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Abstract—An autonomous Internet Protocol (IP) camera based
object tracking and behaviour identification system, capable
of running in real-time on an embedded system with limited
memory and processing power is presented in this paper. The
main contribution of this work is the integration of processor
intensive image processing algorithms on an embedded platform
capable of running at real-time for monitoring the behaviour
of pedestrians. The Algorithm Based Object Recognition and
Tracking (ABORAT) system architecture presented here was
developed on an Intel PXA270-based development board clocked
at 520 MHz. The platform was connected to a commercial
stationary IP-based camera in a remote monitoring station for
intelligent image processing. The system is capable of detecting
moving objects and their shadows in a complex environment with
varying lighting intensity and moving foliage. Objects moving
close to each other are also detected to extract their trajectories
which are then fed into an unsupervised neural network for
autonomous classification. The novel intelligent video system
presented is also capable of performing simple analytic functions
such as tracking and generating alerts when objects enter/leave
regions or cross tripwires superimposed on live video by the
operator.

I. INTRODUCTION

Video surveillance systems have since the 1970s consisted

of National Television System Committee (NTSC) or Phase

Alternating Line (PAL) analogue cameras connected over a

coaxial cable network to VHS tape recorders or digital video

recorders (DVRs) in a monitoring station. Such surveillance

systems are often comprised of black and white, poor quality

analogue videos with little or no signal processing, recorded

on the same cassette. Most of the recorded images are of

insufficient quality to hold as evidence in a law court. It is

also expensive to have human operators monitoring real-time

camera footage 24/7. The effectiveness and response of the

operator is largely dependant on his/her vigilance rather than

the technological capabilities of the surveillance system [1].

Events and activities can be missed, should the concentration

level of the operator drop; attentional levels drop significantly

after 15 minutes of inactivity in the scene.

The advent of high resolution digital IP surveillance cam-

eras, connected via the internet to a remote security monitoring

station, enables a new approach that draws attention to events

identified in the camera scene. IP (Internet Protocol) cameras

coupled with the introduction of video content analysis or

video analytics promise to extend the reach of video beyond

security in a local area into a wide area surveillance system.

Such automation and wider coverage will significantly reduce

the drudgery workload on law enforcement agencies, thus

making it possible for them to concentrate on the thing they

do best: responding to suspicious events [2].

The Algorithm Based Object Recognition and Tracking

(ABORAT) system presented in this paper is a vision-based

intelligent surveillance system, capable of analyzing video

streams. These streams are continuously monitored in specific

situations for several days (even weeks), learning to charac-

terize the actions taking place there. This system also infers

whether events present a threat that should be signalled to

a human operator. However, the implementation of advanced

computer vision algorithms on embedded systems with battery

life is a non-trivial task as such platforms have limited com-

puting power and memory [3]. The concept of the ABORAT

system is to apply intelligent vision algorithms on images

acquired at the system’s edge (the camera), thus reducing the

workload of the processor at the monitoring station and the

network traffic for transferring high resolution images to the

monitoring station.

II. RELATED SYSTEMS

Increasing the number of video sources or channels for a

single human observer to monitor and identify critical situation

is becoming a norm in today’s surveillance systems. This not

only increases the burden on the human observer, but implies

that critical situations in the scene are easily missed. A class of

new technologies referred to as Intelligent Video Surveillance

(IVS) makes it possible for computers to monitor video feeds

in real-time. The system signals the human operator when an

event which poses a threat develops [2]. An IVS systems

should be able to keep track of objects in a camera view

(identity tracking), and determine where they are (location

tracking) and what they are doing in the scene (activity

tracking) [4].
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There are a number of commercially available IVS systems,

in addition to those in the research literature. ActivEye [5],

offers an Intelligent Video Management (IVM) software for

security, traffic management and business operations. The sys-

tem is capable of detecting up to 35 events; which include the

differentiation between humans, automobiles and environmen-

tal noise in real-time under varying weather conditions. The

system also promises the ability to detect normal behaviour

patterns of objects, even though details have not been given.

Perceptrak, video analytics software from Cernium [6]

provides behaviour-recognition for the security industry. The

intelligent video surveillance technology is capable of identi-

fying up to 16 events, which includes the detection of people,

vehicle and other objects. Similar to ActivEye, it also offers

an advanced recording facility as well as issuing automatic

alerts when specific threats are identified.

VideoIQ from GE Security [7] also offers an intrusion

detecting system capable of accurately detection human ac-

tions. FenceWATCH, from Guardian Solutions [8] is also an

intelligent surveillance system capable of learning normal

and abnormal activities within the camera’s field of view.

Other commercially available software-based video analytic

solutions includes Nextiva Analytics [9], SmartCatch [10],

VisionAlert [11], and Smart IQ [12], capable of detecting and

counting people/vehicles, performing behavioural analysis and

tracking as well as generating alerts.

A machine vision system with an image sensor alongside

an integrated circuit with some computational power for

image processing is referred to as a smart camera [13]. A

commercially available smart camera solution for security

surveillance is presented by ObjectVideo [14] in the form of

software ObjectVideo VEW running on a DSP-based hardware

architecture. The ObjectVideo OnBoard is used in conjunction

with the VEW to pro-actively analyze video and produce alerts

and other actionable information on the basis of user-defined

rules. The intelligence offered by the ObjectVideo systems is

similar to the commercially available Video Motion Anomaly

Detection (VMAD) [15], capable of learning normal scene

behaviour. Trigger [16], a product from Mate-Media Access

technologies has a processor placed next/near to the video

camera for intelligent video analysis to spot and pass to the

central control only events that require the attention of the

operator.

In this paper, we present a smart camera system (ABORAT),

with an intelligent processing architecture (ABORGuard)

Video Processing Unit (VPU) placed next to an IP camera for

processing real-time images, which will then generate and send

alerts to the control/monitoring station (ABORGuard Server).

The ABORAT system detects and tracks moving objects such

as persons/automobiles, collects their trajectories and classifies

the behaviour using an autonomous behavioural identifier.

For such an “Event-Based” IVS, the network bandwidth is

significantly reduced, as images are only transmitted when

useful to the operator. The system also records live video

footage for review purposes.

The rest of this paper is organised as follows. Section III
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Fig. 1. The distributed nature of the ABORAT system, showing four different
IP cameras, each with it’s embedded processing unit capable of processing
the video and identifying events to be transmitted.

gives details of the ABORAT system architecture and platform

integration. Section IV gives details of the image processing

and algorithmic design of the ABORAT system; Section V

presents experimental results. Conclusions and proposals for

future work are presented in Section VI.

III. SYSTEMS ARCHITECTURE

There are two broad classes of IVS: centralized and dis-

tributed [17]. Centralized IVS processes video and other

sensor information on a central server. Distributed IVS have

“intelligent” cameras/sensors, capable of processing the video

and extracting relevant information to a server. The ABORAT

systems is an example of a distributed IVS, which processes

sensor data as they are collected. The ABORAT system

comprises of multiple sensor units, each associated with a

video processor unit (VPU), a communication unit and a

monitoring unit. The various components, their functions and

the requirements for video surveillance are presented in this

section.

A. Overview

There is a proliferatino of surveillance cameras around the

world, and of recorded video footage from these, but very

few cameras get watched or videos reviewed due to cost

considerations. As a result, events and activities are missed,

and suspicious behavior remains unnoticed. The ABORAT

system consists of a distributed network of fully bi-directional

IP cameras capable of communicating with a server via the

VPU placed “next to” each camera to perform tasks, such

as motion detection, object tracking and behavior detection.

The system is based on a distributed client-server architecture

offering true convergence of surveillance over local or wide

area networks (LANs/WANs). As shown in Figure 1, the

system is capable of dealing with large numbers of cameras

from different camera manufacturers, distributed over a very

large, wide network, making it possible for authorized users

to access real-time video data at any time.

The ABORAT hardware platform uses an image sensor as

the primary source of input, and hence appropriate image

quality is essential to the performance of the entire system.
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Fig. 2. Block Diagram of ABORAT System

A distributed image sensor with high dynamic range and

little blur, capable of transmitting over an internet protocol

has been chosen. The digital image from the IP camera is

uncompressed by a dedicated Digital Signal Processor (DSP)

embedded in the VPU for image processing. The VPU also has

a general purpose microprocessor running at a maximum speed

of 520MHz for the intelligent image processing. Generated

alerts are transmitted over internet to the monitoring unit. The

monitoring unit has Network Video Recorder (NVR) software,

which runs continuously to record incidents across multiple

cameras. Figure 2 is an overview of the entire ABORAT

system.

B. Platform Integration

The ABORAT system is based on off-the-shelf components

including a DSP, a low-power general-purpose processor,

network peripherals, and efficient storage. All components

are interfaced using custom developed ABORAT software,

which allows security personnel to specify his/her preferred

analytics algorithms. The system works with any mix of local

and remote legacy analogue cameras and/or the latest IP-based

digital cameras, both available from multiple manufacturers.

The installation and setup of IP cameras is automated using

network Plug-and-Play, thus the server application automati-

cally detects and add IP cameras within the network. Power

consumption, a major design constraint on every embedded

system governs the choice of an Intel Xscale technology, the

PXA270 clocked at 520MHz with low power consumption and

heat dissipation.

The compressed video stream from the IP camera is sent

to the VPU’s dedicated DSP for decompression. The result

is then placed in First-In First-Out (FIFO) buffer memory

for access by the PXA270 with 104MHz memory bus. The

raw image data is processed to generate alerts for every

single frame. This processing includes the extraction of every

moving object from a modelled background, followed by

the extraction of parameters of the objects. Analysis of the

behaviour of each object is then performed, and if an object

poses a threat an XML alert-log file is generated and sent

to the monitoring station. For flexibility and fault-tolerance,

the communication link between the ABORAT VPU and the

server can be wireless-LAN or Ethernet. The transmission

of visual data over camera-based wireless sensor networks

Fig. 3. A view of the ABORAT server software

Fig. 4. A step-by-step demonstration on how to add an IP camera

(WSNs) is challenging due to the high computational and

bandwidth requirements [18].

Live video feeds from all of the IP-cameras are sent to the

custom ABORAT server as well as to the NVR for display and

recording respectively. The display screen on the monitoring

server changes to highlight a video stream for which an

anomalous condition has been identified. Every camera has

an associated VPU. The server also offers On-Screen Rules

Definition (OSRD) for drawing of polygons, rectangles, or

tripwires over top of live video on the Operator Console.

The resulting rules are transmitted to the VPU for execution,

along with autonomous analytics. Figure 3 is a snapshot of the

ABORAT server software showing that the automobile with

label 0 has violated rule number 4, which restricts moving

objects from entering the area marked in green. The user

friendliness of the ABORAT server software is demonstrated

in Figure 4, showing how easily a local or remote IP-based

network cameras can be added. Local cameras are those that

the administrator, given appropriate permissions, may manage

on their local subnet. The remainder will be remotely accessed

cameras (located at another site or building) whose parameters

may not be changed.

IV. ALGORITHMIC DESIGN

The detection, matching and classification of human ap-

pearance is a challenging problem [19] A further weakness

of video detection is the limitation of conventional camera

systems to operate under wide dynamic range lighting, which

is typical for outdoor applications. Therefore, real-time video-

based tracking application are mostly constrained with limited
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Fig. 5. The operational modules of the ABORAT system.

resources at the price of the optimal performance [20]. Detail

of the algorithms used in the ABORAT systems is given in

this section. An outline of the various modules implemented

is depicted in Figure 5.

A. Motion Detection

The first stage in processing for many image applications is

the segmentation of (usually) moving objects with significant

difference in colour and shape from the background, to de-

termine their location in the image scene. Where the camera

is stationary, a natural approach is to model the background

and detect foreground objects by differencing the current

frame with the background. All pixels that are not similar to

the modelled background are referred to as the “foreground”

[21]. There are situations in which some background objects

(like water ripples or moving foliage) are not perfectly static

and induce local noise. Many authors have thus proposed

modelling each background pixel with a probability density

function (PDF) learned over a series of training frames [22].

The ability to extract moving objects in real time from live

video data using an embedded processor is our primary aim.

Two simple algorithms have been designed to match the

output from the camera. The first version relies on RGB

raw data and the second on YUV. Shadows can easily be

detected in YUV rather than RGB, but it requires a little

more processing to convert the RGB camera data from RGB

to YUV. Fortunately, the dedicated DSP on the VPU for video

decompression can easily generate YUV data at no extra cost

to the image processor (PXA270), making it possible to use

the second approach.

Following Grimson [23], we maintain a number of clusters,

each with weight wk, where 1 ≤ k ≤ K, for K clusters [24].

Rather than modelling a Gaussian distribution, we maintain a

model with a central value, ck of 11-bits (8 bits integer part

and 3 bits fractional part). We use an implied global range,

[ck − 15, ck +15], rather than explicitly modelling a range for

each pixel based on its variance as in [23]. The weights and

central values of all the clusters are initialised to 0.

A pixel X = I(i, j) (where X is 11-bit fixed-point) from

an image I is said to match a cluster, k, if X ≥ ck − 15 and

X ≤ ck +15. The highest weight matching cluster is updated,

if and only if its weight after the update will not exceed the

maximum allowed value (i.e. wk ≤ 64, given the data width of

the weight as 6 bits). The update for the weight is as follows:

wk,t =

{

63

64
wk,t−1 + 1

64
for the matching cluster

63

64
wk,t−1 otherwise

(1)

The central values of all the clusters are also updated as

follows:

ck,t,i,j =

{

7

8
ck,t−1,i,j + 1

8
Xi,j matching cluster

ck,t−1,i,j otherwise
(2)

where ck,t,i,j is the central value for cluster k at time t for

pixel (i, j).
If no matching cluster is found, then the least weighted

cluster’s central value, cK is replaced with X; its weight is

reset to zero. The way we construct and maintain clusters make

our approach gradually incorporate new background objects.

This is similar to [25] and hence the insertion delay is 23 = 8
frames in our case.

The K distributions are ordered by weight, with the most

likely background distribution on top. Similar to [23], the first

B clusters are chosen as the background model, where

B = argb min(

b
∑

k=1

ωi > T ). (3)

The threshold T is a measure of the minimum portion of the

data that should be accounted for by the background. The

choice of T is very important, as a small T usually models a

unimodal background while a higher T models a multi-modal

background.

For the YUV version, we use a 32 bit fixed-point data

representation. We use three reference values per pixel to

represent the background data: refY, refU, refV . Again, two

threshold values tY, tUV are used to classify the input pixels

as background or foreground in the YUV plane. The YUV

background data is represented as a point in a 3D space. If

the difference between the input Y and refY exceeds the

threshold tY or the difference between the input UV and

refUV (calculated using the Manhattan distance) is greater

than the threshold tUV , the pixel is considered as foreground.

The choice of YUV and RGB background differencing method

is dependent on the scene (indoor, outdoor and lighting inten-

sity).

B. Object Tracking

Object segmentation gives a single frame snapshot of the

current state of the world as expressed in the simple dichotomy

of pixels as foreground or background. The job of the object

tracker is to establish and maintain the temporal correspon-

dence of an object in the world, given its frame-by-frame

representation. The object tracker must be able to handle the

uncertainty manifest by the object segmentation algorithm.

A sub-threshold colour difference between the background



Fig. 6. (a) Object delineated by minimum bounding rectangle. (b) Area,
height and width calculated from binary silhouette. (c) Segmented grey-scale
silhouette used to calculate grey-scale histogram (d), with grey values along
the abscissa and number of pixels on the ordinate.

and parts of the moving object will result in incomplete

segmentation. Similarly, partial segmentation will also result

from occlusion of the object by static scene elements, such as

parked vehicles. Multiple objects may be segmented as single

connected-components if they are in close proximity in the

image plane, requiring disambiguation of the merged objects.

Thus, there may be multiple connected-components associated

with each object, or multiple objects may be associated with

a single connected component.

Connected-component labelling is normally used to convert

the binary image generated from the motion detection unit

into a symbolic one with each connected component having

a unique numeric label. A highly optimised version of the

conventional connected-component labelling algorithm has

been implemented. The use of individual pixels which create a

very large equivalence table has been replaced with blocks of

contiguous pixels in a single row (run-length encoded format).

This gives a significant improvement in processing time for

an image with medium to low noise level. The complexity

approaches that of the pixel-based algorithm for very noisy

images.

The system includes a robust tracker that is capable of

handling partial occlusion [26]. The system makes use of all

available visual information to successfully track moving ob-

jects. Objects are tracked from frame to frame using a feature

vector, fi = [a, h, w, g], consisting of the area, height, width

and grey-scale histogram as well as direction of movement,

as illustrated in Figure 6. The system keeps track of the total

number of objects in the previous scene to identify objects

entering and leaving the scene. It is also able to detect when a

single object splits into parts, mainly due to over-segmentation.

Similarly, when two objects merge as a single object the

tracker is able to detect this under normal conditions. The

implementation outperforms other trackers solely based on

Kalman filter and extended Kalman filter [27].

Central to the tracking algorithm is the concept of difference

between object and silhouette (connected component) feature

vectors. The difference between the feature vectors of object

Q and silhouette S is defined as in equation 4, which is a

four element vector comprised of the absolute differences of

the area, height and width of the object and silhouette and the

scalar length of the grey-scale histogram difference vector.

d(Q,S) =
[

|aQ − aS |, |hQ − hS |, |wQ − wS |,
√

(gQ − gS) · (gQ − gS)
]

(4)

The distances in the image plane between the expected

centroid of every object Q (calculated from the centroid

and velocity of object Q at time t − 1), and the centroids

of the segmented silhouettes, S, are calculated. This initial

measurement is used to form a valid-match matrix, V , based

on an object’s expected location and an arbitrary search radius

around that position. The search radius, r, establishes a limit

on the number of possible matches that can be evaluated by the

object-to-silhouette assignment algorithm. The initial match

assignment for an object may only be made with a silhouette

within the valid match radius, and when dealing with silhouette

fragmentation, the algorithm restricts the search to silhouette

fragments lying within the match radius. V is a matrix of

dimension {n,m}, where n is the number of tracked objects

and m is the number of segmented silhouettes.

c(Q,S) =
∑

k

dk(Q,S)

fk(Q)
(5)

The cost of every object-to-silhouette assignment having a

non-zero entry in matrix V is given by the scalar value c(Q,S)
as in equation 5, where dk(Q,S) is the kth element of the

difference vector calculated between object Q and silhouette

S, and fk(Q) is the kth element of the feature vector of

object Q. The histogram element in the feature vector in

the denominator of expression (4.7) is transformed into a

scalar value by calculating the Euclidean length of the vector.

The elements of the object feature vector in the denominator

have the effect of scaling the values of the difference vector,

assuming that the within population coefficients of variation

are roughly equal for the separate feature vector elements.

C. Trajectory Classification

Abnormal activity detection has been divided into two

categories – parametric and non-parametric – by Zhou et. al

[28]. The parametric approach models normal and abnormal

activities using visual features like position, speed and appear-

ance, while the non-parametric learns the normal and abnormal

patterns from the statistical properties of the observed data.

In this paper we further divide the non-parametric into two

sub-groups; the on-line and the batch approach. The batch

approach trains and detects normal and abnormal activities

using complete trajectories. The on-line approach may or

may not train the system using complete trajectories, yet it

is able to detect normal/abnormal activities using incomplete

trajectories; hence the ability to detect abnormalities as they

happen. The centroids of the tracked objects in Section IV-B

are used as input to the trajectory classifier. Generally, the

trajectory data of tracked objects are recorded as a set of (x, y)
locations of the tracked object’s centre of mass from frame to

frame. In [29], they used flow vectors f = {x, y, δx, δy} rather

than sequence of positions to describe an object’s movement.



Thus if an object i appears in n frames it can be represented by

a set Qi of n flow vectors all lying within a unit hypercube

in 4D phase space: Qi = {f1, f2, . . . , fn−1, fn}. Owens et

al. in [27], used a hierarchical neural network as a novelty

detector. Normal trajectories are used during training, and the

experiments conducted show a high detection rate. Humphreys

et al. [30] has extensively use cost functions based on a Self

Organising Feature Map (SOFM) to detect, track and classify

object trajectories. The paper also demonstrates improved

performance by using three SOFMs dedicated to different sub

cost functions.

To efficiently implement a trajectory discriminator on a low

powered processor using SOFM and Gaussian distribution,

we have conducted two basic analyses. First, we analyse the

minimal dimension that can be used to represent the point-

to-point trajectory data (xt, yt) without losing any behavioral

information. Intuitively, the minimum dimension is 2D, yet

in [31] the (xt, yt) coordinate information has been reduced

to a single value γ̇t encoding the local curvature and velocity

information. The penalty for the model is the high dimensional

vector used in the HMM. Secondly, we analyse the most

efficient way to represent the trajectory data in the SOFM. By

reducing the dimension of the trajectory data we have been

able to implement the SOFM based classifier on the PXA270

running at a reasonable speed.

Similar to [32], our system monitors trajectories as they are

generated, in contrsat to other systems [28], [33] which need

the entire trajectory to make a decision. Hence the trajectory

encoding used here converts both full and sub trajectories

into a fixed length feature vector F = (x, y, sδx, sδy), where

sδx and sδy are the moving averages for the change in x

and y respectively. As the feature vector generated for each

individual point is of fixed length, a SOFM has been used for

classification.

We have designed our SOFM with 100 network nodes,

each with four weights representing the 4-input feature vector

(x, y, δx, δy). During training, we maintain four extra pa-

rameters for each node in the network: the total number of

training samples that get associated with each node Ti, the

maximum distance between the node and all associated inputs,

Mi, the mean µi and variance σ2
i of the distances. A Gaussian

distribution of all distances associated with every node is also

maintained.

The training data is made up of both normal and abnormal

trajectories, unlabelled, yet our implementation is able to

distinguish between normal and abnormal trajectories after

training. Trajectory data (x, y) is collected over a period

of time from a stationary camera and converted into a 4D

feature vector F for training the SOFM. During training, the

100 network nodes are randomly initialized, then for every

input vector (feature vector), the Manhattan distance between

the input vector and every network node is computed to

estimate the winner. For a winner wt and input vector x,

all the weights i of the winning node are updated as follows

wi,t+1 = wi,t + β(x − wi,t) to reflect the input data. If the

Manhattan distance mw,x between wt and x is the maximum

for node wt,Mw = mw,x. Similarly, the total distance for the

winner Tw is increased by one.

The training of the SOFM is repeated for a number of

epochs with the same input data. The Gaussian distribution for

each node is generated for a random iteration t ≤ (epoch−1)
during training. The network is ready for use after the training

phase. During the test phase, point-to-point trajectory data

(x, y) is converted into a 4D vector and used as input to the

SOFM. The winning node is identified as the node with the

minimum Manhattan distance to the input vector. In the test

phase the network is not subject to any further modification,

but rather is used to make a decision on the input vector or

trajectory.

D. Alerts

The ABORAT system tests for alerts for every image frame.

There are three different alerts generated: the object type, zone

and tripwire violation and the behavioural alert.

1) Object Type: This is used to identify Humans, Vehicles,

group of people and any other object. Humans are easily

distinguished from vehicles using the aspect ratio. The camera

view can make it difficult to distinguish between other objects

and humans. Thus a bird very close to the camera might

have the same aspect ratio as a person walking at a distance

from the camera. A position-wise aspect ratio has been used

to resolve such ambiguity. Groups of people may also have

the same aspect ratio as a vehicle. Shape variation is used

to distinguish between vehicles and groups of people. After

object identification, the object type is sent to the monitoring

station if there is a suspicious behaviour in the scene or a

tripwire rule is violated.

2) Tripwire and Zones: This is used to identify objects

going over a virtual line (e.g. level crossing) or entering or

leaving restricted areas. The centroid (rather than the entire

body) of moving objects is used to determine their position.

A line is defined by the two end points a and b. If the line

extends across the entire viewing area then a line-crossing

can simply be detected by a change in the sign of the scalar

product of the line’s orthogonal vector with the moving object,

because if n is orthogonal to b−a then (c−a) ·n > 0 for all

points c on the side of the line where n points to, < 0 for all

points on the opposite site, and = 0 for all points on the line.

If the line is shorter and only covers part of the viewing area

we need to test whether it intersects with the line drawn by

two consecutive points (centroids) of the object tracked. Two

lines a → b and c → d intersect if we can solve

a + α(b − a) = c + β(d − c) (6)

for α and β and find 0 ≤ α, β ≤ 1.

For a restricted area specified by its endpoints p1, . . . ,pk,

the procedure for testing whether a point c is inside or outside

is similar. We need to specify any arbitrary line starting at c

and going into one direction towards infinity. If the number of

lines it crosses out of p1 → p2, . . . , pk−1 → pk, pk → p1

is even then c is outside the restricted area and inside if the

number is odd.



   
  (a) Normal trajectory                   (b) Abnormal trajectory 
 

Fig. 7. Images showing (a) normal and (b) abnormal trajectories. In (b),
abnormal points are labelled black.

3) Behavioural Detection: The system is fully autonomous

and capable of using the trajectory of moving object to classify

the behaviour. An input trajectory data for tracked objects is

identified as abnormal (suspicious) if any of the following

conditions is true:

1) If the Manhattan distance mw,x between the input vector

x and the winner w is greater than the maximum

allowable distance for the winner Mw.

2) If Tw (the total number of input vectors associated with

the winner during training) is less than a gobal threshold

Th set as 0.01% ∗ total train points.

3) If the Manhattan distance mw,x is outside 2.5 standard

deviation of the Gaussian distribution for the winner.

A score ranking is used to generate alerts for different

violations. The penalty for option 1 is the highest, followed by

options 2 and 3 respectively. An input node whose Manhattan

distance is greater than Mw is abnormal on the assumption that

such a point is new to the SOFM. Since the system is trained

with both normal and abnormal trajectories, it is possible for

a node in the network to represent only abnormal trajectory

points. Since unusual trajectories are rare, an assumption that

no more than Th = 0.01% of the entire trajectory points are

abnormal is made. Hence, any network node with less than the

global threshold value Th of points, is labelled as an abnormal

network node nab. Thus any input vector whose winner is nab

is also considered abnormal.

It is also possible to associate an abnormal point to a

normal network node nnor during training. If this happens,

we expect the Manhattan distance between the abnormal point

xab and the network node n to be much greater than all

other points associated with nnor. The Gaussian distribution

maintained for nnor is then used to identify such abnormal

trajectory points. Figure 7 shows two images with normal and

abnormal trajectory points. If the trajectory of a moving object

is classified as abnormal, the level of abnormality as well as

the object type is sent to the monitoring station.

V. EXPERIMENTAL RESULTS

To evaluate the training time of the autonomous trajectory

classifier, three different datasets have been used in testing

the implementation on a PC with a general purpose processor

clocked at 2.8GHz, and on the ABORAT VPU with PXA270

clocked at 520MHz. All the images have been obtained using a

stationary camera. The input image is sent to an object tracker

and the trajectory fed into the SOFM for training. Two of the

image sequences have been acquired on a normal day while

TABLE I
TIMING RESULTS FOR TRAINING THE SOFM ON PXA270 AND PC

Day Points PC(min.) PXA270(min.) epoch

Normal 34713 45 190 346
Normal 21867 27 110 218
Rainy 12636 10 65 126

TABLE II
TIMING RESULTS OF THE ALGORITHM USING YUV BACKGROUND

DIFFERENCING ON PXA270 AND PC

Application Type Processing time (ms)

320x240 640x480

PC ∼ 40 ∼ 175

PXBMP ∼ 95 ∼ 351

PXIP - 550 − 750

the last of the three has been collected on a rainy day. They

have all been collected over a period of 3 hours. The datasets

are made of 34713 and 21867 trajectory points taken from

various trajectories for the normal day, and 12636 trajectory

points for the rainy day. Table I presents a summary of the

test conducted on the PXA270 and PC with the same input

data and epoch.

A test has also been conducted on the number of trajectory

points correctly classified with the implementation. For 520

trajectory points collected on a normal day, 421 were correctly

classified as normal, 76 correctly classified as abnormal and

23 were incorrectly classified as normal, representing approxi-

mately 4.4% error. A similar test conducted on the same scene,

on a rainy day with a total of 151 trajectory points gave

97 correctly classified as normal, 32 correctly classified as

abnormal, 19 incorrectly classified as normal with 3 classified

incorrectly as abnormal. This represents a total of 14.5% error.

Timing analysis has also been conducted on various com-

ponents with different frame sizes on both the PC and the

PXA270. Again, the test is conducted using Bitmap images

on the PC and on the PXA270 (PXBMP ). Timing analysis

with IP data has also been conducted on the PXA270 (PXIP ).

Table II is a summary of the processing time for image sizes

of 320 × 240 and 640 × 480 using the YUV background

differencing algorithm on both the PC and PXA270.

Using the grey-scale intensity value to generate the back-

ground, the processing time reduces from 750ms to 350ms,

making it possible to process 3 frames of VGA sized image

every second. Processing 3 frames per second is enough for

tracking pedestrians in real-time. The PXA270 is capable of

processing 10 frames per second of a QVGA image size, which

is sufficient resolution for most surveillance applications. The

total processing time for the PXA270 and a PC implemen-

tation of the entire ABORAT algorithm using the grey-scale

background modelling is given in table III

VI. CONCLUSION

This paper demonstrates a distributed smart camera ar-

chitecture using an IP camera as an image sensor, a low

power processor as an image processor, a neural network



TABLE III
TIMING RESULTS OF THE ALGORITHM USING GREY-SCALE INTENSITY

BACKGROUND DIFFERENCING ON PXA270 AND PC

Application Type Processing time (ms)

320x240 640x480

PC ∼ 40 ∼ 175

PXBMP ∼ 95 ∼ 351

PXIP - 290 − 350

(SOFM) as an autonomous trajectory classifier and a general

purpose PC as a monitoring unit. Compared to a CCTV camera

which can only view a local area, an IP camera can view

over a wider geographical area. An object tracker developed

purposely for an embedded platform without the use of floating

point numbers has also been presented. The on-line classifier

based on the point-to-point trajectory of moving objects makes

this architecture more usable for today’s embedded security

surveillance systems. The novel system presented here is au-

tonomous and does not require any human intervention before

or after training. Hence a camera is deployed, autonomously

collects data over a period of time, trains the SOFM and de-

tects suspicious behaviour after training. A possible extension

is to incorporate the VPU into a single smart camera unit.

The tradeoff for future applications between enhancing the

intelligence and performance of the VPU or the client PC (or

both) using software/hardware architecture like Intel’s Quick

Assist [34] will depend upon silicon cost, the complexity of

the video analytics required, and the bandwidth constraints of

the reader’s network.
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