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Abstract—The goal of the Soil Moisture and Ocean Salinity mis-
sion over land is to infer surface soil moisture from multiangular
L-band radiometric measurements. As the canopy affects the mi-
crowave emission of land, it is necessary to characterize different
vegetation layers. This paper presents the Reference Pixel L-Band
Experiment (REFLEX), carried out in June–July 2003 at the
València Anchor Station, Spain, to study the effects of grapevines
on the soil emission and on the soil moisture retrieval. A wide
range of soil moisture (SM), from saturated to completely dry soil,
was measured with the Universitat Politècnica de Catalunya’s
L-band Automatic Radiometer (LAURA). Concurrently with the
radiometric measurements, the gravimetric soil moisture, tem-
perature, and roughness were measured, and the vines were fully
characterized. The opacity and albedo of the vineyard have been
estimated and found to be independent on the polarization. The

– model has been used to retrieve the SM and the vegetation
parameters, obtaining a good accuracy for incidence angles up to
55 . Algorithms with a three-parameter optimization (SM, albedo
albedo, and opacity) exhibit a better performance than those with
one-parameter optimization (SM).

Index Terms—L-band microwave radiometry, soil moisture,
vineyards.

I. INTRODUCTION

L -BAND passive microwave remote sensing has proved to
be useful to monitor soil moisture over land surfaces. The

Soil Moisture and Ocean Salinity (SMOS) mission was selected
by the European Space Agency (ESA) to provide soil mois-
ture and sea surface salinity global coverage measurements with
three-day revisit time [1]. Over land, SMOS aims at providing
global maps of soil moisture with a ground resolution better
than 50 km and with volumetric humidity accuracy better than
0.04 m m . There is a strong interest in studying the contribu-
tion of vegetation to soil surface emission at L-band, especially
for canopies where only a limited number of studies have been
conducted (e.g., [2]). The SMOS Reference Pixel L-Band Ex-
periment (SMOS REFLEX) 2003 is the first of a set of field cam-
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paigns devoted to the characterization of a large area with few
land uses, most of them vineyards, that could be a suitable ref-
erence pixel for SMOS ground calibration/validation. The main
goal of this field experiment was the study of the brightness tem-
perature dependence on soil moisture (SM) and observa-
tion angle, as well as the characterization of the vegetation layer.
This paper describes the SMOS REFLEX 2003 field experiment
and presents some results of the data processing.

II. FIELD EXPERIMENT DESCRIPTION

SMOS REFLEX 2003 took place from June 30 to July 10,
2003 at the València Anchor Station (VAS), Valencia, Space
( N, W); see Fig. 1 and [3]. During the experi-
ment period, the weather was very dry and warm. In order to
get a wide range of soil moisture values, the field was irrigated
twice (on July 1 and again on July 4, that is, the second and
fifth days of the experiment), and it was then left to dry out.
Hence, two complete measurement cycles (from saturated wet
soil to completely dry soil) were performed. The first of them
was shorter than the second (thee days in front of seven days)
because the high temperatures and strong winds recorded at the
beginning of the experiment dried the land much faster. Concur-
rently with the radiometric measurements, the gravimetric soil
moisture, the temperature, and the roughness were measured,
and the vines were fully characterized (water content, grapevine
size, branches distribution, etc.). This section presents a descrip-
tion of all the tasks performed during the field campaign.

A. Radiometric Measurements

The radiometric observations were acquired with the Uni-
versitat Politècnica de Catalunya’s (UPC) L-Band Automatic
Radiometer (LAURA), which is a dual-polarization radiometer
working at 1.4 GHz. Its 3-dB beam width is 20 ; the main beam
efficiency is 95.2%; and the radiometric sensitivity is approxi-
mately 0.5 [4]. LAURA was designed and implemented by the
UPC team in 2000 to be used in a set of field experiments before
the launch of SMOS. It has already been used in the Wind and
Salinity Experiment (WISE) 2000 and 2001 and the Foam, Rain,
Oil Slicks, and GPS (FROG) 2003 field experiments, [4]–[6].

During SMOS REFLEX 2003, LAURA was mounted on the
top of a crane placed on a path between vineyards (Fig. 2).
The antenna was oriented to the west, and its look direction
was perpendicular to the tillage direction of the plot. Fig. 3
schematically shows the settlement of the site under study. The
vines, represented by a circle with a dot inside, are distributed
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Fig. 1. Location of the SMOS REFLEX 2003 experiment. (a) Map of Spain (the province of València is remarked). (b) Zoom of the province of València. The
València Anchor Station is signaled with a white dot.

Fig. 2. Crane with the radiometer LAURA (west look direction) was placed
on a path between two vineyards.

along rows parallel to the path, and are separated 1.5 m; in
each row plants are separated 2.5 m and located at

, . Ra-
diometric observations at nine incidence angles ( , from 25 to
65 in 5 steps) and seven azimuth angles ( , from to 45
in 15 steps, being the direction perpendicular to the
tillage) were carried out daily from 9.30 P.M. to 4 A.M. There-
fore, a dataset composed of 9 7 observations at both vertical
and horizontal polarizations was acquired every night. Here-
after, the dataset acquired each night is referred to as sequence
(as the field campaign lasted 11 days, 11 sequences were regis-
tered). The number of the sequence is coincident with the day of
experiment. At each orientation, LAURA was pointing to each

Fig. 3. Radiometer was oriented to the west (y axis), and its look direction
was perpendicular to the tillage direction of the vineyard (x axis). The ellipses
indicate the footprint of the radiometer for each observation position. The circles
with dots inside indicate the location of the vines, and the dots correspond to
gravimetric soil moisture samples.

target during 180 s, with a sampling period of 1 s. The ellipses
plotted in Fig. 3 show the 63 footprints at half-power for each
sequence (each footprint corresponds to a direction of observa-
tion). The ellipses are not all the same shape and size; in fact, the
major axis increases with the incidence angle, while the minor
axis is kept constant by changing the radiometer height for each
incidence angle.
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Fig. 4. Pixels captured by a video camera at (a) � = 60 and � = 25 and
(b) � = 60 and � = 0 .

Besides, a video camera pointing to the radiometer boresight
was used to determine the fraction of soil covered by vegetation
in each spot. Fig. 4 shows two images captured at two different
positions: Fig. 4(a) and and Fig. 4(b)

and . As can be appreciated, vegetation coverage
depends on the direction of observation.

During the experiment, a set of measurements were taken so
as to calibrate the instrument: 1) hot and cold load calibration, to
obtain the first and second Stokes’ parameters, and 2) correlated
and uncorrelated noise injection calibration, to compensate the
correlator errors and determine the third and fourth Stokes’ pa-
rameters. Eccosorb slabs placed just in front of the antenna at
ambient temperature were used as hot targets. The cold target
was obtained by measuring the sky radiation through reflection
on a metallic plate.1 The downwelling brightness temperature
was computed from the antenna orientation and the measured
antenna pattern, the geographical coordinates and the date and
time, as well as the galactic noise map at 1420 MHz. It was
found to be between 5 and 9 K.

B. Soil Characterization

When SMOS REFLEX 2003 began, the soil was completely
dry because neither rain nor irrigation had moistened the area for

1The validity of the hot and cold calibration measurements was assured with
controlled experiments. The first one consisted in placing LAURA pointing to
the eccosorb slabs in the UPC anechoic chamber. Measurements agreed well
with the ones obtained during the hot load calibration period at the field cam-
paign site. The second experiment consisted in measuring the sky pointing di-
rectly to the sky and through a reflection on a metallic plate. Both measurements
were in agreement as well.

a long period. Dots in Fig. 3 represent the soil moisture sampling
points: one sample under each grapevine and five samples be-
tween them (from row to row). These measurements were taken
with Delta-T ThetaProbe sensors, which were previously cali-
brated for the type of soil under study. These sensors provided an
average value from surface to 6-cm depth. Even though the field
was irrigated uniformly, different values of moisture were mea-
sured because of surface inhomogeneities and variations on the
compactness of the terrain due to plough and roots distribution.

A set of sensors were buried in the field to measure the soil
temperature at the surface and 5, 10, 15, 20, and 40 cm deep. Due
to technical problems, there is no soil temperature data available
for sequences 7 and 8, and the data at 5-cm depth was only ac-
quired the first four days of experiment. The atmospheric tem-
perature, pressure, and relative humidity were registered by the
VAS meteorological station.

Fig. 5 shows the evolution of the atmospheric and the soil
temperature data acquired in the vineyard for two days: a case
of soil irrigated until saturation [Fig. 5(b), day 5 of experiment,
from July 4 at noon until July 5 at noon] and a case of com-
pletely dry soil [Fig. 5(a), day 4 of experiment, from July 3 at
noon until July 4 at noon]. In both cases, the radiometric mea-
surements were held only from 9:30 P.M. of one day to 4 A.M. of
the following day. Large atmospheric temperature gradients are
registered in this area and for this time of the year. This fact was
especially important in July 1, when the atmospheric tempera-
ture reached 38 C at day-time and 14 C at night. The differ-
ence between the atmospheric and the soil surface temperatures
is larger when the soil is wet [up to 3 C within a measurement
period; Fig. 5(b)] than when the soil is dry [Fig. 5(a)]. The un-
derground temperature stays quite constant with time and depth
during the whole experiment. When the soil is wet, the penetra-
tion depth is small and the most important contribution to the
effective soil temperature is due to the soil surface temperature.
If the soil is dry, the wave propagates a larger distance through
the soil layer and temperatures at various depths must be con-
sidered. An effective soil temperature has been computed taking
these facts into account: the soil temperature has been assumed
to be equal to the surface temperature when the soil is almost
saturated, and in the other cases, an average (dependent on the
soil wetness) of temperatures at the soil surface at 5-cm depth
(when measurements were recorded) and at 10-cm depth was
computed.

Finally, some roughness measurements were carried out and
the standard deviation of the terrain height was found to be
2.4 cm.

C. Vegetation Characterization

SMOS REFLEX 2003 took place on a vineyard of tem-
pranillo variety. The canopy was parameterized by measuring
different parts of 11 test vines. The water content (WC) per
compartment of a full plant per unit area was found to be
9–10 kg/m . Results of the characterization are detailed in
Fig. 6(b) and Table I. The values make evident that these vines
are taller than others in the Mediterranean region (medium
height of 1.63 m and medium width of 1.45 m). The leaf area
index (LAI) was measured in different locations of the plot
using a LAI-LICOR2000 sensor. Fig. 7 shows the mean value
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Fig. 5. Atmospheric temperature at 2-m height and soil temperature 0, 10, 15,
20, and 40 cm deep acquired for two days. (a) Day of experiment 4, the soil
surface was completely dry (b) Day of experiment 5, the soil was wetted until
saturation.

and the standard deviation of the LAI for 12 plants randomly
selected in the vineyard.

The LAI of each selected plant was measured in two direc-
tions: one parallel to the rows of vines (circles/continuous lines)
and the other perpendicular to them (asterisks/dashed lines).
Their values for each sample are compared in Fig. 7. A mean
value of 1.5 m m was obtained for the LAI of the vineyard.
These will strongly influence the brightness temperature be-
cause of the great amount of water contained in leaves and fruits.

III. DATA PROCESSING

The emissivity of the bare soil pixel depends on its surface
roughness , temperature , and moisture content (SM).
When the soil is covered by vegetation its emission is affected
by the canopy layer: it attenuates the soil emission and adds

Fig. 6. (a) Grapevines under study were taller than other grapevines in the
Mediterranean region. (b) Explanation of the grapevine parameters presented in
Table I.

its own contribution. To model this effect, a simple radiative
transfer model known as the – model [7] has been used in this
paper. This model is based on two vegetation parameters which
account for the vegetation contribution to the emission: optical
depth or opacity , which also accounts for the attenuation,
and the single scattering albedo .

The – model has been used in two different iterative re-
trieval algorithms: the first one is applied to obtain the opacity
and albedo and the second one to retrieve the soil moisture.
In both cases, a value for each sequence and look direction is
obtained.
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TABLE I
GRAPEVINE CHARACTERIZATION

Fig. 7. Mean value (circles and asterisk) and standard deviation (continuous
and dashed lines) of the measured LAI for 12 plants, randomly selected as
samples. The circles with continuous lines represent the LAI of each sample
plant in the direction parallel to the rows of vines, and asterisks with dashed lines
represent the LAI value of each sample plant in the perpendicular direction.

A. Direct Model

The brightness temperature is estimated using an empirical
expression for the complex dielectric permittivity of bare
soils as a function of water content [8]. As the soil moisture
content increases, the brightness temperature decreases because
of the increment of soil reflectivity. To account for the effect of
surface roughness on microwave emission, a semiempirical for-
mula was used [9]. If the surface is not smooth, the radiometer
measures higher temperature values at both polarizations and
a smaller difference between the vertical and horizontal

brightness temperatures. The effective reflection coeffi-
cient including roughness effects is given by

(1)

where is the wavenumber and the cross-polarization effects
are modeled by the specular soil surface reflection coefficient

at polarization and the cross-polarization factor

(2)

being the electromagnetic frequency in gigahertz and an
empirical soil surface roughness parameter.

Once the bare soil contribution has been considered, the
canopy layer is taken into account. Its contribution depends
on the fraction of ground covered by vegetation and the mor-
phology of the plants (height, density, and water content),
which determine the opacity and albedo. To model the effect
of vegetation on the emissivity, it is necessary to compute its
dielectric properties. The dielectric constant of the vegetation
involves both the complex dielectric constant of a leaf, esti-
mated using [10], and the canopy dielectric constant, derived
using the dielectric mixing model described in [11]. At -polar-
ization, the attenuation due to the canopy layer is related
to the optical depth as follows:

(3)

The contribution of the albedo is considered directly in
the brightness temperature model

(4)

where is the reflection coefficient defined in (1), is
the vegetation temperature, is the soil temperature (an ef-
fective temperature has been computed from the soil tempera-
ture registered at different depths, see Section II-B), stands for
the polarization (horizontal or vertical), and is the reflec-
tion coefficient due to the canopy layer, which is usually very
small and can be neglected, so (4) can be written as

(5)

Some studies demonstrate that crops with vertical architec-
ture (such as wheat) have an optical depth dependent on the po-
larization [12], but no study was found about vineyards. In this
study, various dependences for albedo and opacity have been
analyzed, obtaining the best results when the albedo and the
opacity are assumed to be independent on the polarization. This
fact is probably because vines do not present either a vertical or
a horizontal structure.
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Fig. 8. (a) Albedo versus incidence angle. (b) Opacity in Nepers versus
incidence angle. Dots represent the retrieved value for each sequence and all
azimuth angles, and the line plots the mean value.

B. Vegetation Parameters Retrieval

Fig. 4 makes evident that in SMOS REFLEX 2003, the veg-
etation coverage at each pixel was dependent on the view direc-
tion of the radiometer. Therefore, the albedo and the opacity for
each incidence angle and sequence have been estimated using
a two parameters inverse model. Since all the radiometric mea-
surements had the same error, this model is based on the mini-
mization of the cost function [13]

sequence

(6)

where and stand for horizontal and vertical polarizations,
subscript indicates the seven different azimuth angles,
is the measured brightness temperature, and is computed
using the direct model, taking as input parameters the measured
geophysical parameters: SM, temperature, and roughness (see

Fig. 9. Mean value of the retrieved opacity and albedo for each sequence and
all incidence and azimuth angles. Mean value of the measured soil moisture and
the evolution of the relative humidity are also plotted.

Section II). In order to obtain the vegetation parameters depen-
dence on the incidence angle and sequence, measurements at
different azimuth angles (from to in 15
steps) are taken as input parameters in (5). Fig. 8(a) shows the
variation of the retrieved albedo respect to the incidence angle
for all azimuth angles. Different symbols are used for the re-
trieved values at each sequence and the line plots the mean value
for all the sequences at each incidence angle. The albedo takes
values smaller than 0.15, having its maximum for an incidence
angle of 35 and decreasing as the incidence angle increases.

Fig. 8(b) shows that the opacity tends to increase with the
incidence angle, which is in accordance to the higher fraction
of area covered by vegetation as the incidence angle increases
[Fig. 4(a) and (b)].

On the other hand, Fig. 9 shows how the vegetation parameters
depend on the day of measurement, i.e., different soil moisture,
water content, and meteorological conditions. In this figure, the
evolution of the measured soil moisture and the relative humidity
are also plotted. Rather high values of relative humidity for a con-
tinental weather site were measured from day of experiment 4 to
9. The opacity seems to increase with the water content in the
plant: an opacity increase is appreciated the day of the first irri-
gation, which is more evident the day after, because of the water
absorption by the plant. On the fifth day, the vineyard was irri-
gated again, which also translates to an increment of the opacity
up to the same values as for the first case.

Fig. 10 plots the emissivity obtained from LAURA’s radio-
metric measurements versus the measured humidity at different
incidence angles, for both vertical and horizontal polarizations.
Each plot corresponds to a different incidence angle [from (a)

, to (f) ]: seven azimuth angles [from
to 45 in steps of 15 ] for the 11 days of measurements are pre-
sented. These measured values are compared with the ones ob-
tained applying the direct model described in the above section
and the measured meteorological and geophysical parameters.
In this case, the retrieved albedo and opacity for each obser-
vation position have been used. Linear regressions for the two
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Fig. 10. Emissivity for vertical and horizontal polarizations versus measured soil moisture. Comparison between emissivity obtained with LAURA measurements
(�) and the one computed with the �–! model. Each plot corresponds to a different elevation angle: (a) � = 25 , (b) � = 30 , (c) � = 35 , (d) � = 40 , (e)
� = 45 , and (f) � = 50 . Values for different days of measurement and for the seven azimuth angles (from �45 to 45 ) are presented.

sets of values are also compared. Good agreement between mea-
sured and computed values is appreciated for incidence angles
below 55 . For , the algorithm does not always con-
verge, and at 60 and 65 , the convergence is rarely achieved,
pointing out a problem in the emissivity model function for large

incidence angles. This discrepancy can be due to the fact that as
the incidence angle increases, the signal from the soil suffers
from more attenuation, and scattering in the canopy is more im-
portant as well. More sophisticated models than the – model
are required.
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Fig. 11. Dependence of the polarization index on the incidence angle. The
mean values for all azimuth angles have been presented.

C. Polarization Index

The polarization index (PI) is a key parameter for monitoring
vegetation [14]. For each observation position and sequence, the
PI is computed as

PI (7)

Plots of PI versus sequence at each incidence angle are presented
in Fig. 11. A small increment with incidence angle is appreci-
ated. Furthermore, the PI increases when the soil is irrigated and
decreases when the water has been absorbed by the plant and fil-
tered to the soil. This behavior agrees with the results in [15]:
an increment of the vegetation water content produces a decre-
ment of the polarization index. Note that the pixels observed by
the radiometer contained both bare soil (around 60%) and soil
covered by vines (around 40%). Due to the plants covering, the
PI does not only depend on SM and incidence angle, but also on
the opacity and the albedo.

D. Soil Moisture Retrieval

In order to retrieve the SM from the radiometric measure-
ments, an iterative algorithm, based on the least squares min-
imization procedure, was applied [13]. A better performance
was found out when the albedo, opacity, and SM were simul-
taneously retrieved, instead of retrieving the soil moisture and
setting the other two parameters at a fixed value. In the iterative
algorithm the function to minimize is the cost function

(8)

The objective is to obtain the SM, opacity , and albedo
that minimize . It includes two penalization terms, one

for the opacity and another one for the albedo, because the first
guesses for the opacity and the albedo ( and ) are the esti-
mated values for each position of observation and sequence ob-

Fig. 12. Measured soil moisture versus retrieved soil moisture from LAURA
measurements. Linear regression from measurements (dashed line) is close to
the theoretical one (continuous line).

tained in the iterative algorithm described in Section III-B, and
their values must be very close to them. The algorithm converges
for incidence angles equal to or smaller than 50 , only for some
sequences at , and rarely for or 65 due to the
increasing discrepancy between the model and the data as the
incidence angle increases. When the incidence angle increases,
the canopy influence becomes more important (higher attenua-
tion on the signal and higher scattering contribution), so a higher
order approximation for the direct model becomes necessary. In
Fig. 12, the retrieved and the measured SM are compared and a
good agreement is appreciated: the slope of the computed linear
regression is 0.9 (close to 1) and the ordinate at the origin is
0.29. The rms error between the data and the measurements is
about 2.3%, which is smaller than the 4% accuracy required for
SMOS.

IV. CONCLUSION

In this paper, a complete description of the SMOS REFLEX
2003 field campaign has been presented. A tempranillo vine-
yard at the València Anchor Station has been characterized for
the beginning of July. During this time of the year, vines have
grapes and big leaves. For this kind of plants, the opacity and
albedo have been found to be independent on the polarization.
A simple – model has been used as direct model in the iter-
ative algorithm for the retrieval of soil moisture and vegetation
parameters, with good results for incidence angles up to 55 . For
these angles, the root mean square error of the scattered points of
data when the retrieved soil moisture is plotted versus the mea-
sured one is 2.3%, better than the 4% required for SMOS. For
incidence angles above 55 the convergence of the algorithm is
rarely achieved. This could be due to the larger effect of the veg-
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etation at large incidence angles, not accurately described by the
simple – model. It would be convenient to develope a higher
order model for these angles.

Future field experiments such as ESA’s CoSMOS are planned
to fully characterize this area in other seasons, study other kinds
of vegetation and the local topography, and analyze mixed-pixel
effects.
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