
Understanding Next-generation VR:
Classifying Commodity Clusters for Immersive Virtual Reality

Alexander Streit*

QUT

Ruth Christie†
QUT

Andy Boud‡
VR Solutions

Abstract

Commodity clusters offer the ability to deliver higher
performance computer graphics at lower prices than traditional
graphics supercomputers. Immersive virtual reality systems
demand notoriously high computational requirements to deliver
adequate real-time graphics, leading to the emergence of
commodity clusters for immersive virtual reality. Such clusters
deliver the graphics power needed by leveraging the combined
power of several computers to meet the demands of real-time
interactive immersive computer graphics.

However, the field of commodity cluster-based virtual reality is
still in early stages of development and the field is currently ad-
hoc in nature and lacks order. There is no accepted means for
comparing approaches and implementers are left with instinctual
or trial-and-error means for selecting an approach.

This paper provides a classification system that facilitates
understanding not only of the nature of different clustering
systems but also the interrelations between them. The system is
built from a new model for generalized computer graphics
applications, which is based on the flow of data through a
sequence of operations over the entire context of the application.
Prior models and classification systems have been too focused in
context and application whereas the system described here
provides a unified means for comparison of works within the
field.

CR Categories:

Keywords: Virtual and Augmented reality, Real-time Graphics,
Computer Clusters

--

*e-mail: a.streit@qut.edu.au
†e-mail: r.christie@qut.edu.au
‡e-mail: andyb@vrsolutions.com.au

1 Introduction

Whereas traditional displays present a window to another world
[Sutherland 1965], an immersive display seeks to impart a feeling
of being inside this other world. This is achieved through
interactive “true to scale” 3D graphics encompassing as much of
the human visual system as possible. Rendering graphics suitable
for the demands of virtual reality applications, using a computer
cluster built with commodity hardware, is the topic of this paper.

Stanford University, in conjunction with the U.S. Department of
Energy [Houston et. al. 2002], created one of the first commodity-
based graphics clusters in 1999. This cluster was composed of 32
nodes and ran the WireGL [Humphreys et. al. 2001] and
Chromium [Humphreys et. al. 2002] software suites. Being an
early adopter, several issues were encountered and a white paper
was published that described hardware limitations with the
primary requirement being better throughput on commodity bus
systems [Houston et. al. 2002].

Samanta et. al. provide several reasons for using a commodity
based graphics cluster [Samanta et. al. 2000]. A summary of
reasons identified in [Samanta et. al. 2000] is:
• Lower-cost: a favorable price-to-performance ratio when

compared to traditional high-end, custom-designed rendering
systems.

• Technology tracking: the performance for commodity
components has been improving more rapidly than custom-
designed, high-end hardware.

• Modularity & flexibility: networking protocols provide for
easier reconfiguration of rendering systems as well as
supporting heterogeneous compositions.

• Scalable capacity: Since each PC in a cluster has its own CPU,
memory, and AGP bus, scalability is better than a traditional
system where the memory and I/O subsystem are shared by all
graphics pipelines.

Existing computer graphics systems have been shown to follow a
general order [Whitman 1992, Eldridge 2001]. The application
supplies a series of vertex data, which is transformed into viewing
space data and clipped against the viewing volume (Geometry
Processing). The transformed vertices are then rasterized, a
process that converts 3D polygons into image space information.
Finally, shading parameters are incorporated to produce the
resulting pixels (Pixel-level Processing). In the case of an
interactive application, these pixels are displayed to the user.

Molnar et. al. describe the sorting classification system for
parallel computer graphics, which is based on “where the sort
from object coordinates to screen coordinates occurs” [Molnar et.
al. 1994] (pp. 23). As shown in Figure 1, this can occur at one of
three stages, producing three categories: sort-first, sort-middle and
sort-last. The “Geometry Processing” operation refers to object
space operations prior to rasterization, whereas the “Pixel-level
processing” occurs in image space and deals with individual
pixels.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/10874026?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Humphreys et. al. point out, with reference to commodity
hardware, that “there are only two points in the graphics pipeline
where we can introduce communication: immediately after the
application stage, and immediately before the final display stage”
[Humphreys et. al. 2001] (pp. 130). Sort-middle systems require
access to intermittent data between these stages and are therefore
not used in commodity cluster-based systems. The remaining two
categories produce only coarse separation between object space
and image space sorting methods.

This paper provides finer grained classification than the sorting
classification system through development of the data-stage
classification system. In addition, the categories directly reflect
the nature of the data that is transmitted between the nodes of a
cluster. This provides an intuitive basis for comparison between
categories. To aid the exposition of this classification system,
section 2 provides a breakdown of the entire graphics application
process into a series of stages, each of which are related to
existing models. Section 3 introduces the data-stage classification
system, a categorization based on the stage at which a virtual
reality system enters into parallelism. While section 3 provides a
discussion of characteristics per category, it remains academic in
its treatment of the system and therefore application of the
classification system is deferred until section 4. Section 4 provides
a reclassification of major works within the field as confirmation
of the practical applicability of the data-stage classification
system.

2 Data-stage Application Model

In this paper an abstract model of the complete graphics
application and rendering process, called the data-stage
application model, is developed to define the flow of data. This
model will be used as a basis for the categorization of cluster
based systems.

In the introduction it was established that computer graphics
systems follow a general order. This order is represented in the
literature using abstract models of the application, such as the
OpenGL pipeline model [Eldrige 2001]. Previously these
abstractions have been limited to the scope of the particular
graphics rendering process. While this is of use to the developers
of graphics rendering systems, a higher-level integrated model is
needed to provide an understanding of the entire process.

In this paper several prior models are integrated into a unified
system, called the data-stage application model, illustrated in
Figure 2. This model considers the points of communication
between interconnected systems libraries. A series of data stages
are connected by a succession of operations. Each operation
accepts data from the previous stage and produces the data for the
next stage. The progression is linear and of a fixed order. The data
stages are:
1. Stimulus data is received by the application from external

sources such as user input;
2. Stimulus data is processed and produces application specific

data;
3. Intermediate data is processed, based on application specific

criteria, and produces a series of scene changes;
4. Scene changes are applied to the scene definition in the

graphics database through an update operation;
5. Scene definition is processed by a traverse/cull operation that

produces graphics rendering commands;
6. Commands are executed, resulting in the final pixel data.

Virtual reality applications are a class of interactive graphics
applications and therefore conform to the model described.

2.1 The Standard Graphics Pipeline

Traditionally, the graphics application is described using a
pipeline model [Eldridge 2001] [Whitman 1992], an example of
which is given in Figure 3 (Adapted from [Eldridge 2001, pp.
14]). Abstractly, geometry is transformed into fragments and these
fragments are subsequently converted into pixels. In Figure 3, the
application is shown to be a source of data, in the form of
commands, indicating the starting point in the pipeline. The
operations within the shaded area between “application” and
“display” are performed by the graphics accelerator libraries.

Stimulus

Process Stimulus

Application Specif ic

Process Frame

Data Operation

Scene Changes

Update

Scene Definition

Traverse/Cull

Commands

Pixels

Execute

Figure 2: The data-stage application model

Sort-First

Geometry
Processing

Sort-Middle

Pixel-level
processing

Sort-Last

Display

Feed-forw
ard

Figure 1: The sorting classification system.

A limitation of using commodity hardware architecture is the
inability to access intermediate data within the graphics
accelerator[Humphreys et. al. 2001]. For this reason the portion of
the graphics pipeline that is executed by the graphics accelerator,
labeled “execute” in Figure 2, is considered a single unit in the
data-stage application model. This corresponds with the shaded
area in Figure 3, taking series of “commands” as input and
producing “Pixels”, which correspond to the “samples” data in
Figure 3. The pixel data consists of colour, translucency and depth
information.

The entire set of commands must be re-transmitted for every
frame, since they are discarded once executed. A typical graphics
application exhibits a degree of frame-to-frame coherency, that is,
the data for a frame changes only incrementally from the previous
frame. Optimizations result from exploiting this coherency
requiring a graphics database to store the previous frame.

2.2 Graphics Databases

In contrast to the immediate mode interface, a retained mode
interface retains the scene definition in a database. This database
is processed every frame, resulting in the necessary immediate
mode commands. Such a database has knowledge of the entire
scene and builds on a variety of techniques including spatial
relationships to improve performance. Graphics databases, of
which Performer [Rohlf & Helman 1994] is an example, are more
commonly referred to as scene-graphs because they describe the
scene using a graph data structure.

Performer has been selected as an example of a retained mode
interface for the purposes of this paper since it is widely used in
the graphics arena. A graphical representation of the Performer
system is shown in Figure 4 (reproduced from [SGI 2001]).
Performer supports parallelism because it was designed to run on
graphics supercomputers that have multiple graphics accelerators.
These systems are known as “multi-pipe” systems, referring to
each graphics accelerator as a “pipe” or “pipeline”. As a
consequence, the model in Figure 4 includes parallelism at the
pipeline level: the scene is partitioned across multiple pipelines by
the scene-graph.

Figure 4 shows the application providing the scene definition,
which is processed by each pipeline. Each pipeline applies a series
of stages to the data, resulting in frame-buffer data. The purpose
of the “Traversal/Cull” stage is to limit the scene data to only the
relevant, ordered information enabling efficiency in rendering.
The purpose of the “Draw” stage is to produce the actual pixel
data.

The data-stage application model integrates this system through
the “Traversal/Cull” operation of Figure 2. This operation takes a
scene definition as input and produces a series of commands,
which corresponds to the “Scene” data in Figure 4. Note that the
“Draw” operation in Figure 4 represents the same process as the
“Execute” operation of the data-stage model in Figure 2.

Although entire applications are developed using an immediate
mode interface, such as OpenGL, these applications are not
without a graphics database. In this class of applications, the
application programmer will maintain their own internal database
representation.

2.3 Interactive Graphics and Databases

The “Traversal/Cull” operation in the model considers only the
scene definition as supplied by the application, however,
interactive graphics applications rely on constantly changing
computer imagery. This change is achieved through an “Update”
traversal of the scene graph, which is represented by the arrow
connecting the “Application” to the “Scene” data in Figure 4. This
process applies a set of scene changes to the data, altering the
scene data and consequently the resultant images.

Since the update traversal is a data altering event it must be thread
safe. Several scene graphs [Reiners 2003, Osfield 2003] are multi-
threaded for performance reasons and provide synchronized
access to the scene data.

2.4 Application Space

The discussion thus far has considered the underlying libraries
used to generate computer graphics, each of which are general in
purpose. In practice these are bound to an application written for a

Figure 4: Graphics database model with parallel pipelines [in SGI
2001]

Application

CommandDisplay
Lists

Geometry

commands

vertexes

Rasterization

Texture

primitives

untextured
fragments

Texture
Memory

FragmentFramebuffer

Display

textured
fragments

samples

Figure 3: The traditional pipeline model [Eldridge 2001]

specific purpose, such as a flight-simulator. The part of the
program that contains the application specific code is said to exist
in application space.

The application space code is responsible for the calculation of
scene changes, which result from application specific processing
and will vary according to the application domain. In the data-
stage application model these changes are the result of a “process
frame” operation, taking “application specific” data as input and
producing “scene changes” as output. Application specific data is
arbitrarily defined by the application programmer and the
modeling of the processing of this data is divided into two
subsections:
• scene change calculations, which are represented by the

“process frame” operation; and
• stimulus response, which is represented by the “process

stimulus” operation.

2.5 Responding to stimulus

The “application specific” data is produced in response to some
external stimulus, such as user input events, external data feeds,
and timer events. The “stimulus” is not necessarily raw data, but
may be the filtered response from an intermediate library such as
the CAVELib [VRCO 2003]. The process stimulus operation of
the data-stage model includes application specific processing, and
produces application specific data.

2.6 Summary

This section presented the data-stage application model, which
integrates application space, graphics database and traditional
graphics application models into a unified process. The model is
based on the flow of data, comprising a sequence of data stages
and the associated operations that connect them.

3 Data-stage Classification

This section describes a system for classification of clustered
graphics and virtual reality systems. This is called the data-stage
classification system and is based on the data-stage application
model presented above. Section 4 applies the classification system
to several existing works within the field as confirmation of its
applicability.

Within a graphics cluster a single node is designated as the master
node. The data-stage classification system defines the category of
the cluster to be determined by the point in the data-stage
application model at which the master node communicates with
the other nodes in the cluster. For example, a cluster where the
scene definition is transferred between nodes, is classified as a
distributed scene definition cluster. In the as yet undiscovered
case where a clustering system communicates at multiple stages, it
is classified according to the first point of communication.

Figure 5 illustrates a typical cluster configuration: composed of
four nodes, the master node is connected to an input device while
the three display nodes are each connected to a separate output
device. The data-stage classification system is derived by
induction. To illustrate this process, each category is presented in
the following section with reference to its application in the
cluster configuration illustrated in Figure 5.

3.1 Distributed Stimulus

When the cluster in Figure 5 is configured as a distributed
stimulus system, the master node forwards stimulus data to the
display nodes based on readings from the input device. A copy of
the application is run at each of the display nodes, typically with
differences in the viewing parameters for each. A performance
increase can be achieved by pre-processing the stimulus data on
the master node, particularly when the number of display nodes
increases.

3.2 Distributed Application Specific Data

In the case of distributed application specific data, the application
developer must construct the application with the intention of its
execution on a cluster. Part of the application processing is run on
the master node. The remainder of the application execution
results from transmission of data to the display nodes. The
distribution of this data is based on application specific criteria.
The clustering responsibility lies with the application developer
and not the underlying systems libraries.

3.3 Distributed Scene Changes

Distributed scene changes uses a “distributed writes” paradigm to
provide distributed access to the graphics database. This paradigm
is akin to a distributed database system where multiple clients are
performing write operations on a database distributed across
multiple servers. This configuration is suited to an environment
where multiple nodes require write access to the scene definition,
which can arise when used in conjunction with distributed
application specific data.

In the example system given above, the scene definition is stored
at each of the render nodes and any changes are sent to each of
these nodes. If there are multiple nodes writing to the database,
then the render nodes will each perform a conflict resolution
process to keep all databases synchronized. The scene definition is
not stored on the master node.

3.4 Distributed Scene Definition

Distributed scene definition systems support only a single node
with write access to the scene graph. In the example, the master
node maintains and updates the scene-graph and runs the
application. The scene-graph system is responsible for the render
nodes. It ensures that the scene definition is replicated to the
render nodes, which apply the read-only operations of culling and
drawing.

Master

Node

Display

Node
output

Display

Node

Display

Node

Input Device output

output

Figure 5: A typical cluster configuration

The distributed scene definition category is similar to a scene-
graph system running on a multi-pipe computer with the
exception that each pipe is separated from the host processor by a
network connection.

3.5 Distributed Commands

Distributed commands involves the transport of the underlying
immediate mode commands, such as those of OpenGL. These
commands are comprised of:
• state change information, such as lighting and surface

properties;
• geometry information, including vertices and polygons;
• synchronization extensions, such as barriers.

In the example system the scene graph executes on the master
node, producing a stream of immediate mode commands. These
commands are sent to the appropriate render node, where they are
executed as they arrive.

3.6 Distributed Pixels

Distributing pixels refers to the transportation of rendered pixels.
In the example, the master node executes the entire application
and rendering processes. The resultant frame-buffer is then
transmitted to each of the render nodes for display. Distributed
pixel data systems are used where:
• multiple frame-buffers are combined, either depth composited

or tiled; or
• the display device is not attached to the same system that

rendered the pixels.

3.7 Category Characteristics

Each data-stage has varying characteristics. Table 1 lists the
possible categories and examples of both low and high data
requirements. The ideal system for a given project can be imputed
by the characteristics of the application.

Category Example of low data

requirement
Example of high data
requirement

Distributed
Stimulus

Single controller used in a
coherent manner

Visualizations of detailed
real-time data from an
external source

Distributed
Application
specific

Minimal applications such
as walk-throughs

Complex simulations with
many distributed
processes

Distributed
Scene changes

Walk-throughs of static
scenes or scenes with few
changing elements

Dynamic simulations and
visualizations involving
continuous large-scale
change

Distributed
Scene
definition

Contained environments
with limited detail

Complex, highly detailed
and large scenes

Distributed
Commands

Objects with planar
surfaces, few visible
objects

Wide view containing
many detailed objects
with varying surface
properties

Distributed
Pixels

Low screen and color
resolution

High resolution with
auxiliary information
(such as depth)

Table 1: Comparison of Categories within the Data-Stage
Classification System

4 Reclassification of field

This section presents a survey of cluster-based graphics systems
classified according to the data-stage classification system. The
selection of projects is not exhaustive, but it does include
sufficient diversity to be representative project types available
within the field. Freely available projects such as those supplied
under open-source arrangements were given preference, the
reasons for which are that they are easily obtained and allow
thorough inspection of the code to validate the clustering
techniques employed.

4.1 Distributed Stimulus Data

CAVELib

The CAVELib[VRCO 2003] is a set of libraries used as a base for
developing virtual reality applications. These libraries manage
input devices, inter-process communication, and display
parameters. Clustering support for the CAVELib is an extension
of a mechanism initially implemented to overcome an earlier
limitation of SGI Onyx computers, which had a maximum of
three graphics pipelines at the time CAVELib was developed
[Pape 1997]. The mechanism, referred to as a “distributed
CAVE”, was devised to join two such machines via a network for
CAVE systems with four to six sides.

A cluster will typically have more than two machines but the
underlying mechanics is unchanged. The system uses a distributed
stimulus approach where each node of the cluster runs an exact
copy of the application.

VR Juggler (ClusterJuggler)

VR Juggler is a suite of APIs that enable platform independent
virtual reality application development. Cluster support for VR
Juggler is facilitated by the ClusterJuggler API [Allard et. al.
2002]. This component implements a distributed shared memory
system with the aim of reducing programming differences
between clustered and traditional shared memory systems.

ClusterJuggler implements a remote input device system that
allows the raw input data to be processed on the node that is
connected to the device. The resulting data is then shared, thereby
reducing processing cost by only performing the processing once.
ClusterJuggler is classified as a distributed input system.

Syzygy (Master/Slave mode)

Syzygy [Schaeffer & Goudeseune 2003] specifically targets
cluster-based virtual reality. The system supports high-
performance LANs as well as Internet-based configurations. A
significant feature is the ability for nodes to be independently
started and reconfigured at run-time, which allows for dynamic
cluster configurations. Syzygy supports two modes of operation:
master/slave and distributed scene-graph. The application
programmer selects the appropriate mode before developing the
application. Since this selection is done before the programmer
begins to develop the software, Syzygy is best understood as two
packages that are distributed together. This section considers the
master/slave mode.

In a master/slave setup an exact copy of the application runs at
each node. Syzygy is responsible for providing the
synchronization mechanism between the nodes. In this mode the
system is categorized as distributed stimulus system.

4.2 Distributed Application Specific Data

Domain specific applications written specifically for clusters fit
into this category. This paper is concerned with the systems
usable by implementers. Consequently, a survey of this class of
applications is beyond the scope of this paper.

4.3 Distributed Scene Changes Data

This category is currently empty. Support for distributed scene
changes is necessary for more flexible use of distributed
application specific data techniques. Without distributed scene
changes, the application programmer is required to consolidate
any changes at a single node so that they can be written to the
scene graph. It is anticipated that systems currently supporting
distributed scene definition modes of operation will extend to
implement distributed scene changes techniques.

4.4 Distributed Scene Definition Data

OpenSceneGraph

The OpenSceneGraph [Osfield 2003] project provides an open-
source scene-graph. OpenSceneGraph uses multi-threading to be
responsive while providing high rendering performance. As an
extension to the thread safety, clustering support is also included
natively. In the clustering configuration, remote systems are given
synchronized copies of the scene for culling and drawing. The
remote systems are treated as pipelines in accordance with Figure
4. OpenSceneGraph provides read-only access to the graphics
database and is classified as a distributed scene definition system.

OpenSG

The OpenSG [Reiners 2003] project is an open source scene-
graph. Like OpenSceneGraph, OpenSG supports both multi-
threading and clustering. OpenSG also allows thread safe write
access to the scene graph. This feature, however, does not
currently apply to the clustering support. The cluster configuration
retains the traditional topology where only the master node has
write access and the other nodes act as graphics pipelines.
OpenSG is classified as a distributed scene definition data.

Syzygy (Distributed scene-graph mode)

When Syzygy is operating in the distributed scene-graph mode, a
single copy of the application is run on the master node. The other
nodes in the system act as rendering pipelines, where each
rendering a portion of the scene-graph. While a master/slave mode
application may render primitives using OpenGL, applications
that use the distributed scene-graph must use only the scene-graph
API. In its distributed scene-graph mode, Syzygy is classified as a
distributed scene definition system.

4.5 Distributed Commands

WireGL

WireGL [Humphreys 2001] intercepts the OpenGL interface and
distributes the commands over a network for rendering on other
nodes. The node that a command is sent to depends on user-
supplied configuration information. Configurations are:
• Sort-first, where each rendering node is responsible for non-

overlapping screen regions;
• Sort-last full, where each node renders arbitrary primitives

and the entire screen is subsequently depth composited; and

• Sort-last half, which is a hybrid of the other two.

WireGL distributes the immediate mode command stream and is
classified as a distributed command system.

The cluster may be configured to have fewer display nodes than
rendering nodes, which requires that the resulting pixel tiles are
combined for display. This can be facilitated using a hardware
based pixel distribution system. WireGL also supports a software
approach that reads the frame-buffer and transmits the contents to
another node for display. Although this component of WireGL is
a member of the pixel distribution category, the user of WireGL
does not use this component exclusively of the distributed
command system.

AnyGL

AnyGL [Yang et. al. 2002] implements extensions to WireGL for
the visualization of large-scale scenes. These extensions include
higher levels of data distribution and data compression and have
been shown to improve the performance for high-demand systems
[Yang et. al. 2002]. As with WireGL, AnyGL distributes the
immediate mode command stream and is classified as a
distributed command system.

Chromium

Chromium [Humphreys et. al. 2002] presents a stream processing
framework for OpenGL command streams. The OpenGL
commands are submitted to a series of stream processing units,
which each successively transform the command stream
arbitrarily. The default implementation of Chromium provides
stream processing units that replicate the behavior of WireGL.

Chromium defines the interface between stream processing units
to be the OpenGL command interface. When replicating the
behavior of the WireGL software-based pixel distribution system,
the pixel data is translated into a OpenGL DrawPixels command.

Chromium is categorized as a distributed commands system.

4.6 Distributed Pixel Data

Lighting-2

Lighting-2 is a custom built hardware device that uses the Digital
Video Interface (DVI) to scan-out the frame-buffer on a host
system [Stoll et. al. 2001]. It supports a tiled configuration that
combines several frame-buffers as subsections of a larger display.
The advantage of this system is its independence from the host
system, meaning it does not consume bandwidth or processing
power from the host system.

Lighting-2 is a pixel distribution system.

Metabuffer

The Metabuffer [Blanke 2000] is custom built hardware that
similarly uses the DVI to scan out the frame-buffer. The frame-
buffers are depth composited in the same manner as WireGL's
sort-last configurations. The Metabuffer distributes pixel data,
including depth information, and is categorized as a pixel
distribution system.

Sepia-2

The first generation of Sepia provided a hardware image

compositing system that required a software process to read the
frame-buffer from the card. This process placed a significant
requirement on the host processor, which provided the motivation
for Sepia-2 to adopt the DVI strategy that both Metabuffer and
Lighting-2 implement. Sepia-2 provides higher scalability than
Lighting-2 and Metabuffer[Heirich et. al. 2003].

Sepia-2 distributes pixel data including depth information and is
classified as a distributed pixel data system.

4.7 Summary

This section reinforces the applicability of the data-stage
classification system by categorizing several existing works
within the field. Distributed application specific data was skipped
due to its domain specific nature. The distributed scene changes
data category is notably empty, although it is anticipated that this
may change.

Table 2 summarizes the categorization as applied in this section.

Category Projects in this category

Distributed
Stimulus

CAVELib, VR Juggler, Syzygy
(Master/Slave mode)

Distributed
Application specific

N/A

Distributed Scene
changes

Distributed Scene
definition

OpenSceneGraph, OpenSG, Syzygy
(Distributed scene-graph mode)

Distributed
Command

WireGL, AnyGL, Chromium

Distributed Pixel Lightning-2, Metabuffer, Sepia-2

Table 2: Categorization of commodity cluster-based graphics
systems

5 Conclusion

There is a general design for a graphics application, of which
virtual reality systems are specialized class. This design is given
by the data-stage application model shown in Figure 2, which
models the flow of data through a sequence of operations.

The data-stage classification system has been developed to
categorize graphics clustering systems according to the stage of
the data-stage application model at which the first communication
between nodes occurs. The category directly corresponds to the
type of data that is transmitted and the stage the program is in,
which provides an intuitive means of understanding and
comparing systems.

A survey of the field of commodity cluster-based graphics
systems was presented, categorizing projects according to the
data-stage classification system. This survey demonstrated that
while the classification system covers the works within the field,
there is currently a vacancy in the distributed scene changes
category.

6 Future Work

The results listed in Table 1 are based on induction and have not
been empirically verified. An empirical study is beyond the scope
of this paper since its construction is non-trivial. Results for each
clustering implementation and application pair may vary and
should be chosen with care. Empirical study of several projects
would, however, provide greater insight into the limitations of
each of the implementations. A list of suggested measurements is
given in Table 3.

Category Examples of Measurements

Distributed Stimulus MB/s, FPS, bytes/controller

Distributed
Application specific

MB/s, FPS

Distributed Scene
changes

MB/s, FPS, changes/MB, MB/master node,
frames/MB

Distributed Scene
definition

MB/s, FPS, objects/MB, frames/MB

Distributed
Command

MB/s, FPS, Commands/s, Commands/MB,
Commands/frame, frames/MB

Distributed Pixel MB/s, FPS, frame/MB

Table 3 Example Measurements for each Category

The categories of the data-stage classification system are mutually
independent, suggesting that systems from different categories
may be run in parallel to one another, forming a hybrid cluster.
Hybrid clusters run two or more categories of software
simultaneously. Preliminary work on this topic has been carried
out and shows that such a cluster benefits not only from increased
performance and scalability, but also in flexibility and
functionally. The a priori cluster applied various visual effects
through combinations of the distributed command and distributed
scene changes systems.

References

ALLARD, J., GOURANTON, V., LECOINTRE, L., MELIN, E., AND RAFFIN, B.

2002. Net Juggler: Running VR Juggler with Multiple Displays on a
Commodity Component Cluster. In Proceedings of Virtual Reality
2002, IEEE, 273-274.

BLANKE, W. 2000. The Metabuffer: A Scalable Multiresolution

Multidisplay 3-D Graphics System. Technical Report, University of
Texas at Austin.

ELDRIDGE, M. 2001. Designing Graphics Architectures Around Scalability

and Communication. Ph.D. Dissertation, Stanford University.

HEIRICH, A. 2003. A Scalable Image Compositing Architecture With

Generalized Arithmetic Built From Commodity Components. Research
Report, Compaq Computer Corporation.

HOUSTON, M., HUMPHREYS, G., FRANK, P., AND HANRAHAN, P. 2002. Life

with the Stanford/DOE Graphics Cluster. Research Report, Stanford
University.

HUMPHREYS, G., ELDRIDGE, M., BUCK, I., STOLL, G., EVERETT, M., AND

HANRAHAN, P. 2001. WireGL: a Scalable Graphics System for
Clusters. In Proceedings of SIGGRAPH 2001, ACM, 129-140.

HUMPHREYS, G., HOUSTON, M., NG, R., FRANK, R., AHERN, S., KIRCHER,

P., AND KLOSOWS, J. 2002. Chromium: a Stream-Processing
Framework. In Proceedings of SIGGRAPH 2002. ACM, 693-702.

MOLNAR, S., COX, M., ELLSWORTH, D., AND FUCHS, H. 1994. A Sorting

Classification of Parallel Rendering. Computer Graphics and
Applications, 14 (4), 23-32.

OSFIELD, R. 2003. OpenSceneGraph Documentation. Technical

Reference.

PAPE, D. 1997. CAVE Library Features. Invited Talk, Visual

Supercomputing Institute.

REINERS, D. 2003. OpenSG Developer's Guide. Technical Reference.

ROHLF, J., AND HELMAN, J. 1994. IRIS Performer: A High Performance

Multiprocessing Toolkit for Real-Time 3D Graphics. In Proceedings of
SIGGRAPH 1994, ACM, 381-394.

SAMANTA, R., FUNKHOUSER, T., LI, K., AND SINGH, J. 2000. Hybrid Sort-

First and Sort-Last Parallel Rendering with a Cluster of PCs. Research
Report, Princeton University.

SCHAEFFER, B., AND GOUDESEUNE, C. 2003. Syzygy: Native PC Cluster

VR. In Proceedings of Virtual Reality 2003, IEEE, 15-22.

SGI, INC. 2001. OpenGL Performer Programmer's Guide. Technical

Reference

STOLL, G., ELDRIDGE, M., PATTERSON, D., WEBB, A., BERMAN, S.,

LEVEY, R., AND CAYWOO, C. 2001. Lighting-2: a High-Performance
Display Subsystem for PC Clusters. In Proceedings of SIGGRAPH
2001. ACM, 141-148.

SUTHERLAND, I. 1965. The Ultimate Display. In Proceedings of the Int.

Fed. of Information Processing Congress, vol 2, 506–508.

VRCO, INC. 2003. CAVELib User's Manual. Technical Reference.

WHITMAN, S. 1992. Multiprocessor Methods for Computer Graphics

Rendering. Jones and Bartlett Publishers.

YANG, J., SHI, J., JIN, Z., AND ZHANG, H. 2002. Design and

Implementation of a Large-Scale Hybrid Distributed Graphics System.
In Proceedings of the Fourth Eurographics Workshop on Parallel
Graphics and Visualization. ACM, 39-49.

