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Abstract 

Commodity clusters offer the ability to deliver higher 
performance computer graphics at lower prices than traditional 
graphics supercomputers. Immersive virtual reality systems 
demand notoriously high computational requirements to deliver 
adequate real-time graphics, leading to the emergence of 
commodity clusters for immersive virtual reality. Such clusters 
deliver the graphics power needed by leveraging the combined 
power of several computers to meet the demands of real-time 
interactive immersive computer graphics. 
 
However, the field of commodity cluster-based virtual reality is 
still in early stages of development and the field is currently ad-
hoc in nature and lacks order. There is no accepted means for 
comparing approaches and implementers are left with instinctual 
or trial-and-error means for selecting an approach. 
 
This paper provides a classification system that facilitates 
understanding not only of the nature of different clustering 
systems but also the interrelations between them. The system is 
built from a new model for generalized computer graphics 
applications, which is based on the flow of data through a 
sequence of operations over the entire context of the application. 
Prior models and classification systems have been too focused in 
context and application whereas the system described here 
provides a unified means for comparison of works within the 
field. 
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1 Introduction 

Whereas traditional displays present a window to another world 
[Sutherland 1965], an immersive display seeks to impart a feeling 
of being inside this other world. This is achieved through 
interactive “true to scale” 3D graphics encompassing as much of 
the human visual system as possible. Rendering graphics suitable 
for the demands of virtual reality applications, using a computer 
cluster built with commodity hardware, is the topic of this paper. 
 
Stanford University, in conjunction with the U.S. Department of 
Energy [Houston et. al. 2002], created one of the first commodity-
based graphics clusters in 1999. This cluster was composed of 32 
nodes and ran the WireGL [Humphreys et. al. 2001] and 
Chromium [Humphreys et. al. 2002] software suites. Being an 
early adopter, several issues were encountered and a white paper 
was published that described hardware limitations with the 
primary requirement being better throughput on commodity bus 
systems [Houston et. al. 2002]. 
 
Samanta et. al. provide several reasons for using a commodity 
based graphics cluster [Samanta et. al. 2000]. A summary of 
reasons identified in [Samanta et. al. 2000] is: 
• Lower-cost: a favorable price-to-performance ratio when 

compared to traditional high-end, custom-designed rendering 
systems. 

• Technology tracking: the performance for commodity 
components has been improving more rapidly than custom-
designed, high-end hardware. 

• Modularity & flexibility: networking protocols provide for 
easier reconfiguration of rendering systems as well as 
supporting heterogeneous compositions. 

• Scalable capacity: Since each PC in a cluster has its own CPU, 
memory, and AGP bus, scalability is better than a traditional 
system where the memory and I/O subsystem are shared by all 
graphics pipelines. 

 
Existing computer graphics systems have been shown to follow a 
general order [Whitman 1992, Eldridge 2001]. The application 
supplies a series of vertex data, which is transformed into viewing 
space data and clipped against the viewing volume (Geometry 
Processing). The transformed vertices are then rasterized, a 
process that converts 3D polygons into image space information. 
Finally, shading parameters are incorporated to produce the 
resulting pixels (Pixel-level Processing). In the case of an 
interactive application, these pixels are displayed to the user. 
 
Molnar et. al. describe the sorting classification system for 
parallel computer graphics, which is based on “where the sort 
from object coordinates to screen coordinates occurs” [Molnar et. 
al. 1994] (pp. 23). As shown in Figure 1, this can occur at one of 
three stages, producing three categories: sort-first, sort-middle and 
sort-last. The “Geometry Processing” operation refers to object 
space operations prior to rasterization, whereas the “Pixel-level 
processing” occurs in image space and deals with individual 
pixels. 
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Humphreys et. al. point out, with reference to commodity 
hardware, that “there are only two points in the graphics pipeline 
where we can introduce communication: immediately after the 
application stage, and immediately before the final display stage”  
[Humphreys et. al. 2001] (pp. 130). Sort-middle systems require 
access to intermittent data between these stages and are therefore 
not used in commodity cluster-based systems. The remaining two 
categories produce only coarse separation between object space 
and image space sorting methods. 
 
This paper provides finer grained classification than the sorting 
classification system through development of the data-stage 
classification system. In addition, the categories directly reflect 
the nature of the data that is transmitted between the nodes of a 
cluster. This provides an intuitive basis for comparison between 
categories. To aid the exposition of this classification system, 
section 2 provides a breakdown of the entire graphics application 
process into a series of stages, each of which are related to 
existing models. Section 3 introduces the data-stage classification 
system, a categorization based on the stage at which a virtual 
reality system enters into parallelism. While section 3 provides a 
discussion of characteristics per category, it remains academic in 
its treatment of the system and therefore application of the 
classification system is deferred until section 4. Section 4 provides 
a reclassification of major works within the field as confirmation 
of the practical applicability of the data-stage classification 
system. 
 
 
2 Data-stage Application Model 

In this paper an abstract model of the complete graphics 
application and rendering process, called the data-stage 
application model, is developed to define the flow of data. This 
model will be used as a basis for the categorization of cluster 
based systems. 
 
In the introduction it was established that computer graphics 
systems follow a general order. This order is represented in the 
literature using abstract models of the application, such as the 
OpenGL pipeline model [Eldrige 2001]. Previously these 
abstractions have been limited to the scope of the particular 
graphics rendering process. While this is of use to the developers 
of graphics rendering systems, a higher-level integrated model is 
needed to provide an understanding of the entire process. 
 
 

In this paper several prior models are integrated into a unified 
system, called the data-stage application model, illustrated in 
Figure 2. This model considers the points of communication 
between interconnected systems libraries. A series of data stages 
are connected by a succession of operations. Each operation 
accepts data from the previous stage and produces the data for the 
next stage. The progression is linear and of a fixed order. The data 
stages are: 
1. Stimulus data is received by the application from external 

sources such as user input; 
2. Stimulus data is processed and produces application specific 

data; 
3. Intermediate data is processed, based on application specific 

criteria, and produces a series of scene changes; 
4. Scene changes are applied to the scene definition in the 

graphics database through an update operation; 
5. Scene definition is processed by a traverse/cull operation that 

produces graphics rendering commands; 
6. Commands are executed, resulting in the final pixel data. 

 
Virtual reality applications are a class of interactive graphics 
applications and therefore conform to the model described. 
 

2.1 The Standard Graphics Pipeline 

Traditionally, the graphics application is described using a 
pipeline model [Eldridge 2001] [Whitman 1992], an example of 
which is given in Figure 3 (Adapted from [Eldridge 2001, pp. 
14]). Abstractly, geometry is transformed into fragments and these 
fragments are subsequently converted into pixels. In Figure 3, the 
application is shown to be a source of data, in the form of 
commands, indicating the starting point in the pipeline. The 
operations within the shaded area between “application” and 
“display” are performed by the graphics accelerator libraries. 
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Figure 2: The data-stage application model 
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Figure 1: The sorting classification system. 



 
A limitation of using commodity hardware architecture is the  
inability to access intermediate data within the graphics 
accelerator[Humphreys et. al. 2001]. For this reason the portion of 
the graphics pipeline that is executed by the graphics accelerator, 
labeled “execute” in Figure 2, is considered a single unit in the 
data-stage application model. This corresponds with the shaded 
area in Figure 3, taking series of “commands” as input and 
producing “Pixels”, which correspond to the “samples” data in 
Figure 3. The pixel data consists of colour, translucency and depth 
information. 
 
The entire set of commands must be re-transmitted for every 
frame, since they are discarded once executed. A typical graphics 
application exhibits a degree of frame-to-frame coherency, that is, 
the data for a frame changes only incrementally from the previous 
frame. Optimizations result from exploiting this coherency 
requiring a graphics database to store the previous frame. 
 

2.2 Graphics Databases 

In contrast to the immediate mode interface, a retained mode 
interface retains the scene definition in a database. This database 
is processed every frame, resulting in the necessary immediate 
mode commands. Such a database has knowledge of the entire 
scene and builds on a variety of techniques including spatial 
relationships to improve performance. Graphics databases, of 
which Performer [Rohlf & Helman 1994] is an example, are more 
commonly referred to as scene-graphs because they describe the 
scene using a graph data structure. 
 
Performer has been selected as an example of a retained mode 
interface for the purposes of this paper since it is widely used in 
the graphics arena. A graphical representation of the Performer 
system is shown in Figure 4 (reproduced from [SGI 2001]). 
Performer supports parallelism because it was designed to run on 
graphics supercomputers that have multiple graphics accelerators.  
These systems are known as “multi-pipe” systems, referring to 
each graphics accelerator as a “pipe” or “pipeline”. As a 
consequence, the model in Figure 4 includes parallelism at the 
pipeline level: the scene is partitioned across multiple pipelines by 
the scene-graph. 
 
 

 
 

 
Figure 4 shows the application providing the scene definition, 
which is processed by each pipeline. Each pipeline applies a series 
of stages to the data, resulting in frame-buffer data. The purpose 
of the “Traversal/Cull” stage is to limit the scene data to only the 
relevant, ordered information enabling efficiency in rendering. 
The purpose of the “Draw” stage is to produce the actual pixel 
data. 
 
The data-stage application model integrates this system through 
the “Traversal/Cull” operation of Figure 2. This operation takes a 
scene definition as input and produces a series of commands, 
which corresponds to the “Scene” data in Figure 4. Note that the 
“Draw” operation in Figure 4 represents the same process as the 
“Execute” operation of the data-stage model in Figure 2. 
 
Although entire applications are developed using an immediate 
mode interface, such as OpenGL, these applications are not 
without a graphics database. In this class of applications, the 
application programmer will maintain their own internal database 
representation. 
 

2.3 Interactive Graphics and Databases 

The “Traversal/Cull” operation in the model considers only the 
scene definition as supplied by the application, however, 
interactive graphics applications rely on constantly changing 
computer imagery. This change is achieved through an “Update” 
traversal of the scene graph, which is represented by the arrow 
connecting the “Application” to the “Scene” data in Figure 4. This 
process applies a set of scene changes to the data, altering the 
scene data and consequently the resultant images. 
 
Since the update traversal is a data altering event it must be thread 
safe. Several scene graphs [Reiners 2003, Osfield 2003] are multi-
threaded for performance reasons and provide synchronized 
access to the scene data. 
 

2.4 Application Space 

The discussion thus far has considered the underlying libraries 
used to generate computer graphics, each of which are general in 
purpose. In practice these are bound to an application written for a 

Figure 4: Graphics database model with parallel pipelines [in SGI 
2001] 
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Figure 3: The traditional pipeline model [Eldridge 2001] 



specific purpose, such as a flight-simulator. The part of the 
program that contains the application specific code is said to exist 
in application space. 
 
The application space code is responsible for the calculation of 
scene changes, which result from application specific processing 
and will vary according to the application domain. In the data-
stage application model these changes are the result of a “process 
frame” operation, taking “application specific” data as input and 
producing “scene changes” as output. Application specific data is 
arbitrarily defined by the application programmer and the 
modeling of the processing of this data is divided into two 
subsections: 
• scene change calculations, which are represented by the 

“process frame” operation; and 
• stimulus response, which is represented by the “process 

stimulus” operation. 

2.5 Responding to stimulus 

The “application specific” data is produced in response to some 
external stimulus, such as user input events, external data feeds, 
and timer events. The “stimulus” is not necessarily raw data, but 
may be the filtered response from an intermediate library such as  
the CAVELib [VRCO 2003]. The process stimulus operation of 
the data-stage model includes application specific processing, and 
produces application specific data. 

2.6 Summary 

This section presented the data-stage application model, which 
integrates application space, graphics database and traditional 
graphics application models into a unified process. The model is 
based on the flow of data, comprising a sequence of data stages 
and the associated operations that connect them. 
 
 
3 Data-stage Classification 

This section describes a system for classification of clustered 
graphics and virtual reality systems. This is called the data-stage 
classification system and is based on the data-stage application 
model presented above. Section 4 applies the classification system 
to several existing works within the field as confirmation of its 
applicability. 
 
Within a graphics cluster a single node is designated as the master 
node. The data-stage classification system defines the category of 
the cluster to be determined by the point in the data-stage 
application model at which the master node communicates with 
the other nodes in the cluster. For example, a cluster where the 
scene definition is transferred between nodes, is classified as a 
distributed scene definition cluster. In the as yet undiscovered 
case where a clustering system communicates at multiple stages, it 
is classified according to the first point of communication. 
 
Figure 5 illustrates a typical cluster configuration: composed of 
four nodes, the master node is connected to an input device while 
the three display nodes are each connected to a separate output 
device. The data-stage classification system is derived by 
induction. To illustrate this process, each category is presented in 
the following section with reference to its application in the 
cluster configuration illustrated in Figure 5. 
 

 
 

3.1 Distributed Stimulus 

When the cluster in Figure 5 is configured as a distributed 
stimulus system, the master node forwards stimulus data to the 
display nodes based on readings from the input device. A copy of 
the application is run at each of the display nodes, typically with 
differences in the viewing parameters for each. A performance 
increase can be achieved by pre-processing the stimulus data on 
the master node, particularly when the number of display nodes 
increases. 

3.2 Distributed Application Specific Data 

In the case of distributed application specific data, the application 
developer must construct the application with the intention of its 
execution on a cluster. Part of the application processing is run on 
the master node. The remainder of the application execution 
results from transmission of data to the display nodes. The 
distribution of this data is based on application specific criteria. 
The clustering responsibility lies with the application developer 
and not the underlying systems libraries. 

3.3 Distributed Scene Changes 

Distributed scene changes uses a “distributed writes” paradigm to 
provide distributed access to the graphics database. This paradigm 
is akin to a distributed database system where multiple clients are 
performing write operations on a database distributed across 
multiple servers. This configuration is suited to an environment 
where multiple nodes require write access to the scene definition, 
which can arise when used in conjunction with distributed 
application specific data. 
 
In the example system given above, the scene definition is stored 
at each of the render nodes and any changes are sent to each of 
these nodes. If there are multiple nodes writing to the database, 
then the render nodes will each perform a conflict resolution 
process to keep all databases synchronized. The scene definition is 
not stored on the master node. 

3.4 Distributed Scene Definition 

Distributed scene definition systems support only a single node 
with write access to the scene graph. In the example, the master 
node maintains and updates the scene-graph and runs the 
application. The scene-graph system is responsible for the render 
nodes. It ensures that the scene definition is replicated to the 
render nodes, which apply the read-only operations of culling and 
drawing. 
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Figure 5: A typical cluster configuration 



The distributed scene definition category is similar to a scene-
graph system running on a multi-pipe computer with the 
exception that each pipe is separated from the host processor by a 
network connection. 

3.5 Distributed Commands 

Distributed commands involves the transport of the underlying 
immediate mode commands, such as those of OpenGL. These 
commands are comprised of: 
• state change information, such as lighting and surface 

properties; 
• geometry information, including vertices and polygons; 
• synchronization extensions, such as barriers. 
 
In the example system the scene graph executes on the master 
node, producing a stream of immediate mode commands. These 
commands are sent to the appropriate render node, where they are 
executed as they arrive. 

3.6 Distributed Pixels 

Distributing pixels refers to the transportation of rendered pixels. 
In the example, the master node executes the entire application 
and rendering processes. The resultant frame-buffer is then 
transmitted to each of the render nodes for display. Distributed 
pixel data systems are used where: 
• multiple frame-buffers are combined, either depth composited 

or tiled; or 
• the display device is not attached to the same system that 

rendered the pixels. 

3.7 Category Characteristics 

Each data-stage has varying characteristics. Table 1 lists the 
possible categories and examples of both low and high data 
requirements. The ideal system for a given project can be imputed 
by the characteristics of the application. 
 
Category Example of low data 

requirement 
Example of high data 
requirement 

Distributed 
Stimulus 

Single controller used in a 
coherent manner 

Visualizations of detailed 
real-time data from an 
external source 

Distributed 
Application 
specific 

Minimal applications such 
as walk-throughs 

Complex simulations with 
many distributed 
processes 

Distributed 
Scene changes 

Walk-throughs of static 
scenes or scenes with few 
changing elements 

Dynamic simulations and 
visualizations involving 
continuous large-scale 
change 

Distributed 
Scene 
definition 

Contained environments 
with limited detail 

Complex, highly detailed 
and large scenes 

Distributed 
Commands 

Objects with planar 
surfaces, few visible 
objects 

Wide view containing 
many detailed objects 
with varying surface 
properties 

Distributed 
Pixels 

Low screen and color 
resolution 

High resolution with 
auxiliary information 
(such as depth) 

Table 1: Comparison of Categories within the Data-Stage 
Classification System 

4 Reclassification of field 

This section presents a survey of cluster-based graphics systems 
classified according to the data-stage classification system. The 
selection of projects is not exhaustive, but it does include 
sufficient diversity to be representative project types available 
within the field. Freely available projects such as those supplied 
under open-source arrangements were given preference, the 
reasons for which are that they are easily obtained and allow 
thorough inspection of the code to validate the clustering 
techniques employed. 

4.1 Distributed Stimulus Data 

CAVELib 

The CAVELib[VRCO 2003] is a set of libraries used as a base for 
developing virtual reality applications. These libraries manage 
input devices, inter-process communication, and display 
parameters. Clustering support for the CAVELib is an extension 
of a mechanism initially implemented to overcome an earlier 
limitation of SGI Onyx computers, which had a maximum of 
three graphics pipelines at the time CAVELib was developed 
[Pape 1997]. The mechanism, referred to as a “distributed 
CAVE”, was devised to join two such machines via a network for 
CAVE systems with four to six sides. 
 
A cluster will typically have more than two machines but the 
underlying mechanics is unchanged. The system uses a distributed 
stimulus approach where each node of the cluster runs an exact 
copy of the application. 

VR Juggler (ClusterJuggler) 

VR Juggler is a suite of APIs that enable platform independent 
virtual reality application development. Cluster support for VR 
Juggler is facilitated by the ClusterJuggler API [Allard et. al. 
2002]. This component implements a distributed shared memory 
system with the aim of reducing programming differences 
between clustered and traditional shared memory systems. 
 
ClusterJuggler implements a remote input device system that 
allows the raw input data to be processed on the node that is 
connected to the device. The resulting data is then shared, thereby 
reducing processing cost by only performing the processing once. 
ClusterJuggler is classified as a distributed input system. 

Syzygy (Master/Slave mode) 

Syzygy [Schaeffer & Goudeseune 2003] specifically targets 
cluster-based virtual reality. The system supports high-
performance LANs as well as Internet-based configurations. A 
significant feature is the ability for nodes to be independently 
started and reconfigured at run-time, which allows for dynamic 
cluster configurations. Syzygy supports two modes of operation: 
master/slave and distributed scene-graph. The application 
programmer selects the appropriate mode before developing the 
application. Since this selection is done before the programmer 
begins to develop the software, Syzygy is best understood as two 
packages that are distributed together. This section considers the 
master/slave mode. 
 
In a master/slave setup an exact copy of the application runs at 
each node. Syzygy is responsible for providing the 
synchronization mechanism between the nodes. In this mode the 
system is categorized as distributed stimulus system. 



4.2 Distributed Application Specific Data 

Domain specific applications written specifically for clusters fit 
into this category. This paper is concerned with the systems 
usable by implementers. Consequently, a survey of this class of 
applications is beyond the scope of this paper. 

4.3 Distributed Scene Changes Data 

This category is currently empty. Support for distributed scene 
changes is necessary for more flexible use of distributed 
application specific data techniques. Without distributed scene 
changes, the application programmer is required to consolidate 
any changes at a single node so that they can be written to the 
scene graph. It is anticipated that systems currently supporting 
distributed scene definition modes of operation will extend to 
implement distributed scene changes techniques. 

4.4 Distributed Scene Definition Data 

OpenSceneGraph 

The OpenSceneGraph [Osfield 2003] project provides an open-
source scene-graph. OpenSceneGraph uses multi-threading to be 
responsive while providing high rendering performance. As an 
extension to the thread safety, clustering support is also included 
natively. In the clustering configuration, remote systems are given 
synchronized copies of the scene for culling and drawing. The 
remote systems are treated as pipelines in accordance with Figure 
4. OpenSceneGraph provides read-only access to the graphics 
database and is classified as a distributed scene definition system. 

OpenSG 

The OpenSG [Reiners 2003] project is an open source scene-
graph. Like OpenSceneGraph, OpenSG supports both multi-
threading and clustering. OpenSG also allows thread safe write 
access to the scene graph. This feature, however, does not 
currently apply to the clustering support. The cluster configuration 
retains the traditional topology where only the master node has 
write access and the other nodes act as graphics pipelines. 
OpenSG is classified as a distributed scene definition data. 

Syzygy (Distributed scene-graph mode) 

When Syzygy is operating in the distributed scene-graph mode, a 
single copy of the application is run on the master node. The other 
nodes in the system act as rendering pipelines, where each 
rendering a portion of the scene-graph. While a master/slave mode 
application may render primitives using OpenGL, applications 
that use the distributed scene-graph must use only the scene-graph 
API. In its distributed scene-graph mode, Syzygy is classified as a 
distributed scene definition system. 

4.5 Distributed Commands 

WireGL 

WireGL [Humphreys 2001] intercepts the OpenGL interface and 
distributes the commands over a network for rendering on other 
nodes. The node that a command is sent to depends on user-
supplied configuration information. Configurations are: 
• Sort-first, where each rendering node is responsible for non-

overlapping screen regions; 
• Sort-last full, where each node renders arbitrary primitives 

and the entire screen is subsequently depth composited; and 

• Sort-last half, which is a hybrid of the other two. 
 
WireGL distributes the immediate mode command stream and is 
classified as a distributed command system. 
 
The cluster may be configured to have fewer display nodes than 
rendering nodes, which requires that the resulting pixel tiles are 
combined for display. This can be facilitated using a hardware 
based pixel distribution system. WireGL also supports a software 
approach that reads the frame-buffer and transmits the contents to 
another node for display. Although this component of WireGL is 
a member of the pixel distribution category, the user of WireGL 
does not use this component exclusively of the distributed 
command system. 

AnyGL 

AnyGL [Yang et. al. 2002] implements extensions to WireGL for 
the visualization of large-scale scenes. These extensions include 
higher levels of data distribution and data compression and have 
been shown to improve the performance for high-demand systems 
[Yang et. al. 2002]. As with WireGL, AnyGL distributes the 
immediate mode command stream and is classified as a 
distributed command system. 

Chromium 

Chromium [Humphreys et. al. 2002] presents a stream processing 
framework for OpenGL command streams. The OpenGL 
commands are submitted to a series of stream processing units, 
which each successively transform the command stream 
arbitrarily. The default implementation of Chromium provides 
stream processing units that replicate the behavior of WireGL. 
 
Chromium defines the interface between stream processing units 
to be the OpenGL command interface. When replicating the 
behavior of the WireGL software-based pixel distribution system, 
the pixel data is translated into a OpenGL DrawPixels command. 
 
Chromium is categorized as a distributed commands system. 

4.6 Distributed Pixel Data 

Lighting-2 

Lighting-2 is a custom built hardware device that uses the Digital 
Video Interface (DVI) to scan-out the frame-buffer on a host 
system [Stoll et. al. 2001]. It supports a tiled configuration that 
combines several frame-buffers as subsections of a larger display. 
The advantage of this system is its independence from the host 
system, meaning it does not consume bandwidth or processing 
power from the host system. 
 
Lighting-2 is a pixel distribution system. 

Metabuffer 

The Metabuffer [Blanke 2000] is custom built hardware that 
similarly uses the DVI to scan out the frame-buffer. The frame-
buffers are depth composited in the same manner as WireGL's 
sort-last configurations. The Metabuffer distributes pixel data, 
including depth information, and is categorized as a pixel 
distribution system. 

Sepia-2 

The first generation of Sepia provided a hardware image 



compositing system that required a software process to read the 
frame-buffer from the card. This process placed a significant 
requirement on the host processor, which provided the motivation 
for Sepia-2 to adopt the DVI strategy that both Metabuffer and 
Lighting-2 implement. Sepia-2 provides higher scalability than 
Lighting-2 and Metabuffer[Heirich et. al. 2003]. 
 
Sepia-2 distributes pixel data including depth information and is 
classified as a distributed pixel data system. 

4.7 Summary 

This section reinforces the applicability of the data-stage 
classification system by categorizing several existing works 
within the field. Distributed application specific data was skipped 
due to its domain specific nature. The distributed scene changes 
data category is notably empty, although it is anticipated that this 
may change. 
 
Table 2 summarizes the categorization as applied in this section. 
 

Category Projects in this category 

Distributed 
Stimulus 

CAVELib, VR Juggler, Syzygy 
(Master/Slave mode) 

Distributed 
Application specific 

N/A 

Distributed Scene 
changes 

 

Distributed Scene 
definition 

OpenSceneGraph, OpenSG, Syzygy 
(Distributed scene-graph mode) 

Distributed 
Command 

WireGL, AnyGL, Chromium 

Distributed Pixel Lightning-2, Metabuffer, Sepia-2 

Table 2: Categorization of commodity cluster-based graphics 
systems 

 
 
5 Conclusion 

There is a general design for a graphics application, of which 
virtual reality systems are specialized class. This design is given 
by the data-stage application model shown in Figure 2, which 
models the flow of data through a sequence of operations. 
 
The data-stage classification system has been developed to 
categorize graphics clustering systems according to the stage of 
the data-stage application model at which the first communication 
between nodes occurs. The category directly corresponds to the 
type of data that is transmitted and the stage the program is in, 
which provides an intuitive means of understanding and 
comparing systems. 
 
A survey of the field of commodity cluster-based graphics 
systems was presented, categorizing projects according to the 
data-stage classification system. This survey demonstrated that 
while the classification system covers the works within the field, 
there is currently a vacancy in the distributed scene changes 
category. 

6 Future Work 

The results listed in Table 1 are based on induction and have not 
been empirically verified. An empirical study is beyond the scope 
of this paper since its construction is non-trivial. Results for each 
clustering implementation and application pair may vary and 
should be chosen with care. Empirical study of several projects 
would, however, provide greater insight into the limitations of 
each of the implementations. A list of suggested measurements is 
given in Table 3.  
 

Category Examples of Measurements 

Distributed Stimulus MB/s, FPS, bytes/controller 

Distributed 
Application specific 

MB/s, FPS 

Distributed Scene 
changes 

MB/s, FPS, changes/MB, MB/master node, 
frames/MB 

Distributed Scene 
definition 

MB/s, FPS, objects/MB, frames/MB 

Distributed 
Command 

MB/s, FPS, Commands/s, Commands/MB, 
Commands/frame, frames/MB 

Distributed Pixel MB/s, FPS, frame/MB 

Table 3 Example Measurements for each Category 
 
 
The categories of the data-stage classification system are mutually 
independent, suggesting that systems from different categories 
may be run in parallel to one another, forming a hybrid cluster. 
Hybrid clusters run two or more categories of software 
simultaneously. Preliminary work on this topic has been carried 
out and shows that such a cluster benefits not only from increased 
performance and scalability, but also in flexibility and 
functionally. The a priori cluster applied various visual effects 
through combinations of the distributed command and distributed 
scene changes systems. 
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