3,470 research outputs found

    Markov models for fMRI correlation structure: is brain functional connectivity small world, or decomposable into networks?

    Get PDF
    Correlations in the signal observed via functional Magnetic Resonance Imaging (fMRI), are expected to reveal the interactions in the underlying neural populations through hemodynamic response. In particular, they highlight distributed set of mutually correlated regions that correspond to brain networks related to different cognitive functions. Yet graph-theoretical studies of neural connections give a different picture: that of a highly integrated system with small-world properties: local clustering but with short pathways across the complete structure. We examine the conditional independence properties of the fMRI signal, i.e. its Markov structure, to find realistic assumptions on the connectivity structure that are required to explain the observed functional connectivity. In particular we seek a decomposition of the Markov structure into segregated functional networks using decomposable graphs: a set of strongly-connected and partially overlapping cliques. We introduce a new method to efficiently extract such cliques on a large, strongly-connected graph. We compare methods learning different graph structures from functional connectivity by testing the goodness of fit of the model they learn on new data. We find that summarizing the structure as strongly-connected networks can give a good description only for very large and overlapping networks. These results highlight that Markov models are good tools to identify the structure of brain connectivity from fMRI signals, but for this purpose they must reflect the small-world properties of the underlying neural systems

    Disentangling causal webs in the brain using functional Magnetic Resonance Imaging: A review of current approaches

    Get PDF
    In the past two decades, functional Magnetic Resonance Imaging has been used to relate neuronal network activity to cognitive processing and behaviour. Recently this approach has been augmented by algorithms that allow us to infer causal links between component populations of neuronal networks. Multiple inference procedures have been proposed to approach this research question but so far, each method has limitations when it comes to establishing whole-brain connectivity patterns. In this work, we discuss eight ways to infer causality in fMRI research: Bayesian Nets, Dynamical Causal Modelling, Granger Causality, Likelihood Ratios, LiNGAM, Patel's Tau, Structural Equation Modelling, and Transfer Entropy. We finish with formulating some recommendations for the future directions in this area

    Brain tissue properties differentiate between motor and limbic basal ganglia circuits

    Get PDF
    Despite advances in understanding basic organizational principles of the human basal ganglia, accurate in vivo assessment of their anatomical properties is essential to improve early diagnosis in disorders with corticosubcortical pathology and optimize target planning in deep brain stimulation. Main goal of this study was the detailed topological characterization of limbic, associative, and motor subdivisions of the subthalamic nucleus (STN) in relation to corresponding corticosubcortical circuits. To this aim, we used magnetic resonance imaging and investigated independently anatomical connectivity via white matter tracts next to brain tissue properties. On the basis of probabilistic diffusion tractography we identified STN subregions with predominantly motor, associative, and limbic connectivity. We then computed for each of the nonoverlapping STN subregions the covariance between local brain tissue properties and the rest of the brain using high-resolution maps of magnetization transfer (MT) saturation and longitudinal (R1) and transverse relaxation rate (R2*). The demonstrated spatial distribution pattern of covariance between brain tissue properties linked to myelin (R1 and MT) and iron (R2*) content clearly segregates between motor and limbic basal ganglia circuits. We interpret the demonstrated covariance pattern as evidence for shared tissue properties within a functional circuit, which is closely linked to its function. Our findings open new possibilities for investigation of changes in the established covariance pattern aiming at accurate diagnosis of basal ganglia disorders and prediction of treatment outcom

    Combined EEG-fMRI and tractography to visualise propagation of epileptic activity

    Get PDF
    In a patient with refractory temporal lobe epilepsy, EEG-fMRI showed activation in association with left anterior temporal interictal discharges, in the left temporal, parietal and occipital lobes. Dynamic causal modelling suggested propagation of neural activity from the temporal focus to the area of occipital activation. Tractography showed connections from the site of temporal lobe activation to the site of occipital activation. This demonstrates the principle of combining EEG-fMRI and tractography to delineate the pathways of propagation of epileptic activity

    From Connectivity Models to Region Labels: Identifying Foci of a Neurological Disorder

    Get PDF
    We propose a novel approach to identify the foci of a neurological disorder based on anatomical and functional connectivity information. Specifically, we formulate a generative model that characterizes the network of abnormal functional connectivity emanating from the affected foci. This allows us to aggregate pairwise connectivity changes into a region-based representation of the disease. We employ the variational expectation-maximization algorithm to fit the model and subsequently identify both the afflicted regions and the differences in connectivity induced by the disorder. We demonstrate our method on a population study of schizophrenia.National Alliance for Medical Image Computing (U.S.) (Grant NIH NIBIB NAMIC U54-EB005149)Neuroimaging Analysis Center (U.S.) (Grant NIH NCRR NAC P41-RR13218)Neuroimaging Analysis Center (U.S.) (Grant NIH NCRR NAC P41-EB015902)National Science Foundation (U.S.) (CAREER Grant 0642971)National Institutes of Health (U.S.) (R01MH074794)National Institutes of Health (U.S.). Advanced Multimodal Neuroimaging Training Progra

    A Symmetry-Based Method to Infer Structural Brain Networks from Probabilistic Tractography Data

    Get PDF
    Recent progress in diffusion MRI and tractography algorithms as well as the launch of the Human Connectome Project (HCP) have provided brain research with an abundance of structural connectivity data. In this work, we describe and evaluate a method that can infer the structural brain network that interconnects a given set of Regions of Interest (ROIs) from probabilistic tractography data. The proposed method, referred to as Minimum Asymmetry Network Inference Algorithm (MANIA), does not determine the connectivity between two ROIs based on an arbitrary connectivity threshold. Instead, we exploit a basic limitation of the tractography process: the observed streamlines from a source to a target do not provide any information about the polarity of the underlying white matter, and so if there are some fibers connecting two voxels (or two ROIs) X and Y, tractography should be able in principle to follow this connection in both directions, from X to Y and from Y to X. We leverage this limitation to formulate the network inference process as an optimization problem that minimizes the (appropriately normalized) asymmetry of the observed network. We evaluate the proposed method using both the FiberCup dataset and based on a noise model that randomly corrupts the observed connectivity of synthetic networks. As a case-study, we apply MANIA on diffusion MRI data from 28 healthy subjects to infer the structural network between 18 corticolimbic ROIs that are associated with various neuropsychiatric conditions including depression, anxiety and addiction

    In praise of tedious anatomy

    Get PDF
    Functional neuroimaging is fundamentally a tool for mapping function to structure, and its success consequently requires neuroanatomical precision and accuracy. Here we review the various means by which functional activation can be localized to neuroanatomy and suggest that the gold standard should be localization to the individual’s or group’s own anatomy through the use of neuroanatomical knowledge and atlases of neuroanatomy. While automated means of localization may be useful, they cannot provide the necessary accuracy, given variability between individuals. We also suggest that the field of functional neuroimaging needs to converge on a common set of methods for reporting functional localization including a common “standard” space and criteria for what constitutes sufficient evidence to report activation in terms of Brodmann’s areas
    corecore