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Abstract 

Lambda Calculus is fundamental for the foundation of Logic, Mathematics, Computer 
and Cognitive Science. This makes it indispensable to formalise the Lambda Calculus in a 
way which avoids most of the complications associated with, among others, substitution, 
variable renaming, the search of bound and free occurrences of variables. Combinatory 
Logic could be seen as an attempt to do so, but is not as intuitive as the lambda calculus. 
This paper provides a new formulation of the A-calculus. Such a formulation is shown to 
be useful for term and variable manipulation and for locating the type of a term. This will 
have advantages on all areas of the A-calculus including substitution (global and local), 
unification and typing. 

Keywords: Lambda Calculus, Term Restriction, Types, Bound and Free Variables 

1 Introduction 

As a discipline, lambda calculus started with Church in the forties, when he tried to give a 
foundation for mathematics. In the following decades, the development of lambda calculus 
was in the hands of a few specialists, such as C)lrry, Hindley, Seldin and B6hm. Despite the 
important work that was carried out, lambda calculus remained a rather isolated branch of 
logic. Major results were only valued at their true worth within a small community. 

In the beginning of the sixties, there arose a new interest in lambda calculus from the side of 
computer science, where functional programming techniques like McCarthy's LISP borrowed 
lambda calculus concepts. Since that time lambda calculus inspired theoretical computer 
science and vice versa. The breakthrough became permanent when, in 1981, Barendregt 
published the standard work on the (untyped) lambda calculus ([Bar84J). This presentation 
of an extensive and impressive amount of knowledge was very influential. 

In the present time, there is a remarkable revival of lambda calculus, especially in the 
versions which use types. Recently, both logicians and computer scientists have developed 
several branches of typed and untyped lambda calculus. Also mathematics has benefited from 
lambda calculus, especially since the time (around 1970) where de Bruijn used his lambda 
calculus-based Automath for the analysis and checking of mathematical texts (see [deB70] or 
[deB80J). 

A system of lambda calculus consists of a set of terms (lambda terms) and a set of relations 
between these terms (reductions). Terms are constructed on the basis of two general principles: 
abstraction, by means of which free variables are bound, thus generating some sort offunctions; 
and application, being in a sense the opposite operation, formalising the application of a 
function to an argument. 

The relations (reductions) in lambda calculus are meant to formalise a connection between 
certain lambda terms that are calculationally comparable. "Calculus" is here meant to be an 
abstract form of function application, just as the function "plus" applied to the numbers 12 
and 17 gives 29 as a calculational result. 

Based on these observations, we start in Section 2 with the investigation of the basic 
construction principles of lambda terms, by comparing these principles with general term 
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construction methods in logic and mathematics. In a natural manner, we find a close corre
spondence with well-known tree structures. A slight change in notation enables us to construct 
lambda terms in a modular way, in accordance with the demands and needs of a mathematical 
entourage. That is to say, in our approach it is easy to develop a lambda term step by step, 
thereby accurately reflecting the construction of some text in mathematics, logic or computer 
science. 

This step-by-step approach, employed throughout this paper, is fundamental for the fine
structure of lambda calculus which we pursue. 

As an alternative to the use of variables, in this paper we will be using de Bruijn-indices. 
These are natural numbers that do not suffer from the usual problems with variable names 
(the danger of "clash of variables", the need for appropriate renaming, etc.). 

The new notation introduced in section 2 is very advantageous and should be seen as an 
alternative to the usual A-calculus notation. We claim that this new formulation can avoid 
many of the complications associated with the old formulation. For the purpose of this paper, 
we aim to show the usefulness of the new notation for variable and term manipulation and 
for typing. This will be done in section 3. 

2 Term formation 

2.1 De Bruijn's indices 

In the type free A-calculus, we have the following three ways of forming terms: 
t ::= x I (Ax.t) I (t1t2).1 
The basic axiom of such a calculus is the following: 
(lJ) (Ax .t1)t2 = t1[X := t2] 

where substitution has been defined in a way which deals with the problem of variable clashes. 
For example, (Ax.Ay.XY)Y = (Ay.XY)[x := y] = Az.XY[Y:= z][x := y] = Az.XZ[X := y] = Az.YZ. 
As it can be seen from this example, the y in Ay.XY had to be renamed to z before we could 
substitute Y for the free occurrences of x in Ay.XY; otherwise the Y replacing x would have 
become bound when it should not be. This process gets more complicated and cumbersome 
when we work with more involved A-terms. 

De Bruijn in [deB72] proposes a solution to such a problem by the use of indices instead 
of variables. Moreover, in this manner he avoids a-conversion, where a-conversion is given 
by the axiom: 

(a) Ax.t = Ay.t[X := y] for y not free in t. 
That is terms such as Ax.X and Ay.Y are the "same", and the use of x, Y or any other 

variable does not change the semantic meaning of the function denoted by this term (the 
identity function). The identity function using indices (called de Bruijn's indices) will be 
denoted by A.l. The bond between the bound variable x and the operator A is expressed by 
the number 1; the position of this number in the term is that ofthe bound variable x, and the 
value of the number ("one") tells us how many lambda's we have to count, going leftwards 
in the term, starting from the mentioned position, to find the binding place (in this case: the 
first A to the left is the binding place). 

De Bruijn's notation can also be used for the typed A-calculus. For instance the identity 
function above could have been identity over a particular type Y (let us say) written as Ax,y.X. 

1 Parenthesis are omitted if no confusion can arise. 
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In such a case y is a free variable and the function is denoted by: (Al.1). The free variable 
y in the typed lambda term is translated into the first number 1. Such a number refers in 
this case to an "invisible" lambda that is not present in the term, but may be thought of to 
proceed the term, binding the free variable. 2 The number 1 next to the A tells us how many 
AS we have to count from (and excluding3 ) this A. (The variable x, as before, is translated in 
the second number l.) 

To demonstrate how {j-reduction works in this notation we consider the term (Ax'Z.(XY))u 
which ,a-reduces to uy. Under the assumption that the free variable list is Ay, A" Au, this 
reduction using de Bruijn's indices can be represented as: (A2.1 4)1 reduces to 1 3. Here the 
contents of the subterm 14 changes: 4 becomes 3. This is due to the fact that A2, disappeared 
(together with the argument 1). The first variable 1 did not change; note, however, that the 
A binding this variable has changed "after" the reduction; it is the last A in the free variable 
list ("Au") and no longer the A inside the original term ("Ax"). The reference changed, but 
the number stayed (by chance) the same. 

The notation that we will introduce in the following section makes use of de Bruijn's 
indices but assumes a linear representation of terms which groups term constituents (so
called "items") together in a novel way. This new notation will prove powerful for many 
applications, of which we study term and variable manipulation, and types in detail in this 
paper. 

2.2 The new notation 

Let us look again at the syntax of A-terms given in 2.l. If we forget variables (as we shall 
when we use de Bruijn's indices), then we begin with natural numbers and all that remains 
is abstraction and application. We shall consider these to be the basic operations on terms 
and shall use A to refer to the first and 6 to refer to the second. Note that both operators 
are binary. That is, in the typed A-calculus, A links a type to a term, (think of Ax,y.x which 
is Al.1) and application links a function to an argument. We will use a typed A-calculus 
notation which is also suitable to write type free terms. This will be done via our special 
index c below. 

Now our terms are application terms such as t a.pplied to t' and abstraction terms such 
as At.t'. We shall not assume the uniqueness of the A and the 6 operators.4 Rather we 
consider A, A" A2, ..• for abstraction, and 6,6, ,62 , ••• for application. We use w, W" W2, •.. as 
meta-variables for both kinds of operators. \Ve refer to the set of A-operators by n.\ and to 
the set of 6-operators by ns. We assume that n.\ and ns are disjoint and finite and write 
n (or nAs ) for their union. As we decided to use indices instea.d of variables, we take :=: the 
set of variables to be:=: = {c,1,2, ... }. Sometimes we will need to use actual variables, but 
this is not a part of our syntax. It is only a matter of simplifying the conversation. We use 
x, Xl, y, . .. to denote variables.5 Using nand :=: we define our terms (which we denote t, tI, .. . ) 

2If we had more than one free variable, we have to know which one comes before the other. For this, we 
assume an arbitrary, but fixed order so that these invisible lambda's form a free variable list. 

3This technical peculiarity disappears in the new notation of section 2.2. 
4This is to enable OUf system to be general enough to represent a. whole variety of type systems. For 

example to accommodate second-order theories, we use A2 for ,,\ and >'1 for A. To accommodate Pure Type 
Systems we use A2 for II and Al for the ordinary A. Moreover, these various A'S and 6's will be useful for 
stepwise substitution and lazy evaluation, which we pursue in another article. 

5E; is a special variable that denotes the "empty term". It can be used for rendering ordinary (untyped) 
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to be those symbol strings obtained in the usual manner on the basis of 3, the operators in fl 
and parentheses. That is our terms are the elements of Fn(3), the free fl-structure generated 
by 3. We call these terms fl'\o-terms or simply terms. 

We will defer from usual practice and use the operators in fl as infix ones. That is we 
write (tot') for the function t' applied to-the argument t (note the reversed order!) and write 
(tAt') for (At.t'). We go even further by using what we call item-notation where we place 
parentheses in an unorthodox manner: we write (tlW)tZ instead of (tlwtZ)' 

Examples of terms are: £,3, (20)(£A)1, in item notation or (20(£A1)) in the original infix 
notation. (We assume that A E fl,\ and 0 E flo.) 

Notation 2.1 (tree notation) One can also consider terms as trees, in the usual manner (in 
this case we shall speak of term trees). In term trees, parentheses are superfluous (see 
figure 1). In this figure, we deviate from the normal way to depict a tree; for example: we 
position the root of the tree in the lower left hand corner. We have chosen this manner of 
depicting a tree in order to maintain a close resemblance with the linear term. This has also 
advantages in the sections to come. The item-notation suggests a partitioning of the term 
tree in vertical layers. For (xwtJ(ywz)z, these layers are: the parts of the tree corresponding 
with (XWl)' (ywz) and z (connected in the tree with two edges). For «xwz)ywtJz these layers 
are: the part of the tree corresponding with «xwz)ywtJ and the one corresponding with z. 

x y 

LLz 
(XWl(YWZZ» 

(XWl)(YWZ)z 

x 

~-.. y 

...... ---_z 
«XWZY)WIZ) 

«XWZ)YWl)Z 

Figure 1: Term trees, with normal linear notation and item-notation 

Notation 2.2 (name carrying terms) For ease of reading, we occasionally use customary 
variable names like x, y, z and U instead of reference numbers, thus creating name-carrying 
terms in item-notation, suclt as (UO)(YAx)X in Example 2.3. The symbols used as subscripts 
for A in this notation are only necessary for establishing the place of reference; they do not 
"occur" as variables in the term. 

Example 2.3 Consider the typed lambda term (Ax,y'X )u. In item-notation with name
carrying variables this term becomes (UO)(yAx)X. In item-notation with de Bruijn-indices, 
it is denoted as (10)(2A)1. 

The typed lambda term U(Ax,y.X) is denoted as «YAx)x6)u in our name-carrying item
notation and as «2A)16)1 in item-notation with de Bruijn-indices. The free variable list, in 
the name-carrying version, is Ay, Au, in both examples. 

lambda calculus; take all types to be e, Another use is as a "final type", like 0 in Barendregt's cube or in 
Pure Type Systems (PTS's) 
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The term trees of these lambda terms are given in figure 2. In each of the two pictures, 
the references of the three variables in the term have been indicated: thin lines, ending in 
arrows, point at the A'S binding the variables in question. Note that these lines follow the 
path which leads from the variable to the root following the upper-left side of the branches of 
the tree. Only the A'S met do count, the Ii's do not. 

1 2 

.~ -=e~ JliJI A -. 1 

(11i)(2A)1 

(UIi)(YAx )x 

(Ax," . x)u 

2 

A_ 1 

A-A~~===e1 .- - .-

((2A)1 1i)1 

((YAx)x Ii)u 

U(Ax,y . x) 

Figure 2: Term trees with explicit free variable lists and reference numbers 

Example 2.4 Now for ,a-reduction, the term (Ax".(XY))u ,a-reduces to uy. In our sugared 
item-notation this becomes: (UIi)(ZAx)(yli)x reduces to (yli)u (see figure 3). Note that the 
presence of a so-called Ii-A-segment (Le. a Ii-item immediately followed by a A-item, in this 
example: (uli)( ZAx)) is the signal for a possible ,a-reduction. The "unsugared" version reads: 
the term (11i)(2A)(41i)1 reduces to (31i)1. 

124 

IdL-11i=4 1 

(Ax".XY)U 
(u6)( ZAx )(y6)x 

(16)(2A)(46)1 

3 

.-A--.-A-_-~----l~ 1i=4 1 

uy 

(y6)u 

(36)1 

Figure 3: ,a-reduction in our notation 

We can see from the above example that the convention of writing the argument before 
the function has a practical advantage: the Ii-item and the A-item involved in a ,a-reduction 
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occur adjacently in the term; they are not separated by the "body" of the term, that can 
be extremely long! It is well-known that such a 8-'x-segment can code a definition occurring 
in some mathematical text; in such a case it is very desirable for legibility that the coded 
definiend urn and definiens occur very close to each other in the term. 

Remark 2.5 With the help of 0 we can construct terms without free variables, for example we 
can construct (0'x)(U)(18)((2'x)(1'x)1'x)3. We note that it may be profitable to use the empty 
term instead of 0, which allows us to write terms like ('x)(1'x)2 or even ('x)(U), representing 
the typed lambda terms 'xy".'xx,y.y and 'xy".'xx,y.o, respectively. We shall use this convention 
in section 3.2, especially in the case of an item (ow), which we render as (w), for different 
operators w. 

Remark 2.6 The presented way of describing typed lambda calculus is relatively easy to 
read. Another approach is to define a term in tree format, e.g. as a set S of pairs (,8, ~), 
where {3 is a finite sequence of zeros and ones and € E :=: U U. The string ,8 codes a root path 
in the binary tree, starting at the root. Each 'zero' in the string means: "go upwards and 
follow an edge until the next node", each 'one' in the string means: "go to the right and do 
the same". The ~ is the label connected with the final node of this path.6 The notions to be 
defined in the following sections can also be expressed in this tree language. 

There is one important advantage in using this kind of term trees instead of terms: one 
needs not bother about the occurrences of a variable or a subterm which are meant. In fact, 
the ,8 of the pair (,8,0 gives the exact location of ~ in the tree. Hence, in the case that ~ is 
a variable, the ,8 fixes the occurrence of €; in the case that ~ is an operator, the ,8 fixes the 
location of a subterm (subtree) with the mentioned ~ as its main operator. 

In the rest of this paper, we use terms and not term trees. This causes some inconveniences, 
especially as regards these "occurrences". Apart from that, we prefer ordinary terms because 
they are easier to read than sets of pairs (,8, €). 

2.3 The inner structure of terms 

In this section we give a number of definitions regarding certain substrings of terms. 
First, we give a formal definition of items and segments. 

Definition 2.7 (items, segments) 
If w is an operator and t a term, then (tw) is an item. 
A concatenation of zero or more items is a segment. 7 

We use 8,81,8;, ... as meta-variables for segments. 
We define a number of concepts connected with terms, items and segments. 

Definition 2.8 (main items, main segments, w-items) Each term t is the concatenation of 
zero or more items and a variable: t == S1 ... SnX. These items S1 ... Sn are called the main 
items oft. 

Analogously, a segment 8 is a concatenation of zero or more items: 8 == S1 ... sn; again, 
these items 81 ..• s" (if any) are called the main items, this time of 8. 

6The set S should have some obvious additional properties, such as prefix-closedness; if (.8,~) E S, then for 
all prefixes [3' of f3 there must exist a e' such that (f3 ',e') E S. 

7In [deB9x] an item is called a wagon and a segment is called a train. 
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An item (t w) is called an w-item. Hence, we may speak about >.-items and o-items. 
If a segment consists of a concatenation of an wI-item up to an wn-item, W; E fI, this 

segment may be referred to as being an WI- .•. -wn -segment.8 

A context is a segment consisting of only >.-items. 

Example 2.9 Let the term t be defined as (0)')((10)(0>.)10)(2>')1 and let the segment s be 
(0)')((18)(0>')16)(2>'). Then the main items of both t and s are (0).), ((16)(0>')16) and (2)'), 
being a >.-item, a 6-item, and another >.-item. Moreover, ((10)(0>.)10)(2>') is an example of 
a main segment of both t and s, which is not a context, but a 6->.-segment. Also, s is a 
>.-6->.-segment, which is a main segment of t. 

Definition 2.10 (body, end variable, end operator) 
Let t ;: sx be a term. Then we call s the body of t, or body(t), and x the end variable 

oft, or endvar(t). It follows that t;: bOdy(t) endvar(t). 
Let s;: (tw) be an item. Then we call t the body of s, denoted body(s), and w the end 

operator of s, or endop(s). Hence, it holds that s;: (body(s) endop(s)). 

Note that we use the word 'body' in two meanings: the body of a term is a segment, and 
the body of an item is a term. 

Example 2.11 In the previous example, s is the body oft and 1 is the end variable of t. Let 
s be the item ((16)(0>.)16). Then (16)(0>')1 is the body of sand 6 the end operator of s. 

By means of the following definition one can sieve the main items with certain end operator( s) 
from a given segment or term, forming a (new) segment: 

Definition 2.12 (sieveseg) 
Let s be a segment, or let t be a term with body s. 
Then sievesegjs) = sievesegjt) = the segment consisting of all main w-items of s, 

concatenated in the same order in which they appear in s. 

Example 2.13 In the term t of Example 2.9, sieveseg.\(t);: (0)')(2>') and sieveseg.(t);: 
((16)(0>.)16). 

For later use, we define different kinds of weight for segments and terms: 

Definition 2.14 (weight, w-weight) 
The weight of a segment s, weight(s), is the number of main items that compose the 

segment. 
The weight of a term t is the weight ofbody(t). 
The w-weight weightw(s) of a segment s is the weight of sievesegw(s). 
Again, the w-weight of a term t is the w-weight ofbody(t). 

Example 2.15 For the term t ;: (0)'x)(x>'v)(x6)(0>'y)((x>,z)yo)(y>,u)u and the segment s;: 
(€>'x)(x>'v)(x6)(€>.y)((x>'z)yo)(y>,u), weight(t) = weight(s) = 6 and weight.\(t) = weight.\(s) 
= 4. 

8 As noted before, an important case is that of a 6-A-segment, being a 6-item immediately followed by a 
A-item. 
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Next, we show how the relations direct subterm and subterm, denoted by the relation 
symbols c and <L, can be concisely defined in our notation: 

Definition 2.16 (direct sub terms, subterms) 
Ifbody(t) oj 0, then t;: (t'W)t". In this case we call t' and til the (left and right) direct 

subterms oft. We denote this by t' C t and til C t. 
The relation <L is the reflexive and transitive closure of C. 
We say that tl is a subterm oft ifftl <L t. 

Example 2.17 Let t be the term «16)2A)(1A)3. The left direct subterm of tis (16)2, the 
right direct subterm oft is (U)3. The subterms of tare t, (16)2,(U)3, 1 (twice), 2 and 3. 

When one says that t' is a subterm of t, one usnally has a certain occurrence of t' in t 
in mind. (There can be more occurrences of t' in t.) The precise location of the occurrence 
meant has not been accounted for in the definition given above. This shortcoming can be 
mended by giving a third argument to C and <L, being a code for the path leading from the 
root of t to the root of the t' meant (cf. Remark 2.6). See the following example. 

Example 2.18 Let t be the term «X6)(yAx)XAu)(z6)y. 
Then x <Loo t, x <L011 t and (YAx)x <LOI t.9 

However, we shall not use this way of describing the intended occurrence. If necessary, 
we shall "mark" an occurrence, e.g. with a small circle, 0, or with under- or overlining. For 
example, the first occurrence of x in t (see Example 2.18) can be fixed by referring to it as XO 
in «X06)(yA,,)XAu)(z6)y. And the occurrence of the subterm (YAx)x in this t can be marked 
as (yAx )X.10 We can also mark the occurrence of an operator: (yA~)X. 

In the following section we need a notion that relates (left and right) subterms to an 
operator: 

Definition 2.19 (arguments) 
Let (t'WO)t" <L t. Then t' is the left argument of WO in t, or leftarg(wO), and til is the 

right argument of WO in t, or rightarg(wO). 

Hence, leftarg(wO) is the left direct sub term of (t'WO)t" and rightarg(wO) is the right 
direct subterm of (t'WO)t". 

Note that a maximal subterm of a term t (i.e. a subterm that cannot be extended to the 
left in t) is either t itself or a left direct sub term of t and hence the left argument of some 
operator occurring in t. 

Items and segments play an important role in many applications. As explained before, 
a A-item is the part joined to a term in an abstraction, and a 6-item is the part joined in 
an application. In using typed lambda calculi (e.g. mathematical reasoning), A-items may be 
used for assumptions or variable introductions and a 6-A-segment may express a definition or 
a theorem (see [Ned90J). 

9Note that tl is a direct subterm of t if and only if tl <Ca t for a = 0 or a = 1. 
lOIn (deB9x], the occurrence of a subterm is called a positioned subterm. 
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3 The usefulness of the new term notation 

The notation introduced in the previous section provides useful advantages related to many 
notions of the lambda calculus. In this section we study the usefulness of this notation to 
three notions; namely, term restriction, bound and free variables and term typing. 

3.1 The restriction of a term 

In the present section we explain how to derive the restriction t r x of a term t to a variable 
occurrence XO in t. This restriction is itself a term, consisting of precisely those "parts" of t 
that may be relevant for this xO, especially as regards binding and typing. 

When a variable x occurs in term t, then it is not the case that all the "information" 
contained in t is necessarily relevant for a specific occurrence XO of x in t. For example, in 
the term (EAx)(xAv)(x6)(eAy)«xAz)y06)(YAu)u,only the items (cAx), (XAv), (x6), (EAy) and 
(XAz) are of importance for the variable occurrence yO. These items are all the items that can 
be found to the left of yO. In the traditional notation this is not the case; cf. the same term 
as above in the usual notation: Ax".Av,x.(Ay".(Au,y.U)A.,x.YO)x. 

In order to formalise this intuition we give the following definition. 

Definition 3.1 (envelope, dominator, one-step restriction, full restriction) 
Let XO be an occurrence of variable x in term t such that XO '" endvar(t). Then there is 

an operator occurrence WO in t such that XO '" endvar(leftarg(wO)). The term leftarg(wO) 
is called the envelope of XO or env(xO). The term (leftarg(wO) WO) rightarg(wO) is called 
the dominator of XO or dom(xO). 

(Note that the tree of dome x O) is the subtree with WO as its root and that env( x O) is, in its 
turn, the "left direct subtree" of this subtree. See the example below.) 

The one-step restriction of t to xO, denoted t f xO, is: 
1. in case XO '" endvar(t): the term obtained from t by replacing dom(xO) by env(xO); 
2. in case XO '" endvar(t): t [XO '" t. 

The (full) restriction of t to xO, denoted t rxo, is the limit of the sequence tl, t2, ... , 

where tl '" t and ti+! '" ti [xo. 

Example 3.2 Let t be the following term: 

Then the envelope of XO is tl '" (u6)( XA,)XO, since tl '" leftarg( Ay). Moreover, 
rightarg(Ay) = (UAz)Y, so the dominator of XO is t2 = «u6)(xA,)xO Ay)(UAz)y. See the 
underlining and the overlining in (2): 

The replacement of t2 (O"" dom(xO)) by tl (O"" env(xO)) gives the one· step restriction t fxo: 

(3) 

The full restriction t r x of the same xO, obtained after another one·step restriction, is: 

(4) 
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u x 

6 At x 
x u 

c Au Ay Az Y 

Ax Au u 

x u x 

u 

c x u x 

L 1Au 16 lAt ox 

Figure 4: A term and its restriction to a variable 

Now it will be clear that it is very easy to obtain the full restriction t txo using our item
notation: just take the substring of string t from the beginning of t until Xo and delete all 
unmatched opening parentheses. This is an advantage of our new notation. 

It is illustrative to draw the tree of t (see figure 4) and to see what happens when the 
restriction process is executed with this tree. In the first one-step restriction in the example 
given above, the subtree corresponding with the subterm (u6)(xAt)xO is "pushed down" to the 
node formerly labeled Ay, annihilating the rest of the subtree rooting in this node. The full 
restriction is the result of a continuation of this process. In figure 4, the intended occurrence 
of XO in the trees is denoted with an open circle. 

Intuitively, the body of t txo is the only thing that matters for XO in t; the rest of (the tree 
of) the term t may be neglected, as far as the XO is concerned. As said before, this is essentially 
the importance of the restriction: t t x is a term with x as its end variable, that contains all 
"information" relevant for x. For example, when x is bound (see the following subsection), 
then the bond between x and the A binding this x does not change in the process of restriction; 
i.e. corresponding variables x in the described sequence t l , t2, ... refer to corresponding A's 
(the number x does not change). So the A binding this x can be found in t tx; the same 
holds for the type of this x. Moreover, when x is a candidate for a substitution caused by a 
reduction, then the 6-A-segment connected with this reduction can be found, again, in t tx. 
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Full restriction is, of course, idempotent; more generally, the following holds: when y 

occurs in t, and x occurs in t fy, then (t fy) fx == t fx. 

The described notion 'restriction of a term to a variable' has an obvious generalisation: 
'restriction of a term to a subterm': 

Definition 3.3 (restriction of a term to a subterm) 
Let to be an occurrence of subterm to in term t. Let XO == endvar(to). 

env(~ -;;nd dom(~ are defined as tfxO, t rxo, env(xO) and dom(xO). -

Note that a term t f to contains all "information" necessary for to. 

3.2 Bound and free variables 

Then t fto, t rto, - -

An important notion in lambda calculus is that of bound and free variables; for a bound 
variable the "binding place" is relevant. This can be defined as follows. 

Definition 3.4 (bound and free variables, type, open and closed terms) 
Let XO be a variable occurrence in t such that x ¢. E and assume that sieveseg~(t fxO) == 

Sm ... s, (for convenience numbered downwards). Then XO is bound in t if x $ m; the 
binding item of XO in t is Sx and the A that binds XO in t is endop (s",). The type of XO in 
t is body (sx). Furthermore, XO is free in t if x > m. 

The variable E is neither bound nor free in a term. 
Term t is closed when all occurrences of variables in t different from E are bound in t. 

Otherwise t is open or has free variables. 

Example 3.5 The term t == (cAx)(xAv)(x6)(EAy)«xAz)y06)(YAu)u becomes, in the notation 
with de Bruijn- indices: t == (A)(lA )(28)( A)( (3A)2°8)(IA)1. Now t r2° == (A)(IA )(28)( A )(3A)2°. 
So sieveseg-\(t f2°) == S4S3S2S, == (A)(IA)(A)(3A). Hence, 2° is bound in t since 2 $ 
weight~(t f2°) = 4. Moreover, the type of 2° in tis body(sz) == E. 

There are no free variables in t, hence t is closed. 

We see from this example that one can easily account for free and bound variables, just by 
calculation. Note that (one-step or more-step) restriction does not affect whether a variable 
occurrence is free or bound. 

There is a simple procedure for finding the variable occurrences bound by a certain A in 
a term t. In the following definition this procedure is given as a step-by-step search. 

For this purpose, we temporarily extend the language with a special search item or (
item and with a new relation, _" between (extended) terms. (We may speak of flM,-terms 
when referring to these extended terms.) 

We write the search item as an indexed item: «((i», with index i. This index serves for 
the identification of the proper variable occurrences, as turns out below. The (-operation is 
binary, just as A and 8, but since a (-item always has E as its body, one may also consider it 
to be a unary, prefix operator. 

The search begins with the generation of a (-item, jnst behind the A-item in question. 
Thereupon this (-item is pushed through all subterms of the term "in the scope of' the A
item. The index (i), initialized on 1, increases with 1 whenever the (-item "passes" a A. 
When ending at a variable x, the index i of the (-item decides whether x is bound by the A 

12 



of the above-mentioned >.-item, or not. If this is the case, then the variable is capped with 
the symbol -. 

The rules are given as a relation between terms, but in a compact format. Rule "8 -, -;; 

states that the relation t -+( t' holds for terms t and t' when a segment s occurs in t and t' 
is obtained by replacing "8 by s' in t. (Otherwise said: it is assumed that rules of so-called 
"compatibility" or "monotonicity" have been added.) 

Definition 3.6 ((-reduction) 
(( -generation rule:) 
(tl>') -+, (tl>.)«((I) 
(( -transition rules:) 
«((i)(t'>') -+, «((i)t'>.)(((i+l) 
«((i)(t'6) -+, «((i)t'6)(((i) 
(( -destruction rules:) 
«((i)i _, i 
«((i)x -+, X if x of. i. 

(In order to prevent undesired effects, we only allow an application of the (-generation 
rule in a term t when there is no other (-item present in t). 

Example 3_7 Let t == (>.)(1>.)(26)(>.)«3>.)26)(1>.)1. If we want to find all variables bound 
by the third>. in t, we can apply the following sequence of (-reductions: 

(>.)( 1 >.)( 26)( >.)( (3). )26)(1).)1 _, 
(>.)( 1>.)( 26)( >.)( ((1)( (3)' )26)( 1>.) 1 -+, 

(>. )( 1>' )( 26)(>.)( «((1) )(3)')26)(((1 )( 1>.) 1 -+( 

(>.)( 1>' )(26)( >.)( « ((1) )3>')( (2) )26)( ((1) )(1)')1 -+, 

(>.)( 1>.)( 26)( >.)( (3).)( ((2) )26)( ((1)( 1>.) 1 -+( 

(>.)( 1>.)( 26)( >.)( (3). )26)( ((1)( 1>')1 -+, 

(>.)( 1>' )(26)( >.)( (3)' )26)« ((1) 1>.)( (2) 1 _, 
(>.)( 1>' )(26)( >.)( (3)' )26)(i>.)( (2) 1 -+, 

(>.)( 1>.)( 26)(>.)( (3). )26)(i>')1 

A similar procedure can be given for searching the>. binding a certain occurrence XO of 
a variable x (of. £) in a term t. For this purpose we introduce an inverse search item or 
(*-item. The inverse search item has to move in the opposite direction, while the index (i) 
decreases instead of increases. A special provision has to be made for the case that the variable 
in question happens to be free; in that case the reverse search item becomes the initial item 
of the term, and must be destructed. This case is not provided for in the following definition: 

Definition 3.8 ((*-reduction) 
((*-generation rule:) 

XO _'* (dx)xO 

((rtransition rules:) 

(t'>.)(di
) _'* «(Y-l)(t'>') ifi > 1 

«di)t'>') _'* (di)(t'>') 
(t'6)(dil) -+,* (dil )(t'6) 
«di)t'6) -+,* (dil )(t'6) 
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(( -destruction rule:) 
(t',\)((£I») ..... ,* (t'A) 

Example 3.9 Again, let t:; (,\)(1,\)(28)('\)((3,\)2°8)(1'\)1. The search for the ,\ binding 2° 
in t can be execnted by the following sequence of (*-reductions: 
(,\ )(1'\)( 28)( ,\)( (3'\ )2° 8)( 1,\) 1 ..... ,* 
(,\)( 1'\)( 28)('\)( (3'\)( d2»)2° 8)( 1'\)1 ..... ,* 
(,\)( 1'\ )(28)('\)( (d1 

»)(3,\ )2° 8)(1,\)1 -> (* 

(,\)( 1'\ )(28)('\)( d1»)( (3'\ )2° 8)( 1,\) 1 ->'* 

(,\)( 1'\)( 28)( A)( (3'\ )2° 6)( 1,\) 1 

Note that the latter search (for a binding ,\) is easier, since it follows only one path in the 
term tree, in the direction of the root; the former search (for all variables bound by a certain 
,\) disperses a (-item over all branches of the subtree with this ,\ as its root. 

3.3 Limiting the set of terms with a view to the types 

In the previous section, the types did not play any role of importance in the term construc
tion. However, types are meant to restrict the class of terms in lambda calculus. When 
used properly, types can provide for some properties that are desirable in applications, e.g. 
termination of reductions ("calculations"). 

Given the class of typed lambda terms of the previous sections, one can follow two natural 
ways of using the type information for establishing the "well-typedness" or "correctness" of 
the term: firstly, to investigate for every term that one encounters, before using it, whether 
the term as a whole obeys certain type-conditions; secondly, to allow reduction of the term 
only when the argument and the function match (this, again, is dependent of some type
information, but this time only for a part of the term). In the first case one establishes the 
"well-typedness" or "correctness" of a full term before working with it; in the second case one 
aborts a calculation at the moment that the type-laws are infringed. In the latter case more 
terms are "usable", since improperly typed parts may disappear in the process of calculation 
before they are recognized as such. 

A different approach is to reconsider term construction, allowing only those terms to be 
constructed which are "well-typed". This process is similar to the first option above, albeit 
that term construction and type checking are not performed subsequently, but intermingled. 
In this manner of term constructing, it is desirable that type checks occur as few as possible, 
in order to avoid unnecessary work. For this purpose we propose the following system of 
rules. 

variable condition 
sl-x 

sl-t s( t'\) I- t' abstraction condition 
s I- (t'\)t' 

si-t s( t6) I- t' appl ication condition 
s I- (t6)t' 

(5) 

(6) 

(7) 

These rules should be read as follows. The symbol '1-' separates an antecedent which is a 
segment that has not yet been approved and a succedent, being a term that is all right as far 
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as bound variables, abstraction and function application are concerned. For the establishment 
of this "all right-ness" the type-information will be used. 

As can be seen from equations 6 and 7, the succedent grows at the front side at the cost 
of the antecedent, by taking over an item from the back side of the antecedent. The process 
is finished when the antecedent is empty; I- t means that term t has been approved. 

The segment forming the antecedent of a statement of the form 8 I- t is also called a 
context segment, because of its similarity with contexts in Pure Type Systems. However, 
(pure) contexts only consist of A-items, whereas context segments may also contain 6-items. 

The variable condition is optional. In case one wishes to obtain only closed terms, this 
condition should read: x:::; weight II (8) (count £ as zero, in case x == £). The abstrac
tion condition and the application condition vary from system to system, or may even be 
absent.!1 One example: with abstraction condition t == e, tt 'to e, empty variable condition 
and application condition, we obtain the syntax of the untyped lambda calculus. 

The variable condition, the abstraction condition and the application condition may each 
consist of different parts. The abstraction and application condition may also depend on the 
A or 6 in question (recall that, in principle, we allow more than one kind of A and/or 6 in a 
term). 

With the use of these rules (provided with the appropriate conditions) we obtain for 
each "well-typed" term a construction tree, which contains at the same time a proof for its 
"well-typedness". We shall call such a tree a proof tree for the term. 

Example 3.10 The lowest part of the proof tree of term (1) (see Example 3.2), based on 
these rules, is the following: 

I- (eAx) ((x Au) ((u6)(XAt)XAy) (UAz)y Av)U 

Here 1"1 and 1"3 are only checks of the appropriate variable conditions (which we here 
assume to be empty) and 1"2 is a part of the tree that is not displayed. 

The completion of the proof tree of the term in the above example will show a striking 
similarity with the usual term tree of this term (cf. Section 2.2). Formula's of the form 8 I- t 
in the above proof tree correspond with the labels at the nodes of the term tree. 

This observation also holds in general. In particular, the following relation holds: the leaf 
in the proof tree of term t that corresponds with (the occurrence of) the variable x in the 
term tree of t, is labeled 8 I- x, with 8 x == t r x. 

11 In type systems, the type information plays a predominant role in the application condition: t may only 
be an "argument" of t f (i.e. s I- (tS)t') if t' is some kind of "function", with a "domain" in which t fits. This 
requirement must be expressed formally in the application condition. 
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4 Conclusions 

In this paper it was our intention to investigate some structural aspects of terms in typed 
lambda calculus and to identify a number of concepts that are of importance for the use of 
typed lambda calculus. 

We started in section 2 with a novel description of term formation, regarding abstraction 
and application as binary operations. The item-notation of terms enabled us to create a term 
progressively, or module-like, so to say, in analogy with the manner in which mathematical 
and logical ideas are developed. Variables and variable bindings obtained a natural place in 
this setting, both in the name-carrying and in the name-free version, the latter by means of 
de Bruijn-indices. The notions of segment and subterm fit nicely in this pattern. 

Two notational features are of great advantage in this respect: the first is to give the 
argument prior to (Le. in front of) the function; the second, of minor importance, is that a 
type precedes the typed variable. The section on the restriction of a term to a variable shows 
that these notational changes have advantages, in particular in establishing which part of a 
linearly written term may be of influence for a given variable occurrence: this part is (but 
for some brackets) exactly the string of symbols that precedes this occurrence in the term. 
More precisely, we showed that it is very easy to obtain the full restriction t r XO using our 
item-notation; we just had to take the substring of string t from the beginning of t until XO 

and delete all unmatched opening parentheses. 
We showed in 3.2 that one can easily account for free and bound variables in our approach, 

it was all a matter of calculation. Moreover, we provided simple procedures for finding the 
variable occurrences bound by a certain A in a term t and for finding the particular A which 
binds a certain occurrence XO of a variable x (io 0) in a term t. All this points to the advantages 
of our new notation. 

We also gave an alternative way of term construction, limiting the set of terms with a 
view to the types. This way of term construction was based on three rules, for variables, 
abstractions and applications, respectively. In each of these rules certain conditions can be 
specified in order to restrict the generation of terms, e.g. with a view to the "well-typedness" 
of a term. With these rules we obtain for each term a construction tree, which contains at 
the same time a proof for its "well-typedness". Such proof trees show a striking similarity 
with the usual term trees as provided in section 2.2. This can ouly be another advantage for 
our new notation. 
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