28,989 research outputs found

    Autonomous real-time surveillance system with distributed IP cameras

    Get PDF
    An autonomous Internet Protocol (IP) camera based object tracking and behaviour identification system, capable of running in real-time on an embedded system with limited memory and processing power is presented in this paper. The main contribution of this work is the integration of processor intensive image processing algorithms on an embedded platform capable of running at real-time for monitoring the behaviour of pedestrians. The Algorithm Based Object Recognition and Tracking (ABORAT) system architecture presented here was developed on an Intel PXA270-based development board clocked at 520 MHz. The platform was connected to a commercial stationary IP-based camera in a remote monitoring station for intelligent image processing. The system is capable of detecting moving objects and their shadows in a complex environment with varying lighting intensity and moving foliage. Objects moving close to each other are also detected to extract their trajectories which are then fed into an unsupervised neural network for autonomous classification. The novel intelligent video system presented is also capable of performing simple analytic functions such as tracking and generating alerts when objects enter/leave regions or cross tripwires superimposed on live video by the operator

    Numerical analysis of a fin-tube plate heat exchanger with winglets

    Get PDF
    In this presented work, numerical analysis of heat transfer and flow characteristic using longitudinal vortex generators (LVGS) in fin and flat tube heat exchanger has been presented. Conjugate heat transfer 3D numerical model has been developed and successfully carried out. Rectangular winglets were set in pairs, with downstream orientation. The effects of impact angles of (20⁰ , 30⁰, and 40⁰ ) as well as tubes and winglets were placed in one row lined arrangement and air flow by forward arrangement and backward arrangement. Reynolds number is ranged from 500 to 5000. The numerical results showed that in the range of the present study, the variation of these parameters can result in the increase of heat transfer. The study focuses on the Influence of the different parameters of VGs on heat transfer and fluid flow characteristics of one row lined circular-tube banks. The characteristics of average Nu number and skin friction coefficient are studied numerically by the aid of the computational fluid dynamics (CFD) commercial code of FLUENT ANSYS 14. The results showed increasing in the heat transfer and skin friction coefficient with the increasing of Re number. It has been observed that the overall Nuav number of one circular tubes increases by 23-31% ,by 23-43% and by 23-47% with angles of (20⁰, 30°, and 40⁰) respectively, in forward arrangement and the overall Nuav number of one circular tubes increases by 23-42%, by 23-46% and 23-52%with angles of (20⁰, 30°, and 40⁰) respectively, in backward arrangement, with increasing in the overall average of skin friction coefficient. Also the results showed that the rectangular winglet pairs (RWPs) can significantly improve the heat transfer performance of the fin and-tube heat exchangers with a moderate pressure loss penalty

    FPGA-based Anomalous trajectory detection using SOFM

    Get PDF
    A system for automatically classifying the trajectory of a moving object in a scene as usual or suspicious is presented. The system uses an unsupervised neural network (Self Organising Feature Map) fully implemented on a reconfigurable hardware architecture (Field Programmable Gate Array) to cluster trajectories acquired over a period, in order to detect novel ones. First order motion information, including first order moving average smoothing, is generated from the 2D image coordinates (trajectories). The classification is dynamic and achieved in real-time. The dynamic classifier is achieved using a SOFM and a probabilistic model. Experimental results show less than 15\% classification error, showing the robustness of our approach over others in literature and the speed-up over the use of conventional microprocessor as compared to the use of an off-the-shelf FPGA prototyping board

    Understanding Next-Generation VR: Classifying Commodity Clusters for Immersive Virtual Reality

    Get PDF
    Commodity clusters offer the ability to deliver higher performance computer graphics at lower prices than traditional graphics supercomputers. Immersive virtual reality systems demand notoriously high computational requirements to deliver adequate real-time graphics, leading to the emergence of commodity clusters for immersive virtual reality. Such clusters deliver the graphics power needed by leveraging the combined power of several computers to meet the demands of real-time interactive immersive computer graphics.However, the field of commodity cluster-based virtual reality is still in early stages of development and the field is currently adhoc in nature and lacks order. There is no accepted means for comparing approaches and implementers are left with instinctual or trial-and-error means for selecting an approach.This paper provides a classification system that facilitates understanding not only of the nature of different clustering systems but also the interrelations between them. The system is built from a new model for generalized computer graphics applications, which is based on the flow of data through a sequence of operations over the entire context of the application. Prior models and classification systems have been too focused in context and application whereas the system described here provides a unified means for comparison of works within the field

    ToyArchitecture: Unsupervised Learning of Interpretable Models of the World

    Full text link
    Research in Artificial Intelligence (AI) has focused mostly on two extremes: either on small improvements in narrow AI domains, or on universal theoretical frameworks which are usually uncomputable, incompatible with theories of biological intelligence, or lack practical implementations. The goal of this work is to combine the main advantages of the two: to follow a big picture view, while providing a particular theory and its implementation. In contrast with purely theoretical approaches, the resulting architecture should be usable in realistic settings, but also form the core of a framework containing all the basic mechanisms, into which it should be easier to integrate additional required functionality. In this paper, we present a novel, purposely simple, and interpretable hierarchical architecture which combines multiple different mechanisms into one system: unsupervised learning of a model of the world, learning the influence of one's own actions on the world, model-based reinforcement learning, hierarchical planning and plan execution, and symbolic/sub-symbolic integration in general. The learned model is stored in the form of hierarchical representations with the following properties: 1) they are increasingly more abstract, but can retain details when needed, and 2) they are easy to manipulate in their local and symbolic-like form, thus also allowing one to observe the learning process at each level of abstraction. On all levels of the system, the representation of the data can be interpreted in both a symbolic and a sub-symbolic manner. This enables the architecture to learn efficiently using sub-symbolic methods and to employ symbolic inference.Comment: Revision: changed the pdftitl

    Contextual cropping and scaling of TV productions

    Get PDF
    This is the author's accepted manuscript. The final publication is available at Springer via http://dx.doi.org/10.1007/s11042-011-0804-3. Copyright @ Springer Science+Business Media, LLC 2011.In this paper, an application is presented which automatically adapts SDTV (Standard Definition Television) sports productions to smaller displays through intelligent cropping and scaling. It crops regions of interest of sports productions based on a smart combination of production metadata and systematic video analysis methods. This approach allows a context-based composition of cropped images. It provides a differentiation between the original SD version of the production and the processed one adapted to the requirements for mobile TV. The system has been comprehensively evaluated by comparing the outcome of the proposed method with manually and statically cropped versions, as well as with non-cropped versions. Envisaged is the integration of the tool in post-production and live workflows

    The AXIOM software layers

    Get PDF
    AXIOM project aims at developing a heterogeneous computing board (SMP-FPGA).The Software Layers developed at the AXIOM project are explained.OmpSs provides an easy way to execute heterogeneous codes in multiple cores. People and objects will soon share the same digital network for information exchange in a world named as the age of the cyber-physical systems. The general expectation is that people and systems will interact in real-time. This poses pressure onto systems design to support increasing demands on computational power, while keeping a low power envelop. Additionally, modular scaling and easy programmability are also important to ensure these systems to become widespread. The whole set of expectations impose scientific and technological challenges that need to be properly addressed.The AXIOM project (Agile, eXtensible, fast I/O Module) will research new hardware/software architectures for cyber-physical systems to meet such expectations. The technical approach aims at solving fundamental problems to enable easy programmability of heterogeneous multi-core multi-board systems. AXIOM proposes the use of the task-based OmpSs programming model, leveraging low-level communication interfaces provided by the hardware. Modular scalability will be possible thanks to a fast interconnect embedded into each module. To this aim, an innovative ARM and FPGA-based board will be designed, with enhanced capabilities for interfacing with the physical world. Its effectiveness will be demonstrated with key scenarios such as Smart Video-Surveillance and Smart Living/Home (domotics).Peer ReviewedPostprint (author's final draft
    corecore