

A unified approach to type theory through a refined lambda-
calculus
Citation for published version (APA):
Nederpelt, R. P., & Kamareddine, F. (1992). A unified approach to type theory through a refined lambda-
calculus. (Computing science notes; Vol. 9218). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1992

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/85b4dd78-0ad8-48ca-a170-266a57efc34f

Eindhoven University of Technology

Department of Mathematics and Computing Science

A unified approach to Type Theory through
a refined A-calculus

by

Rob Nedexpelt Fairouz Kamareddine

Computing Science Note 92/18
Eindhoven, September 1992

92/18

COMPUTING SCIENCE NOTES

This is a series of notes of the Computing
Science Section of the Department of
Mathematics and Computing Science
Eindhoven University of Technology.
Since many of these notes are preliminary
versions or may be published elsewhere, they
have a limited distribution only and are not
for review.
Copies of these notes are available from the
author.

Copies can be ordered from:
Mrs. F. van Neerven
Eindhoven University of Technology
Department of Mathematics and Computing Science
P.O. Box 513
5600 MB EINDHOVEN
The Netherlands
ISSN 0926-4515

All rights reserved
editors: prof.dr.M.Rem

prof.dr.K.M.van Hee.

A unified approach to Type Theory through a refined A-calculus

Rob Nederpelt
and

Fairouz Kamareddine

Department of Mathematics and Computing Science
Eindhoven University of Technology

Eindhoven, the Netherlands

August 21, 1992

1

Abstract

A-calculus is at the heart of type theory while type theory has heen the most stimu
lating part of the theory of Computation. The presence however of various type systems
provokes attempts at finding a unified way of describing these systems. Barendregt's
cube for example, is such an attempt. Based on these observations, we will devise a new
A-notation which enables categorising most of the known systems in a unified way. More
precisely, we will sketch the general structure of a system of typed lambda calculus and
show that this system has enough expressive power for the description of various existing
systems, ranging from Automath-like systems to singly-typed Pure Type Systems.

Keywords: Lambda Calculus, Pure Type Systems, Barendregt's Cube, Automath and the
Calculus of Constructions.

1 Introduction

Terms of the lambda calculus are constructed by two principles: abstraction, by means of
which free variables are bound, thus generating some sort of functions; and application, being
in a sense the opposite operation, formalising the application of a function to an argument.
We will introduce a slight change to the A-notation to enable us to construct lambda terms
in a modular way, in accordance with the demands and needs of a mathematical entourage.
This new notation will be based on abstraction and application and, as an alternative to the
use of variables, will assume de Bruijn-indices. These are natural numbers that do not suffer
from the usual problems with variable names (the danger of "clash of variables", the need for
appropriate renaming, etc.).

Our notation is very advantageous and should be seen as an alternative to the usual A
calculus notation. We clalm that this new formulation can avoid many of the complications
associated with the old formulation. In fact, in [NeK92aJ, we showed the usefulness of the
new notation for variable and term manipulation and for typing. In particular, we showed
in that paper, that the restriction of a term to a variable x is obtained by simply taking the
substring of string t from the beginning of t until x and then deleting all unmatched opening
parentheses. Moreover, we showed in the same paper that accounting for bound and free
variables in a term is only a matter of a very simple calculation and demonstrated that term
construction can be done via trees which are at the same time proofs of the well-typedness of
the term. In [NeK92bJ, we embedded stepwise substitution in the new calculus showing how
the new notation facilitates the introduction of substitution as an object level notation in the
A-calculus resulting in a system which can accommodate most substitution strategies. All
this points towards the advantages of the new notation but this is not all. In this paper, we
will show how various existing systems ranging from Authomath-like systems to singly-typed
pure type systems could be expressed in a uniform way in our proposed setting.

In particular, after introducing in Sections 2 and 3 the new notation and all the formal
machinery needed for the paper, we concentrate in Section 4 on the typing relation. We
introduce a canonical type operator, suited for the "calculation" of one canonical type in the
class of all types of a certain (typeable) term. The typing relation connected with this type
operator is presented by means of a stepwise "process", which can be described in different

2

manners. Again, we claim to give the fine-structure of a central subject in lambda calculus,
this time being the typing relation. In fact, not only the type of a A- or a II -abstraction is
found but also II-application (and not only A-application) is allowed.

In Section 5, we discuss the relation between our approach and certain Pure Type Systems
(PTS's), which make use of this typing relation ":". An important subclass of this class of
typed lambda calculi, systematized and studied by Barendregt and others, is relatively easy
to embed in our setting.

In Section 6, we describe a number of Automath-systems in our setting. One of these
possibilities is a de Bruijn's system t3.A, which is a version of Automath in the format of
typed lambda calculus.

Finally, in Section 7, we demonstrate the features oftyping and term construction, through
a short example. This example is a system that we propose and that has in principle similar
power to that of Coquand and Ruet's Calculus of Constructions (or AC, see [CoR88]). We
work out the proof of a theorem taken from logic in our system.

2 The new notation

We assume the reader familiar with De Bruijn's indices and of why they were introduced. If
not, the reader is referred to [deB72], and we hope that the following examples give him an
idea of what these indices are.

Example 2.1 Terms such as Ax.X and Ay.Y are the "same", and the use of x, Y or any other
variable does not change the semantic meaning of the function denoted by this term (the
identity function). The identity function using de Bruijn's indices will be denoted by A.l.
The bond between the bound variable x and the operator A is expressed by the number 1;
the position of this number in the term is that of the bound variable x, and the value of the
number ("one") tells us how many lambda's we have to count, going leftwards in the term,
starting from the mentioned position, to find the binding place (in this case: the first A to
the left is the binding place).

Example 2.2 The identity function above could have been identity over a particular type Y
(let us say) written as Ax,y.X. In such a case y is a free variable and the function is denoted
by: (ALI). The free variable y in the typed lambda term is translated into the first number
1. Such a number refers in this case to an "invisible" lambda that is not present in the term,
but may be thought of to preceed the term, binding the free variable. Note here that if we
had more than one free variable, we have to know which one comes before the other. For
this, we assume an arbitrary, but fixed order so that these invisible lambda's form a free
variable list. The number 1 next to the A tells us how many AS we have to count from (and
excluding') this A. (The variable x, as before, is translated in the second number 1.)

Example 2.3 To demonstrate how /3-reduction works with de Bruijn's indices, we consider
the term (Ax".(XY))u which /3-reduces to uy. Under the assumption that the free variable list
is Ay,Az,Au , this reduction using de Bruijn's indices can be represented as: (A2.14)1 reduces
to 13. Rere the contents of the sub term 14 changes: 4 becomes 3. This is due to the fact
that A2 disappeared (together with the argument 1). The first variable 1 did not change;

lThis technical peculiarity disappears in the new notation.

3

T

note, however, that the A binding this variable has changed "alter" the reduction; it is the
last A in the free variable list ("Au") and no longer the A inside the original term ("Ax"). The
reference changed, but the number stayed (by chance) the same.

Now take the type free A-calculus, with the following three ways of forming terms:
t ::= x I (Ax.t) I (t,t2).

If we forget variables (as we shall when we use de Bruijn's indices), then we begin with natural
numbers and all that remains is abstraction and application. We shall consider these to be
the basic operations on terms and shall use A to refer to the first and {j to refer to the second.
Note that when we work with the typed A-calculus, these two operators can be considered
to be binary. In fact, A links a type to a term, (think of Ax:y.x which is ALI) and {j links a
function to an argument. As we are trying to give a general notation which can be used to
describe the other ones, we will use a typed A-calcnlus notation which is also suitable to write
type free terms. This will be done via our special index 0 below.

Notation 2.4 (Abstraction and Application operators)
As we are trying to devise a system which will be general enough to represent a whole variety
of type systems, we shall not assume the uniqueness of the A and the 8 operators. Rather we
consider A, A" ,1.2, ... for abstraction, and 0,8" {j2, ... for application and use w, w" W2, . .. as
meta-variables for both kinds of operators. Moreover, we refer to the set of A-operators by
fh and to the set of {j-operators by fl •. We assume that fl,\ and flo are disjoint and finite
and write fl (or fl,\5) for their union.

Example 2.5 To accommodate second-order theories, we use ,1.2 for A and A, for A. To
accommodate Pure Type Systems we use A, for II and ,1.2 for the ordinary A.

Notation 2.6 (Variables)
As we decided to use indices instead of variables, we take 3 the set of variables to be
:::: = {E, 1, 2, ... }. Sometimes we will need to use actual variables, but this is not a part of
our syntax. It is only a matter of simplifying the conversation. We use x,x"y, ... to denote
variables. 0 is a special variable that denotes the "empty term". It can be used for rendering
ordinary (untyped) lambda calculus, by taking all types to be o. Another use is as a "final
type", like 0 in Barendregt's cube.

Usiug fl and 3 we define our terms (which we denote t, t" ...) to be those symbol strings
obtained in the usual manner on the basis of 3, the operators in fl and parentheses. That is:

Definition 2.7 (Terms)
Terms are the elements of FIl (3), the free fl-structure generated by 3. We call these terms
fl'\o-terms or simply terms.

Notation 2.8 (Item Notation)
We will defer from usual practice and use the operators in fl as infix ones. That is we write
(tlit') for the function t' applied to the argument t (note the reversed order!) and write
(tAt') for (At.t'). We go even further by using what we call item-notation where we place
parentheses in an unorthodox manner: we write (t,W)t2 instead of (t,Wt2).

Example 2.9 The following are terms: 0,3, (2{j)(oA)1, in item notation or (2{j(oA1» in the
original infix notation. (We assume that A E fl,\ and {j E flo.)

4

,

Notation 2.10 (Tree notation)
One can also consider terms as trees, in the usual manner (in this case we shall speak of term
trees). In term trees, parentheses are superfluous (see figure 1). In this figure, we deviate
from the normal way to depict a tree; for example: we position the root of the tree in the
lower left hand corner. We have chosen this manner of depicting a tree in order to maintain
a close resemblance with the linear term. This has also advantages in the sections to come.
The item-notation suggests a partitioning of the term tree in vertical layers. For (XWl)(YW2)Z,
these layers are: the parts of the tree corresponding with (xwtJ, (YW2) and z (connected in
the tree with two edges). For ((XW2)YWl)Z these layers are: the part of the tree corresponding
with ((XW2)YWl) and the one corresponding with z.

x y

h-Lz
(XWI (YW2Z))

(XWl)(YW2)Z

x

'--"Y

.... ---_z

((XW2Y)WIZ)

((XW2)YWtJZ

Figure 1: Term trees, with normal linear notation and item-notation

Notation 2.11 (Name carrying terms)
For ease of reading, we occasionally use customary variable names like x, y, z and u instead of
reference numbers. Thus creating name-carrying terms in item-notation, such as (U8)(YAx)X
in Example 2.12. The symbols used as subscripts for A in this notation are only necessary for
establishing the place of reference; they do not "occur" as variables in the term.

Example 2.12 Let the free variable list, in the name-carrying version, be Ay , Au.

1. Consider the typed lambda term (Ax,y.X)u. In item-notation with name-carrying vari
ables this term becomes (Ub)(yAx)X. In item-notation with de Bruijn-indices, it is
denoted as (lb)(2A)1.

2. The typed lambda term U(Aq.X) is denoted as ((YAx)xb)u in our name-carrying item
notation and as ((2A)lb)1 in item-notation with de Bruijn-indices.

The term trees of these lambda terms are given in figure 2. In each of the two pictures,
the references of the three variables in the term have been indicated: thin lines, ending in
arrows, point at the A'S binding the variables in question. Note that these lines follow the
path which leads from the variable to the root following the upper-left side of the branches of
the tree. Only the A'S met do count, the b's do not.

Example 2.13 Now for ,a-reduction, the term (Ax".(xy))u ,a-reduces to uy. In our sugared
item-notation this becomes: (ub)(ZAx)(yb)x reduces to (yb)u (see figure 3). Note that the

5

1 2

.~~~J8JI'\-.1
(18)(2'\)1

(u8)(y,\x)x

('\x'Y. x)u

2

,\- 1

((2'\)1 8)1

((Y'\x)x 8)u

u(,\x,y. x)

Figure 2: Term trees with explicit free variable lists and reference numbers

presence of a so-called 8-,\-segment (Le. a 8-item immediately followed by a ,\-item, in this
example: (uo)(z'\x)) is the signal for a possible ,8-reduction. The "unsugared" version reads:
the term (10)(2'\)(40)1 reduces to (30)1.

,\ .-
124

-.h.~I d L-1 0-. 1

('\x'Z.xy)u

(uo)(z'\x)(yo)x

(10)(2'\)(40)1

3

.-,\-_--,\-_--1--'~ 0 __ .1

uy

(yo)u

(38)1

Figure 3: ,8-reduction in our notation

We can see from the above example that the convention of writing the argument before
the function has a practical advantage: the o-item and the '\-item involved in a ,8-reduction
occur adjacently in the term; they are not separated by the "body" of the term, that can
be extremely long! It is well-known that such a o-,\-segment can code a definition occurring
in some mathematical text; in such a case it is very desirable for legibility that the coded
definiendum and definiens occur very close to each other in the term.

Remark 2.14 With the help of 0 we can construct terms without free variables, for example
we can construct (0'\)(1'\)(10)((2,\)(1,\)1,\)3. We note that it may be profitable to use the
empty term instead of 0, which allows us to write terms like (,\)(1,\)2 or even ('\)(1,\), rep
resenting the typed lambda terms '\y".'\x,y.y and '\y,..'\x,y.o, respectively. We shall use this
convention in the case of an item (ow), which we render as (w), for different operators w.

6

3 The formal machinery

In this section, we will introduce most of the machinery needed for the paper. We start by
the two basic concepts item and segment.

Definition 3.1 (items, segments)

1. If w is an operator and t a term, then (tw) is an item.

2. A concatenation of zero or more items is a segment.

We use S, SI, s;, ... as meta-variables for segments.

Definition 3.2 (main items, main segments, w-items, Wl-.. . o.Wn-segments, (non)empty seg
ments, contexts)

1. Each term t is the concatenation of zero or more items and a variable: t == 81 ... SnX'
These items SI ... Sn are called the main items of t.

2. A segment s is a concatenation of zero or more items: s == SI ... sn; again, these items
81 .. . 8 n (if any) are called the main items, this time ofs.

3. A concatenation of adjacent main items (in t or s), Sm'" sm+b is called a main
segment (in t or s).

4. An item (t w) is called an w-item. Hence, we may speak about A-items and o-items.

5. If a segment consists of a concatenation of an wI-item up to an wn-item, W; E 11, this
segment may be referred to as being an Wl- ••. -wn-segment. (An important case is that
of a o-A-segment, being a o-item immediately followed by a A-item.)

6. A segment s such that s == 0 is called an empty segment; other segments are non
empty.

7. A context is a segment consisting of only A-items.

Example 3.3 Let the term t be defined as (£A)«lo)(£A)lo)(2A)1 and let the segment s be
(£A)«lo)(£A)16)(2A). Then the main items of both t and s are (£A), «lO)(£A)lo) and (2A),
being a A-item, a o-item, and another A-item. Moreover, «lo)(£A)lo)(2A) is an example of
a main segment of both t and s, which is not a context, but a o-A-segment. Also, s is a
A-o-A-segment, which is a main segment of t.

Contexts and segments can be regarded as special terms in the calculus, viz. those terms
ending in £. Now terms can be abbreviated in a definition, as we saw before. Hence, in
particular, contexts and segments can be abbreviated. All this holds under the condition that
we consider s£ to be the same as s itself.

Definition 3.4 (Segment abbreviation)
Segment s can be called "a" by adding the "definitional segment" (SO)(A a).

7

Example 3.5 In this example we use two A'S which we denote II and A respectively. Now the
following introduces * as a term of type E, 1. as a term of type * and defines => as the product
(*Aa)(*>'b)(aIIx)b. This states that, given c and d of type *, the term (d6)(co) => ,a-reduces
to the dependent product which sends inhabitants of c to inhabitants of d. The type of =>
is (*IIa)(*IIb)*, the class of all functions sending pairs (a,b) of type * to a "new" element of
type *.

1. (A.)

2. (*>'1.)

3. ((*Aa)(*Ab)(aIIx)b 0) ((*IIa)(*IIb) * >.,..)

Remark 3.6 In order to reap full benefit from the abbreviations, we should allow that
segment-abbreviating variables may occur in the place of actual segments everywhere in a
term. For example, with the above definition, the term (tAx)a(t'Ay)Z is an abbreviation for
(t>'x)s(t'>'y)z, with s completely copied out (but for the final E, which is omitted!).

Definition 3.7 (body, end variable, end operator)

1. Lett == sx be a term. Then we calls the body oft, orbody(t), and x the end variable
of t, or endvar(t). It follows that t == body(t) endvar(t).

2. Let s == (tw) be an item. Then we call t the body of s, denoted body(s), and w the end
operator of s, or endop(s). Hence, it holds that s == (body(s) endop(s)).

Note that we use the word 'body' in two meanings: the body of a term is a segment, and
the body of an item is a term.

Example 3.8 In Example 3.3, s is the body of t and 1 is the end variable of t. Let s be the
item ((10)(£>')10). Then (16)(E>.)1 is the body of sand 6 the end operator of s.

By means of the following definition one can sieve the main items with certain end operator(s)
from a given segment or term, forming a (new) segment:

Definition 3.9 (sieveseg)
Let s be a segment, or let t be a term with body s, then sievesegw(s) = sievesegw(t) = the
segment consisting of all main w-items of s, concatenated in the same order in which they
appear in s.

Example 3.10 In the term t of Example 3.3, sieveseg,\(t) == (EA)(2>') and sieveseg,(t) ==
((10)(£>,)10).

Definition 3.11 (weight, w-weight)

1. The weight of a segment S, weight(s), is the number of main items that compose the
segment.

2. The weight of a term t is the weight ofbody(t).

3. The w-weight weightw(s) of a segment s is the weight of sievesegwCs).

8

4. The w-weight of a term t is the w-weight ofbody(t).

Example 3.12 For the term t '" (cAx)(XAv)(x6)(cAy)«XAz)y6)(YAu)u and the segment s '"
(cAx)(XAv)(X6)(cAy)((xAz)y6)(YAu), "eight(t) = "eight(s) = 6 and "eight, (t) = "eight, (s)
= 4.

Definition 3.13 (direct subterms, subterms)

1. Ifbody(t) f. 0, then t '" (t'w)t". In this case we call t' and til the (left and right) direct
subterms of t. We denote this by t' C t and til C t.

2. The relation <r:: is the reflexive and transitive closure of C. We say that t1 is a subterm
oft ifft1 <r:: t.

Example 3.14 Let t be the term «16)2A)(U)3. The left direct subterm of tis (16)2, the
right direct sub term of tis (IA)3. The subterms of tare t, (16)2, (IA)3, 1 (twice), 2 and 3.

Notation 3.15 When one says that t' is a subterm of t, one usually has a certain occurrence
of t' in t in mind. (There can be more occurrences of t' in t.) If necessary, we shall "mark"
an occurrence, e.g. with a small circle, 0, or with under- or overlining. For example, the
first occurrence of x in t '" «X6)(YAx)XAu)(z6)y can be fixed by referring to it as XO in
«X06)(yAx)XAu)(z6)y. And the occurrence of the subterm (YAx)x in this t can be marked as
(yAx)x. We can also mark the occurrence of an operator: (yA~)X.

Definition 3.16 (arguments)
Let (t'WO)t" <r:: t. Then t' is the left argument of WO in t, or leftarg(wO), and t" is the
right argument of WO in t, or rightarg(wO).

Hence, leftarg(wO) is the left direct subterm of (t'WO)t" and rightarg(wO) is the right
direct subterm of (t'WO)t".

Note that a maximal subterm of a term t (i.e. a subterm that cannot be extended to the
left in t) is either t itself or a left direct sub term of t and hence the left argument of some
operator occurring in t.

Definition 3.17 (degree of a variable)

1. The degree of a variable x that is free in term t, is undefined.

2. The degree deg(£) of every £ occurring in t, is zero.

3. Assume that (the occurrence of) x is bountF in t and let t' be the type of x. Further, let
y be the end variable of this type t' and assume that deg(y) is defined. Then deg(x) =
deg(y)+ 1.

Note that each variable in a closed term has a degree. The set of the degrees of variables
occurring in a term, is always a set {O, ... , n} for some n 2: O.

Definition 3.18 (degree of a term)

2The notions "bound" (for a variable) and "type" (of a term) are formally defined in Definition 3.26.

9

1. The degree of a term is the degree of its end variable, if this degree is defined; otherwise
it is undefined.

2. The maximal degree of a term is the maximal number (if any) that occurs as a degree
of a variable occurring in the term; if there is no such number, then the maximal degree
of such a term is undefined.

Example 3.19 Take the f1.>.s-term t: (d",)((XAu)((uC)(XA,)XAy)(UAz)yAv)u. The degrees for
the variables occurring in this term are: deg(£) = 0; deg(x) = 1; deg(u) = 2, except for the
free u which is the end variable of the term: this u has no degree; deg(y) = 2; deg(z) = 3.
If t occurred, then its degree would have been 2. The term itself has no degree (since its end
variable is free). The maximal degree of the term is 3.

Remark 3.20 Many existing definitions of the notion 'degree' count "the other way round",
with the result that the degree of a "type" is one more than the degree of a term of this type.
Our degrees 0, 1, 2, 3 then change into (e.g.) 3, 2, 1, O. In our approach we start with a "top
level" having degree zero, and lower levels are numbered upwards, without restriction. This
makes it easier to discuss the subject of "more degrees". See Example 3.21 which has also for
aim to show the usefulness of more degrees.

Example 3.21 In the propositions-as-types conception (see e.g. [How80]), propositions are
coded as lambda terms. When t is a term which is regarded as a proposition, then any
"inhabitant" of t - i.e., a term t' such that t' : t - serves as an assertion (a "proof") of that
proposition. There clearly is a strong parallel with sets and elements: when t codes a set,
and when t' is again an inhabitant of t, then t' represents an element of the set t.

A set can have many elements, and a proposition can have many proofs. The elements
of a set are considered to be different, but it may be useful to identify all proofs of a certain
proposition. This is because - from the point of view of classical logic - the important thing
is often whether there is a proof of a proposition, and not so much what the exact content of

the proof is.
In many systems, sets and propositions occupy the same level in the degree-hierarchy. One

presupposes, for example, a class of sets (*,) and a class of propositions (*p), both inhabitants
of some "super-class" D. The situation then is as follows:

degree II 3 12 11 10
term a: A: *8 : 0

interpr. element set class
of sets

term P: Q: *p: 0

interpr. proof prop class
ofQ of props

In this schema it is possible to treat proofs and elements in a different manner. For
example, one could define an equivalence =; for proofs, viz. for those terms t of degree 3 for
which the type of the type of t ={3 *p.

Another way to identify proofs is the following. In the previous diagram one shifts the
proof-prop row one column to the left, adding a class 6. between *p and D. Now proofs
become the only terms of degree 4:

10

degree II 4 10
term a: A: *8 : 0

interpr. element set class
of sets

term P: Q: *p: C:,.: 0

interpr. proof prop class
ofQ of props

This is the AUT-4 interpretation (see [deB 74]). "Irrelevance of proofs" can now be im
plemented by a rule of the following form, where =i is some equivalence:

r I- P : Q : *p : C:,. r I- pi : Q' : *p : C:,. Q =(3 Q'
P =i pi

Definition 3_22 (degree-consistency)

1. A typing relation is degree-consistent if for all terms tl and tz we have:
iftl : t2 and if both deg(tI) and deg(tz) are defined, then deg(ttl = deg(tz) + 1.

2. A reduction relation -"p is degree-consistent if the following holds:
for all tl and t2 such that tl -+ p t2, if deg(tI) is defined, then also deg(t2) is defined
and deg(ttl = deg(tz). 3

Example 3.23 All Automath-systems have the property of degree-consistency, both for the
typing relation and for ,a-reduction (see Section 6). The same observation holds for the
systems in Barendregt's cube, but not for general PTS's (see Section 5).

Definition 3.24 (term restriction)
If t is a term, and r. cr:: t (t' is underlined in order to identify a unique occurrence of t' in

t), then t rt' (pronounced the restriction oft to t') is defined inductively as follows:

itt cr:: tl
itt cr:: tz

Example 3.25 Let t be the following term:

Then the restriction t r x of t to XO is:

Moreover, the restriction t f(XA,)XO '" t fxo.

Definition 3.26 (Bound and free variables, type, open and closed terms)

3 A typing relation which is degree-consistent is called ok in [Bar84].

11

(1)

(2)

1. Let XO be a variable occurrence in t such that x ¢ c and assume that sieveseg.\(t txO) ==
Sm • •• S1 (for convenience numbered downwards). Then XO is bound in t if x :::; m; the
binding item of XO in t is Sx and the>. that binds XO in t is endop(sx}. The type of
XO in t is body (sx). Furthermore, XO is free in t if x > m.

2. The variable c is neither bound nor free in a term.

3. Term t is closed when all occurrences of variables in t different from c are bound in t.
Otherwise t is open or has free variables.

Example 3.27 The term t == (c>'x)(x>'v)(x8)(c>.y)«x>'z)y08)(y>.u)u becomes, in the notation
with de Bruijn- indices: t == (>')(1>')(28)(>')«3>')2°8)(1>.)1. Now t t2° == (>.)(1>.)(28)(>.)(3>.)2°.
So sieveseg.\(t t2°) == S4S3S2S1 == (>.)(1>.)(>.)(3>.). Hence, 2° is bound in t since 2 :::;
lIeight.\(n2°) = 4. Moreover, the type of 2° in t is bodY(S2) == 0. There are no free
variables in t, hence t is closed.

Things are, however, not so simple in the case that the term contains segment abbreviations.

Example 3.28 In the term (t>'x)a(t'>'y)z, where a abbreviates a segment s, the binding>. of
the variable z may be found "inside" a, e.g. when s == (tl>'u)(t2>'z)(t38). But neither >'u nor
>'z is "visible" in a. Hence, using de Bruijn-index 2 for z would connect this variable with the
wrong>. (viz. >'x).

It will be clear from this example that the >.-weight of the abbreviated segment, i.e. the
number of main >.-items in the segment, plays an important role. This number can always
be recovered by inspecting the abbreviated segment. One can imagine, however, that it is
more practical to register this number together with the segment variable. Therefore, we add
a collection of segment variables to our set of variables, which are pairs of numbers:

Definition 3.29 (segment variables)
We add to :::: a new set ~ of segment variables:
~ = {(n;m)ln= 1,2, ... ;m= O,l, ... }.
Moreover, we distinguish the >.-operator >'sg as being a binding>. for segment abbreviations.

We do not allow that >'sg-items occur "on their own". They should always be a part of a 8-
>.-segment of the form (s8)(>'sga), cading the abbreviation of a segment s.

In (n;m), a segment variable item, the index n gives a reference to the binding >'sg
and m is the >.-weight of the abbreviated segment. Section 7 will give many examples of such
a phenomenon.

Definition 3.30 (Well-typedness of terms)
We say that a term t is "well-typed" with respect to a particular system containing variable,

abstraction and application conditions, if we can deduce I- t where I- is defined by the following
three equations:

variable condition
sl-x

sl-t s(t>.) I- t' abstraction condition
s I- (t>.)t'

sl-t s(t8) I- t' application condition

s I- (t8)t'

12

(3)

(4)

(5)

Notation 3.31 (Construction rules)
We call equations 3, (respectively 4 and 5), a variable (respectively abstraction and ap
plication) construction rule.

Example 3.32 With abstraction condition t == c, t' 'f; c, empty variable condition and
application condition, we obtain the syntax of the untyped lambda calculus.

Remark 3.33 The variable condition is optional. Example 3.34 gives two variable condi
tions. The abstraction condition and the application condition vary from system to system,
or may even be absent. In type systems for example, the type information plays a predom
inant role in the application condition: t may only be an "argument" of t' (Le. s I- (t6)t')
if t' is some kind of "function", with a "domain" in which t fits. This requirement must be
expressed formally in the application condition. Sections 4, 5 and 6 give examples of the
abstraction and application conditions. Example 3.36 gives a well-typed term.

Example 3.34 Here are some examples of variable conditions:

1. x ::; weight.\(s) (Here count c as zero, in case x == c).

This variable condition restricts terms to the closed ones.

2. 1 ::; deg(x) ::; 3.

Hence the degree of any term is between 1 and 3. This is the case in AUT-QE and
AUT-68; (see Section 6). The reasonableness of such a requirement is shown in practical
applications. For example, large pieces of mathematical texts have been coded in AUT
QE, thereby demonstrating its utility.

Definition 3.35 (Proof trees)
For each "well-typed" term, we call the construction tree, which contains at the same time

a proof for its "well-typedness", the proof tree for the term.

Example 3.36 The lowest part of the proof tree of (cAx) «XAu) «UO)(XA,)XAy) (UAz)y Av)U,
based on these rules, is the following:

73

71 (cAx) I- (XAu) «U6)(XA')XAy) (UAz)y (cAx) «XAu) «U6)(XA,)XAy) (UAz)y Av) I- u

I- £ (cAx) I- «XAu) «U6)(XA,)(XAy) (UAz)y Av)U

I- (cAx) «XAu) «U6)(XA,)XAy) (UAz)y Av)U

Here 71 and 73 are only checks of the appropriate variable conditions (which we here
assume to be empty) and 72 is a part of the tree that is not displayed.

We need a function whiclI updates variables. This we do by extending our set fI.\s with
a set of <p-operators fI",. We use the <p's with a double index: <p(k.i); k, i E N and call all
(<p(k·,»,s <p-items. Our terms are now fI.\s",-terms. The use of the <p-items is established in
the following rules.

13

Definition 3.37
(<p-tmnsition rules:)

(<p(k,n)(t' A) --+ '" ((<p(k,i))t' A)(<p(k+1,i»)
(<p(k,i»)(t'6) --+", ((<p(k,i»)t'6)(<p(k,i»)

(<p-destruction rules:)
For k, i E N, we have:
(<p(k,;»)x --+", X + i if x > k
(<p(k,l»)x ->", X if x ::; k orx == e.

Definition 3.38 (<p-abbreviation)
For all kEN, <p(k) denotes <p(O,k). Moreover, <p denotes <p(I) (hence <p(O,I»).

Definition 3.39 (void fJ-reduction)
Assume that a 6-A-segment s occurs in an flAS-term t, where the final opemtor A of s does
not bind any variable in t. Let t, be the scope of s. Then t reduces to the term t', obtained
from t by removing s and replacing tl by (<p(-1))tl.

Example 3.40 Let us take (16)(2A)(46)2. In this term, call it t, the 8'A-segment (16)(2A)
occurs and its A does not bind any variable in t. Moreover, (46)2 is the scope of (16)(2A) and
if in t we remove (16)(2A) and replace (48)2 by (<p(-1»)(46)2 we get (36)1. Hence t reduces to
(36)1.

Example 3.41

1. (16)(2A)(26)2 {3 (16)1; this states that (Ax".UU)u reduces to uu.

2. (16)(2A)(3A)3 ->{3 (2A)2; this states that (Au,y.Ax,y'Z)z reduces to Ax,y'Z.

Notation 3.42 (fJ-reduction)
Note that void fJ·reduction is a fJ·reduction, so let us write t ->{3 t' when the reduction in the
above definition takes place. fJ-reduction in general however, will not be explained and the
reader is referred to [N eK92aJ. It is not needed for this paper, further than saying that

• (16)(1' A)t" -+>{3 t"[x := tJ,

• the x's are the variables in t" bound by the mentioned A,

• [x := tJ is a postfix meta-operator standing for the substitution of t for all free occur
rences of x.

4 Canonical types

Variables occurring bound in a term in typed lambda calculus have a "natural" type, as
expressed in Definition 3.26. This type is the body of the A-item which binds the variable.
We extend this process of typing to (general) terms by means of a canonical typing function
typ, acting on arbitrary subterms t' of a term t.

14

Definition 4.1 (Canonical type)
The canonical type type t') of a subterm t' of a term t, with x == endvar(t') and x bound

in t, is defined as follows:
type t') == body(t')(tp(x»)t",

where til is the type of x in t as defined in Definition 3.26.

Example 4.2 Take the term (16)(2'x)1 (or in sugared notation (u6)(y,Xx)x).

1. If t' == 1 (the x), then typ(t') == £(tp(1»)2 --+", 3. This is obvious, it says that the type of
x is y (look at figure 2).

2. If til == (2'x)1 then typ(t") --+", (2'x)3. This is intuitively correct. It states that the type
of 'xx,y.x is 'xx,y.y (identifying 'x's and IT's).

3. If till == (16)(2'x)1 then typ(t lll
) --+", (16)(2'x)3 --+f3 2. Again, this is intuitively correct.

It states that the type of ('xx,y.x)u is y. In Section 4.2 we will see how to include an
application condition stating that the type of u and the type y must be compatible.
Recall moreover that types themselves are terms.

As we see, calculating the canonical type type t') of a (sub-)term t' is very straightforward.
Just replace the end variable oft' by its type til (together with some updating offree variables
in til).

Following the general style of this paper, we can also use a type item (.) and a type
reduction operator --+, instead of the type function typo Hence, we extend our set of terms
defined in Definition 2.7 in order to incorporate these .-items (we now have !l.\s",,-terms).

The search for the canonical type of a subterm t' of t starts with (.)t'; this term may be
transformed to typ(t') by using the following .-reduction rules for !lAST-terms (so we assume
that the term under consideration contains no tp-items):

Definition 4.3 (.-reduction)
(.-transition rules:)

(.)(t,W) --+, (tIW)(')
(.-destruction rule:)

(.)x --+, (tp(x»)t", if til is the type in t of the x under consideration.

Note here that a term t, tp-reduces (repectively .-reduces) to another term t' if t' is obtained
from t by tp-reducing (respectively .-reducing) a subterm of t.

Example 4.4 Take again the term (16)(2'x)1. Now

1. (.)1 --+, (tp(1»)2 --+", 3.

2. (.)(2'x)I--+, (2'x)(.)I--+, (2'x)(tp(I»)2 --+", (2'x)3.

3. (.)(16)(2'x)1 --+, (16)(.)(2'x)1 --+, (16)(2'x)(.)1 --+, (16)(2,X)(tp(1»)2 --+", (16)(2'x)3 --+f3
2.

15

4.1 The type of an abstraction

In what follows, we use Al for dependent product formation (usually denoted as II), and A2
for the - orctinary - function operator A. Now in Definition 4.3, we did not distingnish
between the two operators. Usually, the following rule is employed:

Definition 4.5 (Abstraction rule)

1. Given that the term t' has type t", one defines the type of a II-abstraction IIx : t, . t' to
be t", as well.

2. The type of a A-abstraction AX : t, . t' is the corresponding II-abstraction IIx : t, . t".

As a consequence, one may refine the transition rules for A-items as follows, replacing those
of Definition 4.3 for the case that W '" A:

Definition 4.6 (r-transition rules for indexed A-items:)
(r)(t'A,) ->7 (r)
(r)(t,A2) ->7 (t,A,)(r)

Example 4.7

1. If t '" (18)(2A,)1 then (r)(2A,)1 ->7 (r)l ->7 ('1'(1))2 ->", 3. That is, the type of IIx,y.x
is y.

2. If t '" (18)(2A2)1 then (r)(2A2)1 ->7 (2A1)(r)1 ->7 (2A1)('I'(1))2 ->", (2A,)3. That is,
the type of Ax,y.x is IIx,y.y.

There may be circumstances in which one desires to have more "layers" of A'S. In such a
case, we can extend this kind of systems by incorporating more different oX's. For example,
with an infinity of Ns, viz. AO, AI, A2, A3 ... , we can generalize Definition 4.6, to the following,
if we add a reduction rule stating that (t,AO) reduces to the empty segment:

Definition 4.8 (r-transition rule for arbitrarily many indexed A-items)
(r)(t'Ai+') ->7 (t'Ai)(r), for i = 0,1,2, ...

4.2 The type of an application

Recall from the third part of Example 4.2 that we might need to add an abstraction condition
which states that the type of u and the type yare compatible. In fact, one usually employs
a rule of the following form:

Definition 4.9 (Application rule)
Given a ''function" F of type IIx : t" . t, and an "argument" t of the appropriate type t" (this
is the type or domain which is associated with this function), then the application term (t8)F
has type t1[X := tl.

For this purpose we maintain Definition 4.6 as regards the A-items, and we employ the
following r-transition rule for 8-items (as in Definition.4.3):

16

Definition 4.10 (r-transition rule for o-items)
(r)(t,o) -'>T (t,o)(r).

However, we make demands to rule 5 (see Definition 3.30), which we repeat for convenience
sake:

sf- t s(to) f- t' application condition

s f- (to)t'

The requirement now is that the following application condition does hold in this rule:

Definition 4.11 (General application condition)

(r)t' =T,{3,<p (t" A,)t, and (r)t =T,{3,<p t".

N ow it follows that

(6)

where the x's are the variables in t, bound by the mentioned A,. Hence, we obtain the desired
result that (to)t' "has type" t,[x := t].

Example 4.12 Take the term (1A2)(10)(2A2)1 (or in sugared notation (yAu)(UO)(yAx)X).
From Example 4.7, (r)(2A2)1 =T,{3,<p (2A')3. Moreover, the type of U is:

(r)1 =T,{3,<p (",,(')1 =T,{3,<p 2.
Hence the application condition for (10)(2A2)1 is satisfied and

(r)(10)(2A2)1 =T,{3,<p-'»{3 2.

Note that we see the A, (i.e., the II) indeed as a kind of A, hence eligible for an application.
This is a quite natural approach. In the usual notation, this would amount to the introduction
of a ,8-reduction caused by a II-application:
(lIx : A . B)a -'>{3 B[x := a].
Here one may interpret (lIx : A . B)a as the wish to select the "axis" B(a) in the Cartesian
product IIx : A . B.

In our notation, a II-application is characterized by a o-II-segment of the form (t,o)(t211).
We speak about a ,8m-reduction when referring to a ,8-reduction generated by such a 0-11-
segment. Similarly, a ,8.>. -reduction is an "ordinary" ,8-reduction, generated by a o-A-segment.

Summarizing, we note that there are two possible approaches regarding II-application:

• Implicit or compulsory ,8m-reduction, i.e. for F of type (lIx : A . B) and a of type A
we immediately have that Fa is of type B[x := a], without intermediate steps. Here
II-application is not allowed. This is the case in PTS's (see Section 5) .

• Explicit ,8m-reduction, where II-application is allowed. Now we have, for F and a as
above, that Fa has type (lIx : A . B)a, which ,8m-reduces to B[x := a].

The latter option is an extension of the former one. With explicit i3m-reduction one may
simulate the effects of implicit i3.o-reduction, as we explained above. One might argue that
implicit i3m-reduction is closer to the intuition in the most usual applications. However,
experiences with the Automath-languages, containing explicit i3m-reduction, demonstrated

17

that there exists no formal or informal objection against the use ofthis explicit ,BoIT-reduction
in natural applications of type systems.

The two options can also be described in our step-wise structure. Our description of
explicit 13m-reduction is given above. If one desires to have implicit ,Bm-reduction as a for
malized notion, then we can make use of the possibility to have different 6's at our disposal.
In that case, a 6,-item (t6,) can be used as a signal for forced priority for certain operations
which execute the desired implicit ,Bm-reduction.

For example, the 6, 's in the chain

(T)(t6,)t' ->r (t6,)(T)t' =r.{3 (t6,)(t"A,)t, -{3 t,[x := t]

(cf. equation 6) can be used to enforce with highest priority, Le. before the execution of any
other "operation" on the term:
1) the "calculation" of the type typ(t') obtained by T-reduction of (T)t',
2) the search for a term of the form (t"A,)t, which is ,B-convertible to (or a i3-reduct of)
typ(t'),
3) and the ,B-reduction (t6,)(t"A,)t, """*{3 t,[x:= t].

By this process we obtain the term t,[x := t] as a necessary and immediate result of
a T-reduction on (T)(t6,)t'. For ordinary, non-compulsory ,BoA-reductions, we may employ
another 6, e.g. 62 ,

For simplicity, however, we shall not use these different 6's in the following of this paper.

Remark 4.13 In a now commonly accepted setting (see [Bar84] or [BaR90]), the typing
relation is expressed in the format r I- t, : t2. Rere r is a context, and the statement t, : t2
expresses that t, has type t2 relative to this context r. Such a context can be considered as
a segment consisting of main A-items, meant to bind all free variables occurring in t, and t2'

Example 4.14 In (cAx)(XAy) I- y : x it is stated that y has type x in the context (cAx)(xAy),
which is indeed the case, as is visible in the context-item (XA y). Also, (cAx)(XAy) I- x : c
holds.

5 The typing relation in PTS '8

We start with a short summary of so-called Pure Type Systems (PTS's), as described in
[BaR90]; see also [Bar84]. We are only interested in the singly sorted PTS's, where different
types of a given term are always i3-convertible; hence, typable terms are uniquely typed (but
for ,B-conversion). Moreover, we require that the typing relation is degree-consistent, thus
preventing "impredicative typing" like * : *.

PTS's employ ordinary variables, and not de Bruijn-indices or another referential variable
denotation. So ",-items and updating are not incorporated. Moreover, we note that PTS's
have a typing relation t, : t2 (Le. term t, has type t2), and no canonical type operator as
the one explained in Section 4. The following gives the conditions which must be obeyed for
the construction of (A- or II-) abstraction terms in PTS's:

Definition 5.1 (II-rules)
(II -formation rule:)

r I- t, : s, r, x : t, I- t2 : S2
r I- (IIx : t, . t2) : S3

18

{IT-introduction rule:}

r I- t1 : 81 r, x : t1 I- t2 : 82 r, x : t1 I- u : t2
r I- (AX: t1.U): (IIx: t1.t2)

In these rules, r denotes a context, t1, t2 and u are terms and 81, 82 and 83 are so
called sorts (these should not be confused with the meta-variable notation for items). For
convenience' sake, we ouly regard the case that 82 '" 83; these PTS's contain the ones of
Barendregt's A-cube (to be explained below). Note moreover that these rules are consistent
with Definition 4.5.

Remark 5.2 The II-formation and II-introduction rules as given above can be condensed
into one II-rule (combined II-rule):

r, [x :]t1 : 81 I- [tf :]t2 : 82
r I- [(AX: t1 . tf)] : (IIx : t1 . t2) : 82

Now it is obvious that Definition 4.6 encorporates the essential part of both II-rules,
translated in our setting. In fact,

• (T)(t1A1) T-reduces to (T) by itself (the Aritem - i.e. the II-item - is erased) .

• (T)(t1A2) T-reduces to (t1AIl(T), so the A2-item (an ordinary A-item) changes into the
corresponding A1-item (a II-item).

Moreover, the type information given by the II-formation and II-introduction rules (via the
statements (IIx : t1 . t2) : 82 and (AX: t1 . u) : (IIx : t1 . t2), respectively) is no longer
necessary, since we have the canonical type operator T at our disposal (cf. Definition 4.6 and
Remark 4.13).

Now we come to "Barendregt's cube" where both 81 and 82 can be either _ or ° (again,
see [Bar84] or [BalI90]). These two are related by the axiom statement: • : D. In this cube,
there are eight systems of typed lambda calculus. They differ in whether. and/or ° may be
taken for 81 and 82, respectively. (We recall that we take 82 '" 83.) The basic system is the
one where (81,82) = (_,.) is the only possible choice. All other systems have this version of
the two II-rules, plus one or more other combinations of(*,o), (0,_) and (0,0) for (81,82).
The four possible versions of the II-rule can be listed as follows:

degree 3 2 1 0

(-,*) X t1 * ° U t2 * 0

(*,0) X t1 * 0
U t2 0

(0, *) X t1 ° U t2 * 0

(0,0) X t1 0
U t2 °

19

•

The system with only (., .) for (s" S2) is known as A-Church or A-+ (this is essentially the
Automath-system AUT-6S). The addition of (., D) gives AP, which is a system that is rather
close to another variant of the Automath-family, AUT-QE (see [deBSOJ). The addition of
(0, *) to (*, *) gives the second order typed lambda calculus, also called A2. Adding (0, D) to
(*, *), we obtain Af!l. There are three systems that are defined by adding a combination of two
of the three last-mentioned possibilities to (., *). When all mentioned (s" s2)-combinations
are permitted, we have a version of the Calculus of Constructions (AC) (see [CoHSSJ).

In our system, we may identify 0 with c. Subsequently, the axiom * : 0 may be rendered
as the A-item (cA.). Thus we can express all eight systems of Barendregt's cube (and, in
fact, many other PTS's) by adding the appropriate abstraction conditions. Let us repeat the
construction rule under consideration, as stated in Definition 3.30:

B I- t B(tA) I- t' abstraction condition
s I- (tA)t'

Definition 5.3 (Incorporating II-formation)
The II-formation rule is obtained by reading A, for A and taking the abstraction condition:

(T)t -+T,I! s, and (T)t' -+T,I! S2, for S"S2 E {.,D}.

Definition 5.4 (Incorporating II-introduction)
For the II-introduction rule we take A2 for A and the abstraction condition:
(T)t -+T,I! s, and (T)2t' -+T,I! 82. Here (T)' is an abbreviation for (T)(T).

Just as the II-formation and -introduction rules incorporate the PTS-version of the ab
straction conditions, the following II-elimination rule contains the application condition for
PTS's:

Definition 5.5 (II-elimination rule)

r I- F : (IIx : A . B) r I- a : A

r I- Fa : B[x := a]

Now we recall the appropriate construction rule from Definition 3.30:

s I- t s(t6) I- t' application condition
s I- (t6)t'

and we incorporate II-elimination as follows:

Definition 5.6 (Incorporating II-elimination)
As regards the II -elimination rule for PTS's, we use the application condition:

there are t" and t, such that (T)t' =T,I! (t" A,)t, and (T)t =T,I! t".

Summarizing, it is our opinion that the main rules for term construction in many PTS's
have a natural rendering in our setting. The construction of abstraction terms can be sim
ulated with the use of A,- and A2-items. Application terms can be constructed with an
appropriate application condition, which mirrors the II-elimination rule but for the difference
between implicit (compulsory) and explicit Ihn-reduction. However, the latter kind of f3m
reduction, being more general, and fitting naturally in our setting, can be used to establish
the same effects as the former one.

20

Remark 5.7 The fact that systems with explicit ,am-reduction are conservative over systems
with implicit ,am-reduction, has been proven by van Benthem Jutting (private communica
tion). Hence, there is no technical objection against the definition of PTS's by means of a
canonical type operator.

6 The typing relation in Automath-systems

In this section we describe the definitions of three of de Bruijn's Automath-systems in our
setting. These systems do have a canonical type operator, albeit not as part of its language.
Consequently, we only have !lAs-terms in the language. Moreover, there is just one fj and
one A, this A taking the role both of the ordinary functional operator A and the product
constructor II.

The systems that we discuss are AUT-68, AUT-QE and A.4 All these systems have been
developed around 1970. The oldest of the three is AUT-68, the more powerful variant AUT
QE followed soon. The system A was meant to be a simplified and more uniform version of
the two other systems. It was developed slightly later.

6.1 The system AUT-68

The system AUT-68 ([vanD80J) was meant as a formal system suitable for expressing large
parts of mathematics, some of its features include:

• An in-built logical frame for reasoning, in a logic chosen by the user (e.g. classical
predicate logic, intuitionistic logic),

• The possibility of a step-wise development of a mathematical theory by means of axioms
and primitive notions; lemma's, theorems, corollaries and their proofs; definitions and
abbreviations,

• An explicit treatment of contexts (assumptions, variable introductions) for theorem-like
and definition-like notions.

• Only degrees 1,2 and 3 are permitted. Hence, e (of degree 0) is not an Automath-term.
As a consequence, the A-item (eA.), expressing that * is of type e, is a "meta-axiom",
which cannot be rendered inside one of the described Automath-systems.

If we disregard the definition mechanism of AUT-68 (otherwise said: if all definitions are
"unfolded"), then we can give a simple, straightforward description of AUT-68 in our setting
by choosing the appropriate parameters. The following definitions show what are the typing
relation and construction rules that will describe AUT-68 in our setting.

Definition 6.1 (Canonical types for AUT-68) .
The canonical type typ(t') of a term t' can be calculated by means of the following r
transition rules:

I { * if deg(t') = 2
(r)(tA)t --;T (tA)(r)t' if deg(t') = 3

(r)(tfj)t' --;T (tfi)(r)t'

4We thank Bert van Benthem Jutting for the descriptions below of AUT-68 and AUT-QE.

21

Definition 6.2 (Well-typedness of A UT-68)
In Definition 3.30, we need the following variable, abstraction and application conditions:

• Variable condition: The only variable of degree 1 is •.

• Abstraction conditions:

1. Either deg(t) = 2, or deg(t) = 1 and s is a context (see Definition 3.2), and

2. 2:::; deg(t') :::; 3.

• Application condition:

deg(t') = 3 and typ(t') =(3 (typ(t)A)t" for some t"

6.2 The system AUT-QE

The system AUT-QE has so-called Quasi Expressions: abstractions over ., functioning as
types of dependent products. This extra feature facilitates the applicability of the system in
a mathematical environment. Moreover, AUT-QE has, like AUT-68, only terms of degree 1,
2 and 3. The following will show how we can incorporate a (again definition-free) version of
AUT-QE in our setting:

• Canonical type: as for AUT-68 (see Definition 6.1).

• Variable condition: as for AUT-68 (see Definition 6.2).

• Abstraction condition 1: as for AUT-68 (see Definition 6.2).

• Abstraction condition 2: absent (see Definition 6.2).

• Application condition:
either deg(t') = 3 and s I- (to)typ(t'),
or deg(t') = 2 and typ(t') =(3 (typ(t)A)t" for some term t".

6.3 The system A

In view of the sketched development of A as a uniform system (however maintaining most
of the possibilities for practical applications in logic and mathematics), it will be no surprise
that A is the system closest to the approach that we follow in this report. As a matter of
fact, A is contained in our description as given before, with the following parameters:

• There is no restriction on degrees, all degrees 2: 0 are possible.

• There is only one abstraction operator A (hence, there is no II, or AD, A" A2, .. .).

• Application is only restricted in the sense that the general application condition (see
Definition 4.11) must hold, albeit in a generalized version (due to the unlimited degrees).
Application is allowed for terms of all degrees, so that II-application (see again Section 4)
is one of the features: ,8-reduction is treated similarly for all degrees, in the form
(t,O)(t2Ax)t3 -(3 t3[X := t,l·

• The type operator behaves uniformly, as in Definition 4.3: we have that (T)(t,W) -7
(tlW)(T), for T '" A or T '" o. Hence, A has explicit, and not implicit (compUlsory)
,8511-red uction.

22

7 An example

In order to demonstrate some of the features discussed above, we propose a system AC, that
has in principle similar power as Coquand and Huet's Calculus of Constructions (or AC, see
[CoH88]) and give the proof of a logic theorem in this setting.

7.1 The system AC,

AC, has the following general features:

• Variable names like x, y, ... , are used instead of de Bruijn-indices.

• Segment abbreviations, as discussed in Definitions 3.4 and 3.29 are incorporated.

• There is a distinction between II's and A'S, (Le., AI'S and A2'S), respectively.

• A canonical type operator typ, with the usual notational convention that typ2(t) =
typ(typ(t)), etc, is used.

• II-application and the corresponding .am-reduction are present.

• The maximal degree is 3.

Hence, we deviate in several respects from the official AC.
Note that we use three A'S, viz. AI, A2 and Asg. (In Section 7.3, we write II for Al and A

for A2.) Moreover, we have one 6, and as a consequence of what we said above, there will be
no 'P's and no T'S. The last two operators may only be used in the meta-language.

Remark 7.1 When we use dag or typ in a condition, we implicitly require that these oper
ations are indeed defined for the terms under consideration.

Definition 7.2 (Construction rules for AC,)
The construction rules for terms are the following:

variable construction:

1 ~ dag(sx) ~ 3
sl-x

abstraction construction:

sl-t setA) I- t'
s I- (tA)t'

abscon

where, for A == Ak and k = 1 or 2, respectively,

b
. {typi(t) =(3 c for i = 1 V i = 2; a scan 18· ..

tYP'(t') =r,{3 c for J = kv J = k+ 1

23

(1)

(2)

application construction:

sf-t s(to) f- t' appcon
(3)

8 f- (to)t'

where

appcon is: there are t1 and jf{O, I} such that (r)i t' =,,13 ((r)t A1)t1

Note that abscon is the same abstraction condition as the one for AC defined in Definitions 5.3
and 5.4. However, we do not use 81 and 82. To be precise: in AC both 81 and 82 can be
either * or O. We identify 0 with c. Moreover, we assume that * : 0, as in Section 5, and we
assume that * is the only inhabitant of O.

Hence, the condition "t : 81" can be replaced by typ(t) == E: (in the case that 81 == 0) or
typ(t) == * (in the case that 81 == *).

Analogously, in the case that A == Al (Le., II), the condition "t': 82" becomes (r)t' =,,13 E:

or (r j2t' =,,{i c. In the case that A == A2 (Le., the ordinary "functional" A), the condition
"t' : til : 82 for some til" becomes (r)2t' ={i c or (r)3t' ={i c. The rules for r are given in
Definitions 4.3 and 4.6.

Remark 7.3 It is not hard to see that both the typing relation and the reduction relations
in the presented system are degree-consistent.

7.2 The environment of the theorem

The theorem that we give is very short and is taken from logic. The logic is based on the
Curry-Howard-De Bruijn isomorphism, that is the notion of "propositions-as-types". (Cf.
Example 3.21.) This environment that we work with only concerns the following subjects:

• a class :+:: of propositions is taken as primitive,

• in this class the notion falsum (= absurdity), denoted as 1., is introduced as a primitive
notion,

• the axiom scheme '!t (for all propositions a) is stated (Le. when absurdity holds, then
every proposition holds),

• the notion of implication a =;> b is defined as the class of all mappings of a to b, hence
sending proofs of a to proofs of b,

• the notion of negation ~a is defined as a =;> 1.,

• the following logical theorem is expressed and proved:

a ~a

b

In a kind of "Mathematical Vernacular", adopted from the style of the Automath-family,
this piece of logico-mathematical text can be expressed by the following three definitions:

24

Definition 7.4 (The axiomatic part)

let * be by axiom the class of all propositions.
let 1- be by axiom a proposition.
let a be a proposition
and let t be a proof of 1-;
then 1--el of a and t is by axiom a proof of a.

Definition 7.5 (The definitional part)

let a be a proposition
and let b be a proposition;
then '=:.' of a and b is by definition the class of all mappings from a to b.
let a be a proposition;
then ,~, of a is by definition '=:.' of a and L

Definition 7.6 (The theorem-and-proof part)

let a be a proposition
and let b be a proposition,
let x be a proof of a
and let y be a proof of '~, of a;
then pr of a, b, x and y is by definition 1--el of band y of x,
being a proof of b.

Remark 7.7 In the above text, 1- is introduced as a primitive notion by means of an axiom.
This is, of course, unnecessary in AC, since the contradiction 1- can easily be defined in AC,
viz. as (*IIa)a. However, for the case of the example we introduce 1- as above.

7.3 Thanslating the environment in AC,

The logico-mathematical text defined in the previous section, will be translated in its entirety,
as one segment in Ac,. For convenience' sake, we write this segment as a concatenation of
separate items, corresponding with the different axioms, definitions and theorems in the text.
Moreover, we assume that the reader who is familiar with PTS's will be pleased when we
write II instead of Al and the ordinary A instead of A2'

Definition 7.8 (Translating Definition 7.4)
Definition 7.4 gives the following three A-items:

(A.)
(*Al.)
((*IIa)(1-II,)a Al.-d)

That is: * is introduced as a term of type £ and 1- as a term oftype *; finally, 1--elis presented
as being a primitively given, fixed function, sending a of type * to an element of the set of all
functions from 1- to a (this set is coded as (1-II,)a). Otherwise said, 1--elis a function sending
a of type * and t of type 1- to a. This function causes any proposition a to be inhabited as
soon as 1-, the absurdity, is inhabited.

25

, ,

Definition 7.9 (Translating Definition 7.5)
Definition 7.5, coding the definitions of implication and negation, can be expressed by the
following four items, being two pairs of ('definitional') 6-A-segments:

((*A.)(*Ab)(aIT x)b6) ((*IT.)(*ITb) * A~)
((*A.)(H)(a6) => 6) ((*IT.) * A,)

Here => is defined as the product (*A.)(*Ab)(aITx)bj this product is 'polymorphic', in the
sense that it only becomes a product after application, in this case to two arguments. To
be precise, for given c and d of type *, the term (d6)(c6) => ,a-reduces to the dependent
product (in this case, the set of all functions) (cITx)d, functions which send inhabitants of c
to inhabitants of d. The type of => is (*IT.)(*ITb)*, the class of all functions sending pairs
(a, b) of 'propositions' to a "new" 'proposition' (in this case: a => b).

Analogously, ~ is defined as the 'polymorphic' negation (*A.)(1.6)(a6) =>j thus, (c6)~ ,a
reduces to (1.6)(c6) =>. The type of ~ is (*IT.)*, the class of all functions sending a 'proposi
tion' a to a "new" ~proposition' (in this case: -,a).

Example 7.10 The reader may check that the following chain of ,a-reductions is correct:
~ ->fJ

(*A.)(H)(a6)=> -+fJ

(*A.)(H)(a6)(*A.)(*Ab)(aITx)b -+ fJ

(*A.)(H)(*Ab)(aITx)b -+fJ

(*A.)(aITx)1..
Hence,

(a6)~ =fJ (aITx)1..
So (a6)~ (or ~a in prefix-notation) is ,a-convertible to (aITx)1. (or, in infix-notation, a => 1.).
It is easy to check that (aITx)1., in its turn, is ,a-convertible to (1.6)(a6) =>.

Definition 7.11 (Translating Definition 7.6)
Definition 7.6 of the text can be translated into one Ii-A-segment:

((*A.)(*Ab)(aAx)((a6)~ Ay)((x6)y 6)(b6)1.-eI6)((*IT.)(*ITb)(aITx)((a6)~ ITy)b Apr)

The obtained coding of the text is, indeed, one long segment. For the sake of completeness,
we give the full segment:

(A.)
(*A.tl
((*IT.)(1.IT,)a A1.-d)

((*A.)(*Ab)(aITx)b6) ((*IT.)(*ITb)* A~)
((*A.)(H)(a6)=> 6) ((*IT.)* A,)

((*A.)(*Ab)(aAx)((a6)~ Ay)((x6)y 6)(M)1.-el 6)

((*IT.)(*ITb)(aITx)((a6)~ ITy)b Apr) (4)

It is not hard to check that this segment obeys the conditions for term construction as
given above:s

5Note that this segment can be considered to he a term by adding e to the segment.

26

, ,

variable condition:
The term is closed and all degrees are :0; 3.

abstraction condition:
Left to the reader.

application condition:
Examples are:

typ(*Aa)(*Ab)(aIIx)b -7 (by Section 4)
(T)(*Aa)(*Ab)(aIIx)b -7 (by Def. 4.8)
(*IIa)(T)(*Ab)(aIIx)b -7 (by Def. 4.8)
(*IIa)(*IIb)(T)(aIIx)b -7 (by Def. 4.8; (aIIx) reduces to the empty segment)
(*IIa)(*IIb)(T)b -+7 (by Def. 4.3)
(*IIa)(*IIb)*

and

typ(*Aa)(.16)(a6) *
-+7 (by Section 4)
(T)(*Aa)(H)(a6) * -7 (by Def. 4.8)
(*IIa)(T)(.16)(a6) *
---*7" (since

(T)* =7 (*IIa,)(*IIb')* -7,(3 ((T)a IIa,)(*IIb,h so
(T)(a6)* =7 (*IIb')* =7,(3 ((T).1 IIb')*) and
(T)(H)(a6)* =7 *)

(*IIa)*.

Other checks of the application condition, such as:
typ (*Aa)(*Ab)(aAx)((a6)~ Ay)((XO)Y 6)(bO).1-e/ -7,(3

(*IIa)(*IIb)(aIIx)((a6)~ IIy)b,
are left as an exercise for the reader.

7.4 The theorem and its proof

The main A-item of the segment in definition 7.11 contains the theorem:
(*IIa)(*IIb)(aIIx)((a6)~ IIy)b.

The contents of this theorem are tl,at any inhabitant of the theorem, being a proof for the
theorem, must be a function which, for a and b oftype *, for x of type a and y of type (ao)~,
gives an inhabitant of (= a proof of) the type b. Translated in more customary phrasing: the
desired function must be such that for any pair of 'propositions' a and b and for any pair of
'proofs' of a and ~(a), we have a 'proof' of b.

This theorem indeed has an inhabitant (and hence is true). This inhabitant can be found
in the main 6-item of the 6-A-segment:
(*Aa)(*Ab)(aAx)((a6)~ Ay)((x6)y b)(bO).1-el.

In order to show that this term is indeed a proof of the theorem, we have to show that its
type is ,6-equivalent to the term coding the theorem. Otherwise said: we have to demonstrate
that this boA-segment, in particular, obeys the application condition. This is indeed the case,
as the reader may check.

27

., ,

Finally, we show the usefulness of segment abbreviations for the same theorem and proof.
(These abbreviations can also be of help for the check of the application condition.) Segment
abbreviations add to the efficiency. There are already several segment duplications in term 4.
For example, the segments (*Aa) and (*Aa)(*Ab) occur repeatedly; the same is the case for
their respective types: (*IIa) and (*IIa)(*IIb).

When we have terms translating longer texts than the very short one in the example above,
segments then can easily consist of many items. Moreover, in an average term translating a
piece of mathematical text, the amount of duplications is very bothersome. Segments tend
to be repeated almost literally. As a matter of fact, it turns out to be quite natural (as a
consequence of the usual structure of mathematical reasoning) that different segments occur
stackwise in the complete term; that is to say, an occurrence of a segment (ttAa,) ... (tnAan)
may be followed rather closely by the same segment, or by a segment which is one item
longer: (tt Aa,) ... (tn+t Aan+,) or shorter: (ttAa,) ... (tn-t Aan_,), and this may happen again
and again. (The same holds if some of the A'S are replaced by II's.)

The segment abbreviations which we proposed can solve the problem. For this, we add
one more abbreviation in this translation process: when, e.g. (*Aa)(*Ab) is abbreviated by
(b; 2), then we abbreviate (*IIa)(*IIb) by ((r)b; 2). This is quite natural, since the r-transition
rules are such that (r)(*Aa)(*Ab)t' --*7 (*IIa)(*IIb)t" (see Definition 4.6).

Now, the term given below is the same as term 4, but with segment abbreviations.

(A.)

(*AJ.)
((*Aa).5) (Asg a)
(((r)a; l)(.LIIt)a AJ._d)

((a; l)(*Ab)O) (Asg b)
((b;2)(aIIx)bo) (((r)b;2) * A=»

((a; 1)(.L6)(a6)=> 0) (((r)a; 1)* A,)
((b;2)(aAx)((ao)~ Ay) 0) (Asg c)
((c;4)((xo)y o)(M).L-el 0)

(((r)c;4)b Apr) (5)

In a final step, we change the lay-out of this term in such a manner that it resembles an
Automath-text. At the same time, for the sake of brevity we remove those variable items
of the form ((r)x;n) for which the corresponding variable item (x;n) figures in the same
line. Instead, we shall use a horizontal stroke: -, which should be considered to refer to
the segment variable (x;n), with (r) added in the left-hand side. This is again a way to
avoid unnecessary duplications; the three horizontal strokes in the version below should read:
((r)b; 2), ((r)a; 1) and ((r)c; 4), respectively.

Thus doing, we come closer to both Automath and to the general PTS- framework, which
uses contexts r.

28

• I

The following version will now speak for itself.

(A.)
(• A 1.)
(('A a) 6) (As~ a)
(((T)a; l)(l.II,)a A1.-d)
((a; 1) (*Ab) 6) (As~ b)
((b;2) (aIIx)b 6) (-* A=»
((a;l) (l.6)(a6) * 6) (-* A~)

((b;2) (aAx)((a6), Ay) 6) (Asg c)
((c;4) ((x6)y 6)(b6)1.-eI 6) (J Apr)

8 Conclusions

In this paper, we introduced an alternative A-calculus notation which is flexible enough for
the expression of many type systems. This notation allows many generalizations. For exam
ple higher degrees and segment abbreviations are straightforwardly attainable. Moreover, a
difference between functions (A-terms) and dependent products (II-terms) can be made by
adapting the appropriate rules, whereas both kinds of abstractions still fit in the same frame
work, since they may be treated as two similar kinds of A-abstraction. This turned out to hold
to such an extent that application and ,8-reduction become also possible for II-abstractions,
thus simplifying and unifying the patterns.

We looked at the role of the types in our setting. For typable terms we defined a canonical
type, which can be effectively computed in a straightforward manner. The usual relation
tl : t2, i.e. term tl has as one of its types the term t2, can also be expressed by means of this
canonical type typ and ,8-reduction, viz. as typetl) =(3 t2.

We showed how type systems such as Barendregt's cube of Pure Type Systems can also
be defined with this typ-operator in a rather uniform way. Moreover, we explained how
the abstraction condition and the application condition, present in our alternative term con
struction rules, can be phrased in correspondence with the PTS-rules. We also presented a
number of Automath-systems in the proposed s'etting, which resulted in concise definitions
for complicated systems. Finally, we worked out the proof of a theorem taken from logic in
our setting.

All the above is an evidence that our new framework is expressive, general and uniform.
We believe that this framework deserves some attention in the ongoing research in A-calculus
and type theory.

9 Acknowledgments

We would like to thank Erik Poll for having read the paper very carefully and for his productive
comments.

References

[Bar84] Barendregt, H.P., lambda Calculi with Types, in Handbook of Logic in Computer Science,
Eds. S. Abramsky, D. Gabbay and T. Maibaum, Oxford University Press, Oxford, 1992.

29

[BaH90] Barendregt, H.P., and Hemerik, C., Types in Lambda calculi and programming languages,
Proceedings of the ESOP conference, Copenhagen 1990.

[Bej77] Benthem Jutting, L.S. van, Checking landau's "Grundlagen" in the AUTHOMATH system,
Ph.D. thesis, Eindhoven university of Technology, Eindhoven, 1977.

[deB72] Bruijn, N.G. de, Lambda calculus with nameless dummies, a tool for automatic formula
manipulation, with application to the Church-Rosser theorem, Indagationes Math. 34, No 5, pp.
381-392, 1972.

[deB74] Bruijn, N.G. de, Some extensions of the AUTOMATH: the AUT-4 family, department of
Mathematics, Eindhoven University of Technology, Eindhoven, 1974.

[deB80] Bruijn, N.G. de, A survey of the project AUTOMATH, in To H.B. Curry: Essays on Com
binatory Logic, Lambda Calculus and Formalism, Eds. J .R. Hindley and J.P. Seldin, Academic
Press, New York/London, pp. 29-61, 1980.

[CoH88] Coquand, T. and Huet, G., The calculus of Constructions, Information and Control 76, pp.
95-120, 1988.

[vanD80] Daalen, D.T. van, The language theory of Automath, Ph.D. thesis, Eindhoven university of
Technology, Eindhoven, 1980.

[How80] Howard, W.A., The formulae-as-types notion of constructions, in To H.B. Curry: Essays
on Combinatory Logic, Lambda Calculus and Formalism, Eds. J .R. Hindley and J.P. Seldin,
Academic press, 1980.

[Ned90] Nederpelt, R.P., Type systems - basic ideas and applications, in: CSN '90, Computing
Science in the Netherlands 1990, Stichting Mathematisch Centrum, Amsterdam, 1990.

[NeK92a] Nederpelt, R.P., and Kamareddine, F.D., On stepwise substitution, submitted for publica
tion.

[NeK92b] Nederpelt, R.P., and Kamareddine, F.D., A useful ,I.-notation, submitted for publication.

30

In this series appeared:

90/1 W.P.de Roever
H.Barringer
C.Courcoubetis-D.Gabbay
R .Gerth -B.J onsson-A.Pnueli
M.Reed-J.Sifakis-J.Vytopil
P.Wolper

90/2 K.M. van Hee
P.M.P. Rambags

90/3 R. Gerth

90/4 A. Peeters

90/5 J.A. Brzozowski
J.C. Ebergen

90/6 A.J.J.M. Marcelis

90n A.J.J.M. Marcelis

90/8 M.B. Josephs

90/9 A.T.M. Aerts
P.M.E. De Bra
K.M. van Hee

90/10 M.J. van Diepen
K.M. van Hee

90/11 P. America
F.S. de Boer

90/12 P.America
F.S. de Boer

90/13 K.R. Apt
F.S. de Boer
E.R. Olderog

90/14 F.S. de Boer

90/15 F.S. de Boer

90/16 F.S. de Boer
C. Palamidessi

90/17 F.S. de Boer
C. Palamidessi

Formal methods and tools for the development of
distributed and real time systems, p. 17.

Dynamic process creation in high-level Petri nets,
pp. 19.

Foundations of Compositional Program Refinement
- safety properties - , p. 38.

Decomposition of delay-insensitive circuits, p. 25.

On the delay-sensitivity of gate networks, p. 23.

Typed inference systems : a reference document, p. 17.

A logic for one-pass, one-attributed grammars, p. 14.

Receptive Process Theory, p. 16.

Combining the functional and the relational model,
p. 15.

A formal semantics for Z and the link between Z and the
relational algebra, p. 30. (Revised version of CSNotes
89/17).

A proof system for process creation, p. 84.

A proof theory for a sequential version of POOL, p. 110.

Proving termination of Parallel Programs, p. 7.

A proof system for the language POOL, p. 70.

Compositionality in the temporal logic of concurrent
systems, p. 17.

A fully abstract model for concurrent logic languages, p.
p.23.

On the asynchronous nature of communication in logic
languages: a fully abstract model based on sequences, p.
29.

.()/

90/18 J.Coenen
E. v .d.sluis
E. v .d. Velden

90/19 M.M. de Brouwer
P.A.C. Verkoulen

90/20 M.Rem

90/21 K.M. van Hee
P.A.C. Verkoulen

91/01 D. Alstein

91/02 R.P. Nederpelt
H.C.M. de Swart

91/03 J.P. Katoen
L.A.M. Schoenmakers

91/04 E. v.d. Sluis
A.F. v.d. Stappen

91/05 D. de Reus

91/06 K.M. van Hee

91/07 E.Poll

91/08 H. Schepers

91/09 W.M.P.v.d.Aalst

91/10 R.C.Backhouse
P.J. de Bruin
P. Hoogendijk
G. Malcolm
E. Voermans
J. v.d. Woude

91/11 R.C. Backhouse
PJ. de Bruin
G.Malcolm
E.Voermans
J. van der Woude

91/12 E. van der Sluis

91/13 F. Rietman

91/14 P. Lemmens

Design and implementation aspects of remote procedure
calls, p. 15.

Two Case Studies in ExSpect, p. 24.

The Nature of Delay-Insensitive Computing, p.18.

Data, Process and Behaviour Modelling in an integrated
specification framework, p. 37.

Dynamic Reconfiguration in Distributed Hard Real-Time
Systems, p. 14.

Implication. A survey of the different logical analyses
"if...,then ... ", p. 26.

Parallel Programs for the Recognition of P-invariant
Segments, p. 16.

Performance Analysis of VLSI Programs, p. 31.

An Implementation Model for GOOD, p. 18.

SPECIFICATIEMETHODEN, een overzicht, p. 20.

CPO-models for second order lambda calculus with
recursive types and subtyping, p. 49.

Terminology and Paradigms for Fault Tolerance, p. 25.

Interval Timed Petri Nets and their analysis, p.53.

POLYNOMIAL RELATORS, p. 52.

Relational Catamorphism, p. 31.

A parallel local search algorithm for the travelling
salesman problem, p. 12.

A note on Extensionality, p. 21.

The PDB Hypermedia Package. Why and how it was
built, p. 63.

91/15 A.T.M. Aerts
K.M. van Hee

91/16 AJJ.M. Marcelis

91/17 A.TM. Aerts
P.M.E. de Bra
K.M. van Hee

91/18 Rik van Geldrop

91/19 Erik Poll

91/20 A.E. Eiben
R.Y. Schuwer

91/21 J. Coenen
W.-P. de Roever
J.Zwiers

91/22 G. Wolf

91/23 K.M. van Hee
L.J. Somers
M. Y oorhoeve

91/24 A.T.M. Aerts
D. de Reus

91/25 P. Zhou
J. Hooman
R. Kuiper

91/26 P. de Bra
G.J. Houben
J. Paredaens

91/27 F. de Boer
C. Palamidessi

91/28 F. de Boer

91/29 H. Ten Eikelder
R. van Geldrop

91/30 J.C.M. Baeten
F.W. Yaandrager

91/31 H. ten Eikelder

Eldorado: Architecture of a Functional Database
Management System, p. 19.

An example of proving attribute grammars correct:
tbe representation of aritbmetical expressions by DAGs,
p. 25.

Transforming Functional Database Schemes to Relational
Representations, p. 21.

Transformational Query Solving, p. 35.

Some categorical properties for a model for second order
lambda calculus witb subtyping, p. 21.

Knowledge Base Systems, a Formal Model, p. 21.

Assertional Data Reification Proofs: Survey and
Perspective, p. 18.

Schedule Management: an Object Oriented Approach, p.
26. .

Z and high level Petri nets, p. 16.

Formal semantics for BRM witb examples, p. 25.

A compositional proof system for real-time systems based
on explicit clock temporal logic: soundness and complete
ness, p. 52.

The GOOD based hypertext reference model, p. 12.

Embedding as a tool for language comparison: On tbe
CSP hierarchy, p. 17.

A compositional proof system for dynamic proces
creation, p. 24.

Correctness of Acceptor Schemes for Regular Languages,
p. 31.

An Algebra for Process Creation, p. 29.

Some algoritbms to decide tbe equivalence of recursive
types, p. 26.

91/32 P. Stroik

91/33 W. v.d. Aalst

91/34 J. Coenen

91/35 F.S. de Boer
J.W. Klop
C. Palamidessi

92/01 J. Coenen
J. Zwiers
W.-P. de Roever

92/02 J. Coenen
J. Hooman

92/03 J.C.M. Baeten
J.A. Bergstra

92/04 J.P.H.W.v.d.Eijnde

92/05 J.P.H.W.v.d.Eijnde

92/06 J.C.M. Baeten
J.A. Bergstra

92/07 R.P. Nederpelt

92/08 R.P. Nederpelt
F. Kamareddine

92/09 R.C. Backhouse

92/10 P.M.P. Rambags

92/11 R.C. Backhouse
J.S.C.P.v.d.Woude

92/12 F. Kamareddine

92/13 F. Kamareddine

92/14 J.C.M. Baeten

92/15 F. Kamareddine

92/16 R.R. Seljee

92/17 W.M.P. van der Aalst

Techniques for designing efficient parallel programs, p.
14.

The modelling and analysis of queueing systems with
QNM-ExSpect, p. 23.

Specifying fault tolerant programs in deontic logic,
p. IS.

Asynchronous communication in process algebra, p. 20.

A note on compoSitional refmement, p. 27.

A compositional semantics for fault tolerant real-time
systems, p. 18.

Real space process algebra, p. 42.

Program derivation in acyclic graphs and related
problems, p. 90.

Conservative fixpoint functions on a graph, p. 25.

Discrete time process algebra, p.45.

The fine-structure of lambda calculUS, p. II O.

On stepwise explicit substitution, p. 30.

Calculating the Warshall/Floyd path algorithm, p. 14.

Composition and decomposition in a CPN model, p. 55.

Demonic operators and monotype factors, p. 29.

Set theory and nominalisation, Part I, p.26.

Set theory and nominalisation, Part II, p.22.

The total order assumption, p. 10.

A system at the cross-roads of functional and logic
programming, p.36.

Integrity checking in deductive databases; an exposition,
p.32.

Interval timed coloured Petri nets and their analysis, p.
20.

92/18 R.Nederpclt
F. Kamareddine

92/19 1.C.M.Baeten
I.A.Bergstra
S.A.Smolka

92/20 F.Kamareddine

92/21 F.Kamareddine

92/22 R. Nederpelt
F.Kamareddine

92/23 F.Kamareddinc
E.Klein

92/24 M.Codish
D.Dams
Eyal Yardeni

92/25 E.Poli

A unified approach to Type Theory through til refined
lambda-calculus. p. 30.

Axiomatizing Probabilistic Processes:
ACP with Generative Probabilities. p. 36.

Are Types for Natural Language? P. 32.

Non well-foundedness and type freeness can unify the
interpretation of functional application. p. 16.

A useful lambda notation. p. 17.

I

Nominalization. Predication and Type Contairunent. p. 40.

Bottum-up Abstract Interpretation of Logic Programs.
p. 33.

A Programming Logic for Fro. p. 15.

	Abstract
	1. Introduction
	2. The new notation
	3. The formal machinery
	4. Canonical types
	4.1 The type of an abstraction
	4.2 The type of an application
	5. The typing relation in PTS's
	6. The typing relation in Automath-systems
	6.1 The system AUT-68
	6.2 The system AUT-QE
	6.3 The system A
	7. An example
	7.1 The system lambda-c1
	7.2 The environment of the theorem
	7.3 Translating the environment in lambda-c1
	7.4 The theorem and its proof
	8. Conclusions
	9. Acknowledgments
	References

