432 research outputs found

    Land Surface Temperature from Ka-band (37 GHZ) Passive Microwave Observations

    Get PDF
    An alternative to thermal infrared satellite sensors for measuring land surface temperature (T<inf>s</inf>) is presented. The 37 GHz vertical polarized brightness temperature is used to derive T<inf>s</inf> because it is considered the most appropriate microwave frequency for temperature retrieval. This channel balances a reduced sensitivity to soil surface characteristics with a relatively high atmospheric transmissivity. It is shown that with a simple linear relationship, accurate values for T<inf>s</inf> can be obtained from this frequency, with a theoretical bias of within 1 K for 70% of vegetated land areas of the globe. Barren, sparsely vegetated, and open shrublands cannot be accurately described with this single channel approach because variable surface conditions become important. The precision of the retrieved land surface temperature is expected to be better than 2.5 K for forests and 3.5 K for low vegetation. This method can be used to complement existing infrared derived temperature products, especially during clouded conditions. With several microwave radiometers currently in orbit, this method can be used to observe the diurnal temperature cycles with surprising accuracy. © 2009 by the American Geophysical Union

    L-MEB: A simple model at L-band for the continental areas - Application to the simulation of a half-degree resolution and global scale data set.

    No full text
    L-band (1-2 GHz) microwave radiometry is the most relevant remote sensing technique to monitor soil moisture over land surfaces at the global scale. A synthetic multi-angular brightness temperature data set over land surfaces was simulated at 1.4 GHz, at a half-degree resolution and at the global scale (Pellarin et al., 2003a). This data set was built in order to develop and validate methods to retrieve soil moisture for near-future 1.4 GHz space missions. Brightness temperatures were computed using a simple model (L-MEB, L-band Microwave Emission of the Biosphere) based on radiative transfer equations. The L-MEB model is the result of an extensive review of the current knowledge of the microwave emission of various land covers (herbaceous and woody vegetation, frozen and unfrozen bare soil, snow, etc.) at L-Band considering that the model should be simple enough to be compatible with the simulation of a half-degree resolution and global scale data set. This model was parameterized for simulating L-band observations (in the 1-2 GHz range) but the model equations remain valid in a low frequency range (about 1 to 10 GHz) and thus including the L-, C- and X-bands. The soil and vegetation characteristics needed to initialize the L-MEB model were derived from existing land cover maps. Continuous simulations from a land-surface scheme for 1987 and 1988 provided time series of the main variables driving the L-MEB model: soil temperature at the surface and at depth, surface soil moisture, proportion of frozen surface soil moisture, and snow cover characteristics (depth, density, grain size, liquid water content). The different components of the emission model are described in the following sections. These sections present the general formulation of TB for a composite pixel and the microwave emission modules for soil, vegetation-covered surfaces, open water, snow-covered surfaces and atmospheric effects

    Evapotranspiration and remote sensing

    Get PDF
    There are three things required for evapotranspiration to occur: (1) energy (580 cal/gm) for the change of phase of the water; (2) a source of the water, i.e., adequate soil moisture in the surface layer or in the root zone of the plant; and (3) a sink for the water, i.e., a moisture deficit in the air above the ground. Remote sensing can contribute information to the first two of these conditions by providing estimates of solar insolation, surface albedo, surface temperature, vegetation cover, and soil moisture content. In addition there have been attempts to estimate precipitation and shelter air temperature from remotely sensed data. The problem remains to develop methods for effectively using these sources of information to make large area estimates of evapotranspiration

    Preliminary assessment of soil moisture over vegetation

    Get PDF
    Modeling of surface energy fluxes was combined with in-situ measurement of surface parameters, specifically the surface sensible heat flux and the substrate soil moisture. A vegetation component was incorporated in the atmospheric/substrate model and subsequently showed that fluxes over vegetation can be very much different than those over bare soil for a given surface-air temperature difference. The temperature signatures measured by a satellite or airborne radiometer should be interpreted in conjunction with surface measurements of modeled parameters. Paradoxically, analyses of the large-scale distribution of soil moisture availability shows that there is a very high correlation between antecedent precipitation and inferred surface moisture availability, even when no specific vegetation parameterization is used in the boundary layer model. Preparatory work was begun in streamlining the present boundary layer model, developing better algorithms for relating surface temperatures to substrate moisture, preparing for participation in the French HAPEX experiment, and analyzing aircraft microwave and radiometric surface temperature data for the 1983 French Beauce experiments

    Effect of soil texture on the microwave emission from soils

    Get PDF
    The intensity brightness temperature of the microwave emission from the soil is determined primarily by its dielectric properties. The large difference between the dielectric constant of water and that of dry soil produces a strong dependence of the soil's dielectric constant on its moisture content. This dependence is effected by the texture of the soil because the water molecules close to the particle surface are tightly bound and do not contribute significantly to the dielectric properties. Since this surface area is a function of the particle size distribution (soil texture), being larger for clay soils with small particles, and smaller for sandy soils with larger particles; the dielectric properties will depend on soil texture. Laboratory measurements of the dielectric constant for soils are summarized. The dependence of the microwave emission on texture is demonstrated by measurements of brightness temperature from an aircraft platform for a wide range of soil textures. It is concluded that the effect of soil texture differences on the observed values can be normalized by expressing the soil moisture values as a percent field capacity for the soil

    A simulation study of the recession coefficient for antecedent precipitation index

    Get PDF
    The antecedent precipitation index (API) is a useful indicator of soil moisture conditions for watershed runoff calculations and recent attempts to correlate this index with spaceborne microwave observations have been fairly successful. It is shown that the prognostic equation for soil moisture used in some of the atmospheric general circulation models together with Thornthwaite-Mather parameterization of actual evapotranspiration leads to API equations. The recession coefficient for API is found to depend on climatic factors through potential evapotranspiration and on soil texture through the field capacity and the permanent wilting point. Climatologial data for Wisconsin together with a recently developed model for global isolation are used to simulate the annual trend of the recession coefficient. Good quantitative agreement is shown with the observed trend at Fennimore and Colby watersheds in Wisconsin. It is suggested that API could be a unifying vocabulary for watershed and atmospheric general circulation modelars

    Electromagnetic characterization of soil-litter media – Application to the simulation of the microwave emissivity of the ground surface in forests

    Get PDF
    In order to improve our knowledge of the emitted signal of forests at L-band (1.4 GHz) we focused this study on permittivity measurements of heterogenic natural media such as soil or litter consisting of plant debris and organic matter. This study was done in the context of the upcoming SMOS (Soil Moisture and Ocean Salinity) satellite mission that will attempt to map surface soil moisture from L-band (1.4 GHz) passive microwave measurements. In the field of passive microwaves, very little information exists about the behaviour of the L-band signal of forests especially when litter is included in the soil-vegetation system. To date very few analyses have investigated the dielectric behaviour of the litter layer and its influence on the microwave emission of forests is generally neglected. © 2008 EDP Sciences

    Modeling L-Band Microwave Emission From Soil-Vegetation System

    Get PDF
    During a field campaign covering the 2002 corn growing season, a dual polarized tower mounted L-band (1.4 GHz) radiometer (LRAD) provided brightness temperature (T¬B) measurements at preset intervals, incidence and azimuth angles. These radiometer measurements were supported by an extensive characterization of land surface variables including soil moisture, soil temperature, vegetation biomass, and surface roughness. During the period from May 22, 2002 to August 30, 2002 a range of vegetation water content (W) of 0.0 to 4.3 kg m-2, ten days of radiometer and ground measurements were available. Using this data set, the effects of corn vegetation on surface emissions are investigated by means of a semi-empirical radiative transfer model. Additionally, the impact of roughness on the surface emission is quantified using T¬B measurements over bare soil conditions. Subsequently, the estimated roughness parameters, ground measurements and horizontally (H)-polarized TB are employed to invert the H-polarized transmissivity (γh) for the monitored corn growing season

    SMOS REFLEX 2003: L-band emissivity characterization of vineyards

    Get PDF
    The goal of the Soil Moisture and Ocean Salinity mission over land is to infer surface soil moisture from multiangular L-band radiometric measurements. As the canopy affects the microwave emission of land, it is necessary to characterize different vegetation layers. This paper presents the Reference Pixel L-Band Experiment (REFLEX), carried out in June-July 2003 at the Vale/spl grave/ncia Anchor Station, Spain, to study the effects of grapevines on the soil emission and on the soil moisture retrieval. A wide range of soil moisture (SM), from saturated to completely dry soil, was measured with the Universitat Polite/spl grave/cnica de Catalunya's L-band Automatic Radiometer (LAURA). Concurrently with the radiometric measurements, the gravimetric soil moisture, temperature, and roughness were measured, and the vines were fully characterized. The opacity and albedo of the vineyard have been estimated and found to be independent on the polarization. The /spl tau--//spl omega/ model has been used to retrieve the SM and the vegetation parameters, obtaining a good accuracy for incidence angles up to 55/spl deg/. Algorithms with a three-parameter optimization (SM, albedo albedo, and opacity) exhibit a better performance than those with one-parameter optimization (SM).Peer Reviewe

    SMOS REFLEX 2003: L-Band Emissivity Characterization of Vineyards

    Get PDF
    The goal of the Soil Moisture and Ocean Salinity mission over land is to infer surface soil moisture from multiangular L-band radiometric measurements. As the canopy affects the microwave emission of land, it is necessary to characterize different vegetation layers. This paper presents the Reference Pixel L-Band Experiment (REFLEX), carried out in June-July 2003 at the Vale/spl grave/ncia Anchor Station, Spain, to study the effects of grapevines on the soil emission and on the soil moisture retrieval. A wide range of soil moisture (SM), from saturated to completely dry soil, was measured with the Universitat Polite/spl grave/cnica de Catalunya's L-band Automatic Radiometer (LAURA). Concurrently with the radiometric measurements, the gravimetric soil moisture, temperature, and roughness were measured, and the vines were fully characterized. The opacity and albedo of the vineyard have been estimated and found to be independent on the polarization. The /spl tau/--/spl omega/ model has been used to retrieve the SM and the vegetation parameters, obtaining a good accuracy for incidence angles up to 55/spl deg/. Algorithms with a three-parameter optimization (SM, albedo albedo, and opacity) exhibit a better performance than those with one-parameter optimization (SM).Peer Reviewe
    • …
    corecore