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Abstract

Traditionally, robots have been assistant machines in factories and a ubiquitous part of
science fiction movies. But within the last decade the robots have started to emerge in
everyday human environments. Today they are in our everyday environment in the shape
of, for example, vacuum cleaners, lawn mowers, toy pets, or as assisting technologies for
care giving. If we want robots to be an even larger and more integrated part of our every-
day environments, they need to become more intelligent, and behave safe and natural to
the humans in the environment. This thesis deals with making intelligent mobile robotic
devices capable of being a more natural and sociable actor in a human environment. More
specific the emphasis is on safe and natural motion and navigation issues.

First part of the work focus on developing a robotic system, which estimates human
interest in interacting with the robot. This information is then used to navigate appro-
priately in the environment around a person. The system consists of three parts; finding
the person’s state information (position, velocity and orientation) relative to the robot,
determining if the person wants to interact with the robot, and finally human-aware navi-
gation that respects the persons social zones and interest in interaction. From laser range
scanner measurements, a new Kalman filter based method is used to infer the person’s
state information. Secondly, the robot adaptively learns to estimate if a person seeks to
interact with the robot. This is done using a Case-Based Reasoning System (CBR), which
analyses current behaviour patterns while comparing these to experiences and outcomes
from previous human encounters. The motion of the robot is controlled based on adaptive
potential functions. The potential functions are adjusted in accordance with the current
interest in interaction and such that the person’s social spaces are respected. The opera-
tion of the system is evaluated in an open hall setting at the university. It is demonstrated,
that the robot is able to learn where to position itself, and is capable of adapting to a
changing environment. It is then shown that the developed framework can be used in
other applications as well. The framework is transformed into a robotic game that, for
example, can be used to motivate elderly people to a regular amount of exercise, which
then keep them in better physical shape.

As well as being able to navigate safely around one person, the robots must also be
able to navigate in environments with more people. This can be environments such as
pedestrian streets, hospital corridors, train stations or airports. The developed human-
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aware navigation strategy is enhanced to formulate the problem as planning a minimal
cost trajectory through a potential field, defined from the perceived position and motion
of persons in the environment. A Rapidly-exploring Random Tree (RRT) algorithm is
proposed as a solution to the planning problem, and a new method for selecting the best
trajectory in the RRT, according to the cost of traversing a potential field, is presented.
The RRT expansion is enhanced to account for the kinodynamic robot constraints by
using a robot motion model and a controller to add a reachable vertex to the tree. Instead
of executing a whole trajectory, when planned, the algorithm uses a Model Predictive
Control (MPC) approach, where only a short segment of the trajectory is executed while
a new iteration of the RRT is computed. The planning algorithm is demonstrated in a
simulated pedestrian street environment.

One problem with sampling based methods for trajectory planning, is the high number
of samples, which are necessary to plan a good trajectory. Therefore, a method, which
decrease the computation time for an RRT, such that more vertices can be added in the
same amount of time to generate better trajectories, is developed. The algorithm is based
on subdividing the configuration space into boxes, where only specific boxes needs to
be searched to find the nearest neighbour. The result is an algorithm that can provide
better trajectories within a given time period, or alternatively compute trajectories faster.
In simulation the algorithm is verified for a simple RRT implementation and in the more
specific case where the robot has to plan a path through an environment with moving
people.
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Synopsis

Robotter er indtil idag mest brugt som maskiner på fabrikker og som en del af science
fiction film. Men indenfor det seneste årti er robotter dukket op i vores daglige omgivelser.
I dag findes de for eksempel i form af støvsugere, plæneklippere, legetøjs kæledyr eller
som velfærdsteknologier. Hvis vi ønsker, at robotter skal være en endnu større del af
vores dagligdag i fremtiden, er det nødvendigt, at robotterne bliver mere intelligente,
opfører sig på en sikker og naturlig måde samt tilpasser sig de menneskelige omgivelser.
Denne afhandling omhandler det emne; at gøre mobile robotter til en mere naturlig og
omgængelig medspiller i de menneskelige omgivelser. Mere specifikt lægges der vægt
på sikker og naturlig bevægelse rundt i omgivelserne. Grundtanken er, at robotter skal
bevæge sig så menneskeligt som muligt for at blive accepteret af os mennesker i vores
hverdag.

I første del af arbejdet er der fokus på at udvikle en robot, som estimerer, om en
person er interesseret i interaktion med robotten, dvs. om personen eksempelvis ønsker
at tale med robotten. Denne information bruges herefter til at navigere korrekt rundt
i forhold til personen. Systemet består af tre subsystemer; et subsystem der estimerer
personens position, hastighed og retning i forhold til robotten; et andet subsystem som
estimerer om personen ønsker at interagere med robotten; tredje subsystem sørger for at
robotten bevæger sig i forhold til personens sociale zoner samt om personen ønsker at
interagere. Det udviklede system er herefter modificeret og brugt til at lave et robotspil,
som f.eks. kan bruges på plejehjem til at få de ældre til at dyrke mere motion og derved
højne deres fysiske helbred.

Robotter i fremtiden skal også kunne navigere gennem et miliø, hvor der er mange
mennesker. Det kan være steder såsom gågader, hospitaler, togstationer og lufthavne.
Dette ruteplanlægningsproblem er i afhandlingen formuleret som minimering af omkost-
ningen ved gennemkørsel af et potentialefelt. Potentialefeltet er defineret ud fra posi-
tion og bevægelse af de personer, som opholder sig i området. Dette problem er løst
med en Rapidly-exploring Random Tree (RRT) algoritme og en metode til at vælge den
mest optimale rute i RRT’en i forhold til omkostningerne. RRT algoritmen er endvidere
modificeret til at tage højde for de kinodynamiske begrænsninger, der findes i robottens
bevægelse. Dette gøres ved at bruge en 2. ordens dynamisk robotmodel til at udvide træet
i algoritmen. Ruteplanlægningsalgoritmen er demonstreret i et simuleret gågade miljø.
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Et generelt problem for RRT algoritmer er det store antal samplinger, som skal til, før
en god rute kan findes. Derfor er der udviklet en metode, som nedbringer beregningstiden
i en RRT. Herved kan der opnås flere samplinger inden for samme tidsperiode, og dette
resulterer i at planlægningsalgoritmen kan lave bedre ruter eller alternativt planlægge en
tilsvarende rute på kortere tid. Denne algoritme er verificeret ved en simpel generel RRT
simulering samt i det ovennævnte gågade miljø.
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1 Introduction

In a not so distant future, we will see robots as a natural part of everyday human en-
vironments. The robots will emerge in a wide range of application areas from toys, as
household assistants, as customer service robots, to logistic helpers in, for example, hos-
pitals.

For robots to be a natural part of our future daily lives, it is necessary, that they
are able to move around safely and naturally in a socially acceptable way. This means,
that the motion of the robots have to respect the unwritten social rules that apply, when
people move around each other. This Ph.D. thesis focus on the general task of developing
algorithms for the safe and natural motion in human environments. To solve this task
the thesis incorporate several coherent robot abilities: human pose estimation; estimating
human interest in interaction; motion planning according to interest; trajectory planning
around many people, as well a optimising planning algorithms.

This chapter first describes the motivation for working with how robots should behave
in our future daily lives. Then an overview over the state of the art within Human-Robot
Interaction (HRI) and robot navigation research is given. Finally an outline of the rest of
the thesis is given.

1.1 Motivation

Imagine some time in the future entering the main hall of a huge office building. You
have never been there before and need to quickly find a specific room, where an important
meeting will start shortly. Around you are a lot of busy business people rushing towards
their destination. Intermingling with this crowd is a swarm of robotic agents; small mobile
message carrying robots, larger human like robots, flying robots, medium sized wheeled
robots, receptionist robots, and not the least visitor assisting robots. In this chaos all the
robots must be able to exhibit socially acceptable motion pattern, to be a natural part of the
environment, without being in the way. If they are not able to do that, the robots will be
an annoyance to the people minding their own business, and they will never be accepted
in a human environment. For the visitor assisting robots, it is even more difficult. They
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Introduction

will have to identify you as a visitor needing help, and know how to approach you and
help you. Even further they will have to agree which robot will help you or to hand you
over from e.g. a welcoming robot to a guiding robot. A simplified sketch of this scenario
is seen in Figure 1.1, where a service robot leads a visitor to a desired room.

Entrance
Elevator

Room 1 Room 5

Room 3 Room 4

Goal

Robot path

Person

Person

Building overview

Foyer

Hallway

Robot

Figure 1.1: Illustration of a scenario, where a service robot helps a person to find a desired
room.

This type of urban robots not only have their justification in future office buildings,
but in a wide range of environments serving many different assignments. Possible tasks
for robots in the future could be:

• assisting people in finding their way in airports;

• assisting people with timetables and directions to platforms at train and bus stations;

• helping people finding the desired goods in supermarkets;

• cleaning your house;

• helping elderly carrying their groceries home;

• delivering packages for postal service companies;

• guiding people and tourists at museums and on city walks;

• transporting medicine, laundry, blood samples etc. at hospitals;

• helping with directing people in large shopping centres;

• functioning as advertising platforms in shopping centres.
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1 Motivation

(a) Roomba, the vacuum cleaner. (b) A robotic lawn mower. (c) Pleo, an intelligent robot toy
dinosaur.

Figure 1.2: Three different robotic devices which are already a part of our everyday lives.

A common, and very fundamental, ability for all those robots is the fact that they need to
be able to be close to humans without being in the way. This means that the robots need
to move safe and naturally around humans, and in such a way, that it is social acceptable
for the humans in the environments.

The scenarios described above are not far from what is seen in science fiction movies.
But the fact is, that we have a long way to go before real robots can catch up with their
science-fiction counterparts. One of the inventors of the PC-revolution, Bill Gates, pre-
dicts that we may be on the verge of a new era, in which future robotic devices will
become a nearly ubiquitous part of our day-to-day lives [Gates, 2007]. Robots will enter
our daily lives to do floor cleaning, logistics, surveillance, entertainment, rehabilitation
training, playing, assisted living, learning and more.

Apart from in movies and in visions for the future, we already see robots entering our
domestic environments in increasing numbers each year. Robots that clean your floor,
does lawn mowing and plays with your children are already available. Three of this type
of robots are seen in Figure 1.2.

So it seems like the robots in our everyday environments have come to stay. However,
there is still a long way to go before they are capable of behaving socially acceptable in
a complex scenario like the one first described. It is a large challenge for current robotic
systems, to be able to act in an unstructured physical environment. One reason is, that the
complex environment cannot be completely predefined while the robot is being designed
and programmed, but remains unknown until the robot enters the real world. Unstructured
physical environments like these, are also called open-ended environments.

Besides the obvious comfort of robots assisting in our daily lives, they may also ad-
dress a more immediate societal problems. One example is, that with the increasing life
expectancy, the number of workers compared to the number of retired people, will de-
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Introduction

crease. There will hence be an increasing need for all sorts of assistance, which can be
provided by e.g. robots. For example the number of persons suffering from dementia is
expected to more than double before 2040[Dementia, 2010]. A recent study have shown
evidence that, for example, regular exercise and cognitive training have positive effect
on dementia [Sørensen, 2010]. But if there are no hands, the aging people might not re-
ceive proper care. Robots could, for example, help these persons get regular physical and
mental exercise by playing games with them, which the care givers does not have time
for. The Danish Ethical Committee has recently published a statement “Social Robots”,
where they foresee the use of social robots for intimate care [Agger, 2009]. So anywhere
robots can assist to make more free hands in our everyday lives, it would be of great help.

These visions or ideas of robots as an ubiquitous part of our future lives have, within
the last decade, inspired the growth of a new field of research, which is called Human-
Robot Interaction. Some of the robots, that have recently emerged in research laboratories
around the world are shown Figure 1.3 and Figure 1.4. Most of these robots are designed
for special research purposes and have impressive abilities in that respect. But they are
not designed for directly fulfilling a task in a human environment. Thus, none of them
are yet capable of acting completely autonomous fulfilling assignments in a real-world
scenario. Furthermore none of them have a human-aware navigation system that respects
social rules of motion. Thus, this is still a missing piece that need to be incorporated in
robots for the future.

To substantiate, that there is a potential for robots in our human environment, the
Ph.D. project started out with an experiment, where a robot was set at large in a public
shopping centre. The robot was named SantaBot, because it was close to Christmas, and
it was therefore dressed as Santa Claus. A more detailed description of the experiment
follows in the methodology in Section 3.1 on page 41. The experiment is also documented
in the paper [Svenstrup et al., 2008]. The SantaBot experiment showed that people are
open towards robots, and that there definitely is a great potential for sociable mobile
robots in our future environments.

1.2 Problem Statement

The SantaBot experiment and the above described future vision for robotics have mo-
tivated the further work during this Ph.D. project. Thus, the thesis deals with enabling
robots with capabilities to act in future human environments as a safe, natural and socia-
ble actor. More specific, the emphasis is on safe and natural motion and navigation issues.
The work in this thesis takes it starting point from the scenario, where a service robot is
moving around in an environment like a shopping centre, and airport or an office build-
ing. Some of the challenges, which were discovered during the SantaBot experiment, has
been further developed into research questions, which are investigated through the thesis.

4



2 Problem Statement

(a) Geminoid is a robot designed by Hiroshi
Ishiguro at ATR in Japan.

(b) Robovie from ATR, Japan

(c) Paro is a therapeutic robotic
baby seal. It is designed to elicit
emotional responses to e.g. pa-
tients in nursery homes.

(d) Grace from Carnegie Mellon
University

(e) NASA has experimented with
Robonaut for HRI purposes.

(f) Nao, the new robot replaced
the dog robot AIBO in the stan-
dard platform league in the robot
soccer world cup.

(g) Honda’s robot ASIMO

Figure 1.3: Different robots used for human interaction.
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(a) Kismet is capable of being so-
ciable by making appropriate face
expressions[Breazeal, 2002]

(b) The successor of Kismet is a
fury guy named Leonardo.

(c) Nexi, a new humanoid robot
from the MDS class. MDS is short
for Mobile/Dexterous/Social.

Figure 1.4: Robots from MIT’s Personal Robots Group.

The research questions are:

• Person detection: How can robots detect position and orientation of people by using
simple sensors?

• Intention recognition: How can robots find out if people are interested in interac-
tion, based on previous experiences?

• Human-aware navigation: How can a general motion control framework be de-
signed to facilitate sociable and comfortable robot motion around a person?

• Trajectory planning: How can a navigation algorithm be designed to enable robots
to navigate through a populated human environment, such that it is safe and natural
for the people in the environment?

• Evaluation: How are these abilities evaluated and tested on a prototype robot?

To be able to move around people, it is necessary for the robot to know at least the
position and orientation of the people in the environment. Next task, for the robot, is
to find out if a person actually needs help and hence wants to interact. Then the robot
must navigate naturally towards the person to engage in close interaction, or navigate
around the person if the person is not interested in close interaction. The developed intent
estimation and motion control framework is shown to be more general applicable for
robots with other tasks in a human environment. This is demonstrated by enhancing it,
such that the robot is able to play a game with elderly people to motivate them to do a
regular amount of exercise. Having solved the question of navigation close to and around
one specific person, it is natural to address the situation, where more people are present
in the scene. This challenge is illustrated in two images from the real world, which are
shown in Figures 1.5 and 1.6. The figures show scenes from pedestrian streets in Aarhus
and Tokyo respectively. When encountering environments like this, the question is then, if
the robot can safely navigate through the human crowd to a desired end location. Robots,
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2 Problem Statement

which have been put into the real world, typically handles situations like this by moving
relatively slow and relying on people to plan trajectories around the robot and move away
from the robot path. Instead, the goal in this work, is to develop an algorithm, that makes
the robot move much more dynamic, like the humans in the environment.

Figure 1.5: An image of a pedestrian crossing in Tokyo.

Figure 1.6: A robot perspective of a pedestrian street in Aarhus, Denmark.
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Introduction

1.3 Outline of the Thesis

This thesis is written as a plurality of papers, which means that it is divided into two
main parts. First an extended summary, consisting of an overview over the topic, current
state-of-the-art and an overview over the scientific contributions1. The state-of-the-art is
presented in the following Chapter 2. Hereafter the methodology in Chapter 3, serves
to explain some of the basics methods and algorithms, which are used. In Chapter 4
the highlights of the scientific contributions for each paper are presented, followed by a
comparison to other work in 5. Before the included papers a combined conclusion is given
in Chapter 6. Second part of the thesis is a collection of the most important publications.
This is a brief overview over the subjects treated in the appended papers:

Paper A [Svenstrup et al., 2009] Introduces a new Kalman filter based method for
pose estimation of persons using simple measurements from a laser range scanner. Being
able to estimate both position and orientation of persons is very important for being able
to navigate safe and naturally in a human environment. Furthermore the development
of a human-aware navigation algorithm and human intention estimation, which is more
thoroughly described in Paper B, is shortly introduced as well.

Paper B [Svenstrup et al., 2010b] Presents a combined system, which is able to detect
human pose, estimate human interest in close interaction with the robot, and adapt the mo-
tion accordingly. The pose estimation is used in a Case-Based Reasoning (CBR) system,
that determine if persons are interested (or not interested) in interacting with the robot.
Based on the estimated interest in interaction, a human-aware navigation algorithm en-
sures that the robot moves appropriately relative to the person. Experiments demonstrate
that the combined algorithms work on a real robotic system.

Paper C [Hansen et al., 2010] Demonstrates that the framework described in the first
two papers is general enough to be used in other applications for robots in human en-
vironments. Specifically in this paper, the framework is further developed into a robot
pursuit evasion game, where a player tries to get close to the robot. The game is intended
to motivate elderly persons to do a regular amount of physical exercise, which in the long
term can improve their health. Instead of estimating the interest in interaction, the robot in
this paper, estimates the skill of person. If it is a low skilled player, the robot approaches
the player to make the game easier, and if it is a player with good skills, the robot tries to
avoid the player, according to the motion scheme developed in Paper A and B.

1http://phd.ins.aau.dk/intranet/templates/3863476
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3 Outline of the Thesis

Paper D [Svenstrup et al., 2010a] The human-aware motion planner from Paper A and
B is extended to a trajectory planning algorithm, which is able to plan a trajectory through
dense human crowds, like experienced in for example pedestrian streets or airports. First
the problem is formulated as a minimisation problem. Then a trajectory planner, based
on a modified Rapidly-exploring Random Tree (RRT) algorithm, is designed to find the
solution to the minimisation problem. The RRT algorithm is modified to take into account
real-time operation and the dynamics of the moving robot. In simulation it is shown that
the algorithm ensures safe robotic motion through a pedestrian street.

Paper E [Svenstrup et al., 2011] Presents a new method to minimise the computa-
tional complexity of an RRT. Minimising the computational complexity of an RRT ulti-
mately enables the algorithm to make faster or better plans. It is shown, that the algorithm
presented in Paper D, is able to generate better trajectories using the new method.

1.3.1 Additional Scientific Communication

In addition to the publications, which are included in the thesis, the following publications
are associated with the work on the Ph.D. project as well:

1. Svenstrup, M. (2011). Navigation among humans. In Advances in Robot Naviga-
tion, editor Barrera, A.. INTECH, June 2011. ISBN 978-953-307-1345-8

2. Svenstrup, M. (2010a). Sampling based trajectory planning for robots in dynamic
human environments. In Extended abstract in workshop material from Robotics
Science and Systems (RSS) 2010.

3. Svenstrup, M. (2010b). Sampling based trajectory planning for robots in dynamic
human environments. Poster at workshop Motion Planning: From Theory to Prac-
tice at Robotics Science and Systems (RSS) 2010.

4. Svenstrup, M., Bak, T., Maler, O., Andersen, H. J., and Jensen, O. B. (2008a).
Pilot study of person robot interaction in a public transit space. In Proceedings of
the International Conference on Research and Education in Robotics - EUROBOT
2008, Lecture Notes in Computer Science, pages 120–131, Heidelberg, Germany.
Springer-Verlag GmbH.

5. Svenstrup, M., Andersen, H. J., and Bak, T. (2008b). Adaptive robot to person
encounter. Poster at the 3rd ACM/IEEE international conference on Human-Robot
Interaction (HRI).

6. Hansen, S. T., Svenstrup, M., Andersen, H. J., and Bak, T. (2009a). Adaptive
human aware navigation based on motion pattern analysis. In Robot and Human
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Interactive Communication, 2009. RO-MAN 2009. The 18th IEEE International
Symposium on, pages –, Toyama, Japan.

7. Hansen, S. T., Svenstrup, M., Andersen, H. J., Bak, T., and Jensen, O. B. (2009b).
The santabot experiment: a pilot study of human-robot interaction. In HRI ’09:
Proceedings of the 4th ACM/IEEE international conference on Human robot inter-
action, pages 211–212, New York, NY, USA. ACM.

8. Hansen, S. T., Svenstrup, M., Andersen, H. J., Bak, T., and Jensen, O. B. (2009c).
The santabot experiment: a pilot study of human-robot interaction. Video for the
4th ACM/IEEE international conference on Human robot interaction (HRI) video
session.

9. Andersen, H. J., Bak, T., and Svenstrup, M. (2008). Adaptive robot to person
encounter. In Proceedings of the International Conference on Research and Edu-
cation in Robotics - EUROBOT 2008, Lecture Notes in Computer Science, pages
13–23, Heidelberg, Germany. MATFYZPRESS.

In addition to the above publications, the work has also inspired more public do-
main scientific communication. For example a couple newspaper articles (in danish):
http://jp.dk/nyviden/article1478023.ece

http://videnskab.dk/teknologi/robot-laerer-af-menneskers-bevaegelser

Additionally the robot, which is described more in detail in Section 3.5 on page 51,
have also participated in exhibitions and other various events to promote robotic research
and university educations in particular.
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2 State of the Art and
Background

This chapter provides the background and current state of the art related to the different
subjects treated in this thesis. The subjects, which are outlined in Section 1.2, can be cat-
egorised into two different research areas. The person detection, the intention recognition
and the human-aware navigation subjects are directly linked to HRI research. Therefore
a brief and general overview over HRI is given in Section 2.1, and then more detailed
state-of-the-art descriptions of the subjects are presented. Second research area is more
generally about robot navigation, trajectory generation and motion planning. In Section
2.2 an overview over research in this area, and a more thorough analysis of the methods
related to the thesis, are given. Each subsection gives an overview over the state-of-the-art
research and concludes with an evaluation of how the work in this thesis fits in.

2.1 Human-Robot Interaction (HRI)

HRI lies in the intersection of robotics, artificial intelligence social sciences and psychol-
ogy [Dautenhahn, 2007](see Figure 2.1). To be able to interact with humans, the robots
need basic robotic skills; they need intelligence; and they need to behave in a socially
acceptable way. The HRI research area started growing roughly a decade ago, and has
been a fast growing ever since. A highlight was in 2006, where the first annual con-
ference on Human-Robot Interaction emerged. Recently some large European projects
[COGNIRON, 2007, COSY, 2007] concerning HRI have been running, and more is likely
to come. [Fong et al., 2003] surveys socially interactive robots, i.e. the current status as
of 2003. Although it is some years old, it presents a good and still relevant overview
of basic research issues and themes within socially interactive robots. Fong has a point,
which is very relevant in the way we approach HRI:

“Humans prefer to interact with machines the same way that they interact
with other people.”
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Figure 2.1: HRI is at the intersection of Robotics, Artificial Intelligence and Psycholo-
gy/Social Sciences.

This statement is central for the ideas behind the developed algorithms in this thesis. This
means that for robots to get accepted in human environments, they must act in a similar
way as humans would do.

A relative thorough and more recent survey of HRI is presented in
[Goodrich and Schultz, 2007]. Goodrich splits the HRI research into two distinct cate-
gories; remote interaction and proximate interaction. Remote interaction is where the
robots and humans are physically separated like for example the interaction software that
controls the Mars Rovers. The proximate interaction is where the robots and humans
are at the same physical location, which is what is interesting with respect to this thesis,
where the robots enter the human spaces.

There are quite a few distinct subjects areas within proximate HRI. Most of the re-
search within proximate HRI can be categorised within one or more of the subjects illus-
trated in Figure 2.2. The grouping into these areas is based on an analysis of HRI related
publications at conferences like HRI, RO-MAN, IROS and ICRA. The subjects marked
with green are the ones, which are directly treated in this thesis. The ones marked with
blue have some background relation to the work, which means that the areas are not ex-
plicitly treated in the thesis, but have some relevance for the subject of the thesis. The
white ones are not directly related the work presented in the thesis. The subjects, that are
not directly treated in this thesis, are shortly presented here:

• Facial expressions: Robots that express human emotions, to be able to be sociable
(see e.g. [Breazeal, 2002]).

• Roboethics: As we see more robots in our natural environments, a discussion on
how they should be allowed to behave is very relevant. Movies like; Blade Runner;
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Figure 2.2: Research within HRI can be grouped into a range of areas. The green areas
are the ones that are closest related to the work presented in this thesis. The blue areas
have relation to the thesis, and the white ones are not directly coupled to the thesis.

Terminator; A.I.; I, Robot, etc., contributes to the popular belief that robots might
be dangerous when becoming intelligent parts of our everyday environments (see
e.g. [Asimov, 1968, Arkin, 2008]).

• Natural language: Robots that communicate verbally with humans, both talking
and understanding the language. In fact, because natural language is difficult, sim-
pler methods for conveying information, like text on a screen, is also a research
issue. Natural language processing has been studied extensively for many years in
computer science for human-computer interaction (see e.g.
[Brick and Scheutz, 2007, Manning and Schütze, 1999]).

• Grasping: To move things in the physical world, robots need to be able to grasp
the things (see e.g. [Pratichizzo et al., 2010]).

• Learning from demonstration: Humans learn many of their skills by watching
and mimicking other people, thus robots that learn to perform tasks by having a
teacher showing it, have a great potential (see e.g. [Calinon and Billard, 2007])

• Object recognition: If you say “please hand me the red apple”, the robot must be
able to recognise the apple. Computer vision is usually used for these tasks (see
e.g. [Stiefelhagen et al., 2007])

• Gestures: This area concerns understanding human non-verbal gestures like point-
ing, waving, etc. (see e.g. [Jenkins et al., 2007]). The area is often also denoted
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pose estimation, which is not to be confused with the definition of pose used in this
thesis (see Appendix I on page 208).

• Social signal processing (SSP): Research that addresses the ability to recognise
human social signals and behaviours [Vinciarelli et al., 2009]. SSP is not a focus in
this thesis, but it has some resemblance to what is done, since we estimate human
intentions by observing the behaviour of the person.

• Human perception of robots: How does people actually feel, when a robot enters
their natural environments (see e.g. [Giusti and Marti, 2006, Kulic and Croft, 2007,
Koay et al., 2005, Sverre Syrdal et al., 2006]). This is also relevant in relation to
this Ph.D. project, where it is desired that the robot moves naturally for the people
in the environment. But no experiments, where the human perception is measured,
is done. However, it is relevant in relation to how a robot should move, and is thus
described further in Section 2.1.3.

• Field trials: This area concerns experiments, where robots have been put out
into the real world to find out about their potential (see e.g. [Shiomi et al., 2008],
[Mutlu and Forlizzi, 2008],[Kanda et al., 2007]). The SantaBot experiment (see Sec-
tion 3.1) is a field trial experiment, and thus, the area has some connection to this
thesis. Many of the works described below also contains field trials to see how the
robot behaves in the real world, or a controlled real world setting.

Based on the scope of this thesis and the research questions presented in Section 1.2,
the three central themes that are relevant in relation to HRI are; human detection and
tracking, intention recognition, and human-aware motion. These are described more in
detail in the following sections.

2.1.1 Detection and Tracking of People

This section describes different approaches to human detection and tracking. There are
several different types of sensors and combinations thereof, which have been successfully
used for people tracking. This is for example 2D and 3D vision
[Dornaika and Raducanu, 2008, Munoz-Salinas et al., 2005, Jenkins et al., 2007] and ther-
mal tracking [Cielniak et al., 2005]. But in applications, where it is only desired to
find the persons position and not posture or face expressions, laser scanner based peo-
ple tracking is prevalent (see e.g. [Fod et al., 2002, Kluge et al., 2001, Xavier et al., 2005,
Gockley et al., 2007]). Laser scanner data have also been used in combination with vision
systems, where the laser data is used to find the person, and the vision systems are used to
obtain further information, like pose [Feil-Seifer and Matarić, 2005],
[Michalowski and Simmons, 2006, Bellotto and Hu, 2009]. The success of the laser based
methods is because it is relative easy to extract information about a person’s legs from a
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simple line scan compared more sophisticated image processing. Furthermore the laser
based approaches tend to work at longer ranges than vision. But the different types of
sensors have different capabilities. For example, using vision enables more accurate
tracking in terms of finding features like the posture of the person. Also face tracking
[Sisbot et al., 2006, Pateraki et al., 2009, Kleinehagenbrock et al., 2002], is important for
close interaction purposes, where it is necessary to find out if a person is looking at the
robot, and what kind of facial expression the person has.

There are basically two categories of leg detection algorithms. One type finds the
motion between each scan and detects persons from that, using, for example, particle fil-
ters. In several cases an iterative closest point scan matching technique is used to match
consecutive scans and thus being able to find the motion. This type of method relies
on the person to move, otherwise the person will be treated as a static obstacle. Ex-
amples of research papers that applies this type of algorithm is [Lu and Milios, 1994,
Montemerlo et al., 2002, Gockley et al., 2007, Rodgers et al., 2006, Zender et al., 2007,
Kondaxakis et al., 2009].

In the second method, geometric feature analysis of legs are used to find the legs
or hypotheses for legs being present. The laser range data are analysed for leg sized
convex patterns, either one of them or two at a reasonable distance from each other. In
other words, the characteristic rounding of a leg is a feature in the laser scan. Another
feature is, that most people have two legs, which gives an easy recognisable pattern in
the scan. Papers that have successfully implemented systems belonging to this category
is, for example [Kleinehagenbrock et al., 2002, Schulz et al., 2001, Kluge et al., 2001],
[Topp and Christensen, 2005, Arras et al., 2007, Xavier et al., 2005].

An inherent problem arising from detecting persons from a robotic platform, is that
the robot moves. Especially using image processing this is a problem, since the same
fixed object moves and transforms from frame to frame. This is easier accounted for
in laser based tracking, where a higher sampling frequency makes the changes smaller
from sample to sample. Furthermore, if the robot motion is known, it is relatively easy to
compensate for the motion in a one dimensional range scan using e.g. a particle filter like
in [Gockley et al., 2007].

There also exist a third method for detecting people. This method is a bit different
in that it is based on multiple stationary laser range finders that covers the environment
from different positions. In this case it is possible to do background subtraction, since
the background does not move, which makes it easier to detect moving obstacles. In
[Zhao and Shibasaki, 2005] the laser range finders are mounted in about 20cm height, in
[Fod et al., 2002] it is about waist height (0.8m) and in [Glas et al., 2007] the lasers are
mounted in about torso height of the humans. Common to these algorithms is that they
first gather and combine the measurements from all the sensors and after that applies an
algorithm to find the people in the area. These systems works well, but the downside is
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that the sensors are not mounted on the robot, and thus, the obtained person positions are
not relative to the robot. Furthermore a robot would be dependent on the surroundings for
information, since the laser is not an on-board sensor.

Summary of detection and tracking of people

The goal in this Ph.D. project, is to enable natural motion of a robot in a human environ-
ment. For this to be possible, an algorithm, which can detect persons at a long range, is
necessary. To facilitate more sociable motion around a person, in addition to the position
of a person it is also necessary to know the orientation of the person. Furthermore the
algorithm must be computationally light, since it has to work on-line on a robotic system,
where a other algorithms are running at the same time. Vision based methods do not
work well on long distances, mainly because of resolution and robot motion reasons and
they often also take much computational power. Laser based person detection algorithms
are relative easy to implement and are typically computationally light. There are, as de-
scribed above, many successful approaches to detection and tracking of humans using
laser range scanners. Thus, for the purpose of this project, we do not want to develop a
tracking algorithm from scratch. It has been chosen to apply the algorithm described in
[Xavier et al., 2005] as a starting point.

However, one drawback of all the laser based algorithms described, is that they only
provide the position of the person, and no other information. This might be good enough
for person tracking, but not for sociable robot motion. Therefore it is necessary to extend
on the laser based methods to also obtain an orientation estimate.

2.1.2 Recognising Human Intentions

Robots in human environments face many different challenges and situations, which can
be difficult to predict when programming a robot. For example, to understand human
intentions from observations is a hard task, and since it cannot be pre-programmed, the
robots need to be able to learn to anticipate how people will behave. There exist much
literature for machine learning in general (see e.g. [Alpaydin, 2004]), but estimating hu-
man intentions has not been widely studied within the HRI community. Most of what
is done in relation to learning in HRI either uses a long training period, or is closely re-
lated to learning by demonstration, where a robot have to learn to mimic human actions.
However, estimating intentions cannot be demonstrated, and is thus a different problem.

There are, however, a few examples where intention estimation has been tried. For ex-
ample, in [Schmidt-Rohr et al., 2008], a robot tries to estimate the intentions of a person
in terms of what does the person want me to do? Here a Partially Observable Markov De-
cision Process (POMDP) approach is used to reason based on the sensory input, and act
according to the belief of the intention. However, the reasoning becomes very complex
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because of different input (vision and speech), and many possible tasks, and is thus not
very intuitive. A simpler approach is used in [Kelley et al., 2008], where person move-
ment relative to each other is used to estimate the intention of the persons. The un-
derlying method used for estimating the intentions is Hidden Markov Models (HMM).
In experiments a robot is used to find out if a person wants to: follow another person,
meet with another person, pass the person, drop of things, or pick up things. The algo-
rithm performs well, however it is based on a vision system and is only demonstrated to
work on a stationary robot. In [Feil-Seifer and Matarić, 2005] joint intention theory (see
e.g. [Smith et al., 1998]) is used to find out if people are interested in interaction. They
use vision, laser range scanner and speech recognition to sense the persons. The goal
of the robot is to determine which person is interested in interaction. The success rate
was 82% at close range, and 62% above 3m. Bayesian inference algorithms and Hid-
den Markov Models have also successfully been applied to modelling and for predicting
spatial user information in [Govea, 2007].

Common to these methods are, that they are pre-trained, and thus not able to adapt
to new situations, i.e. the methods do not forget what they learned yesterday if they
start to see new behaviour patterns, which means, that they are not able to learn new
behaviours on-line. This is important, since a robot in a future world needs to be able
to adapt to a changing environment, which cannot be completely defined already when
programming the robot before it is deployed in the real world. Furthermore, it is wanted
to have an algorithm that is more intuitive perceivable, i.e. reasons in a way that resem-
bles the way a human would do, and can handle arbitrary sensory input that different
robotic systems can provide. A method that is able to do this, is Case-Based Reasoning
(CBR). CBR fulfills the above described requirements, but has so far not been used for
intention estimation purposes. CBR allows recalling and interpreting past experiences,
as well as generating new cases to represent knowledge from new experiences. CBR has
proved successful in solving spatial-temporal problems in robotics in [Kolodner, 1993,
Likhachev and Arkin, 2001, Ram et al., 1997, Jurisica and Glasgow, 1995]. A deeper de-
scription of CBR is found in the methodology (see Section 3.3 on page 45).

Human motion prediction

Recognising peoples intentions is not only a question about what people intent to do in
relation to the robot, but also where they intent to go, i.e. the intended trajectory. Estimat-
ing and predicting peoples trajectories can be of great help for planning motion around
humans. A simple model for the human motion when moving towards a goal is presented
in [Fajen and Warren, 2003, Fajen et al., 2003]. The model is derived from physical ex-
periments with people given a goal to walk towards. From the results the authors suggests
that: “human route selection does not require explicit planning, but may emerge on-line
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as a consequence of elementary behaviors for steering and obstacle avoidance”. For a
constant velocity, goals function as simple attractors for the heading and the obstacles
functions as simple repellors for the heading. The steering (rotational speed) of the per-
son is then calculated as a simple proportional controller:

φ̇ = −kg(φ− ψg) + ko(φ− ψo) exp(−|φ− ψo|) (2.1)

where φ is the persons direction, ψg is the direction of a goal, ψo is the direction of an
obstacle, and kg, ko are constants. An illustration of these angles is shown in Figure 2.3.
While this motion model is interesting for modelling of human motion, it is still difficult
to predict the motion of a human, if the goal is not known.

Figure 2.3: The angles from Eq. (2.1). The figure is shown in [Fajen et al., 2003].

Other approaches tries to find characteristics or features of different trajectories in
a given environment. Motion of people in the environment are then compared to these
features and a predicted trajectory can be extracted from the most probable trajectory.
Since the robot has a better prediction of where persons are in the future, it will have a
higher probability of generating a path that do not interfere.

For example, in [Foka, 2005, Foka and Trahanias, 2010] manually defined or learned
so called hot points are used to predict, where people may go. Hot points may be where
you would usually find people, like chairs, doors, stairs, exhibits in a museum, ticket
counters, entrances etc.. Depending on the direction of people in the area the probability
of each hot point being a goal, is calculated. The probability of each hot point being a goal
is then integrated into a POMDP motion planning algorithm for the robot (see Section
2.1.3). The hot points can also be learned, where each point in the map is assigned a
probability for being a hot point.
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In [Bennewitz et al., 2005, Bennewitz, 2004], a method using HMM for learning col-
lections of trajectories that characterise typical motion patterns of people in an environ-
ment. The approach uses the Expectation-Maximisation algorithm to cluster trajecto-
ries recorded with laser-range sensors into a collection of motion patterns, which are
applicable for the given environment. Prediction is done by automatically deriving a
HMM based on the typical motion patterns. When an obstacle moves, the possible set
of motion trajectories converges to a single class, and can thus be used in the planning
process for the robot. Another similar method, which is also based on that the human
motion is goal oriented towards a finite number of points of interest, is proposed in
[Bruce and Gordon, 2004]. Here the information is used to improve tracking accuracy
by predicting where people will go, when they for example get occluded by obstacles or
other people. Initially, a prerecorded laser data set of point estimates of peoples positions,
are used to find trajectories. The trajectories are then clustered by hand (but the authors
suggest that it can be done like in [Bennewitz et al., 2002]) to find maximum likelihood
of goal locations. During tracking of a person, a planner plans paths from an observed
person’s last observed position to the goals. The resulting paths are used in the tracker
to predict where the person might go, and thus increasing the accuracy of the tracker.
An additional note is that this motion prediction of the people could be used in a path
planning algorithm for the robot, which is not done in the paper.

The above described methods for estimation human trajectories all assumes some
preliminary knowledge of a map, potential goals or sampled trajectories of people. This
is of cause a valid assumption, when a robot is moving around in the same environment
all the time, and can be used for museum tour guide robots, service robots for specific
areas, domestic robots etc. However, if we want more generic robots, that can handle all
sorts of tasks, like e.g. a personal assistant for elderly or an autonomous wheelchair, we
cannot assume that such characteristics of the environment is known in advance.

Summary of recognising intentions

There have not been much work on recognising human intentions for interaction purposes.
We have chosen to base the development of a system that estimates a person’s interest in
interaction on a CBR system. CBR is easy perceivable and has already proved successful
in solving spatial-temporal problems in robotics. There have been some work on learning
to predict human motion in an environment, but these works have not taken possible
interaction into account, and are thus not investigated further in this thesis.

2.1.3 Human-aware Motion

The aim of the work in this thesis is centered around enabling a robot to move, such that
it is socially acceptable to people. That means robots have to move naturally, comfortable
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and safely for people in the environment. Because of this focus, this section is the most
relevant part of the state of the art. Thus, an in depth description of the different systems
is therefore given in this section.

Regarding robot motion in human presence, there are mainly two research issues that
are treated in literature: how should a robot move, i.e. how persons feel that the robot
should behave; and motion algorithms that are actually implemented. To the first category,
the literature mostly contain user studies, where test subjects are asked how they feel for
different behaviours of the robot. For the implemented motion schemes, they are mostly
focusing on avoiding collisions with people.

How should a robot move

To find out how a robot should move in a human environment, a good place to start,
is to study how humans position themselves relative to each other. Already in 1963
Edward T. Hall published a large study of human-human spatial placement behavior is
[Hall, 1963, Hall, 1966]. He called his theory “proxemics theory”, where he categorise
distances between people into four classes. The distances are called, intimate, personal,
social and public. The four zones governs with type of interaction happens at the given
distances. This theory is used in the thesis as a basis for a mathematical formulation
of where the robot should place itself. Therefore a further description of the proxemic
theory is given in Section 3.2. These spatial zones are static zones, which apply to
how people position themselves relative to each other. But if we turn to moving robots,
[Yoda and Shiota, 1995] made a study on how humans pass each other, which is used to
generate robot motion in [Yoda and Shiota, 1997]. In [Pacchierotti et al., 2006a] a pass-
ing a person user study, where people in a corridor evaluated the behaviour of a robot
that acted according to the proxemic theory, were performed. Results are that the pref-
erences for robot motion comply with the proxemic theory. Furthermore ideal values
for robot speed and lateral distance for passing in a hallway was found (see also Fig-
ure 2.7). It turned out that both large avoidance maneuvers or too close passings felt
uncomfortable or unnatural. Another study, [Walters et al., 2005a], considers close en-
counters. Participants (both kids and adults) were asked to approach a robot, and stop
at a distance, where they felt comfortable. A photo from the experiment with children
is shown in Figure 2.4, together with a histogram over the experimental data with the
comfortable stopping distances. As can be seen in Figure 2.4a, the children mostly place
themselves in the social zone of the robot, but on the border to the personal zone (1.2m).
The result for adults was that the approach a bit closer to the robot. In the second part
of the study, the roles were inverted, such that the robot approached the persons. In
this experiment, the robot was allowed to approach a bit closer, than the participants
approached in the first part of the experiment. Furthermore the paper conclude that

20



1 Human-Robot Interaction (HRI)

there is a need for long term trials, since social distances may change over time. A

(a) Children position themselves, where they feel
comfortable relative to the robot.

(b) A histogram over the comfortable stopping dis-
tances.

Figure 2.4: Two figures from [Walters et al., 2005a], that study how people position them-
selves relative to the robot.

long term field is for example performed in [Kanda et al., 2007], where a robot stayed in
an elementary school for two months. However, this study is mainly limited to finding
out how children change attitude and establish friendly relationships to the robot over
time, and not so much spatial behaviour. Follow-up studies on the stopping distances
were performed in [Koay et al., 2005, Dautenhahn et al., 2006, Sverre Syrdal et al., 2006,
Koay et al., 2007]. Here, various experiments are done with different approach directions;
a comfort level device measuring peoples comfort; and approaching when handling and
handing over objects. One interesting result is that it turns out that humans prefer to be
approached from a 45◦ degree angle.

In the above described experiments, the robot was standing still, or remotely con-
trolled. So the next small step to introducing mobile robots into human environments,
is to make simple experiments, where a robot moves autonomously around in a human
environment. One type of experiments it to make robots simply follow a person around.
[Gockley et al., 2007] is describing natural person following behaviour, in terms of be-
ing a social robot. Two ways of person following are designed; a direct path following
algorithm, and a direction following algorithm, where the robot always moves directly
towards the person. The direction following approach implies that the robot will cut cor-
ners, if, for example, the person is turning. A user study was conducted, where people
observed the robot following a person, and the users had to evaluate which following
behaviour seemed more natural. The robot tried to stay at a distance of 1.2m from the
person. The result was that the direction following algorithm was by far the most natural,
and the users tend to think that the robot was a little too far away.

Other, more recent studies also include user studies on proxemics. For example on
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gaze direction, i.e. how social spaces change depending on if the person’s head are turned
towards the robot. It is also studied how the social spaces depend on the person’s sex, the
experience with robots, the person’s personality traits etc. [Takayama and Pantofaru, 2009,
Walters et al., 2005b, Mumm and Mutlu, 2011]. Other experiments in [Nabe et al., 2006,
Satake et al., 2009, Yamaoka et al., 2008] measures human behaviour in relation to the
robot and how to approach a human and how close to approach. However these ex-
periments present small changes in the personal spaces based on very subtle changes in
person’s behaviour and personalities. Therefore it is, although relevant, difficult to im-
plement in a robotic system, since it requires sensors that are able to sense these subtle
signals.

As described, there have been some research confirming the validity of the proxemic
theory for robots as well as for humans. Furthermore there are additional results on more
specific robot motion. For the case of this project, we do not perform any additional
user studies, but rely on the above presented works. Especially the social zones from
[Hall, 1963], and the reported preferred approach direction from [Dautenhahn et al., 2006].

Implemented motion schemes

One of the first attempts for defining a motion planning algorithm for a robot that co-
exists with humans is found in [Tadokoro et al., 1995]. Here, a framework for motion
in the human environment is presented. Sensors perceive the persons and a stochastic
motion predictor, is used to find out where the people go. This information is used in
a genetic algorithm that plans a path and executes on the robot. However, no experi-
ments with the robot moving in a human environment were done. Initial attempts to put
a robot in a real human environment includes [Nakauchi and Simmons, 2000]. Here it is
attempted to apply the social rules of standing in a line to a robot named Xavier. The
personal spaces of people standing in line have experimentally been measured. The re-
sult is seen in Figure 2.5, where it can be seen that the personal space is larger towards
the front, than towards the back of a person. In an experiment, the robot was able to
detect the line, enter it and move up to the head of it in 70% of the trials. Although
[Nakauchi and Simmons, 2000] defines a personal space, it can not be used for general
robot navigation, since it is measured only for people standing in line. However, if im-
plementing a robotic system, which should be able to also stand in line, it is necessary to
take this personal space into account.

Person following: As described above, a natural and relatively simple first step to mak-
ing robots move around in human environment, is to design robots that follow a person.
Thus a number of researchers have worked on this issue.

[Yoshimi et al., 2006] has developed a person following robot named ApriAttendaTM.
The robot is equipped with cameras that detects and track persons around the robot. Spe-
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Figure 2.5: The experimentally determined personal space of persons standing in line
from [Nakauchi and Simmons, 2000].

cific persons is recognised by their colour and texture of the clothes. The robot uses
a very basic motion behaviour, where it tries to follow a person at a distance of 1.5m,
while avoiding known obstacles. The robot tries to always face directly towards the per-
son, and thus the tracking algorithm is similar to the most natural behaviour, as described
in [Gockley et al., 2007] above. Other work related to the person following, is done in
[Prassler et al., 2002]. Here the focus is to make the robot navigate safely side-by-side
with a person. The test scenario is a wheelchair navigating beside a person. In this case the
method known as Velocity Obstacles (see Section 2.2.2) was used to avoid collision with
other people. In the experiment they moved around at a railway station for a total distance
of 3km over 8− 10 hours without collisions. In other autonomous and semi-autonomous
wheelchair applications are presented in [Argyros et al., 2002, Gulati and Kuipers, 2008].
[Argyros et al., 2002] describes a semi-autonomous wheelchair that is able to follow a tar-
get, move in the middle of a free space and move in a desired direction.
[Gulati and Kuipers, 2008] introduces “graceful” motion for a wheelchair, which is de-
fined as being safe, comfortable, fast and intuitive. Even though humans in the environ-
ment are not taken into account, the criteria for graceful motion was satisfied. This is
however more on a theoretical motion planning level and not really considering humans
in the planning.

In [Takemura et al., 2007] a potential field based navigation strategy is applied to fol-
low a person and to avoid obstacles as well. The person is assigned an attractor potential
and obstacles are modelled as repulsive forces. The forces coming from the potential are
calculated as the reciprocal of the distances to the objects. The robot then moves in the
steepest decent direction to approach the goal, while still avoiding obstacles. The prob-
lem with potentials, is that the robot can be trapped in a local minima, if the robot e.g. is
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facing directly towards an obstacle (see Section 2.2.2). This is solved by increasing the
potential at the local minima.

In [Zender et al., 2007] the person following algorithm is enhanced to track and fol-
low persons in a socially acceptable way. This is done by using simultaneous localisation
and mapping (SLAM) to understand where the robot is, in the environment, and what
person action to expect. However, it is not explicitly discussed how the term socially
acceptable motion is defined. Only, that the robot can adjust its behaviour to obtain a
more socially acceptable motion pattern, according to the knowledge of the position in
the environment. The robot uses verbal and non-verbal feedback to the user where nec-
essary. One way the robot exhibits situational awareness, is when the user approaches a
door. Under normal circumstances the robot is following at a distance of 0.5m, but near
the door it is increased to 2m. An other form of situational awareness, is when moving in
a corridor, where the robot’s maximum allowed speed is increased. This algorithm needs
a map of the environment with specified property labels, like door, corridor etc..

Accompanying persons: An opposite scenario of a robot following a person, is a robot
guiding a person. This is an inherently easier task, since it is the robot, who determines
where to go. However, if a group of people has to be guided, the robot needs to make sure
that all follows correctly. In [Martinez-Garcia et al., 2005], a scenario, where a group of
robots guide a group of people. The guiding takes place with no explicit communication,
and only motion of the robots implicitly guides the group.

A slightly different situation is accompanying one person. This issue is treated in
[Hoeller et al., 2007]. The paper presents a local navigation planning approach for avoid-
ing collisions, while simultaneously staying close to the client. The core of the local
navigation is similar to the Dynamic Window Approach (DWA), which is described in
Section 2.2.2. The robot plans an extensive space tree from the current position using a
robot motion model with the state vector [x, y, θ, v, w]

T
k , where vk and wk are velocity

and rotational speed input. The model assumes that the velocity changes are carried out
instantaneously. The tree is generated by a sampling based approach, and can be seen in
Figure 2.6a. The robot guesses a short time target for the person that is accompanied. This
target is the goal for the expansive tree. After generating the tree the optimal path, high-
lighted with green in Figure 2.6a, is extracted. Additionally the area behind the human is
divided into five zones, as shown in Figure 2.6b, where the robot chooses the zone, which
have the highest priority (the numbers on the figure) and not being blocked by obstacles.

Now, moving to a bit more complex scenario, [Müller et al., 2008] presents a path
planning algorithm that enables the robots to move efficiently and smoothly with groups
of people. The goal is to generate a trajectory that makes the robot move similar to
humans. The robot selects those individuals that move towards the robot’s desired goal
and follows them. The A* planning algorithm is iteratively used to find the optimal path.
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(a) An expansive tree of possible robot trajectories. (b) Five potential positions for the robot behind
the human, which is being followed.

Figure 2.6: An expansive tree and the different zones as illustrated in
[Hoeller et al., 2007].

The environment is defined by two occupancy grid maps. A global static map, and a
local map containing the observed dynamic obstacles. The A* algorithm operates on
the combination of the maps, while the heuristic used in the algorithm only works on the
static map. To follow people going towards the same direction as the robot, the grid points
they are occupying are marked as free, which makes the algorithm plan a path similar to
theirs.

Autonomous motion: If we want robots to be a natural part of our environment, they
must not only be able to follow and accompany people. They must also be able to move
by themselves, and at speeds equal to humans. If a robot has to operate at higher speeds,
their dynamics must also be taken into account. In [Shi et al., 2008], some initial results
on a human-aware motion planner for a Segway RMP platform is presented. An RRT
(See Section 2.2.1) based planner is used to plan a path in the environment. Additionally
some simple user response experiments are performed. A robot drives directly towards a
person with a given speed, and then stops right in front of the person. It is then observed
how the person reacts. The output from the experiments, was a least squares fit to the
minimum stopping distance versus the robot speed up to 5m/s, for the persons to feel
safe. The minimum stopping distance can be calculated as:

dstop,min = 0.65vrobot + 0.87m . (2.2)

A more general framework for motion in a human environment is introduced in
[Kirby et al., 2009]. The framework COMPANION (Constraint-Optimizing Method for
Person-Acceptable NavigatION) is a motion framework where social motion conventions
are represented as constraints on the navigation. Social conventions are for example that
you move to the right side of a hallway, when passing a person. However, conventions are
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always subject to a trade-off, if e.g. you need to go to a door on the left side of the hall-
way. Therefore the algorithm optimises the trade-offs of multiple constraints. The paper
identifies five particularly important constraints: minimising distance; avoiding obstacles;
avoiding persons; and keeping default velocity; and keeping inertia (avoid turning). Each
of them have soft and hard constraints. For example the person avoidance consist of a
hard constraint that the robot must never attempt to drive through a person. The soft
constraint relates to keeping a personal space around the person. The personal space is
represented as a potential field a associating a cost to being too close to a person. The
potential field is a summation of two Gaussian distributions. The A* algorithm is used
to optimise the constraint trade-offs. Results indicate that the robot is able to behave in
a predominantly social manner in simulation. A similar approach that consider the state
of people in the environment is presented in [Lam et al., 2010, Lam et al., 2011], where
rules that guarantee safe and smooth navigation. They define the following rules:

1. Collision Free Rule: avoid collisions

2. Interference Free Rule: avoid people’s personal spaces

3. Waiting Rule: if entering a personal space, then wait

4. Priority Rule: if more robots are present, they are given priority

5. Intrusion Rule: robots should not intrude other robot’s working spaces

6. Human Rule: humans have the highest priority

For planning a path, the Nearness Diagram (ND) (see Section 2.2.2) together with poten-
tial fields, are used. The algorithm is successfully tested on three robots with different pri-
orities. Another optimisation framework has been adopted in [Foka and Trahanias, 2007],
where POMDP’s are used to optimise the reward associated with avoiding obstacles and
reaching a goal position. The environment is split into a static and a dynamic reward
grid map corresponding to static and dynamic obstacles and goals. The actions that the
POMDP is able to chose between is all possible rotations together with a slow down or
increase of speed. The system is demonstrated to work in an entrance hall, where it avoids
collisions with people on collision course.

Similar work is done in [Sasaki and Hashimoto, 2006], where a robot moves along
frequently used paths in the environment. This is done to act similarly to the people in the
environment, and thus provide minimal disturbance to the people. The avoidance of col-
lisions is not explicitly taken into account, but in areas with many people, where avoiding
disturbance of people would limit the activity of the robot, this method is useful. The
robot, however, does not operate as one autonomous entity, but is provided with much in-
formation from the intelligent space it operates in. Sensors embedded in the environment
provides information about the robot’s position, peoples position and walking paths.
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Approaching and passing in a sociable way: The opposite to a robot following people
or moving along the same tracks as people, is a robot that approach, move towards, or pass
people. In [Althaus et al., 2004] it is investigated how a robot should approach a group
engaged in interaction. The authors designed a robot along with a software algorithm
designed to mimic human-human approaching and interaction in a group conversation.
The robot, Robovie, was equipped with sensors including 24 sonars, pressure sensors
on the torso, infrared motion detectors and an omnidirectional camera. To engage in an
interaction, the robot takes the following steps:

1. Entering the room

2. Approaching the group of people, if there are people present

3. Maintaining the formation with the group of people

4. Moving back to the door, when the discussion finishes

The robot does not verbally interact with the humans, and thus the interaction is limited
to passive listening. However, the robot’s head turns towards the speaker in the group.
For navigation, the robot uses a simple topological map consisting of points of interest
to navigate the environment. Points include doorways, corridor crossings, and charging
stations. The motion is based on a proportional controller strategy, where the distance
to the persons are kept constant and a heading towards the middle of the group. The
commanded velocity v is calculated as:

vj = kdist(dj −Dinter) (2.3)

v =
1

N

∑
j

vj exp−c(dj−Dinter) (2.4)

where vj is the desired velocity with respect to one person, dj is the distance of person
j, Dinter is a desired interaction distance and kdist is a constant. N is the number of
persons and c > 0 is a decay constant that has the purpose of repairing a formation. In an
experiment, the robot was able to move to the persons, reposition itself, when the group
formation changed and move back to the door when the conversation finished. The human
users reported the robot’s behaviour as natural human-like.

In relation to a robot that passes a person who is approaching,
[Pacchierotti et al., 2006b, Pacchierotti et al., 2005] describes a study where persons are
to pass a robot driving forwards with a speed of 0.6m/s in a hallway. The test subject
walks along the hallway and the robot passes at different distances. Afterwards the test
subjects are asked how comfortable they felt. This results in an overview over the best
behaviours, where it e.g. can be seen that the robot should signal well in advance to which
side it wants to pass the person. A figure of the scenario is seen in Figure 2.7.

The above described algorithms are simplified to only cover only one specific task,
since they consider either approaching, passing or following single persons. In a real
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Figure 2.7: The robot passing a person in a hallway scenario. At the distance XP from
the person, the robot deviates to the right to a maximal lateral of dY . After pass-
ing the person, the robot moves back to the original path. The figure is taken from
[Pacchierotti et al., 2006b].

world there could be many persons coming from all directions, and also other obstacles,
that needs to be taken into account. This is, for example, done in [Sisbot et al., 2006,
Sisbot et al., 2008, Sisbot, 2008], where a completely different approach is taken. The
environment is transformed into a potential field grid, where the robot has to move in the
low areas. For example around a person, there is a top, which makes the robot go around
the person. The combined grid is a combination of several different grids; a safety, a
visibility, and an arm comfort grid. An example of such a grid is seen in Figure 2.8. An
optimal path for the object is found using the A* algorithm. This approach, however,
assumes that all positions of persons are know in advance, and that they do not move,
while the robot executes the trajectory.

Figure 2.8: The safety and visibility grid introduced in [Sisbot, 2008].

28



1 Human-Robot Interaction (HRI)

Robots in the wild: A discussion of robots that move in human environments is not
complete without mentioning some robots, that have actually been set at large in human
environments. Although the focus of the works is not so much motion, the still presents
some interesting studies of robots that have been moving autonomously in human en-
vironments. Rhino, described in [Burgard et al., 1998] was a museum tour guide robot,
that guided visitors at “Deutches Museum Bonn”. A similar robot was Minerva that was
also a museum tour guide robot described in [Thrun et al., 1999]. Both Rhino and Min-
erva was able to localise itself, plan trajectories in the environment, avoid obstacles and
interact with visitors. In [Michalowski et al., 2007], the robot Grace moves around at
the conference AAAI 2005 trying to find a person with a pink hat. More recently ACE
([Bauer et al., 2009]) have navigated successfully and asked the way through the streets
of Munich. Although these robots are very capable in mapping, localisation and naviga-
tion, they lack the ability of being more sociable, i.e. taking human social conventions
into account.

Summary of human-aware motion

The simple person following experiments in [Gockley et al., 2007, Yoshimi et al., 2006]
was performed no more than a couple of years ago, and thus proves that robots moving
around humans is only in its infancy. Furthermore, robots that have been tested in human
environments, like e.g. [Prassler et al., 2002, Michalowski et al., 2007, Bauer et al., 2009]
seems to move relatively slow. So more advanced algorithms are necessary to make the
robot move naturally in a human environment. One common issue with the described
approaches for human-aware navigation, is that the motion pattern of the robot are static
relative to the person, i.e. the motion pattern is always the same. However, for the scenario
presented in this thesis, where a person might, or might not, be interested in interaction,
the robot needs to be able to adapt the motion pattern accordingly. Therefore it has been
chosen to develop a new strategy based on the theory from [Hall, 1963] about how hu-
mans position themselves relative to each other. This theory is enhanced with results from
[Koay et al., 2005, Sverre Syrdal et al., 2006], which show the direction from which, it is
most comfortable to be approached. These results, concerning social acceptable motion,
are used together with the idea, from [Sisbot et al., 2008, Sisbot et al., 2005], about using
potential fields to guide the motion, to develop an algorithm for social acceptable human-
aware motion. However, the human comfort grid from [Sisbot et al., 2006] attempts to
keep the robot in front of people and visible at all times. The paths, that this generates
may be very unnatural due to attempting to stay visible to people. Thus the method needs
to be further developed to take this into account.
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2.2 Navigation, Trajectory Generation and Motion Planning

Planning of robot collision free trajectories or paths is a more established field of research
than HRI. Consequently there exists numerous algorithms for all types of planning that
ranges from global planning to local obstacle avoidance and from high dimensional to
low dimensional spaces. But even though it is a relatively simple problem formulation,
to plan a path from A to B without colliding with obstacles, it is often computationally
hard [Siciliano and Khatib, 2008, p.109]. Thus, there is still development for specific
problem areas, such as e.g. increasing planning speed, taking into account moving ob-
stacles, increasing the probability of finding a path faster if one exist, and also within
more specific application areas like robots in human environments or motion planning
for manipulation tasks. The latter is characterised with high number of degrees of free-
dom, and thus high dimensional search spaces, which often makes calculations intractable
and only suited for off-line planning. Good overviews over planning algorithms can for
example be found in the books [LaValle, 2006, Thrun et al., 2005, Choset et al., 2005,
Siciliano and Khatib, 2008].

The main focus of this thesis is not to develop planning algorithms, but consider mo-
tion for a robot in a human environment. Therefore this section only seeks to give an
overview over the most important planning algorithms. However, state-of-the-art RRT
based motion planning is explained a bit more in detail, since it is used in the thesis. The
following overview is mostly based on the above mentioned books. Many systems uses
a global planning algorithms to find out which way to go, together with a local obsta-
cle avoidance technique. Therefore an overview over the mostly used existing obstacle
avoidance techniques are also given at the end of the section.

2.2.1 Planning Algorithms

A brief overview over different algorithms for planning trajectories, is given here. Orig-
inally the planning algorithms had focus on optimising the trajectory, but as computer
power has increased, algorithms that can use the power of the computers have been de-
veloped for planning more complex trajectories. There are three prevalent methods for
this; the grid based algorithms, the graph based algorithms, and the sampling based algo-
rithms. In many cases a prerequisite for planning, is having a map. Thus mapping is an
important area. For example Simultaneous Mapping And Localisation (SLAM) (see e.g.
[Durrant-Whyte and Bailey, 2006]) have had much research interest. However, mapping
is not important for the work described in this thesis, and is thus not described further.
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Optimisation based approaches

Traditionally trajectory planning techniques involved solving large optimisation problems
to find the optimal trajectory. This is illustrated well in [Betts, 1998], who presents a
method for solving a very general trajectory optimisation problem. The general problem
is a multidimensional system, which possibly can change dynamics in different phases,
i.e. a hybrid system. There is a set of parameters for each phase, which you can adjust
and a number of control inputs. Additionally there are imposed constraints on the system
that comes from e.g. obstacles or limitations of the physical systems. The task is then to
minimize an objective function, which is a function of the state at each time step in each
phase, the parameters at each time step in each phase, and the time itself. These opti-
misation problems are typically very hard to solve, especially if it is an on-line system
and time constraints have to be respected. But the formulation of the problems enables
satisfying constraints on the robot motions, like non-holonomic constraints and dynamic
constraints, which can be difficult for other approaches to planning. To reduce the com-
plexity of the planning, the planning time horizon can be reduced. This leads to receding
horizon control, which is also known as Model Predictive Control (MPC), because a
model of the system is used to predict the trajectory, which is optimised. An example is
[Bak et al., 2001], a path following robot with velocity constraints, is considered.

Grid based algorithms

Grid based algorithms overlay a grid on the configuration space. Each grid cell is equiva-
lent to a specific configuration of the robot, and it is either occupied by an obstacle or free.
The task is then to find a trajectory that passes only through free grid cells. An important
setting here is the resolution of the grid. If a fine grid is used, the search for a trajectory
can take long time, since the number of grid cells are large. On the other hand, if having
too coarse a grid the algorithm might fail to find passages through narrow spaces. A prob-
lem with the grid based algorithms, is that the number of grid cells grows exponentially
with the dimension of the configuration space. An algorithm that, for example, can be
used to find a path, is the wavefront algorithm [Barraquand et al., 1992]. The wavefront
works by expanding a “wavefront” from the goal towards the start configuration. Initially
all empty cells are set to a value of 0. Then the value of all cells adjacent to the goal are
set to 1. The values adjacent to these are set to 2, and so the wavefront expands. When
the start position is reached, the shortest path can be found by following the gradient of
the potential field, which has been created by the wavefront.

When there is uncertainty in the mapping, each cell can be associated with a proba-
bility of being occupied, and this case the map is denoted an occupancy grid map. Here
POMDP’s can for example be used for finding a path that minimises the probability for
collision, or optimises other performance criteria [Thrun et al., 2005].
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Graph based algorithms

Graph based algorithms are based on a topological map, instead of the grid based map,
which is described above. Planning algorithms work by first defining the topological map
(a graph) of the environment, and then plan a trajectory on the graph. The idea is to
connect different possible configurations in the environment and then move in a straight
line between those configurations. Examples of different types and different algorithms to
create graphs include; the visibility graph, Voronoi diagrams, plane sweep algorithms and
other cell decomposition techniques [Aurenhammer, 1991, de Berg et al., 2000],
[Chazelle, 1987, Edelsbrunner, 1987]. Algorithms for searching for a path in a grid in-
cludes Dijkstra’s algorithm [Dijkstra, 1959], the A* (A star) algorithm
[Fikes and Nilsson, 1971, Pearl, 1984, Hart et al., 1968], and the D* algorithm
[Stentz, 1994]. All of these algorithms work by assigning a cost to the motion between
two points in the graph and then finding the minimal cost path. The simplest of the algo-
rithms is Dijkstra’s algorithm. It works by incrementally building a tree and expanding
the vertices of the tree. At each expansion the vertex with the least associated cost is
expanded to the vertices, which are connected to the given vertex in the topological map.
Thus, when reaching the goal the minimal cost path (i.e. the minimum based on the map,
which is not necessarily the minimum cost path in the real world) has been found. The
A* algorithm expands on this by adding a heuristic value for the cost to go, and expands
the vertex, which have the lowest cost plus cost to go. This can greatly reduce computa-
tion time. D* plans a trajectory in a partly unknown environment. It makes assumptions
about the unknown parts, like for example that it contains no obstacles. It then finds a
shortest path from the current configuration to the goal. When the robot observes new
information, it adds this information to the map and, if necessary, plans a new optimal
path [Stentz, 1994].

Sampling based algorithms

The increase in computer power has recently (within the last 15 years or so) given rise
to a new generation of algorithms, which have gained widespread use in research and
also used real applications. These are the sampling based algorithms, which exploits
the increasing computational power to test a lot of possible trajectories or configura-
tions, instead of searching for the one optimal solution. Because of the randomness in
the algorithms, sampling based planners do not give any guarantees of finding optimal
solutions. Within bounded time, they cannot guarantee to find a solution, even if one
exists. But most sampling based algorithms are, however, probabilistic complete, which
means that the probability of finding a solution, if one exists, goes to 1 as the number of
samples goes towards infinity. Other advantages of sampling based algorithms are that
they are especially good for high dimensional search spaces, and relatively easy to imple-
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ment. A survey over sampling based motion planning and current issues can be found in
[Lindemann and LaValle, 2005].

There are mainly two algorithms that are used in research. The first is Probabilistic
Roadmaps (PRM), which is also called sampling based roadmaps. PRM’s were intro-
duced in [Kavraki et al., 1996] for planning in high dimensional configuration spaces.
Instead of constructing a complete topological map, as described above, random configu-
ration samples are used to create the map. It works by sampling a configuration and then
trying to connect this configuration to nearby sampled configurations. An illustration of
this is seen in Figure 2.9. Here the new sampled configuration, α(i), is connected to
the nearby vertices. When the graph is constructed, a path is found by using the same

Figure 2.9: A sampling based roadmap, which is constructed incrementally. It is
attempted to connect each new sample, α(i), nearby vertices. The figure is from
[LaValle, 2006].

algorithms as in the graph based algorithms (see Section 2.2.1).

Rapidly-exploring Random Trees (RRT)

The other mainly used algorithm for sampling based planning, is the RRT algorithm,
which was originally described in [LaValle and Kuffner Jr, 2001]. RRT’s belongs to the
incremental search type of algorithms, which starts expanding the tree from the start
configuration towards a goal. In an RRT, the tree is expanded over the configuration
space by sampling a random configuration and extending the nearest vertex towards the
new configuration. This is demonstrated in Figure 2.10, where the three vertices to the
left belongs to the current tree. A random sample α(i) is then taken. The nearest vertex
in the tree is qn, and this vertex is then extended towards α(i). A modified version of the
RRT algorithm is used in the work presented in this thesis. Therefore a more in depth
description of the RRT is given in Section 3.4.1.

One advantage of the RRT algorithm is that when searching incrementally, it is pos-
sible to incorporate kinodynamic constraints into the planning. Another advantage is that
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Figure 2.10: To construct the RRT, a new edge, that connects from the sample α(i) to the
nearest point in the already constructed tree. The figure is from [LaValle, 2006].

by sampling randomly in the configuration space and extending the nearest vertex, the
exploration is biased towards places not yet visited. This can be seen by constructing the
Voronoi diagram for the vertices. Larger Voronoi regions are areas which are not well
explored and vertices. Since vertex selection is based on the nearest neighbour, it implies
that vertices with corresponding large Voronoi regions, are more likely to be expanded.
The standard RRT have been modified in many ways for different purposes since it was
presented the first time. Some of the modified versions are of relevance to the Ph.D.
project, and these are shortly presented here.

It is often desirable to run the planning algorithm in real time, hence requiring bounded
solution time. [Ferguson and Stentz, 2006, Ferguson and Stentz, 2007] presents the Any-
time RRT algorithm. An anytime algorithm quickly finds a solution, and then keeps
improving this solution until there is no more time. First a standard RRT is performed
without taking into account the cost. Then a new RRT is performed, where different
planning schemes are used to ensure improvement of the planned trajectory.

In human environments, people move around, and are thus not only static, but dy-
namic obstacles. Methods for incorporating dynamic environments are few, but have been
investigated in [Ferguson et al., 2006, Zucker et al., 2007]. The planning with dynamic
obstacles is done by “repairing” the RRT when changes occur. This can for example be
done by pruning and rebuilding the tree.

RRT’s have also been used in environments, where other robots, and sometimes even
humans occur. For example, in [Brooks et al., 2009], a dynamic model of the robot and a
cost function is used to expand and prune the nodes of the tree. An MPC based approach
is taken, where only a small part of the trajectory is executed, while a new trajectory
is calculated. When expanding a vertex, a random vertex and a random control input
is chosen. The MPC approach for on-line planning is applicable in this thesis, but the
random control input sampling does, however, not give a very good result, which is shown
in Section 5.5.

The randomness of the sampling in an RRT makes it difficult to guarantee any opti-
mality of the trajectory. Therefore recent research have investigated how to get the notion
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of optimality combined with the random sampling. Very interesting work is done in
[Tedrake, 2009] on combining an LQR algorithm with an RRT. This LQR-tree combines
the performance and stability from the LQR algorithm with the RRT algorithm that is
good at quickly exploring the configuration space. Similar work has also been done in
[Karaman and Frazzoli, 2010], where a variation of the RRT can be used to ensure op-
timality properties. A disadvantage with these algorithms is though, that they are much
slower than a standard RRT. These methods are quite new and have not been studied
further in this project.

Investigating the above described algorithms reveals that only [Brooks et al., 2009] is
made for human like environments. Furthermore, most algorithms only consider static
obstacles and a completely predefined environment in which to plan. Additionally, most
RRT algorithms focus on reaching a certain goal, and the algorithm cannot terminate
before that happens. This means that they are not well suited for on-line applications.
What is needed, in terms of this thesis, is an algorithm, which: is capable of planning in
an environment with dynamic obstacles; performs well in on-line applications; and can
plan with focus on minimising a trajectory cost instead of reaching a specific goal.

Nearest Neighbour Search One topic in RRT based planning is to improve the distance
metric, which is about improving the speed of finding the nearest neighbour. The easiest
algorithm to implement, is the brute force approach that tests all other vertices to find the
nearest. But the brute force approach can be time consuming, and thus other methods are
relevant to consider. One such method is the kd-tree. The kd-tree, which is illustrated in
Figure 2.11, works by recursively subdividing the configuration space in each dimension.
First the middle sample in the first dimension, is found. This is the top vertex in the
tree, and the configuration space is split through this vertex (the vertical line through
point 7 in Figure 2.11. Then the two partitions are each split through the middle points
in the next dimension (point 5 and 8 in the figure). When all the dimensions have been
cycled through, the algorithm continues from the first dimension again. The kd-tree has,
however, mainly been developed for searching databases. Therefore it does not take into
account some inherent properties of planning algorithms, like the dynamic number of
vertices and known sampling distribution.

Summary of planning algorithms

During the last years, sampling based planning algorithms have shown promising re-
sults for various planning applications. Especially the RRT algorithm has been applied
in many robotics applications. Thus, we have chosen develop this algorithm for use in
to planning in human environments. There only exist a few results on sampling based
planning algorithms for robots in human environments. To apply the RRT for planning
in human environments, it is necessary to account for both the human motion and their
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Figure 2.11: For finding the nearest neighbour, a kd-tree can be used for more efficient
search. On the left is an example of the geometric partitioning of a 2-dimensional space,
and on the right is the corresponding graph. the The figure is taken from [LaValle, 2006].

social spaces. Additionally many of the planning algorithms does not take into account
the dynamics of the robot, which also need to be accounted for if moving fast in a human
environment.

2.2.2 Obstacle Avoidance and Dynamic Obstacles

When the surroundings are unknown and unpredictable and obstacles move around, the
global trajectory planners often fail to find a collision free path. Actually, the majority of
techniques for mapping have been developed for static environments
[Siciliano and Khatib, 2008, p.866]. Therefore planning algorithms are often combined
with local obstacle avoidance algorithms. There are a number of different widely used
obstacle avoidance techniques, such as potential field methods, Vector Field Histogram
(VFH), Nearness Diagram (ND), Dynamic Window Approach (DWA) and Velocity Ob-
stacles (VO). The first four assume that the obstacles are static, and the last one are based
on the assumption that the obstacles move, and only DWA considers the dynamics of the
robot. A short summary of the algorithms is given in the following paragraphs.

Potential Fields One of the most used methods are the potential fields. The potential
field method uses the analogy that the robot is a charged particle moving in a force field.
The goal region will attract the particle, and obstacles repel the particle. The approach,
originally developed in [Khatib, 1986] for a mobile manipulator, has been widely applied
due to its versatility and simplicity. To illustrate the method, a simple potential field with
one obstacle and one goal, has been constructed. This is shown in Figure 2.12, where
a robot starts in point (−2,−5), and has to go to the goal at (2, 5). It can be seen in
Figure 2.12b that the robot smoothly avoids the obstacle and safely arrives at the goal.

Vector Field Histogram (VFH) The vector field histogram was developed by
[Borenstein and Koren, 1991]. The VFH approach maintains a polar histogram that rep-
resents the confidence of the existence of an obstacle at each direction. The histogram is
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goal as governed by the potential field.

Figure 2.12: Example of a robot that avoids a simple obstacle (the black square) and
arrives safely at the goal (the green dot).

then divided into sectors and the sectors are analysed to find the most favorable direction
to move. VFH has been further developed, for example in [Ulrich and Borenstein, 2000]
to VFH*, where the A* algorithm is used to verify that the robot is guided around an
obstacle.

Nearness Diagram (ND) This method is more a methodology to design an obstacle
avoidance method, rather than a method itself [Siciliano and Khatib, 2008]. The ND
splits the space into regions according to criteria for safety, goal direction, and free walk-
ing directions. According to the criteria, different motion strategies are chosen. ND
assumes point or circular robots [Minguez and Montano, 2004].

Dynamic Window Approach (DWA) The DWA solves the problem by optimizing an
objective function, that aims at achieving a goal-directed behaviour while avoiding col-
lisions. The DWA solves the problem in control space and can thus take into account
dynamics of the robot. Given a maximal braking acceleration, the subset of control input
that can be can canceled before a collision, is found. A control input is then selected
from this subset of controls as a trade-off between goal direction, velocity and clearance
[Brock and Khatib, 1999, Fox et al., 1997].

Velocity Obstacles (VO) VO is an approach, where the velocity of an obstacle is taken
into account [Fiorini and Shiller, 1998]. First the velocity vectors that eventually will
result in a collision with a obstacle regarded as static, are computed. This will result in a
cone as seen in Figure 2.13. This cone is then translated with the velocity vector of the
obstacle to obtain the VO. Selecting a velocity outside the velocity obstacles will result in
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avoiding collisions, if the obstacles keep their direction and velocity. VO work very well

Figure 2.13: The velocity obstacles of two obstacles. If the robot chooses a velocity
vector that lies within one of the two cones V O1 or V O2, collision will occur at some
point in the future, provided that velocities are kept constant [Siciliano and Khatib, 2008].

in theory, since it guaranties no collision. The problem is that, if the obstacle changes
velocity, a collision may occur. In [van den Berg et al., 2008], the reciprocal velocity
obstacle is presented. Here it is assumed that other moving obstacles will apply the same
algorithm for avoidance and then the velocity is chosen such that the passing happens
with no distance in between. This works well in simulations of human environments.
However, it would probably not work for real human environments because you cannot
assume that other people apply the same avoidance technique as a robot.

Summary of obstacle avoidance

One inherent problem with the obstacle avoidance methods are that they all treat the prob-
lem locally. This means first of all that they have to be combined with another planning
algorithm that tells the obstacle avoidance algorithm where to go. The local way of deal-
ing with the problem also gives rise to other problems. The algorithm might lead the
robot to suboptimal paths in a global perspective, because they are not able to re-plan if
changes occur in the environment. They also lack the ability to find out what to do if e.g.
coming to a too narrow passage, and thus can get stuck. An example of these problems
is illustrated in Figure 2.14 for the potential field approach. The obstacle from the above
example has been expanded to a U-shape. In this case it is clearly seen in Figure 2.14a
that there is a local minimum in the center of the U. In Figure 2.14 it is seen that the
result of this is, that the robot gets stuck because the method is not able to re-plan it’s
trajectory. Consequently, methods for overcoming this problem have also been studied,
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but in general, it is not possible to completely overcome the problem.
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Figure 2.14: Example of a problem that can occur, when using a potential field. The robot
can be stuck in a local minimum.

Based on these problems, it has been chosen not to apply these obstacle avoidance
algorithms in the project for three reasons. First, the desired output is a combined motion
planning algorithm, that solves the motion planning for the robot, and not subsequent
levels that give input to each other. Secondly, most of the algorithms does not account for
moving obstacles, which humans are. Finally and maybe most important, we do not see
people as pure obstacles that just need to be avoided, but as individuals that needs to be
treated in a more intelligent manner.

2.3 Overall Summary

The goal of this project is to enable a robot to move safe and comfortably in a human envi-
ronment, while finding out if people are interested in interaction, and move appropriately
according to this. To do this, theories from the HRI are combined with navigation and
motion planning research. There exist several methods for detecting and tracking persons
from simple laser rangefinder measurements, but none of these are also able to find the
pose of the persons, which is important for HRI tasks. Researchers have also investigated
how robots should learn to behave in human environments, but it has not been investigated
how a robot can find out if a person is interested in interaction. Motion around humans
have also been investigated thoroughly, both with respect to how a robot should move and
implementations of various motion strategies for robots in human environments. Most of
the algorithms just consider persons as obstacles, but some algorithms also take into ac-
count the social zones of people. However it has not been investigated how to move
appropriately, when the person might or might not be interested in interaction.
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Navigation and planning algorithms is a well established research field. However, not
many algorithms have been applied for mobile robots in human environments. Further-
more, most obstacle avoidance algorithms does not account for moving obstacles, which
is the case in human environments. So very shortly, methods that use state-of-the-art
planning algorithms combined with knowledge of the human state and social spaces in a
human environment, have not been developed.
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3 Methodology

This thesis uses and extends a range of methods within HRI and robot navigation. In
the appended papers, there have been limited space for describing some of the basic
algorithms and equipment used throughout the project. This chapter serves to give a
bit more detail to some of this.

But first, the SantaBot experiment, which was shortly presented in the motivation
(Section 1.1 on page 1) as a start-up experiment for the Ph.D. project, is described more
in detail. This is done for better understanding of the experiment and the outcomes, which
served as a catalyst for defining the research questions, which serves as the foundation
for this Ph.D. project. After this Hall’s proxemic theory, which describes how humans
position themselves relatively to each other, are described. The Hall zones form the basis
of the design of the human-aware motion. After this is a description of the basic CBR
method, which in the appended papers, is modified to be able to estimate human inten-
tions. This is followed by a section that elaborates on how typical robot control systems
work and how the developed navigation algorithm fits into this. Furthermore the section
describes how the very basic RRT algorithm works. Finally, Robotino, our robot that was
used during experiments, is described a bit more in detail.

3.1 The SantaBot Experiment

The Ph.D. project started out with a social experiment, where a robot was set at large in
a public transit space. This was done to see how people reacted to an autonomous robot
in their natural everyday environment. The experiment was done as a pilot study to get
experience with operating a robot in the real world and to see how people reacted. It is as
such not a part of the theoretic contribution to the thesis. But the results are summarized
here in the methodology. The results are documented in detail in [Svenstrup et al., 2008],
and has later resulted in a video and an extended abstract for the HRI conference in 2009
[Hansen et al., 2009b, Hansen et al., 2009c].

The experiment explored two main elements: 1) demonstration of the ability of a robot
to detect, track and follow people in a real world scenario; 2) investigation of peoples per-
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ception of the robot, the space and the interaction. So both the technical aspects of placing
mobile robots in open-ended environments are investigated, and so is the understanding
of the nature and potential of robotic agents in public urban transit spaces.

3.1.1 Experimental Setup

The experiment was performed in a combined public shopping area and an urban transit
space, giving a very dynamic and diverse experimental environment. In the setup no
information about the experiment was given to the persons involved in advance.

The robotic platform used in the experiment was the same, as the one used throughout
the Ph.D. project. It is a modified FESTO Robotino R© platform, which is further described
in Section 3.5 on page 51. To facilitate interaction the robot was dressed as Santa Claus
(the experiment was carried out just before Christmas) and equipped with a loudspeaker
playing the well known Christmas jingle “Jingle bells” when a person was detected and
the robot tried to initiate interaction. The robot can be seen in Figure 3.1, and because of
the outfit, we named it “SantaBot”.

Figure 3.1: The SantaBot outfit.

The robot was programmed to simply follow random people around, to see how they
reacted. The outcome of the experiment was evaluated by, questionnaires, video record-
ings, and in situ observations.

3.1.2 Results and Observations from the Experiment

A typical scenario from the experiment is seen in Figure 3.2, where a mother and a child
interact with the robot. On the technical side, the experiment showed that the robot was
able to detect and track persons in a real world scenario.
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1 The SantaBot Experiment

Figure 3.2: A mother and a child interacting with the robot, a typical situation from the
experiment.

There were 48 persons, who answered the questionnaire. A summary of the answers
to a selection of the questionnaire are displayed in the three histograms in Figure 3.3-3.4.

Regarding questions about how people experienced the robot, the majority (92%)
answered that they were positive towards (Neutral to Good) when they first noticed it and
it started to approach them. Further, in general people (67% Neutral to Good) did not feel
uncomfortable when the robot followed them, though a few persons answered that did
not like the robot following them (see Figure 3.3). Of the people questioned 90% found
that a robot would fit Neural to Good into a transit space like the “Kennedy Arkaden”,
see Figure 3.4.

When asked if they expect robots and what role they would have in transit space in
20 years, 23% expect robots to have a role in entertainment, 40% see robots as assistants,
helpers or guides when used in transit spaces and 6% expect them to have a role in surveil-
lance. 50% expect robots to be everywhere in 20 years, 29% only expect a few and 8%
expect a situation as today. Since the majority of the respondents were positive towards
having a robot entering the transit space. This supports the hypothesis that it is possible
to add value to urban transit spaces by putting interacting robots into them. Furthermore,
most people feels comfortable towards having the robot in the environment, even when
the robot were following them.

Another interesting observation was that people started to interact more when the
interaction distance was set to be closer, probably due to the robot getting into the personal
zone, where the robot can not just be ignored.

The robot system described here, is a relatively “dumb” first generation mobile agent
in a transit space. But in general, the results show that people are overall very positive
towards the idea of having robots assisting or entertaining persons in public spaces. So
this definitely opens op for further research in how to enable robots to become our “digital

43



Methodology

 

 

73%

2%

17%

2% 0%

6%

42%

13% 13%

6% 4%

23%

0%

10%

20%

30%

40%

50%

60%

70%

80%

Good Fairly good Neutral Less good Bad No answer

How was your initial experience with the robot
How did you feel when it followed you

Figure 3.3: Answers from questions on peoples experience with the robot, initially and
after the robot started following them.

 

 

60%

19%

10%

2%
0%

8%

0%

10%

20%

30%

40%

50%

60%

70%

Good Fairly good Neutral Less good Bad No answer

How does a robot fit into this 
space

Figure 3.4: Answers from question on peoples opinion regarding the use of robots in
transit spaces.

44



2 Hall Zones

assistant of the future”.

3.2 Hall Zones

This section briefly describes the Hall zones, which are used through the thesis to govern
how the robot moves relative to humans. In [Hall, 1963, Hall, 1966] the anthropologist
Edward T. Hall introduced the term proxemics. Proxemics refers to the study of how
humans position themselves relatively to others, with respect to distance. Hall studied
how a lot of people in public places positioned themselves relative to others, and came
up with a model, which is relatively simple. He divides the space around a person into to
four zones with an associated distance the person:

1. The intimate zone (d < 0.45m), where only interaction like touching or whispering
occurs.

2. The personal zone (0.45m ≤ d < 1.2m), where you have close conversations with
people.

3. The social zone (1.2m ≤ d < 3.6m), is reserved for social interaction in e.g. a
larger group.

4. The public zone (d ≥ 3.6m), is the zone, where there is not really interaction. 3.6m

is the distance where you start to notice people, and the distance you at least try to
keep when walking around.

These zones are also illustrated in Figure 3.5. The defined distances are determined with
a basis in Americans, but can change according to the culture of a group of people. For
example the distances are typically smaller for Asians, which sometimes can result in pe-
culiar observations, when e.g. an Asian person speaks to a person from a Western country.
Asians will step forward to get closer, while the Westerner will step back, resulting in a
dance like performance. It has been chosen to use these zones to govern the motion of the
robot for mainly two reasons. The zones rules are relative simple, and thus relatively easy
to transform to a mathematical formula, which can be implemented on a robot. Secondly,
even though the zones were designed with human-human interaction in mind, studies
like e.g. [Walters et al., 2005a] and [Koay et al., 2005] have shown to support the use of
proxemic distances within HRI as well.

3.3 Case-Based Reasoning (CBR)

To estimate a persons interest in interaction, a CBR system is used. This section will
describe how CBR works in general, and relate to how it is used in this thesis. The
theory here is based on [Kolodner, 1993, Aamodt and Plaza, 1994, Aha, 1998]. CBR is
conceptually easy to understand and works much the same way as a human mind. A case

45



Methodology

Figure 3.5: The different Hall zones illustrated.

is a set of relevant features extracted from an experience. Like human reasoning, CBR is
based on cases rather than based on rules like other machine learning algorithms. Cases
from experiences are then continuously stored in a case database like humans remember
their experiences. When a new problem is encountered, the task is essentially to recall
what happened in previous cases and interpret how this information can be used for the
current problem.

Generally there are four steps in CBR: Retrieve, Reuse, Revise, Retain, which is
illustrated in Figure 3.6.

Retrieve: Is the process of using features from the current problem to find and retrieve
similar cases from the stored cases.

Reuse: If a good match for the current problem is found in the stored cases, the solution
might be directly reused on the current problem. But if a not so good match is
found, it can be modified to suit the current problem and then applied.

Revise: When the solution has been executed, it is time to reflect on the outcome and see
if the strategy should be modified.

Retain: When the strategy for the current problem has been revised, the stored cases are
updated with the new strategy for the current problem. This part is what constitutes
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Figure 3.6: The four steps of a CBR cycle: retrieve, reuse, revise and retain.

the learning capability of a CBR system, which makes is improve performance as
more experience is gathered.

A slightly modified version of this general CBR framework is used to estimate the
intentions of persons in this thesis. The modified version is illustrated in Figure 3.7. When
encountering a new person, the retrieve and reuse steps are continuously cycled through,
until interaction with the person is done. Only after being done with the interaction, i.e.
the person has moved away again, the strategy is revised, and the information is retained
and updated in the stored cases.

3.4 From Goal to Control Input

A typical task of a mobile robot is to get a goal location and transform this information
into motor control inputs, that drive the robot towards that goal. Algorithms that makes
this transformation, can be divided into three levels. Although in some systems one or
more of the levels are disregarded or integrated into each other. The top level planner uses
a map and a goal to find an overall desirable and feasible path from an origin to a goal.
The intermediate planner takes the overall path and makes local optimised plans for where
to go if sensors observe discrepancies from the overall map of the system. This is also the
level, where collision avoidance is handled. These two levels are also recognized in e.g.
[Prado, 2007] that states that the control system of a mobile robot generally comprises two
different modules: a trajectory planner and a trajecotry tracking controller, although some
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Figure 3.7: The modified version of the CBR system, which is used in this work.

researchers have proposed algorithms that integrate both tasks. But there is an additional
lower level, that much robotic research disregards. On the lowest level is the motion
control that uses explicit sensor feedback to find the control input that drive the robot
towards the desired trajectory. At this level it is typically closed loop controllers, where
a given performance can be guaranteed, that calculates the input directly from the sensor
readings. At the top level, it is typically more complex, intelligent and time consuming
algorithms that tries to generate a good plan. In robotic research, the low level controller
is often disregarded and just assumed to be a one to one mapping. This means that it is
assumed that you can just send a reference velocity to the robot, and assume that it will
be followed. However, this is not entirely correct in most cases. In a real physical world,
motion of a robot is always subject to dynamic constraints, which means that it cannot
change direction or velocity instantly.

Robotic planning research often only considers the two top levels, which is a global
path planner and a local reactive controller of obstacle avoidance. It is assumed that the
low level controller is already an integrated part of the robotic system.

The trajectory planning in this thesis comes in the middle or as a replacement of the
two bottom levels. It is assumed that some top level planner provides a direction, in
which to move. The trajectory planner then both considers how to move locally and uses
a dynamic robot model to find exact control inputs. One could argue that the low level
controller is actually not a controller, since there is no closed loop. However an increasing
number of applications use open loop planners that continuously replans the input in real-
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time instead of closing a loop by a stabilized closed loop control system[Tedrake, 2009].

3.4.1 Sampling Based Motion Planning: RRT

Due to increasing computational power, sampling based motion planning algorithms have
gained more attention during the last decade. One very successful algorithm, is called
Rapidly-exploring Random Trees (RRT). RRT’s are developed specifically for kinody-
namic motion planning. Since the work in this thesis uses a modified version of an RRT,
this section will shortly describe the basic algorithm.

The basic approach in an RRT is to maintain a tree, where the nodes correspond
to connected configurations (vertices) of the robot trajectory. First a random point in
the configuration space is sampled. The closest vertex in the tree is expanded directly
towards the sampled point. If an obstacle is encountered, the vertex is pruned. This is
done over and over again until a new vertex is sufficiently close to the goal, in which case
the algorithm is terminated. The algorithm is presented in Algorithm 1. In Figure 3.8a

Algorithm 1 Standard RRT (see [Ferguson and Stentz, 2006])
RRTmain()

1: Tree = q.start
2: q.new = q.start
3: while Distance(q.new , q.goal) < ErrTolerance do
4: q.target = SampleRandomTarget()
5: q.nearest = NearestVertex(Tree , q.target)
6: q.new = ExtendTowards(q.nearest,q.target)
7: Tree.add(q.new)
8: end while
9: return Trajectory(Tree,q.new)

a simple RRT with 50 vertices is shown. The start vertex is in the top right corner. A
variation of the RRT, which is often used, is where extension towards a new vertex can
also be done from an edge. In this case a vertex is placed on the edge from the extension
point. This makes the tree only expand orthogonal to existing edges. This approach does
however not work very well for kinodynamic motion planning, since it requires 90◦ turns
frequently. The RRT is very good at quickly exploring all the configuration space. This
is seen in Figure 3.9, where 1000 vertices are added. One thing to note is that there are
not many large areas that are not explored well. This is because the extension is biased
by the largest Voronoi regions as described in Section 2.2.1.
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(a) A simple RRT with 50 vertices.
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(b) An RRT where the nearest function extends from
edges as well.

Figure 3.8: Two different versions of the RRT algorithm.
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Figure 3.9: A 1000 vertices RRT, where it can be seen that the configuration space already
is covered well.
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3.5 The Robotino Robot

This section shortly describes the robotic system which has been used during the work on
this thesis. The robot and software framework was developed through a Master’s thesis
project [Kracht and Nielsen, 2007].

The base robot is a Festo Robotino R© mobile robot system, which is shown in Fig-
ure 3.10. This base robot has been equipped with a head with diodes, which makes it able

Figure 3.10: The original unmodified version of the FESTO Robotino R© robot.

to show different facial expressions for simple communication with the environment. The
different facial expressions are shown in Figure 3.11. Furthermore the robot has been

(a) Neutral (b) Happy (c) Sad (d) Surprised (e) Question
mark

Figure 3.11: Images of different facial expressions the robot can show.

equipped with an URG-04LX line scan laser range finder, which is used for detection of
persons. It has turned out that especially children are very fond of the face, and find it
funny to play with the robot. Thus, the framework used in the SantaBot experiment (see
Section 3.1 on page 41), where the robot follows a random person, has been used in many
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occasions to promote university educations at various locations. An example of this is
shown in Figure 3.12, where some children plays with the robot.

Figure 3.12: The robot at large in a shopping centre. Children find it funny to play with
it.

To control the robot, the robotic software control framework Player/Stage has been
installed on the robot [Collett et al., 2005]. All the algorithms presented in the thesis,
with exception of the CBR system, have been implemented as plugins for Player/Stage.
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4 Summary of Contributions

The main contributions of this thesis are in the form of five papers, which are appended
after the conclusion of this introductory part. The main contributions from the papers are
shortly listed here. The five research questions, which were introduced in the motivation
was:

• How can robots detect position and orientation of people by using simple sensors?

• How can robots find out if people are interested in interaction, based on previous
experiences?

• How can a general motion control framework be designed to facilitate sociable and
comfortable robot motion around a person?

• How can a navigation algorithm be designed to enable robots to navigate through a
populated human environment, such that it is safe and natural for the people in the
environment?

• How are these abilities evaluated and tested on a prototype robot?

The contributions are described in three sections, which clearly shows the progression
of the work presented in the thesis. In the first section, the solution framework to first three
research questions, which is published in Paper A and Paper B, is described. The work
is also further documented in[Andersen et al., 2008, Hansen et al., 2009a], which are not
a part of the thesis. The next section relates to Paper C, where the general applicability
of the framework is demonstrated by modifying it into a robotic game. Finally the results
from human-aware motion framework is extended to environments with many people.
This is what is presented in Paper D and Paper E.

4.1 Adaptive Human-Aware Navigation and Interest Estimation

The starting vision is a service robot driving around in some human environment. When
the service robot encounters a person, it must move around that person in an appropriate
way. To do this it must have three different capabilities:

53



Summary of Contributions

• The robot must be able to detect the person, and find out how the person moves.

• The robot must be able to find out if the person wants help (i.e. has interest in
interacting with the robot), or the person should be left alone.

• The robot must move naturally, safe and comfortable according to the perceived
interest of the person.

4.1.1 Pose Estimation

To be able to move around a person in a way perceived as comfortable, not only the
position of the person has to be known, but also the orientation and velocity. To do this
an algorithm that detect persons from laser range scanner readings is extended to provide
velocity and orientation as well. The person detection algorithm was originally developed
in [Xavier et al., 2005].

The positions found using this algorithm are fed through a person state estimation
algorithm to obtain velocity estimates. All pose and velocity estimation is done in the
robots coordinate frame (i.e. from the robot’s point of view) and not in a global frame.
This is because when moving around humans, it is the relative motion that matters and
not if it is in one or an other side of the room. The person state estimator uses a Kalman
filter to find the velocity. The state is comprised of the person position, person velocity
and the robot velocity. The measurements are the estimate of the person position and the
odometry measurements.

x =

 ppers
vpers

vrob

 , y =

[
p̂pers

vodom,rob

]
. (4.1)

p denotes a position vector and v denotes velocities, all given in the robot coordinate
frame. The p̂ is the estimate of the person position from the person detection algorithm
and vodom,rob the robot odometry measurement vector.

Because the measurements are done in the robot’s coordinate frame and the robot
moves, then it turns out that the rotational velocity of the robot, ψ̇, causes the Kalman filter
to become nonlinear. This is not a desired property. The nonlinear effect can, however,
be overcome, maintaining the linear Kalman filter, by introducing a measurement driven
Kalman filter [Jun et al., 1999, van der Merwe et al., 2004]. The idea in a measurement
driven Kalman filter is to use sensor readings, in this case rotational odometry data from
the robot, to drive the process model as an input. This means that the non-linearity is in
the input part, Γu(k), and the rotation can be omitted in the state transition matrix Φ.
The advantage is that the input is not a part of the Kalman filter equations, and the filter
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1 Adaptive Human-Aware Navigation and Interest Estimation

remains a linear filter. The standard discrete state space model is:

x(k + 1) = Φx(k) + Γu(k) (4.2)

y(k) = Hx(k) . (4.3)

After some calculations, it can be seen that the input should be replaced as follows:

Γ(k)u(k) =



py,pers(k)

-px,pers(k)

vy,pers(k)

-vx,pers(k)

0

0


T

ˆ̇
ψ(k) , (4.4)

where ˆ̇
ψ is the measured robot rotation from the odometry data.

After the direction of the velocity vector is found, this can be used to calculate the
orientation of the person. This is done in an autoregressive filter:

θ(k + 1) = βθ(k) + (1− β) arctan

(
vy,pers
vx,pers

)
. (4.5)

4.1.2 Estimation of Interest in Interaction

To represent the person’s interest in interaction, the variable PI is used (see definition in
Appendix I on page 210). A CBR system is developed to enable the robot to learn to
estimate the interest in interaction, which is expressed by the PI variable. The operation
of the designed CBR system is illustrated in in Figure 4.1. When a person is encountered
the specific motion patterns of the person are estimated. The estimates are compared to
what is stored in the Case Library, which is obtained from previous interaction sessions.
The outcome, i.e. the associated PI value, of the previous similar sessions is used to
update the PI in the current situation. This means that if the motion of the current person
is consistent, according to what previous persons have done, the robot will get more and
more certain about the PI value. Thus, the robot is able to estimate the person’s interest
in interaction. During the interaction session, the motion patterns of the current person
are stored in a Temporary Cases database. When the interaction session with the person
is over, the robot has new knowledge from this session, i.e. it is known if the person
wanted to interact, or not. This knowledge together with the Temporary Cases are used to
revise the Case Library. For example, if the interaction session resulted in interaction, the
cases in the Case Library, which are similar to the ones just experienced in the Temporary
Cases, are assigned to a larger PI value. This approach makes the robot able to learn from
experience to become better at interpreting the person’s interest in interaction.
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Figure 4.1: First the robot starts to look for persons. When a person is found, it is eval-
uated if the person wants to interact. After a potential interaction, the robot updates the
knowledge library with information about the interaction session, and starts to look for
other persons.

4.1.3 Human-Aware Navigation

Motion around a human is based on a potential field. A potential field, in which the
robot must seek towards the lower parts, is created around the person. The creation of
the potential field function is based on proxemics, i.e. how humans position themselves
relative to each other, which is described by [Hall, 1963]. Proxemics is further described
in Section 3.3 on page 45.

The potential field is made adaptive, such that if it is most likely that the person do
not wish to interact (i.e. PI ≈ 0), the robot should not violate the person’s personal space
but seek towards the social or public zone. On the other hand, if it is most likely that
the person is willing to or interested in close interaction with the robot (i.e. PI ≈ 1),
the robot should try to enter the personal zone in front of the person. The potential field
is comprised of four bi-variate Gaussian distributions, which enables the robot to have
appropriate behaviour:

Attractor distribution, which is a constant negative potential used to attract the
robot towards the person.

Rear distribution, which ensures that the robot does not approach a person from
behind. Therefore it is only and is only evaluated if the robot is behind the person.

Parallel distribution, which is an adaptive distribution used to control in which area
the robot should move. Since it controls the motion in front of the person, it is only
evaluated in front of the person.
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Perpendicular distribution, which is also adaptive and works in cooperation with
the parallel distribution.

The parallel and perpendicular distributions are identical, but rotated 90◦ relative to each
other. The shapes of the four Gaussian distributions are illustrated in Figure 4.2. All four

θ

Figure 4.2: The Gaussian distributions, that determine the potential field, in which the
robot moves. Note that the rear distribution only is evaluated behind the person, and the
parallel and perpendicular are only evaluated in front of the person.

potential functions are implemented as normalised bi-variate Gaussian distributions, and
the potential field value in the point x can thus be calculated as:

f(x) =

4∑
k=1

ck exp

(
−1

2
[x− 0]TΣ−1k [x− 0]

)
, (4.6)

where k = 1 . . . 4 is the different distributions, ck is a normalising constant and x is the

position relative to the person, where the potential is evaluated. Σk =

[
σ2
x σxy

σxy σ2
y

]
is

the 2x2 covariance matrix of the distribution, which determines the shape and rotation.
For the parallel and perpendicular distributions Σk can be calculated such that the desired
rotation angle θ is satisfied.

Although Figure 4.2 illustrates the shape of the potential field distributions, it does not
give the full picture about how the combined potential field looks. But these are illustrated
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Figure 4.3: Shape of the potential field for (a), a person not interested in interaction, (b) a
person considered for interaction, and (c) a person interested in interaction. The scale for
the potential field is plotted to the left and the value of the person interested indicator PI
is denoted under each plot.

in Figure 4.3 for different values of PI. Note that the robot always seek towards the lower
dark blue areas.

The reference velocity is then calculated as

vref = k∇f(x) , (4.7)

where vref is the reference velocity vector, ∇f(x) is the gradient of the potential field
and k is an adjustable parameter that controls how aggressive the motion of the robot is.

4.1.4 A Robot Game

The framework above is modified in Paper C for use in a robotic game. The purpose
of the game is to motivate elderly people to do a regular amount of exercise by forcing
them to move around. The game rules are simple. A player should receive an object (a
ball) from the robot, and try to hand it back. The better the player is, the harder the robot
makes it to hand the ball back by moving around. The operation of the robot is:

• If no player is detected, the robots searches for a player by moving randomly around
until a person is detected.

• When a player is detected, the robot invites to play a game by approaching the
player from the front.

• When the player has accepted to play a game by picking up the ball from the robot,
the robot initially moves fast backwards away from the player to get away.

• Then the game is started and the robot keeps avoiding the player with a distance
and velocity that corresponds to the estimated skill of the player. When the ball has
been handed back, the game is complete.
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This behaviour of the robot can be obtained from the framework described above with
minor modifications. Instead of PI, we introduce PSI (Player Skill Indication), which is
an estimate of the person’s skill. The calculation of the potential field value, as a function
of PI, is reversed such that f(x, PSI) = f(x, 1 − PI) . This means that, if it is a good
player (i.e. high PSI value) approaches the robot, the robot moves away like the person
was not interested in interaction. And if it is a player with low skill, the robot approaches
the person to make it easier to hand over the ball.

4.2 Trajectory Planning in Dynamic Human Environments

The algorithms outlined above focus on on-to-one interaction. To facilitate deployment
in real human environments, it is natural to extend the results to handle more humans in
the environment. Paper D [Svenstrup et al., 2010a] describes an algorithm for planning
a trajectory through a dense human crowd. Some of the work has also been presented
in [Svenstrup, 2010]. The photos 1.6 and 1.5 illustrates this problem, and a schematic of
this problem is shown in Figure 4.4. The task is to plan a trajectory from the starting point

Figure 4.4: Illustration of a scenario, where a needs to navigate through a dense human
crowd.

and towards a goal somewhere ahead. The objective is not to exactly reach the goal, but
to get towards it. To plan a trajectory through this environment, there are three objectives:

• The robot should stay within a defined area of operation, e.g. stay somewhere near
the centre of the street.

• The robot should avoid collision with the humans in the environment

• The robot should get forwards towards the goal.

To do this a potential field can be used to describe where the robot should move. First,
a potential field related to the position in the environment is defined. It could be defined

59



Summary of Contributions

any way that suits motion in the specific task environment. In this case we define it as:

g1(x(t)) = cyy
2(t) (4.8)

where g1 is the value of the potential field, x(t) is the position of the robot and y is the
deviation from the centre of the street. The potential field described above is used to
define where the robot should move relative to humans is also used here. To take into
account all the persons, the potential field in Eq. (4.6) is summed over all the persons in
the area:

g2(x) =

p∑
j=1

4∑
k=1

ck exp(−1

2
[x− 0]TΣ−1k [x− 0]) (4.9)

Since the persons move, this potential field changes over time, and is thus also a function
of the persons’ positions over time P(t). Lastly there is a potential g3 that drives the robot
forward, and makes sure that the robot does not turn around. It does not really matter how
the robot moves along the trajectory if only the ending position is as desired, so g3 is only
applied to the end of the trajectory.

Contrary to above, the desire is not to move towards the lowest part of the potential
field, but to stay in the low parts and move forwards. So using the three cost functions, an
optimisation problem can be formulated:

minimize I(ũ0:T ) = (4.10)∫ T

0

[g1(x(t)) + g2(x(t),P(t))] dt+ g3(x(T ))

s.t. ẋ(t) = f (x(t),ut)

where g1(x(t)) = cyx2(t)2

g2(x(t),P(t)) =
p∑
j=1

4∑
k=1

ck exp(−1

2
[x1:2 − µj ]TΣ−1j,k[x1:2 − µj ])

g3(x(T )) = ce1 exp(ce2(x1(T )− x1(0))) + cθx
4
4(T ),

The combined potential field landscape for an example with five persons and three exam-
ple trajectories can be seen in Figure 4.5.

Taking a direct optimisation approach to this has proved infeasible. So the approach
to solve the problem has been a modified RRT algorithm. The RRT algorithm is modified
in the following ways:

• The planner runs in configuration-time (C − T ) space, where moving obstacles are
static, i.e. the motion of the persons are taken into account.

• Person motion models are used to predict trajectories of persons
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Figure 4.5: Person potential field landscape, which the robot has to move through. The
robot starting point is the green dot at the point (2, 0). Three examples of potential robot
trajectories are shown.

• When expending the RRT, a controller based approach is taken to extend a vertex
towards a newly sampled vertex.

• A second order dynamic motion model of the robot is used to incorporate the robot
dynamics when the robot motion is predicted.

• RRT vertices are pruned where the cost is too high, i.e. close to the persons.

• A “best trajectory” is chosen based on the cost of traversing the trajectory, and not
based on reaching a goal.

• Using a Model Predictive Control (MPC) scheme, a new “best trajectory” is cal-
culated on-line, while executing the planned trajectory. After a short time period,
the trajectory is replaced by the new “best trajectory”. And again a new RRT is
initialised by seeding with the new “best trajectory”.

• The environment potential changes over time according to the desired destination,
which also make the algorithm robust to local minima.

An example of a performed RRT on the area in 4.5 can be seen in 4.6, where the green
trajectory is the trajectory with the least cost.

A problem with using an RRT is that each time a new vertex have to be added, all other
vertices have to be searched through to find the nearest, which is then extended. That
means that when the number of vertices become large, the process of finding the nearest
neighbour takes a large part of the computation time, and thus makes the algorithm slower.
This problem is addressed in Paper E ([Svenstrup et al., 2011]), where an algorithm that
minimises this computation time of this nearest neighbour is proposed. The algorithm is
based on subdividing the configuration space into a number of smaller boxes, and then
only a relevant number of boxes needs to be searched. This significantly reduces the
computation time. The method is illustrated in Figure 4.7. Where the red dot is a new
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Figure 4.6: An RRT for a robot starting at (2, 0) and the task of moving forward through
the human populated environment. Only every 10th vertex is shown to avoid clutter of
the graph. The vertices are the red dots, and the lines are the simulated trajectories. The
green trajectory is the least cost trajectory.

vertex, which needs to be added. To find the nearest neighbour, first the red shaded box is
searched, then the green and so on. If a neighbour that can be guaranteed to be closer than
any in the outer boxes, then the algorithm is terminated without having to search through
all vertices.
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Figure 4.7: The configuration space is split in a number of boxes in each dimension. A
grown tree has to be extended with a newly sampled vertex (the red dot). The nearest
boxes to the new vertex is shaded in different colours.
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5 Comparative Evaluations

This chapter evaluates the developed methods and algorithms in comparison with other
state-of-the-art research, which is described in Chapter 2. Where it is possible, our meth-
ods are compared directly to the performance of other methods. However, most of the
work does not have any benchmark performances to compare with, and in those cases,
the relation to other work is described. In the following, each of the subsystems; human
detection and tracking; intention estimation; human-aware motion; trajectory planning;
and the nearest neighbour search are compared to other work.

It is worth noticing that each of the developed subsystems are decoupled, and can thus
be combined with other systems as well. This means that if researchers for example find
a better way of estimating intentions, it is easy to substitute this part of the system, or if
a better way of representing the social spaces as potential functions is found, it is easy
to replace the potential field calculation in both the human-aware motion planner and the
trajectory planner.

5.1 Human Detection and Tracking

We will not evaluate the effectiveness of the tracking algorithm itself, since this has not
been the focus of Ph.D. project. There exist many results on different tracking algorithms
(see Section 2.1.1), and the purpose for this work was to use one that worked appropri-
ately. Instead we have further developed the algorithm to be able to estimate pose of
a person as well. Estimating pose of persons is essential for proper motion around hu-
mans. The novelty of the work is to be able to estimate the pose of persons with simple
laser range measurements, and not relying on more advanced vision based approaches.
For example vision systems to obtain pose estimates require advanced image process-
ing, which is often not applicable to small robots. Several researchers have, in addition
to the position of a person also included velocity and orientation [Zender et al., 2007,
Althaus et al., 2004, Pacchierotti et al., 2005, Hoeller et al., 2007]. However, all of them
uses the direction of the velocity vector as orientation. This is applicable for relative high
velocities, but when people are moving slow or standing still, it is a very error prone ap-
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proach. If, for example a person is moving slightly backwards while standing still and
talking to a person or e.g. the robot, such an algorithm would assume that the person is
looking the other way. Such wrong estimate might make the robot perform a completely
wrong motion. Our approach, however, takes this into account because the orientation
estimate is only changed slowly, when the person is moving slow.

5.2 Intention Recognition for Interaction

Regarding estimating the intentions of person’s interest in interaction with a mobile robot,
we believe that it has not been done before. Most work within HRI assumes that the per-
son and robot already are engaged in interaction, or assumes that the person is interested
and thus the robot just moves in front of the person. Additionally there exist many results
for motion planning in human environments (see Section 2.1.3). However, a service robot
in a future human environment must be able to perform both interaction and motion. Cur-
rently there is a gap in research for robots that can make that jump from moving around to
interacting. There have been research like [Kelley et al., 2008], that tries to estimate hu-
man intentions, but not with respect to if they want to engage in interaction. Currently, the
research that comes closest to solving this problem is presented in [Althaus et al., 2004].
This research is partly a user study, where a robot joins a group of people engaged in in-
teraction. However, the robot does not try to find out anything about interest, it just drives
towards the group of people, if it sees one. That is where our research, in estimating
human interest in interaction, fills a gap. We have chosen to use a Case Based Reasoning
approach to solve this problem. This method is easy understandable because it fits well
with how humans think; we observe events, compare to what we have experienced earlier,
and use that information to reason about the current event. The CBR system have proved
to work well for the given robotic system.

5.3 Human-Aware Motion

Two complimentary methods for motion in human environments have been developed.
One, which treats motion relative to one specific person for interaction purposes, and one
for navigating through a crowded human environment. Even though they can be used
together on a robotic system, they present two different types of planning in literature.
Therefore there are two sections in this comparative study. This section covers an analysis
of motion in a human environment relative to humans, and not the trajectory planning in
itself.

First an overview over the motion related features of other algorithms is presented.
Table 5.1 gives an overview over different algorithms which are presented in Section
2.1.3. Additionally our proposed system is added to be able to compare. Table 5.2 is
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an extension of the first, with the same reference systems and additional properties.The
properties of each system are listed without any discussion about if the specific properties
are good, bad or necessary to have. This will depend on the specific application. For
example having a global map might increase performance of the system. However, if
operating in an unknown environment, the algorithm need to function without having a
map. The columns in the table corresponds to the following questions:

• What is the function of the robot? Is it tracking/following/guiding/interacting/goal
seeking/approaching/passing, or just moving around for the purpose of the motion
planning research.

• Does the system take human motion into account, or are people treated as static
obstacles?

• Does the robot predict the human motion when planning, or only use the current
state?

• Does the system take social spaces into account, or are people treated as obstacles
(dynamic or static)?

• Does the system estimate pose, i.e. is the actual pose measured or it just the velocity
direction or no orientation at all.

• Does the system consider, that there might be interaction with a person, or is it
only motion planning around humans?

• Does the system learn either human behaviour or how to behave from experiences?

• Does the paper contain a user study? If persons are asked how they feel or they are
asked to do something until they feel uncomfortable, and this is then used to derive
how a robot should move. Then it is regarded as a user study in this context.

• What is the name or type of the robot?

• Does the system need a global map to work, or is it based on local world knowl-
edge?

• What kind of motion planning algorithm is used? Is it RRT, A*, an obstacle
avoidance algorithm or maybe controller based.

• Does the robot plan trajectories around humans, or does it just react to avoid pos-
sible collisions with humans? It might also expect humans to avoid, and thus not
take collisions explicitly into account.

• Does the system utilize potential fields to guide the motion?

• Which kind of sensors are used for sensing the environment and the people?

• What is the normal operating speed of the robot. Many papers does not explic-
itly state this, maybe because robots are still notoriously slow movers in human
environments.
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When looking at Table 5.1 and 5.2, it is seen that our methods spans the widest parts
of the subject areas in the table. However, this might be due to that the table sum up
on the areas, that are addressed in this thesis. But this is still quite broad within motion
in human environments. We believe that a robot, that is successfully introduced into
dynamic human environments sometime in the future, must possess the skills listed in the
tables (and possibly more).

Many approaches uses a global navigation strategy, which means that robot and per-
son motion is tracked in a global static map. This means that you have to have some
knowledge about the whole world, which we think will not always be the case for fu-
ture robots moving around in our environment. Our approach does not require any
global information, and is able to move around only considering the motion of the hu-
mans in the environment, since the person motion is calculated in the robot reference
frame. Because the person motion is known relative to the robot, it also makes it easier
to estimate what the intentions of the person with respect to the robot, since it can be
related to previous experiments. Other research considering the human motion trajec-
tories [Bennewitz et al., 2005, Bruce and Gordon, 2004, Foka and Trahanias, 2010] only
considers where the persons may go relative to a static environment, independently of
where the robot is located. An optimal approach would of cause involve usage of all this
information. The most important features of our human-aware motion planner is the abil-
ity to take into account the social zones of a person, and to take into account a person’s
estimated interest in interaction, which have not been done in other research.

5.4 Trajectory Planning in Human Environments

“Humans cannot be considered just as objects and cannot be simplified to moving obsta-
cles” [Sisbot, 2008]. Our method for planning a trajectory through a human environment
has one fundamental difference from most other research. The robot does not treat hu-
mans as merely dynamical obstacles that need to be avoided. The presented algorithm
attempts to move the same way humans do, and thus being more natural, which is es-
sential for the acceptance of the robot in our world. Furthermore the planning algorithm
respects persons’ social zones.

Most works that take the human motion into account attempts not to disturb people
as a criterion for the motion. However, this is not entirely possible in a human environ-
ment. People also disturb other people when moving around, so why should robots not
be allowed to do it as well. Consider for example the entrance to a train station. If the
robot has to wait until there is a free path to be able to get through the doors, the robot
will never get through because of the constant stream of people. Thus, some form of
disturbance must be allowed. This work does not treat the disturbance explicitly, but the
robot tries to avoid getting too close to persons, which results in a trade-off between no
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4 Trajectory Planning in Human Environments

motion and close passage. In the train station entrance scenario our proposed trajectory
generation algorithm might slow down or halt initially, but the change of the potential
field over time, would result in the robot moving through the doors within a short time.
The dynamic nature of the planner then adapts to the people’s reactions to the robot,
while moving through the door. The only other work that, to the extend of our knowl-
edge, accepts that robot trajectories might disturb human motion is [Kirby et al., 2009]
and [Sasaki and Hashimoto, 2006]. [Kirby et al., 2009] used constraint optimisation to
account for this, and in [Sasaki and Hashimoto, 2006] the robot tries to follow human
walking paths to minimise the disturbance. However, shortcomings of these methods are
the ability to incorporate the dynamics of the human motion, and to operate autonomously
in an unknown space, where just the sensory input on the robot is available. Our system
both take the human motion into account and navigates only from sensory input on the
robot.

For predicting human motion, our implementation use a simple linear motion model,
which assumes a person will continue with the current speed and velocity. More advanced
motion models, like e.g. [Bennewitz et al., 2005, Bruce and Gordon, 2004],
[Foka and Trahanias, 2010] (described in Section 2.1.2), can of course be used in the
framework of our system. But humans do not use complex motion models to predict,
where other humans will go. The philosophy is, that this should be the same for robots,
that it is not necessary for the robot to incorporate complex motion prediction algorithms.
Furthermore, complex motion models can be prone to errors if e.g. a person changes goal.
To pass each other, we usually allow a very short passing distance. So even if having a
relative good prediction of the goal of another person, a small path deviation from the
estimated path, will cause the need to update the planned robot trajectory anyway. Thus
a simple linear motion model can be just as good as a complex one.

5.4.1 Simulation of the Human Motion

When it comes to the simulation environment for testing the algorithm, the human motion
model is a bit more advanced to make the simulation more realistic. It is made such that
it should resemble person motion relatively well. The simulation of the human motion is
based on each person having a goal they move towards. The person motion is simulated
according to the formulation given by Eq. 2.1 from [Fajen and Warren, 2003]. Addition-
ally the people in the simulation can randomly change goals and an additional Gaussian
noise is added to the direction of the motion and the velocity of the persons.
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5.5 Trajectory Planning

This section compares the trajectory planning algorithm from a pure planning point of
view. Thus, no evaluation of social spaces or human motion as an obstacle, is done. The
requirements for the algorithm was to minimise the probability of collision, while still
maintaining a forward speed. There are no such guarantees as time optimality, guarantee
of best trajectory, 100 percent certainty of collision avoidance etc. This is because our
philosophy is to move around like a person would do, and we also sometimes bump into
each other because space is narrow or we are not attentive. It is believed that coming up
with guarantees imposes constraints on the systems that humans would not have, and thus
limits the performance in the end.

To solve the problem, a modified version of the RRT algorithm, has been used. The
contributions related the modification of the RRT algorithm are listed here:

• Formulation of the navigation problem as planning a path through a dynamic po-
tential field.

• New RRT trajectory selection and pruning methods, which are based on a potential
field.

• Control input selection strategy, which leads to better covering the configuration
space than random control sampling.

• MPC based RRT, which only executes a small part of the trajectory while recal-
culating a new. Unlike the MPC based RRT paper from [Brooks et al., 2009], in
which the algorithm executes the whole trajectory.

• Opposite from traditional RRT planning, the focus is on keeping a desired pace,
instead of reaching a goal location.

• Including dynamic obstacles in the RRT by planning in Configuration-Time (C−T )
space .

The trajectory planning algorithm is demonstrated to be able to plan a path in a hu-
man environment in Section 4.2. However, it is not compared to other comparable algo-
rithms on the same problem. Therefore the same problem is here solved using two other
RRT algorithms. One, where a random vertex is selected to expand, and one, where a
random control input is chosen after selecting a vertex to expand. The two algorithms
are suggested in [LaValle and Kuffner Jr, 2001] and used in e.g. [Brooks et al., 2009,
Shkolnik et al., 2009]. To be able to compare the approaches, it is only the tree expansion
strategy, which is changed. The selection of the best trajectory and pruning of the tree is
still done according to the developed algorithm. In Figure 5.1 an RRT has been run for
the same environment as shown in Figure 4.5. But instead of a random sampling in the
configuration space and then expanding the nearest vertex, a random vertex is expanded.
The algorithm is a little faster than our proposed algorithm, since it does not have to find
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5 Trajectory Planning

the nearest other vertex. However, as can be seen, the tree does almost not expand over
the configuration space. This is expected because one of the main advantages of the RRT
algorithm is, that it exploits that there is a larger probability of sampling into the larger
Voronoi regions, and thus leading to good tree expansion in empty (wrt. vertices) regions
of the configuration space. When sampling random vertices to expand, this property of
the RRT disappears.

[m]

[m
]

 0  5 10 15 20 25 30 35 40 45
−10

 −5

  0

  5

 10

Figure 5.1: The RRT after 2000 expansions, where a random vertex is chosen to be
expanded. The tree expands very slow over the configuration space because the random
sampling in configuration space is not exploited.

In the next example, the nearest vertex is expanded, but instead of using our control al-
gorithm to guide the robot towards the sampled point, a random control input is selected.
The result is shown in Figure 5.2. Comparing to choosing a controller guided control
input (which is shown in Figure 4.6), the configuration space is not covered very well,
since there are only two major branches of the tree, and the top area above the first person
has not been explored at all. The random control input is slightly easier to implement,
however it does not force the robot towards the sampled configuration, and thus does not
exploit the biasing of the sampling into the largest Voronoi regions. This demonstrates
that the developed approach outperforms two other algorithms for these examples. The
comparison of our approach to a standard RRT together with the two other approaches is
summarised in Table 5.3. The basic RRT, as described in Section 3.4.1, does not take dy-
namics of obstacles into account and does not account for the non-holonomic constraints
of the robot. On the other hand, it covers the configuration space well, and is relatively
fast, because it does not need to simulate the trajectory using a robot motion model.

The algorithm has proved to work in simulation, but has sometimes little difficulty
in very dense environments. One aspect is, that in the simulations, the persons does not
adapt their motions relative to the robot. This makes it more difficult, since it is only
the robot that can avoid collisions. But the difficulty in dense populated areas are not
unexpected though. Even we, as humans sometimes have difficulties, if we move in too
crowded areas. And if so, then we relax on the social conventions and allow each other
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[m]
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]

 0  5 10 15 20 25 30 35 40 45
−10

 −5

  0

  5

 10

Figure 5.2: An example of choosing random control input. The tree expands better than
if choosing random nodes, but it still does not cover the configuration space very well.
The lowest cost trajectory is shown in green.

Method
Dynamic
obstacles

Holonomic
constraints

satisfied

Configuration
space

coverage

Algorithm
speed

Basic RRT No No Good +

Random vertex Yes Yes Bad +

Random control Yes Yes Partly −
Our method Yes Yes Good −

Table 5.3: Comparison of the basic RRT approach to two modified versions of the RRT,
and our version. All of the methods are based on our potential field formulation, but with
different sampling and extension strategies. The + and − does not mean explicitly fast
and slow, but comparatively slightly faster or slower than the other algorithms in the table.

to move much closer than the personal zone. This behaviour can, for example, be seen at
large spectator events, at entrances to shops, in queues, etc.

5.5.1 An Obstacle Avoidance Perspective

Although the algorithm is developed for motion in a human environment, it can easily be
reformulated to a pure obstacle avoidance problem with either static or dynamic obstacles.
This enables the algorithm to be used for other robotic applications than just motion in
human environments. To convert the algorithm to a pure obstacle avoidance algorithm,
the only thing that has to be done is transforming the potential field. The potential field is
formed on the basis of human social spaces, which are complex in relation to obstacles.
Transforming the potential field can be done by simply assigning a constant value, when
closer than a safety distance to an obstacle. If further away, 0 is assigned. However, the
shape of the potential field that governs the robot in the environment is maintained. Thus
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5 Trajectory Planning

we reformulate g2 from Eq. 4.9:

g2(x) =

{
c if dobstacle ≤ dsafety
0 if dobstacle > dsafety

, (5.1)

where dobstacle is the distance to the obstacle, dsafety is the minimum safety distance,
and c is a positive constant.

To demonstrate this, the pedestrian street environment is transformed into an obstacle
field. For these experimental purposes, the RRT algorithm is run using a safety distance
of 1m with moving obstacles, and a safety distance of 2m with static obstacles. The
result of the simulation with moving obstacles and a safety distance of 1m can be seen in
a 2D and 3D plot on Figure 5.3. Since the obstacles are moving, some of the trajectories
seem to move through the obstacles, which is not the case. The obstacles in the figures
are shown at the initial position. A similar plot for the obstacles with 2m safety distance
can be seen in Figure 5.4. Here it can clearly be seen that the robot avoids hitting the
obstacles, and the best trajectory, which is shown in green avoids the obstacles with a
good margin.

 0  5 10 15 20 25 30 35 40 45
−10

 −5

  0

  5

 10

(a) A 2D plot of the potential field. The best tra-
jectory is marked with green.
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(b) A 3D plot of the potential field.

Figure 5.3: The RRT algorithm applied as a pure obstacle avoidance algorithm. In this
simulation i the obstacle has a safety radius of 1m and are moving.

It is according to [Nowak et al., 2010] difficult to compare obstacle avoidance tech-
niques to each other, and no benchmarks really exist. However, they mention different
performance criteria for a successful obstacle avoidance algorithm. These are:

• Mission success

• Path length

• Time taken
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(a) A 2D plot of the potential field. The best tra-
jectory is marked with green.
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(b) A 3D plot of the potential field.

Figure 5.4: The RRT algorithm applied as a pure obstacle avoidance algorithm. In this
simulation i the obstacle has a safety radius of 2m and are static.

• Number of collisions

• Obstacle clearance

• Robustness in narrow spaces

According to these benchmarks our algorithm has mission success, since it is able to move
forwards through a crowded environment. Not many pure obstacle avoidance techniques
are, however, able to plan this far without an overall planner. Looking at the trajectories,
the paths are relatively straight and thus cannot be much shorter, and thus the time taken is
relatively short as well. Compared to for example Vector Field Histogram and Nearness
Diagram, which have a tendency to slow down the robot, this is good. The algorithm
avoids collisions and keep a good obstacle clearance, so this adds to the performance of
the algorithm. However, the robustness for narrow places have not been tested, but it is
assumed that it will perform well. According to these benchmarks, the developed RRT
algorithm performs well as a pure obstacle avoidance technique.

5.6 Nearest Neighbour Search

Lastly an algorithm for increasing the speed of the nearest neighbour search, has been pre-
sented. Nearest neighbour search is a computational hard problem. It has an inevitable ex-
ponential growth relative to the dimension - both in theory and in practice[Yershova and LaValle, 2007].
In fact, the naive brute force approach will perform the best as the number of dimensions
grows towards infinity. However, when working with the dimensions that are typical in
planning algorithms, better algorithms can be found. A widely used algorithm for fast
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locating the nearest neighbour, is the kd-tree (see [LaValle, 2006, Choset et al., 2005]),
which was developed in the field of computational geometry, and thus not for planning
algorithms. Therefore it has some shortcomings, for which our algorithm works better.
For example, a kd-tree works well for clustered points, but in the case of planning, it
is attempted to avoid clustering to explore the configuration space well. A grid based
method, like the one developed, splits the configuration space evenly, and is thus better
for non clustered points.

A comparison of the performance of our developed box based algorithm to a brute
force approach and to a kd-tree approach, is shown in Figure 5.5 for finding the near-
est neighbour of 10000 vertices in two dimensions. For comparison to the kd-tree, an
existing MATLAB implementation of the algorithm has been used [Tagliasacchi, 2010].
The performance of the kd-tree implementation in Figure 5.5 is seen to be worse than
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Figure 5.5: Comparison of the time it takes to find the nearest neighbour for two dimen-
sions using the kd-tree as well as the brute force method and the box method.

using the box based method. Furthermore, the complexity of the kd-tree search algo-
rithm is O(n1−

1
d ), where n is the number of vertices and d is the number of dimensions.

This means that the kd-tree performs worse in higher dimensions, whereas the box based
method performs better for e.g. four dimensions, which can be seen in Paper E. The speed
of the kd-tree algorithm can, however, be improved by using approximate nearest neigh-
bour (ANN) algorithms. This comes at a trade-off for not being entirely sure that it is the
correct nearest neighbour, but an approximate. The bound on the complexity for ANN
is O(log n) [Karaman and Frazzoli, 2010, Yershova and LaValle, 2007], which is sill not
better than the proposed method, which have a theoretical approximate performance of
O(1), when the number of vertices to be added is known in advance.

Another issue with the kd-tree, is that it is developed for static databases, and not
expanding, like in a planning tree. This means, that if a kd-tree is built incrementally, it
can get unbalanced and thus degrade in search performance. The implementation of the
kd-tree in above experiment is using a balanced tree, and thus actually giving the kd-tree
an advantage. But even though that is the case, our algorithm is still faster. In Paper E
there was not enough space to explain why the kd-tree performance degrades, when it is
unbalanced. This is explained in the following section.
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5.6.1 A Balanced kd-tree

In Paper E it is noted that searching a balanced kd-tree is much more efficient than an
unbalanced tree. This section shows why this is the case. When the kd-tree is built after
all the vertices are known, it ensures equal depth of the whole tree. This means that
there will be 2d−1 vertices in the level depth d, and there will be a maximum depth for
a given number of vertices. An example of this is shown in Figure 5.6, where a kd-tree
is built from 15 randomly selected vertices. An incrementally built kd-tree will however
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Top node

(a) The graph of the kd-tree. The vertex corresponding
the top node of the tree, is marked with a star.

(b) The corresponding tree, with a height of
3.

Figure 5.6: An example of a balanced kd-tree with 15 vertices.

not have this property, and depends on where the vertices are placed in the configuration
space. Specifically if initial vertices are placed near the edges, it can increase the depth
of the tree. To illustrate this, a tree with the same 15 points, as in Figure 5.6, is built
incrementally. This is shown in Figure 5.7. First note that the vertices in the graph in
Figure 5.7a are much longer and crosses each other much more compared to Figure 5.6a.
Additionally the top and the next node of the tree only have one child in Figure 5.7b. This
is because they were close to the edge. Comparing the resulting tree depth, it is seen that
the balanced tree has a tree depth of only three, whereas the unbalanced tree has a depth
of 8.

To illustrate this problem further, a kd-tree with 10000 vertices have been built. This
is done with both a balanced and an unbalanced tree. A histogram of the depth of the
vertices can be seen in Figure 5.8. It is seen that the unbalanced tree have an average
depth of around 16 and a maximum around 35. This is in contrast to the maximum
depth of 13 for the balanced tree. Such a large difference in tree depth, can impact the
performance of the algorithm greatly.
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(a) The graph of the kd-tree. The vertex corresponding
the top node of the tree, is marked with a star.

(b) The corresponding tree, with a height of
8.

Figure 5.7: An example of an unbalanced kd-tree with 15 vertices. Because the first
vertices are not close to the center, the graph becomes unbalanced.
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6 Conclusion

The work documented in this thesis treats the task of planning motion for a robot that
drives around in a human environment. Applications of motion planning in human envi-
ronments are numerous in a future world, where intelligent mobile robots have a potential
to become an ubiquitous part of our everyday life.

There are many steps towards making a robot navigate safe and naturally around in
a human environment, while at the same time performing a desired task. The underlying
basis for this work, is a service robot driving around in a populated human environment.
The robot must identify people that needs help and drive safe and natural through the
environment. But at the same time, the motion algorithms must be usable in other robot
applications in human environments.

The work in this thesis deals with this problem in the following steps. First, a neces-
sary ability for a robot in a human environment is to be able to detect the pose of persons
in the area. Next task is deciphering the human motion in relation to determining their
interest in close interaction with the robot. This estimated interest in interaction is used to
adapt the motion of the robot around the humans. To demonstrate the general application
of this work, the system is expanded to a robot game, which have the purpose of moti-
vating elderly people to exercise. The motion strategy around a person is then adapted
to encompass environments with more people. This makes a robot capable of navigating
safe and naturally through a human environment like a pedestrian street, a hospital, or
an airport. The work with finding out how to navigate through a human crowd, inspired
work on a new method for minimizing the time complexity for a general RRT planning
algorithm, which ultimately improves the real time motion planning algorithm.

The contributions arising from the different tasks are documented in five papers,
which are appended after this conclusion. In summary, the major contributions from
the different papers can be listed as:

• An algorithm for inferring the pose of a person from laser range scanner measure-
ments, is developed. The algorithm finds the persons in the laser range scan and
feeds the continuous position updates through a measurement driven Kalman filter,
which provides position and velocity. To obtain the pose, the velocity estimate is
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post filtered in an autoregressive filter.

• An algorithm that estimates a person’s interest in interaction with the robot. The
interest in interaction is estimated using a Case-Based Reasoning system, which
learns from previous experiences to gain knowledge about how persons behave
when they are interested or not interested in close interaction.

• A human-aware motion planner, that adjust the robot motion according to the sit-
uation. The motion planner uses the perceived interest in interaction to generate a
potential field around the person. To move appropriately the robot uses the gradient
of the potential field to move towards the lowest point. As the perceived interest
level changes over time, the potential field, and thus the robot motion, adapts con-
tinuously to the changed situation.

• A successful integration of these three algorithms on a robotic system, which is
demonstrated to be able to find out if a person is interested in interaction, and move
according to the perceived interest.

• The general applicability of the proposed framework, is demonstrated by modifying
it to be a robot game, where a robot is playing with a person. The game framework
resembles a simple game of tag, where a person has to hand over an object to the
robot. The better the player is, the harder the robot makes the task. The game is
intended for maintaining and improving the physical health state of elderly people
by encouraging them to exercise.

• The developed potential field, for the human-aware motion planner, is modified to
support navigation in an area with many people. The trajectory planning problem
is then formulated as an optimisation problem, where the cost of traversing the
trajectory in the potential field should be minimised.

• The trajectory planning problem is solved by modifying an RRT algorithm. The
RRT algorithm is modified to enable the costs of traversing the potential field to
be minimized and to focus on keeping a desired pace instead of reaching a goal.
Further, a new control input sampling strategy that utilizes a second order robot
motion model, is presented. Last an MPC scheme is used to enable the RRT planner
to continuously plan a reachable and feasible trajectory in an on-line system.

• An algorithm that minimises the computational cost of the RRT, by minimising the
cost of searching for the nearest neighbour, algorithm is finally developed. It is
shown that the algorithm obtains faster and better trajectories compared to existing
approaches for fast nearest neighbour searches.
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6.1 Future Work and New Ideas

There are several ways the work in this thesis can be extended, and many challenges for
robot motion in human environments still exist. A few examples of potential further work
is presented here.

• A straightforward extension to the work with the robot game, is to actually exper-
iment with the game to study how it works in a real world nursery home. This
have already been done, but the results have not been published yet. However,
a video demonstrating the experiment was presented at the HRI2011 conference
[Hansen, 2011]. Two snapshots from this video are shown in Figure 6.1.

• Currently the game is a single player game, but in a real world nursery home, it
would be interesting with a multiplayer game, where more people could play at the
same time.

• The complete trajectory planning algorithm has been implemented as a Player/Stage
plugin. This should also make it straightforward to test this in a real world scenario.

• In the trajectory planning problem, the persons are treated as moving individually
around. But in a real world, people are also moving together or standing and talking
in groups. It would be interesting to try to estimate this human motion correlation
and use this information to improve the navigation algorithm.

• In the trajectory planning algorithm, vertices with a significant number of failed
expansions are most likely close to obstacles or people. Therefore a strategy to
prune those vertices can be implemented.

• The human-aware motion planner adapts the robot motion according to one specific
person, which might be interested in interaction. The trajectory planning algorithm
navigates around, treating all humans as if they were not interested in interaction.
But imagine a service robot that has to determine which person needs most help,
and hence which person to start interaction with. So an algorithm is needed to make
the robot figure out if it should switch motion strategy from navigation through the
environment to motion planning around a specific person. This means that the robot
should evaluate if the reward associated with focusing on one specific person, over
weighs the cost of doing it. Furthermore the robot may also affect the intention of
the person by the choices it makes. A possible solution scheme to deal with this
type of problem, might be a simple Partially Observable Markov Decision Process
(POMDP).
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(a) (b)

Figure 6.1: Two snapshots from the video [Hansen, 2011], where the robot game is played
on a nursery home.

6.1.1 POMPD’s for Determining Actions

This section briefly discusses the above mentioned new idea for a solution scheme, where
POMDP’s are used to determine if a robot should start approaching a person, or continue
moving around. In the POMDP context, the robot should evaluate if the reward associated
with focusing on one specific person, over weighs the cost of doing so. Furthermore the
robot may also affect the intention of the person by the choice it makes. A simple POMDP
model for a single person is illustrated in Figure 6.2. X1 and X2 are the two different

3

2

3
3

3

121

Figure 6.2: Illustration of a POMDP framework to find out how the robot should behave.
X1 and X2 are the states a person can be in (interested or not interested in interaction).
u1, u2, u3 are the actions the robot can take (start interaction, disregard person, observe
further). z is the estimated probability of the person being in the state.

states a person can be in. Either the person wants to interact with the robot (X1), or the
person is not interested (X2). z =PI is the estimate of the person interest in interaction,
which gives an indication to which state the person is in. So if for example z = 0.7, it can
be interpreted as there is 70% chance that the person is in state X1, and a 30% chance
that the person is in state X2. u1, u2, u3 are the different actions the robot can take. u1
is to start interacting with the robot, u2 is to disregard the person and u3 is to further
observe the person to improve the estimate of PI (z gets closer to 0 or 1). However, as
seen in Figure 6.2, there is a possibility that the person changes state if the robot continues
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to observe the person. For example the person might start to get interested if the robot
continues to hang around. This probability is denoted P (X1′|X2, u3). For each of the
actions there is an associated reward function that gives a payoff or a cost. Examples of
rewards and state transition probabilities can be:

r(u1|X1) = 100 r(u1|X2) = −50

r(u2|X1) = −80 r(u2|X2) = 50

r(u3|X1) = −5 r(u3|X2) = −5 (6.1)

P (X1′|X1, u3) = 1− P (X2′|X1, u3) = 0.05

P (X1′|X2, u3) = 1− P (X2′|X2, u3) = 0.1

If the person is interested and u1 is chosen, there is a positive reward. However, if the
person is interested and u2 is chosen it is not so good and it has a negative cost. Choos-
ing u3 also has a mild cost, because the robot might not find other persons, who needs
help. Using this framework, POMDP solution methods can be applied to find the optimal
strategy.
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modal approach to selective interaction in assistive domains. In IEEE Proceedings of
the International Workshop on Robot and Human Interactive Communication, pages
416–421, Nashville, TN.

[Ferguson et al., 2006] Ferguson, D., Kalra, N., and Stentz, A. (2006). Replanning with
rrts. In Proc. IEEE International Conference on Robotics and Automation ICRA 2006,
pages 1243–1248.

[Ferguson and Stentz, 2006] Ferguson, D. and Stentz, A. (2006). Anytime rrts. In Proc.
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5369–
5375.

[Ferguson and Stentz, 2007] Ferguson, D. and Stentz, A. (2007). Anytime, dynamic
planning in high-dimensional search spaces. In Proc. IEEE International Conference
on Robotics and Automation, pages 1310–1315.

[Fikes and Nilsson, 1971] Fikes, R. and Nilsson, N. (1971). STRIPS: A new approach
to the application of theorem proving to problem solving. Artificial intelligence, 2(3-
4):189–208.

[Fiorini and Shiller, 1998] Fiorini, P. and Shiller, Z. (1998). Motion planning in dy-
namic environments using velocity obstacles. The International Journal of Robotics
Research, 17(7):760.

[Fod et al., 2002] Fod, A., Howard, A., and Mataric, M. J. (2002). Laser-based people
tracking. In In Proc. of the IEEE International Conference on Robotics & Automation
(ICRA, pages 3024–3029.

[Foka, 2005] Foka, A. (2005). Predictive Autonomous Robot Navigation. PhD thesis,
Department of Computer Science, University of Crete, Greece.

[Foka and Trahanias, 2007] Foka, A. and Trahanias, P. (2007). Real-time hierarchical
pomdps for autonomous robot navigation. Robot. Auton. Syst., 55:561–571.

[Foka and Trahanias, 2010] Foka, A. and Trahanias, P. (2010). Probabilistic autonomous
robot navigation in dynamic environments with human motion prediction. Interna-
tional Journal of Social Robotics, 2(1):79–94.

[Fong et al., 2003] Fong, T. W., Nourbakhsh, I., and Dautenhahn, K. (2003). A survey of
socially interactive robots. Robotics and Autonomous Systems, 42:143–166.

[Fox et al., 1997] Fox, D., Burgard, W., and Thrun, S. (1997). The dynamic window
approach to collision avoidance. Robotics Automation Magazine, IEEE, 4(1):23 –33.

91



REFERENCES

[Gates, 2007] Gates, B. (2007). A robot in every home. Scientific American, 296(1):58–
65.

[Giusti and Marti, 2006] Giusti, L. and Marti, P. (2006). Interpretative dynamics in hu-
man robot interaction. In The 15th IEEE International Symposium on Robot and Hu-
man Interactive Communication, 2006. ROMAN 2006., pages 111–116.

[Glas et al., 2007] Glas, D., Miyashita, T., Ishiguro, H., and Hagita, N. (2007). Laser
tracking of human body motion using adaptive shape modeling. In Intelligent Robots
and Systems, 2007. IROS 2007. IEEE/RSJ International Conference on, pages 602–
608.

[Gockley et al., 2007] Gockley, R., Forlizzi, J., and Simmons, R. (2007). Natural person-
following behavior for social robots. In Proceeding of the ACM/IEEE international
conference on Human-robot interaction, HRI ’07, pages 17–24, New York, NY, USA.
ACM.

[Goodrich and Schultz, 2007] Goodrich, M. and Schultz, A. (2007). Human-robot inter-
action: A survey. Foundations and Trends in Human-Computer Interaction, 1(3):203–
275.

[Govea, 2007] Govea, D. A. V. (2007). Incremental Learning for Motion Prediction of
Pedestrians and Vehicles. PhD thesis, Institut National Polytechnique de Grenoble.

[Gulati and Kuipers, 2008] Gulati, S. and Kuipers, B. (2008). High performance control
for graceful motion of an intelligent wheelchair. In Robotics and Automation, 2008.
ICRA 2008. IEEE International Conference on, pages 3932 –3938.

[Hall, 1966] Hall, E. (1966). The Hidden Dimension. Doubleday.

[Hall, 1963] Hall, E. T. (1963). A system for the notation of proxemic behavior. Ameri-
can anthropologist, 65(5):1003–1026.

[Hansen, 2011] Hansen, S. T. (2011). Robot games for elderly. In Proceedings of the 6th
international conference on Human-robot interaction, HRI ’11, pages 413–414, New
York, NY, USA. ACM.

[Hansen et al., 2009a] Hansen, S. T., Svenstrup, M., Andersen, H. J., and Bak, T.
(2009a). Adaptive human aware navigation based on motion pattern analysis. In
Robot and Human Interactive Communication, 2009. RO-MAN 2009. The 18th IEEE
International Symposium on, pages –, Toyama, Japan.

[Hansen et al., 2009b] Hansen, S. T., Svenstrup, M., Andersen, H. J., Bak, T., and Jensen,
O. B. (2009b). The santabot experiment: a pilot study of human-robot interaction.

92



REFERENCES

Video for the 4th ACM/IEEE international conference on Human robot interaction
(HRI) video session.

[Hansen et al., 2009c] Hansen, S. T., Svenstrup, M., Andersen, H. J., Bak, T., and Jensen,
O. B. (2009c). The santabot experiment: a pilot study of human-robot interaction. In
HRI ’09: Proceedings of the 4th ACM/IEEE international conference on Human robot
interaction, pages 211–212, New York, NY, USA. ACM.

[Hansen et al., 2010] Hansen, S. T., Svenstrup, M., and Dalgaard, L. (2010). An adap-
tive robot game. In ISR/ROBOTIK 2010 (Proceedings of the joint conference of ISR
2010 (41st International Symposium on Robotics) and ROBOTIK 2010 (6th German
Conference on Robotics)), pages 76–83. VDE Verlag.

[Hart et al., 1968] Hart, P., Nilsson, N., and Raphael, B. (1968). A formal basis for the
heuristic determination of minimum cost paths. Systems Science and Cybernetics,
IEEE Transactions on, 4(2):100 –107.

[Hoeller et al., 2007] Hoeller, F., Schulz, D., Moors, M., and Schneider, F. (2007). Ac-
companying persons with a mobile robot using motion prediction and probabilistic
roadmaps. In Intelligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ Interna-
tional Conference on, pages 1260 –1265.

[Jenkins et al., 2007] Jenkins, O. C., Serrano, G. G., and Loper, M. M. (2007). Recogniz-
ing Human Pose and Actions for Interactive Robots, chapter 6, pages 119–138. I-Tech
Education and Publishing.

[Jun et al., 1999] Jun, M., Roumeliotis, S., and Sukhatme, G. (1999). State estimation of
an autonomous helicopter using kalman filtering. In Intelligent Robots and Systems,
1999. IROS ’99. Proceedings. 1999 IEEE/RSJ International Conference on, volume 3,
pages 1346–1353vol.3.

[Jurisica and Glasgow, 1995] Jurisica, I. and Glasgow, J. (1995). Applying case-based
reasoning to control in robotics. In 3rd Robotics and Knowledge-Based Systems Work-
shop, St. Hubert Quebec.

[Kanda et al., 2007] Kanda, T., Sato, R., Saiwaki, N., and Ishiguro, H. (2007). A
two-month field trial in an elementary school for long-term human-robot interaction.
Robotics, IEEE Transactions on [see also Robotics and Automation, IEEE Transac-
tions on], 23(5):962–971.

[Karaman and Frazzoli, 2010] Karaman, S. and Frazzoli, E. (2010). Incremental
sampling-based algorithms for optimal motion planning. In Proceedings of Robotics:
Science and Systems, Zaragoza, Spain.

93



REFERENCES

[Kavraki et al., 1996] Kavraki, L., Svestka, P., Latombe, J.-C., and Overmars, M. (1996).
Probabilistic roadmaps for path planning in high-dimensional configuration spaces.
IEEE Transactions on Robotics and Automation, 12(4):566 –580.

[Kelley et al., 2008] Kelley, R., Tavakkoli, A., King, C., Nicolescu, M., Nicolescu, M.,
and Bebis, G. (2008). Understanding human intentions via hidden markov models in
autonomous mobile robots. In HRI ’08: Proceedings of the 3rd ACM/IEEE interna-
tional conference on Human robot interaction, pages 367–374, New York, NY, USA.
ACM.

[Khatib, 1986] Khatib, O. (1986). Real-time obstacle avoidance for manipulators and
mobile robots. The international journal of robotics research, 5(1):90.

[Kirby et al., 2009] Kirby, R., Simmons, R., and Forlizzi, J. (2009). Companion: A
constraint-optimizing method for person-acceptable navigation. In Robot and Human
Interactive Communication, 2009. RO-MAN 2009. The 18th IEEE International Sym-
posium on, pages 607 –612.

[Kleinehagenbrock et al., 2002] Kleinehagenbrock, M., Lang, S., Fritsch, J., Lomker, F.,
Fink, G., and Sagerer, G. (2002). Person tracking with a mobile robot based on multi-
modal anchoring. Proceedings. 11th IEEE International Workshop on Robot and Hu-
man Interactive Communication (ROMAN), 2002., 1:423–429.

[Kluge et al., 2001] Kluge, B., Kohler, C., and Prassler, E. (2001). Fast and robust track-
ing of multiple moving objects with a laser range finder. In Robotics and Automation,
2001. Proceedings 2001 ICRA. IEEE International Conference on, volume 2, pages
1683 – 1688 vol.2.

[Koay et al., 2007] Koay, K. L., Sisbot, E. A., Syrdal, D. A., Walters, M. L., Dautenhahn,
K., and Alami, R. (2007). Exploratory study of a robot approaching a person in the
context of handling over an object. In Association for the Advancement of Artificial
Intelligence Spring Symposia, AAAI, Palo Alto, CA, USA.

[Koay et al., 2005] Koay, K. L., Walters, M., and Dautenhahn, K. (2005). Methodolog-
ical issues using a comfort level device in human-robot interactions. In IEEE Inter-
national Workshop on Robot and Human Interactive Communication, 2005. ROMAN
2005., pages 359–364.

[Kolodner, 1993] Kolodner, J. (1993). Case-based reasoning. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA.

[Kondaxakis et al., 2009] Kondaxakis, P., Baltzakis, H., and Trahanias, P. (2009). Learn-
ing moving objects in a multi-target tracking scenario for mobile robots that use laser

94



REFERENCES

range measurements. In Proceedings of the 2009 IEEE/RSJ international conference
on Intelligent robots and systems, IROS’09, pages 1667–1672, Piscataway, NJ, USA.
IEEE Press.

[Kracht and Nielsen, 2007] Kracht, S. and Nielsen, C. (2007). Robots in everyday human
environments. Master’s thesis, Aalborg University.

[Kulic and Croft, 2007] Kulic, D. and Croft, E. (2007). Affective state estimation for
human-robot interaction. Robotics, IEEE Transactions on [see also Robotics and Au-
tomation, IEEE Transactions on], 23(5):991–1000.

[Lam et al., 2010] Lam, C.-P., Chou, C.-T., Chang, C.-F., and Fu, L.-C. (2010). Human-
centered robot navigation – toward a harmoniously coexisting multi-human and multi-
robot environment. In Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ Inter-
national Conference on, pages 1813 –1818.

[Lam et al., 2011] Lam, C.-P., Chou, C.-T., Chiang, K.-H., and Fu, L.-C. (2011). Human-
centered robot navigation - towards a harmoniously human – robot coexisting environ-
ment. Robotics, IEEE Transactions on, 27(1):99 –112.

[LaValle, 2006] LaValle, S. (2006). Planning algorithms. Cambridge Univ Pr.

[LaValle and Kuffner Jr, 2001] LaValle, S. and Kuffner Jr, J. (2001). Randomized kino-
dynamic planning. The International Journal of Robotics Research, 20(5):378.

[Likhachev and Arkin, 2001] Likhachev, M. and Arkin, R. (2001). Spatio-temporal case-
based reasoning for behavioral selection. In Proc. IEEE International Conference on
Robotics and Automation, ICRA, volume 2, pages 1627–1634.

[Lindemann and LaValle, 2005] Lindemann, S. R. and LaValle, S. M. (2005). Current is-
sues in sampling-based motion planning. In Dario, P. and Chatila, R., editors, Robotics
Research, volume 15 of Springer Tracts in Advanced Robotics, pages 36–54. Springer
Berlin / Heidelberg.

[Lu and Milios, 1994] Lu, F. and Milios, E. (1994). Robot pose estimation in unknown
environments by matching 2d range scans. In Computer Vision and Pattern Recog-
nition, 1994. Proceedings CVPR ’94., 1994 IEEE Computer Society Conference on,
pages 935 –938.

[Manning and Schütze, 1999] Manning, C. D. and Schütze, H. (1999). Foundations of
statistical natural language processing. MIT Press, Cambridge, MA, USA.

[Martinez-Garcia et al., 2005] Martinez-Garcia, E., Akihisa, O., and Yuta, S. (2005).
Crowding and guiding groups of humans by teams of mobile robots. In Advanced
Robotics and its Social Impacts, 2005. IEEE Workshop on, pages 91 – 96.

95



REFERENCES

[Michalowski et al., 2007] Michalowski, M. P., Sabanovic, S., DiSalvo, C. F., Font,
D. B., Hiatt, L. M., Melchior, N., and Simmons, R. (2007). Socially distributed per-
ception: Grace plays social tag at aaai 2005. Autonomous Robots, 22(4):385–397.

[Michalowski and Simmons, 2006] Michalowski, M. P. and Simmons, R. (2006). Mul-
timodal person tracking and attention classification. In Proceedings of the 1st Annual
Conference on Human-Robot Interaction (HRI 2006), pages 347–348. ACM.

[Minguez and Montano, 2004] Minguez, J. and Montano, L. (2004). Nearness diagram
(nd) navigation: collision avoidance in troublesome scenarios. Robotics and Automa-
tion, IEEE Transactions on, 20(1):45 – 59.

[Montemerlo et al., 2002] Montemerlo, M., Thrun, S., and Whittaker, W. (2002). Con-
ditional particle filters for simultaneous mobile robot localization and people-tracking.
In Robotics and Automation, 2002. Proceedings. ICRA ’02. IEEE International Con-
ference on, volume 1, pages 695 – 701 vol.1.

[Müller et al., 2008] Müller, J., Stachniss, C., Arras, K., and Burgard, W. (2008). So-
cially inspired motion planning for mobile robots in populated environments. In In
Proceedings of the International Conference on Cognitive Systems (CogSy).

[Mumm and Mutlu, 2011] Mumm, J. and Mutlu, B. (2011). Human-robot proxemics:
physical and psychological distancing in human-robot interaction. In Proceedings of
the 6th international conference on Human-robot interaction, HRI ’11, pages 331–
338, New York, NY, USA. ACM.

[Munoz-Salinas et al., 2005] Munoz-Salinas, R., Aguirre, E., Garcia-Silvente, M., and
Gonzalez, A. (2005). People detection and tracking through stereo vision for human-
robot interaction. MICAI 2005: Advances in Artificial Intelligence, 3789/2005:337–
346.

[Mutlu and Forlizzi, 2008] Mutlu, B. and Forlizzi, J. (2008). Robots in organizations:
the role of workflow, social, and environmental factors in human-robot interaction. In
HRI ’08: Proceedings of the 3rd ACM/IEEE international conference on Human robot
interaction, pages 287–294, New York, NY, USA. ACM.

[Nabe et al., 2006] Nabe, S., Kanda, T., Hiraki, K., Ishiguro, H., Kogure, K., and Hagita,
N. (2006). Analysis of human behavior to a communication robot in an open field.
In HRI ’06: Proceeding of the 1st ACM SIGCHI/SIGART conference on Human-robot
interaction, pages 234–241, New York, NY, USA. ACM.

[Nakauchi and Simmons, 2000] Nakauchi, Y. and Simmons, R. (2000). A social robot
that stands in line. In Intelligent Robots and Systems, 2000. (IROS 2000). Proceedings.
2000 IEEE/RSJ International Conference on, volume 1, pages 357 –364 vol.1.

96



REFERENCES

[Nowak et al., 2010] Nowak, W., Zakharov, A., Blumenthal, S., and Prassler, E. (2010).
Benchmarks for mobile manipulation and robust obstacle avoidance and navigation.
Technical report, GPS Gesellschaft für Produktionssysteme GmbH.

[Pacchierotti et al., 2006a] Pacchierotti, E., Christensen, H., and Jensfelt, P. (2006a).
Evaluation of passing distance for social robots. In Robot and Human Interactive
Communication, 2006. ROMAN 2006. The 15th IEEE International Symposium on,
pages 315–320.

[Pacchierotti et al., 2006b] Pacchierotti, E., Christensen, H., and Jensfelt, P. (2006b).
Evaluation of passing distance for social robots. In Robot and Human Interactive
Communication, 2006. ROMAN 2006. The 15th IEEE International Symposium on,
pages 315 –320.

[Pacchierotti et al., 2005] Pacchierotti, E., Christensen, H. I., and Jensfelt, P. (2005). Em-
bodied social interaction for service robots in hallway environments. In Proc. of the
International Conference on Field and Service Robotics (FSR’05).

[Pateraki et al., 2009] Pateraki, M., Baltzakis, H., Kondaxakis, P., and Trahanias, P.
(2009). Tracking of facial features to support human-robot interaction. In Robotics
and Automation, 2009. ICRA ’09. IEEE International Conference on, pages 3755 –
3760.

[Pearl, 1984] Pearl, J. (1984). Heuristics: intelligent search strategies for computer prob-
lem solving. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

[Prado, 2007] Prado, M. (2007). Optimal velocity planning of wheeled mobile robots
on specific paths in static and dynamic environments. In Kolski, S., editor, Mobile
Robots: Perception & Navigation, pages 357–382. INTECH.

[Prassler et al., 2002] Prassler, E., Bank, D., and Kluge, B. (2002). Motion coordina-
tion between a human and a mobile robot. In IEEE/RSJ International Conference on
Intelligent Robots and System, 2002., volume 2, pages 1228–1233.

[Pratichizzo et al., 2010] Pratichizzo, D., Malvezzi, M., and Bicchi, A. (2010). On mo-
tion and force controllability of grasping hands with postural synergies. In Proceedings
of Robotics: Science and Systems, Zaragoza, Spain.

[Ram et al., 1997] Ram, A., Arkin, R. C., Moorman, K., and Clark, R. J. (1997). Case-
based reactive navigation: A case-based method for on-line selection and adaptation
of reactive control parameters in autonomous robotic systems. IEEE Transactions on
Systems, Man, and Cybernetics, 27:376–394.

97



REFERENCES

[Rodgers et al., 2006] Rodgers, J., Anguelov, D., Pang, H.-C., and Koller, D. (2006).
Object pose detection in range scan data. Computer Vision and Pattern Recognition,
2006 IEEE Computer Society Conference on, 2:2445–2452.

[Sasaki and Hashimoto, 2006] Sasaki, T. and Hashimoto, H. (2006). Human observation
based mobile robot navigation in intelligent space. In Intelligent Robots and Systems,
2006 IEEE/RSJ International Conference on, pages 1044 –1049.

[Satake et al., 2009] Satake, S., Kanda, T., Glas, D. F., Imai, M., Ishiguro, H., and Hagita,
N. (2009). How to approach humans?: strategies for social robots to initiate interac-
tion. In Proceedings of the 4th ACM/IEEE international conference on Human robot
interaction, HRI ’09, pages 109–116, New York, NY, USA. ACM.

[Schmidt-Rohr et al., 2008] Schmidt-Rohr, S. R., Knoop, S., Lösch, M., and Dillmann,
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1 Introduction

Abstract

This paper introduces a new method to determine a person’s pose based on laser
range measurements. Such estimates are typically a prerequisite for any human-aware
robot navigation, which is the basis for effective and time-extended interaction be-
tween a mobile robot and a human. The robot uses observed information from a laser
range finder to detect persons and their position relative to the robot. This informa-
tion together with the motion of the robot itself is fed through a Kalman filter, which
utilizes a model of the human kinematic movement to produce an estimate of the
person’s pose. The resulting pose estimates are used to identify humans who wish
to be approached and interacted with. The behaviour of the robot is based on adap-
tive potential functions adjusted accordingly such that the persons social spaces are
respected. The method is tested in experiments that demonstrate the potential of the
combined pose estimation and adaptive behaviour approach.

1 Introduction

Mobile robots are moving from factory floors out into less controlled human environ-
ments such as private homes or institutions. The success of this shift relies on the robots
ability to be responsive to and interact with people in a natural and intuitive manner and
accordingly human-robot interaction is a novel and growing research field [1, 2].

To allow close, more effective and time-extended relationships it is first necessary to
determine the persons willingness to engage in interaction, followed by a coordination in
time and space that respects the persons interest and privacy. Several authors [3, 4, 5] have
investigated the willingness of people to engage in interaction with robots that exhibit
different expressions or follow different spatial behaviour schemes. In [6] models are
reviewed that describe social engagement based the spatial relationships between a robot
and a person with emphasis on the movement of the actors. Human-aware detection,
tracking and navigation were discussed in [7, 8].

As a step in the direction of human aware robot behaviour, we present a novel method
for inferring a human’s pose from 2D laser range measurements. Here we define pose
as the position, and orientation of the body. Compared to vision based pose estimation,
such as [9], or 3D range scans [10], using 2D laser range scanners provide extra long
range and lower computational complexity. The extra range enables the robot to detect
the movement of persons moving at a higher speed. The approach takes advantage of the
inherent mobility and typical sensors of a mobile robotic platform and does not require
any determination of the persons facial expressions or other gestures, and hence the per-
son does not have to be facing the robot. The method relies on an algorithm for detecting
legs of persons. The algorithm has been tested in a public transit space [11].
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While the focus of this paper is on the pose estimation, the use of the estimates in
determining persons willingness to engage in interaction is analyzed from the recorded
kinematic state of the person. By looking at knowledge from previous encounters, the
robot behaviour is adjusted as described in [12]. When the persons willingness has been
determined it is used as a basis for human-aware navigation using adaptive potential func-
tions centered around the person, inspired by [7]. The navigation is adapted such that it
respects the persons social spaces as discussed in [5].

The pose estimation is validated through a number of experiments. In addition, exper-
iments indicate the effectiveness of the combined algorithm for human-aware navigation.

2 Materials and Methods

The basis for any interaction is the ability of the robot to detect if a person is present,
and if this is the case to estimate the kinematic state of that person. The algorithm for
detecting legs of persons and converting these to person position estimates is described
in [13], and [14] been implemented and adapted to keep track of individual persons. The
implementation has been proved robust for person speeds up to 2ms in a real world public
space setting described in [11]. The position estimates from this algorithm form the basis
for deriving a pose estimate of a person.

2.1 Person Pose Estimation

The setup, where a person is moving around, while the robot is following, can be seen in
Fig. A.1. The basic idea for estimating the pose of a person (θ), is to take the position
estimates from the laser range finder algorithm and combine them with robot odome-
try information to obtain a pose estimate. Because we have both position and velocity
measurements to estimate a pose, it can not be calculated directly, and a Kalman filter is
therefore used to filter the measurements. The filter produces a velocity estimate of the
person relative to the robot. After this a post filter is added to obtain the person pose from
the velocity estimates.

A standard discrete state space model formulation for the system is used:

x(k + 1) = Φx(k) + Γu(k) (A.1)

y(k) = Hx(k) , (A.2)
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.

x

y

vpers

ppers

Figure A.1: Person position and pose. The state variables ppers and vpers hold the po-
sition and velocity of the person in the robot frame. θ is the pose of the person. The
variable θ is approximately the angle between φ (the angle of the distance vector from the
robot to the person) and vpers (the angle of the person’s velocity vector), but not entirely
the same because the body is not necessarily oriented in the moving direction. ψ̇ is the
rotational velocity of the robot.

where the state is comprised of the person position and velocity and the robot velocity

x =



px,pers

py,pers

vx,pers

vy,pers

vx,rob

vy,rob


. (A.3)

Here p is positions and v is velocities, all given in the robot coordinate frame. The position
of the person relative to the robot depends both on the person velocity and the robot
velocity. In this stage we omit the rotation of the robot:

px,pers(k + 1) = px,pers(k) + T (vx,pers(k)− vx,rob(k)) (A.4)

py,pers(k + 1) = py,pers(k) + T (vy,pers(k)− vy,rob(k)) , (A.5)

where T is the sampling time. This yields the following state transition matrix:1

1There were too many T’s in the original paper. The T’s at positions (3,5) and (4,6) have been removed to
make it correct here.
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Φ =



1 0 T 0 −T 0

0 1 0 T 0 −T
0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


. (A.6)

The measurements used are the person position, and the odometry velocity data from
the robot.

H =


1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

 . (A.7)

To overcome the nonlinear effect the robot rotation has on the state, a measurement
driven Kalman filter, which is used in [15, 16], is applied. The idea is to use sensor
readings to drive the process model as an input - in this case odometry data from the
robot. Using polar coordinates, the position vector of the person relative to the robot can
be written:

ppers =

[
d cos(φ(t))

d sin(φ(t))

]
(A.8)

where d is the distance to the person, and φ(t) is the angle to the person. The change, i.e.
the derivative becomes

ṗpers =

[
-d sin(φ(t))

d cos(φ(t))

]
φ̇(t) , (A.9)

where φ̇(t) has the opposite sign of the rotation of the robot itself ψ̇, so the derivative
becomes

ṗpers =

[
-d sin(φ(t))

d cos(φ(t))

]
(-ψ̇) =

[
py,pers

-px,pers

]
ψ̇ . (A.10)

Using an Euler integration, we can substitute Γu in the model by

Γu =



py,pers(k)

-px,pers(k)

0

0

0

0


T

ˆ̇
ψ , (A.11)

where ˆ̇
ψ is the estimated robot rotation from the odometry data.
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The velocity vector is not necessarily equal to the pose of the person. Consider a situ-
ation where the person is standing almost still in front of the robot, but is moving slightly
backwards. This means that the velocity vector suddenly is in the opposite direction, but
the actual pose is the same. Therefore the velocity estimate is filtered through a first order
autoregressive filter. The filter is made with adaptive coefficients relative to the velocity.
So when the person is moving fast, we rely very much on the direction of the velocity, but
if the person is moving slow, we do not change the pose estimate very much and rely on
the previous estimate. The autoregressive filter is implemented as

θ(k + 1) = βθ(k) + (1− β) arctan

(
vy,pers
vx,pers

)
, (A.12)

where β is chosen relative to the absolute velocity v as:

β =


0.9 if v < 0.1m/s

1.04− 1.4v if 0.1m/s ≤ v ≤ 0.6m/s

0.2 else
. (A.13)

2.2 Evaluating a Person’s Willingness to Interact

Although the robot is not perceived as a human being when encountering people, the
hypothesis is that human behavioural reactions are the same as in human to human en-
counters. If a person is interested, he or she will undoubtedly approach the robot in a
straightforward manner. On the contrary, if in no interest the person will carefully avoid
the path of the robot.

However, there may be many trajectories where the interest of the person will be
difficult to determine, i.e. many valid trajectories are possible and trajectories variate for
each robot-person encounter. In previous work [12] an adaptive person evaluator based
on a Case Based Reasoning (CBR) system has been used. The CBR system is basically a
database system which holds a number cases describing each encounter. The specification
of a case is a question of determining a representative set of features connected to the
event of a human robot encounter which can serve as input. In this case we use the
features velocity, position and pose illustrated in Fig. A.1. The output is the Person
Interest indicator, PI∈ [0, 1] which store the probability or indication of the detected
person’s interest to interact. The value 0 indicates no interest whereas 1 indicate interest.

The starting point of the CBR system is an empty database holding no a priori corre-
spondence between trajectories and interest. When interacting, interest is confirmed by
handing over an object to the robot. Lack of interest is triggered if no interaction has
occurred after a fixed period of time. By adding cases, the system gradually learns how
to decode trajectories into a interest level.
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2.3 Human-aware Navigation

The robot behaviour is inspired by the spatial relation between humans (proxemics) as
described in [17]. Hall divides the zone around a person into to four categories, 1) the
public zone > 3.6m, 2) the social zone > 1.2m, the personal zone > 0.45m, and the
intimate zone < 0.45m. Social spaces between robots and humans were studied in [18]
supporting the use of Hall’s proxemics distances and the human robot interaction is there-
fore designed to be able to experiment with different distances.

For modeling the robots navigation system a person centered potential field is intro-
duced. The potential field has high values where the robot is not allowed to go, and low
values where the robot should be. All navigation is done relative to the person, and hence
no global positioning is needed in the proposed model. The method is described in [12],
but is slightly changed in this implementation. The potential field is designed by the
weighted sum of four Gaussian distributions of which one is negated. The covariances of
the distributions are used to adapt the potential field according to PI.

The four Gaussian distributions are illustrated in Fig. A.2 and has the following func-
tions:

Attractor, this is a negated distribution used to attract the robot to the person. Its
variances σ2

x and σ2
y are both set to 7.5 and its covariance σxy is set to 0.

Rear, this distribution ensures that the robot does not approach a person from be-
hind. Its variances σ2

x and σ2
y are respectively set to 2 and 1 and its covariance σxy

to 0. It is only applied when the robot is behind the person.

Parallel, this distribution is initially placed with its major axis parallel to the xp-
axis in the persons coordinate frame. Its variances and covariance are adapted
according to the person interested in interaction.

Perpendicular, this distribution is initially placed with its major axis perpendicular
to the parallel distribution. Its variances and covariance are adapted according to
the person interested in interaction. This distribution as well as the parallel is only
applied when the robot is in front of the person.

The attractor and rear distribution are both kept constant for all instances of the person
interest indication PI. But the parallel and perpendicular distributions are interactively
scaled and rotated according to the person’s changing PI during interaction. This means
that the robot continuously adapt its behaviour to the current PI value. The potential func-
tions are scaled and adjusted according to Hall’s proximity distances, and the preferred
robot to person encounter reported in [5].

The resulting potential field contour can be seen in Fig. A.3 for three specific values
of PI. In the extreme case with PI = 0 the potential field will like look Fig. A.3a where
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Figure A.2: Illustration of the four Gaussian distributions used for the potential function
around the person. The rear area to the left of the y axis. The frontal area (to the right of
y axis) which is divided in two, one in the interval from [−45◦ : 45◦] and the other in the
area outside this interval. The parallel and perpendicular distributions are rotated by the
angle α.

the robot will move to the dark blue area, i.e. the lowest potential app. 2 meters in front
of the person. The other end of the scale for PI = 1 is illustrated in Fig. A.3c, where
the person is interested in interaction and as result the potential function is adapted so the
robot is allowed to enter the space right in front of him or her. In between, Fig. A.3b, is
the default configuration of PI = 0.5, in which the robot is forced to encounter the person
in approximately 45◦, while keeping just outside the personal zone.

Instead of just moving towards the lowest point at a fixed speed, then the gradient of
the potential field is derived. This allows the robot to move fast when the potential field is
steep, for example if the robot has to move fast away from a person if getting in the way.
On the other hand, the robot has slow comfortable movements when it is close to where
it is supposed to be, i.e. near a minimum of the field.

3 Experimental Setup

In order to validate all parts of the system, the above algorithms have been tested in three
steps by integrating one feature at the time. First the basic person detection and pose
estimation algorithm is tested. Then this is combined with the human aware navigation.
Finally, also the person interest estimation has been included. Each step has been vali-
dated in real world experiment. All experiments have been done with only one human
in the area, since the purpose is to demonstrate the proof of concept of the methods.
However, the methods should be valid with more persons around the robot.
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Figure A.3: Shape of the potential function for (a) a person not interested in interaction,
(b) a person considered for interaction, and (c) a person interested in interaction. The
scale for the potential function is plotted to the left and the value of the person interested
indicator PI is denoted under each plot.

3.1 Test Equipment and Implementation

The basis for evaluation of the proposed methods was a FESTO Robotino platform on
which a head, capable of showing simple facial expressions, is mounted (see Fig. A.4).
On the platform, the robot control software framework Player/Stage [19] has been im-
plemented, which also enables simulation before real world tests. The robot is equipped
with a URG-04LX line scan laser range finder and a contact to press if you are interested
in interaction. The case database has been implemented using MySQL.

A 3D motion tracking system from Vicon (typically used for indoor UAV applica-
tions) has been used to validate the functionality of the algorithm through laboratory
experiments.
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Laser

Contact

Figure A.4: The FESTO Robotino robot used for the experiments.

3.2 Pose Estimation

The pose estimation algorithm was validated through laboratory experiments. The pose
algorithm was tested isolated from the system, i.e. all navigation and learning algorithms
were disabled. During the experiment, the robot was placed on a fixed position in the
lab, while a test person entered the robot field of view and wandered around following
different patterns at velocities around 0.5− 1.5ms . While the robot estimated the pose of
the test person, the stationary tracking system was concurrently reading the movements.

3.3 Human Aware Navigation

In this step, the human aware navigation algorithm was added to the pose estimation
system and tested in the robot laboratory. In order to isolate the navigation algorithm,
the level of PI was set to a fixed value through each experiment and was completed for
PI = {0, 0.5, 1}. As in the former experiment, the stationary tracking system was set to
read the position of the test person while he would approach the robot following different
patterns. Since the navigation algorithm was enabled in this experiment, the movement
of the robot was also tracked.

3.4 Integration Test

In this step, the complete system was tested, i.e. the CBR system was added. The test
took place in a foyer at the University campus with an open area of 7 times 10 meters.
This allowed for easily repeated tests with no interference from other objects than the test
person. The contact on the robot was used to get feedback from the test persons whether
they were interested in interaction or not. The test persons were asked to approach or
pass by the robot in different ways. In approximately half the cases, the test person would
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end the trajectory by pressing the switch indicating interest in interaction. The test started
with an empty database, so that the robot had no experience to start from. During the
experiments the PI values, the position, pose estimates were logged in the database.

4 Results and Discussion

4.1 Pose Estimation
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Figure A.5: While the robot was standing still, three types of movement was performed.
The black dots indicate the person positions, which the robot has estimated. The correct
trajectory measured by the Vicon tracking system can be seen as the underlying dots in
Fig. (a) and the left trajectory in Fig. (b). In the other trajectories the correct has not been
plotted to avoid cluttering the graph. The time evolution is shown as colours.a

aIn the original paper, some unfortunate editing had deleted some of the caption. This has been changed
here.

Fig. A.5 shows the different trajectories performed. The black dots are the position
estimates from the robot, and the lines extending from the dots are the corresponding pose
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Figure A.6: This figure shows the motion of the robot when the person interest indication
(PI) is fixed at three different levels. The colour bar shows the time evolution. It can be
seen that the robot keeps at a comfortable distance when the PI is low, and approaches
the person from the front when PI = 1.

estimates. Some underlying coloured dots can be seen in Fig. A.5a and in the left line in
Fig. A.5b. These are the correct position estimates as measured by the motion tracking
system. The correct underlying positions are omitted in the other plots, since they clutter
the image unnecessarily. In Fig. A.5a, a u-turn movement is performed where the person
stands still for a few seconds close to the robot in the lower left corner. This demonstrates
that even though the person stands still (and might even move slightly backwards), the
pose estimate keeps being correct towards the robot. When the robot recognizes a per-
son, it assumes that the pose is close to 0, which explains the blue lines always pointing
towards the robot in the beginning of a trajectory. However, as soon as the person start
to walk, the pose estimate turns and follows the motion. Note that it is not the Kalman
filter which estimates the velocity wrong, when the lines do not follow the trajectory ex-
actly. But it is the autoregressive filter that does not allow the pose estimate to change too
quickly. The figures show that the pose estimator works satisfactory and can be used to
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estimate pose in real world. Although this laboratory test confirm that the pose algorithm
works as expected, the test is limited to only a few test runs and the algorithm is not really
fine tuned yet.

4.2 Human Aware Navigation

In this experiment, the robot is set to move according to prespecified person indication
(PI) values. The person moves from the bottom left corner (in Fig. A.6a-c) towards the
robot. The elapsed time is shown by the trajectory colour changing from blue to red.
When PI = 0, it can be seen that the robot tries to get away from the person. When
it reaches a comfortable distance, it settles around that position relative to the person.
When the person is partially interested, the robot avoids the person and tries to stay at
an angle of approximately 45◦ degrees. Finally, when the person is interested, the robot
approaches the person from the front until the border of the intimate zone is reached at
around 45cm. The major colour change at the person trajectory indicates that the person
has been standing still. As soon as the person starts to move away, the robot finds out that
it is behind and too close to the person, so it starts to move away.

The shaky sinusoidal movement of the person trajectory is due to the tracking of the
person. It is caused by the fact that the central part of the body moves like this when a
human walks. The experiment proves that the potential field enables the robot to keep at
the correct position relative to the person, and that the pose estimator also works when
the robot is moving.

4.3 Integration Test

The output of the integration test was a trained CBR database. The database can be seen
in Fig. A.7. The dots show recorded test person positions, which was rounded to a grid
size of 40 × 40cm. Note that the positions are not global coordinates, but relative to the
robot while it is moving. The extending lines, show the direction of the pose estimates,
and the colour the corresponding PI value, where red indicates an interested person, and
blue indicates a person which is not interested. The database shows that that persons
right in front of the robot with a pose close to 0◦ is typically interested in interaction,
whereas a pose pointing away from the robot indicates that the person is not interested.
The results reflect the fact that the potential field makes the robot move so only persons
who are estimated as interested are allowed to come close to the robot.

Clearly, the experimental work is still in its initial stage and is not exhaustive. How-
ever, the tests demonstrates the potential of the methods and of combining the pose esti-
mation algorithm with the proposed method for human aware navigation.
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Figure A.7: The figure shows the values stored in the CBR system after completion of 20
test runs. Each dot represents a position of the test person in the robot coordinate frame.
The direction of the pose estimate of the test person is shown by the extending line, while
the level of interest (PI) is indicated by the colour range of the line.

5 Conclusions

This paper describes a new method for estimating the pose of a person in an interaction
scenario with a mobile robot. The algorithm only relies on laser range finder data, which
makes it applicable for moving persons at larger distances than normal vision techniques
allow. A Kalman filter is used to filter the measured positions of persons within view and
outputs a pose estimate.

The position and pose estimates are used in a Case Based Reasoning system to esti-
mate the person’s interest in interaction, and the spatial behaviour strategies of the robot
are adapted accordingly using adaptive potential functions. The human robot interaction
methodology described in this paper is supported by laboratory and real world tests which
demonstrate the applicability of the pose estimator and the spatial behaviour of the robot.

The real world tests demonstrate the potential of the integrated system, which can be
used for robots moving in human environments. Generally, the conducted experiments
on the robots cognitive functionality show that the method of CBR implemented can
advantageously be applied to a robot, which needs to evaluate the behaviour of a person.

An interesting aspect for future work would be to combine this pose estimation tech-
nique with a vision based technique. This could give a more accurate pose estimate for
close interaction.
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menting a human-aware robot system,” in IEEE International Symposium on Robot
and Human Interactive Communication 2006 (RO-MAN 06), Hatfield, United King-
dom, 2006.

[8] O. C. Jenkins, G. G. Serrano, and M. M. Loper, Recognizing Human Pose and Ac-
tions for Interactive Robots. I-Tech Education and Publishing, 2007, ch. 6, pp.
119–138.

[9] F. Dornaika and B. Raducanu, “Detecting and tracking of 3d face pose for human-
robot interaction,” in Proceedings IEEE International Conference on Robotics and
Automation, 2008, pp. 1716–1721.

[10] J. Rodgers, D. Anguelov, H.-C. Pang, and D. Koller, “Object pose detection in range
scan data,” Computer Vision and Pattern Recognition, 2006 IEEE Computer Society
Conference on, vol. 2, pp. 2445–2452, 2006.

120

citeseer.ist.psu.edu/article/bruce02role.html


5 Conclusions

[11] M. Svenstrup, T. Bak, O. Maler, H. J. Andersen, and O. B. Jensen, “Pilot study
of person robot interaction in a public transit space,” in Proceedings of the Inter-
national Conference on Research and Education in Robotics - EUROBOT 2008.
Heidelberg, Germany: Springer-Verlag GmbH, 2008, pp. 120–131.

[12] H. J. Andersen, T. Bak, and M. Svenstrup, “Adaptive robot to person encounter : by
motion patterns,” in Proceedings of the International Conference on Research and
Education in Robotics. Springer-Verlag GmbH, 2008, pp. 13–23.

[13] D. Feil-Seifer and M. Mataric, “A multi-modal approach to selective interaction in
assistive domains,” in Robot and Human Interactive Communication, 2005. ROMAN
2005. IEEE International Workshop on, 13-15 Aug. 2005, pp. 416–421.

[14] J. Xavier, M. Pacheco, D. Castro, A. Ruano, and U. Nunes, “Fast line, arc/circle and
leg detection from laser scan data in a player driver,” in Robotics and Automation,
2005. ICRA 2005. Proceedings of the 2005 IEEE International Conference on, 18-
22 April 2005, pp. 3930–3935.

[15] M. Jun, S. Roumeliotis, and G. Sukhatme, “State estimation of an autonomous he-
licopter using kalman filtering,” in Intelligent Robots and Systems, 1999. IROS ’99.
Proceedings. 1999 IEEE/RSJ International Conference on, vol. 3, 17-21 Oct. 1999,
pp. 1346–1353vol.3.

[16] R. van der Merwe, E. Wan, S. Julier, A. Bogdanov, G. Harvey, and J. Hunt, “Sigma-
point kalman filters for nonlinear estimation and sensor fusion: Applications to in-
tegrated navigation,” in AIAA Guidance Navigation & Control Conference, 2004.

[17] E. T. Hall, “A system for the notation of proxemic behavior,” American anthropolo-
gist, vol. 65, no. 5, pp. 1003–1026, 1963.

[18] M. L. Walters, K. Dautenhahn, K. L. Koay, C. Kaouri, R. te Boekhorst, C. Ne-
haniv, I. Werry, and D. Lee, “Close encounters: Spatial distances between people
and a robot of mechanistic appearance,” in Proceedings of 2005 5th IEEE-RAS In-
ternational Conference on Humanoid Robots, Tsukuba, Japan, December 2005, pp.
450–455.

[19] T. Collett, B. A. MacDonald, and B. P. Gerkey, “Player 2.0: Toward a practical
robot programming framework,” in In Proceedings of the Australasian Conference
on Robotics and Automation (ACRA 2005), C. Sammut, Ed., Sydney, Australia,
December 2005, http://playerstage.sourceforge.net.

121





Paper B

Adaptive Human-Aware Robot Navigation in Close Proximity to
Humans

Mikael Svenstrup, Søren Tranberg Hansen, Hans Jørgen Andersen, Thomas Bak

This paper is submitted to:
International Journal of Advanced Robotic Systems



Copyright c©Mikael Svenstrup, Thomas Bak and Hans Jørgen Andersen
The layout has been revised



1 Introduction

Abstract

For robots, to be able coexist with people in future everyday human environ-
ments, they must be able to act in a safe, natural and comfortable way. This work
addresses the motion of a mobile robot in an environment, where humans potentially
want to interact with it. The designed system consists of three main components: a
Kalman filter-based algorithm that derives a person’s state information (position, ve-
locity and orientation) relative to the robot; another algorithm that uses a Case-Based
Reasoning approach to estimate if a person wants to interact with the robot; and, fi-
nally, a navigation system that uses a potential field to derive motion that respects the
person’s social zones and perceived interest in interaction.

The operation of the system is evaluated in a controlled scenario in an open hall
environment. It is demonstrated that the robot is able to learn to estimate if a person
wishes to interact, and that the system is capable of adapting to changing behaviours
of the humans in the environment.

1 Introduction

Mobile robots are moving out into open-ended human environments such as private
homes or even public spaces. The success of this shift relies on the robots’ abilities to be
responsive to, and interact with, people in a sociable, natural and intuitive manner. Re-
search addressing these issues is labelled Human-Robot Interaction (HRI) [1, 2, 3]. The
focus is often on close interaction tasks like gestures, object recognition, manipulation,
face expressions or speech [4, 5, 6, 7, 8]. In shared dynamic environments, there is also a
need for motion planning and navigation, which is another widely studied research topic.
However, rather than just being a question of getting from A to B while avoiding obsta-
cles, navigation algorithms have to adapt to people in the environment. As in [4], HRI and
navigation must be addressed simultaneously, to support the idea of shared environments.

An example from everyday human interaction could be a person working with cus-
tomer service in a mall. This person will detect other people in the environment, actively
aiming to provide help. The service person will try to determine their interest or need
for help and adjust actions accordingly. The service person will, over time, learn from
experience and the degree of success, thereby determining subsequent behaviour in simi-
lar situations. The service person may start approaching, while determining if the person
being observed is interested in help. If the person is perceived as being interested in help,
the service person will typically aim to reach a position in front of the person to initiate
a closer interaction. If not, the service person will get out of the way and initiate a new
interaction process by looking for other people.

This may be a simplified process, but enabling a robot to support such an interaction
process is not a simple task. Detection requires that the robot is able to locate people in
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the environment and discriminate them from obstacles. Observation requires that people
can be tracked and requires an interpretation of the interest in interaction. The robot
must be able to learn from previous interaction to support this interpretation. Given an
interpretation of the interest to interact, the robot must adapt its navigation strategy to
either approach the person in a way perceived as comfortable or get out of the way. Finally
some type of closer interaction must be supported.

Detection and tracking of people, that is, estimation of the position and orientation
(which combined is denoted pose) has been discussed in [9, 10]. Several sensors have
been used, including 2D and 3D vision [11, 12], thermal tracking [13] or range scans
[14, 15, 16]. Laser scans are typically used for person detection, whereas the combination
with cameras also produces pose estimates [17, 18]. Using face detection requires the
person to always face the robot, and that person to be close enough to be able to obtain
a sufficiently high resolution image of the face [19], limiting the use in environments
where people are moving and turning frequently. The possibility of using 2D laser range
scanners provides extra long range and lower computational complexity. The extra range
enables the robot to detect the motion of people further away and thus have enough time
to react to people moving at a higher speed.

Interpreting another person’s interest in engaging in interaction is an important com-
ponent of the human cognitive system and social intelligence, but it is such a complex sen-
sory task that even humans sometimes have difficulties with it. Research that addresses
the ability to recognise human social signals and behaviours is called Social Signal Pro-
cessing (SSP)[20, 21, 22]. In the example scenario, with the person from the customer
service, learning was used as a way to build on previous experiences to form an inter-
pretation of interest for a given person. Researchers have investigated Case-Based Rea-
soning (CBR) [23, 24]. CBR allows recalling and interpreting past experiences, as well
as generating new cases to represent knowledge from new experiences. To our knowl-
edge, CBR has not yet been used elsewhere in an HRI context but has proven successful
in solving spatial-temporal problems in robotics in [25, 24, 26]. An advantage of using
CBR is the simple implementation and the simple parameter tuning. Other methods, like
Hidden Markov Models, have been used to learn to identify the behaviour of humans
[27]. Bayesian inference algorithms and Hidden Markov Models have also successfully
been applied to modelling and for predicting spatial user information [28]. To approach
a person in a way that is perceived as natural and comfortable requires human-aware
navigation. Human-aware navigation respects the person’s social spaces as discussed
in [29, 30, 31]. Several authors have investigated the interest of people to interact with
robots that exhibit different expressions or follow different spatial behaviour schemes
[32, 33, 30, 34]. In [18] models are reviewed that describe social engagement based on
the spatial relationships between a robot and a person, with emphasis on the movement
of the person. Although the robot is not perceived as a human when encountering people,
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the hypothesis is that robot behavioural reactions with respect to motion should resemble
human-human scenarios. This is supported by [30, 35]. Hall has investigated the spatial
relationship between humans (proxemics) as outlined in [36, 37], which can be used for
Human-Robot encounters. This was also studied by Walters, et al.[35], whose research
supports the use of Hall’s proxemics in relation to robotics.

In this paper the focus is on detection, observation, navigation, and learning to de-
termine the person interest in close interaction, which means that psychological stud-
ies of the naturalness and comfortable manner of the motion is out of the scope of this
work. A simplified close interaction has also been implemented to complete the interac-
tion process. We present a novel method for inferring a human’s motion state (position,
orientation and velocity) from 2D laser range measurements. The method relies on a fast
algorithm for detecting the legs of people [17, 38], and fuses this with odometry data in
a Kalman filter to obtain the motion state. Observation and learning is based on a CBR
algorithm. Based on observed SSP signals, the CBR algorithm estimates a person’s in-
terest in interaction. In the given implementation, only the observed motion patterns are
used as SSP information. For navigation an adaptive human-aware navigation algorithm
using a potential field, based on results from [9, 39, 40], is presented. The shape of the
potential field is derived from the human-human spatial relations described by Hall [37].

The algorithms have been implemented and demonstrated to work together in an open
environment at the university.

2 Methodology

The robotic system is designed for a specific set-up, where a person encounters a robot in
an open space and starts an interaction process as described above. We define the part of
the interaction process starting from when the person is detected, until close interaction
is initiated, as a session. In each session the person might, or might not, wish to engage
in close interaction with the robot. The session is defined to last as long as the robot
and person mutually adapts their motion according to each other, and is considered over
when the person has either disappeared from the robot’s field of view, or has initiated
close interaction. Close interaction is, in this set-up, initiated by pressing a simple button
on the robot. In this case the person is perceived by the robot to be interested in close
interaction. Since SSP is difficult [21] and interest cannot be directly measured as an
absolute value, we refer to interest only as it is perceived by the robot and not as the true
internal state of the person. When the person has disappeared without pressing the button,
they are considered to not be interested in further interaction. When a session is over, the
system proceeds to detecting new people, and no further close interaction is considered.

The structure of the proposed system set-up is outlined in Fig. B.1. First, the pose of
the person is estimated using a Kalman filter and an autoregressive filter. This information
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is sent to a person evaluation algorithm, which provides information to the navigation
subsystem. The loop is closed by the robot, which executes the path in the real world and
thus has an effect on how humans move in the environment.

Position Measurement

Human Motion Real-World Execution

Orientation 
Estimation

Person Pose Estimation

Person State 
Estimation

Learning and 
Evaluation of Interest 

in Interaction

Case Based 
Reasoning

Robot 
Motion

Human-Aware Navigation

Potential 
Field

Interaction?

Figure B.1: An overview of how the different components are connected in the current
system.

2.1 Person Pose Estimation

First, the pose and velocity of the people in the robot’s vicinity is determined. The method
is derived for only one person, but the same method can be utilised when several people
are present.

We define the pose of a person as the position of the person given in the robot’s
coordinate system, and the angle towards the robot, as seen from the person (ppers and
θ in Fig. B.2). The orientation θ is approximately the angle between φ (the angle of the
distance vector from the robot to the person) and vpers (the angle of the person’s velocity
vector). It is, however, only an approximation, since the orientation is not necessarily
equal to the direction of the motion.

The estimation of the person pose can be broken down into three steps:

1. Measure the position of the person;

2. Use the continuous position measurements to find the state (position and velocity)
of the person;

3. Use the velocity estimate to find the orientation (θ) of the person.

Position Measurements

The position measurements could, in principle, be done by any instrument, for example,
external or on-board devices such as cameras, laser scanners or heat sensors. In our case
we use an on-board laser range finder to find the position of the person, which has the
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.

x

y

vpers

ppers

Figure B.2: The state variables ppers and vpers hold the position and velocity of the
person in the robot’s coordinate frame. θ is the orientation of the person and ψ̇ is the
rotational velocity of the robot.

advantage that it supports autonomy with no external sensors. Furthermore, processing
a laser scan is computationally very efficient, compared to image processing from on-
board cameras. The laser scans the area just below knee height, and a typical output from
the laser range scanner is seen in Fig. B.3. An algorithm detects legs in the output data,
fuses them with previous scans, pairs them and outputs estimates of where the person is.
The algorithm is described in [17, 38], and the output is the position of the person in the
robot’s coordinate frame. Our implementation has been proved robust for tracking people
at speeds of up to 2ms in a real-world public space, which is described in [41].

Person State Estimation

The next step is to estimate velocity vector of the person in the robot’s coordinate frame.
The velocity of the person cannot be calculated directly from the person position mea-
surements since there will be an offset corresponding to the movement of the robot itself.
If, for example, the person is standing still and the robot is moving, then different position
measurements will be obtained, but the velocity estimate should still be zero. Therefore,
the position measurements from the laser range finder algorithm and robot odometry mea-
surements are combined to obtain a state estimate. The fusion of these measurements is
done in a Kalman filter, where a standard discrete state space model formulation for the
system is used:

x(k + 1) = Φx(k) + Γu(k) (B.1)

y(k) = Hx(k) , (B.2)
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Figure B.3: An image of the ranges from one laser rangefinder scan. The distance scale
on the polar plot is in metres and the angle is in degrees.

where x is the state, y is the measurements, u is the input and Φ,Γ, H are the system
matrices explained below.

The state is comprised of the person’s position, person’s velocity and the robot’s ve-
locity. The measurements are the estimate of the person’s position and the odometry
measurements.

x =

 ppers
vpers

vrob

 , y =

[
p̂pers

vodom,rob

]
. (B.3)

p denotes a position vector and v denotes velocities, all given in the robot’s coordinate
frame. The p̂ is the estimate of the person’s position from the person detection algorithm
and vodom,rob the robot’s odometry measurement vector.

The position of the person in the robot’s coordinate frame (ppers), at time k + 1,
depends both on the person’s velocity, the robot’s velocity and the rotation of the robot,
which need to be included in the process model. However, the robot’s rotation causes
the vector ppers to rotate, and does therefore introduce a nonlinear effect on the state.
This nonlinear effect can be overcome while still maintaining the linear Kalman filter, by
introducing a measurement-driven Kalman filter [42, 43]. The idea in a measurement-
driven Kalman filter is to use sensor readings, in this case rotational odometry data from
the robot, to drive the process model as an input. This means that the non-linearity is
in the input part Γu(k), and the rotation can be omitted in the state transition matrix Φ.
The advantage is that the input is not a part of the Kalman filter equations, and the filter
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remains a linear filter. Omitting rotation, Φx(k + 1) from Eq. (B.1) can be written as:ppers(k + 1)

vpers(k + 1)

vrob(k + 1)

 =

ppers(k) + T (vpers(k)− vrob(k))

vpers(k)

vrob(k)

 , (B.4)

where T is the sampling time. The output matrix H from Eq. (B.2) follows directly from
the measurement vector in Eq. (B.3), and thus Φ and H are given as:

Φ =

 I TI −TI
0 I 0

0 0 I

 , H =

[
I 0 0

0 0 I

]
, (B.5)

where I is the 2x2 identity matrix, and 0 is the 2x2 zero matrix.
The error in the linear process model, which is introduced by the rotational velocity,

is compensated for by adding it to the input Γu(k). Looking at Fig. B.2, it can be seen
that the angle of the vector towards the person (ppers) is rotated by ψ̇T for each time step,
which is also the case for the person’s velocity vector (vpers). The effect is derived for a
state vector p, but applies to both ppers and vpers. To account for the non-linearity, the
input needs to compensate for the error obtained by the linear model, i.e. the difference
between the rotated state vector and the vector calculated by the linear model in (B.4):

Γu(k) = protated − plinear , (B.6)

where protated is the correct state estimate taking into account the rotation, and plinear
is the linear state estimate. protated can be calculated by rotating the linear state by the
angle ψ̇T :

protated =

[
cos(ψ̇T ) sin(ψ̇T )

− sin(ψ̇T ) cos(ψ̇T )

]
plinear (B.7)

If the sample time is small compared to the rotational velocity, then a small an-
gle approximation of the equations can be used. This means that cos(ψ̇T ) ≈ 1 and
sin(ψ̇T ) ≈ ψ̇T , and Eq. (B.6) can be rewritten as:

Γu(k) ≈

[
1 ψ̇T

−ψ̇T 1

]
plinear − plinear =

[
py

−px

]
ψ̇T , (B.8)

where px and py are the x and y coordinates of the vector p. Using this result to write out
the full input part of the model in Eq. B.1 gives:

Γ(k)u(k) =



py,pers(k)

-px,pers(k)

vy,pers(k)

-vx,pers(k)

0

0


T

ˆ̇
ψ(k) , (B.9)
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where ˆ̇
ψ is the measured robot rotation from the odometry data.

If Φ(k) is not constant, the Kalman gain does not converge to a steady state value.
Small deviations of Φ(k) will not be a practical problem, but some infrequent long sam-
pling intervals have been observed. In the practical implementation Φ(k) and correspond-
ing Kalman gain is therefore calculated on-line.

Orientation Estimation

The direction of the velocity vector found above is not necessarily equal to the orienta-
tion of the person. Consider, for example, a situation where the person is standing almost
still in front of the robot, but is moving slightly backwards. This means that the veloc-
ity vector is pointing away from the robot, although the person is facing the robot. To
obtain a correct orientation estimate the velocity estimate is filtered through a first order
autoregressive filter, with adaptive coefficients relative to the velocity. When the person
is moving quickly, the direction of the velocity vector has a large weight, but if the person
is moving slowly, the old orientation estimate is given a larger weight. The autoregressive
filter is implemented as:

θ(k + 1) = βθ(k) + (1− β) arctan

(
vy,pers
vx,pers

)
, (B.10)

where β has been chosen experimentally relative to the absolute velocity v as:

β =


0.9 if v < 0.1m/s

1.04− 1.4v if 0.1m/s ≤ v ≤ 0.6m/s

0.2 else
. (B.11)

In Fig. B.4 the parameter is plotted versus the velocity.

2.2 Learning and Evaluation of Interest in Interaction

To represent the person’s interest in interaction, a continuous fuzzy variable, Person In-
dication (PI), is introduced, which serves as an indication of whether or not the person
is interested in interaction. PI belongs to the interval [0, 1], where PI = 1 represents
the case where the robot believes that the person wishes to interact, and PI = 0 the case
where the person is not interested.

To determine the value of PI, an adaptive person evaluator, based on a CBR system,
is designed. The method for estimating the PI of a person is to observe the behaviour of
the person continuously, find out if something similar has happened in previous sessions,
and set PI according to what has happened in previous sessions. The implementation of
the CBR system is basically a database system which holds a number of cases describing
each session. There are two distinct stages of the CBR system operation. The first is
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Figure B.4: The adaptive coefficient β in the first order autoregressive filter used in the
orientation estimation. The faster the person moves relative to the robot, the lower β is
and the more the filter relies on the measurements.

the evaluation of the PI, where the robot estimates the PI during a session using the
experience stored in the database. The second stage is the learning stage, where the
information from a new experience is used to update the database. The two stages can be
seen in Fig. B.5, which shows a state diagram of the operation of the CBR system. Two
different databases are used. The Case Library is the main database, which represents all
the knowledge the robot has learned so far, and is used to evaluate PI during a session.
All information obtained during a session is saved in the Temporary Cases database.
After a session is over, the information from the Temporary Cases is used to update the
knowledge in the Case Library.

Database Format

Specifying a case is a question of determining a distinct and representative set of features
connected to the event of a human-robot interaction session. The set of features could be
anything identifying the specific situation, such as, the person’s velocity and direction,
position, relative position and velocity to other people, gestures, time of day, day of the
week, location, height of the person, colour of their clothes, their facial expression, their
apparent age and gender etc. The selected features depend on available sensors. For the
experimental system considered in this paper, we consider only the motion behaviour of
the person, and thus the following fields corresponding to each case will be used in the
CBR database:

• CaseID, is a reference number for each case
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Figure B.5: Operation of the CBR system. First the robot starts to look for people. When
a person is found, it evaluates whether the person wants to interact. After a potential
interaction, the robot updates the knowledge library with information about the interaction
session, and starts to look for other people.

• (px, py), is the estimated position of the robot

• (vx, vy), is the estimated velocity of the robot

• θ, is the estimated orientation of the person

• PI, is the corresponding Person Indication output value.

To be able to compare cases to see if any are identical, each value is rounded to an imple-
mentation specific resolution. The database parameters are illustrated in Fig. B.6.

Evaluation of Person Interest

Initially, when the robot locates a new person in the area, nothing is known about this
person, so PI is assigned to the default value PI= 0.5. After this, the PI of a person is
continuously evaluated using the Case Library. First a new case is generated by collecting
the relevant set of features described in Section 2.2. The case is then compared to existing
cases in the Case Library to find matching cases. When searching for matching cases in
the Case Library, a similarity function must be used to define when two cases are similar
enough to be interpreted as a match, since in physical system, measurements will seldom
be completely identical. This means that if, for example, the distance estimates are within
10cm, the similarity function can define the cases as matching. In our system two cases
are defined as matching given that the position and orientation difference are both within
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Figure B.6: Input variables and the corresponding output PI stored in the CBR database.

a specified range limit. If a match is found in the Case Library, the PI is updated towards
the value found in the library according to the formula

PInew = 0.2PIlibrary + 0.8PIold , (B.12)

where PInew is the new updated value of PI. This update is done to continuously adapt PI
according to the observations, but still not trusting one single observation completely. If
the robot continuously observes similar PIlibrary values, the belief of the value of PI, will
converge towards that value, e.g., if the robot is experiencing a behaviour, which earlier
has resulted in interaction, lookups in the Case Library will result in PIlibrary values
close to 1. This means that the current PI will quickly approach 1 as well. After this, the
case is copied to Temporary Cases, which holds information about the current session.
If no match is found in the Case Library, the PI value is updated with PIlibrary = 0.5,
which indicates that the robot is unsure about the intentions of the person. The case is
still inserted into the Temporary Cases.

Updating the Database

If the session resulted in close interaction, the robot assumes that the person was actu-
ally interested in the close interaction, and assumes the opposite if no close interaction
occurred. This information, together with the Temporary Cases is used to revise the Case
Library. The Case Library is updated according to Algorithm 2.
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Algorithm 2 Updating the Case Library from the Temporary Cases
UpdateDatabase()

1: for all TemporaryCases do
2: match = FindMatchingCase()
3: if match == NULL then
4: match = CreateNewCase()
5: SetPI(0.5)
6: end if
7: if Interested then
8: PI(match) = PI(match) + wL
9: if PI(match) > 1 then

10: PI(match) = 1
11: end if
12: else
13: PI(match) = PI(match) - wL
14: if PI(match) < 0 then
15: PI(match) = 0
16: end if
17: end if
18: end for

For each of the cases in the Temporary Cases the matching case in the Case Library
is found. If there is no matching case in the Case Library, a new one is created with
default PI= 0.5 value. Then the associated PI is updated by a value of wL, where w
is a weight related to the distance to the person, and L is a learning rate. Events which
happen at close distances will often have more relevance and be easier to interpret than
those at longer distances. Therefore, an observed case should have a larger impact the
closer the person is, which is taken care of by w. The weight is implemented utilising the
behavioural zones as designated by Hall [36] and the weight as a function of the distance
is shown in (B.13) and illustrated in Fig. B.7.

w =


1 if d < 0.45m

1.36− 0.8d if 0.45m ≤ d ≤ 1.2m

0.6− 1
6d else

. (B.13)

The learning rate L controls the temporal update of PI. It is an adjustable parameter,
which determines how fast the system is adapting to new environments. In a conservative
system L is low, so new observations will only affect PI to a limited degree. In an aggres-
sive set-up L is large and, consequently, PI will adapt faster. After the main Case Library
has been updated, the robot is ready to start over and look for new people for potential
interaction.
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Figure B.7: The weight w as a function of the distance between the robot and the test
person. w is a weight used for updating the level of interest PI.

2.3 Human-Aware Navigation

As written in the introduction, the human-aware navigation is inspired by the spatial rela-
tion between humans described by Hall [37]. Hall divides the area around a person into
four zones according to the distance to the person:

• the public zone, where d > 3.6m

• the social zone, where d > 1.2m

• the personal zone, where d > 0.45m

• the intimate zone, where d < 0.45m

If it is most likely that the person does not wish to interact (i.e. PI ≈ 0), the robot
should not violate the person’s personal space, but move towards the social or public zone.
On the other hand, if it is most likely that the person is willing to interact or is interested
in close interaction with the robot (i.e. PI ≈ 1), the robot should try to enter the personal
zone in front of the person. Another navigation issue is that the robot should be visible
to the person, since it is uncomfortable for a person if the robot moves around, where it
cannot be seen.

To allow human-aware navigation, a person-centred potential field is introduced. The
potential field has high values where the robot is not allowed to go, and low values where
the robot should be, or should try to move towards.

All navigation is done relative to the person(s), and hence no global positioning is
needed in the proposed model. The method is inspired by [9] and further described in [44].
The potential field landscape is derived as a sum of several different potential functions
with different purpose. The different functions are:

• Attractor. This is a negative potential used to attract the robot towards the person;
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Figure B.8: The four Gaussian distributions used for the potential field around the person.
The rear area is to the left of the y axis. The frontal area (to the right of y axis) is divided
into two: one in the interval from [−45◦ : 45◦], and the other in the area outside this
interval. The parallel and perpendicular distributions are rotated by the angle α.

• Rear. This function ensures that the robot does not approach a person from behind;

• Parallel. This is an adaptive function, which is used to control the direction to the
person and to keep a certain distance;

• Perpendicular. This function is also adaptive and works in cooperation with the
parallel potential function.

All four potential functions are implemented as normalised bi-variate Gaussian distri-
butions. A Gaussian distribution is chosen for several purposes. It is smooth and easy to
differentiate to find the gradient, which becomes smaller and smaller (i.e. has less effect)
further away from the person. Furthermore, it does not grow towards∞ around 0 as, for
example, a hyperbola (e.g. 1

x ), which makes both computational feasible and intuitively
perceivable.

The shapes of the variances of the four Gaussian distributions are illustrated in Fig. B.8,
and the combined potential field is:

f(x) =

4∑
k=1

ck exp

(
−1

2
[x− 0]TΣ−1k [x− 0]

)
, (B.14)

where k = 1 . . . 4 is the different potential functions, ck is a normalising constant and
x is the position relative to the person, where the potential function is evaluated. Σk =[
σ2
x σxy

σxy σ2
y

]
is the 2x2 covariance matrix of the distribution, which determines the shape

and rotation. A way to obtain a rotated distribution while maintaining the width, is to
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take a standard non-rotated distribution, and rotate the covariance matrix, such that Σk =

RT
[
σ2
x,std 0

0 σ2
y,std

]
R.

The attractor and rear distribution are both kept constant for all instances of PI. The
parallel and perpendicular distributions are continuously adapted according to the PI
value and Hall’s proximity distances during an interaction session. Furthermore, the pre-
ferred robot-to-person encounter direction, reported in [30, 45], is taken into account by
changing the width by rotation of the distributions. The width of the parallel and per-
pendicular distributions is adjusted by the value of the variances σ2

x,std and σ2
y,std. The

rotation α may be adapted by adjustment of the rotation matrixR. For the parallel distri-
bution σx,std = 1, and for the perpendicular distribution σy,std = 1. The mapping from
PI to the respective other value of σx,std or σy,std is illustrated in Fig. B.9, together with
the rotation angle α. The variance cannot be zero, which is why the lowest value is 0.05.

The adaptation of the potential field distributions enables the robot to continuously
adapt its behaviour to the current interest in interaction of the person in question.
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Figure B.9: Mapping of PI to the width (σ2
std) along the minor axis of the parallel and

perpendicular distributions, together with the rotation (α) of the two distributions.

The resulting potential field contour can be seen in Fig. B.10 for three specific values
of PI. With PI = 0 the potential field will look like Fig. B.10a where the robot will move
to the dark blue area, i.e. the lowest potential approximately 3.6m in front of the person.
The other end of the scale for PI = 1 is illustrated in Fig. B.10c, where the person is
interested in interaction and, as a result, the potential function is adapted so the robot is
allowed to enter the space right in front of the person. In between, Fig. B.10b, is the
default configuration of PI = 0.5, in which the robot is forced to approach the person at
approximately 45◦, while keeping just outside the personal zone.

Instead of just moving towards the lowest point at a fixed speed, the gradient of the
potential field ∇f(x), is used to set a reference velocity for the robot. The gradient is
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Figure B.10: Shape of the potential field for (a), a person not interested in interaction, (b)
a person considered for interaction, and (c) a person interested in interaction. The scale
for the potential field is plotted to the right and the value of the person interested indicator
PI is noted under each plot.

obtained from Eq. (B.14):

∇f(x) =

4∑
k=1

−Σ−1k [x− 0]ck exp

(
−1

2
[x− 0]TΣ−1k [x− 0]

)
. (B.15)

The reference velocity is then calculated as

vref = k∇f(x) , (B.16)

where vref is the reference velocity vector and k is an adjustable parameter that controls
how aggressive the motion of the robot is. This way of controlling the robot’s velocity
allows the robot to move quickly when the potential field is steep. On the other hand, the
robot has slow comfortable movements when it is close to where it is supposed to be, i.e.
near a minimum of the field.
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3 Experimental Set-up

In [41] it is demonstrated that the person detection algorithm is working in a real-world
scenario in a shopping centre. The person state estimation and human-aware navigation
methods are tested in a laboratory setting in [46]. Therefore, the experiments here focus
on integrating all three of the methods described above into a combined system, with the
main focus on the operation of learning and evaluation of interest. The experiments are
designed to illustrate the operation and the proof of concept of the combined methods.
It took place in an open hall, with only one person at a time in the shared environment.
This allowed for easily repeated tests with no interference from other objects than the test
persons. The test persons were selected randomly from the students on campus. None
had prior knowledge about the implementation of the system.

3.1 Test Equipment and Implementation

The robot used during the experiments was a FESTO Robotino platform, which provides
omnidirectional motion. A head, which is capable of showing simple facial expressions,
is mounted on the robot (see Fig. B.11). The above described algorithms have been
implemented in the robot control software framework Player/Stage [47], which is imple-
mented on the robot. The framework also enables simulation before experiments. The
robot is equipped with an URG-04LX line scan laser range finder for detection and track-
ing of people, and a button to press for emulating the transition to close interaction (see
Fig. B.11). If the test persons passed an object to the robot, they would activate the but-
ton, which was perceived as an interest in close interaction. If the test person did not pass
an object (i.e. the button was not activated) within 15 seconds or disappeared from the
robot’s field of view, this was recognised as if no close interaction had occurred.

The CBR database has been implemented using MySQL. To make the case database
tractable, the position (px, py) was sampled using a grid resolution of 40cm, and the
resolution of the orientation of a person has been set to 0.2rad. A learning rate, L = 0.3,
which is a fairly conservative learning strategy, has been used for the experiments.

3.2 Test Specification

For evaluation of the proposed methods, two experiments with the combined system were
performed. During both experiments the full system, as seen in Fig B.1, is used, i.e.
the pose estimation and the human-aware navigation are running, as well as the interest
learning and evaluation. All output values (PI), and input values (pose and velocity) were
logged for later analysis during both experiments.

In Experiment 1, the objective was to see if the system was capable of learning to
estimate PI based on interaction experience from several different people. As the number
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Laser

Contact

Figure B.11: The FESTO Robotino robot used for the experiments.

of cases increase, the system should be better able to estimate PI of a person and do it
more quickly. Furthermore, the information in the CBR database should be generic, such
that information obtained with some people can be used when other people occur. Starting
from a CBR system with no knowledge, i.e. an empty database, a total of five test persons
were asked to approach or pass the robot 12 times each using different motion patterns
(see Fig. B.12). The starting and end points of each session were selected randomly, while
the specific route was chosen by the test person. The random selection was designed
so the test persons would end up with close interaction in 50% of the sessions. In the
other sessions, the test persons would pass the robot either to the left of the right without
interacting.

In Experiment 2, the objective was to test the adaptiveness of the CBR system. The
system should be able to change its estimation of PI over time if behaviour patterns
change. A total of 36 test approaches were performed with one test person. The test
person would start randomly at P1, P2 or P3 (see Fig. B.12) and end the trajectory at P4,
P5 or P6. In the first 18 sessions the test person would indicate interest in close interaction
by handing an object to the robot from P5, while in the last 18 sessions the person did not
indicate interest and the trajectory ended at P4 or P6.

4 Results

4.1 Experiment 1

As interaction sessions are registered by the robot, the database is gradually filled with
cases. All entries in the database after different stages of training are illustrated by

142



4 Results

P1
P2

P3

P4

p5

P6

Figure B.12: Illustration of possible pathways around the robot during the experiment. A
test person starts from points P1, P2 or P3 and passes through either P4, P5 or P6. If the
trajectory goes through P5, a close interaction occurs by handing an object to the robot.

four-dimensional plots in Fig. B.13. The (x, y) coordinates are the position coordinates
(px, py) of the person in the robot’s coordinate frame, as estimated by the pose estimation
algorithm. The coordinates are the dots in the 40 x 40cm grid. At each position, the
orientation of the person (θ) is illustrated by a vector. The colour of the vector denotes
the value of PI. Blue indicates that the person does not wish close interaction, while red
indicates that the person wishes to engage in close interaction, i.e. PI= 0 and PI= 1

correspondingly. A green vector indicates PI= 0.5.
Figs. B.13(a-c) show how information in the database evolves during the experiment.

Fig. B.13a shows the state of the database after the first person has completed the 12

sessions. Here, the database is seen to be rather sparsely populated with PI values mostly
around 0.5, which means that the CBR system is not well trained yet. Fig. B.13b shows
the state after 3 test persons have completed the 12 sessions and, finally, Fig. B.13c shows
all cases (around 500) after all 5 test persons have completed the sessions. Here the
database is more densely populated, and PI values are in the whole range from 0 to 1.

In Fig. B.14, the PI development for six individual sessions, are plotted as a function
of time. This is done for test persons 1, 3 and 5. PI is plotted twice for each test person:
once for a randomly selected session where the test person wishes interaction with the
robot; and once for a randomly selected session where the test person passes the robot
with no interest in interaction. For the first test person, PI increases to a maximum around
0.65 for a session ending with a close interaction. For the same test person, PI drops to a
minimum of 0.48 for a session where no close interaction occurs. For the 3rd test person,
PI ends with a value around 0.9 for a session where close interaction has occurred, while
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(a) After 1st test person (b) After 3rd test person

(c) After 5th test person

1.0

0.0

0.5

0.75

0.25

(d) PI

Figure B.13: The figures show the values stored in the CBR system after completion of
the 1st, 3rd and 5th test person. Note that the robot is located at the origin (0,0), since
the measurements are in the robot’s coordinate frame, which follows the robot’s motion.
Each dot represents a position of the test person in the robot’s coordinate frame. The
direction of the movement of the test person is represented by a vector, while the level
(PI) is indicated by the colour range.

PI = 0.35 for a session where no close interaction has occurred. For the last test person, PI
rapidly increases to a value around 1 for a session where close interaction occurs, and has
PI around 0.18 when the person is not interested in interaction. Generally PI is estimated
more quickly and with more certainty the more the system is trained.

4.2 Experiment 2

Experiment 2 tests the adaptiveness of the CBR system. In order to see the change in the
system over time, the average PI value in the database after each session is calculated.
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Figure B.14: PI as a function of the session time for three different test persons. For each
test person, PI is plotted for a session where close interaction occurs and for a session
where no close interaction occurs. The x-axis shows the session time. The axis is scaled
such that the plots have equal length.

The averages have been calculated as an average for three different areas (see Fig. B.15),
to be able to compare how the database changes in different areas relative to the robot.
The areas are:

• Area 1: The frontal area just in front of the the robot.

• Area 2: A small area around the robot, which includes some of the frontal area,
and some to the sides as well.

• Area 3: All cases stored in the database.

Fig. B.16 shows the development of the average values of PI for the 36 interaction ses-
sions for one person.

As can be seen from Fig. B.16, the average value of PI increases for the first 18
sessions, where the person is interested in close interaction. This is especially the case
for areas 1 and 2, which have a maximum value at 0.9 and 0.85 respectively, but less for
area 3 (around 0.65). After 18 sessions, there is a bend on the graph and PI starts to drop
for all areas. Most notably, area 1 drops to a minimum of 0.39 after 36 sessions.

5 Discussion

As can be seen in Figs. B.13(a-c), the number of plotted database entries increases as more
interaction sessions occur. This shows the development of the CBR system, and clearly
illustrates how the CBR system gradually learns from each person interaction session.
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Figure B.15: A snapshot of the database after the second experiment was done. It shows
how the mean value for PI is calculated for three areas: 1) the frontal area; 2) the small
area and; 3) for all cases. The development of the mean values over time for all three
areas are illustrated in Fig. B.16

Figure B.16: Graph of how the average of PI evolves for the three areas indicated in
Fig. B.15. 36 person interaction sessions for one test person is performed. The red vertical
line illustrates where the behaviour of the person changes from seeking interaction to not
seeking interaction.
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The number of new cases added to the database is highest at the beginning of the training
period where few (or no) case matches are found. As the training continues, the number
of new cases added to the database is reduced as matching cases are found. The growth
of the database, when training, depends on the resolution of the selected case features
and the time and complexity of the training scenario. Based on current experiments there
are no indications that the database will grow towards being inappropriately large. In
Figs. B.13(a-c), the vectors are gradually turning from either red or blue to green as
distance increases. This is expected, as the weight, which determines how much PI is
changed for each update, is a function of the distance between the robot and the test
person (see Fig. B.7). This is reasonable as it gets more difficult to assess human interest
at long distance.

In all three figures (Figs. B.13(a-c)), the vectors in the red colour range (high PI) are
dominant when the orientation of the person is towards the robot, while there is an excess
of vectors not pointing directly towards the robot in the blue colour range (low PI). This
reflects that a person, who wishes to interact, has a trajectory moving towards the robot,
which is as expected for a normal human interaction process.

Fig. B.14 shows the development of PI over time for six individual sessions with
positive and negative interest in interaction, respectively. It can be seen how maximum
and minimum values for PI increase as more test persons have been evaluated. After
evaluating one test person, the robot has gathered very little interaction experience, and
has difficulties in determining the correspondence between motion pattern and end result
- hence PI stays close to 0.5. After the third test person, the robot has gathered more
cases and, therefore, improves in estimating the outcome of the behaviour. For the last
test person, the robot is clearly capable of determining what will be the outcome of the
interaction session. Each session takes between 2 and 4 seconds depending on the velocity
of the user. Changes in estimation of PI can be seen in the first quartile of each session,
while maximum (or minimum) is not reached before the fourth quartile.

Fig. B.16 shows the development of the average PI value over time. It can be seen
that PI changes more for areas 1 and 2 close to the robot, than for area 3. This is because
most cases will be close to 0.5 at large distances owing to the distance weight function in
Eq. (B.13). Furthermore, in most sessions the person’s trajectory goes through the frontal
area, thereby having the highest number of updates of PI. Fig. B.16 illustrates that the
database quickly starts to adapt to the new environment, when the test person changes the
behaviour to no interaction after the first 18 sessions.

In short, the experiments show that:

• Determination of PI improves as the number of CBR case entries increases, which
means that the system is able to learn from experience.

• The CBR system is independent of the specific person, such that experience based
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on motion patterns of some people, can be used to determine the PI of other people.

• The algorithm is adaptive, when the general behaviour of the people changes.

5.1 General Discussion on Reasoning System and Adaptive Behaviour

Generally, the conducted experiments show that CBR can be applied advantageously to
a robot, which needs to evaluate the behaviour of a person. The method for assessment
of the person’s interest in interaction with the robot is based on very limited sensor in-
put. This is encouraging as the method may easily be extended with support from other
sensors, such as computer vision, acoustics etc.

The results demonstrate how, by fairly simple training, a robot can learn to estimate
the interaction interest of a person. Such training may be used to give the robot an initial
database that may later be refined to the specific situation in which it operates.

The proposed method for human-aware navigation demonstrates how Hall’s zones,
together with more recent results about the preferred robot encounter, may be used for
the design of an adaptive motion strategy.

The three methods - person pose estimation, learning and evaluation of interest in
interaction, and human-aware navigation - are decoupled in the sense that they only have
a simple interface with each other. This opens a way of using the methods separately with
other control, navigation or interaction strategies.

This work shows that by coupling the CBR system with human-aware navigation,
the result is an adaptive robot behaviour respecting the personal zones depending on the
person’s interest to interact - a step forward from previous studies [9, 39].

6 Conclusions

In this work, we have described an adaptive system for natural motion interaction be-
tween mobile robots and humans. The system forms a basis for human-aware navigation
respecting a person’s social spaces. The system consists of three independent compo-
nents:

• A new method for pose estimation of a human, by using laser rangefinder measure-
ments.

• Learning human behaviour using motion patterns and Case-Based Reasoning (CBR).

• A human-aware navigation algorithm based on a potential field.

Pose estimates are used in a CBR system to estimate the person’s interest in interaction,
and the spatial behaviour strategies of the robot are adapted accordingly using adaptive
potential functions.
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6 Conclusions

The evaluation of the system has been conducted through two experiments in an open
environment. The first of the two experiments of the combined system shows that the
CBR system gradually learns from interaction experience. The experiment also shows
how motion patterns from different people can be stored and generalised in order to pre-
dict the outcome of an interaction session with a new person.

The second experiment shows how the estimated interest in interaction adapts to
changes in behaviour of a test person. It is illustrated how the same motion pattern can be
interpreted differently after a period of training.

The presented system is a step forward in creating socially intelligent robots, capable
of navigating in an everyday environment and interacting with human beings by under-
standing their interest and intention. In the long-term perspective, the results could be
applied to service or assistive robots in e.g. health-care systems.

In this paper, the potential field is used to steer the robot around one person, who
might or might not be interested in interaction. But the potential field could also be used
for navigation in populated areas with more people present. This could, for example, be
in a pedestrianised street, where the robot has to move around.
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1 Introduction

Abstract

The goal of this paper is to describe an adaptive robot game, which motivates
elderly people to do a regular amount of physical exercise while playing. One of
the advantages of robot based games is that the initiative to play can be taken au-
tonomously by the robot. In this case, the goal is to improve the mental and physical
state of the user by playing a physical game with the robot. Ideally, a robot game
should be simple to learn but difficult to master, providing an appropriate degree of
challenge for players with different skills. In order to achieve that, the robot should
be able to adapt to the behavior of the interacting person. This paper presents a simple
ball game between a single player and a mobile robot platform. The algorithm has
been validated using simulation and real world experiments.

1 Introduction

Based on the demographic development in most western countries, it has been predicted
that the number of people with mental and/or physical disabilities will increase while
the amount of people to take care of them will decrease [1], [2]. Digital games hold a
significant promise for enhancing the lives of seniors, potentially improving their mental
and physical wellbeing, enhancing their social connectedness, and generally offering an
enjoyable way of spending time [3]. It has been shown that mental and physical health
can be improved through a small amount of physical exercises [4], [5], and e.g. Nintendo
Wii has been suggested as a means to increase physical activity among elderly [6], [7].

In this paper we introduce a physical game which is facilitated and initiated using a
mobile robot. A principal question is how to design a robot based game which ensures
engagement of the participating players. Many known games are derived from a pursuit-
evasion scenario e.g. the child games robbers and cops and the game of tag [8]. In this
paper, we describe a simple pursuit and evasion problem played between a single player
and a mobile robot. The robot will initiate the game by searching for a potential player in
a room and hand over a ball. After that, the player should try to hand back the ball, while
the robot should try to avoid receiving the ball.

Motivating elderly to move physically by playing a game is related to Persuasive
technology which is defined as technology designed to change attitudes or behaviors of
the users through persuasion and social influence, but not through coercion [9]. A similar
term is Captology, which is an acronym for computers as persuasive technologies [10].
This term however, is not used as often as Persuasive Technology or Persuasive Design
which is the term we will use here. Successful games are often characterized using the
concept Flow, as proposed by Csı́kszentmihály [11]. Flow is a mental state which can
occur when there is an appropriate balance between challenge and skill. As the cognitive
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and physical capabilities of the users are expected to vary from each person, the robot
should adapt the difficulty of the game to the end user.

The goal is to motivate elderly to do physical exercises in a fun and social manner by
facilitating and initiating a simple physical game using a robot. The robot automatically
initiates the game by autonomously approaching the user. This is a difference from using
video games like Nintendo Wii, which facilitate games but does not itself initiate a game.

In this paper, we first outline the theory about persuasive design and the concept of
flow. Next we explain the game algorithm, and demonstrate how it works when imple-
mented in a physical robot.

2 Theory

The fundamental concept of Persuasive Design (PD) is persuasion, which is defined by
Fogg as an attempt to change attitudes or behaviors or both (without using coercion or
deception) [9]. The theoretic background is based on Computer Science and Social Psy-
chology and has been developed mainly through empiric studies. Results from HCI, has
shown that e.g. a computer can act as a social character, because it has some characteris-
tics which make us behave as if it was a real person. We know it is piece of a technology,
but can still feel happy about it or get angry with it [12]. According to Fogg, this effect is
amplified if the system shows social signals we know from interaction with other people,
and even more so if the system has a personality the reminds us of our own.

Figure C.1 shows how PD has been defined as a field where persuasion and computer
technology overlap. The model was introduced in 1997 and has been continuously en-
hanced as new technologies emerge [10]. The focus of the theory is technology designed
with persuasive intention.

We here extend the list of technologies in Figure C.1 to also include robots. The robot
should act a social character which invites the users to play a physical game. By doing
this, the user will be more mentally and physically active than would be the case without
the robot. In order for people to be motivated to play the game it should appeal to the spe-
cific user. Ideally the player should be in the state of flow while playing, being a feeling
characterized by great absorption and engagement as proposed by Csı́kszentmihály [11].
As illustrated in Figure C.2, flow cannot occur if the task is too easy or too difficult.

In the state T1, your skills are not developed, but the challenge is not impossible. The
difficulty of the challenge is in an appropriate relation to your (undeveloped) skills, and
you are in a state of flow. T2 is the situation where you develop your skills to a level
where the challenge becomes too easy and therefore boring. In T3, the difficulty of the
challenge is higher than your skills. This leads to discontent and frustration. Common
for the state T2 and T3 is that in the long run, they are unsatisfying. In order to enter
the state of flow, the difficulty of the challenge has to be changed or you have to improve
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Figure C.1: Illustration of how Captology (or PD) is defined as an overlap between com-
puters and persuasion

Figure C.2: Illustration of the relation between skill and challenge. In state T1 and T4,
there is a balance between skill and challenge and the player is in the state of flow. In state
T2 and T3 there is no balance, and the player is either bored or frustrated, correspondingly

your skills. T4 is also a flow state, but in a more complex situation than in T1. It is not a
stable state because your skills will keep developing [13].

3 Implementation of the game

The game presented here, is based on a simplified pursuit and evasion scenario with a
single pursuer (a human player) and a evader (a mobile robot). The player should try
to hand over a ball to the robot, while the robot should try to avoid receiving the ball.
Depending on the skill of the player, the robot should make it more or less difficult to
hand the ball back. During a game, the robot can be in the following states:
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• Roaming. If no player is detected, the robots should search for a player by moving
randomly around until a person is spotted.

• Approach. When a player is detected, the robot invites to play a game by approach-
ing the player from the front.

• Avoid. When the player has accepted to play a game by picking up the ball from the
robot, the robot initially moves fast backwards away from the player for 3 seconds.

• Evaluating. The robot keeps avoiding the player with a distance and velocity that
corresponds to the estimated skill of the player. When the ball has been handed
back, the game is complete and the robot will go to the state Avoid and thereafter
Roaming.

A more detailed outline of the game algorithm is sketched in Algorithm 3.

3.1 Player Skill Indication (PSI)

In order for the robot to adapt the challenge to the individual player, is should have a have
an estimate of the player’s skill but also information about the specific player’s style of
playing, i.e. the physical behavior pattern of the player.

The skill of a player is annotated using the parameter PSI, which means Player Skill
Indication. PSI ∈ [0; 1] is a fuzzy predicate, which gives an indication of the skill of the
current player. When PSI ≈ 1, the robot believes the player is skilled, and that the player
is likely to complete a game within a fixed evaluation period. When PSI is close or equal
to 0, the robot thinks the player is less skilled, and thereby less likely to complete the
game within the time period. PSI is updated continuously throughout the game (line 20
in Algorithm I) , so when a specific player gets better at playing PSI will increase.

The rate by which PSI increases or decreases depends not only on the skills of the
player, but is a function of the learning rate parameter, L. The learning rate L is set high
if you the game should adapt quickly to changes in the player’s skill, but low otherwise.

3.2 Learning usning Case Based Reasoning (CBR)

The robot should learn about the specific player’s style of playing with the robot, and
therefore the skill is associated with the physical spatio-temporal behavior of the person.
To incorporate the ability to learn the behavior pattern of the player, we have selected
to use Case Based Reasoning (CBR). CBR allows recalling and interpreting past expe-
riences, as well as generating new cases to represent knowledge from new experiences
[14]. CBR has been proven successful solving spatial-temporal problems in robotics in
[15] and is characterized by its adaptiveness, making it well suited for implementing an
adaptive behavior on a human interactive robot. The CBR system is basically a database
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Algorithm 3
Main()

1: loop
2: Roam()
3: Approach()
4: if Ball just picked up then
5: Avoid()
6: end if
7: GameResult = Evaluate()
8: UpdateCbrDatabase(GameResult)
9: end loop

Roam()
10: while Person not detected do
11: drive randomly around
12: end while
Approach()
13: while Ball is on the robot do
14: Approach player to invite to a game
15: end while
Avoid()
16: Avoid player for 3 seconds
Evaluate()
17: PSI = 0.5
18: while Time not expired do
19: Move according to PSI value
20: Update PSI using CBR database
21: if Ball returned to robot then
22: Avoid()
23: return Positive
24: end if
25: end while
26: return Negative
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describing each encounter. Specifying a case in CBR is a question of determining a dis-
tinct and representative set of features, in our case PSI, position, pose and the id of the
person. While playing, cases are continuously inserted, retrieved and updated. In other
words, the robot adjusts the challenge to how the player moves around the robot when
playing.

The behavior of the player is evaluated through a continuous registration of the players
position and orientation of the body, which is inferred from 2D laser range measurements
as explained in [16]. To detect persons the robot rely on the scans from the laser range
finder using the leg detection algorithm presented in [17]. The algorithm is further sup-
ported by a Kalman filter for tracking and estimation of the person pose [16]. A more
detailed description of the CBR database implementation can be found in [18].

3.3 Adaptive Robot Motion

The robot’s navigation system is modeled using a person centered potential field, where
the robot seeks towards the lowest values using a gradient descent. The potential field is
calculated by the weighted sum of four Gaussian distributions of which one is negated.
The covariance of the distributions are used to adapt the potential field according to PSI.
When the player is inexperienced, the PSI values registered for a player will be closer to
0 and the robot will try to approach the player so he/she can hand over a ball to the robot.
In the extreme case with PSI= 0 (an unskilled player), the potential field will like look
Figure C.3, and the robot will enter the dark blue space right in front of the player. On
the other hand, if the player is skilled, PSI will be closer to 1 and potential file will look
like illustrated in Figure C.4. The robot will try to avoid the player by moving towards
the dark blue area away from the player, making it more difficult for the player to hand
over the ball.

Since the potential field is person centered, it moves with the player. If e.g. a skilled
player starts moving towards the robot, the robot will eventually be in the yellow or red
area in front of the player. The result is that the robot will start moving backwards towards
the dark blue area, thus avoiding the player.

4 Experiments

A series of experiments have been designed to demonstrate the following features of the
implemented system:

1. The learning capability of the CBR database. The generation of cases in the database.

2. Adaptiveness of the system. How the CBR database adapts to the skill of a player.

3. The estimate of the PSI of a player.
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Figure C.3: The player’s skill PSI = 0, and the robot will seek the dark blue area in front
of the player
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Figure C.4: The player’s skill PSI = 1, and the robot will seek the dark blue area a bit
away from the player

4. Adaptive Navigation. How the motion of the robot depends on the player skill.

5. Effect of Learning Rate. How the learning rate affect the PSI.

4.1 The learning capability of the CBR database.

This experiment should show that cases are actually created in the database and that these
cases reflect the behavior of the player. To avoid a huge amount of repetitive playing time,
simulations using the Player/Stage environment have been used to train the database. Us-
ing an empty CBR database, first the database is trained by a skilled player. Afterwards,
a new database is created which is trained by an unskilled player.
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4.2 Adaptiveness of the System

This experiment have been done using a combination of simulations and real world ex-
periments. The two databases from the former experiment are used in a real world setting,
where a test person is playing against the system. To show the system is capable of adapt-
ing to a new situation, an unskilled player plays with the system trained for a skilled player
and vice versa. The average value of PSI in the whole database is logged continuously
during the experiments.

4.3 Estimate of PSI

To show that the robot is able to estimate the player PSI, and hereafter adapt the motion
accordingly, the trained databases are used again in the real world setting. This time the
motion of both the person and the robot are recorded.

4.4 Effect of Learning Rate

A central parameter of the game algorithm, is the learning rate L which is a numeric
value in the interval 0 − 100 used to control how fast PSI should adjust the estimate of
the player’s skill PSI. A simulation has been designed, such that in the first 10 games,
the player needs 4 evaluation periods before he/she manages to hand the ball back to the
robot. The effect should be that most of the cases in the database have a relatively low PSI
value reflecting an unskilled player. In the last 40 games, the simulation has been changed
so the player hands back the ball to the robot within one evaluation period representing
the behavior of a skilled player. To demonstrate the effect of changing the learning rate,
the same simulation setup has been tried with the learning rate set to 0, 20, 40, 60, 80 and
100.

4.5 The robot platform

The robotic platform, which forms the basis of the experiment, is shown in Figure C.5.
The robot is FESTO and is called Robotino. The robot is equipped with a head having 126

red diodes (see Figure C.5) which enables it to express different emotions. The robot is
1 meter high, and has mounted an URG-04LX line scan laser placed 35cm above ground
level, scanning 220 degrees in front of the robot. In order to get feedback from the test
person and find out when the robot has the ball, a cup with an on/off switch in the bottom,
has been placed just below the robot’s head, 75cm above ground level. The software
framework Player [19] is installed on the platform and used for control of the robot and
implementation of the CBR system.
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Laser

Contact

Figure C.5: The modified FESTO Robotino robotic platform.

5 Results

5.1 Trag the CBR System

Figure C.6 shows a plot of the CBR database, when the robot has been trained by an un-
skilled player. The position of the robot is (0, 0). Each case in the database is represented
by a short vector extending from a black dot in the figure. The color of the vector rep-
resents the value of PSI for the corresponding case. The pose and position of the player
is represented by the corresponding position of the dot and angle of the vector. In Fig-
ure C.6, most vectors are in the color span between blue and green which represents PSI
values between 0 - 0.5, and the average of all PSI values is 0.25. This PSI range is as
expected for an unskilled player, and it shows that the CBR system is capable of being
trained for an unskilled player. Furthermore it can be seen that the database the is more
densely populated closer to the robot. This is also expected, since a player will start off
at a random direction away from the robot and will always move towards a point just in
front of the robot.

Similar results have been obtained, when training with a skilled player. Here, most
vectors are in the color span between green and red which represent PSI values between
0.5 - 1. This is expected for a skilled player and the average PSI of the whole database is
0.74
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Figure C.6: A plot of the trained CBR database for an unskilled player. Each vector
represents a case in the database using the features pose and position. The color of the
vector denotes the PSI value using the color scale to the right. The robot is positioned in
(0, 0)
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Figure C.7: A plot of the trained CBR database in Figure C.6 after the player has started
to become good. The robot is positioned in (0, 0).

5.2 Adaptiveness of the System

Using the trained database in Figure C.6, a skilled player is set to play in the real world.
This makes the CBR database turn into the one shown in Figure C.7. It can be seen that
the database has adapted to the player’s skill, and has started to contain higher PSI values.
Especially in the areas close to the robot, the PSI values have changed which is expected
as most case updates happens here.
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Figure C.8: The development of the average value of all PSI in the database after each
iteration (each look up in the database). Initially PSI is around 0.5 and the game is played
by an unskilled player. The player slowly improves his skills and the average value of PSI
increases correspondingly.

In Figure C.8 the development of the average value of PSI in the database can be seen.
The value is saved for each lookup in the database, i.e. each time Line 20 in Algorithm I
is passed. Initially the value is slightly less than 0.5. After the database has been trained
by an unskilled player for a while (after around 12000 iterations) the average value has
stabilized around PSI = 0.25. Now a skilled player starts playing, and it can be seen that
the average value starts to increase rapidly, as expected. The noise on the figure is caused
by individual trajectory differences.

A similar result has been obtained when starting with the system, which was trained
by a skilled player, and played in the real world by a unskilled player. Here the database
values are adapted from relative high values to lower values. This could be the case if a
player starts to have more severe physical disabilities caused by e.g. a stroke.

5.3 Adaptive Navigation

Figure C.9 shows the trajectory of a person and for the robot, for a game where the robot
has been trained by a skilled player. The person starts from the right side, and goes to pick
up the ball. Hereafter the robot and person moves away from each other. When the game
starts, the robot approaches slowly because it is far away. But as soon the person comes
too close (when the trajectory is orange), the robot starts to move away. The player then
tries to cheat the robot by moving sideways. This is a behavior the robot has not learned
yet, and therefore it lets the person approach a bit more.

Figure C.10 shows the trajectory of a person and a robot for a game where the robot
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Figure C.9: The trajectory of a person and the robot for a game, where the robot has
been trained by a skilled player. The color of the trajectory defines the time. Blue is the
beginning and red is the end of the game.
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Figure C.10: The trajectory of a person and the robot for a game, where the robot has
been trained by an unskilled player. The color of the trajectory defines the time. Blue is
the beginning and red is the end.

has been trained by an unskilled player. The person starts from the lower right corner,
and goes to pick up the ball. Hereafter the robot and person moves away from each other.
Towards the end of the game, the robot approaches the person to make it easier for the
player to hand back the ball. These two experiments show that the system is able to
estimate the PSI correctly and navigate accordingly.
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Figure C.11: Shows the development of the player skill PSI in a simulated set of 50 games
with one player using a learning rate on L = 40

5.4 Effect of Learning Rate

Figure C.11, shows the PSI values in the database for simulation set of 50 games with
one player using a learning rate set to L = 40. In total, 249 cases are stored in the CBR
database. Because the cases in the database are stored in the order they were observed,
two consecutive cases do not necessarily have anything to do with each other and large
fluctuations occur. A moving average gives an overview over what is happening, and as
can be seen from the figure, the values of PSI decreases due to a gradually better trained
database. Then, around case 100, there is a sudden increase in PSI. This corresponds to
the time when the player changes behavior from being unskilled to skilled and manage to
hand the ball back in one evaluation period.

Table C.11, shows the same scenario with a learning rate set to
L = {0, 20, 40, 60, 80, 100}. As L increases, the deviation also increases which is ex-
pected. When the learning rate is 100, PSI is adjusted with every little change of player
behavior. The fluctuations of PSI becomes high, which makes the game algorithm too
varying to be usable. On the other hand, PSI stays constant at 0.5 when the learning rate
is equal to 0. The robot simply does not learn from its experience, and the game algorithm
will never adapt the challenge to the player. The development of PSI using a learning rate
of 0 and 100 is illustrated in Figure C.12. It has been chosen to use a learning rate of
L = 40 for all experiments, since this value gives an adequate balance of adaptability and
stability.

1This reference was wrong in the original paper. It has been corrected here.
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Figure C.12: Shows the development of the player skill PSI in a simulated set of 50 games
with one player using a learning rate on L = 0 and L = 100

L n σ
0 273 0.00
20 248 0.18
40 249 0.23
60 259 0.27
80 230 0.29
100 251 0.38

Table C.1: The table shows the development of PSI for different learning rates (L) with
respect to the number of cases in the database (n) and the standard deviation σ

.

6 Conclusion

In this paper, we have presented the concept of a robot based game. The function of the
game is to increase the health of the players by motivating them to do a regular amount
of physical exercise in a fun and social manner. The fact that the robot autonomously ini-
tiates the game, is a major difference from similar types of technology driven approaches
e.g. using Nintendo Wii which has been successfully applied in a nursing home setting.
The robot game is based on a simplified pursuit and evasion scenario, where the player
should try to hand over a ball to the robot while the robot should try to avoid receiving
the ball. Changing the behavior of the user through the use of technology is related to the
term Persuasive Technology which is explained in the first section of the paper. The term
Flow is often used to describe an ideal user experience in games. As described, one of the
primary requisites of Flow is to provide an appropriate relation between game challenge

170



6 Conclusion

and the user’s skills. Based on this fact, a game algorithm has been designed and it is out-
lined how the algorithm works. The algorithm is implemented in a physical robot and the
game is validated in simulation and through a practical lab experiment setup. Trajectories
of the player and the robot in the lab experiment are documented along with plots of the
CBR database which form the basis of the learning algorithm. The experiments document
the learning capability of the CBR database and the adaptiveness of the system. It also
shows how the system estimates the skill of the player and how it adapts depending on
the learning rate parameter.

The next step will be to do a real world experiment at an activity center for elderly with
the goal of measuring the user feedback and experience. Also we will work on enhancing
the game, so the robot game is based on multiple players which will strengthen the social
aspect of the game.
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1 Introduction

Abstract

This paper presents a trajectory planning algorithm for a robot operating in dy-
namic human environments. Environments such as pedestrian streets, hospital corri-
dors, train stations or airports. We formulate the problem as planning a minimal cost
trajectory through a potential field, defined from the perceived position and motion of
persons in the environment.

A Rapidly-exploring Random Tree (RRT) algorithm is proposed as a solution to
the planning problem, and a new method for selecting the best trajectory in the RRT,
according to the cost of traversing a potential field, is presented. The RRT expansion
is enhanced to account for the kinodynamic robot constraints by using a robot motion
model and a controller to add a reachable vertex to the tree.

Instead of executing a whole trajectory, when planned, the algorithm uses a
Model Predictive Control (MPC) approach, where only a short segment of the tra-
jectory is executed while a new iteration of the RRT is computed.

The planning algorithm is demonstrated in a simulated pedestrian street environ-
ment.

1 Introduction

As robots integrate further into our living environments, it becomes necessary to develop
methods that enable them to navigate in a safe, reliable, comfortable and natural way
around humans.

One way to view this problem is to see humans as dynamic obstacles that have so-
cial zones, which must be respected. Such zones can be represented by potential fields
[1, 2]. The navigation problem can then be addressed as a trajectory planning problem
for dynamic environments with a potential field representation. Given the fast dynamic
nature of the problem, robotic kinodynamic and nonholonomic constraints must also be
considered.

In the recent decade sampling based planning methods have proved successful for
trajectory planning [3]. They do not guarantee an optimal solution, but are often good
at finding solutions in complex and high dimensional problems. Specifically for kinody-
namic systems Rapidly-exploring Random Trees (RRT’s), where a tree with nodes corre-
spond to connected configurations (vertices) of the robot trajectory, has received attention
[4].

Various approaches improving the basic RRT algorithm have been investigated. In [5],
a dynamic model of the robot and a cost function is used to expand and prune the nodes
of the tree. A Model Predictive Control (MPC) approach is taken, where only a small
part of the trajectory is executed, while a new trajectory is calculated. When expanding a
vertex, a random vertex and a random control input is chosen.
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In [6], an approach for better choices of vertices to expand, is proposed. It is based
on a reachable set of configurations for each vertex.

It is often desirable to run the planning algorithm in real time, hence requiring bounded
solution time. One approach is to use anytime algorithms, which initially find a quick
suboptimal solution, and then keep improving the solution until time runs out [7].

Methods for incorporating dynamic environments, have also been investigated. Solu-
tions include extending the configuration space with a time dimension (C − T space), in
which the obstacles are static [8], as well as pruning and rebuilding the tree when changes
occur [9, 10].

All these result only focus on avoiding collisions with obstacles. However, there have
been no attempts to navigate through a human crowd taking into account the dynamics
of the environment and at the same time generate comfortable and natural trajectories
around the humans. E. Hall [11] has analysed how people position themselves socially
relative to each other. He divides the area around a person into four zones (public, social,
personal and intimate). These zones can be used to plan how a robot should move to make
the motion natural and comfortable.

In this paper will formulate the problem of navigating through a dynamic human
environment, as planning a trajectory through a potential field. The overall mission of
the robot is, to move forward through the environment with a desired average speed and
direction, which can be set by a top level planner. This paper contributes by enhancing
the basic RRT planning algorithm to accommodate for navigation in a potential field and
take into account the kinodynamic constraints of the robot. The RRT is expanded using
a control strategy, which ensures feasibility of the trajectory and a better coverage of the
configuration space. The planning is done in C − T space using an MPC scheme to
incorporate the dynamics of the environment. To be able to run the algorithm on-line, the
anytime concept is used to quickly generate a possible trajectory. The RRT keeps being
improved until a new trajectory is required by the robot, which can happen at any time.

The trajectory planning problem is formulated in Section 2, and the algorithm for
generating the trajectory is described in Section 3. Finally in Sections 4-5 the algorithm
is demonstrated in an experiment, where the robot plans the trajectory through a simulated
pedestrian street.

2 Trajectory Generation Problem

2.1 Robot Dynamics

The robot is modelled as a unicycle type robot, i.e. like a Pioneer, an iRobot Create
or a Segway. A good motion model for the robot is necessary because it operates in
dynamic environments, where even small deviations from the expected trajectory may
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result in collisions. So instead of using a purely kinematic robot model of the robot, it is
modelled as a dynamical system, with accelerations as input. This describes the physics
better, since acceleration and applied force are proportional. This dynamical model can
be described by the five states:

x(t) =


x1(t)

x2(t)

x3(t)

x4(t)

x5(t)

 =


x(t)

y(t)

v(t)

θ(t)

θ̇(t)


→ x position
→ y position
→ linear velocity
→ rotation angle
→ rotational velocity

(D.1)

The differential equation governing the robot behaviour is:

ẋ(t) = f (x(t),u(t)) =


ẋ(t)

ẏ(t)

v̇(t)

θ̇(t)

θ̈(t)



=


v(t) cos(θ(t))

v(t) sin(θ(t))

uv(t)

θ̇(t)

uθ(t)

 =


x3(t) cos(x4(t))

x3(t) sin(x4(t))

u1(t)

x5(t)

u2(t)

 (D.2)

where u1 = uv is the linear acceleration input and u2 = uθ is the rotational acceleration
input.

Without loss of generality the starting time can be set to 0, and the trajectory is then
calculated as:

x(t) = x(0) +

∫ t

0

f (x(τ),u(τ)) dτ (D.3)

2.2 Dynamic Potential Field

The value of the potential field, denoted G, at a point in the environment is calculated as
a sum of the cost associated with three different aspects:

1. A cost related to the robots position in the environment without obstacles. For
example high costs might be assigned close to the edges.

2. A cost associated with the robot position relative to humans in the area.

3. A cost rewarding moving towards a goal.
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The combined cost can be written as:

G(t) = g1(x(t))) + g2(x(t),P(t)) + g3(x(t)) . (D.4)

P(t) is a matrix containing the position and orientation of persons in the environment at
the given time. g1(x), g2(x) and g3(x) are the three cost functions. They are further
described below.

Cost related to environment

This cost function is currently designed for non agoraphobic behaviour of the robot, i.e.
in open spaces, such as a pedestrian street. It has the shape of a valley, such that it is more
expensive to go towards the sides, but cheap to stay in the middle:

g1(x(t)) = cyy
2(t) (D.5)

where cy is a constant determining how much the robot is drawn towards the middle.

Cost of proximity to humans

This is not a straightforward calculation, and for more detail, see [2]. The shape of the
potential field is related to how humans position themselves around others, and is based
on Hall’s proxemic distances [11]. For example the potential is lower in front of the
person than behind, because it is more comfortable to have other persons, where you can
see them.

Fig. D.1 shows a potential field around a person. The person stands in the point
(0, 0) and is looking to the left. A robot should try to move towards the lower parts of the
potential function, i.e. towards the dark blue areas, and avoid the red area. The formula for
calculating the potential around one person is a summation of four normalized bi-variate
Gaussian distributions:

g2(x1:2) =

4∑
k=1

ck exp(−1

2
[x1:2 − 0]TΣ−1k [x1:2 − 0]) (D.6)

where ck are a normalizing constants, x1:2 are the first two states of the robot state, i.e.
the position relative to the person, where the cost function is evaluated. 0 is the position
of the person, in this case the origin, and Σk are the covariances of each of the Gaussian
distributions. The covariances are adjusted according to the orientation of the person. The
total cost, g2 is a summation over all of the persons in the area.

Cost of end point in trajectory

The cost at the end point penalizes if the robot does not move forward, and if the robot
orientation is not in a forward direction. An exponential function is used to penalize the
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2 Trajectory Generation Problem

Figure D.1: Potential field around a person standing at (0, 0) and looking to the left. The
robot should try to get towards the lower points, i.e. the dark blue areas. The size of the
person in this figure is approximate equal to a normal human being.

position. It is set up such that short distances are penalized much, while it is close to the
same value for larger distances, i.e. it does not change much if the robot goes 19 or 20

meters from its starting position.

g3(x(t)) = ce1 exp(ce2(x(t)− x̃(0))) + cθθ
4(t) , (D.7)

where c(·) are scaling constants and x̃(0) is the desired position at t = 0. The reason that
θ is raised to the fourth, is to keep the term closer to zero in a larger neighbourhood of
the origin. This means that the robot will almost not be penalized for small turns. On the
other hand larger turns, like going the wrong way, will be penalized more.

2.3 Minimization Problem

Given the above cost functions a potential landscape may be formed. Fig. D.2 illustrates
an example of a pedestrian street landscape with five persons. The robot is initially posi-
tioned at position (2, 0) and has to move to the right. The area is bounded to be 20mwide,
i.e. 10m to each side of the robot from the initial position. Examples of three different
randomly chosen trajectories are shown in the figure.

At a first glance it looks like all three trajectories would run into at least one human,
but since the persons move while the robot advances along the trajectory, this might not
be the case. Conversely the robot may also run into a person, who was not originally on
the path. Therefor it is important to take into account the dynamics of the obstacles (i.e.
the humans), when planning trajectories.

If the current time is t = 0, the planning problem can be posed as follows. Given
an initial robot state x0, and trajectory information for all persons until the given time
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Figure D.2: Person potential field landscape, which the robot has to move through. The
robot starting point is the green dot at the point (2, 0). Three examples of potential robot
trajectories are shown.

P̃start:0. Determine the control input ũ0:T , which minimizes the cost of traversing the
potential field, subject to the dynamical robot model constraints:

minimize I(ũ0:T ) = (D.8)∫ T

0

[g1(x(t)) + g2(x(t),P(t))] dt+ g3(x(T ))

s.t. ẋ(t) = f (x(t),ut)

where g1(x(t)) = cyx2(t)2

g2(x(t),P(t)) =
p∑
j=1

4∑
k=1

ck exp(−1

2
[x1:2 − µj ]TΣ−1j,k[x1:2 − µj ])

g3(x(T )) = ce1 exp(ce2(x1(T )− x1(0))) + cθx
4
4(T ),

were x1:2 = [x1(t), x2(t)] is the position of the robot at time t, ũ0:T is the discrete
input sequence to the robot. T is the ending time horizon of the trajectory, gx(·) are cost
functions and p is the number of persons in the area. The position and orientation of all
persons at time t is given by P(t) and µj is the center of the j-th person at a given time.

To be able to calculate the cost of a trajectory according to Eq. (D.8), only the person
trajectories remains to be defined. A simple model is that the person will continue with
the same speed and direction [12]. More advanced human motion models could be used
without changing the planning algorithm, but it is outside the scope of this paper to derive
a complex human motion model.
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3 RRT Based Trajectory Planning

The structure of the planning algorithm can be seen in Fig.D.3. The idea is that while a
trajectory is executed, a new is calculated on-line. Input to the trajectory planner is the
previous best trajectory, the person trajectory estimates, and the dynamic model of the
robot.

Execute Trajectory 
in Real World

Seed Tree Find 
Nearest 
Vertex

RRT Trajectory Planner

Pick Best 
Trajectory

Estimate Person 
Trajectories

Dynamic Robot Model

Sample 
Random 

Point

Extend 
Tree

T < Tplanning

T ≥ Tplanning

Figure D.3: The overall structure of the trajectory generator. The blue real world part and
the red trajectory planning part are executed simultaneously.

The minimization problem stated in Eq. (D.8) is addressed by RRT’s. A standard
RRT algorithm is shown in Algorithm 1, where the lines 4, 5, 6 correspond to the three
blocks in the larger RRT Trajectory Planner box in Fig. D.3.

The method presented here differs from the standard RRT in lines 1, 3, 6, 9, which are
marked red. Furthermore, between line 6 and 7, node pruning is introduced. Since an
MPC scheme is used, only a small portion of the planned trajectory is executed, while
the planner is restarted to plan a new trajectory on-line. When the small portion has been
executed, the planner has an updated trajectory ready. To facilitate this, the stopping
condition in line 3 is changed. When a the robot needs a new trajectory, or when certain
maximum number of vertices have been extended, the RRT is stopped. Even though the
robot only executes a small part of the trajectory, the rest of the trajectory should still be
valid. Therefore, in line 1, the tree is seeded with the remaining trajectory.

In line 9 the trajectory with the least cost is returned, instead of returning the trajectory
to the newest vertex. The tree extension function and the pruning method are described
below.
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Algorithm 4 Standard RRT (see [13])
RRTmain()

1: Tree = q.start
2: q.new = q.start
3: while Dist(q.new , q.goal) < ErrTolerance do
4: q.target = SampleTarget()
5: q.nearest = NearestVertex(Tree , q.target)
6: q.new = ExtendTowards(q.nearest,q.target)
7: Tree.add(q.new)
8: end while
9: return Trajectory(Tree,q.new)

SampleTarget()
1: if Rand() < GoalSamplingProb then
2: return q.goal
3: else
4: return RandomConfiguration()
5: end if

3.1 RRT Control Input Sampling

When working with nonholonomic kinodynamic constrained systems, it is not straight-
forward to expand the tree towards a newly sampled point in the configuration space (line
6 in Algorithm 1). It is a whole motion planning problem in itself to find inputs, that
drive the robot towards a given point [14]. The algorithm proposed here uses a controller
to turn the robot towards the sampled point and to keep a desired speed. A velocity con-
troller is set to control the speed towards an average speed around a reference velocity.
The probabilistic completeness of RRT’s in general, is ensured by the randomness of the
input. So to maintain this randomness in the input signals, a random value sampled from
a Gaussian distribution is added to the controller input. The velocity controller is imple-
mented as a standard proportional controller. The rotation angle is a second order system
with θ and θ̇ as states, and therefore a state space controller is used for control of the
orientation. The control input can be written as:

u =

[
u1

u2

]
=

[
kv(µv − v(t))

kθ1(φpoint − θ(t))− kθ2θ̇

]
+

[
N (0, σv)

N (0, σθ)

]
. (D.9)

µv is the desired average speed of the robot and φpoint is the angle towards the sampled
point. k(·) are controller constants and σv, σθ are the standard deviations of the added
Gaussian distributed input.

The new vertex to be added to the tree is now found by using the dynamic robot
motion model and the controller to simulate the trajectory one time step. This ensures
that the added vertex will be reachable.
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3.2 Tree Pruning and Trajectory Selection

A simple pruning scheme, based on several different properties of a node, is used. If
the vertex corresponding to the node ends up in a place where the potential field has a
value above a specific threshold, then the node is not added to the tree. Furthermore a
node is pruned if |θ(t)| > π

2 , which means that the robot is on the way back again, or if
the simulated trajectory goes out of bounds of the environment. It is not desirable to let
the tree grow too far in time, since the processing power is much better spend on the near
future, because of the uncertainty of person positions further into the future. Therefore the
node is also pruned if the time taken to reach the node is above a given threshold. Finally,
instead of returning the trajectory to the vertex of the last added node, the trajectory with
the lowest cost (calculated from Eq. (D.8)), is returned. But to avoid the risk of selecting
a node, which is not very far in time, all nodes with a small time are thrown away before
selecting the best node.

The final algorithm is shown in Algorithm 2.

Algorithm 5 Modified RRT for human environments
RRTmain()

1: Tree = q.oldBestTrajectory
2: while (Nnodes < maxNodes) and (t < tMax) do
3: q.target = SampleTarget()
4: q.nearest = NearestVertex(Tree , q.target)
5: q.new = CalculateControlInput(q.nearest,q.target)
6: if PruneNode(q.new) == false then
7: Tree.add(q.new)
8: end if
9: end while

10: return BestTrajectory(Tree)
SampleTarget()

1: if Rand < GoalSamplingProb then
2: return q.goal
3: else
4: return RandomConfiguration()
5: end if

4 Simulations

The above described algorithm is implemented, and demonstrated to work on a simulated
pedestrian street, as shown in Fig. D.2. The experiments consist of two parts. First, the
algorithm is applied on the environment shown in Fig. D.2. This will demonstrate that
the algorithm is capable of planning a trajectory, which does not collide with any persons.
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It will also demonstrate how the tree expands. The algorithm is compared to an algorithm
where a random vertex and a random control input is chosen, as suggested in [4] and used
to different extends in e.g. [5, 6]. Next, a simulated navigation through several randomly
generated worlds is performed. This will demonstrate the robustness of the algorithm
over time.

The following parameters for the potential field are used: cy = 0.1, ce1 = 20,
ce2 = −0.1, cθ = 10, and the parameters for the Gaussian distributions can be seen
in [2]. The poles of the controllers, the reference velocity and the standard deviation of
the velocity input, are the only other parameters to set. The poles have experimentally
been determined, such that the robot has a relatively quick response, but the exact pole
placement does not influence the trajectory generation much. The pole of the velocity
controller is placed in s = −2, and both the poles of the rotational controller are placed
in s = −2 as well. The standard deviation of the added random velocity input is set to
σv = 2ms and the standard deviation of the rotational input is set to σθ = 0.5 rads . The
reference velocity is set to 1.5ms , which is considered as a normal human walking speed.

4.1 Robustness Test

The robustness test is performed in 50 different randomly generated environments, where
the robot has to navigate forwards in one minute. With an average speed of 1.5ms , this
corresponds to the robot moving approximately 90m ahead along the street. In each
simulation the robot’s initial state is:

x0 = [2 0 0 0 0]T (D.10)

First the motion of all the persons in the world are simulated. Initially a random number
of persons (between 10 and 20) are placed randomly in the world. Their velocity is
sampled randomly from a Gaussian distribution. The motion of each person is simulated
as moving towards a goal 10m ahead of them. The goal position of the y − axis of the
street is sampled randomly, and will also change every few seconds. Additional Brownian
motion is added to each person to include randomness of the motion. Over time new
persons will enter at the end of the street according to a Poisson process. This means that
at any given time, persons will appear and disappear at the ends of the street. Because of
this randomness, the number of persons can differ from the initial number of persons, and
ranges from 10 to around 40, which is different for each simulation.

At each time instant, the robot will only know the current position and velocity of
each of the persons within a range of 45m in front of the robot, and it has no knowledge
about where the persons will go in the future.

As it is a simulation, there is no real time performance issues, and nothing has been
done to optimize the code for faster performance. So the tree is set to grow a fixed number
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of 2000 vertices at each iteration. The planning horizon is set to 20 seconds and at each
iteration the robot executes 2 seconds of the trajectory, while a new trajectory is planned.

5 Results

An example of a grown RRT, with 2000 vertices, from the initial state can be seen in
Fig. D.4. The simulated trajectories of the robot are the red lines, and the red dots are
vertices of the tree. It is seen how the RRT is spread out to explore the configuration
space, although only every 10th vertex is plotted to avoid clutter on the graph. Note that
the persons are static at their initial position on the figure, and some trajectories seem to
pass through persons. But in reality, the persons have moved when the robot passes the
point of the trajectory. The best of the all trajectories, which is calculated using Eq. (D.8),
is the green trajectory.
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Figure D.4: An RRT for a robot starting at (2, 0) and the task of moving forward through
the human populated environment. Only every 10th vertex is shown to avoid clutter of
the graph. The vertices are the red dots, and the lines are the simulated trajectories. The
green trajectory is the least cost trajectory.

In Fig. D.5 a RRT has been run for the same environment, but by choosing a random
vertex to expand, instead of the one closest to a random sampled point. The algorithm is
a little faster, since it does not have to calculate distances to all vertices. But as can be
seen, the tree does almost not expand over the configuration space.

An example of the tree after 2000 expansions, when choosing the nearest vertex, but
using a random control input , is illustrated in Fig. D.6. The configuration space is not
covered very well, since there are only two major branches of the tree, and the top area
above the first person has not been explored at all. When comparing to Fig. D.4, it is
clear that our control sampling method covers the configuration space much better.

In Fig. D.7 a typical scene from one of the 50 simulations can be seen. The blue dots
are persons, and the arrows are velocity vectors, with a length proportional to the speed.
The black star with the red arrow, is the robot position and orientation.
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Figure D.5: The RRT after 2000 expansions, where a random vertex is chosen to be
expanded. The tree expands very slow over the configuration space. The lowest cost
trajectory is shown in green.
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Figure D.6: An example of choosing random control input. The tree expands better than
if choosing random nodes, but it still does not cover the configuration space very well.
The lowest cost trajectory is shown in green.
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Figure D.7: A scene from one of the 50 simulations. The blue dots are persons, with their
corresponding current velocity vectors. The black star is the robot.
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In none of the 50 simulations the robot ran into a person. This demonstrates that
the algorithm is robust enough to handle simulated human motion with changing goals
and additional random motion, even though using the simple human motion model when
planning. A few close passes in the combined 50 minute run, down the pedestrian street,
are seen. But, as seen in Fig. D.8, the robot stays out of the personal zone of any of
the persons in more than 97.5% of the time, and out of the intimate zone (a distance
closer than 0.45m) 99.7% of the time. This only occurs on 9 separate instances of the 50

minutes of driving.
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Figure D.8: The bar plot shows how large a part of the time the closest person to the robot
has been in each zone. The robot should try to stay out of the personal and intimate zones.
The distance interval for each zone, can also be seen in the plot.

Except in very densely populated environments, the model runs approximately one
third of real time on a 2.0GHz CPU running MATLAB. This is considered to be reason-
able, since no optimization for speed has been done.

In very dense environments, the planning takes longer, since many new added vertices,
are pruned again, and hence more points has to be sampled before 2000 vertices are
expanded. Additionally the more persons in the area, the longer it takes to evaluate the
cost of traversing the potential field.

On average approximately 1
4 of the sampled points led to an expansion of the tree and

correspondingly 3
4 led to a pruned node.

6 Conclusions

In this paper a new algorithm for trajectory planning for a kinodynamic constrained robot,
has been described. The robot is navigating in a highly dynamic environment, which in
this case is populated with humans. The algorithm is based on RRT’s, but with a new
trajectory selection method. The method enables the costs of traversing a potential field
to be minimized, thereby supporting planning of comfortable and natural trajectories.
Further, a new control input sampling strategy has been presented. This leads to better
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tree coverage over the configuration space, than if sampling e.g. a random control input.
Together with a dynamic model of the robot, an MPC scheme is used to enable the planner
to continuously plan a reachable trajectory on an on-line system.

The algorithm is challenged when the environments become very densely populated,
but so are humans. Humans react by mutual adaptation and allowing violation of the
social zones. This is not done here, where the robot takes on all the responsibility for
finding a trajectory.

Potential future work include real life experiments, and incorporation of human to
human motion correlation into the algorithm.
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1 Introduction

Abstract

Sampling based techniques for robot motion planning have become more widespread
during the last decade. The algorithms however, still struggle with for example nar-
row passages in the configuration space and suffer from high number of necessary
samples, especially in higher dimensions. A widely used method is Rapidly-exploring
Random Trees (RRT’s). One problem with this method is the nearest neighbour
search time, which grows significantly when adding a large number of vertices. We
propose an algorithm which decreases the computation time, such that more vertices
can be added in the same amount of time to generate better trajectories. The algo-
rithm is based on subdividing the configuration space into boxes, where only specific
boxes needs to be searched to find the nearest neighbour. It is shown that the com-
putational complexity is lowered from a theoretical point of view. The result is an
algorithm that can provide better trajectories within a given time period, or alterna-
tively compute trajectories faster. In simulation the algorithm is verified for a simple
RRT implementation and in a more specific case where a robot has to plan a path
through a human inhabited environment.

1 Introduction

Sampling based methods for motion and path planning have gained more interest dur-
ing the last decade, as computer power has increased. Among the most widely used
techniques are Rapidly-exploring Random Trees (RRT’s)[1], which work by randomly
expanding a tree with vertices over the configuration space to find a path from a start
location to a goal location. RRT’s have been used in various applications such as kinody-
namic path planning [2], navigation for urban driving [3], coordination of robot motion
[4], and humanoid robot motion planning [5]. The main strengths of an RRT are the
ease of implementation, the ability to avoid obstacles and the applicability for systems
with differential constraints. RRT algorithms do, however, suffer from the large number
of vertices necessary in trees for large dimension problems and for problems with large
configuration spaces including many obstacles. When adding a large number of vertices
to a tree, especially the time it takes to find the nearest other vertex in each iteration is
time consuming.

There are two ways to address this problem. One approach is to make a smarter
algorithm, which needs fewer samples to obtain the goal. Another approach is to speed
up the search for the nearest neighbour, such that more vertices can be added within the
same time period. Most research has focused on the first problem, where most of the ideas
come from trying to intelligently bias the exploration towards unexplored portions of the
configuration space, such that the algorithm needs fewer samples to converge towards a
goal [6, 7]. This can be done by either biasing the sampling distribution or improving the
vertex extension operation. The nearest neighbour search typically rely on a naive brute
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force method, where the distance to all vertices are calculated, to find the nearest. This
is mainly because it is by far the simplest way to do it. Not much research within the
motion planning community has been done trying to optimise the speed of the nearest
neighbour search. Similar problems have, however, been studied generally in the field of
computational geometry under the name range search problems [8], and have applications
in e.g. computer graphics and when querying large databases [9, 10, 11].

Good candidate algorithms for finding the nearest neighbour are found using a tree
based structure to subdivide the configuration space. Algorithms include quadtrees, R-
trees and kd-trees. Quadtrees and R-trees have a bad worst case performance, which may
be why the kd-tree is the most widely used. A kd-tree works by recursively subdividing
the space into two half spaces one dimension at the time (see [1, 12]). The query time
complexity of a kd-tree is O(n1−

1
d ) (compared to O(n) for a brute force approach),

where n is number of vertices and d is the number of dimensions. However, query time
can be improved substantially for higher dimensional search spaces, if it is enough to find
the approximate nearest neighbour (ANN) [13, 12], where the complexity is reduced to
O(log n). These tree based search algorithms are not designed for use in motion planning,
but for database query algorithms, for which you may not know the structure of the data
or the size of n. They are made for fast queries and do not consider the time it takes
to pre-process the database to obtain the fast query. This can be a problem for motion
planning algorithms, which need to do the pre-processing on-line as well.

A desirable characteristic for on-line motion planning problems is to add as many
vertices in as short a time period as possible. If the speed of the range query decreases
as the tree grows larger it effectively limits how large the tree can grow within some time
period, which is critical in an on-line system.

We present a simple practical algorithm for minimising the nearest neighbour search
time. The algorithm is demonstrated for typical RRT motion planning problems for a
mobile robot. The algorithm is based on a grid in d dimensions, which becomes d-
dimensional boxes, where each vertex belongs to a specific box. Only the relevant boxes
need to be searched to find the nearest vertex. The background for this algorithm has ori-
gin in computational geometry, but has to the best of our knowledge not been exploited
for motion planning. The algorithm is applicable to on-line as well as off-line applica-
tions and the benefit of this box method increases as number of vertices, that need to be
added to the tree, grows.

First the algorithm is presented, and then an analysis of the time complexity versus
other methods is given. Then the algorithm is demonstrated in simulations.

2 Methods

The structure of a very basic RRT algorithm can be seen in Algorithm 1.
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Algorithm 6 Standard RRT (see [14])
RRTmain()

1: Tree = q.start
2: q.new = q.start
3: while Distance(q.new , q.goal) < ErrTolerance do
4: q.target = SampleTarget()
5: q.nearest = NearestVertex(Tree , q.target)
6: q.new = ExtendTowards(q.nearest,q.target)
7: Tree.add(q.new)
8: end while
9: return Trajectory(Tree,q.new)

SampleTarget()
1: if Rand() < GoalSamplingProb then
2: return q.goal
3: else
4: return RandomConfiguration()
5: end if

The objective of the algorithm is to start from an initial configuration and find a path
to a goal configuration. This is done by continuously adding vertices to a tree, which is
grown from the starting configuration. To extend a tree a random point is sampled from
the configuration space. Then the distances to all existing vertices are calculated, and
the nearest vertex is chosen. Finally the tree is extended from the chosen vertex towards
the sampled configuration. When a leaf vertex reaches within some distance of the goal
location, the algorithm is stopped. When the tree becomes large, a significant part of the
computation time is spend on the nearest neighbour search (the red line in Algorithm 1).

2.1 Minimising computation time for finding nearest vertex

The basic idea of the proposed approach, for minimising the computational complexity
of finding the nearest vertex, is simple. It consist of partitioning the d-dimensional con-
figuration space in a number of d-dimensional boxes, and only calculate the distance to
other vertices in relevant boxes instead of all vertices in the whole configuration space.
For simplicity, we use k equally sized boxes in each dimension. That means we will get
kd d-dimensional boxes. The algorithm is started by searching all vertices in the same
box as the newly sampled vertex. Then boxes adjacent to the first box are searched and
step by step boxes further and further away are searched. The algorithm terminates, when
the nearest found vertex is closer than the boundary between the searched and unsearched
boxes. In that case it is guaranteed that no vertex in any of the outer boxes, which have
not been searched yet, can be closer than the current nearest vertex.

The algorithm is illustrated for two dimensions in Fig. E.1. Here an RRT with 100
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vertices have already been grown. The first step is to sample a new vertex, which is the
red dot. The corresponding box, to which it belongs, is the red hatched area. A zoomed
version of this area is shown in Fig. E.2.
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Figure E.1: The configuration space partitioned in a number of boxes in each dimension.
A grown tree has to be extended with a newly sampled vertex (the red dot). The nearest
boxes to the new vertex is hatched in different colours.

After finding the corresponding box, we start by calculating the distance to all vertices
in this box (V1 and V2) and the distance to the nearest border of the box, dborder, which
is shown in Fig. E.2. If any of the vertices are closer than dborder:

min
i∈I
{|Vnew − Vi|} ≤ dborder , (E.1)

where I is the set of vertices in the box, then no other vertex in the configuration space
can be closer. In this case the algorithm is terminated after only calculating the distance to
two vertices plus the distance to the border of the box instead of calculating the distance
to all 100 vertices. However, in the case of Fig. E.2 dborder is the smallest, and thus,
there may be other vertices which are closer. Therefore the distances to all vertices in the
adjacent boxes are calculated, which is the green hatched area. In this case there are eight
additional vertices (see Fig. E.1), for which V3 in Fig. E.2 is the nearest. The distance to
V3 is less than the distance to the border of the yellow hatched area in Fig. E.1, which
means that no other vertex can be closer, and thus V3 is the nearest vertex.

In this case the algorithm terminated after calculating the distance to 10 vertices,
which is 1/10 of the total number of vertices. When initially building the tree, there are
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Figure E.2: A zoomed version of Fig. E.1, where the three nearest vertices and the newly
sampled vertex can be seen.

only few vertices and hence a large overhead, as a large number of boxes need to be
searched. But once there is a significant density of vertices, the box method is substan-
tially faster than the brute force approach. The method is illustrated here in two dimen-
sions, but is easily generalised to more dimensions.

The algorithm for the described box method is given in Algorithm 2.

Algorithm 7 The algorithm for the box method, which is used to find the nearest vertex
(the red line in Algorithm 1).
NearestVertex(Tree, q.target)

1: boxNumber = FindBoxNumber(q.target)
2: searchArea = boxNumber
3: while Dist(q.target,searchBoundary)
< Dist(q.target,q.nearest) do

4: ExpandSearchArea()
5: q.nearest = FindNearest(searchArea,q.target)
6: end while
7: InsertIntoBox(q.target,boxNumber)
8: return q.nearest

2.2 Time Complexity Analysis

We start by analysing the time complexity of the standard RRT algorithm as shown in
Algorithm 1. The time it takes to add N vertices to the tree (disregarding the initialisa-
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tion), can be calculated as the sum of the time for N iterations of each of the lines 4-7 in
Algorithm 1:

T (N) = Tsample(N) + Tnearest(N) + Textend(N) + Tadd(N), (E.2)

where each Tsample, Tnearest, Textend, Tadd correspond to the lines 4-7 respectively. Tsample
and Tadd are simple operations, and can be done in linear time, so the complexity is
O(N). The extension time, Textend, of the tree can take considerable longer if e.g. col-
lision checking or other intelligent extension strategies are used. These calculations do,
however, not depend on the number of vertices already in the tree, and can thus still be
done in linear time. Each time the nearest vertex has to be found, the distance to all
previously added vertices must be calculated:

Tnearest(N) =

N∑
i=1

(i− 1)Tdist =
N2 −N

2
Tdist (E.3)

where Tdist is the time it takes to calculate the distance to any other vertex. So even
though Tdist is small compared to Textend, the complexity isO(N2−N). By adding the
derived complexity for the sample, nearest, extend and add operations respectively, the
combined complexity for the brute force nearest neighbour search is:

O(N) +O(N2 −N) +O(N) +O(N) ≈ O(N2) (E.4)

It can be seen that the complexity is bounded byO(N2−N), which is the complexity for
the nearest operation. So when the tree becomes large, a significant part of the compu-
tation time is spend on calculating distances to other vertices, and much computing time
can be saved if the nearest neighbour search is optimised.

In the following the complexity for finding the nearest vertex, when adding vertex
number n is analysed. When using brute force, all n − 1 previous vertices need to be
searched, which therefore has complexity O(n).

Finding the nearest vertex using the box method depends of the number of boxes M .
IfM is large compared to n, the probability of having to search many of boxes is large, so
this is not a good solution. Opposite, if M ≤ n the probability of having to search many
boxes is small. In the case of evenly distributed vertices the average number of vertices
to check will be n/M , and thus the complexity will be O(n/M). So optimally, M needs to
be chosen approximately equal to n [11], which gives a complexity of O(1). However,
as n increases in each iteration, this is not possible all the time. But experimentally we
have found that a good value for M is around N/2, where N is the maximum number of
vertices in the RRT.

While n is small, there is no benefit of using the algorithm, since too many boxes
have to be searched. So if only inserting into boxes until n is larger than some value,
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increases the speed of the algorithm. In contrast to the brute force approach, there is an
overhead when each vertex has to be inserted into the data structure, which contains the
boxes. Calculating the corresponding box for a vertex in the box method takes constant
time, so the insertion has complexityO(1), which does not change the overall complexity
(O(1)) of the method.

This complexity is compared to the most used tree based approach for minimising
the time it takes to find the nearest neighbour in motion planning problems, namely the
kd-tree. According to [12], a kd-tree has a complexity for inserting a vertex of O(log n).
Furthermore, the complexity for finding the nearest vertex is O(n1−

1
d ), where d is the

number of dimensions [12]. The combined complexity for searching and inserting is
therefore O(n1−

1
d + log n) ≈ O(n1−

1
d ).

This complexity analysis is based on a balanced tree. A disadvantage of the kd-tree is
that if initial vertices are not well distributed, the tree will become unbalanced, and thus
the performance degrades significantly. This can be somewhat compensated for if the
tree is rebuilt after some iterations. The rebuild process has a complexity of O(n log n),
which does not change the amortised time complexity, since it is only done once or a
couple of times. Using the box method, this not a problem, since each vertex belongs
to one specific box, and the data structure is therefore always the same, and nothing is
gained by rebuilding.

So for finding the nearest other vertex the complexity for the brute force method is
O(n), the kd-tree has a complexity of O(n1−

1
d ), and if a proper number of boxes are

chosen the box method has a complexity of O(1).

2.3 General Considerations

One disadvantage with both the box based algorithm and the kd-tree, is the overhead
when only adding a few vertices. However, this happens only in limited cases, where the
configuration space is relatively small and with few obstacles, in which case an RRT may
not be the right algorithm to use anyway. So to obtain good exploration in general, it is
useful to use as many vertices as possible, for which the box method performs well. This
is especially the case in on-line applications, where there is a time limit for how long the
planning can take. It is though, possible to overcome some of the initial overhead using
the box based algorithm. Initially when the number of vertices is much smaller than the
number of boxes (n � M ), it is faster to just add vertices to the boxes, and do a brute
force nearest neighbour search. When n grows, the algorithm can switch to searching in
the boxes. Since the time it takes to add a vertex is small and constant (the complexity
is O(1)), it does not cost much overhead. It is also a possibility to dynamically increase
the number of boxes in each dimension, as the tree grows large. This will enable the ratio
n/M to stay close to an optimal value.

199



Paper E

Another advantage of the box based algorithm is that it is easy to insert or remove
vertices from the data structure compared to inserting and removing from the kd-tree.
Inserting or removing vertices only requires the operation to add or remove the vertex
from the corresponding box, which is O(1). Inserting a vertex in the kd-tree requires
an O(log(n)) search to find out where to insert. Removal of vertices is generally not
easy for the kd-tree. It requires rebuilding the whole subtree beneath the place, where the
vertex needs to be inserted. Conceptually it is also easier to understand and implement
the nearest neighbour search using the box method, because a kd-tree search includes
recursive visiting branches of the tree.

3 Experiments

Two different experiments have been set up to demonstrate the effectiveness of the box
based nearest neighbour search algorithm in comparison to the brute force approach. First
the box based algorithm is implemented together with a basic RRT algorithm, as shown
in Algorithm 1, and the performance is compared to the brute force approach and the
kd-tree. Secondly, the algorithm is used in a more realistic environment, where a robot
plans a path in an environment with obstacles.

In the first experiment an RRT with 10000 vertices is build in a d-dimensional space
of 1m in each dimension. This is done for d = 2, 4, 6 dimensions using a grid with 10

boxes in each dimension. The time for adding each vertex is continuously logged, and for
comparison the same experiment is done using a brute force approach. For comparison
to the kd-tree, an existing MATLAB implementation of the algorithm has been used [15].
However, this implementation of the algorithm does not support adding vertices to an
existing tree, and the nearest neighbour search relies on balanced tree. To be able to
compare to the other algorithms, a new tree is built each time a vertex is added, but only
the time it takes to search for the nearest vertex, is then logged for the purpose of the
experiment. This is only done for the two dimensional case.

In the second experiment a robot trajectory is planned through a two dimensional
configuration space. The configuration space contains obstacles represented by a potential
field, and vertices are pruned when the cost gets too high. The potential field represents
persons moving in the area. For further information on the setup, see [16]. Fig. E.3
illustrates an example of the potential field with a few vertices already added to the tree.
The green dot to the left at (2, 0) is the starting position of the robot, the red lines are
possible trajectories, and the red dots are vertices. Furthermore, the red areas of the
potential field are where there are persons, and hence where the robot should not go. First
the tree with 10000 vertices is built using the box based distance search method. Then a
tree is built using a brute force nearest neighbour search approach, where the algorithm
is allowed to use the same amount of time it took to build the first tree. This experiment

200



4 Results

makes it possible to see the benefits of the box based method in an on-line application.
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Figure E.3: An example of an RRT with 300 vertices in a potential field landscape, which
is used for experimenting with the algorithm.

4 Results

The time for building an RRT with 10000 vertices in two, four and six dimensions is
shown in Fig. E.4 using both the box algorithm and the brute force approach.
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Figure E.4: From top to bottom the figure shows the time it takes for adding 10000
vertices in two, four and six dimensions respectively. The blue line shows the time it
takes for the brute force approach and the green line shows the time for the box based
method.
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A comparison of the nearest vertex search times only, is done for two dimensions in
Fig. E.5 for the three methods; brute force, box based method, and kd-tree.
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Figure E.5: Comparison of the time it takes to find the nearest neighbour for two dimen-
sions using the kd-tree as well as the brute force method and the box method. Note that
comparing to Fig. E.4, the brute force and the box method are slightly faster, because
only the time for finding the nearest vertex and not the other parts of the RRT algorithm
is considered in this experiment.

In Fig. E.6 an RRT with 10000 vertices is built in the potential field shown in Fig. E.3.
And in Fig. E.7 the RRT is built using the brute force method for the same amount of time
as used in Fig. E.6 for the box method. In both figures only 1/10 of the vertices are plotted
to avoid cluttering the figure too much.
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Figure E.6: A tree with 10000 vertices. Here the configuration space is explored very
well.

5 Discussion

The results demonstrate that the box algorithm clearly outperforms the brute force ap-
proach for two and four dimensions (the top and middle plot in Fig. E.4). One thing
to notice is that the box method has a larger advantage in four dimensions, than in two
dimensions. Since there are 10 boxes in each dimension, there are 100 boxes in two di-
mensions and 104 boxes in four dimensions. As the optimal number of boxes is around
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Figure E.7: A tree with approximately 2000 vertices, which does not explore the config-
uration space very well. This tree is build using brute force search, and has used the same
runtime as the box based method in Fig. E.6

N/2, the number of boxes in four dimensions is closer to the optimal number of boxes,
which is approximately 5000. In the bottom plot of Fig. E.4 it is seen that in 6 dimen-
sions, it starts to take time for the box algorithm. This is a consequence of there being too
many boxes compared to the number of vertices. The total number of boxes is 106. So
if the number of vertices is in the range of a million, the algorithm would perform much
better, which can also be seen on the trend of the figure. After for example 30000 vertices,
which is not shown in Fig. E.4, it is about twice a fast as the brute force method for six
dimensions and at 300000 vertices it is 22 times faster. A way to reduce the computation
time for this large number of boxes is to only subdivide some dimensions into boxes, like
for example only the first three dimensions. This can also be utilised in planning prob-
lems, where the variance of the vertex locations varies much in different dimensions. It
can be an advantage to have a larger number of boxes in the dimensions, were there is a
large vertex variance. Possible examples are for a multilinked arm, where the first joint
probably moves close around a nominal operating point, or for a mobile robot, where it
may be desirable to explore the position part of the configuration space well, but e.g. the
speed and orientation are around nominal values, or for configuration spaces with narrow
passages in some dimensions.

According to the complexity calculations, the box based algorithm should have an
approximate linear performance (O(N)) when adding N vertices, if the correct number
of boxes is chosen. In the middle figure of Fig. E.4 it can be seen that the box method
performs almost linearly, which is in accordance with the theory. Similarly in the bot-
tom figure for six dimensions, it is seen that the complexity is starting to get closer to
linear as the number of vertices grows larger, even though there is a large overhead in the
beginning.

The performance of the kd-tree implementation in Fig. E.5 is seen to be worse than
using the box based method. The used implementation of the kd-tree ensures that the
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search is always done in a balanced tree, which would not typically be the case in a real
application, and thus in a real application, the kd-tree would perform worse than in this
case. Furthermore, because of the complexity of the kd-tree search algorithm, O(n1−

1
d ),

it performs worse in higher dimensions, where it can be seen in Fig. E.4 that the box based
method performs better for e.g. four dimensions. The speed of the kd-tree algorithm can,
however, be improved for high dimensional search spaces by using approximate nearest
neighbour (ANN) algorithms. This comes at a tradeoff for not being entirely sure that it
is the correct nearest neighbour, which has been found, which is not desirable in some
applications. Additionally the bound on the complexity for ANN is O(log n) [8, 17],
which is sill not better than the proposed method.

In Fig. E.6 a tree with 10000 vertices is built. It is seen that the tree covers all of the
obstacle free configuration space well. Contrary to this, Fig. E.7 shows that the configu-
ration space is not covered well, when planning using the brute force method for the same
amount of time. Since using the box method cause much denser population of vertices,
it is possible to choose trajectories, which are better. For example, it is seen in Fig. E.7
that the tree tends to move along narrow branches in the middle between obstacles, and
might thus not find narrow passages or a feasible trajectory closer to obstacles. It is hence
clearly advantageous to use the box method to be able to explore the configuration space
well.

In general we argue that the presented box based nearest neighbour search algorithm
is better than both a brute force approach and the kd-tree for robot trajectory planning.
The algorithm can be adapted to perform optimal for a given problem, e.g. the number of
boxes in each dimension can be adjusted to improve performance, which is not possible
for the kd-tree. It is also easier to implement than the kd-tree, and it is faster to insert and
remove vertices from the data structure.

6 Conclusion

In this paper we presented a practical algorithm for minimising the computational com-
plexity of an RRT algorithm for robot path planning problems. It is shown that the time
it takes to find the nearest neighbour in a standard RRT, using a brute force approach is
substantial when the number of vertices in the tree grows. Thus, a lot of computation
time can potentially be saved, if the nearest neighbour search is minimised. The proposed
algorithm partitions the configuration space into a number of boxes, where only relevant
boxes need to be searched to find the nearest vertex. The algorithm can be tuned to work
better if an approximate bound on the maximum number of vertices is known. But gen-
erally the algorithm works better the larger the number of vertices there are in the tree.
This also means that there is a relatively large overhead when only a small number of
vertices needs to be added to the tree, which is not often the case. However, complexity
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calculations and simulations show that the proposed box based method performs better
than both a brute force approach and using a kd-tree to find the nearest neighbour.

The algorithm can be used to increase the number of vertices, which it is possible
to ad within a given time period, and can thus provide better trajectories, or compute a
trajectory faster.
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Appendix I

This appendix describes some of the terms, which are used throughout the thesis to
avoid ambiguity in how people interpret the terms. The terms are defined according to
their use in the thesis

1 Robotics and Planning

Terms related to planning are loosely based on the definitions in [1], [2] and [3].

Configuration space is the set of all possible positions a physical system (a robot) can
attain. The configuration vector, q, is the minimal set of parameters that specify any
unique configuration of the robot. The configuration space C is the set of all possible
q. A typical example is a planar two joint arm, where the configuration is defined by
the coordinates of the two joint angles q = [θ1 θ2]T . Another example is a mobile
robot, which has the position coordinates and orientation as configuration coordinates
q = [px py θ]

T . The configuration space is typically used for path planning, since finding
an obstacle free path for a robot in a physical world, reduces to finding a path of a point
through the obstacle free configuration space Cfree.

The configuration space is not to be confused with the state space x. While the
configuration parameters are uniquely defined, the state space can be any set of chosen
parameters that describe the state of the robot. For example a typical state, in addition to
the position and orientation, also contains parameters for velocity.

Non-holonomic was originally introduced to describe the problem of motion planning
for wheeled robots. Non-holonomic refers to constraints on the configuration space that
can not be completely integrated, which means that the constraints involves derivatives
of the configuration q. This means that constraints written as Φ(q) = 0 are holonomic
constraints and constraints written as Φ(q, q̇) = 0 are non-holonomic constrains. For
example a non-holonomic constraint for a car like robot is the constraint that it cannot
move sideways. If q = [px py θ]

T , this can be written as

q̇T

sin q3

cos q3

0

 = 0 . (I.1)

A holonomic constraint is for example limitations on the joint angles of a robotic arm.
Non-holonomic systems are closely related to underactuated systems, and the terms

are often used interchangeably. This is however not a correct usage even though an under-
actuated system is often non-holonomic and vice versa. The definition of underactuated is
that the number of actuators is strictly less than the dimension of C. For example a unicy-
cle type robot has a 3-dimensional configuration space, but can only control rotation and
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speed, and is thus underactuated. It is also non-holonomic because it cannot drive side-
ways. However, if the unicycle were transformed into a hover craft, it would be able to
slide sideways. Therefore the constraint on the sideways motion would be removed, and
it would be holonomic. However, it would still be underactuated, and thus underactuated
does not imply non-holonomic.

Kinodynamic planning originally comes from [4] and refers to planning that takes
into account both the kinematics and the dynamics of the robot, i.e. the velocity and
acceleration bounds must be satisfied. This typically involves second order constraints on
C, e.g. the input controls the acceleration q̈ = u. Kinodynamic planning is not necessarily
encompassed by non-holonomic planning, but it is often the case when working with
underactuated systems.

Motion planning is related to problems involving the local motion of the robot. It can
be avoiding local obstacles or adapting the motion according to humans close to the robot.

Trajectory planning has a longer time horizon than motion planning. In trajectory
planning the goal is to create a trajectory through Cfree, the obstacle free space. A trajec-
tory planner is an algorithm that gives both a path and a velocity that should be executed.

Trajectory generation is analogous to trajectory planning. A trajectory planning algo-
rithm generates a trajectory to be executed.

Path planning it the process of finding a path through Cfree. A path disregards kine-
matic constraints and dynamics and only find a way to get the robot from A to B.

Navigation is the process of executing a planned trajectory. The robot navigates through
the environment while continuously replanning the trajectory.

Pose sometimes have an ambiguous meaning. Sometimes it means only the orientation,
and sometimes a 3-d orientation (yaw, pitch, roll) of e.g. a face, and sometimes the
configuration of the whole body of a person. In this thesis pose refers to the position an
orientation of a person or robot [px py θ]

T . The orientation of a person is defined to be
the direction of the torso, and not the direction of the face. This is because the orientation
of the face can change frequently without it actually have any meaning in relation to
where the person is going. The orientation is also not exactly the same as the motion
direction. This can be exemplified by a person moving slowly backwards. In this case,
the orientation is in the opposite direction of the motion.
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Tree Nodes and Vertices are two words, which are often used interchangeably. How-
ever, in this thesis there is a slight distinction. A tree consist of a number of nodes and
edges connecting the nodes. So a tree is completely specified by which nodes are con-
nected to which nodes. So when drawing the tree with nodes, it has no meaning how they
are positioned, but only how they are connected. On the other hand, vertices can contain
a lot more information. This can for example be velocity and associated trajectory cost.
Tuples illustrating this are shown in Eq. (I.3).

node = {parent, children} (I.2)

vertex = {parent, children, position, orientation, velocity, cost . . .}

2 Human-Robot Interaction

Open-ended environment defines an environment, where it is not completely defined
what can happen. A human environment is unstructured and there are no restrictions
to what may happen around the corner. Thus an open-ended environment is where all
possible scenarios cannot be modelled.

Close interaction is used in the thesis as interaction that does not involve moving
around in the environment. That is for example speech, manipulation tasks, gesture recog-
nition, or facial expressions.

Interaction session denotes the process from a robot detects a person and until the
person is gone or close interaction is initiated. That means that it is the time period,
where the robot and the person mutually adapts their motion to each other.

Interest in interaction is defined as a person’s interest in interaction, as perceived by
the robot. It should therefore not be interpreted as the true internal state of the person,
which would require more in depth psychological research.

Person Indication (PI) is a fuzzy variable that gives an indication to whether a person
is interested in close interaction with the robot. PI represents the robot’s belief in the
interest level of the person. It is a continuous variable that belongs to the interval between
0 and 1 (PI ∈ [0; 1]). PI= 1 represents the case, where the robot is certain that the person
wants to interact and if PI= 0 the robot is certain that the robot does not want to interact.
The closer PI is to 0.5, the more uncertain the robot is to whether a person is interested
in interaction.

Person Skill Indication (PSI) is a fuzzy variable that resembles PI. It is used when the
robot plays a game with a person. PSI represents the skill of the playing person. PSI is
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a continuous variable that belongs to the interval between 0 and 1 (PSI ∈ [0; 1]). When
PSI≈ 1 the robot thinks that it is a skilled player, who is playing, and opposite it is a bad
player if PSI≈ 0.
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