


Dynamic collision avoidance system for a
manipulator based on RGB-D data

Thadeu Brito1,2, Jose Lima2,3, Pedro Costa3,4, and Luis Piardi1,2

1 Federal University of Technology - Paraná, Brazil
thadeu brito@hotmail.com

luis piardi@outlook.com
2 Polytechnic Institute of Bragança, Portugal

jllima@ipb.pt
3 Faculty of Engineering of University of Porto, Portugal

pedrogc@fe.up.pt
4 INESC-TEC, Centre for Robotics in Industry and Intelligent Systems, Portugal

Abstract. The new paradigms of Industry 4.0 demand the collabora-
tion between robot and humans. They could help and collaborate each
other without any additional safety unlike other manipulators. The robot
should have the ability of acquire the environment and plan (or re-plan)
on-the-fly the movement avoiding the obstacles and people. This paper
proposes a system that acquires the environment space, based on a kinect
sensor, performs the path planning of a UR5 manipulator for pick and
place tasks while avoiding the objects, based on the point cloud from
kinect. Results allow to validate the proposed system.

Keywords: Collaborative robots, manipulator path planning, collision
avoidance, RGB-D.

1 Introduction

One of the most important task in Industry 4.0 related to cooperation is the
ability to estimate and avoidance of collision for a robot manipulator. Collabo-
rative robotics is a topic addressed in Industry 4.0 where humans and robots can
share and help each other in a cooperative way. Collaborative robot can be used
without any additional safety unlike other manipulators. This means, the robot
should have the capacity of acquire the environment and plan the movement
avoiding the obstacles and people. The cooperation between human and robot
requires that the robot could re-plan the path to reach the target position that
avoids the collision with human parts and obstacles in real time, this means on
the fly, while the arm is moving. Such process can be called dynamic collisions
avoidance.

Nowadays RGB-D sensors help this environment acquisition and perception
so that the system can do the path planning with constraints. The depth cameras
are increasing its popularity and decreasing its prices. The well-known kinect
sensor is an example of that. This paper proposes a system that acquires the



2 Thadeu Brito, Jose Lima, Pedro Costa, and Luis Piardi

environment space, based on a kinect sensor, performs the path planning of a
UR5 manipulator while avoiding the objects. Two algorithms were tested in
real acquired situations with a simulated UR5 robot and the results point the
advantages for this approach.

2 Related work

An important step to be considered when developing the manipulator system is
the path planning. Path planning is a key area of robotics. It comprises planning
algorithms, configuration space discretization strategies and related constraints.
It is well known that path planning for robots with many degrees of freedom
is a complex task. Barraquand and Latombe [1], in 1991, proposed a new ap-
proach to robot path planning that consisted of building and searching a graph
connecting the local minima of the potential function defined over the robot’s
configuration space. This new approach was proposed considering robots with
multiple degrees of freedom. Later Ralli and Hirzinger [2] refined that same al-
gorithm accelerating the system, calculating solutions with a lower estimated
executing time. Probabilistic methods were introduced by Kavraki et al [3] with
the objective to reduce the configuration free space complexity. This method is
not adapted for dynamic environments since a change in the environment causes
the reconstruction of the whole graph. Several variants of these methods were
proposed: Visibility based PRM [4], Medial axis PRM [5], Lazy PRM [6] and
sampling based roadmap of trees [7]. Other methods are used and Helguera et all
used a local method to plan paths for manipulator robots and solved the local
minima problem by making a search in a graph describing the local environ-
ment using and A* algorithm until the local minima are avoided [8]. The path
planning becomes more complex when there are inserted obstacles in a given
environment. Blackmore and Williams in 2006 presents a complete algorithm by
posing the problem as disjunctive programming. They are able to use existing
constrained optimization methods to generate optimal trajectories for manipula-
tor path planning with obstacles [9]. Path planning in real-time is introduced by
Samir et all in 2006 in the dynamic environment. This approach is based on the
constraints method coupled with a procedure to avoid local minima by bypass-
ing obstacles using a boundary following strategy [10] More recent Tavares et all
use a double A* algorithm for multiple industrial manipulators. This approach
uses one A* algorithm to approach the target and an another A* more refining
to reduce the error [11].

3 System architecture

Many efforts have been done to achieve a system that acquires the environment
by means of an RGB-D sensor, planning a way for an UR5 manipulator to reach
its end point with the ability to avoid obstacles. Figure 1, presents a simplified
block diagram of the system.



Dynamic collision avoidance system for a manipulator based on RGB-D data 3

Fig. 1. Diagram of system functions. Image adapted from [22].

3.1 ROS

Robotic Operating System (ROS) is a framework that contains a wide range
of use in developing programs for robots. ROS makes interactions between the
functionalities of a robot (sensors, locomotion, vision, navigation and location)
with contribution of libraries and services, facilitating the robotic application.

The philosophy is to make a piece of software that could work in other robots
by making little changes in the code [16]. Several ROS modules are used in the
present work. Next subsections address the main ones.

3.2 Rviz

The ROS framework comes with a great number of powerful tools to help the
user and developer in the process of debugging the code, and detecting problems
with both the hardware and software. This comprises debugging facilities such
as log messages as well as visualization and inspection capabilities which allows
the user to see what is going on in the system easily [16].

Rviz, presented in Figure 2 is a 3D visualizer to make a virtual simulation of
robotic models in ROS. During the simulation it is possible to create scenarios
with obstacles, to change positions of pose of a robot or to move them through
a virtual ”world”. It is also possible to insert sensors, such as Kinect, change
positions of sensors or robots. This way it is confirmed that the application is
ready to be implemented in a real application, avoiding possible problems in real
robots.



4 Thadeu Brito, Jose Lima, Pedro Costa, and Luis Piardi

Fig. 2. Screenshot of a Rviz 3D visualizer with a simple application. On the left a
display panel, in the middle a simulated UR5 on the table and on the right a views
panel.

3.3 RGB-D Sensor

Develop a robotic application requires the use of sensors. There are currently
several types of devices that ROS supports. This package is defined in different
categories: 2D range finders, 3D sensors, Pose estimation, Cameras, Sensor In-
terfaces, and other ones [20]. The 3D sensor package, contains the RGB-Depth
(RGB-D) sensors such as Kinect.

RGB-D cameras consist of an RGB and a depth sensor that capture color
images along with per-pixel depth information (depth map). These features have
promoted the wide adoption of low-cost RGB-D cameras in numerous at-home
applications, such as body tracking, gait monitoring for tele-rehabilitation, track-
ing of facial expressions, object and gesture recognition among the others [12].

3.4 MoveIt!

MoveIt! is a well-known software for planning mobile manipulation movements,
incorporating the latest advances in motion planning, manipulation, 3D per-
ception, kinematics, control and navigation. It provides an easy-to-use platform
for developing advanced robotics applications, evaluating new robot designs and
building integrated robotics products for industrial, commercial, R&D and other
domains [13]. Figure 3 shows a screenshot of the MoveIt! performing a path plan-
ning.

The main node of this software is the move group that integrates among sev-
eral other tools. A good example of how move group works is the path planning,
where it is necessary to collect information from a point cloud and turn it into
obstacles in the simulation. MoveIt! uses C++ or Phyton language which makes
it easy to establish commands and create interface when viewing some movement



Dynamic collision avoidance system for a manipulator based on RGB-D data 5

Fig. 3. Screenshot of a MoveIt! with a planned path executed.

in 3D. The algorithms embedded in MoveIt! can be used by many planners: Open
Motion Planning Library (OMPL), Stochastic Trajectory Optimization for Mo-
tion Planning (STOMP), Search-Based Planning Library (SBPL) and Covariant
Hamiltonian Optimization for Motion Planning (CHOMP).

3.5 Camera calibration

The calibration of consumer-grade depth sensors has been widely investigated
since the release of the first-generation Kinect in 2010. Various calibration meth-
ods, particularly for the depth sensor, have been studied by different research
groups [14].

The availability of affordable depth sensors in conjunction with common RGB
cameras (even in the same device, e.g. the Microsoft Kinect) provides robots
with a complete and instantaneous representation of both the appearance and
the 3D structure of the current surrounding environment. This type of infor-
mation enables robots to perceive and actively interact with other agents inside
the working environment. To obtain a reliable and accurate measurements, the
intrinsic parameters of each sensors should be precisely calibrated and also the
extrinsic parameters relating the two sensors should be precisely known. The
calibration must be done because there are no integrated sensors able to provide
both color and depth information yet (sensors are separated).

These sensors provide colored point clouds that suffer from a non accurate
association between depth and RGB data, due to a non perfect alignment be-
tween the camera and the depth sensor. Moreover, depth images suffer from a
geometric distortion, typically irregular and position dependent. These devices
are factory calibrated, so each sensor is sold with its own calibration parameter
set stored inside a non-volatile memory. On the other side, the depth distor-
tion is not modeled in the factory calibration. So, a proper calibration method



6 Thadeu Brito, Jose Lima, Pedro Costa, and Luis Piardi

for robust robotics applications should precisely estimate the misalignment and
both the systematic and distortion errors [15]. Figure 4 shows the calibration
procedure.

Fig. 4. Calibration procedure to obtain the intrinsic and extrinsic parameters.

4 Path planning

Different methods of path planning can be exploited in an application of robotic
manipulators. An interesting planner is the OMPL, a library for many trajectory
calculation algorithms. However, to check for collisions, the FCL library (Flexible
Collision Library, included in MoveIt!) is used.

The OMPL planner works with two ways to create a path, one uses dif-
ferential constraints (Control-based planners) and the other establishes a path
through the geometric and kinematic constraints of the system (Geometric Plan-
ners) which is addressed in this paper [23].

A widely used algorithm is the multiple query of scripts created from the
environment, known as PRM (Probabilistic Roadmap Method). These multiple
scripts are based on sampling algorithms, which can have a higher cost frame-
work. Another good algorithm is RRT (Rapidly-exploring Random Trees), that
is very simple to implement: it has low cost of framework and has good outputs
that accomplishes its work by making state trees.

Therefore, with these algorithms it is possible to carry out a path planning
from an initial pose to a final pose. The steps to perform this path planning are
indicated in Figure 1, so the use of a RGB-D image generated by a Kinect can
check for possible obstacles.

Images are introduced into the system through interconnected nodes, which
make the calculations necessary to have non-collision paths between the start



Dynamic collision avoidance system for a manipulator based on RGB-D data 7

and the goal poses. Finally, the execution of the movement is done, if there is
a trajectory planning without collisions. Otherwise the MoveIt! informs that it
is not possible to carry out the collisions free movement. If the environment
changes at any time, for example if obstacles change places or new obstacles
are inserted into the work environment, the system (OMPL) will recalculate the
trajectory to reach the final pose. By this way, the aim of a system of avoiding
collisions dynamically arises, that is, the whole collision avoidance system adapts
the planning routes according to the environment.

5 Results

To verify that the dynamic collision avoiding system works, it was made a lab
simulation with a Kinect sensor and a virtual model of a UR5 manipulator. In
this way, the purpose is to create a scenario with real obstacles to guarantee
the operation of the system. The main idea is to make the Kinect sensor to
create a point cloud of real obstacles and indicates to MoveIt! where the virtual
manipulator can not collide, that is, where the manipulator can move to reach the
goal pose. The working environment for the validation of the dynamic collision
avoidance system was developed with a simple table as the base for one box
that form the real obstacles. The virtual manipulator model has been configured
to be fixed to the center of the table, so that the manipulator stays between
the box and human, without maintaining contact with them. At this stage the
use of the RGB-D sensor was important to generate the point cloud and to be
able to calibrate the positioning of all the objects. In order to avoid shadow
interference in point cloud generation, the best RGB-D sensor fixture is at the
top of the working environment. In Figure 5, it is possible to observe the real
working environment and the processes of transformation of this environment
to the MoveIt! as a point cloud in order to perform the perception of the real
obstacles and to make a simulation of path planning without collisions in a
virtual model of the UR5 manipulator.

For the MoveIt! to perform the path planning it is necessary to configure
the algorithm that will do the routes of the manipulator. For the tests, two
algorithms, PRM and RRT, were chosen. Both algorithms were chosen because
they are widely used in path planning, so these algorithms can be inserted into
the dynamic collision avoidance system.

In order to guarantee the consistency of the comparison between two al-
gorithms, the same path planning configuration was performed in the tests of
each algorithm. Only two parameters were changed, planning time and planning
attempt while the other parameters remained with the MoveIt! default configu-
ration.

The planning time has been set to 10 seconds. This parameter indicates the
time limit at which the system will take to find a path planning. In the parameter
planning attempts was set to 15. This parameter indicates to the system how
many path planning should be done within the set time. In case the system
does not find a path planning within the timeout, the system will not move the



8 Thadeu Brito, Jose Lima, Pedro Costa, and Luis Piardi

Fig. 5. Figure that shows the scenario created, the obstacles in the real world and the
steps to transform the scenario in a way that the software perceives.

manipulator. The same manipulator pose configurations (start and goal poses)
were used in both algorithms. The start and goal poses are indicated in Figure
6.

Fig. 6. The state where the UR5 manipulator is transparent is the start pose, as the
state where the manipulator is orange is the goal pose.

Therefore, during each test the algorithm must find a route solution within
the time limit and create states (or poses) to realize the trajectory. The state
sequence that is expected for each algorithm to find can be visualized in Figure
7.



Dynamic collision avoidance system for a manipulator based on RGB-D data 9

Fig. 7. Example of a sequence of states forming a trajectory.

The first test uses the PRM algorithm. Figure 8 shows the real scenario
created and the transformation of this scenario to the perception of the software.
It consists of: a point cloud transformed into Octotree (blue and purple boxes),
the planning trail (in Gray) and the remaining points are the point cloud not
considered for simulation.

Fig. 8. Path planning using the PRM algorithm.

To ensure that the first test does not interfere with the next test, all nodes
have been restarted. The second test, with the RRT algorithm presented in
Figure 9, shows the same scenario created and the trail that the planner choose
to reach the goal pose.



10 Thadeu Brito, Jose Lima, Pedro Costa, and Luis Piardi

Fig. 9. Path planning using the RRT algorithm.

At the end of each path planning performed by the algorithms through
MoveIt!, the time and amount of states (or poses) were used to find a route
to the final pose. These data were collected and analyzed in graph format, as
shown in Figure 10. Although both algorithms find a certain amount of states
to perform the path planning, it is not necessary to use all found states.

Fig. 10. Results of logs generated by the system.

The logs presented in graph format show that the algorithm PRM use all the
time that was configured to find a path planning. This has resulted in a higher
value of pose states. However, the RRT algorithm uses less time to find a path
planning solution, resulting in smaller amounts of pose states.



Dynamic collision avoidance system for a manipulator based on RGB-D data 11

6 Conclusion and Future Work

In the presented paper a collaborative manipulator and two path planning al-
gorithms were stressed and compared allowing to develop a system that helps
and collaborates with humans, according to the new paradigms of Industry 4.0.
The system uses ROS and a RGB-Depth sensor (Kinect) to acquire the envi-
ronment such as objects and humans positions. The implemented system allows
to re-plan the movement avoiding collisions while guaranteeing the execution of
operations. The logs generated by the system, show a difference between the
analyzed algorithms. While RRT uses agility in finding a solution to plan the
path to the goal pose, the PRM uses all the time it has been assigned to find a
trajectory. Therefore the use of these algorithms must be adequate to the objec-
tive of the project in which it is implemented. The simulation of an UR5 robot
with acquired point cloud validates the approach of both algorithms. In future
works, it will be possible to optimize the point cloud for the system to have a
faster response to the introduction of new objects in the working environment
of the UR5 robot.

Acknowledgment

Project ”TEC4Growth - Pervasive Intelligence, Enhancers and Proofs of Con-
cept with Industrial Impact/NORTE-01-0145-FEDER-000020” is financed by
the North Portugal Regional Operational. Programme (NORTE 2020), under
the PORTUGAL 2020 Partnership Agreement, and through the European Re-
gional Development Fund (ERDF).

This work is also financed by the ERDF – European Regional Development
Fund through the Operational Programme for Competitiveness and Internation-
alisation - COMPETE 2020 Programme within project POCI-01-0145-FEDER-
006961, and by National Funds through the FCT – Fundaçao para a Ciência
e a Tecnologia (Portuguese Foundation for Science and Technology) as part of
project UID/EEA/50014/2013.

References

1. Barraquand J, Latombe JC (1991) Robot motion planning. a distributed represen-
tation approach, International Journal of Robotics Research 10(6), 628–649.

2. Ralli E, Hirzinger G (1994) Fast path planning for robot manipulators using nu-
merical potential fields in the configuration space, Vol. 3, pp. 1922-1929.

3. Kavraki L, Svestka P, Latombe JC, Overmars M (1996) Probabilistic roadmaps
for path planning in high dimensional configuration spaces. IEEE Transactions on
Robotics and Automation, Vol. 12, No. 4, pp. 566–580, ISSN 1042-296X

4. Siméon T, Laumond JP, Nissoux C (2000) Visibility based probabilistic roadmaps
for motion planning . Advanced Robotics 14(6): 477–494.

5. Wilmarth S, Amato N, Stiller P, Maprm (1999) A probabilistic roadmap planner
with sampling on the medial axis of the free space, in Proceedings of the IEEE
International Conference on Robotics and Automation, pp. 1024–1031.



12 Thadeu Brito, Jose Lima, Pedro Costa, and Luis Piardi

6. Bohlin R, Kavraki LE (2000) Path Planning Using Lazy PRM, in Proceedings of
the IEEE International Conference on Robotics and Automation, San Fransisco,
vol. 1, pp. 521–528.

7. Plaku E, Bekris KE, Chen BY, Ladd AM, Kavraki LE (2005) Sampling based
roadmap of trees for parallel motion planning, IEEE Transactions on Robotics,
21:4, 597–608.

8. Helguera C, Zeghloul S (2000) A local-based method for manipulators path planning
in heavy cluttered environments, Proceedings of IEEE International Conference on
Robotics and Automation, pp. 3467–3472, San Francisco.

9. Blackmore L, Williams B (2006) Optimal manipulator path planning with obstacles
using disjunctive programming. American Control Conference, Minneapolis.

10. Lahouar S, Zeghloul S, Romdhane L (2006) Real-Time Path Planning for Multi-
DoF Manipulators in Dynamic Environment, International Journal of Advanced
Robotic Systems, Volume: 3 issue: 2.

11. Tavares P, Lima J, Costa P, Moreira AP (2016) ”Multiple manipulators path plan-
ning using double A*”, Industrial Robot: An International Journal, Vol. 43 Issue:
6, pp.657-664, https://doi.org/10.1108/IR-01-2016-0006.

12. Staranowicz A, Brown GR, Morbidi F, Mariottini GL (2014) Easy-to-Use and Ac-
curate Calibration of RGB-D Cameras from Spheres. In: Klette R., Rivera M., Satoh
S. (eds) Image and Video Technology. PSIVT 2013. Lecture Notes in Computer Sci-
ence, vol 8333. Springer, Berlin, Heidelberg.

13. Chitta S (2016) MoveIt!: An Introduction. In: Koubaa A. (eds) Robot Operating
System (ROS). Studies in Computational Intelligence, vol 625. Springer, Cham.

14. Walid Darwish W, Tang S, Wenbin L, Chen W (2017) A New Calibration Method
for Commercial RGB-D Sensors, Sensors 2017, 17, 1204; doi:10.3390/s17061204.

15. Basso F, Pretto A, Menegatti E (2014) Unsupervised intrinsic and extrinsic calibra-
tion of a camera-depth sensor couple, Proceedings of IEEE International Conference
on Robotics and Automation (ICRA).

16. Martinez A, Fernández E (2013) Learning ROS for Robotics Programming. Packt
Publishing, Birmingham.

17. Joseph L (2015) Mastering ROS for Robotics Programming. Packt Publishing,
Birmingham.

18. The Robotic Operation System Wiki, http://wiki.ros.org/ROS/Tutorials/

UnderstandingTopics

19. ROS Industrial Training Exercises with version Kinetic, https://github.com/

ros-industrial/industrial_training/wiki

20. Sensor supported by ROS, http://wiki.ros.org/Sensors
21. Sucan IA, Chitta S, “MoveIt!”, [Online] Available:, http://moveit.ros.org
22. Sucan IA, Chitta S, “MoveIt!”, [Online] Available:, http://picknik.io/moveit_

wiki/index.php?title=High-level_Overview_Diagram

23. Sucan IA, Moll M, Kavraki LE (2012), The Open Motion Planning
Library, IEEE Robotics & Automation Magazine, [Online] Available:,
http://ompl.kavrakilab.org


	capa
	dynamic_collision_avoidance(1)

