802 research outputs found

    Automatic motion of manipulator using sampling based motion planning algorithms - application in service robotics

    Get PDF
    The thesis presents new approaches for autonomous motion execution of a robotic arm. The calculation of the motion is called motion planning and requires the computation of robot arm's path. The text covers the calculation of the path and several algorithms have been therefore implemented and tested in several real scenarios. The work focuses on sampling based planners, which means that the path is created by connecting explicitly random generated points in the free space. The algorithms can be divided into three categories: those that are working in configuration space(C-Space)(C- Space is the set of all possible joint angles of a robotic arm) , the mixed approaches using both Cartesian and C-Space and those that are using only the Cartesian space. Although Cartesian space seems more appropriate, due to dimensionality, this work illustrates that the C-Space planners can achieve comparable or better results. Initially an enhanced approach for efficient collision detection in C-Space, used by the planners, is presented. Afterwards the N dimensional cuboid region, notated as Rq, is defined. The Rq configures the C-Space so that the sampling is done close to a selected, called center, cell. The approach is enhanced by the decomposition of the Cartesian space into cells. A cell is selected appropriately if: (a) is closer to the target position and (b) lies inside the constraints. Inverse kinematics(IK) are applied to calculate a centre configuration used later by the Rq. The CellBiRRT is proposed and combines all the features. Continuously mixed approaches that do not require goal configuration or an analytic solution of IK are presented. Rq regions as well as Cells are also integrated in these approaches. A Cartesian sampling based planner using quaternions for linear interpolation is also proposed and tested. The common feature of the so far algorithms is the feasibility which is normally against the optimality. Therefore an additional part of this work deals with the optimality of the path. An enhanced approach of CellBiRRT, called CellBiRRT*, is developed and promises to compute shorter paths in a reasonable time. An on-line method using both CellBiRRT and CellBiRRT* is proposed where the path of the robot arm is improved and recalculated even if sudden changes in the environment are detected. Benchmarking with the state of the art algorithms show the good performance of the proposed approaches. The good performance makes the algorithms suitable for real time applications. In this work several applications are described: Manipulative skills, an approach for an semi-autonomous control of the robot arm and a motion planning library. The motion planning library provides the necessary interface for easy use and further development of the motion planning algorithms. It can be used as the part connecting the manipulative skill designing and the motion of a robotic arm

    Dynamic collision avoidance system for a manipulator based on RGB-D data

    Get PDF
    The new paradigms of Industry 4.0 demand the collabora- tion between robot and humans. They could help and collaborate each other without any additional safety unlike other manipulators. The robot should have the ability of acquire the environment and plan (or re-plan) on-the- y the movement avoiding the obstacles and people. This paper proposes a system that acquires the environment space, based on a kinect sensor, performs the path planning of a UR5 manipulator for pick and place tasks while avoiding the objects, based on the point cloud from kinect. Results allow to validate the proposed system.Project ”TEC4Growth - Pervasive Intelligence, Enhancers and Proofs of Concept with Industrial Impact/NORTE-01-0145-FEDER-000020” is financed by the North Portugal Regional Operational. Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, and through the European Regional Development Fund (ERDF). This work is also financed by the ERDF – European Regional Development Fund through the Operational Programme for Competitiveness and Internationalisation -COMPETE 2020 Programme within project POCI-01-0145-FEDER-006961, and by National Funds through the FCT – Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) as part of project UID/EEA/50014/2013.info:eu-repo/semantics/publishedVersio

    Multi-Risk-RRT: An Efficient Motion Planning Algorithm for Robotic Autonomous Luggage Trolley Collection at Airports

    Full text link
    Robots have become increasingly prevalent in dynamic and crowded environments such as airports and shopping malls. In these scenarios, the critical challenges for robot navigation are reliability and timely arrival at predetermined destinations. While existing risk-based motion planning algorithms effectively reduce collision risks with static and dynamic obstacles, there is still a need for significant performance improvements. Specifically, the dynamic environments demand more rapid responses and robust planning. To address this gap, we introduce a novel risk-based multi-directional sampling algorithm, Multi-directional Risk-based Rapidly-exploring Random Tree (Multi-Risk-RRT). Unlike traditional algorithms that solely rely on a rooted tree or double trees for state space exploration, our approach incorporates multiple sub-trees. Each sub-tree independently explores its surrounding environment. At the same time, the primary rooted tree collects the heuristic information from these sub-trees, facilitating rapid progress toward the goal state. Our evaluations, including simulation and real-world environmental studies, demonstrate that Multi-Risk-RRT outperforms existing unidirectional and bi-directional risk-based algorithms in planning efficiency and robustness

    An Analysis Review: Optimal Trajectory for 6-DOF-based Intelligent Controller in Biomedical Application

    Get PDF
    With technological advancements and the development of robots have begun to be utilized in numerous sectors, including industrial, agricultural, and medical. Optimizing the path planning of robot manipulators is a fundamental aspect of robot research with promising future prospects. The precise robot manipulator tracks can enhance the efficacy of a variety of robot duties, such as workshop operations, crop harvesting, and medical procedures, among others. Trajectory planning for robot manipulators is one of the fundamental robot technologies, and manipulator trajectory accuracy can be enhanced by the design of their controllers. However, the majority of controllers devised up to this point were incapable of effectively resolving the nonlinearity and uncertainty issues of high-degree freedom manipulators in order to overcome these issues and enhance the track performance of high-degree freedom manipulators. Developing practical path-planning algorithms to efficiently complete robot functions in autonomous robotics is critical. In addition, designing a collision-free path in conjunction with the physical limitations of the robot is a very challenging challenge due to the complex environment surrounding the dynamics and kinetics of robots with different degrees of freedom (DoF) and/or multiple arms. The advantages and disadvantages of current robot motion planning methods, incompleteness, scalability, safety, stability, smoothness, accuracy, optimization, and efficiency are examined in this paper

    Human-like arm motion generation: a review

    Get PDF
    In the last decade, the objectives outlined by the needs of personal robotics have led to the rise of new biologically-inspired techniques for arm motion planning. This paper presents a literature review of the most recent research on the generation of human-like arm movements in humanoid and manipulation robotic systems. Search methods and inclusion criteria are described. The studies are analyzed taking into consideration the sources of publication, the experimental settings, the type of movements, the technical approach, and the human motor principles that have been used to inspire and assess human-likeness. Results show that there is a strong focus on the generation of single-arm reaching movements and biomimetic-based methods. However, there has been poor attention to manipulation, obstacle-avoidance mechanisms, and dual-arm motion generation. For these reasons, human-like arm motion generation may not fully respect human behavioral and neurological key features and may result restricted to specific tasks of human-robot interaction. Limitations and challenges are discussed to provide meaningful directions for future investigations.FCT Project UID/MAT/00013/2013FCT–Fundação para a Ciência e Tecnologia within the R&D Units Project Scope: UIDB/00319/2020

    Advances in Robot Navigation

    Get PDF
    Robot navigation includes different interrelated activities such as perception - obtaining and interpreting sensory information; exploration - the strategy that guides the robot to select the next direction to go; mapping - the construction of a spatial representation by using the sensory information perceived; localization - the strategy to estimate the robot position within the spatial map; path planning - the strategy to find a path towards a goal location being optimal or not; and path execution, where motor actions are determined and adapted to environmental changes. This book integrates results from the research work of authors all over the world, addressing the abovementioned activities and analyzing the critical implications of dealing with dynamic environments. Different solutions providing adaptive navigation are taken from nature inspiration, and diverse applications are described in the context of an important field of study: social robotics

    An optimal motion planning method of 7-DOF robotic arm for upper limb movement assistance

    Get PDF
    Assistive robotic arm is crucial alternative resource for people disabled or injured in the upper limbs, which enable them to complete basic living tasks independently. Thus, an extremely accurate motion planning for robotic arm needs to be applied to improve assistive performance. Rapidly-Exploring Random Tree Star (RRT*) is one of the most representative methods, however, this method has great limitations due to the tedious iteration process while planning. In this study, the potentials guide sampling based-on RRT∗ (PGS-RRT*) approach is introduced through combination with artificial potential fields (APF) as an expansion of RRT∗ algorithm. A revision of repulsive potential force's formula in APF has been applied into sampling process of RRT*. The samples during motion planning is gathered through the optimization of potentials formulations. Specifically, the basic potential function give each sample an offset oriented to goal. Experiments in 2D and 3D environments and simulations on KUKA LBR iiwa 7 prove that the PGS-RRT∗ method is able to find an optimal path in a short time, which highlights the application prospect on robots with a number of degree of freedom (DOF) in patient's daily life assistance

    Mobile Robots in Human Environments:towards safe, comfortable and natural navigation

    Get PDF

    Real-Time Support of Haptic Interaction by Means of Sampling-Based Path Planning

    Get PDF
    Haptic feedback enables the support of a human during the interaction with an environment. A variety of concepts have been developed to achieve an effective haptic support of the user in specific scenarios, e.g. Virtual Fixtures. However, most of these methods do not enable an adaptive support of the motion from a user within a (real or virtual) environment, which would be desirable in many situations. Especially when dynamical obstacles are involved or when the desired motion of the human is not known beforehand, an online computation of this support is essential, which should be based on a fast and effective determination of feasible motions.In contrast to other methods, sampling-based path planning is applicable to arbitrary interaction scenarios and enables to find a solution if it exists at all. Thus, it seems to be ideally suited for a generic framework that is able to deal with various kinematics, as e.g. a virtual prototyping test bed for the haptic evaluation of mechanisms requires. At such a test bed, the path planner could directly be coupled to the haptic rendering of a virtual scene to assist a user in approaching a target.This motivated the development of SamPP, a sampling-based path planning library with implementations of the most important algorithms. It can be used for nearly arbitrary rigid robots and environments. By performing numerous benchmarks, we prove the effectiveness and efficiency of SamPP. It is shown that a single-threaded version of the path planning can be used for real-time support of the haptic interaction at a novel actuated car door.Furthermore, we enhance the path planning performance for unknown or dynamical environments significantly by the OR-Parallelization of different path planning queries. This Generalized OR-Parallelization is a novel concept that to the best knowledge of the authors has not been proposed beforehand. We show that for the case of dynamic environments the likelihood of a fast path planning result is higher with our approach. Thus, even in dynamic or unknown environments, a real-time support of haptic interaction can be achieved. Finally, we highlight four promising research directions to exploit the concept of Generalized OR-Parallelization: 1) Combination of PRMs and RRTs to achieve a synergy of the advantages of both concepts, 2) concurrent use of different parameter sets of path planning algorithms, 3) online adaptation of these parameter sets and 4) online adaptation of the types and numbers of parallel executed path planning programs
    corecore