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Abstract

The thesis presents new approaches for autonomous motion execution of a robotic arm.

The calculation of the motion is called motion planning and requires the computation

of robot arm’s path. The text covers the calculation of the path and several algorithms

have been therefore implemented and tested in several real scenarios.

The work focuses on sampling based planners, which means that the path is created by

connecting explicitly random generated points in the free space. The algorithms can be

divided into three categories: those that are working in configuration space(C-Space)(C-

Space is the set of all possible joint angles of a robotic arm) , the mixed approaches

using both Cartesian and C-Space and those that are using only the Cartesian space.

Although Cartesian space seems more appropriate, due to dimensionality, this work

illustrates that the C-Space planners can achieve comparable or better results.

Initially an enhanced approach for efficient collision detection in C-Space, used by the

planners, is presented. Afterwards the N dimensional cuboid region, notated as Rq, is

defined. The Rq configures the C-Space so that the sampling is done close to a selected,

called center, cell. The approach is enhanced by the decomposition of the Cartesian

space into cells. A cell is selected appropriately if: (a) is closer to the target position

and (b) lies inside the constraints. Inverse kinematics(IK) are applied to calculate a

centre configuration used later by the Rq. The CellBiRRT is proposed and combines all

the features. Continuously mixed approaches that do not require goal configuration or

an analytic solution of IK are presented. Rq regions as well as Cells are also integrated

in these approaches. A Cartesian sampling based planner using quaternions for linear

interpolation is also proposed and tested.

The common feature of the so far algorithms is the feasibility which is normally against

the optimality. Therefore an additional part of this work deals with the optimality of

the path. An enhanced approach of CellBiRRT, called CellBiRRT*, is developed and

promises to compute shorter paths in a reasonable time. An on-line method using both

CellBiRRT and CellBiRRT* is proposed where the path of the robot arm is improved

and recalculated even if sudden changes in the environment are detected.

Benchmarking with the state of the art algorithms show the good performance of the

proposed approaches. The good performance makes the algorithms suitable for real

time applications. In this work several applications are described: Manipulative skills,

an approach for an semi-autonomous control of the robot arm and a motion planning

library. The motion planning library provides the necessary interface for easy use and

further development of the motion planning algorithms. It can be used as the part

connecting the manipulative skill designing and the motion of a robotic arm.



Kurzfassung

Diese Dissertation stellt neue Methoden zür autonomen Bewegung eines Roboterarmes

vor. Die Bewegungsplanung erfordert die Berechnung des Weges des Roboterarmes.

Diese Arbeit beffast sich mit der Berechnung des Pfades. Dafür wurden verschiedene

Algorithmen implementiert und in realen Szenarien getestet.

Die Arbeit konzentriert sich auf die Probenahme basierte Planungen, das bedeutet, dass

der Weg durch die Verbindung von zufällig generierten Punkte im freien Raum geschaf-

fen wird. Die Algorithmen lassen sich in drei Kategorien unterteilen. Diejenigen, die

nur im Konfigurationraum (C-Space , Konfigurationraum ist die Menge aller möglichen

Gelenkwinkeln eines Roboterarms) arbeiten, die Gemischten, die sowohl im Kartesis-

chen als auch im C-Space arbeiten und die Verfahren, die nur im kartesischen Raum

arbeiten. Obwohl kartesischen Raum wegen der Dimensionalität besser geeignet zu sein

scheint, zeigt diese Arbeit, dass die C-Space Plannungsalgorithmen vergleichbare und

bessere Ergebnisse erzielen können.

Als erstes wird ein Verfahren zür effiziente Kollisionserkennung in C-Space vorgestellt,

weil es in Algorithmen benutzt wird. Danach wird die N-dimensionale Quader Region,

notiert mit Rq , definiert. Der Rq konfiguriert den C-Raum, so dass die Probenahme

in der Nähe einer ausgewählten( genannt center) Zelle erfolgt. Der Algorithmus wird

durch die Dekomposition des kartesischen Raumes in Zellen verbessert. Eine Zelle wird

gewählt, wenn sie näher an der Zielposition ist und wenn sie innerhalb der physikalischen

oder definierten Grenzen liegt. Inverse Kinematik (IK) wird angewendet, damit eine

center Konfiguration, die später von der Rq verwendet wird, berechnet werden kann.

Eine Vereinigung von allen bisherigen Funktionen ist mit dem CellBiRRT Algorithmus

geschafft. Danach werden gemischte Methoden vorgestellt, die keine Ziel Konfiguration

oder eine vorhandene analytische Lösung von IK haben. Rq Regionen sowie Zellen

werden auch in gemischten Ansätze integriert. Eine kartesische Probenahme basiertes

Methode mit Quaternionen für lineare Interpolierung wird vorgestellt und getestet.

Die Eigenschaft der bisherigen Algorithmen ist die Ausführbarkeit, die normalerweise

gegen die Optimalität steht. Deshalb befasst sich ein zusätzlicher Teil dieser Arbeit

mit der Optimalität des Pfades. Eine Erweiterung von CellBiRRT, genannt als Cell-

BiRRT*,ist entwickelt und es verspricht kürzere Wege innerhalb einer angemessenenen

Zeit zu berechnen. Ein Online Verfahren, das sowie CellBiRRT als auch CellBiRRT*

verwendet, wird präsentiert. Der Weg des Roboterarmes wird online verbessert und

neu berechnet, auch wenn plötzliche Änderungen in der Umgebung erkannt werden.

Der Vergleich mit dem Stand der Technik beweisst die gute Leistung der vorgeschla-

genen Verfahren. Die gute Leistung zeigt auch, dass die Algorithmen für Echtzeit

Anwendungen geeignet sind. Verschiedene Anwendungen werden beschrieben: Manip-

ulative Tätigkeiten, ein Algorithmus für eine halb-autonome Steuerung des Roboter-

arms und eine Software-Bibliothek für die Bewegungsplanungberechnung. Die Software-

Bibliothek sorgt für die nötige Schnittstelle mit der einfachen Nutzung und der Weiter-

entwicklung der Bewegungplanungsalgorithmen. Es kann als Verbindungsteil zwischen

der manipulativen Tätigkeiten und der Bewegung eines Roboterarmes verwendet wer-

den.
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Chapter 1

Introduction

1.1 Robotics - What is it ?

This is a usual question that arises to someone that hears or reads the word ”Robotics”. A specific

definition of this word is difficult to be given, however the field ”Robotics” concerns mostly the

study of the machines that can replace humans in the execution of a task. The replacement involves

physical activities such as object manipulation as well as mental activities, like taking decision for

humans.

The history of robotics begins hundreds of years ago, and not with the same machines like

nowadays. The idea remained the same: the humans tried to use machines in order to ease

their life, mostly trying to mimic the nature. History and especially Greek mythology includes

examples of the first attempts of humans to build such a device (like Titan Prometheus,bronze

slave Hephasteus). Mostly robots in the past ages were machines meant to be used in wars, mostly

motivated by economic reasons. In these ages words like ”automaton” was used since the term

”robotics” is introduced much later by the Asimov (beginning of 1940s). Nowadays, the focus in

the robotic research is more close to science-fiction: robots should not only serve the people, but

they should be able to interact, learn and modify their environment. Although till now, it may be

a very optimistic thought, however it may be not such a futuristic in twenty years.

From the early on 1940s till nowadays the research in ”Robotic” is done having one specific law

and target at the same time: the robot should serve and obey to the humans.

1.2 Please robot bring my meal, fill my glass with water, take a

book I want to read....

As already said, the main law that the robot should obey is to serve the humans. Tasks like ”please

prepare my meal” or ”please bring my shoes”,”serve water” should be done normally automatically

by the robots. The word automatic is very trivial since it hides many other subtasks which can be

divided into two main categories:

1



1. INTRODUCTION

• environment recognition and sensing

• automatic planning

Regarding the first part,sensing, many devices have been developed that are able to provide nec-

essary information for the robot. Sensors like tactile, force / torques , cameras, laser scanners

and many other provide analog or digital signal that can be read and analyzed by the robot. The

automatic planning task computes the robot motion around obstacles. A motion is done in combi-

nation with sensors, providing flexibility and autonomous behavior for the robot. Using all these

before, tasks like ”serve my meal” or ”grasp and open a book” may be possible to be executed by

the robot. But are the robots now capable of doing that?

1.3 Service Robots

Service robots are mostly developed in order to answer the above questions. The last decades,

however, the research was focused mainly on industrial and military robots, leaving the sector

of ”service” robots in a second place. Nevertheless, nowadays the future of service robots seems

to be very promising, since their technologies are interested by not only military sectors. For

instance service robots should overcome difficulties like autonomous maneuvering, recognition and

manipulation of unknown objects. That is one reason why during the last decade the market of

service robots is increased. Moreover, the number of aged people arises also, which subsequently

increases the interest of developing ”clever” robotic solution capable of helping people to accomplish

for instance household activities. The average living age of humans is increased, and that grows the

number of elderly as well as the needs for serving the corresponding people. Due to all the above

reasons, there is an increased intention to use service robots in the field of rehabilitation robotics,

where the target is to support not only elderly people, but also humans with disabilities.

1.4 The goal of the thesis and the proposed approach

The main goal remains the ability of a system to execute a task and to compile it automatically

into a set of low level motions. Regarding the fact that normally the objects are not static,

meaning that the surrounding environment changes, the existence of algorithm that calculates the

low-level motions is obligatory. That is done by a motion planning algorithm. The robot must

recognize its environment, locate the objects of interests, and manipulate the objects in respect

to the application. Such as applications are handling, grasping and placing of objects. All of the

above show the necessity of existence of an efficient motion planning algorithm.

Figure 1.1 illustrates briefly the concept of autonomous motion planning. The command/task

is given to the system by selecting an appropriate scenario. The scenario, which is the higher

level, consists of many sub-tasks. The high level command executes the sub-tasks which conse-

quently contains the necessary goals for the motion planner. The motion planning task is given

via information like start pose,goal pose/location or multiple goal locations. Normally the goal for
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Figure 1.1: Robot Control

a manipulator (robot arm) is a location or frame indicating the position and orientation of the

end-effector.

The environment for each motion planning algorithm is constructed previously by the sensors,

like stereo camera. That means that when the robot starts planning its motion, the environment is

assumed that does not change. The algorithms used to detect and locate the objects by the vision

system are not considered in this work. It is assumed that the environment is constructed well

with very high accuracy.

In this work several motion planning algorithms are going to be described and analyzed. The

developed algorithms are sampling based approaches. The algorithms are designed to work for

robotic arms. The common attribute of all of them is that they create random connected graphs,

called trees, in configuration or cartesian space. In this work a comparison of using Cartesian and

Configuration space is presented. In addition benefits and drawbacks of each one are described.

Some important issues, discussed in this thesis, are the flexibility and the practical implemen-

tation of each approach. By flexibility is considered the ability of finding solutions fast without

changing the algorithm’s parameter. By practical implementation is considered the usage of the

algorithms in real scenarios. Feasibility concerns the ability to compute a solution in a deliverable

time. All of these topics are going to be discussed in later chapters.

1.5 Organization of the thesis

This thesis is organized into several chapters. Each one deals with a specific subject. Each chapter

has its own experimental results, discussions and implementation issues so that the reader would

be able to understand the contents of the text. The chapters are organized so that each one needs

the contents of the previous chapters. The aim of the text is to keep the reader to a continuous

interest.

The first three chapters contain the introductory material that is necessary for further under-

standing of the text. The rest of the text describes the developed approaches. The chapter four

describes the collision detection approaches and the chapter five describes a configuration space

planner called CellBiRRT. The chapter six includes some mixed sampling based approaches. Bench-

marking with the state of the art planners is done in chapter seven. The chapter eight presents an

enhancement of the CellBiRRT, called CellBiRRT*, that is used to compute shorter paths. The

3
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chapter nine describes some practical applications, manipulative skills for real scenarios as well as

a developed motion planning library that contains all the developed algorithms. Conclusions are

at the end of the thesis.

1.6 Contribution of the thesis

The contributions presented in this thesis are the following:

• Development of a dynamic efficient collision detection approach. The line between two con-

figurations is sampled and checked efficiently for collisions. The approach estimates the

maximum traveled curve of the end effector path of the robot, and reduces the samples that

have to be checked. The improvement over the state of the art is (a) the use of the OBBs

(Oriented Bounding Boxes) for the calculating near and far obstacles and (b) the reduction of

the samples that have to be checked for collision by calculating the moment when an object

shall be taken into account for collision or not. Chapter 4 explains in detail the method.

• Development of a new sampling based motion planning algorithm named CellBiRRT (Cell

Bidirectional-Rapidly exploring Random Tree). The CellBiRRT has the following main con-

tributions: (a) the N-Dimensional cuboid regions applied for generating random configu-

rations (see figure 1.2) using the last expanded configuration and (b) the combination of

the Cartesian and configuration space using Cells in cartesian space in order to place the

N-dimensional cuboid region in a probably better position. The CellBiRRT uses also the

characteristics of the RRT described in the chapter 3.

Shortly the steps of the CellBiRRT, which is a bidirectional approach, are: (a) Trial to

connect to the goal configuration with a (normally) small probability (b) Creation of random

configuration (c) Attempt to connect from the nearest neighbor to the random configuration

(d) Attempt to connect to the opposite tree.

The step (b) is very important factor for the total performance of a probabilistic planner.

That is the main contribution of the CellBiRRT over the state of the art motion planning.

The CellBiRRT subdivides initially the workspace(only the position of the end effector and

not the orientation) of the robot arm into cells. Each cell has a center position(x,y,z). In

CellBiRRT algorithm the step (b) is done as follows:

(a) CellBiRRT searches the closest configuration from the last expanded configuration (qa)

to the opposite tree. The closes configuration is called qb

(b) Identifies the cell, using forward kinematics, where the qa belongs to.

(c) Explores the neighbor cells, removes those that are in collision, and selects the cell cellsel
that is closer to the position(x,y,z) of the qb. In order to do that the forward kinematics for

the qb shall be applied.

(d) The selected cell is used in order to compute a configuration (qc) which is close to the qb.

The computation is done using inverse kinematics (IK). The figure 1.3 shows that procedure.
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1.6 Contribution of the thesis

(e) Around the qc is generated an N-dimensional cuboid, where N is the degrees of freedom

of the system. The qc is the center of the N-dimensional cuboid. Inside this area is generated

a random configuration. The figure 1.2 shows the N-dimensional cuboid.

(f) If the (c) or (d) are not successful, the qa is used as qc for the step (e).

Figure 1.2: N-dimensional cuboid region around a configuration q. The random configuration x is

generated inside the N-dimensional cuboid region. The figure shows an example for a 2D cuboid region.

(a) Selecting a cell

from the neighbor

cells

(b) Selecting a con-

figuration

(c) Generating random configuration around this con-

figuration

Figure 1.3: Steps (c) till (e) of the CellBiRRT

Experimental results are presented for a seven degrees of freedom robot arm.

• Developing of sampling based algorithms without the requirement of goal configuration which

sometimes may not be available or possible to be computed. In contrast to the CellBiRRT

these algorithms do not require a goal configuration. They are forward directional RRT and

they use jacobian or analytical inverse kinematics algorithms as well as the N-dimensional

cuboid regions that are presented on the CellBiRRT. That group of planners attempts incre-

mentally to reach the goal location. The planners combine both cartesian and configuration

5
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space. The contribution of this thesis over the state of the art are: (a) the development

of motion planning algorithms using the weighted least norm, which takes into account the

joint limits of the manipulator(RRT − Jwln).(b) The development of a forward directional

RRT using analytical inverse kinematics instead of jacobian iterative approach in order to

connect a configuration with the target location. (c) Another contribution of this thesis is the

development of a cartesian RRT planner, a planner that connects configurations completely

in the workspace (cartesian space). The calculated path from this planner which is called

CartesianRRT is straight line segments in the Cartesian space.

The figure 1.4 shows some examples of paths created by this group of planner.

(a) RRT − Jwln with smoothing (b) Cartesian RRT without smoothing

Figure 1.4: Example of resulted paths

• Benchmarking between some of the state of the art and the proposed motion planning algo-

rithms. The thesis provides a comparison between the proposed approaches and some state

of the art motion planners which are dedicated for manipulators. The latter is also a con-

tribution of this thesis, since a comparison between motion planning algorithms designed for

manipulators was not documented. The details of the benchmarking are explained in the

chapter 7.

• Developing of anytime CellBiRRT algorithm, called CellBiRRT*, a planner that can provide

lower cost paths. The cost is related to the length of the resulted path. The CellBiRRT* uses

all the characteristics of the RRT, CellBiRRT and the RRT*. The contribution of this thesis

is: (a) the usage of an additional pruning procedure, in order to improve the performance and

to lower the final cost of the path (b) the usage of the N-Cuboid regions in order to provide

good configuration candidates. If a path exists already, the random configuration may be

generated with the N-Cuboid regions around a point of the path. The random configuration

should have an estimated cost surely less or equal to the present cost (c) the algorithm ensures

that each calculated path has a lower cost than the previous one and (d) the integration of

the CellBiRRT* into the FRIEND system and the execution of the CellBiRRT* while the

robot arm is moving in order to improve online the path. The details are explained in the

chapter 8.

The figure 1.5 presents some of the CellBiRRT* contributions.
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1.6 Contribution of the thesis

(a) N-Cuboid regions used for generating efficiently random

configurations

(b) Pruning procedure improves the quality of the path

Figure 1.5: Procedures in CellBiRRT*

• Extension of the planners in order to use multiple goal regions. Multiple goal regions have been

used already in the literature. The implementation of multiple goal regions in the presented

motion planners as well as the definition of the object goal region are also contributions of

the thesis.

• Integration of all algorithms to the MASSiVE platform and realization of different manipu-

lative skills and share control in the rehabilitation robotic system FRIEND. Several manipu-

lative skills have been developed in order to realize the following scenarios: ADL (activities

of daily life) and the ReIntegraRob scenario. The scenarios are described in chapter 9. The

contribution of this thesis is the implementation of the manipulative skills as well as an ap-

proach of share control which is going to help the user to accomplish faster and manually

scenarios. The scenarios are new and therefore the manipulative skills are also new.

• Development of a new motion planning library designed especially for manipulators. The

motion planning library uses interfaces. The interfaces help the developer to implement its

own planners or to use the implemented planners. In this thesis several examples on different

robot arms illustrate the advantage of using the presented library. Chapter 10 describes the

design and the examples of this motion library.
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Chapter 2

Technical and theoretical background

This chapter presents technical and theoretical background which is important for later under-

standing. In this chapter the rehabilitation system FRIEND is going to be described, transfor-

mation matrices, DenavitHartenberg parameter needed to calculate forward kinematics for a ma-

nipulator, quaternions, calculation of minimum distances, and inverse kinematics are going to be

described[Pau81, Cra05, SSVG09].

2.1 Rehabilitation system FRIEND

Life expectancy around the world has been increased over the last decades. The number of people

that need support in daily life is increased compared to previous decades. As the number of the

population increases the field of rehabilitation has become a challenge. Statistical results in United

States of America , Europe, Canada and Japan show that the number of elderly together with the

number of people having disability is estimated to be around 200 million[GLFG11]. All the above

are the reasons why robotics society has increased its interest in the field of rehabilitation/care

robotics[dLR08]. Robotic technology has been developed rapidly in the last decades which enables

the opportunity to people with disabilities to take part in daily life.

In literature the field of rehabilitation robotics is divided into two main categories: therapy

and assistive robots[dLR08]. Although therapy robots are very important and the field has really

developed in the last years, the thesis is dedicated to assistive robots since the rehabilitation robotic

system FRIEND( Functional Robot with dexterous arm and user-frIENdly interface for Disabled

people),figure 2.1, belongs to this category. The focus of FRIEND system is the autonomous

manipulation. The aim is the user to give a simple command through a human machine interface

and the robot to fulfill autonomously human’s demand. In this field of research other institutes and

companies have developed their own assistive robots. For instance Willow Garage in United States

are building the PR2 robot[CGCG10], Fraunhofer institute in Germany are developed the Care-

O-Bot robotic system[RCF+09]. These two projects combine manipulation and mobile platform

in order to help mostly elderly but not severe disable people. Few system are developed in order

to support disable people for instance in ADL (Activities of daily living) scenarios. Such systems
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2. TECHNICAL AND THEORETICAL BACKGROUND

Figure 2.1: Rehabilitation robotic system FRIEND and its equipment

are MANUS [WGW+00], Handy 1 [Top01] and the rehabilitation robotic platform KARES( KAIST

Rehabilitation Engineering Service System)[BCC+04]. Most comparable to FRIEND system is

MANUS. A 6 degrees of freedom (DoF) robotic arm (MANUS) mounted to wheelchair together with

the complexity of its usage (with joystick) remain the main disadvantages of the system. FRIEND is

equipped with a dexterous manipulator, idea that is not used in other projects combining wheelchair

mounted manipulator. FRIEND’s as well as PR2’s and Care–O–Bot’s manipulator has seven DoF

robotic arm and that enables the possibility to execute more complicated tasks compared to a

manipulator with less DoF (like in MANUS).

The history of FRIEND system begins from 1997 when the first version was developed by the

Institute of Automation (IAT) of the University of Bremen. This version named as FRIEND

I[MRL+01] and had two cameras,a wheelchair, computer system and a six DoF robotic arm

mounted. This system had few autonomous possibilities and for that reason the FRIEND II

system was build by the IAT in 2003[PMC+07]. The main difference was the replacement of the

six DoF robot arm with a new seven DoF arm. That helped the FRIEND system to accomplish

autonomously complicated tasks like pour in and grasp bottle. That was the first serious attempt

to put a complicated system close to the market. The eliminations of FRIEND I and FRIEND II

tries to vanish the new FRIEND III (or simply FRIEND) system (figure 2.1). FRIEND system is

equipped with a seven DoF robot arm with an analogy of weight:payload almost 2:1,a wheelchair,

an intelligent tray with infrarot sensors, a stereo vision camera and a Time of Light (ToF) camera.

The aim of the system is to sustain for 1.5 hours independently giving the possibility to the user

to fulfill ADL activities or even to go back to work. The autonomous behavior remain the main

challenge of the system. The user should do as less work as possible and the responsibility goes

mainly to the system.

The software architecture of the system provides the possibility for different software and hard-

ware modules to cooperate together[MPFG06]. It is a multilayer structure, starting like a pyramid
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2.2 Rigid body transformations

from the top level called abstract and going to the lower level called SkillLayer and HardwareLayer.

The manipulative skills belong to SkillLayer and are responsible for the motion of the robot arm.

The motion planning module, which has the planning algorithms, is used by the manipulative skills

and calculates the necessary trajectories. That part of software is going to be explained in this

thesis. Several algorithm are developed and joined in the module of manipulation planning. Each

method has advantages and disadvantages that are explained in later chapters. For better under-

standing of the rest of the text, there are two chapter explaining the theoretical background. This

chapter has a briefly mathematical introduction to robotics and the third chapter an introduction

to planning algorithms.

2.2 Rigid body transformations

Figure 2.2: Origin and object’s frame

A rigid body pose can be described completely by having its position and orientation with

respect to an origin/reference frame. In figure 2.2, let {A} be the origin orthogonal frame and

x,yand z the unit vectors of the origin frame axis.

Let p denotes the vector that goes from the origin to the point P of the center of the object.

The vector p based on the reference frame {A} is given by the equation:

p = px · x+ py · y+ pz · z; (2.1)

where pi corresponds to the corresponding coordinate of the vector. The equation 2.1 can be

written also in a matrix form:

pA =

px py pz


·

 x
y
z

 (2.2)

This equation describes the position of the coordinate system {P} based on the reference coordinate

system {A}. The second important parameter is to define the orientation of the system {P} in
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2. TECHNICAL AND THEORETICAL BACKGROUND

respect to the origin one. In simple words we have to define a formula in order to calculate the

rotation of the frame {P} in respect to the frame {A}.
Using the same approach like previously, the rotation of the rigid body can be described in

respect to the {A} as a 3x3 matrix:

RA
P =


xA
P yA

P zAP


(2.3)

where the symbol RA
P is interpreted as follows: The rotation matrix of the {P} based on the {A}.

In the bibliography homogeneous transformations are used. That allow us to represent affine

transformations by a matrix (Affine transformation is a combination of single transformations such

as translation or rotation). Homogeneous coordinates embed three-dimensional space R3 into the

P 3, the three-dimensional projective space, which is R4. As a result, inversions or combinations of

linear transformations are simplified to inversion or multiplication of the corresponding matrices.

Using homogeneous transformation, a three dimensional point(x∗,y∗,z∗) can be written using

now four coordinates and represented using a matrix:
x
y
z
w

 (2.4)

where,

x∗ =
x

w
, y∗ =

y

w
, z∗ =

z

w
(2.5)

where w is the weighted factor (different from zero). Using the previous example, a vector r can

be written based on the frame {A} as follows:

rA = rAP +RA
P · rP (2.6)

This equation using homogeneous coordinates can be written as follows:
rA

1


=


RA

P rAP
01x3 1


·

rP

1


(2.7)

A transformation matrix is then defined as:

T 1
2 =


x12

(R1
2)3x3 y12

z12
01x3 1

 (2.8)

The figure 2.3 illustrates an example of a translation pp′′ between frames {P} and {P ′′}. The
new frame is located on the position:

p’ = p+ pp” (2.9)
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Figure 2.3: Example with translation frame

The coordinates of the p’(x′A, y′A, z′A) can be calculated using the formula:
x′A

y′A

z′A

1

 = TA
P ·


pp′′Px
pp′′Py
pp′′Pz
1

 (2.10)

If transformation frames are used instead of points, the transformation TP
P ′′ can include in

general some rotations, indicating that the frame {P ′′} has an additional rotation based on the

frame {P}. The equation: TA
P ′′ = TA

P · TP
P ′′ holds. That characteristic of the frames is going to be

used in the following chapter where the forward kinematics procedure for a manipulator is going

to be discussed.

2.3 Manipulator’s end-effector pose and orientation - Forward

Kinematics

As already mentioned the multiplication of frames implies a transformation in coordinate systems.

That is very important if there is a kinematic chain like a manipulator. The image 2.4 illustrates

an example in 2D for a 3 link planar manipulator. Obeying to the multiplication rule for frames,

the end-effector frame( coordinate system {3}) is equal to:

T 0
3 = T 0

1 · T 1
2 · T 2

3 (2.11)
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2. TECHNICAL AND THEORETICAL BACKGROUND

Figure 2.4: Kinematic chain for a 3 link planar manipulator

In general having N -joint robotic arm and {0} the reference coordinate system, the last / end-

effector frame can be calculated as follows:

T 0
N = T 0

1 · T 1
2 · . . . · TN−1

N (2.12)

The procedure of finding the frame for all links of a manipulator in a given position of its joints

is called Forward Kinematics. If f is a function of configuration (e.g. joint angles) the forward

kinematics are equal to :

y = f(q) (2.13)

where q is a configuration, which is a point with coordinates the joint values of the robot.

In this thesis the term TCP or Tool Center Point refers to the end effector’s transformation

frame notated as T 0
N . The vector y refers to the X,Y,Z and Roll , Pitch and Yaw angles. The

angles correspond to the rotation part of the T 0
N

For manipulators the calculation of the T i−1
i is not trivial and for that reason it is decided to

be used the Denavit and Hartenberg parameters, called DH parameters. Assigning the z axis as

the rotation axis for a link, and given θi the joint rotation on zi axis, translation di between the

joint i and i-1 in zi axis, the translation ai along the xi−1 axis and the twist/rotation by αi about

the xi−1 , the transformation matrix T i−1
i is equal to( see reference [Pau81]):

T i−1
i =


cθi −sθi · cαi sθi · sαi ai · cθi
sθi cθi · cαi −cθi · sαi ai · sθi
0 sαi cαi di
0 0 0 1

 (2.14)

The end-effector frame of manipulator can be calculated using the formulas 2.13 and 2.14. The

symbols cx and sx refer to cos(x) and sin(x) respectively.
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2.4 Euler angles and Quaternions

The end effector orientation of a manipulator can be expressed wit the help of three variables

called Euler angles. Euler angles are used especially to describe 3D rotations. They have different

application like in aircrafts and are used also in robotics. The parameters called yaw, pitch and

roll are counterclockwise rotations and are defined as follows:

yaw : Rz(α) =


cosα −sinα 0 0
sinα cosα 0 0
0 0 0 0
0 0 0 1

 (2.15)

pitch : Ry(β) =


cosβ 0 sinβ 0
0 0 0 0

−sinβ 0 cosβ 0
0 0 0 1

 (2.16)

roll : Rx(γ) =


1 0 0 0
0 cosγ −sinγ 0
0 sinγ cosγ 0
0 0 0 1

 (2.17)

The yaw, pitch and roll rotations are placed together in order to create the final rotation matrix

which can be calcualated as follows:

R(α, β, γ) = Rz(α) ·Ry(β) ·Rx(γ) (2.18)

All the rotations are applied to a specified fixed-reference frame. It is also very important to note

that the order of the rotations plays a significant role. The order is: (a) roll, (b) pitch and (c) yaw.

If the order is changed the final result is different.

Using Euler angles to describe rotation differences is not the best solutions. For instance an

orientation, has not unique values for α , β and γ. Another well known problem is the singularities

when the amount of rotation around an axis goes to 0o or 180o. Quaternions parameters eliminate

the issue of singularities and they are more efficient for interpolating rotations.

A quaternion is considered as a four dimensional complex number given by: h = a+b·i+c·j+d·k,
where a, b, c, d ∈ R are the four independent parameters of the quaternion. The ”i,j,k” are the

imaginary numbers and that leads to i2 = j2 = k2 = i · j · k = −1. One important characteristic

of quaternions is that the multiplication is not commutative which is a common characteristic of

rotations.

For the rest of the thesis the quaternion are normalized meaning that the a2+ b2+ c2+ d2 = 1.

The quaternion are represented by a 3D rotation by an angle θ around an axis given by the unit

vector v= [v1, v2, v3]:

h = cos(
θ

2
) + (v1 · sin(

θ

2
))i+ (v2 · sin(

θ

2
))j + (v3 · sin(

θ

2
))k (2.19)
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Figure 2.5: Axis and Angle rotation using unit quaternion

The reason why quaternions are used in this thesis is their efficiency of interpolating between

two rotational frames. The so called Gimbal lock is not present if quaternions are used. The main

”heavy” computations using quaternions are the conversion from a matrix to quaternion and the

other way around[Sho85, DKL98]. Quaternions are going to be used also in order to create random

uniform rotations[Arv92a]. In a later chapter is going to be discussed the drawbacks using Euler

angles which are:

• insufficient creation of uniform random rotations

• insufficient interpolation due to singularity problems

The following section describes the notion of a configuration of a system, the configuration

space and the workspace of a robotic arm. The position and rotation of the end effector are used

to describe the location of the TCP.

2.5 The configuration space and robot’s workspace

2.5.1 Definitions

The definition of configuration space of a robot is very important since it is going to be used often

in this thesis. The formulation of configuration space started from a work of Lorenz–Perez[LP81],

who gave the concept of the planning in general form. As the interest for motion planning increased

the notion of configuration space become clear. The configuration space is based on a configuration

of a robot which specifies the position of states(joints) of the robot. That specification is unique, it
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means that two configurations correspond to different states of the robot. For instance the image

2.6 present an example of two different configurations for a planar 2D robotic arm.

Figure 2.6: Example of two configurations for a planar robot arm

The configuration space of a robot or simply C-Space is the space that includes all possible

configurations of the robot. The dimensionality of the configuration space is equal to the number

of degrees of freedom. The degree of freedom of a system or DoF is equal to the number of

independent parameters needed to describe a configuration. For example the DoF of a robot arm

is equal to the number of joints. In conclusion a configuration can defined in abstract level as a

point with coordinates: qi={qi1, qi2, qi3, ..., qiN} where N is the DoF of the system, and the C-space

is defined as C =
∞

i=0 qi, where qi is a configuration. Is is obvious that if N is the DoF of the

robot the C-Space belongs to RN ,C ∈ RN . For easier further understanding the configuration is

considered as a point.

The workspace or the operation space of a robot arm is the space which represents the points of

the real environment (R3 for 3D or R2 respectively for 2D) that the robot end effector can reach.

The workspace is simply the volume where the robot can work. The workspace of the robot arm

is our Euclidean / 3D world and consists of the position and orientations of the end effector of the

robot arm. In this thesis, the symbol W represents the workspace of the robot i.e the placement

of the robot in 3D space. Mathematically the workspace consists of the three positions and three

orientation variables of end effector.

2.5.2 Configuration space obstacles

Since the C-Space is defined, any other sub-space X ⊆ C can be defined also. The configuration

obstacle space is a sub-space. As definition the configurations space obstacles Cobs is the sub-space

from the C-Space where the robot collide. Let denote as O ⊂ W the obstacle space and a link

17



2. TECHNICAL AND THEORETICAL BACKGROUND

Figure 2.7: 2 DoF planar robot arm with its Cfree and Cobs regions. The left image depicts the robot

arm with two obstacles and the right image corresponds to the configuration space obstacles.2

body of the robot as L(q) ⊂W . The C-Space obstacles is defined as follows[LaV06][CLH+05]:

Cobs = {q ∈ C|L(q) ∩O 6= Ø} (2.20)

The Cobs space is closed set, and that is obvious since the robot should avoid the surrounding

objects. It is obvious that the configuration free space is equal to : Cfree = C\Cobs (equal to

Cfree = C − Cobst). The Cfree is an open set meaning that it cannot even ”touch” the Cobs. The

configuration free space is the set of configurations at which robot does not collide.

A challenge using configurations space is the calculation of Cfree and consequently the Cobs.

For 2 DoF robot arm may be possible to be calculated, however an exact representation of Cobs

in high dimensions is extreme difficult and till now it has not been done. The reason why there

is such a difficulty is that configuration space for an N-Dof robotic arm contains all the possible

joint angles. The Cobs is calculated only if all possible joint angles are taken into account. For

each configuration, a collision detection should be done. Surely the whole procedure is not going to

finish in a desirable time. It is very time consuming to examine all joints angles. A small resolution

between two consecutive configurations can be considered. It is a challenge to calculate the most

appropriate resolution. However, even in that case, the calculation of the Cfree is time consuming.

The image 2.7 represents an example of Cfree and Cobs for a planar 2D robot arm. From this

example can be noticed that there is not a direct mapping from 3D space to C-Space. The shape

of the obstacles differ completely in C-Space. For all the above reasons, the designing of a motion

planner with a pre-calculation of Cfree is till nowadays impractical for high dimensional C-Spaces.

However, as it is going to be explained in later chapter, sampling based approaches overcome those

difficulties and although they can work in C-Space they are very fast and efficient.

Since configuration space uses points to define the state of the system, it would be really useful to

calculate distances between the states of the system. That is described in the following subsection.
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2.5.3 Distances-Metric

All sampling based algorithms require a function that can calculate the distance between two

configurations (points). The distance between two configurations q1 and q2 can be calculated as

the maximum displacement of every point of the robot between the two configurations. In other

words ifA(q1) andA(q2) are the set of all points of the robot for the two configurations in workspace

W and λq1 ∈ A(q1) and λq2 ∈ A(q2) two points on the robot on the corresponding configurations,

the distance is equal to:

d(q1, q2) = max
λ∈A(q)

||λq1 − λq2 || (2.21)

The symbol ||.|| denotes the Euclidean distance. The function 2.21 is not so intuitive to be

calculated since it requires the calculation of the displacement of each point of the robot arm.

Since equation 2.21 is not appropriate, the distance between two configurations is going to be

calculated in C-Space. For that reason metric spaces are going to be introduced. A metric space

(X, ρ) is a topological space which has a function f: X×X->R with the following characteristic: (a)

non-negativity (b) Reflexivity (c) Symmetry and (d) Triangle Inequality. The function defines the

distance between two points in metric space, if the four conditions are fulfilled.

The most common family of metrics, symbolized as Lp in the literature[LaV06], is equal to:

Lp : dp(q, q
′) = (

N
i=1

|qi − q′i|p)(1/p), (2.22)

where N is DoF and p denotes the metric. For instance when p=2, the normal Euclidean distance

in RN is defined. The L1 corresponds to Manhattan metric. In the case where the p goes to ∞ the

metric is equal to:

L∞ = d∞(qi, q
′
i) = max

1≤i≤N


|qi − q′i|


(2.23)

The Lp metric can be used with the same way also in the vector space. The Lp norm in vector

space RN for a vector q is equal to:

Lp : ||q|| = (

N
i=1

|qi|p)(1/p), (2.24)

2.6 Calculating minimum distance for convex polyhedral

As already mentioned, every motion planning algorithm should deliver a path where the robot

should follow within an allowable accuracy. A path surely should be collision–free meaning that

the robot should not collide with the environment and with himself. For that reason collision

detection is an important tool whose performance influences robotics and in general all those tasks

that involve motion and calculations of penetration between convex objects. Non-convex objects

are not considered in this thesis, since the FRIEND recognition system decomposes a non-convex

2Thanks to the Java program in the web site: http://ford.ieor.berkeley.edu/cspace/
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object to convex objects. Another reason is that the implementation of the GJK (Gilbert–Johnson–

Keerthi) algorithm in the FRIEND system can handle only convex objects. This chapter discusses

the basic collision detection algorithm that is applied to the system FRIEND.

One methodology for collision detection is to calculate the Cobs, like in figure 2.7, and then

to compute the distances between the robot and the objects. That could be the best solution,

especially for C-Space motion planners. However as already discussed, the computation endeavor

is extreme high and it increases as the dimensionality of the space increases also. That is the reason

why the workspace for a robot arm is used for the purpose of calculating distances between objects

(consequently collision detection). We have to recall that the position of each link of the robot arm

can be calculated since (a) the values of joint angles are known and (b) forward kinematics can be

calculated fast using the formula 2.12.

A robot arm is a rigid body like the obstacles. For that reason, an idea of representing the

arm as a 3D model in Cartesian space is meaningful. In literature exist many algorithms that

can calculate collision detection, penetrations and distance between polyhedral using 3D modeling.

Example of algorithms are: GJK[GJK88], the SWIFT (Speedy Walking via Improved Feature

Testing) algorithm[EL01] and many others3.

In this thesis the enhanced version of GJK algorithm [Cam97]4 and the SWIFT algorithm have

been tested. Both give similar results with the SWIFT algorithm to be slightly faster. However, for

calculating minimum distances the enhanced GJK package is used, because it provides addintinal

information like the pair of closer points between two polyhedral.

All the algorithms are integrated into the software module which is called MVRServer (MVR

means Mapped Virtual Reality)[FIG05]. It models the robot and the objects of its environment

using only primitive objects e.g. cuboid, sphere and cylinder. The reason is that primitives have

simple geometry and the calculation of minimum distances can be done very fast. The figure 2.8

presents an example how the real world is modeled into primitives in MVR. At the beginning of

this work[FIG05] the MVRServer had only the GJK as basic collision detection algorithm. During

the thesis the MVRServer is enhanced so that other packages are able to be used like the SWIFT.

A good advantage of this improvement is that a comparison between several packages can be done.

An important feature that is added in the thesis is the support of bounding boxes for the objects.

Each object in MVR has its own bounded box called oriented bounded box (OBB)[GLM96, ZF95].

The bounding box covers each object and is used in order to improve the performance of the

collision detection. In a later chapter is explained the algorithm that is developed that improves

the total performance of a motion planner compared to the normal approach. The figure 2.9

depicts an example of bounding boxes with extra size for visualization purposes as well as the

minimum distances between the robot arm and the environment.

3Many collision detection packages are available in the web site : http://gamma.cs.unc.edu/
4Source code is available on the Internet in web site: http://www.cs.ox.ac.uk/stephen.cameron/distances/
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(a) Real scene (b) MVR Scene

Figure 2.8: Real scene and the corresponding 3D modeled scene

(a) MVR Scene (b) MVR Scene and the

OBBs

Figure 2.9: MVR Scene, minimum distances between the robot arm and an illustration of OBBs

2.7 Inverse Kinematics

The inverse kinematics, as the word inverse implies, is the process of determining the joint angles

by a given end effector (TCP) position and orientation. The equation 2.13 defines the forward

kinematics as a function of the joint angles. If the function f−1 exists, the inverse kinematics for

a given TCP PTCP is solvable and the following equation gives the configuration:

q = f−1(PTCP ). (2.25)

The inverse kinematics are very important for every motion planner since motion specifications,

assigned to the end effector in the operational space, are transformed into the corresponding joint

space motions. Furthermore the goal of task is normally interpreted as a frame, that is the final

position and orientation of the end effector.
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In literature, the calculation of f−1 is not trivial. Two types of methodologies exist: closed

and numerical form. The closed form solution (or analytic) are in general faster than numerical

solution. The disadvantage of closed form solutions is that they require either algebraic or geometric

intuition in order to find the necessary equations. Another disadvantage of closed form solutions is

the inability to be applied to many systems, since they are depended by the structure of the robot.

On the other hand the numerical solutions are applicable to all kind of manipulators, but they are

slow and they cannot provide all the possible solutions.

The total number of inverse kinematics solutions depends on the redundancy of the system.

A system (e.g. robot arm) is called redundant if it has more DoF than it is needed in order to

describe its position and orientation. A robot arm is called redundant if by having three variables for

position (x,y,z) and three for orientation (roll , pitch and yaw) the number of joints are greater(not

equal) than six. A non-redundant robot arm has a restrict number of inverse kinematic solutions

for a given pose while a redundant robot arm has an (theoretical) infinite number of solutions. For

instance a six DoF robot arm has up to 16 possible solutions. The selection from an infinite set of

solutions is not trivial and depends on the given task. One solution could be to select the closest

one to a given configuration. Another propose is to define a set of possible solutions and to pass

this set to the planner. Another idea could be to calculate randomly solutions around a workspace

region and to pass the random solutions to the planner.

In this thesis the developed planner works in C-Space and it is applied to a 7 DoF robot arm. As

follows, the robot arm is redundant. The kinematics of the manipulator are designed in a manner

that each joint has the rotation axes shifted for 90o degrees relative to the previous one. For this

seven degrees of freedom robot arm an analytical inverse kinematic solution has been developed,

called KCC [IG97, IG98, IG00]. In the image 2.10 is presented the seven DoF robot arm together

with the 90o shifting between a joint and its previous.

Figure 2.10: 7 DoF Robot arm and the coordinate systems of each joint

Redundancy is one parameter of the KCC algorithm. Since this manipulator is redundant,

its elbow can have theoretical unlimited number of positions for a given end effector position and

orientation. However, all of them lie on a circle (see figure 2.11). The redundancy angle α, shown
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Figure 2.11: Example of redundancy angle for a manipulator

in figure 2.11, is the parameter that controls the amount of inverse kinematics solutions that the

algorithms returns, since it rotates the elbow of the manipulator. The amount of possible solutions

is computed as follows:

NIKsolution =
360o

α
, α ∈ [0, 360] (2.26)

2.7.1 Differential Kinematics - Jacobian - Singularities

In a later chapter a Jacobian based approach is going to presented. For that reason, a short

introduction to Jacobian matrix, its characteristic and calculations is going to be done. The term

differential kinematics describes the relationship between the joint velocities and the corresponding

end-effector linear and angular velocity. The geometric representation is done by the Jacobian

matrix. If p represent a matrix with the position (x,y,z) and orientation (Roll, Pitch and Yaw

–Euler angles) of the end effector, the relationship between the two type of velocities are calculated

by the equation:

ṗ = J(q) · q̇ (2.27)

The dimension of jacobian matrix J(q) is m× n, where m is the number of variables representing

the position and orientation of TCP and n is the dimensionality of C-Space. It is clear that for

a redundant manipulator where n> m the Jacobian matrix is not a square matrix. The Jacobian

matrix is given by the following equation (recall the equation 2.13):

J =


∂y1
∂q1

... ∂y1
∂qn

... ...
...

∂ym
∂q1

... ∂ym
∂qn

 (2.28)

The inverse transformation of equation 2.27 gives the relation between the end effector differ-

entials and the joint velocities vectors:

q̇ = J(q)−1 · ṗ (2.29)

For redundant manipulators the calculation of inverse Jacobian matrix is not possible, and for

that reason the J(q)−1 is substituted by the Jacobian transpose (JT ) or Jacobian pseudo inverse

J+ = (JT · (J · JT )−1) . Both can replace the inverse in equation 2.29[SSVG09].
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Using differential kinematics, the manipulator’s joint angles of the robot arm can be calculated

by the help of a given target TCP and thus following the steps:

1. Compute Jacobian

2. Compute J−1 or equivalent

3. Compute ∆θ = J(q)−1 ·∆p

4. q = q +∆θ

That means that by doing small steps ∆p in workspace, the differential kinematics forces the

manipulator to reach a particular end effector location by transforming the joint angles. The

procedure finishes when the ∆p is smaller than a tolerance value ε.

Let now have the case where m=n. The matrix loses its rank, when the manipulator is in singular

configuration. The inverse of the jacobian is not possible to be calculated since the determinant

becomes zero. That leads to unexpected velocities and consequently behavior. The singularities

for a manipulator can be devided to boundary and internal. Boundary singularities occur when

the arm is stretched whereas the internal one can occur everywhere inside its workspace. Internal

singularities exist normally when two axis of motion are aligned.

The calculation of Jacobian can be done either by taking the derivatives of forward kinematics

or geometrically. The first one is not an efficient method if the dimensionality of the system is

high. Therefore geometrical computation of the jacobian matrix is more appropriate. Using these

approaches the Jacobian matrix can be calculated by the equation [SSVG09, OS84]:

JO
e = [J1(q) . . . JN (q)], where Ji(q) =


JPi

JOi


=



zi−1

0



zi−1 × (pe − pi−1)

zi−1


 (2.30)

The vectors zi−1, pe and pi−1 (e is abbreviation of the end-effector) are computed as follows

• zi−1 is taken from the third column of the TO
i−1

• pe is computed by the first three elements of the fourth column of the TO
e

• pi−1 is computed by the first three elements of the fourth column of the TO
i−1

The equation 2.30 is used through this thesis and computes the Jacobian based on the reference

frame {O}.
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Figure 2.12: An example of Tree

2.8 Graphs

Graphs are going to be used later and it would be meaningful to be introduced at that point. The

following chapter uses the notion of graph and tree ( a category of graphs). A graph G=(V,E)[Die10]

is a pair of sets connecting vertices(nodes)V with edges E. An edge connects two nodes. The

edges set E is a subset of [V ]2. The order of a graph is equal to the cardinality of the set V that is

|G| = card(V ) = |V | while the graph’s size is equal to the cardinality of the set E. The degree of

a vertex is the number of edges connected to it.

In literature graphs are separated into sub categories:

• undirected: Undirected graph is the graph where an edge e = (a, b) is identical to the e′ =

(b, a)

• directed: In directed graphs the edges can be represented by arrows and there is only one

edge that can connect two vertices.

• mixed : It is a combination of two referred types

• connected: A graph is k-connected if no two vertices in G are separated by fewer than k other

vertices[Die10]. The connectivity of a graph G is symbolized by k(G) and if k is bigger than

one the graph is connected.

In this thesis we are going to use a category of graphs called trees. Trees are simply acyclic

connected graph where each vertex is connected with only one vertex. Simply if a graph has N

vertices, a tree has N-1 edges. The figure 2.12 shows a graph that is called tree.
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Chapter 3

State of the art - Motion planning

3.1 Introduction

This chapter is a small introduction to motion planning. Basic algorithms, definitions and features

are going to be described in this chapter since they are going to be used through this thesis. First

some important definitions regarding the planning is presented and later some basic algorithms are

introduced.

Motion planning involves the automatic motion of a robot from a starting placement to a goal

one, avoiding collisions with objects and obeying extra constraints if that is necessary. Histori-

cally its first formulation called the piano problem. The problem had one critical question which

should be answered: how to move a piano, that is a complicated furniture, through a cluttered

environment that involves objects like furnitures or humans. It is clear that making a robot to

move autonomously in our world , taking its own ”decisions” and ”thinking” about the path that

needs to be followed is a challenge. The quality of the path and the calculation time are influenced

by several criteria. For instance some heuristics may reduce the calculation time but the quality of

the path may be not improved. It is usually a compromise between quality and calculation time.

The motion planners can be classified depending on the requirements[CLH+05]. An example

of classification can be made by the task. In this case, the sub-categories are: navigation,coverage,

localization and mapping. Navigation, which this thesis is dedicated to, is the task of finding a

collision free path from one position to another one. By Coverage problems sensors are passed

over all points in space like painting. Localization is the problem where a map is used to interpret

sensor data and is used to determine the configuration of the robot. The robot works in unknown

environment, collects data and constructs a representation in order to use it later one the other

three sub-categories.

One important property of a motion planner is the completeness. The completeness of a motion

planning can be categorized by exact, resolution and probabilistic. A planner is (exact) complete

if the planner can find a solution if one exist. A planner is resolution complete if a solution

exists at a given resolution of discretization (normally a grid discretization). A planner is called
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probabilistically complete if the planner finds a solutions while the execution time of the algorithm

approaches to infinity.

A planner can be online or offline. The environment by an offline planner is known and the

planner gives its result to trajectory execution. An online planner constructs its path while the

robot is moving. The sensors detect changes in the environment and the planner updates its result

based on the sensors data.

3.2 Motion planning algorithms

In this chapter the basic algorithms are going to be presented. The algorithms are potential

fields, roadmaps, cell decomposition and sampling based approaches like Rapidly exploring Random

Trees(RRTs).

3.2.1 Potential fields

Historically potential fields was one of the first approaches in the field of the robot motion planning.

This approach was first introduced around 25 years ago[Kha85]. The main idea behind potential

fields is the existence of virtual potential field/forces in the C-Space. The obstacles are repulsive

and the target configurations are attractive for the robot. With this approach the robot can

be visualized as a magnetic ball in C-Space which rolls around the obstacles (same potential as

magnetic ball) and it is attracted by the target which has the reverse potential. The figure 3.1(a)

presents a simple example of motion of a planar robot in a potential field. The robot avoids the

obstacle since the ”charge” is the same. The image 3.1(b) shows an example of potential fields

in C-Space. The obstacles are represented as mountains and the bigger they are the bigger is the

repulsive force to the robot in order to avoid them.

The main drawbacks of the simple implementation of potential fields are that (a) the represen-

tation of potential fields in C-Space is not easy in high dimensions and (b) they cannot guarantee

a solution. Being more precise, the potential fields may trap into local minimal and the robot may

be not able to escape from them. For these situations it is necessary the developing of ”heuristic”

or very intelligent potential field functions that can help the robot to escape from local minimal

within some time. The term local minima defines the space where the robot has difficulty to move,

because it is surrounded by obstacles. In such a case the robot should be able return back in order

to avoid them and escape from them. An example of local minima is illustrated on figure 3.1(c).

In literature exist several modifications in order to avoid local minima[Lat91, Cha96, BLL91].

3.2.2 Probabilistic Roadmaps (PRM)

The word roadmap[Lat91] is the composition of the two words: ”road” and ”map”. That means

that a map is constructed that contains connected roads (or paths) between a start and a goal

state. In other words there is an approximated mapping of the Cfree space where the robot can

2Thanks to the web site document www.cs.cmu.edu/~motionplanning/lecture/Chap4-Potential-Field_

howie.pdf for the images
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3.2 Motion planning algorithms

(a) Example of motion with potential field (b) Representation of potential fields (c) Local minima

Figure 3.1: Example of robot motion with potential field ,(b) representation of them and (c) local

minima2

draw possible connections and paths and afterwards it tries to find the ”best” path. The mapping

is done using several methods like visibility graphs[Lat91, LPW79], Voronoi diagrams[Aur91] or

some Silhouette methods like Canny roadmaps[HMP00]. The result from a map construction is a

graph G = (V,E) with vertices V and edges E.

In motion planning probabilistic roadmaps (PRM) is the common approach that is used[KSLO96,

HLK06]. The PRMs are constructed as already mentioned in two phases: learning phase, where the

roadmap is constructed, and query phase, where a search in the graph is done and the final path is

extracted. The graph search is normally done by A∗[HNR68] or a D∗ [SM93] algorithm. The con-

struction of the roadmap is done by sampling configurations in Cfree and consequently connecting

vertices that do not belong on the same (connected) component. The PRMs are probabilistically

complete. If the edges has nodes in the same connected component, the PRMs are conditionally

complete. The figure 3.2 explains the construction and query phase of roadmaps.

(a) Learning phase - Graph construction (b) Query phase - Path extraction

Figure 3.2: Example of probabilistic roadmaps learning(left) and query phase(right)
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The PRMs approach is used widely in the case where the environment does not change[NSL99,

WAS99, SHJ+05] or when few objects may move in the environment[YYG10]. The density of

the graph plays also an important role and that is related with the number of samples and their

distribution[LBL04]. Combination of PRMs and RRTs is also available[BCL+03].

3.2.3 Cell decomposition

Cell decomposition is an another representation of the free space of the robot. In this case the

space is discretized into some specific regions called cells. The path later is computed using the

center or some other point of the cells. Like the PRM, this approach has two phases: first is the

decomposition of the space into cells and later the planner searches for a path towards all adjacent

cells.

Typical decompositions of the space are the trapezoid [PS85] or Morse Decomposition[ACR+02].

The first one is based on polygonal representations while the second one allow representations of

nonpolygonal and nonplanar spaces. Another interesting approach of cell decomposition is the

hierarchical approximate cell decomposition[Lat91] where the cells are generated uniformly. That

means that the cells have specific size and the space is divided into many cells. Each cell is checked

whether it is in collision or not, and if it is, it is marked as non-free ( figure 3.3(b)).

(a) Trapezoid cell decomposition (b) Uniform cell decomposition.

Figure 3.3: Cell decomposition examples for a 2D robot. The left image illustrate an example of

trapezoid cell decomposition and the calculated path. On the right image the uniform cell decomposition

is presented. The black region is the Cobs

The image 3.3 illustrates two examples of space decomposition. It can be seen that the space is

divided into regions and the path is constructed through these regions. The decomposition seems

to be very attractive since it can be done fast. However in high dimensions, the decomposition

requires effort and it is not efficient any more. Moreover by increasing the resolution e.g. reducing

the size of the cells, the number of cells is increasing and consequently the searching time is also

increasing. Another problem in high dimensions is the lack of knowledge of the Cobs space, and

that leads to the fact that it is a heavy endeavor to construct a map like in figure 3.3(b). All these

reasons concludes to the fact that cell decomposition is impractical in high dimensional spaces.
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Cell decompositions (especially the uniform approach) has been used in the literature for ma-

nipulation motion planning with high success rate indicating the efficiency of the algorithm if the

working space is below or equal to three[Ojd09a][OLJ98]. An recent approach [SZ11] introduces

workspace 6D decomposition using cylindrical approach.

3.2.4 Rapidly exploring Random Trees - RRT

The RRTs started developing since almost 15 years ago, and from the beginning seemed to be

promising. As it is going to be explained later the modifications from the main approach[LJ99,

Lav98] can give high boost in the performance.

The main characteristic of the RRTs is that it is a single query approach. A tree is built

incrementaly and at the same it explores the Cfree in order to reach the goal. As the number of

the samples in the configuration free space is increased the probability to reach the goal tends to

one. For that reason the RRT approach is probabilisticaly complete[LJ99]. Denoting as V RRT
n the

set of vertices produced and n the number of iterations (consequently the time) the probability the

algorithm to reach the goal is equal to:

P (V RRT
n ∩Xgoal 6= Ø) > 1− e−α·n (3.1)

where α is a positive constant value.

(a) An RRT tree after N it-

erations

(b) A random configura-

tion qrnd is created

(c) Nearest neighbor is

found

(d) A stepwise ε extension

is done

Figure 3.4: An example of how the RRT is constructed and explores the Cfree

Compared to PRMs the RRTs is single query. A graph, which is called tree, is constructed and

at the same time an exploration of the space is done. Having T = (V,E) a tree, where V is the set

of vertices and E the set of edges, the tree is constructed by following the steps:

1. a random configuration qrand is created

2. the nearest neighbor qnear ∈ T to the qrand is found

3. extension from qnear towards qrand is done
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The extension is done stepwise. The extension in typical RRT approach takes as small step

ε towards the qrand and a new qext is created after that operation. The figure 3.4 represent an

example showing the exploration of the RRT trees in the configuration free space. While this

procedure continues and the number of nodes /vertices in the tree is increased the probability to

reach the Qgoal is increased and after some time a solution is going to be extracted.

3.2.5 Other approaches

Despite the most common approaches, in literature there are several other methodologies. Theses

solutions may not be general or easy to be implemented as the four described approaches, however

it is worthing to be mentioned since they can solve fast several tasks. Moreover several approaches

focused on the quality of the paths which is very important. The four planners focused mainly on

the feasibility e.g. to extract solutions as fast as possible without considering path quality. An

interesting approach to the direction of path quality planners is done in [KCT+11]. In this work an

approach using a stochastic trajectory optimization framework is implemented. They update noisy

trajectories in order to produce trajectories being more optimal. They claim that due to stochastic

behavior it can overcome problems that other approaches have [RZBS09]. The literature in ma-

nipulation planning is extremely huge providing the community with many variations, adaptations

and improvements of the planners. Many of them are discussed in the upcoming chapters.
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Chapter 4

Connecting two configurations

This chapter presents an efficient collision detection algorithm that is needed by the forecoming

planners e.g. CellBiRRT. In general, every planner should deliver a collision free path. A path

consists of several segments and the planner guarantees that each segment is collision free. That

is achieved if each segment is sampled into many points. One approach could be to check each

sample for collision and also for additional constraints if it is necessary. That is the reason why

collision detection calls are many during the planning (hundred till thousands calls) and it is the

most expensive procedure. Therefore this chapter presents the collision detection strategy used

later in every other planner such as CellBiRRT. The algorithm reduces dynamically the number of

samples needed to be checked boosting the performance of the planner.

The rest of this chapter presents the collision detection strategy . Briefly the algorithm does

the following:

• Computes Oriented Bounding Boxes(OBBs) that are used for calculating minimum distances

between robot arm and obstacles

• Uses a formula to calculate the length of the maximum curve (Lmaxcurve) that is done by the

manipulator

• Uses both OBBs and Lmaxcurve in order to reduce the number of samples needed to be checked

for collision

4.1 Calculating minimum distances - Identifying near and far ob-

stacles

Collision detection is a basic tool whose performance influences robotics and computer graphics

applications, such as motion planning, obstacle avoidance, virtual prototyping, computer animation,

physics-based modeling, and , in general all those tasks that involve motion and calculations of

penetration between convex objects. As already mentioned , the objects in MVR are convex.
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Having two configurations qA and qB, a segment σseg ∈ [qA, qB] is a continuous function that

connects two points and it is collision free if each point in the segment is collision free too e.g.

Dmin = (argmin
q∈σseg

(D(q))) > δ (4.1)

where δ > 0 is the minimum allowable distance and D(q) is the minimum distance between all rigid

bodies of the robot at configuration q with the environment. Consequently a path σ =


i σsegi is

collision free if each segment is also collision free.

In computer science continuous signals are sampled. The more dense the sampling is, the more

accurate and closer to continuous signals are the results. The sampling is also used in a segment

σsegi since the path is defined as a continuous function. Each segment is sampled into many points

and each point is checked for collision using the equation 4.1. The figure 4.1 illustrates an example

of sampling between two configurations.

(a) possible segments and sam-

pling the lines

(b) sampling direct line and collision

detection

Figure 4.1: Normal sampling approach and collision detection going from qA to qB

In that point it is very important to define the number of samples needed to be taken. In this

thesis and for simplicity the segments between two configurations are always a straight line. We

define stepi the distance between two samples as follows:

stepi =
∆qi
L
·Res (4.2)

where L is equal to the length /distance between the two points, and Res is the reference resolution.

The distance can be calculated from the equation 2.22. The higher the parameter Res is, the bigger

is the distance between two samples which lowers the accuracy to detect a collision. The figure

4.1(b) presents an example having high accuracy. If the stepi was much higher it may be not

possible to detect the collision. That is the clue that the stepi should be as small as possible,

but this situation increases the computation time. For that purpose the dynamic reduction of

intermediate steps is necessary[FG11a].

In literature, the dynamic collision detection approaches can be grouped in four methods[SSL05]:

Feature tracking or static methods[Cam90], Boundary volume[SSL05], Swept volume or space time

volume intersection[FH93] and Trajectory parameterization[Can86]. The first one tries for every
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Figure 4.2: OBB creation and the additional SIZE

Figure 4.3: Example of robot arm and OBB construction

step in a segmented path to detect pairs of closest features of objects. The second method creates

bounding volumes and in each segment the objects are tested for intersection. Actually it is as-

sumed that if two configurations are closer than a value δ, there is no need to call any mechanism

that calculates distances. The third method computes the volume that each movable object con-

tains during the time, and attempts to find possible intersections. The last method calculates the

geometry of the objects along the examined path by polynomials.

In order to calculate efficiently the collisions and distances between robot arm and objects, a

specific structure is needed. In this thesis the decomposition of complex objects into primitive

objects is done. Primitive objects are boxes, cylinders and spheres. If the high accuracy is not

important that type of modeling is adequate[JTT98]. Space partitioning[CO90] like hierarchical

volume representations (HVR) or binary space partitioning (BSP)[TN87] could be used. Another

important issue is to have a boundary representation of each object. In this work Oriented Bounding

Boxes (OBB) haven been used[GLM96, ZF95]. Other representations like Axes Align Bound Boxes

or ellipsoids fits[EB97] or k-DOPS[KHM+98] are referred in the literature. However the OBBs are

easy to be constructed and they follow the orientation of the primitive object, which requires less

computations.

In this thesis the system is able to detect far and near obstacles and OBBs are used for that

puprosed. Instead of taking the exact OBBs, an additional SIZE is given to each one as the picture

4.2 depicts. If OBBSize denotes the regular size of the OBB the following equation denotes the
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Algorithm 1 GREEDY-DIST-TO-OBSTACLE (Obstacle,RobotArm)

1: MinDistance=1000000; //big value;

2: for (i==1; i ≤ RobotArm.NumberLinks; i++) do

3: if (IntersectOBB(Obstacle,Robotarm[i])== TRUE) then

4: TempDistance=ComputeExactMinDistance(Obstacle,Robotarm[i])

5: if (MinDistance≥TempDistance) then

6: MinDistance=TempDistance;

7: end if

8: else

9: if (MinDistance≥2* SIZE) then

10: MinDistance=2 * SIZE;

11: end if

12: end if

13: end for

14: RETURN MinDistance //is the min distance

resized OBB:

OBBSize′ = OBBSize + SIZE (4.3)

An example of OBBs applied to robot arm links is given in figure 4.3. It is obvious that if two

OBBs are adjacent the distance between two objects is defined as 2 ·SIZE. The figure 4.2 presents

an example in 2D while the figure 2.9 presents the not-exact OBBs case in the robotic system

FRIEND. The following definition distinguishes the case of near and far obstacles:

Definition 1 Given two objects A and B, and their OBBs OBBA and OBBB with sizes SIZEA

and SIZEB, they considered to be far if:

B = OBBA ∩OBBB = Ø (4.4)

otherwise are considered to be near.

At this point, it is set that two near obstacles have a distance less than 2 ·SIZE. The algorithm

1 presents the approach for calculating approximate distances between robot arm and obstacles.

The method GREEDY-DIST-TO-OBSTACLE computes the minimum distance between robot arm

and an obstacle. First it checks if two OBBs intersect and if they do the algorithm computes the

exact distance between polyhedrals. The well known separation axes theorem is used in order

to calculate possible penetrations between OBBs. This procedure is much faster than calculating

always the exact minimum distances between polyhedral.

Let remark here that the SIZE for OBBs should be bigger enough than the minimum allowable

distance δ(refer equation 4.1). If the SIZE is equal to zero, the exact OBBs are used and the

GREEDY-DIST-TO-OBSTACLE returns mostly zero(if the OBBs do not intersect) or a value less

than the δ. If the OBBs intersect, the probability the rigid bodies to intersect is high. If the SIZE

is equal to δ, the GREEDY-DIST-TO-OBSTACLE returns either 2 · δ(if OBBs do not intersect)
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Figure 4.4: Bubbles while a robot is moving in 2D C-Space

or a value close to δ. The 3D modeling, e.g. recognition of obstacles is done by the sensors. That

gives some uncertainties in the model, since no sensor can guarantee 100% accuracy. For all these

reasons it is more reasonable to have a SIZE much bigger than the minimum allowable distance

δ.

4.2 Calculating the length of a maximum curve Lmaxcurve
- Using

”Bubbles”

In this section the length of the maximum curve in cartesian space that a manipulator can travel

by a displacement ∆q is going to be presented. Knowing the maximum curve and the minimum

distances the following challenge is faced: is it possible to neglect intermediate samples predicting

that are collision free?

The idea is based on [QK93, Qui94] where the notion of bubbles is presented. Bubbles are

defined as a local subset of the free space around a given configuration of the robot. Having rmin

the minimum calculated distance in C-Space, the bubbles are defined as:

B(b) = {q : ||b− q|| < rmin} (4.5)

where b and q are configurations. It is clear that if the distance between two configurations is

smaller than the radius rmin, the segment σb−q is considered to be collision free. Recall that the

rmin in equation 4.5 and the b and q are in the C-Space. Image 4.4 illustrates an example of

bubbles in C-Space. However for a manipulator with high number of degrees of freedom the rmin

in C-Space is difficult to be computed. For that reason the Lmaxcurve is going to be computed.

In[SScL05] they defined the upper bound of the curve that a link of a robot arm could travel

in the cartesian space for a step ∆qk as follows:

λi,max =

i
k=1

Rmaxik |∆qk| (4.6)
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where the i refers to the joint and ∆qk is in radians. It is obvious that if i = N the λ refers to

the end effector. The appendix E describes shortly the derivation of the equation 4.6. If a link is

prismatic the Rmaxik is equal to one, otherwise Rmaxik is the upper bound of the distances between

the points of the link i and the center of the rotation of the joint k e.g. when the arm is stretched.

Figure 4.5: Example of the radius of a planar manipulator for a configuration

(a) The radius using only the exact OBBs (b) The maximum ra-

dius when the arm is

stretched

Figure 4.6: Example of estimation of Ri
k for a planar manipulator using the OBBs

The calculation of the radius Ri
k is critical. An example of the radius is given in the figure

4.5. Analyzing each point of the model it is going to be inefficient since a model contains triangles

and consequently many points. Thus, calculating the exact Ri
k for each point may not be the best

solution. The approach used in this work is an approximation and it is done using the exact OBBs

(means the SIZE is equal to zero). In such a case the only computation effort is to define the

maximum Euclidean distance between the center of the rotational joint and the outer vertices of

the bounding box(8 vertices). Each box has eight vertices and the computation is done using only
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4.3 Reducing the number of samples between two configurations qA and qB

them. The calculation of the maximum distance between each of the eight points with the center

of the joint has to be done. This idea is presented in figure 4.6. The maximum curve that a

manipulator is possible to follow is done when it is stretched. At that case the values of the Ri
k

becomes maximum (Rmaxik). It is reasonable to calculate the Ri
k when the arm is stretched and

with the help of the bounding boxes. Surely it is an over estimation and not an exact computation

of the λ from equation 4.6. On the other side it is a fast computation which is done once even

before the beginning of motion planning algorithm since the values of the Rmaxik depend on the

characteristics of the robot arm e.g. length and size. Summarizing the ”λmax” in this work is

calculated as follows:

λmax =

N
k=1

RmaxNk |∆qk| (4.7)

where N is the DoF of the robotic arm. Considering a path σ which is sampled uniformly into

M steps, the maximum possible curve’s length that the robot arm can do Lmaxcurve is given by:

Lmaxcurve =
M
i=1

λmax (4.8)

4.3 Reducing the number of samples between two configurations

qA and qB

In this chapter the results from the previous sections are going to be joined. As already mentioned,

the number of collision checks for a segment should be high enough in order to guarantee that the

segment between two configurations is collision free. Many calls of collision detection algorithm

increases the total computation time. The idea proposed in this work is to use the radius Ri
k

calculated before together with the algorithm 1 and the equations 4.5 and 4.6. The bubbles are

constructed based on the maximum curve Lmaxcurve . Their values depend on the displacements

∆qk of each link k of the robot. The algorithm 2 presents the proposed approach.

At the beginning of each segment, the λmax is calculated (line 1-2) and it is used as a constant

through the algorithm. For each obstacle two values, called Di and ActualArci, are assigned, which

(a) represent the distance between the arm and the respective obstacle (Di) and (b) the maximum

possible length ActualArci(Lmaxcurve) of the curve that the arm may have done if the environment

consisted only with the obstacle i. For each sample (line 9) there is a pair of distances for an

obstacle and the traveled curve of the robot arm. The ActualArc for each obstacle is checked

over the samples if the value overcomes the corresponding distance between the robot arm and the

obstacle(line 19 and 20). If it does, the ActualArc for the corresponding obstacle is reseted (line

21) and if the distance Dj (line 23) exceeds the limit δ the algorithm returns the last valid (notated

as qk in line 28) or l configurations before the last valid qk (line 24). The value of l depends on the

environment and also if the robot has to move far from obstacles. Big l forces the arm to move far

from possible colliding obstacles.

Another important issue that the algorithm 2 covers is the probability of a self collision to

occur. Self-collision is done when two parts of arm collide. In the robot arm used in this work the
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Algorithm 2 q = ConnectEfficient(qA, qB)

1: Steps=CalculateSteps() // see equation 4.2

2: λmax=CalculateLMax(Steps) //see equation 4.7

3: for (i=1;i≤Obstacles;i++) do

4: ActualArci=0; //all global traveled path is zero

5: Di = GREEDY −DIST − TO −OBSTACLE(i, RobotArm) //see algorithm 1

6: SelfCollision=0; // for self collision

7: StorePair(ActualArci,Di) // pairs are createed

8: end for

9: for (i=1;i≤ NumberSamples;i++) do

10: qi=qA + i · step
11: SelfCollision+=λmax;

12: if (SelfCollision≥ λmax) then

13: dDistance=SelfCollisionOBB(); //computes the MinDistance between end effector and the necessary links

based on GREEDY-DISTANCE

14: if (dDistance≤ δ) then

15: RETURN q=qk − l · step
16: end if

17: end if

18: for (j=1; j≤Obstacles; j++) do

19: ActualArcj+=λmax; //the global calculated path for the arci

20: if (ActualArcj≥Dj) then

21: ActualArcj=0 //check if for the obstacle is close to robot

22: Dj=DISTANCE-TO-OBSTACLE(j,RobotArm) //only respective obstacle is checked

23: if (Dj < δ) then

24: RETURN q=qk − l · step //k≥1, is the -k- valid configuration and l is greater or equal to zero

25: end if

26: end if

27: end for

28: Store k=i; //this index stores collision free configuration

29: end for

30: RETURN qB ;

end effector can reach its first and second link and for that reason self collision checking is done.

The self-collision checking follows the same strategy and is covered in lines 11-15.

Summarizing the algorithm 2 can efficiently ignore samples that are not necessary to be checked

by controlling the ActualArci of each obstacle with the corresponding distance between it and the

robot arm. For that reason the algorithm guarantees that there is no missing samples. The Di of

each obstacle is equivalent with the ”bubbles” in figure 4.4 and the ActualArci is the corresponding

maximum length of the path done by the manipulator. Experimental results presented in later

chapter show the significant improvement in the performance of a motion planning algorithm that

works in C-Space.
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4.4 Experimental results

(a) Start Configuration (b) Goal Configuration

Figure 4.7: Simulation environment 1 with start and goal configurations in MVR. The robot should

move from the start to goal configuration. The aim is to measure the collision detections and the

computation time of the planning algorithm

(a) Start Configuration (b) Goal Configuration

Figure 4.8: Simulation environment 2 with start and goal configurations in MVR

4.4 Experimental results

In this chapter it is going to be shown the profit of the algorithm 2 compared to the regular

algorithm 3. The algorithm 3 uses also the λmax however not for each obstacle individually

but globally. Moreover it uses the method CalculateAllMinDistancesWithOBB() which returns the

global minimum distance between the robot arm and the obstacles using either OBBs (algorithm

1) or not. For the first case (where OBBs is used) the algorithm is notated as optimized and for

the second case the algorithm is referred as no-optimized. The approach proposed here is referred

as efficient.

For calculating minimum distances between polyhedral the GJK algorithm is used. The work-

station consists of an Intel Core i5M@2.46Ghz. In order to study the efficiency of the algorithm,
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Algorithm 3 q = ConnectOptimized(qA, qB)

1: Steps = CalculateSteps() //see equation 4.2

2: λmax=CalculateLMax(Steps)();

3: MinDistance = qA.CalculateAllMinDistancesWithOBB() //global collision detection for all obstacles using al-

gorithm 1 (OBBs)

4: ActualArc=0

5: for (i=1;i≤ NumberSamples;i++) do

6: q=qA + i · stepi
7: ActualArc+=λmax; //the global calculated path

8: if (ActualArc≥MinDistance) then

9: ActualArc=0;

10: MinDistance=qi.CalculateAllMinDistancesWithOBB() //global collision detection for all obstacles using

algorithm 1

11: if (MinDistance≤δ) then
12: RETURN q=qk − l · step // is the -k- configuration before the collision, l is a positive number

13: end if

14: Store k=i; //this index shows the collision free configuration.

15: end if

16: end for

17: RETURN qB ;

different benchmarks are performed. The simulation environments are illustrated in the figures 4.7

and 4.8. The Collision Profit is given by the formula:

Profit =
ExpectedCD −MeasuredCD

ExpectedCD
· 100% (4.9)

where the notation ExpectedCD refer to the expected number of collision detection checking and

MeasuredCD are the actual - measure number of checking. For all experiments, the sampling

resolution ”Res” (equation 4.2) for the line between qA and qB is equal to 1 deg. The efficiency

of the proposed approach is tested in an RRT based motion planner. All experiments run with the

same pseudo random generator e.g. the sampling remains the same for all tests. The performance

depends mainly from the performance of ConnectEfficient and ConnectOptimized.

The results are really promising. The proposed approach (efficient) managed to deliver almost

25% faster result than the optimized approach. That is expected since the collision profit (figure

4.9(c)) is also 25% bigger, which means that the method considers less samples which improves

the total performance. The value of the SIZE is an important parameter. From the figure 4.9(d)

can be seen that 5cm is the value that resulted to shorter computation time. The dimension of

the gripper (in 3D model) is equal to 10cmx10cmx20cm (width, depth, height). Experiments done

with small SIZE (e.g.1, 2 cm) do not perform well since obstacles are assumed to have maximum

distance equal to 2*SIZE (e.g. 2, 4 cm). That is a small value compared to the size of gripper.

If the SIZE is much bigger the algorithm behaves similar to the one with small SIZE. Big SIZE

cancels mostly the presence of OBBs since OBBs are going to intersect always. The latter results

unfortunately to low performance.
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4.4 Experimental results

(a) Planning computation time-Method for task 1 (b) Planning computation time-Method for task 2

(c) Collision detection Profit in % for Task 2 (d) SIZE-Planner Time for Task 2

Figure 4.9: Experimental results (a)-(b) Performance influence in computation. (c) The collision

detection profit % of each method. (d) The SIZE influences the computation time

4.4.1 Benchmarks with other collision detection packages

Experiments are done with other packages PQP [LGLM00] and SWIFT + +[EL01]. The PQP

package is old and it gave slower results compared to the other packages. The optimization done

in algorithm 1 improved the performance of PQP much more than in GJK and SWIFT++.

Compared to PQP and GJK algorithm, which have as input a pair of convex polyhedral, the

SWIFT++ algorithm works faster if all necessary pairs of objects are given for calculation.

The boost in the performance depends also on the collision detection algorithm. For PQP the

improvement was higher compared to the GJKs and SWIFT++s. For SWIFT++ the improvement

was slightly less than GJKs (around 22% between optimized and efficient)
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4.5 Discussions

The method ConnectEfficient, proposed in this chapter, can reduce significantly the number of the

calls of collision detection as well as the computation time for a planner. That is accomplished

with a combined strategy of OBBs, the length of the traveled curve of a manipulator and an

algorithm for exact distance computation. In the following chapter, the bidirectional sampling based

approach CellBiRRT is explained. The planner requires an efficient collision detection algorithm

and therefore the ConnectEfficient is explained here.

The limitation of the algorithm is the size of the robot arm. If the length and the size of the arm

are big then the value or Rmaxjk is also big. That results to the issue that the maximum traveled

curve is going to exceed often the calculated minimum distances. The experimental results 4.9

show that if the SIZE is small, the algorithm does not improve the performance. That behavior

is similar to when the Rmaxjk is big. Another limitation is the density of the environment. If the

environment is extreme dense with obstacles, the algorithm may not improve the total performance.

That is explained since OBBs intersections may occur often. Consequently, the latter calls the GJK

algorithm to calculate the minimum distances.
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Chapter 5

CellBiRRT - a sampling based motion

planner

This chapter describes a sampling based motion planning algorithm, called CellBiRRT. The planner

works completely in configuration space growing two bi-directional trees. The algorithm is based

on the RRT that is described briefly in the 3.2.4 chapter of this thesis. The CellBiRRT configures

the Cfree space into areas called N-cuboid areas that are created based on specific rules. It uses

information from the workspace in order to achieve additional features like obeying to additional

constraints or to improve the performance of the planner. For that purpose cells are going to be

used having some additional characteristics.

The chapter is organized into more sections. The sections are:

• Configuring the Cfree space. This section describes the N-cuboid areas. The first part of the

CellBiRRT motion planning algorithm is going to be presented.

• Efficient sampling areas using cells. Here the cells are going to be introduced illustrating the

benefits of using them.

• CellBiRRT algorithm. In this section the CellBiRRT algorithm is presented and explained

in detail.

• Experimental result. Experimental results analyzing each parameter of the CellBiRRT plan-

ner are presented.

The algorithm, that is going to be presented, is an RRT-based algorithm[LaV06]. In literature

there is a lot of modifications and improvements of the RRT. Several studies regarding the RRTs

and their efficiency have been done [JCS08, MWS07, Lav98, Bra06a, MWS07, OOV02]. Some

improvements are focused on the sampling part of the algorithm[JYLVS05, LL04, YJSL05]. More

recent motion planner is focused on grasping introducing work space goal regions[BSF+09]. Other

work is focused on manipulating objects while the motions of the robot arm should obey to ad-

ditional constraints e.g. orientation or force/torque constraints[BSFK09, YG05, BS10]. For the
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Algorithm 4 Bi-Directional RRT algorithm(BiRRT)

1: T1, T2 are the trees, q is configuration

2: T1.Init(qstart) , T2.Init(qgoal)

3: For each direction

4: loop

5: qrand ← CREATE RANDOM CONFIG()

6: qnear ← FIND NEAREST NEIGHBOUR(qrand)

7: qε ← EXPAND WITH STEP (qnear → qrand)

8: T1.Add(qε)

9: if (CONNECT TREES(T1, T2) == true) then

10: return SUCCESS

11: end if

12: SWAP(T1,T2)

13: SWAP(qstart,qgoal)

14: end loop

last two approaches more discussion is going to be done in a later chapter, where benchmarking is

done. Recent work[JCS10] replaces the points in the tree with volumes and with this approach the

algorithm avoids exploration close to the points belonging already to the tree. In this paper the

authors claim that their algorithm improves the performance over the simple bidirectional RRT

especially in cluttered environments.

For easier understanding of the rest of the chapter, there is firstly a short description how

the Bidirectional RRT works (algorithm 4). In this algorithm there are three steps that influ-

ence the total performance. The first one is the the creation of random configuration (method

CREATE RANDOM CONFIG()). The basic RRT approach considers the whole Cfree space

and it is surely not optimal since the algorithm may lose time due to that.

The expansion of the tree (method EXPAND WITH STEP(qnear → qrand)) is the second part

that influences the performance. In the simple approach the expansion is stepwise and the total

performance depends on the length of the step. In this work it is considered that the expansion is

done in a straight line, meaning that the expanded configuration qε lies on the straight line between

qnear and qrand. For that purpose a method called Steer is defined as follows:

Steer(qa, qb, x) = x · qa + (1− x) · qb x ∈ [0, 1] (5.1)

The Steer method returns a configuration q between the two configurations qa and qb and can be

used inside the method EXPAND WITH STEP .

The CellBiRRT requires to search for the nearest neighbor between a query point x and a set

of vertices V . The nearest neighbor method is defined as follows:

Definition 2 Given a graph G=(V,E) and a point x ∈ Cfree, the nearest neighbor returns the

closest point from the x to the graph G. Summarizing the nearest neighbor equals to:

Nearest(G, x) = qnear = argmin
v∈V

(||x− v||) (5.2)
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The third part is the connection of the two trees. A case is to consider the last expanded node

qε of the T1 tree and the Nearest(T2, qε) called qnearT2. The CONNECT TREES method calls

iteratively the Extend method going from the qnearT2 to qε. The intermediate points generated

by the Connect method are added to the tree T2. After each iteration the trees are swapped.

The resulted algorithm is probabilistic complete but the computation time is high for practical

applications. Moreover the computed paths may not be nice from the end-user perspective making

the basic algorithm not so applicable for an application in rehabilitation robotics. In the following

chapter the N-dimensional cuboids are presented, an approach which improves the performance of

the standard RRT planner.

5.1 Configuring the Cfree space

This section explains the first characteristic of the CellBiRRT that is the N-Cuboid domains and

the generation of them. One proposal for managing the Cfree space is to create a complete structure

of configuration space. For a manipulator e.g a system with high number of DoF, this attempt

is impractical. A solution such as increasing the Voronoi1 bias is a good approach[LL04]. An

improvement proposed in [JYLVS05] is based on dynamic domain distribution and the visibility

Voronoi region is introduced. N-dimensional spheres with variable radius are used (actually the

radius is going to be increased if necessary) and the distribution is done over the boundary domains

of boundary points (dynamic domain). The drawback of such a method is that it produces many

nodes in the free space, since it is biased, and secondly many samples may get rejected before one

belonging to the dynamic domain is found. The algorithm in [YJSL05] is based on visible Voronoi

region which is the intersection of a nodes Voronoi region with the associated visibility domain.

Although it seems to be ideal its computation is a hard problem.

The CellBiRRT approach is based on some rules:

• Each attempt to extend from a configuration qa towards the qb the intermediate steps are

omitted. That means that the step ε is much higher than the distance between qa and qb
e.g ε >> ||qa − qb||. For that reason the function ConnectEfficient(qa, qb) is defined in

algorithm 2 and it returns the last valid configuration. This situation as well as the case

where ε < |qa − qb| are tested. In that case the ConnectEfficient is substituted by the

ConnectEfficientWithStep. That is explained in detail later.

• the last expanded node of the tree is used as a center of the N-dimensional cuboid regions.

At this point the N-dimensional cuboid regions are going to be introduced. Having a configu-

ration q as the center of the region, the N-dimensional cuboid region Rq is the subset of the Cfree

space whose maximum absolute value (not the distance) between the center q and any point x is

less or equal to a value. This value is the size of the region and it is referred as Rsize[FG10a]:

Rq =

x

{q ∈ Cfree, x ∈ Cfree/|qi − xi| ≤ Rsize} ⊂ Cfree (5.3)

1Voronoi diagram, introduced by the George Voronoi, is a method of decomposing a given space into specific

domains. The domains are constructed by calculating distances to a given group of subsets [Aur91].
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(a) Normal N-cuboid domain case without

joint limits

(b) N-cuboid domain in case of joint limit. The

shape is parallelogram.

Figure 5.1: N-cbuoid domain with Rsize for a 2D planar robot arm in C-Space

where i corresponds to the specific coordinate e.g. the joint value. Surely the xi should not exceed

the joint limits (see figure 5.1(b)). An example of the N- Cuboid domain is illustrated in figure 5.1.

The Rsize, as it is going to be shown later, plays a significant role in the final performance of the

algorithm. Also the positioning of the center q is an important parameter. The CellBiRRT positions

the q to the last expanded node (called static placement). That is the default placement and it is

used mostly in this thesis. However other possibilities are examined and related benchmarks are

presented in detail later.

One possibility of different placing is the shifting. Two cases of shifting are going to be examined.

One situation is linear shifting and the second one is exponential. Both of them require a target

configuration qtarget. Let denote as offset D the following quantity:

Doffset = δoffset ·∆q,∆q = qtarget − qcenter (5.4)

where δoffset is a constant. The limits of the δoffset depend on the type of shifting.

If qcenter denotes the center of the N-cuboid region, the coordinates of the new center q′center
after the linear shifting are equal to:

q′center,i = qcenter,i +Doffset,i , where δoffset ∈ [0, 1], i ∈ [1, DoF ] ∈ N (5.5)

where N is a natural positive number. The exponential shifting results to the following configura-

tion:

q′center,i =


qcenter,i + (1− exp(

Doffset,i

||∆q|| )) ·∆qi, if Doffset,i < 0

qcenter,i + (1− exp(
−Doffset,i

||∆q|| )) ·∆qi, if Doffset,i > 0
.δoffset ∈ [0, 1], i ∈ [1, DoF ] ∈ N

(5.6)
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Figure 5.2: Example of linear shifting

It is obvious that the quantity (1− exp(
Doffset

|∆q| )) is between zero and one.

The common characteristic between the two shifts is that the calculated q′center lies on the line

between qcenter and a target qtarget configuration. The qtarget configuration may belong to another

tree or it may be a random configuration. One difference between the equations 5.5 and 5.6 is

that for constant δoffset, the q
′
center using the 5.6 is in a different position on the line that connects

qtarget < − > qcenter. The factor (1−exp(
Doffset,i

|∆q| )) depends on the Doffset,i. For instance if δoffset
is equal to 0.5, the linear shifting moves the new center to lie always in the middle of the line

between the two configurations. The image 5.2 presents an example of linear shifting towards the

qtarget.

The next step in a bidirectional approach is a trial to connect the trees. The algorithm 5

requires to connect the trees and some strategies are:

• connect the last expanded nodes between two trees

• connect the closest pair of nodes between the trees

• connect the last expanded node with the closest one to the opposite tree

All strategies are illustrated on the figure 5.3. From this example can be seen that the third

approach may deliver better results since there are two trials from two different nodes in order to

connect the trees.

The algorithmic part of the approach using N -Cuboid regions is presented in algorithm 5. The

methodGenerateNCuboidRegion in line 5 generates the region where the random configurations

in line 6 is going to be generated. The qcenter is calculated respectively in line 4. In case of linear

and exponential shifting the qtarget is equal to the nearest node between the last expanded node

of tree T1 and the opposite tree T2. In case of static generation, the qcenter is equal to the last

inserted node of T1. The line 8 has a difference compared to the normal approach regarding the

expansion step. Instead of doing stepwise expansion, a direct connection to the qrand is attempted
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Figure 5.3: Possible connections for two bidirectional trees. (A) The last expanded nodes are attempt-

ing to be connected. (B) The closest pair of nodes is trying to be expanded from both sides. (C)-(D)

The last extended node from both sides finds the closest node and attempts to expand toward that

node.

(a) Start configuration (b) Goal configuration

Figure 5.4: Start(left) and goal(right) configuration. At the beginning the robot arm is inside the first

fridge and in the goal location is inside the second fridge

and if it is not succeed, the ConnectEfficient returns back the last valid configuration. Recall

algorithm 2 for information.

5.1.1 Preliminary experimental results

In this subsection experimental results comparing the simple Bi-Directional RRT and the approach

described before are going to be presented. The system consists of an Intel Core Duo 1.86Ghz with

2 GB ram. The start and goal configurations are illustrated on the figure 5.4. For all tables the
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Algorithm 5 Bi Directional RRT with N-Cuboid regions algorithm

1: T1, T2 are the trees, q is configuration

2: T1.Init(qstart) , T2.Init(qgoal)

3: loop

4: q′center= CalculateCenter(T1.LastInsertedNode(),T2)

5: GenerateNCuboidRegion(q′center,RSIZE)

6: qrand ← CREATE RANDOM CONFIG()

7: qnear ← FIND NEAREST NEIGHBOUR(qrand)

8: qε ← ConnectEfficient(qnear → qrand)

9: T1.Add(qε)

10: if (CONNECT TREES(T1, T2) == true) then

11: return SUCCESS

12: end if

13: SWAP(T1,T2)

14: SWAP(qstart,qgoal)

15: end loop

CLength is equal to:

CLength =
M−1
k=1

 N
i=1

(qki − q
(k+1)
i )2 (5.7)

and the 3DLength equals to the total displacement of the end effector position during the execution

of the path.

Experiments with Rsize = 10deg is not done for linear and exponential case since the space

between the start and goal configuration is not collision free. The shifting places the N-Cuboid

region in the vicinity of the collision space and obstructs the sampling of collision free configuration.

The CreateRandomConfiguration method runs continuesly till a collision free configuration is found.

In this scenario the arm should move first away in order to elicit efficiently. The step-size for the

Normal RRT is selected to be 11 deg.

For all cases the usage of N-Cuboid domains over performs the normal RRT. It delivers fast and

with 100% success rate results. The simple RRT due to high calculation time fails some times to

deliver a solution within 180 seconds which is the upper timit limit for the experimeriments. The

static placement of the N-Cuboid domain seems to be faster compared to the others. The shifting

returns back paths with more configurations, but after smoothing the final path is shorter (Clength)

compared to the static case of N-Cuboid domain. Moreover the smaller the Rsize is, the shorter

the path (after smoothing) is computed by the planner. The compromise is the larger computation

time.

An initial consequence from this first experimental result could be that the N-Cuboid domain

really improves the total performance and the final path. That is the reason why the N-Cuboid

domains are used also later. The following section presents the Cells. Both Cells and N-Cuboid

domains are included and combined in CellBiRRT.
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PLANNER Time

(msec)

CLength 3DLength

(meter)

Failures Trajectory Con-

figurations

BiRRT 83927 1541 9,19 32 143,61

NCuboid-BiRRT(Rsize=10deg)

static

22929 2553 16,369 0 212

NCuboid-BiRRT(Rsize=25deg)

static

4370 1552 9,41 0 55,38

NCuboid-BiRRT(Rsize=50deg)

static

3110 1381 8,39 0 30,7

NCuboid-BiRRT(Rsize=25deg,

δoffset=0.5, Linear)

13733 925 5,024 0 43,61

NCuboid-BiRRT(Rsize=50deg,

δoffset=0.5, Linear)

3640 940 5,63 0 25,6

NCuboid-BiRRT(Rsize=25deg,

δoffset=1, Exp)

9794 1027 5,68 0 47,18

NCuboid-BiRRT(Rsize=50deg,

δoffset=1, Exp)

3674 1034 6,2 0 26,78

Table 5.1: Comparison between Normal Bi-RRT and N-Cuboid BiRRT. Average results of 50 trials

with maximum computation time 180sec. The results are without smoothing.

PLANNER CLength 3DLength(meter) Trajectory Configura-

tions

BiRRT 898 3,58 11,72

NCuboid-BiRRT(Rsize=10deg) static 357,52 1,85 6,8

NCuboid-BiRRT(Rsize=25deg) static 478,13 2,52 6,72

NCuboid-BiRRT(Rsize=50deg) static 681,127 3,47 8,12

NCuboid-BiRRT(Rsize=25deg,

δoffset=0.5, Linear)

379 1,96 6,64

NCuboid-BiRRT(Rsize=50deg,

δoffset=0.5, Linear)

527 2,81 6,92

NCuboid-BiRRT(Rsize=25deg,

δoffset=1, Exp)

393 1,98 6,48

NCuboid-BiRRT(Rsize=50deg,

δoffset=1, Exp)

570 3,16 7,66

Table 5.2: Comparison between Normal Bi-RRT and NCuboid BiRRT after smoothing. Smoothing

procedures removes the intermediate and redundant configurations from the path. It is called pruning

(refer to [GO07])
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(a) Cartesian cell

decomposition of the

space

(b) Cells are distinguished

as collision(red) and not-

collision free(yellow)

Figure 5.5: Cartesian cell decomposition with a resolution Cellsize

5.2 Efficient sampling areas using cells

This section describes an enhancement of the previous approach. The BiRRT algorithm with

N-Cuboids can deliver fast results however it cannot manage complicated tasks where additional

constraints (except the hardware constraints like the joint limits) exist. Such a constraint is for

instance orientation or position of the end effector.

The main disadvantages of the previous algorithm are:

• They cannot manage efficiently situations where the end effector of the robot arm should stay

inside limits. For instance, if a bottle should be kept up-side down during the motion,the plan-

ner should be able to deliver a path, where the end effector must lie inside limits. Therefore,

another strategy in order to fulfill these requirements is needed.

• The resulted path is a not the optimal one. Since the classical RRT cannot deliver an optimal

solution, a fast computation of a better one could be also welcome.

The proposed approach does a mapping from the Cartesian space to the configuration space

and generates a qcell that lies inside additional constraints but it can be used also without them.

The first important part of the approach is the cell decomposition of the space. The workspace of

the robot is subdivided uniformly with a specific resolution. Only the position is subdivided. The

orientation of the end effector is calculated later. An example of subdivision is given in the figure

5.5. Each dimension (x,y and z) is divided by a parameter which is the size of the cell Cellsize.

This resolution influences the performance as well as the final result of the algorithm.

The cells are distinguished to collision and collision-free. A cell is considered to be in collision

if its minimum distance with the rest of the objects is less than a value. The value is normally the

53



5. CELLBIRRT - A SAMPLING BASED MOTION PLANNER

same with the acceptable minimum distance of the robot arm. The figure 5.5 presents an example

of cell decomposition illustrating also the collision free cells.

For each cell a position with coordinates xcell, ycell and zcell is attached. The coordinates are

equal to the position of the center of the cell. The orientation of the cell , expressed by the roll-

pitch and yaw, is always zero since the orientation of end effector is the main focus. Given a

specific configuration of the robot arm, the challenge at this point is to calculate the position and

orientation of the end effector from neighbor cell that is going to be selected. Given the orientation

of the current end effector location and the center position(x,y,z) of the cell, the inverse kinematics

(IK) are going to calculate a configuration for the robot arm.

(a) Current cells and

the neighbor cells are

presented

(b) Cell is selected. The

location of the end-

effector of robot arm is

calculated and a config-

uration is selected.

Figure 5.6: A cell is selected from a group of candidates that are the neighbors of the current cell.

The end- effector belongs to the current cell. Inverse kinematics calculate a set of configurations and

one is selected

The position of the end effector is used in order to calculate the cell whose position belongs

to (called current configuration). The image 5.6(b) illustrates an example showing the current

cell, the robot with the end effector and the neighbor collision-free cells (green color). For a planar

robot the number of the neighbor cells are eight. However in the 3D world the number of neighbor

collision-free cells can be 26 at maximum. The criterion of selecting a cell CellSel from a set

Ccell =


iCelli of cells is the following:

Cellsel = argmin
i∈C

(A ·DPcurrent−Pcell,i
+ (1−A) ·DPtarget−Pcell,i

), A ∈ [0, 1] (5.8)

where the symbol DPcurrent−Pcell,i
denotes the euclidean distance between the center of the cell

and the actual position of the end effector, while the DPtarget−Pcell,i
is the distance between the
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center of the cell and the position of the target’s end effector. Normally the A parameter is a small

value (around 0.2) so that the cells that are closer to the target’s position are in favor.

A cell has a status which is: active or inactive. Cells that are in collision are considered

automatically as inactive. Later, it is going to be explained that the center’s placement of a cell is

used to calculate a configuration. If such a configuration cannot be computed, the cell is temporally

set to inactive. It may be used later again, since it is collision free. For each cell a counter Cellcounter
is used to indicate the amount of the failures and the visits to a cell. If the counter exceeds a limit,

the corresponding cell is deactivated. That allows other cells to be selected.

The second important part after selecting a cell is to calculate the new orientation for the end

effector based on the selected cell. The orientation is not unique since a cell can be reselected

again that may result to different orientation. The challenge is to calculate an orientation which

lies between the current configuration and the target’s configuration of the robot arm. For that

purpose the orientation is computed as follows:

Or = r ·Ortarget + (1− r) ·Orcurrent (5.9)

where r ∈ [0, 1] and the symbol Or corresponds to a form of the orientation e.g. Euler angles

or quaternions. A nice interpolation between two orientations can be done with the usage of

quaternions. In [Kuf04] is examined two approaches regarding this interpolations. The ”best”

approach seems to be the Slerp (spherical linear interpolation). The chapter A.1 in appendix

describes the mathematical background for this type of interpolation. The parameter r is computed

as follows:

r =
DPcurrent−Pcell

(DPcurrent−Pcell
+DPtarget−Pcell

)
∈ [0, 1] (5.10)

where the DPcurrent−Pcell
and DPtarget−Pcell

are described before. Obviously if the end effector

is closer to the target position the parameter r reaches the one which means that the generated

orientation asymptotically reaches the target’s end effector orientation. The value of r is influenced

also by the Cellsize. If the Cellsize grows, the DPcurrent−Pcell
may grow also and the quantity

r has greater value for the same distance DPtarget−Pcell
.Another important characteristic of this

transformation is that the generated orientation lies between two limits: the target and the current

orientation. These two orientations lie surely inside the constraints, like orientation constraints.

Since position and orientation of the end effector are calculated, a configuration of the robot

arm is possible to be extracted by the inverse kinematics. That configuration is used as a new

qcenter for the N-Cuboid region. For the rest of this thesis, the symbol qcentercell refers to the case

where the center configuration is generated by selecting a cell from the neighbor cells. The image

5.7 presents the final step where the mapping from the C-space to workspace and finally back to

the C-Space is done.

5.3 Constraints

This section describes the background regarding the additional constraints that a task may include.

The CellBiRRT is capable of solving fast tasks with additional constraints and therefore this ability

is explained in this section.
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Figure 5.7: Mapping from workspace to C-Space

Constraints except the hardware constraints like joint limits or velocities are also:

• position

• orientation

• force

In this thesis position and orientation constraints are going to be examined. Thus in the workspace

the constraints define the available free workspace where the end effector can move:

CTC =



Xmin Xmax

Ymin Ymax

Zmin Zmax

RotXmin RotXmax

RotYmin RotYmax

RotZmin RotZmax

 (5.11)

The 6x2 matrix defines the limits of six dimensional manifold, called CTC , and it is a subset

of the workspace W (CTC ⊆ W ). If {W} is the world coordinate system and {C} the origin of

the constraint manifold, the transformation matrix TW
C defines the location of the manifold in the

workspace. An example of a TW
C is given in image 5.8. For simplicity, it is considered the TW

C

to be equal to the identity matrix (e.g the C lies in the origin). Since equation 5.11 corresponds

to the limits of the end effector’s location, the constraint manifold CTq contains all configurations

which end effector’s location, calculated by the equation 2.13, lies inside the CTC :

CTq =


y∈CTC

{q ∈ Cfree|f(q) = y} ⊂ Cfree (5.12)

The f(q) corresponds to the forward kinematics and the y corresponds to the location of the end

effector. If the TW
C is not equal to identity, the CTC is compared with the rotational angles and
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Figure 5.8: Constraint manifold TW
C example being on the surface of the table. In this example the

end effector TCP should lie inside this manifold

the position computed from the frame:

TC
G = (TW

C )−1 · TW
G (5.13)

where {G} is the gripper frame and {W} is the world coordinate system.

The difficulty for a planner is to find the configurations for which the end effector lies inside

the workspace constraints. The Cells, as already described before, provide this possibility. Every

configuration’s qcenterCell
lies inside the constraints limits. Recall that the orientation of the selected

cells is always between the orientation of the start and the goal location. Moreover cells where

their position lies outside the constraints are rejected automatically. These are the reasons why

cells are used. The location of the selected cell lies always inside the constraints and consequently

every qcenterCell
. Moreover the N-Cuboid area with center qcenterCell

and size Rq contains a lot of

configurations that lie inside the CTq. That is one advantage of using the Cell approach: The

generated N-Cuboid areas having center qcentercell and size Rsize are partially a part of the CTq.

Mathematical is equal to the expression:

Rcm = Rq ∩ CTq 6= Ø. (5.14)

Since the CellBiRRT planner creates random configurations with high probability to be inside

the constraint manifold, the combination of cells and N-cuboid regions could be an attractive

solution for tasks having constraints. The experimental results prove exactly this statement.
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Constraints can be represented with quaternions. The necessary step is to transfer the rotation

part to quaternion. This approach is discussed briefly in the appendix B.

5.3.1 Constraints for gripped objects

Constraints can be extended to the case of having gripped objects. For each object, a grasping

frame is assigned. Given {G} the gripper coordinate system, {W} the world frame and {O} the

object’s frame, a grasping frame TG
O is defined as:

TG
O = TG

W · TW
O (5.15)

The frames are illustrated on the figure 5.9.

The frame for the constraint manifold is represented in this sub section as TC
O . The constraint

(a) Illustration of gripper’s , object’s and world coordi-

nate’s system

(b) Example of α and β toler-

ance for a bottle

Figure 5.9: Illustration of gripper frame {G}, object’s frame {O} and grasping frame TG
O

in equation 5.11 is extended to object’s constraints. The object frame TW
O at every state of the

robot arm can be calculated by the equation 5.15. Instead of using the gripper’s frame the object’s

frame seems to be to more appropriate for such a situation. Given the TW
O (can be extracted by

the equation 5.15) the following mapping to the object’s constraint manifold is done:

TC
O = (TW

C )−1 · TW
O (5.16)

From the frame TC
O the position as well as the orientation are calculated and these values are

compared with the matrix CTC in order to check if the current location violates the constraints.
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For instance if a bottle has to be kept up-right down, the TW
C is equal to identity matrix and

the constraints are:

CTbottle =



−∞ ∞
−∞ ∞
−∞ ∞
−α α
−β β
−π π

 (5.17)

where α and β are the angles representing the tolerance. For the rest of this thesis if an object is

grasped, the object’s constraints are considered instead of the gripper’s constraints.

5.4 Cell Bi-Directional RRT algorithm

The CellBiRRT algorithm is presented analytically in the algorithm 7[FG10b]. The properties of

this algorithm are:

• Probabilistic biasing towards a corresponding goal (for the case of backward tree the goal is

the start configuration)

• Decomposes 3D Space(only the position) into cells with fixed size (can be adaptive also but

it is going to increase the complexity)

• The target configuration used in cell selection is the nearest neighbor to the opposite tree.

A configuration(qcentercell) is selected by a set of possible configurations created by inverse

kinematics (IK).

• Collision free random configurations are generated inside the N-Cuboid domain with center

qcentercell .

• Probabilistic connecting the two trees

Firstly the algorithm attempts to connect to the starting configuration of the backward tree

(within a given probability Pg). Continuously the nearest neighbor to the backward tree is selected

as target configuration. The cells are created and one is selected as described earlier. Position

and orientation of the end effector for this cell is computed and the inverse kinematics select a

configuration as a qcentercell . If QIK is the set of all possible collision free solutions from the IK,

the CellBiRRT selects the one that satisfies the following criterion:

qcentercell = argmin
q∈QIK

(||q − qactual||) (5.18)

If the QIK = Ø the cell is set temporally as inactive. In CellBiRRT a cell has one of the following

statuses:

• active
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Figure 5.10: Cell managing

• inactive

Each cell has a center configuration denoted with qcentercell and a Cellcounter that counts the

number of the visits for a cell. The center configuration is the result of IK. The cells store the

last computed configuration in order to use it later if that is necessary. The status of a cell is not

static but adapted. If a cell is in collision, it is set as inactive and it cannot be selected later. A

cell is inactive also if the Cellcounter is over a limit Cellfails. If all neighbor cells are examined,

it is assumed, that the area is searched extensively and no better solution is able to contribute to

the algorithm. The diagram in image 5.10 illustrates the described approach regarding the status

management.

If a configuration from IK is not possible to be found, the previous one is used as qcentercell .

If neither a previous one exists nor IK cannot calculate a solution, the algorithm uses the last

expanded node as qcentercell . Actually, the algorithm in this situation is the same as the algorithm

5 in static case. When IK algorithm calculates a new configuration, the qcentercell is replaced by

the new calculated solution.

5.4.1 Extension in case of local minima

An environment may have a set of possible local minima. To recognize a local minima is not easy

to be done in C-Space since the mapping from Workspace to C-Space is not one by one (due to

redundancy). Although RRT is probabilistic complete, its efficiency is reduced due to local minima
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Algorithm 6 ConnectEfficientWithStep(qa, qb, T ree, step)

1: qs = qa

2: while (qs 6= qb) do

3: d = distance(qs, qb);

4: if (d≥ step) then

5: qnew
s = Steer(qs, qb, step/d); {recall the equation 5.1}

6: else

7: qnew
s = qs;

8: end if

9: qnew = ConnectEfficient(qnew
s , qb);

10: if (qnew == qb) then

11: Tree.Add(qnew)

12: qs = qnew

13: else

14: return LastValidConfiguration

15: end if

16: end while

17: return qb

and the robot may need time in order to escape from them. As a result the algorithm may become

impractical in that case.

In[BKDA06] they introduced a failure counter when an attempt to add a new configuration

is failed or the new node does not contribute to a lower cost compared to the parent. The near

configuration qnear is selected to be the first in the list of configurations sorted by a measure. This

measure indicates their chance to reach the goal. In the same paper a nodes failure count is set to

the maximum when one of its child nodes is removed from the ranking.

In CellBiRRT the nodes can be disabled in the tree, and that may lead the algorithm to expand

in a space far from local minima. Recall that an expansion is done from the nearest neighbor qnear
towards a random configuration. In CellBiRRT the qnear is computed by the nearest neighbor

while in [BKDA06] is the result of ranking/ heuristic procedures. If a node is not selected by

the nearest neighbor, because the node is deactivated, an expansion cannot be attempted from

this node. Another node is selected then. Each node in CellBiRRT has an attribute, called

Nodecounter, representing the expansion failures. An expansion fails if the ConnectEfficient(qA,qB)

returns a new vertex which is close to the beginning one(qA). If the Nodecounter exceeds a limit,

the node is deactivated and cannot be selected by the nearest neighbor method. Thus the nodes

being closer to local minima are going to be deactivated.

5.4.2 ConnectEfficient vs ConnectEfficient with step

If incremental expansion is necessary, the method Connectefficient in CellBiRRT algorithm can

be replaced by the ConnectEfficientWithStep. The latter calls iteratively the ConnnectEfficient

method and therefore attempts incrementally to connect two configurations doing small steps.
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Each step is added to the corresponding tree. Briefly the approach is described in algorithm

6. The algorithm returns again the last valid configuration. This approach may not improve the

performance because more points are going to be inserted into the tree, but it is going to increase the

resolution of the tree and it may increase the quality of the path. The notation CellBiRRTStep

corresponds to the case of incremental expansion.

5.5 Experimental results

This section presents some experimental results done in the LWA3 robotic arm (FRIEND system).

The benchmarks are done in simulation mode and the task is to examine the efficiency of the Cell-

BiRRT as well as the influence of each parameter. Surely, like in every algorithm, the environment

influences from the value of the parameters i.e. in this case the size of Cells (CellSIZE) and the

size of the N-Cuboid region (Rq). The second parameter is examined in previous section. Different

type of environments, from opened (Cfree is big ) to very close (Cobs >> Cfree), are going to

examined. The PC for all tests is an Intel Core i5 450M@2.4GHz and the operating system is

Linux (Ubuntu 10.04). The results are divided into two parts: with and without constraints. The

CellBiRRT algorithm is going to be compared with the simpler approach of not existing cells (

referred as CellBiRRT NoCell). The figure 5.11 shows the task’s environment and some examples

of solutions. For all experimental results presented in this thesis the CLength corresponds to the

path length in C-Space e.g. the root of the square sum of the distances between two configurations.

CLength =
M−1
k=1

 N
i=1

(qki − q
(k+1)
i )2 (5.19)

5.5.1 Without Constraints

The three tasks for this setup are presented in figure 5.11. The aim of all tasks are to examine the

behavior of the CellBiRRT algorithm with different parameters and in different environments. The

Task 1 and Task 3 are cluttered while the Task 2 is less complicated. The robotic system should

calculate a collision free path from the start to the goal configuration. The results are presented

on tables 5.3- 5.5. The CellBiRRT as well as the CellBiRRTWithStep are compared. The

benchmarks compare the cases between the presence of cells and the free planning without cells.

The table 5.3 shows that the presence of cells do not provide better results for that task. An ex-

planation is that the two virtual cuboid of the Task 1 are between the start and goal configurations,

a fact that complicates the calculation of cells that can contribute. The arm should move between

the two cuboid and the cells cannot help the planner to provide faster solution. That makes the

CellBiRRT to be slow for this environment. Free planning, without cells, for this environment

provides faster results.

The table 5.4 illustrates clearly that the CellBiRRT over performs the simple CellBiRRT

NoCells. The environment has more free space, compared to the Task 1. The presence of cells
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(a) Task1 start configura-

tion

(b) Task1 goal configura-

tion

(c) Task2 start configura-

tion

(d) Task2 goal configura-

tion

(e) Task3 start configura-

tion

(f) Task3 goal configura-

tion

(g) Example with cells.

Size is equal to 10cm

(h) Example with cells.

Size is equal to 5 cm

(i) Example of resulted path for

Task1 with smoothing [GO07]

(j) Example of resulted path for

Task2 with smoothing [GO07]

(k) Example of resulted path

Task3 with smoothing [GO07]

Figure 5.11: Three environments as well as experimental results. Task1 and Task2 seems to be similar,

but Task1 has more obstacles. All the environments are artificial and cluttered for path planning

accelerates the performance by the factor of two. Moreover the CellBiRRT has less C-Length,

which implies that the cells may provide solutions with lower length.

The table 5.5 shows the results for the Task 3. This task is the most cluttered one since the

robot arm should move from one hole to the second one. The CellBiRRT with CellSIZE equals

to 15cm provides the best performance giving 98% success and also faster calculation time. It is

noticable that the CellBiRRT over performs the CellBiRRT NoCells.

The CellBiRRTStep may not provide better results for these tests. The slower performance of

the CellBiRRTStep can be explained by the presence of many configurations in the path, which

are produced by the repeated call of ConnectEfficient. That may decrease the computational speed.

The CellBiRRTStep creates more points which may lead to higher computational time.
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Planner Cellsize

(cm)

Time

(msec)

CLength 3DLength

(meter)

Success % Path Configura-

tions

CellBIRRT 5 7871 1688 9.11 100 55.84

CellBiRRT 10 11609 1742 9.35 100 54.93

CellBiRRT 15 5893 1649 8.65 100 50.78

CellBiRRT NO CELLS 3285 1384 8.57 100 53.32

CellBiRRTStep 5 8319 1765 9.15 100 177.72

CellBiRRTStep 10 11107 1726 8.71 100 172

CellBiRRTStep 15 6781 1447 7.58 100 144.57

CellBiRRTStep NO 4800 1564 8.92 100 160.8

Table 5.3: Comparison between different Cellsize value for Task1 (see figure 5.11). The tolerance

Rsizewas 25deg (without shifting), the PConnectTrees = 1.0, the Pg = 0.0 (no goal bias) and the step

equals to 11deg (CellBiRRTStep). Average results are from 100 trials with maximum allowable time

60sec. The results are without smoothing.

Planner Cellsize

(cm)

Time

(msec)

CLength 3DLength

(meter)

Success % Path Configura-

tions

CellBIRRT 5 1776 1072 5.51 100 33.81

CellBiRRT 10 1642 1133 5.36 100 32.33

CellBiRRT 15 1728 1105 5.52 100 32.79

CellBiRRT NO CELLS 2885 1231 7.94 100 51.83

CellBiRRTStep 5 2130 1046 5.03 100 103.76

CellBiRRTStep 10 2059 1039 4.84 100 102.4

CellBiRRTStep 15 2095 1029 4.85 100 100.56

CellBiRRTStep NO CELLS 3548 1357 8 100 138.57

Table 5.4: Comparison between different Cellsize value for Task2 (see figure 5.11). The tolerance

Rsizewas 25deg (without shifting), the PConnectTrees = 1.0, the Pg = 0.0 (no goal bias) and the step

equals to 11deg (CellBiRRTStep). Average results are from 100 trials with maximum duration 60sec.

The results are without smoothing.

5.5.2 With Constraints

This subsection presents experimental results when additional constraints (position and orientation)

are present. Surely the tasks are difficult since the arm cannot move in the whole Cfree.

5.5.2.1 Task 1

The first environment is illustrated on figure 5.12. The task is to move the robot arm from the start

to the goal configuration avoiding the bottle in between. Several tests are done for this environment.

One group of test is done with orientation constraint of ± 4 degrees in each direction (X,Y, and Z).
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Planner Cellsize

(cm)

Time

(msec)

CLength 3DLength

(meter)

Success % Path Configura-

tions

CellBIRRT 5 51479 2655 16.62 72 92.68

CellBiRRT 10 40832 2324 14.11 94 80.94

CellBiRRT 15 28716 2611 16.10 98 88.16

CellBiRRT NO CELLS 59297 4608 34.41 51 169.68

CellBiRRTStep 5 50046 2653 16.44 68 270

CellBiRRTStep 10 45114 2558 15.16 82 261

CellBiRRTStep 15 30717 2492 14.72 93 253

CellBiRRTStep NO CELLS 59498 4825 34.89 54 499.26

Table 5.5: Comparison between different Cellsize value for Task 3(see figure 5.11). The tolerance

Rsizewas 25deg (without shifting), the PConnectTrees = 1.0, the Pg = 0.0 (no goal bias) and the step

equals to 11deg (CellBiRRTStep). Average results are from 100 trials with maximum allowable time

120sec. The results are without smoothing.

The second group of experiments tests orientation together with position constraint. The robot is

allowed to move up-down within a tolerance of ± 5mm. In summary, the tasks are the following:

• Constant orientation within a tolerance of 4 degrees in all directions (Task 1a). The Constraint

matrix for this environment is the following:

CT1 =



−∞ ∞
−∞ ∞
−∞ ∞
−α α
−α α
−α α

 (5.20)

where α is the orientation tolerance.

• Constant orientation (4 deg )and tolerance on Z axes (up-down) ±0.005 m (Task 1b)

CT2 =



−∞ ∞
−∞ ∞
−za za
−α α
−α α
−α α

 (5.21)

For all tasks, tests with three different CellSIZE are examined. The values are 5cm , 10cm and 15

cm. The case where cells do not exist is also examined. A performance comparison is done. The

results for Task 1a are in the table 5.6. The results for the task 1b are presented on the table 5.7.
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(a) start configuration (b) goal configuration (c) Cell generation for task

1b

(d) Path result for task 1b

with smoothing [GO07]

Figure 5.12: Constraint Task 1. The robot should avoid the bottle. The robot arm moves around it.

Planner Cellsize

(cm)

Time

(msec)

CLength 3DLength

(meter)

Success % Path Configura-

tions

CellBIRRT 5 1458 360.3 1.67 100 45.91

CellBIRRT 10 688 298 1.36 100 34.02

CellBiRRT 15 484 292 1.28 100 28.97

CellBiRRT NO CELLS 2773 328 1.73 100 45.84

CellBiRRTStep 5 1383 387 1.68 100 54.79

CellBiRRTStep 10 710 323 1.43 100 43.22

CellBiRRTStep 15 401 306 1.3 100 38.31

CellBiRRTStep NO CELLS 2872 380 1.88 100 55.11

Table 5.6: Comparison between different Cellsize value for Constraint Task 1a. The tolerance Rsizewas

25deg (without shifting), the PConnectTrees = 1.0, the Pg = 0.0 (no goal bias) and the step equals to

11deg (CellBiRRTStep). Average results of 100 trials with maximum computation time 60sec. The

results are without smoothing.

5.5.2.2 Task 2

The robot arm in this task should calculate its path while an object is grasped in the end effector.

For this task the object being grasped is a cylindrical object like a bottle or a glass. The object

should be shifted from the fridge and should be placed on the platform in front of the user. The

main challenge here is the object to be manipulated in a such a way so that no water drops will

come outside. That requires that the object is going to be kept up-right down within a tolerance .

The figure 5.13 presents the task in the virtual environment.

In this scenario the influence of the orientation tolerance is going to be examined. The con-

66



5.5 Experimental results

Planner Cellsize

(cm)

Time

(msec)

CLength 3DLength

(meter)

Success % Path Configura-

tions

CellBIRRT 5 8108 444 1.77 100 82.51

CellBIRRT 10 3278 337 1.40 100 59.07

CellBiRRT 15 5103 370 1.57 100 62.58

CellBiRRT NO CELLS 25761 342 1.73 96 68.86

CellBiRRTStep 5 15716 522 2.066 87 99.81

CellBiRRTStep 10 10520 437 1.75 88 81.71

CellBiRRTStep 15 12225 432 1.77 96 79.42

CellBiRRTStep NO CELLS 34112 513 2.36 52 103.84

Table 5.7: Comparison between different Cellsize value for Constraint Task 1b. The tolerance Rsizewas

25deg (without shifting), the PConnectTrees = 1.0, the Pg = 0.0 (no goal bias) and the step equals to

11deg (CellBiRRTStep). Average results of 100 trials with maximum computation time 60sec. The

results are without smoothing.

Planner Cellsize

(cm)

Time

(msec)

CLength 3DLength

(meter)

Success % Path Configura-

tions

CellBIRRT (4

deg)

5 1727 720 3.13 100 57.9

CellBIRRT (2

deg)

5 3245 734 3.07 100 92.7

CellBiRRT (4

deg)

NO CELLS 2517 615 3.6 100 53.14

CellBiRRT (2

deg)

NO CELLS 5684 576 3.32 100 77.75

Table 5.8: Comparison between different Cellsize value for Constraint Task 2. The tolerance Rsizewas

25deg (without shifting), the PConnectTrees = 1.0, the Pg = 0.0 (no goal bias). Average results of 100

trials with maximum computation time 60sec. The results are without smoothing.

straints are:

CTbottle =



−∞ ∞
−∞ ∞
−∞ ∞
−α α
−α α
−π π

 (5.22)

Two cases for angle α are tested: (a) 4 deg and (b) 2 deg. Experimental results with and without

cells are presented on table 5.8.
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5. CELLBIRRT - A SAMPLING BASED MOTION PLANNER

(a) start configuration (b) goal configuration (c) Cell generation

Figure 5.13: Constraint Task 2. The robot should should place the bottle on the platform in front of

the user. The bottle should be kept up-right own within a tolerance

Figure 5.14: Example with bad and good cell candidates

5.6 Discussion

This chapter described the designing a sampling based algorithm which has the following properties:

• configures the sampling space with the usage of N-Cuboid areas

• replacing the N-Cuboid areas to regions being closer to the target

These two properties may improve significantly the speed of the algorithm. The experiments

show clearly that N-Cuboid areas over perform the simple approach of RRT, while the cells give

additional boost in the final performance. That is explained since the algorithm does not create

samples to unnecessary Cfree space and consequently it does not lose time due to that. The size of

the N-Cuboid areas and the CellSIZE influence the performance. Very small values may provide
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results with lower path length but the penalty is the computation time. A suggestion could be to

have an adaptable SIZE of the cuboids. The SIZE should be increased in case that the Rq has less

free space than the size of the Rq. That may guide the samples to be generated in the Cfree space

and far from obstacles.

The CellSIZE as well as the position of the cell play an important role. For instance, consider

the example in figure 5.14. In this example the green cells are not considered as good candidates

since there is close the obstacle . The algorithm needs to examine these cells and the manipulator

may need time for that. That is the reason why the cells may delay the performance in such

a situation. Moreover if the division is big (e.g. the cells are small) then more time is needed

since more cells have to be examined. That is the reason why for big cells(e.g. 15cm) the algorithm

behaves faster compared to the case where the CellSIZE is only 5 cm. Nevertheless, the CellBiRRT

performs much better if cells are present since they guide the manipulator to follow the right way.

Another important characteristic is that the CellBiRRT with cells improve the quality of the

path mostly in Cartesian space. That may be explained since the cells try to bring the trees close

to each other in Cartesian space. That is a goo advantage of using cells.

Regarding the performance in constraint manifold tasks, the CellBiRRT with cells can provide

acceptable results. The computation time for all tasks is deliverable and compared to standard

cases (standard Bidirectional RRT), the algorithm with this cell decomposition performs much

better.

Summarizing, the big advantage of the proposed approach is the following: without making

modifications or changes in the algorithm, the method CellBiRRT can be used for environments

with and without constraints in the pose of the end effector (position and orientation). The Cell-

BiRRT delivers path in a reasonable amount of time.
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Algorithm 7 Cell-Bi directional RRT

Require: T1,T2 trees,qstart, qgoal start/goal configurations, Rsize the size of N-Cuboid region, Cellsize the size of

cells , Pg ∈ [0, 1] and PConnectTrees ∈ [0, 1] probability values, MaxTrials the maximum trials to expand towards

a random configuration.

1: T1.Init(qstart) , T2.Init(qgoal)

2: Decompose3DSpaceIntoCells(Cellsize)

3: loop

4: a=Ran(0,1)

5: if (a ≤ Pg) then

6: qlast=ConnectEfficient(T1.LastNode(),T2.InitialNode());

7: T1.Add(qlast)

8: Path = ExtractSolution()

9: end if

10: q2near = T2.find nearest(qlast)

11: Cell = CalculateCell(q1, q
2
near)

12: qcentercell = CalculateCenterConfigWithCell(Cell)

13: if (qcentercell == NULL) then

14: qcentercell = qlast

15: end if

16: GenerateNCuboidRegion(qcentercell ,RSIZE)

17: iTrial=0;

18: while (iT rial ≤MaxTrials) do

19: qrnd=CreateRandomConfigInsideNCuboidRegion()

20: q1near = T1.find nearest(qrnd)

21: q2 = ConnectEfficient(q1near, qrnd)

22: if (q2! = q1near) then

23: T1.Add(q2)

24: qlast = q2

25: break;

26: end if

27: iTrial++;

28: end while

29: if (Ran(0,1)≤ PConnectTrees ) then

30: q2near = T2.find nearest(qlast)

31: q3 = ConnectEfficient(qlast, q
2
near)

32: if (q3 == q2near) then

33: T1.Add(q3)

34: Path = ExtractSolution()

35: end if

36: T1.Add(q3)

37: qlast = q3

38: end if

39: SWAP (T1, T2)

40: end loop

70



5.6 Discussion

Figure 5.15: CellBiRRT flow chart
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Chapter 6

Sampling based motion planning

algorithms without goal configuration

This chapter deals with planners where the goal configuration is not a necessary input. The

CellBiRRT described in previous chapter and in algorithm 7 requires the calculation of a goal

configuration in order to be able to work. If inverse kinematics fail to accomplish this task the al-

gorithm fails also. However, if inverse kinematics (IK) do not solve the problem it is not guaranteed

that there is no solution. That is explained due to the redundancy. Each IK algorithm delivers a

set of possible solutions and the discretization depends on a given resolution. If the resolution is

not high enough, the IK algorithm may fail although with other resolution it may be able to deliver

a solution. For these reasons the challenge in this chapter is to develop several algorithms that do

not require goal configuration and are complete.

In this chapter the following algorithms are going to be described:

• RRT − Jwln without cells

• RRT − Jwln with cells

• RRT − IK without cells

• RRT − IK with cells

• CartesianRRT

The common characteristic of the algorithms are :

• they keep the properties of the RRT

• they use analytical (the already described KCC library [IG97, IG98, IG00]) or recursive Euler-

Newton method for solving inverse kinematics (using Jacobian matrix)

• they are sampling approaches
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• they do not require goal configuration but a goal frame of the end effector.

The main algorithm for all approaches described in this chapter is presented in algorithm 8.

Algorithm 8 Basic algorithm for single tree RRT with/without inverse kinematics

Require: Pg ∈ [0, 1]

1: T is the trees, q is configuration,bool ConnectToGoal

2: T.Init(qstart)

3: loop

4: if (rand() < Pg) then

5: ConnectToGoal = ExpandTowardsTheGoal();

6: if (ConnectToGoal == true) then

7: ExtractPath();

8: end if

9: end if

10: ExpandRandomly(T, T.GetLastNode());

11: end loop

In this pseudo-algorithm there are two functions going to be discussed later:

• ExpandTowardsTheGoal()

• ExpandRandomly()

Each presented approach modifies these methods. The common to all approaches are the random

expansion and the probabilistic expansion towards the goal (ExpandTowardsTheGoal). The second

guarantees that the planner is biased towards the goal location in order to return a result. The

expansion is done either using a jacobian based approach or an inverse kinematics(analytical) solver.

Both situations are going to be discussed and compared.

The method ExpandRandomly is very similar to the one described in section 5.1. The main

difference is that now there is no bi-directional trees and the cells are generated based on the target

frame (recall that in CellBiRRT the cells are selected based on the nearest node of the opposite tree).

Briefly the method is revised in algorithms 9 and 10. The method ExpandRandomly seperates

the two cases: without and with cells. That influences the total performance. For both cases each

new configuration is added to the tree. The ExpandRandomlyWithNCuboid is the same like in

previous chapter. The algorithm uses the Rq (N-Cuboid region) area in order to create a random

configuration. The ConnectEfficient procedure, like the CellBiRRT , can be done incrementally if

intermediate points are needed (use ConnectEfficientWithStep in this case).

6.1 RRT-Jwln with or without cells

The RRT − Jwln belongs to the group of planner where a single tree is going to be extended and

inverse kinematics are not present or are too complicated to be computed. For that reason Jacobian

is used and numerical solution is applied to solve the inverse kinematics.
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Algorithm 9 ExpandRandomly(T, qcur)

Require: qcur is the current node,T is the tree,Ptarget is the target frame

1: if (no cells ) then

2: qext = ExpandRandomlyWithNCuboid(qcur)

3: else

4: Pcur = ForwardKinematics(qcur)

5: BestCell = SelectCell(Pcur) {Select the cell having target frame the Ptarget}
6: qgenerated = CalculateInvKinematic(BestCell)

7: qext=ExpandRandomlyWithNCuboid(qgenerated)

8: end if

9: T.add(qext)

Algorithm 10 ExpandRandomlyWithNCuboid(qcur)

1: CREATE-N-CUBOID(qcur)

2: qrand ←CREATE-RANDOM-CONFIGURATION()

3: qnear ←FIND-NEAREST-NEIGHBOUR(Tree,qrand)

4: qexpand ←ConnectEfficient(qnear− > qrand)

5: return qexpand

In literature several groups have been worked with this kind of planners. All of them have a

common specification: The tree either explores the C-Space or moves the robot towards the goal

location (recall that here goal configuration is not available). For instance in [VWFS07] Jacobian

transpose (JT ) has been applied in order to ”pull” the end effector of the robot to the goal. Using JT

has a significant drawback which is the convergence speed. More recent work [VBA+09] improves

the previous algorithm and uses the jacobian pseudo inverse (J+). The Jacobian pseudo inverse

converges faster to a solution compared to the simple transpose method.

The RRT − Jwln approach is first illustrated in [FG11b]. The main difference compared to the

state of the art approaches are:

• the weighted least norm is used

• N-Cuboid domains is used

• Cells are used

The weighted least norm (WLN), presented in [CD95], is briefly a method for calculating the

inverse kinematics having additional constraints like joint limits and it is based on the jacobian

pseudo inverse approach. Given dθ a small joint displacement, J the jacobian matrix and dx the end

effector displacement (position and orientation), the next state θnew can be calculated as follows:

θnew = dθ + θold = W−1JT [J ·W−1JT ]−1 · dx+ θold (6.1)

Let notice here that if W is identity matrix the equation 6.1 is the same as having the pseudo

inverse approach. The W matrix is an NxN matrix, where N is the number of joints of the robot.
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In [CD95] they proposed the joint limits criteria

H(θ) =

N
i=1

(θi,max − θi,min)
2

4 · (θi,max − θi)(θi − θi,min)
(6.2)

and the matrix W is equal to:

W =


w1 0 ... 0
0 w2 ... 0

0 0
. . . 0

0 0 0 wn

 (6.3)

where the wi element of the matrix equals to:

wi =


1 + |∂H(θ)

∂θi
| if ∆|∂H(θ)

∂θi
| ≥0

1 if ∆|∂H(θ)
∂θi
| <0

(6.4)

The above equations imply that when the robot reaches the joint limits, it is forced to avoid them

because the ∆|∂H(θ)
∂θi
| has a big value.

Using the above approach, and denoting as P to be a frame, Q a set of configurations and q a

single configuration, the method ExpandTowardsTheGoal has the content described in algorithm

11.

Algorithm 11 ExpandTowardsTheGoalJWLN

Require: Pg∈ [0, 1],qlast the last expanded node,f is computation of forward kinematics

1: Ptarget ←SelectTargetFrame

2: a=rand(0,1)

3: if (a ≤ Pg) then

4: qlast= ExpansionWithJacobian(qlast, Ptarget,Tree);

5: if (f(qlast) == Ptarget) then

6: return PATH;

7: end if

8: end if

The method ExpansionWithJacobian makes iterative progress towards a target frame. The

figure 6.1 shows how the function ExpandWithJacobian works. The controller influence the

behavior of control loop e.g. the speed of convergence. In our case the controller is proportional.

Each new configuration is checked for validity and it is inserted into the tree. The progress is done

with small steps and continues till the goal location is reached within a tolerance ε. The algorithm

12 presents the described procedure.

The method Collision calls the method ConnectEfficient and returns true if the connection

is done successfully.
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Figure 6.1: Iterative expansion till the desire location is reached

Algorithm 12 Expansion with Jacobian(qcur,Ptarget,Tree)

Require: J normal Jacobian Matrix, q is configuration,Step is the minimum allowable accuracy. Under this value

the expansion terminates with success

1: Tree actual tree ,P is a frame

2: qtemp=qcur

3: repeat

4: Pcur ← ForwardKinematics(qtemp)

5: ∆P = Ptarget − Pcur

6: J = Computejacobian(qtemp)

7: JWLN = ComputeWLN(J) {as the equation 6.1 is proposing}
8: ∆q = JWLN · LimitStep(∆P ) {a small differential step. The new configurations are incrementally created

based on the last computed configuration }
9: q′temp = qtemp +∆q

10: if (Collision(qtemp, q
′
temp) = false AND IsInsideLimits(qtemp) = true) then

11: Tree.Add(qtemp)

12: else

13: break;

14: end if

15: until (∆T ≤ Step)

16: return Tree.LastNode()

6.2 RRT-IK with/without cells

The RRT-IK(with / without cells) follows the same structure, but it requires an analytical/geometrical

solution for the IK algorithm. The difference compared to RRT − JWLN is in the method Expand-

TowardsTheGoal where for this case is replaced by the algorithm 13.

The important part of the algorithm 13 is the Interpolation. The interpolation should fulfill

some requirements which are:

• ensure that the sampling is done with good resolution (too big resolution requires more steps)
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Algorithm 13 ExpandTowardsTheGoalIK(qcur,Ttarget,Tree)

Require: Pg∈ [0, 1],qlast the last expanded node,f is computation of forward kinematics

1: Ptarget ←SelectTargetFrame

2: a=rand(0,1)

3: if (a ≤ Pg) then

4: qlast= InterpolateIK(qlast,Ptarget,Steppos,StepOr,Tree);

5: if (f(qlast) == Ptarget) then

6: return PATH;

7: end if

8: end if

• ensure that the interpolation is linear

The first requirement is difficult to be calculated since even small steps in cartesian space do

not ensure small steps in C-Space. The intermediate steps, if one exists, are neglected by the

ConnectEfficient. A small step value like 1 cm is good enough giving good performance also.

The second requirement is very important. The straight line between two points is sampled and

each sample has a specific distance from the previous one. There is one difficulty which is that the

6D Workspace ( three for position and three for orientation) has not a unique unit. The position’s

measure is in meter and the orientation is measured in degrees. For that reason the interpolation

is splitted into two parts: one for the position and another one for the orientation. Quaternions

have been applied for the linear rotational interpolation(Slerp).

The method calculates the number of samples (Npos) for the position and the number of samples

for the orientation (NOr) and the biggest one is taken as a common sampling parameter (called

MaxSteps). With this approach the interpolation remains synchronized (both are starting and

finishing at the same time) and linear since both sub-interpolations are linear too.

The Step in algorithm 14 has two parts, the orientation (StepOr) and the position part(Steppos),

and is equal to:

Step =


||Posq − Postarget||/MaxSteps
||Orq −Ortarget||/MaxSteps

(6.5)

The interpolation continues till a point is not collision free. Every new node is added to the tree.

The inverse kinematics function F−1 computes a set of configurations Q and one is selected by the

formula:

q = SelectConfig(Q, qbase, A) = argmin
q∈Q

(A · ||q − qbase||+ (1−A) · 1

q.GetMinDistance()
) (6.6)

The A ∈ [0, 1] is normally one or zero. The balanced function selects configuration that is closer to

a given configuration(qbase) or the one that has bigger clearance (distance from the obstacles). For

faster computations the A is equal to one.
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Algorithm 14 InterpolateIK(q,Ttarget,Steppos,StepOr,Tree)

Require: F (q) forward kinematics,F−1(P ) inverse kinematics, Orientation is expressed on quaternion, P is a frame

1: PPos,Or= F(q)

2: PosSteps=||Posq − Postarget||/Steppos
3: OrSteps=||Orq −Ortarget||/StepOr {refer the appendix A.2 for the quaternion distance}
4: MaxSteps= max(PosSteps,OrSteps);

5: qcur = q

6: while (F (qcur) != Ptarget) do

7: Pcur = F (qcur)

8: Pos′cur = Poscur + Steppos

9: Or′cur = Orcur + Stepor

10: P ′
cur = (Pos′cur, Or′cur) {simply join the position and orientation to a frame}

11: Q = F−1(P ′
cur)

12: q′cur = SelectConfig(Q)

13: if (CollisionFree(qcur, q
′
cur)== FALSE) then

14: break

15: end if

16: Tree.add(q′cur)

17: qcur = q′cur

18: end while

6.3 Cartesian RRT Planner

The Cartesian RRT planner, presented in algorithm 15, is, like the rest of the algorithms, a forward

approach. It combines the normal RRT idea, but the applied space is the Workspace - W . The

planner attempts each step to expand lying on a straight line between two points in 6D workspace

(three dimension for position and three for orientation). The interpolation is done like previously,

so it is not going to be described again. Analytical inverse kinematic algorithm and not numerical

solutions (Jacobian based approaches) has been used in order to compute a set of configurations

for a given position and orientation of the end effector.

The challenge of this approach is to be able to create uniform random points in workspace. The

easiest approach is to sample the position and the orientation part separately (each Euler angle

individually). The Euler angles however are not optimal for creating uniform rotations and may

cause some difficulties that should be overcomed[Kuf04]. For instance a simple sampling approach

may concatenate the samples to the poles of the SO(3) space (SO(3) is the 3 dimensional space of the

rotations). A nice approach for calculating fast random rotations is done in [Arv92b]. In [Kuf04]

they presented a method to generate uniform rotations based on Euler angles. In this thesis the idea

of Ken Schoemake [Sho92] is applied and therefore quaternions are used. The idea is to compute

the uniform random axes v and the angle θ to generate equivalent uniform quaternions (recall the

basic equations of quaternions). The rotational matrix is computed by converting the quaternion

back to 3x3 matrix. This method utilizes three intermediate random variables to compute four

quaternion parameters that map uniformly to the unit sphere in four dimensions. The algorithm
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16 presents this approach. The figure 6.2 shows the sampled points generated by the proposed

approach. Concluding, the random location is generated as follows:

Locationrnd =


UniformRandomPosition(x,y,z)

UniformRandomRotation(Roll,Pitch,Yaw)
(6.7)

where the rotation part is calculated by the algorithm 16.

Algorithm 15 Cartesian RRT Planner

Require: qstart,Tree, GoalTCP, Pg∈[0,1] constant
1: Tree.add(qstart)

2: loop

3: a ∈ [0, 1] Random Number

4: if a ≤ Pg then

5: qlast ← Tree.LastConfig()

6: if Expand(qlast, GoalTCP) = true then

7: trajectory ← CreateTrajectory(Tree)

8: print Planning was successful !

9: end if

10: else

11: RandTCP ← GenerateRandomTCP()

12: qrand ← InvKinematics(RandTCP)

13: Qnear ← Tree.FindKNearst(qrand)

14: qnear ← FindMinCost(Qnear) {the configuration is selected using the formula argmink∈Q(A ∗
k.CostToCome() + (1−A) ∗ k.CostToGo())}

15: qexp= InterpolateIK(qnear, RandTCP)

16: if qexp! = qnear then

17: Tree.AddNode(qexp)

18: end if

19: end if

20: end loop

Algorithm 16 Generating uniform random rotation

Result: uniform random quaternion Q = (w, x, y, z)

s = rand();

σ1=
√
1− s

σ2=
√
s

θ1 = 2 · π · rand()
w = cos(θ2) · σ2

x = sin(θ1) · σ1

y = cos(θ1) · σ1

z = sin(θ2) · σ2

return Q(w,x,y,z)
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Figure 6.2: Random Sampling inside the Workspace of the robot arm based on algorithm 16

(a) start configuration (b) possible goal configuration

Figure 6.3: Task 1 with start and a (possible) goal configuration

6.4 Experimental results

Like previously , this section includes the experimental results regarding the described planners of

this chapter. The experimental setup (e.g. computer system ) is the same as in previous chapter.

For all methods the expansion is done incrementally with small steps and for that reason it is

expected that the approaches generate many intermediate points. That may cause a difficulty

when the path is going to be executed by the robot arm. The difficulty exist when the arm needs
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(a) start configuration (b) possible goal configuration

Figure 6.4: Task 2 with start and a (possible) goal configuration. It is the same as in figure 5.11

Planner Cellsize

(cm)

Time

(msec)

CLength 3DLength

(meter)

Success % Path Configura-

tions

CellBiRRT 10 169 535 2.39 100 9.54

Table 6.1: Experimental result of CellBiRRT algorithm for Task 1

to move fast. At that case the controller should switch very fast from point to point and that may

lead to ”unwanted” motions. As a consequence the execution of such a path may be reasonable to

be done with low joint velocities.

6.4.1 Grasp bottle

The first task is a scenario where the robot should grasp a bottle. The scenario is a part of the ADL

scenario (more information in chapter 9) and includes a fridge and the robot system FRIEND.

The results are summarized on tables 6.2, 6.3 and 6.4. The notation RRT − JWLN refer to the

case where the Jacobian expansion is used and not the one with inverse kinematics(RRT − IK).

As a comparison, the CellBiRRT for this task is very fast and for 100 trials the average results

are presented in the table 6.1.

6.4.2 Move out/in from/to a hole

The environment of this task is the same as the environment in figure 5.11. The start configuration

and the goal location( position and orientation of end effector) are the same. The task for this

experiment is to illustrate how this algorithm work in such a clutter environment. The experimental

results are presented on tables 6.5, 6.6 and 6.7 .

The experimental results seem to be very promising especially for the RRT −JWLN algorithm.

It manages to solve the task into a deliverable time (around 8 sec). Let remind here that the

CellBiRRT managed to solve the task but the time needed to calculate a path is much higher.

Also the RRT −IK solves the task but it needs almost double the time compared to RRT −JWLN .
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Planner Cellsize

(cm)

Time

(msec)

CLength 3DLength

(meter)

Success % Path Configura-

tions

RRTJWLN

(Pg=0.2)

5 2734 1410 6.75 100 399

RRTJWLN

(Pg=0.4)

5 1514 931 4 100 388

RRTJWLN

(Pg=0.7)

5 1792 816 3.27 100 387

RRTJWLN

(Pg=0.2)

15 5912 1196 5.54 100 379

RRTJWLN

(Pg=0.4)

15 3127 1011 4.42 100 394

RRTJWLN

(Pg=0.7)

15 1843 798 3.15 100 396

RRTJWLN

(Pg=0.2)

NO 3745 4683 25.34 100 687

RRTJWLN

(Pg=0.4)

NO 2328 2289 10.87 100 563

RRTJWLN

(Pg=0.7)

NO 1961 1550 6.66 100 515

Table 6.2: Experimental result for RRT − JWLN for the task of figure 6.3

The CartesianRRT planner does not provide acceptable results for this environment. The reason

may be the sampling procedure. The algorithm samples the available workspace whereas the

other algorithms sample around a region in C-Space. Recall that CartesianRRT planner needs to

calculate a configuration using the inverse kinematics algorithm. Consequently its speed depends

highly on the inverse kinematics algorithm speed.

6.5 Discussion

The experimental results show that these algorithms are really promising since they can deliver

results in a deliverable time even in clutter environments. The RRT − JWLN seems to provide

more reliable results. Moreover does not depend on a specific inverse kinematics algorithm which is

very important. For instance if the robot had 6 DoF another inverse kinematics algorithm should

be used. That means that an extra work should be done for this case. That is the negative aspect

of RRT − IK or CartesianRRT or even the CellBiRRT which requires a goal configuration.

These approaches have some drawbacks. All the approaches generate paths with many configu-

rations. That is caused because the expansion in cartesian space require many intermediate steps.

That guarantees a collision free path since the sampling resolution is high. A pruning procedure as

well as extra smoothing may be required afterwards. Moreover the velocities cannot be very high
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Planner Cellsize

(cm)

Time

(msec)

CLength 3DLength

(meter)

Success % Path Configura-

tions

RRTIK

(Pg=0.2)

5 2154 1620 6.59 100 146

RRTIK

(Pg=0.4)

5 852 875 3.07 100 110

RRTIK

(Pg=0.7)

5 628 704 1.97 100 105

RRTIK

(Pg=0.2)

15 4706 1086 4.09 100 112

RRTIK

(Pg=0.4)

15 1699 948 3.20 100 112

RRTIK

(Pg=0.7)

15 460 672 1.81 100 96.5

RRTIK

(Pg=0.2)

NO 2807 3567 15.89 100 314

RRTIK

(Pg=0.4)

NO 1966 2446 9.39 100 263

RRTIK

(Pg=0.7)

NO 1065 1394 4.5 100 190

Table 6.3: Experimental result for RRT − IK for the task of figure 6.3

Planner Cellsize

(cm)

Time

(msec)

CLength 3DLength

(meter)

Success % Path Configura-

tions

CartesianRRT(

Pg=0.2)

— 9305 772 1.49 100 163

CartesianRRT

(Pg=0.4)

— 6028 747 1.45 100 161

CartesianRRT

(Pg=0.7)

— 3998 742 1.33 100 148

Table 6.4: Experimental result for CartesianRRT for the task of figure 6.3

when the robot arm moves through samples which are very close to each other because the con-

troller may not be able to follow the path. Another issue of theses approaches is the singularities.

When the end effector of the robot arm follows a direct line in workspace, there is no guarantee that

its joints are able to follow the motion. Around singularities the velocities of the joints are going

to be increased rapidly. One improvement that may help to avoid motions around singularities is
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6.5 Discussion

Figure 6.5: Path example resulted from the RRT − JWLN with smoothing [GO07]

Planner Cellsize

(cm)

Time

(msec)

CLength 3DLength

(meter)

Success % Path Configura-

tions

RRTJWLN

(Pg=0.4)

5 16984 2335 11.27 23 528

RRTJWLN

(Pg=0.7)

5 26541 1947 8.71 12 535

RRTJWLN

(Pg=0.4)

15 35040 2508 12.04 100 540

RRTJWLN

(Pg=0.7)

15 32764 2258 10.89 100 594

RRTJWLN

(Pg=0.4)

NO 9424 6696 35.42 100 1074

RRTJWLN

(Pg=0.7)

NO 7473 4181 21.32 100 916

Table 6.5: Experimental result for RRT − JWLN for the task of figure 6.4. Maximum computation

time is 120 sec. Maximum number of nodes is 32000. Most of the failures are due to maximum limit

number of nodes

to use the manipulability measure:

Manipulability =


(det(JJT )) (6.8)

When the arm approaches the singularity, its manipulability approaches to zero and that may

be a good measure avoiding singularities or lowering the speed of the robot arm. An expansion

may fail if the manipulability reaches a value smaller than a critical limit. The advantage of this

approach is that the arm may avoid such as situations during the planning and not during the
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Planner Cellsize

(cm)

Time

(msec)

CLength 3DLength

(meter)

Success % Path Configura-

tions

RRTIK

(Pg=0.4)

5 19658 2428 10.62 11 265

RRTIK

(Pg=0.7)

5 5900 1990 8.26 6 292

RRTIK

(Pg=0.4)

15 55405 3154 13.75 100 330

RRTIK

(Pg=0.7)

15 69066 3044 13.25 95 417

RRTIK

(Pg=0.4)

NO 16347 7579 34.6 100 881

RRTIK

(Pg=0.7)

NO 16903 4742 21.19 97 683

Table 6.6: Experimental result for RRT − IK for the task of figure 6.4. Maximum computation time

is 120 sec. Maximum number of nodes is 32000. Most of the failures are due to maximum limit number

of nodes

Planner Cellsize

(cm)

Time

(msec)

CLength 3DLength

(meter)

Success % Path Configura-

tions

CartesianRRT

(Pg=0.4)

– 52921 1472 3.77 76 389

CartesianRRT

(Pg=0.7)

– 55595 1342 3.46 80 358

Table 6.7: Experimental result for CartesianRRT for the task of figure 6.4. Maximum computation

time is 120 sec

execution of the motion.

The presence of cells does not provide an improvement in the performance in case of environment

like the task in figure 6.4. The main reason is that these approaches are mixed e.g. combine direct

line expansion in workspace and in C-Space. Compared to CellBiRRT , where the Cells improve

the performance, here the performance is better only in simple environments like the grasp bottle

scenario.
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Chapter 7

Benchmarking and comparison with

the state of the art motion planners

7.1 Introduction

Till nowadays a systematic and a general report that compares different planning algorithms which

are based on RRT and specialized for robotic manipulators is not available. Open Motion Plan-

ning Library is a framework where different planning algorithm like RRTConnect, SBL, PRM can

be compared [OMP]. However additional modification and updates of these algorithms are not

included. Another platform which includes motion planning algorithms is OpenRAVE [OPE], but

there is not a report regarding the benchmarking of algorithms being applied in manipulators . In

[PBK07] different benchmarking results are presented based on an open source programming sys-

tem. The experiments are done in a mobile system and not in manipulators. Comparison between

different planners for specific tasks has been done in several works [Bra06b, FT10].

This chapter compares the performance of all described planners as well as with some state of the

art motion planning like the IKBiRRT [BSF+09], RRT-JT [BSF+09] and CBiRRT [BSFK09]. At

the end of the chapter, a comparison with a graph search algorithm is presented. This benchmark

shows the advantage of sampling based approaches over algorithms which use graph search and

additional heuristics in order to explore the free space.

A comparison of planning algorithm focused on optimality is not done since they need more

time by default due to their complexity. The IKBiRRT, RRT-JT and CBiRRT are planners similar

to the described planners in this thesis e.g. are sampling based approaches.

Before proceeding to benchmarking, a short description of IKBiRRT, RRT-JT and CBiRRT is

going to be done.

• RRT-JT: The algorithmic part of this planner is given in the algorithm 17. The algorithm can

use the Workspace goal regions(WGR), a feature described in later chapter. The algorithm

simply has two type of expansions. One is in C-Space like previously described in bidirectional

RRT and the second one is a Jacobian expansion like in RRTJWLN but the pseudo-inverse
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Jacobian is used. The expansion is done by a configuration being selected with probability

inversely proportional to the WGR. The advantage of the algorithm like in RRTJWLN is the

independence from an inverse kinematics algorithm. However the experimental results showed

that the algorithm is not so promising, requiring a lot of time till a solution is extracted. For

that purposes the planner is left from the benchmarking since it cannot contribute to a fast

solution like the rest of the algorithms.

Algorithm 17 RRT − JT

1: W:Work Space Goal Region(WGR), D: Distance to WGR, Ta: Tree, T
b
a : Frame

2: loop

3: if rand(0, 1) ≤ Eg then

4: qsample=WeightedSampleNode(Tree);

5: T 0
sample′=CalculateGoalFrameBySampling(W);

6: Qnew=ExpandJacobian(qsample,T
0
sample′);

7: else

8: qrand=RandomConfigInsideNCuboid(Ta.LastConfig(), Tol);

9: qnear=Ta.find nearest(qrand);

10: Qnew= Ta.ConnectEfficient(qnear,qrand);

11: end if

12: D = DistanceToNearestWGR(Qnew,W);

13: Ta.AddNodes(Qnew);

14: for each Di∈ D do

15: if Di==0 then

16: return SUCCESS;

17: end if

18: end for

19: end loop

• IKBiRRT/ CBiRRT: The IKBiRRT and the CBiRRT are very similar and for that reason

are compressed to the same algorithm 18. The main difference is the extension method. The

IKBiRRT uses also the workspace goal regions(WGR) but for benchmarking purposes they

are omitted. The CBiRRT differentiates from IKBiRRT in the fact that it solves problems

with additional constraints. In CBiRRT the method Extend is substituted with the method

ConstrainedExtend (refer to the literature for more details), which checks for constraints. If a

candidate node violates them, a projection to the constraint manifold is done. The projection

uses jacobian pseudo inverse expansion and attracts the end effector to return back to the

constraint manifold. In the literature the IKBiRRT uses incremental connection from a qa to

qb and for that reason the ConnectEfficientWithStep method is used.

It is good to be noticed that the CellBiRRT becomes identical to IKBiRRT if cells and N-

Cuboid domains are not present. Since N-Cuboid domains provide really an improvement in

performance, they are included also in IKBiRRT.
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Algorithm 18 CBiRRT/IKBiRRT

1: W:Work Space Goal Region(WGR)

2: loop

3: Tgoal=GetBackwardTree(Ta,Tb);

4: if Tgoalsize = 0 or rand(0, 1) ≤ Eg) then

5: AddIKSolution(Tgoal,W);

6: end if

7: qrand=RandomConfigInsideNCuboid(Ta.LastConfig(),Tol)

8: qanear=Ta.find nearest(qrand);

9: qareached= Extend(Ta,q
a
near,qrand);

10: qbnear=Tb.find nearest(qareached);

11: qbreached=Extend(Tb,q
b
near,q

a
reached);

12: if qbreached==qareached then

13: return SUCCESS;

14: end if

15: SWAP(Ta,Tb);

16: end loop

7.2 Benchmarking sampling based approaches

The benchmarking consists of several tasks. As already mentioned the main focus is the feasibility

and the time needed by the planner to achieve a result. The planners that considered for comparison

are: CellBiRRT, IKBiRRT, RRTJWLN and RRTIK . Benchmarking with the CartesianRRT and

the RRT − JT are not included due to their worse performance compared to the rest. There is no

need to include benchmarking with the simple BiRRT since the literature confirms that the current

planners are faster. The CBiRRT is going to be compared with the CellBIRRT in environment

with constraints.

The platform consists of Intel Core i5-450M@2.4GHz CPU with 4GB Ram. For Task1 and

Task2 the maximum time was 60sec while for Task3 the average was 120sec. For Task1 and Task2

all the planners had 100% success rate. For Task3 the CellBiRRT had 90%, the IKBiRRT had

70% , the RRT − IK and the RRT − JWLN had 100%. The computation time here is computed

as follows:

Time =
TimeSuccess ·Nsuccess +MaximumTime ·NFails

NTrials
(7.1)

where the TimeSuccess denotes the average time of the succeeded trials, Nsuccess is the amount

of successes ,Nfails is the amount of failures and NTrial is the amount of trials.

7.2.1 Task 1

The manipulator has to grasp the bottle in the fridge. The start and (possible) goal configuration

are presented in the figure 7.1. The results are illustrated on figure 7.4. Clearely the CellBiRRT

89



7. BENCHMARKING AND COMPARISON WITH THE STATE OF THE ART
MOTION PLANNERS

(a) Start Configuration (b) Goal Configuration

Figure 7.1: Benchmarking Start-goal Configuration Task 1

(a) Start Configuration (b) Goal Configuration

Figure 7.2: Benchmarking Start-goal Configuration Task 2

(a) Start Configuration (b) Goal Configuration

Figure 7.3: Benchmarking Start-goal Configuration Task 3

over performs the IKBiRRT. The Cells are improving the performance and collision free paths can

be extracted faster.

7.2.2 Task 2

This task has more obstacles and therefore is more cluttered. The manipulator should move from

one fridge to the other. The task is presented on figure 7.2. Again the CellBiRRT is ahead

compared to the rest of the algorithms (refer tot figure 7.5).
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Figure 7.4: Experimental Results for the Task 1

Figure 7.5: Experimental Results for the Task 2
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Figure 7.6: Experimental Results for the Task 3

7.2.3 Task 3

This task is the most cluttered one and similar to the tasks described in chapter six and it is

illustrated in figure 7.3. The environment is cluttered and it is expected the planners to need

more time. Based on the experimental results from previous chapters, the mixed approaches are

expected to perform better than the approaches working in C-Space.

The results are presented on figure 7.6.The CellBiRRT has almost the same computation time

like the IKBiRRT, however the mixed approaches e.g. RRTIK and RRT − JJWLN performed

better.

7.2.4 Constraints: Task 4

The first task with additional constraints is, like in chapter 6, the bottle. The start and goal

configuration are presented in figure 7.7. The comparison is done between the CelllBiRRT and

the CBiRRT and the results are on the table 7.1. The CellBiRRT is able to solve faster the task

and the computation time is deliverable. The maximum computation time was 60sec.
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(a) start configuration (b) goal configuration

Figure 7.7: Orientation constraints - bottle up-right down

(a) start configuration (b) goal configuration

Figure 7.8: Orientation constraints - grasped object is a mealtray and should be kept horizontal

PLANNER Time(msec) Success % Path Configurations

CellBiRRT(5o) 1211 100 46

CellBiRRT(10o) 672 100 30

CBiRRT(5o) 7053 100 235

CBiRRT(10o) 3235 100 237

Table 7.1: Average results for the Task4 in figure 7.7. Orientation tolerance of 5o and 10o for

object-bottle are tested. Last column is the number of configurations in the final path

7.2.5 Constraints: Task 5

The mealtray has to be transfered from the user in front of the microwave. Later the robot will

place the mealtray inside the microwave. The mealtray during the robot motion should be handled

so that the food is going to remain on the plate. For that reason small tolerance for its orientation

93



7. BENCHMARKING AND COMPARISON WITH THE STATE OF THE ART
MOTION PLANNERS

is allowed. The table 7.2 shows different results for the two tolerances. Both algorithms can solve

the task with 100% success. The CellBiRRT can extract a solution faster.

PLANNER Time(msec) Success % Path Configurations

CellBiRRT(5o) 1525 100 46

CellBiRRT(10o) 908 100 32

CBiRRT(5o) 6582 100 295

CBiRRT(10o) 4245 100 323

Table 7.2: Average results for the Task5 in figure 7.8. Orientation tolerance of 5o and 10o for

meal-tray are tested. Last column is the number of configurations in the final path

7.3 Features Comparison

This subsection describes briefly the benefits and drawbacks of each algorithm. The table 7.3 shows

the features that each method has, so that the user preferably can select the appropriate method.

The notation ”NN” denotes ”not necessary”. The column IK needed shows if the algorithm works

using only analytical /geometrical solution for the inverse kinematics. In that case an IK solver is

necessary to exist.

PPPPPPPPPPMethod

Feature
WGR Constraints IK needed C-Space Workspace

CellBiRRT YES YES NN YES NO

IKBiRRT YES NO YES YES NO

CBiRRT NO YES NO YES NO

RRT − JWLN/RRT-JT YES NO NO Mixed Mixed

RRT − IK YES NO YES Mixed Mixed

CartesianRRT YES NO YES NO YES

Table 7.3: Feature Comparison

The CellBiRRT does not need necessary an IK solver. The inverse kinematics can be computed

using iterative approaches e.g. Jacobian based approaches. For that reason the ”NN” is written

on the table.

The CellBiRRT has most of the features and it works completely in the C-Space e.g. a segment

of the path is a straight line in configuration space. From benchmarks it seems to be a reliable and

fast solution for path planning. It lacks mostly on very cluttered narrow passage tasks. The mixed

approaches are very promising since they can solve fast the tasks. In very cluttered environment

the mixed approaches seem to solve the tasks faster. That makes the mixed approaches a good

candidate but their disadvantage is the high number of configurations in the final path. The robot
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arm may not be able to follow the path if the motion has to be executed fast. The CartesianRRT

planner solves all the tasks and works completely in cartesian space e.g. the path segments are

straight lines in cartesian space.

7.4 Benchmarking with Graph Search Planner

This section is going to compare the CellBiRRT with a cartesian cell decomposition graph search

algorithm (notated in this thesis as GSP)[Ojd09b]. This illustrates the main advantage of sampling

based approaches over ”deterministic” approaches. The algorithms belonging in the second category

like the GSP have normally a good advantage which is the speed and some times the quality of the

path. Moreover for the same parameters they deliver the same results. However if they fail to solve

a task once they are not able to replan calculating a different route. If the algorithm is trapped it

may not be able to escape.

The performance of this planner to the so far described tasks is the following: (a) Task 1 :

19043msec (b) Task 2: 19sec (c) Task 3: Fail. It is noticeable that the algorithm is not able to

deliver a solution for the task 3 within this time duration while the sampling based approaches

manage to deliver solutions. It is also remarkable the high computation time that is needed for

the first two tasks. The CellBiRRT computes paths in less than two seconds while the GSP needs

almost 20 seconds i.e. ten times more. Surely this performance difference is not the same for all

environments, but the presented sampling based approaches perform better in dense environments.

The latter is very important for practical applications, since the environment is not dense. The

algorithms can run for such a situation very fast.

7.5 Discussion

The CellBiRRT as well as the RRT − JWLN , the CartesianRRT and the RRT − IK provide

comparable results with the state of the art motion planning algorithms. Surely the performance

of each algorithm depends on many important parameters which are:

• Implementation

• Parameters of the planner

All the planners were implemented on the same platform and had identical collision detec-

tion approach. During this work all the planners in this chapter have been tested with different

parameters giving the same relative results. The results show that the presented algorithms are

very comparable with the state of the art planning algorithms. Additional results are available in

[FAEG12].
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Chapter 8

Optimality

As presented in previous chapters there are many planning algorithms available in the literature

and most of them have the following similarity : can solve a large set of tasks focusing on feasibility

and much less to the quality of the paths. The first part of this chapter presents the state of the

art approaches that improve the quality of path while the second part describes a novel anytime

sampling based approach that reduces the cost of the path attempting to reach asymptotically an

optimal solution. The new planner is called CellBiRRT* and it is based on the described planner

CellBiRRT. For the rest of this chapter the cost of a path is the same with the length of the path.

8.1 Creating high quality paths

Creating high quality paths for motion planning is still a challenging task. The planners deliver

results fast but smoothing and at the same time fast computation are two important parameters.

If a path is short, the robot may have to move less for the same speed and therefore the execution

needs shorter time. Another parameter of a path is the distance of the robot from the obstacles. The

minimum distance between a robot and the obstacles is called clearance. Summarizing, clearance

and length of the path are the most important parameters. The two parameters are in contradiction

since a shorter path is mostly a path with low clearance.

In [GO07] there is a nice overview of approaches that significantly help to improve the quality

of a path. The approach used in this thesis is called pruning. Pruning simply removes all redundant

configurations e.g. removes configurations that do not contribute to the final path. For instance if

a path goes from qa to qb through the qc, the pruning examines the path qa − qb and if it is valid

removes the qc. The algorithm may go against the clearance, but that can be overcomed if the

minimum distance limit is high during the pruning. Algorithm 19 presents the pruning.
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Algorithm 19 PRUNING(Path N) [GO07]

1: i←0

2: while (i< card(N) -1) do

3: if (PathIsValid(qi → qi+2)== true ) then

4: N ← N qi+1

5: if (i>0 ) then

6: i←i-1

7: end if

8: else

9: i←i+1

10: end if

11: end while

Shortcutting is another option that modifies the existent path and tries to create a new one

based on some heuristics. For instance in [HNTH10] some heuristics are applied to smooth jerky

trajectories for manipulators subject to collision avoidance, velocity and acceleration bounds. The

approach selects randomly point in the trajectory and attempts to replace the segment with a

shorter one. However this approach requires time if the shortcutting is meant to provide significant

improvement. According to the [HNTH10] the approach can be applied in a parallel thread with

the robot motion, which does not require additional time. In this case the shortcutting should be

faster than the robot motion. Due to the randomness the approach may shorter the path in an

amount and its performance depends on the number of iterations. Experimental results showed

that the final length may not be improved in a significant manner if the shortcutting has to run

with small number of iterations. High number of iterations requires more execution time and that

is not optimal in case that the robot moves fast.

8.2 Asymptotically optimal (lowest) cost of a path

This section describes the CellBiRRT*. The main idea behind this planner is the anytime planning.

The planner does not stop if a solution is found but continues searching reducing the cost of the

path at the same time. That is still a challenge since the available planners promising to reduce

the cost of the path require high computational time and they cannot be implemented in a real

time system where the execution of sub processes like path planning should be as fast as possible.

The second challenge is the parallel execution of a planner while the robotic system is working

e.g. executing the initial path. In this thesis the CellBiRRT* in combination with the CellBiRRT is

applied in static as well as dynamic environment. Planning in dynamic environments requires a fast

planner (like CellBiRRT) but since the robot does not collide with the obstacle, the CellBiRRT*

may be applied. It may be achieved to deliver path having lower cost compared to the initial one.

For that reason the notion of replanning is introduced e.g. the ability of the system to recalculate
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its path in order to deliver a better solution. That can be done online or offline. Online replanning

is executed in parallel to the robot motion. More details are going to be explained later.

8.2.1 Theoretical Background

One nice approach for replanning in unknown environment especially for mobile robots was pre-

sented 15 years ago by Stentz [SM93, LFG+05, Ste95]. All ideas are mainly based on theD∗(Dynamic

A∗) algorithm. The D∗ works like the A∗, since it has OPEN and CLOSE list, but it maintains

those list by classifying states with ”RAISE” and ”LOWER” cost and by sorting states based

on the minallstates(min(prevCost, actualCost)). The tests are done with mobile platform and the

space is divided by grids. However, in high dimensional space, like a 7D, subdivision of space in

grids is not appropriate concerning memory space and speed. Other approaches like elastic bands

and elastic strips [QK93] [BK02] are considered mixed approaches, where the initial global path is

adapted to a changing environment. Actually they are based on the reaction of the robot caused

by the distance between itself and an obstacle. The path is adapted throughout this control.

More recent works try to cope with the dynamic environment using replanning RRTs [ZKB07,

FKS06]. The idea behind both algorithms is the removal of segments in the resulted path that will

lead to a new rearrangement of the nodes that are still valid. [ZKB07] used extra smoothing and

pruning procedures in order to search for disconnected subtrees, invalid nodes and edges. The algo-

rithm tries to continue the searching using also information from previous solutions. Evolutionary

algorithms (EAs) are used in order to bias more efficient RRTs in dynamic environments [MWS07].

Probabilistic path replanning based on the sensors data is presented in [PJS06]. Other approach

uses partial motion planning to plan safe in dynamic environment [PF05]. It uses the dynamics of

the system and moving obstacles and ensures that a critical situation with inevitable collision is not

going to appear. Randomized kinodynamic motion planning presented in [LJ99] and [HKcLR00]

is a nice solution especially for non-holomonic motion planning tasks. In a recent paper [KSV10],

based on dynamic roadmaps presented in [LH00] and [LH02], a probabilistic roadmap is imple-

mented that is able to replan very fast when the environment changes. Although this method seems

very attractive, it may not be very appropriate in a complex environment since it is affected by the

roadmap construction and its efficiency.

Anytime planners [LFG+05, vdBFK06, FS06] are developed promising to solve the optimality.

The difference with replanning RRT’s methods is that anytime planning continues to grow trees

even if a solution is founded. Anytime path planning tries to reduce the cost (normally from initial

result) of the path, attempting to reach an optimal solution, if that is possible. In [vdBFK06]

an initial roadmap is built and tries to improve the initial path iteratively concerning any possible

change in the environment. Anytime RRT developed in [FS06] generates new solutions over the

time and additionally it attempts the generated paths to have less cost than previous solutions.

However this method is slow and does not have additional heuristics in order to achieve acceptable

results very rapidly. In [KF10, KWP+11] an idea of steering and rewiring of nodes in the tree is

proposed. In their work the RRT ∗ is introduced promising to solve the asymptotically optimality

challenge. In the same works the authors prove theoretically the optimality of RRT ∗. Practical

implementations, especially for manipulators, is done in [PKS+11]. They improved also the speed
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of the RRT ∗ by reducing the calls of the collision checking procedure. A bidirectional RRT ∗(Bi-

RRT ∗) with additional heuristics is implemented in order to improve the performance [AS11] .

While RRT ∗ needs significant a lot of time in order to find a solution, the Bi-RRT ∗ managed to

reduce the total cost faster than the RRT ∗.

Regarding the practical aspects for dynamic environments a recent work [YYG10] tries to cope

with them. The difficulty comes especially from the fact that the system should first identify if

a change in the environment is occurred, and then to react accordingly. In [YYG10] a system is

developed where parallel threads are generated when changes in the environment occur, and new

trajectories are computed if the arm is decelerating. They include also tests with a PRM and RRT

planner. However, compared with this work, they do not include the possibility of reproducing

trajectories with lower cost. The new trajectories are generated from replanning while the robot is

moving.

8.2.2 The CellBiRRT*

Before starting explaning the algorithm new symbols and definitions are introduced. A node in

a tree has a FailureCounter declaring the expansion failures and can be active or inactive. It

becomes inactive if a solution is already present and at the same time the FailureCounter or the

cost of the node exceeds a limit and it is denoted as NFAILS . If a node is deactivated, it is no

longer used inside the nearest neighbor routines. ”Cost” of a node is the cost-to-come, that is the

accumulative cost of the path till this node. The ”Trajectory.Cost” refers to the total trajectory

length. The ”||..||” and LA−B are the distance between two nodes A and B. The distance measure

depends on the metric (refer to section 2.5.3). For the rest of this section it is the normal euclidean

distance in configuration space(C-Space).

Figure 8.1: PRUNE method in the CellBiRRT*

The main algorithm depends on some important methods, which are going to be described

first. The first one is an extra ”rewiring” step, called PRUNE. Starting from a node, the method

explores iteratively all of its parents trying to find the shortest possible connection. It is based on

the triangular inequality. The metric should obey to it. The figure 8.1 illustrates an example. In

this one the LA−C is smaller than LA−B + LB−C , but it is not collision free. The LA−D is smaller

than the LA−C + LC−D and at the same time collision free. The new parent of node ”A” is now

the node ”D”. The procedure continues recursively till the starting node of the tree is reached.
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With this method the cost for a node can be reduced(see algorithm 20). A node can be deactivated

if its improved cost is bigger than a limit(normally the calculated trajectory cost), and activated

otherwise. This rewiring differs from the one presented in [KF11].In [KF11] the rewiring is done

using the nearest neighbors while the proposed one reduces recursively the path of a node starting

from its parent. The proposed one may improve the performance since it reduces the number of

intermediate nodes lowering consequently the cost.

Algorithm 20 Bool=PRUNE(q,Cost)

1: bSucces=false

2: actual = q→parent

3: while (actual != start) do

4: if (CollisionFree(actual,q,Cost)==TRUE) then

5: q→parent =actual

6: q.Cost=q→parent.Cost +||q, q → parent|| //calculate NEW cost-to-come

7: bSucces=true

8: end if

9: actual=actual→parent

10: end while

11: if (q.Cost ≤ Cost) then

12: q.Activate();

13: end if

14: RETURN bSuccess

The CollisionFree(q1, q2) method works as in previous sections. The method checks additionaly

each sample if the estimated cost of the sample Cestqsample
(Cestqsample

= q1.Cost+ qsample.Costest
where qsample.Costest is given by the equation 8.1) exceeds a limit. This limit is the calculated

trajectory cost. It returns true if it succeeds.

qsample.Costest =


‖q1 − qsample‖+ ‖qsample − qgoal‖ if qsample == qrnd
‖q1 − qsample‖+ ‖q2.Cost‖ otherwise

(8.1)

The second method, called Extend rrts and presented in algorithm 21, is very similar to the

normal extension part of the RRT ∗. The method ExtendWithStep makes the stepwise extension

from the nearest neighbor qnear towards the qsample. The stepwise configuration qstep is computed

by the formula:

qstep =


qnear + (∆q) · ( step

||∆q||) if step≤ ||∆q||
qsample if step> ||∆q||

(8.2)

where ∆q is equal to the difference qsample − qnear. An extension fails if the CollisionFree(qnear
,qstep) fails. At this case the qnear.FailureCounter is increased.

In line 7 the ”Near” routine returns the nearest neighbors. Given a Tree and a configuration

q ∈ Cfree the Near returns the set of all configurations that are close to q. Two different cases have

been examined. If A is the number of points in a Tree and d the dimensionality of the space, the

Near routines returns:
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Algorithm 21 Extend rrts(qsample,Cost,NFAILS)

1: qnear=Tree.Nearest(qsample,NFAILS); {Tree is the actual tree where the Extend is done}
2: qextend=ExtendWithStep(qnear,qsample,step,Cost);

3: if (qextend == qnear) then

4: qnear.FailureCounter++;

5: return qnear;

6: end if

7: Qnear=Tree.Near(qextend,NFAILS);{find nearest neighbor from equations 8.3 or 8.4}
8: Lnear=PopulateSortedList(Qnear,qextend,Cost);

9: qparent=FindBestParent(Lnear,qextend,Cost);

10: if (qparent == NULL) then

11: return qnear;

12: end if

13: qnew=Tree.Add(qsample, qparent);

14: RewireVertices(Lnear,qnew);

15: PRUNE(qnew,Cost);

16: return qnew

• the set of vertices that lie inside a radius

r(A) = min(γRRT ∗ · (log(A)/A)(1/d), η) (8.3)

where, γRRT ∗ is a constant and η is the maximum extend e.g. step ·
√
d (d is the DoF of the

system).

• the K nearest neighbors. In such a case, based on the [KF11], the k is equal to :

k = KRRT ∗ · (log(A)) (8.4)

where KRRT ∗ is a constant and it is equal in this work with 2 · e .

The next method, called PopulateSortedList(algorithm 22 ) , returns a sorted list of the near-

est neighbors. It differentiates from the one used in [PKS+11, AS11] since it calls the PRUNE

approach for each nearest neighbor. The Steer in line 7 is a function which connects two con-

figurations qa and qb using the formula: Steer(x,qa,qb) = (1-x) ·qa + x·qb, where x ∈[0,1]. The

σnear contains the path going from qnear to qnew. If the qnear.Cost exceeds the trajectory cost, it

is deactivated. The list of nearest neighbors are sorted by ascending order of the cost(line 11).

The procedure FindBestParent(algorithm 23) takes the sorted list Lnear and returns the first

node where the path σnear is collision free and does not exist the Cost(Trajectory cost). It should be

noticed again that if CollisionFree fails the FailureCounter of the corresponding node increases.

The rewiring procedure(algorithm 24) differs from the normal approach [PKS+11, KF11] since

it can increase the FailureCounter or activate a node. A node is activated (if it is inactive) if its

cost is less than the path’s cost.

The CellBiRRT* uses the same approach for creating random configurations like the CellBiRRT.

It uses Cells and N-Cuboid domains in order to reduce the space for creating random configurations.
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8.2 Asymptotically optimal (lowest) cost of a path

Algorithm 22 PopulateSortedList(Qnear,qsample,Cost)

1: Lnear.clear();

2: for qnear ∈ Qnear do

3: PRUNE(qnear,Cost);

4: if (qnear.Cost > Cost) then

5: qnear.Deactivate();

6: end if

7: σnear=Steer(qnear, qnew)

8: cnear=qnear.Cost + Cost(σnear)

9: Lnear.add(cnear, qnear,σnear)

10: end for

11: Lnear.sort();

Algorithm 23 qmin=FindBestParent(Lnear,qsample,Cost)

1: for (cnear, qnear, σnear) ∈ L do

2: if CollisionFree(σnear,Cost) then

3: return qnear;

4: else

5: qnear.FailureCounter ++;

6: end if

7: end for

8: return NULL;

The collision free random configuration(qrnd) (algorithm 25) is created if the sum of the distances

Drnd = ‖qrnd − qstart‖ + ‖qrnd − qgoal‖ is less than a Score and the current path cost. The Score

can have two possible values, which are selected by a probability Prand. The values are :

• if a path is found, the approach selects randomly one node(qsel) from the path and the score

is equal to ‖qsel − qstart‖+ ‖qsel − qgoal‖ (figure 8.2).

• if path is not found or the a > Prand, the Score is equal to a maximum value(normally a very

big number).

The CreateRndConfig generates collision free random configurations(qrnd) which are good

candidates for reducing the total cost of the trajectory. Moreover the Prand parameter distinguishes

the space where the qrnd is created. The space is either around a given path as the figure 8.2 depicts

or the one that is calculated like in CellBiRRT e.g. using the cells. Even if the actual path is not

an optimal one, the algorithm may elicits to a better solution, since it searches for collision-free

configurations with D less than the path’s cost.

The CellBiRRT* is presented in algorithm 26. First a trial to connect to the goal is done

(using either the method Extend rrts or Connect rrts). The Connect rrts repeats recursively the

Extend rrts and terminates if the Extend rrts fails or succeeds. The approach, like the RRT ∗,

samples a configuration, updates and sorts the list with the nearest neighbors. Finally the opposite
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Algorithm 24 RewireVertices(Lnear,qnew,Cost)

1: for (cnear, qnear, σnear) ∈ L do

2: if CollisionFree(σnear,Cost) then

3: qnew.RemoveParent();

4: qnew.AddParent(qnear)

5: qnew.CalculateCost()

6: if (qnew.Cost < Cost) then

7: qnew.Activate();

8: else

9: qnew.Deactivate();

10: end if

11: else

12: qnear.FailureCounter ++;

13: end if

14: end for

tree tries to connect with the forward one. If the last attempt succeeds the trees are connected and

the solution is extracted, otherwise the trees are swapped.

8.2.2.1 Probabilistic completeness

The probabilistic completeness of RRTs is proved in [LaV06]. In [KF11] is proved that RRT ∗

shares the same properties. Random sampling is also kept in our approach and nodes are deactivated

since a solution is found. These features are also kept in the CellBiRRT*.

8.2.2.2 Asymptotic Optimality

Our algorithms holds the same properties as RRT ∗. Random sampling with additional heuristics

as well as node deactivation, if a node does not contribute to a better solution, do not remove a

property of the RRT ∗. These properties are present in the CellBiRRT*.

8.3 On-line CellBiRRT∗ replanning

This section describes the structure for on-line replanning e.g. online recalculation of the path

while the system is moving. The base algorithm for searching a solution rapidly is the CellBiRRT

(or initial planner) and it is referred as initial planner. The algorithm described in this chapter

(CellBiRRT∗) has been used in order to calculate new trajectories. The figure 8.3 shows briefly

the different states that this implementation has. Every planning procedure in our system works as

follows: A planning with the simpler initial planner is done, in order to search fast for a solution.

Once it is found the system calculates the motion of the arm, and the arm starts moving. In order

for the replanning to start working, a start configuration is needed. For faster calculations the

end of current segment is the next point (qi+1),and it is considered as the root for the replanning.
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8.3 On-line CellBiRRT∗ replanning

Figure 8.2: Create random configuration based on Trajectory. A random node qsel is selected from the

trajectory. A random configuration qrnd is created inside the region close to qsel. If the ‖qrnd − qstart‖+
‖qrnd − qgoal‖ is less than the ‖qsel − qstart‖+ ‖qsel − qgoal‖ and qrnd ∈ Cfree the qrnd is valid

From that point the CellBiRRT∗ starts being executed in a parallel thread. Nowadays this is not

a difficult task, since most of the systems have at least two cores and support multi threading. If

the environment is not updated, the motion continues. When the robot reaches the point qi+1 it

stops the created parallel thread and if a new solution is found, the robot follows the new one. The

procedure continues again for each segment. The robot arm with this on-line replanning method

follows a better path, without waiting for an optimal solution during the initial planning.

The updates of the environment can be identified using sensors like stereo cameras and laser

scanners. When the environment is updated and a collision is not anticipated the arm continues

moving with the old trajectory. It is important to mention that if the environment is updated

only the segment qi-qi+1 is checked for collision, and not the complete path. At the same time,

as the diagram shows, the re-planing is started and if it succeeds, the new trajectory substitutes

the old one. If it fails, the old path remains, but every segment is checked for collision, since the

environment was updated during the motion.

If a collision is unavoidable, the point where the arm should stop is calculated and from that

point the CellBiRRT (initial planner) is started. The arm moves till that point and when it reaches

the point, the system checks if the planner has returned a solution. If the environment is updated

again and a collision is expected, the planner stops immediately and the procedure is repeated. If

the planner returns a result the new path is given to the robot and the motion restarts. During

multiple updates of the environment it is necessary a solution to be found very fast even though

this solution is not an optimal one. That is very important, since the CellBiRRT∗ takes longer

time than the normal planner.

The on-line replanning presented here can deal with static , as well as dynamic environments.

Moreover, it improves the calculated trajectory for every segment during the robot arm motion.

With the proposed strategy the system runs faster, since it calculates rapidly trajectories, and

improves the already existing paths in the background without affecting the system’s performance

(e.g. time).
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Algorithm 25 qrnd=CreateRndConfig(q,Trajectory,qstart,qgoal)

1: Output: random configuration qrnd

2: while (qrnd.Collide == true OR dstart + dgoal > Score OR dstart + dgoal > Trajectory.Cost ) do

3: if (PathFound == true and rand(0, 1) < Prand) then

4: q1 = SelectRandomNode(Trajectory);

5: Score = ‖q1 − qstart‖+ ‖q1 − qgoal‖
6: CalculateRegion(q1);

7: else

8: Score = ∞;

9: q1 = CalculateConfigWithCells(q); // use the cells described in section 5.4

10: CalculateRegion(q1);

11: end if

12: qrnd=RANDOM CONFIG(); {Uniform sampling }
13: dstart = ‖qrnd − qstart‖
14: dgoal = ‖qrnd − qgoal‖
15: end while

16: return qrnd

Algorithm 26 CellBiRRT∗
1: Ta,Tb Trees,qinit,qgoal,BestTrajectory is the resulted trajectory

2: NFAILS =∞ till first solution

3: BestTrajectory.clear()

4: Ta.Init(qinit),Tb.Init(qgoal)

5: for i = 1→ N do

6: a=rand(0,1);

7: if (a ≤ Pg) then

8: if (Ta.ConnectToGoal(qgoal)==SUCCESS) then

9: BestTrajectory=ExtractPath();

10: end if

11: end if

12: qnear=Tb.FindNearest(Ta.LastNode(),NFAILS);

13: qsample=SampleWithCells(Ta,qnear,BestTrajectory);

14: qextend=Ta.Extend rrts(qsample,BestTrajectory.Cost,NFAILS)

15: bSucces=Tb.Connect rrts(qextend,BestTrajectory.Cost,NFAILS)

16: if (bSuccess==true) then

17: BestTrajectory=ExtractPath();

18: end if

19: Swap(Ta,Tb);

20: Swap(qinit,qgoal);

21: end for
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8.3 On-line CellBiRRT∗ replanning

Figure 8.3: Basic Transition States of Robot arm Motion with On-line Replanning algorithm

Algorithm 27 BiRRT ∗

1: Ta,Tb Trees,qinit,qgoal

2: Ta.Init(qinit),Tb.Init(qgoal)

3: for i = 1→ N do

4: qsample=Sample(i); //sampling is done based on the [AS11]

5: qextend=Ta.Extend rrts(qsample);

6: if ( (qextend !=qsample) then

7: Tb.Connect rtts(qextend);

8: end if

9: Swap(Ta,Tb);

10: Swap(qinit,qgoal);

11: end for
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(a) start configuration (b) goal configuration

Figure 8.4: Task1 1- Virtual environment of the robot with start-goal configuration.

(a) start configuration (b) goal configuration

Figure 8.5: Task 2- Virtual environment of the robot with start-goal configuration.

8.4 Experimental Results

Two kind of experiments have been performed. The first one, done in a Intel i5-450M@2.4GHz

system, illustrates the performance of the CellBiRRT∗ in simulation environment. A comparison

with the Bi−RRT ∗, presented by [AS11] in algorithm 27, is done. The second type of experimental

results examines the performance of the on-line replanning using CellBiRRT∗ in the real system.

The figures present the average results between BiRRT ∗, CellBiRRT∗ for two scenarios. The

simulation environments are illustrated on figures 8.4, 8.5 and 8.6. For the tests it is selected

Pcell to be 0.9,Prand to be 0.8 and Pg to be zero (simply goal biasing is not included). A maximum

of 20000 iterations for Task 1 and Task 3 and 15000 for the Task 2 is specified. The parameters of

Bi−RRT ∗ are the same as in CellBiRRT∗.
Figure 8.7 as well as the tables 8.1 - 8.3 show clearly that the CellBiRRT∗ over performs

the BiRRT ∗ for the three tasks. The figure 8.7 illustrates that the CellBiRRT∗ can deliver

faster shorter paths. The tables 8.1 - 8.3 present the result until the first solution is found.

The CellBiRRT∗ for the first two tasks can deliver a path in a deliverable time compared to the

BiRRT ∗ that needs more execution time. Recall also that according to the literature, the BiRRT ∗

over performs the RRT ∗. That makes the CellBiRRT∗ more appropriate planner. In the last task,

which is more cluttered, the CellBiRRT∗ had 100% success , but the execution time according to

table 8.3 makes the planner not appropriate for such an environment.
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(a) start configuration (b) goal configuration

Figure 8.6: Task 3- Virtual environment of the robot with start-goal configuration.

Method Initial Cost (deg) Initial Time(msec)

BiRRT ∗ 425 13586

CellBiRRT∗ 382 6495

CellBiRRT 1082 1805

Table 8.1: Average Results for 20 runs forBiRRT ∗, CellBiRRT∗ and CellBiRRT - Task 1 - Maximum

20000 Iterations - Shortcutting in the initial paths is not done

The figure 8.8 presents results of CellBiRRT∗ over the time with different parameters. It can

be seen that for values NFAILS=10 , CellSIZE = 5 and step = 11 the algorithm can give good

results for all tasks. The figure 8.9 compares the CellBiRRT∗ with the BiRRT ∗ over the time. It

can be seen again that the CellBiRRT∗ over performs the BiRRT ∗ especially in more complicated

tasks like the Task 1.

The table 8.4 represents the advantage of executing the CellBiRRT∗ in a parallel thread

while the robot arm is moving. A given trajectory is executed by the robot arm and the planner

attempts to improve the given path while the robot is moving. The robot follows a third order

polynomial with initial start and goal both velocity and acceleration equal to zero (simple point

to point motion). From the table can be seen that the presence of CellBiRRT∗ improves the

performance of the system in a cluttered environment. The new paths are shorter and they are

created during the motion.

The figures 8.10a till 8.10d illustrate the case where a dynamic environment and on-line

replanning exist. The on-line replanning tries to reduce the path cost while the arm is moving. A

person approaches while the arm moves in the free space. The system identifies the new object,

plans a new path and improves it with the CellBiRRT∗
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(a) Results for Task 1. step is equal to 25deg

(b) Results For Task 2.step is equal to 25deg

(c) Results For Task 3.step is equal to 25deg

Figure 8.7: A graphical comparison between CellBiRRT∗ and BiRRT ∗ based on the number of

iterations. The BiRRT ∗ fails in 16 out of 20 runs for the Task 3. NFAILS is 100 for all tests.
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Method Initial Cost Initial Time(msec)

BiRRT ∗ 316 8574

CellBiRRT∗ 212 2567

CellBiRRT 594 655

Table 8.2: Average Results for 20 runs forBiRRT ∗, CellBiRRT∗ and CellBiRRT - Task 2 - Maximum

15000 Iterations - Shortcutting in the initial paths is not done

Method Initial Cost Initial Time (msec)

BiRRT ∗ (4 success) 2689 37619

CellBiRRT∗ 590 65004

CellBiRRT 2470 24640

Table 8.3: Average Results for 20 runs forBiRRT ∗, CellBiRRT∗ and CellBiRRT - Task 3 - Maximum

20000 Iterations maximum - Shortcutting in the initial paths is not done

Task Initial Cost (deg) Final Cost Improvement

1 328 298 9%

2 209 169 19.2%

3 891 461.73 48.2%

Table 8.4: On-line replanning in static environment. The environment does not change. The Cell-

BiRRT* improves a pre-calculated path while the robot arm is moving. The table presents the average

improvement for 20 runs for CellBiRRT∗
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(a) Results Cost - Time for Task 1 for CellBiRRT∗

(b) Results Cost - Time for Task 2 for CellBiRRT∗

(c) Results Cost - Time for Task 3 for CellBiRRT∗

Figure 8.8: Results Cost - Time for the three Tasks. The parameters are: A=(NFAIL = 10, CellSIZE =

5, step = 11),B=(NFAIL = 10, CellSIZE = 15, step = 11), C=(NFAIL = 10, CellSIZE = 5, step = 25),

D=(NFAIL = 1000, CellSIZE = 5, step = 11)
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(a) Comparison CellBiRRT∗ and BiRRT∗ for Task 1

(b) Comparison CellBiRRT∗ and BiRRT∗ for Task 2

Figure 8.9: Comparison between CellBiRRT∗ and BiRRT∗ for the first two tasks. The Task 3 is not

included because the BiRRT ∗ failed to deliver many solutions. The step is equal to 11 deg
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(a) Person approaches the robot while it is mov-

ing

(b) System detects collision with the person and

computes new trajectory avoiding him

(c) Executes new trajectory, and improves it

with CellBiRRT∗ thread
(d) End of motion

Figure 8.10: Sequence of robot arm motion using on-line CellBiRRT∗ replanning
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Chapter 9

Extensions and Application of motion

planning algorithms - Grasping -

Control and design manipulative skills

for ADL and library scenarios -

Motion Planning Library

This chapter deals with the extensions and applications of the planning algorithms. Till that point

the described planners deliver a path between a starting configuration and a goal one. However

there are situations where the tasks may involve more than one goal i.e. grasping a bottle. For

such a reason an extension in the sense of multiple goals is necessary.

First an enhancement using Workspace Goal Regions is presented. Later an approach of sharing

control of the robot arm using the planning algorithms is described. The user is able to execute

tasks with a shared autonomy between him and the system. The third part of this chapter presents

briefly the implementation of manipulative skills done in parallel with the development of the

planning algorithms. The last section shows in UML diagram the planning structure with the

interfaces and structures. All of them are combined in a motion planning library.

9.1 Workspace(WGR) and Object Goal Regions (OGR)

This section describes an important feature that can be included in any planning algorithm. The

workspace goal region first introduced by [BKDA06, VBA+09] and is formulated better in [BSF+09].

The workspace has three dimensions for position and three for orientation, therefore the workspace

goal regions is six dimensional. The workspace goal regions (WGR) defines the area where the end
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Figure 9.1: Workspace Goal Region(WGR)

effector of the robot arm can move. This area is limited by the maximum and minimum limits of

the location (position and orientation) and equals to:

WGR = W = Ww =



xmin xmax

ymin ymax

zmin zmax

RotXmin RotXmax

RotYmin RotYmax

RotZmin RotZmax

 (9.1)

This area is mapped to a region in configuration space as the image 9.1 illustrates. The symbol

w presents the reference coordinate system where the WGR is defined. In this work the reference

frame is equal to the robot basis e.g. the world coordinate frame. The rotational parts (e.g.

RotX,RotY and RotZ) correspond to the Euler angles. It is clear that a task can have many of

this regions each one allocating a target space for the robot arm’s end effector.

The WGR regions can be integrated to all planners described so far. The reason is that all

planners require a goal frame ( a configuration can be calculated by inverse kinematics). The goal

frame can be calculated randomly by the WGR. The random location is computed by the equation

9.1. Simply, if T notates a frame and {e} the end-effector, a random frame is given by:

Tw
e = Tw

sample = random(Ww) (9.2)

A work space goal region can be extended to refer to an object. For instance consider the

situation of a cylindrical object like a bottle (see figure 9.2). Consider {o} the coordinate system
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Figure 9.2: Different grasping poses of the robot arm around a cylindrical object e.g. bottle

of the object and the T e
o the relative frame between the end effector {e} and the object frame. The

frame T o
e corresponds to one grasping pose. For that reason the object’s grasping region (OGR)

like the WGR can be defined. The OGRo simply assigns all possible positions and rotations that

an object can have and consequently can be grasped. Considering Tsample a sample of OGRo, the

random goal Tw
e is defined as follows:

(Tw
e )′ = (Tw

o · Tsample)
w
o · (T o

e ) (9.3)

Normally during the grasping procedure some offsets are expected. Being T e
offset the offset frame

, the final frame is equal to:

Tw
e = (Tw

e )′ · T e
offset (9.4)

Each planner is necessary to be modified in a such a way so that the WGR (e.g. OGR) are included.

That can be done by inserting a probability of generating random goal. The algorithm 28 is used

in the bidirectional approach like the CellBiRRT and the algorithm 29 in the forwards directional

approaches. It is an extension of all algorithms used mostly to accomplish manipulative tasks.

The image 9.3 illustrates a sequence of motion done by the RRT − JWLN attempting to grasp

a cylindrical object like a bottle. The OGRo of this object is equal to:

OGRbottle =



0 0
0 0
0 0
0 0
0 0
-π π

 (9.5)

9.2 Share control of robot arm

The planners described in previous chapters can be used to control the robot arm. The FRIEND

system is dedicated to serve autonomously disabled people. However practical experimental results
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Algorithm 28 WGR for Bi-directional approaches

Require: T1(forward),T2(backward) trees,qstart, qgoal start/goal configurations, PgRandomGoal ∈ [0, 1] random

value

1: T1.Init(qstart) , T2.Init(qgoal)

2: loop

3: a=Ran(0,1)

4: if (a ≤ PgRandomGoal) AND T1 == T2) then

5: Psample=SampleWGR() {Sample the WGR like previously described }
6: qgoal = CalculateConfigWithIK(Psample)

7: T1.Add(qgoal)

8: end if

9: ...continue to the algorithm ...

10: SWAP (T1, T2)

11: end loop

Algorithm 29 WGR for forward approaches

Require: T (forward) trees,qstart start configuration,Pgoal target frame, PgRandomGoal ∈ [0, 1] random value

1: T.Init(qstart)

2: loop

3: a=Ran(0,1)

4: if (a ≤ PgRandomGoal) AND T1 == T2) then

5: Psample=SampleWGR() {Sample the WGR like previously described }
6: end if

7: ...continue to the algorithm ...

8: end loop

(a) (b) (c) (d)

Figure 9.3: Sequence of motions in order to grasp a bottle on the table done by RRT − Jwln

had shown that the system may fail to execute autonomously a task( for instance due to bad

sensing). The user is asked then to control manually the robot arm.

In this thesis two types of share control of robot arm are attempted. Normally, the tasks are:

• to grasp an object

• to maneuver around the obstacles

118



9.2 Share control of robot arm

Figure 9.4: Motion example of a planar two DoF robot arm from a semi-autonomous/share control

between the robotic system and the user. The robot moves incrementally from the initial configuration

to the target location P. The robot end effector is attracted by the ”force” coming from the target

location

For that reason two types of share control are examined.

9.2.1 Target Oriented Share Control

The main idea of this approach is to have an attractive goal. The end effector is moved incremen-

tally towards the target location. The robot is allowed normally to move towards one of the main

directions : up / down, left/right and forward/backward, but it is not possible to move simultane-

ously in two directions. With this approach its movement is followed by an additional motion in

order to reach the goal location. Let consider the planar robot illustrated on image 9.4. The robot

failed to go autonomously to the target location and the user is asked to reach the target manually.

The user simply commands the robot to move down. At that time the system adds an additional

offset in X direction. This offset depends on the distance ~F which is the vector that connects the

current end effector position with the target’s one. The system assists the user to reach faster the

target location by attempting to move simultaneously to additional directions. The step of each

motion equals to:

stepi =


step , if motioni is selected

OR Fi if Fi 6= 0
OR 0

(9.6)

The stepi in the equation denotes the length of the step and the i the direction of motion e.g.

x,y or z direction. The Fi denotes the value of the i coordinate of the vector ~F . This equations

defines that if the user does not select the i direction, the robot arm either does not move towards
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(a) Green cell is selected (b) Result of the motion to-

wards -Ŷ

(c) Result of the motion to-

wards +X̂

Figure 9.5: Example of share control for stepwise direct line motion in direction -Ŷ and +X̂. The

yellow cuboid is in collision, the red one is rejected due to the ~F direction. Therefore the green one is

selected. Orientation and position are calculated as in previous chapters and the robot’s end effector

moves directly to this location

it or it moves with a step of the Fi. In order to eliminate big motions due to a big value of the |~F |,
the value of the maximum Fi is limited to the given step (equation 9.7).

Fi = min(Fi, step) (9.7)

This approach uses cells to decide the next state of the end-effector. Consider the example of

the image 9.4. At the beginning the user decides to move on -Ŷ direction e.g. down (see figure 9.5).

Due to the direction of motion, three cuboids are generated and tested for (a) collision and (b)

decreasing the distance between end-effector and target location. In this example the green one is

selected and the red one is rejected. In any case if the green and the yellow cells were in collision

the remaining one is selected. If all of them were in collision the robot doubles its step and checks

again otherwise the user is informed that the required motion cannot be done. Continuing the

same procedure, the robotic arm gradually reaches the target location and the user does at least

the half of the work since the robotic system simultaneously moves the end effector towards the +X̂

direction. The same procedure is followed if the user selects to move towards the +X̂ direction. In

this situation the system moves simultaneously towards the -Ŷ direction (see figure 9.5(c)).
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9.2 Share control of robot arm

Figure 9.6: The user decides to move the robot arm in positive ~Y axes. The robot normally is not

able to move since its next state is in collision. The user should have moved the robot’s end effector

backwards in order to free his place. With share control the robot is able to move at once the path AP.

The red color denotes cells being in collision

Figure 9.7: Example with two possible configuration corresponding to the location B and P. the P is

selected because the manipulability is bigger

9.2.2 Semi autonomous maneuvering around obstacles

The semi autonomous maneuvering follows almost the same strategy as the target oriented share

control. Now a target location is not given. Cells are used also here in order to identify possible

free space around the obstacle.

Consider the example in figure 9.6. The robot is close to the obstacle and the user decides to

move the robot arm far from obstacles. In order to accomplish it the user should move stepwise
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backwards and later to go to the position P. For such a situation an automatic solution is necessary.

The workspace around the actual end effector location is divided again into cells. Consider

the same example but now the robot has to move stepwise to +~Y direction. The new location is

calculated but because the robot arm is in collision, cells are examining the near area. The size of

cell is equal to the step. The searching is stopped when a cell is collision free. Each cell is examined

if there is (a) collision or (b) if the possible solution e.g. configuration, is more appropriate from

the others. All possible solutions are included into a set Q. The selection is done based on the

manipulability and the calculated distance from the obstacles. If the robot has difficulty to move

like being stretch or close to singularity the manipulability is very low. These situations have to be

excluded. The second criteria is the minimum distance. The configuration that has bigger distance

from the obstacles is favored. Putting the two criteria together, a configuration is selected which

satisfies:

q = argmin
q∈Q

(A · 1

Manipulability
+ (1−A) · 1

MinimumDistance
) (9.8)

where A ∈ [0, 1]. The A should have a big value, so that the configurations that have big ma-

nipulability are favored. Consider the example in the image 9.7. There are two configurations

corresponding to locations P and B. The distances AB and AP are the same. The red cells indicate

that are in collision. Although the configuration corresponding to the location B has bigger dis-

tance from the obstacle, the configuration that corresponds to location P is selected. The reason is

obvious. The manipulability is bigger and that may assists the robot arm to move later to another

position. The position B is not appropriate since the robotic arm is almost stretched.

9.3 Manipulative Skills

Manipulative skills are very crucial since several tasks should be accomplished in a given scenario.

For instance the user asks to grasp a bottle, to fill a glass with water, to cook e.t.c. All these tasks

include several sub motions which are executed in a sequence. The design of the sub motions is

discussed in this section.

Manipulative skills include the ability of the system to execute some tasks like to grasp an object,

to place it to another position, to close a door and many others. Automatic control e.g. motion

planning is important so that the robotic system will be able execute the sub-tasks automatically.

The planning algorithms described so far can be used to calculate the path for a motion. Preferably

the CellBiRRT has been used but the others can be applied too.

The described scenarios are:

• Activities of Daily Life (ADL) ( project AMaRoB)

• Working on a library ( project ReIntegraRob)

Both scenarios require skills,which simply include a sequence of motions done by the robotic

arm. In order to accomplish these sequences, three helper skills are developed:
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(a) Grasping a mealtray modeled in

MVR

(b) Grasping a mealtray in reality

Figure 9.8: Task ”Grasp a mealtray” presented in 3D modeling and in reality

• PlanAndMoveGripperToLocation: This method places the end effector to a given loca-

tion/frame. The inverse kinematics calculate the necessary target configuration if needed.

This method requires the planning parameters (extracted from a database) and the final lo-

cation/ frame of the end effector. The difference from previous versions is the presence of

some additional parameter: the WGR and the constraints.

• PlanAndMoveObjectToLocation: This skill places a gripped object to a given location/frame.

The skills automatically detects if there is a grasped object and consequently calculates the

target location of the end effector. This method requires the planning parameters and the

final location/ frame of the object.

• GraspObject: This skill executes the scenario of automatic grasping an object. Given the

name of the object the skill loads from a database the WGR region corresponding to the

object, the planning parameter and finally the robot executes automatically two sub motions.

The first one is the coarse approach till a pre location. The robot places the end effector close

to an object. The second one is a direct line motion till the grasping location(final location).

The image 9.8 shows an example where the robot arm has to grasp a mealtray.

9.3.1 ADL Scenario

This scenario has been conducted from 2008 till 2011 and the system is illustrated in figure 2.1.

This scenario is done within the research project AMaRob. The aim of the project is to work on
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(a) (b)

Figure 9.9: Two different grippers: the left one used in the ADL scenario and the right one in the

Library scenario

the fundamentals of a rehabilitation robotic system that is suitable for everyday use. The goal is to

support people with multiple handicaps for at least 1.5 hours continuesly without further support

by care personal (refer to project’s web site [IATb]).

The system FRIEND should execute the following sub tasks: Grasp a mealtray from a fridge,

moving away from a fridge, open the microwave(it is not done by the robotic arm), placing the

mealtray in the microwave, closing the door, warming the food (it is done not by the robotic arm),

grasping the mealtray from microwave, placing it on the tray/tablet and serving the person. Except

the opening of the door of the microwave and the warming of the food, the rest is done by the

robotic arm. The gripper used for this purposed is presented in the figure 9.9(a) .

All the manipulative skills use the same strategy which has two phases:

• Learning phase: During this phase the system learns / stores the relative location between the

end effector and an object or a location. That is done by moving manually the end effector to

the desire location and afterwards storing the relative frame to a database. That strategy is

very helpful for instance in case of grasping an object. With this procedure an initial relative

location between the end effector and the target object is stored in the database.

• Execution phase: During the execution phase the relative frame is used to calculate the final

end effector frame. The end effector frame is calculated as it is described in previous sections,

by multiplying the relative frame with the object’s frame.

The rest of the text describes shortly the manipulative skills developed to fulfill all the tasks:

• CloseDoorByFTSControl(see figure 9.10): The manipulator closes the door of the microwave

with the thumb of the end-effector. Firstly the robot moves parallel to the microwave, and
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Figure 9.10: Sequence of motion to close the door of the microwave

(a) (b) (c)

Figure 9.11: Sequence of motion for the skill TakeFood

later it pushes the door to close. The force sensor, that is mounted on the end-effector, detects

if the door is closed. The skill FTSensorMonitoring(described later) informs the manipulator

that the required force is applied.

• TakeFood (see figure 9.11): That skill is a composition of a sequence of motions. The spoon

being grasped by the robot arm should be rotated in order to take the food from the mealtray.

Experiments shown that a motion parallel to the Y of the mealtray can take safely the food.

Afterwards the spoon is raised up and then the food is served slowly to the user.

• MoveObjectInByFTSControl(see figure 9.12): The object e.g. mealtray is going to be placed

inside the microwave. Due to the fact that the sensors (cameras) do not provide high accuracy,

the force sensor is used for fine placing of the mealtray into the microwave. Each time the

mealtray is in contact with the inner sides (left or right part) of the microwave, the robotic

arm moves backwards towards the force direction. This reaction provides higher accuracy by

placing the mealtray in the microwave.

• FTSensorMonitoring : The abbreviations FT comes from the Force - Torque. The Force
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Figure 9.12: Move the mealtray into the microwave using the Force sensor

sensor mounted on the gripper of the robotic arm (see figure 9.9) is able to measure the

forces that are applied on the gripper. It is an additional advantage and it has been used

within this project. The skill reacts sending the necessary messages to the robotic arm e.g.

contact or not contact. The monitoring of the force is executed in parallel with the robot

motion and it tries to detect if a peak e.g. sudden change of forces is appeared. That is done

at real time so that the robot will be able to react as fast as possible. The data taken from

the sensors are filtered with an average filter and secondly the derivative of the signal detects

sudden changes. The image 9.13 presents an example where the end effector collides with an

obstacle. The force signal changes suddenly and it is detected by the system as a collision.

The robot arm returns back to a safer position.

Basic functions like the PlanAndMoveGripperToLocation,PlanAndMoveObjectToLocation and

GraspObject are used by every skill in order to execute the sub motions.

The ADL scenario has been successfully demonstrated in many exhibitions like RehaCare@2009

and Hannover Messe@2010. Many videos demonstrating the scenarios are in the web page [IATa].

9.3.2 Library Scenario

Comparing library scenario and ADL scenario there is a difference which is the replacement of

a hardware part. The open/close ”anthropomorphic” hand gripper is replaced by an industrial

open/close parallel gripper (image 9.9(b)). The parallel gripper has some advantages and draw-

backs. The advantage is its simplicity since a parallel gripper has only one degree of freedom( DoF)

compared to a situation where multiple joints on the gripper are present. However the disadvantage

is the lack of multiple sensing, grasping points or even flexibility that a gripper with more DoF may

provide. The manipulative skills, described in this section, are therefore developed for a parallel

gripper.

The aim of this project is the system FRIEND to give the ability to the user to return back to

working life. His task is to catalog books. For that reason four skills are developed:

• Grasp a book from book cart
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(a) Signal captured by the FTSensor

(b) Derivative of the captured signal

Figure 9.13: The signal by the FTSensor and its derivative. If the derivative exceeds a limit the robot

arm stops its motion and reacts either by moving backwards or it stops

• Place a book on the book holder

• Grasp a book from the book bolder

• Place a book to the book cart

All the above skills use almost the same strategy: The calculation of a relative frame between

the end effector and an object and later to apply relative motion towards the object.

• Grasp a book from book cart: The skill contains mainly three parts: the first one is the coarse

approach of the end effector in front of the book cart. The second motion is a visual servoing

task which description is out of the scope of this thesis. The last motion is the fine tuning

to grasp reliably the book. In this thesis the first and the last part are going to be described

briefly.

The image 9.14 depicts of the end-effector’s and the book cart’s frame. The relative frame

is calculated as follows:

TW
G = TW

C · TC
G = TW

C · (RotX(π) ·RotY (π) · TransC) (9.9)
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(a) Coarse approach of end effector in front of

the book cart

(b) Fine tuning for reliable book grasping

Figure 9.14: Coarse approach of end effector in front of the book cart and the fine tuning for reliable

grasping [HFHG12]

Figure 9.15: Place book on a book holder [HFHG12]

where TransY is a translation in {C} coordinate system for better alignment (closer of further

to the book cart). The grasping is done by rotating and moving the end effector towards the

book. The book should be placed between the plates as the image 9.14(b) shows. The

gripper is ready to close and the robot arm detaches the book from the shelf.

• Place a book on the book holder: The strategy of the skill is similar to the one done in ADL

scenario. The image 9.15 presents the frames needed for the placing. The relative frames TG
B

and TH
B are needed. The frame TG

B is calculated when the book is grasped by the gripper.

The book is recognized by the sensors and the relative location between the book and the

gripper is calculated using the actual location of the book and the end-effector. The frame

TH
B is extracted from the database. The TH

B can have two values. The reason is the placement
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(a) (b) (c)

(d) (e) (f)

Figure 9.16: Sequence of motion for grasping a book from book holder

(a) (b)

Figure 9.17: Place a book back on the book cart’s shelf

of the book on the book shelf. The books are placed levelly - straightly on the shelf resulting

to two possible TG
B and TH

B frames.

• Grasp a book from the book bolder: The image 9.16 illustrates the sequence of motion

done by the end-effector to close the book and to grasp it from the book holder. Similarly to

previous skills, the frame TG
H is required. The frame is extracted by the database. Afterwards
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the end effector moves towards the book holder and closes the book (figures 9.16(b)- 9.16(f))

.

• Place a book to the book cart: Like the other tasks the calculation of the end effector’s

location has to be done (see figure 9.17). This scenario has many similarities with the first

task since the relative frame between the gripper and the book cart is used. The calculations

remain the same except the last step where an additional rotation on the gripper is done.

The rotation α (see figure 9.17(b)) is done around the ŶG axis. The aim is the book to lie

parallel to the shelf. The rotation α can be computed easily by calculating the rotation from

the relative frame TG
B .

One main difference , except the described skills, between the ADL scenario and the library

scenario is the reliability. The basic kills like PlanAndMoveGripperToLocation have been developed

so that multi threading control is available. For instance, the planner and the motion of the robot

are able to stop simultaneously. The reliability is totally increased. The software is developed so

that the platform will be close to real product.

The library scenario has been successfully demonstrated in the RehaCare@2012 exhibition [IATc].

9.4 Motion Planning Library for Manipulators

This section describes motion planning library. It includes all the described so far planning algo-

rithms as well as some additional features. The requirements of such a library are:

• to be independent of the platform e.g. to be able to be applied to other robotic systems

• to be as simple as possible for the end-user programmer

• to be reliable and stable e.g. to support multi threating and stable code

These three requirements are necessary to be fulfilled.

The library , called Open Motion Planning Library for Manipulators, has the following features:

• Supports a wide range of basic planning algorithm like RRT,RRT-JT,CellBiRRT e.t.c

• Supports planning with additional constraints like in position and in orientation

• Supports several trajectory generation profiles (using polynomials or Reflexxes Library [Krö10])

• Supports offline and online path smoothing like Pruning or Online Shortcutting [HNTH10])

• Supports multi threading

• Supports efficient collision detection using bubbles and OBBs for faster computation time as

well as different collision detection packages (GJK,SWIFT, PQP)
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Algorithm 30 Example using the Motion Planning Library

MotionPlanning::Planner::CPlanner<Tplanner, Tparameters> Planning;

Planning.ConnectToMVR();

Planning.SetEnvironment(...) ; // set the environment of the planner

IPlannerInterface *pPlanner = Planning.GetPlanner();

pPlanner− >InitPlanner(MVR,RobotDHParam, MinDistance,RobotName) ; // RobotDHParam

is an IKinematics and the RobotName is used in order to control the input of the robot. Internally

initializes the object that inherits by the IKinematics and implements the kinematics of the

specified robot

pPlanner− >SetParameter( .. ,PlannerType ,...) // set global parameter like start, goal, WGR,

constraints , the planner type from the group Tplanner like CellBiRRT, RRT − JWLN

pPlanner− >SetParameterPlanner (....) // set specific planning parameter if needed

Planning− >Solve() // try to solve the task

Planning− >Smooth(...) // smooth the path

Planning− >ExecuteTrajectory( ....) // executes the trajectory based on the profile

The library is based on interfaces which define the complete structure of the library. Every

programmer should follow the interfaces or classes. The core of the library is encapsulated into the

following interfaces and classes:

• CPlanner [template class]: This class is a template, and as argument can be any implemen-

tation of the IPlannerInterface. This container is the basis and it is very important since it is

in the top level and acts as an intermediate between the calling application and the planner.

The class returns the interface and later the programmer can use this interface for the rest

of teh work. This class initialize the environment and can add or delete elements on it.

• IPlannerInterface [interface]: It contains the necessary methods used by the planner. The

implementation of this interface should have all the planning methods like CellBiRRT, Carte-

sianRRT e.t.c. In addition methods like SetParameters, Initialization and StartPlanning are

included.

• IKinematics[interface]: This method contains the kinematics of the robot arm. Each robot

arm should have its own kinematic structure. The rest of the classes and methods should use

this interface. The code remains global and can be used by any robot.

• CVertex [class]: This modules uses partially the IKinematics and the collision detection

class(in this thesis is the MVRserver). It contains the data of a state of the system, it can

check for collision and it can solve inverse or forward kinematics.
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• CEdge [class]: This module is responsible for the connection between two nodes. Calculates

the norm (distance) between two nodes and can check if the segment between two nodes is

collision free.

• IGraph [interface]: This interface contains the methods that are used by graphs. Functions

like FindNearesT, AddNode, Find-K-Nearest are included. The programmer should imple-

ment the functions of the interface accordingly.

The figure 9.18 presents some examples where this library is applied in several robotic arms.

The parameters of the planner remain the same for all experiments and robots. This is an advantage

of using the proposed planners since the planners can solve easy as well as difficult tasks.

The UML diagram of the implementation is shown on figure 9.19. An example using the library

is presented in the pseudo-code 30. The red color indicates the changes that are necessary to be

done if the group of planners changes. The blue one are the places that need to be adapted if the

robot type changes. The pink color denotes the places where the planner type from the group of

planners is changed. It is clear that there are only three places that have to be modified if a new

robot or a new planner is used.
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(a) SCHUNK 7DoF robotic arm (b) WAM 7DoF robotic arm

(c) LWR 7DoF robotic arm (d) PUMA560 6DoF robotic arm

Figure 9.18
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Figure 9.19: UML diagram of the Motion Planning Library
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Chapter 10

Conclusions

In robotics research community the autonomous manipulation remains a challenge. That au-

tonomous behavior requires the design of motion planning algorithms that are efficient to solve a

task. This thesis describes several motion planning algorithms that accomplish these requirements:

they can solve fast several kind of tasks (from very open to very cluttered tasks) without adding

complicated and special heuristics that may be needed by a task. Another important topic that is

discussed in the thesis is the optimality. A new algorithm is presented promising to minimize the

cost of the path in a reasonable time. The performance of all planners is really comparable (even

better) with the state of the art explaining the reason of using them in several applications.

The first described algorithm is called CellBiRRT and it is a sampling based approach. The

planner works in configuration space, however it uses the Cartesian space in order to generate

random configurations. The CellBiRRT uses the main characteristic of the bidirectional RRT i.e.

expands randomly two bidirectional trees attempting to connect each other in each iteration. The

CellBiRRT involves two main contributions: the first one is the generation of N-dimensional cuboid

regions, notated with Rq, and the second one is the appropriate selection of cell. The region Rq is a

space around a configuration q. The last expanded configuration from a tree or the one generated

by the cells is used as configuration q. Random configurations are generated inside this space. The

second contribution, the cells, are generated by cell decomposition of the Cartesian space. The

algorithm detects the cell where the end-effector belongs to and it examines its neighbor cells. The

location of the end-effector is calculated by the position of the selected cell. The center configuration

of the cell is calculated by the inverse kinematics. The center configuration is used as configuration

q for the N-dimensional cuboid region. Experimental results showed that the CellBiRRT without

cells but with the region Rq provides better results compared to the Bidirectional RRT. The cells

improve the performance and also improve the quality of a path. The planner solves efficiently tasks

with or without additional constraints on the end effector. The main drawback of the planner is

that the calculated path does not remain the same after each execution. That is a characteristic

of the sampling based approaches. However, the feasibility of the planner is very high and the

calculated path does not vary much. For all the above reasons the CellBiRRT is selected as the

main planner for the described applications.
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The second part of the thesis presents forward directional sampling based approaches (RRT −
JWLN , RRTIK , CartesianRRT ) e.g. approaches where only one tree grows. The expansion is

probabilistically controlled which means that the tree expands either towards the goal or towards

a random configuration. The regions Rq as well as the cells are also applied here(except the

CartesianRRT). The expansion towards the goal is done using either analytical inverse kinematics

(IK) or Jacobian based approaches. Except CartesianRRT, the rest of the algorithms are using

cells, Jacobian based approach for inverse kinematics and regions Rq. The main challenge for the

algorithms is the linear interpolation of the end-effector between two locations in Cartesian space.

That is accomplished by using quaternions (Slerp) for the rotational part and linear interpolation for

the position part. Experimental results show that the planners are really challenging. Especially

the Jacobian based approaches provide nice and comparative results in simple as well as very

cluttered environments with the CellBiRRT. In cluttered environments may calculate a solution

faster compared to the CellBiRRT. Despite the fact that they are very efficient, the resulted path

contains high number of configurations. A smoothing as well as fast controlling of the joints

velocities during the execution may be necessary.

The presented planners are focused on the efficiency and not in the optimality. Optimality is

therefore an important topic. The main disadvantage of the state of the art planning algorithms

focused on optimality is the efficiency. That group of planners provides better qualitative paths

compared to efficient algorithms like the CellBiRRT, but it requires additional time to accomplish

it. The CellBiRRT*, presented in this work, can compute low cost paths (paths with small length)

while the computation time is deliverable. The CellBiRRT* uses the characteristics of the RRT*,

the CellBiRRT and additional heuristics in order to create configurations that have good probability

to contribute to lower cost path. Configurations that their cost is bigger than the path’s length are

set as inactive and they do not contribute further. Since CellBiRRT* requires more time compared

with the CellBiRRT, an On-line computation of a path is developed. The path is being re-calculated

on the fly e.g. while the robot arm is moving even if changes on the environment happens. The

pre-calculated path is sampled and the CellBiRRT* attempts to recalculate the path from these

samples. That executed path may have now better quality.

All the presented algorithms are evaluated and compared with the state of the art motion plan-

ning algorithms (IkBiRRT, CBiRRT, RRT-JT, BiRRT*, Cartesian Cell Decomposition planner).

Test are done in very cluttered as well as easier environments. The proposed approaches manage

to deliver very good results compared to the state of the art planning algorithms showing that they

are competitive or even faster methods.

The described planning algorithms are organized into a library, called ”open motion planning

library for manipulators”(OMPLFM). The main aim of the library is the generality e.g. the ability

to be used by other institution. The library is built with interfaces, giving the flexibility to the

user either to follow the present or to create his own implementation.

Future perspective of this work is to apply additional constraints regarding the safety. For

instance the robot should not not move straight towards the user, at least when the target location

is far from him. Moreover adapting dynamically the velocities and accelerations of the robot arm

in respect to safety could be a potential work.
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An enhancement of the proposed idea of cells is to use boxes with unequal width, height and

depth. In this thesis, the dimensions are equal. If the dimensions are not equal, it may improve

the performance when additional constraints in the end-effector exist.
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Appendix A

Quaternion

A.1 Slerp(Spherical Linear) interpolation

Ken Shoemake in [Sho85] presented an approach for linear interpolation between two rotations.

Given λ ∈ [0, 1] an arbitrary number, q1 and q2 two quaternions, the Slerp interpolation is defined

by the following equation:

Slerp(q1, q2, λ) = q1 · (q−1
1 · q2)

λ (A.1)

or by using 4D geometry:

Slerp(q1, q2, λ) =
sin((1− λ) · θ)

sinθ
· q1 +

sin(λθ)

sinθ
· q2 (A.2)

where θ is computed by the following equation q1 · q2 = cosθ. In Slerp interpolation the existed

path, which is normally a straight line, is transform to an equivalent spherical path. The image

A.1 illustrate this feature of the interpolation. The benefit of this method is an exact linear

transformation between two rotations.

In [Kuf04] a nice pseudo code regarding the usage of the equation A.2 is illustrated. The

pseudocode is in algorithm 31. The parameter ε has a very small value and it is used in the case

where two rotations are very close.

A.2 Distance between quaternions

The distance between two normalized quaternion express the angle between the two quaternions,

and is expressed as the dot product between the quaternions.Given two quaternions q1(w1, x1, y1, z1)

and q2(w2, x2, y2, z2) the distance is equal to:

cosθ == q1 · q2 = w1 · q2 + x1 · x2 + y1 · y2 + z1 · z2 (A.3)
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A. QUATERNION

Algorithm 31 Slerp(q1, q2, λ)

1: q1 and q2 are the quaternions (w,x,y,z)

2: d = q1 · q2 //compute the inner product of two quaternions

3: if (d<0) then

4: q2 = −q2
5: end if

6: if (||1− d|| < ε) then

7: r=1-λ

8: s=f

9: else

10: a=arccos(λ)

11: γ = 1
sina

12: r= sin((1− λ) · a) · γ
13: s= sin(λ · a) · γ
14: end if

15: // set the interpolation quaternion

16: w=r · w1 + s · w2

17: x=r · x1 + s · x2

18: y=r · y1 + s · y2
19: Q= q

||q|| { normalize the quaternion q(w,x,y,z)}
20: Return Q;

Figure A.1: Slerp interpolation between two quaternions q1 and q2

A.3 Quaternion to matrix

Given a quaternion q=w+x·i + y·j + z·k the equivalent 3x3 rotation matrix is given by the following

equation:

R =

 1-2·y2-2·z2 2·x · y-2·z · w 2·x · z + 2 · y · w
2·x · y + 2·z · w 1-2·x2-2 · z2 2·y · z-2·y · z-2·x · w
2·x · z - 2·y · w 2·y · z + 2·x · w 1-2·x2-2·y2

 (A.4)
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A.4 Matrix to quaternion

A.4 Matrix to quaternion

In [Sho85] an approach of converting a matrix to quaternion is presented. This conversion is

unfortunately not trivial but it can be done nowadays easily. Given a matrix M3x3 the components

of the quaternion q=w+x·i + y·j + z·k can be computed by the algorithm 32.

Algorithm 32 Matrix to Quaternion

1: w2 = 1/4 ∗ (1 +M11 +M22 +M33)

2: if (w2 > ε) then

3: w =
√
w2

4: x = (M23 −M32)/4w

5: y = (M31 −M13)/4w

6: z = (M12 −M21)/4w

7: else

8: w=0

9: x2 = −1/2 ∗ (M22 +M33)

10: if (x2 > ε) then

11: x =
√
x

12: y = M12/2x

13: z = M13/2x

14: else

15: x = 0

16: y2 = 1/2 ∗ (1−M33)

17: if (y2 > ε) then

18: y =
√
y

19: z = M23/2y

20: else

21: y=0

22: z=0

23: end if

24: end if

25: end if
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Appendix B

Constraints with quaternions

Given a normalized quaternion q=(w,x,y,z), the constraints in equation 5.11 can be written as

follows:

CTT =


Xmin Xmax

Ymin Ymax

Zmin Zmax

qmin qmax

 (B.1)

where the qmin and qmax correspond to minimum and maximum rotations of the end effector

represented by quaternions.

The transformation T from rotation matrix to quaternion is defined as:

T (R→ q) : R(α, β, γ)
T−→ q(w, x, y, z) (B.2)

where R(α, β, γ) is rotation matrix given by the equation 2.18. Equivalent is defined the T (q → R)

the transformation from quaternion to rotation 4x4 matrix. Every frame, and equivalently rota-

tions, can be expressed with the help of quaternions. The advantage is less intermediate cal-

culations(for instance Slerp interpolation is fast). By applying only the necessary transforma-

tions(equation B.2), the constraint limits and the rest of the computations can be expressed by

quaternions.
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Appendix C

KD-Trees

In this appendix, KDtrees are presented briefly. In literature there is an huge number of references

as well as modifications of the KDTrees. KDTrees is a specific structure that decomposes the space

with a specific manner. This specific decomposition assists the search of the nearest neighbors.

The KDTrees are binary trees and they have the following functionalities:

• Insert (complexity from O(log n) till O(n))

• Search (complexity from O(log n) till O(n))

• Delete (complexity from O(log n) till O(n))

The insertion and the search are going to be explained through examples. The delete function in a

kd tree is more complicated since needs balancing of the tree. The normal procedure in that case

is to remove the node and to reconstruct the tree again from this node.

(a) Points and the dimension

splitting in KDTree

(b) Points represented in 2D with the

splitting dimension

Figure C.1: KDTree example
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C. KD-TREES

Consider the points A(6,3), B(5,6), C(7,2), D(3,4), E(1,7) and F(3,7) as the figure C.1(a)

shows. The A s the first point. The initial splitting dimension is X. Based on X the B and C points

are inserted regarding if the point lies on the left or on the right part for this dimension (e.g. to be

less or bigger than the Ax value). After splitting by X the next dimension is Y and the procedure is

the same. The third splitting is done again by the X axes and the procedure continues iteratively.

The figure C.1(b) shows the cutting dimensions and the points in 2D.

The searching works almost with the same way. Consider that there is a query point Q in figure

C.2(a). Let consider first the circle with radius equals to |QA|. It is clear that the radius does not

contain any point (for example B lies outside the circle) from the space being left to the A. This

space is completely discarded and consequently all the points in the tree belonging on the left side

of A are discarded. Now the point A and C are taken into account. Finally the point C is closer

than A (figure C.2(b)). This example shows that the KDTree can be very efficient structure for

nearest neighbour queries. From seven points the algorithm controlled only two and that improves

the performance. If the tree contains many points this approach is going to improve the query of

the nearest neighbor. As the dimensionality of the space increases the improvement is reducing

and after almost 20 degrees of freedom the KDTrees do not provide a significant improvement in

the performance compared to the brute force search.

(a) ... (b)

Figure C.2: KDTree Search example
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Appendix D

Trajectory generation

The trajectory profile, the calculation of velocities in relation with the time, is crucial for the robot

arm motion. In this work a third order polynomial is used since the constraints are: Initial and

final state are given and initial and final velocities are zero. The motion is done point-to-point and

therefore the robot velocities are zero at the begging and at the end of each segment. Therefore

the following equation describe the position of a joint:

q = a+ b · t+ c · t2 + d · t3
q̇ = b+ 2 · c · t+ 3 · d · t2
q̈ = +2 · c+ 6 · d · t

(D.1)

Following this profile there are some important issues that should be taken into account: the

robot should avoid any backward motion, and therefore the velocity should not change its sign.

The robot should not exceed a given maximum velocity |q̇|max and a given maximum acceleration

|q̈|max. Solving the equation D.1 the parameters are calculated as follows (more information is in

[BT97]):

a = qo

b = q̇1

c = 3(q1−qo)
∆t2

− (2·q̇o+q̇1)
∆t

d = 2(qo−q1)
∆t3

+ q̇o+q̇1
∆t2

(D.2)

where the notations < o > and < 1 > refer to start and goal positions respectively and ∆t the

duration of the motion.

Solving the equations D.1and D.2, and considering the constraints, the following minimum

travel time are calculated:

• With Velocity Constraints:

tv =
1.5 · |q1 − qo|
|q̇max|

(D.3)
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• With acceleration constraints:

ta =


6 · |q1 − qo|

q̈max
(D.4)

The duration ∆t is calculated as the maximum between the tv and the ta. Then the a, b, c and

d are calculated respectively and the form of the third order polynomial is completely calculated.

The velocities are given to the robot arm and the robot starts moving following the polynomial.
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Appendix E

Calculating the maximum

displacement of a link λk,max

This appendix repeats shortly the result of the paper [SScL05]. Let p is the vector of a point of

the rigid body of the link Ai. The straight path segment in the c-space between qa and qb can be

written as q(t) = (1− t) · qa + t · qb , t ∈ [0, 1].

From the Jacobian definition it is known that the velocity of the vector p can be computed as:

ṗ(t) =
i

k=1

∂p

∂t
q̇k(t) (E.1)

The equation E.1 can be bounded as follows:

||ṗ(t)|| ≤
i

k=1

||∂p
∂t
|| · |q̇k(t)| (E.2)

where the |q̇k(t)| is equal to |qb,k − qa,k|. According to the definition of the Rmaxik given in the

chapter 4, we have:

||∂p
∂t
|| ≤ Rmaxik (E.3)

The length Lp of the curved traced by the p when t varies from 0 to 1 is equal to:

Lp =

 1

0
||ṗ(t)||dt ≤

 1

0

i
k=1

||∂p
∂t
|| · |q̇k(t)|dt (E.4)

The latter leads to the following result:

Lp =

 1

0

i
k=1

||∂p
∂t
|| · |q̇k(t)|dt ≤

i
k=1

Rmaxik ·
 1

0
|q̇k(t)|dt =

i
k=1

Rmaxik · |∆qk| = λk,max (E.5)
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