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Abstract

During the past three decades the evolution of Field Programmable Gate Arrays (FPGAs)
has been strongly influenced by Moore’s Law, process technology (scaling) and commer-
cial markets. State-of-the-art FPGAs are moving closer and closer to general purpose on
the one hand, but on the other hand, now that FPGAs have superseded more and more
traditional Application-Specific Integrated Circuit (ASIC) domains, the efficiency expec-
tations are growing. With the end of Dennard scaling, efficiency improvements can no
longer rely on technology scaling alone. These facets along with trends towards reconfig-
urable System-on-Chips (SoCs) and new low-power applications such as cyber physical
systems and internet of things require a better fit of target FPGAs, which can be facilitated
through customization. Collaterally, trends towards mainstream deployment of FPGAs in
day-to-day consumer products and services, the latter especially with the recent develop-
ments to employ FPGAs in data centres and cloud services, necessitate instant portability
of applications across current and future FPGA devices. In this context, hardware virtu-
alization can be a seamless vehicle for platform independence and portability. Candidly,
purposes of customization and of virtualization are in a field of conflict as customization
is intended for efficiency improvement yet virtualization adds additional area overhead.
However, virtualization not only benefits from customization but also adds more flexibil-
ity to it as the architecture can be altered anytime. This peculiarity can be exercised for
adaptive systems.

Both, customization and virtualization of FPGA architectures are predominantly unad-
dressed by the industry. Despite a few existing academic works they can be considered
unexplored and are emerging areas of research.

The main goal of the work presented in this thesis is to expedite the generation of cus-
tom FPGA architectures that are tailored towards an efficient befitting of the application.
In contrast to the usual approach with commercial off-the-shelf FPGAs, where the FPGA
architecture is considered as a given constraint and the application is mapped onto the
available resources, this work follows a new paradigm in which the application or ap-
plication class is considered as given and the target architecture is tailored to efficiently
accommodate the application. This results in customized application-specific FPGAs. The
three pillars of this thesis are the aspects of virtualization, customization and the framework.

The central element is an extensively parameterizable virtual FPGA architecture, called
V-FPGA, with the primary scope to be mapped onto any commercial off-the-shelf FPGA,
while applications are executed on the virtual layer. This ensures portability and migra-
tion even on bitstream level as the specification of the virtual layer can persist, while the
hosting physical platform can be exchanged. Furthermore, this technique is utilized to
enable dynamic and partial reconfiguration on platforms that don’t support it natively.
Apart from virtualization, the V-FPGA architecture is further intended to serve as an em-
bedded FPGA integrated into an ASIC, delivering efficient yet flexible system-on-chip
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solutions. Therefore, target technology mapping methodologies for both, virtualization
and physical implementation are addressed and an example for physical implementation
in a 45 nm standard-cell approach is carried out.

The highly flexible V-FPGA architecture can be tuned by more than 20 parameters, includ-
ing Lookup Table (LUT) size, clustering, 3D stacking, routing structure and many more.
The effects of the parameters on area and performance of the architecture are studied
and an extensive analysis of over 1400 benchmark runs reveals a high parameter sensi-
tivity with variances up to ±95.9 % in area and ±78.1 % in performance, which proves
the high significance of customization when it is up to efficiency. To systematically tune
the parameters towards the application’s needs, a parametric design space exploration
methodology based on suitable area and delay models is proposed.

A challenge of custom architectures is their design effort and the need for custom tools.
Therefore, this work comprises a framework for architecture generation, design space ex-
ploration, application mapping and evaluation. Above all, the V-FPGA is designed in
a fully synthesizable generic Very High Speed Integrated Circuit Hardware Description
Language (VHDL) code, being highly flexible yet eliminating the need for external code
generators. System designers can benefit from different types of generic SoC architecture
templates to reduce design time. All necessary design steps for application development
and mapping onto V-FPGA are supported by a tool-flow for electronic design automa-
tion, that exploits a collection of existing commercial and academic tools, customized by
suitable models and complemented by a new tool called V-FPGA Explorer. This new tool
not only acts as back-end tool for application mapping onto the V-FPGA but is also a
graphical configuration and layout editor, a bitstream generator, an architecture file gen-
erator for the place & route tools, a script generator and a testbench generator. A specialty
is the support of just-in-time compilation with fast algorithms for in-system application
mapping.

Finally, this thesis resolves with the closure of V-FPGA being so far employed in use-case
applications in the fields of industrial process automation, medical imaging, adaptive
systems and education.
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Zusammenfassung

In den vergangenen drei Jahrzehnten wurde die Entwicklung von Field Programmable
Gate Arrays (FPGAs) stark von Moore’s Gesetz, Prozesstechnologie (Skalierung) und
kommerziellen Märkten beeinflusst. State-of-the-Art FPGAs bewegen sich einerseits dem
Allzweck näher, aber andererseits, da FPGAs immer mehr traditionelle Domänen der
Anwendungsspezifischen integrierten Schaltungen (ASICs) ersetzt haben, steigen die Ef-
fizienzerwartungen. Mit dem Ende der Dennard-Skalierung können Effizienzsteigerun-
gen nicht mehr auf Technologie-Skalierung allein zurückgreifen. Diese Facetten und
Trends in Richtung rekonfigurierbarer System-on-Chips (SoCs) und neuen Low-Power-
Anwendungen wie Cyber Physical Systems und Internet of Things erfordern eine bessere
Anpassung der Ziel-FPGAs. Neben den Trends für den Mainstream-Einsatz von FPGAs
in Produkten des täglichen Bedarfs und Services wird es vor allem bei den jüngsten En-
twicklungen, FPGAs in Rechenzentren und Cloud-Services einzusetzen, notwendig sein,
eine sofortige Portabilität von Applikationen über aktuelle und zukünftige FPGA-Geräte
hinweg zu gewährleisten. In diesem Zusammenhang kann die Hardware-Virtualisierung
ein nahtloses Mittel für Plattformunabhängigkeit und Portabilität sein. Ehrlich gesagt ste-
hen die Zwecke der Anpassung und der Virtualisierung eigentlich in einem Konfliktfeld,
da die Anpassung für die Effizienzsteigerung vorgesehen ist, während jedoch die Vir-
tualisierung zusätzlichen Flächenaufwand hinzufügt. Die Virtualisierung profitiert aber
nicht nur von der Anpassung, sondern fügt auch mehr Flexibilität hinzu, da die Architek-
tur jederzeit verändert werden kann. Diese Besonderheit kann für adaptive Systeme aus-
genutzt werden.

Sowohl die Anpassung als auch die Virtualisierung von FPGA-Architekturen wurden in
der Industrie bisher kaum adressiert. Trotz einiger existierenden akademischen Werke
können diese Techniken noch als unerforscht betrachtet werden und sind aufstrebende
Forschungsgebiete.

Das Hauptziel dieser Arbeit ist die Generierung von FPGA-Architekturen, die auf eine
effiziente Anpassung an die Applikation zugeschnitten sind. Im Gegensatz zum üblichen
Ansatz mit kommerziellen FPGAs, bei denen die FPGA-Architektur als gegeben betra-
chtet wird und die Applikation auf die vorhandenen Ressourcen abgebildet wird, folgt
diese Arbeit einem neuen Paradigma, in dem die Applikation oder Applikationsklasse
fest steht und die Zielarchitektur auf die effiziente Anpassung an die Applikation zuge-
schnitten ist. Dies resultiert in angepassten anwendungsspezifischen FPGAs.

Die drei Säulen dieser Arbeit sind die Aspekte der Virtualisierung, der Anpassung und
des Frameworks. Das zentrale Element ist eine weitgehend parametrierbare virtuelle
FPGA-Architektur, die V-FPGA genannt wird, wobei sie als primäres Ziel auf jeden kom-
merziellen FPGA abgebildet werden kann, während Anwendungen auf der virtuellen
Schicht ausgeführt werden. Dies sorgt für Portabilität und Migration auch auf Bitstream-
Ebene, da die Spezifikation der virtuellen Schicht bestehen bleibt, während die physische
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Plattform ausgetauscht werden kann. Darüber hinaus wird diese Technik genutzt, um
eine dynamische und partielle Rekonfiguration auf Plattformen zu ermöglichen, die sie
nicht nativ unterstützen. Neben der Virtualisierung soll die V-FPGA-Architektur auch
als eingebettetes FPGA in ein ASIC integriert werden, das effiziente und dennoch flexible
System-on-Chip-Lösungen bietet. Daher werden Zieltechnologie-Abbildungs-Methoden
sowohl für Virtualisierung als auch für die physikalische Umsetzung adressiert und ein
Beispiel für die physikalische Umsetzung in einem 45 nm Standardzellen Ansatz aufgezeigt.

Die hochflexible V-FPGA-Architektur kann mit mehr als 20 Parametern angepasst wer-
den, darunter LUT-Grösse, Clustering, 3D-Stacking, Routing-Struktur und vieles mehr.
Die Auswirkungen der Parameter auf Fläche und Leistung der Architektur werden un-
tersucht und eine umfangreiche Analyse von über 1400 Benchmarkläufen zeigt eine hohe
Parameterempfindlichkeit bei Abweichungen bis zu ±95, 9% in der Fläche und ±78, 1%
in der Leistung, was die hohe Bedeutung von Anpassung für Effizienz aufzeigt. Um
die Parameter systematisch an die Bedürfnisse der Applikation anzupassen, wird eine
parametrische Entwurfsraum-Explorationsmethode auf der Basis geeigneter Flächen- und
Zeitmodellen vorgeschlagen.

Eine Herausforderung von angepassten Architekturen ist der Entwurfsaufwand und die
Notwendigkeit für angepasste Werkzeuge. Daher umfasst diese Arbeit ein Framework
für die Architekturgenerierung, die Entwurfsraumexploration, die Anwendungsabbil-
dung und die Evaluation. Vor allem ist der V-FPGA in einem vollständig synthetisier-
baren generischen Very High Speed Integrated Circuit Hardware Description Language
(VHDL) Code konzipiert, der sehr flexibel ist und die Notwendigkeit für externe Code-
generatoren eliminiert. Systementwickler können von verschiedenen Arten von gener-
ischen SoC-Architekturvorlagen profitieren, um die Entwicklungszeit zu reduzieren. Alle
notwendigen Konstruktionsschritte für die Applikationsentwicklung und -abbildung auf
den V-FPGA werden durch einen Tool-Flow für Entwurfsautomatisierung unterstützt,
der eine Sammlung von vorhandenen kommerziellen und akademischen Werkzeugen
ausnutzt, die durch geeignete Modelle angepasst und durch ein neues Werkzeug na-
mens V-FPGA-Explorer ergänzt werden. Dieses neue Tool fungiert nicht nur als Back-
End-Tool für die Anwendungsabbildung auf dem V-FPGA sondern ist auch ein grafis-
cher Konfigurations- und Layout-Editor, ein Bitstream-Generator, ein Architekturdatei-
Generator für die Place & Route Tools, ein Script-Generator und ein Testbenchgenerator.
Eine Besonderheit ist die Unterstützung der Just-in-Time-Kompilierung mit schnellen Al-
gorithmen für die In-System Anwendungsabbildung.

Die Arbeit schliesst mit einigen Anwendungsfällen aus den Bereichen industrielle Prozes-
sautomatisierung, medizinische Bildgebung, adaptive Systeme und Lehre ab, in denen
der V-FPGA eingesetzt wird.
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1. Introduction

Field Programmable Gate Arrays (FPGAs) as the prime example of reconfigurable archi-
tectures are no longer just prototyping and research devices, but are meanwhile experi-
encing mass-deployment in products and applications. In their infancy they were almost
abandoned due to their area inefficiency compared to ASICs, yet now their density is
high enough to accommodate very complex circuits and the flexibility that they offer is
so sweet and compelling that they have superseded ASICs in many domains despite the
ASIC gap. Even though FPGAs are a platform for implementing application specific dig-
ital circuits, they are actually general purpose off-the-shelf devices. As things get more
ambitious one might realize that "one size fits all" probably fits none really well.
This thesis goes one step further and advocates a new paradigm of application or do-
main specific FPGAs. As such, the main focus is the customization of FPGA architectures
towards the needs and peculiarities of the applications that they are going to implement.
After a reflection of the trends in reconfigurable architectures (Section 1.1), the raison d’être
for this new paradigm is deduced in Section 1.2.
A second emphasis in this thesis is laid on virtual FPGAs, which add a new dimension of
flexibility and are motivated in Section 1.3. Thereby, to be upfront with it, virtualization
is not a must for a custom FPGA and customization is not a must for a virtual FPGA.
However, the area hungry virtualization benefits from customization. In return, virtual-
ization is a vehicle for prototyping, exploring and exchanging custom architectures and
can ensure seamless and instant portability across diverse custom FPGAs or commercial
off-the-shelf FPGAs.

1.1. Trends in Reconfigurable Architectures

To understand the trends and to anticipate the future it is always wise to reflect first the
past. Reconfigurable architectures in context of Field Programmable Gate Arrays (FP-
GAs) have to date a history of three decades and their evolution has been mainly driven
by Moore’s Law [76], CAD tools, economic aspects, commercial exploitation, application
fields and the entering into new markets. In [102] Trimberger divides the evolution of
FPGAs into three epochs: the age of invention, the age of expansion, and the age of accu-
mulation, which are summarized from Trimberger’s paper and further references in the
following.

Age of invention (AD 1984-1991): The first commercial FPGA, the Xilinx XC2064, was
invented in 1984 by Bill Carter [78]. It featured 64 logic blocks with each one 3-input LUT
and one register, and 58 I/O blocks. The FPGA was designed without CAD tools in a
modified CMOS logic style with around 85000 transistors by repetitive use of a modular
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CLB and a modular I/O block. The XC2064 dies were manufactured in a 2.5 µm process
technology with two metal layers on a Seiko fab and the die size measured around 300 mil
x 300 mil. Consequently the first FPGA with only 64 logic cells suffered greatly area inef-
ficiency and the large die was prone to low yield and high costs per chip. Furthermore,
the programming bitstream needed to be stored on an external memory chip (initially
PROM) and loaded during startup. This means that functionality per dollar and space
was rather low and it was not competitive to the alternatives. This focussed the attention
towards increasing area efficiency as a high priority in further developments and process
technology.
Actel was able to make a big step in area efficiency by introducing the anti-fuse technol-
ogy for programming the FPGA, eliminating the need for configuration memory cells and
external PROM. However, this came at the expenses of one-time programmability.
Even though it turned out early that a granularity of 4 inputs per LUT provides a good
trade-off between area and delay, in practical applications they suffered from low utiliza-
tion ratios (e.g. due to unused inputs and configurations), wasting area. Consequently
this set off a wave towards very fine-grained logic cell architectures with two-input func-
tion generators ([5], [40], [77]) or even at the granularity of individual transistors with
programmable interconnections through anti-fuse [66].
In contrast to PALs, interconnection architectures in FPGAs followed 2D topologies with
short interconnect segments between adjacent blocks and pass transistor switches, yield-
ing a more efficient wiring. However, the pass transistor networks led to increased signal
delay due to their accumulated series resistance and large capacitance. Furthermore, since
interconnect networks consumed area which is not accountable for logic, they were inte-
grated very stingily by the FPGA architects, leading to routing congestions and challenges
in utilization of the FPGA resources.

Age of expansion (AD 1992-1999): The age of expansion began with an aggressive addi-
tion of interconnects to FPGAs due to the launch of chemical-mechanical polishing (CMP),
which made the birth of stacked metal layers possible thereby trailing certain significant
effects in the era of expansion. Area was no longer the precious commodity as it could be
traded off for performance, features and ease-of-use. On one hand the immense growth
in capacity with decrease in costs propelled large FPGA applications whereby manual
automation was no longer in discussion, paving way for automated synthesis, placement
and routing as part and parcel of the design process. On the other hand, upgradation
in process scaling as well as the cheaper metal usage made automated placement more
precise. It also promoted performance to a great extent by its longer segmented intercon-
nects making physically distant logics logically closer and eliminating exact alignment
of logic cells, which are done for the sake of higher performance. Opposing to the pay-
off is the wastage of unused parts of the metal wire even though it is in the acceptable
range. This era put an end to logic-waste-based fine-grained architectures, brought effi-
cient architectures which are based on starving interconnects to an end and doomed time-
multiplexed devices. The only thriving companies were Altera, AT&T and Xilinx. The
surge in Moore’s law pressurized the FPGA vendors to take possession of the leading-
edge process technology to keep up the balance between doubling capacity and halving
costs, throwing companies with technologies such as EPROM, Flash and antifuse into
chaos due to their technology dependent architectures. Though in the mid-1990s LUT-
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based architectures were "synthesis unfriendly", they survived and started to dominate
once its simplicity in mapping, efficient layout in silicon as memories and interconnect
saving capabilities have been explored and exploited persuading companies like Xilinx,
Altera and AT&T/Lucent to adopt LUT architectures along with distributed-memory-cell
architectures. The latter due to its architectural freedom and its proficiency in giving the
FPGA vendors a nearly universal access to process technology. During the age of expan-
sion, the FPGA’s capacity growth started to address majority of ASIC applications and
fought its way through EDA and ASIC technologies.

Age of accumulation (AD 2000-2007): The birth of new millennium brought FPGAs a
huge market in the data communications industry. Their high-throughput, real-time com-
putation and generality earned them a wide range of applications including control and
automotive systems. Though hiking capacity growth escalated market growth, increased
product cost started to weigh down the customers. This conflicting challenge was tackled
by producing lower-capacity, lower-performance "low-cost" FPGAs for low-end markets
and apprising the high-end markets with libraries of soft logic (IP) for important func-
tions like microprocessors (Xilinx MicroBlaze and Altera Nios), memory controllers and
various communication protocol stacks. For example, Ethernet MAC was implemented
as soft core in Virtex-II before it was available as transistors in Virtex-4. FPGAs were not
only expected to increase the logic size but were anticipated by the users to adhere to their
system standards by keeping the cost and power efficiency under check, thereby com-
pelled the inclusion of logic blocks such as large memories, microprocessors, multipliers,
flexible I/O and source-synchronous transceivers. Built from custom-designed transis-
tors made them often more efficient than ASIC implementations. The resultant "Platform
FPGA" was a collection of programmable logic, soft core IPs and logic blocks. Especially
the launch of logic generators like System Generator from Xilinx and DSP Builder from
Altera assisted the users to build their own functionality from the available dedicated
functions and soft logic. Embedded (System) Design Kits made possible to have Linux
OS running on FPGA processor. Finally, the age of accumulation came to an end with
Moore’s law being under a subject of discussion as performance came to a slowdown in
trade-off with power even though improvements in cost and capacity continued to step-
up.

Today one of the major technological trends in reconfigrable computing is the formation
of programmable SoC hybrids combining programmable logic, microprocessors, on-chip
networks and interfaces in a single device. The integration of two or more circuit classes
(e.g. FPGA, processor, dedicated HW logic, etc.), that classically have been treated and
interconnected as separate chips, has tremendous benefits in terms of efficiency. For in-
stance, on chip interconnects require less area, are more performant and allow a much
higher complexity than off-chip interconnects, meanwhile reducing the pin count and the
silicon- and power-hungry IO buffers. Recently, major FPGA vendors have realized this
potential and are showing serious efforts towards heterogeneous SoC platforms [110] [73]
[52].
With respect to new workloads, we can see a hype of extending the classical applica-
tion fields of FPGAs by machine learning, artificial intelligence, search engine index-
ing, encryption and data compression [47]. We are currently witnessing a new major
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breakthrough of FPGAs by employing them in data centers and cloud farms to acceler-
ate workloads. Prominent projects are, e.g. Intel Xeon+FPGA Integrated Platform [45] or
Microsoft’s Catapult project [83]. Recently, Amazon started employing FPGAs in cloud
farms, where integrated FPGA instances can be rented to accelerate applications in the
cloud [9].
With the rising complexity and the demand for faster time to market high-level synthesis
and growing IP libraries are the most obvious trends in EDA for FPGAs. This is especially
essential for entering into markets that are dominated by CPU or GPU devices and where
large pools of developers are trained for and used to utilize higher level programming
languages and models. But also in terms of CPU-FPGA hybrid solutions the process of
outsourcing of CPU workloads to FPGAs, preferably during runtime, benefits from ab-
straction layers that hide the underlying hardware. One of the most recent trends is the
support of OpenCL in this direction and Altera (now part of Intel) and Xilinx put lots of
efforts in it.

1.2. Need for Specialization and Customization

While devices like the Xilinx ZYNQ or Altera Cyclone V SoC are getting closer to gen-
eral purpose computing, there is also an increasing need for specialized devices for high
volume, low cost and low power applications, e.g. in the fields of mobile devices, Cyber-
Physical System (CPS), Internet of Things (IoT), sensor networks, wearables and others.
The tight power budgets of such devices are hard to meet by general purpose FPGAs.
Wireless devices need to operate for a long time from battery, some need even to be self-
sustained through energy harvesting. Even wired devices can have tight power limita-
tions. For instance, intelligent sensor nodes that use the same one wire for power sup-
ply and for Highway Addressable Remote Transducer (HART) communication have a
current limit of <4mA for their internal electronics in order to not disturb the 4-20 mA
current-modulated communication which is on the same wire. Apart from power also
form-factor, size and price play an important role, which are hard to meet with current
general purpose Commercial off-the-Shelf (COTS) FPGAs. If FPGAs are to supersede
ASICs in these domains, then they need more specialization.

With respect to high performance computing, the recent embracement of FPGAs by large
scale contemporary and upcoming markets (Datacenter, Cloud, Ai, Security) presumably
sets the volumes high enough to afford specialized FPGAs for certain application classes.
According to [47] it is unlikely that FPGAs employed in data centers will take the role of
general purpose computing. Instead, they are seen as a companion to CPUs accelerating
certain workloads. Meanwhile, power matters more and more also in data centers, which
according to [45] is a strong motivation to replace GPUs by FPGAs. With power, perfor-
mance, hyper workload classes and the high volumes in mind, certainly specialization
could pay out in these highly competitive markets, where chip giants are currently re-
shuffling the cards by stacking up with strategic acquisitions and fusion of technologies.

From a high level viewpoint, another more general need for specialization is coming from
the limitations that the semiconductor industry is running against. In former decades
Moore’s law (originally formulated in 1965 in [76] and revised ten years later) predicted
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the doubling of transistors per area every two years, which used to be a quite reliable self-
fulfilling prophecy. Also the formulations of Dennard [29], which in essence conclude that
power requirements are proportional to actual area, which in conjunction with Moore’s
law means that performance-per-watt would increase when transistor density increases,
were valid in former decades. This way, the industry was able to deliver generation by
generation more value to their customers and an increased efficiency by roughly 40% per
generation through scaling alone [19].
Today, while Moore’s law is threatened but probably still continues for some time, Den-
nard Scaling is already invalid. It came to an end roughly one decade ago because at
feature sizes below 65 nm the exponential growth of leakage current is not neglect-able
anymore and also threshold voltage is difficult to reduce further. This impedes the down-
scaling of operating voltage and increases the power and heat density with shrinking fea-
ture sizes. The consequence is that scaling alone doesn’t automatically lead to efficiency
improvements anymore. Yet the market is used to get more and more value with every
new generation, which is also the reason why they have been investing again and again
in the latest technology. This puts now pressures on increasing the efficiency of integrated
circuits through other means.
One option to achieve this is through specialization on architecture level, in order to ob-
tain a better fit of the architecture to the application and consequently a higher efficiency.
Naturally, specialization demands a high price in terms of effort, especially if things need
to be developed from scratch. This can be considerably mitigated through generic archi-
tecture models (and corresponding tools) that can be customized to fit the application.

1.3. Virtualization from different viewpoints

Portability. FPGAs are gaining more and more popularity and their large scale deploy-
ment surely will make them more and more affordable as the NRE costs will be shared
by more units. If this movement continues at this rate, FPGAs will become mainstream
in the near future and indispensable in our day-to-day systems and applications such as
entertainment, communication, assistance, automation, cyber-physical systems, Internet
of Things (IoT) devices, cloud services, monitoring, controlling, and many more. There
will be the situation that FPGA based devices and applications change more often than
how it is today, thereby making it necessary to loosen the bond between application and
the execution platform [34].
Virtualization is a key for instant portability and migration of applications even on bit-
stream level without redesigning or recompiling. Thereby, an optimized reconfigurable
architecture as a virtual layer can be mapped onto an existing COTS FPGA, while the
application itself will be executed on the virtual layer, thus being independent of the un-
derlying physical platform. The eminent advantage is that the specification of the virtual
architecture can persist, while the hosting physical platform can be exchanged by another
one. Not only can this be used for task migration scenarios during runtime but is also a
strong aspect for the industry to have a "second source" in order to overcome disruptive
situations like the discontinuation of the employed COTS FPGA platform. In such cases,
the same bitstream can be executed on another hosting COTS FPGA from another vendor
through virtualization.
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Partial and Dynamic Reconfiguration. The configuration mechanisms of a virtual FPGA
can be decoupled from the configuration mechanisms of the underlying physical plat-
form. This can be exploited to enable partial and dynamic reconfiguration on platforms
that don’t support it natively. This is a very powerful aspect of FPGA virtualization as it
actually extends the capabilities and functionality of a COTS FPGA through the virtual
layer. Dynamic partial reconfiguration in particular is a desirable feature as it allows to
reuse parts of the chip area for temporal exclusive functions on demand [18] [103] [50]
[35]. It virtually increases chip area compared to static solutions that need to accom-
modate all functions at the same time even though they are not needed simultaneously.
Many COTS FPGAs, especially low power devices such as Actel’s ProASIC3, Igloo, etc.,
don’t offer dynamic reconfiguration. In [50] and [35] this limitation is canceled through
virtualization.

Adaptivity. The added level of flexibility through virtualization enables to adapt the cus-
tom FPGA architecture to the workloads. Being mapped onto a programmable platform,
the architecture can be altered any time and in case the underlying platform supports
dynamic partial reconfiguration, this can happen during run time operation. The adap-
tivity can be exploited to tune the architectural parameters of a custom FPGA for an opti-
mized befitting with respect to the application, leveraging the Reconfigurable Computing
paradigm to new dimensions in space and time and following a new paradigm in which
the application comes first and the architecture follows as opposed to the old off-the-shelf
approaches.

Prototyping and Emulation. Virtualization serves also as a vehicle for prototyping cus-
tom physical FPGA architectures, be it stand-alone or embedded in systems, and associ-
ated runtime environments. The custom FPGA and other system(-on-chip) components
along with monitoring and debug logic can be mapped on a COTS FPGA or a multi-FPGA
platform to test the design. Since virtualization exploits the same degree of parallelization
as the intended ASIC realization, this makes the testing and benchmarking of such com-
plex systems much faster than through simulation on a PC, which is mainly sequential.
Following the observations of [56] on the ASIC gap, we can presume this type of virtual-
ization/prototyping to be only around 3.4 x to 4.6 x slower than a targeted standard-cell
implementation of the custom FPGA architecture. One could take advantage on this to
initially release an early fully-functional "light" variant of a new product with a COTS
FPGA virtualizing the new reconfigurable system-on-chip architecture. Later, the prod-
uct line can be updated once the new higher-performance chip is fabricated. This strategy
not only reduces time-to-market of new products but can also help making the digital
portion of the intended chip mature at the first manufacturing attempt, because already
the experiences and customer feedbacks from the virtualized version can be used to im-
prove the design early enough before chip manufacturing. Furthermore, the risk of the
product is lower as the initial virtualized version can be altered through reconfiguration
in case of faults. This helps to cope with infancy in the initial product phase.

Accessibility. Another benefit of virtualization is accessibility. Novel FPGA architectures
can be accessed and made tangible through virtualization without the need of expensive
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chip implementation. This way, researchers and students can conduct functional exper-
iments on custom FPGA architectures that are accommodated by regular COTS FPGAs,
which are usually present in any university. Same applies to educational workshops and
training sessions. Furthermore, tools and application developers can start developing and
debugging for custom FPGAs in parallel to the chip development and prior to production,
as they have access to the new FPGA architecture through virtualization. This not only af-
fects the applications to be mapped onto the new FPGA, but also the interplay with other
system components, such as microprocessor, memory, network interfaces, etc..

1.4. Challenges and Proposed Solutions

Customization and virtualization come with a number of principle challenges that are
systematically addressed by the work of this thesis:

1. The design efforts to create custom FPGA architectures and programmable SoCs
are very high if everything needs to be developed from scratch. This might impede
the acceptance of application specific custom FPGAs.
-> Proposed solution: The design efforts are minimized by generic architecture templates,
that can be customized through parameters. This way system architects don’t need to de-
velop the FPGA architecture, but just change the parameters to obtain an optimized suitable
architecture for the application. The more parameters the generic architecture offers, the
better is the achievable fit.

2. Architectural design choices can get rather complex due to interdependency of pa-
rameters and trade-offs. Especially the introduced freedom can be also a pain if the
number of parameters is overwhelming.
-> Proposed solution: The process of choosing the right design parameters is assisted by
model based parametric design space exploration.

3. Custom FPGA architectures require custom EDA tools for application mapping and
design space exploration.
-> Proposed solution: Flexible toolflow that seamlessly adapts to the customized architec-
tures through parameterizable architecture models.

4. Static analysis is not sufficient for evaluating dynamic systems with applications or
benchmarks mapped onto the custom FPGA. Event or time driven simulation is able
to do so but is too slow to observe a relevant time frame in acceptable tool runtime.
Furthermore, the interplay with other system components that are not modelled is
not possible in simulation.
Proposed solution: Prototyping through virtualization on a COTS FPGA exploits the
same degree of parallelism as the target, thus is much faster than simulation. Existing
external components can be interconnected and don’t need to be modelled.

5. Virtual FPGAs have the drawback of a high area overhead and also performance is
degraded compared to physical FPGAs due to the additional layer.
-> Proposed solution 1: As sure as there is an ASIC gap for physical FPGAs, similarly the
overhead for the virtual layer can not be eliminated. There is a price that has to be paid for
the added flexibility and the benefits. However, this can be mitigated through customization.
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A better fit leads to a better utilization leads to less logic elements needed to accommodate
the application. Since virtualization happens on top of a reconfigurable platform, it comes
for free and can be updated on a per-application basis.
-> Proposed solution 2: If there are temporal exclusive functions/applications that the
virtual FPGA has to execute, the partial and dynamic reconfiguration feature of the custom
virtual FPGA reduces the area requirements because not all functions need to be present at
the same time. Thus they can be loaded on demand while others are discarded. In case the
number of temporal exclusive functions is greater than the overhead factor, this technique
compensates the area overhead.

6. Due to dependency on underlying platform and coarse scaling quantization, virtual
architectures don’t follow the same area and performance patterns as their physical
counterparts. Consequently existing models adopted from physical FPGAs are in-
accurate for virtual FPGAs.
-> Proposed solution: Introduction of new area and delay models based on minimum sized
basic elements, taking into account the underlying platform.

1.5. Contribution

Despite a few related works ([58], [65], [20]), the field of Virtual FPGAs is considered
unexplored. Neither reconfigurable computing nor the idea of virtualization are new
topics. However, to the best of my knowledge, the framework presented in this document
incorporates the first concrete 3D Virtual FPGA that is able to execute applications.

Furthermore, the framework satisfies the different views on virtualization presented above.

Architecture wise there are a number of new innovations contributed, such as Loopback-
Propagation for emulating bi-directional wires, CoreFusion to merge adjacent V-FPGA cores,
slice-level dynamic and partial reconfiguration mechanisms, Snapshot mechanisms for fast
dynamic migration of applications from one region to another during runtime, inclusion
of ViSA cores as programmable heterogeneous blocks for efficient implementation of com-
plex arithmetic functions or control flow.

In contrast to related works that have a rather fix architecture, the V-FPGA architecture
presented in this thesis can be customized by more then 20 parameters.

For guiding the selection and adjustment of parameters towards objectives, a customiza-
tion methodology is proposed, whereby starting with an analysis of the application, suit-
able architectural parameter values are determined through design space exploration.

The V-FPGA has a rather complete tool support for EDA of applications, architecture level
DSE and customization. Existing solutions were focused on the exploration of hypotheti-
cal architectures at abstract level. Within this work a new tool called V-FPGA Explorer was
developed that closes the gap between abstract layout and actual reconfiguration by im-
porting the abstract layout information and mapping it onto the programmable resources
and configuration mechanisms. Apart from bitstream generation it features graphical
configuration editing, testbench generation, architecture file generation and tool control
script generation.
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In this work new area and delay models along with transferrable metrics suitable for
virtual FPGAs are introduced. Prior works relied on borrowed models from physical
FPGAs for DSE and area/timing driven application mapping. However, those transistor-
level models were not suitable for virtual FPGAs as they have different base units. This
gap is now closed with the new models presented in this thesis.

A detailed analysis of the effects of architectural parameters on area and performance is
contributed in this thesis. Similar analysis were carried out for physical FPGAs by prior
art related works, however this was missing for virtual FPGAs.

In addition, the transition from virtual to physical is considered and can be emulated in an
early design stage. A physical design methodology with hierarchical layout is introduced
for the V-FPGA in case a mapping onto standard-cell ASIC is targeted.

A unique type of educational support is provided by the TEAChER framework which is
based on and utilizes the Virtual FPGA.

1.6. Outline

The rest of the thesis is organized as follows:

In chapter 2, apart from a definition of efficiency, the most important fundamental ba-
sics about reconfigurable architectures, partial and dynamic reconfiguration, 3D integra-
tion, electronic design automation steps for FPGAs are covered. This chapter is intended
to provide a common understanding about the terms and topics throughout the thesis.
Readers that are already confidently familiar with these topics can skip this chapter.

Chapter 3 surveys related works in context of architectural efforts for efficiency increase,
custom embedded or embedded FPGAs, virtual FPGAs, generic CAD tools and 3D FPGA
architectures and discusses briefly how the V-FPGA differentiates or complements these
works.

Chapter 4 describes in detail the V-FPGA architecture which is the center piece of the
framework. Thereby it includes also analysis of design parameters to justify customiza-
tion of such parameters.

In chapter 5 the complete toolflow for mapping applications onto the V-FPGA considering
that it is a custom architecture is described. Apart from existing customizable tools also
the new V-FPGA Explorer tool is described which closes the gap between abstract layout
and actual configuration.

Chapter 6 is devoted to the customization process itself by presenting generic SoC archi-
tecture templates and concepts and methodologies to determine the right parameters for
a good fit of the application and architecture. Furthermore it includes new area related
metrics targeted at the peculiarities of virtualization.

Chapter 7 covers the mapping of the V-FPGA onto various underlying platforms, includ-
ing virtualization and physical implementation in a standard-cell approach. Closely re-
lated to the target technology mapping is the characterization which is needed for area
and delay models. Therefore a characterization flow is also described in this chapter.
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Chapter 8 presents various use cases with the V-FPGA employed.

Finally, in chapter 9 the conclusion of this work is summarized.
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2. Fundamentals

2.1. Efficiency in Context of This Work

One of the most important optimization goals (but not the only) of this work is efficiency
improvement. In [31] a to the point definition of the term "efficiency" as quoted in the
following is given:

Efficiency is the (often measurable) ability to avoid wasting materials, en-
ergy, efforts, money, and time in doing something or in producing a desired
result. In a more general sense, it is the ability to do things well, successfully,
and without waste. In more mathematical or scientific terms, it is a measure
of the extent to which input is well used for an intended task or function (out-
put). It often specifically comprises the capability of a specific application of
effort to produce a specific outcome with a minimum amount or quantity of
waste, expense, or unnecessary effort.

Efficiency can have different aspects. The following ones are relevant for this work:

Energy efficiency and the widely accepted synonym performance per watt (note that en-
ergy is power integrated over time) refers here to the ability to perform computations with
low energy or power consumption. This is especially important for mobile and battery
powered devices, however it has gained extreme importance also in high performance
computing since Moore’s Law began to run into the power wall leading to extreme power
(and heat) densities in microprocessors nearly comparable to those of nuclear reactors
[81].

Area efficiency refers to function density per area or performance per area. Often it is
expressed in logic density or gate equivalents per die area, however this is not always a
meaningful measure, since function density not only depends on the circuit complexity
but also on the architecture type. An example of higher area efficiency with less logic
density is presented in [36].

Cost efficiency as function of possible performance per chip cost (or per system cost) is
related to area efficiency, but also depends on the technology node, integration, produc-
tion volume and manufacturing process.

Mapping efficiency is used here to express how well an application can be mapped on
the resources of an underlying platform in terms of resource utilization. The goal is to
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utilize the allocated resources as much as possible. An example of an inefficient mapping
is the realization of a 2-input NAND gate by a 6-input LUT: 67% of the LUT inputs and
95% of the LUT area remain unutilized and are wasted. Increasing the mapping efficiency
can have also a positive effect on the area efficiency because the same application fits in a
smaller area.

Throughout the rest of the thesis, if not otherwise specified, the term efficiency refers
implicitly to one or more of the above mentioned aspects depending on the context that it
is used in.

2.2. Reconfigurable Architectures

Reconfigurable architectures in context of this work are circuit architectures for semicon-
ductor devices that can be configured by the user after the manufacturing process has
been completed. The primary target is the realization of application specific integrated
circuits, whereby in contrast to classical ASICs the flexibility and ability to alter the cir-
cuits is given and is the main differentiation. For this purpose reconfigurable architectures
generally consist of arrays of flexible and programmable logic cells, programmable I/O
cells as well as programmable interconnects. The purpose of each logic cell is to realize a
logic function that has a limited amount of variables, i.e. a logic cell is a function gener-
ator. The programmable interconnects are there to combine logic cells in a way that the
composite realizes a function of higher complexity out of several functions of little com-
plexity. Furthermore, they route signals from the logic cells to the I/O cells for off-chip
communication.
Reconfigurable architectures can be classified in at least two groups, fine grain and coarse
grain, depending on the size and complexity of the programmable components. Compton
and Hauck [26] distinguish the granularity by the bit size of the logic cells, i.e. a 3-input
LUT would be fine-grained and a 6-input LUT coarse grained. Shannon [89] however dis-
tinguishes by bit level data manipulation and interconnect (fine-grained) vs. word-level
data manipulation and interconnect (coarse-grained). Throughout this thesis the classifi-
cation by Shannon is followed because the classification by Compton and Hauck suffers
a blurred discrimination and would fail as soon as we talk about adaptive LUTs with
variable size.

2.2.1. Fine Grain Reconfigurable Architectures

Field Programmable Gate Arrays fall in the category of fine grained reconfigurable archi-
tectures. The essence of FPGAs are programmable logic cells and programmable inter-
connect networks in a regular structure to realize digital circuits through individual pro-
gramming of these resources. Apart from this, modern derivates contain also optimized
macro-blocks of common functions, such as Block Random Access Memorys (BRAMs),
Digital Signal Processing (DSP), I/O serializer/de-serializer. Fundamentally, the most
important differentiators between existing FPGAs are the types of logic cells, the routing
topologies for the interconnects and the programming technologies, which are explained
in the following subsections.
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2.2.1.1. General Topologies

The established fundamental topologies are island-style, row-based and sea-of-gates.

Island-style FPGAs are characterized by the fact that all logic cells are surrounded by
routing channels (see Figure 2.1). Typically, in such architectures the inputs and outputs
of the logic cells are distributed on all four sides and are connected to the tracks of routing
channels via connection boxes. At the intersection points of the vertical and horizontal
routing channels there are switching matrices that can interconnect tracks from different
routing channels. This is the dominating topology of commercial FPGAs.

LOGIC LOGIC

LOGICLOGIC

Connectio
Box

Switch
Box

Routing
Channel

Figure 2.1.: Island-style FPGA topology [10]

Row-based. In row-based FPGAs, the logic cells are arranged in a row-shaped manner
(see Figure 2.2). Between these rows are horizontal routing channels. The tracks are seg-
mented in the routing channels and can also have different lengths. Furthermore, there
are vertical tracks that pass through some logic cells and cross the horizontal routing chan-
nels. In this way, tracks from different rows can be connected to each other. Row-based
architectures are used, for example, in Actel ACT3 FPGAs [72].

Sea-of-gates. In "sea-of-gates" based architectures (see Figure 2.3) there are no routing
channels between the logic cells. Here, the routing is established by local connections
between adjacent logic cells. The SX family of Actel for example, uses such a topology.

2.2.1.2. Logic Cells

The most common type of logic cells uses LUTs as function generators. This approach
relies on precomputing a boolean function with a fixed number of variables under all pos-
sible combinations of values during the design time and storing the results in a table. If K
is the number of variables, then the LUT needs to contain 2K single bit storage elements
for the results. The inputs of a LUT correspond to the function variables and drive the
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Vertical
Tracks

Segmented
Tracks

Horizontal
Routing
Channel

LOGIC

LOGIC LOGIC LOGIC

LOGIC LOGIC

Figure 2.2.: Row-based FPGA topology [10]

LOGIC
Sea of Logic

Local
Interconnect

Figure 2.3.: Sea-of-gates FPGA topology [10]

select signals of a MUX, thus each value combination addresses one of the stored results
to drive the output as depicted in Figure 2.4. With a K-input LUT there are 22K

possible
functions realizable. Furthermore, logic cells usually contain also a flip-flop at the output
of a LUT in order to realize sequential processes, while it can be bypassed if only combi-
national logic is to be implemented. Figure 2.5 shows the structure of a basic LUT based
logic cell. Comercial versions of LUT-based logic cells can differ greatly from manufac-
turer to manufacturer. For instance, not only the number of inputs of a LUT can vary, but
also a plurality of LUTs (and possibly flip-flops) can be clustered in different ways and, if
necessary, locally interconnected, along with providing extra signals, both internally and
externally, for realizing e.g. carry chains.
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Figure 2.4.: Principle of lookup table (LUT) as programmable logic
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Figure 2.5.: Logic cell containing a LUT, a flip-flop and a bypass MUX, programmable
through SRAM cells P

An alternative to LUT is multiplexer-based logic. The principle of MUX based logic is that
a 2:1 MUX can generate the boolean functions listed in Table 2.1 if each input as well as
the select signal can be tied by programmable switches to any of the function variables
(x0, x1) or to gnd or to vdd according to Figure 2.6a. Having two MUX inputs (a0, a1)
and one select signal s, there are 43 = 64 possible combinations. However, some of the
combinations lead to the same results and are redundant. Removing the redundant com-
binations, there remain the 11 possible functions from Table 2.1. The same redundancy
leaves also room for minimizing the number of required switches, e.g. as shown in Figure
2.6b. For comparison, it is to mention that a 2-input LUT can realize 16 possible functions,
i.e. MUX based logic misses 5 functions. However, with the functions presented in table
2.1 any other boolean function can be realized through combination of several MUX based
logic cells.
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Table 2.1.: Functions realizable with a 2:1 MUX
s a1 a0 function

x0 gnd x0 0
x1 gnd x0 (NOT x1) AND x0
x1 gnd vdd NOT x1
x0 gnd x1 (NOT x0) AND x1
x0 gnd vdd NOT x0
x1 gnd x1 x0 AND x1
x0 x0 x0 x0
x1 x0 vdd (NOT x1) OR (x1 AND x0)

gnd gnd x1 x1
x0 x0 x1 x1 OR x0
x0 x0 vdd 1

P

P P

P

P

P

P

P

x0

x1

P

P

P

P

a0

a1 s
out

vdd

gnd

vdd

gnd

vdd

gnd

(a) fully flexible MUX based logic

P

P P

P P

x0

x1

P

P P

a0

a1 s
out

gnd

vdd

gnd

(b) optimized MUX based logic

Figure 2.6.: Multiplexer based logic: (a) fully flexible (b) optimized. Both alternatives can
implement the same function set (see Table 2.1)

2.2.2. Heterogeneous Reconfigurable Architectures

The need for heterogeneity arises from the fact that functions implemented on specific-
purpose logic causes significant reduction in area when they are left unused in the target
application, even though when utilized leads to higher performance. Thereby, the urge to
have a heterogeneous mixture of general-purpose and specific-purpose logic blocks peaked in
the last decade. To perceive the importance of heterogeneity, it is important to understand
the terms "hard-core" or "hard circuit structure" and "soft core" or "soft logic fabric". Both
of them are an array of combinational logic elements and each Logic Element (LE) consists
of a logic function implemented as a gate of LUTs. The difference between hard-core
and soft-core is being the fact that the latter one connects the LEs through programmable
routing fabric, while in the former case the routing is made fixed in the fabric and cannot
be reconfigured.
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Figure 2.7.: An example of tile-based heterogeneity [57]

According to [57] there are two kinds of heterogeneity: soft fabric heterogeneity and tile-
based heterogeneity. The name soft fabric heterogeneity by itself suggests that the FPGAs
are constructed from an array of identical tiles, each containing the basic soft logic block
and soft fabric heterogeneous elements. When distinct tiles, each having dedicated hard
circuit structures, are included along with the soft logic blocks in the same substrate as
illustrated in Figure 2.7, they fall into the latter category.

2.2.2.1. Soft Fabric Heterogeneous Elements

By definition, flip-flops are dedicated logic blocks and hence are hard circuit structures.
Researches were carried out to emulate flip-flops as soft logic blocks, yet the significant
impact on area efficiency has led to the inclusion of "hard" flip-flops within logic elements
in most commercial FPGAs 1. These are typically edge-triggered and include a variety of
set, reset, load, enable and clocking capabilities, which depending upon the FPGA family
can have fixed or programmable signal selection. Other explicit soft fabric elements are
addition/subtraction/carry logic (carry lookahead and carry-skip) to make adder and
subtraction units smaller and faster. Small memory units can also be built from LUTs
which in turn can be connected together to form larger memories. [57]

2.2.2.2. Hard Structure Heterogeneous Elements

Block RAMS are one of the first hard-core heterogeneous tiles with the flexibility to have
different aspect ratio configurations, which can be suited for different applications with
varying memory requirements. With the addition of a small amount of soft logic, they
can be combined to form larger memory blocks. These block RAMS can support dual
functionality of reading and writing simultaneously and can be configured to have First-
in First-out (FIFO) functionality. The unused memory blocks can be utilized efficiently by
converting them into large LUTs. Multiplier is another such heterogeneous computation-
oriented tile. When unused, they offer little benefit, which can be dealt with by creating

1One exception is Actel’s VersaTile technology used in the ProASIC3 and Igloo devices [2], where a core cell can be
configured either as a 3-input logic function or as a flip-flop or latch
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sub-families within the FPGA family using the same basic architecture but with different
ratio of hard and soft logic. In order to improve performance, microproccessors have been
often made hard-core in spite of the challenges that arise in the interface layer between
the processor, memory system and soft fabric. Though having them as soft-core means
lower performance and larger area, they are customizable, which is very beneficial for
applications with varying resource requirements. [57]

2.2.3. Programming Technologies

In FPGAs there have been mainly three relevant programming technologies established,
that are commercially and successfully employed until today: SRAM, flash and anti-fuse.

SRAM. The static memory cells like the one shown in Figure 2.8a form the basis of
SRAM programming technology. They are used to either interconnect signals by setting
the select lines to multiplexers or to store data in LUTs as illustrated in Figure 2.8b and
Figure 2.8c. Their re-programmability and their competence to make use of CMOS pro-
cess technology made their mark in FPGAs and are employed by vendors like Xilinx and
Altera. On the other hand, this approach is marked down because of the following de-
merits:

1. The SRAM cell along with the programmable element requires at least 6 to 7 tran-
sistors.

2. Its necessity for external storage devices during power down degrades the cost ef-
fectiveness of the FPGAs.

3. The on-resistances of pass transistors, which are used to implement multiplexers
lead to capacitive load.

Flash. Figure 2.9 depicts the functionality of a flash memory cell. The programming
transistor programs the floating gate (as it "floats" above the transistor) and the switch-
ing transistor acts as the programmable switch. Though the flash-based programming
technology doesn’t need to wait for the loading of configuration data, omits the usage of
external devices for storing data and exhibits non-volatility and more area efficient than
SRAM cells, it aids in area overhead because of the inclusion of high and low voltage
buffers in programming circuitry, adds design complexity in switching transistor to keep
up the source-drain voltage from being injected into the floating gate, suffers from high
resistance and capacitance of transistor-based switches and finally the charge buildup in
the oxide prevents them to be reprogrammed infinite number of times. The emerging
trend of using flash cells in combination with SRAM cells provides non-volatility with
infinite reconfigurability with the price being paid in area overhead.

Anti-fuse, an alternative non-volatile programming technology, can be implemented us-
ing either dielectric (Figure 2.10) or metal-to-metal (Figure 2.11) based approach. The
former approach is largely replaced by the latter one, which sandwiches an insulating
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Figure 2.8.: SRAM programming technology [57]
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Figure 2.11.: Metal-to-metal anti-fuse technology [11]

material like amorphous silicon or silicon oxide between two metal layers and by apply-
ing a high voltage breaks down the anti-fuse and thereby establishes a conduct with a
resistance of 20 to 100 ohms. Since the fuse itself doesn’t require silicon area, the area
overhead of programming circuitry is significantly reduced, which is slightly neutralized
by the programming transistors as they need to deliver large currents to program the
anti-fuse. Non-volatility reducing the system costs by eliminating external storage de-
vices, low resistance and capacitance enabling inclusion of more switches per device and
immediate operation after power up adds up to the advantage of anti-fuse technology.
However the scalability of anti-fuses is in question as the most advanced devices use only
0.15 µm technology. Additionally, their permanent link establishment makes them invalid
for applications where reconfigurability is highly essential.

2.3. Partial and Dynamic Reconfiguration

FPGAs with SRAM or Flash technology are reconfigurable. The implemented function
of the circuit can be changed as often as required. To achieve this, earlier FPGAs had to
be stopped and "reprogrammed" completely via a programming device. It is also said
that such FPGAs are statically reconfigurable. This is still true today for most FPGAs.
During the past decade, dynamic and partially reconfigurable architectures have been
developed that can perform reconfiguration during runtime to a particular portion of the
array, while the remaining portion can work uninterruptedly. In this way, functionality
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can be exchanged at runtime and the array reused. Usually, different configurations are
loaded into a non-volatile memory and are mapped onto the hardware on demand. This
reactionary dynamic adaptivity of the hardware provides completely new possibilities.
Therefore, this technique is currently the subject of intense research activities around the
world. Dynamic and partial reconfiguration is explained in detail in [49].

2.4. 3D Integration

Chip stacking through 3D integration has the potential not only to reduce physical area
but also to afford improvements in performance label. An overview of this new emerging
3D technology has been explained by W. Rhett Davis et.al. in [28]. In the following subsec-
tions, a walk-through of different 3D techniques has been briefed and compared to bring
out the specialty of each technique. Wire bonded, microbump, through vias and con-
tactless interconnection are the different 3D interconnect techniques available and their
method of assembly, the maximum number of tiers (no. of chips in a stack) they can
bond, the pitch of the vertical interconnect and their routing resource usage have been
compared in Table 2.2. The technologies are described in the following subsections.

Table 2.2.: Comparison of 3D IC Technologies [28]
Microbump Through via Contactless

Wire bonded 3D package Face-to-face Bulk SOI Capacitive Inductive
Assembly
level

Die Die Die Wafer Wafer Die Die

Tier limit Assembly process Heat Assembly Heat, yield Heat, yield Assembly process Heat
Vertical pitch
(µm)

35 to 100 25 to 50 10 to 100 50 5 50 to 200 50 to 150

Metal layers
blocked by
pad

All Top 1 to 2 Top 1 to 2 All, top All, top Top Top 1 to 2
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2.4.1. Wire bonded

Each individual die in the stack are connected to other dies through wires as shown in
Figure 2.12. Even though the wires need to run back and forth from each single die, they
accomplish the purpose of connecting them together. This most commonly used approach
goes out of bounds whenever the number of I/Os in the chip stack increases as they are
limited in their wire resolution. The interconnect density is yet another factor that gets
badly affected as the bonding is possible only on the peripheral of the chips. Also it is
important to mention that in terms of routing resources, even though all the metal layers
are used for bonding, it is likely that the devices underneath the pad get destroyed due to
the mechanical stress and pressure caused by wire bonding.

Figure 2.12.: Illustration of wire bonded 3D technology [28]

2.4.2. Microbump

Gold bumps or the use of solder on the dieÕs surface gets them the name "microbumps".
The typical bump pitch is about 50 to 500 µm. Unlike wire bonded, microbump requires
a maximum of two metal layers for bonding with minimum mechanical stress. The 3D
package technology as shown in Figure 2.13a disburses greater interconnect density as
they can embed fabricated dies into a set of carrier wafers enabling a much tighter cube
structure. The process is as follows: each die-carrier tier is bonded to the epoxy routing
tier through a layer of microbumps; the tiers are laminated and the routing tiers are then
connected through metallization which is added to the sides of the cube. Since the mi-
crobumps are on the periphery of the tiers, the signals have to always pass through the pe-
riphery before reaching their destination inside the cube and thereby cannot significantly
impact the effect of to parasitic capacitance. On the other hand, 3D package approach
makes it achievable to interconnect chips made of different fabrication technologies with
the drawback of having limitation in the number of tiers due to the heat produced in-
side the cube. Figure 2.13b shows the face-to-face microbump technique. This technique
shows improvement in performance as the parasitic capacitances are downsized by the
employment of short wires between tiers. Though only a maximum of two tiers can be
bonded, this approach is in conjunction with wire bonded and through-via technologies.
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(a) (b)

Figure 2.13.: Illustration of microbump 3D technology: (a) 3D package, (b) face-to-face
[28]

2.4.3. Through Via

The greatest advantage of this technique is itÕs interconnect density though it comes
at a higher price. The assembly process is a simple one and does not act as a limiting
factor when it comes to the maximum number of tiers that can be bonded. As shown in
Figure 2.14, the second wafer is placed face down onto the first wafer (face-to-face) and
the subsequent wafers are placed face down on top of the second wafer (face-to-back)
thereby increasing the tier count. In order to facilitate connectivity between tiers, holes
are etched right from the upper to the lower wafers to be filled with tungsten. By the time
the next chip needs to be placed, the back of the previously etched chip is already thinned
through polishing. The tungsten-vias in the top most tier are not polished but rather
left protruded with cuts to have power, ground and I/O connections. Like 3D package,
heat delimits the number of tiers that can be bonded. Additionally, all the layers in the
upper tier and the top layer of the lower tier are required for routing. The difference
between bulk technology and Silicon-on-Insulator (SOI) technology is that, the former
coats the hole with an insulator of pitch 50 µm while the latter polishes the substrate layer
completely till the buried oxide and reaches an inter-tier pitch of 5 µm.
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(a) (b)

Figure 2.14.: Illustration of through via 3D technology: (a) bulk, (b) silicon on insulator
[28]

2.4.4. Contactless

This approach also called as "AC-coupled" interconnects tiers using capacitive or induc-
tive coupling and hence knocked out inter-tier DC connectivity processing steps and got
rid of longer wire lengths as periphery routing is no longer required. It is also cost effec-
tive compared to microbump and through-via techniques as chip thinning requires only
minimal processing steps. The half capacitors which are formed from the top level of
metal are used to couple tiers in "capacitive coupling" approach. The distance between
the tiers, the fall and rise time of the technology and the dielectric constant of the gap de-
termine the interconnect density. In order to have DC connectivity between chips or be-
tween chip and substrate, solder bumps are used and this created gap between the chips.
For sufficient coupling to happen between the two half plates of the inter-chip capacitor,
this gap should be relatively small to that of the plate. Though high-k dielectric underfill
can be used to fill the gap, the most preferred technique is AC-Coupled Interconnection
(ACCI), which cuts trenches in the substrate to let the solder bumps get deep enough to
make contact between the chip and the substrate. Figure 2.15a shows the cross sectional
view of a Multi-Chip Module (MCM) through buried bump technology. This technology
not only increases the manufacturing yield due to less coupling failure but when com-
bined with high-k dielectric underfill technology offers various advantages and one such
benefit is stress relief between chip and substrate. In a stack of three or more chips, where
separation between coupling elements is determined by the chip thickness, communica-
tion between the chips throughout the stack can be provided by inductors. An example
of three-tier stack using inductive coupling technique is shown in Figure 2.15b. This tech-
nique is inexpensive and easy to construct as each tier is placed face-to-back and their DC
power and ground connections are furnished by wire bonds.
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(a) (b)

Figure 2.15.: Illustration of contactless 3D technology: (a) capacitive, (b) inductive [28]

2.5. Design Steps for Application Mapping onto FPGAs

The necessary steps for mapping a logic circuit onto an FPGA are shown in Figure 2.16.
The logic circuit is described at high abstraction level in a hardware description language
such as VHDL or Verilog. Predesigned IP cores can also be integrated, which simplify
the design. The implemented code can be verified in advance by means of a behavioral
simulation. The code is then synthesized. The synthesis tool generates a technology-
independent gate-level netlist consisting of generic library cells such as AND, OR, XOR,
and flip-flops. At the same time, the design is transformed into a structural VHDL de-
scription, which also contains the generic primitives from the synthesis library. In ad-
dition, timing data (e.g. estimated propagation delays for the generic gates) is already
generated, which is taken into account in a post-synthesis simulation. This is followed
by the technology mapping process. The synthesized gate-level netist is converted into a
technology-dependent network list consisting of logic cells of the target technology. With
the placement step, each node in the technology-dependent network list is assigned a
place on the physical array. During the routing step signal paths are determined. The
path lengths and thus the resulting signal delays are optimized both during placement
and during the route. After the place & route steps, the path delay times are also known
and an adequate post-layout simulation can be carried out, which is then very close to
reality. Finally, the bit streams are generated with which the desired logic circuit is imple-
mented by (re-)configuration of the FPGA.
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Figure 2.16.: Design flow for FPGAs [53]
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3. Related Work and State of the Art

This chapter surveys the related works and discusses how they are differentiated or com-
plemented by the work of this thesis. In particular existing works related to low-power
FPGA architectures, custom embedded FPGAs, FPGA virtualization, customizable CAD
tools and 3D FPGA architectures are eyed.

3.1. Architectural Efforts to Reduce Area and Power Consumption in
FPGAs

On architecture level there have been several approaches presented to optimize area and
power consumption in FPGAs.

The tuning of basic architectural design parameters such as LUT size, cluster size and
channel width in typical island style FPGAs have an impact on the utilization ratio and
area efficiency of FPGAs while generally a trade-off with delay has to be made. In [4]
Ahmed and Rose studied the effect of LUT and cluster size on area and delay within the
design space of 2 to 7 LUT inputs and 1 to 10 LUTs per cluster. From their published
experimental results over the MCNC benchmarks we can observe a variance of approx.
41% in total FPGA area and 67% in total critical path delay for a 0.18 µm 1.8 V CMOS
process, which demonstrates the significance of design parameters. Ahmed and Rose
conclude that a LUT size of 4 to 6 and a cluster size of between 3-10 provide in average
the best area-delay product. This is reflected also by various commercial FPGAs.

Further improvements could be obtained by more efficient logic cell and interconnect ar-
chitectures. Hu et al. at the Xilinx research lab examined in [48] the effects on logic area
when mixing LUTs and macro-gates in heterogeneous programmable logic blocks. The
experimental results over an extensive set of benchmarks achieved in average a perfor-
mance gain of 7%, while the logic area could be reduced by 15 % as compared to homoge-
neous 6-input LUTs. However, a major drawback of this technique is a reduced flexibility
in the routing architecture as the proposed macro-based architecture does not allow full
pin-permutation. This means also that it can be applied only to fully populated clusters,
which compensate for this by their full connectivity in the internal local routing of a logic
block, but this in turn comes at higher area costs for the local routing infrastructure.

Further techniques to reduce static power dissipation by clock gating and power gating
have been addressed for instance in [44] and [51] respectively.

Despite the examples above present valid approaches on architecture level to reduce in
average area and power in FPGA, they are studied each in a mainly isolated manner. Fur-
thermore, the majority of subsequent works and commercial devices rely on parameter
trade-offs based on the main target to improve the average efficiency over a complete
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benchmark suite, while single benchmarks can suffer a degradation. This is a typical ap-
proach for general purpose architectures, where the average performance matters and a
wide field of applications is targeted by one device. However, with the diversity of ap-
plications and the need for more specialization as described in chapter 1.2, more distinct
optimization and customization strategies with evaluation of individual requirements,
consideration of runtime effects and characteristics of the underlying technology are be-
coming essential for extreme and evolving applications that can not be satisfied by general
purpose architectures.

3.2. Custom and Embedded FPGAs

To reduce the ASIC gap while still offering flexibility, there have been a few approaches
to embed an FPGA fabric in an ASIC, yielding heterogeneous System-on-Chips (SoCs)
with reconfiguration capabilities. While devices like the Xilinx ZYNQ or Altera Cyclone
V SoC are getting closer to general purpose computing, there is also an increasing need
for specialized devices for high volume, low cost and low power applications, e.g. in
the fields of mobile devices, Cyber Physical Systems (CPS), Internet-of-Thigs (IoT). Hence
the focus here is on solutions to embed customized FPGA fabrics that satisfy the appli-
cations demands in a more fitted and consequently efficient way. The most obvious way
to customize an FPGA fabric is to tune its size (i.e. complexity) while there are different
architectural parameters that can be adjusted, such as number of logic blocks, granularity
of LUTs, cluster size, routing channel width, etc.. But also the inclusion or exclusion of
special elements, such as DSP blocks, RAM blocks, serializer/deserializer, based on the
individual needs can have a significant effect on performance and area.

There are two reasonable ways to embed an FPGA in an ASIC design, either as hard IP
core or as soft IP core. The main difference is that hard IP cores are pre laid out and added
as fixed hard macros in the layout process of IC design, while soft IP cores are supplied
at RTL or netlist level and need to be synthesized, placed and routed as standard cells by
the ASIC designer. While hard IP cores benefit from an optimized layout (possibly full-
custom) with superior circuit performance yet smaller effort for the SoC designer (due
to pre-layout and -verification), soft IP cores can offer parameterization, a better fit for
the application, unchained placement with variable aspect ratio, and the possibility to
migrate the design to a new technology node.

Wilton et al. present in [107] some general design considerations for embedding FPGA
fabrics by the means of soft IP as opposed to hard IPs. The most obvious difference on
circuit level is that the soft IP cores use standard cell libraries and are built of NANDs,
NORs, inverters, flip-flops and multiplexers, while hard IP cores can have a more custom
implementation. For instance as shown in Figure 3.1, in a soft IP core with standard cells
a LUT is built of flip-flops and multiplexers, while in a hard IP core it is realized more
area efficient using SRAM cells and pass transistors. Wilton et al. observed in their ex-
periments an area overhead of 6.4x of a soft IP FPGA core compared to a hard IP FPGA
core. However, this doesn’t take into account that application wise a hard IP FPGA with
a pre-defined size and aspect ratio has obviously a lower utilization of its programmable
resources (thus a lower mapping efficiency) compared to a fitted soft IP FPGA. Another
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(a) (b)

Figure 3.1.: Comparison of a LUT implementation in a) a soft IP core using standard cells
and b) a hard IP core [107]

observation is that, due to the nature of FPGAs with their flexible routing capabilities,
CAD tools that are engaged in synthesis, place, route and timing verification steps of the
soft IP FPGA core may have problems with combinational loops. Wilton et al. suggest
to use FPGA architectures with unidirectional routing infrastructure (i.e. directed from
one side of the core to the other side) in that case, however this strongly limits the place-
ment and routing of applications and can have negative effects on performance and area
utilization. The architectures proposed in [107] consequently are intended only for small
combinational circuits, such as the next state logic in a state machine.

One of the early commercial solutions for embedded FPGA IP cores is FlexEOS from the
french startup company M2000 (later AboundLogic) [23]. FlexEOS was a hard macro in
GDS-II for embedding FPGA fabric in an ASIC and was used e.g. in the MORPHEUS
platform [82]. The company doesn’t exist anymore and detailed information about the
architecture is not available. Based on [23] and [82] it is known that the FlexEOS architec-
ture relied on basic 4-input LUTs and SRAM, non-uniform routing infrastructure and was
optimized for high density. The FlexEOS FPGA core was supplied as hard IP in GDS-II
format.
Before M2000, the same people have founded the company Meta Systems in 1996 that
was soon acquired by Mentor Graphics Corp. in the same year. Mentor Graphics uses a
custom FPGA architecture in their chip Crystal2 for emulation and testing systems and
Rizzatti mentions in [85] that the architecture originates in the work of Meta Systems.

Neumann et al. present in [79] an extensible ASIP architecture that utilizes an embedded
FPGA core to extend the instruction set of an ASIP as depicted in Figure 3.2a. The em-
bedded FPGA is based on a parameterizable template and is generated by a data path
generator (DPG) that uses hand-designed basic cells (so-called leaf cells) to compose and
generate a complete macro. This methodology is illustrated in Figure 3.2b. A leaf cell can
be either a logic element (LE), a part of a routing switch (RS) or a connection box (CB) and
is pre laid out prior to the generation of the embedded FPGA macro by the DPG. This
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(a) System Architecture of eFPGA-ASIP

…

constant swysize : natural := 6;

…

architecture dpg_wordlevel_structure of efpga_rs is

begin -- dpg_wordlevel_structure

rowloop : for i in 0 to swysize-1 generate

…

…

leaf cells

LERS: 1 Bit
switchpoint

CB: 1 Bit
connection point

architecture description

place,
route

DPG

(b) Generation of eFPGA macro with DPG tool

Figure 3.2.: The flexible ISA ASIP by Neumann et al. [79] combining an ASIP with an
embedded FPGA

methodology is somewhere between a hard IP and a soft IP approach, yielding a better
efficiency than a soft IP and offering more customization than the hard IP.

The company Menta offers an embedded FPGA Core IP to be used in SoC, ASIC and ASSP
designs. As shown in figure 3.3 the architecture consists of embedded logic blocks (eLB),
optional embedded customer blocks (eCB), optional embedded memory blocks (eMB),
programmable IO interfaces and configuration interface. Pre-defined eFPGA cores in the
range from 7k to 60k equivalent logic gates (i.e. 512 to 4032 equivalent LUT6) are offered
as hard macro cells. Additionally, custom eFPGA cores can be designed on demand.
Therefore, the embedded FPGA Core IP is scalable and customizable by a tool called
Menta Origami Designer™ in terms of number of eLBs, number and type of eCBs and
eMBs, number of clocks, and number of IOs. Furthermore, the aspect ratio of the core can
be tailored.

Another commercial solution is EFLX by the company Flex Logix [32] that offers FPGA
IP cores for embedding in SoC designs. The EFLX architecture relies on two 4-input LUTs
per logic block and a hierarchical routing based on the work presented by Yuan et al. in
[112], where a modified folded-Beneš network is realised. Clock gating and power gating
mechanisms reduce power comsumption. EFLX comes as predefined and laid out cores
in GDS-II format, along with LIB, LEF, CDL and encrypted Verilog files. There are two
different cores with fixed size available, i.e. EFLX-100 with 120 LUTs, EFLX-2.5K with
2520 LUTs. Scaling can be done through concatenating multiple cores via expendable
network I/Os. Also a mix with DSP cores and RAM blocks is possible.
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Figure 3.3.: Menta eFPGA Core IP architectural features [71]

Achronix offers with Speedcore an eFPGA IP core based on the Speedster22i FPGA [1] that
can be integrated in SoC designs as hard IP, as illustrated in Figure 3.4a. Unlike other com-
mercial IP solutions, Achronix provides more details about the architecture in public. As
illustrated in Figure 3.4b it is an island style FPGA with reconfigurable logic blocks (RLBs),
block RAMs (BRAMs), logic RAMs (LRAMs) and DSP blocks and a uniform global inter-
connect with routing channels and switch boxes. As it can be seen in Figure 3.4c a recon-
figurable logic block (RLB) contains four 4-input LUTs, four flip flops, a 4-bit ALU and
MUXes for the internal interconnects. At the boundary of the IP block, there are interfaces
for data signals, clock inputs and programming to integrate with the rest of the ASIC
logic. Customization is done by chosing the quantity of logic blocks, logic RAM, BRAM
and DSP blocks, aspect ratio and submitting these requirements to Achronix. Achronix
delivers a GDS-II of the customized Speedcore IP that they can directly integrate into their
SoC, along with Verilog definition of logical connectivity at boundary, Liberty timing ly-
brary for timing closure at boundary and LEF files defining the physical floorplan, pins
and metal blockages. In addition a custom version of design tools for design, mapping
and programming of application onto the FPGA fabric is supplied.

Unlike M2000, Menta, Flex Logix and Achronix, the french company ADICSYS (btw.
founded by 4 persons that worked before at AboundLogic aka M2000) goes the way of soft
IP core and offers an embedded FPGA core as synthesizable programmable core (SPC) on
RTL level [3]. The IP comes with the programmable core, a configuration controller and
a built-in self-test (BIST) unit for manufacturing testing or in-system self-testing, that are
interconnected as depicted in Figure 3.5a. SPC uses a proprietary FPGA architecture with
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(a) Speedcore sample instantiation

(b) General topology (c) Schematic of reconfigurable logic block (RLB)

Figure 3.4.: Speedcore eFPGA by Achronix [1] - a) Instantiation in SoC design, b) topology
and c) reconfigurable logic block

scalable interconnects (see Figure 3.5b) and supports 100 to 100k LUTs per core and mul-
tiple SPC per chip. Detailed information about the architecture is not published.

For the V-FPGA presented in this thesis, though intended primarily for virtualization, the
soft IP approach is recommended when integrating into ASICs as embedded FPGA. The
reason for this is that a strong aspect and the main focus of the V-FPGA lies in the flex-
ibility and highly fitted customization through a very rich set of parameters beyond the
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(a) SPC block diagram
(b) Scalability of SPC

Figure 3.5.: The synthesizable programmable core (SPC) by ADICSYS [3]

works presented above. This includes amongst others CLB count, aspect ratio, LUT size,
cluster size, routing channel width, switch box structure, layers and TSV distribution in
3D integration, configuration scheme, fine grain and coarse grain partial reconfiguration.
As hard IP it would compromise on mapping efficiency and flexibility.

3.3. Virtualization in Context of Reconfigurable Architectures

In [39] Fornaciari and Piuri introduced the term "Virtual FPGA" to present the idea of re-
source sharing of an FPGA in a heterogeneous system, where an operating system that is
executed on a General-Purpose Processor (GPP) shares an FPGA among tasks through dy-
namic reconfiguration. Thereby, applications have a virtual view of the FPGA that is then
mapped on the available physical device by the operating system, in a way similar to the
virtual memory. The FPGA is virtualized by time multiplexing its physical components
for all application tasks that need to realize part of their computation in hardware. This is
done by downloading the corresponding configuration on the FPGA itself. The FPGA can
be therefore treated as any other shared hardware resource in the general-purpose mul-
titasking system. The synchronization among tasks to use the shared FPGA is managed
and enforced by the operating system as it is accomplished for all other resources. For
this purpose Fornaciari and Piuri proposed a methodology that relies on the principles of
dynamic loading, partitioning, overlaying, segmentation, pagination, input and output
multiplexing.
We need to differentiate that Fornaciari uses the term virtualization in the context of op-
erating and runtime systems representing the software point of view, rather than in con-
text of FPGA architectures. In contrast, the virtualization methodology presented in this
thesis refers to hosting or incorporating a custom FPGA architecture by a commercial off-
the-shelf FPGA that features a different architecture.

A virtualization concept in terms of hardware architectures is introduced in [58] by La-
gadec et al., where the authors present a toolset for generic implementation of virtual
architectures. The scope is to automatically generate programmable hardware architec-
tures that are mapped on an FPGA. The methodology relies on the description of cells
and interconnects in a high level representation that are replicated as an array (as de-
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picted in Figure 3.6). A toolset performs application mapping by placement and routing
of a netlist. Thereby, the netlist itself is the design entry, while the nodes must match
the inputs and outputs of the specified cells. Starting with an initial random placement,
simulated annealing is used for iterative otimization. A router based on a PathFinder
algorithm determines the interconnection paths. There is no synthesis from hardware
description languages mentioned, thus it is not clear which level of complexity the ap-
plication mapping can support. The authors present an example that demonstrates the
generation of a systolic processor for DNA comparison, while a virtual cell as part of the
systolic processor was designed and synthesized on a Xilinx Virtex FPGA. The design
steps from the high level representation of the virtual architecture to its mapping on the
underlying physical FPGA are not described, which leads to the assumption that it is a
custom hand coded process for each type of cell. The approach and the examples are
closer to coarse grain reconfigurable architectures (CGRA) than to FPGA (or fine grain)
architectures. This is also indicated by the statement that "a set of wires (a bus) is routed
as a single entity". That approach can lead to performance benefits since the architecture
can be specialized to a very narrow application or circuit class, such as systolic arrays.
However, the drawback is then a rather low flexibility. A strong focus of the paper lies
on the generic tool flow for architecture representation and place&route of application
netlists onto various virtual architectures. The virtualization aspects from hardware per-
spective, including the mapping onto the underlying platform as well as programming
mechanisms and configuration management remain predominantly unaddressed.
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Figure 3.6.: Lagadec et al.: 2D array of identical cells. A cell is composed of one switch
and one 4-input boolean function. [58]

Lysecky et al. introduced in [65] a simple fine grain virtual FPGA that is specifically de-
signed for fast place and route. The architecture has a mesh structure with configurable
logic blocks (CLBs) surrounded by switch matrixes (SMs) that are interconnected by rout-
ing channels as illustrated in Figure 3.7a. Thereby, a CLB is connected directly to a single
switch matrix as opposed to architectures where logic blocks connect directly to the sur-
rounding routing channels - the latter allow shorter routing paths since a logic block can
connect to all surrounding channels rather than to a single switch matrix. As depicted in
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(a) General structure
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(b) CLB

Figure 3.7.: Structure of the virtual FPGA by Lysecky et al. [65]: a) general topology and
b) configurable logic block (CLB)

Figure 3.7b, the logic blocks have a fixed size and consist of two 3-input-2-output LUTs
per logic block (note that a 3-input-2-output LUT is made of two 3-input LUTs that share
the same input signals). Each logic block has 6 main inputs and 4 main outputs in addi-
tion to extra ports for carry logic. Lysecky et al. support two types of switch matrixes,
a tristate-buffer based switch matrix (TSM) or a multiplexor based switch matrix (MSM),
see Figure 3.8 and Figure 3.9 respectively. The channels between switch matrices have a
fixed width. The CLBs as well as the switch matrices are controlled by configuration bits
that are stored in flip flops. The architecture is designed with synthesizable and portable
VHDL code that can be mapped on COTS FPGAs. However, it is to mention that TSMs
are not feasible on all underlying platforms, since many FPGAs offer tristate-buffers only
at the IOs. Lysecky et al. report an area overhead of 100x for their virtual architecture
mapped on a Xilix Spartan-II device, which is rather high. The largest share on the area
consumption have the MSMs. This is also obvious when we recall the structure in Figure
3.9, where each output of the MSM features a 12:1 MUX. The synthesis and mapping of
one 12:1 MUX on a Xilinx Spartant-II device that features 4-input LUTs would require
around 8 LUTs (while utilizing additionally 3 of the slice-internal MUXF5 primitives).
Regarding the choice of the architectural parameters (LUT size, cluster size, CLB I/Os,
channel width, switch block flexibility) it is not fully clear which objectives were targeted.
The extensive studies and experiments of Ahmed, Rose and Betz (for instance in [4] and
[15]) indicate different values for a good trade off between area and delay. The V-FPGA
architecture proposed in this thesis follows a similar granularity and architecture class as
the work of Lysecky et al.. However, the V-FPGA has a flexible architecture with higher
complexity that features a rich set of variable parameters for customization, scalability
and objective related optimizations.

The ZUMA architecture by Brant et al. [20] targets to reduce the area overhead of the vir-
tualization layer by utilizing LUTRAMs of the underlying platform to implement LUTs
and multiplexers with fewer resources compared to generic HDL descriptions. This tech-
nique also reduces the number of required flip flops for configuration bits. Architecture
wise, ZUMA is a clustered LUT based FPGA architecture with island style topology. The
local interconnect within a cluster is controlled by a 2-level crossbar. Brant et al. demon-
strated that the exploitation of LUTRAM can bring up to two thirds area reduction com-
pared to generic HDL. However, the approach has also limitations. ZUMA is incompat-
ible to bidirectional routing. The realization in [20] doesn’t support sequential circuits,
however this problem was recently addressed by Wiersama et al. in [105] and ZUMA
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Figure 3.9.: Lysecky et al.: schematic of a multiplexor based switch matrix (MSM) [65]

accordingly extended. A noticeable limitation is that the design compiles only on Xilinx
and Altera FPGAs while LUTRAMs are not supported by all FPGAs, thus the portabil-
ity aspect of virtualization is only partially fulfilled. Furthermore, a change of parameters
such as LUT size might need a manual matching of virtual resources to physical resources,
which makes parameterization difficult.
We need to differentiate that the ZUMA approach follows a different philosophy than
V-FPGA. While the V-FPGA aims at being portable across various underlying FPGA plat-
forms as well as being easily mapped on an ASIC process, the methodology of Brant et al.
utilizing target specific and exclusive elements in ZUMA would fail here the purpose of
the V-FPGA. Furthermore, the LUTRAM approach would lose its efficiency when mapped
onto an ASIC which is the second target of the V-FPGA. Nevertheless, due to the modular
hardware model of the V-FPGA, the utilization of exclusive platform specific resources is
not prohibited.

The major drawbacks of all virtual FPGA architectures, including the one presented in
this thesis, are that they require a higher chip area and introduce larger path delays com-
pared to physical FPGAs. The reason lies in the fact that one virtual logic cell is realized
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by a multitude of programmable logic cells of the underlying physical platform. This is
the price that needs to be paid for portability and higher flexibility and essentially there
is an analogy to the comparison of FPGA vs. ASIC. Thereby, the factor of area overhead
of a virtual FPGA over its underlying physical FPGA platform depends mainly on the
granularity of the underlying platform as well as how well the virtual resources can be
matched by the physical resources. This factor is individual for each combination of vir-
tual architecture and underling platform. Thus, the same Virtual FPGA has a different
area efficiency on one underlying platform than on another and a change in the design
parameters of the virtual FPGA can turn the game. That’s why it has been difficult to
compare the few existing virtual FPGA architectures with each other and any context-less
conclusion about the superiority of one virtual architecture over the others is of limited
validity, not only due to the lack of transferable quantification but also due to different
purposes and abilities of the existing solutions. To bring more transparency regarding
area efficiency and to facilitate future comparisons, Chapter 6.3 introduces transferable
metrics that can be applied on virtual architectures for various target technologies.

3.4. Generic CAD Tools for FPGAs

The basic purpose of CAD tools for FPGAs is to map an application onto an FPGA archi-
tecture and to generate a bitstream with which it is possible to configure the resources of
an FPGA in a way that it creates a respective circuit to run the application.

Existing vendor tools for COTS FPGAs generally don’t support custom FPGA architec-
tures. During the past two decades a number of academia driven efforts were carried out
to provide parameterizable tools for exploring custom architectures and mapping appli-
cations onto them.

SIS, a system for sequential circuit synthesis brought forth in [88] is a framework for test-
ing different algorithms and for synthesizing and optimizing sequential circuits by receiv-
ing any one of the following as input: State transition table, signal transition graph and
logic-level description. On one hand it generates an optimized net-list of the underlying
technology and on the other hand it maintains the input-output behavior.

In 2006, a technique called And-Inverter Graph (AIG) was introduced in [75] which rep-
resents the combinational logic using a network of two-input ANDs and inverters. By
switching between AIG rewriting and AIG balancing, area optimization without increas-
ing delay and delay optimization without increase in area are obtained respectively. Im-
plemented on the sequential logic synthesis and verification tool ABC, this technique was
able to be faster than SIS and MVSIS yet offering a better quality, which will be beneficial
for applications like hardware emulation, estimation of design complexity and equiva-
lence checking.

Quartus Integrated Synthesis (QIS) made known under Quartus University Interface Pro-
gram (QUIP) [7] can be used in two modes, either as a comparison tool or as a front end
to convert VHDL/Verilog design codes into formats used by the academic tools. This tool
accepts input not only as VHDL/Verilog code but also as schematic, instantiated LPM
modules and as IP cores. It supports constructs like FOR, GENERATE, GENERIC, etc,
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finite-state-machines, RAM and multipliers by converting them into synthesizable sub-
sets, logic, embedded memory blocks and DSP blocks respectively.

[14] describes a CAD tool called Versatile Place and Route (VPR) for FPGA architectures,
which can perform placement and routing either as global routing or as a combination of
global and detailed routing by taking the mapped netlist and architectural description of
the targeted FPGA as its input file. The output file is also helpful in determining the utility
of routed wire length, track count and maximum net length. Though their architecture
description does not include segments with more than one logic block, they are highly
flexible to add new routing architecture features.

Followed by [14], VPR 5 [64] introduces four new compelling features to the VPR tool
such as single-driver routing, modeling heterogeneous logic blocks like hard memory
and multipliers, optimization of electrical models in different process technologies and a
set of regression tests needed to verify the functionality and quality of the output results
in order to maintain robustness of the tool.

A rich toolset called MEANDER, which consists of non-modified academic tools (Free-
HDL, SIS, T-VPACK), modified academic tools (E2FMT, ACE, VPR) and new tools (DI-
VINER, DRUID, DUTYS, DAGGER), was presented in [96]. By accepting inputs as VHDL
design files of the application, all the necessary steps from elaboration, format transla-
tions, synthesis, logic optimization, activity estimation, packing, placement and routing
onto custom island style FPGA architectures can be done with this toolset. It includes
also a tool for bitstream generation, which however is not compatible to custom FPGA
architectures other than the AMDREL FPGA. Another specialty of MEANDER is a web
interface to operate the tools on a remote server (currently hosted at [69]) from any web
browser or through ssh without the need of on-site installation.

NAROUTO, a framework for having architecture-level exploration in terms of delay, area
and power/energy estimation in heterogeneous FPGAs [93] is an open-source tool. In
order to automate the annotation of the generated net-list, a new toolset called Heteroge-
neous Support Toolset (HST) has also been developed. One of the merits of this frame-
work is its ability to handle designs with IP cores more efficiently.

Even though the above named tools are flexible and cover most of the steps needed for ap-
plication mapping, there are still some parts missing for a complete toolflow from design
entry to the final bitstream. The employed architecture models are very abstract, which is
good for design space exploration but somewhat decoupled from actual implementation.
Most critical, none of the existing tools is able to create executable bitstreams for custom
FPGAs because they were intended mainly for exploration purposes and lack a bistream
generation tool as backend or there is no way to bring in details about custom configura-
tion mechanisms and organization. Note that MEANDER contains the tool DAGGER for
bitstream generation onto the AMDREL FPGA architecture, however the tool is not suit-
able for other custom and virtual FPGAs. Furthermore, a way of detailed manipulation
and verification of the application mapping results with GUI is missing in the existing
tools. To close these gaps, the proposed framework within this thesis contains a new tool
called V-FPGA Explorer. It complements the above named tools by making a bridge be-
tween abstract layout and actual configuration. It transforms the textual synthesis and
layout results of the other tools to an object oriented graphic capable representation, con-
sidering the custom architectural mechanisms, and generates the final bitstreams to con-
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figure a custom V-FPGA. At any time the layout and function can be altered through a
GUI or through XML files. It supports a rich set of parameters for architecture customiza-
tion of the V-FPGA and is capable to generate custom architecture abstracts (so-called
architecture files), that are required by the place & route and DSE tools. Additional fea-
tures are testbench generation for simulation and script generation for parameter sweeps
and for running VPR in batch to automate benchmarking and extend DSE capabilities. In
conjunction with QUIP, ABC, SIS, VPR and MEANDER it forms a powerful and rather
complete toolflow for application mapping onto custom V-FPGA architectures.

3.5. 3D FPGA Architectures

Since routing resources and interconnect have the majority share on area and delay, there
is more and more focus towards 3D interconnects and routing architectures by 3D stack-
ing of multiple die layers with through silicon vias or microbumps. Thereby, in most cases
the vertical connections between layers are established either in switch boxes or in logic
blocks.

The Rothko 3D-FPGA introduced in [70] and [59] is based on stacked layers of sea-of-
gates architecture with metal interconnections (called interlayer vias) between layers. The
vertical connections are made through the unified RLBs (Routing & Logic Blocks), i.e. as
shown in Figure 3.10 a RLB can connect to its adjacent neighbours within a layer plus to
an RLB above and an RLB below from other layers. Each layer allows horizontal routing
in one direction only. Since two layers are stacked face-to-face and thus have opposite
routing directions, the routing direction of a path can be changed by changing the layer
through the vertical interconnects. Logic-wise an RLB contains a 3-input LUT.

In [33] a 3D pipelined asynchronous FPGA is presented where vertical connections be-
tween stacked layers are made through the SBs (switch boxes) of the routing infrastruc-
ture using pipelined 3D switches.

A model based study of monolithically stacked 3D FPGA is presented in [61] and [62],
where a stacking is envisioned to take place within the same die (see Figure 3.11), thus
allowing a higher density of vertical interconnects compared to chip or wafer stacking.
However the monolithic approach is limited to adding only switch and configuration
memory layers on top of the usual layers of a 2D FPGA, i.e. the logic still remains the
same in a CMOS layer while only switch transistors and configuration memory cells are
shifted to additional mask layers.

A 2-layer 3D-FPGA approach where routing and logic area are mostly separated on dif-
ferent layers is presented in [113]. As shown in Figure 3.12, logic and a small part of
routing are on the first layer, while the second layer contains only routing. In contrast to
most other approaches the 3D connections are not on the switch blocks but on the inputs
and outputs of the logic block. They showed that it is possible to achieve for the MCNC
benchmarks in average a 57% reduction of channel width by building 3D connections on
the input and output pins of logic blocks.

Various 3D switch box designs are presented for instance in [43], [84], [99].
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Figure 3.12.: Two-layer 3D FPGA by Zhao et al. [113]
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The architecture level exploration of Siozios et al. in [94] indicates that stacking of FPGA
layers with TSVs in switch boxes can bring in average for the MCNC benchmarks reduc-
tions of 13% in total wire length and 32% in power consumption while overall perfor-
mance is increased by 35%. Further improvements in [97] with a heterogeneous mix of
2D and 3D switch boxes and different regions allow to reduce the number of vertical in-
terconnects without penalty, whereby a reduction in area by 37% is possible compared to
homogeneous 3D FPGAs. Compared to 2D FPGA, they show an improvement of 41% in
delay, 32% in total power consumption and 36% in total wire-length.

Similarly as [43], [84], [99], [94] and [97], the 3D V-FPGA architecture presented in this the-
sis uses TSVs through SBs to establish connections between stacked FPGA layers, which
in the first place is a choice justified by tool support, scalability and the possibility to sup-
port heterogeneous layers if needed, when compared to the other option of providing
vertical interconnects through logic blocks. However, a difference in 3D V-FPGA com-
pared to the prior art is that each port of a PSM can have an exclusive TSV connecting
an identical port of a PSM from a different layer. A technique called LoopbackPropagation
(see Section 4.1.4) allows then to route the TSV signal also to other ports of the same PSM.
This can reduce the overall number of switches and configuration bits. Furthermore, the
amount and distribution of TSVs can be parameterized in the 3D V-FPGA architecture.
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The key element of this work is the customizable virtual FPGA (V-FPGA) architecture that
was first published in [50] and [35]. In fact, the first seed for this architecture was sown in
the year 2010 as a part of my diploma thesis "Heterogene FPGA basierende DSP System
on Chip Architektur" at the Karlsruhe Institute of Technology, where a simple uncus-
tomizable first version of the V-FPGA was developed. This has been then re-designed for
customization capabilities and continuously extended and improved during the course of
this work.

The V-FPGA is a generic LUT-based FPGA architecture with mesh topology that can be
mapped on existing commercial off-the-shelf (COTS) FPGAs, such as Xilinx, Altera, Mi-
crosemi, etc. Thereby, as illustrated in Figure 4.1, the applications will be mapped and
executed on the virtual layer rather than the logic layer of the underlying COTS FPGA.
The advantage with this approach is that the specification of the virtual FPGA stays un-
changed, independent to the underlying hardware and provides therefore features, which
the exploited physical host FPGA cannot provide. Due to the independence from the
native configuration capabilities of the underlying platform, a special feature of the pre-
sented virtual FPGA amongst others is the dynamic reconfigurability which is for ex-
ample not available with all off the shelf FPGAs. This was first demonstrated with a
heterogeneous SoC architecture, integrating a V-FPGA fabric, mapped on a flash based
Actel ProASIC3 FPGA for a low-power dynamic reconfigurable solution [50]. Further-
more the concept of FPGA virtualization enables the re-use of hardware blocks on other
physical FPGA devices and enables portability of unaltered bitstreams among different
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Figure 4.1.: Layer model of the V-FPGA approach with island based virtual architecture
hosted by an Actel (now Microsemi) COTS FPGA
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FPGA manufacturers and device families, e.g. in order to overcome the problem of de-
vice discontinuation.

Architecture wise, the V-FPGA can take the form of a 2D (see Section 4.1) or a 3D (see
Section 4.2) FPGA. Apart form this the internal structure is highly customizable through a
rich set of parameters in favour of a better fit for the application and consequently a higher
efficiency when compared with stiff architectures. Table 4.1 introduces in advance an
overview of the supported parameter set, while more details are provided in the following
subsections.

The extensively scalable and parameterizable architecture is implemented in a mostly
structural and fully synthesizeable HDL code, utilizing hierarchy, modularity and gener-
ics. Even though the V-FPGA was initially developed for virtualization, it can be also
adopted to various target technologies and mapped on an ASIC flow as embedded FPGA.
This makes it a suitable corner stone for customizable reconfigurable SoC architectures.
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Table 4.1.: Parameter set of V-FPGA
Parameter Description

L Number of stacked 2D V-FPGA layers in a 3D V-FPGA (see Fig-
ure 4.2.1, p. 72)

TSVpC Number of TSVs per channel in a 3D V-FPGA (see Figure 4.2.1, p.
72)

X Number of CLB columns (see Section 4.1, p. 46)
Y Number of CLB rows (see Section 4.1, p. 46)
K LUT size; number of inputs per LUT (see Section 4.1.1.1, p. 48)
N Cluster size; number of LUTs per CLB (see Section 4.1.5.1, p. 63)

I_left Number of cell inputs on left side of CLB (see Section 4.1.5.1, p.
63)

I_top Number of cell inputs on top side of CLB (see Section 4.1.5.1, p.
63)

I_right Number of cell inputs on right side of CLB (see Section 4.1.5.1, p.
63)

I_bot Number of cell inputs on bottom side of CLB (see Section 4.1.5.1,
p. 63)

I Number of total CLB inputs (see Section 4.1.5.1, p. 63)
I = K/2 · (N + 1) in auto mode
I = I_le f t + I_top + I_right + I_bot in custom mode

O_left Number of cell outputs on left side of CLB (see Section 4.1.5.1, p.
63)

O_top Number of cell outputs on top side of CLB (see Section 4.1.5.1, p.
63)

O_right Number of cell outputs on right side of CLB (see Section 4.1.5.1,
p. 63)

O_bot Number of cell outputs on bottom side of CLB (see Sec-
tion 4.1.5.1, p. 63)

O Number of total CLB outputs (see Section 4.1.5.1, p. 63)
O = N in auto mode
O = O_le f t + O_top + O_right + O_bot in custom mode

F_inMUX_mode Mode of BLE_inMUX flexibility (see Section 4.1.5.1, p. 63)
0: Fractional (N + dI/Ke)
1: Fully-connected (N + I)

F_outMUX_mode Mode of CLB output flexibility (see Section 4.1.5.1, p. 63)
0: direct connection
1: N:1 MUXs

W Channel width; number of tracks per routing channel (see Sec-
tion 4.1.1.2, p. 50)

SBtype Switch box type (see Figure 4.1.3, p. 54)
0: Wilton
1: Universal
2: Subset/Disjoint
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4.1. 2D Generic Architecture

As illustrated in Figure 4.2 the V-FPGA layer is an island based architecture with lookup
tables (LUTs) in configurable logic blocks (CLBs) surrounded by routing channels. To en-
sure connectivity between distributed CLBs there are two types of programmable inter-
connects involved, Programmable Switch Matrices (PSMs) and Connection Boxes (CBs).
The Connection Boxes (CBs) establish the connections of a CLB with its surrounding rout-
ing channels while the PSMs at the intersections of vertical and horizontal routing chan-
nels establish the global routing. I/O Blocks (IOBs) on the perimeter of the array access
the outer channels through CBs and are the interface to the outbound systems. All these
elements are described in detail in the following subsections. The total count of CLBs in
an array can be scaled through the parameters X (number of CLB columns) and Y (num-
ber of CLB rows), i.e. #CLB = X · Y. This will indirectly affect also the count of PSMs and
IOBs, i.e. #PSM = (X + 1) · (Y + 1) and #IOB = 2 · (X + Y) respectively.
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Figure 4.2.: Structure of V-FPGA

4.1.1. Configurable Logic Blocks

The Configurable Logic Blocks (CLBs) of the V-FPGA are LUT-based as depicted in Fig-
ure 4.3. The advantage of LUT-based logic cells opposed to multiplexer-based logic is that
more complex functions can be implemented with a single LUT, as long as the number of
function variables doesn’t exceed the inputs of the LUT.
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To support synchronous circuits and sequential processes, the output of a LUT leads to a
clock edge controlled D-flip-flop. In the event that an asynchronous and purely combina-
torial function should be implemented, the flip-flop can be bypassed by a 2:1 multiplexer
(m1).
During a configuration or a reset, i.e. when nss=’0’ or nRST=’0’, the output of the CLB
is set to logical ’1’ via a second multiplexer (m2), to produce a defined state and avoid
glitches during configuration. In normal operation it selects the output of m1. This mech-
anism, which requires an additional MUX and AND gate, is optional and can be further
optimized by simply modifying the nss and nRST signals to be high active - an OR gate
at the output would be sufficient then. However, this optimization has not been imple-
mented due to legacy and compatibility reasons and furthermore the logic optimization
step during synthesis is usually able to perform a similar level of reduction automatically.
It should be mentioned that Figure 4.3 shows the minimal version of a CLB. In Section
4.1.5, a more complex version with flexible clustering is introduced, where a CLB can
contain a multitude of LUTs locally interconnectable.
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4.1.1.1. Intermezzo: LUT Size Tuning and the Effect on Area and Performance

The LUT shown in Figure 4.3 has 4 inputs and can realize any boolean logic function with
4 variables, however in V-FPGA the number of LUT inputs can be actually varied by the
parameter K , which has an effect on area efficiency and performance. Thereby not only
the logic area needs to be considered, but also the routing area since K influences the de-
composition and matching and indirectly also the interconnects and channel width. [86]
and [4] indicate that a K between 3 and 4 provides the best area efficiency, while K=6 gives
the best performance. [42] shows similar results through a theoretical model, while [101]
indicates that K = 6 is the best choice for area, delay and area-delay product in nanometer
technology.
However, those results are an average and furthermore it is very important to note that
in virtual architectures the situation gets more complicated because both, area efficiency
and performance, depend also on how efficient a K-input LUT can be realized by the un-
derlying platform. Thus the findings in [86], [4], [42] and [101] and the concluded recom-
mendations are not accurately applicable in case of virtual architectures. To demonstrate
this, Figure 4.4 shows the variance of area and delay for the 20 largest MCNC benchmark
circuits mapped on the V-FPGA (hosted by Actel’s VersaTile technology [2]) with differ-
ent LUT sizes in the range of K = 2..8. Additionally, Figure 4.5 shows the variance of
area-delay product in a similar fashion. For each benchmark the variance is displayed as
relative values compared to the median centred between the best and the worst result of
the respective benchmark. This allows to compare the parameter sensitivity among all
benchmarks, irrespective of their sizes and scales. Additionally a dotted curve is added,
that represents the average over all benchmarks.

The analysis of Figure 4.4 and 4.5 reveals some interesting findings:

1. The average curve of area variance has a smooth bathtub characteristic with a wide
optimum that stretches from K = 3 to K = 6 without noticeable difference, while
outside of this range there is a degradation of area efficiency in both directions. A
LUT size within the range of K = 3 to K = 6 will yield in average the best area
efficiency for the general purpose case.

2. The different benchmarks differ greatly in area variance over LUT size K. Some
of the benchmarks show a much higher parameter sensitivity than others. This
manifests not only by the variance range and steepness that each benchmark shows
but also by the smoothness of the curves. Furthermore they don’t follow the same
trends, i.e. some of the benchmarks are trending a higher area efficiency with rising
K, while some others show the opposite trend and again others follow a bathtub
characteristic. This shows that there is plenty of room for optimization through
application specific costumization and parameter tuning.

3. Regarding the performance variation, all benchmarks show a trendline with increas-
ing performance for increasing K. Consequently the average curve increases from
K = 2 to K = 8 almost linearly. Some of the benchmarks show relatively smooth
curves that are oriented around the average curve. In contrast, some others show
a very disturbed and inconsistent curve with alternating change of trend and a few
show a nearly exponential shape.
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Figure 4.4.: Effects of LUT size K on (a) area and (b) performance, shown through variance
relative to medians of series within the range K=2..8
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Figure 4.5.: Effects of LUT size K on area-delay product, shown through variance relative
to medians of series within the range K=2..8

4. Around 5 % of the benchmarks have a performance maximum at K = 5, 10 % at
K = 6, 40 % at K = 7 and 45 % at K = 8, which indicates that K = 7 to K = 8 are
in average the recommended choices for performance optimization in the general
purpose case. This differs from [86], [4], [42] and [101] and shows that their find-
ings based on transistor level modelling should not be blindly adopted to virtual
architectures.

5. The unequal trends suggest that application specific customization is also beneficial
for performance optimization, even though the effect might not be same as high as
compared to area optimization.

6. Considering the variance of area-delay product in Figure 4.5, LUT sizes between
K=5 and K=7 show the best trade-off between area and performance.

In conclusion, all these findings motivate to keep K parameterizable in V-FPGA in order
to achieve a better fit of both, the intended application and the virtualization.

4.1.1.2. Connectivity to Routing Channels

Connection boxes around the CLB connect the inputs and outputs to tracks from the sur-
rounding routing channels. Thereby, the number of tracks per routing channel is deter-
mined through the parameter W . The connection boxes consist mainly of multiplexers
and the respective select signals also are controlled by configuration registers to allow a
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programming of local interconnects. The connection boxes of the inputs (CBr) connect
one track from the respective routing channel. The output can be connected to several
tracks at the same time, increasing routing flexibility. Multiplexers of the respective out-
put connection box (CBw) puts through either the output signal of the CLBs or the signal
coming from the PSM (here from right to left). The flexibility of the connection boxes, both
for inputs and outputs, is FC = W, i.e. connections can be made with each track from the
channel. It is also possible to make the connection flexibility FC < W or fractional (i.e.
a relative fraction of W), yet choosing of FC = W provides the highest routing flexibility
and is recommended in [15] for unclustered CLBs. Since W highly impacts routing area
(which has the dominant share on total area) it is favourable to keep W low, however a
too low W can lead to routing congestions and unroutable designs.

4.1.1.3. Configuration Unit

The contents of the LUT, the control signals for the bypass multiplexer m1 and the control
signals for the connection boxes are stored in configuration registers that are programmed
by a configuration unit. The configuration unit inside a CLB receives a serial bitstream
during configuration and sets the configuration registers that control the programmable
elements (LUT, bypass MUX, connection boxes) according to Table 4.2. The configuration
size of a CLB depends on the channel width W and the LUT size K and is:

LEN(CLBcon f .) = 2K + 1 + K · dlog2(W)e+ W (4.1)
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Table 4.2.: Configuration register set for an unclustered CLB
Field Length in

bits
Description

LUT 2K K-input lookup-table (Solution set of implemented func-
tion).

ffen 1 Flip-flop enable (controls the bypass MUX m1).
0: Flip-flop is bypassed
1: Flip-flop is used

rr dlog2(W)e Controls the right side input connection box. Contains
the binary number of the track from the routing channel,
which is to be connected with the right side input.

tr dlog2(W)e Controls the top side input connection box. Contains the
binary number of tracks from the routing channel, which
is to be connected with the top side input.

lr dlog2(W)e Controls the left side input connection box. Contains the
binary number of tracks from the routing channel, which
is to be connected with the left side input.

br dlog2(W)e Controls the bottom side input connection box. Contains
the binary number of tracks from the routing channel,
which is to be connected with the bottom side input.

w W Controls the output connection box. Determines which
tracks from the routing channel output will be connected.
Each track number is assigned a seperate bit (e.g. bit po-
sition 0 for track0, bit position 1 for track1,...). A bit set to
’1’ leads to driving the corresponding track by the output
signal of the CLB. Is it set to ’0’, the signal coming from
the PSM (from the right side in Figure 4.3 is forwarded.
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4.1.2. I/O Blocks

IOBs on the perimeter of the array work in a similar way like the connection boxes of
the CLBs. As depicted in Figure 4.6, an IOB has exactly one input and one output. A
multiplexer connects one of the tracks from the routing channel to the virtual output pad.
In th eevent that an output is not occupied, the level ’0’ is issued through an AND gate
connected to the MUX and to a respective configuration register bit ren that enables or
disables the output. A signal at the virtual input pad can be connected in favour of a
higher routability with several tracks at the same time. Respective 2:1 multiplexers for-
ward either the input signal of the virtual I/O block or the signal coming from the PSM
(here from right to left).

Analog to the CLBs the multiplexers of the IOBs are controlled by configuration registers,
that are filled by the configuration unti during programming. Table 4.3 describes the
contents of the configuration register of IOBs. The configuration size of an IOB is:

LEN(IOBcon f .) = 1 + dlog2(W)e+ W (4.2)

Table 4.3.: Configuration register set for an IOB
Field Length in

bits
Description

ren 1 Enables the output.
0: output disabled (unassigned); Signal set to ’0’.
1: output enabled (assigned to a track from the routing
channel)

r dlog2(W)e Contains the binary number of the track that should be
connected to the virtual output pad.

w W Determines the tracks that an IOB should drive. Each
track number is assigned a seperate bit (e.g. bit position
0 for track0, bit position 1 for track1,...). A bit set to ’1’
leads to driving the corresponding track by the virtual in-
put pad of the IOB. Is it set to ’0’, the signal coming from
the PSM is forwarded.
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Figure 4.6.: Schematic of I/O block in V-FPGA

4.1.3. Programmable Switch Matrix

The Programmable Switch Matrices (PSMs) realize the routing of the signal paths by con-
necting tracks from different channels at the intersections. Therefore a 4:1 MUX is located
at each output of a PSM as shown in Figure 4.7. On the left and bottom side of the PSM,
the first position of the MUX is the logic level ’1’, which is the defined idle value of the
routing infrastructure. This position is selected when an output track should not be con-
nected to any other track, i.e. if there is no routing intended in this direction. The three
remaining positions are associated each with an input from one of the three adjacent sites.
The two select lines of the MUX are controlled by configuration registers, that are filled by
the configuration unit during programming, thus the connections between routing chan-
nels are programmable. On the top and right side of the PSM, the inputs can be fed back
to the outputs of the same sides by selecting the first position of the respective output
multiplexers. This technique, which we call loopback propagation enables the emulation of
bi-directional tracks using uni-directional tracks and is described in Section 4.1.4.

From Figure 4.7 and the fact, that only 4:1 MUX are used, it is clear that the PSM is not
fully-connected. For each output there is only exactly one track per adjacent side that
can be switched, i.e. the flexibility is effectively Fs = 3 (note that the first position of
the 4:1 MUX is used for idle operation and loopback propagation, but not for routing).
This choice is made for the purpose of area efficiency and bitstream reduction since the
routing infrastructure has a significant share on area (see Figures A.1 to A.20 in Appendix
A.1) and a fully-connected PSM would be by far too excessive.

There are three types of switch block structure supported, which can be selected through
the parameter SBtype : Wilton [106], Universal [24] and Disjoint aka. Subset [108]. All
have the same effective flexibility, yet the differences are in the patterns of track numbers
that can be interconnected as defined in Table 4.4 to 4.6 and visualized in Figure 4.8. The
Disjoint pattern is symmetric and allows connections only among tracks with the same
track number, e.g. left-side track 1 can be connected only to top-side track 1 or right-side
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Figure 4.7.: Schematic of PSM in V-FPGA, here with Wilton structure

track 1 or bottom-side track 1. This leads to a partition of the complete routing infrastruc-
ture into disjoint routing domains. The routes are more predictable, yet the routability
suffers from the limitation that complete paths are restricted to the same track domain.
The Universal pattern, which was intended for maximizing the number of simultaneous
connections, is asymmetric in a way that one of the diagonals can be connected to inverse
track numbers, while the other two sides can be connected to tracks with the same track
number. The Wilton pattern eliminates the domain limitation of the Disjoint pattern by
rotating diagonal connections by one 1 track.

The effects of the switch block pattern, combined with other parameters such as LUT size
and cluster size, on area efficiency and performance are studied in Section 4.1.5.2. There
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exist further switch block structures, yet the choice to include the three mentioned above
in the V-FPGA was made based on their popularity and more importantly because they
are supported by the employed CAD tools for application mapping. However, this can
be easily extended to other or custom switch block structures by modifying the patterns.
As described in Table 4.7, the MUXs of a PSM have each two select signals which can be
controlled by a configuration unit. The total configuration size per PSM is:

LEN(PSMcon f .) = 8 · W (4.3)

Table 4.4.: Pattern definition for Wilton switch block structure with channel width W and
track number i ∈ {0, ..., W − 1}

top in right in bottom in left in
top out - (i + 1) mod W i (W − i) mod W
right out (W − 1 + i) mod W - (W − 2− i) mod W i
bottom out i (W − 2− i) mod W - (i + 1) mod W
left out (W − i) mod W i (W − 1 + i) mod W -

Table 4.5.: Pattern definition for Universal switch block structure with channel width W
and track number i ∈ {0, ..., W − 1}

top in right in bottom in left in
top out - i i W − 1− i
right out i - W − 1− i i
bottom out i W − 1− i - i
left out W − 1− i i i -

Table 4.6.: Pattern definition for Disjoint switch block structure with channel width W and
track number i ∈ {0, ..., W − 1}

top in right in bottom in left in
top out - i i i
right out i - i i
bottom out i i - i
left out i i i -
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Table 4.7.: Configuration register set for a PSM
Field Length

in bits
Description

left(W-1) 2 Select signal-vector for left-side MUX on track W-1
"00": ’1’ (idle value)
"01": signal from top side
"10": signal from right side
"11": signal from bottom side

bottom(W-
1)

2 Select signal-vector for bottom-side MUX on track W-1

"00": ’1’ (idle value)
"01": signal from left side
"10": signal from top side
"11": signal from right side

right(W-1) 2 Select signal-vector for right-side MUX on track W-1
"00": loopback propagation (see Section 4.1.4)
"01": signal from bottom side
"10": signal from left side
"11": signal from top side

top(W-1) 2 Select signal-vector for top-side MUX on track W-1
"00": loopback propagation (see Section 4.1.4)
"01": signal from right side
"10": signal from bottom side
"11": signal from left side

...

...

...

...
left(0) 2 Select signal-vector for left-side MUX on track number 0

...
bottom(0) 2 Select signal-vector for bottom-side MUX on track number 0

...
right(0) 2 Select signal-vector for right-side MUX on track number 0

...
top(0) 2 Select signal-vector for top-side MUX on track number 0

...
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4.1.4. Bi-directional Tracks

The routing of signal paths can be eased by bi-directional tracks, that can propagate a
signal in both directions of a line as opposed to unidirectional wiring. In physical FP-
GAs bi-directional tracks are realized using two anti-parallel tristate buffers driving the
same wire as shown in Figure 4.9a. On the other hand, the study in [60] shows that uni-
directional single-driver wiring as shown in Figure 4.9b can reduce area and delay, since
regular buffers require less transistors than tristate buffers and also the load capacitance
is reduced. For the V-FPGA both techniques are considered.

While unidirectional wiring is a trivial matter, unfortunately bidirectional wires are nat-
urally not possible with virtual FPGAs because the signal flow of configured underly-
ing resources is always directional (except for the device I/Os that incorporate tristate
buffers). A bi-directional track must therefore be modeled by two uni-directional wires.
The propagation of a signal in both directions and the sharing of the track by a plurality
of potential sources (e.g. 2 PSMs and 1 CLB) can then be implemented, for example, by
an arrangement as shown in Figure 4.10, which enables the emulation of tristate signals
by additional AND gates. However, since in virtual architectures the efficient use of un-
derlying resources matters, another technique has been developed for the V-FPGA that
uses less resources and is presented in Section 4.1.4.1. The pleasant specialty is that it
allows the emulation of bi-directional wiring without additional resources. Furthermore,
without modifications it can be used as uni-directional and as bi-directional track.

CLB CLB

(a) Bi-directional wiring

CLB CLB

(b) Uni-directional wiring

Figure 4.9.: Routing tracks using (a) bi-directional or (b) uni-directional wiring [60]

Din Dout en Din Dout en Din Dout en Din Dout en

1

1

Figure 4.10.: AND based tristate emulation [54]
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4.1.4.1. Loopback Propagation

Defining a track as a pair of two oppositely directed wires, the idea behind the presented
technique, hereinafter called Loopback Propagation, is to feed a signal (e.g. from an output
of a CLB) only into one of the two wires of a track and at the end of the track to replicate
the signal onto the opposite direction. An example is depicted in Figure 4.11, where a
signal on a wire in right-to-left direction can be replicated by a MUX in the PSM onto
a wire in left-to-right direction as highlighted in red colour, carrying the signal in two
directions simultaneously. Thereby the rules defined in the following must be obeyed:

1. Read and write accesses by connection boxes on a track occur on different wires, i.e.
CBws write (drive wires) only in one direction, while CBrs read from the opposite
wires that carry the replicated signals.

2. The definition, in which direction the original signal is written and from which di-
rection the replicated signal is read, must be applied globally to all tracks, e.g.:

a) In horizontal tracks, always write on lines leading from right to left, and read
from lines leading from left to right.

b) In vertical tracks, always write on lines leading from top to bottom, and read
from lines leading from bottom to top.

3. The idle value of unused wires must be ’1’.

4. [A track is not driven by two sources simultaneously].

While the first three rules are strict, the last one depends on the capabilities of the CAD
tools with respect to the routing steps. In case that the CAD tools support multimode
tracks (i.e. a track with two wires can be seen either as one bi-directional track or as two
separate uni-directional tracks), then the last rule may be violated in favour of a more ef-
ficient routing, allowing one wire of a track to be driven by a CBw and the opposite wire
to be driven by an independent signal through the PSM that has been routed to the same
track.

1
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1

1

1

1
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config	
unit

nRST

clk

1

1
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1 0 0 0
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Figure 4.11.: Example of Loopback Propagation in bi-directional tracks
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Figure 4.12.: Connection between two CLBs through two different paths

As it can be seen in Figure 4.11, the ability to replicate a signal comes at no extra costs as
the employed 4:1 MUXs in the PSMs are anyway needed for the routing. The difference
is that on the right side and on the top side of a PSM the first position of a MUX selects
not the idle value ’1’ but the incoming signal of the corresponding track, thus forming a
loopback. Without Loopback Propagation the first position would be reserved for the idle
value ’1’ which is selected when a track is unused. With Loopback Propagation the idle value
of an unused track in right-to-left (or top-to-bottom) direction is replicated in left-to-right
(or bottom-to-top) direction, thus having equivalent functionality for the idle case plus
extending the functionality of normal operation by bi-directionality without additional
resources. Compared to the version in [50] it saves 2W AND gates per PSM and compared
to the tri-state emulation in [54] it saves W AND-gates per CLB-input and substitutes 2W
AND-gates + W OR-gates by W MUX2 per CLB-output. The disadvantage of Loopback
Propagation is that replicated signals have an additional delay since they need to pass
through another MUX. This leads to asymmetric propagation delays depending on the
direction of signal flow. For instance, Figure 4.12a and Figure 4.12b show two different
paths for connecting two CLBs traversing the same number of routing channels, whereby
path B has a longer delay than path A because it relies on signal replication to change
the direction. CAD tools need either to be aware about this peculiarity by considering
different wire models for different directions or alternatively one common worst case wire
model (representing the loopback case) needs to be applied for all directions.
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4.1.5. Clustering

Increasing the size of the LUTs is one way to reduce the routing complexity, as the applica-
tion circuit is partitioned into fewer but larger logic blocks that need to be interconnected.
However, the complexity of a LUT grows exponentially with the number of variables (i.e.
inputs) and furthermore large LUTs suffer from low utilization ratios in practical appli-
cations where logic functions underly strong variance concerning their variable count. A
more efficient way is to increase the size of a logic block by clustering several reasonably
sized LUT + flip-flop pairs (called Basic Logic Elements (BLEs)) into one logic block and
interconnect them by local routing as depicted in Figure 4.13. Compared to the approach
of increasing the LUT size, clustering yields a higher flexibility and hence higher utiliza-
tion because one logic block can realize either one large logic function or multiple smaller
independent logic functions.

Further benefits of clustering are:

• improved locality of interrelated signals yields higher performance, e.g. in vector
operations

• circuits with multiple operations on the same data (e.g. the half adder performs a
XOR b for the sum and a AND b for the carry) experience a reduced number of total
CLB ports and connection boxes

• when reasonably sized, routing complexity can be reduced due to hierarchical rout-
ing

• consequently reduction of routing area is possible

The downside of clustering, however, is that it requires additional input (and eventually
also output) multiplexers inside CLBs, which can become quite large and add up on the
path delay from CLB inputs to BLE inputs, depending on cluster size and LUT size, es-
pecially when a large multiplexer is composed of several 2:1 multiplexers. Thus, if not
appropriately tuned, it can cancel all the promising benefits.

BLE

BLE

. 
. .

. .
 .

N

N

BLEs
N

Outputs

Clock

I
Inputs

(a) Logic cluster

Inputs 4-input
LUT

Clock
D FF Out

(b) BLE

Figure 4.13.: General structure of a logic cluster combining a collection of basic logic ele-
ments (BLE) that are flexibly interconnected by multiplexers [13]
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To maximize the benefits of clustering, the following objective driven strategies are essen-
tial:

• try to pack connected LUTs together

• minimize the signals to be routed between logic blocks

• attempt to fill each logic block to its capacity in order to minimize the number of
logic blocks

Clustering is essentially part of the partitioning problem in VLSI which has been studied
extensively on netlist or graph level, e.g. in [46], [6] and [27]. Commercially, clustering
was first used in Altera 8K and Xilinx XC5200 FPGAs. Betz et al. studied this technique
further on architecture level in [13] to find out the optimal cluster size with 4-input LUTs
and to determine a relationship between cluster size and required number of inputs per
CLB. Later, Ahmed and Rose extended this study in [4] by varying both, LUT size K and
cluster size N in the range of K = 2..7 and N = 1..10. Analyzing area and delay for the
20 largest MCNC benchmarks (and additionally 8 others) within these ranges, they came
to the conclusions that K = 4..6 and N = 3..10 provide the best trade-off between area
and delay. Furthermore, limiting the number of inputs per CLB to I = K/2 · (N + 1) is
sufficient to reach a 98 % utilization and leads to area savings compared to a full I = K · N
setup.

As for the V-FPGA presented in this work, clustering can have a significant effect on area
and performance. While it is one of the most sensitive architectural parameters, we need
to be aware that it can be a blessing or a curse, depending on how well it is tuned. The
findings in [4] have become a widely accepted reference and guideline in parameter choice
and the baseline for many academic FPGA architectures. However, for the V-FPGA, fol-
lowing these recommendations blindly might lead to a mistuning of architectural param-
eters and additional penalty in performance and area for the following reasons:

1. Ahmed et al. used in their experiments an area and delay model on transistor level
including CMOS buffers, pass transistors, RC wire models, etc. based on SPICE sim-
ulations of a 0.18 µm CMOS process. However, the V-FPGA architecture is platform
independent and in case of virtualization the base units are multiplexers and flip-
flops realized by underlying logic blocks. Furthermore, while Ahmed et al. use a
6-transistor SRAM cell model for programming, the V-FPGA makes use of flip-flops.
These differences can lead to unmatched proportions in logic area, local routing area
and global routing area as well as in respective path delays, potentially invalidating
the cost functions and consequently the quality of the packing (i.e. partitioning),
placement and routing.

2. The architecture model used for the experimental results in [4] allows full permu-
tation of CLB inputs through fully connected input multiplexers on each BLE and
LUT input. This comes at the expenses of large area for the input multiplexers and
respectively local routing. The V-FPGA architecture makes use of a LUT reorder-
ing technique for a more efficient full permutation, which cuts down the size of the
input multiplexers by approx. K and reduces the path delay by approx. dlog2(K)e
without any penalty. Thus, relying on the results in [4] would not take full advan-
tage on this improvement and again the proportions of local and global routing
would be distorted.
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3. The recommendations in [4] are based on averaging results across 28 benchmark
circuits. While this will provide in average good results for general purpose, the
customization approach presented in this thesis calls for a more application specific
tuning of architectural parameters to increase efficiency.

For these reasons it is necessary to re-evaluate the LUT vs. cluster size problem with
suitable area and delay models in order to take full advantage of the customization and
optimization strategies followed in this work. Subsection 4.1.5.1 presents a generic and
parameterizable clustering architecture for the V-FPGA. Section 5.6 provides area and de-
lay models that are used in Section 4.1.5.2 to analyze the effects of varying K and N on
area and delay of circuits from the MCNC benchmarks when mapped on the V-FPGA.

4.1.5.1. Generic Clustering Architecture for V-FPGA

The V-FPGA features a generic clustering architecture with parameterizable cluster size
N and LUT size K as depicted in Figure 4.14. The union of a K-input LUT, a flip-flop and
a bypass MUX forms a Basic Logic Element (BLE). A CLB contains N BLEs. As proposed
in [4], a CLB with N BLEs of K-input LUTs contains I = K/2 · (N + 1) inputs and O = N
outputs. There are two modes for the location pattern of the in- and outputs of a CLB:

auto mode and custom mode. The auto mode aims an equal distribution on the perimeter
of a CLB, as this improves routability. Starting on the bottom side with the first input,
subsequent inputs are placed with each a clockwise rotation (bottom->left->top->right)
from the previous one. After all inputs are placed, the procedure continues in the same
way for the outputs. In custom mode it is possible to set the number of in- and outputs for
each side of the CLB individually through the parameters I_le f t , I_top , I_right , I_bot ,
O_le f t , O_top , O_right and O_bot respectively.

Input multiplexers for each BLE input can select signals from the CLB inputs or any of the
BLE outputs. Thereby, two versions are implemented selectable through the parameter
F_inMUX_mode , one with fully-connected multiplexers (i.e. all CLB inputs and all BLE
outputs are selectable by any BLE input) and another one where each input per BLE can
connect only to a fraction of 1/K CLB inputs and to all BLE outputs. For an equal distribu-
tion of CLB inputs to LUT inputs, the latter version uses an overlap function if I/K is not
an integer. The version with fractional input-MUXs is more area efficient than the version
with fully-connected input-MUXs but is also more dependant on the outer routing.The
multiplexers at the outputs of a CLB are optional through the parameter F_outMUX_mode
and in case that they are employed they can select from any of the BLE outputs. They
can slightly ease the outer routing, but cost additional area. It is possible to omit them
and instead use a direct wiring of BLE outputs to CLB outputs, whereby the outer routing
can be facilitated by a reordering of BLEs if the CAD tools support this optimization step.
Each BLE also holds a configuration unit that sets the bits of the LUT and controls the
bypass MUX. Additionally, there is a seperate configuration unit that controls the input-
and output-multiplexers as described in Table 4.8 and 4.9. All configuration units within
a clustered CLB are daisy-chained, starting with the configuration unit for the MUXs fol-
lowed by the configuration units of the BLEs.
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Figure 4.14.: Clustering of BLEs within a CLB of V-FPGA
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Table 4.8.: Configuration bits for controlling the input and output multiplexers within a
clustered CLB in fully-connected mode

Field Length (Bit) Description

MuxConfig N · K · dlog2(I + N)e +
O · dlog2(N)e

This field controls all input and output multiplexers
within a CLB. It is composed of the fields inMuxConfig
and outMuxConfig which are described below.

inMuxConfig N · K · dlog2(I + N)e
This field controls all multiplexers at the inputs of the
BLEs. There are N BLEs and each BLE has K input multi-
plexers.

outMuxConfig O · dlog2(N)e This field controls all multiplexers at the outputs of a CLB.
There are N BLEs and each BLE has K input multiplexers.

BLE[N-1]

K · dlog2(I + N)e

This field controls all input multiplexers of the respective
BLE. Each BLE has K input multiplexers.

...
BLE[0]

inMux[K-
1].sel

dlog2(I + N)e

This field controls the select signals of the respective
(I + N) : 1 multiplexers at the respective BLE inputs. As
depicted in Fig. 4.14, the multiplexer can select any CLB
input or any BLE output to be fed the respective BLE in-
put.

...
inMux[0].sel

Table 4.9.: Configuration bits for controlling the input and output multiplexers within a
clustered CLB in fractional mode

Field Length (Bit) Description

MuxConfig N · K · dlog2(dI/Ke + N)e +
O · dlog2(N)e

This field controls all input and output multiplexers
within a CLB. It is composed of the fields inMuxConfig
and outMuxConfig which are described below.

inMuxConfig N · K · dlog2(dI/Ke+ N)e
This field controls all multiplexers at the inputs of the
BLEs. There are N BLEs and each BLE has K input multi-
plexers.

outMuxConfig O · dlog2(N)e This field controls all multiplexers at the outputs of a CLB.
There are N BLEs and each BLE has K input multiplexers.

BLE[N-1]

K · dlog2(dI/Ke+ N)e

This field controls all input multiplexers of the respective
BLE. Each BLE has K input multiplexers.

...
BLE[0]

inMux[K-
1].sel

dlog2(dI/Ke+ N)e

This field controls the select signals of the respective
(dI/Ke+ N) : 1 multiplexers at the respective BLE inputs,
using overlapping of inputs for an equal distribution.

...
inMux[0].sel
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4.1.5.2. Design Space Exploration for Optimized Tuning of Cluster Size and LUT Size

For adequate parameter tuning we re-evaluated the 20 largest MCNC benchmarks by ex-
tensive design space explorations spanning all combinations of LUT inputs in the range
K = 2..8 and cluster sizes in the range N = 1..10. The employed DSE methodology is
described in Section 6.4. The analysis required 1400 benchmark runs with the steps logic
optimization, LUT mapping, packing, placing and routing. Logic optimization and LUT map-
ping were eased by reusing the pre-mapped versions of the MCNC benchmarks within
the VTR package [104]. The steps of packing, placing and routing were done all with
the academic tool VPR version 7.0 (contained in the open source VTR design flow pack-
age [63]) and with special architecture files representing the V-FPGA architecture and in-
cluding area and delay models. Since LUT size K and cluster size N are specified in the
architecture file and have effects on other parameters as well, there were 70 separate ar-
chitecture files with combinations of K and N required. Those files, along with scripts for
automated benchmark execution, were generated by the V-FPGA Explorer tool presented
in this thesis (see Chapter 5, Section 5.4). Table 4.10 presents the best and worst solu-
tions for the objectives of area and performance optimization, whereby Figure 4.16 and
Figure 4.17 give an overview over the variance for all combinations of K and N within
the design space for each benchmark. The dotted curves represent the average variances
over all benchmarks. Since the benchmarks differ greatly in their size and structure, area
and performance results are each expressed as variations relative to the median of the re-
spective benchmark. More detailed results are presented in Appendix A.1, Figure A.1 to
Figure A.20, where we can observe also the change in proportions of logic area, routing
area and IO area with variation of K and N. The evaluation shows a strong parameter
sensitivity with different and irregular trends. Up to ±95.9% variance in area and up to
±78.1% variance in performance are observed. This sensitivity is remarkably high con-
sidering that the circuit functionality and the resource types are the same and K and N
determine only the granularity of logic blocks which has indirectly also an effect on the
routing infrastructure. Furthermore, the different benchmarks differ greatly in their re-
sults, which leads to the conclusion that application specific customization can yield high
optimizations, rather than relying on average values for the parameterization of the ar-
chitecture.
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Table 4.10.: Max. variance of area and performance in MCNC benchmarks when tuning
cluster size N and LUT size K

Best area Worst area Best performance Worst performance Best area-delay product Area vari-
ance

Performance
variance

K N area K N area K N f_max K N f_max K N ADP
alu4 4 7 4.56E+05 8 9 7.50E+05 8 9 7.71E+06 2 2 2.27E+06 6 7 7.11E-02 ±24.4 % ±54.5 %
apex2 3 2 6.57E+05 8 10 1.34E+06 7 9 6.39E+06 3 1 2.63E+06 6 7 1.32E-01 ±34.2 % ±41.7 %
apex4 4 6 4.73E+05 8 9 8.80E+05 7 10 7.15E+06 2 4 2.10E+06 6 5 8.66E-02 ±30.0 % ±54.7 %
bigkey 2 1 4.93E+05 8 10 2.20E+07 8 2 9.48E+06 2 1 3.78E+06 4 1 1.04E-01 ±95.6 % ±43.0 %
clma 5 1 3.29E+06 8 10 6.33E+06 8 10 4.03E+06 2 1 9.76E+05 7 10 1.34E+00 ±31.5 % ±61.0 %
des 2 1 7.42E+05 8 10 3.13E+07 7 4 4.88E+06 2 1 2.67E+06 3 1 2.23E-01 ±95.4 % ±29.3 %
diffeq 3 1 3.65E+05 8 10 1.53E+06 7 6 9.77E+06 2 1 2.33E+06 6 5 4.43E-02 ±61.4 % ±61.5 %
dsip 2 1 4.76E+05 8 10 2.25E+07 5 2 9.30E+06 2 2 4.06E+06 4 1 1.06E-01 ±95.9 % ±39.2 %
elliptic 3 4 1.10E+06 8 10 1.01E+07 8 9 5.57E+06 2 1 1.54E+06 5 1 2.96E-01 ±80.3 % ±56.8 %
ex5p 8 1 6.05E+04 8 10 5.90E+05 8 2 2.29E+07 4 1 2.82E+06 8 1 2.80E-03 ±81.4 % ±78.1 %
ex1010 8 5 7.34E+05 3 3 2.50E+06 8 10 8.84E+06 2 1 1.12E+06 8 5 1.08E-01 ±54.6 % ±77.4 %
frisc 2 4 1.34E+06 8 10 3.37E+06 7 5 5.53E+06 2 1 1.27E+06 5 5 3.35E-01 ±43.0 % ±61.4 %
misex3 4 5 4.59E+05 8 9 9.37E+05 7 10 7.61E+06 2 1 2.47E+06 6 7 7.12E-02 ±34.3 % ±50.9 %
pdc 6 1 2.16E+06 8 1 3.15E+06 7 10 5.28E+06 2 1 1.07E+06 7 10 4.87E-01 ±18.7 % ±66.2 %
s298 4 5 5.41E+05 8 9 1.05E+06 8 9 6.22E+06 2 1 1.64E+06 7 10 1.28E-01 ±31.9 % ±58.2 %
s38417 6 2 1.27E+06 2 8 3.60E+06 7 5 8.81E+06 2 1 2.01E+06 6 4 1.86E-01 ±47.7 % ±62.8 %
s38584.1 5 1 1.58E+06 8 10 1.81E+07 6 9 7.17E+06 2 1 2.67E+06 7 2 3.46E-01 ±83.9 % ±45.8 %
seq 4 5 6.02E+05 8 9 1.24E+06 8 10 7.49E+06 2 1 2.20E+06 6 6 1.02E-01 ±34.8 % ±54.7 %
spla 4 1 1.57E+06 8 9 2.61E+06 7 10 5.29E+06 5 1 1.73E+06 7 10 4.08E-01 ±25.0 % ±50.7 %
tseng 3 2 2.25E+05 8 10 4.35E+06 7 4 1.02E+07 2 1 2.26E+06 5 1 4.42E-02 ±90.2 % ±63.8 %
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Figure 4.16.: Effects of Lut size K and cluster size N on area, shown through variance of
area relative to median of series for combinations of K and N
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Figure 4.17.: Effects of LUT size K and cluster size N on performance, shown through
variance of performance relative to median of series for combinations of K
and N

4.1.6. Tile Based Structure

The V-FPGA is developed in mainly structural VHDL making use of modularization, hi-
erarchy, automated instantiation and wiring by the means of GENERATE loops and pa-
rameterization through GENERICS. In Figure 4.18 a reduced hierarchy diagram shows
the composition of components out of subcomponents of the next lower hierarchy step.

The leafs are MUX2 (2:1 multiplexer), MUX4 (4:1 multiplexer), AND2 (2-input AND gate)
and DFF (D-flip-flop). On a higher hierarchy level, the V-FPGA structure is partitioned
into recurring tiles as illustrated in Figure 4.19. There are 9 types of tiles of which the
V-FPGA is constructed: one for the inner area, 4 for the borders and 4 for the corners.
Compared to a flat structure, the use of tiles has a number of benefits:

• The synthesis process is faster when preserving hierarchy because once a tile is syn-
thesized the same netlist can be reused for all instances of the same tile.

• In case of physical implementation, a tile can be placed & routed as a macro block.

• The problem of combinational loops in static timing analysis is mitigated since the
analysis can be performed per tile/macro whereby the portion of routing channels
present in a tile can not form loops (in contrast to an overall flat structure).

• The reuse of macros in physical implementation not only reduces the design time
but offers also a higher regularity with more homogenous characteristic throughout
the chip area.

• The characterization effort is reduced.

• Homogeneous and unified timing and area characteristics and accordingly derived
delay and area models ease the place & route efforts for application mapping.
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Figure 4.18.: Hierarchy of V-FPGA components and subcomponents

PSM

CLB

CLB

CLB

CLB CLB

CLB

PSM

PSM

PSM

PSMPSM PSM

PSMPSM

PSM

CLB

CLB

PSM

PSM

PSM

PSM

PSM

PSM

CLB CLB CLB

PSMPSM PSM

CLB

PSM

corner-‐'le	  	  
top-‐right	  

corner-‐'le	  	  
bo0om-‐right	  

border-‐'le	  	  
right	  

border-‐'le	  	  
top	  

border-‐'le	  	  
le3	  

corner-‐'le	  	  
top-‐le3	  

corner-‐'le	  	  
bo0om-‐le3	  

border-‐'le	  	  
bo0om	  

inner	  'le	  	  

Figure 4.19.: Partitioning of V-FPGA structure into recurring tiles
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Figure 4.20.: Routing channels within tiles

Figure 4.20 shows a more detailed view of routing channels within tiles. Apart from
the channels flowing in and out of PSMs there are so-called import- and export-channels
between tiles. These channels are needed because a routing channel from a PSM is shared
by two tiles and the export- and import-ports allow to connect a routing channel within
one tile also by a neighbouring tile.

4.2. 3D Extension

The interconnect challenge imposed by increased total wirelength and dominating RC
delays in highly integrated circuits calls for new routing architectures exploiting the third
dimension. There is a promising trend towards 3D FPGAs with the aim to vertically stack
and interconnect homogeneous or heterogeneous layers (each on a separate die), thereby
reducing the total wirelength, increasing yield, mixing technology nodes (each layer can
be manufactured in a different process and feature size), and/or increasing the total area
within a chip. This has scalability, performance, and power benefits as discussed in [80],
[94] and in the related works [70], [33], [62], [113], [43], [84], [99] and [97], which are briefly
described in Section 3.5.

The related works show only a few ways of designing 3D-FPGA architectures. In fact the
new dimension and the added degrees of freedom largely extend the architecture design
space, which can be considered mainly unexplored despite existing works and experi-
ences from 3D memories. With the vertical stacking of FPGA layers also new challenges
arise, such as e.g. heat dissipation of inner layers, limited number of vertical connections,
efficient partitioning, placement & routing in 3 dimensions, task migration, heat balanc-
ing and runtime management, etc.. These aspects can be influenced by the architecture
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4.2. 3D Extension

Figure 4.21.: Structure of 3D V-FPGA

of a 3D FPGA, and therefore customization becomes important, especially since it is an
emerging research field.

4.2.1. The customizable 3D V-FPGA Architecture

The V-FPGA framework allows the generation of custom 3D FPGA architectures com-
posed of several stacked layers of 2D FPGAs that are interconnected by the means of
Through-Silicon Vias (TSVs) as illustrated in Figure 4.21. Therefore, the PSMs are ex-
tended by vertical connections to establish paths between layers through 3D-PSMs. While
TSVs are passive elements with bi-directional signal flow, the so-called Virtual Through-
Silicon Vias (V-TSVs) in the V-FPGA are modelled as union of two antiparallel uni-directional
vertical wires. The structure of a 3D-PSM with V-TSVs is illustrated in Figure 4.22. For
the purpose of clarity only one output multiplexer is shown. The colour gradients from
red to blue are meant to visualize the directions of signal flows through the PSM-internal
wires.

On the first sight the connectivity pattern of this approach might look different from the
existing 3D switch boxes mentioned in the works above and the question might be "why
not simply adopting the existing structures?". This design choice was made for the following
reasons:

• In case of virtualization the approach in Figure 4.22 is more area efficient because
a vertical connection itself doesn’t need switches. Instead the flexibility is achieved
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4. V-FPGA: Virtual Field Programmable Gate Array

Figure 4.22.: Simplified scheme of 3D-PSM in V-FPGA

by the output MUXs of the 3D-PSM. Note that a 3D-switch has a 2.5x area-increase
over a 2D-switch, while the 6:1 MUXs in the 3D-PSM have only a 1.67x area-increase
over the 4:1 MUXs in the 2D-PSM. Furthermore, the virtualization of single switches
is overall less efficient than the virtualization of MUXs.

• The CAD routing- and bitstream-generation-efforts presumably can be reduced as
the absence of switches in vertical connections mean a reduction of switchable seg-
ments.

• The 3D PSMs are suited not only for true 3D-, but also for 2.5D- and 2D-architectures.
In the latter case, the V-TSVs can be seen as long-lines that provide fast connections
between regions of the array.

• Even though it might be not obvious at first sight, the combination of the employed
3D-PSM approach in conjunction with other techniques such as Loopback Propagation
or in-outs leads to a similar flexibility (FS = 5) as the existing 3D SBs. This becomes
clearer when we have a look at the possible resulting interconnect pattern graphs
in Figure 4.23a, 4.23b and 4.23c. For the sake of clarity, horizontal connections are
faded in order to give highlight to the vertical connections, which are represented by
red lines (direct vertical connections) and blue lines (indirect vertical connections).

The 3D V-FPGA extends the parameter set by two additional parameters. The parameter L
determines the number of stacked layers and the parameter TSVpC refers to the number
of V-TSVs per channel (per PSM side). Starting with track number 0 the TSVs are allocated
in ascending order of track number until TSVpC is exhausted. Alternative to the TSVpC
parameter there is a hidden parameter int_sel for the 3D-PSMs that enables to set arbitrary
location patterns for TSVs. This is useful when a heterogeneous interconnect fabric is
envisioned (e.g. such as in [97]). In Figure 4.23 the parameters W = 4 and TSVpC = 1

72



4.3. Configuration Mechanisms

0

1

2

3

0

1

2

3

0
1

2
3

0
1

2
3

0
1

2
3

0
1

2
3

x0 x1

y0

y1

z0

z1

(a)

0

1

2

3

0

1

2

3

0
1

2
3

0
1

2
3

0
1

2
3

0
1

2
3

x0 x1

y0

y1

z0

z1

(b)

0

1

2

3

0

1

2

3

0
1

2
3

0
1

2
3

0
1

2
3

0
1

2
3

x0 x1

y0

y1

z0

z1

(c)

Figure 4.23.: 3D-PSM connectivity patterns based on (a) 2D Disjoint, (b) 2D Universal and
(c) 2D Wilton origin horizontal patterns

are selected along with SBtype = 2 for Disjoint, SBtype = 1 for Universal and SBtype = 0
for Wilton. For better compatibility to existing 3D SBs the parameter int_sel needs to be
employed customizing the vertical pattern style.
All the 18 parameters of the 2D V-FPGA persist also in the 3D V-FPGA, offering in total
20+1 ways (and thousands of combinations apart from scaling) to tune the architecture,
which gives a large room for exploration and customization second to none of the related
works identified in Chapter 3.

4.3. Configuration Mechanisms

The V-FPGA is (re)configured by loading bitstreams into the configuration registers of the
programmable resources. Thereby, the V-FPGA supports partial and dynamic reconfig-
uration at coarse as well as at very fine granularity. Furthermore, it incorporates special
features such as fast dynamic task migration and defragmentation at run-time. The mech-
anisms and the trade-offs are described in the following subsections.

4.3.1. Configuration Units

The reconfigurable resources in the V-FPGA come each with an own configuration unit.
A configuration unit contains storage elements and logic for the reception and transport
of configuration data. As shown in Figure 4.24, the storage elements are realized by flip-
flops in case of virtual FPGAs as these are the available bit-wise storage resources of the
underlying COTS FPGA platform. The flip-flops within a configuration unit are daisy
chained and form a shift register. Daisy-chaining of multiple configuration units extends
the shift register. This yields a very area efficient transport mechanism as no additional re-
sources are employed for this purpose apart from the storage elements. The transport and
storage of configuration data is controlled through clock-gating of the flip-flops. During
a (re)configuration the clock is enabled and configuration data as a bitstream is pushed
serially into the first flip-flop of the daisy-chain through a single Master Out Slave In
(MOSI). At the same time the nSS (low-active slave-select) signal is driven low. With ev-
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Figure 4.24.: Schematic of a configuration unit within the V-FPGA

ery clock-cycle a bit is shifted one step further in the daisy-chain. When all bits are shifted
in, the transport is stopped by gating the clock and the flip-flops hold their values. Since
each flip-flop controls something in the programmable resources of the V-FPGA, shifting
bitstream through the daisy-chain would lead to glitches and arbitrary activity in the V-
FPGA during a reconfiguration. To avoid this and to keep the V-FPGA in a defined state,
the outputs of the configuration registers are conjunct with nSS by AND-gates and thus
driven low during programming.

4.3.2. Configuration Controller

The task of the configuration controller is to retrieve configuration data from memory
and distribute it to the configuration units of the CLBs, PSMs and IOBs, which fill the
corresponding configuration registers. Since the daisy-chained configuration units adopt
a standardized interface protocol, the configuration controller for the V-FPGA can be user
defined. This gives more flexibility to embedded systems. It is also possible to build
the configuration controller completely in software, utilizing Serial Peripheral Interface
(SPI) peripherals of a microcontroller or GPIOs, yet the best performance is achieved with
hardware solutions.

The V-FPGA framework contains a reference design of a hardware configuration con-
troller that can be interfaced by microprocessor cores through standardized Advanced
Microcontroller Bus Architecture (AMBA) busses. The configuration controller uses three
separate RAM blocks for configuration data of the CLBs, PSMs and IOBs. These RAM
blocks are part of the underlying target technology, and are integrated as hardware macros.
Therefore, unlike the rest of the V-FPGA, the memory part of the configuration controller
is platform-dependent. For porting to other underlying platforms, the instances of the
RAM blocks used here must be replaced by instances of the RAM macros supported by
the target platform. Fortunately, the RAM blocks of different target platforms are very
similar with respect to their interface, which simplifies the efforts of migration to the cre-
ation of simple wrappers for the memory modules per platform. The communication
with the memory controller takes place via an AMBA Advanced High-Performance Bus
(AHB), whereby the configuration controller is connected as master. If the memory is
shared between several system components and has only one port, a bus arbiter is re-
quired to grant access from multiple masters to the memory controller. However, the
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Table 4.11.: Instruction set of configuration controller
Adress-Offset Type Name Description
0x0000 write CON Selects a configuration and

starts the (re-)configuration
process

read ST Status register
0x0800 ... 0x0BFC write CRAM Writes data in CLB RAM

read - Reserved
0x1000 ... 0x13FC write PRAM Writes data in PSM RAM

read - Reserved
0x2000 ... 0x23FC write IRAM Writes data in IOB RAM

read - Reserved

underlying platforms support dual-ported RAM blocks, which eliminates the need of an
arbiter in setups with two masters. The configuration controller also includes an AMBA
APB slave interface through which it can be controlled externally (e.g., by a microproces-
sor core). For instance, via this interface, configuration data can be copied to the RAM
blocks from outside, configuration processes can be started and status information can
be queried. Table 4.11 shows the supported instruction set of the interface. For writing
the configuration data to the RAMs, the configuration controller contains a bridge that
decodes the APB addresses and writes the data to the correct RAMs, thereby utilizing the
already existing APB signals that can be reused for the RAM interfaces.

When sending a word to the address 0x0000, the signal recon f is set to ’1’. This starts the
reconfiguration process, which is controlled by three Finite State Machines (FSMs) (one
each for CLBs, PSMs and IOBs) as shown in Figure 4.25. In the idle state, the FSMs wait
for the reconfigure command (recon f =′ 1′). Then they jump to the start state, where
they check whether any of the FSMs are still in an old configuration process that has not
yet been completed. If this is not the case, the FSMs jump to the load state. Thereby, the
signals clb_nPROG, psm_nPROG and iob_nPROG are set to ’0’ by the individual FSMs.
As a result, the global low-active slave select signal nSS of the virtual FPGA core is also
set to ’0’, thus the configuration units in the CLBs, PSMs and IOBs are ready to receive
new configuration data, and the anti-glitch logic in the CLBs is active. In the load state,
the read-enable signal of the corresponding RAM block is set to ’1’ for each FSM and
is held until all configuration data have been transferred. As a result, a new word can
be read from the RAM with each clock. Addressing takes place via variable b, which is
incremented in each clock cycle. The (read) data bus signal of the RAMs lead directly to
the data signals of the configuration bus. The arrangement of the bits in the data words
is selected in such a way that a 1:1 assignment of the bit positions to the column numbers
of the virtual FPGA array takes place. The bit streams on the individual data lines of the
configuration bus are thus created by reading the data words from the RAM one after the
other. In case the V-FPGA has more columns than the data width of the RAMs, the easiest
solution is to segment the V-FPGA and daisy-chain the segments. This way there is no
limitation in the scaling of the array. The read-enable signals of the RAM block are also
used to gate the configuration clocks. Clock gating is needed control the shifting of the
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Eintritt/i:=0,b:="000000000",clb_REN<='0',clb_nPROG<='1'

idle

start

Eintritt/clb_REN<='1'
risingedge(clk) / clb_RADDR<=b,b:=b+1,i:=i+1

load

[reconf='1'] [nProg='1'] / clb_nProg <= '0'

[i>=Y_MAX*((O*W)+(I*ld(W-1))+(N*K*ld(I/K+N-1))+(O*ld(N-1))+(2^K+1))] / clb_REN<='0'

Eintritt/i:=0,b:="000000000",psm_REN<='0',psm_nPROG<='1'

idle

start

Eintritt/psm_REN<='1'
risingedge(clk) / psm_RADDR<=b,b:=b+1,i:=i+1

load

[reconf=1] [nProg='1'] / psm_nProg <= '0'

[i>=(Y_MAX+1)*4*W*ld(W-1)] / psm_REN<='0'

Eintritt/i:=0,b:="000000000",iob_REN<='0',iob_nPROG<='1'

idle

start

Eintritt/iob_REN<='1'
risingedge(clk) / iob_RADDR<=b,i:=i+1
risingedge(clk) / iob_sel_bit<=j,j:=j+1
risingedge(clk) [j>7] / j:=0,b:=b+1

load

[reconf=1] [nProg='1'] / iob_nProg <= '0'

[i>=2*(X_MAX+Y_MAX)*(1+ld(W-1)+W)] / iob_REN<='0'

Figure 4.25.: Finite State Machines of bitstream loader

bitstreams through the configuration registers. If the amount of data to be transmitted is
reached in the load state by the counter variable i, then the respective FSM jumps to the
idle state and the read enable signal of the corresponding RAM is reset to 0, which stops
the reading from the RAM and also the configuration clock by clock-gating. In the idle
state, the corresponding ∗_nPROG signal is then set to ’1’ again. If all three FSMs have
reached the idle state, all three ∗_nPROG signals are ’1’ and so also the global low-active
slave select signal. This completes a reconfiguration.

Figure 4.26 shows a simulation of the configuration process as described above. At the
marker position the configuration controller receives the CON instruction (address 0)
with the data word 0x01, which tells the configuration controller to configure the array
with the first configuration in the memory. Then the state machines read data from the
memories and drive the configuration signals accordingly. The configuration related sig-
nals are marked with three different colours, cyan for the CLB columns, orange for the
PSM columns and magenta for the IOB ring. The beginning and the end of the bitstream
loading for each resource type is marked by the events in the nPROG signals. The config-
uration clocks are gated accordingly.
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Figure 4.26.: Simulation of a configuration process

4.3.3. Area vs. Speed Trade-offs in Configuration Infrastructure Topologies

The topology of the configuration infrastructure can be tuned by splitting and combin-
ing the configuration daisy-chains. In dynamically reconfigurable FPGAs there is a seri-
al/parallel trade-off to be considered when thinking about configuration infrastructure.
Runtime reconfiguration has to be fast and from this point of view a parallel bus seems to
be the best choice. But a purely parallel bus occupies a lot of area and resources especially
in virtual architectures. If you take into account that this occupied area has a very low
utilization while it degrades the system’s routability, a purely parallel solution should be
avoided when possible. The virtual FPGA is programmed in a semi-parallel manner as
visualized in Figure 4.27. This means that all elements of the same type within a column
are programmed serially but all columns (and all different element types) have separate
serial busses which are driven concurrently by the configuration controller. The configu-
ration speed depends on the amount of rows whereas the occupied bus area depends on
the amount of columns. By varying the parameters X (columns) and Y (rows) in the top
level of the RTL, the trade-off can be tuned in favor of speed or area [50].
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Figure 4.27.: Semi-parallel configuration infrastructure in V-FPGA

4.3.4. Coarse-Grain Partial Reconfiguration

Partial Reconfiguration (PR) is needed in order to reconfigure a part of the V-FPGA while
the other parts are operating and should not be disturbed. Thereby, in many cases it
is needed to reconfigure large contiguous areas rather than individual spots. An efficient
way to enable coarse-grain partial reconfiguration at minimum costs is to split the V-FPGA
area into smaller independent V-FPGA cores that can be configured individually. Thereby
each core would accommodate an application and multiple cores would execute multiple
applications in parallel. However, this is only efficient if the cores closely matches the
application size. In practical cases this not given as different applications (or circuits) have
different area requirements and are not equally sized. In such cases the size of all cores
would be chosen based on the largest application that should fit in a core, which however
would lead to unutilized area in cores that execute smaller applications. To overcome this
problem and increase area efficiency the V-FPGA features a unique technique called Core
Fusion [35]. The idea is to partition the V-FPGA into relatively small cores and to merge
adjacent cores to a bigger core on demand whenever an application wouldn’t fit into one
as illustrated in Figure 4.28.

This technique is basically realized by adding routing channels between the outer PSMs
of two adjacent cores to extend signal paths from one core to another. As a result of using
the same channel width and the same routing structure inside the PSMs there are no
bottlenecks between the merged cores. The routing and the behavior are quite the same
like one single natively double sized core would be used, except that there is a middle
stripe without CLBs.
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Applications:

A

B

C

Figure 4.28.: The CoreFusion idea, merging adjacent V-FPGA cores [35]

Thanks to CoreFusion the size of the cores doesn’t need to depend on the applications as
it can be adapted on demand by merging. Instead the size can be selected based on the
desired granularity of partial reconfiguration.
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4.3.5. Fine-Grain Partial Reconfiguration

To maximize flexibility in dynamic application mapping and to speed-up context-switching,
the V-FPGA supports slice-level partial reconfiguration. This unique feature allows to dy-
namically re-configure single resources (BLEs, CBs, PSMs, IOBs) during runtime while
the others are still operating. In contrast to state-of-the-art devices that can perform par-
tial reconfiguration only at the coarse granularity of entire frames, the very fine grained
partial reconfiguration of the V-FPGA allows:

• arbitrary aspect ratios for application mapping, as PR regions are not limited to
rectangular vertical frames (Figure 4.29a), but are rather free-form (Figure 4.29b).

• better routability and shorter paths. It is clear that the aspect ratio has an impact
on the routeability and path delays. With slice-level PR this is optimized by timing-
driven free-form placement.

• faster context switching, as fewer resources need to be reconfigured compared to
entire frames.

• higher utilization due to finer area quantization. In state-of-the-art devices, if a
frame is not fully utilized by an application, the rest of it is waste. Not so with
slice-level reconfiguration, where other applications can utilize the rest.

Slice-level PR is very powerful in conjunction with the Just-in-Time Place&Route method-
ology described in Section 5.5. It allows to change form-factors and locations of applica-
tions during runtime, depending on the momentary distribution of free resources when
the application is requested.

Architecture wise, slice-level reconfiguration is enabled by additional by-pass selector
logic in the configuration units of the V-FPGA. The idea is to maintain the same configu-
ration infrastructure, but to completely bypass the registers of a configuration unit if it is
not selected for configuration. This is achieved by the circuit shown in Figure 4.30.

Based on the nSS signal the circuit enters in one of two modes. If nSS =′ 1′, the configu-
ration unit is in an idle phase. During this phase the configuration registers are disabled
by driving the con f _en signal low and hold their Q value irrespective of signal changes on
the D-input. This ensures that running applications on the V-FPGA are not disturbed by
signals on the configuration bus. Nevertheless, during this phase a bitstream can be fed
into the configuration unit to configure a by-pass MUX. This type of configuration goes
through a seperate flip-flop that is enabled only during this phase. The output Q of this
flip-flop drives the signal con f _en_stdby which is forwarded to the output MUX of the
configuration unit in order build a daisy-chain with the other configuration units. When
nSS =′ 0′ this separate flip-flop is disabled and holds its Q value, while the configuration
unit is in an active phase. If con f _en_stdby =′ 1′ in conjunction with nSS =′ 0′, then the
configuration registers are enabled for configuration. Otherwise, they are disabled and
by-passed by the incoming bitstream. This way, only selected resources are re-configured
while the by-passed ones keep doing their business and are not interrupted.

As it can be seen in Figure 4.30, the hardware overhead for slice-level reconfigurability is
very low. The configuration bus stays the same, only the configuration units are extended
by additionally one flip-flop, one inverter, one AND-gate and one 4:1 MUX.
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(a) (b)

Figure 4.29.: PR regions and the effects on placement: (a) rectangular regions in frame-
granular PR, (b) free-form in fine-grained slice-level PR
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Figure 4.30.: Configuration unit with by-pass selector logic for enabling slice-level partial
reconfiguration in V-FPGA

81



4. V-FPGA: Virtual Field Programmable Gate Array

4.3.6. Runtime Task Migration and Defragmentation

In partial and dynamic reconfigurable architectures the perpetual allocation and de-allocation
of applications or tasks during runtime can lead to fragmentation of the reconfigurable
fabric similarly to the fragmentation of hard disk drives in PCs. Fragmentation of FPGAs
has been long neglected, but think of FPGAs in the cloud where different applications or
service requests fly in and out on demand in an unpredictable way. If several such tran-
sient applications are concurrently mapped on the same device, fragmentation effects can
occur quite quickly. The consequence is that inspite unoccupied ressources are available,
they are scattered and thus can not be utilized by applications that require large contigu-
ous area. A simple example is illustrated in Figure 4.31.

Assuming a system with 9 V-FPGA cores and CoreFusion capabilities, during runtime the
core array is allocated and deallocated by various applications of different size. At t =
200 s the system reaches a state in which despite of sufficient unoccupied resources app7
can not be mapped on the array as it needs a contiguous area of two adjacent V-FPGA
cores.

To overcome such situations, the V-FPGA architecture is extended by mechanisms that
allow a defragmentation of the core array during runtime [35]. In the example of Fig-
ure 4.31 app6 would be migrated to the top row to free sufficient contiguous area in the
bottom row to accommodate app7.
The challenge thereby is to perform the migration during runtime in a non-destructive
and practically non-disruptive way for the running applications, including the one that
is to be moved. Non-destructive means that the running application should maintain its
state during migration. Non-disruptive means that realtime behaviour/response of run-
ning applications should not be disturbed by migration, which is especially important e.g.
in streaming applications, where data samples should not be lost.

In fact, it is not possible to move a running application without any interruptions, but the
interruptions can be kept negligibly small so that they don’t do any harm even in real-
time applications. In V-FPGA this is achieved by a four-step migration process with fast
hardware mechanisms for reading and restoring instant snapshots of the application’s
state.
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Figure 4.31.: Fragmentation scenario in runtime partial reconfigurable architectures
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4.3.6.1. Snapshot Functionality in V-FPGA Architecture

Taking a snapshot means that the output signals of all signal sources in the V-FPGA need
to be stored instantly at a certain point in time.

The signal sources of a core are all CLBs and the peripheral unit. Because the CLBs already
contain a flip-flop at the LUT’s the modifications of the V-FPGA architecture to support
snapshots are minor and the hardware overhead negligible (see Figure 4.32 where modi-
fications are marked in red colour).

With the additional signal nSnap that is connected to the EN input of the already existing
flip-flop the output can be freezed when nSnap =′ 0′. As there is one global nSnap signal
for all CLBs inside a core this simple modification realizes the snapshot functionality at
nearly no additional hardware costs.

In order to support the transport of the snapshot data a daisy-chain approach similar
to the configuration mechanism is used. If snapshot data needs to be stored or loaded
then the output flip-flops of all CLBs within a column are daisy-chained by a multiplexer
at their inputs and build a shift register that transports the data synchronously as a bit-
stream. Again, as shown in Figure 4.33 each column has its own daisy-chain and all
daisy-chains transport the data at the same time. Similar to the configuration data the
daisy-chains of the snapshot data are connected to the data busses of a RAM block where
each daisy-chain an according bit position in the words of the memory is assigned. The
beginnings of the daisy-chains are linked to the write data bus and their ends to the read
data bus. Thus the storing and the loading of snapshot data work the same way. The
address bus of the RAM is driven by the configuration controller and incremented every
clock cycle during the transport.

The snapshot functionality of the peripheral unit is also implemented at nearly no addi-
tional hardware costs. As the outputs of the peripheral unit are anyway registered, the
corresponding flip-flops can be freezed by the global nSnap signal that is connected to the
EN inputs of the flip-flops. The integrated communication controller supports the storing
and loading of snapshot data via the AMBA APB bus.

Apart from migration and defragmentation, the snapshot functionality further enables
some new possibilities. E.g. a running application can be interrupted and the core it is
running on can be freed if a higher priority application is requested but all cores are oc-
cupied. When the higher priority application terminates then the interrupted application
can be mapped again on the core and resume its work. This method further enhances the
overall utilization as idle cores can be used for low priority background check applications
but still be available for mapping higher priority applications as they are interruptible.
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Figure 4.32.: Snapshot mechanisms in V-FPGA [35]

Figure 4.33.: Snapshot net in V-FPGA [21]
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4.3.6.2. Task Migration Process for V-FPGA

To migrate an application or task from on V-FPGA core to another four steps are per-
formed in the following order:

1. The configuration controller configures the destination core with the same applica-
tion bitstream as the source core.

2. Once the configuration process of the destination core is finished, a snapshot of the
source core’s state is taken and stored.

3. In a next step the stored snapshot has is loaded into the destination core.

4. Finally, in software the address of the application needs to be remapped to the new
core. Note that it is assumed that all V-FPGA cores are equipped with a peripheral
unit with communication controller as described in Section 6.1 and thus is address-
able for data exchange with a microprocessor through busses. this explains why a
remapping of the base-address is necessary when an application moves to another
core.

From the moment the snapshot is taken until the moment the address is remapped, all
data exchange between software and mapped application is invalid and should be avoided
in software. However, this doesn’t cause any serious performance problems as the snap-
shot data is pretty small and can be restored quite fast inside the destination core.

The simulation results in Figure 4.34 show the behaviour and timing when migrating an
application from one V-FPGA core to another. As it can be seen, the duration of taking and
storing snapshots as well as restoring them on another core is very short in the range of a
few microseconds. The example application is a CRC calculation over multiple data sam-
ples and is migrated during it’s runtime to another core. The final result of the calculation
is correct.
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Figure 4.34.: Simulation of a migration of a running application from one V-FPGA core to
another [21]
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4.3.6.3. Dynamic Defragmentation Strategy

The monitoring of the fragmentation degree, the decision whether to defragment or not
as well as the strategy of moving and swapping applications through the core array are
done in software that is executed on the microprocessor. This was contributed by Thomas
Bruckschlögl in his student research project [21].

Since a defragmentation should be performed in-system dynamically during runtime, a
fast heuristic is developed that performs this task in acceptable time. The calculation of a
new allocation map must be completed before a core application terminates its execution.
Otherwise, if a defragmentation process is not completed by this time, space is reserved
for an application that is no longer required. In addition, it could be that the defragmenta-
tion would not be necessary any more, since by completion of an application a sufficiently
large contiguous area in the array could become free.

These time constraints can be exacerbated by adding the reconfiguration duration to the
calculation duration of a new allocation map or even performing a reconciliation between
the reconfiguration time of a core and the remaining completion time of an application.
A threshold could then ensure that certain cores are marked as non-movable, if the time
expenditure is no longer worthwhile.

With respect to the defragmentation strategy, a greedy-heuristic is applied, which starting
with the largest configuration attempts to fill the array of V-FPGA cores from the upper
left corner to the lower right corner. The width and height of a configuration is defined
by the number of fused V-FPGA cores in x and y direction, respectively.

The steps are as follows:

1. Sort the list of configurations by size

2. Select the largest, unplaced and non-discarded configuration

3. Find a suitable region

a) If height > width of configuration, find suitable region first as far to the left as
possible and then as far to the top as possible.

b) If height <= width of configuration, find suitable region first as far to the top
as possible and then as far to the left as possible.

4. If sufficient area is found, then

a) mark the configuration as placed

b) mark the required area as occupied

5. If no adequate area is found, then

a) mark the configuration as discarded

b) repeat steps 2 to 5 until all configurations have been placed or discarded

Figure 4.35 illustrates the sequence of the algorithm graphically. First, startup configu-
rations with initial assignment of a fragmented V-FPGA array are assumed. The initial
assignment is shown on the left, while the result is the right-hand side after defragmen-
tation. This example is intended to illustrate how the algorithm works, showing that the

88



4.4. Multi-granular Virtual Reconfigurable Architecture

(a) (b)

Figure 4.35.: Example of a fragmented V-FPGA core array (a) and the result after defrag-
mentation (b) [21]

largest configuration is located at the top left corner, and that the next two larger con-
figurations are placed with priority left (configuration 1x2) or priority top (configuration
2x1).

4.4. Multi-granular Virtual Reconfigurable Architecture

A special case of V-FPGA is the ViSA and V-FPGA Integrated System (ViSA-VIS). The spe-
cialty is that some or all of the logic cells are composed of a scalable microarchitecture that
is able to run programs. The objective is to reduce the control overhead of applications
that are not fully data-flow driven.

4.4.1. ViSA: VLIW Inspired Slot Architecture

VLIW inspired Slot Architecture (ViSA) is a generic and scalable microarchitecture that
can serve either as a loosely coupled programmable accelerator core in a system (as demon-
strated in [36]) or be integrated as special macro cells in the V-FPGA, thereby taking ad-
vantage of the surrounding programmable logic and interconnects. The latter approach
can be seen as an extension of what is being today offered in FPGAs as dedicated multi-
pliers or DSP slices. The most important differences to those units are:

• ViSA can execute programs. It supports also a configurable data path mode to be
used in a similar way as DSP slices for control-less streaming applications. Thus it’s
more versatile.
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• ViSA is generic and scalable. Thus it can be customized to cover a custom range of
operations, from simple multiply, add/subtract to complex and custom operations.

• In contrast to DSP slices, ViSA can implement control flow.

• ViSA is an efficient alternative to FSMs as it moves the entire control flow complexity
to memory rather than expensive logic.

4.4.1.1. The Idea Behind the ViSA Approach

The original idea [36] behind the VLIW inspired Slot Architecture was driven by two key
demands:

1. In contrast to typical FPGA hardware designs based on FSMs, we were looking for
an alternative approach to drastically reduce chip area without degrading perfor-
mance.

2. We aimed to develop a generic, reusable development approach that can be easily
tailored towards application-specific demands.

Thus, ViSA provides highly efficient yet flexible custom computing solutions at fast time-
to-market.

A widely used design method for FPGAs is to implement parallel arithmetic computing
units, e.g., multipliers, adders, and control them by FSMs, or even to have all computa-
tions inside large FSMs. However, this is not always a very efficient approach because pre-
cious resources are often wasted for purposes that are dedicated more to controlling and
not directly to computation. This is even more severe when resource sharing is needed
due to limited amount of computing units, e.g., multipliers.

Therefore, the proposed overlay architecture is focused on reducing the control flow over-
head to a minimum by using similar techniques as found in small processors. However, a
big difference to conventional processor architectures is that the same amount of parallel
computing units as in pure hardware designs is used. The parallelism is distributed in a
hierarchical manner, e.g., locally in parallel computation slots like in VLIW and globally
by multiple instances of ViSA cores, which could be realized as homogeneous or hetero-
geneous multicores.

4.4.1.2. Generic Structure

As depicted in Figure 4.36, the generic VLIW-inspired Slot Architecture mainly consists
of functional units, registers, multiplexers, a program counter (PC), data and instruction
memories and a VLIW-like instruction word which resides inside the instruction memory.
In contrast to conventional processors, there are neither pipeline stages nor a decoding
unit, dispatcher, reservation station, etc.. ViSA is a strictly reduced architecture with focus
on efficiency optimization like area, power and performance. Typical function units in the
ViSA architecture are adders, multipliers, logic units, load/store units, comparators, but
could also be more complex units like square root if beneficial for the application.

90



4.4. Multi-granular Virtual Reconfigurable Architecture

FU	  0 FU	  1 COMP LD/
ST

R0 R1 C

D-‐MEM

I-‐MEM
SLOT	  0

PC

SLOT	  1 SLOT	  2 SLOT	  3 SLOT	  n

Data	  Path

Control

Figure 4.36.: Generic VLIW-inspired Slot Architecture consisting of multiple functional
units, registers, multiplexers, a program counter, data and instruction mem-
ory

The outputs of the function units are fed into registers and then back to the input mul-
tiplexers, which control the data paths. The ViSA instruction words directly control the
input multiplexers, the modes of the function units as well as the program counter, e.g.,
the single signals of the instruction memory’s data bus are directly connected to the re-
spective units. Every unit with its multiplexers has a dedicated control slot in the ViSA
instruction word. This requires almost no control logic making the approach very effi-
cient. In every clock cycle, the PC determines the address of the next ViSA instruction
word to be loaded, such that the program is executed. Besides an incremental mode, the
PC supports also conditional and unconditional jumps. The mode is controlled by the
current ViSA instruction word. In case of conditional jumps, the result of the comparator
unit is used to decide whether to jump directly to a PC-relative address or to increment
the current address.

The simplicity of the VLIW-inspired Slot Architecture not only reduces chip area but can
additionally increase the maximum obtainable operating frequency, since the combina-
tional paths are significantly shorter compared to complex processor FSMs. The VLIW-
inspired Slot Architecture is generic and scalable in the means that depending on the
multi-objective application needs and the desired degree of parallelism, the number and
the type of the function units can be adapted in order to get a highly efficient specifically
tailored solution. Furthermore, the data widths, memory depths and number of parallel
ViSA cores inside a system are parametrizable, such that application-specific many core
systems can be efficiently implemented.
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4.4.1.3. Programming

The types and numbers of function units within a custom ViSA core can be customized
which defines an application specific instruction set and the number of parallel slots. Pro-
grams can be written in parallel assembly code, each assembly instruction is separated
into parallel sections, one for each functional unit. An extract of an exemplary assembler
code is shown in Listing 4.1. Parallel sections are represented by a vertical bar. For sake
of simplicity the example architecture features only 4 parallel slots: program counter w.
address generation, multiply-add/subtract unit, logic unit, load/store unit.

1 _ s q r t _ b r a n c h 1 : ; p o s i t i v e case
2 INC | CLR ACC | SRA R0 8 R0 | STOR sqrt_k R0
3 INC | CLR ACC | SRA R0 8 R0 | LOAD mask_0x1 LD
4 INC | ADD R0 LD ACC | MOV R0 R0 | LOFF 0 R0 LD
5 INC | MOV ACC ACC | NOT LD R0 | LOFF 0 R0 LD
6 INC | MOV R0 ACC | MOV LD R0 | LOAD mask_0x1 LD
7 INC | ADD ACC LD ACC | MOV R0 R0 | LOAD sqrt_k LD
8 INC | ADD ACC R0 ACC | MOV LD R0 | LOAD mask_0x00FFFF LD
9 INC | MOV ACC ACC | AND R0 LD R0 | LOAD sqrt_k LD

10 INC | MUL ACC R0 ACC | SRA LD 8 R0 | LOAD sqrt_k LD
11 INC | MOV ACC ACC | SRA LD 8 R0 | LOAD sqrt_k LD
12 INC | MOV ACC ACC | SRA ACC 8 R0 | LOFF 0 R0 LD
13 INC | MOV LD ACC | SRA ACC 8 R0 | LOAD scale_Qy LD
14 INC | ADD ACC R0 ACC | MOV R0 R0 | LOAD @_sqrt_branch4 LD
15 JPOS R1 LD | MOV ACC ACC | NOT ACC R0 | LOAD mask_0x1 LD

Listing 4.1: Extract of a parallel assembly code for a custom ViSA

In the end, an assembler and linker tool translates the application-specific data flow into
the needed ViSA-specific machine code. The code is divided into sections for instructions
and data. One part will be the hex-code for the instruction memory and the other part is
the hex-code for the data memory.

4.4.1.4. Integrated Tracing

After all parts of the VLIW-inspired Slot Architecture are implemented, the verification
phase is conducted. Therefore, the whole design is simulated. For better usability of
the workflow and a faster time-to-market, a comprehensive debug unit is implemented
into the ViSA source code. Trace 4.37 shows an example for the integrated tracing. During
simulation, the debug unit prints the integrated tracing. Now, each state of ViSA is printed
out enabling a detailed step-by-step reproduction of the execution, e.g., the states of the
registers, the address of the instruction memory and the disassembly is given. This is
much more convenient and minimizes the effort of analyzing simulation waveform traces.
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Figure 4.37.: Integrated tracing output during simulation with register states, addresses
of instruction and data memory, disassembly and ViSA instruction

4.4.2. ViSA-VIS: ViSA and V-FPGA Integrated System

The integration of ViSA cores into the V-FPGA fabric as illustrated in Figure 4.38 yields
a ViSA and V-FPGA Integrated System (ViSA-VIS) with extended capabilities for cus-
tomization. Thereby, CLBs and ViSA cores coexist face-to-face in the V-FPGA array and
share the same routing topology. Similarly, memory blocks are integrated to provide in-
struction memory to the ViSA cores if needed and shared data memory, though instruc-
tion memory is not needed in cases where ViSA cores are used as data-path processing
elements. As shown in Figure 4.38 ViSA cores have the width of a CLB yet the height of
a multitude of CLBs depending on the complexity and size relative to each other. Same
applies to the memory blocks. The limitation to align the width of a ViSA core to a CLB
column is imposed by the place&route tools that allow to model only the height of such
heterogeneous blocks, yet not the width. However, there are no objections to extend ViSA-
VIS to integrate multi-column wide ViSA cores if the place&route tools will support it one
day.

The purpose of heterogeneous integration in the ViSA-VIS is manyfold:

• Arithmetic functions benefit from a coarser cell architecture with word granularity
rather than bit granularity. In essence, this is because the configuration overhead
or programming overhead per bit is rather small compared to CLBs as the function
set of basic arithmetic operations (multiplier, adder, subtractor, etc.) is considerably
smaller than the function set of LUTs.

• The inclusion of dedicated highly optimized function units for basic arithmetic op-
erations is an effective way to mitigate the ASIC gap. This has been recognized by
FPGA manufacturers since the nineties and today most commercial FPGAs include
multipliers and adders as dedicated full-custom hard macros, that can be clocked
much higher than CLBs [102].
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Figure 4.38.: Structure of ViSA and V-FPGA Integrated System (ViSA-VIS) with CLBs and
ViSA cores aranged face-to-face in the V-FPGA

• ViSA-VIS goes one step further as the ViSA cores can execute small programs. This
allows to efficiently execute complex arithmetic operations by breaking them down
into conditional sequences of basic operations.

• The ViSA concept with its mechanisms to custom integrate dedicated special func-
tion units in a well defined and scalable way proposes the customization of such
cores to efficiently target certain application classes. For instance, multidimensional
ultra-sound based imaging often relies on calculating the euclidian distance be-
tween two points in cartesian coordinates. The most critical arithmetic operation
therein is the square root. Thus, a custom V-FPGA targeted at various applications
of ultrasound based imaging would benefit from the inclusion of a square root en-
gine in the ViSA cores as discussed and demonstrated in [36].

Table 4.12 compares ViSA-VIS with COTS FPGAs in terms of heterogeneous resources.
The main differences are that ViSA-VIS has custom function units in its ViSA cores and
that they can execute program code if needed.
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4.5. Conclusion

Table 4.12.: Heterogeneous processing blocks in FPGAs - a qualitative comparison of
ViSA-VIS with COTS devices

Virtex-7 [109] Stratix V [8] ProASIC-3 [2] Igloo 2 [74] ViSA-VIS
Logic blocks CLB with 4 ALM with VersaTile LUT-4 CLBs with custom

fractionable LUT-6 adaptive LUT (LUT-3 equivalent) LUT and cluster sizes

A
ri

th
m

et
ic

bl
oc

ks type DSP48E1 DSP - Math Blocks ViSA
multiply yes yes - yes yes

multiply-add yes yes - yes yes
multiply-accumulate yes yes - yes yes

logic yes yes - no yes
custom no no - no yes

microcode execution no no - no yes

4.5. Conclusion

In contrast to the state-of-the-art the proposed generic V-FPGA architecture is highly flex-
ible and can be customized by more than 20 generic parameters. With this flexibility the
V-FPGA can be tuned towards the application’s needs and thus the efficiency and/or per-
formance can be maximized. The most important parameters are LUT size K and cluster
size N. In fact, the extensive study with parameter sweeps through over 1400 benchmark
runs showed a very high sensitivity for these parameters, resulting in area variances of
up to ±95.9% and performance variance of up to ±78.1% between the best and worst so-
lutions per benchmark circuit. Interestingly, individual benchmarks showed individual
preferences with regard to parameter choice, that differed from the average case. This
demonstrates the significance of parameter tuning and customization.

Apart from its flexibility, the proposed V-FPGA incorporates a number of unique archi-
tectural features.
LoopbackPropagation is a circuit technique that enables bi-directional routing tracks even
though the underlying physical platform offers only uni-directional resources. Com-
pared to tri-state emulation of related works, LoopbackPropagation saves W AND-gates per
CLB-input and substitutes 2 · W AND-gates + W OR-gates by W MUX2 per CLB-output,
whereby W is the number of tracks per routing channel. This makes it the most area effi-
cient technique for virtualizing bi-directional routing tracks.
The inclusion of 3D PSMs with V-TSVs makes V-FPGA the first 3D virtual FPGA known
so far. Of course the number of stacked layers as well as the number of V-TSVs per PSM
are parameterizable in order to explore various 3D topologies.
The V-FPGA supports partial and dynamic reconfiguration even on physical underlying
platforms that don’t offer this feature natively. This is achieved by configuration mecha-
nisms that are independent form the configuration infrastructure of the underlying plat-
form. CoreFusion is a unique feature of the V-FPGA that allows two merge two adjacent
V-FPGA cores. This allows coarse-grained partial reconfiguration. A by-pass selector logic
in the configuration units enables partial reconfiguration at a very fine grain of individ-
ual LUTs, PSMs and IOBs, while others are continuing operation without interruption. In
contrast to the state-of-the-art, that allows only column-wise partial reconfiguration, fine-
grained partial reconfiguration inherently allows arbitrary aspect ratios, better routability,
faster context switching and higher utilization.
The fast Snapshot functionality of the V-FPGA enables to dynamically migrate an applica-
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tion from one V-FPGA core to another during its runtime. This can be used for runtime
defragmentation of an array of V-FPGA cores in order to free contiguous reconfigurable
area that otherwise is scattered due to fragmentation effects that arise from the perpetual
on-demand allocation and de-allocation of applications during runtime. This is especially
relevant for FPGAs in the cloud, where fragmentation effects can happen quite quickly as
result of unpredictable on-demand service requests. A heuristic for quick defragmen-
tation exists for the V-FPGA. Another use of the Snapshot functionality is to interrupt
low-priority tasks by higher-priority tasks that need the occupied area and to resume
the low-priority tasks once the high-priority tasks are finished.

In ViSA-VIS, a heterogeneous extension of the V-FPGA, the classical CLBs are mixed with
ViSA cores. ViSA is a generic customizable microarchitecture, exploiting superscalarity.
This heterogeneous mix goes one step further than related works that include multipliers
and adders in their FPGAs, with the differences that ViSA can contain custom function
units and can execute programs. ViSA was designed with the aim of minimum area re-
quirement as an alternative to FSMs, thus complex multi-cycle arithmetic functions can
be realized very efficiently with ViSA. In this tandem, the CLBs can be used then for glue-
logic or other purposes.

96



5. Application Mapping and Toolflow

The procedure of implementing an application onto an FPGA - from design entry to the
final programming binaries realizing the desired circuits - we call application mapping,
whereby the involved CAD tools fall in the category of Electronic Design Automation
(EDA). The mapping of applications onto the V-FPGA requires similar steps as the proce-
dures for COTS FPGAs.

Starting with a design entry usually in a hardware description language like VHDL or Ver-
ilog, a technology independent gate-level netlist is generated through synthesis. This step
usually involves also multiple phases of logic optimizations to reduce the area and/or
to increase the performance. Next follows the technology mapping, whereby the gate-level
netlist is transformed into another netlist with its nodes representing K-input LUTs and
flip-flops of the target architecture. In case the target architecture supports clustering,
then a so-called packing step needs to take place, resulting in a new hypergraph netlist
whereby each node consists of a subgraph with up to N BLEs (i.e. LUT + flip-flop pairs)
and their interconnects. Next is the placing step in which each node of the technology-
mapped and evtl. packed netlist is assigned a location within the CLB array or the IOB
perimeter. The subsequent routing step determines the paths through the routing chan-
nels for interconnecting the placed nodes that are spread throughout the FPGA. Finally
the bitstream generation follows, which determines the programming bits for the logic-,
routing- and I/O-resources within the FPGA, in order to incorporate the results of syn-
thesis, place & route, thus realizing the circuit. Due to the complexity of applications and
devices, tool-support for all these steps is indispensable.

EDA for V-FPGA to perform the above named steps faces a number of challenges:

1. Developing a complete set of EDA tools tailored for the V-FPGA would take years
of effort.
Proposed solution: Exploit existing tools as much as possible.

2. The V-FPGA has a custom architecture. Consequently none of the commercial tool
flows for COTS FPGAs can be exploited for the technology-dependent steps (from
technology-mapping to bitstream generation).
Proposed solution: Perform technology-dependent steps with adoptable academic
tools.

3. Academic tools have limited support of design entry methods.
Proposed solution: Use commercial tools whenever advanced design entry is needed
or favoured.

4. Theoretically, the technology independent steps (design entry, synthesis, logic opti-
mization) can be performed by any commercial tool flow for COTS FPGAs (e.g. Xil-
inx ISE/Vivado, Microsemi Libero, Altera/Intel Quartus, ...). Practically, however,
those tools produce only the technology-mapped netlist (which is incompatible to
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V-FPGA) and intermediate steps/netlists are inaccessibly encapsulated. Exception:
Altera/Intel offers the Quartus University Interface Program to access the interme-
diate netlists for research purposes.
Proposed solution: Perform synthesis with either vendor independent tools, academic
tools or Altera Quartus + QUIP.

5. The V-FPGA is highly customizable. EDA tools need to be parameterizable to take
advantage of this flexibility.
Proposed solution: Use academic tools (e.g. MEANDER [96], VTR [63], ...), that can be
exploited for the steps from design entry, over synthesis till place & route. If design
entry methods of academic tools are unsatisfactory, then complement those tools
with Altera Quartus + QUIP.

6. Existing academic tools work on a very abstract level and there is no way to bring
in additional information regarding the realization of the programmable resources
and their configuration techniques. Consequently they can not generate bitstreams
for the V-FPGA.
Proposed solution: New tool as back-end to perform bitstream generation.

7. V-FPGA is an emerging technology and needs additional tool support for verifica-
tion, manipulation, graphical editing, etc.
Proposed solution: New tool with graphical editing and automated testbench gener-
ation.

8. Parameters of academic CAD tools need to be tuned whenever V-FPGA gets cus-
tomized, which is time consuming to do by hand.
Proposed solution: New tool that generates automatically architecture files for aca-
demic CAD tools.

Based on these considerations a flexible tool-flow for EDA of application mapping onto V-
FPGA is proposed in Figure 5.1. The tool-flow is composed of academic tools, commercial
tools and a new tool (V-FPGA Explorer) developed for the V-FPGA.
From the VTR package [63], the tool ODIN II can be used for synthesis. Logic optimization
and technology-mapping can be done with the tool ABC, while VPR 7 can perform the
packing, place & route steps.
From the MEANDER framework, the VHDLParser can be used for syntax check. The
tool DIVINER can be employed for synthesis, followed by compatibility modifications
and format conversions with the tools DRUID and E2FMT respectively. The tool SIS can
be used for logic optimization and technology-mapping. The tool POWER MODEL can
facilitate power estimation in conjunction with EX-VPR by generating switching activity
profiles. T-VPACK tool can be used for the packing step and EX-VPR for place & route
and power estimation.
Altera’s QUIP (Quartus University Interface Program) enables to use Quartus II as a front-
end for design entry and for synthesis and logic optimization.
The new tool V-FPGA Explorer can be used as a back-end for bitstream generation with
import. Furthermore it can generate the architecture files needed in VTR and MEANDER,
testbenches for simulation, scripts for running the VTR tools and extracting the results. It
can also act as a graphical editor for function mapping, place & route.
Modelsim can be used for simulation of both, the V-FPGA and the application running
onto it.

98



VHDL

Verilog

System
Verilog

AHDL

Schem
-‐

atics

FSM

Q
SYS

DSP	  
Builder

Quartus	  II	  QUIP	  
(Synthesis,	  Logic	  
Optimization)

ODIN	  II
(Synthesis)

ABC
(Logic	  Optimization,	  
Technology	  Mapping)

.blif

.blif

VPR	  7
(Packing,	  Place	  &	  Route)

arch.
xm

l

VHDLParser
(Syntax	  
Check)

DIVINER
(Synthesis)

.edif

DRUID
(Compatibility	  
Modifications)

.edif

E2FMT
(EDIF-‐to-‐BLIF	  
Conversion)

.blif

SIS
(Logic	  Optimization,	  
Technology	  Mapping)

.blif

Change	  
Framework?

.blif

Change	  
Framework? Power	  Aware?

POWER	  MODEL
(Switching	  Activity	  

Estimation)
Yes

T-‐VPACK
(Packing)

No

EX-‐VPR
(Place	  &	  Route,	  
Power	  Est.)

arch.
arch

Continue	  with	  MEANDERContinue	  with	  VTR

Continue	  with	  VTR Continue	  with	  
MEANDER

Ar
ch
Li
b

.place
.route
.net

vpr_std
out.log

.net

V-‐FPGA	  Explorer
·∙ 	   Graphical	  Editor
·∙ 	   Import	  from	  MEANDER	  or	  

VTR
·∙ 	   Bitstream	  Generator
·∙ 	   Architecture	  File	  Generator	  
·∙ 	   Script	  Generator
·∙ 	   Testbench	  Generator

Test-‐
bench

Bit-‐
stream

Modelsim
(Simulation)

PSM PSM

PSM PSM

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

PSM

PSM PSM

PSM

PSMPSM

PSM PSMPSM PSM

PSMPSM

µP
I-CACHE D-CACHE

.p .r

vpr_std
out.log

Figure 5.1.: Tool-flow for application mapping onto V-FPGA
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The tool-flow has four different flavours:

• Flow 1: Start with Verilog as design entry; perform synthesis, logic optimization,
technology mapping, packing, place and route with tools from the VTR package;
use V-FPGA Explorer as the back-end for bitstream generation.

• Flow 2: Start with VHDL as design entry; perform synthesis, logic optimization,
technology mapping, packing, place and route with tools from the MEANDER flow;
use V-FPGA Explorer as the back-end for bitstream generation.

• Flow 3: Use Quartus as the front-end for advanced design entry (supporting VHDL,
Verilog, System Verilog, AHDL, Schematics, QSYS, FSM, DSP Builder) and synthe-
sis and logic optimization; use VTR as the middle-ware for technology mapping,
packing, place and route; use V-FPGA Explorer as the back-end for bitstream gener-
ation.

• Flow 4: Use Quartus as the front-end for advanced design entry (supporting VHDL,
Verilog, System Verilog, AHDL, Schematics, QSYS, FSM, DSP Builder) and synthe-
sis and logic optimization; use MEANDER as the middle-ware for technology map-
ping, packing, place and route; use V-FPGA Explorer as the back-end for bitstream
generation.

Since intermediate results are generated after each step, the flows can be also mixed
changing the framework at any time after synthesis (as shown by the conditional branches
in Figure 5.1), e.g. performing synthesis with VTR, then technology mapping with ME-
ANDER, then packing, place & route with VTR, etc..
In the following subsections, the tools and the procedures for application mapping onto
V-FPGA are described in more detail.

5.1. Design Entry and Synthesis with Altera Quartus II and QUIP

In principle, academic toolflows such as MEANDER framework or VTR package have
built in synthesis engines that can synthesize a VHDL or Verilog file into a technology
independent netlist, that is needed for the further steps. These tools however are not
yet as mature and comfortable to use as commercial IDEs of FPGA vendors, that offer a
higher functionality, various design entry methods and user interfaces, mixed hardware
description language support, support of advanced HDL constructs (GENERATE loops,
generics, etc.), support of graphical editors, libraries, code generators, syntax highlight-
ing, error checks/location, elaboration utilities, etc.. On the other hand, almost all com-
mercial IDEs can be used only with the respective COTS FPGAs, because the outputs are
vendor and part specific. An exception is Altera Quartus II, the IDE for Altera FPGA de-
vices. With the Quartus University Interface Program (QUIP) [7] it offers the possibility to
interface with academic CAD tools for research purposes by generating intermediate and
technology independent netlists in Berkeley Logic Interchange Format (BLIF) format after
synthesis, optimization or LUT-mapping steps. This behaviour is disabled by default but
can be activated by modifying the *.qsf project file in a text editor and adding commands
for dumping the desired netlists. The supported commands are explained in [7].
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Thanks to this interface, the V-FPGA framework uses Quartus II as a front-end for design
entry and technology independent logic synthesis, i.e. the goal is to transform a design
into a technology independent BLIF netlist which will be used in other tools for further
steps of the application mapping methodology. Fortunately the QUIP approach supports
an extended set of design entry methods including:

• coding in VHDL, Verilog, SystemVerilog or AHDL

• drawing schematics

• instantiating LPM modules

• instantiating IP cores

• graphically modeling state machines

• code generators

• system integration with QSYS

• high level synthesis from Matlab using Altera DSP Builder

The procedure to design a circuit in Quartus II and to obtain the desired *.blif netlist is the
following:

1. Create a new design project, whereby the name of the project should correspond to
the top-entity name of the design.

2. Select any of the available devices as target, e.g. Stratix EP1S10F484C5. It doesn’t
matter which device is selected because we are interested only in the technology
independent netlist before the target mapping.

3. Design the circuit using any of the above named design methods (or combinations
of multiple methods). Thereby ensure that the top module name corresponds to the
project name.

4. Open the *.qsf project file in a text editor and add the command lines in Listing 5.1:

1 set_global_ass ignment −name DSP_BLOCK_BALANCING "LOGIC ELEMENTS"
2 set_global_ass ignment −name AUTO_SHIFT_REGISTER_RECOGNITION OFF
3 set_global_ass ignment −name INI_VARS "no_add_ops=on;
4 dump_blif_with_blackboxes=off;
5 dump_blif_after_optimize=on;
6 opt_dont_use_mac=on"

Listing 5.1: QUIP settings for obtaining the technology-independent netlist

Line 5 is the command to output the blif netlist after technology independent syn-
thesis and optimization, but before technology mapping. This infers usually the
steps:

• VHDL/Verilog/SystemVerilog/AHDL analysis (parsing)

• Elaboration (binding and instantiation)

• RTL inferencing and synthesis
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• LPM instantiation (common functions such as barrel shifters are converted into
optimized library functions)

• Technology-independent multi-level optimization (algebraic and functional tech-
niques to optimize the netlist)

The other lines 1, 2, 3, 4 and 6 effectuate that device specific properties and primi-
tives such as DSP-blocks, shift registers, adder carry-chains, blackboxes and MAC
units are avoided in the synthesis steps. Instead logic elements are used.

5. Finally start the compile process in Quartus II. This process will usually fail at some
point in time and report errors, because it can not perform the technology mapping
due to missing or incompatible settings. Nevertheless, by this time the desired tech-
nology independent netlist would have been already generated and saved as *.blif
file in the project directory and is ready to be used by the other tools.

At this point it is important to note that while Altera (now part of Intel) endorses the use
of this flow for research purposes, according to [7] "it is a violation of your license agreement
to use Quartus to synthesize designs for commercial purposes (e.g. as the front-end to a competitive
product to Altera’s FPGAs or as the front-end to a commercial EDA tool under development)"! In
case of commercialization of the V-FPGA, for legal reasons surely another front-end needs
to be employed if the underlying platform is not an Altera/Intel device. A special case
is the commercial use of the V-FPGA as virtualization layer on an Altera/Intel device. It
that case it needs further clarification (and eventually additional agreements) with Intel
whether it is permitted to utilize Quartus as front-end tool for the virtual layer on an
Altera/Intel device.

5.2. Technology Mapping, Place & Route with MEANDER
Framework

The MEANDER framework [96] consists of several well-known academic tools that have
been adapted as well as newly developed tools. The tools are arranged in a toolflow-based
Graphical User Interface (GUI) (see Figure 5.2), but can also be used independently. Each
tool makes the results available in readable text files after it has been executed. A unique
specialty of MEANDER is that it can be remotely operated online in a web-browser [69]
and the tools will run on a web-server, thus it can be used anytime and anywhere without
the need for local installation, supposed there is an internet connection. Apart from the
GUI the tools can be operated also in command line manner through a Secure Shell (SSH)
terminal.

The UPLOAD tool allows to upload files that are used as input to the tools. At least the
VHDL files of an application are required. However, it is also possible to upload already
synthesized netlists and to skip the MEANDER synthesis if the use of a more powerful
synthesizer is favoured.

The VHDL parser analyzes the VHDL files and performs a syntax check. In case of syntax
errors it is also able to locate the errors and to suggest corrections.
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Figure 5.2.: Main screen of GUI-featured MEANDER framework [69]

The DIVINER tool performs the synthesis and generates a technology-independent netlist
in the EDIF format. The tool supports only a subset of the VHDL standard and the circuits
should consist only of logic and flip-flops. This can be a limitation. In that case it is
recommendable to use instead Altera Quartus or another powerful external synthesis tool.

DRUID prepares the netlist for the subsequent tools by changing names, simplifying the
structure of the network list, and rebuilding elements, that are not included in the libraries
of the subsequent tools, using composite library elements. All these modifications are
necessary to ensure compatibility with subsequent tools.

The E2FMT tool converts the EDIF network list into the Berkeley Logic Interchange For-
mat, which is described in [17].

SIS performs logic minimization and technology mapping. It creates a technology-dependent
netlist of LUTs and flipflops in the BLIF format. The number of inputs of the LUT as well
as optimization strategies can be specified.

POWER MODEL in conjunction with EX-VPR can estimate the power. For the V-FPGA,
however, in case of virtualization the result is not meaningful because the power depends
on the underlying platform and the place & route of the virtual architecture. A higher
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accuracy can be obtained by estimating the power for the virtual layer by the vendor
tools of the underyling devices.

The tool T-VPACK is needed for cluster-based CLBs. It groups a LUT and a flip-flop to a
BLE and forms a cluster of several BLEs in a CLB, if this option is activated. The output is
a hypergraph netlist in .net format and an updated activity file for power estimation.

The EX-VPR tool performs the place & route. The settings options are particularly exten-
sive. For example, you can specify the size of the virtual FPGA (columns, rows, channel
width), or leave the corresponding fields empty, and then an architectural exploration is
carried out, in which the optimal size is determined automatically. You can specify an I /
O mapping (assignment of the network names to the I / O blocks) or this is carried out
automatically, minimizing the path lengths to the I/Os. You can influence the place &
route strategies by various parameters. EX-VPR requires a so-called architecture file, that
contains information about the architecture such as switch block type, IO ratio, channel
width ratio, LUT size, clustering, location pattern of CLB-inputs and -outputs, as well as
process technology related parameters that are needed by the timing and area models.
The primary scaling parameters X, Y and W are not part of the architecture file as they
are variable and can be left unspecified in order the tool to find the optimum values for a
given application.

5.3. Technology Mapping, Place & Route with VTR Design Flow

The VTR (Verilog To Routing) project [87, 63] offers an open-source command-line toolset
for FPGA architecture and CAD research. The V-FPGA framework uses the VTR tools
Odin II, ABC and VPR 7 as alternative to the MEANDER toolset for the tasks of synthesis,
technology mapping, packing, place & route. The reasons to employ two similar toolsets
for the same tasks are extended support of features and to pick the best raisins from both
cakes. For instance, MEANDER supports design entry in VHDL only, while VTR supports
only Verilog. MEANDER offers a GUI and remote operation from a web browser, while
VTR has the fresher tools with support of heterogeneous blocks and experiences more
frequent updates. A good thing about both the tool sets is that they are modular with
similar interfaces, thus they can be mixed to benefit from the strengths of both. This is
illustrated in Figure 5.1 where the tools can be changed in the flow at certain steps, e.g.
after synthesis or after optimization.

In the framework of VTR, Odin II Verilog elaboration front end has the following four
vital roles:

1. Converting Verilog syntax into logical netlist

2. Synthesizing constructs directly into ’hard logic’ blocks and making use of their
logical properties to make them physically realizable

3. Being responsive to the architecture description such as routing architecture, inter-
nal structure and global pattern of logic blocks and I/O structure of the FPGA

4. Providing framework to verify the correctness of the software flow

The inputs are a configuration file and the verilog file. The resulting netlist is a BLIF file.
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ABC is a synthesis tool operating on And-Inverter Graph (AIG) with a network of two-
input AND gates and inverters. AIG represents soft logic, while the hard blocks (e.g.,
memories and multipliers) received from Odin II are represented as black boxes in ABC.
This tool is used for

1. technology independent logic synthesis: ABC’s resyn2 script is used for this pur-
pose to minimize the maximum number of AND gates in any combinational path
by iteratively calling ABC commands to optimize AIG.

2. technology mapping of AIG into K-input LUTs: Using WireMap technique to pro-
duce depth-optimal mappings and attempting to reduce the number of used inputs
in the resulting LUTs to benefit its routability, power and efficient packing into dual-
output fracturable LUT architectures.

ABC takes as input a BLIF file and a LUT library that defines the inputs and individual
propagate delays of a LUT. The resulting netlist can be written in various output formats,
while for the V-FPGA framework BLIF is most relevant.

In the VPR tool, the architecture file describes interconnection of primitives inside logic
blocks along with multiple modes of operation within each piece of the unlimited hi-
erarchical layer. One of the important aspects is its timing-driven physical synthesis in
which the timing graph generator inside the timing analyzer generates timing graphs that
reflect the arbitrary graph of connectivity inside the complex logic blocks using timing-
driven packing algorithm and correctly models timing numbers for each mode of oper-
ation thereby making VPR placement and routing timing-driven. VPR needs an archi-
tecture file and a BLIF netlist to operate on. The relevant output files for the V-FPGA
framework are the resulting placement file *.place, routing file *.route and the hierarchi-
cal netlist *.net. These files are later imported by the V-FPGA Explorer tool to generate the
bitstream.

5.4. The V-FPGA Explorer

Existing tools are not capable to generate bitstreams for programming the V-FPGA for the
following reasons:

• Commercial tools (e.g. Altera Quartus II) support only the respective vendor de-
vices.

• Academic tools like VPR were primarily intended for design space exploration and
evaluation of CAD algorithms for application mapping and abstract architecture
features. Consequently they are working on an abstract representation of hypothet-
ical architectures, that is uncoupled from the actual mechanisms of the architectures.

• Existing tools have no knowledge about the bitstream organization of V-FPGA, nor
do they offer interfaces for bringing in this information.

A new tool called V-FPGA Explorer was developed within this work to close the gap be-
tween abstract layout and actual configuration. The primary purpose of the tool is to
generate bitstreams out of the textual synthesis, place & route results. Furthermore, a
graphical editor allows to edit configurations at the level of CLBs, PSMs and IOBs. This
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is also useful for validating the toolchain and the architecture of the V-FPGA. Apart from
this, the tool provides functions to generate architecture files and scripts for the place &
route tools. In order to facilitate simulation of applications mapped onto V-FPGA, the tool
can generate testbenches that instantiate the device under test with the correct parame-
ters and configure the device, while application specific stimuli can be added in the same
testbench file.

The core of the V-FPGA Explorer is a graphical representation of the V-FPGA as shown
in Figure 5.3, which is object-oriented. Each graphical element corresponds to a pro-
grammable element in the V-FPGA architecture and is realized by an object and contains
attributes that describe its properties. The configuration data or the information relevant
to the configuration are managed decentrally in the attributes of the affected objects. An
array can be addressed either by its instance within an array of objects of the same class
or by a unique key in a hash table HT. This key corresponds to the name of the object
instance which is composed of the typename followed by the identifier, e.g. the 16th ob-
ject of the class CLBShape has the name clb15. The use of a hash table eliminates the need
to search within the array of objects for a particular object. For instance, the permissible
neighbourhood of an object of the class BoxShape (which represents a port of a PSM) is
defined in the attribute-array neighbour(), which contains the names of the valid neigh-
bours according to the SBtype. Thus, finding a neighbour and reading or modifying its
attributes (e.g. source, orientation, id, etc.) is simplified by using its name as key in the hash
table.

5.4.1. Graphical Editor

The graphical configuration editor is operated by click actions on the graphical objects.
To edit the routing in the PSMs, the yellow boxes from the BoxShape class are clicked
(first source, then destination). This calls the procedure ExplorePath(), whose algorithm
is illustrated in Figure 5.5. The first box, which is clicked, is interpreted as an input (or
source), the second as an output (or destination). Thus, a directed connection is estab-
lished from an input to an output of the PSM. When the first box (source) is clicked, the
neighbouring boxes according to the selected switch block type (Wilton, Universal or Dis-
joint), which are not yet occupied, are highlighted in green (see Figure 5.4). Thereby, this
neighbourhood relationship, which is different for each switch block type, is stored within
the neighbour() attribute of a box, i.e. each box knows its three valid neighbours to whom
it is allowed to connect. All other boxes that are not valid neighbours are blocked, so they
can not be clicked and are not connectable.

At the same time, all accessible paths are identified and highlighted by a path-exploration
phase with depth-first search algorithm as in Listing 5.2. Adding existing connections to
the Selection list avoids collisions (such as two sources driving the same wire) as the list is
checked before establishing a new connection. A second list called Preselection is used by
the preselect algorithm for two purposes: one is for the colouring of accessible paths, and
the other is in order to avoid infinite loops during the depth-first search of paths through
the cyclic graph. This path exploration is performed whenever a source box is clicked and
the so-called PathAssist option is activated in the settings. When the next box is clicked
(destination), a connection is established and the source attribute of the new box receives
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Figure 5.3.: View of object oriented graphical representation in V-FPGA Explorer with re-
spective classes and relevant attributes
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Figure 5.4.: Editing the routing graphically with V-FPGA Explorer

the name of the previous box as the value, thus knowing its predecessor. All boxes that
are already connected are noted in a selection set. These are then considered occupied
and are coloured red, as are the associated tracks. An existing connection can be released
by clicking the same box twice. Then the box and the associated track are removed from
the selection set and their colours set to their initial values (yellow for the box and black
for the track).

1 Private Sub P r e s e l e c t ( ByVal sender As System . Object )
2 Dim ThisBox As BoxShape = CType ( sender , BoxShape )
3 Dim F i c t i o u s S o u r c e As String
4 For i As Integer = 1 To 3
5 If ThisBox . neighbour ( i ) <> "" Then
6 If ( L S e l e c t i o n ( s e l e c t ed L ) . S e l e c t i o n . Contains ( ThisBox . neighbour ( i )

) = False ) And ( Locked . Contains ( ThisBox . neighbour ( i ) ) =
False ) And ( P r e s e l e c t i o n . Contains ( ThisBox . neighbour ( i ) ) =
False ) Then

7 ’Add the neighbour of this box to the preselection list:
8 P r e s e l e c t i o n .Add( ThisBox . neighbour ( i ) )
9 ’use a hash table to find the oposite box, that shares the

same track associated to the neighbour of this box, and
make it a fictious source:

10 If (HT( ThisBox . neighbour ( i ) ) . o r i e n t a t i o n = "left" ) Then
11 F i c t i o u s S o u r c e = boxR (HT( ThisBox . neighbour ( i ) ) . id ) . Name
12 ElseIf (HT( ThisBox . neighbour ( i ) ) . o r i e n t a t i o n = "right" ) Then
13 F i c t i o u s S o u r c e = boxL (HT( ThisBox . neighbour ( i ) ) . id ) . Name
14 ElseIf (HT( ThisBox . neighbour ( i ) ) . o r i e n t a t i o n = "top" ) Then
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15 F i c t i o u s S o u r c e = boxB (HT( ThisBox . neighbour ( i ) ) . id ) . Name
16 ElseIf (HT( ThisBox . neighbour ( i ) ) . o r i e n t a t i o n = "bottom" ) Then
17 F i c t i o u s S o u r c e = boxT (HT( ThisBox . neighbour ( i ) ) . id ) . Name
18 End If
19 ’if neither the selection list nor the preselection list

contains yet the fictious source, add it to the
preselecion list and call this procedure recursively
with it:

20 If ( L S e l e c t i o n ( s e l e c t e dL ) . S e l e c t i o n . Contains ( F i c t i o u s S o u r c e )
= False ) And ( P r e s e l e c t i o n . Contains ( F i c t i o u s S o u r c e ) =
False ) Then

21 P r e s e l e c t i o n .Add( F i c t i o u s S o u r c e )
22 P r e s e l e c t (HT( F i c t i o u s S o u r c e ) )
23 End If
24 End If
25 End If
26 Next
27 End Sub

Listing 5.2: The Preselect procedure in V-FPGA Explorer

In case of 3D V-FPGA the connections are established in a similar way. Some of the PSM-
associated boxes feature a magenta-coloured circle, which represents a TSV. To make a
vertical connection between two layers, first a TSV needs to be clicked and then the layer
needs to be changed using the layer selector. This results in a vertical connection between
the previous and the new layer and the associated boxes and tracks are considered occu-
pied (are added to the selection set) and are coloured respectively. A vertical connection
causes the source attribute of the connected box to be set to either "zdown" or "zup" de-
pending on whether the connection was established with a lower layer or with a higher
layer.

IOBs and CLBs are connected in a similar way with tracks in proximity. A click on a box of
the CLBconShape class or of the IOBShape class followed by a click on a track will establish
the connection. The connection can be released by double click on the same box.

The editing of CLB configuration is solved by a seperate table-based form as shown in
Figure 5.6, that pops up upon a click on a CLB shape. The first table sets the configura-
tions within the BLEs of a CLB. Therein, each row is associated with one BLE. The first
column is the identifier of a BLE. The second column is the block name, which usually
corresponds to the name of the net that is connected with the BLE output (which can be
also interpreted as a node in the netlist). This field is especially important for associating a
function mapping to a placed node during import from external tools. Therefore it is also
added to a hash table as key for an associated BLE, i.e. the BLE can be now also addressed
by the associated node of a mapped application netlist (usually the .net hyper-graph in T-
VPACK or VPR tool). The third column is the LUT configuration, whereby the leftmost bit
represents the highest address in the LUT and the rightmost bit the lowest address. The
fourth column controls the bypass MUX for the flipflop at the output of the LUT. The other
columns control the input multiplexers of the BLEs, whereby each BLE has K inputs and
input multiplexers the establish connections with either CLB inputs or with BLE outputs.
A graphic shows a preview of the connections set in the first table and gets updated with
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every change. The second table controls the CLB in- and outputs, i.e. the corresponding
connection boxes CBr and CBw. It is an alternative yet fully linked approach to the graph-
ical editing through click actions on the associated boxes. The connections are established
by entering the desired track number or pattern. The first, third and fourth columns are
not editable as they refer to the identifiers and locations of the associated I/Os of a CLB.
The second column refers to the name of a net (of the application) connected to a CLB
port. The fifth column selects the tracks that should be connected, whereby CLB inputs
are set to one of the track numbers within a routing channel and CLB outputs are set to a
pattern the connects to one or more tracks within a routing channel simultaneously. The
sixth columns enables or disables the inputs. In contrast to [50] this is not an explicit fea-
ture of the new V-FPGA architecture but is solved through bit manipulation in the LUT,
i.e. there is always a track (e.g. track0) connected to an input, yet when a LUT input is
unused then it is considered as don’t care in the synthesis of the LUT results. It is to be
noted that the structure of the CLB configuration form, including the tables and the pre-
view, is not fixed but gets generated according to the architectural parameters that are set
or imported. All changes (whether manually or through import form external tools) are
also updated in the attributes of the internal object-oriented graphical representation.

110



5.4. The V-FPGA Explorer

ExplorePath

Source_selSource_sel=TRUE FALSE Source_sel=FALSETRUE

Source=itemClicked
.Name

Block all boxes, that are not a valid neighbour 
according to the Sbtype or are associated with

an occupied track, and colour them grey. 
Colour all other boxes green.

Add the clicked box 
to the selection-set 

list

Call procedure preselect to colour 
possible paths black and 
impossible paths grey.

Colour paths from the selection-
set red to mark them as occupied

Colour the 
clicked box blue

itemClicked.Na
me=Source?

itemClicked.Sou
rce=Source

FALSE

itemClicked.Source
=““

TRUE

Delete all connections 
with this box

Unblock all 
boxes

Add clicked box to selection-set list or 
remove it (and all linked destinations) if 

it is already in the list.

Draw the 
interconnects and 
colour them red

Colour all boxes from the selection-set 
list and their associated tracks red. 

Colour all other boxes yellow and their 
associated tracks black.

Exit

Figure 5.5.: Flow chart of ExplorePath algorithm in V-FPGA Explorer
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Figure 5.6.: Editing of CLB configuration with V-FPGA Explorer
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5.4.2. Import from External P&R Tools

With V-FPGA Explorer it is possible to import synthesis and layout results from tools like
VTR or MEANDER, which will be then transformed into the internal and graphical rep-
resentation, which can be afterwards edited and further transformed into configuration
bitstreams for programming the V-FPGA. As it can be seen from the import dialog in Fig-
ure 5.7, the required files are *.place (placement), *.route (routing), *.blif (LUT-mapped
netlist), *.net (packed hypergraph netlist) and vpr_stdout.log (log file with summary of
results and parameters).

The import procedure is divided in four steps in the following order, which interestingly
is exactly the inverse order of the steps in VTR or MEANDER:

1. Construct. This step extracts the architectural parameters and generates the graphi-
cal representation with the corresponding data structure (see Section 5.4.2.1 for more
details).

2. Route. During this step, global routing information is extracted and the paths re-
alising it are set up (see Section 5.4.2.2 for more details). The reason why this step
comes before the placement and the mapping imports is that the routed signals have
net names that can be used to identify the associated CLB IOs and thus to correctly
allocate BLEs, derive the correct MUX select settings and reorder the LUTs if neces-
sary.

3. Place. This step associates placed nodes with BLEs, CLBs and IOBs at the corre-
sponding locations (see Section 5.4.2.3 for more details).

4. Map. This step sets the contents of the placed LUTs (see Section 5.4.2.1 for more
details).

Figure 5.7.: Dialog for file import from VTR or MEANDER into V-FPGA Explorer
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5.4.2.1. Construct

In order to prepare the data structure and the graphical representation of the V-FPGA,
first the architectural parameters (see Table 4.1) upon which the application mapping was
based need to be extracted from the outputs of the external tools. Fortunately, all the
relevant output files generated by the employed tools in Figure 5.1 are in human readable
ASCII format, which makes it easy to the locate and understand the needed information
without the knowledge of data structure specification. For the V-FPGA Explorer this means
that the extraction of information is done by string search and manipulation mechanisms.
This is not as efficient as reading the information from the exact address in a known data
structure, yet it is the most flexible way that can cope with multiple tool versions and data
formats. It is thinkable to outsource the keyword definitions in an external file in order to
allow easy adoption to future output formats. Up to now, the outputs of MEANDER and
VTR have been tested, which have a similar format.

The parameters X and Y are obtained from the routing file by searching for the string
that contains "Array size: <X_parameter> x <Y_parameter> logic blocks" and extracting the X and Y
parameters. Since this is usually the first line in a routing file (see Listing 5.3) it is found
very quickly. The parameter W is extracted from the string "Best routing used a channel width

factor of <W_parameter>" and the parameter SBtype from the string "RoutingArch.switch_block_type:

<SBtype_parameter>", both found in the log file of VPR. K and N parameters are encapsulated
in the architecture file name and are extracted from the string "Architecture file: arch_VFPGA_K

<K_parameter>_N<N_parameter>" which is found in the place file. Other parameters such as I and
O are derived from K and N as described in Section 4.1.5.1.

Based on the obtained parameters the graphical representation of an empty V-FPGA is set
up by instantiating the objects depicted in Figure 5.3 and setting their size and locations.
For the objects of the class BoxShape also the permissible neighbourhood relationship ac-
cording to the extracted SBtype parameter and the corresponding pattern schemes (see
Table 4.4 to 4.6) is set.

5.4.2.2. Route

In order to realise the paths of the calculated routing, the routing file, which describes
chains of traversed coordinates, is analysed and the attributes of the routing objects in
the graphical representation are derived accordingly. Listing 5.3 shows an extract of a
routing file. A net always starts with a source and ends in one or more sinks. In between,
the traversed channels (CHANX in x-direction and CHANY in y-direction) with their
coordinates and track numbers are listed. Coordinates are given in brackets with the
format (x,y), whereby the coordinate system in Figure 5.8a is used. In case a net has two
sinks, after reaching the first sink the path towards the second sink is continued from the
branching location. For instance, in line 13 the first sink at (12,2) is reached, followed by
line 14 that is a jump back to the branching coordinate CHANY(10,2) and then continuing
towards the second sink which is located in (13,3). Sources and sinks can be either CLBs
or IOBs. V-FPGA Explorer differentiates this by the coordinates, i.e. coordinates on the
perimeter indicate IOBs while the other coordinates indicate CLBs. Compared to the VPR
coordinate system, the graphical representation in V-FPGA Explorer has an offset of -1 in
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Figure 5.8.: Difference between coordinate systems in (a) VPR and (b) V-FPGA Explorer

both x- and y-direction (see Figure 5.8). Therefore, a transformation of coordinates needs
to take place.

The routing import in V-FPGA Explorer is divided in two phases:

1. Derive the global routing through the PSMs (see Figure 5.9): This phase is based
on trailing changes in the channel coordinates, identifying predecessor and suc-
cessor tracks of connections through intersections and setting the source attributes
of associated objects of the BoxShape class accordingly while checking validity of
neighbourhood with respect to the selected switch block type.

2. Derive the local routing through the connection boxes (see Figure 5.10): During
this phase, connection boxes and IOBs are identified (based on coordinates and pin
numbers) and configured to connect with tracks in their proximity according to the
routing information. Furthermore, connection boxes are associated with net names,
which is needed for the next steps in order to correctly make the connections of
BLE inputs with CLB inputs. Even though BLE connections make also part of the
local routing, they are established during the map step described in Section 5.4.2.4
because they are related to the function mapping and the LUT ordering.
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Figure 5.9.: Import of global routing information in V-FPGA Explorer

1 Array s i z e : 21 x 21 l o g i c blocks .
2
3 Routing:
4
5 Net 6 ( n_n4198 )
6
7 Node: 3881 SOURCE ( 1 1 , 2 ) C l a s s : 1
8 Node: 3893 OPIN ( 1 1 , 2 ) P i n : 9
9 Node: 17499 CHANY ( 1 0 , 2 ) Track : 13

10 Node: 8498 CHANX ( 1 1 , 1 ) Track : 0
11 Node: 8512 CHANX ( 1 2 , 1 ) Track : 0
12 Node: 4248 IPIN ( 1 2 , 2 ) P i n : 4
13 Node: 4240 SINK ( 1 2 , 2 ) C l a s s : 0
14 Node: 17499 CHANY ( 1 0 , 2 ) Track : 13
15 Node: 17513 CHANY ( 1 0 , 3 ) Track : 13
16 Node: 3901 IPIN ( 1 1 , 3 ) P i n : 1
17 Node: 3896 SINK ( 1 1 , 3 ) C l a s s : 0

Listing 5.3: Extract of a routing file generated by VPR 7
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Figure 5.10.: Import of local routing information in V-FPGA Explorer
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5.4.2.3. Place

The purpose of this step is to associate node names (also called blocknames by the external
tools) within the netlist with CLBs, BLEs and IOBs.

The placement information for CLBs and IOBs imported from the placement file. An ex-
emplary extract of a placement file is given in Listing 5.4. The placement information is
structured in a table format. The first column contains the block names. The second and
the third column contain the coordinates of the placed blocks. The fourth column con-
tains sub-block identifiers and is only needed for IOBs that contain more than one I/O
per block. The last column contains block numbers, that are used by VPR internally in-
stead of the block names, and is not relevant for the import into V-FPGA Explorer. During
the import process this table is read row by row, whereby the block name of a node is
extracted as well as its coordinates. The coordinates are transformed into the coordinate
system of V-FPGA Explorer. Depending on the location it is distinguished whether the
node is placed on in an IOB (if the coordinates point on the perimeter of the array) or on
an CLB and based on the type the identifier is determined. In case of an IOB, the differen-
tiation whether a node is an input or an output is made by the prefix of the block name,
i.e. the block names of outputs start always with "out:" while inputs have no prefix. Fi-
nally the blockname attribute of an associated CLB or input-type IOB or output-type IOB at
the specified location is updated with the extracted block name from the placement table.
Additionally the block name is also added to the hash table as a key for the associated
object.

1 N e t l i s t f i l e : MCNC20/K=6/ d i f f e q . net A r c h i t e c t u r e f i l e : arch_VFPGA_K6_N2 . xml
2 Array s i z e : 21 x 21 l o g i c blocks
3
4 # block name x y subblk block number
5 #−−−−−−−−−− −− −− −−−−−− −−−−−−−−−−−−
6 n_n3847 11 3 0 #0
7 n_n3859 13 1 0 #1
8 n_n3403 12 4 0 #2
9 [ 1 3 4 7 ] 11 2 0 #3

10 [ 8 4 1 ] 12 2 0 #4
11 [ 7 3 9 2 ] 11 4 0 #5
12 n_n3925 14 6 0 #6
13 n_n3888 15 7 0 #7

Listing 5.4: Extract of a placement file generated by VPR 7

In case of clustering, the locations of nodes mapped onto BLEs within CLBs are obtained
from the packed hypergraph netlist .net. An example is shown in Listing 5.5 (note that
some contents are replaced by "..." for space reasons). The data structure is hierarchical,
so that BLE blocks are nested within a CLB block. There is no explicit location information
because the packed netlist is generated before the placement process takes place. How-
ever, the CLB block names correspond to the ones used in the placement file and due to
their inclusion in the hash table as keys for the CLB objects there is already an association.
Consequently the remaining task is to associate BLEs with the placed CLBs in the right
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order. For instance, in the example from Listing 5.5 the following steps take place during
the import:

1. Extract the block name of a CLB from lines that contain the keywords block name
and mode="clb" (e.g. from line 5).

2. Use the hash table to get the id of the CLB that is already associated with that block
name.

3. From subsequent lines that contain the keywords block name and mode="ble" (e.g.
from line 15 and line 28) extract the block names associated with the nested BLEs
and the BLE indices.

4. Update the attributes clb(id).ble(index)=ble_blockname.

5. Add the BLE block names to the hash table as key for the associated BLE objects.

6. Repeat steps 1 to 5 with the next CLB blocks until the end of file is reached.

1 <block name="MCNC20/K=6/diffeq.net" i n s t a n c e ="FPGA_packed_netlist[0]">
2 <inputs> . . . </inputs>
3 <outputs> . . . </outputs>
4 < c l o c k s> . . . </c l o c k s>
5 <block name="n_n3847" i n s t a n c e ="clb[0]" mode="clb">
6 <inputs>
7 <port name="I"> [ 7 3 9 2 ] n_n3912 [ 7 9 7 ] [ 1 3 4 7 ] open n_n3403 n_n4069 open

n_n4198 </port>
8 </inputs>
9 <outputs>

10 <port name="O">open ble [ 1 ] . out [0]−> c lbouts1 </port>
11 </outputs>
12 <c l o c k s>
13 <port name="clk">pclk </port>
14 </c l o c k s>
15 <block name="[1348]" i n s t a n c e ="ble[0]" mode="ble">
16 <inputs>
17 <port name="in">ble [ 1 ] . out [0]−> crossbar c l b . I [1]−> crossbar c l b . I [2]−>

crossbar c l b . I [8]−> crossbar c l b . I [5]−> crossbar c l b . I [6]−> crossbar
</port>

18 </inputs>
19 <outputs>
20 <port name="out"> l u t [ 0 ] . out [0]−>mux1 </port>
21 </outputs>
22 <c l o c k s>
23 <port name="clk">open </port>
24 </c l o c k s>
25 <block name="[1348]" i n s t a n c e ="lut[0]" mode="lut"> . . . </block>
26 <block name="open" i n s t a n c e ="ff[0]"/>
27 </block>
28 <block name="n_n3847" i n s t a n c e ="ble[1]" mode="ble">
29 <inputs>
30 <port name="in"> c l b . I [3]−> crossbar b le [ 0 ] . out [0]−> crossbar c l b . I [0]−>

crossbar open open open </port>
31 </inputs>
32 <outputs>
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33 <port name="out"> f f [ 0 ] .Q[0]−>mux1 </port>
34 </outputs>
35 < c l o c k s>
36 <port name="clk"> c l b . c l k [0]−> c l k s </port>
37 </c l o c k s>
38 <block name="n_n3847" i n s t a n c e ="lut[0]" mode="lut"> . . . </block>
39 <block name="n_n4197" i n s t a n c e ="ff[0]"> . . . </block>
40 </block>
41 </block>

Listing 5.5: Extract of a packed netlist file generated by VPR 7

5.4.2.4. Map

The file with the suffix .blif is the result of the technology mapping by the tool SIS in
MEANDER or the tool ABC in VTR. This ASCII file contains a netlist in the BLIF [17]
format with LUTs (keyword .names), flipflops (keyword .latch), inputs (keyword .inputs)
and outputs (keyword .outputs):

1 . model top
2 . inputs t in_puport_10_10_ t in_puport_0_0_ t in_pxport_10_10_ t in_pxport_0_0_ \
3 pdxport_4_4_ t in_puport_1_1_ t in_pxport_1_1_ t in_puport_2_2_ t in_pyport_10_10_ \
4 . . .
5 . outputs puport_10_10_ puport_0_0_ pxport_10_10_ pxport_0_0_ puport_1_1_ \
6 pxport_1_1_ puport_2_2_ pyport_10_10_ pyport_0_0_ pxport_2_2_ puport_3_3_ \
7 . . .
8 . latch n_n3032 n_n3033 re pclk 2
9 . latch n_n2959 n_n2960 re pclk 2

10 . . .
11 . names t in_puport_10_10_ n_n3430 n_n4068 puport_10_10_
12 10− 1
13 −11 1
14 . names t in_puport_0_0_ n_n3381 n_n2982 puport_0_0_
15 −11 1
16 1−0 1
17 . . .
18 . end

Listing 5.6: LUT-mapped netlist in BLIF format

Thereby, LUTs are simply defined by their onsets (1) or offsets (0), whereby the use of
don’t cares ("-") reduce the file size.

In V-FPGA Explorer the import from the .blif file has basically two goals:

1. Identify sequential nodes: Lines that start with the keyword .latch refer to flip-flop
nodes. Thereby, there are two nodes specified: the input of a flip-flop (that is the
node name of the LUT that drives the data-in signal) and the output of the flip-flop.
However, in V-FPGA Explorer the BLE as the union of a LUT and a flip-flop has only
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Figure 5.11.: Import of function mapping information in V-FPGA Explorer

one block name. Therefore, aliases are created and added to the hash table in order
to associate both node names with the same BLE.

2. Derive the LUT contents: Lines that start with the keyword names contain the node
names of the input variables followed by the node name of the LUT output. The
subsequent lines contain the compressed on- or off-set of a LUT. This set is formatted
to K variables (i.e. missing variables are substituted by dont-cares) and expanded to
resolve the don’t-cares and obtain the full table. I case of non-clustered CLBs a re-
ordering of the full table takes place, in order to comply with the direct-connected
CLB inputs.

Figure 5.11 illustrates the steps that are done in V-FPGA Explorer for these purposes.

After the function mapping import for all nodes is done, the import process is finished.
Further editing, bitstream generation etc. will be done directly on the internal data struc-
ture encapsulated in the graphical representation of the V-FPGA Explorer. The graphics
output can be disabled in the settings in order to remarkably speed-up tool-time for large

121



5. Application Mapping and Toolflow

Figure 5.12.: V-FPGA Explorer: Layout of diffeq circuit mapped onto V-FPGA after import
from VPR 7

circuits. Yet the graphical representation can be exported anytime, irrespective of enabling
or disabling the graphics output.

Figure 5.12 shows the import results of the diffeq circuit from the MCNC benchmark suite
[111], which was mapped with the VPR 7 tool onto the V-FPGA with the parameters
K = 6, N = 2, SBtype = Wilton, W = 14, X = 21, Y = 21. The resulting files of VPR
were then imported into V-FPGA Explorer. The shown graphic is exported from V-FPGA
Explorer tool in a Scalable Vector Graphics format. Thus, in the digital version of this
document it is possible to zoom inside for a more detailed view.

5.4.3. Bitstream Generation

Bitstream generation works by evaluating the attributes of the graphical objects relevant
to the configuration data and concatenating them as a string corresponding to the bit
positions in the configuration registers (see Table 4.2, 4.3, 4.7 and 4.8).
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The bit stream for a CLB with the index h on the layer lindex is composed as shown in
Listing 5.7. First the selects of all CBw are concatenated, followed by the selects of all CBr.
Then the selects of all BLE input multiplexers are concatenated. Finally the BLE bitstreams
are added, that contain the LUT result and a bit for controlling the bypass MUX. The order
is such that the element with the highest index is left. That’s why the loop variables are
counted down.

1 For n As Integer = parN − 1 To 0 Step −1
2 CBw_config = CBw_config & c l b ( h ) . c l u s t e r ( l index ) .CBw( n )
3 For i n _ i As Integer = parI − 1 To 0 Step −1
4 CBr_config = CBr_config & dec2bin ( c l b ( h ) . c l u s t e r ( l index ) . CBr ( i n _ i ) , ld (parW −

1) )
5 Next
6 For k As Integer = parK − 1 To 0 Step −1
7 BLE_inMux_config = BLE_inMux_config & dec2bin ( c l b ( h ) . c l u s t e r ( l index ) . BLE( n ) .

MuxInSel ( k ) , ld ( parN + parI − 1) )
8 Next
9 BLE_config = BLE_config & c l b ( h ) . c l u s t e r ( l index ) . BLE ( n ) .LUT

10 If c l b ( h ) . c l u s t e r ( l index ) . BLE ( n ) . f f e n = True Then
11 BLE_config = BLE_config & "1"
12 Else
13 BLE_config = BLE_config & "0"
14 End If
15 Next
16 LcConfig ( l index ) . cConfig ( h ) = CBw_config & CBr_config & BLE_inMux_config &

BLE_config

Listing 5.7: Pseudocode for assembling the bitstream of one CLB

The bit stream of an IOB with the index h is composed of the .con f attribute of the output
with the index h and the .con f attribute of the input with the index h:

1 LioConfig ( l index ) . ioConfig ( h ) = output ( h ) . conf ( l index ) & input ( h ) . conf ( l index )

Listing 5.8: Pseudocode for assembling the bitstream for one IOB

The bit stream of a PSM requires more effort in its generation, as shown Listing 5.9. Ini-
tially, all bits of the PSM bitstreams .pCon f ig(h) are set to ’0’. Then the objects from the
BoxShape class are evaluated. Each box represents one of many ports (with input and
output) of a PSM. The associations of a box with a PSM is given by the attribute PSM in
the box. Each box is responsible for exactly 2 bits in 2D V-FPGA or 3 bits in 3D V-FPGA
of the configuration register of a PSM. These are the select signals for the output multi-
plexer of the corresponding port (see Table 4.7). These bits are determined by evaluating
the source attribute of the box. For instance, in a 3D V-FPGA, if source is empty, the bits at
the corresponding locations in the bitstream are set to "000". If it is "zdown" or "zup", i.e.
sourced from a lower or an upper layer through a TSV, then the bits are set "100" or "101"
respectively. If source is identical to the value from the neighbour attribute (1), the bits
are set to "001". If source is identical to the value from the neighbour attribute (2), the bits
are set to "010". If the source is identical to the value from the neighbour attribute (3), the
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bits are set to "011". In case of 2D V-FPGA there are only 2 select bits per MUX and they
correspond to the lower 2 bits of of the 3D case. Therefore, in the 2D case the bitstream is
reduced such that every third bit is deleted.

1 For h As Integer = 0 To UBound ( boxL )
2 ’ left orientation
3 LpConfig ( l index ) . pConfig ( boxL ( h ) .PSM) = LpConfig ( l index ) . pConfig ( boxL ( h ) .PSM) .

Remove ( ( ( 1 2 * parW)−1)− (11+(12*( boxL ( h ) . id Mod parW) ) ) , 3 )
4 If boxL ( h ) . Source ( l index ) = "" Or boxL ( h ) . Source ( l index ) = boxL ( h ) . Name Then
5 s e l ="000"
6 ElseIf boxL ( h ) . Source ( l index ) = "zdown" Then
7 s e l ="100"
8 ElseIf boxL ( h ) . Source ( l index ) = "zup" Then
9 s e l ="101"

10 Else
11 S e l e c t Case boxL ( h ) . Source ( l index )
12 Case boxL ( h ) . neighbour ( 1 )
13 s e l ="001"
14 Case boxL ( h ) . neighbour ( 2 )
15 s e l ="010"
16 Case boxL ( h ) . neighbour ( 3 )
17 s e l ="011"
18 Case Else
19 s e l ="000"
20 End S e l e c t
21 End If
22 LpConfig ( l index ) . pConfig ( boxL ( h ) .PSM) = LpConfig ( l index ) . pConfig ( boxL ( h ) .PSM) .

I n s e r t ( ( ( 1 2 * parW)−1)− (11+(12*( boxL ( h ) . id Mod parW) ) ) , s e l )
23
24 ’ right orientation
25 LpConfig ( l index ) . pConfig ( boxR ( h ) .PSM) = LpConfig ( l index ) . pConfig ( boxR ( h ) .PSM) .

Remove ( ( ( 1 2 * parW)−1)− (5+(12*(boxR ( h ) . id Mod parW) ) ) , 3 )
26 . . .
27 . . .
28 LpConfig ( l index ) . pConfig ( boxR ( h ) .PSM) = LpConfig ( l index ) . pConfig ( boxR ( h ) .PSM) .

I n s e r t ( ( ( 1 2 * parW)−1)− (5+(12*(boxR ( h ) . id Mod parW) ) ) , s e l )
29 Next
30 For v As Integer = 0 To UBound ( boxT )
31 ’ top orientation
32 LpConfig ( l index ) . pConfig ( boxT ( v ) .PSM) = LpConfig ( l index ) . pConfig ( boxT ( v ) .PSM) .

Remove ( ( ( 1 2 * parW)−1)− (2+(12*( boxT ( v ) . id Mod parW) ) ) , 3 )
33 . . .
34 . . .
35 LpConfig ( l index ) . pConfig ( boxT ( v ) .PSM) = LpConfig ( l index ) . pConfig ( boxT ( v ) .PSM) .

I n s e r t ( ( ( 1 2 * parW)−1)− (2+(12*( boxT ( v ) . id Mod parW) ) ) , s e l )
36
37 ’ bottom orientation
38 LpConfig ( l index ) . pConfig ( boxB ( v ) .PSM) = LpConfig ( l index ) . pConfig ( boxB ( v ) .PSM) .

Remove ( ( ( 1 2 * parW)−1)− (8+(12*( boxB ( v ) . id Mod parW) ) ) , 3 )
39 . . .
40 . . .
41 LpConfig ( l index ) . pConfig ( boxB ( v ) .PSM) = LpConfig ( l index ) . pConfig ( boxB ( v ) .PSM) .

I n s e r t ( ( ( 1 2 * parW)−1)− (8+(12*( boxB ( v ) . id Mod parW) ) ) , s e l )
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42 Next
43 If parL < 2 Then ’ reduce bitstream if only 1 layer is present in order to

target 4:1 Muxes for 2D instead 6:1 Muxes for 3D
44 For i As Integer = 0 To UBound ( LpConfig ( l index ) . pConfig )
45 For b As Integer = 0 To (4 * parW) − 1
46 LpConfig ( l index ) . pConfig ( i ) = LpConfig ( l index ) . pConfig ( i ) . Remove ( ( b * 2 ) ,

1 )
47 Next
48 Next
49 End If

Listing 5.9: Pseudocode for assembling the bitstream for one PSM

There is each an array in which the bitstreams of all CLBs, all PSMs and all IOBs are stored
for internal purposes during the generation of the bit stream (cConfig, pConfig and ioCon-
fig). Bitstream files in different output formats for configuration controller, simulation,
etc. are created from the internal arrays.

5.4.4. Architecture File Generator

VPR requires a so-called architecture file that describes the topology of the target ar-
chitecture as well as technology parameters. This is needed for packing, timing driven
place&route and estimation of area and performance. An example of such an architecture
file for the V-FPGA is given in Section A.2. Usually, architectural parameters such as LUT
size, switch block type, cluster size, I/Os per CLB and their distribution, etc. are defined
in an architecture file. In case of V-FPGA some of the device parameters are also depen-
dent on the architecture parameters. Only simple scaling parameters such as channel
width, total rows and columns of CLBs can be determined by VTR during its DSE phase
and do not need to be included in the architecture file. The disadvantage of fixing pa-
rameters in the architecture file is that they reduce the design space that is explored. The
extended DSE methodology presented in Section 6.4 however needs to sweep through
these parameters in order to extend the design space and improve the quality of cus-
tomization. Especially LUT size and cluster size are two very sensitive parameters that
have a significant impact on performance and area as we have shown and discussed in
[34], therefore they need to be variable in DSE. For the V-FPGA this is solved by multi-
ple architecture files, each with a different combination of these parameters, thus DSE is
extended by multiple runs each with another architecture file.

To facilitate the creation of such files, that can be very numerous depending on the in-
tended design space, the V-FPGA Explorer incorporates an architecture file generator. A
set of few primary parameters (K, N, SBtype), their sweep-ranges and the MSBE character-
istics (e.g. normalized area of MUX2 and D-type flip-flop, propagation delays of MUX2
and average net segments, setup-time and clock-to-Q dealy of a flip-flop) are defined by
the user in a GUI mask as shown in Figure 5.13 with bold font.

The other parameters can be also defined by the user or can be derived from the primary
parameters by pressing the AutoFill button. Then they are derived as follows:
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Figure 5.13.: Settings for architecture file generation in V-FPGA Explorer

• Following the recommendations of [4], the inputs I per clustered CLB are derived

from K and N as I =
⌈

K
2 · (N + 1)

⌉
.

• The outputs O per CLB are identical to the cluster size.

• The channel width W is more difficult to derive as it actually depends on the ap-
plication mapping and is determined by VPR. The reason why it is needed here is
that the area and timing of IOBs and CBs mainly depend on the channel width. A
curve fitting function that approximates the W from the average over the 20 largest
MCNC benchmarks is derived from K and N as follows:
W =

⌈
5 + (0.7 · K) +

(
(3.2− (0.35 · K)) ·

⌈
K
2 · (N + 1)

⌉)⌉

As already mentioned, this number will not be accurate for each application, but is
a good starting point for an iterative refinement as stipulated by the DSE method-
ology in Section 6.4 where a feedback loop updates this value with the actual one
after the first iteration.

• The rest parameters are derived from the MSBEs by applying the area and delay
models described in Section 5.6.

An architecture file template contains tags that mark positions where the parameters
should be inserted during the architecture file generation. If K and/or N are specified as
ranges, then the architecture file generator automatically sweeps through these ranges, re-
derives the other parameters for each K and N combination and generates each a separate

126



5.4. The V-FPGA Explorer

architecture file. Furthermore, a script file is generated to automatically run all necessary
steps of VTR with the various architecture files in batch mode when executed.

5.4.5. Automated Testbench Generation with V-FPGA Explorer

The V-FPGA Explorer generates VHDL testbench files with instantiation of a V-FPGAwith
the correct parameters and with stimuli of the AMBA APB signals with which the gener-
ated bit stream data is copied into the RAM blocks of the configuration controller and then
the reconfiguration command is given. Users can specify a prefix for the signal names, the
clock period of the APB clock PCLK, the start of the transmission, the basic addresses of
the RAM blocks and the offset in the word alignment of the addressing scheme (see Fig-
ure 5.14.

Furthermore, it is possible to import an existing testbench as a frame. The stimuli data
is then automatically inserted there, the test signals are declared, and the generic scaling
parameters are also specified when the virtual FPGA is instantiated. For this purpose,
a testbench frame must contain corresponding tags (see Section A.3) as comments in the
right places. The post synthesis checkbox allows to specify whether the testbench is used
for pre-synthesis or post-synthesis (and post-layout) simulation. Te difference is that in
the post-synthesis simulation no generics are allowed to be used during the instantiation
in the testbench because the netlist is already synthesized and therefore in no generics are
available in the entity.
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Figure 5.14.: Settings for testbench generation in V-FPGA Explorer

5.5. Just-in-Time Compilation

In collaboration with the National Technical University of Athens (NTUA), a Just-in-Time
(JIT) compilation methodology for in-system dynamic application mapping onto V-FPGA
was developed [91], [92]. The idea is to perform fast application mapping during run-
time in order to target adaptive systems and to allow fine-grain defragmentation. NTUA
focused on JIT floor-planning, placement and routing and KIT contributed with JIT bit-
stream generation and with the fine-grained reconfigurable V-FPGA architecture.

The ability to dynamically modify blocks of logic without interrupting the ongoing logic
operation being referred as partial reconfiguration not only adapts algorithm to share
hardware resources, but also to improve resource utilization and to provide continuous
device sharing. Though partial reconfiguration by itself has to deal with challenges re-
gard to identifying an appropriate region on the FPGA which has sufficient amount of
contiguous unutilized hardware resources and poses minimum possible blockage to up-
coming tasks for the placement of configuration data, enabling run-time reconfiguration
for increased flexibility introduces overhead in execution run-time and in FPGA fragmen-
tation. Thereby, just-in-time compilation aims at faster partial configuration by not only
altering FPGA functionality on the fly but also its specialty is to perform task placement
and routing at run-time which lowers hardware fragmentation significantly.

Significance of JIT compilation can be best understood by considering allocation algo-
rithm of the existing approaches. Figure 5.15 depicts an allocation of five tasks namely
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percentage of device that needs run-time reconfiguration, are
described in [5]. REPLICA and REPLICA2Pro are tools for
performing run-time relocation on Virtex, Virtex-E, Virtex-
II and Virtex-II Pro devices [8] [9]. Both tools are imple-
mented as hardware blocks which reside inside the FPGA,
while their functionality relies on modifying appropriately
addresses within the bitstream file, as the configuration data
are streamed in. Finally, an API (application programming
interface) for the internal configuration access port (ICAP)
that allows run-time modification of CLB configuration data,
as well as relocation of CLB content, is discussed in [7].

Even though the previously mentioned solutions allow
designers to change FPGA’s functionality on the fly, they
assume that configuration files were pre-computed at design-
time, which is not always feasible especially for dynamic
applications. On the other hand, throughout this paper, we
introduce a novel Just-In-Time (JIT) compilation framework
that enables fast partial reconfiguration. Contrary to relevant
approaches, our framework can perform task placement and
routing (P&R) at run-time, which leads to significant lower
fragmentation for hardware resources.

The rest paper is organized as follows: Section II describes
the motivation of this work, whereas the target architecture
of Virtual FPGA for evaluation of the JIT framework is
discussed in Section III. The proposed methodology, as well
as the software tools, for performing Just-In-Time (JIT) com-
pilation are explained in Section IV. Experimental results
that prove the efficiency of the introduced methodology are
discussed in Section V. Finally, conclusions are summarized
in Section VI.

II. MOTIVATION

This section highlights the limitation of existing algo-
rithms targeting to perform partial re-allocation of configura-
tion files over an FPGA device. The majority of these algo-
rithms assume that configuration files occupy orthogonal, or
rectangular regions, whereas the goal of available solutions
is to maximize the resources utilization either in vertical or
horizontal axis (e.g. [2] [3] [10]). More specifically, the task
allocation problem over a partial reconfigurable architecture,
as it is tackled by relevant approaches, can be stated formally
through a set of constraints.

Let B1, B2, . . . , Bn be the tasks to be assigned in the
array. Each Bi has associated with it a height hi and
width wi in multiples of logic blocks. The assignment
problem may be defined as the need to find a rectangle
R = (R1, R2, . . . , Rm) for each of the blocks in the array
such that:

• each task can be placed in rectangle Ri which has
dimensions height hi and width wi

• no two tasks overlap such that Ri

⋂
Rj = ∅

For instance, Figure 1 depicts the allocation of five tasks,
namely “A”, “B”, “C”, “D” and “E”, which are configured in
sequential order. Such a placement of partial configuration
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Figure 1. (a) Typical task allocation with existing methodologies and (b)
area blockages that introduce fragmentation problem.

files is common for the majority of relevant approaches,
ignoring if they perform task assignment off-line or on-line
(e.g. [2] [3] [10]).

The main limitation of these approaches is based on the
fact that tasks are handled as pre-computed macro-blocks,
with predefined area requirements (e.g. fixed width and
height). Figure 1(b) gives how this approach is applicable
regarding the example described in this section. Even though
such a selection imposes the fastest allocation of partial
bitstream files, the different dimensions among macro-blocks
results to considerable fragmentation of hardware resources.
Consequently, for the example discussed in Figure 1, assum-
ing that another task that requires a contiguous area of 4×4
slices has to be mapped onto the device in conjunction to
the rest tasks, then existing approaches could not handle this
requirement, even though the FPGA has sufficient number
of non-utilized slices.

On contrast, throughout this paper we introduce a novel
methodology for performing placement of partial configura-
tion files with almost negligible fragmentation. For this pur-
pose, rather than trying to identify locations with sufficient
empty area of contiguous non-utilized hardware resources,
where the pre-computed (at design-time) configuration files
will be allocated, we propose the usage of a Just-In-Time
(JIT) compilation framework. The configuration files at
this framework are computed at run-time by performing
technology packing, placement and routing.

The competitive advantage of employing such a technique
against to relevant approaches affects the higher utilization
ratio for hardware resources, because partial reconfiguration
is performed at slice level. Additionally, hardware resources
(either logic or interconnect) that are left unutilized from
previous tasks could be employed for the implementation of
upcoming tasks, even if these resources are not contiguous.

A critical task for performing sufficient JIT affects the
fast application implementation onto the target architecture.
Figure 2 gives the relative importance of the three procedures
applied during a typical JIT framework, namely technology

322322329

Figure 5.15.: Fragmentation problem introduced by typical task allocation: a) example al-
location, b) respective area blockages [92]

A, B, C, D and E onto FPGA with focus on maximizing the resource utilization in vertical
or horizontal axis. When a sixth task say E with a size of 4x4 slices needs to be mapped,
existing approaches could not handle this even though there are sufficient amount of left
over resources as they assume the configuration files to occupy orthogonal or rectangular
regions. This approach of handling the tasks as pre-computed macro blocks with prede-
fined area requirements leads to fast application implementation on one hand but on the
other hand results in higher fragmentation of hardware resources. With regard to JIT, be-
ing performed at slice level with configuration files computed at run-time by technology
packing, placement and routing solves the aforementioned resource fragmentation prob-
lem at the cost of slow application implementation when computed with existing CAD
tools, that were intended of off-line application mapping at design time. Therefore, the
goal is to significantly speed-up application mapping to be executed during runtime of
the system. Experimental results in [91] confirmed the placement to be the most time con-
suming step in VPR. This led to the decision to develop and include a much faster placer
in the JIT framework.

5.5.1. Target Architecture

A System-on-Chip architecture consisting of multiple V-FPGA cores, a microprocessor, a
configuration controller, an external memory and AMBA busses for on-chip communica-
tion and configuration has been selected as the target platform with each V-FPGA core
being an array of 100x100 slices. One of the salient features of Virtual FPGAs is their
competence even in devices where partial reconfiguration is not supported natively. Thus
the JIT methodology can be exercised also on existing COTS FPGAs through the virtual
layer. Second importantly, V-FPGA provides flexibility at finest granularity level while
the state-of-the-art approaches perform reconfiguration at column level.

129



5. Application Mapping and Toolflow
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ConfigureFPGA
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application?

Executionphase
Utilizedresources(XML) FastPR

Figure 5.16.: JIT compilation framework for performing fast application implementation
onto FPGA devices [92]

5.5.2. JIT Compilation Flow

The corresponding netlist of a new task, which needs to be mapped onto the target ar-
chitecture, goes through ’Region Finder’ before entering into JIT compilation framework
consisting of Technology mapping, Placement and Routing as shown in Figure 5.16. The
task of the Region Finder to derive the suitable floorplan for the application is a criti-
cal step as it preserves minimum fragmentation ratio and maximizes performance. In
order to distinguish between the available hardware resources and the ones which are al-
ready utilized by previous tasks, an XML file furnished with information about resource
types (e.g., logic, routing etc.,) and spatial location of the utilized resources is inputted
to JIT framework through an external storage and thereby enabling JIT to perform P&R
only with non-utilized resources. This fine-grain reconfiguration supported not only by
JIT compilation but also by V-FPGA overruns column-based reconfiguration by perform-
ing resource isolation at slice and routing track level. The outcome of JIT compilation
provides information to compute the bitstream file for this new task and furnishes details
about resources in the target architecture upon which this new task will be allocated. With
this information the bitstream tool then generates the corresponding bitstream file of re-
quired granularity and the XML file is annotated to represent the current state of available
resources before it is stored in external storage. The generated partial reconfiguration bit-
stream file configures the Virtual FPGA with the new task. In case of task de-allocation,
the XML file is updated to mark the resources occupied by this task as non-utilized and
these hardware resources are then configured with an empty bitstream file.

5.5.3. Run-time Enhancements

The JIT framework is supported by 2-D MEANDER [96]. Appropriate tuning of this
toolset significantly reduces the run-time overhead caused by technology mapping and
P&R without degrading the results in terms of operating frequency and power consump-
tion. The first tool being the RegionFinder operates with the goal (i) to improve the avail-
able resource utilization and (ii) to reduce the execution runtime of the application’s P&R.
Thereby, it incorporates an advanced heuristic methodology to quantify multiple can-
didate regions simultaneously rather than identifying regions of rectangular or square
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shape over the target architecture. The RegionFinder takes in the application’s netlist and
two XML files describing the target architecture and the utilized resources as inputs. Ini-
tially it assigns a number of uniformly distributed seeds which then expands in x and y
directions in the ratio of 1:1, 1:2 and 2:1. Majority of the run-time enhancement is imposed
by the employment of a new fast placer which follows fast simulated annealing approach
similar to the one in the VPR tool. The placer starts swapping pairs of logic blocks of an
initial placement with the goal to find lower overall cost. In simulated annealing, one of
the critical parameters that affects the quality of the derived placement is the number of
moves per temperature value. While all the available placers enforce 10× N4/3 swaps
per temperature value, JIT framework performs 10× Nblocks swaps of logic blocks, with-
out performance degradation and with mentionable lower run-time overhead.

The functionality of the router, which is based on PathFinder negotiated congestion algo-
rithm [68], is to identify the routing segments and switches to connect all the nets in the
circuit. The run-time of the router is improved at architecture level by employing Virtual
FPGAs which provide wider routing tracks in the most congested regions (e.g., in the
center of the architecture). The V-FPGA supports this heterogeneity through the CoreFu-
sion technique [35] (see Section 4.3.4 for more details), defining and merging center and
surrounding cores with different channel width W.

The JIT bitstream generator is adopted from V-FPGA Explorer. To improve the runtime
and reduce memory requirements, the graphical representation is omitted and the object
oriented structure is replaced by aggregated composite data types. Commodity functions,
manual editing, path exploration and logs are disabled in the JIT version. Furthermore,
the source code is ported from VisualBasic to native C that compiles on various platforms
with or without operating system, including embedded systems. For parsing the textual
output files of the JIT place & route tools, the JIT bitstream generator contains custom
string functions.

5.5.4. Experimental Results

Finally, the efficiency of JIT framework is tested on a target Virtual FPGA platform, which
consists of 100x100 slices with 50 routing tracks in each channel, for the 20 biggest MCNC
benchmarks. Table 5.1 shows the execution time of JIT PR for mapping these benchmarks
onto the V-FPGA. Compared to the original VPR the proposed JIT PR is at peak 80.75x
and in average 53.49x faster (for further details and a break-down of execution time refer
to [92]).

In Table 5.2 the runtime for JIT bitstream generation of the majority of these applications
is listed, which is in the range of fractions of a second on an Intel i5 processor in single
threaded mode. Thereby, most time is consumed in parsing the textual output files from
JIT PR. In a productive system, the time could be considerably reduced by providing the
JIT PR results in structured binary formats.

The overall time for application mapping and bitstream generation is in a range that
makes it feasible to map applications on demand. In conjunction with the slice-level re-
configurability of the V-FPGA fragmentation effects are kept to a minimum. It is think-
able to provide such JIT application mapping by services operating in the cloud. Yet an
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Table 5.1.: Execution time of JIT PR compared to original VPR [92]

Benchmark Execution time (ms) SpeedupOriginal VPR Proposed JIT
alu4 54647 1041 52.49×
apex2 70287 1190 59.06×
apex4 49987 619 80.75×
bigkey 78898 1845 42.76×
des 80134 1432 54.96×
diffeq 62303 1079 57.74×
dsip 61171 1197 51.10×
elliptic 148379 3828 38.76×
ex1010 174274 3517 49.55×
ex5p 47559 695 68.43×
frisc 235350 5895 39.92×
misex3 52441 756 69.37×
pdc 226810 5122 44.28×
s298 77759 1515 51.33×
s38417 337944 7378 45.80×
s38584 273533 7371 37.11×
seq 66485 1097 60.61×
spla 141456 2861 49.44×
tseng 50928 824 61.81×
Average: 120544 2592 53.49×

Table 5.2.: Execution time of JIT bitstream generator for V-FPGA
Execution time (ms)

Benchmark CLB
cols

CLB
rows

Channel
width

on Intel Core i5
(@2.5GHz)

alu4 32 32 9 160
apex2 37 37 11 230
apex4 31 31 12 160
bigkey 54 54 7 360
des 63 63 7 420
ex1010 40 40 11 270
frisc 59 59 14 770
misex3 31 31 10 150
pdc 52 52 16 607
s38417 60 60 8 686
seq 37 37 13 234
spla 51 51 16 593
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autarkic in-system self-adaptive application mapping is possible as well, provided the
embedded system is equipped with a processor sub-system and enough memory.
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5.6. Area and Delay Models for Optimized Application Mapping and
DSE

Typically, the overall area requirement and performance of an application mapped onto a
virtual FPGA is revealed after the synthesis, place and route steps of both, the application
and the virtual FPGA. Since the place and route steps are area and timing driven, area
and delay models are required in order to find an optimized solution. In the past, place &
route tools involved in application mapping unto virtual FPGAs have been mainly used
with area and delay models that were intended for physical FPGAs. For instance, the
initial V-FPGA (presented in [50]) used the timing and area related physical parameters
of the architecture file templates contained in MEANDER toolflow [69], which are based
on a 180 nm technology. Similarly, the technology parameters of ZUMA architecture in
[114] are very similar to the ones used in the 90 nm k4_n4_90nm.xml architecture template
contained in the VTR toolflow package [63]. While the application mapping will be still
valid and the circuits operable, this practice might be deceitful for the purpose of design
space exploration and optimization as the ratios of e.g. logic area to routing area or local
routing to global routing will suffer accuracy. This might lead to non-optimal parameter
choices and reduced mapping efficiency.

To overcome this situation we derive area and delay models for the V-FPGA, based on the
utilized resource types of the underlying platform. The idea is to decompose the V-FPGA
into basic elements of minimum size, to characterize these elements and in a bottom up
approach to derive area and delay models of the architecture in a hierarchical way that
are also dependent on the parameters K, N, W, I, and O.
The programmable resources of V-FPGA are BLEs, CLBs (including connection boxes),
PSMs and IOBs. A BLE is composed of 2K :1 MUX (for the LUT), 2:1 MUX (for the bypass)
and flip-flops (2K for the configuration unit and one that can be bypassed at the LUT out-
put). The remaining CLB circuitry requires (N + dI/Ke):1 MUXs for the multiplexers at
the inputs of the BLEs, optionally N:1 MUXs at the outputs and D-FFs for the configura-
tion unit. Additionally, the connection boxes require 2:1 MUXs for CBw and W:1 MUXs
for CBr. Each PSM is composed of 4:1 MUXs for routing and D-FFs for configuration. An
IOB needs a W:1 MUX and an AND gate for the output, 2:1 MUXs for the input and D-FFs
for the configuration unit.
Hence the Minimum Size Basic Elements (MSBEs) are 2:1 MUX, 2-input AND gate and
D-FF. All other elements are composed of these MSBEs. If we consider for instance Actel
ProASIC3 as underlying platform, then the MSBEs are realized by the so called VersaTiles.
A VersaTile can realize either a 3-input function or a flip-flop (see [2] for more details).
Consequently, the MSBEs have the following area sizes:

AMUX2 = 1 VersaTile (5.1)

AAND2 = 1 VersaTile (5.2)

AFF = 1 VersaTile (5.3)
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With the respective areas of the MSBEs AMUX2, AAND2 and AFF, the areas of the other
elements based on their composition described above are derived as follows:

ABLE =
(

2K + 1
)

· AFF +
((

2K − 1
)
+ 1
)

· AMUX2 (5.4)

ABLE_inMUX =

(
N +

⌈
I
K

⌉
− 1
)

· AMUX2 +

⌈
log2

(
N +

⌈
I
K

⌉)⌉
· AFF (5.5)

ABLE_outMUX = (N − 1) · AMUX2 + dlog2 (N)e · AFF (5.6)

ACLB = N · K · ABLE_inMux + N · ABLE + O · ABLE_outMUX (5.7)

ACBr = (W − 1) · AMUX2 + dlog2(W)e · AFF (5.8)

ACBw = W · (AMUX2 + AFF) (5.9)

APSM = 4 · W · (3 · AMUX2 + 2 · AFF) (5.10)

AIOB = (2W − 1) · AMUX2 + AAND2 + (W + dlog2(W)e+ 1) · AFF (5.11)

The delays are obtained through characterizations of the MSBEs in a placed and routed
design with the help of a timing analyzing tool, which is usually part of the IDE for the
underlying platform (e.g. Actel SmartTime). Additionally to the MSBEs we need also the
average delay of a short net. For demonstration purpose the following delays are obtained
on an Actel ProASIC3 FPGA:

TMUX2 = 0.497 ns (5.12)

TAND2 = 0.497 ns (5.13)

TFF_setup = 0.430 ns (5.14)

TFF_clock_to_Q = 0.550 ns (5.15)

Tnet = 0.249 ns (5.16)

With the respective MSBE delays TMUX2, TAND2, TFF_setup, TFF_clock_to_Q and Tnet, the
relevant delays of the other elements are estimated as follows:

TMUX4 = 2 · TMUX2 + Tnet (5.17)

TLUT = Tnet + K · (TMUX2 + Tnet) (5.18)

TBLE_inMUX =

⌈
log2

(
N +

⌈
I
K

⌉)⌉
· (TMUX2 + Tnet) (5.19)

TBLE_outMUX = dlog2(O)e · (TMUX2 + Tnet) (5.20)

TIOB_in = TMUX2 + Tnet (5.21)

TIOB_out = (dlog2(W)e − 1) · (TMUX2 + Tnet) + TAND2 + Tnet (5.22)

The resulting values are sufficient for the place & route tool to estimate the path delays
and are also incorporated to the architecture file as virtual technology parameters. These
models target a fine grained underlying platform (e.g. the 3-input VersaTiles in Actel
ProASIC3) and need to be slightly modified when the underlying platform changes. For
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instance, for an underlying platform with 6-input LUTs, a 4:1 MUX will have the same
area and timing as a 2:1 MUX (both can be realized by 1 LUT). In that case the 4:1 MUX
becomes an MSBE.

5.7. Conclusion

A challenge for the custom V-FPGA architecture was to find a suitable CAD toolset that is
able to map applications onto it, especially considering the various architectural parame-
ters. This was solved in the V-FPGA framework by employing and combining a selection
of existing academic, commercial and new own tools, that are or have been made com-
patible to each other. The resulting tool-flow is rather complete (i.e. it supports all the
required steps), allowing various state-of-the-art design entry methodologies and includ-
ing powerful synthesis engines, logic optimizers, technology mappers, placers, routers, a
custom bitstream generator and a simulator.

A central piece thereby is the newly developed V-FPGA Explorer tool, which is a graphical
configuration editor, a bitstream generator, an architecture file generator, a script genera-
tor and a testbench generator. Especially it is to note that it closes the gap between abstract
layout and actual configuration.

In collaboration with researchers from the National Technical University of Athens (NTUA),
a unique just-in-time compilation toolset for the V-FPGA was developed. It includes JIT
placer&router (developed by NTUA) and JIT bitstream generator (own development).
Compared to state-of-the-art tools, we were able to achieve in average a 53.49x faster ex-
ecution time of these tools. With the JIT compilation flow, MCNC20 benchmark applica-
tions are each mapped (including placement, routing and bitstream generation) onto the
V-FPGA within a few seconds (in average 2.6 s). This makes it feasible to map applications
on demand, which is very attractive for adaptive systems and cloud services.

In order to deal with the peculiarities of virtual FPGAs, suitable area and delay models
based on characterized Minimum Size Basic Elements (MSBEs) were developed. These
models are used in design space exploration as well as to generate architecture files for
the employed place&route tools.
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Reconfigurable Architectures

This chapter concerns the customizing of the generic V-FPGA architecture to obtain a
good fit of the application. On system-level this is achieved by selection of suitable SoC
architecture templates. On core-level the architectural parameters are tuned based on
design space exploration. Furthermore, suitable metrics are introduced to consider the
virtualization aspects in early estimations.

6.1. Generic SoC Architecture Templates

To facilitate the development of custom reconfigurable SoC platforms, the V-FPGA frame-
work incorporates customizable SoC templates. This elevates the spirit of customization
from core level to system level architecture and enables multi-level optimization. On the
system level, the concept is to allow various combinations of heterogeneous cores/pe-
ripherals interacting through a unified infrastructure. Figure 6.1 illustrates a set of SoC
template concepts, whereby all types have in common a microprocessor core, memories
and further heterogeneous cores interconnected through an AMBA bus.

Type A integrates the V-FPGA as a peripheral block. Here the V-FPGA is equipped with
a peripheral unit (see Figure 6.2), that contains a communication controller to map parts
of the I/O Blocks to the bus interface. This allows the processor core to exchange data
with the FPGA in an addressable way. For the processor it makes no difference whether
it writes to a memory or to the V-FPGA core. Furthermore, the peripheral unit contains
timer and serializer in order these frequently used function units not to occupy the more
precious reconfigurable logic. The V-FPGA core contains a second bus interface for its con-
figuration controller, which can be accessed by the processor core (or another bus master)
to copy configuration data, select configurations, trigger the configuration process and
read the status. Typically the microprocessor would run an operating system and more
control oriented tasks, while the V-FPGA core is a companion accelerating timing critical
and parallelizable workloads or acting as flexible glue logic. This template is used in [50]
and [35] to create a custom low-power heterogeneous reconfigurable SoC for industrial
process automation.

In type B the V-FPGA core is replaced by one or more custom ViSA cores. The ViSA cores
are equipped with dual ported memories for instructions and data, whereby one port is
mapped to the AMBA bus and the other port is accessed by the load/store unit and the
forwarding network inside the ViSA core. A ViSA core can have multiple data memories,
each with a separate load/store unit thus simultaneously accessible by the ViSA core for
Single Instruction Multiple Data (SIMD) operations. The microprocessor core can access
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Figure 6.1.: Generic System-on-Chip templates

PSMPSM

PSMPSM

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

PSM

PSMPSM

PSM

PSM PSM

PSMPSM PSMPSM

PSM PSM

P
ER

IP
H
ER

A
LS

A
M
B
A

I/O Block

Bus 

Interface

(a)

nRSTCLK

PSELx

PENABLE

PADDR

PWRITE

PRSTn

PCLK

PWDATA

PRDATA

nRSTCLK

INPUT OUTPUT

LOAD

RUN

CLKSEL XCLK

nRSTCLK

CLKSEL XCLK

RVAL RUN

T INT

BUSY

WDATA

RDATA

SER_CLKSEL

T_CLKSEL

RVAL

T_VAL

LOAD

WDATA

SER_RUN

T_RUN

XCLK

T_INT

RDATA

BUSY

OPOP

nRSTCLK

PSELx

PENABLE

PADDR

PWRITE

PRSTn

PCLK

PWDATA

PRDATA

Ti
m

e
r

C
o

m
m

u
n

ic
at

io
n

 C
o

n
tr

o
lle

r

Se
ri

al
iz

e
r

GOGO

(b)

Figure 6.2.: Peripheral unit to connect the V-FPGA to an AMBA bus: a) mapping to IOBs
of the V-FPGA, b) structure with additional frequently used function units
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the memories through the AMBA bus, to exchange data with the ViSA cores or to upload
the programs for the ViSA cores. The type B template is suitable for accelerating arithmetic
dominated workloads of little to medium parallelism and with control flow content (e.g.
numeric solver algorithms, multi-cycle operations, complex operations, etc.). In [36] we
applied this template to accelerate a measuring chain for industrial process automation.

The acceleration of massive parallel arithmetic workloads (e.g. SAFT, image processing,
neuronal networks, etc.) is addressed by the type C template. Here the parallelism is
scaled at two levels: local parallelism within a ViSA core and global parallelism by an
array of many ViSA cores. The bus structure of the other types has limitations in terms of
scalability and concurrent traffic which makes it not suitable for many-core architectures.
Therefore, the ViSA many-core array of the type C template utilizes a scalable mesh type
Network on Chip (NoC) communication infrastructure. Each ViSA core is equipped with
a NoC interface and thus is a node in this network. A bridge allows the microprocessor to
access the NoC through the AMBA bus. In [36] we demonstrated the efficient acceleration
of a highly parallel SAFT algorithm for 3D ultrasound tomography, utilizing a 176 many-
core ViSA array.

Type D is a combination of types A and B, where V-FPGA and ViSA cores coexist along
with a processor core and dedicated peripherals in a heterogeneous SoC. This targets
multi-tasking workloads, where tasks have diverse characteristics and are accelerated
each on the most suitable core in the system.

Types E is similar as type D but extends the V-FPGA core to the 3rd dimension by stacking
multiple 2D V-FPGA layers and interconnecting the layers with TSVs (see Section 4.2). In
type F the 3rd dimension is time, i.e. temporal exclusive applications are mapped on an
overutilized V-FPGA core and are loaded on-demand through dynamic reconfiguration.
Type G is a combination of the types E and F, exploiting 4 dimensions in the V-FPGA core:
2 dimensions for the horizontal pane, 1 dimension for the vertical stacking and time is the
4th dimension.

The chart in Figure 6.3 classifies the suitability of the different SoC template types accord-
ing to the degree of parallelism and the content of control flow in the portions of the ap-
plication that should be accelerated. Type A offers a wide range of parallelism, yet is not
well suited for control flow dominated tasks, because control flow doesn’t benefit much
from parallelism yet results in large multiplex logic when implemented as finite state ma-
chine logic in an FPGA. Control flow is more efficiently handled in Type B where it can be
realized by sequential programs with conditional jumps running on the ViSA microarchi-
tecture, i.e. the control complexity is mapped in cheap memory rather than in expensive
reconfigurable logic. However, the parallelism in type B is limited by the number of paral-
lel function units and the length of the instruction word. Experiments in context of the use
cases in [36] have shown that with longer instruction word the achievable clock frequency
is reduced because instruction memory needs then to be partitioned into several blocks
that are cascaded, thus the skew and path delays for memory access increase. Therefore,
type C is better suited for applications with control flow content and a high degree of
parallelism, as it scales better than type B by employing multiple ViSA cores in parallel,
each with reasonable instruction word length and local parallelism. Types D-G, which
are combinations of the other types, consequently are classified somewhere in the centre
region, while tendencies can be tuned by the ratio of ViSA cores to V-FPGA cores.
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Figure 6.3.: Classification of type A-G SoC templates based on parallelism and control
flow suitability

For demonstration purposes Figure 6.4 shows a template of type A, realized with the Actel
Libero IDE and the Canvas utility. The SoC consists of an ARM Cortex M1 processor core,
a V-FPGA core, an interrupt controller, six GPIO cores, two timer cores, a PWM core, an
SRAM memory block and a memory controller for external memory. The bus system is
cascaded, whereby the processor core is master of an AMBA AHB bus with the SRAM and
the memory controller as slaves. An AHB-to-APB bridge is the third slave component in
the AHB bus and acts as master of an Advanced Peripheral Bus (APB) bus. The remaining
cores are connected as slaves to this bus. There are three unoccupied slave ports in the
APB bus that can be used to extend the SoC by additional cores. Each slave port has an
associated address range to be accessible by the processor core. Cores can be added and
removed according to the needs. Once all system components are assembled, a VHDL
top level file of the SoC can be generated, containing all the necessary instantiations and
signals. If needed, the V-FPGA core can be further customized by tuning its architectural
parameters. Then the design can be synthesized, placed and routed. Thus, in response to
Challenge 1 formulated in Section 1.4, a custom SoC architecture with custom embedded
FPGA and heterogeneous cores can be obtained with minimum efforts. In fact it is not
even necessary to write VHDL code.

The fundamental difference between COTS programmable SoC platforms ([110], [52],
[73]) and the proposed customizable templates is that in COTS solutions the SoC platform
is given, whereby in the proposed solution it is multi-level customizable for the purpose
of specialization and tailoring towards the application.
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Figure 6.4.: Screenshot of graphical type A SoC template, created with Actel Libero IDE

6.2. Application Specific and Objective Driven Specialization

With the overall goal to obtain specialized reconfigurable platforms that are tailored to
fit the application efficiently, the proposed design flow as a whole follows a multi-level
customization methodology for system level and core-level architecture, as shown in Fig-
ure 6.5. In contrast to the state of the art, the application does not bend to a given off-
the-shelf platform, but comes first and defines the characteristics of the custom target
platform.

Despite this thesis is dedicated to custom FPGA architectures, the strategy is not to map
the entire application onto programmable logic alone but rather to partition the applica-
tion and take advantage of the diverse core types and their strengths in a heterogeneous
SoC. Then the cores can be customized and their architectural parameters tuned to suit
their portion of the application as good as possible.

Starting with the application as a model, algorithm, code, pseudocode or any other de-
tailed form to describe its intent, an analysis 1	   should reveal the critical portions. If
executable software code is already there, profiling methodologies on target processor
models can be engaged for this purpose. Usually it will be a performance profiling, yet
in [41] and [100] we extended virtual platform processor simulation models by micro-
benchmarked power models per instruction to obtain also power profiling during pro-
gram execution.

Based on the analysis/profiling the application can be partitioned 2	   in critical and un-
critical parts. The uncritical part is to be mapped as software implementation 3	   on a
microprocessor. Typically this is the operating system and less demanding control ori-
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ented tasks, that are well suited by a processor core. Demanding tasks and bottlenecks
that wouldn’t meet the constraints in software are the critical portion and need to be accel-
erated in hardware. While hardware/software partitioning is an active field of research,
it is not the scope of this thesis to further immerse in this topic. It is assumed that the
partitioning problem is solved based on respective partitioning algorithms, classification
of workloads, rational decisions or Artificial Intelligence (Ai).

The critical tasks are further partitioned 4	   in parts that are suited on V-FPGA architec-
tures and parts that are better suited on ViSA cores. The classification in Figure 6.3 can
guide this step based on characteristic workloads. Then the core level customizations take
place, which are described in Section 6.2.1 for the V-FPGA approach and in Section 6.2.2
for the ViSA approach.

The primary outcome of the V-FPGA customization is a set of architectural parameters
tuned to efficiently implement the intended circuits. Similarily, the ViSA customization
defines the numbers and types of parallel functional units as well as memory blocks and
load/store units per ViSA core. With respect to the uncritical path on the microprocessor,
after software implementation and compilation, the memory footprint for the processor
core is obtained, e.g. from the listing file or the Executable and Linkable Format (ELF)
file. All these parameters together are used during instantiation of the cores at system
level to yield the custom programmable SoC platform that is tailored towards specific
applications.

6.2.1. V-FPGA Customization

The customization of the V-FPGA starts with the application or portions of it that are to
be accelerated on the V-FPGA. With respect to nomenclature, for a better distinction from
the overall application, in the following these portions are referred to as circuits. There
can be several circuits mapped concurrently or temporally exclusive onto a V-FPGA core,
which is related to partial and dynamic reconfiguration.

First the design entry of the circuits takes place, which is usually VHDL coding 5	   yet
other methods such as graphical modelling, drawing schematics, IP based design, high
level synthesis, etc. are supported as well by the tools engaged in the V-FPGA framework
(see Section 5.1).
Behavioural simulation (pre-synthesis) is used to verify the circuits 6	   and if necessary
the design is refined.

Prior to synthesis, the circuits are combined for later analysis steps. I.e. concurrent circuits
are aggregated 7	   into one top-level VHDL module, while temporally exclusive circuits
should stay in separate files to consider dynamic reconfiguration. Then the circuits are
synthesized 8	   to obtain technology mapped BLIF netlists. This is repeated for a range of
LUT sizes K.

To obtain the architectural parameters K, N, W, SBtype, etc. that fit a circuit or aggrega-
tion best, a Design Space Exploration (DSE) 9	   based on the methodology presented in
Section 6.4 is performed. This is repeated for all aggregations. Then, depending on the
objectives, the aggregation with the most critical timing slack or with the largest area is
taken as reference and the K, N, W, SBtype, etc. parameters are selected for the whole core.
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To make the V-FPGA core more robust for future circuit changes and avoid congestions
W can be increased by a certain margin, e.g. 10%.

Then again all aggregations are placed and routed with the fixed reference parameters
and the sizing of the array (X columns and Y rows of CLBs) is determined for each ag-
gregation. The size of the largest aggregation plus a safety margin is taken as reference
and a final place & route A	   is performed for all aggregations with the fixed parameters,
followed by bitstream and testbench generation C	   .

The generated testbench is used to simulate D	   both, the V-FPGA core and the circuits
mapped on to it. The results of the verification can be taken as feedback loop to refine the
circuits if necessary.

The actual realization of the V-FPGA core happens by instantiation B	   of the generic core,
overriding of the generic parameters at top-level with the fixed parameters determined
during DSE, and physical (or virtual) hardware implementation L	   as described in Chap-
ter 7. Thereby an integration with other cores takes place to form the custom SoC.

6.2.2. ViSA Customization

For customizing the ViSA cores a hardware/software co-design methodology is employed
that leads to a highly application-specific shape of ViSA, which is optimized towards
meeting the application needs in terms of functionality and performance with minimal
overhead [36].

The first step is to analyze the algorithms of the application and to extract E	   the set of
arithmetical and logical operations used, e.g., multiplication, addition, division, square
root, comparison, logic shift, AND, OR, XOR. This will determine the types of function
units to be deployed in the application-specific ViSA architecture. Thereby, common func-
tion units are already available in the work library. Special units, e.g. hardware acceler-
ated square root unit, need either to be developed from scratch or reused from existing
designs (e.g. vendor IP or open source IP catalogs). The library keeps growing and the
degree of reuse increases with every new design.

After specifying the necessary function units, a generic transformation F	   takes place to
obtain the Data Flow Graph (DFG) from the algorithms and to perform a design space
exploration with scheduling G	   in order to efficiently exploit the degree of parallelism
that ViSA provides.

Therefore, the data flow exploration of the application solves the dependencies of the data
and the operations. Figure 6.6 shows an example DFG for the realization of a slot archi-
tecture with all possible executable operations. The graph will show the minimal used
operations in case the application is fully partitioned into the basic functional units in-
troduced above. This provides in turn the requirements for the data to be available from
memory.
From the pre-built library, introduced above, the area utilization is known for every com-
ponent and thus the total area for the application-specific ViSA can be estimated before-
hand. The obtained values for total area are worst-case estimations. Experiments have
shown that due to global optimization in the synthesis process of the system, the actual

144



6.2. Application Specific and Objective Driven Specialization

Figure 6.6.: Dataflow graph of an example application scheduled for ViSA with all exe-
cutable operations

area will be in average around 5 % smaller and never larger than estimated. Furthermore,
from simulations and/or data sheets the performance in clock cycles is known for every
unit in the library. This helps to schedule the operations within the DFGs with the goal to
meet given constraints while reducing the number of parallel units that are not utilized. It
turned out that the as late as possible (ALAP) scheduling strategy minimizes the number
of necessary load/store operations as an intermediate value is calculated by a function
unit just-in-time before it is needed by another unit. Although the overall performance
can be estimated based on the scheduled DFGs, this will be only an ideal best case value,
because memory accesses are not modeled in the DFG. However, a more accurate estima-
tion can be done later in the design process after the software has been coded.
The outcomes of the DSE phase are the number of parallel instances for every type of
function units used, the data widths of input and output ports, the ports of the input
multiplexers, the number of parallel load/store units and memory blocks accordingly.

In the next step the software can be developed in parallel assembly code H	   , based on the
scheduled DFGs and the derived instruction set. For every slot in the ViSA architecture
there is also a slot in the assembly line. An assembler & linker tool generates the machine
code I	   and the separate instruction and data memory mapping out of the assembly code.
Furthermore, it determines the parameters for the actually needed memory widths and
depths of the separate instruction and data memories.

The functional verification J	   of the implemented application running on a ViSA core is
preferably done in presynthesis simulation. In order to speed up this phase and shorten
the time-to-market, a comprehensive debug unit is integrated inside ViSA as non-synthesizing
VHDL code, which is able to stream out a detailed tracing during simulation.
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The parameter values obtained in the previous steps are entered in the generic ViSA de-
scription K	   and the application specific architecture is synthesized, placed & routed L	  

and a bitstream is generated.

6.3. Metrics

Apart from identifying the required resources, the customization approach also aims at
optimizing the V-FPGA architecture for one or more objectives depending on the applica-
tion needs. To quantify the effects and compare solutions, suitable metrics are required.
However, virtualization obscures the usual metrics as the basis is not fixed. This makes
it also difficult to judge the efficiency of the V-FPGA because it is not only a relationship
of application and architecture alone, but at the same time also a relationship between
the architecture and the underlying platform. For instance, assuming that an application
is optimally mapped on a customized architecture, i.e. the utilization ratio on the vir-
tual architecture is maximized, it still can be the case that the virtual layer itself is poorly
mapped onto the underlying platform. To overcome this situation the traditional metrics
(e.g. gate equivalent, critical path delay, physical area etc.) are extended by further plat-
form dependent and platform independent metrics. Using platform dependent metrics
helps improving the quality of CAD and the confidence level of the results, while plat-
form independent metrics allow quick-and-dirty cross-platform transferability by generic
base units that in a post-process can be translated into platform-dependent metrics. The
following subsections present a set of metrics and discuss their meaning and purpose.

6.3.1. Average Utilization Ratios

Ultimately, chip area is a measure with direct impact. However, for architecture explo-
ration and analysis it can be a quite unhandy measure, not only because it takes timely
efforts to obtain it accurately but also because it gives no hint about the potential opti-
mization room unless it is compared among all solutions in the design space. Even then it
doesn’t explain the reason why the parameters of a solution led to less area consumption
than other solutions. While this more or less brute-force approach was done for the ex-
periments in Section 4.1.5.2 to obtain a large data set of high significance for fundamental
analysis of parameter sensitivity, for the purposes of customisation the aim is to get an
earlier estimate whether the architecture gives a good fit to the application and thus is an
efficient solution.

Rather than absolute area numbers it is of interest how well resources (that are propor-
tional to area) are utilized. This can be expressed as utilization ratio. Thereby, utilization
ratio can have different meanings. In design flows for application mapping onto COTS
FPGAs it is common to report for each resource type (LUT, register, multiplier or DSP
slices, BRAM, I/Os) a utilization ratio by the means of how many elements of a resource
type were utilized compared to the total available resources of that type in the FPGA. Be-
cause the area of a COTS FPGA is fixed, the utilization ratios are indicators whether there
is still space for additional logic. In certain cases they can also help to decide on design
alternatives. For instance, if an FFT application overutilizes the DSP resources while LUTs
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Figure 6.7.: Relative comparison of area required for implementing LUTs of different in-
put sizes K

are hardly utilized, it will make sense to implement a part of the demanding arithmetic
in logic. In [37] and [38] we have done such considerations to analyze and balance the re-
sources in reconfigurable digital signal processing hardware architectures for audio and
communication applications.

For hardware architects, that need to decide on parameters, it is useful to have more
detailed types of utilization ratios. In particular for FPGA architectures, one of the most
sensitive parameters is the LUT size. A small function with two inputs (e.g. c <= a AND
b) utilizes a 2-input LUT more efficiently than a 6-input LUT. The latter will waste a 18x
higher chip area, which becomes clear when comparing the area for different LUT sizes K
as illustrated in Figure 6.7. Thus, a logic utilization ratio, that expresses the active portion
of the used logic area compared to the total available logic area, is useful to assess the
logic related mapping efficiency. The reason is that the more each individual logic cell can
be utilized, the less logic cells are required to fit the application and the higher is the logic
efficiency.

This claim can be backed up by plotting the normalized total LUT area vs. the utilization
ratio for all solutions as it is exemplarily shown in Figure 6.8a for the alu4 benchmark
circuit in particular and in Figure 6.8b for the average over the 20 largest MCNC bench-
marks. The experiments confirm that with increasing utilization ratio the required logic
area decreases. Note the exponential character which comes from the fact that with lin-
early rising LUT-inputs the LUT-size grows exponentially (recall Figure 6.7).

In virtual FPGA architectures this gets a bit more complicated because there are two levels
of mapping efficiency. It is not only important how well an application is mapped onto
the architecture of the virtual FPGA, but also how well the virtual FPGA is mapped onto
the underlying platform. Each of these two views can be expressed by an utilization
ratio. The Virtual Logic Utilization Ratio (VLUR) and the Platform Logic Utilization Ratio
(PLUR) are introduced as follows:
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Figure 6.8.: Relationship between logic area and utilization ratio for (a) alu4 circuit and (b)
for the average over MCNC20 benchmark set

VLUR =
∑netlist_LUTs−1

i=0

(
2ci−1
2K−1 · wcomb

)
+
(

2ci

2K · wseq

)

total_LUTs ·
(
wcomb + wseq

) (6.1)

with ci = VFPGA.LUT(i).connected_inputs (6.2)

and total_LUTs =

{
netlist_LUTs after technology mapping
X · Y · N after placement

(6.3)

PLUR =
∑

utilized_LUTsplat f orm−1
i=0

(
2ĉi−1
2K̂−1

· wcomb

)
+
(

2ĉi

2K̂ · wseq

)

utilized_LUTsplat f orm ·
(
wcomb + wseq

) (6.4)

with ĉi = Plat f orm.LUT(i).connected_inputs (6.5)

and K̂ = LUT size or equivalent of platform (6.6)

6.3.1.1. Virtual Logic Utilization Ratio (VLUR)

VLUR can be measured by averaging the utilized areas of LUTs divided by their total area.
The utilized area is related to the number of connected LUT-inputs. Regarding a LUT as
composition of 2:1 MUXs, the required number of these MUXs per LUT is 2LUT_inputs − 1.
Of course the number of registers to store the LUT contents needs to be counted as well,
which is 2LUT_inputs but needs to be weighted by a factor w to normalize it to the size of a
2:1 MUX. With Actel’s VersaTile technology we can set w = 1 because a VersaTile cell can
implement either a 3-input function (a 2:1 MUX is such a function) or a flip-flop. More
generally, as done in Equation 6.1, we can introduce a weighting factor wcomb for the com-
binational share on area and another weighting factor wseq for the sequential share (i.e.
flip-flops) if these two resource types have different sizes. VLUR can be obtained either
after technology mapping or after placement, with the latter considering also autosizing
effects. Figure 6.9 shows the VLUR values for the 20 largest MCNC benchmarks after
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Figure 6.9.: Virtual Logic Utilization Ratio (VLUR) of MCNC20 benchmarks for K = 2..8
after technology mapping

technology mapping on different LUT sizes between K = 2..8. The general trend therein
is that with rising K the VLUR decreases. This makes sense as a logic function with a
given number of variables can be decomposed in 2 or more smaller sub-functions, yet the
other way will always lead to underutilized LUTs.

In Figure 6.10 we can see the utilization ratio after placement. This differs from the pre-
placement results for the following reasons:

• The array on which the nodes of the technology mapped netlist are placed has a
rectangular aspect ratio. This can cause whitespaces of fully unutilized LUTs be-
cause of quantization effects of the sizing. For instance, the sizing of a LUT array
for placing a netlist with 23 nodes leads to 5x5=25 LUTs for a square aspect ratio,
i.e. 2 LUTs remain unutilized.

• Similarily, clustering can cause additional whitespace within a CLB cluster.

• Autosizing considers also the I/O blocks which have a dependancy on the array
sizing when allowing only a fixed number of I/Os per column (which is the usual
case). For applications that are dominantly I/O-bound it can happen that the auto-
sizing tool will artificially increase the array size (which would have been sufficient
for the logic alone) in order to increase the perimeter and fit more I/Os. The same
can also happen with other resource types (e.g. DSP slices, BRAMs, etc.) in hetero-
geneous FPGA architectures.
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Figure 6.10.: Virtual Logic Utilization Ratio (VLUR) of MCNC20 benchmarks for K = 2..8
and N = 1..10 after placement on autosized arrays

6.3.1.2. Platform Logic Utilization Ratio (PLUR)

PLUR is a function of utilized LUT-inputs of the underlying platform, whereby the refer-
ence design is a BLE of the virtual layer (BLEv) since we are interested in the logic related
utilization ratio. Thereby we need to consider also the registers required to store the LUT
function table of the virtual BLEv, as well as an additional flip-flop for sequential logic
and the bypass multiplexer along with an associated programming register for selecting
the mode. Fortunately all these elements are part of the BLEv unit and due to the regu-
lar structure of the V-FPGA it is sufficient to synthesize one unit alone and map it on the
technology of the target platform in order to get all required data for deriving the PLUR.
From the technology mapped netlist we gain knowledge about all allocated platform re-
source macros and their input and output connectivity. This information we can use in
Equation 6.4 to calculate the PLUR. Figure 6.11 shows a comparison of PLUR values for
LUT sizes of the virtual layer varying from K=2..8 when mapped on an Actel ProASIC3
or a Xilinx Virtex-7 underlying platform. In case of ProASIC3, it is no surprise that the
PLUR is constantly at 100%. This comes from the fact that the rather fine-grained Versa-
Tile architecture is fully utilized when accommodating functions with 3 input variables -
a perfect size for 2-to-1 MUXs. Since any LUT size can be symmetrically decomposed in
2-to-1 MUXs there is no underutilization of the allocated VersaTile macros. The Virtex-7
platform shows smaller PLUR values depending on the K due to the coarser granularity
of LUT resources that leads partially to underutilization.
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Figure 6.11.: Platform Logic Utilization Ratio (PLUR) on Actel ProASIC3 and Xilinx
Virtex-7 for K = 2..8

6.3.1.3. Multi-level Utilization Ratio (MLUR)

The product of VLUR and PLUR creates the Multi-level Utilization Ratio (MLUR) and can
be used to assess the effective overall logic efficiency:

MLUR = VLUR · PLUR (6.7)

Figure 6.12 plots the MLUR of the 20 largest MCNC benchmarks when they are mapped
onto V-FPGA with LUT size K in the range of 2 to 8, whereby the V-FPGA itself is mapped
onto a Xilinx Virtex-7 underlying platform. In average the sweet-spot concentrates around
K = 6..7, however individual applications reach their maximum multi-level utilization ra-
tio at other K values. For Actel ProASIC3 the MLUR is equivalent to VLUR (see Figure 6.9)
because PLUR is constantly at 100 % on this very fine grained platform.
Thus, MLUR can be used to tune the V-FPGA parameters in a way that not only the appli-
cation is well mapped on the virtual layer but also the V-FPGA is well mapped onto the
physical platform or to find a trade-off that improves the overall area efficiency. It can be
also used to identify the best combination of V-FPGA and underlying platform in terms
of logic mapping efficiency.
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Figure 6.12.: Multi-level Utilization Ratio (MLUR) of MCNC20 benchmarks after technol-
ogy mapping onto V-FPGA for K = 2..8, which is mapped onto Xilinx Virtex-
7 underlying platform

6.3.2. Generic Equivalents

The utilization ratios introduced above are relative metrics for estimating the mapping ef-
ficiency. Absolute metrics are used to assess the overall complexity, area or performance,
including also the routing related portion of the V-FPGA as opposed to logic utilization
ratio. However, they are obtained only after mapping and placement of the V-FPGA ar-
chitecture onto a certain target platform, which can be time consuming and needs to be
repeated if the target platform changes. For faster estimation prior to actual implementa-
tion a set of generic equivalent metrics is introduced. Expressing the area of a V-FPGA in
MUX2 equivalents, LUTK equivalents and Flip-flop count is independent from the target
platform and doesn’t need to be repeated if the platform changes. A metric for platform
dependent estimation is given through the introduction of weighted minimum size basic
elements, which is a more meaningful metric. In the end the platform dependent met-
rics really matter. So what is the purpose of platform independent metrics? The answer
is that platform independent metrics can be translated to platform dependent metrics
through characterization, thereby bypassing the timing intensive implementation steps
for the purpose of quick estimations.

6.3.2.1. MUX2 Equivalent (M2E)

MUX2 Equivalent (M2E) is a technology independent metric for expressing the complex-
ity of a logic circuit by 2:1 MUXs. It is an important metric in virtual FPGA architectures
as MUXs are the dominating types of elements. LUTs and almost the entire routing struc-
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Figure 6.13.: MUX2-equivalent module-level complexity of V-FPGA for various K, N and
W combinations
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Figure 6.14.: Logic vs. routing complexity of V-FPGA expressed in MUX2-equivalents

ture are composed of MUXs. The rather simple decomposition of higher order MUXs
into 2:1 MUXs makes M2E a handy baseline unit. Recalling Table 2.1 from the fundamen-
tals Chapter 2 any of the other required logic functions can be realized with 2:1 MUX.
Thus, it is a fully legitimate technology-independant area metric. However, it shouldn’t
be the only area related metric in the system as it doesn’t account for sequential storage
elements. Therefore it needs to be complemented at least by flip-flop count to cover the
entire relevant area of a V-FPGA.

Figure 6.13 plots the M2Es against various combinations of K, N and W for CLB, PSM
and IOB components of the V-FPGA architecture. Thereby W was taken based on the
average channel width for the MCNC20 benchmarks. In most cases the complexity of
CLBs dominates, however it should be noted that it contains also the local routing. A
breakdown in logic and routing complexity is given in Figure 6.14. As expected, at finer
granularity of CLBs the routing complexity dominates and vice versa.

6.3.2.2. LUTK Equivalent (LKE)

To decouple LUT complexity from its realization the technology independent LUTK Equiv-
alent (LKE) is introduced as an abstract metric. Therein, the subscript K is a variable that
represents the number of inputs per LUT. For instance 4LUT3 represents the complexity
of four LUTs with each 3 inputs. This metric can be used two-fold:
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• The complexity of any combinational logic circuit can be expressed in LUTK . This
can be translated in platform dependent measures once the target platform is known.

• Synthesizing an application into a technology independent BLIF netlist yields a
structure with variable K-input LUTs as nodes. Counting the LUTs for each K and
weighing them with an area factor proportional to LUT area gives a hint about the
overall complexity.

It should be noted that the translation into other metrics or a fixed K can cause some loss
of accuracy because some parts of a circuit can not be combined into a greater LUT if they
are on independent paths.

6.3.2.3. Flip-flop Count (FFC)

Flip-flop Count (FFC) is a mainly technology independent metric for estimating the com-
plexity of synchronous elements in the V-FPGA architecture. It is as simple as counting all
the flip-flops in the architecture. In virtual FPGAs FFC accounts dominantly for configu-
ration area as the configuration bitstream is loaded in the configuration units that consist
of flip-flop chains. Flip-flops are also used in BLEs for realizing sequential circuits, how-
ever their count there is much less than in the configuration units.

6.3.2.4. Minimum Size Basic Elements (MSBE)

Minimum Size Basic Element (MSBE) are introduced as technology dependent metrics.
The idea is to defines the smallest elements of the architecture out of which the other el-
ements can be composed and to associate the number of underlying resources required
to implement it. Area and delay of each MSBE are obtained through characterization.
Then the area of each MSBE type is normalized to the area of the smallest MSBE type
present in the platform. Elements of higher complexity are estimated through composi-
tion and respective summing of MSBEs. MSBE is a multidimensional metric depending
on the different resource types (LUTs, FFs, etc.). A special case applies on Actel devices
as a VersaTile cell can be either a 3-input LUT or a flip-flop and thus both have the same
normalized size 1. Manufacturing-independent metrics such as M2E, LUTK and FFC can
be mapped onto MSBE metrics, meanwhile this tandem presenting an easy way to trans-
fer metrics from one platform to another. The accuracy of MSBE is rather high. Table 6.1
shows a comparison of area estimation through MSBEs vs. actual area that is reported
after synthesis and technology mapping of an inner tile of a V-FPGA. The target platform
is an Actel (now Microsemi) ProASIC3 device. The estimated area is hierarchically di-
vided in sub-modules. The actual area is reported only for the whole inner tile. Between
estimated area and actual area the relative error is only around 0.7 %.
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Table 6.1.: MSBE based area estimation vs. actual area reported by Microsemi Libero IDE
on a ProASIC3 device for an inner tile of V-FPGA with the parameters K = 4,
N = 7, W = 25

est. area
per mod-
ule

qty actual
area
(synthe-
sized and
mapped)

error

CLB 623 1
BLE 33 7

LUT 31 1
BLE_inMux 14 28

cbR 29 16
cbW 50 7
PSM 500 1
total 1937 1950 0.7 %

6.4. Design Space Exploration Methodology

To find the optimum parameters an architecture level design space exploration is per-
formed with combinations of varying cluster size N and LUT size K. Parts of either
MEANDER toolflow or of VTR toolset [63] can be used for this purpose and are com-
plemented by custom scripts and architecture file generators in the V-FPGA framework.
However in Figure 6.15, it is aimed to describe the flow of the involved CAD steps in a
more general view independent from the actual tools. Starting with the smallest K = 2,
technology independent netlists of presynthesized benchmark circuits are translated into
netlists of equally sized K-input LUTs. Proceeding this is the process of packing, where
N LUTs are clustered into one CLB with an initial value of N = 1. The hypergraph nodes
of the resulting netlist are placed onto an array of CLBs, whose size is not known at the
beginning. One of the optimization goals of this placing step is to determine the required
number of CLB columns and rows with minimum area consumption. The placed nodes
are then swapped for timing driven optimizations, aiming for minimum distance between
connected nodes. The next step is to route the signal paths between the placed nodes by
considering the routing capabilities of the architecture (PSMs, connection boxes, in- and
output multiplexers). The channel width W is not fixed and is determined iteratively in
an area driven mode attempting to route the design with minimum required tracks per
channel. To speed up this process, W is estimate beforehand based on the parameters
K and N. This is not an accurate estimation since the minimum W depends also on the
application. However, this is good enough to start an initial routing attempt, followed by
iterative bisection of the estimated W to converge towards the actual minimum channel
width with a reduced number of routing attempts. Once the minimum channel width is
found, the usual timing driven optimizations follow.
The steps of packing, placement and routing require information about the target virtual
FPGA architecture and the parameters and constants related to area and delay models.
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Figure 6.15.: Concept of parametric DSE flow

This information is provided through architecture files. As we can see in Section 5.6 some
equations of the area and delay models are dependent on W, which is known only after
the routing process. Thus initially the estimated W is used. For an improved accuracy, a
feedback is needed to update the architecture file with the actual channel width W and
to re-run the area- and/or timing-driven place & route processes , because the exact logic
depth and the area of the multiplexers employed in the connection boxes depend on this
parameter, which is known only after the routing process. The results in terms of array
size, channel width, area, critical path delay are stored in a data base for assessing the
figures of merit (FOM). Then the process is repeated with other combinations of N and K
in a nested loop to span the design space of interest. The procedure can be repeated with
other parameter variations, e.g. switch block type SBtype and/or number of layers L in a
3D V-FPGA, to extend the analysis.
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6.5. Conclusion

To reduce design time, 7 customizable SoC templates with embedded V-FPGA and/or
ViSA cores that target a wide field of applications characterized by parallelism and control-
flow content were proposed in this chapter.

A customization flow that starts with the analysis of the application and gradually tunes
the architectural parameters of the V-FPGA or ViSA based on a new design space explo-
ration methodology was proposed to obtain application specific optimized V-FPGA and
ViSA cores to embed in the custom SoC.

Furthermore, a set of new area related metrics (VLUR, PLUR, MLUR, M2E, LKE, FFC and
MSBE) for virtual FPGAs was developed in order to quantify and assess how well an ap-
plication is mapped onto a custom V-FPGA and how well a custom V-FPGA is mapped
onto a COTS FPGA. Experiments have shown a connection between virtual logic utiliza-
tion ratio and area. With the PLUR metric it is also interesting to observe the additional
waste of area in combinations of custom V-FPGA onto COTS FPGA that results form un-
derutilization of platform resources. Experiments have shown that this depends a lot on
the granularity of the underlying platform. For instance, the resources of the very fine-
grained Actel ProASIC3 platform are perfectly utilized at 100% per allocated cell while
resources of the coarser-grained Xilinx Virtex-7 platform are underutilized at 17-63% in
average per allocated cell depending on the LUT size of the V-FPGA. I.e. there is more
waste of area on the Xilinx platform due to quantization effects. MLUR combines PLUR
and VLUR to assess the overall mapping efficiency of application mapped onto the V-
FPGA mapped onto a COTS FPGA. This helps to understand which combinations go well
together, even before full implementation of the application. However, it is only one part
of the puzzle, because routing area is not considered therein. In the end, what really mat-
ters is the overall area, which is known only after implementation. The use of MSBEs as
metric in conjunction with the area models from Section 5.6 yields a quick yet quite accu-
rate area estimate without the need to synthesize the V-FPGA. Experiments have shown
errors less than 1%. This speeds up the process of DSE and customization remarkably,
when the V-FPGA doesn’t need to be synthesized for each combination of architectural
parameters.
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7. Target Technology Mapping and
Characterization Flow

This chapter discribes and discusses ways of mapping a V-FPGA architecture onto an un-
derlying platform. Section 7.1 concerns virtualization, i.e. the mapping of the V-FPGA
onto physical COTS FPGAs. Section 7.2 covers the physical implementation of the V-
FPGA onto an ASIC process with the aim to embed custom FPGA fabrics into heteroge-
neous SoCs. This leads to loss of virtualization yet gains significant area and performance
improvements.

Closely related to target platform technology is the characterization of the V-FPGA, which
is significant for area and delay models and thus to improve the accuracy of DSE and
application mapping tools. The characterization flow is described in Section 7.3.

7.1. Virtualization

A major aspect of the V-FPGA is platform independency. Hence it is designed to be
mapped out of the box on any COTS FPGA. The key component for achieving this is
a design methodology with self-generating VHDL models exploiting GENERATE loops
in conjunction with generic parameters. Thus, despite the extensive capabilities for cus-
tomization, the vendor IDE tools supplied with the COTS FPGA are sufficient for map-
ping the virtual layer and there is no need for additional tools like e.g. code generators for
scaling and customizing the architecture. Irrespective of the vendor (Xilinx, Microsemi,
Altera (now Intel), etc.), the steps are fundamentally the same:

1. Create a new project and select the target device.

2. Add the VHDL source files of the V-FPGA to the project.

3. Set the generic parameters either in the top-level module or in the package initconfig.

4. [Optional]: introduce platform specific optimizations if not inferred automatically,
such as

• Replace generic elements by supported macros, where the tools don’t do it
automatically. E.g., multipliers or adders in integrated ViSA cores are generic
to be supported by Actel devices, yet Xilinx or Altera devices contain dedicated
hard macros that are more efficient than generic logic implementations of such
operations.

• In Xilinx FPGAs slice-internal MUXF BELs can be used as a replacement for
the generic LUT-based MUXs [25].
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• Manually insert clock buffers, global net buffers and define clock regions to
reduce skew and to enhance timing in flip-flops and configuration signals.

While these techniques are a few examples of improving overall area efficiency and
performance, they suffer portability if they need to be added manually. Adequate
replacements need to be found and the architecture re-implemented when changing
the platform.

5. If desired, integrate the V-FPGA module with other system modules either using
SoC templates as introduced in Section 6.1 or in a fully custom system architecture.
For easier integration, the V-FPGA sources include an optional peripheral unit with
AMBA APB bus interface that allows a memory-mapped access of V-FPGA I/Os by
microprocessors or other modules with compatible bus interface (see Section 6.1).

6. Define the clock and I/O constraints for the system. The V-FPGA is a multi-clock
architecture with separate clocks for configuration and logic. Therefore, separate
clock constraints are possible. Generally, the configuration infrastructure can be
clocked higher than the logic as it is fully pipelined with short paths due to daisy-
chaining of configuration flip-flops.

7. Synthesize the design with the integrated synthesis tools. Each COTS FPGA vendor
integrates at least one synthesis tool in their IDE, but provides also interfaces for
coupling external synthesis tools.

8. Run place & route process with the provided vendor tools. A challenge in timing
driven routing is that the V-FPGA (and most other FPGA architectures) inherently
contain possible combinational loops in the routing infrastructure due to flexibility.
Actually, the V-FPGA will be configured in a way that such loops will not occur
unless intended by the application. Yet, the place & route tools of the underlying
platform, being not aware of the applications that are mapped on the V-FPGA, need
to assume such loops as possible paths. Most vendor tools are capable to break
such loops automatically. In cases where this fails, false path constraints need to be
introduced.

9. Generate the bitstream and program the device.

Figure 7.1 shows an exemplary toolflow for mapping the V-FPGA onto an Actel/Mi-
crosemi FPGA, that supports all the steps listed above. It exploits the Libero IDE toolset
from the manufacturer Microsemi. On the left side there is the hierarchical project view
with components and subcomponents. The top-level V-FPGA component (TOP_V_FPGA)
is integrated with a microprocessor subsystem through APB and AHB busses. On the
right side the toolflow is interlinked with arrows indicating the order of the steps.

It is clear that virtualization and the flexibility that it offers come at the price of high area
overhead. As far as related work is concerned, Lysecky et al. report for their virtual FPGA
an area overhead of roughly 100x [65]. Brandt et al. achieved an area overhead of 40x by
employing platform exclusive LUTRAMs in their ZUMA [20] architecture while sacrific-
ing portability. Thereby both related works define the overhead as number of physical
resources that are required to realize virtual resources (including logic block, associated
routing circuitry and configuration memory) of a similar complexity.
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7.1. Virtualization

Figure 7.1.: Toolflow for mapping V-FPGA onto an Actel/Microsemi COTS FPGA

Table 7.1.: Module-level resource utilization when mapping one tile of a V-FPGA core with
K = 3, N = 4 and W = 4 onto a Xilinx Spartan-3 device

Slice Reg LUTs
CLB 108 116
PSM 32 16
total 140 132
per V-FPGA LUT 35 33

Lysecky et al. count the utilized resources of a Xilinx Spartan-2E when implementing
one virtual CLB and one virtual Switch Matrix. Then they devide that number by 4,
which is the number of LUTs per virtual CLB. The complexity of the virtual LUTs, being 3-
input LUTs, is actually less than the complexity of the platform’s 4-input LUTs. However,
Lysecky et al. generously round up the overhead so that a factor of 100x seems more or
less reasonable in the end.

For a direct comparison, following the same definition for resource overhead, a V-FPGA
with K = 3, N = 4 and W = 4, being tuned for a similar complexity as the virtual FPGA
by Lysecky et al., is analyzed. Table 7.1 concludes an area overhead of 35x when mapped
on a Xilinx Spartan-31 device. This is around 2.8 times less than Lysecky’s virtual FPGA.

The resource overhead for the ZUMA architecture is reported on a Xilinx Virtex-5 device.
To compare the V-FPGA with ZUMA the same baseline platform is chosen and the logic

1Spartan-3 was used as hosting platform instead of Spartan-2E because the latter was not supported anymore by
the employed vendor tools. Since both are based on 4-input LUTs, the results are assumed to be transferrable.
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Table 7.2.: Module-level resource utilization when mapping one tile of a V-FPGA core with
K = 6, N = 8 and W = 55 onto a Xilinx Virtex-5 device

Slice Reg LUTs
CLB ? ?
PSM ? ?
total 784 634
per V-FPGA LUT 98 79

Table 7.3.: Key architectural parameters in virtual FPGAs - a comparison of the V-FPGA
with related works

V-FPGA Lysecky [65] ZUMA [20]
LUT size K 3 6
Cluster size N 4 8
Channel width W 4 bi-dir 112 uni-dir
SB topology Wilton, Universal, Disjoint fixed with fs = 12 fixed

with fs = 3 or fs = 5
3D stacked layers L - -

related parameters of the V-FPGA are tuned to match a similar logic complexity as ZUMA,
i.e. LUT size K = 6 and cluster size N = 8. With respect to channel width, the two archi-
tectures have different routing infrastructure, thus there is no direct comparison possible.
However, Brandt et al. state that they have chosen their channel width 112 based on the
minimum requirements to route all the MCNC20 benchmarks. In V-FPGA with K = 6 and
N = 8 the full routability of all the MCNC20 benchmarks is already achieved at a channel
width of W = 55. With these parameters the utilization for mapping the V-FPGA onto Xil-
inx Virtex-5 is reported in Table 7.2 from which we can conclude a resource overhead of
around 98x, which is around 2.4 times more than ZUMA, which used platform exclusive
elements. However, this comparison doesn’t consider neither the portability aspects nor
application specific parameter tuning of the V-FPGA. In [34] we have shown a possible
variance of up to ±95.9 % on the same target platform and for the same application just
by tuning of parameters.

As summarized in Table 7.3, the V-FPGA has the most flexible architecture. In contrast to
other virtual FPGAs, the LUT size, cluster size, channel width, switch block topology and
3D stacking are parameterizable, to name only a few. This advantage can and should be
used to increase mapping efficiency, which improves the overall area efficiency.

Finally, it is of interest how well the virtualization aspects are fulfilled in comparison
with related works. This is summarized in Table 7.4 with the V-FPGA excelling in most
aspects. In terms of accessibility ZUMA is better as the source files are openly available
in the internet.
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Table 7.4.: Fulfillment of virtualization aspects
V-FPGA Lysecky [65] ZUMA [20]

Portability +++ +++ -
Partial and dynamic reconfiguration +++ - -
Adaptivity +++ 0 0
Prototyping and emulation +++ + +
Accessibility + + +++

7.2. From Virtual to Physical

To radically enhance area efficiency and performance the V-FPGA can be mapped in an
ASIC, which can be also more cost efficient if the sales volume permits. Then the param-
eterizable virtual FPGA becomes a specialized physical FPGA. Combining the V-FPGA
fabric with dedicated hard macro blocks such as microprocessor cores, DSPs, etc. yields
heterogeneous reconfigurable SoCs. Meanwhile, there is a big variety of these macros
available as licensable or open source IP cores. Bringing the highly customizable V-FPGA
in the game yields practically almost unlimited possibilities for specialized yet flexible
SoCs. This is obviously attractive especially for Cyber-Physical Systems (CPSs), sensor
networks and Wireless Sensor Networks (WSNs) and IoT for the following reasons:

• These types of devices have typically tight requirements on area, power and costs.

• Having pre-determined tasks, the requirements can be easier met on specialized
SoCs than on general purpose SoCs.

• Configurability yields adaptivity in the field. The option to alter parts of the circuit
during runtime eventually avoids the necessity to change parts in some cases and
reduces service costs. For instance, changing the communication protocol of a sen-
sor node is a typical scenario for the reconfigurable fabric. Another example is the
reuse of the same SoC for a number of different sensors and the reconfiguration of
the signal conditioning whenever the sensor changes. A non-reconfigurable ASIC
or SoC would need replacement in these cases.

• Being emerging technologies, time-to-market is important to acquire and secure
market share. Building upon libraries of parameterizable IPs (including V-FPGA)
saves development time.

Hence, this subsection governs the physical implementation of the V-FPGA to offer a flexi-
ble solution for embedding customized FPGA cores in SoC ASICs. The focus is on a soft-IP
approach utilizing standard-cells as it allows full-blown customization of the FPGA archi-
tecture and reduces design time compared to a pre-laid-out full-custom hard-IP approach,
accepting that the latter approach would likely yield higher optimization on the physical
layer yet not on the architecture layer. From a SoC perspective the soft-IP approach gives
also more flexibility to the floorplan and reduces whitespace through a) tuning the aspect
ratio or b) defining a custom outline shape of the FPGA core or c) performing a flat layout.
Furthermore it allows feedthrough insertion to improve routability and timing closure of
signals crossing different partitions of the SoC.
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Figure 7.2 illustrates the flow for mapping the V-FPGA onto an ASIC. Generally we can
divide the flow in two parts, that are explained in the following: I) mapping of the RTL
VHDL models onto standard cells of a given technology library and II) creating the layout
of the resulting schematic (technology-mapped netlist).
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7.2.1. Standard-cell Mapping

A nice design peculiarity of the V-FPGA is that the source files can remain always the same
no matter how the architecture is tuned and what the target technology is. Apart from the
source files there are technology libraries and timing constraints needed. In the following
examples the 45 nm GPDK libraries from Cadence are used for demonstration purposes.
The design steps are performed with the tool Encounter RTL Compiler from Cadence [22],
yet other similar tools such as Design Compiler from Synopsis can be engaged as well.

After setting up the library and source file paths, the first step is to import and elaborate
the VHDL source files of the V-FPGA. Depending on the desired layout strategy (flat,
hierarchical top-down or hierarchical bottom-up) either all source files are imported or
only the tile components with all their recursive sub-components. The preferred layout
strategy is hierarchical bottom-up as described in Section 7.2.2. Therefore, we start with
the tile components, which after their layout become library macros that can be used in a
second run for the top-level design.
During the elaboration phase the syntax and semantics of the source files are checked, the
design is translated into an internal data structure of the tool, registers are inferred and
higher-level optimizations (e.g. elimination of dead code) are performed. Furthermore
it is possible to overwrite generic parameters during elaboration through the command
option -parameters {<par1> <par2> ...}. This is an alternative to changing the parameters in
top VHDL file.

In a next step constraints are applied. This includes user constraints that are provided
in a *.sdc file as well as design rule constraints that are inferred from the technology li-
braries. The minimum user constraints for the V-FPGA are clock constraints. The V-FPGA
is a multi-clock design and supports different clocks for logic and CLB-, PSM- and IOB-
configuration infrastructures.

Then the synthesis is performed that transforms the design into a gate-level structure with
standard cells from the technology libraries. First a generic gate-level netlist is created
and a number of technology independent optimizations are performed, such as datapath
synthesis, resource sharing, mux optimization, structuring and removing of redundancy.
Then the actual mapping to standard-cells from the technology libraries takes place, in-
cluding restructuring, buffer-insertion, etc.. In RTL Compiler this is called Global Focus
Mapping and is a multi-objective task that considers timing, area and power in the overall
solution space. Global optimizations follow, that include sizing of cells and optimization
of buffer trees. Further incremental optimizations take place to fix design rule violations
and improve timing and area. More details on this can be obtained from [22].

The next step is then to remove unused (i.e. unconnected) ports from the design. This is
not done by default in RTL Compiler but needs to be invoked by a command. This step is
only necessary for the 2D V-FPGA as it contains a few unconnected ports for the following
reason:
The V-FPGA design has the same source files for 2D and 3D flavours which are distin-
guished by the parameter L. In the 3D flavour each layer features additional ports for
TSVs. The 2D V-FPGA is actually a layer within the 3D V-FPGA, however it doesn’t re-
quire TSVs if it’s purely 2D. Internal signals for TSVs are conditionally unconnected in
the 2D V-FPGA through if...generate statements, yet these kind of statements can not be
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7. Target Technology Mapping and Characterization Flow

applied to port definitions and therefore the unneeded ports persist in the RTL design and
need to be removed from the synthesized netlist through the command delete_unloaded_un-
driven -all. Figure 7.3 shows the hierarchical RTL schematic of a tile component after syn-
thesis and optimization. In that example, the parameters K = 3, N = 2 and W = 2 were
chosen, which are intentionally rather small in order to reduce the complexity in favour
of a better readability of the schematics. The upper hierarchy levels show blackboxes of
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Figure 7.3.: Hierarchical schematic of a tile component after synthesis with RTL Compiler
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sub-components and interconnects. The deeper we dive in the hierarchy, the more black
boxes are resolved into more concrete elements. The schematic of the LUT component
already shows elements from the technology library. Furthermore we can see that the tool
has also inserted buffers as part of the optimization steps.

Finally the technology mapped and optimized netlist (in a verilog file) and a constraint file
(*.sdc) can be exported. RTL compiler is also able to generate script files that automatically
set up the design and imports the files needed for the layout in the next tool Encounter,
though these settings can be done also manually.

7.2.2. Hierarchical Layout

Due to the regular structure of the V-FPGA, the layout can be facilitated by a hierarchical
flow. The largest recurring component in the V-FPGA architecture is a tile. There are 9
different tiles - 4 corner tiles, 4 border tiles and 1 inner tile - whereby the most recurring
one is the inner tile. The proposed design methodology follows a bottom-up strategy,
whereby in a first design round (see Section 7.2.2.1) it lays out each of these 9 tiles as
macro blocks with well-defined dimensions and I/O locations. Then, in the second round
(see Section 7.2.2.2), multiple instances of the same macro blocks are placed relative to
each other and interconnected. This approach has a number of advantages:

• shorter implementation time

• equal layouts and characteristics of macro tiles

• more predictable over-all performance and area

• efforts can be concentrated on optimizing the few macros

7.2.2.1. Layout of Macro Tiles

Starting with the inner-tile, the project is set up and the synthesized and technology
mapped design described in Section 7.2.1 is imported. This includes settings for paths
to the netlist, technology libraries and constraint file as well as setting constraint modes,
timing analysis modes and the selection of the top cell, which in this case is the inner tile.
Furthermore the global nets for VDD and VSS are defined and connected.

Then the floorplan is specified. Rather than entering absolute dimension values, we spec-
ify the target aspect ratio and utilization for the inner-tile which the tool uses to derive
absolute dimensions. An aspect ratio of 1.0 and a target utilization of 80 % are a good
start for the inner tile, though higher utilization is possible as well. Note that the result-
ing dimensions might not satisfy exactly the target aspect ratio, because standard cells
have a fixed height and the height of the module dimension corresponds to multitudes of
standard-cell rows with equal heights. For instance, applying an aspect ratio of 1.0 and a
utilization of 80 % to an inner-tile with the parameters K = 4, N = 5 and W=23 results in
a floorplan with the dimensions 88.2 µm x 85.5 µm in a 45 nm technology.

The next step is the power planning to add vertical power stripes for VDD and VSS at
the left and right borders of the block. In order to avoid standard-cells from being placed
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on these stripes, placement blockages have to be set around the power stripes. Then
the standard cell rows in that areas can be cut. Note that this will effectively increase
the density as the available area for standard cell placement is now slightly smaller than
initially specified in the floor planning due to the placement blockage around the power
stripes and the cutting of standard cell rows. Depending on the technology process it
might be also necessary to place endcap cells at the ends of the rows for a correct bias of
P+ and N+ substrates.

Before placing the standard cells, the locations of the block I/Os need to be specified. If
unspecified, the placement tool will automatically assign locations to the I/Os. However
at this design stage the tool doesn’t know how the top level design of the V-FPGA will
be assembled and what will be the relative positions of the tile macros to each other.
Thus it can happen that I/Os, that were intended to connect a tile macro with another
one left to it, will be placed e.g. on the bottom side and cause a poor routing. In order
to avoid this, the V-FPGA framework contains a python script called align_ports.py (see
Section A.4) to generate explicit I/O location constraints for the tile blocks with the correct
orientation and optimal alignment that reduces path lengths for inter-tile connections.
The required parameters are channel width W, width and height of the tile macro block.
The result is a custom I/O file with offset positions of I/Os on all four sides, that can be
imported into the physical design tool (here Cadence Encounter). However, with user
defined placement of I/Os there is a high chance that many of the I/Os are not properly
aligned with the manufacturing grid. This can lead to connectivity problems in a later
design phase because signals are routed only with alignment to the routing grid. This
problem is shown in Figure 7.4a where the router fails to connect I/Os that are off the
grid. One possibility to overcome this problem is to consider this in the python script
by rounding the I/O locations to the nearest valid track on the routing grid. However
this requires exact knowledge about the spacings and offsets of the routing grid. A more
elegant solution is to issue the legalizePin command after any user defined I/O placement.
This will snap the I/Os to the routing grid by slightly shifting misaligned I/Os to valid
locations that are in line with the grid. Furthermore it will dissolve other violations such
as overlaps, etc.. Figure 7.4b shows the result of this correction that was applied on the
initial user defined placement of Figure 7.4a.

In a next step the standard cells are placed initially, followed by trial route and In Place
Optimization (IPO). IPO at this stage tries to fix possible setup time violations by moving
of standard cells. Thereby, the timing analysis for IPO relies on the parasitics estimated
after the trial route, which is a quick and dirty routing attempt for rough estimations on
wiring and congestions. Figure 7.5 shows a placed design of an inner tile. Left and right
are the red power stripes with placement blockage around them. The blue standarad
cells are placed in equidistant rows. The amoeba view in Figure 7.6 shows how the PSM-
related and CLB-related cells are distributed. The CLB area seems larger than the PSM
area, however this should not be taken as an indicator for logic area vs. routing area,
because the local routing resources (the connection boxes and the input-MUXs for the
BLEs) are within the CLB-instance.

Once the placement is fixed, the Clock Tree Synthesis (CTS) can take place, which creates
the clock trees. The clock trees provide the standard cells with the clocks. The branches
of a clock tree are typically H-shaped and all leafs have approximately the same path
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(a) (b)

Figure 7.4.: Routability in user defined alignment of I/Os: a) locations as defined, b) after
snapping to routing grid

length to the root point. This attempts to keep the delay times on the clock lines as equal
as possible in order to reduce clock skew. Additional buffers and inverter cells can also
be inserted, so that in some places equal delay times can be also achieved without equal
path lengths. The target specifications (MaxDelay, MinDelay, SinkMaxTran, BufMaxTran,
MaxSkew) as well as permissible buffers that can be inserted are defined in and provided
by an external .ctstch specification file. Figure 7.7 shows the clock trees (white lines) after
CTS. There are three different clocks in the inner tile module: a clock for the CLB config-
uration, a clock for the PSM configuration and a clock for the sequential logic flip-flop.
Accordingly there are three clock trees. After CTS another IPO is executed. Thereby, the
cells can be still shifted slightly to provide as accurate clock paths as possible.

The next major step is the routing of signal wires. Before that, in a special route process,
the power wires are routed from the horizontal and vertical power strips to the standard
cells to provide the voltage supply and ground connection. Then the actual routing of the
connections between the cells and to the pins is carried out in two phases. The global rout-
ing phase partitions the design into a set of smaller routing problems (bins) and creates
rough routes for the connections between the bins. During detailed routing, several iter-
ative routing tasks are carried out in the individual networks. After the routing another
IPO is performed to optimize hold- and setup time slacks. When everything is fixed, then
finally filler cells need to be inserted. These cells fill the empty gaps between the standard
cells to create a planar surface as the basis for the overlying metal layers. One could add
the filler cells also in an earlier design phase, yet it makes more sense to add them in the
end when all the placements and shifts are finalized. Figure 7.8 shows the final layout of
the inner tile macro, that is then exported as black box macro. We can see many straight
and long horizontal lines in the upper area and many straight and long vertical lines in
the right area. This comes from the fact that the PSM is placed in the upper right quarter
of the inner tile and the routing channels go through the PSM.
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Figure 7.5.: Standard cell placement of V-FPGA inner tile macro in a 45 nm ASIC process

Figure 7.6.: Amoeba view of a placed inner tile macro showing the outlines of CLB and
PSM instances
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Figure 7.7.: Result of Clock Tree Synthesis (CTS) in inner tile macro of V-FPGA

Then the layout is exported in a standard stream out format such as Graphics Database
System (GDSII) or Open Artwork System Interchange Standard (OASIS). Furthermore, an
abstract of the macro layout is generated in Library Exchange Format (LEF) as well as a
.lib timing library file. These two files are needed in the top level design to represent the
macro and to consider the associated delays.

Then all these steps are repeated for the other tiles. However, the floorplanning of the
other tiles is done with absolute dimensions in order to achieve a unified alignment of
I/Os for optimized inter-tile connections. A Python script derives the absolute dimen-
sions of the other tiles from the dimensions of the inner tile based on the equations in
Table 7.5. Therein, wi and hi are the width and height of the inner tile macro. The vari-
ables ai, abl , ab, abr, ar, atr, at, atl and al are the estimated area requirements for inner
tile, corner-tile bottom-left, border-tile bottom, corner-tile bottom-right, border-tile right,
corner-tile top-right, border-tile top, corner-tile top-left and border-tile left respectively,
that are obtained from the synthesis reports. Basically, the strategy behind this sizing
methodology is to keep the edges between adjacent tiles equal in order to exactly match
the I/O alignment for the inter-tile connections.
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Figure 7.8.: Layout of V-FPGA inner tile macro after routing

width height
inner tile wi hi

border-tile bottom wb = wi hb = max( ab
ai

· hi,
√

abl
ai

· max(hi, wi))

border-tile left wl = max( al
ai

· wi,
√

abl
ai

· max(hi, wi)) hl = hi

corner-tile bottom-left wbl = wl hbl = hb
border-tile right wr =

ar
ai

· wi hr = hi
corner-tile bottom-right wbr = wr hbr = hb
border-tile top wt = wi ht =

at
ai

· hi
corner-tile top-right wtr = wr htr = ht
corner-tile top-left wtl = wl htl = ht

Table 7.5.: Sizing of remaining tile macros based on the width and height of the inner tile
macro
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7.2.2.2. Layout of V-FPGA Top-Level Module

Once all tiles are completely laid out, the top level module that assembles the V-FPGA
out of the tile macros can be implemented. The proposed methodology to obtain a top-
level netlist that binds all tile macros is to repeat all steps from Section 7.2.1, yet this time
employing the following modifications:

• Extend the library setup to contain apart from the technology libraries also the .lib
and .lef files of the tile macros that were created in the previous steps.

• Read in only the top-level VHDL source file of the V-FPGA. All other source files
are not needed as the sub-modules should be replaced by the laid out macros that
have become library components.

With these modifications all synthesis and technology mapping related steps are per-
formed in the same way as it was done for the tile components. The resulting netlist
contains instances of the tile macros and additionally buffers from the technology library
to improve the performance of inter-tile connections.

The layout procedure for the top-level module involves similar steps as for the macro
tiles with some differences in the project setup and the power planning. The project setup
needs now to import the newly created Verilog netlist of the top-level module and the
corresponding .sdc file. Furthermore, the library paths need to be extended to the .lib and
.lef files of the tile macros in addition to the technology libraries. All other project settings
(constraint modes, timing analysis modes, global VDD and VSS nets) are equivalent to
the settings for the tile macros.

The floorplan can be specified by aspect ratio and target utilization ratio. The aspect ratio
can be set close to the actual aspect ratio of the inner tile macro. The utilization ratio can
be set rather high (> 90 %) as the array of tiles follows a regular structure and the inter-
tile connections are rather easy to route due to the custom alignment of tile ports that was
done exactly for this purpose.

The power planning is done with each an outer power ring for VDD and VSS around the
core and with equidistant vertical and horizontal power stripes inside the core forming a
power grid as shown in Figure 7.9.

The next step is to place the macro tiles inside the core, followed by trial route and IPO. In
many designs macros are placed manually in order to take control of the relative positions
of macros to each other, which has a big impact on the quality of the routing. However,
the V-FPGA tile macros have custom I/O alignments with the purpose of high quality
inter-tile routing when placed as intended relative to each other. Knowing that the placer
targets a good routeability, the assumption is that the auto-placer should be able to place
all instances of the tiles in an array as intended with the correct orientation and the correct
relative locations to each other, because this yields undoubtly the best routing results
and requires only 1-2 metal layers. Indeed, the experiment in Figure 7.10a with 361 tiles
demonstrates that all tiles were placed correctly in an array of 19x19 tiles. Thus, we can
conclude that the custom alignment strategy for the I/Os of the tile macros facilitates
placement and routing of the array of tiles. Having a closer look at the results we can
see that most of the tiles have straight connections to their neighbours, yet there are a
few tiles that have a slight offset causing angular routes and change of metal layers (see
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Figure 7.9.: Floor plan of V-FPGA with power rings and power grid

Figure 7.10b). Still the routes are very short, yet perfectionists might desire optimum face-
to-face alignment of adjacent tile macros with straight connections in all directions. The
alternatives are then either to write a tcl script that defines absolute locations for all tiles
as intended or to execute the relativeFPlan command with user defined array constraints.
The latter approach relies on specifying offset, anchor point and orientation of each macro
relative to another macro.

The next steps are the same as for the tile macros, including CTS, post-CTS IPO, routing,
post-route IPO and filler cells. Figure 7.11a shows the clock trees of the V-FPGA array.
The macros, power nets and other signal wires are hidden for a better visibility of the
clock trees. The X shapes mark the connection points of the trees (mainly the leafs) and
the circles mark buffers that were inserted during CTS. Figure 7.11b shows the complete
layout after routing. The resulting core size is 2000 µm x 1938 µm for an array of 19 x 19
tiles corresponding to 18 x 18 CLBs, each with N = 5 LUTs of size K = 4 at a target
frequency of 500 MHz. The routing infrastructure has a channel width of W = 23 tracks
per channel.

Note that the macro tiles are represented by their abstracts only as the imported .lef files
don’t contain layout information. To obtain all layout information in one file for manu-
facturing, the stream-out of the top layer is merged with the GDSII files of the macro tiles.
The result is shown in Figure 7.12, where now we can see the complete layout. While the
previous figures were produced with Cadence Encounter tools, this one was produced
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(a)

(b)

Figure 7.10.: Automated placement of macro tiles in V-FPGA: a) array of 19x19 tiles, b)
detailed view of inter-tile connections

with the tool KLayout [55] from the final GDSII stream-out file. This explains the differ-
ent colour scheme.
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(a) (b)

Figure 7.11.: a) Clock trees in V-FPGA, b) layout with abstract tile macros after routing

Figure 7.12.: Merged layout of V-FPGA top level and tile macros
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Table 7.6 shows a qualitative comparison with existing embedded FPGA approaches.
Hard IP cores can not be customized by the system designer, but some manufacturers
offer to build custom cores per order. The proposed V-FPGA in a standard-cell soft-IP ap-
proach is the most flexible and accordingly allows unparalleled application-specific cus-
tomization with more than 20 architectural parameters.

Table 7.6.: Embedded FPGAs - a comparison of the V-FPGA with related works
FlexEOS [82] Neumann eF-

PGA [79]
MENTA
eFPGA [71]

EFLX [32] Achronix
SpeedCore
[1]

ADICSYS [3] V-FPGA

IP type hard IP mixed hard IP hard IP hard IP soft IP soft IP
technology 90 nm ? 28 nm, 14 nm 40 nm 22 nm any any
logic cells LUT4 clusters of

LUT2 + adder
logic

? 2x LUT4 4x LUT4 + 4-
bit ALU

? parameterizable
NxLUT-K

heterogeneous
blocks

- - DSP, memory optional mix
with DSP
cores and
memory

DSP, memory ? ViSA cores,
memory

customization - combination
of leaf cells

per order
only: aspect
ratio, number
and types of
blocks

concatenation
of cores

per order
only: aspect
ratio, qty. of
cells

? 20+ param-
eters (see
Table 4.1 in
Chapter 4)

7.3. Characterization Fow

Characterization not only reveals the area requirements and the maximum possible per-
formance of the V-FPGA mapped on a specific target platform technology, but is also
important for the accuracy of design space exploration and application mapping. This is
because place & route are area- and time-driven, relying on the provided area and delay
models with parametrizable technology dependent constants. Borrowing the constants
from a different target technology than the intended one will still result in a function-
ally correct mapping. However, this commodity, that with respect to virtual FPGAs has
been followed by the prior art, can be misleading for architectural parameter choices as
we have shown and discussed in [34]. The apparently optimum parameter choice maybe
actually sub-optimal if the technology related parameters and constants are too far from
being accurate. Therefore, the proposed characterization flow aims to properly assess
the relevant characteristics. It should not be confused with standard cell characteriza-
tion which follows a different scope and a different methodology with analog simulation
and signal sweeps. This is not necessary as the utilized standard cell libraries are already
characterized. Instead, the characterization described in this chapter has the purpose to
extract only the characteristics that are needed for the area and delay models employed
in the DSE and application mapping flows.

Irrespective of the underyling platform, the general characterization flow for the V-FPGA
described in the following:

1. Select and parameterize one tile to characterize, which is representative for most
of the other tiles. Obviously this is the inner tile which has the highest occurrence
and complexity. Architectural parameters that are already certain can be specified
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accordingly in the generic map of the tile. Other parameters that are subject to DSE
can be set to an average value. Generally, the parameters selected for character-
ization have a negligible impact on the accuracy of the area models, because the
models are based on MSBEs which due to their fine granularity are rather indepen-
dent on the parameters. However, the accuracy of delay models can be affected by
net delays that to some extent depend on the complexity of a tile.

2. Synthesize, place and route this tile alone with the methodologies and tools de-
scribed in Section 7.1 and Section 7.2.

3. Extract the relevant area information from the generated reports. Since the area
models rely on Minimum Size Basic Elements, they form the minimum set of ele-
ments for which we require area information. Particularly the area information of a
MUX2, MUX4, AND2, D-flipflop and in case of physical implementation also of a
buffer are needed. All other elements are derived from these MSBEs. In case an ar-
chitectural parameter such as the LUT size K is fixed, the accuracy can be improved
by extracting the actual area of a LUT rather than deriving it from the MSBEs. Yet,
experimental results have shown that the difference - if any - is negligible and has
no effect on the DSE and application mapping results. It should be also noted that it
makes no difference whether actual geometric area figures are used or normalized
numbers. For parameter tuning the ratio alone is important.

4. Extract the relevant timing information. We need the delays through MSBEs, the
worst case delay through a LUT, the setup-time and CLK-to-Q delay of a D-flipflop
and the delay of an average net. These numbers can be obtained through static
timing analysis with vendor timing analysis tools, which are able to report delays
for specific paths.

5. Include the obtained area and delay figures in the architecture file arch.xml that
is used by the EDA tools for application mapping and DSE. This is done by the
architecture file generator within the V-FPGA Explorer tool, that is also able to derive
required macro characteristics (e.g. for large MUXs, CLBs, IOBs) from MSBEs and
architectural parameters.

7.4. Conclusion

The generic structure of the V-FPGA with standard VHDL code makes it possible to im-
plement it either as virtual FPGA mapped onto a COTS FPGA or as embedded FPGA
mapped onto an ASIC process. Both ways including the necessary steps were discussed
in this chapter.

Virtualization adds another level of flexibility because the V-FPGA can be altered any-
time and also new features such as dynamic reconfiguration, JIT compilation, etc. can
be added to the system even though the underlying platform doesn’t support it natively.
This flexibility, however, comes at the price of high area overhead. This is not only for
the V-FPGA the case, but also for all other virtual FPGAs. Compared to related works,
following their definition of overhead and tuning the V-FPGA at a similar complexity for
a fair comparison, the V-FPGA has a 2.8 times lower overhead than the virtual FPGA of
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Lysecky et al. and 2.4 times higher than the ZUMA architecture. However, the ZUMA
architecture uses platform-exclusive resources that prohibit direct portability onto other
platforms, yet portability is one of the main aspects of virtualization. Furthermore, in
this comparison we did not consider the application specific parameter tuning capabil-
ities of the V-FPGA to reduce area. Based on benchmark results it is expected that the
V-FPGA improves its area efficiency for individual applications through parameter tun-
ing. This is not possible with related works as they have a fixed architecture that can’t be
customized towards applications. In general in virtual FPGAs the virtualization overhead
is 2-3 orders of magnitude. This high overhead can be compensated only by dynamic re-
configuration that reuses the area dynamically by mapping an equal number of temporal
exclusive applications. Nevertheless, area efficiency was never the purpose of virtual-
ization but rather its flexibility and independence are its values. The V-FPGA fulfils all
the 5 aspects of virtualization formulated in Section 1.3: portability, partial and dynamic
reconfiguration, adaptivity, prototyping and emulation, accessibility.

The virtualization overhead is eliminated through physical implementation by mapping
the V-FPGA onto an ASIC at the penalty of losing adaptivity of the architecture. A hierar-
chical bottom-up standard-cell approach with all the necessary steps was described in this
chapter, whereby first the 9 different recurring tiles of the V-FPGA architecture were im-
plemented as macros and then multiple instances of these macros were instantiated and
aligned multiple times in a top-level design. The standard tool flows for physical design
were extended by custom scripts for automated sizing of tile abstracts and unified align-
ment of IOs in a way that adjacent tiles can be attached to each other with minimum wire
utilization. Experiments have shown that due to these sizing and port alignment strate-
gies even the auto-placer manages to place instances of the tiles to an almost perfectly
aligned array without the need of relative placement constraints. For demonstration pur-
poses a V-FPGA with the parameters K = 4, N = 5, W = 23, X = 18 and Y = 18 was
implemented on a 45 nm standard cell approach with a target frequency of 500 MHz. The
resulting overall area for this 19 x 19 tiles array is only around 3.9 mm2. Such custom
V-FPGA arrays can be embedded and integrated with other modules to form application
specific reconfigurable SoCs targeting certain application classes. Thereby, this standard-
cell soft-IP approach has the advantage that the V-FPGA architecture can be customized
by more than 20 parameters to meet the application’s demands and maximize mapping
efficiency resulting in area efficiency. None of the related works offers such a flexibility.
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The following subsections present a selection of use cases with the V-FPGA employed.
Of course, the list of possible use cases would be very large due to the customization
approach, yet here only the ones that are peer-reviewed and published in [50], [35], [36],
[90], [98] and [95] are mentioned.

8.1. Industrial Process Automation

The low-power domain is characterized by well-defined tight requirements for area, cur-
rent and power. Furthermore, especially in the process automation field, real-time re-
quirements need to be met and a violation of the response time or the maximum current
rating can lead to severe consequences, especially in explosive environments. The process
automation industry is interested in the use of low-power FPGAs to realize reconfigurable
heterogeneous SoCs in intelligent industrial sensors as a power- and area-efficient 1-chip
alternative to classical solutions with microcontrollers and additional ICs.

A research project with an industrial partner identified flash-based low-power FPGAs
from Actel’s ProASIC3 or Igloo families as suitable devices from a power and area per-
spective for their application. However, these devices lack the desired feature of dynamic
reconfiguration, which they don’t support natively. Section 8.1.1 show-cases how this
limitation is cancelled by employing the dynamic reconfigurable V-FPGA architecture as
a virtual layer on the Actel ProASIC3 FPGA.

The lowest-power flash-based Actel devices are comparably small in terms of programmable
resources that they offer. In Section 8.1.2 the area efficient implementation of a complex
measuring chain is achieved by employing the ViSA architecture as overlay to reduce
control overhead compared to classical FSM implementations. Remarkably, ViSA reduces
the resource utilization from 172.7% to 62.5%, thus it enables the use of a tiny Actel Igloo
Nano device as platform for the measuring chain which was not possible before ViSA due
to severe overutilization.

8.1.1. Enabling Dynamic Reconfiguration on Flash-Based Low-Power FPGA

A heterogeneous multicore platform greatly profits power constrained applications. De-
pending upon the application requirement and the available hardware blocks of the mul-
ticore platform, the application can be partitioned into modules to enable optimized map-
ping and parallel processing on different cores, thereby leading to lower power consump-
tion. Though heterogeneity poses challenges to developers in the sense of having deeper
knowledge about each specific hardware architecture on the chip, the huge design space
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Figure 8.1.: Schematic view of the heterogenous SoC architecture with embedded V-FPGA
cores

in turn can be utilized to map each partitioned-application-module onto a specific hard-
ware block/architecture which can meet the precise requirements (e.g., parallelism, per-
formance) of each application module. Custom virtual FPGA architectures due to their
catering of dynamic reconfigurability even in off-the-self FPGAs, where this feature is
not available, and their independency to the underlying physical platform makes them
a good candidate for being embedded in heterogeneous hardware platforms. With their
use, features which are application specific like special functional and I/O blocks can be
exploited. This is exploited in [50].

The schematic view of such a system-on-chip architecture with V-FPGA cores is shown in
Figure 8.1.

Thereby the SoC template type A, which is described in Section 6.1, is adopted. The
system design is composed of the following blocks based on the customization flow de-
scribed in Section 6.2:

• A microprocessor core: It is best suited for control oriented tasks and interfacing. It
copies the configuration file from an external flash memory onto the internal RAM
of the configuration controller.

• One or more V-FPGA cores: It accelerates computation by parallel data processing.
Each V-FPGA core is an abstraction of the underlying physical FPGA realized by
its logic cells and runs applications described in VHDL or Verilog. V-FPGA being
used as an abstraction layer is of great benefit as the system design does not require
any additional changes even when it comes down to change of physical FPGA to
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ASIC. Additionally, V-FPGA cores promote dynamic run-time configuration even
though such a feature is not supported on the physical FPGA. For example, in the
case of Actel FPGA, their flash or antifuse based technique prohibits run-time con-
figuration as their configuration memory cannot be reconfigured during run-time.
Despite such a restriction, when integrated with virtual FPGAs such a feature is
made available to all the applications mapped onto the core. Thereby, virtual cores
enable efficient dynamic and partial reconfiguration.

• Configuration controller: The microprocessor specifies the configuration file which
needs to be loaded into the respective virtual core. The configuration controller then
accesses the memory controller to fetch the specific configuration data.

• Memory controller: It accesses the configuration file from an external non-volatile
memory.

• Advanced Microcontroller Bus Architecture (AMBA) busses: The on-chip commu-
nications are realized using AMBA busses. The Microprocessor accesses virtual
cores through AMBA Advanced Peripheral Bus (APB) bus and communicates with
the configuration controller and memory controller through AMBA Advanced High-
performance Bus (AHB) bus. Since both the microprocessor and configuration con-
troller require access to the memory controller, a bus arbiter is implemented. Fur-
thermore, a common configuration bus for all virtual cores enables transfer of con-
figuration data from configuration controller to the respective virtual core. In order
to configure each core separately, chip select signals are enforced.

Another aspect that needs to be examined is the size of virtual cores. It is of great im-
portance as each application requires different amount of CLBs. Having a core size big
enough to accommodate the largest application will lead to inefficient utilization of core
area. Hence, a technique called CoreFusion is introduced in [35]. Initially, a relatively small
core size is chosen and depending upon the CLB demand of each application the core can
be merged with adjacent cores in order to fit the application.

As the virtual FPGA is provided on Register Transfer Level (RTL) as pure VHDL code
and does not require any proprietary hardware macros, it is realized using the logic cells
of Actel ProASIC3 M1A3P1000. From Table 8.1, the efficiency of virtual FPGAs can be
viewed as two sides of a coin. On one side, virtual FPGA allocates far more physical logic
cells than when an application has been directly mapped onto the physical FPGA. On the
other side of the coin, beneficiary features like dynamic reconfiguration and reuse of chip
area for temporal exclusive functions can be embraced even for physical FPGAs which
do not natively support such vital features. Altogether, the more the amount of temporal
exclusive applications that need to be mapped, the higher raises the efficiency of virtual
FPGAs.

In this use-case, the V-FPGA core accelerates tasks such as CRC-check, memory tests, etc.
that fit in a 5x5 V-FPGA core. Figure 8.2 breaks down the module level resource utilization
in the hetogeneous SoC. On the left side the system consists of an ARM Cortex M1 soft-
core processor with debug interface, dedicated hardware blocks, and the V-FPGA. On
the right side, the resource hungry debug interface is removed from the ARM Cortex M1
core and instead a custom DSP core is integrated. In both cases the SoC fits in the Actel
M1-enabled ProASIC3 M1A3P1000 COTS FPGA. The 5x5 V-FPGA occupies 27% of the
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Table 8.1.: Utilization of physical logic cells on Actel’s ProASIC3 for implementing a V-
FPGA core with K = 4, W = 4 and various core sizes [50]

V-FPGA Size Cells or Tiles Utilization
M1A3P1000

Seq. Comb. total
2x2 480 643 1123 4.57%
3x3 902 1401 2303 9.37%
4x4 1456 2354 3810 15.50%
5x5 2142 3564 5706 23.22%
6x6 2960 5055 8015 32.61%
7x7 3910 6796 10706 43.56%
8x8 4992 8740 13732 55.88%
9x9 6206 10957 17163 69.84%
10x10 7552 13510 21062 85.70%

available resources, which is around 4% more than in Table 8.1. The differences come
from the peripheral unit that is not included in the table, yet accounted for in the figure.

The simulation in Figure 8.3 demonstrates the dynamic recofiguration of a V-FPGA on
a flash-based Actel ProASIC3 device. Here the sample application is a CRC (Cyclic Re-
dundancy Check) algorithm, which is implemented on the custom V-FPGA architecture
utilizing the application mapping flow described in Chapter 5. The dynamic reconfig-
uration process takes around 192 clock cycles. After that the application is active and
calculates the correct values.
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Figure 8.2.: Resource utilization for implementing the hetorogeneous reconfigurable SoC
on an Actel M1A3P1000 device: (a) SoC with microprocessor, debug unit and
V-FPGA, (b) SoC with microprocessor, V-FPGA and custom DSP
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Figure 8.3.: Simulation of dynamic reconfiguration of a V-FPGA core that is hosted by an
Actel ProASIC3 FPGA
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Figure 8.4.: Measuring chain with exemplary function blocks like polynomial, limiter and
square root functions

8.1.2. Enhancing Efficiency by Employing the ViSA Architecture

In [36] we examine a real-world application scenario from where a complex measurement
data processing chain needs to be implemented in a device with a foot print of 5x5 mm2.
The power budget is below 1 mW and the real-time requirement is given by a data rate
of 100 samples/s. The functional requirements include a sequence of several processing
blocks like non-linear transfer function, polynomial solver or square root. An exemplary
extract of this chain is depicted in Figure 8.4. Furthermore, the device should be able to
serve additionally as level shifter and as interface to industrial busses.

These requirements cannot be met completely by available off-the-shelf microcontrollers
and DSPs. ASICs are too expensive for the required volume, therefore we pick the ultra-
low power Microsemi Igloo Nano AGLN250 FPGA as target device. The limitation of
only 6144 cells (logic or D-Flip-Flops) is very challenging for mapping the required func-
tionality on this device. A 24x24 bit multiplier already utilizes around 34 % of the logic
cells, hence resource sharing needs to be applied extensively.

In a typical FSM based implementation the resource utilization is 172.7 % and conse-
quently the design does not fit inside the selected target device. Due to the area and power
limitations, it is not possible to use another FPGA target device. This is with resource
sharing applied that is managed by a lightweight round robin scheduler. Therefore, in
contrast to the FSM based alternative, we investigate the ViSA approach presented in Sec-
tion 4.4, which allows a more efficient implementation. Applying the hardware/software
co-design methodology introduced in Section 6.2, a microarchitecture, as depicted in Fig-
ure 8.5, is generated, which is specifically tailored towards the application needs with
focus on area minimization.

The basic function units are a multiply and accumulate (MAC) unit, a logic unit (shift
left, shift right, AND, OR, XOR, NOT), a comparator and a load/store unit. The MAC
unit is realized by switching the output of the multiplier directly to the input of the adder
when requested. Especially the polynomial function, the transfer function and the square
root benefit from multiplying and accumulating in one clock cycle. A comparator is used
to enable conditional jumps and is only connected with the program counter (PC). This
saves resources for the input multiplexers on the other units.

In a FSM based realization, the same application utilized 172.7 % of the available logic
at the same data widths. This over utilization resulted after applying manual resource
sharing, e.g., only one multiplier in the whole design, and several time-consuming op-
timization iterations. In contrast with the proposed methodology implemented on the
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Figure 8.5.: Ultra low power VLIW-inspired Slot Architecture for measuring chains in pro-
cess automation implementing a program counter, a MAC unit, a logic and a
load/store slot

Actel Igloo Nano AGLN250, the specific VLIW-inspired Slot Architecture occupies only
52 % of VersaTiles1 and 62.5 % of block RAMs. Figure 8.6a shows the composition of the
resource utilization on module level for 24 bit data width. Since the Actel Igloo Nano does
not contain dedicated hardware multipliers, it occupies 34 % of the available logic and is
the largest part of the design. The 3 : 1 multiplexers contribute in total with 6 % to the
logic utilization. As the pie chart indicates (see Figure 8.6a), other components are negli-
gible in terms of area. Furthermore, maintainability is much better in the ViSA approach,
since changes in the algorithms can be applied much faster enabling faster verification
with the built in tracing.

The execution time for the processing of new input data is 90 clock cycles. Having a
data rate of 100 samples/s at the inputs, the minimum required clock frequency for the
VLIW-inspired Slot Architecture is 9 kHz.

As shown in Figure 8.6b, the Actel SmartPower tool estimates a total power consumption
of only 251 µW at 10 kHz clock frequency for the implemented ViSA core, while the most
switching contribution is by nets and memory. Based on these results, we can conclude
that ViSA is a highly efficient implementation for ultra-low power applications requiring
a small footprint.

1A VersaTile can be either a flip-flop or a 3-input LUT equivalent
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Figure 8.6.: Resource utilization and power consumption of ViSA in measurement pro-
cessing chain

8.2. 3D Ultrasound Computer Tomography

While Section 8.1 showed examples for employing V-FPGA and ViSA in low-power ap-
plications, this section shows the opposite corner case and deals with high-performance
medical imaging, where a customized many-core ViSA architecture - as a virtualization of
resources of an underlying Xilinx Virtex-6 FPGA - efficiently concentrates on the demand-
ing highly parallel arithmetic computation. The application targets at detecting breast
cancer with a 3D Ultrasound Computer Tomography (3D USCT) device as shown in Fig-
ure 8.7.

Ultrasound based medical imaging in 3D is characterized by a huge amount of data that
needs to be processed. In turn it allows a high degree of parallelization, which makes it
very suitable for GPUs and FPGAs. The basic principle of ultrasound based imaging in
3D is to use a 3D arrangement of ultrasound emitters and receivers surrounding the ob-
ject under test. The emitters sequentially send ultrasonic wave fronts, while all receivers
record the amplitude variation over time (A-Scan), including the transmitted signal as
well as its delayed echo scattered by the object under test. In case of [12], depending on the
resolution, 20 GB or more of raw measurement data is acquired that needs to be processed
in order to reconstruct one 3D image. This amount of data is not taking into account the
additional internally produced data within the calculations. On an Intel Core i7 CPU run-
ning at 2.67 GHz, the computation for a 3D image with the resolution 1024x1024x64 takes
around 15 hours [12].

The most compute intensive part of the image reconstruction is the Synthetic Aperture
Focusing Technique (SAFT) algorithm [30]. Adapted for 3D, the algorithm is described
by Equation 8.1 where P(x, y, z) is the position of the investigated voxel, E(x, y, z) the
position of the ultrasound emitter, R(x, y, z) the position of the ultrasound receiver, vs the
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Figure 8.7.: Setup of 3D Ultrasound Computer Tomography for breast cancer detection

speed of sound, and A(t) the value of the according A-Scan at the determined point in
time t.

I(~P) = ∑
∀(j,k)

A(t = (dj + dk) ∗
1
vs

)

dj =
√
(Px − Ex)2 + (Py − Ey)2 + (Pz − Ez)2

dk =
√
(Px − Rx)2 + (Py − Ry)2 + (Pz − Rz)2

(8.1)

The result is an intensity of the investigated voxel, depending on how much this voxel
is scattering the emitted wave fronts. If this voxel was located on a hard surface, the
intensity would be high. If the voxel was located on a soft surface, the intensity would
be low. This algorithm is applied for all voxels within the region of interest, giving a 3D
contrast image in the end.

The SAFT algorithm is highly parallelizable, such that many voxels can be investigated at
the same time. Additionally, the calculations per voxel can be parallelized as well. Thus,
it is a good benchmark application for demonstrating the high performance capabilities of
ViSA. A large Xilinx Virtex-6 (XC6VSX475T) is used as the target hardware platform. The
strategy is to have many ViSA cores running in parallel on the FPGA, while each ViSA
core has a reasonable configuration of parallel functional units. The reasons for multi-
core realizations rather than one big single core are on the one hand a better scalability by
the means of exploiting the parallelism of application. Furthermore, the complexity can
be reduced by a divide & conquer strategy. This also enhances the place & route results
on the target platform. Since smaller cores also have smaller instruction words, the per-
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Figure 8.8.: Dataflow graphs for SAFT algorithm
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Figure 8.9.: VLIW-inspired Slot Architecture for high performance medical imaging im-
plementing a program counter, several arithmetic and logic slots as well as a
load/store slot. ViSA is realized as a homogeneous multicore system.

formance of the memory system is improved because in contrast to a big single core no
extensive cascading of distributed native BRAMs is required, shortening the delays and
consequently the critical path.

The data flow graph for the algorithm is set up and analyzed to find an efficient scaling
(see Figure 8.8a). The ViSA core can access three memories concurrently, each for one of
the coordinates ~P, ~E, ~R. With this boundary, a schedule for the tasks is found, such that all
required units are highly utilized, thus having a high efficiency (see Figure 8.8b). Since the
positions of emitters and receivers are fixed, ROMs can be used instead of RAMs for the
memories, saving additional logic and especially routing resources. From this analysis,
our tailored ViSA core needs one Load/Store Unit, two Load Units, two subtracters, two
ALUs (including MAC functionality within one clock cycle), one square root unit and one
delay register.
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Figure 8.10.: Resource utilization of ViSA manycore on Xilinx Virtex-6

Accordingly, the structure of the ViSA core is set up as depicted in Figure 8.9. In the im-
plementation of the VLIW-inspired Slot Architecture on Virtex-6, the integrated DSP48E1
blocks are utilized for realizing the subtracters and the ALUs. CORDIC soft cores from the
Xilinx IP catalog are instantiated for implementing the square root units. The integrated
block RAMs realize all memories. A light-weight linear NoC (Network-on-Chip) enables
global access to the local data RAMs in case of multicore configurations. Therefore every
core has a NoC interface, which incorporates packet handling, parsing and DMA (direct
memory access).

The VLIW-inspired Slot Architecture is implemented in various multicore configurations
at 18 bit data width on the Xilinx Virtex-6 (XC6VSX475T) target platform as shown in Fig-
ure 8.9. The resulting resource utilization is examined as well as the achievable peak per-
formance for executing the SAFT algorithm. As metric for performance VoxelAScans/s
is used as defined in [16]. This is the number of processed AScans per second for recon-
structing voxel intensities. Figure 8.10 shows the resource utilization in relation to the
number of ViSA cores.

Since the resource utilization is straightly proportional to the number of cores, this indi-
cates that the ViSA multicore approach is efficiently scalable in terms of area. A more
detailed view of the relative module level utilization of a ViSA core in Figure 8.11 shows
that the main part of the utilization is by the square root unit, which is implemented by
the CORDIC soft core from the Xilinx IP library, and by the NoC interface. The other
functional units cause very little utilization of LUTs and registers, since they are realized
by the integrated DSP48E1 blocks.

Figure 8.12 shows the maximum operating frequency and the obtainable peak perfor-
mance for various multicore configurations after we applied loop optimisations in the
program flow. The maximum achievable operation frequency is around 230 MHz for
the single-core and around 220 MHz for configurations with up to 8 cores, but decreas-
ing slightly for larger manycore configurations. There are some stronger variations for
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larger configurations, which may arise from low place & route tool optimization efforts.
However, due to parallelism the achievable performance increases significantly with the
number of cores up to 27.0 GigaVoxelAScans/s for the configuration with 176 ViSA cores
operating at 160.4 MHz. If the number of cores is further increased, there is a slight degra-
dation in terms of performance, e.g., with 192 ViSA cores, only 25.2 GigaVoxelAScans/s
are achieved because of a significant decrease in operating frequency to 137.1 MHz due
to high resource utilization on the Virtex-6 FPGA and place and route problems caused
by Xilinx ISE. From the timing reports, we realize that the critical paths limiting the max-
imum operating frequency are in the memory structure. It is expected that the perfor-
mance will increase beyond this point if Virtex-7 FPGA is used in conjunction with Xilinx
Vivado.

Using the presented design space exploration, we conclude that the optimum configura-
tion contains 176 parallel ViSA cores. Furthermore, we still have a huge amount of free re-
sources (82.9 % slice registers, 43.4 % slice LUTs, 83.4 % BlockRAMs and 65.0 % DSP48E1s)
available for other tasks or for incorporating a V-FPGA region.

8.3. Dynamic Platform-Independant Application Mapping

The V-FPGA was employed in [90] to enable dynamic platform-independent application
mapping through virtualization.

FPGAs with their scalability and power efficiency though promise an alternative solution
for implementing parallel applications, the application complexity and hardware incom-
patibilities make them less flexible when compared to CPUs and GPUs. Thanks to virtu-
alization, which makes application mapping platform-independent, and thereby enables
its portability across different FPGA devices without additional modification. One of the
next burdensome tasks is Placement and Routing (P&R) because of its time consuming
nature. Though this cumbersome step can be optimized with fast placement and routing
algorithms, their inability to accommodate multiple applications concurrently is one of
the greatest stumbling blocks with regard to execution time. In V-FPGAs, since the appli-
cations are mapped onto the virtual architecture rather than onto the physical platform,
the P&R step of each application is independent of each other. Hence, V-FPGAs sanction
the intelligence to execute parallel P&R steps for different applications and thereby signif-
icantly increases the throughput of the toolflow. The application mapping onto V-FPGAs
follows the toolflow shown in Figure 8.13.

The toolflow is started with the assumption that knowledge about resource requirement
of the future application and the available resources at future time point is unknown.
When a new application requests for resources, it enters a queue system. The first block
called scheduler manages this queue by sending the new tasks serially to the next tool,
the CoreMapper, removes the finished tasks from the queue and also checks for the avail-
ability of resources. The CoreMapper then allocates an area on the SoC for the application
to be mapped and sends this information to P&R step. For building SoCs using V-FPGA
cores, "CoreFusion" methodology is employed, where the size of each V-FPGA core is not
big enough to accommodate the largest application but has a smaller size which when
needed depending upon the resource requirement of the application will get merged with
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Figure 8.13.: Methodology for application mapping onto V-FPGA cores [90]

the adjacent cores to form a bigger core. This technique not only provides flexibility but
also improves the overall resource utilization and enhances the number of applications
that can run in parallel. Because of virtualization, the CoreMapper is aware of the avail-
able resources in slice level granularity and not only allocates the area accordingly but
also locks that area in the resource database from usage by other applications. This tool
ensures that the P&R step of each application is independent from each other. The placer
tool follows a fast-simulated annealing algorithm. The initial logic block placement is op-
timized by swapping pairs of blocks and only certain percentage of moves is allowed. The
execution time of the placer is significantly improved by: i) virtualization which through
CoreMapper allocates a predefined area thereby narrowing the solution space for place-
ment and ii) decreasing the number of moves. The router is based on the PathFinder
negotiated congestion algorithm and is tuned for faster execution time. The output of
P&R step is a partial bitstream file per V-FPGA which configures the LUTs, PSMs and I/O
blocks.

The 20 biggest MCNC benchmarks are implemented by a single Intel Xenon CPU with 8
cores and 8 Gb of RAM using the aforementioned toolflow. A V-FPGA core of 8 x 8 CLBs
is mapped unto Xilinx Virtex-7 (xc7v2000tflg 1925-2), Altera Stratix V (5SEEBF45I2) and
Actel ProASIC3 (A3P15000). In order to evaluate the efficiency of the toolflow, a queue
consisted of 200 circuits (from 20 MCNC benchmarks) is considered along with an array
of four identical 75 x 75 V-FPGA cores, a total array of 150 x 150 CLBs and 50 routing tracks
per channel. The flexibility to reconfigure the virtual architecture at slice level granularity
and the ability to map several applications onto multiple V-FPGA cores will affect the
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Figure 8.14.: Average operation frequency for multiple benchmark mappings with our
framework, normalized to VPR solution [90]

operating frequency of each circuit. At the same time, the resource utilization and the
physical position of the available resources play a major role in the final mapping step.

Each benchmark is mapped several times and their normalized average maximum fre-
quency in comparison to the reference solution (when each application is mapped onto
the FPGA by VPR tool) is depicted in Figure 8.14. The variations in results are due to
the parallel execution of P&R for different applications and in average has a negligible
penalty of 0.26% Fragmentation due to dynamic reallocation of resources on the four V-
FPGA cores is shown in Figure 8.15. An average ratio of 24% is achieved with the toolflow
in trade-off for high quality mapping of multiple applications.

The scalability of the toolflow is then tested on a multicore system with two, four and
eight cores by measuring the number of tasks that can be mapped per minute. Up to
14 applications per minute can be mapped onto a single V-FPGA core, which then in-
creases to 25 mappings per minute for dual core (1.77x), 44 for four cores (3.13x) and 72
for eight cores(5.23x). Thereby, proving that the toolflow can scale efficiently and can be a
viable solution to support large heterogeneous systems with some addition of hardware
resources.
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Figure 8.15.: Fragmentation ratio on the V-FPGA cores through multiple applications
mappings [90]

8.4. Self-Aware Reconfigurable Platforms

An inherent advantage of the virtual FPGA approach is the ability to alter the architec-
ture of the virtual layer on which an application will be mapped. In cases where the
underlying physical platform supports dynamic reconfiguration, the architecture of the
virtual layer can be altered even during run-time. In [98] we are exploiting this flexibility
to enable self-aware reconfigurable platforms that adapt the virtual layer depending on
the applications that are to be executed onto it. The motivation behind this approach is
that different applications have different demands and constraints on the architectures,
leading to high variations in efficiency due to parameter sensitivity as we have studied in
depth in [34]. In order to mitigate this problem and improve efficiency the idea is to se-
lect and instantiate the most suitable virtual FPGA architecture for an application during
runtime.

A challenge thereby is that the applications might not be known a-priori and can change.
For instance, think of FPGAs in the cloud e.g. as recently deployed by Amazon [9], where
it is expected that applications are not known by the host and fly in and out based on the
rented compute time and area by various clients. This requires an online analysis of the
applications, exploration of the supported architectural design space and selection of the
most suitable architecture. However, the methodology in Section 6.4, which is primar-
ily designed for a high accuracy, is time-consuming. Therefore, collaborating researchers
from the National Technical University of Athens have developed in [98] a fast approxi-
mate methodology based on neural networks.

The target architecture platform (see Figure 8.16) in this study is similar to the low-power
reconfigurable SoC platform used in Section 8.1.1. It’s a SoC architecture with multiple V-
FPGA cores, a microprocessor core, a configuration controller, on- and off-chip memories
and busses for on-chip communication and configuration. The difference however is that
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Figure 8.16.: System architecture of the self-aware platform

the V-FPGA cores can be altered during runtime by partial and dynamic reconfiguration
of the underlying physical FPGA, whereby each core can have different properties. By
appropriately tuning parameters of LUT size, cluster size, routing channel width, etc.
it is not only possible to improve the mapping efficiency but also to address different
objectives, e.g. area, performance, power.

The proposed methodology for performing application mapping onto self-aware recon-
figurable platforms is depicted in Figure 8.17. As input to this framework the synthesized
application’s description is used.

Whenever a new application is requested, the proper V-FPGA is instantiated onto which
the application is to be mapped. A profiling of the application’s netlist is done to extract
a number of application-oriented parameters such as number of nodes, number of edges,
number of primary inputs/outputs, average and maximum fanout. The profiling results
provide a first estimate about the desired architecture for the target FPGA device and are
used to derive the architecture’s parameters for customizing the V-FPGA.

State-of-the-art approaches to appropriately fuse these results (e.g. brute force, simulated
annealing, genetic algorithms, etc) impose mentionable run-time overhead, which is not
affordable especially for systems that have to be executed at run-time. For this purpose,
our methodology incorporates a fast yet accurate multi-objective optimization technique
based on neural network. While the focus of this thesis is not on neural networks, a
more detailed explanation can be found in [98]. The outcome is the most suitable set of
architectural parameters in terms of LUT size K, cluster size N, channel width W, etc..
These parameters are handled by our framework in order to automatically instantiate the
desired V-FPGA template.
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A critical task for deriving this optimized architecture affects the proper training of neu-
ral network with a representative set of benchmarks. For this purpose, at design-time, the
employed neural network is trained with a variety of applications from different bench-
mark suites (MCNC, LGSynth93, QUIP). Hence, we can almost safely guarantee that the
architectural properties derived from our solution are close enough to the optimum de-
vice FPGA.

Then, we perform technology mapping, placement and routing (P&R) with the usage of
the JIT compilation framework [92]. The outcome from JIT framework contains the partial
bitstream file for the new task and the resource map where this task has to be allocated.
Finally, the computed bitstream file configures the V-FPGA with the new task.

In [98] the employed neural network was first modeled in Matlab, whereas after deter-
mining the optimal parameters for training (e.g. number of neurons), the network was
also developed in C++ to allow integration of the developed network into the MEAN-
DER design framework. A critical parameter that affects the efficiency of the designed
neural network is the regression. Figure 8.18a summarizes the metrics of this parameter,
as we vary the number of hidden neurons and epochs (determine the maximum number
of iterations for training). Another important parameter that quantifies the efficiency of
the derived neural network affects its error. This parameter is computed by finding the
error between the network’s output and the target value over all the example pairs (tar-
gets - outputs). The output of this analysis is summarized in Figure 8.18b. Specifically,
this figure plots the error histogram for the selected neural network. The red color lines
denote the optimal solution retrieved after brute-force exploration.
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(a)
(b)

Figure 8.18.: Experimental results: (a) Exploration results for designing neural network,
(b) Error histogram for the employed neural network [98]

Due to the neural networks a sufficient tuning of architectural parameters for delay, power
and area metrics can be achieved during run-time in order to adapt the V-FPGA in a self-
aware reconfigurable platform.
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8.5. The TEAChER Framework

The new paradigm of application/platform co-design, where the platform (FPGA) is not
limited to given COTS solutions but can be specifically tailored towards the application
to be developed and deployed onto it, needs to be early addressed and made tangible
also in the education of young engineers and researchers. Here virtualization plays a
special role for accessibility and experimentation of custom architectures. The V-FPGA
has been employed in an educational pilot project called TEAChER (TEach AdvanCEd
Reconfigurable architectures and tools) [95].

This collaborative project between Karlsruhe Institute of Technology (KIT) and National
Technical University of Athens (NTUA) was a happenstance to birth new pioneering ideas
in emerging technologies like 3-D integration, optical on-chip interconnects and system
virtualization with the continuing expansion of reconfigurability in FPGAs and architec-
ture exploration being the key factor. The main focus of this framework, as the name
suggests, is to teach and educate the younger generation, engineers and researchers about
FPGA architectures and how to reconfigure, compile and synthesize them by using a user-
friendly virtual lab, which to some extent even allows the students to work remotely. This
transfer of knowledge is carried out through various means of teaching techniques like
providing educational materials for programming and designing reconfigurable architec-
tures, conducting summer schools to give lessons about state-of-the-art reconfigurable
architectures and CAD tools, incorporating these advanced topics in university lessons,
catering for an online portal to allow students to work remotely with the experiments
and to disseminate the developed tools to the community of reconfigurable architectures.
The TEAChER framework addresses the application oriented topics as displayed in Fig-
ure 8.19. The first step being the architectural-level exploration is an important step to
identify the key features like memory requirements, demand for high-speed connectivity
as well as the need for complex arithmetic operations specific to the application. This
initial determination lays down the sketch of the reconfigurable architecture and the an-
alyzed parameters are included in the generic HDL-level architectural files. For example,
for 2-D FPGAs, the VHDL description of the Virtual FPGA (V-FPGA) is mapped onto the
existing off-the-shelf platform provided by vendors like Altera or Xilinx and the applica-
tion being mapped onto the V-FPGA using the extended version of 2-D MEANDER flow.
In case of 3-D FPGAs, due to the constraints caused by die stacking, the V-FPGA is tuned
accordingly by taking into consideration the existence of vertical interconnects. The V-
FPGA is then mapped onto the physical platform which is aware of 3-D integration (for
example Virtex-7) and the application on top of the virtual layer as similar to that of 2-D
mapping.

8.5.1. 3-D Reconfigurable Architectures

The era of Moore’s law is slowly coming to an end as shrinking the transistor size to
accommodate more of them in a smaller area has led to frequency wall limitation and
thereby imposing a struggle of not being able to achieve an operating frequency of more
than 1 GHz in FPGAs. This set back in performance emphasis the criticality of having
alternate solutions and optimized methodologies. In this context, 3-D architectures prove
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Figure 8.19.: Flow diagram for the topics addressed during the TEAChER project [95]

to be an emerging field with promising outcomes to deal with the aforementioned chal-
lenges. Though stacking multiple dies in vertical axis using Through Silicon Vias (TSVs)
guarantees reduced signal propagation delay due to shorter interconnects, complexity in
dealing with the 3rd dimension along with the need for having new software tools slow
down the growing pace of 3-D FPGAs, which is being addressed by TEAChER frame-
work by using virtual FPGAs as virtualization of the hardware platform (processing cores,
memories, interconnects etc.,) in the form of a simulator makes the architectural layer fully
customizable depending upon the application requirement.

8.5.2. Virtual FPGAs

The virtual FPGA employed in the TEAChER framework is an island style topology with
the CLBs being surrounded by routing channels, which are being interconnected through
Programmable Switch Matrices (PSMs). Architectural details can be read in Chapter 4.
As shown in Figure 8.16, the V-FPGA implemented on top of the physical Virtex-7 FPGA
platform acts as the reconfigurable architecture for the application, which is mapped on
top of the V-FPGA and is thereby independent of the physical platform. In this fashion,
virtualization substantiates not only partial reconfiguration at slice level but also breaks
down the complexity of interconnects in 3-D FPGAs. In TEAChER framework, V-FPGA
enables students to play around with architectural features and their impact on the per-
formance of the applications. This concept has been employed so far in labs of two pilot
summer schools (the first one for 2D and the second one for 3D FPGA architectures). As
not all the students will be able to have access to expensive physical FPGA boards, the
concept of virtual laboratories has been introduced. Any student or researcher at any
time and from any place through remote infrastructure can send and receive information
to and from the virtual framework as sketched in Figure 8.20. In this way executing their
customized models and evaluating their experimental results are made possible without
the physical hardware.
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Figure 8.20.: Concept of virtual laboratories [95]

8.6. Conclusion

Peer-reviewed and published use cases for V-FPGA and ViSA in low-power applications
with constricted area and current requirements, in real-time high-performance medical
imaging application, in making applications platform-independent, for self-aware recon-
figurable platforms and in a special framework called TEAChER were presented in this
chapter.

The fast dynamic and partial reconfiguration ability of V-FPGA promotes dynamic run-
time reconfiguration in Actel ProASIC3 device even though this option is not natively
supported by the device. For a sample Cyclic Redundancy Check (CRC) application the
reconfiguration time is only around 192 clock cycles and is fast enough to seamlessly
switch context during runtime and thus increase efficiency by reusing of the same area
for multiple temporal exclusive applications. On the other hand, the competence of ViSA
architecture for a real-time application requiring lower power and smaller footprint of
1 mW and 5x5 mm2 respectively was investigated on a Microsemi Igloo Nano AGLN250
device which results in a resource utilization of only 52% of VersaTiles and 62.5% of block
RAMs when compared to 172.7% overutilization in a classical yet already area-optimized
FSM based realization. In a particular project in the field of industrial process automa-
tion, where state-of-the-art design methodologies failed to meet the area constraints, ViSA
proved to be an enabling technology and rescued the feasibility of employing such small
low-power devices for complex measurement tasks. An opposite corner case of utiliz-
ing many-core ViSA architecture in high-performance medical imaging application of de-
tecting breast cancer using 3D Ultrasound Computer Tomography (3D USCT) was also
studied. Its implementation on Xilinx Virtex-6 reports having 176 ViSA cores (each with
8-fold superscalarity) as the optimum configuration and achieves a peak performance of
up to 27.0 GigaVoxelAScans/s at a maximum frequency of 160.4 MHz. V-FPGA cores be-
ing mapped onto three different platforms of Xilinx Virtex-7, Altera Stratix V and Actel
ProASIC3 along with the 20 biggest MCNC benchmarks being dynamically mapped onto
V-FPGA by optimized CAD tools running on a single Intel Xenon CPU not only makes
application-mapping platform independent but also exploits the ability to map several
applications onto multiple V-FPGA cores. Mapping of 14 applications per minute onto
a single core can be increased to 25 mappings per minute for dual core (1.77x), 44 for
four cores (3.13x) and 72 for eight cores (5.23x). One other important competence of V-
FPGA is their flexibility to enable self-aware reconfigurable platforms where the virtual
layer can be altered depending upon the application and this facility has been studied in
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8.6. Conclusion

a collaboration with the National Technical University of Athens as a use case utilizing
an accurate multi-objective optimization technique which is based on neural networks in
order to reduce the run-time overhead. Finally in this chapter, V-FPGA being employed in
an educational pilot project called TEAChER to address the growing issues of 3-D FPGAs
in a direct link between research and education was presented. In two summer schools
the V-FPGA framework was employed as an experimentation platform in hands-on labs
to instantly explore and prototype custom 2D and 3D FPGA architectures without the
pains of actual physical implementation.
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9. Conclusion and Future Work

Driven by the needs for specialization and customization an extensive framework for the
systematic generation of custom FPGA architectures and reconfigurable SoCs, that are
explicitly tuned towards the application demands, and for the application mapping onto
them was developed.

The overall strategy is to analyze first the application or application class and then derive
values of supported architectural parameters that achieve an optimal fit of the architecture
and a high mapping efficiency of the application onto it.

The center-piece thereby is the generic and highly parameterizable 2D and 3D V-FPGA ar-
chitecture coded in technology independent VHDL. It offers more than 20 parameters that
can be tuned to customize the architecture. This architecture was designed to be either vir-
tualized onto arbitrary commercial of the shelf FPGAs or to be integrated as embedded
FPGA into SoCs on an ASIC process by the means of soft-IP standard-cell approach. Both
targets, the mapping and realization methodologies were described and demonstrated.
Especially the physical implementation is detailed more as it is less straight-forward than
the mapping onto COTS FPGAs and involves a custom hierarchical layout methodology
for the V-FPGA.

The main purposes of virtualization in this context are portability, upgrading to partial
and dynamic reconfiguration capabilities where not natively supported, adaptivity, proto-
typing/emulation and accessibility. All these aspects are fulfilled by the presented frame-
work and were demonstrated in a number of use cases.
The draw-back of virtualization is its high area overhead as it is realized by programmable
resources of the underlying platform. This problem is eliminated by mapping the V-FPGA
on an ASIC when adaptivity of the architecture can be sacrificed. An exemplary physical
implementation of a V-FPGA with the parameters K = 4, N = 5, W = 23, X = 18 and Y = 18
on a 45 nm standard cell process with a target frequency of 500 MHz resulted in an area
of only 3.9 mm2.

No matter whether the V-FPGA is realized as virtual layer or as physical layer, customiza-
tion of its architecture improves area efficiency and/or performance. This has been shown
in this work by an extensive study of effects of architectural parameters on area and per-
formance. Therefore, more than 1400 benchmark application mapping runs with para-
meter sweeps were executed and analyzed. The study showed high sensitivities of the
parameters LUT size and cluster size which resulted in area variances of up to ±95.9%
and performance variances of up to±78.1%. An even more interesting observation is that
individual benchmark applications favour different parameter values, i.e. some benefit
from a smaller than average case optimum LUT and/or cluster size while some others
benefit from a larger than average case optimum LUT and/or cluster size. This proves
the significance of customizing such parameters.
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9. Conclusion and Future Work

Apart form customization aspects and flexibility, the V-FPGA architecture comes with a
number of innovations. LoopbackPropagation is an efficient circuit technique for emulating
bi-directional wires. CoreFusion is a mechanism to merge two adjacent V-FPGA cores. Par-
tial and dynamic reconfiguration mechanisms are supported at various granularity rang-
ing down to the reconfiguration of an individual CLB while all others continue operation
during this time. In conjunction with the new Snapshot mechanism, the instant migra-
tion of active applications from one region to another is supported at run-time. This has
been exercised along with a new defragmentation heuristic to free contiguous reconfig-
urable area by moving scattered applications during runtime. Mixing CLBs with custom
ViSA cores (a novel generic microarchitecture enabling multi-objective ASIP cores) goes
one step further than related works that include simple multipliers and adders in their
FPGAs, with the differences that ViSA can contain custom function units and can execute
programs. The very high area efficiency and performance of ViSA cores has been proven
in various use cases from low-power industrial process automation to high-performance
medical imaging.

Customization and virtualization impose a number of challenges that were systematically
addressed in this work. Design efforts are minimized by generic architecture templates
that are easily customized by simply adjusting parameters at top level or in a package file.
No code changes are necessary. The complex process of choosing the right design parame-
ters is assisted by novel model based parametric design space exploration methodologies
with new metrics that were introduced to capture peculiarities and effects of adding a
virtual layer. To cope with the challenges of mapping applications onto custom architec-
tures, a flexible toolflow employing and integrating existing commercial, academic and
new own tools was developed that supports parameters of the V-FPGA. Therein the new
V-FPGA Explorer tool closes the gap between abstract layout and actual configuration.
New is also the support of JIT compilation for the V-FPGA that was developed in collabo-
ration at the National Technical University of Athens. It allows to map applications 53.49x
faster than the state-of-the-art, resulting around 2.6 s per benchmark application, which is
fast enough to compile applications on demand during runtime. This is very attractive for
adaptive systems and cloud services. For the employed place&route tools as well as for
DSE new area and delay models based on Minimum Size Basic Elements were developed
to target virtual architectures. In contrast to prior works that relied on misleading area
and delay models at transistor-level that were actually intended for physical FPGAs, the
new models are better suited for virtual FPGAs as they consider the correct base units of
the underlying platform. The dynamic evaluation of custom FPGA architectures is solved
through virtualization, without the need for physical design. This has been also demon-
strated in the pilot TEAChER project, where the V-FPGA has been employed in labs for
this purpose.

The main differentiators of the V-FPGA compared to the few existing works in the context
of virtual and custom FPGA architectures are especially the high flexibility, customiza-
tion, portability and the novel architectural features mentioned above. Furthermore, this
framework is characterized by interlocked co-design of all relevant aspects, including not
only architecture generation, but also tooling and customization methodologies.
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The V-FPGA framework, due to its flexibility and modularity is a platform that can be
used for further research activities.

An interesting idea is to explore very fine-grained underlying reconfigurable resources
such as ambipolar transistors. In this direction we proposed the project PARFAIT which
was accepted and launched recently. The idea is to exploit a novel ambipolar field-effect-
transistor called DeFET for power-aware and flexible FPGA architectures. An interesting
property of this transistor is its intrinsic reconfigurability through the back-gate, i.e. it is
possible to change its polarity and also to tune the threshold voltage on-demand. This
can be beneficial for instance in the routing infrastructure and for dynamic performance
and energy optimizations through threshold-voltage-scaling. It is planned to use the V-
FPGA as baseline architecture in this project and to extend it to make use of the intrinsic
reconfigurability of the DeFET. Having already an existing modular and tool-supported
platform helps concentrating on the new challenges of large scale DeFET integration and
their area and energy efficient utilization through transistor level reconfiguration.

Another idea is to target the generation of power and heat aware specialized 3D-FPGA
architectures. The V-FPGA already has 3D PSMs with parameterizable distribution of
TSVs for 3D stacking. A spatiotemporal power and heat profiling through simulation of
the V-FPGA while applications are mapped and running onto it and through extraction
of the actual switching activity profile can be used to identify local hotspots. The analysis
can be used to find an optimum distribution of TSVs in a way that minimizes such hotspot
generation.
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A. Appendix

A.1. Evaluation of MCNC Benchmarks Mapped on V-FPGA with
Various LUT and Cluster Sizes

Figures A.1 to A.20 present resulting area and performance of the 20 largest MCNC bench-
marks mapped on V-FPGA with all the various LUT and cluster size combinations in the
ranges of K = 2..8 and N = 1..10. As underlying host platform of the V-FPGA the Ac-
tel ProASIC3 architecture was chosen and the V-FPGA accordingly characterized, upon
which 70 architecture model files (needed for the mapping tool VPR) were derived. In
total 1400 combinations of benchmarks on architectures were synthesized, placed and
routed, which represents a rather extensive evaluation. The area is split in logic area,
routing area and IO area in order to visualize how the ratios change with parameter vari-
ation. The area values are expressed in VersaTiles, that are the smallest units by which the
V-FPGA is realized when mapped on Actel ProASIC3.

0.0E+0 
1.0E+6 
2.0E+6 
3.0E+6 
4.0E+6 
5.0E+6 
6.0E+6 
7.0E+6 
8.0E+6 
9.0E+6 
1.0E+7 

0.0E+0 

2.0E+5 

4.0E+5 

6.0E+5 

8.0E+5 

1.0E+6 

1.2E+6 

K2
_N

1
K2

_N
2

K2
_N

3
K2

_N
4

K2
_N

5
K2

_N
6

K2
_N

7
K2

_N
8

K2
_N

9
K2

_N
10

K3
_N

1
K3

_N
2

K3
_N

3
K3

_N
4

K3
_N

5
K3

_N
6

K3
_N

7
K3

_N
8

K3
_N

9
K3

_N
10

K4
_N

1
K4

_N
2

K4
_N

3
K4

_N
4

K4
_N

5
K4

_N
6

K4
_N

7
K4

_N
8

K4
_N

9
K4

_N
10

K5
_N

1
K5

_N
2

K5
_N

3
K5

_N
4

K5
_N

5
K5

_N
6

K5
_N

7
K5

_N
8

K5
_N

9
K5

_N
10

K6
_N

1
K6

_N
2

K6
_N

3
K6

_N
4

K6
_N

5
K6

_N
6

K6
_N

7
K6

_N
8

K6
_N

9
K6

_N
10

K7
_N

1
K7

_N
2

K7
_N

3
K7

_N
4

K7
_N

5
K7

_N
6

K7
_N

7
K7

_N
8

K7
_N

9
K7

_N
10

K8
_N

1
K8

_N
2

K8
_N

3
K8

_N
4

K8
_N

5
K8

_N
6

K8
_N

7
K8

_N
8

K8
_N

9
K8

_N
10

f_
m
ax
	in
	H
z

Ar
ea

A_Routing A_Logic A_IO f_max

Figure A.1.: Area and performance of alu4 benchmark mapped on V-FPGA with various
LUT and cluster sizes

209



A. Appendix

0.0E+0 
1.0E+6 
2.0E+6 
3.0E+6 
4.0E+6 
5.0E+6 
6.0E+6 
7.0E+6 
8.0E+6 
9.0E+6 

0.0E+0 

2.0E+5 

4.0E+5 

6.0E+5 

8.0E+5 

1.0E+6 

1.2E+6 

1.4E+6 

1.6E+6 
K2

_N
1

K2
_N

2
K2

_N
3

K2
_N

4
K2

_N
5

K2
_N

6
K2

_N
7

K2
_N

8
K2

_N
9

K2
_N

10
K3

_N
1

K3
_N

2
K3

_N
3

K3
_N

4
K3

_N
5

K3
_N

6
K3

_N
7

K3
_N

8
K3

_N
9

K3
_N

10
K4

_N
1

K4
_N

2
K4

_N
3

K4
_N

4
K4

_N
5

K4
_N

6
K4

_N
7

K4
_N

8
K4

_N
9

K4
_N

10
K5

_N
1

K5
_N

2
K5

_N
3

K5
_N

4
K5

_N
5

K5
_N

6
K5

_N
7

K5
_N

8
K5

_N
9

K5
_N

10
K6

_N
1

K6
_N

2
K6

_N
3

K6
_N

4
K6

_N
5

K6
_N

6
K6

_N
7

K6
_N

8
K6

_N
9

K6
_N

10
K7

_N
1

K7
_N

2
K7

_N
3

K7
_N

4
K7

_N
5

K7
_N

6
K7

_N
7

K7
_N

8
K7

_N
9

K7
_N

10
K8

_N
1

K8
_N

2
K8

_N
3

K8
_N

4
K8

_N
5

K8
_N

6
K8

_N
7

K8
_N

8
K8

_N
9

K8
_N

10

f_
m
ax
	in
	H
z

Ar
ea

Routing	area Logic	area IO	area f_max

Figure A.2.: Area and performance of apex2 benchmark mapped on V-FPGA with various
LUT and cluster sizes
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Figure A.3.: Area and performance of apex4 benchmark mapped on V-FPGA with various
LUT and cluster sizes
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Figure A.4.: Area and performance of bigkey benchmark mapped on V-FPGA with various
LUT and cluster sizes
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Figure A.5.: Area and performance of clma benchmark mapped on V-FPGA with various
LUT and cluster sizes
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Figure A.6.: Area and performance of des benchmark mapped on V-FPGA with various
LUT and cluster sizes
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Figure A.7.: Area and performance of diffeq benchmark mapped on V-FPGA with various
LUT and cluster sizes
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Figure A.8.: Area and performance of dsip benchmark mapped on V-FPGA with various
LUT and cluster sizes
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Figure A.9.: Area and performance of elliptic benchmark mapped on V-FPGA with various
LUT and cluster sizes
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Figure A.10.: Area and performance of ex1010 benchmark mapped on V-FPGA with vari-
ous LUT and cluster sizes

212



A.1. Evaluation of MCNC Benchmarks Mapped on V-FPGA with Various LUT and Cluster Sizes
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Figure A.11.: Area and performance of ex5p benchmark mapped on V-FPGA with various
LUT and cluster sizes
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Figure A.12.: Area and performance of frisc benchmark mapped on V-FPGA with various
LUT and cluster sizes
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Figure A.13.: Area and performance of misex3 benchmark mapped on V-FPGA with vari-
ous LUT and cluster sizes
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Figure A.14.: Area and performance of pdc benchmark mapped on V-FPGA with various
LUT and cluster sizes
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Figure A.15.: Area and performance of s298 benchmark mapped on V-FPGA with various
LUT and cluster sizes
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Figure A.16.: Area and performance of s38417 benchmark mapped on V-FPGA with vari-
ous LUT and cluster sizes
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Figure A.17.: Area and performance of s38584.1 benchmark mapped on V-FPGA with var-
ious LUT and cluster sizes
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Figure A.18.: Area and performance of seq benchmark mapped on V-FPGA with various
LUT and cluster sizes
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Figure A.19.: Area and performance of spla benchmark mapped on V-FPGA with various
LUT and cluster sizes
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Figure A.20.: Area and performance of tseng benchmark mapped on V-FPGA with various
LUT and cluster sizes
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A.2. Architecture File Template

The following template is used by the V-FPGA Explorer tool to generate so-called architec-
ture files that are needed by the VPR tool to perform packing, place & route of applications
onto the V-FPGA.

1 < ! -- V-FPGA Architecture Template for VTR 7.0. -->
2
3 < a r c h i t e c t u r e >
4
5 < ! --
6 ODIN II specific config begins
7 Describes the types of user-specified netlist blocks (in blif, this

corresponds to
8 .model [type_of_block]) that this architecture supports.
9

10 Note: Basic LUTs, I/Os, and flip-flops are not included here as there are
11 already special structures in blif (.names, .input, .output, and .latch)
12 that describe them.
13 -->
14 <models>
15 </models>
16 < ! -- ODIN II specific config ends -->
17
18 < ! -- Physical descriptions begin -->
19 <layout auto="1.0"/>
20
21 <device>
22 < ! -- ipin_mux_trans_size is calculated from the area of a 2:1 MUX (including

the logic and the programming) devided by the number of transistors in
the area model of VPR for 2-level mux (6*ld(N_inputs)+2*N_inputs -2).
Caution: this area model includes also the area of SRAM cells for
programming! However in V-FPGA flipflops are used for programming. This
introduces some error, but the error is too small to affect the P&R.

23 T_ipin_cblock is aproximated to the delay of a 4:1 mux for simplicity. Depending
on the channel width and Fc there can be variations.

24 -->
25 < s i z i n g R_minW_nmos="8926" R_minW_pmos="16067" ipin_mux_trans_size="0.25"/>
26 <timing C_ipin_cblock="1.47e-15" T_ipin_cblock="1492e-12"/>
27
28 < ! -- The grid_logic_tile_area below will be used for all blocks that do not

explicitly set their own (non-routing)
29 area; set to 0 since we explicitly set the area of all blocks currently

in this architecture file.
30 -->
31 <area g r i d _ l o g i c _ t i l e _ a r e a ="0"/>
32 <chan_width_distr>
33 <io width="1.000000"/>
34 <x d i s t r ="uniform" peak="1.000000"/>
35 <y d i s t r ="uniform" peak="1.000000"/>
36 </chan_width_distr>
37 <switch_block type="#SB_Type#" f s ="3"/>

217



A. Appendix

38 </device>
39 < s w i t c h l i s t >
40 < ! -- mux_trans_size should be similar like ipin_mux_trans_size , however values

< 1 . 0 lead to a crash during rout ing area es t imat ion -->
41 <switch type="mux" name="0" R="0" Cin=".77e-15" Cout="4e-15" Tdel="#T_mux4#"

mux_trans_size="1" buf_s ize="0"/>
42 <switch type="buffer" name="1" R="551" Cin=".77e-15" Cout="4e-15" Tdel="1492e

-12" buf_s ize="27.645901"/>
43 </ s w i t c h l i s t >
44 < s e g m e n t l i s t>
45 < ! -- Rmetal and Cmetal are selected in a way that the resulting delay

corresponds to a net delay of the underlying platform -->
46 <segment f r e q="1.000000" length="1" type="bidir" Rmetal="11066" Cmetal="22.5e

-15">
47 <wire_switch name="1"/>
48 <opin_switch name="1"/>
49 <sb type="pattern">1 1</sb>
50 <cb type="pattern">1</cb>
51 </segment>
52 </s e g m e n t l i s t>
53
54 <complexb lock l i s t>
55
56 < ! -- Define I/O pads begin -->
57 < ! -- Capacity is a unique property of I/Os, it is the maximum number of I/Os

that can be placed at the same (X,Y) location on the FPGA -->
58 <pb_type name="io" c a p a c i t y="2" area="#A_IOB#">
59 <input name="outpad" num_pins="1"/>
60 <output name="inpad" num_pins="1"/>
61 <c lock name="clock" num_pins="1"/>
62
63 < ! -- IOs can operate as either inputs or outputs. -->
64 <mode name="inpad">
65 <pb_type name="inpad" bl i f_model=".input" num_pb="1">
66 <output name="inpad" num_pins="1"/>
67 </pb_type>
68 < i n t e r c o n n e c t >
69 < d i r e c t name="inpad" input="inpad.inpad" output="io.inpad">
70 <delay_constant max="#T_IOB_in#" in_por t="inpad.inpad" out_port="io.

inpad"/>
71 </ d i r e c t >
72 </ i n t e r c o n n e c t >
73 </mode>
74 <mode name="outpad">
75 <pb_type name="outpad" bl i f_model=".output" num_pb="1">
76 <input name="outpad" num_pins="1"/>
77 </pb_type>
78 < i n t e r c o n n e c t >
79 < d i r e c t name="outpad" input="io.outpad" output="outpad.outpad">
80 <delay_constant max="#T_IOB_out#" in_por t="io.outpad" out_port="

outpad.outpad"/>
81 </ d i r e c t >
82 </ i n t e r c o n n e c t >
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83 </mode>
84
85 < ! -- Every input pin is driven by 100% of the tracks in a channel, every

output pin is driven by 100% of the tracks in a channel -->
86 < f c d e f a u l t _ i n _ t y p e="frac" d e f a u l t _ i n _ v a l ="1.0" defaul t_out_type="frac"

d e f a u l t _ o u t _ v a l="1.0"/>
87
88 < p i n l o c a t i o n s pat te rn="custom">
89 < l o c s ide="left">io.outpad io.inpad io.clock</ l o c >
90 < l o c s ide="top">io.outpad io.inpad io.clock</ l o c >
91 < l o c s ide="right">io.outpad io.inpad io.clock</ l o c >
92 < l o c s ide="bottom">io.outpad io.inpad io.clock</ l o c >
93 </ p i n l o c a t i o n s >
94
95 < ! -- Place I/Os on the sides of the FPGA -->
96 < g r i d l o c a t i o n s >
97 < l o c type="perimeter" p r i o r i t y ="10"/>
98 </ g r i d l o c a t i o n s >
99

100 <power method="ignore"/>
101 </pb_type>
102 < ! -- Define I/O pads ends -->
103
104
105 < ! -- Define general purpose logic block (CLB) begin -->
106 <pb_type name="clb" area="#A_CLB#">
107 <input name="I" num_pins="#I#" equiva lent="true"/>
108 <output name="O" num_pins="#O#" equiva lent="false"/>
109 <c lock name="clk" num_pins="1"/>
110
111 < ! -- Define BLE -->
112 <pb_type name="ble" num_pb="#N#">
113 <input name="in" num_pins="#K#"/>
114 <output name="out" num_pins="1"/>
115 <c lock name="clk" num_pins="1"/>
116
117
118 < ! -- Define LUT -->
119 <pb_type name="lut" bl i f_model=".names" num_pb="1" c l a s s ="lut">
120 <input name="in" num_pins="#K#" p o r t _ c l a s s ="lut_in"/>
121 <output name="out" num_pins="1" p o r t _ c l a s s ="lut_out"/>
122 < ! -- LUT timing using delay matrix -->
123 <delay_matrix type="max" in_por t="lut.in" out_port="lut.out">
124 #LUT_delay_matrix#
125 </delay_matrix>
126 </pb_type>
127 < ! -- LUT definition ends here -->
128
129 < ! -- Define flip-flop -->
130 <pb_type name="ff" bl i f_model=".latch" num_pb="1" c l a s s ="flipflop">
131 <input name="D" num_pins="1" p o r t _ c l a s s ="D"/>
132 <output name="Q" num_pins="1" p o r t _ c l a s s ="Q"/>
133 <c lock name="clk" num_pins="1" p o r t _ c l a s s ="clock"/>
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134 <T_setup value="#T_ff_setup#" port="ff.D" c lock="clk"/>
135 <T_clock_to_Q max="#T_ff_clock_to_Q#" port="ff.Q" c lock="clk"/>
136 </pb_type>
137 < ! -- flip-flop definition ends here -->
138
139 < i n t e r c o n n e c t >
140 < d i r e c t name="direct1" input="ble.in" output="lut.in"/>
141 < d i r e c t name="direct2" input="lut.out" output="ff.D">
142 <delay_constant max="#T_net#" in_por t="lut.out" out_port="ff.D"/>
143 < ! -- Advanced user option that tells CAD tool to find LUT+FF pairs in

netlist -->
144 <pack_pattern name="ble" in_por t="lut.out" out_port="ff.D"/>
145 </ d i r e c t >
146 < d i r e c t name="direct3" input="ble.clk" output="ff.clk"/>
147 <mux name="mux1" input="ff.Q lut.out" output="ble.out">
148 <delay_constant max="#T_mux2#" in_por t="lut.out" out_port="ble.out" />
149 <delay_constant max="#T_mux2#" in_por t="ff.Q" out_port="ble.out" />
150 </mux>
151 </ i n t e r c o n n e c t >
152 </pb_type>
153 < ! -- BLE definition ends here -->
154
155 < i n t e r c o n n e c t >
156 <complete name="crossbar" input="clb.I ble[#N-1#:0].out" output="ble[#N

-1#:0].in">
157 <delay_constant max="#T_BLE_inMux#" in_por t="clb.I" out_port="ble[#N-1#

:0].in" />
158 <delay_constant max="#T_BLE_inMux#" in_por t="ble[#N-1#:0].out" out_port

="ble[#N-1#:0].in" />
159 </complete>
160 <complete name="clks" input="clb.clk" output="ble[#N-1#:0].clk">
161 </complete>
162
163 < d i r e c t name="clbouts1" input="ble[#N-1#:0].out" output="clb.O[#N-1#:0]"/

>
164 </ i n t e r c o n n e c t >
165
166 < ! -- Every input pin is driven by 100% of the tracks in a channel, every

output pin is driven by 100% of the tracks in a channel -->
167 < f c d e f a u l t _ i n _ t y p e="frac" d e f a u l t _ i n _ v a l ="1.0" defaul t_out_type="frac"

d e f a u l t _ o u t _ v a l="1.0"/>
168
169 < p i n l o c a t i o n s pat te rn="custom">
170 #PIN_LOC_LIST#
171 </ p i n l o c a t i o n s >
172
173 < ! -- Place this general purpose logic block in any unspecified column -->
174 < g r i d l o c a t i o n s >
175 < l o c type="fill" p r i o r i t y ="1"/>
176 </ g r i d l o c a t i o n s >
177 </pb_type>
178 < ! -- Define general purpose logic block (CLB) ends -->
179
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180
181 </complexb lock l i s t>
182 <power>
183 < l o c a l _ i n t e r c o n n e c t C_wire="2.5e-10"/>
184 <mux_t rans i s tor_s ize mux_trans i s tor_s ize="3"/>
185 <FF_size FF_size="4"/>
186 <LUT_trans i s tor_s ize LUT_trans i s tor_s ize="4"/>
187 </power>
188 <c l o c k s>
189 <c lock b u f f e r _ s i z e ="auto" C_wire="2.5e-10"/>
190 </c l o c k s>
191 </ a r c h i t e c t u r e >

Listing A.1: arch_VFPGA_template.xml
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A.3. Frame File Template for Testbench Generation in V-FPGA
Explorer

1 --------------------------------------------------------------------------------
2 -- Company: KIT ITIV
3 --
4 -- File: tb_TOP_V_FPGA.vhd
5 -- File history:
6 -- <Revision number>: <Date>: <Comments>
7 -- <Revision number>: <Date>: <Comments>
8 -- <Revision number>: <Date>: <Comments>
9 --

10 -- Description:
11 --
12 -- Testbench for Virtual FPGA
13 --
14 --
15 -- Targeted device: any FPGA
16 -- Author: GENERATED AUTOMATICALLY BY V-FPGA EXPLORER!
17 --
18 --------------------------------------------------------------------------------
19
20 library i e e e ;
21 use i e e e . s t d _ l o g i c _ 1 1 6 4 . all ;
22 use work . common . all ;
23
24 entity tb_TOP_V_FPGA_light is
25 end tb_TOP_V_FPGA_light ;
26
27 architecture behavioural of tb_TOP_V_FPGA_light is
28
29 component TOP_V_FPGA_light is
30 -- TAG_GENERIC
31 port (
32 nRST : IN s t d _ l o g i c ;
33 CLK : IN s t d _ l o g i c ;
34
35 -- AMBA APB Slave for ConfigurationController
36 cPSELx : IN s t d _ l o g i c ;
37 cPENABLE : IN s t d _ l o g i c ;
38 cPADDR : IN s t d _ l o g i c _ v e c t o r (15 downto 0) ;
39 cPWRITE : IN s t d _ l o g i c ;
40 cPRESETn : IN s t d _ l o g i c ;
41 cPCLK : IN s t d _ l o g i c ;
42 cPWDATA : IN s t d _ l o g i c _ v e c t o r (8 downto 0) ;
43 cPRDATA : OUT s t d _ l o g i c _ v e c t o r (8 downto 0) ;
44
45 -- Pads
46 INPADS : IN s t d _ l o g i c _ v e c t o r ( ( 2 *X_MAX*P ) + ( 2 *Y_MAX*P ) − 1 downto 0) ;
47 OUTPADS : OUT s t d _ l o g i c _ v e c t o r ( ( 2 *X_MAX*P ) + ( 2 *Y_MAX*P ) − 1 downto 0)
48 ) ;
49 end component ;
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50
51
52
53 signal tb_nRST : s t d _ l o g i c : = ’ 0 ’ ;
54 signal tb_CLK : s t d _ l o g i c : = ’ 0 ’ ;
55 signal tb_INPADS : s t d _ l o g i c _ v e c t o r ( ( 2 *X_MAX*P ) + ( 2 *Y_MAX*P ) − 1 downto 0) ;
56 signal tb_OUTPADS : s t d _ l o g i c _ v e c t o r ( ( 2 *X_MAX*P ) + ( 2 *Y_MAX*P ) − 1 downto 0) ;
57
58 -- TAG_SIGNAL_CONF_APB
59
60
61 begin
62
63 dut : TOP_V_FPGA
64 -- TAG_GENERIC_MAP
65 port map (
66 nRST => tb_nRST ,
67 CLK => tb_CLK ,
68
69 -- TAG_PORT_MAP_CONF_APB
70
71 INPADS => tb_INPADS ,
72 OUTPADS => tb_OUTPADS
73 ) ;
74
75
76
77 end behavioural ;

Listing A.2: arch_VFPGA_template.xml
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A.4. Python Script for Aligning Block I/Os of Tile Macros

The following Python script generates I/O location constraints for the tile blocks with the
correct orientation and optimal alignment that reduces path lengths for inter-tile connec-
tions in the physical design stage of the V-FPGA.

1 width= 8 4 . 0
2 height= 8 4 . 0
3 f2=open ( ’InnerTile_3D.custom.io’ , ’w’ ) ;
4 W = 2 3 ;
5 f2 . wri te ( ’(globals’ )
6 f2 . wri te ( ’\n’ )
7 f2 . wri te ( ’ version = 3’ )
8 f2 . wri te ( ’\n’ )
9 f2 . wri te ( ’ io_order = default’ )

10 f2 . wri te ( ’\n’ )
11 f2 . wri te ( ’)’ )
12 f2 . wri te ( ’\n’ )
13 f2 . wri te ( ’(iopin’ )
14 f2 . wri te ( ’\n’ )
15 f2 . wri te ( ’ (top’ )
16 f2 . wri te ( ’\n’ )
17 o f f s e t s t e p =width / ( 5 . 0 *W+4+2)
18 o f f s e t = o f f s e t s t e p
19 for i in range ( 0 ,W) :
20 f2 . wri te ( ’ (pin name="rl_top_import[’ + str ( i ) + ’]" offset=’ + str ( o f f s e t ) +

’ layer=2 width=0.0800 depth=0.2500 place_status=placed )’ )
21 f2 . wri te ( ’\n’ )
22 o f f s e t = o f f s e t + o f f s e t s t e p
23 for i in range ( 0 ,W) :
24 f2 . wri te ( ’ (pin name="rl_top_export[’ + str ( i ) + ’]" offset=’ + str ( o f f s e t ) +

’ layer=2 width=0.0800 depth=0.2500 place_status=placed )’ )
25 f2 . wri te ( ’\n’ )
26 o f f s e t = o f f s e t + o f f s e t s t e p
27 for i in range ( 0 ,W) :
28 f2 . wri te ( ’ (pin name="lr_top_export[’ + str ( i ) + ’]" offset=’ + str ( o f f s e t ) +

’ layer=2 width=0.0800 depth=0.2500 place_status=placed )’ )
29 f2 . wri te ( ’\n’ )
30 o f f s e t = o f f s e t + o f f s e t s t e p
31 f2 . wri te ( ’ (pin name="SCLK_CLB" offset=’ + str ( o f f s e t ) + ’ layer=2 width

=0.0800 depth=0.2500 place_status=placed )’ )
32 f2 . wri te ( ’\n’ )
33 o f f s e t = o f f s e t + o f f s e t s t e p
34 f2 . wri te ( ’ (pin name="MOSI_CLB" offset=’ + str ( o f f s e t ) + ’ layer=2 width

=0.0800 depth=0.2500 place_status=placed )’ )
35 f2 . wri te ( ’\n’ )
36 o f f s e t = o f f s e t + o f f s e t s t e p
37 f2 . wri te ( ’ (pin name="SCLK_PSM" offset=’ + str ( o f f s e t ) + ’ layer=2 width

=0.0800 depth=0.2500 place_status=placed )’ )
38 f2 . wri te ( ’\n’ )
39 o f f s e t = o f f s e t + o f f s e t s t e p
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40 f2 . wri te ( ’ (pin name="MOSI_PSM" offset=’ + str ( o f f s e t ) + ’ layer=2 width
=0.0800 depth=0.2500 place_status=placed )’ )

41 f2 . wri te ( ’\n’ )
42 o f f s e t = o f f s e t + o f f s e t s t e p
43 for i in range ( 0 ,W) :
44 f2 . wri te ( ’ (pin name="tb_in[’ + str ( i ) + ’]" offset=’ + str ( o f f s e t ) + ’ layer

=2 width=0.0800 depth=0.2500 place_status=placed )’ )
45 f2 . wri te ( ’\n’ )
46 o f f s e t = o f f s e t + o f f s e t s t e p
47 f2 . wri te ( ’ (pin name="bt_out[’ + str ( i ) + ’]" offset=’ + str ( o f f s e t ) + ’

layer=2 width=0.0800 depth=0.2500 place_status=placed )’ )
48 f2 . wri te ( ’\n’ )
49 o f f s e t = o f f s e t + o f f s e t s t e p
50 f2 . wri te ( ’ )’ )
51 f2 . wri te ( ’\n’ )
52 f2 . wri te ( ’ (left’ )
53 f2 . wri te ( ’\n’ )
54 o f f s e t s t e p = height / ( 5 . 0 *W+1+2)
55 o f f s e t = o f f s e t s t e p
56 for i in range ( 0 ,W) :
57 f2 . wri te ( ’ (pin name="tb_left_export[’ + str ( i ) + ’]" offset=’ + str ( o f f s e t )

+ ’ layer=2 width=0.0800 depth=0.2500 place_status=placed )’ )
58 f2 . wri te ( ’\n’ )
59 o f f s e t = o f f s e t + o f f s e t s t e p
60 for i in range ( 0 ,W) :
61 f2 . wri te ( ’ (pin name="tb_left_import[’ + str ( i ) + ’]" offset=’ + str ( o f f s e t )

+ ’ layer=2 width=0.0800 depth=0.2500 place_status=placed )’ )
62 f2 . wri te ( ’\n’ )
63 o f f s e t = o f f s e t + o f f s e t s t e p
64 f2 . wri te ( ’ (pin name="nRST" offset=’ + str ( o f f s e t ) + ’ layer=2 width=0.0800

depth=0.2500 place_status=placed )’ )
65 f2 . wri te ( ’\n’ )
66 o f f s e t = o f f s e t + o f f s e t s t e p
67 f2 . wri te ( ’ (pin name="CLK" offset=’ + str ( o f f s e t ) + ’ layer=2 width=0.0800

depth=0.2500 place_status=placed )’ )
68 f2 . wri te ( ’\n’ )
69 o f f s e t = o f f s e t + o f f s e t s t e p
70 for i in range ( 0 ,W) :
71 f2 . wri te ( ’ (pin name="bt_left_import[’ + str ( i ) + ’]" offset=’ + str ( o f f s e t )

+ ’ layer=2 width=0.0800 depth=0.2500 place_status=placed )’ )
72 f2 . wri te ( ’\n’ )
73 o f f s e t = o f f s e t + o f f s e t s t e p
74 for i in range ( 0 ,W) :
75 f2 . wri te ( ’ (pin name="lr_in[’ + str ( i ) + ’]" offset=’ + str ( o f f s e t ) + ’ layer

=2 width=0.0800 depth=0.2500 place_status=placed )’ )
76 f2 . wri te ( ’\n’ )
77 o f f s e t = o f f s e t + o f f s e t s t e p
78 f2 . wri te ( ’ (pin name="rl_out[’ + str ( i ) + ’]" offset=’ + str ( o f f s e t ) + ’

layer=2 width=0.0800 depth=0.2500 place_status=placed )’ )
79 f2 . wri te ( ’\n’ )
80 o f f s e t = o f f s e t + o f f s e t s t e p
81 f2 . wri te ( ’ )’ )
82 f2 . wri te ( ’\n’ )
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83 f2 . wri te ( ’ (bottom’ )
84 f2 . wri te ( ’\n’ )
85 o f f s e t s t e p =width / ( 5 . 0 *W+4+2)
86 o f f s e t = o f f s e t s t e p
87 for i in range ( 0 ,W) :
88 f2 . wri te ( ’ (pin name="rl_bot_export[’ + str ( i ) + ’]" offset=’ + str ( o f f s e t ) +

’ layer=2 width=0.0800 depth=0.2500 place_status=placed )’ )
89 f2 . wri te ( ’\n’ )
90 o f f s e t = o f f s e t + o f f s e t s t e p
91 for i in range ( 0 ,W) :
92 f2 . wri te ( ’ (pin name="rl_bot_import[’ + str ( i ) + ’]" offset=’ + str ( o f f s e t ) +

’ layer=2 width=0.0800 depth=0.2500 place_status=placed )’ )
93 f2 . wri te ( ’\n’ )
94 o f f s e t = o f f s e t + o f f s e t s t e p
95 for i in range ( 0 ,W) :
96 f2 . wri te ( ’ (pin name="lr_bot_import[’ + str ( i ) + ’]" offset=’ + str ( o f f s e t ) +

’ layer=2 width=0.0800 depth=0.2500 place_status=placed )’ )
97 f2 . wri te ( ’\n’ )
98 o f f s e t = o f f s e t + o f f s e t s t e p
99 o f f s e t = o f f s e t + o f f s e t s t e p

100 f2 . wri te ( ’ (pin name="MOSI_out_CLB" offset=’ + str ( o f f s e t ) + ’ layer=2 width
=0.0800 depth=0.2500 place_status=placed )’ )

101 f2 . wri te ( ’\n’ )
102 o f f s e t = o f f s e t + o f f s e t s t e p
103 o f f s e t = o f f s e t + o f f s e t s t e p
104 f2 . wri te ( ’ (pin name="MOSI_out_PSM" offset=’ + str ( o f f s e t ) + ’ layer=2 width

=0.0800 depth=0.2500 place_status=placed )’ )
105 f2 . wri te ( ’\n’ )
106 o f f s e t = o f f s e t + o f f s e t s t e p
107 for i in range ( 0 ,W) :
108 f2 . wri te ( ’ (pin name="tb_out[’ + str ( i ) + ’]" offset=’ + str ( o f f s e t ) + ’

layer=2 width=0.0800 depth=0.2500 place_status=placed )’ )
109 f2 . wri te ( ’\n’ )
110 o f f s e t = o f f s e t + o f f s e t s t e p
111 f2 . wri te ( ’ (pin name="bt_in[’ + str ( i ) + ’]" offset=’ + str ( o f f s e t ) + ’ layer

=2 width=0.0800 depth=0.2500 place_status=placed )’ )
112 f2 . wri te ( ’\n’ )
113 o f f s e t = o f f s e t + o f f s e t s t e p
114 f2 . wri te ( ’ )’ )
115 f2 . wri te ( ’\n’ )
116 f2 . wri te ( ’ (right’ )
117 f2 . wri te ( ’\n’ )
118 o f f s e t s t e p =height / ( 5 . 0 *W+2+2)
119 o f f s e t = o f f s e t s t e p
120 for i in range ( 0 ,W) :
121 f2 . wri te ( ’ (pin name="tb_right_import[’ + str ( i ) + ’]" offset=’ + str ( o f f s e t )

+ ’ layer=2 width=0.0800 depth=0.2500 place_status=placed )’ )
122 f2 . wri te ( ’\n’ )
123 o f f s e t = o f f s e t + o f f s e t s t e p
124 for i in range ( 0 ,W) :
125 f2 . wri te ( ’ (pin name="tb_right_export[’ + str ( i ) + ’]" offset=’ + str ( o f f s e t )

+ ’ layer=2 width=0.0800 depth=0.2500 place_status=placed )’ )
126 f2 . wri te ( ’\n’ )
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127 o f f s e t = o f f s e t + o f f s e t s t e p
128 o f f s e t = o f f s e t + o f f s e t s t e p
129 o f f s e t = o f f s e t + o f f s e t s t e p
130 for i in range ( 0 ,W) :
131 f2 . wri te ( ’ (pin name="bt_right_export[’ + str ( i ) + ’]" offset=’ + str ( o f f s e t )

+ ’ layer=2 width=0.0800 depth=0.2500 place_status=placed )’ )
132 f2 . wri te ( ’\n’ )
133 o f f s e t = o f f s e t + o f f s e t s t e p
134 for i in range ( 0 ,W) :
135 f2 . wri te ( ’ (pin name="lr_out[’ + str ( i ) + ’]" offset=’ + str ( o f f s e t ) + ’

layer=2 width=0.0800 depth=0.2500 place_status=placed )’ )
136 f2 . wri te ( ’\n’ )
137 o f f s e t = o f f s e t + o f f s e t s t e p
138 f2 . wri te ( ’ (pin name="rl_in[’ + str ( i ) + ’]" offset=’ + str ( o f f s e t ) + ’ layer

=2 width=0.0800 depth=0.2500 place_status=placed )’ )
139 f2 . wri te ( ’\n’ )
140 o f f s e t = o f f s e t + o f f s e t s t e p
141 f2 . wri te ( ’ )’ )
142 f2 . wri te ( ’\n’ )

Listing A.3: align_ports.py
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