91 research outputs found

    Reliability-aware and energy-efficient system level design for networks-on-chip

    Get PDF
    2015 Spring.Includes bibliographical references.With CMOS technology aggressively scaling into the ultra-deep sub-micron (UDSM) regime and application complexity growing rapidly in recent years, processors today are being driven to integrate multiple cores on a chip. Such chip multiprocessor (CMP) architectures offer unprecedented levels of computing performance for highly parallel emerging applications in the era of digital convergence. However, a major challenge facing the designers of these emerging multicore architectures is the increased likelihood of failure due to the rise in transient, permanent, and intermittent faults caused by a variety of factors that are becoming more and more prevalent with technology scaling. On-chip interconnect architectures are particularly susceptible to faults that can corrupt transmitted data or prevent it from reaching its destination. Reliability concerns in UDSM nodes have in part contributed to the shift from traditional bus-based communication fabrics to network-on-chip (NoC) architectures that provide better scalability, performance, and utilization than buses. In this thesis, to overcome potential faults in NoCs, my research began by exploring fault-tolerant routing algorithms. Under the constraint of deadlock freedom, we make use of the inherent redundancy in NoCs due to multiple paths between packet sources and sinks and propose different fault-tolerant routing schemes to achieve much better fault tolerance capabilities than possible with traditional routing schemes. The proposed schemes also use replication opportunistically to optimize the balance between energy overhead and arrival rate. As 3D integrated circuit (3D-IC) technology with wafer-to-wafer bonding has been recently proposed as a promising candidate for future CMPs, we also propose a fault-tolerant routing scheme for 3D NoCs which outperforms the existing popular routing schemes in terms of energy consumption, performance and reliability. To quantify reliability and provide different levels of intelligent protection, for the first time, we propose the network vulnerability factor (NVF) metric to characterize the vulnerability of NoC components to faults. NVF determines the probabilities that faults in NoC components manifest as errors in the final program output of the CMP system. With NVF aware partial protection for NoC components, almost 50% energy cost can be saved compared to the traditional approach of comprehensively protecting all NoC components. Lastly, we focus on the problem of fault-tolerant NoC design, that involves many NP-hard sub-problems such as core mapping, fault-tolerant routing, and fault-tolerant router configuration. We propose a novel design-time (RESYN) and a hybrid design and runtime (HEFT) synthesis framework to trade-off energy consumption and reliability in the NoC fabric at the system level for CMPs. Together, our research in fault-tolerant NoC routing, reliability modeling, and reliability aware NoC synthesis substantially enhances NoC reliability and energy-efficiency beyond what is possible with traditional approaches and state-of-the-art strategies from prior work

    The Customizable Virtual FPGA: Generation, System Integration and Configuration of Application-Specific Heterogeneous FPGA Architectures

    Get PDF
    In den vergangenen drei Jahrzehnten wurde die Entwicklung von Field Programmable Gate Arrays (FPGAs) stark von Moore’s Gesetz, Prozesstechnologie (Skalierung) und kommerziellen Märkten beeinflusst. State-of-the-Art FPGAs bewegen sich einerseits dem Allzweck näher, aber andererseits, da FPGAs immer mehr traditionelle Domänen der Anwendungsspezifischen integrierten Schaltungen (ASICs) ersetzt haben, steigen die Effizienzerwartungen. Mit dem Ende der Dennard-Skalierung können Effizienzsteigerungen nicht mehr auf Technologie-Skalierung allein zurückgreifen. Diese Facetten und Trends in Richtung rekonfigurierbarer System-on-Chips (SoCs) und neuen Low-Power-Anwendungen wie Cyber Physical Systems und Internet of Things erfordern eine bessere Anpassung der Ziel-FPGAs. Neben den Trends für den Mainstream-Einsatz von FPGAs in Produkten des täglichen Bedarfs und Services wird es vor allem bei den jüngsten Entwicklungen, FPGAs in Rechenzentren und Cloud-Services einzusetzen, notwendig sein, eine sofortige Portabilität von Applikationen über aktuelle und zukünftige FPGA-Geräte hinweg zu gewährleisten. In diesem Zusammenhang kann die Hardware-Virtualisierung ein nahtloses Mittel für Plattformunabhängigkeit und Portabilität sein. Ehrlich gesagt stehen die Zwecke der Anpassung und der Virtualisierung eigentlich in einem Konfliktfeld, da die Anpassung für die Effizienzsteigerung vorgesehen ist, während jedoch die Virtualisierung zusätzlichen Flächenaufwand hinzufügt. Die Virtualisierung profitiert aber nicht nur von der Anpassung, sondern fügt auch mehr Flexibilität hinzu, da die Architektur jederzeit verändert werden kann. Diese Besonderheit kann für adaptive Systeme ausgenutzt werden. Sowohl die Anpassung als auch die Virtualisierung von FPGA-Architekturen wurden in der Industrie bisher kaum adressiert. Trotz einiger existierenden akademischen Werke können diese Techniken noch als unerforscht betrachtet werden und sind aufstrebende Forschungsgebiete. Das Hauptziel dieser Arbeit ist die Generierung von FPGA-Architekturen, die auf eine effiziente Anpassung an die Applikation zugeschnitten sind. Im Gegensatz zum üblichen Ansatz mit kommerziellen FPGAs, bei denen die FPGA-Architektur als gegeben betrachtet wird und die Applikation auf die vorhandenen Ressourcen abgebildet wird, folgt diese Arbeit einem neuen Paradigma, in dem die Applikation oder Applikationsklasse fest steht und die Zielarchitektur auf die effiziente Anpassung an die Applikation zugeschnitten ist. Dies resultiert in angepassten anwendungsspezifischen FPGAs. Die drei Säulen dieser Arbeit sind die Aspekte der Virtualisierung, der Anpassung und des Frameworks. Das zentrale Element ist eine weitgehend parametrierbare virtuelle FPGA-Architektur, die V-FPGA genannt wird, wobei sie als primäres Ziel auf jeden kommerziellen FPGA abgebildet werden kann, während Anwendungen auf der virtuellen Schicht ausgeführt werden. Dies sorgt für Portabilität und Migration auch auf Bitstream-Ebene, da die Spezifikation der virtuellen Schicht bestehen bleibt, während die physische Plattform ausgetauscht werden kann. Darüber hinaus wird diese Technik genutzt, um eine dynamische und partielle Rekonfiguration auf Plattformen zu ermöglichen, die sie nicht nativ unterstützen. Neben der Virtualisierung soll die V-FPGA-Architektur auch als eingebettetes FPGA in ein ASIC integriert werden, das effiziente und dennoch flexible System-on-Chip-Lösungen bietet. Daher werden Zieltechnologie-Abbildungs-Methoden sowohl für Virtualisierung als auch für die physikalische Umsetzung adressiert und ein Beispiel für die physikalische Umsetzung in einem 45 nm Standardzellen Ansatz aufgezeigt. Die hochflexible V-FPGA-Architektur kann mit mehr als 20 Parametern angepasst werden, darunter LUT-Grösse, Clustering, 3D-Stacking, Routing-Struktur und vieles mehr. Die Auswirkungen der Parameter auf Fläche und Leistung der Architektur werden untersucht und eine umfangreiche Analyse von über 1400 Benchmarkläufen zeigt eine hohe Parameterempfindlichkeit bei Abweichungen bis zu ±95, 9% in der Fläche und ±78, 1% in der Leistung, was die hohe Bedeutung von Anpassung für Effizienz aufzeigt. Um die Parameter systematisch an die Bedürfnisse der Applikation anzupassen, wird eine parametrische Entwurfsraum-Explorationsmethode auf der Basis geeigneter Flächen- und Zeitmodellen vorgeschlagen. Eine Herausforderung von angepassten Architekturen ist der Entwurfsaufwand und die Notwendigkeit für angepasste Werkzeuge. Daher umfasst diese Arbeit ein Framework für die Architekturgenerierung, die Entwurfsraumexploration, die Anwendungsabbildung und die Evaluation. Vor allem ist der V-FPGA in einem vollständig synthetisierbaren generischen Very High Speed Integrated Circuit Hardware Description Language (VHDL) Code konzipiert, der sehr flexibel ist und die Notwendigkeit für externe Codegeneratoren eliminiert. Systementwickler können von verschiedenen Arten von generischen SoC-Architekturvorlagen profitieren, um die Entwicklungszeit zu reduzieren. Alle notwendigen Konstruktionsschritte für die Applikationsentwicklung und -abbildung auf den V-FPGA werden durch einen Tool-Flow für Entwurfsautomatisierung unterstützt, der eine Sammlung von vorhandenen kommerziellen und akademischen Werkzeugen ausnutzt, die durch geeignete Modelle angepasst und durch ein neues Werkzeug namens V-FPGA-Explorer ergänzt werden. Dieses neue Tool fungiert nicht nur als Back-End-Tool für die Anwendungsabbildung auf dem V-FPGA sondern ist auch ein grafischer Konfigurations- und Layout-Editor, ein Bitstream-Generator, ein Architekturdatei-Generator für die Place & Route Tools, ein Script-Generator und ein Testbenchgenerator. Eine Besonderheit ist die Unterstützung der Just-in-Time-Kompilierung mit schnellen Algorithmen für die In-System Anwendungsabbildung. Die Arbeit schliesst mit einigen Anwendungsfällen aus den Bereichen industrielle Prozessautomatisierung, medizinische Bildgebung, adaptive Systeme und Lehre ab, in denen der V-FPGA eingesetzt wird

    Reliable localization methods for intelligent vehicles based on environment perception

    Get PDF
    Mención Internacional en el título de doctorIn the near past, we would see autonomous vehicles and Intelligent Transport Systems (ITS) as a potential future of transportation. Today, thanks to all the technological advances in recent years, the feasibility of such systems is no longer a question. Some of these autonomous driving technologies are already sharing our roads, and even commercial vehicles are including more Advanced Driver-Assistance Systems (ADAS) over the years. As a result, transportation is becoming more efficient and the roads are considerably safer. One of the fundamental pillars of an autonomous system is self-localization. An accurate and reliable estimation of the vehicle’s pose in the world is essential to navigation. Within the context of outdoor vehicles, the Global Navigation Satellite System (GNSS) is the predominant localization system. However, these systems are far from perfect, and their performance is degraded in environments with limited satellite visibility. Additionally, their dependence on the environment can make them unreliable if it were to change. Accordingly, the goal of this thesis is to exploit the perception of the environment to enhance localization systems in intelligent vehicles, with special attention to their reliability. To this end, this thesis presents several contributions: First, a study on exploiting 3D semantic information in LiDAR odometry is presented, providing interesting insights regarding the contribution to the odometry output of each type of element in the scene. The experimental results have been obtained using a public dataset and validated on a real-world platform. Second, a method to estimate the localization error using landmark detections is proposed, which is later on exploited by a landmark placement optimization algorithm. This method, which has been validated in a simulation environment, is able to determine a set of landmarks so the localization error never exceeds a predefined limit. Finally, a cooperative localization algorithm based on a Genetic Particle Filter is proposed to utilize vehicle detections in order to enhance the estimation provided by GNSS systems. Multiple experiments are carried out in different simulation environments to validate the proposed method.En un pasado no muy lejano, los vehículos autónomos y los Sistemas Inteligentes del Transporte (ITS) se veían como un futuro para el transporte con gran potencial. Hoy, gracias a todos los avances tecnológicos de los últimos años, la viabilidad de estos sistemas ha dejado de ser una incógnita. Algunas de estas tecnologías de conducción autónoma ya están compartiendo nuestras carreteras, e incluso los vehículos comerciales cada vez incluyen más Sistemas Avanzados de Asistencia a la Conducción (ADAS) con el paso de los años. Como resultado, el transporte es cada vez más eficiente y las carreteras son considerablemente más seguras. Uno de los pilares fundamentales de un sistema autónomo es la autolocalización. Una estimación precisa y fiable de la posición del vehículo en el mundo es esencial para la navegación. En el contexto de los vehículos circulando en exteriores, el Sistema Global de Navegación por Satélite (GNSS) es el sistema de localización predominante. Sin embargo, estos sistemas están lejos de ser perfectos, y su rendimiento se degrada en entornos donde la visibilidad de los satélites es limitada. Además, los cambios en el entorno pueden provocar cambios en la estimación, lo que los hace poco fiables en ciertas situaciones. Por ello, el objetivo de esta tesis es utilizar la percepción del entorno para mejorar los sistemas de localización en vehículos inteligentes, con una especial atención a la fiabilidad de estos sistemas. Para ello, esta tesis presenta varias aportaciones: En primer lugar, se presenta un estudio sobre cómo aprovechar la información semántica 3D en la odometría LiDAR, generando una base de conocimiento sobre la contribución de cada tipo de elemento del entorno a la salida de la odometría. Los resultados experimentales se han obtenido utilizando una base de datos pública y se han validado en una plataforma de conducción del mundo real. En segundo lugar, se propone un método para estimar el error de localización utilizando detecciones de puntos de referencia, que posteriormente es explotado por un algoritmo de optimización de posicionamiento de puntos de referencia. Este método, que ha sido validado en un entorno de simulación, es capaz de determinar un conjunto de puntos de referencia para el cual el error de localización nunca supere un límite previamente fijado. Por último, se propone un algoritmo de localización cooperativa basado en un Filtro Genético de Partículas para utilizar las detecciones de vehículos con el fin de mejorar la estimación proporcionada por los sistemas GNSS. El método propuesto ha sido validado mediante múltiples experimentos en diferentes entornos de simulación.Programa de Doctorado en Ingeniería Eléctrica, Electrónica y Automática por la Universidad Carlos III de MadridSecretario: Joshué Manuel Pérez Rastelli.- Secretario: Jorge Villagrá Serrano.- Vocal: Enrique David Martí Muño

    Metrics for Specification, Validation, and Uncertainty Prediction for Credibility in Simulation of Active Perception Sensor Systems

    Get PDF
    The immense effort required for the safety validation of an automated driving system of SAE level 3 or higher is known not to be feasible by real test drives alone. Therefore, simulation is key even for limited operational design domains for homologation of automated driving functions. Consequently, all simulation models used as tools for this purpose must be qualified beforehand. For this, in addition to their verification and validation, uncertainty quantification (VV&UQ) and prediction for the application domain are required for the credibility of the simulation model. To enable such VV&UQ, a particularly developed lidar sensor system simulation is utilized to present new metrics that can be used holistically to demonstrate the model credibility and -maturity for simulation models of active perception sensor systems. The holistic process towards model credibility starts with the formulation of the requirements for the models. In this context, the threshold values of the metrics as acceptance criteria are quantifiable by the relevance analysis of the cause-effect chains prevailing in different scenarios, and should intuitively be in the same unit as the simulated metric for this purpose. These relationships can be inferred via the presented aligned methods “Perception Sensor Collaborative Effect and Cause Tree” (PerCollECT) and “Cause, Effect, and Phenomenon Relevance Analysis” (CEPRA). For sample validation, each experiment must be accompanied by reference measurements, as these then serve as simulation input. Since the reference data collection is subject to epistemic as well as aleatory uncertainty, which are both propagated through the simulation in the form of input data variation, this leads to several slightly different simulation results. In the simulation of measured signals and data over time considered here, this combination of uncertainties is best expressed as superimposed cumulative distribution functions. The metric must therefore be able to handle such so-called p-boxes as a result of the large set of simulations. In the present work, the area validation metric (AVM) is selected by a detailed analysis as the best of the metrics already used and extended to be able to fulfill all the requirements. This results in the corrected AVM (CAVM), which quantifies the model scattering error with respect to the real scatter. Finally, the double validation metric (DVM) is elaborated as a double-vector of the former metric with the estimate for the model bias. The novel metric is exemplarily applied to the empirical cumulative distribution functions of lidar measurements and the p-boxes from their re-simulations. In this regard, aleatory and epistemic uncertainties are taken into account for the first time and the novel metrics are successfully established. The quantification of the uncertainties and error prediction of a sensor model based on the sample validation is also demonstrated for the first time

    Implementation of Ultra-Low Latency and High-Speed Communication Channels for an FPGA-Based HPC Cluster

    Get PDF
    RÉSUMÉ Les clusters basés sur les FPGA bénéficient de leur flexibilité et de leurs performances en termes de puissance de calcul et de faible consommation. Et puisque la consommation de puissance devient un élément de plus en plus importants sur le marché des superordinateurs, le domaine d’exploration multi-FPGA devient chaque année plus populaire. Les performances des ordinateurs n’ont jamais cessé d’augmenter mais la latence des réseaux d’interconnexion n’a pas suivi leur taux d’amélioration. Dans le but d’augmenter le niveau d’abstraction et les fonctionnalités des interconnexions, la complexité des piles de communication atteinte à nos jours engendre des coûts et affecte la latence des communications, ce qui rend ces piles de communication très souvent inefficaces, voire inutiles. Les protocoles de communication commerciaux existants et les contrôleurs d’interfaces réseau FPGA-FPGA n’ont la performance pour supporter ni les applications à temps critique ni un partitionnement étroitement couplé des systèmes sur puce. Au lieu de cela, les approches de communication personnalisées sont souvent préférées. Dans ce travail, nous proposons une implémentation de canaux de communication à haut débit et à faible latence pour une grappe de FPGA. Le système est constitué de deux BEE3, chacun contenant 4 FPGA de la famille Virtex-5 interconnectés par une topologie en anneau. Notre approche exploite la technologie à transducteur à plusieurs gigabits par seconde pour l’obtention d’une bande passante fiable de 8Gbps. Le module de propriété intellectuelle (IP) de communication proposé permet le transfert de données entre des milliers de coprocesseurs sur le réseau, grâce à l’implémentation d’un réseau direct avec capacité de routage de paquets. Les résultats expérimentaux ont montré une latence de seulement 34 cycles d’horloge entre deux noeuds voisins, ce qui est un des plus bas parmi ceux rapportés dans la littérature. En outre, nous proposons une architecture adaptée au calcul à haute performance qui comporte un traitement extensible, parallèle et distribué. Pour une plateforme à 8 FPGA, l’architecture fournit 35.6Go/s de bande passante effective pour la mémoire externe, une bande passante globale de réseau de 128Gbps et une puissance de calcul de 8.9GFLOPS. Un solveur matrice-vecteur de grande taille est partitionné et mis en oeuvre à travers le cluster. Nous avons obtenu une performance et une efficacité de calcul concurrentielles grâce à la faible empreinte du protocole de communication entre les éléments de traitement distribués. Ce travail contribue à soutenir de nouvelles recherches dans le domaine du calcul parallèle intensif et permet le partitionnement de système sur puce à grande taille sur des clusters à base de FPGA.----------ABSTRACT An FPGA-based cluster profits from the flexibility and the performance potential FPGA technology provides. Since price and power consumption are becoming increasingly important elements in the High-Performance Computing market, the multi-FPGA exploration field is getting more popular each year. Network latency has failed to keep up with other improvements in computer performance. Complex communication stacks have sacrificed latency and increased overhead to achieve other goals, being in most of the time inefficient and unnecessary. The existing commercial offthe- shelf communication protocols and Network Interfaces Controllers for FPGA-to-FPGA interconnection lack of performance to support time-critical applications and tightly coupled System-on-Chip partitioning. Instead, custom communication approaches are preferred. In this work, ultra-low latency and high-speed communication channels for an FPGA-based cluster are presented. Two BEE3s grouping 8 FPGAs Virtex-5 interconnected in a ring topology, compose the targeting platform. Our approach exploits Multi-Gigabit Transceiver technology to achieve reliable 8Gbps channel bandwidth. The proposed communication IP supports data transfer from coprocessors over the network, by means of a direct network implementation with hop-by-hop packet routing capability. Experimental results showed a latency of only 34 clock cycles between two neighboring nodes, being one of the lowest in the literature. In addition, it is proposed an architecture suitable for High-Performance Computing which includes performing scalable, parallel, and distributed processing. For an 8 FPGAs platform, the architecture provides 35.6GB/s off-chip memory throughput, 128Gbps network aggregate bandwidth, and 8.9GFLOPS computing power. A large and dense matrix-vector solver is partitioned and implemented across the cluster. We achieved competitive performance and computational efficiency as a result of the low communication overhead among the distributed processing elements. This work contributes to support new researches on the intense parallel computing fields, and enables large System-on-Chip partitioning and scaling on FPGA-based clusters

    An Image Processing Approach Toward a Visual Intra-Cortical Stimulator

    Get PDF
    Abstract Visual impairment may be caused by various factors varying from trauma, birth-defects, and diseases. Until today there are no viable medical treatments for this condition; hence bio-medical approaches are being employed to overcome that. The Cortivision team has been working on an intra-cortical implant that can bypass the retina and optic nerve and directly stimulate the visual cortex. In this work we aimed to implement a modular, reusable, and parameterizable object recognition system that tends to ``simplify'' video data prior to stimulation; hence opening new horizons for partial vision restoration, navigational and even recognition abilities. We identified the Scale Invariant Feature Transform (SIFT) algorithm as being a robust candidate for our application's needs. A multithreaded software prototype of the SIFT and Lucas-Kanade tracker was implemented to ensure proper overall operation. The feature extractor, difference of Gaussians (DoG) part of the SIFT, being the most computationally expensive, was migrated to an FPGA implementation due to the real-time restrictions that is not achievable on a host machine. The VHDL implementation is highly parameterizable for different application needs and tradeoffs. We introduced a novel architecture employing the sub-kernel trick to reduce resource usage compared to preexisting architectures while still being comparably accurate to a software floating point implementation. In order to alleviate transmission bottlenecks, the system also includes a new parallel Huffman encoder design that is capable of performing lossless compression of both images and scale space image pyramids taking into account spatial and scale data correlations during the predictor phase. The encoder was able to achieve compression ratios of 27.3% on the Caltech-256 data-set. Furthermore, a new camera and fiducial markers setup based on image processing was proposed in order to target the phosphene map estimation problem which affects the quality of the final stimulation that is perceived by the patient.----------RÉSUMÉ Introduction et objectifs La déficience visuelle, qui est définie par la perte totale ou partielle de la vision, n'est actuellement pas médicalement traitable. Des approches biomédicales modernes sont utilisées pour stimuler électriquement la vision; ces approches peuvent être divisées en trois groupes principaux: le premier ciblant les implants rétiniens Humayun et al. (2003), Kim et al. (2004), Chow et al. (2004); Palanker et al. (2005), Toledo et al. (2005); Yanai et al. (2007), Winter et al. (2007); Zrenner et al. (2011), le deuxième ciblant les implants du nerf optique Veraart et al. (2003), Sakaguchi et al. (2009), et le troisième ciblant les implants intra-corticaux Doljanu et Sawan (2007); Coulombe et al. (2007); Srivastava et al. (2007). L’inconvénient principal des deux premiers groupes, c'est qu'ils ne sont pas suffisamment génériques pour surmonter la majorité des maladies de déficience visuelle, car ils dépendent du fait que le patient doit avoir un nerf optique intact et/ou une rétine partiellement opérationnelle ; ce qui n'est pas le cas pour le troisième groupe. L'équipe du Laboratoire Polystim Neurotechnologies travaille actuellement sur un implant intra-cortical qui stimule directement le cortex visuel primaire (région V1) ; le nom du projet global est Cortivision. Le système utilise une caméra, un module de traitement d'image, un transmetteur RF (radiofréquence) et un stimulateur implantable. Cette méthode est robuste et générique car elle contourne l'oeil et le nerf optique. Un des défis majeurs est le traitement d'image nécessaire pour «simplifier» les données antérieures à la stimulation, l'extraction de l’information utile en écartant les données superflues. Les pixels qui sont capturés par la caméra n'ont pas de correspondance un-à-un sur le cortex visuel comme dans une image rectangulaire, ils sont plutôt mis en correspondance avec une carte complexe de «phosphènes» Coulombe et al. (2007); Srivastava et al. (2007). Les phosphènes sont des points lumineux qui apparaissent dans le champ de vision du patient quand le cerveau est stimulé électriquement. Ces points changent en terme de taille, de luminosité et d’emplacement en fonction de la façon dont la stimulation électrique est effectuée (c'est à dire un changement dans la fréquence, la tension, la durée, etc. ...) et même par le placement physique des électrodes dans le cortex visuel. Les approches actuelles visent à stimuler des images de phosphènes monochromes à basse résolution. Sachant cela, nous nous attendons plutôt à une vision de faible qualité qui rend des activités comme naviguer, interpréter des objets, ou encore lire, difficile pour le patient. Ceci est principalement dû à la complexité de l’étalonnage de la carte phosphène et sa correspondance, et aussi à la non-trivialité de savoir comment simplifier les données à partir des images qui viennent de la camera de façon qu’on conserve seulement les données pertinentes. La Figure 1.1 est un exemple qui démontre la non-trivialité de transformer une image grise en stimulation phosphène

    Desenvolvimento de comportamentos para robô humanoide

    Get PDF
    Mestrado em Engenharia de Computadores e TelemáticaHumanoid robotics is an area of active research. Robots with human body are better suited to execute tasks in environments designed for humans. Moreover, people feel more comfortable interacting with robots that have a human appearance. RoboCup encourages robotic research by promoting robotic competitions. One of these competitions is the Standard Platform League (SPL) in which humanoid robots play soccer. The robot used is the Nao robot, created by Aldebaran Robotics. The di erence between the teams that compete in this league is the software that controls the robots. Another league promoted by RoboCup is the 3D Soccer Simulation League (3DSSL). In this league the soccer game is played in a computer simulation. The robot model used is also the one of the Nao robot. However, there are a few di erences in the dimensions and it has one more Degree of Freedom (DoF) than the real robot. Moreover, the simulator cannot reproduce reality with precision. Both these leagues are relevant for this thesis, since they use the same robot model. The objective of this thesis is to develop behaviors for these leagues, taking advantage of the previous work developed for the 3DSSL. These behaviors include the basic movements needed to play soccer, namely: walking, kicking the ball, and getting up after a fall. This thesis presents the architecture of the agent developed for the SPL, which is similar to the architecture of the FC Portugal team agent from the 3DSSL, hence allowing to port code between both leagues easily. It was also developed an interface that allows to control a leg in a more intuitive way. It calculates the joint angles of the leg, using the following parameters: three angles between the torso and the line connecting hip and ankle; two angles between the foot and the perpendicular of the torso; and the distance between the hip and the ankle. It was also developed an algorithm to calculate the three joint angles of the hip that produce the desired vertical rotation, since the Nao robot does not have a vertical joint in the hip. This thesis presents also the behaviors developed for the SPL, some of them based on the existing behaviors from the 3DSSL. It is presented a behavior that allows to create robot movements by de ning a sequence of poses, an open-loop omnidirectional walking algorithm, and a walk optimized in the simulator adapted to the real robot. Feedback was added to this last walk to make it more robust against external disturbances. Using the behaviors presented in this thesis, the robot achieved a forward velocity of 16 cm/s, a lateral velocity of 6 cm/s, and rotated at 40 deg/s. The work developed in this thesis allows to have an agent to control the Nao robot and execute the basic low level behaviors for competing in the SPL. Moreover, the similarities between the architecture of the agent for the SPL with that of the agent from the 3DSSL allow to use the same high level behaviors in both leagues.A robótica humanoide é uma área em ativo desenvolvimento. Os robôs com forma humana estão melhor adaptados para executarem tarefas em ambientes desenhados para humanos. Além disso, as pessoas sentem-se mais confortáveis quando interagem com robôs que tenham aparência humana. O RoboCup incentiva a investigação na área da robótica através da realização de competições de robótica. Uma destas competições é a Standard Platform League (SPL) na qual robôs humanoides jogam futebol. O robô usado é o robô Nao, criado pela Aldebaran Robotics. A diferença entre as equipas que competem nesta liga está no software que controla os robôs. Outra liga presente no RoboCup é a 3D Soccer Simulation League (3DSSL). Nesta liga o jogo de futebol é jogado numa simulação por computador. O modelo de robô usado é também o do robô Nao. Contudo, existem umas pequenas diferenças nas dimensões e este tem mais um grau de liberdade do que o robô real. O simulador também não consegue reproduzir a realidade com perfeição. Ambas estas ligas são importantes para esta dissertação, pois usam o mesmo modelo de robô. O objectivo desta dissertação é desenvolver comportamentos para estas ligas, aproveitando o trabalho prévio desenvolvido para a 3DSSL. Estes comportamentos incluem os movimentos básicos necessários para jogar futebol, nomeadamente: andar, chutar a bola e levantar-se depois de uma queda. Esta dissertação apresenta a arquitetura do agente desenvolvida para a SPL, que é similar á arquitetura do agente da equipa FC Portugal da 3DSSL, para permitir uma mais fácil partilha de código entre as ligas. Foi também desenvolvida uma interface que permite controlar uma perna de maneira mais intuitiva. Ela calcula os ângulos das juntas da perna, usando os seguintes parâmetros: três ângulos entre o torso e a linha que une anca ao tornozelo; dois ângulos entre o pé e a perpendicular do torso; e a distância entre a anca e o tornozelo. Nesta dissertação foi também desenvolvido um algoritmo para calcular os três ângulos das juntas da anca que produzam a desejada rotação vertical, visto o robô Nao não ter uma junta na anca que rode verticalmente. Esta dissertação também apresenta os comportamentos desenvolvidos para a SPL, alguns dos quais foram baseados nos comportamentos já existentes na 3DSSL. É apresentado um modelo de comportamento que permite criar movimentos para o robô de nindo uma sequência de poses, um algoritmo para um andar open-loop e omnidirecional e um andar otimizado no simulador e adaptado para o robô real. A este último andar foi adicionado um sistema de feedback para o tornar mais robusto. Usando os comportamentos apresentados nesta dissertação, o robô atingiu uma velocidade de 16 cm/s para frente, 6 cm/s para o lado e rodou sobre si pr oprio a 40 graus/s. O trabalho desenvolvido nesta dissertação permite ter um agente que controle o robô Nao e execute os comportamentos básicos de baixo nível para competir na SPL. Além disso, as semelhan cas entre a arquitetura do agente para a SPL com a arquitetura do agente da 3DSSL permite usar os mesmos comportamentos de alto nível em ambas as ligas

    Mecanismos de rede para swarms de drones em ambientes de monitorização aquática

    Get PDF
    With the development of intelligent platforms for environment sensing, drones present themselves as a fundamental resource capable of responding to the widest range of applications. Monitoring aquatic sensing environments is one such application and the communication between them becomes a key aspect for both navigation and sensing tasks. Testing an aquatic environment with a high number of Unmanned Surface Vehicles (USVs) is very costly, requiring a lot of time and resources. Therefore, simulation platforms become elements of great importance . In this dissertation a simulator is developed containing a modular architecture, based on a delay tolerant network, being capable of simulating aquatic environments as similar as possible to real aquatic environments. In addition to the developed simulator, this dissertation presents methods and strategies of cluster formation, allowing the aquatic drones to select, in a distributed way, the gateways of each cluster that will be responsible for forwarding collected data towards the gateway on land. Two gateway selection methods were implemented, one focused on the energy of aquatic drones, and one considering different metrics such as link quality, centrality and energy. The proposed methods were evaluated across several cases and scenarios, with clusters built and changed in a dynamic way, and it was observed that the election of gateways with a method based on several metrics, together with appropriated control strategy, provides a better outcome of the network behaviour throughout the aquatic monitoring tasks.Com o desenvolvimento de plataformas inteligentes que permitem monitorizar vários ambientes, os drones apresentam-se como um recurso fundamental capaz de responder às mais vastas aplicações. A monitorização de meios aquáticos com recurso a drones é uma destas aplicações e a comunicação entre os mesmos torna-se um aspeto fundamental, tanto em tarefas de navegação como em tarefas de sensorização. Testar um ambiente aquático com um elevado número de drones aquáticos é muito caro, requer muito tempo e vários recursos, por isso, plataformas de simulação tornam-se elementos de grande importância. Nesta dissertação é desenvolvido um simulador, com uma arquitetura modular, tendo por base uma rede tolerante a atrasos, sendo capaz de simular ambientes aquáticos o mais semelhante possível a ambientes aquáticos reais. Para além do simulador desenvolvido, esta dissertação propõe métodos e estratégias de formação de clusters de drones, permitindo que os drones aquáticos elejam, de uma forma distribuída, os gateways de cada cluster que serão responsáveis por encaminhar os dados recolhidos pelos drones em direção à estação em terra. Foram implementados dois métodos de eleição de gateway, um focado na energia dos drones aquáticos, e outro capaz de considerar diferentes métricas, tais como a qualidade de ligação, a centralidade e a energia. Os métodos propostos foram avaliados através de vários cenários em que os clusters são construídos e alterados de forma dinâmica, e foi observado que a escolha de gateways com um método baseado em várias métricas, e juntamente com uma estratégia de controlo apropriada, proporciona um melhor comportamento da rede ao longo das tarefas de monitorização aquática.Mestrado em Engenharia Eletrónica e Telecomunicaçõe
    corecore