodate second-order theories, we use A2 for ,,\ and >'1 for A. To accommodate Pure Type
Systems we use A2 for II and Al for the ordinary A. Moreover, these various A'S and 6's will be useful for
stepwise substitution and lazy evaluation, which we pursue in another article.

5E; is a special variable that denotes the "empty term". It can be used for rendering ordinary (untyped)

4

to be those symbol strings obtained in the usual manner on the basis of 3, the operators in fl
and parentheses. That is our terms are the elements of Fn(3), the free fl-structure generated
by 3. We call these terms fl'\o-terms or simply terms.

We will defer from usual practice and use the operators in fl as infix ones. That is we
write (tot') for the function t' applied to-the argument t (note the reversed order!) and write
(tAt') for (At.t'). We go even further by using what we call item-notation where we place
parentheses in an unorthodox manner: we write (tlW)tZ instead of (tlwtZ)'

Examples of terms are: £,3, (20)(£A)1, in item notation or (20(£A1)) in the original infix
notation. (We assume that A E fl,\ and 0 E flo.)

Notation 2.1 (tree notation) One can also consider terms as trees, in the usual manner (in
this case we shall speak of term trees). In term trees, parentheses are superfluous (see
figure 1). In this figure, we deviate from the normal way to depict a tree; for example: we
position the root of the tree in the lower left hand corner. We have chosen this manner of
depicting a tree in order to maintain a close resemblance with the linear term. This has also
advantages in the sections to come. The item-notation suggests a partitioning of the term
tree in vertical layers. For (xwtJ(ywz)z, these layers are: the parts of the tree corresponding
with (XWl)' (ywz) and z (connected in the tree with two edges). For «xwz)ywtJz these layers
are: the part of the tree corresponding with «xwz)ywtJ and the one corresponding with z.

x y

LLz
(XWl(YWZZ»

(XWl)(YWZ)z

x

~-.. y

...... ---_z
«XWZY)WIZ)

«XWZ)YWl)Z

Figure 1: Term trees, with normal linear notation and item-notation

Notation 2.2 (name carrying terms) For ease of reading, we occasionally use customary
variable names like x, y, z and U instead of reference numbers, thus creating name-carrying
terms in item-notation, suclt as (UO)(YAx)X in Example 2.3. The symbols used as subscripts
for A in this notation are only necessary for establishing the place of reference; they do not
"occur" as variables in the term.

Example 2.3 Consider the typed lambda term (Ax,y'X)u. In item-notation with name
carrying variables this term becomes (UO)(yAx)X. In item-notation with de Bruijn-indices,
it is denoted as (10)(2A)1.

The typed lambda term U(Ax,y.X) is denoted as «YAx)x6)u in our name-carrying item
notation and as «2A)16)1 in item-notation with de Bruijn-indices. The free variable list, in
the name-carrying version, is Ay, Au, in both examples.

lambda calculus; take all types to be e, Another use is as a "final type", like 0 in Barendregt's cube or in
Pure Type Systems (PTS's)

5

The term trees of these lambda terms are given in figure 2. In each of the two pictures,
the references of the three variables in the term have been indicated: thin lines, ending in
arrows, point at the A'S binding the variables in question. Note that these lines follow the
path which leads from the variable to the root following the upper-left side of the branches of
the tree. Only the A'S met do count, the Ii's do not.

1 2

.~ -=e~ JliJI A -. 1

(11i)(2A)1

(UIi)(YAx)x

(Ax," . x)u

2

A_ 1

A-A~~===e1 .- - .-

((2A)1 1i)1

((YAx)x Ii)u

U(Ax,y . x)

Figure 2: Term trees with explicit free variable lists and reference numbers

Example 2.4 Now for ,a-reduction, the term (Ax".(XY))u ,a-reduces to uy. In our sugared
item-notation this becomes: (UIi)(ZAx)(yli)x reduces to (yli)u (see figure 3). Note that the
presence of a so-called Ii-A-segment (Le. a Ii-item immediately followed by a A-item, in this
example: (uli)(ZAx)) is the signal for a possible ,a-reduction. The "unsugared" version reads:
the term (11i)(2A)(41i)1 reduces to (31i)1.

124

IdL-11i=4 1

(Ax".XY)U
(u6)(ZAx)(y6)x

(16)(2A)(46)1

3

.-A--.-A-_-~----l~ 1i=4 1

uy

(y6)u

(36)1

Figure 3: ,a-reduction in our notation

We can see from the above example that the convention of writing the argument before
the function has a practical advantage: the Ii-item and the A-item involved in a ,a-reduction

6

occur adjacently in the term; they are not separated by the "body" of the term, that can
be extremely long! It is well-known that such a 8-'x-segment can code a definition occurring
in some mathematical text; in such a case it is very desirable for legibility that the coded
definiend urn and definiens occur very close to each other in the term.

Remark 2.5 With the help of 0 we can construct terms without free variables, for example we
can construct (0'x)(U)(18)((2'x)(1'x)1'x)3. We note that it may be profitable to use the empty
term instead of 0, which allows us to write terms like ('x)(1'x)2 or even ('x)(U), representing
the typed lambda terms 'xy".'xx,y.y and 'xy".'xx,y.o, respectively. We shall use this convention
in section 3.2, especially in the case of an item (ow), which we render as (w), for different
operators w.

Remark 2.6 The presented way of describing typed lambda calculus is relatively easy to
read. Another approach is to define a term in tree format, e.g. as a set S of pairs (,8, ~),
where {3 is a finite sequence of zeros and ones and € E :=: U U. The string ,8 codes a root path
in the binary tree, starting at the root. Each 'zero' in the string means: "go upwards and
follow an edge until the next node", each 'one' in the string means: "go to the right and do
the same". The ~ is the label connected with the final node of this path.6 The notions to be
defined in the following sections can also be expressed in this tree language.

There is one important advantage in using this kind of term trees instead of terms: one
needs not bother about the occurrences of a variable or a subterm which are meant. In fact,
the ,8 of the pair (,8,0 gives the exact location of ~ in the tree. Hence, in the case that ~ is
a variable, the ,8 fixes the occurrence of €; in the case that ~ is an operator, the ,8 fixes the
location of a subterm (subtree) with the mentioned ~ as its main operator.

In the rest of this paper, we use terms and not term trees. This causes some inconveniences,
especially as regards these "occurrences". Apart from that, we prefer ordinary terms because
they are easier to read than sets of pairs (,8, €).

2.3 The inner structure of terms

In this section we give a number of definitions regarding certain substrings of terms.
First, we give a formal definition of items and segments.

Definition 2.7 (items, segments)
If w is an operator and t a term, then (tw) is an item.
A concatenation of zero or more items is a segment. 7

We use 8,81,8;, ... as meta-variables for segments.
We define a number of concepts connected with terms, items and segments.

Definition 2.8 (main items, main segments, w-items) Each term t is the concatenation of
zero or more items and a variable: t == S1 ... SnX. These items S1 ... Sn are called the main
items oft.

Analogously, a segment 8 is a concatenation of zero or more items: 8 == S1 ... sn; again,
these items 81 ..• s" (if any) are called the main items, this time of 8.

6The set S should have some obvious additional properties, such as prefix-closedness; if (.8,~) E S, then for
all prefixes [3' of f3 there must exist a e' such that (f3 ',e') E S.

7In [deB9x] an item is called a wagon and a segment is called a train.

7

An item (t w) is called an w-item. Hence, we may speak about >.-items and o-items.
If a segment consists of a concatenation of an wI-item up to an wn-item, W; E fI, this

segment may be referred to as being an WI- .•. -wn -segment.8

A context is a segment consisting of only >.-items.

Example 2.9 Let the term t be defined as (0)')((10)(0>.)10)(2>')1 and let the segment s be
(0)')((18)(0>')16)(2>'). Then the main items of both t and s are (0).), ((16)(0>')16) and (2)'),
being a >.-item, a 6-item, and another >.-item. Moreover, ((10)(0>.)10)(2>') is an example of
a main segment of both t and s, which is not a context, but a 6->.-segment. Also, s is a
>.-6->.-segment, which is a main segment of t.

Definition 2.10 (body, end variable, end operator)
Let t ;: sx be a term. Then we call s the body of t, or body(t), and x the end variable

oft, or endvar(t). It follows that t;: bOdy(t) endvar(t).
Let s;: (tw) be an item. Then we call t the body of s, denoted body(s), and w the end

operator of s, or endop(s). Hence, it holds that s;: (body(s) endop(s)).

Note that we use the word 'body' in two meanings: the body of a term is a segment, and
the body of an item is a term.

Example 2.11 In the previous example, s is the body oft and 1 is the end variable of t. Let
s be the item ((16)(0>.)16). Then (16)(0>')1 is the body of sand 6 the end operator of s.

By means of the following definition one can sieve the main items with certain end operator(s)
from a given segment or term, forming a (new) segment:

Definition 2.12 (sieveseg)
Let s be a segment, or let t be a term with body s.
Then sievesegjs) = sievesegjt) = the segment consisting of all main w-items of s,

concatenated in the same order in which they appear in s.

Example 2.13 In the term t of Example 2.9, sieveseg.\(t);: (0)')(2>') and sieveseg.(t);:
((16)(0>.)16).

For later use, we define different kinds of weight for segments and terms:

Definition 2.14 (weight, w-weight)
The weight of a segment s, weight(s), is the number of main items that compose the

segment.
The weight of a term t is the weight ofbody(t).
The w-weight weightw(s) of a segment s is the weight of sievesegw(s).
Again, the w-weight of a term t is the w-weight ofbody(t).

Example 2.15 For the term t ;: (0)'x)(x>'v)(x6)(0>'y)((x>,z)yo)(y>,u)u and the segment s;:
(€>'x)(x>'v)(x6)(€>.y)((x>'z)yo)(y>,u), weight(t) = weight(s) = 6 and weight.\(t) = weight.\(s)
= 4.

8 As noted before, an important case is that of a 6-A-segment, being a 6-item immediately followed by a
A-item.

8

Next, we show how the relations direct subterm and subterm, denoted by the relation
symbols c and <L, can be concisely defined in our notation:

Definition 2.16 (direct sub terms, subterms)
Ifbody(t) oj 0, then t;: (t'W)t". In this case we call t' and til the (left and right) direct

subterms oft. We denote this by t' C t and til C t.
The relation <L is the reflexive and transitive closure of C.
We say that tl is a subterm oft ifftl <L t.

Example 2.17 Let t be the term «16)2A)(1A)3. The left direct subterm of tis (16)2, the
right direct subterm oft is (U)3. The subterms of tare t, (16)2,(U)3, 1 (twice), 2 and 3.

When one says that t' is a subterm of t, one usnally has a certain occurrence of t' in t
in mind. (There can be more occurrences of t' in t.) The precise location of the occurrence
meant has not been accounted for in the definition given above. This shortcoming can be
mended by giving a third argument to C and <L, being a code for the path leading from the
root of t to the root of the t' meant (cf. Remark 2.6). See the following example.

Example 2.18 Let t be the term «X6)(yAx)XAu)(z6)y.
Then x <Loo t, x <L011 t and (YAx)x <LOI t.9

However, we shall not use this way of describing the intended occurrence. If necessary,
we shall "mark" an occurrence, e.g. with a small circle, 0, or with under- or overlining. For
example, the first occurrence of x in t (see Example 2.18) can be fixed by referring to it as XO
in «X06)(yA,,)XAu)(z6)y. And the occurrence of the subterm (YAx)x in this t can be marked
as (yAx)X.10 We can also mark the occurrence of an operator: (yA~)X.

In the following section we need a notion that relates (left and right) subterms to an
operator:

Definition 2.19 (arguments)
Let (t'WO)t" <L t. Then t' is the left argument of WO in t, or leftarg(wO), and til is the

right argument of WO in t, or rightarg(wO).

Hence, leftarg(wO) is the left direct sub term of (t'WO)t" and rightarg(wO) is the right
direct subterm of (t'WO)t".

Note that a maximal subterm of a term t (i.e. a subterm that cannot be extended to the
left in t) is either t itself or a left direct sub term of t and hence the left argument of some
operator occurring in t.

Items and segments play an important role in many applications. As explained before,
a A-item is the part joined to a term in an abstraction, and a 6-item is the part joined in
an application. In using typed lambda calculi (e.g. mathematical reasoning), A-items may be
used for assumptions or variable introductions and a 6-A-segment may express a definition or
a theorem (see [Ned90J).

9Note that tl is a direct subterm of t if and only if tl <Ca t for a = 0 or a = 1.
lOIn (deB9x], the occurrence of a subterm is called a positioned subterm.

9

3 The usefulness of the new term notation

The notation introduced in the previous section provides useful advantages related to many
notions of the lambda calculus. In this section we study the usefulness of this notation to
three notions; namely, term restriction, bound and free variables and term typing.

3.1 The restriction of a term

In the present section we explain how to derive the restriction t r x of a term t to a variable
occurrence XO in t. This restriction is itself a term, consisting of precisely those "parts" of t
that may be relevant for this xO, especially as regards binding and typing.

When a variable x occurs in term t, then it is not the case that all the "information"
contained in t is necessarily relevant for a specific occurrence XO of x in t. For example, in
the term (EAx)(xAv)(x6)(eAy)«xAz)y06)(YAu)u,only the items (cAx), (XAv), (x6), (EAy) and
(XAz) are of importance for the variable occurrence yO. These items are all the items that can
be found to the left of yO. In the traditional notation this is not the case; cf. the same term
as above in the usual notation: Ax".Av,x.(Ay".(Au,y.U)A.,x.YO)x.

In order to formalise this intuition we give the following definition.

Definition 3.1 (envelope, dominator, one-step restriction, full restriction)
Let XO be an occurrence of variable x in term t such that XO '" endvar(t). Then there is

an operator occurrence WO in t such that XO '" endvar(leftarg(wO)). The term leftarg(wO)
is called the envelope of XO or env(xO). The term (leftarg(wO) WO) rightarg(wO) is called
the dominator of XO or dom(xO).

(Note that the tree of dome x O) is the subtree with WO as its root and that env(x O) is, in its
turn, the "left direct subtree" of this subtree. See the example below.)

The one-step restriction of t to xO, denoted t f xO, is:
1. in case XO '" endvar(t): the term obtained from t by replacing dom(xO) by env(xO);
2. in case XO '" endvar(t): t [XO '" t.

The (full) restriction of t to xO, denoted t rxo, is the limit of the sequence tl, t2, ... ,

where tl '" t and ti+! '" ti [xo.

Example 3.2 Let t be the following term:

Then the envelope of XO is tl '" (u6)(XA,)XO, since tl '" leftarg(Ay). Moreover,
rightarg(Ay) = (UAz)Y, so the dominator of XO is t2 = «u6)(xA,)xO Ay)(UAz)y. See the
underlining and the overlining in (2):

The replacement of t2 (O"" dom(xO)) by tl (O"" env(xO)) gives the one· step restriction t fxo:

(3)

The full restriction t r x of the same xO, obtained after another one·step restriction, is:

(4)

10

u x

6 At x
x u

c Au Ay Az Y

Ax Au u

x u x

u

c x u x

L 1Au 16 lAt ox

Figure 4: A term and its restriction to a variable

Now it will be clear that it is very easy to obtain the full restriction t txo using our item
notation: just take the substring of string t from the beginning of t until Xo and delete all
unmatched opening parentheses. This is an advantage of our new notation.

It is illustrative to draw the tree of t (see figure 4) and to see what happens when the
restriction process is executed with this tree. In the first one-step restriction in the example
given above, the subtree corresponding with the subterm (u6)(xAt)xO is "pushed down" to the
node formerly labeled Ay, annihilating the rest of the subtree rooting in this node. The full
restriction is the result of a continuation of this process. In figure 4, the intended occurrence
of XO in the trees is denoted with an open circle.

Intuitively, the body of t txo is the only thing that matters for XO in t; the rest of (the tree
of) the term t may be neglected, as far as the XO is concerned. As said before, this is essentially
the importance of the restriction: t t x is a term with x as its end variable, that contains all
"information" relevant for x. For example, when x is bound (see the following subsection),
then the bond between x and the A binding this x does not change in the process of restriction;
i.e. corresponding variables x in the described sequence t l , t2, ... refer to corresponding A's
(the number x does not change). So the A binding this x can be found in t tx; the same
holds for the type of this x. Moreover, when x is a candidate for a substitution caused by a
reduction, then the 6-A-segment connected with this reduction can be found, again, in t tx.

11

Full restriction is, of course, idempotent; more generally, the following holds: when y

occurs in t, and x occurs in t fy, then (t fy) fx == t fx.

The described notion 'restriction of a term to a variable' has an obvious generalisation:
'restriction of a term to a subterm':

Definition 3.3 (restriction of a term to a subterm)
Let to be an occurrence of subterm to in term t. Let XO == endvar(to).

env(~ -;;nd dom(~ are defined as tfxO, t rxo, env(xO) and dom(xO). -

Note that a term t f to contains all "information" necessary for to.

3.2 Bound and free variables

Then t fto, t rto, - -

An important notion in lambda calculus is that of bound and free variables; for a bound
variable the "binding place" is relevant. This can be defined as follows.

Definition 3.4 (bound and free variables, type, open and closed terms)
Let XO be a variable occurrence in t such that x ¢. E and assume that sieveseg~(t fxO) ==

Sm ... s, (for convenience numbered downwards). Then XO is bound in t if x $ m; the
binding item of XO in t is Sx and the A that binds XO in t is endop (s",). The type of XO in
t is body (sx). Furthermore, XO is free in t if x > m.

The variable E is neither bound nor free in a term.
Term t is closed when all occurrences of variables in t different from E are bound in t.

Otherwise t is open or has free variables.

Example 3.5 The term t == (cAx)(xAv)(x6)(EAy)«xAz)y06)(YAu)u becomes, in the notation
with de Bruijn- indices: t == (A)(lA)(28)(A)((3A)2°8)(IA)1. Now t r2° == (A)(IA)(28)(A)(3A)2°.
So sieveseg-\(t f2°) == S4S3S2S, == (A)(IA)(A)(3A). Hence, 2° is bound in t since 2 $
weight~(t f2°) = 4. Moreover, the type of 2° in tis body(sz) == E.

There are no free variables in t, hence t is closed.

We see from this example that one can easily account for free and bound variables, just by
calculation. Note that (one-step or more-step) restriction does not affect whether a variable
occurrence is free or bound.

There is a simple procedure for finding the variable occurrences bound by a certain A in
a term t. In the following definition this procedure is given as a step-by-step search.

For this purpose, we temporarily extend the language with a special search item or (
item and with a new relation, _" between (extended) terms. (We may speak of flM,-terms
when referring to these extended terms.)

We write the search item as an indexed item: «((i», with index i. This index serves for
the identification of the proper variable occurrences, as turns out below. The (-operation is
binary, just as A and 8, but since a (-item always has E as its body, one may also consider it
to be a unary, prefix operator.

The search begins with the generation of a (-item, jnst behind the A-item in question.
Thereupon this (-item is pushed through all subterms of the term "in the scope of' the A
item. The index (i), initialized on 1, increases with 1 whenever the (-item "passes" a A.
When ending at a variable x, the index i of the (-item decides whether x is bound by the A

12

of the above-mentioned >.-item, or not. If this is the case, then the variable is capped with
the symbol -.

The rules are given as a relation between terms, but in a compact format. Rule "8 -, -;;

states that the relation t -+(t' holds for terms t and t' when a segment s occurs in t and t'
is obtained by replacing "8 by s' in t. (Otherwise said: it is assumed that rules of so-called
"compatibility" or "monotonicity" have been added.)

Definition 3.6 ((-reduction)
((-generation rule:)
(tl>') -+, (tl>.)«((I)
((-transition rules:)
«((i)(t'>') -+, «((i)t'>.)(((i+l)
«((i)(t'6) -+, «((i)t'6)(((i)
((-destruction rules:)
«((i)i _, i
«((i)x -+, X if x of. i.

(In order to prevent undesired effects, we only allow an application of the (-generation
rule in a term t when there is no other (-item present in t).

Example 3_7 Let t == (>.)(1>.)(26)(>.)«3>.)26)(1>.)1. If we want to find all variables bound
by the third>. in t, we can apply the following sequence of (-reductions:

(>.)(1 >.)(26)(>.)((3).)26)(1).)1 _,
(>.)(1>.)(26)(>.)(((1)((3)')26)(1>.) 1 -+,

(>.)(1>')(26)(>.)(«((1))(3)')26)(((1)(1>.) 1 -+(

(>.)(1>')(26)(>.)(« ((1))3>')((2))26)(((1))(1)')1 -+,

(>.)(1>.)(26)(>.)((3).)(((2))26)(((1)(1>.) 1 -+(

(>.)(1>.)(26)(>.)((3).)26)(((1)(1>')1 -+,

(>.)(1>')(26)(>.)((3)')26)« ((1) 1>.)((2) 1 _,
(>.)(1>')(26)(>.)((3)')26)(i>.)((2) 1 -+,

(>.)(1>.)(26)(>.)((3).)26)(i>')1

A similar procedure can be given for searching the>. binding a certain occurrence XO of
a variable x (of. £) in a term t. For this purpose we introduce an inverse search item or
(*-item. The inverse search item has to move in the opposite direction, while the index (i)
decreases instead of increases. A special provision has to be made for the case that the variable
in question happens to be free; in that case the reverse search item becomes the initial item
of the term, and must be destructed. This case is not provided for in the following definition:

Definition 3.8 ((*-reduction)
((*-generation rule:)

XO _'* (dx)xO

((rtransition rules:)

(t'>.)(di
) _'* «(Y-l)(t'>') ifi > 1

«di)t'>') _'* (di)(t'>')
(t'6)(dil) -+,* (dil)(t'6)
«di)t'6) -+,* (dil)(t'6)

13

((-destruction rule:)
(t',\)((£I») ,* (t'A)

Example 3.9 Again, let t:; (,\)(1,\)(28)('\)((3,\)2°8)(1'\)1. The search for the ,\ binding 2°
in t can be execnted by the following sequence of (*-reductions:
(,\)(1'\)(28)(,\)((3'\)2° 8)(1,\) 1 ,*
(,\)(1'\)(28)('\)((3'\)(d2»)2° 8)(1'\)1 ,*
(,\)(1'\)(28)('\)((d1

»)(3,\)2° 8)(1,\)1 -> (*

(,\)(1'\)(28)('\)(d1»)((3'\)2° 8)(1,\) 1 ->'*

(,\)(1'\)(28)(A)((3'\)2° 6)(1,\) 1

Note that the latter search (for a binding ,\) is easier, since it follows only one path in the
term tree, in the direction of the root; the former search (for all variables bound by a certain
,\) disperses a (-item over all branches of the subtree with this ,\ as its root.

3.3 Limiting the set of terms with a view to the types

In the previous section, the types did not play any role of importance in the term construc
tion. However, types are meant to restrict the class of terms in lambda calculus. When
used properly, types can provide for some properties that are desirable in applications, e.g.
termination of reductions ("calculations").

Given the class of typed lambda terms of the previous sections, one can follow two natural
ways of using the type information for establishing the "well-typedness" or "correctness" of
the term: firstly, to investigate for every term that one encounters, before using it, whether
the term as a whole obeys certain type-conditions; secondly, to allow reduction of the term
only when the argument and the function match (this, again, is dependent of some type
information, but this time only for a part of the term). In the first case one establishes the
"well-typedness" or "correctness" of a full term before working with it; in the second case one
aborts a calculation at the moment that the type-laws are infringed. In the latter case more
terms are "usable", since improperly typed parts may disappear in the process of calculation
before they are recognized as such.

A different approach is to reconsider term construction, allowing only those terms to be
constructed which are "well-typed". This process is similar to the first option above, albeit
that term construction and type checking are not performed subsequently, but intermingled.
In this manner of term constructing, it is desirable that type checks occur as few as possible,
in order to avoid unnecessary work. For this purpose we propose the following system of
rules.

variable condition
sl-x

sl-t s(t'\) I- t' abstraction condition
s I- (t'\)t'

si-t s(t6) I- t' appl ication condition
s I- (t6)t'

(5)

(6)

(7)

These rules should be read as follows. The symbol '1-' separates an antecedent which is a
segment that has not yet been approved and a succedent, being a term that is all right as far

14

as bound variables, abstraction and function application are concerned. For the establishment
of this "all right-ness" the type-information will be used.

As can be seen from equations 6 and 7, the succedent grows at the front side at the cost
of the antecedent, by taking over an item from the back side of the antecedent. The process
is finished when the antecedent is empty; I- t means that term t has been approved.

The segment forming the antecedent of a statement of the form 8 I- t is also called a
context segment, because of its similarity with contexts in Pure Type Systems. However,
(pure) contexts only consist of A-items, whereas context segments may also contain 6-items.

The variable condition is optional. In case one wishes to obtain only closed terms, this
condition should read: x:::; weight II (8) (count £ as zero, in case x == £). The abstrac
tion condition and the application condition vary from system to system, or may even be
absent.!1 One example: with abstraction condition t == e, tt 'to e, empty variable condition
and application condition, we obtain the syntax of the untyped lambda calculus.

The variable condition, the abstraction condition and the application condition may each
consist of different parts. The abstraction and application condition may also depend on the
A or 6 in question (recall that, in principle, we allow more than one kind of A and/or 6 in a
term).

With the use of these rules (provided with the appropriate conditions) we obtain for
each "well-typed" term a construction tree, which contains at the same time a proof for its
"well-typedness". We shall call such a tree a proof tree for the term.

Example 3.10 The lowest part of the proof tree of term (1) (see Example 3.2), based on
these rules, is the following:

I- (eAx) ((x Au) ((u6)(XAt)XAy) (UAz)y Av)U

Here 1"1 and 1"3 are only checks of the appropriate variable conditions (which we here
assume to be empty) and 1"2 is a part of the tree that is not displayed.

The completion of the proof tree of the term in the above example will show a striking
similarity with the usual term tree of this term (cf. Section 2.2). Formula's of the form 8 I- t
in the above proof tree correspond with the labels at the nodes of the term tree.

This observation also holds in general. In particular, the following relation holds: the leaf
in the proof tree of term t that corresponds with (the occurrence of) the variable x in the
term tree of t, is labeled 8 I- x, with 8 x == t r x.

11 In type systems, the type information plays a predominant role in the application condition: t may only
be an "argument" of t f (i.e. s I- (tS)t') if t' is some kind of "function", with a "domain" in which t fits. This
requirement must be expressed formally in the application condition.

15

4 Conclusions

In this paper it was our intention to investigate some structural aspects of terms in typed
lambda calculus and to identify a number of concepts that are of importance for the use of
typed lambda calculus.

We started in section 2 with a novel description of term formation, regarding abstraction
and application as binary operations. The item-notation of terms enabled us to create a term
progressively, or module-like, so to say, in analogy with the manner in which mathematical
and logical ideas are developed. Variables and variable bindings obtained a natural place in
this setting, both in the name-carrying and in the name-free version, the latter by means of
de Bruijn-indices. The notions of segment and subterm fit nicely in this pattern.

Two notational features are of great advantage in this respect: the first is to give the
argument prior to (Le. in front of) the function; the second, of minor importance, is that a
type precedes the typed variable. The section on the restriction of a term to a variable shows
that these notational changes have advantages, in particular in establishing which part of a
linearly written term may be of influence for a given variable occurrence: this part is (but
for some brackets) exactly the string of symbols that precedes this occurrence in the term.
More precisely, we showed that it is very easy to obtain the full restriction t r XO using our
item-notation; we just had to take the substring of string t from the beginning of t until XO

and delete all unmatched opening parentheses.
We showed in 3.2 that one can easily account for free and bound variables in our approach,

it was all a matter of calculation. Moreover, we provided simple procedures for finding the
variable occurrences bound by a certain A in a term t and for finding the particular A which
binds a certain occurrence XO of a variable x (io 0) in a term t. All this points to the advantages
of our new notation.

We also gave an alternative way of term construction, limiting the set of terms with a
view to the types. This way of term construction was based on three rules, for variables,
abstractions and applications, respectively. In each of these rules certain conditions can be
specified in order to restrict the generation of terms, e.g. with a view to the "well-typedness"
of a term. With these rules we obtain for each term a construction tree, which contains at
the same time a proof for its "well-typedness". Such proof trees show a striking similarity
with the usual term trees as provided in section 2.2. This can ouly be another advantage for
our new notation.

References

[BarS4] Barelldregt, H.P., The Lambda Calculus. Its Syntax and Semantics, North Holland, Revised
edition, 1984.

[deB70] Bruijn, N.G. de, The mathematical language AUTOMATH, its usage and some of its ex
tensions, in: Symposium on Automatic Demonstration, [RIA, Versailles, 1968, Lecture Notes in
Mathematics, 125, Springer, Berlin, pp. 29-61,1970.

[deB72] Bruijn, N.G. de, Lambda calculus with nameless dummies, a tool for automatic formula
manipulation, with application to the Church-Rosser theorem, Indagationes Math. 34, No 5, pp.
3S1-392, 1972.

[deBSO] Bruijn, N.G. de, A survey of the project AUTOMATH, in To H.B. Curry: Essays on Com
binatory Logic, Lambda Calculus and Formalism, Eds. J .R. Hindley and J.P. Seldin, Academic
Press, New York/London, pp. 29-61, 1980.

16

[deB9x] Bruijn, N.G. de, Algorithmic definition of lambda-typed lambda calculus. In preparation.

[Ned90] NederpeJt, R.P., Type systems - basic ideas and applications, in: CSN '90, Computing
Science in the Netherlands 1990, Stichting Mathematisch Centrum, Amsterdam, 1990.

17

In this series appeared:

90/1 W.P.de Roever
H.Barringer
C.Courcoubetis-D.Gabbay
R.Gerth-B.Jonsson-A.Pnueli
M.Reed-J.Sifakis-J.Vytopil
P.Wolper

90/2 K.M. van Hee
P.M.P. Rambags

90/3 R. Gerth

90/4 A. Peeters

90/5 J.A. Brzozowski
J.C. Ebergen

90/6 A.J.J.M. Marcelis

90n A.U .M. Marcelis

90/8 M.B. Josephs

90/9 A.T.M. Aerts
P.M.E. De Bra
K.M. van Hee

90/10 M.J. van Diepen
K.M. van Hee

90/11 P. America
F.S. de Boer

90/12 P.America
F.S. de Boer

90/13 K.R. Apt
F.S. de Boer
E.R. 01derog

90/14 F.S. de Boer

90/15 F.S. de Boer

90/16 F.S. de Boer
C. Palamidessi

90/17 F.S. de Boer
C. Palamidessi

Formal methods and tools for the development of
distributed and real time systems, p. 17.

DynamiC process creation in high-level Petri nets,
pp. 19.

Foundations of Compositional Program Refinement
- safety properties - , p. 38.

Decomposition of delay-insensitive circuits, p. 25.

On the delay-sensitivity of gate netwOlxs, p. 23.

Typed inference systems : a reference document, p. 17.

A logic for one-pass, one-attributed grammars, p. 14.

Receptive Process Theory, p. 16.

Combining the functional and the relational model,
p. 15.

A formal semantics for Z and the link between Z and the
relational algebra, p. 30. (Revised version of CSNotes
89/17).

A proof system for process creation, p. 84.

A proof theory for a sequential version of POOL, p. 110.

Proving termination of Parallel Programs, p. 7.

A proof system for the language POOL, p. 70.

Compositionality in the temporal logic of concurrent
systems, p. 17.

A fully abstract model for concurrent logic languages, p.
p.23.

On the asynchronous nature of communication in logic
languages: a fully abstract model based on sequences, p.
29.

90/18 J.Coenen
E.v.d.Sluis
E.v.d.Velden

90/19 M.M. de Brouwer
P.A.C. Verkoulen

90{20 M.Rem

90{21 K.M. van Hee
P.A.C. Verkoulen

91/01 D. Alstein

91/02 R.P. Nederpelt
H.C.M. de Swart

91/03 J.P. Katoen
L.A.M. Schoenmakers

91/04 E. v.d. Sluis
A.F. v.d. Stappen

91/05 D. de Reus

91/06 K.M. van Hee

91/07 E.Poll

91/08 H. Schepers

91/09 W.M.P.v.d.Aalst

91/10 R.C.Backhouse
P.J. de Bruin
P. Hoogendijk
G. Malcolm
E. Voermans
J. v.d. Woude

91/11 R.C. Backhouse
PJ. de Bruin
G.Malcolm
E.Voermans
J. van der Woude

91/12 E. van der Sluis

91/13 F. Rietman

91/14 P. Lemmens

Design and implementation aspects of remote procedure
calls, p. 15.

Two Case Studies in ExSpect, p. 24.

The Nature of Delay-Insensitive Computing, p.18.

Data, Process and Behaviour Modelling in an integrated
specification framework, p. 37.

Dynamic Reconfiguration in Distributed Hard Real-Time
Systems, p. 14.

Implication. A survey of the different logical analyses
"if...,then ... ", p. 26.

Parallel Programs for the Recognition of P-invariant
Segments, p. 16.

Performance Analysis of VLSI Programs, p. 31.

An Implementation Model for GOOD, p. 18.

SPECIFICATIEMETHODEN, een overzicht, p. 20.

CPO-models for second order lambda calculus with
recursive types and subtyping, p. 49.

Terminology and Paradigms for Fault Tolerance, p. 25.

Interval Timed Petri Nets and their analysis, p.53.

POLYNOMIAL RELATORS, p. 52.

Relational Catamorphism, p. 31.

A parallel local search algorithm for the travelling
salesman problem, p. 12.

A note on Extensionality, p. 21.

The PDB Hypermedia Package. Why and how it was
built, p. 63.

91/15 A.T.M. Aerts
K.M. van Hee

91/16 A.J.J.M. Marcelis

91/17 A.T M. Aerts
P.M.E. de Bra
K.M. van Hee

91/18 Rik van Geldrop

91/19 Erik Poll

91/20 A.E. Eiben
R.V. Schuwer

91/21 J. Coenen
W.-P. de Roever
J.Zwiers

91/22 G. Wolf

91/23 K.M. van Hee
L.J. Somers
M. V oorhoeve

91/24 A.T.M. Aerts
D. de Reus

91/25 P. Zhou
1. Hooman
R. Kuiper

91/26 P. de Bra
G.J. Houben
J. Paredaens

91/27 F. de Boer
C. Palamidessi

91/28 F. de Boer

91/29 H. Ten Eikelder
R. van Geldrop

91/30 J.C.M. Baeten
F.W. Vaandrager

91/31 H. ten Eikelder

Eldorado: Architecture of a Functional Database
Management System, p. 19.

An example of proving attribute grarrunars correct:
the representation of arithmetical expressions by DAGs,
p.25.

Transfonning Functional Database Schemes to Relational
Representations, p. 21.

Transfonnational Query Solving, p. 35.

Some categorical properties for a model for second order
lambda calculus with subtyping, p. 21.

Knowledge Base Systems, a Fonnal Model, p. 21.

Assertional Data Reification Proofs: Survey and
Perspective, p. 18.

Schedule Management: an Object Oriented Approach, p.
26.

Z and high level Petri nets, p. 16.

Fonnal semantics for BRM with examples, p. 25.

A compositional proof system for real-time systems based
on explicit clock temporal logic: soundness and complete
ness, p. 52.

The GOOD based hypertext reference model, p. 12.

Embedding as a tool for language comparison: On the
CSP hierarchy, p. 17.

A compositional proof system for dynamic proces
creation, p. 24.

Correctness of Acceptor Schemes for Regular Languages,
p. 31.

An Algebra for Process Creation, p. 29.

Some algorithms to decide the equivalence of recursive
types, p. 26.

91/32 P. Stroik

91/33 W. v.d. Aalst

91/34 J. Coenen

91/35 F.S. de Boer
J.W. Klop
C. Palamidessi

92/01 J. Coenen
J. Zwiers
W.-P. de Roever

92/02 J. Coenen
J. Hooman

92/03 J.C.M. Baeten
J.A. Bergstra

92/04 J.P.H.W.v.d.Eijnde

92/05 J.P.H.W.v.d.Eijnde

92/06 J.C.M. Baeten
J.A. Bergstra

92/07 R.P. Nederpelt

92/08 R.P. Nederpelt
F. Kamareddine

92/09 R.C. Backhouse

92/10 P.M.P. Rambags

92/11 R.C. Backhouse
J.S.C.P.v.d.Woude

92/12 F. Kamareddine

92/13 F. Kamareddine

92/14 J.C.M. Baeten

92/15 F. Kamareddine

92/16 R.R. Seljee

92/17 W.M.P. van der Aalst

Techniques for designing efficient parallel programs, p.
14.

The modelling and analysis of queueing systems witb
QNM-ExSpect, p. 23.

Specifying fault tolerant programs in deontic logic,
p. 15.

Asynchronous communication in process algebra, p. 20.

A note on compositional refmement, p. 27.

A compositional semantics for fault tolerant real·time
systems, p. 18.

Real space process algebra, p. 42.

Program derivation in acyclic graphs and related
problems, p. 90.

Conservative fixpoint functions on a graph, p. 25.

Discrete time process algebra, p.45.

The fine-structure of lambda calculus, p. 110.

On stepwise explicit substitution, p. 30.

Calculating tbe Warshall/Floyd patb algoritbm, p. 14.

Composition and decomposition in a CPN model, p. 55.

Demonic operators and monotype factors, p. 29.

Set tbeory and nominaIisation, Part I, p.26.

Set tbeory and nominalisation, Part II, p.22.

The total order assumption, p. 10.

A system at tbe cross-roads of functional and logic
programming, p.36.

Integrity checking in deductive databases; an exposition,
p.32.

Interval timed coloured Petri nets and tbeir analysis, p.
20.

92/18 R.Ncderpclt
F. Kamarcddinc

92/19 l.C.M.Bactcn
l.A.Bcrgstra
S.A.Smolka

92/20 F.Kamareddine

92/21 F.Kamarcddinc

92122 R. Nederpelt
F. Kamareddinc

92/23 F. Kamareddine
E.Klcin

92/24 M.Codish
D.Dams
Eyal Yardcni

92/25 E.Poll

A unified approach to Type Theory through a refined
lambda-calculus, p. 30.

Axiomati7jng Probabilistic Proccsses:
ACP with Generative Probabilities, p. 36.

Are Types for Natural Language? P. 32.

Non well-foundedness and type freencss can unify the
interpretation of functional application, p. 16.

A useful lambda notation, p. 17.

I

Nominalization, Predication and Type Containment, p. 40.

Bottum-up Abstract Interpretation of Logic Programs,
p. 33.

A Programming Logic for Fro, p. IS.

	Abstract
	1. Introduction
	2. Term formation
	2.1 De Bruijn's indices
	2.2 The new notation
	2.3 The inner structure of terms
	3. The usefulness of the new term notation
	3.1 The restriction of a term
	3.2 Bound and free variables
	3.3 Limiting the set of terms with a view to the types
	4. Conclusions
	References

