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Abstract 

A-calculus is at the heart of type theory while type theory has heen the most stimu
lating part of the theory of Computation. The presence however of various type systems 
provokes attempts at finding a unified way of describing these systems. Barendregt's 
cube for example, is such an attempt. Based on these observations, we will devise a new 
A-notation which enables categorising most of the known systems in a unified way. More 
precisely, we will sketch the general structure of a system of typed lambda calculus and 
show that this system has enough expressive power for the description of various existing 
systems, ranging from Automath-like systems to singly-typed Pure Type Systems. 

Keywords: Lambda Calculus, Pure Type Systems, Barendregt's Cube, Automath and the 
Calculus of Constructions. 

1 Introduction 

Terms of the lambda calculus are constructed by two principles: abstraction, by means of 
which free variables are bound, thus generating some sort of functions; and application, being 
in a sense the opposite operation, formalising the application of a function to an argument. 
We will introduce a slight change to the A-notation to enable us to construct lambda terms 
in a modular way, in accordance with the demands and needs of a mathematical entourage. 
This new notation will be based on abstraction and application and, as an alternative to the 
use of variables, will assume de Bruijn-indices. These are natural numbers that do not suffer 
from the usual problems with variable names (the danger of "clash of variables", the need for 
appropriate renaming, etc.). 

Our notation is very advantageous and should be seen as an alternative to the usual A
calculus notation. We clalm that this new formulation can avoid many of the complications 
associated with the old formulation. In fact, in [NeK92aJ, we showed the usefulness of the 
new notation for variable and term manipulation and for typing. In particular, we showed 
in that paper, that the restriction of a term to a variable x is obtained by simply taking the 
substring of string t from the beginning of t until x and then deleting all unmatched opening 
parentheses. Moreover, we showed in the same paper that accounting for bound and free 
variables in a term is only a matter of a very simple calculation and demonstrated that term 
construction can be done via trees which are at the same time proofs of the well-typedness of 
the term. In [NeK92bJ, we embedded stepwise substitution in the new calculus showing how 
the new notation facilitates the introduction of substitution as an object level notation in the 
A-calculus resulting in a system which can accommodate most substitution strategies. All 
this points towards the advantages of the new notation but this is not all. In this paper, we 
will show how various existing systems ranging from Authomath-like systems to singly-typed 
pure type systems could be expressed in a uniform way in our proposed setting. 

In particular, after introducing in Sections 2 and 3 the new notation and all the formal 
machinery needed for the paper, we concentrate in Section 4 on the typing relation. We 
introduce a canonical type operator, suited for the "calculation" of one canonical type in the 
class of all types of a certain (typeable) term. The typing relation connected with this type 
operator is presented by means of a stepwise "process", which can be described in different 
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manners. Again, we claim to give the fine-structure of a central subject in lambda calculus, 
this time being the typing relation. In fact, not only the type of a A- or a II -abstraction is 
found but also II-application (and not only A-application) is allowed. 

In Section 5, we discuss the relation between our approach and certain Pure Type Systems 
(PTS's), which make use of this typing relation ":". An important subclass of this class of 
typed lambda calculi, systematized and studied by Barendregt and others, is relatively easy 
to embed in our setting. 

In Section 6, we describe a number of Automath-systems in our setting. One of these 
possibilities is a de Bruijn's system t3.A, which is a version of Automath in the format of 
typed lambda calculus. 

Finally, in Section 7, we demonstrate the features oftyping and term construction, through 
a short example. This example is a system that we propose and that has in principle similar 
power to that of Coquand and Ruet's Calculus of Constructions (or AC, see [CoR88]). We 
work out the proof of a theorem taken from logic in our system. 

2 The new notation 

We assume the reader familiar with De Bruijn's indices and of why they were introduced. If 
not, the reader is referred to [deB72], and we hope that the following examples give him an 
idea of what these indices are. 

Example 2.1 Terms such as Ax.X and Ay.Y are the "same", and the use of x, Y or any other 
variable does not change the semantic meaning of the function denoted by this term (the 
identity function). The identity function using de Bruijn's indices will be denoted by A.l. 
The bond between the bound variable x and the operator A is expressed by the number 1; 
the position of this number in the term is that of the bound variable x, and the value of the 
number ("one") tells us how many lambda's we have to count, going leftwards in the term, 
starting from the mentioned position, to find the binding place (in this case: the first A to 
the left is the binding place). 

Example 2.2 The identity function above could have been identity over a particular type Y 
(let us say) written as Ax,y.X. In such a case y is a free variable and the function is denoted 
by: (ALI). The free variable y in the typed lambda term is translated into the first number 
1. Such a number refers in this case to an "invisible" lambda that is not present in the term, 
but may be thought of to preceed the term, binding the free variable. Note here that if we 
had more than one free variable, we have to know which one comes before the other. For 
this, we assume an arbitrary, but fixed order so that these invisible lambda's form a free 
variable list. The number 1 next to the A tells us how many AS we have to count from (and 
excluding') this A. (The variable x, as before, is translated in the second number 1.) 

Example 2.3 To demonstrate how /3-reduction works with de Bruijn's indices, we consider 
the term (Ax".(XY))u which /3-reduces to uy. Under the assumption that the free variable list 
is Ay,Az,Au , this reduction using de Bruijn's indices can be represented as: (A2.14)1 reduces 
to 13. Rere the contents of the sub term 14 changes: 4 becomes 3. This is due to the fact 
that A2 disappeared (together with the argument 1). The first variable 1 did not change; 

lThis technical peculiarity disappears in the new notation. 
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note, however, that the A binding this variable has changed "alter" the reduction; it is the 
last A in the free variable list ("Au") and no longer the A inside the original term ("Ax"). The 
reference changed, but the number stayed (by chance) the same. 

Now take the type free A-calculus, with the following three ways of forming terms: 
t ::= x I (Ax.t) I (t,t2). 

If we forget variables (as we shall when we use de Bruijn's indices), then we begin with natural 
numbers and all that remains is abstraction and application. We shall consider these to be 
the basic operations on terms and shall use A to refer to the first and {j to refer to the second. 
Note that when we work with the typed A-calculus, these two operators can be considered 
to be binary. In fact, A links a type to a term, (think of Ax:y.x which is ALI) and {j links a 
function to an argument. As we are trying to give a general notation which can be used to 
describe the other ones, we will use a typed A-calcnlus notation which is also suitable to write 
type free terms. This will be done via our special index 0 below. 

Notation 2.4 (Abstraction and Application operators) 
As we are trying to devise a system which will be general enough to represent a whole variety 
of type systems, we shall not assume the uniqueness of the A and the 8 operators. Rather we 
consider A, A" ,1.2, ... for abstraction, and 0,8" {j2, ... for application and use w, w" W2, . .. as 
meta-variables for both kinds of operators. Moreover, we refer to the set of A-operators by 
fh and to the set of {j-operators by fl •. We assume that fl,\ and flo are disjoint and finite 
and write fl (or fl,\5) for their union. 

Example 2.5 To accommodate second-order theories, we use ,1.2 for A and A, for A. To 
accommodate Pure Type Systems we use A, for II and ,1.2 for the ordinary A. 

Notation 2.6 (Variables) 
As we decided to use indices instead of variables, we take 3 the set of variables to be 
:::: = {E, 1, 2, ... }. Sometimes we will need to use actual variables, but this is not a part of 
our syntax. It is only a matter of simplifying the conversation. We use x,x"y, ... to denote 
variables. 0 is a special variable that denotes the "empty term". It can be used for rendering 
ordinary (untyped) lambda calculus, by taking all types to be o. Another use is as a "final 
type", like 0 in Barendregt's cube. 

Usiug fl and 3 we define our terms (which we denote t, t" ... ) to be those symbol strings 
obtained in the usual manner on the basis of 3, the operators in fl and parentheses. That is: 

Definition 2.7 (Terms) 
Terms are the elements of FIl (3), the free fl-structure generated by 3. We call these terms 
fl'\o-terms or simply terms. 

Notation 2.8 (Item Notation) 
We will defer from usual practice and use the operators in fl as infix ones. That is we write 
(tlit') for the function t' applied to the argument t (note the reversed order!) and write 
(tAt') for (At.t'). We go even further by using what we call item-notation where we place 
parentheses in an unorthodox manner: we write (t,W)t2 instead of (t,Wt2). 

Example 2.9 The following are terms: 0,3, (2{j)(oA)1, in item notation or (2{j(oA1» in the 
original infix notation. (We assume that A E fl,\ and {j E flo.) 
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Notation 2.10 (Tree notation) 
One can also consider terms as trees, in the usual manner (in this case we shall speak of term 
trees). In term trees, parentheses are superfluous (see figure 1). In this figure, we deviate 
from the normal way to depict a tree; for example: we position the root of the tree in the 
lower left hand corner. We have chosen this manner of depicting a tree in order to maintain 
a close resemblance with the linear term. This has also advantages in the sections to come. 
The item-notation suggests a partitioning of the term tree in vertical layers. For (XWl)(YW2)Z, 
these layers are: the parts of the tree corresponding with (xwtJ, (YW2) and z (connected in 
the tree with two edges). For ((XW2)YWl)Z these layers are: the part of the tree corresponding 
with ((XW2)YWl) and the one corresponding with z. 

x y 

h-Lz 
(XWI (YW2Z)) 

(XWl)(YW2)Z 

x 

'--"Y 

.... ---_z 

((XW2Y)WIZ) 

(( XW2)YWtJZ 

Figure 1: Term trees, with normal linear notation and item-notation 

Notation 2.11 (Name carrying terms) 
For ease of reading, we occasionally use customary variable names like x, y, z and u instead of 
reference numbers. Thus creating name-carrying terms in item-notation, such as (U8)(YAx)X 
in Example 2.12. The symbols used as subscripts for A in this notation are only necessary for 
establishing the place of reference; they do not "occur" as variables in the term. 

Example 2.12 Let the free variable list, in the name-carrying version, be Ay , Au. 

1. Consider the typed lambda term (Ax,y.X )u. In item-notation with name-carrying vari
ables this term becomes (Ub)(yAx)X. In item-notation with de Bruijn-indices, it is 
denoted as (lb)(2A)1. 

2. The typed lambda term U(Aq.X) is denoted as ((YAx)xb)u in our name-carrying item
notation and as ((2A)lb)1 in item-notation with de Bruijn-indices. 

The term trees of these lambda terms are given in figure 2. In each of the two pictures, 
the references of the three variables in the term have been indicated: thin lines, ending in 
arrows, point at the A'S binding the variables in question. Note that these lines follow the 
path which leads from the variable to the root following the upper-left side of the branches of 
the tree. Only the A'S met do count, the b's do not. 

Example 2.13 Now for ,a-reduction, the term (Ax".(xy))u ,a-reduces to uy. In our sugared 
item-notation this becomes: (ub)(ZAx)(yb)x reduces to (yb)u (see figure 3). Note that the 
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.~~~J8JI'\-.1 
(18)(2'\)1 

(u8)(y,\x )x 

('\x'Y. x)u 

2 

,\- 1 

((2'\)1 8)1 

((Y'\x)x 8)u 

u(,\x,y. x) 

Figure 2: Term trees with explicit free variable lists and reference numbers 

presence of a so-called 8-,\-segment (Le. a 8-item immediately followed by a ,\-item, in this 
example: (uo)( z'\x)) is the signal for a possible ,8-reduction. The "unsugared" version reads: 
the term (10)(2'\)(40)1 reduces to (30)1. 

,\ .-
124 

-.h.~I d L-1 0-. 1 

('\x'Z.xy)u 

(uo)( z'\x)(yo)x 

(10)(2'\)(40)1 

3 

.-,\-_--,\-_--1--'~ 0 __ .1 

uy 

(yo)u 

(38)1 

Figure 3: ,8-reduction in our notation 

We can see from the above example that the convention of writing the argument before 
the function has a practical advantage: the o-item and the '\-item involved in a ,8-reduction 
occur adjacently in the term; they are not separated by the "body" of the term, that can 
be extremely long! It is well-known that such a o-,\-segment can code a definition occurring 
in some mathematical text; in such a case it is very desirable for legibility that the coded 
definiendum and definiens occur very close to each other in the term. 

Remark 2.14 With the help of 0 we can construct terms without free variables, for example 
we can construct (0'\)(1'\)(10)((2,\)(1,\)1,\)3. We note that it may be profitable to use the 
empty term instead of 0, which allows us to write terms like (,\)(1,\)2 or even ('\)(1,\), rep
resenting the typed lambda terms '\y".'\x,y.y and '\y,..'\x,y.o, respectively. We shall use this 
convention in the case of an item (ow), which we render as (w), for different operators w. 
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3 The formal machinery 

In this section, we will introduce most of the machinery needed for the paper. We start by 
the two basic concepts item and segment. 

Definition 3.1 (items, segments) 

1. If w is an operator and t a term, then (tw) is an item. 

2. A concatenation of zero or more items is a segment. 

We use S, SI, s;, ... as meta-variables for segments. 

Definition 3.2 (main items, main segments, w-items, Wl-.. . o.Wn-segments, (non)empty seg
ments, contexts) 

1. Each term t is the concatenation of zero or more items and a variable: t == 81 ... SnX' 
These items SI ... Sn are called the main items of t. 

2. A segment s is a concatenation of zero or more items: s == SI ... sn; again, these items 
81 .. . 8 n (if any) are called the main items, this time ofs. 

3. A concatenation of adjacent main items (in t or s), Sm'" sm+b is called a main 
segment (in t or s). 

4. An item (t w) is called an w-item. Hence, we may speak about A-items and o-items. 

5. If a segment consists of a concatenation of an wI-item up to an wn-item, W; E 11, this 
segment may be referred to as being an Wl- ••. -wn-segment. (An important case is that 
of a o-A-segment, being a o-item immediately followed by a A-item.) 

6. A segment s such that s == 0 is called an empty segment; other segments are non
empty. 

7. A context is a segment consisting of only A-items. 

Example 3.3 Let the term t be defined as (£A)«lo)(£A)lo)(2A)1 and let the segment s be 
(£A)«lo)(£A)16)(2A). Then the main items of both t and s are (£A), «lO)(£A)lo) and (2A), 
being a A-item, a o-item, and another A-item. Moreover, «lo)(£A)lo)(2A) is an example of 
a main segment of both t and s, which is not a context, but a o-A-segment. Also, s is a 
A-o-A-segment, which is a main segment of t. 

Contexts and segments can be regarded as special terms in the calculus, viz. those terms 
ending in £. Now terms can be abbreviated in a definition, as we saw before. Hence, in 
particular, contexts and segments can be abbreviated. All this holds under the condition that 
we consider s£ to be the same as s itself. 

Definition 3.4 (Segment abbreviation) 
Segment s can be called "a" by adding the "definitional segment" (SO)(A a ). 
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Example 3.5 In this example we use two A'S which we denote II and A respectively. Now the 
following introduces * as a term of type E, 1. as a term of type * and defines => as the product 
(*Aa)(*>'b)(aIIx)b. This states that, given c and d of type *, the term (d6)(co) => ,a-reduces 
to the dependent product which sends inhabitants of c to inhabitants of d. The type of => 
is (*IIa)(*IIb)*, the class of all functions sending pairs (a,b) of type * to a "new" element of 
type *. 

1. (A.) 

2. (*>'1.) 

3. ((*Aa)(*Ab)(aIIx)b 0) ((*IIa)(*IIb) * >.,..) 

Remark 3.6 In order to reap full benefit from the abbreviations, we should allow that 
segment-abbreviating variables may occur in the place of actual segments everywhere in a 
term. For example, with the above definition, the term (tAx)a(t'Ay)Z is an abbreviation for 
(t>'x)s(t'>'y)z, with s completely copied out (but for the final E, which is omitted!). 

Definition 3.7 (body, end variable, end operator) 

1. Lett == sx be a term. Then we calls the body oft, orbody(t), and x the end variable 
of t, or endvar(t). It follows that t == body(t) endvar(t). 

2. Let s == (tw) be an item. Then we call t the body of s, denoted body(s), and w the end 
operator of s, or endop(s). Hence, it holds that s == (body(s) endop(s)). 

Note that we use the word 'body' in two meanings: the body of a term is a segment, and 
the body of an item is a term. 

Example 3.8 In Example 3.3, s is the body of t and 1 is the end variable of t. Let s be the 
item ((10)(£>')10). Then (16)(E>.)1 is the body of sand 6 the end operator of s. 

By means of the following definition one can sieve the main items with certain end operator(s) 
from a given segment or term, forming a (new) segment: 

Definition 3.9 (sieveseg) 
Let s be a segment, or let t be a term with body s, then sievesegw(s) = sievesegw( t) = the 
segment consisting of all main w-items of s, concatenated in the same order in which they 
appear in s. 

Example 3.10 In the term t of Example 3.3, sieveseg,\(t) == (EA)(2>') and sieveseg,(t) == 
((10)(£>,)10). 

Definition 3.11 (weight, w-weight) 

1. The weight of a segment S, weight(s), is the number of main items that compose the 
segment. 

2. The weight of a term t is the weight ofbody(t). 

3. The w-weight weightw(s) of a segment s is the weight of sievesegwCs). 
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4. The w-weight of a term t is the w-weight ofbody(t). 

Example 3.12 For the term t '" (cAx)(XAv)(x6)(cAy)«XAz)y6)(YAu)u and the segment s '" 
(cAx)( XAv )(X6)(cAy)( (xAz)y6)(YAu), "eight( t) = "eight(s) = 6 and "eight, (t) = "eight, (s) 
= 4. 

Definition 3.13 (direct subterms, subterms) 

1. Ifbody(t) f. 0, then t '" (t'w)t". In this case we call t' and til the (left and right) direct 
subterms of t. We denote this by t' C t and til C t. 

2. The relation <r:: is the reflexive and transitive closure of C. We say that t1 is a subterm 
oft ifft1 <r:: t. 

Example 3.14 Let t be the term «16)2A)(U)3. The left direct subterm of tis (16)2, the 
right direct sub term of tis (IA)3. The subterms of tare t, (16)2, (IA)3, 1 (twice), 2 and 3. 

Notation 3.15 When one says that t' is a subterm of t, one usually has a certain occurrence 
of t' in t in mind. (There can be more occurrences of t' in t.) If necessary, we shall "mark" 
an occurrence, e.g. with a small circle, 0, or with under- or overlining. For example, the 
first occurrence of x in t '" «X6)(YAx)XAu)(z6)y can be fixed by referring to it as XO in 
«X06)(yAx)XAu)(z6)y. And the occurrence of the subterm (YAx)x in this t can be marked as 
(yAx)x. We can also mark the occurrence of an operator: (yA~)X. 

Definition 3.16 (arguments) 
Let (t'WO)t" <r:: t. Then t' is the left argument of WO in t, or leftarg(wO), and t" is the 
right argument of WO in t, or rightarg(wO). 

Hence, leftarg(wO) is the left direct subterm of (t'WO)t" and rightarg(wO) is the right 
direct subterm of (t'WO)t". 

Note that a maximal subterm of a term t (i.e. a subterm that cannot be extended to the 
left in t) is either t itself or a left direct sub term of t and hence the left argument of some 
operator occurring in t. 

Definition 3.17 (degree of a variable) 

1. The degree of a variable x that is free in term t, is undefined. 

2. The degree deg( £) of every £ occurring in t, is zero. 

3. Assume that (the occurrence of) x is bountF in t and let t' be the type of x. Further, let 
y be the end variable of this type t' and assume that deg(y) is defined. Then deg(x) = 
deg(y)+ 1. 

Note that each variable in a closed term has a degree. The set of the degrees of variables 
occurring in a term, is always a set {O, ... , n} for some n 2: O. 

Definition 3.18 (degree of a term) 

2The notions "bound" (for a variable) and "type" (of a term) are formally defined in Definition 3.26. 
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1. The degree of a term is the degree of its end variable, if this degree is defined; otherwise 
it is undefined. 

2. The maximal degree of a term is the maximal number (if any) that occurs as a degree 
of a variable occurring in the term; if there is no such number, then the maximal degree 
of such a term is undefined. 

Example 3.19 Take the f1.>.s-term t: (d",)((XAu)((uC)(XA,)XAy)(UAz)yAv)u. The degrees for 
the variables occurring in this term are: deg( £) = 0; deg( x) = 1; deg( u) = 2, except for the 
free u which is the end variable of the term: this u has no degree; deg(y) = 2; deg(z) = 3. 
If t occurred, then its degree would have been 2. The term itself has no degree (since its end 
variable is free). The maximal degree of the term is 3. 

Remark 3.20 Many existing definitions of the notion 'degree' count "the other way round", 
with the result that the degree of a "type" is one more than the degree of a term of this type. 
Our degrees 0, 1, 2, 3 then change into (e.g.) 3, 2, 1, O. In our approach we start with a "top 
level" having degree zero, and lower levels are numbered upwards, without restriction. This 
makes it easier to discuss the subject of "more degrees". See Example 3.21 which has also for 
aim to show the usefulness of more degrees. 

Example 3.21 In the propositions-as-types conception (see e.g. [How80]), propositions are 
coded as lambda terms. When t is a term which is regarded as a proposition, then any 
"inhabitant" of t - i.e., a term t' such that t' : t - serves as an assertion (a "proof") of that 
proposition. There clearly is a strong parallel with sets and elements: when t codes a set, 
and when t' is again an inhabitant of t, then t' represents an element of the set t. 

A set can have many elements, and a proposition can have many proofs. The elements 
of a set are considered to be different, but it may be useful to identify all proofs of a certain 
proposition. This is because - from the point of view of classical logic - the important thing 
is often whether there is a proof of a proposition, and not so much what the exact content of 

the proof is. 
In many systems, sets and propositions occupy the same level in the degree-hierarchy. One 

presupposes, for example, a class of sets (*,) and a class of propositions (*p), both inhabitants 
of some "super-class" D. The situation then is as follows: 

degree II 3 12 11 10 
term a: A: *8 : 0 

interpr. element set class 
of sets 

term P: Q: *p: 0 

interpr. proof prop class 
ofQ of props 

In this schema it is possible to treat proofs and elements in a different manner. For 
example, one could define an equivalence =; for proofs, viz. for those terms t of degree 3 for 
which the type of the type of t ={3 *p. 

Another way to identify proofs is the following. In the previous diagram one shifts the 
proof-prop row one column to the left, adding a class 6. between *p and D. Now proofs 
become the only terms of degree 4: 
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degree II 4 10 
term a: A: *8 : 0 

interpr. element set class 
of sets 

term P: Q: *p: C:,.: 0 

interpr. proof prop class 
ofQ of props 

This is the AUT-4 interpretation (see [deB 74]). "Irrelevance of proofs" can now be im
plemented by a rule of the following form, where =i is some equivalence: 

r I- P : Q : *p : C:,. r I- pi : Q' : *p : C:,. Q =(3 Q' 
P =i pi 

Definition 3_22 (degree-consistency) 

1. A typing relation is degree-consistent if for all terms tl and tz we have: 
iftl : t2 and if both deg(tI) and deg(tz) are defined, then deg(ttl = deg(tz) + 1. 

2. A reduction relation -"p is degree-consistent if the following holds: 
for all tl and t2 such that tl -+ p t2, if deg(tI) is defined, then also deg( t2) is defined 
and deg( ttl = deg( tz). 3 

Example 3.23 All Automath-systems have the property of degree-consistency, both for the 
typing relation and for ,a-reduction (see Section 6). The same observation holds for the 
systems in Barendregt's cube, but not for general PTS's (see Section 5). 

Definition 3.24 (term restriction) 
If t is a term, and r. cr:: t (t' is underlined in order to identify a unique occurrence of t' in 

t), then t rt' (pronounced the restriction oft to t') is defined inductively as follows: 

itt cr:: tl 
itt cr:: tz 

Example 3.25 Let t be the following term: 

Then the restriction t r x of t to XO is: 

Moreover, the restriction t f(XA,)XO '" t fxo. 

Definition 3.26 (Bound and free variables, type, open and closed terms) 

3 A typing relation which is degree-consistent is called ok in [Bar84]. 
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1. Let XO be a variable occurrence in t such that x ¢ c and assume that sieveseg.\(t txO) == 
Sm • •• S1 (for convenience numbered downwards). Then XO is bound in t if x :::; m; the 
binding item of XO in t is Sx and the>. that binds XO in t is endop(sx}. The type of 
XO in t is body (sx). Furthermore, XO is free in t if x > m. 

2. The variable c is neither bound nor free in a term. 

3. Term t is closed when all occurrences of variables in t different from c are bound in t. 
Otherwise t is open or has free variables. 

Example 3.27 The term t == (c>'x)(x>'v)(x8)(c>.y)«x>'z)y08)(y>.u)u becomes, in the notation 
with de Bruijn- indices: t == (>')(1>')(28)(>')«3>')2°8)(1>.)1. Now t t2° == (>.)(1>.)(28)(>.)(3>.)2°. 
So sieveseg.\(t t2°) == S4S3S2S1 == (>.)(1>.)(>.)(3>.). Hence, 2° is bound in t since 2 :::; 
lIeight.\(n2°) = 4. Moreover, the type of 2° in t is bodY(S2) == 0. There are no free 
variables in t, hence t is closed. 

Things are, however, not so simple in the case that the term contains segment abbreviations. 

Example 3.28 In the term (t>'x)a(t'>'y)z, where a abbreviates a segment s, the binding>. of 
the variable z may be found "inside" a, e.g. when s == (tl>'u)(t2>'z)(t38). But neither >'u nor 
>'z is "visible" in a. Hence, using de Bruijn-index 2 for z would connect this variable with the 
wrong>. (viz. >'x). 

It will be clear from this example that the >.-weight of the abbreviated segment, i.e. the 
number of main >.-items in the segment, plays an important role. This number can always 
be recovered by inspecting the abbreviated segment. One can imagine, however, that it is 
more practical to register this number together with the segment variable. Therefore, we add 
a collection of segment variables to our set of variables, which are pairs of numbers: 

Definition 3.29 (segment variables) 
We add to :::: a new set ~ of segment variables: 
~ = {(n;m)ln= 1,2, ... ;m= O,l, ... }. 
Moreover, we distinguish the >.-operator >'sg as being a binding>. for segment abbreviations. 

We do not allow that >'sg-items occur "on their own". They should always be a part of a 8-
>.-segment of the form (s8)(>'sga), cading the abbreviation of a segment s. 

In (n;m), a segment variable item, the index n gives a reference to the binding >'sg 
and m is the >.-weight of the abbreviated segment. Section 7 will give many examples of such 
a phenomenon. 

Definition 3.30 (Well-typedness of terms) 
We say that a term t is "well-typed" with respect to a particular system containing variable, 

abstraction and application conditions, if we can deduce I- t where I- is defined by the following 
three equations: 

variable condition 
sl-x 

sl-t s(t>.) I- t' abstraction condition 
s I- (t>.)t' 

sl-t s(t8) I- t' application condition 

s I- (t8)t' 
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Notation 3.31 (Construction rules) 
We call equations 3, ( respectively 4 and 5), a variable (respectively abstraction and ap
plication) construction rule. 

Example 3.32 With abstraction condition t == c, t' 'f; c, empty variable condition and 
application condition, we obtain the syntax of the untyped lambda calculus. 

Remark 3.33 The variable condition is optional. Example 3.34 gives two variable condi
tions. The abstraction condition and the application condition vary from system to system, 
or may even be absent. In type systems for example, the type information plays a predom
inant role in the application condition: t may only be an "argument" of t' (Le. s I- (t6)t') 
if t' is some kind of "function", with a "domain" in which t fits. This requirement must be 
expressed formally in the application condition. Sections 4, 5 and 6 give examples of the 
abstraction and application conditions. Example 3.36 gives a well-typed term. 

Example 3.34 Here are some examples of variable conditions: 

1. x ::; weight.\(s) (Here count c as zero, in case x == c). 

This variable condition restricts terms to the closed ones. 

2. 1 ::; deg( x) ::; 3. 

Hence the degree of any term is between 1 and 3. This is the case in AUT-QE and 
AUT-68; (see Section 6). The reasonableness of such a requirement is shown in practical 
applications. For example, large pieces of mathematical texts have been coded in AUT
QE, thereby demonstrating its utility. 

Definition 3.35 (Proof trees) 
For each "well-typed" term, we call the construction tree, which contains at the same time 

a proof for its "well-typedness", the proof tree for the term. 

Example 3.36 The lowest part of the proof tree of (cAx) «XAu) «UO)(XA,)XAy) (UAz)y Av)U, 
based on these rules, is the following: 

73 

71 (cAx) I- (XAu) «U6)(XA')XAy) (UAz)y (cAx) «XAu) «U6)(XA,)XAy) (UAz)y Av) I- u 

I- £ (cAx) I- «XAu) «U6)(XA,)(XAy) (UAz)y Av)U 

I- (cAx) «XAu) «U6)(XA,)XAy) (UAz)y Av)U 

Here 71 and 73 are only checks of the appropriate variable conditions (which we here 
assume to be empty) and 72 is a part of the tree that is not displayed. 

We need a function whiclI updates variables. This we do by extending our set fI.\s with 
a set of <p-operators fI",. We use the <p's with a double index: <p(k.i); k, i E N and call all 
(<p(k·,»,s <p-items. Our terms are now fI.\s",-terms. The use of the <p-items is established in 
the following rules. 
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Definition 3.37 
(<p-tmnsition rules:) 

( <p(k,n)( t' A) --+ '" (( <p(k,i) )t' A)( <p(k+1,i») 
(<p(k,i»)(t'6) --+", ((<p(k,i»)t'6)(<p(k,i») 

(<p-destruction rules:) 
For k, i E N, we have: 
(<p(k,;»)x --+", X + i if x > k 
(<p(k,l»)x ->", X if x ::; k orx == e. 

Definition 3.38 (<p-abbreviation) 
For all kEN, <p(k) denotes <p(O,k). Moreover, <p denotes <p(I) (hence <p(O,I»). 

Definition 3.39 (void fJ-reduction) 
Assume that a 6-A-segment s occurs in an flAS-term t, where the final opemtor A of s does 
not bind any variable in t. Let t, be the scope of s. Then t reduces to the term t', obtained 
from t by removing s and replacing tl by (<p( -1) )tl. 

Example 3.40 Let us take (16)(2A)(46)2. In this term, call it t, the 8'A-segment (16)(2A) 
occurs and its A does not bind any variable in t. Moreover, (46)2 is the scope of (16)(2A) and 
if in t we remove (16)(2A) and replace (48)2 by (<p(-1»)(46)2 we get (36)1. Hence t reduces to 
(36)1. 

Example 3.41 

1. (16)(2A)(26)2 ..... {3 (16)1; this states that (Ax".UU)u reduces to uu. 

2. (16)(2A)(3A)3 ->{3 (2A)2; this states that (Au,y.Ax,y'Z)z reduces to Ax,y'Z. 

Notation 3.42 (fJ-reduction) 
Note that void fJ·reduction is a fJ·reduction, so let us write t ->{3 t' when the reduction in the 
above definition takes place. fJ-reduction in general however, will not be explained and the 
reader is referred to [N eK92aJ. It is not needed for this paper, further than saying that 

• (16)(1' A)t" -+>{3 t"[x := tJ, 

• the x's are the variables in t" bound by the mentioned A, 

• [x := tJ is a postfix meta-operator standing for the substitution of t for all free occur
rences of x. 

4 Canonical types 

Variables occurring bound in a term in typed lambda calculus have a "natural" type, as 
expressed in Definition 3.26. This type is the body of the A-item which binds the variable. 
We extend this process of typing to (general) terms by means of a canonical typing function 
typ, acting on arbitrary subterms t' of a term t. 
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Definition 4.1 (Canonical type) 
The canonical type type t') of a subterm t' of a term t, with x == endvar( t') and x bound 

in t, is defined as follows: 
type t') == body( t')( tp(x»)t", 

where til is the type of x in t as defined in Definition 3.26. 

Example 4.2 Take the term (16)(2'x)1 (or in sugared notation (u6)(y,Xx)x). 

1. If t' == 1 (the x), then typ(t') == £( tp(1»)2 --+", 3. This is obvious, it says that the type of 
x is y (look at figure 2). 

2. If til == (2'x)1 then typ(t") --+", (2'x)3. This is intuitively correct. It states that the type 
of 'xx,y.x is 'xx,y.y (identifying 'x's and IT's). 

3. If till == (16)(2'x)1 then typ(t lll
) --+", (16)(2'x)3 --+f3 2. Again, this is intuitively correct. 

It states that the type of ('xx,y.x)u is y. In Section 4.2 we will see how to include an 
application condition stating that the type of u and the type y must be compatible. 
Recall moreover that types themselves are terms. 

As we see, calculating the canonical type type t') of a (sub- )term t' is very straightforward. 
Just replace the end variable oft' by its type til (together with some updating offree variables 
in til). 

Following the general style of this paper, we can also use a type item (.) and a type 
reduction operator --+, instead of the type function typo Hence, we extend our set of terms 
defined in Definition 2.7 in order to incorporate these .-items (we now have !l.\s",,-terms). 

The search for the canonical type of a subterm t' of t starts with (. )t'; this term may be 
transformed to typ(t') by using the following .-reduction rules for !lAST-terms (so we assume 
that the term under consideration contains no tp-items): 

Definition 4.3 (.-reduction) 
(.-transition rules:) 

(.)(t,W) --+, (tIW)(') 
(.-destruction rule:) 

(.)x --+, (tp(x»)t", if til is the type in t of the x under consideration. 

Note here that a term t, tp-reduces (repectively .-reduces) to another term t' if t' is obtained 
from t by tp-reducing (respectively .-reducing) a subterm of t. 

Example 4.4 Take again the term (16)(2'x)1. Now 

1. (.)1 --+, (tp(1»)2 --+", 3. 

2. (.)(2'x)I--+, (2'x)(.)I--+, (2'x)(tp(I»)2 --+", (2'x)3. 

3. (.)(16)(2'x)1 --+, (16)(.)(2'x)1 --+, (16)(2'x)(.)1 --+, (16)(2,X)(tp(1»)2 --+", (16)(2'x)3 --+f3 
2. 
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4.1 The type of an abstraction 

In what follows, we use Al for dependent product formation (usually denoted as II), and A2 
for the - orctinary - function operator A. Now in Definition 4.3, we did not distingnish 
between the two operators. Usually, the following rule is employed: 

Definition 4.5 (Abstraction rule) 

1. Given that the term t' has type t", one defines the type of a II-abstraction IIx : t, . t' to 
be t", as well. 

2. The type of a A-abstraction AX : t, . t' is the corresponding II-abstraction IIx : t, . t". 

As a consequence, one may refine the transition rules for A-items as follows, replacing those 
of Definition 4.3 for the case that W '" A: 

Definition 4.6 (r-transition rules for indexed A-items:) 
(r)(t'A,) ->7 (r) 
(r)(t,A2) ->7 (t,A,)(r) 

Example 4.7 

1. If t '" (18)(2A,)1 then (r)(2A,)1 ->7 (r)l ->7 ('1'(1))2 ->", 3. That is, the type of IIx,y.x 
is y. 

2. If t '" (18)(2A2)1 then (r)(2A2)1 ->7 (2A1)(r)1 ->7 (2A1)('I'(1))2 ->", (2A,)3. That is, 
the type of Ax,y.x is IIx,y.y. 

There may be circumstances in which one desires to have more "layers" of A'S. In such a 
case, we can extend this kind of systems by incorporating more different oX's. For example, 
with an infinity of Ns, viz. AO, AI, A2, A3 ... , we can generalize Definition 4.6, to the following, 
if we add a reduction rule stating that (t,AO) reduces to the empty segment: 

Definition 4.8 (r-transition rule for arbitrarily many indexed A-items) 
(r)(t'Ai+') ->7 (t'Ai)( r), for i = 0,1,2, ... 

4.2 The type of an application 

Recall from the third part of Example 4.2 that we might need to add an abstraction condition 
which states that the type of u and the type yare compatible. In fact, one usually employs 
a rule of the following form: 

Definition 4.9 (Application rule) 
Given a ''function" F of type IIx : t" . t, and an "argument" t of the appropriate type t" (this 
is the type or domain which is associated with this function), then the application term (t8)F 
has type t1[X := tl. 

For this purpose we maintain Definition 4.6 as regards the A-items, and we employ the 
following r-transition rule for 8-items (as in Definition.4.3): 
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Definition 4.10 (r-transition rule for o-items) 
(r)(t,o) -'>T (t,o)(r). 

However, we make demands to rule 5 (see Definition 3.30), which we repeat for convenience 
sake: 

sf- t s( to) f- t' application condition 

s f- (to)t' 

The requirement now is that the following application condition does hold in this rule: 

Definition 4.11 (General application condition) 

(r )t' =T,{3,<p (t" A,)t, and (r)t =T,{3,<p t". 

N ow it follows that 

(6) 

where the x's are the variables in t, bound by the mentioned A,. Hence, we obtain the desired 
result that (to)t' "has type" t,[x := t]. 

Example 4.12 Take the term (1A2)(10)(2A2)1 (or in sugared notation (yAu)(UO)(yAx)X). 
From Example 4.7, (r)(2A2)1 =T,{3,<p (2A')3. Moreover, the type of U is: 

(r)1 =T,{3,<p (",,(')1 =T,{3,<p 2. 
Hence the application condition for (10)(2A2)1 is satisfied and 

(r )(10)(2A2)1 =T,{3,<p-'»{3 2. 

Note that we see the A, (i.e., the II) indeed as a kind of A, hence eligible for an application. 
This is a quite natural approach. In the usual notation, this would amount to the introduction 
of a ,8-reduction caused by a II-application: 
(lIx : A . B)a -'>{3 B[x := a]. 
Here one may interpret (lIx : A . B)a as the wish to select the "axis" B( a) in the Cartesian 
product IIx : A . B. 

In our notation, a II-application is characterized by a o-II-segment of the form (t,o)(t211). 
We speak about a ,8m-reduction when referring to a ,8-reduction generated by such a 0-11-
segment. Similarly, a ,8.>. -reduction is an "ordinary" ,8-reduction, generated by a o-A-segment. 

Summarizing, we note that there are two possible approaches regarding II-application: 

• Implicit or compulsory ,8m-reduction, i.e. for F of type (lIx : A . B) and a of type A 
we immediately have that Fa is of type B[x := a], without intermediate steps. Here 
II-application is not allowed. This is the case in PTS's (see Section 5) . 

• Explicit ,8m-reduction, where II-application is allowed. Now we have, for F and a as 
above, that Fa has type (lIx : A . B)a, which ,8m-reduces to B[x := a]. 

The latter option is an extension of the former one. With explicit i3m-reduction one may 
simulate the effects of implicit i3.o-reduction, as we explained above. One might argue that 
implicit i3m-reduction is closer to the intuition in the most usual applications. However, 
experiences with the Automath-languages, containing explicit i3m-reduction, demonstrated 

17 



that there exists no formal or informal objection against the use ofthis explicit ,BoIT-reduction 
in natural applications of type systems. 

The two options can also be described in our step-wise structure. Our description of 
explicit 13m-reduction is given above. If one desires to have implicit ,Bm-reduction as a for
malized notion, then we can make use of the possibility to have different 6's at our disposal. 
In that case, a 6,-item (t6,) can be used as a signal for forced priority for certain operations 
which execute the desired implicit ,Bm-reduction. 

For example, the 6, 's in the chain 

(T)(t6,)t' ->r (t6,)(T)t' =r.{3 (t6,)(t"A,)t, -{3 t,[x := t] 

(cf. equation 6) can be used to enforce with highest priority, Le. before the execution of any 
other "operation" on the term: 
1) the "calculation" of the type typ( t') obtained by T-reduction of (T )t', 
2) the search for a term of the form (t"A,)t, which is ,B-convertible to (or a i3-reduct of) 
typ( t'), 
3) and the ,B-reduction (t6,)(t"A,)t, """*{3 t,[x:= t]. 

By this process we obtain the term t,[x := t] as a necessary and immediate result of 
a T-reduction on (T)(t6,)t'. For ordinary, non-compulsory ,BoA-reductions, we may employ 
another 6, e.g. 62 , 

For simplicity, however, we shall not use these different 6's in the following of this paper. 

Remark 4.13 In a now commonly accepted setting (see [Bar84] or [BaR90]), the typing 
relation is expressed in the format r I- t, : t2. Rere r is a context, and the statement t, : t2 
expresses that t, has type t2 relative to this context r. Such a context can be considered as 
a segment consisting of main A-items, meant to bind all free variables occurring in t, and t2' 

Example 4.14 In (cAx)(XAy) I- y : x it is stated that y has type x in the context (cAx)(xAy), 
which is indeed the case, as is visible in the context-item (XA y). Also, (cAx)(XAy) I- x : c 
holds. 

5 The typing relation in PTS '8 

We start with a short summary of so-called Pure Type Systems (PTS's), as described in 
[BaR90]; see also [Bar84]. We are only interested in the singly sorted PTS's, where different 
types of a given term are always i3-convertible; hence, typable terms are uniquely typed (but 
for ,B-conversion). Moreover, we require that the typing relation is degree-consistent, thus 
preventing "impredicative typing" like * : *. 

PTS's employ ordinary variables, and not de Bruijn-indices or another referential variable 
denotation. So ",-items and updating are not incorporated. Moreover, we note that PTS's 
have a typing relation t, : t2 (Le. term t, has type t2), and no canonical type operator as 
the one explained in Section 4. The following gives the conditions which must be obeyed for 
the construction of (A- or II-) abstraction terms in PTS's: 

Definition 5.1 (II-rules) 
(II -formation rule:) 

r I- t, : s, r, x : t, I- t2 : S2 
r I- (IIx : t, . t2) : S3 
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{IT-introduction rule:} 

r I- t1 : 81 r, x : t1 I- t2 : 82 r, x : t1 I- u : t2 
r I- (AX: t1.U): (IIx: t1.t2) 

In these rules, r denotes a context, t1, t2 and u are terms and 81, 82 and 83 are so
called sorts (these should not be confused with the meta-variable notation for items). For 
convenience' sake, we ouly regard the case that 82 '" 83; these PTS's contain the ones of 
Barendregt's A-cube (to be explained below). Note moreover that these rules are consistent 
with Definition 4.5. 

Remark 5.2 The II-formation and II-introduction rules as given above can be condensed 
into one II-rule (combined II-rule): 

r, [x :]t1 : 81 I- [tf :]t2 : 82 
r I- [(AX: t1 . tf)] : (IIx : t1 . t2) : 82 

Now it is obvious that Definition 4.6 encorporates the essential part of both II-rules, 
translated in our setting. In fact, 

• (T)(t1A1) T-reduces to (T) by itself (the Aritem - i.e. the II-item - is erased) . 

• (T)(t1A2) T-reduces to (t1AIl(T), so the A2-item (an ordinary A-item) changes into the 
corresponding A1-item (a II-item). 

Moreover, the type information given by the II-formation and II-introduction rules (via the 
statements (IIx : t1 . t2) : 82 and (AX: t1 . u) : (IIx : t1 . t2), respectively) is no longer 
necessary, since we have the canonical type operator T at our disposal (cf. Definition 4.6 and 
Remark 4.13). 

Now we come to "Barendregt's cube" where both 81 and 82 can be either _ or ° (again, 
see [Bar84] or [BalI90]). These two are related by the axiom statement: • : D. In this cube, 
there are eight systems of typed lambda calculus. They differ in whether. and/or ° may be 
taken for 81 and 82, respectively. (We recall that we take 82 '" 83.) The basic system is the 
one where (81,82) = (_,.) is the only possible choice. All other systems have this version of 
the two II-rules, plus one or more other combinations of(*,o), (0,_) and (0,0) for (81,82). 
The four possible versions of the II-rule can be listed as follows: 

degree 3 2 1 0 

(-,*) X t1 * ° U t2 * 0 

(*,0) X t1 * 0 
U t2 0 

(0, *) X t1 ° U t2 * 0 

(0,0) X t1 0 
U t2 ° 
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• 

The system with only (., .) for (s" S2) is known as A-Church or A-+ (this is essentially the 
Automath-system AUT-6S). The addition of (., D) gives AP, which is a system that is rather 
close to another variant of the Automath-family, AUT-QE (see [deBSOJ). The addition of 
(0, *) to (*, *) gives the second order typed lambda calculus, also called A2. Adding (0, D) to 
(*, *), we obtain Af!l. There are three systems that are defined by adding a combination of two 
of the three last-mentioned possibilities to (., *). When all mentioned (s" s2)-combinations 
are permitted, we have a version of the Calculus of Constructions (AC) (see [CoHSSJ). 

In our system, we may identify 0 with c. Subsequently, the axiom * : 0 may be rendered 
as the A-item (cA.). Thus we can express all eight systems of Barendregt's cube (and, in 
fact, many other PTS's) by adding the appropriate abstraction conditions. Let us repeat the 
construction rule under consideration, as stated in Definition 3.30: 

B I- t B( tA) I- t' abstraction condition 
s I- (tA)t' 

Definition 5.3 (Incorporating II-formation) 
The II-formation rule is obtained by reading A, for A and taking the abstraction condition: 

(T)t -+T,I! s, and (T)t' -+T,I! S2, for S"S2 E {.,D}. 

Definition 5.4 (Incorporating II-introduction) 
For the II-introduction rule we take A2 for A and the abstraction condition: 
(T)t -+T,I! s, and (T)2t' -+T,I! 82. Here (T)' is an abbreviation for (T)(T). 

Just as the II-formation and -introduction rules incorporate the PTS-version of the ab
straction conditions, the following II-elimination rule contains the application condition for 
PTS's: 

Definition 5.5 (II-elimination rule) 

r I- F : (IIx : A . B) r I- a : A 

r I- Fa : B[x := a] 

Now we recall the appropriate construction rule from Definition 3.30: 

s I- t s( t6) I- t' application condition 
s I- (t6)t' 

and we incorporate II-elimination as follows: 

Definition 5.6 (Incorporating II-elimination) 
As regards the II -elimination rule for PTS's, we use the application condition: 

there are t" and t, such that (T )t' =T,I! (t" A, )t, and (T)t =T,I! t". 

Summarizing, it is our opinion that the main rules for term construction in many PTS's 
have a natural rendering in our setting. The construction of abstraction terms can be sim
ulated with the use of A,- and A2-items. Application terms can be constructed with an 
appropriate application condition, which mirrors the II-elimination rule but for the difference 
between implicit (compulsory) and explicit Ihn-reduction. However, the latter kind of f3m
reduction, being more general, and fitting naturally in our setting, can be used to establish 
the same effects as the former one. 
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Remark 5.7 The fact that systems with explicit ,am-reduction are conservative over systems 
with implicit ,am-reduction, has been proven by van Benthem Jutting (private communica
tion). Hence, there is no technical objection against the definition of PTS's by means of a 
canonical type operator. 

6 The typing relation in Automath-systems 

In this section we describe the definitions of three of de Bruijn's Automath-systems in our 
setting. These systems do have a canonical type operator, albeit not as part of its language. 
Consequently, we only have !lAs-terms in the language. Moreover, there is just one fj and 
one A, this A taking the role both of the ordinary functional operator A and the product 
constructor II. 

The systems that we discuss are AUT-68, AUT-QE and A.4 All these systems have been 
developed around 1970. The oldest of the three is AUT-68, the more powerful variant AUT
QE followed soon. The system A was meant to be a simplified and more uniform version of 
the two other systems. It was developed slightly later. 

6.1 The system AUT-68 

The system AUT-68 ([vanD80J) was meant as a formal system suitable for expressing large 
parts of mathematics, some of its features include: 

• An in-built logical frame for reasoning, in a logic chosen by the user (e.g. classical 
predicate logic, intuitionistic logic), 

• The possibility of a step-wise development of a mathematical theory by means of axioms 
and primitive notions; lemma's, theorems, corollaries and their proofs; definitions and 
abbreviations, 

• An explicit treatment of contexts (assumptions, variable introductions) for theorem-like 
and definition-like notions. 

• Only degrees 1,2 and 3 are permitted. Hence, e (of degree 0) is not an Automath-term. 
As a consequence, the A-item (eA.), expressing that * is of type e, is a "meta-axiom", 
which cannot be rendered inside one of the described Automath-systems. 

If we disregard the definition mechanism of AUT-68 (otherwise said: if all definitions are 
"unfolded"), then we can give a simple, straightforward description of AUT-68 in our setting 
by choosing the appropriate parameters. The following definitions show what are the typing 
relation and construction rules that will describe AUT-68 in our setting. 

Definition 6.1 (Canonical types for AUT-68) . 
The canonical type typ( t') of a term t' can be calculated by means of the following r
transition rules: 

I { * if deg( t') = 2 
(r)(tA)t --;T (tA)(r)t' if deg(t' ) = 3 

(r)(tfj)t' --;T (tfi)(r)t' 

4We thank Bert van Benthem Jutting for the descriptions below of AUT-68 and AUT-QE. 
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Definition 6.2 (Well-typedness of A UT-68) 
In Definition 3.30, we need the following variable, abstraction and application conditions: 

• Variable condition: The only variable of degree 1 is •. 

• Abstraction conditions: 

1. Either deg(t) = 2, or deg(t) = 1 and s is a context (see Definition 3.2), and 

2. 2:::; deg(t') :::; 3. 

• Application condition: 

deg( t') = 3 and typ(t') =(3 (typ(t)A )t" for some t" 

6.2 The system AUT-QE 

The system AUT-QE has so-called Quasi Expressions: abstractions over ., functioning as 
types of dependent products. This extra feature facilitates the applicability of the system in 
a mathematical environment. Moreover, AUT-QE has, like AUT-68, only terms of degree 1, 
2 and 3. The following will show how we can incorporate a (again definition-free) version of 
AUT-QE in our setting: 

• Canonical type: as for AUT-68 (see Definition 6.1). 

• Variable condition: as for AUT-68 (see Definition 6.2). 

• Abstraction condition 1: as for AUT-68 (see Definition 6.2). 

• Abstraction condition 2: absent (see Definition 6.2). 

• Application condition: 
either deg(t') = 3 and s I- (to)typ(t'), 
or deg(t') = 2 and typ(t') =(3 (typ(t)A)t" for some term t". 

6.3 The system A 

In view of the sketched development of A as a uniform system (however maintaining most 
of the possibilities for practical applications in logic and mathematics), it will be no surprise 
that A is the system closest to the approach that we follow in this report. As a matter of 
fact, A is contained in our description as given before, with the following parameters: 

• There is no restriction on degrees, all degrees 2: 0 are possible. 

• There is only one abstraction operator A (hence, there is no II, or AD, A" A2, .. . ). 

• Application is only restricted in the sense that the general application condition (see 
Definition 4.11) must hold, albeit in a generalized version (due to the unlimited degrees). 
Application is allowed for terms of all degrees, so that II-application (see again Section 4) 
is one of the features: ,8-reduction is treated similarly for all degrees, in the form 
(t,O)(t2Ax)t3 -(3 t3[X := t,l· 

• The type operator behaves uniformly, as in Definition 4.3: we have that (T)(t,W) -7 
(tlW)(T), for T '" A or T '" o. Hence, A has explicit, and not implicit (compUlsory) 
,8511-red uction. 
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7 An example 

In order to demonstrate some of the features discussed above, we propose a system AC, that 
has in principle similar power as Coquand and Huet's Calculus of Constructions (or AC, see 
[CoH88]) and give the proof of a logic theorem in this setting. 

7.1 The system AC, 

AC, has the following general features: 

• Variable names like x, y, ... , are used instead of de Bruijn-indices. 

• Segment abbreviations, as discussed in Definitions 3.4 and 3.29 are incorporated. 

• There is a distinction between II's and A'S, (Le., AI'S and A2'S), respectively. 

• A canonical type operator typ, with the usual notational convention that typ2(t) = 
typ(typ(t)), etc, is used. 

• II-application and the corresponding .am-reduction are present. 

• The maximal degree is 3. 

Hence, we deviate in several respects from the official AC. 
Note that we use three A'S, viz. AI, A2 and Asg. (In Section 7.3, we write II for Al and A 

for A2.) Moreover, we have one 6, and as a consequence of what we said above, there will be 
no 'P's and no T'S. The last two operators may only be used in the meta-language. 

Remark 7.1 When we use dag or typ in a condition, we implicitly require that these oper
ations are indeed defined for the terms under consideration. 

Definition 7.2 (Construction rules for AC,) 
The construction rules for terms are the following: 

variable construction: 

1 ~ dag(sx) ~ 3 
sl-x 

abstraction construction: 

sl-t setA) I- t' 
s I- (tA)t' 

abscon 

where, for A == Ak and k = 1 or 2, respectively, 

b 
. {typi(t) =(3 c for i = 1 V i = 2; a scan 18· .. 

tYP'(t') =r,{3 c for J = kv J = k+ 1 
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application construction: 

sf-t s( to) f- t' appcon 
(3) 

8 f- (to)t' 

where 

appcon is: there are t1 and jf{O, I} such that (r)i t' =,,13 ((r)t A1)t1 

Note that abscon is the same abstraction condition as the one for AC defined in Definitions 5.3 
and 5.4. However, we do not use 81 and 82. To be precise: in AC both 81 and 82 can be 
either * or O. We identify 0 with c. Moreover, we assume that * : 0, as in Section 5, and we 
assume that * is the only inhabitant of O. 

Hence, the condition "t : 81" can be replaced by typ(t) == E: (in the case that 81 == 0) or 
typ(t) == * (in the case that 81 == *). 

Analogously, in the case that A == Al (Le., II), the condition "t': 82" becomes (r)t' =,,13 E: 

or (r j2t' =,,{i c. In the case that A == A2 (Le., the ordinary "functional" A), the condition 
"t' : til : 82 for some til" becomes (r )2t' ={i c or (r )3t' ={i c. The rules for r are given in 
Definitions 4.3 and 4.6. 

Remark 7.3 It is not hard to see that both the typing relation and the reduction relations 
in the presented system are degree-consistent. 

7.2 The environment of the theorem 

The theorem that we give is very short and is taken from logic. The logic is based on the 
Curry-Howard-De Bruijn isomorphism, that is the notion of "propositions-as-types". (Cf. 
Example 3.21.) This environment that we work with only concerns the following subjects: 

• a class :+:: of propositions is taken as primitive, 

• in this class the notion falsum (= absurdity), denoted as 1., is introduced as a primitive 
notion, 

• the axiom scheme '!t (for all propositions a) is stated (Le. when absurdity holds, then 
every proposition holds), 

• the notion of implication a =;> b is defined as the class of all mappings of a to b, hence 
sending proofs of a to proofs of b, 

• the notion of negation ~a is defined as a =;> 1., 

• the following logical theorem is expressed and proved: 

a ~a 

b 

In a kind of "Mathematical Vernacular", adopted from the style of the Automath-family, 
this piece of logico-mathematical text can be expressed by the following three definitions: 
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Definition 7.4 (The axiomatic part) 

let * be by axiom the class of all propositions. 
let 1- be by axiom a proposition. 
let a be a proposition 
and let t be a proof of 1-; 
then 1--el of a and t is by axiom a proof of a. 

Definition 7.5 (The definitional part) 

let a be a proposition 
and let b be a proposition; 
then '=:.' of a and b is by definition the class of all mappings from a to b. 
let a be a proposition; 
then ,~, of a is by definition '=:.' of a and L 

Definition 7.6 (The theorem-and-proof part) 

let a be a proposition 
and let b be a proposition, 
let x be a proof of a 
and let y be a proof of '~, of a; 
then pr of a, b, x and y is by definition 1--el of band y of x, 
being a proof of b. 

Remark 7.7 In the above text, 1- is introduced as a primitive notion by means of an axiom. 
This is, of course, unnecessary in AC, since the contradiction 1- can easily be defined in AC, 
viz. as (*IIa)a. However, for the case of the example we introduce 1- as above. 

7.3 Thanslating the environment in AC, 

The logico-mathematical text defined in the previous section, will be translated in its entirety, 
as one segment in Ac,. For convenience' sake, we write this segment as a concatenation of 
separate items, corresponding with the different axioms, definitions and theorems in the text. 
Moreover, we assume that the reader who is familiar with PTS's will be pleased when we 
write II instead of Al and the ordinary A instead of A2' 

Definition 7.8 (Translating Definition 7.4) 
Definition 7.4 gives the following three A-items: 

(A.) 
(*Al.) 
((*IIa)(1-II,)a Al.-d) 

That is: * is introduced as a term of type £ and 1- as a term oftype *; finally, 1--elis presented 
as being a primitively given, fixed function, sending a of type * to an element of the set of all 
functions from 1- to a (this set is coded as (1-II,)a). Otherwise said, 1--elis a function sending 
a of type * and t of type 1- to a. This function causes any proposition a to be inhabited as 
soon as 1-, the absurdity, is inhabited. 
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Definition 7.9 (Translating Definition 7.5) 
Definition 7.5, coding the definitions of implication and negation, can be expressed by the 
following four items, being two pairs of ('definitional') 6-A-segments: 

((*A.)(*Ab)(aIT x )b6) ((*IT.)(*ITb) * A~) 
((*A.)(H)(a6) => 6) ((*IT.) * A,) 

Here => is defined as the product (*A.)(*Ab)(aITx)bj this product is 'polymorphic', in the 
sense that it only becomes a product after application, in this case to two arguments. To 
be precise, for given c and d of type *, the term (d6)(c6) => ,a-reduces to the dependent 
product (in this case, the set of all functions) (cITx)d, functions which send inhabitants of c 
to inhabitants of d. The type of => is (*IT.)( *ITb)*, the class of all functions sending pairs 
(a, b) of 'propositions' to a "new" 'proposition' (in this case: a => b). 

Analogously, ~ is defined as the 'polymorphic' negation (*A.)(1.6)(a6) =>j thus, (c6)~ ,a
reduces to (1.6)( c6) =>. The type of ~ is (*IT.)*, the class of all functions sending a 'proposi
tion' a to a "new" ~proposition' (in this case: -,a). 

Example 7.10 The reader may check that the following chain of ,a-reductions is correct: 
~ ->fJ 

(*A.)(H)(a6)=> -+fJ 

(*A.)( H)( a6)( *A.)( *Ab)( aITx)b -+ fJ 

(*A.)(H)(*Ab)(aITx)b -+fJ 

(*A.)( aITx)1.. 
Hence, 

(a6)~ =fJ (aITx)1.. 
So (a6)~ (or ~a in prefix-notation) is ,a-convertible to (aITx)1. (or, in infix-notation, a => 1.). 
It is easy to check that (aITx)1., in its turn, is ,a-convertible to (1.6)(a6) =>. 

Definition 7.11 (Translating Definition 7.6) 
Definition 7.6 of the text can be translated into one Ii-A-segment: 

((*A.)(*Ab)(aAx)((a6)~ Ay)((x6)y 6)(b6)1.-eI6)((*IT.)(*ITb)(aITx)((a6)~ ITy)b Apr) 

The obtained coding of the text is, indeed, one long segment. For the sake of completeness, 
we give the full segment: 

(A.) 
( *A.tl 
((*IT.)(1.IT,)a A1.-d) 

((*A.)(*Ab)(aITx)b6) ((*IT.)(*ITb)* A~) 
((*A.)(H)(a6)=> 6) ((*IT.)* A,) 

((*A.)(*Ab)(aAx)((a6)~ Ay)((x6)y 6)(M)1.-el 6) 

((*IT.)(*ITb)(aITx)((a6)~ ITy)b Apr) (4) 

It is not hard to check that this segment obeys the conditions for term construction as 
given above:s 

5Note that this segment can be considered to he a term by adding e to the segment. 
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variable condition: 
The term is closed and all degrees are :0; 3. 

abstraction condition: 
Left to the reader. 

application condition: 
Examples are: 

typ( *Aa)( *Ab)( aIIx)b -7 (by Section 4) 
(T)(*Aa)(*Ab)(aIIx)b -7 (by Def. 4.8) 
(*IIa)(T)(*Ab)(aIIx)b -7 (by Def. 4.8) 
(*IIa)(*IIb)(T)(aIIx)b -7 (by Def. 4.8; (aIIx) reduces to the empty segment) 
(*IIa)(*IIb)(T)b -+7 (by Def. 4.3) 
(*IIa)( *IIb)* 

and 

typ( *Aa)( .16)( a6) * 
-+7 (by Section 4) 
(T)( *Aa )(H)(a6) * -7 (by Def. 4.8) 
(*IIa)( T)( .16)( a6) * 
---*7" (since 

(T)* =7 (*IIa,)(*IIb')* -7,(3 ((T)a IIa,)(*IIb,h so 
(T)(a6)* =7 (*IIb')* =7,(3 ((T).1 IIb')* ) and 
(T)(H)(a6)* =7 *) 

(*IIa)*. 

Other checks of the application condition, such as: 
typ (*Aa)(*Ab)(aAx)((a6)~ Ay)((XO)Y 6)(bO).1-e/ -7,(3 

(*IIa)( *IIb)( aIIx)(( a6)~ IIy)b, 
are left as an exercise for the reader. 

7.4 The theorem and its proof 

The main A-item of the segment in definition 7.11 contains the theorem: 
(*IIa)( *IIb)( aIIx)( (a6)~ IIy)b. 

The contents of this theorem are tl,at any inhabitant of the theorem, being a proof for the 
theorem, must be a function which, for a and b oftype *, for x of type a and y of type (ao)~, 
gives an inhabitant of (= a proof of) the type b. Translated in more customary phrasing: the 
desired function must be such that for any pair of 'propositions' a and b and for any pair of 
'proofs' of a and ~(a), we have a 'proof' of b. 

This theorem indeed has an inhabitant (and hence is true). This inhabitant can be found 
in the main 6-item of the 6-A-segment: 
(*Aa)( *Ab)( aAx)( (a6)~ Ay)( (x6)y b)(bO).1-el. 

In order to show that this term is indeed a proof of the theorem, we have to show that its 
type is ,6-equivalent to the term coding the theorem. Otherwise said: we have to demonstrate 
that this boA-segment, in particular, obeys the application condition. This is indeed the case, 
as the reader may check. 
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Finally, we show the usefulness of segment abbreviations for the same theorem and proof. 
(These abbreviations can also be of help for the check of the application condition.) Segment 
abbreviations add to the efficiency. There are already several segment duplications in term 4. 
For example, the segments (*Aa) and (*Aa)( *Ab) occur repeatedly; the same is the case for 
their respective types: (*IIa ) and (*IIa )( *IIb). 

When we have terms translating longer texts than the very short one in the example above, 
segments then can easily consist of many items. Moreover, in an average term translating a 
piece of mathematical text, the amount of duplications is very bothersome. Segments tend 
to be repeated almost literally. As a matter of fact, it turns out to be quite natural (as a 
consequence of the usual structure of mathematical reasoning) that different segments occur 
stackwise in the complete term; that is to say, an occurrence of a segment (ttAa,) ... (tnAan) 
may be followed rather closely by the same segment, or by a segment which is one item 
longer: (tt Aa,) ... (tn+t Aan+,) or shorter: (ttAa,) ... (tn-t Aan_,), and this may happen again 
and again. (The same holds if some of the A'S are replaced by II's.) 

The segment abbreviations which we proposed can solve the problem. For this, we add 
one more abbreviation in this translation process: when, e.g. (*Aa)( *Ab) is abbreviated by 
(b; 2), then we abbreviate (*IIa )( *IIb) by (( r)b; 2). This is quite natural, since the r-transition 
rules are such that (r)( *Aa)( *Ab)t' --*7 (*IIa )( *IIb)t" (see Definition 4.6). 

Now, the term given below is the same as term 4, but with segment abbreviations. 

(A.) 

(*AJ.) 
(( *Aa ).5) (Asg a) 
(((r)a; l)(.LIIt )a AJ._d) 

((a; l)(*Ab)O) (Asg b) 
((b;2)(aIIx)bo) (((r)b;2) * A=» 

((a; 1)(.L6)(a6)=> 0) (((r)a; 1)* A,) 
((b;2)(aAx)((ao)~ Ay) 0) (Asg c) 
((c;4)((xo)y o)(M).L-el 0) 

(((r)c;4)b Apr) (5) 

In a final step, we change the lay-out of this term in such a manner that it resembles an 
Automath-text. At the same time, for the sake of brevity we remove those variable items 
of the form ((r)x;n) for which the corresponding variable item (x;n) figures in the same 
line. Instead, we shall use a horizontal stroke: -, which should be considered to refer to 
the segment variable (x;n), with (r) added in the left-hand side. This is again a way to 
avoid unnecessary duplications; the three horizontal strokes in the version below should read: 
((r)b; 2), ((r)a; 1) and ((r)c; 4), respectively. 

Thus doing, we come closer to both Automath and to the general PTS- framework, which 
uses contexts r. 

28 



• I 

The following version will now speak for itself. 

( A.) 
( • A 1.) 
( ('A a ) 6) (As~ a) 
( ((T)a; l)(l.II,)a A1.-d) 
( (a; 1) (*Ab) 6) (As~ b) 
( (b;2) (aIIx )b 6) (-* A=» 
( (a;l) (l.6)(a6) * 6) (-* A~) 

( (b;2) (aAx)((a6), Ay) 6) (Asg c) 
( (c;4) ((x6)y 6)(b6)1.-eI 6) (J Apr) 

8 Conclusions 

In this paper, we introduced an alternative A-calculus notation which is flexible enough for 
the expression of many type systems. This notation allows many generalizations. For exam
ple higher degrees and segment abbreviations are straightforwardly attainable. Moreover, a 
difference between functions (A-terms) and dependent products (II-terms) can be made by 
adapting the appropriate rules, whereas both kinds of abstractions still fit in the same frame
work, since they may be treated as two similar kinds of A-abstraction. This turned out to hold 
to such an extent that application and ,8-reduction become also possible for II-abstractions, 
thus simplifying and unifying the patterns. 

We looked at the role of the types in our setting. For typable terms we defined a canonical 
type, which can be effectively computed in a straightforward manner. The usual relation 
tl : t2, i.e. term tl has as one of its types the term t2, can also be expressed by means of this 
canonical type typ and ,8-reduction, viz. as typetl) =(3 t2. 

We showed how type systems such as Barendregt's cube of Pure Type Systems can also 
be defined with this typ-operator in a rather uniform way. Moreover, we explained how 
the abstraction condition and the application condition, present in our alternative term con
struction rules, can be phrased in correspondence with the PTS-rules. We also presented a 
number of Automath-systems in the proposed s'etting, which resulted in concise definitions 
for complicated systems. Finally, we worked out the proof of a theorem taken from logic in 
our setting. 

All the above is an evidence that our new framework is expressive, general and uniform. 
We believe that this framework deserves some attention in the ongoing research in A-calculus 
and type theory. 
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