4,182 research outputs found

    Spatial Correlation-Based Motion-Vector Prediction for Video-Coding Efficiency Improvement

    Get PDF
    H.265/HEVC achieves an average bitrate reduction of 50% for fixed video quality compared with the H.264/AVC standard, while computation complexity is significantly increased. The purpose of this work is to improve coding efficiency for the next-generation video-coding standards. Therefore, by developing a novel spatial neighborhood subset, efficient spatial correlation-based motion vector prediction (MVP) with the coding-unit (CU) depth-prediction algorithm is proposed to improve coding efficiency. Firstly, by exploiting the reliability of neighboring candidate motion vectors (MVs), the spatial-candidate MVs are used to determine the optimized MVP for motion-data coding. Secondly, the spatial correlation-based coding-unit depth-prediction is presented to achieve a better trade-off between coding efficiency and computation complexity for interprediction. This approach can satisfy an extreme requirement of high coding efficiency with not-high requirements for real-time processing. The simulation results demonstrate that overall bitrates can be reduced, on average, by 5.35%, up to 9.89% compared with H.265/HEVC reference software in terms of the Bjontegaard Metric

    Disparity compensation using geometric transforms

    Get PDF
    This dissertation describes the research and development of some techniques to enhance the disparity compensation in 3D video compression algorithms. Disparity compensation is usually performed using a block matching technique between views, disregarding the various levels of disparity present for objects at different depths in the scene. An alternative coding scheme is proposed, taking advantage of the cameras setup information and the object’s depth in the scene, to compensate more complex spatial distortions, being able to improve disparity compensation even with convergent cameras. In order to perform a more accurate disparity compensation, the reference picture list is enriched with additional geometrically transformed images, for the most relevant object’s levels of depth in the scene, resulting from projections of one view to another. This scheme can be implemented in any state-of-the-art video codec, as H.264/AVC or HEVC, in order to improve the disparity matching accuracy between views. Experimental results, using MV-HEVC extension, show the efficiency of the proposed method for coding stereo video, presenting bitrate savings up to 2.87%, for convergent camera sequences, and 1.52% for parallel camera sequences. Also a method to choose the geometrically transformed inter view reference pictures was developed, in order to reduce unnecessary overhead for unused reference pictures. By selecting and adding to the reference picture list, only the most useful pictures, all results improved, presenting bitrate savings up to 3.06% for convergent camera sequences, and 2% for parallel camera sequences

    Spatial Prediction in the H.264/AVC FRExt Coder and its Optimization

    Get PDF
    The chapter presents a review of the fast spatial prediction strategy that were designed for the Intra coding mode of the video coding standard H.264/AVC. At the end, the author presents an effective strategy based on belief propagation message passing

    3D coding tools final report

    Get PDF
    Livrable D4.3 du projet ANR PERSEECe rapport a été réalisé dans le cadre du projet ANR PERSEE (n° ANR-09-BLAN-0170). Exactement il correspond au livrable D4.3 du projet. Son titre : 3D coding tools final repor

    Parametrien etsintä HEVC:n tehokkaalle moodivalinnalle

    Get PDF
    High Efficiency Video Coding (HEVC) is the latest video coding standard. It halves the achieved bit rate compared with the previous standard, Advanced Video Coding (AVC). However, the bit rate decrease comes with 40% increase in encoding complexity. This is mainly due to larger number of block coding modes, including Symmetric motion partitions (SMPs), Asymmetric motion partitions (AMPs), and larger coding units of up to 64x64 pixels. These new features are mainly used for Inter prediction that accounts for 60-70% of the whole encoding time. For this reason, optimization of Inter prediction is the main topic in this Thesis. To tackle the Inter prediction complexity, a parametric exploration was chosen as the approach. The exploration was done by gradually shifting the focus from the most coarse optimization to the parameter fine tuning. The selected approach in this study required thousands of individual tests so an automated solution was needed. This led to the creation of a new software solution, TUT Task Manager. It is capable of automatically distributing the tasks of parametric exploration to any number of nodes available in the local network. In total, TUT Task Manager was used to run 4000 tests with a combined CPU time of 14 months. The results were used to create a set of recommended schemes for Inter mode selection. Overall, these new schemes are shown to provide 31-50% complexity saving against the default configuration of HM 11.0, with a minor bit rate increase of 0.2-1.3%. They also provide better RDC performance than the existing solutions. The tools and methods used in this work are so generic that they can be used to further optimize other parts of the video codec

    Semi-automatic video object segmentation for multimedia applications

    Get PDF
    A semi-automatic video object segmentation tool is presented for segmenting both still pictures and image sequences. The approach comprises both automatic segmentation algorithms and manual user interaction. The still image segmentation component is comprised of a conventional spatial segmentation algorithm (Recursive Shortest Spanning Tree (RSST)), a hierarchical segmentation representation method (Binary Partition Tree (BPT)), and user interaction. An initial segmentation partition of homogeneous regions is created using RSST. The BPT technique is then used to merge these regions and hierarchically represent the segmentation in a binary tree. The semantic objects are then manually built by selectively clicking on image regions. A video object-tracking component enables image sequence segmentation, and this subsystem is based on motion estimation, spatial segmentation, object projection, region classification, and user interaction. The motion between the previous frame and the current frame is estimated, and the previous object is then projected onto the current partition. A region classification technique is used to determine which regions in the current partition belong to the projected object. User interaction is allowed for object re-initialisation when the segmentation results become inaccurate. The combination of all these components enables offline video sequence segmentation. The results presented on standard test sequences illustrate the potential use of this system for object-based coding and representation of multimedia

    Segmentation-based video coding system allowing the manipulation of objects

    Get PDF
    This paper presents a generic video coding algorithm allowing the content-based manipulation of objects. This manipulation is possible thanks to the definition of a spatiotemporal segmentation of the sequences. The coding strategy relies on a joint optimization in the rate-distortion sense of the partition definition and of the coding techniques to be used within each region. This optimization creates the link between the analysis and synthesis parts of the coder. The analysis defines the time evolution of the partition, as well as the elimination or the appearance of regions that are homogeneous either spatially or in motion. The coding of the texture as well as of the partition relies on region-based motion compensation techniques. The algorithm offers a good compromise between the ability to track and manipulate objects and the coding efficiency.Peer ReviewedPostprint (published version

    Scalable light field representation and coding

    Get PDF
    This Thesis aims to advance the state-of-the-art in light field representation and coding. In this context, proposals to improve functionalities like light field random access and scalability are also presented. As the light field representation constrains the coding approach to be used, several light field coding techniques to exploit the inherent characteristics of the most popular types of light field representations are proposed and studied, which are normally based on micro-images or sub-aperture-images. To encode micro-images, two solutions are proposed, aiming to exploit the redundancy between neighboring micro-images using a high order prediction model, where the model parameters are either explicitly transmitted or inferred at the decoder, respectively. In both cases, the proposed solutions are able to outperform low order prediction solutions. To encode sub-aperture-images, an HEVC-based solution that exploits their inherent intra and inter redundancies is proposed. In this case, the light field image is encoded as a pseudo video sequence, where the scanning order is signaled, allowing the encoder and decoder to optimize the reference picture lists to improve coding efficiency. A novel hybrid light field representation coding approach is also proposed, by exploiting the combined use of both micro-image and sub-aperture-image representation types, instead of using each representation individually. In order to aid the fast deployment of the light field technology, this Thesis also proposes scalable coding and representation approaches that enable adequate compatibility with legacy displays (e.g., 2D, stereoscopic or multiview) and with future light field displays, while maintaining high coding efficiency. Additionally, viewpoint random access, allowing to improve the light field navigation and to reduce the decoding delay, is also enabled with a flexible trade-off between coding efficiency and viewpoint random access.Esta Tese tem como objetivo avançar o estado da arte em representação e codificação de campos de luz. Neste contexto, são também apresentadas propostas para melhorar funcionalidades como o acesso aleatório ao campo de luz e a escalabilidade. Como a representação do campo de luz limita a abordagem de codificação a ser utilizada, são propostas e estudadas várias técnicas de codificação de campos de luz para explorar as características inerentes aos seus tipos mais populares de representação, que são normalmente baseadas em micro-imagens ou imagens de sub-abertura. Para codificar as micro-imagens, são propostas duas soluções, visando explorar a redundância entre micro-imagens vizinhas utilizando um modelo de predição de alta ordem, onde os parâmetros do modelo são explicitamente transmitidos ou inferidos no decodificador, respetivamente. Em ambos os casos, as soluções propostas são capazes de superar as soluções de predição de baixa ordem. Para codificar imagens de sub-abertura, é proposta uma solução baseada em HEVC que explora a inerente redundância intra e inter deste tipo de imagens. Neste caso, a imagem do campo de luz é codificada como uma pseudo-sequência de vídeo, onde a ordem de varrimento é sinalizada, permitindo ao codificador e decodificador otimizar as listas de imagens de referência para melhorar a eficiência da codificação. Também é proposta uma nova abordagem de codificação baseada na representação híbrida do campo de luz, explorando o uso combinado dos tipos de representação de micro-imagem e sub-imagem, em vez de usar cada representação individualmente. A fim de facilitar a rápida implantação da tecnologia de campo de luz, esta Tese também propõe abordagens escaláveis de codificação e representação que permitem uma compatibilidade adequada com monitores tradicionais (e.g., 2D, estereoscópicos ou multivista) e com futuros monitores de campo de luz, mantendo ao mesmo tempo uma alta eficiência de codificação. Além disso, o acesso aleatório de pontos de vista, permitindo melhorar a navegação no campo de luz e reduzir o atraso na descodificação, também é permitido com um equilíbrio flexível entre eficiência de codificação e acesso aleatório de pontos de vista

    Involving Motor Capabilities in the Formation of Sensory Space Representations

    Get PDF
    A goal of sensory coding is to capture features of sensory input that are behaviorally relevant. Therefore, a generic principle of sensory coding should take into account the motor capabilities of an agent. Up to now, unsupervised learning of sensory representations with respect to generic coding principles has been limited to passively received sensory input. Here we propose an algorithm that reorganizes an agent's representation of sensory space by maximizing the predictability of sensory state transitions given a motor action. We applied the algorithm to the sensory spaces of a number of simple, simulated agents with different motor parameters, moving in two-dimensional mazes. We find that the optimization algorithm generates compact, isotropic representations of space, comparable to hippocampal place fields. As expected, the size and spatial distribution of these place fields-like representations adapt to the motor parameters of the agent as well as to its environment. The representations prove to be well suited as a basis for path planning and navigation. They not only possess a high degree of state-transition predictability, but also are temporally stable. We conclude that the coding principle of predictability is a promising candidate for understanding place field formation as the result of sensorimotor reorganization
    corecore