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Abstract

In the near past, we would see autonomous vehicles and Intelligent Transport
Systems (ITS) as a potential future of transportation. Today, thanks to all the
technological advances in recent years, the feasibility of such systems is no longer a
question. Some of these autonomous driving technologies are already sharing our
roads, and even commercial vehicles are including more Advanced Driver-Assistance
Systems (ADAS) over the years. As a result, transportation is becoming more efficient
and the roads are considerably safer.

One of the fundamental pillars of an autonomous system is self-localization. An
accurate and reliable estimation of the vehicle’s pose in the world is essential to
navigation. Within the context of outdoor vehicles, the Global Navigation Satellite
System (GNSS) is the predominant localization system. However, these systems are
far from perfect, and their performance is degraded in environments with limited
satellite visibility. Additionally, their dependence on the environment can make them
unreliable if it were to change.

Accordingly, the goal of this thesis is to exploit the perception of the environment
to enhance localization systems in intelligent vehicles, with special attention to
their reliability. To this end, this thesis presents several contributions: First, a study
on exploiting 3D semantic information in LiDAR odometry is presented, providing
interesting insights regarding the contribution to the odometry output of each type
of element in the scene. The experimental results have been obtained using a public
dataset and validated on a real-world platform. Second, a method to estimate the
localization error using landmark detections is proposed, which is later on exploited
by a landmark placement optimization algorithm. This method, which has been
validated in a simulation environment, is able to determine a set of landmarks
so the localization error never exceeds a predefined limit. Finally, a cooperative
localization algorithm based on a Genetic Particle Filter is proposed to utilize vehicle
detections in order to enhance the estimation provided by GNSS systems. Multiple
experiments are carried out in different simulation environments to validate the
proposed method.
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Resumen

En un pasado no muy lejano, los vehículos autónomos y los Sistemas Inteligentes
del Transporte (ITS) se veían como un futuro para el transporte con gran potencial.
Hoy, gracias a todos los avances tecnológicos de los últimos años, la viabilidad
de estos sistemas ha dejado de ser una incógnita. Algunas de estas tecnologías
de conducción autónoma ya están compartiendo nuestras carreteras, e incluso los
vehículos comerciales cada vez incluyen más Sistemas Avanzados de Asistencia a la
Conducción (ADAS) con el paso de los años. Como resultado, el transporte es cada
vez más eficiente y las carreteras son considerablemente más seguras.

Uno de los pilares fundamentales de un sistema autónomo es la autolocalización.
Una estimación precisa y fiable de la posición del vehículo en el mundo es esencial
para la navegación. En el contexto de los vehículos circulando en exteriores, el
Sistema Global de Navegación por Satélite (GNSS) es el sistema de localización pre-
dominante. Sin embargo, estos sistemas están lejos de ser perfectos, y su rendimiento
se degrada en entornos donde la visibilidad de los satélites es limitada. Además, los
cambios en el entorno pueden provocar cambios en la estimación, lo que los hace
poco fiables en ciertas situaciones.

Por ello, el objetivo de esta tesis es utilizar la percepción del entorno para mejorar
los sistemas de localización en vehículos inteligentes, con una especial atención a
la fiabilidad de estos sistemas. Para ello, esta tesis presenta varias aportaciones:
En primer lugar, se presenta un estudio sobre cómo aprovechar la información
semántica 3D en la odometría LiDAR, generando una base de conocimiento sobre la
contribución de cada tipo de elemento del entorno a la salida de la odometría. Los
resultados experimentales se han obtenido utilizando una base de datos pública y se
han validado en una plataforma de conducción del mundo real. En segundo lugar,
se propone un método para estimar el error de localización utilizando detecciones
de puntos de referencia, que posteriormente es explotado por un algoritmo de
optimización de posicionamiento de puntos de referencia. Este método, que ha
sido validado en un entorno de simulación, es capaz de determinar un conjunto de
puntos de referencia para el cual el error de localización nunca supere un límite
previamente fijado. Por último, se propone un algoritmo de localización cooperativa
basado en un Filtro Genético de Partículas para utilizar las detecciones de vehículos
con el fin de mejorar la estimación proporcionada por los sistemas GNSS. El método
propuesto ha sido validado mediante múltiples experimentos en diferentes entornos
de simulación.
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Introduction 1
„Nothing in life is to be feared, it is only to be

understood. Now is the time to understand more,
so that we may fear less.

— Marie Curie

Over the years in human history, the ability to move efficiently from one point to
another has always been of great importance. Since the invention of the wheel, we
have been continuously improving our techniques and developing new technologies,
creating new means of transport and allowing us to travel, commerce, and discover
the world. Transportation is one of the pillars of the modern economy, where the
production and consumption/usage of goods are usually geographically separated
[16]. Furthermore, a high percentage of transportation is done by ground vehicles,
most of it being carried by road. As presented in the latest report on energy, trans-
port, and environment statistics by the European Union [17], road transportation
accounted for 75.3% of the total inland freight transportation. Moreover, the total
volume of transported goods kept increasing in most countries during the last ten
years, according to a study performed by the European Union [18].

Nevertheless, we are not using our roads for transport purposes only. In addition
to freight transportation, we are familiar with covering great distances daily: to
commute to/from work, to visit family or friends, or even to buy groceries. Personal
cars are used every day all around the globe, and their numbers are only increasing.
According to the data published by the International Organization of Motor Vehicle
Manufacturers (OICA), in 2015, there were more than 1200 million motor vehicles
in use [19]. Figure 1.1 shows the growth by region in the period available from the
OICA website. Unfortunately, this is the latest data available regarding vehicles in
use, which was presented in 2015.

In the European Union, car ownership is increasing as well, with an average of
around one car for every two persons in 2019 [20]. Regarding the distance traveled
by car, although it is slowly decreasing, the average European still travels 11,300
km per year by car [21].
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Fig. 1.1: Vehicles in use by world region, according to OICA data [19].

1.1 Road safety

Despite all the benefits and advantages that motor vehicles grant us, they come
with a significant problem: road accidents. According to the latest global status
report on road safety from the World Health Organization (WHO) in 2018 [22],
road traffic injuries are the 8th most common cause of death in the world. Note
that, albeit old, this is the latest report available on global road safety by the WHO.
This tragic statistic is strongly related to the rise in the number of vehicles in use;
presented before. For this reason, among many others, vehicle manufacturers are
constantly improving the safety of vehicles, not only for their occupants but also
for the Vulnerable Road Users (VRU). This is reflected in Figure 1.2, also from
[22], which shows that the rate of traffic related deaths per 100,000 vehicles is in
recession. Nonetheless, the total number of deaths remains unacceptable, with 1.35
million people dying each year on our roads due to traffic accidents.

If the focus is placed on the European Union, the numbers are more optimistic.
The latest report on road safety [23] shows that the number of crashes involving
vehicles, as well as the number of injured people and deaths, are all decreasing.
Figure 1.3 presents a comparison between these variables, where their decrease
becomes clear. Although the death toll of traffic accidents is still a considerable
problem, the advances in safety systems for vehicles are helping to reduce it.
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Fig. 1.2: Number of motor vehicles and rate of road traffic death per 100,000 vehicles:
2000-2016 [22].

1.1.1 Vehicle safety systems

Since the invention of the first automobile in 1886, the Benz Patent-Motorwagen
[24], motor vehicles have received several improvements in terms of safety. Next, the
most relevant safety features introduced in cars (the most common motor vehicle)
in the latest decades are presented:

• Seat belts: One of the first safety features for cars, from the early 1900s.
The initial seatbelt invention consisted of a simple two-point design around
the waist. Then Volvo patented the three-point seatbelt in 1959 [25], which
quickly became a standard in all cars after that patent was released for free.

• Anti-Lock Braking System (ABS): The ABS was initially developed for air-
craft; in order to prevent sliding during landing due to the wheels locking up.
This technology began to be used in cars in the 1970s, becoming a standard in
the late 1980s.

• Crumple zones: Crumple zones turn the structure of the car into a protective
shell, which is crushed in case of impact, absorbing the crash energy and
protecting the passengers.

• Electronic Stability Control (ESC): The advances in electronics in the latest
years made possible new safety features for vehicles, such as the ESC. The ESC
is capable of detecting traction loss in a vehicle. Then, it automatically acts on
the brake of each wheel in order to take stability control back.
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Fig. 1.3: Comparison of the number of vehicle crashes, injured people and fatalities in
traffic accidents. EU, 2010-2019

1.1.2 Advanced Driver-Assistance Systems

Advanced Driver-Assistance Systems (ADAS) are the outcome of years of research
on vehicle systems engineering, electronics, and computer science. They use sensors,
such as cameras, radar, ultrasound, and Light Detection and Ranging (LiDAR)
sensors. Although some ADAS features are primarily focused on driver comfort,
most contribute actively to enhancing the vehicle’s safety [26]. ADAS are classified
into passive or active systems. Passive ADAS include the aforementioned ABS and
ESC safety systems, in addition to other features such as the following:

• Back-up Camera: Helps the driver in parking maneuvers by providing a view
from the back of the vehicle.

• Lane departure warning: The vehicle is capable of detecting the road lines
using cameras; in order to warn the driver if the vehicle is not keeping within
its lane.

• Forward collision warning: Radar and LiDAR sensors can be used to detect
obstacles and other objects like vehicles, cyclists, and pedestrians. If there is a
risk of collision, the vehicle system alerts the driver.

• Blind spot detection: Sometimes, the driver cannot see other vehicles passing
around it through the mirrors because of blind spots. This issue is mitigated
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by using sensors to detect vehicles in these areas and inform the driver about
their existence.

• Driver Monitoring: Danger is not only outside of the vehicle, as the driver
can also malfunction. A monitoring system inside the vehicle can sense if the
driver is distracted or falling asleep, triggering a warning to keep attention on
the road [27].

• Navigation System: Modern navigation systems acquire the position of the
vehicle via Global Navigation Satellite System (GNSS) and can compute the
best route considering the map and the current traffic levels. These systems
help the driver find the optimal way to their destination while indirectly
reducing congestion on the roads.

Other systems act directly on the car systems, taking partial control of some of them
to help the driver control the vehicle or prevent dangerous situations:

• Adaptive Cruise Control (ACC): A comfort feature in modern cars. The
system takes control of the vehicle throttle and brake; in order to maintain a
fixed velocity or match the velocity of the leading vehicle. The vehicle in front
is commonly detected using a radar sensor.

• Automatic Emergency Braking: The evolution of the forward collision warn-
ing. Instead of merely warning the driver, this system operates directly on the
brakes.

• Lane Keeping Assistance: Lane-keeping systems assist in controlling the
steering wheel, ensuring that the vehicle stays within its lane.

1.2 Autonomous vehicles

Following the research on vehicle systems, and after assessing the benefits brought
by ADAS, we can recognize that integrating sensing capabilities and automation
in our vehicles makes them more comfortable and safe. One of the reasons is that
these systems try to eliminate the driver from the control loop. The primary cause
of traffic accidents is due to human errors. Drivers tend to get distracted by the
phone, the radio, and drinking or eating, for example. Therefore, the most natural
evolution of ADAS are Intelligent Transport Systems (ITS). The goal of ITS is to
make vehicles more autonomous, thus reducing the driver’s actions even further.
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Nevertheless, making vehicles completely autonomous is not an easy task, as it
requires handling very complex situations that might seem simple for humans but
not for machines. Hence, the arrival of self-driving cars on our roads is expected to
be progressive rather than instantaneous [28]. The reasons behind this are twofold:
On the one hand, new technology must be developed and tested. Additionally,
these systems rely on expensive sensors and equipment and will have to become
affordable. On the other hand, the legislation around these vehicles advances slowly.
Having autonomous vehicles roaming the world requires certification; to guarantee
that the systems are safe. In addition, the vehicles will also need insurance, and
there is still debate on who would be the responsible entity in case of an accident
involving an autonomous vehicle [29].

In 2013, SAE International 1 proposed a taxonomy to classify the grade of autonomy
in a vehicle that is composed of six levels [30]. The different levels, summarized in
Figure 1.4, are as follow:

0. Driver only: The driver must take both lateral and longitudinal control. There
is no automation.

1. Assisted Driving: The vehicle systems have longitudinal or lateral control. The
driver is still continuously operating the vehicle.

2. Partial automation: The system can take both longitudinal and lateral control
of the vehicle in some defined use cases, but the driver must always monitor
the system.

3. Conditional automation: Same as level two, but now the driver does not need
to monitor the system at all times. The system, however, might require the
driver to resume manual control.

4. High automation: The vehicle systems can fully manage all situations defined
in a specific use case. Inside that use case, the driver is not required.

5. Full automation: A fully autonomous vehicle does not require human inter-
vention in any case and is able to handle all traffic situations in the journey
without any specifically designed use case.

In order to reach high levels of autonomy, a vehicle must be equipped with several
sensors and actuators that allow sensing the environment around it and perform-
ing actions accordingly. A review of the multiple sensors and actuators used in
autonomous driving platforms can be found in [29].

1AE International is an automotive standardization entity based in the United States.
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Fig. 1.4: Levels of driving automation proposed by SAE International [31].

The principal subsystems of an autonomous vehicle are the control, perception, and
localization systems. The following sections will detail the main characteristics of
each of these subsystems.

1.2.1 Control and path planning systems

The control subsystem of an autonomous vehicle can be divided into high-level and
low-level control. While the former is responsible for the high-level navigation and
the interactions between the vehicle and the world, the latter is responsible for the
physical movement of the vehicle, following the goals directed by the high-level
control.

Additionally, the low-level control of a vehicle can be divided into lateral and
longitudinal control. On the one hand, longitudinal control systems control the
velocity and acceleration of the vehicle through the throttle and brakes. The goal of
these modules is to maintain a target velocity, keep a safe distance from the leading
vehicle, or adjust the velocity in certain maneuvers when required. Moreover, the
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vehicle’s acceleration is also often controlled, so the movement is smooth, thus
making the trip more comfortable for the passengers. An example of such a system
is the ACC.

On the other hand, lateral control systems take control of the steering wheel and
are responsible for keeping the vehicle within its lane (like Lane Keeping Assistance
systems), changing lanes, or making turns in an intersection. Due to the complexity
of the vehicle dynamics, lateral control is more difficult to solve than longitudinal
control and requires more complex algorithms [32]. Multiple solutions to this
problem are based on the dynamic and kinematic model of the vehicle [33, 34],
using a Model Predictive Control (MPC) algorithm to predict the future state of the
vehicle according to the current state and the models and taking the best control
action to reach the desired goal. Other approaches operate without knowing the
exact models of the vehicle movement, which is the case of the Proportional Integral
Derivative (PID) controller or controllers based on fuzzy logic [35]. Furthermore,
with the rise of techniques based on neural networks and learning algorithms, there
are novel methods based on deep learning algorithms that are able to learn how to
control the vehicle [36].

On top of the lateral and longitudinal control, we have higher-level control systems
that are responsible for generating trajectories, performing complex maneuvers (e.g.,
lane changing or parking), and leading the vehicle to its destination [37].

1.2.2 Perception systems

Perceiving the environment, the road elements, other vehicles, pedestrians, cyclists,
and unexpected objects on the road, and detecting the many threats that a vehicle
might encounter on its way is not a straightforward task. Perception systems analyze
the data acquired from the sensors to understand the scene and allow the vehicle
to perform safe actions accordingly. The tasks performed by these systems include
object detection and classification, semantic segmentation of the scene, data fusion,
and object tracking.

3D object detection methods [38] provide the location and size of the detected
objects relative to the ego vehicle. In addition, classification algorithms can also
identify the class of the objects to determine if that object is a pedestrian, a traffic
sign, or another vehicle. Most object detection modules can also identify the object’s
type.
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A different approach to modeling the environment is through scene segmentation
techniques. These can either be image [39] or pointcloud based [40]. If the data
comes from a camera in image format, the output is another image where each
pixel is assigned a label that represents the object’s class. When working with 3D
sensors like LiDAR or stereo cameras, it is common to obtain the data in a cloud of
points, where each point represents each one of the 3D measurements. Then, 3D
segmentation algorithms compute the object’s class for each one of the points.

In addition to the complexity of object detection and classification tasks, perception
algorithms must also be robust enough to work under any weather condition.
Therefore, it is common to combine different sensor types, so the weakness of one
sensor is covered by a different one [41]. The benefits of data fusion are many.
Besides covering weaknesses, combining data from multiple sensors often produces
better results than processing them independently because more information is used
to solve the problems.

Finally, it is also important to remark that perception systems have grown immensely
in the latest years due to advances in image processing and 3D scene understanding,
and thanks to the advances in machine learning that have been adopted in the field
of autonomous vehicle research.

1.2.3 Localization systems

Localization systems aim to answer the question: "Where am I?". Regarding intelli-
gent vehicles, we could divide localization techniques into global and local.

Global localization Having a global localization system means having a shared
reference system with the rest of the vehicles and elements of the environment.
For instance, global latitude and longitude coordinates, or coordinates in a map,
are good examples of global localization data. This type of localization is the most
important because the destination, the path to follow, and the world information
will be expressed in this reference system.

The most common technology used to obtain a position in global coordinates is the
GNSS system. This one is an essential system in any vehicle and is often combined
with Inertial Measurement Unit (IMU)s to provide both the position and orientation
of the vehicle.

Another method to obtain global coordinates is estimating the vehicle’s position and
orientation with respect to a map. Map-based localization techniques use perception
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algorithms to detect specific points or landmarks that appear on the map; in order
to determine the location of the vehicle with respect to those points If the map is
georeferenced, it is even possible to combine the localization estimated relative to
the map with the coordinates obtained from the GNSS service.

Local localization The term "local localization" is associated with localization tech-
niques that do not provide coordinates in a global reference frame. This is the case
for odometry methods, for example. An odometry method estimates the movement
of the vehicle by integrating the relative changes in the position or integrating the
velocities. For this reason, the estimated position will always be relative to the origin
of the movement, hence the term "local" in localization.

One of the possible odometry sources, and perhaps the most available in any vehicle,
is the odometry from the wheels. All vehicles include encoders on the wheels to
measure the velocity with an odometer and display it to the driver. A wheel odometry
system can exploit this information, combined with the steering angle, to estimate
the relative movement of the vehicle.

While odometry from the wheels is considered a proprioceptive method (it measures
the inner vehicle’s state), there are other methods considered exteroceptive because
they use sensors to measure the changes on the outside of the vehicle. On the
one hand, camera data can be used in visual odometry, algorithms that analyze
the changes in consecutive images to estimate the movement. Likewise, the same
approach can also be followed with LiDARs by processing consecutive point clouds
to provide a source of local localization.

The main drawback of odometry methods is that they suffer from drift. The cause
is that the vehicle pose is obtained by integrating small increments in the position.
Thus, the error (even if small) accumulates over time, causing the drift.

1.3 Motivation

Accurate and reliable localization is essential for autonomous vehicles. Prior to any
move, maneuver, or even route planning, a vehicle must first know its position. If
the vehicle’s pose is not accurate or is very noisy, proper control of the vehicle is
unfeasible. Moreover, most obstacle detection systems have a final object tracking
step, where the movement of the detected objects is predicted and their position
estimated. In that tracking process, the movement of the ego vehicle is considered
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to compensate for it. Thus, a wrong estimation of the ego localization can also cause
wrongful estimations in the pose of the obstacles around the vehicle.

Nowadays, GNSS systems are the unquestionable go-to solutions to solve the local-
ization problem in vehicles. A good, accurate GNSS system is, however, expensive.
High-end systems include multiple antennas and support different satellite constella-
tions (GPS, GALILEO, GLONASS, BEIDOU, or QZSS). Moreover, most of the high-end
GNSS systems can receive differential corrections to reduce the estimation error and
also support Real-Time Kinematic (RTK) positioning to reach centimeter accuracy.

Nevertheless, GNSS solutions are not flawless since they require good satellite
coverage in order to obtain an accurate estimate. Plus, they cannot work indoors,
so applications that include underground parking lots or tunnels would require a
different solution because a GNSS will not be able to work. Another challenging
scenario for GNSS systems is navigating inside cities; due to urban canyons. If the
vehicle is traversing an area with tall buildings or narrow streets, the sky visibility
is reduced. Moreover, the remaining visible satellites will likely be concentrated.
Thus, the system will suffer from poor geometry for Geometric Dilution of Precision
(GDOP) [42].

Finally, although the error from the GNSS position can be estimated, it cannot be
controlled. Satellites are constantly moving, and vehicles might enter an area with
poor coverage, so the localization error cannot be predicted. That makes autonomous
vehicles unable to anticipate a situation with a poor localization estimate.

Alternatives to pure GNSS solutions include fusing it with odometry sources or using
a different global localization approach based on digital maps. Integrating odometry
measurements with GNSS is a common practice and helps mitigate some of its
problems. However, these local methods suffer from drift and, therefore, are not a
valid option for long times GNSS denial.

On the other hand, localization solutions based on digital maps rely on the availability
and quality of the map. They use the data from cameras and LiDARs to detect
landmarks and try to match the vehicle’s surroundings with the map. If the sensors
are accurate and the map has a high resolution and quality, the localization obtained
by these methods can be superior to GNSS systems.

In addition, newer advances in sensor technologies and perception algorithms can
be exploited to improve localization systems. Generally, perception and localization
systems are independent, while many localization systems (either sensor-based
odometry or map-based methods) could benefit from the processed data obtained
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from perception algorithms (road detection, obstacles, or traffic signs, for exam-
ple).

After all, What does having a good localization even mean? In the real world, it
is not straightforward to determine if the localization output of an algorithm is
the actual vehicle’s position. The problem of a lacking ground-truth system for
localization has been tackled before in indoor mobile robotics. In those applications,
high accuracy Motion Capture (Mo-Cap) systems are installed in testing areas to
provide a localization reference. Sadly, these systems do not work outside and have a
limited range making them unsuitable for experiments with road vehicles. Previously,
localization reference systems for road vehicles consisted of high accuracy GNSS
systems; still, they have the drawbacks mentioned before.

Last, the advances in communication technologies allow vehicles to cooperate with
other vehicles and with the city’s infrastructure. This integration of technologies
enables new cooperative algorithms for autonomous driving, including cooperative
localization methods with potential benefits.

1.4 Objectives

As stated before, there is room for improvement in localization systems for au-
tonomous vehicles. The work done in this thesis revolves around the idea of integrat-
ing the advances in perception algorithms; in order to improve localization systems
in autonomous vehicles. On the one hand, the systems that allow autonomous driv-
ing are complex enough, so using the information already processed by perception
systems helps reduce the overall system’s complexity. On the other hand, this thesis
also aims to provide alternatives to GNSS systems, with the purpose of diversifying
the viable solutions to the global localization problem in intelligent vehicles. Finally,
another objective of this work is to lay some basics for cooperative localization
algorithms based on environment perception.

Subsequently, this work is done according to the following list of objectives:

• Exploit the advances in perception technologies applied to autonomous vehi-
cles in the latest years; to improve their localization systems.

• Study the benefits of integrating advances in 3D scene understanding with
LiDAR-based odometry algorithms.
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• Provide novel methods and systems for localization validation. Design such
systems to guarantee an upper-bounded localization error.

• Enhance localization algorithms by the means of a multimodal cooperative
localization system for autonomous vehicles, combining information from
vehicles and infrastructure.

1.5 Thesis Structure

This thesis is structured in six chapters and two appendices. The central chapters
that present the main contributions of this work have their own results sections.
Plus, they are opened with a brief introduction and closed with some concluding
remarks specific to that chapter.

The remainder of this thesis is summarized below:

Chapter 2

The second chapter is a continuation of the thesis introduction, where state-of-the-art
works are analyzed and discussed. The literature reviewed starts with a background
of autonomous driving platforms and demonstrations. Then, a brief review of per-
ception algorithms for object and infrastructure detection is presented. Afterward,
a deep analysis of the different localization methods is performed, including data
filtering and fusion techniques. Next, vehicle cooperation mechanisms and coop-
erative localization algorithms are reviewed. Finally, the most common evaluation
systems are reviewed, including a deep analysis of the several metrics that can be
used to measure the performance of localization systems.

Chapter 3

This chapter presents a study of the performance of LiDAR-based odometry algo-
rithms after filtering the input point clouds using 3D semantic information. Results
show the advantages and disadvantages o multiple filtering configurations, obtaining
the importance of each semantic element in the odometry output.

Chapter 4

The content in this chapter is focused on localization validation and reference
systems based on landmark detection from LiDAR sensors, and it is divided in
two parts. First, an odometry reference-less validation method is presented. The
second part details a landmark placement optimization algorithm that can be used
to generate a reference trajectory with a guaranteed bounded error.
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Chapter 5

This chapter is focused on cooperative localization for connected autonomous ve-
hicles. An estimation framework to solve this problem is presented, and its perfor-
mance is evaluated.

Chapter 6

Finally, the conclusions of this work are presented, and the possible future work
lines are discussed.

14 Chapter 1 Introduction



Related Work 2
„If I have seen further, it is by standing on the

shoulders of Giants.

— Issac Newton

This chapter details the related work in the context of the objectives presented in
Section 1.4. First, a historical background is given in Section 2.1, where a review of
the most famous autonomous driving platforms is provided. This review includes the
application of each platform and its sensor setup. Section 2.2 presents an analysis of
different perception technologies used in autonomous vehicles. The studied technolo-
gies are those that can benefit localization systems, including common LiDAR-based
and camera-based object detection techniques and landmark detection algorithms.
Then, Sections 2.3 and 2.4 present a deep review of localization techniques and
filtering and data fusion methods, respectively. The works reviewed in those two
sections are not only centered on autonomous vehicles. Other works from the fields
of mobile robotics and state estimation are included. Afterward, localization evalu-
ation systems are presented in Section 2.5, including the metrics used to analyze
the performance of localization systems. Finally, Section 2.6 presents a review of
communication technologies for vehicles and different cooperative solutions for
perception and localization problems.

2.1 Autonomous driving platforms

Autonomous driving platforms have gained considerable interest in the last two
decades, and this interest is only increasing over the years. The first autonomous
driving vehicles started appearing during the 20th century with works such as
ALVINN from the Carnegie Melon University in 1988, [43, 44], Navlab project, from
the CMU as well [45], or the Eureka-PROMETHEUS project from the European Union
[46]. Nevertheless, the bigger jump happened in 2004, when Defense Advanced
Research Projects Agency (DARPA) from the U.S. held a competition for autonomous
ground vehicles, the DARPA Grand Challenge [47, 48]. This challenge consisted in
following a 240 km route in autonomous mode through the desert from California
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to Nevada. The off-road route included multiple difficulties, as it required driving
through rough terrain with several obstacles. Sadly, none of the teams were able
to finish the challenge, but the competition was repeated the year after, in the
2005 DARPA Grand Challenge with more successful results. On this occasion, 5
participants managed to finish the course. The winner of the competition was the
team from Stanford University with their vehicle Stanley [49], presented in Figure
2.1.

Fig. 2.1: Stanley vehicle from Stanford University in DARPA Grand Challenge 2005. ©2005
Standford University.

Stanley was equipped with an array of LiDAR scanners, radars, and cameras on
top of the roof. Those sensors were used to determine the drivable space by
detecting the road limits and also to detect the possible obstacles on its path.
Additionally, the localization of the vehicle was estimated using a GPS sensor, an
IMU, and the odometry from the wheels. The data acquired from those sensors were
then processed and fused by an Unscented Kalman Filter (UKF). In general, most
participants also relied on GNSS systems as the main localization source [50, 51, 52,
53]. Nonetheless, some of them did include different mechanisms to handle GNSS
signal outages, which could lead to a navigation error.

After the success of the DARPA challenge, a new type of challenge was launched in
2007: the DARPA Urban Challenge. In this challenge, the vehicles did not have to
cope with the physical difficulties of the rough off-road terrain, and the length of the
route was only 96 km. Notwithstanding, this challenge brought new complexities,
such as moving in a cluttered urban area while sharing the road with other vehicles
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and following all the traffic circulation rules. In addition, vehicles must be able to
operate under any weather condition (e.g., rain or fog) and with a degraded GPS
signal. Accordingly, all participants made their vehicles even more intelligent than
before, with new sensors suited for better perception in urban environments and
more complex decision-making algorithms. The winner of this challenge was the
team from Carnegie Melon University with their vehicle BOSS [54], shown in Figure
2.2.

Fig. 2.2: BOSS vehicle from Carnegie Melon University in DARPA Urban Challenge 2007
[54]. ©2009 Springer.

Regarding the localization system, this vehicle did not rely only on a GNSS-based
system. In this challenge, the teams had access to a map of the roads, and some
teams also decided to exploit that extra information to help improve the accuracy
of the GNSS sensor. Two example vehicles are BOSS and Junior [55] from the
Standford team, which finished in second place, clearly showing that using the road
map for localization purposes had an impact on the final ranking.

Following the DARPA challenges, the Grand Cooperative Driving Challenge (GCDC)
was held in Europe in 2011 [56] and 2016 [57]. While the first edition was mainly
focused on vehicle platoons and cooperative adaptive cruise control, the second
edition included two different challenges: cooperative intersection passing and
platoon merging. In this challenge, vehicles from different teams must cooperate
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with each other while following the traffic rules. This event also showed the benefits
of cooperative driving.

After the DARPA and GCDC challenges, there has been a boom in the autonomous
driving world, bringing new technologies and creating new companies and many
different vehicles used for testing and demonstration purposes. For instance, 125
years after the first journey on a motor vehicle by Bertha Benz in 1888, a prototype
vehicle from Mercedes drove the same route autonomously without any intervention
[58]. The route had a length of 103 km and was composed of multiple villages,
rural areas, and major cities, all with shared traffic and following the traffic rules.
Furthermore, VisLab, from Parma University, which already participated in both
DARPA challenges, completed the VisLab Intercontinental Autonomous Challenge
(VIAC) [59]. Three autonomous vans completed a 16,000km route from Parma to
Shanghai, where the 2010 World Expo took place.

In the last decade, we have started to see an initial development of commercial
platforms, moved by private initiatives that aim to create a Level 4 / Level 5
autonomous vehicle in the next years. These advances are leaded by Waymo, which
acquired and automatized a fleet of Chrysler vehicles, which has already covered
more than 32 million kilometers. Nowadays, some of these vehicles; which are based
on Google’s self-driving car [60], have been successfully deployed as "robotaxies" in
some areas of San Francisco. Another big company that is leading the development
of autonomous driving technologies is Tesla. Tesla vehicles started offering Level 2
autonomy features and recently have started releasing its "full self-driving" algorithm,
including Level 3 features. Classical car manufacturers are one step behind but
advancing steadily. For instance, BMW has been planning for a while to release a
Level 3 autonomous copilot but recently announced that it will be postponed until
2025 [61]. On the other hand, Mercedes, which built the Bertha prototype in 2014
[58], has already released this year the first Level 3 vehicle approved for European
public roads [62]. Volvo also announced its new autonomous driving system at the
latest CES consumer electronics show in 2022 [63], although its release date is still
unknown.

2.2 Perception technologies

The perception systems used in intelligent vehicles have evolved over the years as the
sensing technologies have improved [29]. Monocular cameras are the most common
perception sensor in intelligent vehicles; for multiple reasons: They resemble human
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vision, and artificial vision algorithms are easy to understand and develop. Moreover,
they are relatively cheap, easy to use, easy to install in the vehicle, and have a
low power consumption. For this reason, there are numerous methods for object
detection using monocular cameras [64, 65]. Lately, thanks to the rise in machine
learning and deep learning techniques, new computer vision methods based on
neural networks are being used in intelligent vehicles with a substantial performance
boost [66]. Some examples of deep learning techniques (i.e. convolutional neural
networks) are implemented in Detectron 2 framework [67], from Facebook Research;
such as the FASTER R-CNN [68] or the MASK R-CNN [69].

The only drawback of this type of sensor is that detections are obtained in the image
plane, which is 2D. Thus, the 3D position of the detected objects is not directly
known, including the distance to obstacles. In order to deal with this problem, some
works estimate the distance of each pixel [70, 71], creating a depth map from the
monocular camera. However, the most common approach is to use a different sensor
to sense the objects in 3D and obtain the depth of the obstacles detected from the
images [72]. The sensors that fill this gap are stereo cameras and LiDAR sensors.
While the former requires a method to compute the image disparity and obtain the
depth of the image [73, 74], the latter directly provides the 3D coordinates of the
obstacle points, while also being more accurate.

The advantage of stereo vision techniques is that combining the 2D obstacle detec-
tions from images with the computed depth is straightforward [75]. Moreover, the
generated depth map is dense and has enough information to detect vehicles, other
obstacles, or even the road limits [76, 77].

On the other hand, LiDAR sensors provide a somewhat sparser point cloud, so
identifying objects is a more challenging task. However, while they lack information
density, the accuracy of the measurements is very high, hence LiDAR-based detections
tend to be very accurate. The information extracted from LiDAR point clouds can
be combined with camera-based detections or can be used independently to obtain
the 3D detections. Detecting objects is generally easier in images. Camera-LiDAR
fusion techniques try to exploit this by using LiDAR to obtain the 3D position of the
detected obstacles and improve the detections [78, 79, 80]. Yet, detection solutions
based on just LiDAR are simple, do not require sensor synchronization or calibration
and can also provide acceptable results [81, 82]. Finally, other works that use only
the LiDAR point cloud take a different approach when processing the data. Instead
of directly processing the 3D data, the information is encoded into a 2D image in
a bird’s eye view. Then, the same deep learning methods that are used to process
camera images are trained to process the data from the LiDAR [83, 9].
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In addition to object detection techniques, another method to understand the scene
is through instance segmentation. This method consists in assigning a label to each
pixel (in images) or point (in point clouds). Initial approaches used image processing
and deep learning methods to obtain the semantic segmentation of the scene [84,
85]. Nevertheless, newer techniques are able to process 3D information and produce
a similar output, assigning a label to each point [86, 87].

In addition to detecting potential obstacles, intelligent vehicles must also detect the
road infrastructure to navigate safely. Road infrastructure includes the road surface
(drivable area, lanes, line types, road topology) and other elements, such as traffic
signs or traffic lights. Additionally, detecting other infrastructure elements can be
helpful to localize the vehicle within a map. Some examples of such elements are
lamp posts, trees, or other static objects like buildings or fire hydrants.

Detecting the road markings and identifying the drivable area and the road lanes is
crucial for autonomous navigation, and it has been a perception task since the first
vehicle prototypes. Most works are based on image processing methods and exploit
the brightness difference between the lines and the rest of the road [88, 89]. In [90],
map information and data from a stereo camera are used to detect road markings
and curbs. Additionally, in [91] camera and LiDAR sensors are combined in a
feature-level fusion method to detect the drivable area and the road markings. Lastly,
it is also possible to detect the road lines with only a LiDAR sensor. In addition to the
3D coordinates of the points, LiDAR sensors also provide the returned intensity of
the laser beam. That information can be exploited to differentiate the lane markings
from the asphalt [92]. Other works use deep learning methods to learn the line
features from LiDAR data [93].

Finally, the detection of traffic signs and traffic lights is also important, albeit not
critical, for navigation. This is required to comply with the circulation rules and drive
safely. Together, traffic signs and other elements such as lamp posts or trees can be
considered landmarks and be used as key points in localization algorithms, hence the
relevance of such perception methods in this thesis. The detection and recognition
of traffic signs are always computed using a camera because identifying the type of
sign is not possible without visual information. This last step is usually performed
by machine learning methods, such as Support Vector Machine (SVM) algorithms
or neural networks that learn the possible sign types and assign the corresponding
class to the sign detection. In [94], a neural network is used to classify the traffic
signs, and a Kalman Filter is applied afterward to provide consistency and memory
in the detections. Other works, such as [95], perform a color-based segmentation to
segment the signs instead of analyzing the shape of the objects. An example of a
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SVM-based traffic sign classifier can be dound in [96], and similar methods are used
to detect traffic lights [97]. Furthermore, landmark detection is generally applied
in mapping and map-based localization processes. In [98], natural landmarks (i.e.,
trees) are detected from a 2D LiDAR for localization purposes. Urban environments
are richer in landmarks than other places like highways or rural areas. Therefore,
most of the works focused on landmark detection are oriented to this type of
cluttered environment. For example authors in [99] propose a semi-automated
extraction of light poles using a LiDAR sensor. In [100], an automatic detection
and classification of pole-like structures method is presented. Moreover, a stereo
camera is used in [101] to detect poles and trees based on the occlusions generated
between the two cameras. Due to those occlusions, the disparity map shows a black
area next to the poles on the disparity image, and the poles are then extracted by
edge detection. Lastly, authors in [102] recently presented a landmark-based global
localization algorithm with a custom point cloud processing algorithm to extract
pole-like landmarks from LiDAR data. Then, a map of the landmarks is created to
obtain a global reference within the map.

2.3 Self localization

Any system capable of autonomous or semi-autonomous navigation needs a localiza-
tion system. Examples are small mobile robots like small intelligent vacuum cleaners,
industrial AGVs, self-driving vehicles, or Umnanned Aerial Vehicles (UAVs). For this
reason, localization is a common problem in multiple areas, and the techniques and
solutions are usually similar.

The localization problem is a well-studied topic in robotics, which consists in finding
the robot’s pose (position and orientation). In order to be complete, this positioning
problem must be formulated in 3D, although sometimes a simplification to 2D is
enough when the environment is flat. The 3D position of the robot is represented
in cartesian coordinates: {x, y, z} ∈ R. Accordingly, the orientation consists of the
three angles: {roll, pitch, yaw} ∈ [0, 2π). Together, they form a pose with 6 Degrees
of Freedom (DOF). The robot’s orientation can also be represented by Euler angles
[103], or by quaternions [104]. Furthermore, another common representation of a
pose is by a 4× 4 transformation matrix from the SE(3) group1 [105].

(
R t
0 1

)
∈ SE(3) (2.1)

1SE(3) is the Special Euclidean Group in 3 dimensions that represents rigid motions.
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Where R ∈ SO(3)2 is a 3× 3 rotation matrix that encodes the robot’s orientation
angles and t ∈ R3 is the 3D translation vector that represents the robot’s position.

Due to the nature of rotations, measuring the difference, or distance, between two
rotations in a matrix form is not straightforward. In [106], six different metrics
to evaluate the distance between 3D rotations are analyzed. In robotics, more
particularly in the field of pose estimation, the use of the Lie groups SE(3) and
SE(2) have gained interest in recent years. The reason is that these groups are
nonlinear because of the rotations, and Lie theory provides a mechanism, the Lie
algebra, to linearize the nonlinear operations performed in the Lie group [107].
This Lie algebra is a linear vector space, tangent to the group’s manifold, which
allows the linearization of such operations through exponential and logarithmic
transformations.

Another important topic to consider when representing the robot’s pose is uncer-
tainty. Everything has uncertainty. Sensors, measurements, the robot kinematic
and dynamic models, or extrapolation operations can introduce errors in the pose
estimation process. Measuring and modeling this uncertainty has been one of the
main study cases for decades. In order to take into account these errors, most works
adopt probabilistic approaches [108]. This way, the localization problem is turned
to finding the most likely pose of the robot, and the uncertainty can be estimated by
determining how likely is that pose to be. Regarding error covariance estimation,
in [109] a method is proposed to estimate the uncertainty of a visual odometry
algorithm for UAVs. In addition, authors in [110] proposed a generic method to
model the drift error of an odometry method and estimate the covariance of its
error.

Localization is a complex problem with multiple possible solutions. A review of the
numerous localization techniques is presented in [111]; applied to mobile robotics,
albeit still accurate for other mobile vehicles. In [112], different localization methods
applied to autonomous vehicles in highway environments are presented. Generally,
the way to obtain the robot’s pose is to either infer the pose by measuring external
references or estimate how much the robot has moved by measuring its displacement
or integrating acceleration/velocities. Furthermore, most localization methods rely
on data fusion techniques to combine the information perceived from different
sensors to improve accuracy and robustness.

As introduced in 1.2, localization methods can be local or global. Local methods are
also called odometry or dead-reckoning. They are based on incremental techniques
that compute the pose by integrating the movement. Global methods estimate

2SO(3) is the Special Orthogonal Group that represents rigid rotations in 3 dimensions.
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the pose within a common coordinates system, usually using external references.
The remainder of this section will present and analyze multiple local and global
localization solutions, divided by the sensor and techniques used.

2.3.1 Wheel odometry

Wheel odometry methods work by measuring the velocity of the wheels through
encoders. The velocity is then integrated, and the robot’s pose is calculated through
its kinematic model. In vehicles with steering wheels like cars, the kinematics are
usually modeled with the Ackermann model [113]. In those cases, the steering angle
must also be measured and introduced in the model responsible for generating the
odometry.

Wheel odometry, or dead-reckoning, techniques date back to the first mobile robots
due to encoders being simple and inexpensive sensors. In [114], a wheel odometry
system for a differential-drive mobile robot is presented. That work also proposes a
calibration mechanism to mitigate systematic errors in the odometry process. Wheel
odometry is generally more complex for road vehicles than indoor mobile robots.
First, the kinematic model is more complex. Also, indoor robots usually move in
flat environments, while road vehicles are more likely to move on uneven terrain.
Authors in [115] also presented a calibration method to deal with systematic errors,
but this time applied to Ackermann vehicles. Moreover, authors in [116] even
consider the effect that the dynamic load in the vehicle has on the wheels. That
effect is modeled and considered in the wheel odometry algorithm, thus improving
the system’s accuracy.

One of the most common sources of error in wheel odometry systems is when the
robot is turning, i.e., moving in a curve. For that reason, most works combine the
odometry from the wheels with a IMU sensor. The IMU provides a more accurate
estimation of the robot’s orientation, which can help correct the error that wheel
odometry systems have in curves. In [117], authors combine a gyroscope with
a wheel odometry system, using the gyroscope data when the odometry drifts.
Furthermore, authors in [118] propose a method to provide an accurate localization
estimation based on wheel odometry and IMU; to work when LiDAR and cameras
are unavailable. Their work exploits deep learning techniques to learn the vehicle
model and use the learned model to generate the odometry from encoders and IMU
data. Finally, another method combining wheel odometry and IMU is presented in
[119]. Then, the generated wheel odometry is fused with a visual odometry system
to improve its performance.
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2.3.2 IMU odometry

IMU sensors are a combination of accelerometers, gyroscopes, and magnetometers
that can measure linear acceleration, angular velocity, and orientation to the mag-
netic north, respectively. These sensors are generally greatly affected by external
interferences and are rather noisy. Therefore, a thorough calibration process is
always required. For this reason, their usage in localization systems is usually to
complement another system instead of being the main sensor. In addition to the
works presented in the previous subsection, IMU sensors are also often combined
with visual odometry systems [120, 121]. However, the best synergy is probably
obtained by combining a GNSS unit with an IMU [122, 123, 124]. GNSS systems
can provide accurate positioning, but they are not able to obtain the orientation of
the vehicle, which is provided by the inertial system. That is the explanation to why
most commercial GNSS solutions include an IMU as well.

Although IMU systems are most often seen as complementary sensors, recent ad-
vances in machine learning techniques are enabling different works that generate
acceptable odometry from IMU sensors. Authors in [125] proposed a learning
framework to generate an odometry from low-cost IMU sensors. Finally, the work
presented in [126] proposes a deep learning method to learn the error model of an
IMU and improve the accuracy of the odometry system.

2.3.3 Visual odometry

Since cameras are one of the most popular sensors for intelligent vehicles and also
mobile robots, the field of visual odometry has received significant interest in the
last two decades.

Classical visual odometry techniques, or optical flow techniques, measure the camera
movement by detecting specific features in consecutive images and performing a
matching step between the extracted features. With that information, these methods
are able to estimate the movement of the camera by analyzing the displacement of
the features in the images. In [127], this approach is applied to an omnidirectional
camera mounted on a car. Authors in [128] propose a method to handle motion
blur in a visual odometry process. Direct methods, such as [129] and [130] extract
information from the intensity gradients in the image. Therefore, these techniques
work with the whole image rather than depending on keypoint detection and
extraction methods. Other works, such as [131], perform Simulatneous Localization
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and Mapping (SLAM) to keep track of the detected features over time, building a
map of the environment.

Furthermore, depth information is of significant help in these methods. For this
reason, some works suggest using stereo cameras or depth cameras to aid in the
generation of visual odometry [132, 133].

In cases where only a monocular camera is available, it is possible to use deep
learning techniques to estimate a depth map from images and exploit the generated
depth information in the visual odometry step [134, 135].

Finally, visual odometry methods have also received significant benefits from the
advances in machine learning and deep learning techniques. In [136], a deep
learning method is proposed with a neural network that learns the image features
and infers the camera poses from a sequence of images. Instead of using image
features, authors in [137] propose another deep learning method that exploits the
semantic information in images to generate the odometry.

2.3.4 LiDAR odometry

The principles of LiDAR odometry are very similar to those of visual odometry.
The relative movement of the sensor is incrementally computed by analyzing the
displacement of the points from consecutive measurements. The advantage of LiDAR
sensors is that they measure the distance to objects directly with very high accuracy.
However, multilayer LiDAR produce point clouds with numerous points, which in
addition to the 3D coordinates, also encode other information such as the returned
intensity. Processing this sheer amount of data requires a significant amount of
computational power and very efficient methods.

In order to mitigate this processing burden, some works propose different strategies
to reduce the scale of the data. In [138] authors propose an odometry method
based on 2.5D data by projecting the 3D points into multiple 2D height maps.
Other work suggested the use of a siamese network that was capable of learning
dimension-reduced representations of the 3D point cloud [139]

The classical incremental odometry approach is performed by matching consecutive
point clouds through a registration method that estimates the most likely transfor-
mation between the two scans. In [140], a Normal Distributions Transform (NDT)
algorithm is selected to perform this matching process and generate theodometry
from consecutive point clouds. Additionally, in [141] a different matching algorithm
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based on Collar Line Segments is adopted to perform the registration between scans.
This method is designed to efficiently handle the sparsity and quantity of points in
LiDAR data. Also, following the trends, new approaches based on deep learning
methods are being studied. In [142], a Convolutional Neural Network (CNN) is
used to extract features, and the transformation between consecutive point clouds is
estimated afterward. Other techniques to infer the movement between scans include
Recurrent Neural Networks (RNNs), such as the Long Short-Term Memory (LSTM),
as was suggested in [143].

As happens with other odometry techniques, these methods are prone to drift due to
their incremental nature. Consequently, many LiDAR odometry approaches actually
implement a complete SLAM method. Building a map of the environment while
estimating the odometry provides the system with memory, and the map can be
used to correct the drift in the generated trajectory. For the last decade, LOAM
[144] has been, and still is, the most popular LiDAR-based SLAM method. The
idea behind LOAM is to separate the odometry and mapping into two parallel
processes. First, a low-accuracy preliminary odometry estimation is performed with
high frequency. Concurrently, a low-frequency mapping process the point clouds with
the estimated odometry and performs a fine matching and registration of the scans.
The 3D data processing performs a feature extraction step, where feature points from
planar surfaces and sharp edges are obtained. Afterward, those features are used to
compute point-to-plane and point-to-lane distances and estimate the transformation
between the two point clouds. Later, a lightwave version of the LOAM algorithm
was presented in [145]; a method named LeGO-LOAM. This version follows the
same methodology but was adapted to run on embedded computers like the Nvidia
Jetson machines. In LeGO-LOAM, the ground plane is segmented and exploited to
estimate the pitch and roll angles. Similar to LOAM, planar and edge features are
extracted to estimate the movement of the sensor. However, a 3D segmentation is
performed beforehand to filter the point cloud and reduce the number of points,
thus speeding up the process. Another LiDAR-based SLAM algorithm is presented in
[146], that applies a scan-to-model matching method based on the Implicit Moving
Least Squares (IMLS) surface representation.

The recent advances in 3D semantic segmentation techniques have been incorpo-
rated into some works to improve the performance of the LiDAR odometry and
SLAM methods. In [147], a point cloud alignment based on Iterative Closest Point
(ICP) algorithm is presented. Before matching the points, 3D semantic segmentation
is performed, restricting the point association to those objects of the same type. A
semantic SLAM method is presented in [148], where a CNN is used to extract the
semantic information. Then, that semantic information is used to remove moving
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objects from the scene and apply semantic constraints in the scan matching pro-
cess. Other work that exploits 3D semantic segmentation to generate LiDAR-based
odometry can be found in [149]; this time applied to UAVs in forest environments.

In order to improve accuracy and robustness, LiDAR sensors are also often combined
with other systems. Authors from LOAM presented a second version of the famous
algorithm that also included visual information in the odometry generation [150].
In [151], a powerful SLAM framework combining LiDAR and a monocular camera is
presented, where the LiDAR information is used to find the depth of visual features.
LiDARs are also typically complemented by IMU sensors to improve the reliability of
the localization solutions. A LiDAR odometry algorithm is presented in [152], where
an IMU is used to constrain the estimated rotations and improve the performance of
the odometry system. Finally, IMU sensors are also integrated in LiDAR-based SLAM
methods to preprocess the scans [153] and to compensate motion when aligning
two point clouds [154].

2.3.5 GNSS-based localization solutions

GNSS are the most used localization systems in autonomous vehicles. They are
globally available and flexible. While very high-end systems can provide centimetric
precision, it is also possible to obtain a position estimate (with some meters of error)
with low-cost sensors.

Since GNSS systems directly provide the position of the receiver, they usually do
not require any extra computation. However, autonomous systems that rely on
these systems need to estimate the quality of the GNSS estimation. A map-aided
integrity monitoring system is presented in [155]. Additionally, other GNSS integrity
monitoring systems are reviewed in [156].

In order to improve the accuracy and robustness of GNSS in environments with
low signal coverage, GNSS receivers with antenna arrays are proposed in [157]; for
applications in urban scenarios.

The precision of GNSS systems can be improved by receiving corrections from other
receivers, with Differential GNSS or RTK systems. Although both methods require
a base station, Differential GNSS [158] has a higher availability, a lower cost, and
allows a greater distance between the base station and the vehicle receiver. RTK
systems have a more limited range but a much higher precision. In [159] a low-
cost RTK-GNSS system is used for UAV applications. Authors in [160] propose a
calibration method for GLONASS GNSS receivers with RTK corrections. Furthermore,
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in [161] different positioning strategies with multiple GNSS constellations and RTK
correction are reviewed.

Finally, it should be noted that GNSS systems are usually combined with other
information sources, to improve their accuracy or to provide information about the
vehicle’s orientation. Some of the most common data fusion approaches used in
autonomous vehicles will be presented in Section 2.4, including data fusion systems
based on GNSS.

2.3.6 Landmark-based localization solutions

Typically, a localization solution based on landmarks requires previous knowledge
about the landmarks’ positions. Therefore, a map of the environment containing
information about landmarks is usually precomputed, either automatically or manu-
ally. Then, the robot must be able to detect the landmarks and obtain the relative
position of each detected landmark with respect to the robot. Since the global
position of a landmark is known (relative to the map), every measurement contains
information about the global robot pose within the map. Combining all measure-
ments produces a system of equations, which are nonlinear due to the nature of
rotation angles. Such equation systems are treated as Non-Linear Least Squares
(NLLS) problems, which solution can be estimated by optimization algorithms such
as the Levenberg-Marquardt method [162].

The use of external landmarks (both natural and artificial) for localization purposes
has been widely studied in the worlds of mobile robotics and intelligent transporta-
tion systems. The first formulation of a landmark-based localization solution dates
back to 1988 [163], where a camera is used on a mobile robot to detect vertical
edges and match them with the vertical poles given in a map. Indoor mobile robots
have benefited from this global localization approach because GNSS is not avail-
able inside buildings. In [164], a camera mounted on a mobile robot is used to
detect landmarks based on their appearance and localize itself on a map. Another
landmark-based localization approach based on visual information is presented in
[165]; applied to robots participating in a RoboCup3 event.

In some environments, it is possible to install human-made landmarks specifically
designed to be used in a localization system. In [166], a laser sensor is used
to measure the bearing angle to artificial landmarks. The final robot position is
estimated by a triangulation method. Authors in [167] specifically designed unique

3RoboCup is a well-known competition where small mobile robots play soccer.
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landmarks and placed them on the ceiling to be easily detected. Multiple other
works prefer the use of QR codes as unique landmarks [168, 169, 170].

The landmark-based localization approach is sensor-agnostic and does not even
need a sensor at all. Communication devices can also be exploited to determine
the distance between the receiver mounted on the robot and other communication
nodes based on the transmission time. For example, the signal strength received at a
WiFi interface can be used to estimate the distance to access points and utilize them
as landmark measurements [171, 172]. A similar approach is taken when using
Ultra Wide Band (UWB) radio technology for wireless positioning [173, 174].

Landmarks can not only be used to localize the robot inside a map but also to update
or generate the global map. In [175], authors propose a visual-based localization
based on landmark detections; that is also capable of updating the global map. If
the map is not available, the localization and the map can be estimated jointly with
SLAM techniques based on landmarks [176].

A famous landmark-based SLAM method is GraphSLAM [177, 178], which builds
a topological map based on landmark detections and odometry. An example ap-
plication of this method applied to autonomous vehicles is shown in [179], where
landmarks are detected using a radar sensor.

Intelligent vehicles navigate in outdoor environments, so the approaches previously
presented for mobile robots must be adapted to work in less structured and changing
environments, such as cities, rural areas, or highways. In [180], a camera is used
to extract visual features from the driving environment and match them with a
previously computed map. An IMU is integrated to estimate the movement of the
vehicle and complete the localization method. Some recurrent elements in these
environments are vertical pole-like objects such as lamp posts, trees, traffic lights,
or traffic signs. These elements can be easily detected and identified, becoming
potential landmarks. In [181] a stereo camera is used to reliably detect pole
structures. Then a landmark-based localization method is applied to find the vehicle’s
position within a map. Other works use semantic information to identify street lamps,
traffic signs, and trees [182] for localization purposes. Finally, a tailored landmark
representation was recently proposed in [183] to help in the automatic mapping of
driving environments, using traffic signs and traffic lights as landmarks.

Notwithstanding, road vehicles can also use a different type of landmark: road
markings. Road lines and other markings (e.g., pedestrian crossings) are available
on most roads and can also be used as landmarks for localization purposes. In [184],
authors combine HD maps, a stereo camera, and a low-cost GNSS module to obtain
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an accurate localization using road markings as landmarks. Furthermore, semantic
information is exploited in [185] to solve the data association problem between
landmark measurements and map elements. In addition to road markings, building
facades and pole-like structures are also considered in [186], increasing the amount
of information that can be matched with the global map. Because road markings
can produce very similar measurements at different points in the map, some of
the presented works rely on GNSS measurements to estimate the map area where
the vehicle is located, and, later on, the fine pose estimation is obtained from the
landmark measurements. In [187], however, the initial estimation of the map area
is obtained by a topological localization step that recognizes the scene and estimates
the map area where the vehicle is located.

2.4 Data filtering and fusion

As we introduced before, one of the most important tasks of localization systems
is dealing with uncertainty. Modeling and estimating the error noise in the system
is paramount for a reliable system. In localization systems, there are two types of
models to consider. On the one hand is the kinematic model that characterizes the
robot movement, or the motion model. On the other hand are the sensor models,
which are used to estimate the nature and the magnitude of the measurement
noise. While the motion models depend solely on the robot or vehicle, sensor, or
measurement, models depend on the sensor type, the detection algorithm applied,
and the elements that are being detected. Multiple probabilistic approaches to
motion and sensor models can be found in [108].

In the literature, the noise in both the motion and measurement models is usually
assumed to be Gaussian (i.e., following a normal distribution). Even when the
error noise follows a different distribution, Gaussian approximations have proven to
be very effective [188]. Nevertheless, it is also possible to model error noise with
different distributions [189, 190]. As an example, a probabilistic model is used in
[191] to estimate the error noise when detecting road markings from cameras, with
its posterior integration in a landmark-based localization system.

The most common way to represent data uncertainty is through data variance and
covariance matrices, which represent the magnitude of the noise and the correlation
between variables. Filters are methods that receive noisy data and reduce/mitigate
the noise. In order to perform the filtering, it is important to know the covariance
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of the data to be filtered. Then, the noisy data is fitted to a model, considering its
uncertainty, and the filter outputs the corrected data.

The most famous and most used filter in robotics and signal processing is the
Kalman filter [192]. The Kalman filter is designed to work with linear systems under
Gaussian noise. It has applications in noise filtering, object tracking, and data fusion.
The process consists of two parts: First, a prediction step is performed, where the
state is updated based on the motion model and the control inputs. Afterward, an
update step is executed, where the sensor measurements are used to correct the
predicted estimation and generate the filtered output.

Several variations of the Kalman filter have been introduced over the last decades
to address its limitations and improve its performance in more complex systems.
One of the first major variations is the Extended Kalman Filter (EKF) [193], which
introduces a linearization method to deal with nonlinear systems. However, this
approach still requires the motion and observation models to be based on differen-
tiable functions, and the noise must be Gaussian. Another determinant variation of
the Kalman filter is the UKF [194], which can deal with systems with high nonlinear-
ities. Moreover, the UKF does not require differentiable model functions. Instead of
computing the function Jacobians, this method is based on a deterministic sampling
technique, the unscented transformation, to obtain several sample points called
sigma points around its mean. This filter can also be implemented in a square root
form [195], which guarantees the semi-definiteness of the final state covariances.

Instead of following a probabilistic approach, it is also possible to follow a statisti-
cal approach with information filters. Information filters are based on the Fisher
information theory and can be considered the dual of Kalman filters. These filters
represent Gaussian data in its canonical form by an information vector and an
information matrix, which is the inverse of the covariance matrix.

Nonetheless, even when nonlinearities in systems can be dealt with, these types of
filters still struggle when the a posteriori error noise is not Gaussian. One alternative
to Kalman filters regarding this aspect is the H-Infinity (H∞) filter [196]. The H∞
filter does not try to reduce the data variance, and therefore it does not require
knowing the statistical distribution of the data beforehand. Instead, what it does
is assume the worst-case disturbances and minimize the maximum expected error.
That provides a robust estimator that compensates for inaccuracies in the system
models.

Another alternative consists in using random samples from the posterior distribution;
to approximate the state space. That is the approach followed by Sequential Monte
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Carlo sampling methods [197]. This method, also known as the particle filter,
represents the a posteriori distribution by a set of weighted particles [198]. This
set of particles leads to a nonparametric representation of the posterior, which can
represent more distributions than just the Gaussian. Each particle is associated with
an importance factor, which can be seen as a weight. The importance factor assigned
to each particle is computed according to the probability of having that sample with
the given measurements. Finally, a resampling process is performed to keep the
particles with a higher importance factor and discard the less relevant ones.

All these estimation techniques are not only used to filter noisy data but also to
combine the information received by multiple sources. Multisensor fusion techniques
are paramount for intelligent vehicles, mainly for perception and localization systems.
In the past decades, data fusion approaches have been profoundly studied and
adopted in multiple engineering areas but particularly in robotics and intelligent
transportation systems [199]. Some examples of multisensor fusion methods have
already been introduced in the previous sections of this thesis. Additionally, several
works provide a review of the multiple techniques and applications to autonomous
vehicles [200, 201], including deep learning techniques applied to sensor fusion
[202].

The field of localization has received special interest in these techniques for multiple
reasons previously mentioned. In [203], an EKF is implemented to provide the
state estimation for an aerial vehicle based on sensor fusion. An adapted EKF is
also used in [204] to combine a GNSS and an IMU for localization in road vehicles.
Furthermore, authors in [205] apply an UKF to combine GNSS, IMU and digital
maps. The UKF is also used in [206], to fuse Ultra Wide Band (UWB) and IMU
readings from a UAV. Both, EKF and UKFare compared in [207] when implemented
in road vehicles.

The H∞ filter has received less attention in the state estimation field than the more
tested Kalman filters. However, it has been shown that it can outperform its Kalman
counterpart when applied in autonomous vehicles [10]. In [208], the H∞ filter is
combined with an EKF to estimate the state of a soft robot.

On the other hand, particle filters are widely used in state estimation for intelligent
vehicles, especially with map-based approaches. An adaptive Monte Carlo localiza-
tion method was initially presented in [209]. In [210] a similar method is presented,
with theextra integration of a GNSS sensor. This method combines LiDAR and GNSS
sensors with a digital map to obtain a robust and accurate localization estimation in
autonomous vehicles. A particle filter is also applied in [211] to estimate the vehicle
position based on road markings detections from multiple cameras. Additionally,
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authors in [212] proposed a similar method to fuse GNSS, LiDAR, IMU and wheel
odometry for autonomous driving in urban areas. Finally, a particle filter was also
applied in [213] to estimate the position of an aerial vehicle based on wireless
signals.

2.5 Localization evaluation systems and metrics

In order to determine how good a localization method is, we must evaluate how
close are the estimated poses to the actual pose of the vehicle. In addition, it is
also interesting to evaluate other characteristics, such as the processing time, the
robustness and reliability under different scenarios, or its availability. For example,
an odometry system based on infrastructure will not be available if the required
infrastructure elements are not present in the environment. Also, a localization
system could be very accurate, but if the processing time is too high, it would not
be suitable for operating in real-time on an actual vehicle. Nonetheless, the metric
that receives the most attention is always the accuracy of the system. Calculating
the difference between the estimated trajectory and the actual vehicle poses is not
straightforward. In order to do that, knowing the exact ground truth of the vehicle
poses is required, which is a very complex task in real-world scenarios. While
simulation environments do provide the actual localization ground truth, using them
makes the evaluation results depend on the quality of the simulation models. In
real-world scenarios, however, it is not possible to determine the exact pose of the
vehicle because any system will have a small amount of error. However, the go-to
approach is to use a high-accuracy system to generate a reference trajectory; that
is used later on to evaluate other localization systems with lower accuracy. If the
system under test has an accuracy closer to the reference system, then it is not
possible to determine if the obtained error comes from the system under test or the
reference system. In that case, such a reference system is not suitable to evaluate
the localization system under test.

In applications that take place indoors, the most common reference systems are
Mo-Cap systems [214]. These systems require installing small markers on the
robot, providing a 6DOF reference system with millimetric and even sub-millimetric
accuracy, which is enough for most localization systems because the sensors that are
equipped usually on robots cannot reach those accuracy levels. The use of Mo-Cap
systems has been widely used in the field of UAVs for testing localization and control
systems. However, these systems rely on infrared cameras that do not work outdoors,
so they are not suitable for evaluating localization systems in road vehicles. In the
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area of intelligent transportation systems, outdoor localization systems were typically
evaluated using high-end RTK-GNSS systems with high accuracy [215]. Sometimes
the generated trajectory is post-processed offline to improve its accuracy. These
approaches can reach centimeter-level accuracy, which is far from Mo-Cap systems
but still acceptable. Lately, localization systems for autonomous vehicles have greatly
improved, and GNSS-based reference solutions are becoming obsolete. Furthermore,
GNSS sensors perform poorly in urban areas and environments with reduced satellite
coverage, which limits the availability of such evaluation systems. An alternative
approach is to exploit SLAM systems, where the poses and the generated map
are optimized offline. In some cases, these methods are supervised by a human
who can intervene by manually adjusting the measurement matching. In [216], a
Monte Carlo method is used as the localization reference, combined with manual
supervision to correct the matching between the detected landmarks and a digital
map.

Before describing how trajectories are compared, it is important to understand how
to compare two different poses. Let us assume we have two poses Pref,t, Pest,t ∈
SE(3), where Pref,t is the reference pose and Pest,t is the estimated pose from the
system under test at the same timestamp t. The error in the estimation can be seen
as the difference between the two poses, i.e., the transformation from Pest to Pref :

Et = Pref,t 	 Pest,t (2.2)

Where ⊕ is the pose composition operator, and 	 is defined as its inverse [217].
Afterward, the translation and rotation components of Et can be combined or
evaluated separately, as suggested in [218] and [219]. The translation component of
the measurement error is computed as the Euclidean norm of the translation vector.
Regarding the rotation component, different rotation metrics in SO(3) can be found
in [106].

Besides the definitions of the relation between poses, there are also different ways to
analyze and evaluate the whole trajectory. In order to compare the trajectories, both
should be synchronized in time, so each estimated pose is associated with a reference
pose. If a common reference system is not available, it is also possible to align both
trajectories using the Umeyama method [220]. Then, a first approach could be
computing the translation and rotation error for each pair of poses, extracting several
statistics on that data such as the mean, median, maximum error, or the RMSE.
This technique is known as the Absolute Pose Error (APE) because it measures
the total error in the whole trajectory at each timestamp in an end-to-end manner
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[221]. However, while this approach is convenient for evaluating global localization
methods, it has a significant flaw when trying to evaluate the performance of local
methods. As it is mentioned in [218], the APE evaluation metric is not appropriate
for odometry evaluation for the following reason: If the system has a small drift error
at the beginning of the trajectory, the whole trajectory will be globally wrong, even
if the movement is estimated correctly. However, if that same drift error happened
at the end of the trajectory, the total APE will be much smaller, as only the latest
poses will be affected by that error. Figure 2.3 shows this problem in a simple 1D
scenario. There, it can be seen how the error obtained with the APE metric is much
higher if the small estimation error happened at the start of the trajectory. After
that small error, the estimated trajectory is still locally good; hence the APE is not
suitable for evaluating odometry methods, which are meant to be local.

Pref

Pest

Pref

Pest

Error

Error

Fig. 2.3: Problematic of the APE metric. The green and blue circles represent the reference
and estimated poses, respectively. The error of each pair of poses is drawn as a
red arrow.

In order to solve this issue, a new metric is proposed in [218]: the Relative Pose
Error (RPE). Instead of evaluating each pair of corresponding poses, this metric
compares the relative displacement between poses, which is computed between two
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poses of the same trajectory. Then, the RPE is obtained from the difference of deltas
between reference and estimated trajectories:

δi,j = Pj 	 Pi i < j

Ei = δref,i,j 	 δest,i,j
(2.3)

Both metrics, APE and RPE are deeply studied in [222] for evaluating trajectories.
Note that each metric provides different insights about the estimated trajectory. To
conclude, the APE metric is preferable to analyze how good is the performance
globally, which makes it preferable to evaluate global localization methods. On the
other hand, the RPE metric is more suitable for the evaluation of odometry methods
because it focuses the analysis on local segments of the trajectory.

Nowadays, multiple public datasets are available online to test, validate, and evaluate
technologies related to autonomous driving. Due to the rise of deep learning
techniques in this area and the gigantic amount of data required to train the models,
There have been great efforts in the last decade to generate and label data. While
most of these efforts have been generally focused on perception technologies, many
of them include basic positioning data. Even some of them are specifically designed
to evaluate localization methods.

Some datasets include a variety of sensors, different scenes, and multiple kilometers
driven [223, 224]. However, the localization data is obtained directly from a simple
GNSS unit, which cannot be used as ground truth for evaluation purposes. Recently,
Waymo released its own dataset [225], but it is also centered around perception
tasks. While the vehicle poses are provided, the paper does not mention how they
were obtained, so their accuracy is doubtful. When datasets are more focused on
providing a localization reference, RTK-GNSS systems are used, as in [226].

One of the principal datasets focused on localization is the Oxford RobotCar dataset
[227, 228], which also includes an online challenge to evaluate localization results.
This set of sequences includes data recorded from multiple sensors at different
seasons under diverse weather conditions. The localization ground truth is obtained
by post-processing GNSS with a RTK base station and an IMU. Authors claim to have
a centimeter-accurate reference system.

Finally, the most famous dataset for autonomous driving technologies is, without
doubt, the KITTI dataset [219], which also includes multiple online challenges on
different topics such as object detection, semantic segmentation, or odometry. The
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localization reference for the odometry challenge is obtained from a GNSS unit
with RTK corrections, combined with an IMU. In order to evaluate the submitted
trajectories, the authors implemented an RPE metric based on the one proposed
in [218]. On the one hand, translation and rotation are evaluated separately. On
the other hand, the RPE metric is designed to evaluate errors depending on the
trajectory length and velocity.

2.6 Cooperative systems

This section provides a review of the different communication technologies that
allow vehicles to communicate with other road agents and some of the multiple
cooperative algorithms for perception and localization problems.

2.6.1 Communication technologies

Human drivers consider the actions of other road users and, in a way, cooperate
with them when sharing the roads. Some cooperative actions are based on traffic
rules, such as turn signals or traffic lights. Others are based on non-written rules,
like a pedestrian visually checking the driver’s attention before crossing the street.
Intelligent vehicles are destined to share the roads with other users like human-
driven vehicles and VRUs. Thus, it is required to grant intelligent vehicles with
the capabilities to communicate with other road agents such as other vehicles,
road infrastructure, or pedestrians [229]. The trends in Internet of Things (IoT)
technologies and smart cities are pushing the development of new communication
technologies, such as 5G, which will also bring multiple benefits to autonomous
vehicles [230, 231].

Generally, the term associated with communication technologies involving connected
vehicles is Vehicle-to-Everything (V2X) [232]. These communication technologies,
however, can be divided into three groups: Vehicle-to-Vehicle (V2V), Vehicle-to-
Infrastructure (V2I), and Vehicle-to-Pedestrian (V2P).

• V2V: The form of cooperation that has received the most attention is based on
vehicle-to-vehicle communications. One way to enable V2V communications
is through Vehicular Ad-hoc Networks (VANETs) [233, 234]. A different
approach consists in using specific communication infrastructure or mobile
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networks to connect the vehicles [235]. The benefit of mobile networks is
their high availability worldwide and how simple it is to connect to them.

The range of V2V applications is broad. This type of communication allows
vehicles to share their position and their perception of the environment. For
example, this information can allow vehicles to be aware of road threats in
advance. Furthermore, vehicle cooperation schemes can provide benefits to
localization and mapping systems.

• V2I: Communication with infrastructure is essential in smart cities and can
be considered one of its cores. Vehicles can benefit from V2I communication
by receiving information about traffic lights or traffic congestion. Moreover,
traffic management solutions based on V2I and I2V communication can achieve
high-level traffic coordination in urban areas [236].

In order to enable this type of communication, mobile networks, such as
4G/5G, are a good option due to their high availability in urban areas. Other
options include local networks based on WiFi or WiMax technologies [237].

• V2P: VRUs, such as pedestrians, are the group most involved in traffic accidents
with injuries or deaths. For this reason, multiple works have been focused
on exploiting communication technologies and connected vehicles to raise
awareness among pedestrians of dangerous situations [238]. This type of
communication is usually performed over WiFi networks [239], although it
can also be carried out over mobile networks [240], and generally relies on
connected devices such as smartphones to provide the pedestrians with alerts.
Furthermore, these types of V2P applications allow warning pedestrians about
possible collisions, even when there is no clear line of sight between the vehicle
and the pedestrian.

2.6.2 Cooperative algorithms

Communication technologies and the V2X schemes described previously enable a
plethora of cooperative algorithms that can improve all systems in an autonomous
vehicle, including perception, localization, and mapping.

Regarding perception systems, cooperation between vehicles allows sharing the ob-
stacles information, even if they are not in the line of sight [241, 242]. Furthermore,
in [243] a cooperative perception approach is proposed, based on extending the
sensing area by combining and aligning the 3D point clouds acquired by the LiDAR
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sensor of each vehicle. One of the drawbacks of sharing sensor data is that it is
usually very inefficient because it requires a large bandwidth. In [244], authors
analyze the multiple parameters in WiFi-based V2V communication to effectively
implement a cooperative perception system. Moreover, an approach to determine
what information should be shared and when is presented in [245], allowing more
efficient use of the communication channels. Authors in [246] analyzed the impact
of such cooperative perception approaches in the final decision-making and planning
of autonomous vehicles.

Cooperative localization approaches rely on sensor measurements that provide the
relation between the poses of the involved vehicles. Vehicles share their initial
localization estimate (generally from GNSS) and the detections from their sensor
measurements. The distance between vehicles can be obtained from multiple sources.
In [247], GPS pseudo-range measurements are used to estimate the distance between
vehicles, resulting in a cooperative method that does not require additional sensors.
However, cooperative solutions rely on wireless communication technologies, and
the Received Signal Strength Indicator (RSSI) can also be exploited to estimate
the inter-vehicle distance. This is a much more common choice due to its high
availability [248]. Finally, onboard sensors are another option to detect the other
vehicles [249]. Onboard sensors can also be used to detect elements external to
the vehicles and use them as common reference points for cooperative localization
[250].

In order to solve the localization problem, Gaussian filters are studied in [251].
A similar approach is adopted in [252], where an adaptive EKF is presented for
cooperative localization in underwater vehicles. Another variant of the Kalman filter
is presented in [253], combining GNSS and dedicated short-range communication
for ITS applications. Additionally, authors in [254] proposed an EKF to combine
odometry and inter-vehicle distances to cooperatively improve the localization when
GNSS is not available in urban scenarios. Generally, the cooperative localization
problem can be seen as a graph, where least-squares solutions can outperform
Gaussian filter approaches [255].

Particle filters are also very common estimators to solve the cooperative localization
problem, which is often combined with cooperative mapping [256, 257]. In [258], a
Particle filter is used to combine GNSS and ranging data from terrestrial receivers and
satellites. Furthermore, the use of a similar approach is studied in [259] to solve the
localization problem inside tunnels, where the GNSS signal is not available. In order
to select which measurements are better, a link selection method is presented in
[260], using the vehicles with the best GNSS signal as virtual anchors. This approach
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is later exploited by the same authors in [261], where the RSSI measurements
from UWB communication receiver is combined with a prior GNSS estimation. The
approach based on virtual anchors is proven to reduce the propagation of the initial
bias.

2.7 Concluding remarks

In this chapter, the main technologies related to autonomous driving have been
introduced, from the early developments to the current state-of-the-art techniques.
The great advances that we have seen in the latest years show that these technologies
can aid in making the roads a safer place.

Furthermore, this chapter has presented a study on the state of the art in perception
and localization systems for intelligent vehicles, as well as an analysis of data
fusion techniques and cooperative systems. The multiple state-of-the-art techniques
described in this chapter are intended to serve as a broad context for the different
works that will be presented in the next chapters of this thesis.
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LiDAR Odometry Based on
3D Semantic Information

3
„If we knew what it was we were doing, it would

not be called research, would it?

— Albert Einstein

This chapter presents a study about LiDAR SLAM algorithms and how changes in the
input point clouds do affect their performance. Semantic information is exploited
to segment the original point cloud, and the generated odometry is evaluated with
data from a public database. This work has been published in [1].

3.1 Introduction

LiDAR-based localization systems are very common in autonomous vehicles because
of their compelling set of features, including outstanding measurement accuracy,
a broad field of view, which usually spans 360°, and the ability to operate under
some challenging weather conditions. In addition, modern LiDAR sensors achieve
higher resolutions, which was one of their weaknesses in the past, allowing them
to provide more details from the detected objects, even at far distances. This set of
features makes this type of sensor an attractive option for environment perception
and localization in autonomous vehicles.

Modern LiDAR sensors have a long detection range that can easily reach up to 100m.
Additionally, most devices cover a field of view of 360°. This, combined with a high
point density, allows extracting multiple features from the vehicle surroundings that
can be used to register multiple point clouds and compute the vehicle odometry.
These characteristics are also easily exploited by SLAM algorithms, which have been
proven to obtain excellent results with LiDAR sensors in autonomous vehicles.

This chapter includes content from [1] and [2].
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However, not all the environment features are equally beneficial to the scan reg-
istration process in the SLAM algorithm. Traffic scenarios are very dynamic and
inconsistent. On the one hand, the vehicle’s surroundings can vary depending on
the driving area. Elements such as buildings, vegetation, or the road’s structure are
different in urban areas, rural areas, or highways. This lack of predictability makes it
difficult to rely on specific types of features. On the other hand, traffic environments
have multiple dynamic objects, such as other vehicles, bikes, or pedestrians. Moving
objects may introduce spurious correspondences into the registration process.

Consequently, the work presented in this chapter aims to introduce a systematic
analysis of the input sensitivity of LiDAR-based SLAM algorithms. Before feeding the
sensor data to the SLAM algorithm, the point clouds are filtered based on semantic
information. Some examples of this pre-filtering are presented in Figure 3.1, where
each point is colored based on its semantic class.

(A) (B)

(E) (F)

Fig. 3.1: Samples of filtered point clouds from different test configurations. Letters (A, B, E,
F) refer to the filtering configuration used, described in Section 3.2.2.

In order to decouple the negative effect of the semantic segmentation accuracy, the
semantic labels are extracted from the SemanticKITTI dataset [262]. This dataset is
based on the odometry sequences from the original KITTI dataset [219], extending
it with point-wise 3D semantic annotations.

The insights obtained from this analysis should provide a deeper understanding of
how each element in the driving environment affects the registration of LiDAR point
clouds in the odometry process. We believe this study will be useful in the future
design of new LiDAR-based odometry algorithms.
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3.1.1 Odometry algorithm

While there are many different LiDAR-based odometry methods, we chose to evaluate
LOAM algorithm [144], which is a state-of-the-art approach based only on LiDAR
data. This method has been selected for three main reasons. Firstly, it is a solid
and well-known method that has been continuously used and cited since it was
published in 2014. Secondly, it has stayed on top of the KITTI odometry leaderboard
since it was published for both translation and rotation metrics; until the end of
2021. Finally, the algorithm has an open-source implementation, which is available
in [263].

LOAM separates the SLAM problem into a high-frequency odometry estimation and
low-frequency map registration steps. In order to estimate the vehicle movement,
this method extracts edge and planar features from the point clouds; based on the
smoothness of the points. Then, these features are processed independently, and
a registration process is applied to find the relative transformation between the
current sensor measurement and the computed map. This approach is followed by
most SLAM methods; thus, the collected results from our proposed analysis can be
extrapolated to other LiDAR-based algorithms.

3.2 Methodology

This section provides a detailed description of the evaluation procedure. First, the
dataset selection, and the structure of the input data, are described. Then, multiple
filtering configurations based on semantic information are presented. Finally, the
evaluation metrics considered in the study are detailed.

3.2.1 Data

The data source selected for this study is the KITTI dataset [219]. Particularly,
the odometry benchmark is the most appropriate for this type of evaluation, as it
provides multiple challenging sequences in different driving environments with an
accurate localization reference that can be used as ground truth. These sequences
provide LiDAR input date from a Velodyne HDL-64E sensor, which has 64 vertical
layers and a range up to 120m, producing more than 2.2 million points per second.
Additionally, the SemanticKITTI dataset [262], which is built upon the KITTI’s
odometry sequences, is used in this study. While the main purpose of this dataset
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is to provide a benchmark for 3D semantic segmentation, we are mainly interested
in using its data to extract the 3D semantic information that has been manually
annotated. Such annotations span different categories, which are presented in
Figure 3.2. The labels include different vehicle categories, and other classes such as
ground, vegetation, or structures, for example. In addition, moving objects are also
labeled as dynamic, allowing us to consider all dynamic objects in the scene.

Fig. 3.2: Labelled classes in Semantic-KITTI dataset [262] and number of points from each
class. Image source: semantic-kitti.org/dataset.

For this study, we will use the semantic annotations obtained from the SemanticKITTI
dataset; in order to filter the original LiDAR point clouds and evaluate the odom-
etry output using the localization reference obtained from the KITTI odometry
benchmark.

3.2.2 Input filter configurations

In order to evaluate the performance of LiDAR odometry, we propose six different
filtering configurations. A new set of filtered point clouds is created by applying each
filtering configuration to the original LiDAR point clouds. Afterward, the filtered
point clouds are fed to the selected odometry algorithm, and the localization output
is evaluated. The six different filtering configurations used in the experiments and
the motivation to include each one of them are presented below.

(A) Raw: Original point cloud from the LiDAR sensor in the KITTI odometry
sequences. This configuration constitutes the baseline of the comparison.

(B) Dynamic: All dynamic objects are removed from the point cloud. Moving
objects are a common source of correspondence errors, and other works already
implement this type of filter before computing the point cloud registration
[146]. Therefore, we expect improvement in the odometry accuracy after
removing points from this type of object.

(C) Dynamic Vehicles: In this configuration, only the dynamic vehicles are re-
moved. Other dynamic objects (i.e., pedestrians and cyclists) are kept. This
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filtering configuration is motivated by the fact that pedestrians should have
a minimal contribution to the overall error due to their small size and low
velocity.

(D) Far: The points with a distance from the vehicle greater than 30m are removed.
LiDAR sensors can provide a high point density and detailed measurements
at close distances, but point clouds become more sparse with the distance.
This fact leads us to think that objects that are far away will have a very small
number of points; and, hence, may introduce more noise to the system. This
configuration keeps the points that are close to the vehicle, where the point
cloud is dense and rich in details.

(E) Ground: The ground points are removed, including drivable and non-drivable
areas. This filtering configuration has a special interest because the effect of
the ground points might be beneficial and harmful for different reasons. On
the one hand, LiDAR point clouds are arranged by rings, and those rings that
hit the ground will always have a similar appearance; if the ground is flat.
Unfortunately, most roads are flat, so this effect might result in misconceiving
the vehicle translation because all those ground points will always have the
same local coordinates, even if the vehicle is actually moving. On the other
hand, the points that lay on the ground should be useful to estimate the
rotation of the vehicle, especially the pitch and roll angles.

(F) Structures: Nothing but the structures are left in the point cloud. All points
are removed, except those points laying on buildings and objects such as traffic
signs or poles. The motivation of this test case is to analyze the outcome when
only the truly static objects and structures are present in the point clouds. This
configuration removes most points from the point cloud, including the ground,
vegetation, and all vehicles.

After the pre-filtering process, the newly generated data is used as the input of the
LiDAR odometry method, i.e., LOAM. This filtering process also reduces the total
number of points contained in each point cloud, leaving smaller point clouds that
are easier to process. The obtained downsizing with respect to the original point
cloud is presented in Figure 3.3, which shows the percentage of the total number of
points for each configuration, averaged over all the KITTI odometry sequences.
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Fig. 3.3: Point cloud downsizing for each filtering configurations.

3.2.3 Evaluation metrics

After generating the new filtered sequences and executing the odometry algorithm
for each data set, the estimated poses are evaluated by comparing them with the
reference poses extracted from KITTI odometry ground truth. This evaluation
process has been performed with the aid of evo [264], which is an open-source
software tool to analyze and evaluate odometry data. Evo has multiple features to
work with odometry data, allowing us to visualize the trajectories, compare and
evaluate the data based on multiple metrics and finally perform an insightful analysis
of the obtained odometry estimation.

As previously noted in Section 2.5, metrics for localization systems are a subject
being in a continuous study. Most LiDAR-based odometry algorithms are based
on SLAM methods. Therefore, we propose two different metrics that are often
adopted to evaluate localization algorithms. The first one is the APE metric; to
directly compare the absolute differences between each pair of poses. This metric
is suitable for evaluating how good is the performance on a global scale, providing
meaningful information about how consistent is the SLAM algorithm because the
error will increase if the estimation separates from the reference. However, APE
metric has several problematics with drift-prone methods; since even a small error
at the beginning of the trajectory will affect the whole sequence of poses. For
that reason, we also propose to use the RPE metric, which is more suitable for
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the evaluation of the estimation’s drift. The RPE metric compares the odometry
deltas instead of comparing the poses directly, resulting in a local evaluation of the
estimated trajectory.

Let x̂i be a pose from the estimated trajectory, where i ∈ 1 : T is the timestamp of
each pose in the trajectory. Accordingly, let xi be the reference pose from the ground
truth associated with that estimation. Furthermore, if we define δi,j as the relative
transformation from pose xi to pose xj , we can formulate APE and RPE metrics
using the following equations:

APEi = x̂i 	 xi ∀iin1 : T

RPEi,j = δ̂i,j 	 δi,j
(3.1)

Note that, while the APE metric considers all poses when computing the error, this
is not the case for the RPE metric. The set of pose pairs {i, j}, i < j is defined as the
list of all contiguous sub-sequences of a fixed length in the vehicle’s trajectory, in a
similar manner as the KITTI benchmark does.

Finally, the error obtained from each one of the selected metrics is decomposed into
its translation and rotation components:

Etrans = ‖E‖2
Erot = ∠ [E]

(3.2)

3.3 Results and discussion

All the filtering configurations have been tested on the first eleven sequences from
the KITTI odometry benchmark, which are the sequences where ground truth is
provided. All these experiments result in a voluminous amount of odometry data
that must be properly analyzed. This section will first synthesize and display the
extracted results. Then, a thorough analysis is performed, and the results from each
configuration are discussed.

3.3.1 Results

The results from each testing configuration are presented in Table 3.1 and Table 3.2
for APE and RPE, respectively.
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Tab. 3.1: Absolute Pose Error (APE) obtained for each configuration on the available KITTI
odometry sequences.

Configuration

Sequence A B C D E F

Tr
an

sl
at

io
n

(m
)

00 (Urban) 21.8 (18.5) 21.3 (17.4) 22.1 (18.4) 41.2 (36.4) 26.8 (26.2) 36.6 (26.2)
01 (Highway) 95.5 (69.1) 93.6 (67.9) 93.4 (67.6) 770.9 (569.1) 97.4 (71.6) 41.0 (34.4)
02 (Urban) 142.3 (115.6) 143.3 (116.1) 142.9 (115.4) 179.4 (143.3) 91.5 (65.0) 16 656 (12 752)
03 (Country) 4.8 (3.5) 4.7 (3.4) 4.7 (3.4) 6.2 (5.0) 3.8 (2.5) 15.8 (16.5)
04 (Country) 2.8 (2.0) 3.0 (1.9) 3.0 (1.9) 17.1 (3.9) 2.7 (1.3) 5.4 (5.8)
05 (Country) 12.2 (9.6) 12.1 (9.6) 12.3 (9.7) 22.2 (20.8) 10.0 (8.7) 8.6 (8.3)
06 (Urban) 2.8 (1.9) 2.8 (1.9) 2.8 (1.7) 4.3 (1.9) 1.6 (0.8) 4.5 (6.1)
07 (Urban) 2.8 (1.7) 2.8 (1.7) 2.8 (1.7) 4.1 (2.0) 2.5 (1.2) 7.3 (3.7)
08 (Urban) 35.6 (30.2) 35.0 (30.0) 35.0 (30.0) 72.0 (59.3) 34.2 (29.4) 202.3 (162.2)
09 (Urban) 15.6 (9.0) 15.3 (8.8) 15.5 (9.0) 28.6 (17.9) 17.1 (9.4) 2672 (1725)
10 (Country) 12.9 (7.5) 12.9 (7.5) 12.9 (7.5) 12.9 (7.6) 5.5 (2.4) 141.2 (85.1)

R
ot

at
io

n
(°

)

00 (Urban) 6.0 (3.5) 5.6 (3.3) 6.2 (3.6) 11.7 (7.0) 7.8 (5.1) 11.7 (4.0)
01 (Highway) 4.3 (1.8) 4.2 (1.6) 4.1 (1.6) 19.3 (19.6) 3.1 (1.7) 4.3 (1.6)
02 (Urban) 31.0 (21.8) 31.2 (21.9) 31.1 (21.8) 38.2 (25.8) 19.6 (11.8) 118.9 (44.6)
03 (Country) 1.9 (0.8) 1.9 (0.8) 1.9 (0.8) 2.5 (1.0) 1.5 (0.6) 3.7 (2.5)
04 (Country) 0.7 (0.3) 0.8 (0.3) 0.8 (0.3) 2.9 (0.8) 0.8 (0.2) 6.3 (8.3)
05 (Country) 3.9 (2.1) 3.9 (2.1) 3.9 (2.1) 7.5 (4.6) 3.6 (2.0) 4.4 (2.4)
06 (Urban) 1.4 (0.6) 1.3 (0.6) 1.3 (0.6) 1.8 (0.7) 1.2 (0.6) 2.5 (1.1)
07 (Urban) 1.7 (0.7) 1.7 (0.8) 1.7 (0.7) 2.3 (1.1) 1.8 (0.6) 4.9 (1.8)
08 (Urban) 7.4 (4.0) 7.3 (3.9) 7.3 (4.0) 14.4 (7.2) 7.1 (3.9) 81.3 (32.7)
09 (Urban) 3.7 (1.8) 3.6 (1.7) 3.7 (1.8) 6.9 (3.6) 4.1 (1.8) 123.0 (40.4)
10 (Country) 2.6 (1.0) 2.6 (1.0) 2.6 (1.0) 3.2 (1.6) 1.6 (0.8) 30.3 (5.2)

Tab. 3.2: Relative Pose Error (RPE) obtained for each configuration on the available KITTI
odometry sequences.

Configuration

Sequence A B C D E F

Tr
an

sl
at

io
n

(m
)

00 (Urban) 1.38 (0.87) 1.39 (0.85) 1.38 (0.85) 1.52 (0.73) 1.26 (0.79) 2.89 (1.72)
01 (Highway) 5.93 (14.58) 5.93 (14.90) 5.97 (14.99) 430.36 (472.06) 9.83 (23.05) 1.78 (0.75)
02 (Urban) 7.68 (22.98) 7.71 (23.05) 7.66 (22.92) 9.28 (27.71) 2.58 (5.00) 45.84 (32.42)
03 (Country) 0.92 (0.44) 0.93 (0.45) 0.92 (0.44) 1.29 (0.49) 0.97 (0.48) 4.69 (2.41)
04 (Country) 1.25 (0.31) 1.27 (0.31) 1.27 (0.31) 2.09 (2.26) 1.39 (0.37) 4.37 (5.13)
05 (Country) 1.26 (0.53) 1.26 (0.54) 1.26 (0.54) 1.44 (0.59) 1.16 (0.57) 1.44 (0.80)
06 (Urban) 1.21 (0.43) 1.21 (0.43) 1.20 (0.43) 1.41 (0.52) 1.12 (0.48) 1.36 (0.75)
07 (Urban) 1.10 (0.59) 1.09 (0.59) 1.09 (0.59) 1.24 (0.59) 1.23 (0.68) 2.42 (1.40)
08 (Urban) 1.48 (0.70) 1.49 (0.70) 1.49 (0.71) 1.68 (0.81) 1.34 (0.72) 4.77 (5.84)
09 (Urban) 1.28 (0.41) 1.27 (0.42) 1.28 (0.42) 1.62 (0.55) 1.11 (0.48) 60.84 (23.32)
10 (Country) 1.44 (0.52) 1.43 (0.52) 1.43 (0.52) 1.59 (0.48) 1.28 (0.59) 1.63 (1.36)

R
ot

at
io

n
(°

)

00 (Urban) 1.28 (0.76) 1.29 (0.76) 1.28 (0.75) 1.36 (0.68) 1.46 (0.70) 4.10 (1.85)
01 (Highway) 0.92 (0.77) 0.89 (0.71) 0.89 (0.69) 30.77 (23.92) 0.82 (0.52) 1.05 (0.63)
02 (Urban) 3.35 (7.18) 3.37 (7.21) 3.35 (7.18) 3.73 (7.29) 1.71 (1.80) 79.58 (54.90)
03 (Country) 0.92 (0.34) 0.92 (0.33) 0.92 (0.33) 1.25 (0.40) 0.90 (0.35) 3.62 (2.31)
04 (Country) 0.47 (0.25) 0.50 (0.22) 0.50 (0.22) 1.08 (0.54) 0.53 (0.28) 7.18 (8.05)
05 (Country) 1.00 (0.58) 1.01 (0.58) 1.01 (0.58) 1.19 (0.69) 1.32 (0.65) 2.34 (0.92)
06 (Urban) 0.87 (0.41) 0.86 (0.41) 0.86 (0.41) 1.05 (0.41) 0.87 (0.54) 1.6 (0.79)
07 (Urban) 1.08 (0.46) 1.08 (0.46) 1.07 (0.46) 1.09 (0.48) 1.69 (0.63) 4.17 (1.30)
08 (Urban) 1.26 (0.69) 1.26 (0.69) 1.27 (0.69) 1.50 (0.81) 1.41 (0.66) 9.50 (13.50)
09 (Urban) 0.91 (0.52) 0.91 (0.51) 0.91 (0.52) 1.33 (0.64) 1.15 (0.59) 100.13 (54.49)
10 (Country) 0.95 (0.59) 0.95 (0.60) 0.95 (0.60) 1.08 (0.59) 1.02 (0.57) 2.55 (3.82)

Each table is divided into two sections for the translation and rotation components
of the error. Then, each column contains the results of each of the filtering con-
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figurations (A-F) previously defined in Section 3.2.2 and each row corresponds to
each KITTI odometry sequence. While the APE metric is computed for each pose in
the vehicle trajectory, as stated before, the RPE is obtained from each sub-sequence
with a fixed length of 100m, following the same metric setup as the KITTI odometry
benchmark. Therefore, both tables present the mean and standard deviation of the
poses across each trajectory, showing the standard deviation between parenthesis.
In addition, the filtering configuration with the best performance for each sequence
is highlighted in bold text.

Finally, Table 3.3 displays a summary of the filtering configurations with the best
performance for each metric in each odometry sequence.

Tab. 3.3: Best filtering configuration grouped for each metric and each KITTI odometry
sequence.

Sequence
Metric

APE (Trans.) APE (Rot.) RPE (Trans.) RPE (Rot.)

00 (Urban) B (Dynamic) B (Dynamic) E (Ground) A (Raw)

01 (Highway) F (Structure) E (Ground) F (Structure) E (Ground)

02 (Urban) E (Ground) E (Ground) E (Ground) E (Ground)

03 (Country) E (Ground) E (Ground) C (Dyn. Vehicles) E (Ground)

04 (Country) E (Ground) A (Raw) A (Raw) A (Raw)

05 (Country) F (Structure) E (Ground) E (Ground) A (Raw)

06 (Urban) E (Ground) E (Ground) E (Ground) C (Dyn. Vehicles)

07 (Urban) E (Ground) A (Raw) C (Dyn. Vehicles) C (Dyn. Vehicles)

08 (Urban) E (Ground) E (Ground) E (Ground) B (Dynamic)

09 (Urban) B (Dynamic) B (Dynamic) E (Ground) B (Dynamic)

10 (Country) E (Ground) E (Ground) E (Ground) B (Dynamic)

Merging the results of all odometry sequences is not a straightforward task. Due
to the nature of the APE metric, the error values presented in Table 3.1 depend on
how long is the vehicle trajectory. Therefore, it is not possible to directly combine
these measurements. However, considering that the RPE metric is computed for
fixed sub-sequences of 100m, the results obtained with this metric can indeed be
combined, allowing us to better analyze the performance of each configuration in
a broader view. Consequently, the data from extracted from the RPE metric has
been merged for each filtering configuration, and the distribution of the error is
presented in Figure 3.4 and Figure 3.5 for translation and rotation, respectively. In
these boxplot graphs, it is clearly appreciated that the first three configurations have
very similar results, as we could intuit from Tables 3.1 and 3.2. Nevertheless, the
last three filtering configurations feature more significant differences.
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Fig. 3.4: Distribution of RPE translation metric for each filtering configuration across all
KITTI odometry sequences.
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Fig. 3.5: Distribution of RPE rotation metric for each filtering configuration across all KITTI
odometry sequences.

As stated before, the proposed filtering configurations reduce the total number of
points in each point cloud. This should result in a decrease in the processing time;
because the odometry algorithm must check a smaller amount of points. For this
reason, we also analyzed the processing time that LOAM took to process each LiDAR
measurement. Because LOAM implementation is divided into different processes that
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are executed concurrently, the time of each individual process is aggregated. Figure
3.6 presents the collected processing times, averaged for each filtering configuration.
Additionally, the standard deviation of each measurement is represented by a vertical
line. Please note that the actual processing time is much smaller since this is the
aggregation of the different concurrent processes. As expected, the values shown in
Figure 3.6 resemble the point cloud downsizing of each configuration, as presented
in Figure 3.3.
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Fig. 3.6: Computational time required by LOAM to process each measurement for each of
the filtering configurations.

3.3.2 Discussion

After performing a deep analysis of the experimental results obtained from all
configurations, several insights can be extracted from them.

First, it has become clear that the number of filtered points has an important
contribution to the odometry estimation. As shown in Figure 3.3, the number of
points removed in configurations B and C (dynamic objects and dynamic vehicles)
is very small. This is because the percentage of points laying on dynamic objects
is minimal; due to the reduced number of dynamic objects and their relatively
small size. Therefore, the point clouds for those configurations have a size close
to 99% of the original point cloud size. In consequence, the errors computed
for those filtering configurations are very close to the baseline. However, other
filtering configurations that perform heavier filtering, such as configurations E
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and F (ground and structures), present a higher fluctuation in the results. This is
especially true for the last configuration, where only the points from structures are
kept, reducing the original point clouds up to 10% of their original size. These
filtering configurations rely on specific elements in the environment; thus, driving
scenarios lacking structures will result in empty point clouds, and the odometry
algorithm will be lost for multiple consecutive measurements. Nevertheless, these
configurations with heavy point filtering do outperform the baseline and other
methods in some specific scenarios. A possible interpretation of these scenarios is
that most of the noise sources are removed from the point cloud while leaving the
points from the most significant elements. Again, this outcome is only possible in
very specific scenarios where a sufficient number of structures is constantly available
throughout the trajectory. Finally, it must also be considered that the processing
time for these types of filtering configurations is notably reduced, as displayed in
Figure 3.6. Therefore, low-cost processing systems could benefit from the reduced
computational load required to estimate the vehicle’s odometry in real-time.

Regarding the filtering configurations where dynamic objects are removed (B and
C), it can be appreciated that they show slightly better results than the baseline.
Although the error difference is minimal because the filtered point clouds in these
configurations are almost identical to the original ones, overall, the performance
is better when removing dynamic objects. Furthermore, between configurations B
and C, it seems that the first one, where all dynamic objects are removed, performs
better than the second one, where only dynamic vehicles are filtered out of the
point cloud. This fact confirms that the contribution of pedestrians and cyclists
is not negligible and, hence, these kinds of dynamic objects are also a source of
noise in the odometry process. These results seem to confirm our initial hypothesis
regarding dynamic objects. However, the actual impact of these objects cannot be
properly analyzed because the filtered point clouds are still almost the same as the
raw data. For this reason, we think the obtained results are not meaningful enough
to reach a definitive conclusion, even though a small improvement is shown. In
order to completely validate our hypothesis, a larger dataset with a more dynamic
environment would be required.

In regard to the filtering configuration D, where the points that are far from the
vehicle are removed, all metrics on every sequence lead to the same conclusion:
The odometry results are always worse than the baseline. Even though the point
clouds are more sparse at further distances, removing those points limits the amount
of information that the odometry algorithm can exploit. Moreover, those points at
further distances might be helpful when computing the vehicle’s rotation.
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One of the most interesting and unexpected observations from the analysis is the
variability in the results from the filtering configuration F, where only the structures
are kept. As mentioned before, the results from this filtering configuration are
generally bad because if the vehicle drives by an area without structures, the
odometry algorithm will have no points to register, and the estimation will be lost.
Such situations might happen when the vehicle is driving by a road without buildings
and with few traffic signs. Nevertheless, a surprising result can be found for sequence
01, which takes place on a highway. Highways are very challenging scenarios for
localization algorithms; due to the vehicle’s high speed, the lack of reference points,
and the amount of other dynamic objects. To our surprise, we found that this filtering
configuration obtained remarkably good results, even outperforming the rest of the
filtering configurations. After closely analyzing the contents of the original point
clouds for that sequence, it can be observed that the highway has guardrails on each
side of the road. Guardrails are also considered structures and therefore are labeled
as "fence" in the SemanticKITTI dataset. The only other structures present in the
highway sequence are traffic signs and traffic panels, which come and go as the
vehicle moves but are not always present like the guardrails. By using only the points
from these elements, LOAM was able to properly estimate the vehicle’s trajectory,
outperforming all other filtering configurations. One of the feasible explanations for
this case is that most of the points removed with this filtering configuration in this
type of scenario are likely to introduce noise into the localization system. In the end,
most of the points in a highway scenario will correspond to fast-moving vehicles
and the road, which, combined with the speed of the ego-vehicle, will introduce
noise and might worsen the estimation quality of the other filtering configurations.
Furthermore, configuration F also showed competent results in sequence 05, which
consists of a country area with some buildings. The key elements found in this
sequence are some small walls that are placed close to the road, in a similar manner
to the guardrails on the highway. For this reason, we speculate that the existence
of some continuous structures close to the road limits is highly beneficial in the
odometry process. Nonetheless, despite providing us with this magnificent insight,
the results obtained with this filtering configuration are far from being useful in
real-world scenarios because the algorithm gets lost in most of the sequences due to
the lack of points after the filtering.

Finally, we bring attention to one of the filtering configurations that initially caused
some doubt regarding its potential benefits: The ground filter (filtering configuration
E). In Table 3.1 and Table 3.2 it is possible to realize that the removal of ground
points is generally beneficial to the odometry estimation. As presented in Table
3.3, among the 44 test scenarios that result from combining all metrics and all
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odometry sequences, this filtering configuration is the best performing one in 24
cases. This can also be observed in Figure 3.4 for the RPE translation results. In
the rest of the test cases, this configuration still provides competitive results. The
only exception is the highway sequence, where the error metrics are higher than
the baseline. Following our initial hypothesis, we believe that when the ground is
flat and uniform, the ground points produce a negative effect in the translation part
of the odometry estimation. When the LiDAR points (which are arranged by rings)
hit a flat road, all points in each ring will have the same distance, and each point
will always have very similar coordinates. In consequence, even if the vehicle is
moving, all those ground points will appear with the same coordinates. Figure 3.7
provides a simplified example of this effect. In that scenario, the points that hit the
ground appear to be static, even though the vehicle is moving forward. On the other
hand, those points that hit the tree properly reflect the corresponding translation of
the vehicle after its movement. The apparent lack of movement presented in the
ground points might be incorrectly processed by an odometry algorithm, leading it
to believe that the vehicle is not moving. Regarding the rotation error, our initial
guess was that the ground points should be beneficial when estimating the vehicle
rotation, especially pitch and roll angles. In this case, the results obtained from
APE and RPE metrics are slightly contrasting. As one can clearly see in Figure
3.5, the rotation error is affected when the ground points are removed, and the
error variance is greatly increased. However, this filtering configuration is the best
performing configuration in 7 out of 11 sequences when evaluating the APE rotation
metric. To summarize, it is reasonable to conclude that removing the ground points
provides better estimations of the translation component of the vehicle’s pose. In
regard to the rotation error, the tests are not totally conclusive; since each metric
provides different results. Nonetheless, this filtering configuration is definitely the
one with the better performance overall, even after reducing about half of the points
in each point cloud.
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C’Translation

Fig. 3.7: Distance to ground points and distance to object points after vehicle translation.
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3.4 Real-world validation

After studying the behavior of the odometry algorithm with the custom filtering
configurations, an additional experiment is performed on a real-world platform. In
this experiment, we test the performance of LOAM algorithm using the data from a
LiDAR sensor mounted on the roof of an intelligent vehicle.

This section will introduce the research driving platform used in the experiment
and the 3D semantic segmentation algorithm selected for filtering the point clouds.
Finally, the obtained results are discussed.

3.4.1 Research driving platform: ATLAS

ATLAS is a research driving platform for testing and developing autonomous driving
technologies for the insurance sector [2]. This platform was jointly developed by
MAPFRE-CESVIMAP (a Spanish insurance company), the University Carlos III de
Madrid (UC3M), and the Universidad Politécnica de Madrid (UPM). The vehicle
platform, presented in Figure 3.8, is managed by a team from the Autonomous
Mobility and Perception Laboratory (AMPL) of the UC3M, serving as a versatile
platform for testing new algorithms.

Regarding the perception and localization systems, ATLAS is equipped with a GNSS
with RTK corrections, an IMU,three LiDAR sensors (one with 32 layers on top and
two with 16 layers at the laterals), and three monocular cameras. For the proposed
test, however, only the GNSS, the IMU and the 32 layer LiDAR were used.

In order to validate the odometry generated by LOAM, a reference localization
trajectory is generated by fusing the RTK-GNSS with the IMU sensor by a UKF.

3.4.2 3D semantic segmentation

While the original tests were performed using data from the KITTI and SemanticKITTI
datasets, this experiment resembles a real-world situation; where the ground truth is
not available. Therefore, instead of obtaining the 3D semantic segmentation labels
from a dataset, this segmentation must be obtained by an algorithm.

The 3D semantic segmentation of the LiDAR point clouds is extracted using Cylin-
der3D [265], which is based on CNNs. This approach proposes a point cloud
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Fig. 3.8: ATLAS research platform.

representation in cylindrical coordinates to extract features and obtain the segmen-
tation of the scene elements. Furthermore, this method is one of the best performing
approaches in the SemanticKITTI leaderboard for 3D semantic segmentation, with a
mIoU of 67.8%. Finally, the implementation of this algorithm is publicly available,
allowing us to integrate it with the rest of the vehicle’s software architecture to
perform this experiment.

Regarding the training process for the neural networks in Cylinder3D, this method
already provides pre-trained weights, which were obtained using the data from the
semanticKITTI dataset. However, the LiDAR sensor used to record the KITTI data is
a 64-layer LiDAR with a specific vertical FOV, and the LiDAR sensor equipped on
ATLAS has only 32 layers with a completely different vertical FOV. Unfortunately, the
networks trained with a specific sensor configuration are not expected to behave that
well if that configuration changes drastically because the objects in the environment
are not similar in the point clouds from the two different sensors.

For this reason, the neural networks have been re-trained using a different database.
We selected the nuScenes dataset [266], for two reasons. On the one hand, the
LiDAR used to record the data in that dataset is similar to the one equipped in ATLAS
and is mounted at a similar height, so the perspective is roughly the same. On the
other hand, the method Cylinder3D also appears in a good position in the nuScenes

56 Chapter 3 LiDAR Odometry Based on 3D Semantic Information



leaderboard for 3D semantic segmentation, so it is expected to perform well after
training it with this dataset.

A oneshot example of the results of the Cylinder3D semantic segmentation with the
LiDAR from ATLAS is presented in Figure 3.9.

Fig. 3.9: 3D semantic segmentation in ATLAS research platform.

3.4.3 Experimental results

The proposed experiment, using the ATLAS platform, was carried out in an urban
area in one suburb in Madrid. The environment was rich in elements, including
lamp posts, traffic signs, vegetation, and buildings. By the time the sequence was
recorded, the traffic was light, and the number of pedestrians was very limited.
Figure 3.10 shows an image taken from one of the onboard cameras from the
recorded sequence.

After recording the LiDAR data and the vehicle’s localization estimation from the
GNSS+IMU fusion system, the LiDAR point clouds were processed using the trained
model for Cylinder3D. Then, the extracted semantic information was exploited to
filter the point clouds and feed LOAM with the filtered data, as it was done with the
data from semanticKITTI. Finally, the obtained odometry was evaluated by using
the vehicle’s localization system as a reference. Although this localization estimate
is not a perfect ground truth, the system’s accuracy is high enough to be used as a
reference in this experiment.

Following a similar format to the one used when showing the results from the
semanticKITTI experiments, the results obtained with each of the localization error

3.4 Real-world validation 57



Fig. 3.10: Driving environment from the vehicle’s perspective.

metrics are presented in Table 3.4. Being the main difference from the previous
tables that this experiment consists of a single sequence; this table shows the mean
value of each metric together with the standard deviation of the data between
parenthesis. Additionally, the best-performing filtering configuration for each one of
the metrics is highlighted with bold text.

Tab. 3.4: Results for each error metric on the ATLAS experiment.

Configuration
Metric

APE Trans. (m) APE Rot. (º) RPE Trans. (m) RPE Rot. (º)

A (RAW) 1.21 (0.60) 1.79 (0.75) 0.22 (0.12) 0.74 (0.63)

B (Dynamic) 1.29 (0.61) 1.75 (0.76) 0.25 (0.13) 0.70 (0.61)

C (Dynamic vehicles) 1.29 (0.61) 1.75 (0.76) 0.25 (0.13) 0.69 (0.61)

D (Far) 2.09 (1.21) 2.46 (0.84) 0.21 (0.11) 0.78 (0.79)

E (Ground) 1.46 (0.81) 1.96 (0.78) 0.22 (0.12) 0.80 (0.72)

F (Structures) 1.47 (0.77) 1.91 (0.91) 0.28 (0.15) 1.11 (0.79)

The first thing that brings our attention is that configurations B (dynamic) and C
(dynamic vehicles) obtained the same results. This can be explained because this
sequence has a very limited number of pedestrians. Therefore, the configuration
where only the dynamic vehicles are removed has the same filter effect as the
configuration when all dynamic objects are removed. Similarly, the results obtained
from configurations E (ground) and F (structures) are very similar because the
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environment is very rich in "structure" elements such as buildings, traffic signs, and
lamp posts.

The distribution of each error metric on the different filtering configurations is
presented in Figure 3.11 by boxplot graphs. The four plots are categorized as
follows: Top and bottom graphs are for APE and RPE respectively, while left and
right are for translation and rotation error components, respectively.

Fig. 3.11: Results for each localization metric on the ATLAS experiment.

The obtained results with ATLAS show some resemblance with the previous results
from the experiments using the semanticKITTI dataset. First of all, the difference
between configurations B and C is almost non-existent, because the amount of
points corresponding to pedestrians is minimal and, therefore, filtering all moving
objects or only moving vehicles produces almost the same results. Moreover, the
latest filtering configuration, where only structures are kept, shows a much higher
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standard deviation and increased error mean, as could be also observed in previous
results. Configurations D (far) and E (Ground) produce different results with APE
and glsrpe metrics, the removing far points is generally a bad idea, confirming the
insights extracted from the analysis with the semanticKITTI data.

Finally, it is worth mentioning that in this experiment the filtering configurations that
remove dynamic objects (B and C), are not able to generate an odometry trajectory
as good as the baseline configuration (A). This fact was possible to explain after
reviewing the 3D semantic segmentation obtained from Cylinder3D. Even though
the semantic segmentation results are acceptable, the algorithm tends to flicker, and
sometimes the labels of some objects, such as cars, are changed to a different class.
This effect is increased at further distances, being this a common problem in most
3D semantic segmentation methods due to the lack of density in the point cloud
at further distances. Additionally, most of the 3D semantic segmentation methods
are single-shot and do not have a final tracking process to add some temporal
consistency to the output. Consequently, these inconsistencies in the semantic labels
result in the filtered point clouds having some objects appearing and disappearing
over time. Therefore, the odometry algorithm shows a slightly worse performance
with those filtering configurations because the point clouds are not consistent. Since
these state-of-the-art 3D semantic segmentation techniques are still a relative novelty,
it is expected that these problems will be much less occurrent with future, and better,
methods, as was demonstrated when evaluating the odometry with the semantic
data from SemanticKITTI.

3.5 Conclusions

In this chapter, an in-depth study of the performance of LiDAR odometry when
filtering the input point clouds using 3D semantic knowledge is performed. The
results obtained from the multiple experiments carried out using the SemanticKITTI
dataset corroborate the effectiveness of filtering the raw input data before computing
the LiDAR odometry. Particularly, this initial hypothesis regarding the removal of
dynamic objects is confirmed, showing promising results. In addition, it has been
proven that far-off points provide a beneficial contribution to the matching process
and that removing the ground points improves the translation component of the
estimated odometry significantly. Furthermore, the suitability of some filtering
configurations is bound to the type of environment where the vehicle is driving.
Therefore, the results obtained in some particular scenarios, such as highways,
reveal that the input data can be drastically downsampled while still achieving better
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performance. This performance boost is caused by removing the points from objects
that would be more likely to generate spurious correspondences in the matching
step.

Although the study was carried out using a representative LiDAR-based odometry
method, future work should focus on confirming the generality of the extracted
conclusions, including additional odometry approaches. Furthermore, even though
the KITTI (and, by extension, the semanticKITTI) dataset includes different types of
environments presenting multiple driving situations, this study would also benefit
from other types of datasets featuring environments with more dynamic objects.
This would ratify the conclusions obtained regarding the importance of removing
dynamic objects from the point clouds before computing the odometry.

Finally, a special remark should be included reminding us that this study has been
performed using ground-truth semantic information. The reason is that, in order to
analyze the actual contribution of each filtering configuration, the semantic-based
filter must be perfect. Nevertheless, as it was revealed with the experiment using
real-world data, the performance of the proposed approach is affected by the quality
of the 3D semantic segmentation. How to effectively exploit the insights extracted
from this study to improve the performance of LiDAR-based odometry methods is
out of the scope of this chapter and remains open for future work.

3.5 Conclusions 61





Validation of Localization
Systems

4
„Perfection is achieved, not when there is nothing

more to add, but when there is nothing left to
take away.

— Antoine de Saint-Exupéry

Autonomous vehicles require a localization system with high accuracy in order to
navigate safely. Most works related to localization systems are mainly focused on
accuracy. This thesis, however, revolves around a different concept: Reliability.
The safety levels and certifications that are tied to road vehicles, in general, and
autonomous vehicles, in particular, are strict, demanding, and necessary. When
human lives are at stake, an unexpected localization error that may cause an accident
must not be tolerated.

As introduced in Section 2.5, obtaining the localization ground truth for an outdoor
vehicle is not straightforward. RTK-GNSS solutions are the most common when a
reference system is required. However, it is not possible to control their precision,
and they depend on factors such as the weather or satellite visibility. Furthermore,
existing localization reference systems for outdoor vehicles are unable to guarantee
an upper bound in the localization error. Being able to guarantee a maximum error
would provide the required robustness and reliability that validation systems for
autonomous vehicles demand.

In order to verify that a localization algorithm is functioning properly and to validate
its performance for its use in an autonomous vehicle, a robust, accurate, and reliable
validation system is required. When studying the trends and typical localization
methods used in mobile robotics and indoor positioning systems, it is common to
see perception-based solutions that rely on marker or landmark detections to obtain
a robust localization estimate. An example of such technologies can be found in
Mo-Cap systems, which can provide a high-rate positioning estimate with astonishing

This chapter includes content from [3].
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accuracy and robustness. These systems are usually based on infrared cameras and
specific markers that are installed on the robot. A different alternative is to invert
the Mo-Cap approach by detecting specific static landmarks from the onboard robot
sensors.

In this chapter, we propose a novel method to validate localization systems for
autonomous vehicles or other outdoor vehicles in general. This method is based on
detecting static landmarks (artificial or natural) from the onboard vehicle sensors
and estimating the vehicle’s pose with respect to the set of landmarks. Additionally,
we exploit the a priori knowledge about the landmark measurement model to
estimate the final accuracy of the localization estimation, providing a strong a
posteriori estimation of the localization error.

Furthermore, a landmark placement optimization algorithm is proposed in this
chapter, suitable for generating a localization reference system. This method is
focused on controlled environments where new artificial landmarks can be placed.
The landmark measurement model is exploited to simulate the testing scenario and
find the optimal set of landmarks, such as the expected error of the localization
system is guaranteed to stay under a user-defined limit. As a final note, the work
presented in this chapter was carried out during an international research stay
in IAV GmbH, under the supervision of Dr.-Ing. Ahmed Hussein and has been
previously published in [3]. In addition, the software implementation of the designed
algorithms has been open-sourced 1.

4.1 Problem statement

A localization system based on landmark detections has some similarities with
GNSS-based solutions.

In the case of GNSS systems, the vehicle must be able to receive measurements from
at least three satellites in order to estimate a 3D position. With a higher number of
visible satellites, the system is able to improve the precision of the position estimate.
However, even if the vehicle is receiving measurements from multiple satellites,
not all measurements are equally beneficial to the final estimation. If the visible
satellites are not properly distributed geometrically, the system might suffer from
poor GDOP, degrading the quality of the final position estimation.

1Software available at https://github.com/butakus/landmark_placement_optimization
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Similarly, the precision of landmark-based localization systems also depends on the
number of visible landmarks and their geometrical distribution. The difference,
however, is that the position of landmarks can sometimes be controlled, as opposed
to GNSS satellites.

The idea of modifying the environment to place landmarks in the places so that
a landmark-based localization system would perform better has been exploited
before.

In [267], different geometrical configurations for landmarks are studied, analyzing
their impact on the final localization estimation. The proposed method is based on a
multilateration algorithm with signals from WiFi and Zigbee beacons.

The landmark placement is generally considered an optimization problem. Authors
in [268] proposed a simple greedy algorithm to reach a feasible solution, which
was then validated by an MCL simulation. Additionally, the Hidden Markov Model
(HMM) was considered to model the robot movement and landmark measurements.
Nevertheless, the reference presented multiple systematic errors, which affected
the performance. Afterward, they presented an incremental landmark placement
algorithm that considered the robot trajectory to reduce the complexity of the
optimization problem [269]. Obviously, the proposed solution is only valid for the
previously planned robot trajectory and will fail if the robot takes a different path.
In addition, the nonlinear least-squares problem is solved by a linearization of the
system that assumes that all uncertainties are Gaussian.

Following the constraints in [269], authors in [270] presented a similar landmark
placement algorithm with previous knowledge of the robot trajectory. Instead of
mobile robots, the localization approach is applied to small aerial vehicles, using
an onboard camera to detect the landmarks. The camera field of view is consid-
ered when solving the landmark placement problem. Nevertheless, their proposed
solution is still based on a greedy algorithm, leading to a high number of placed
landmarks.

A better solution can be found in [271], where a genetic algorithm is designed to
solve the landmark placement problem using different trilateration metrics as fitness
functions. Instead of only considering the robot trajectory, the optimal placement of
landmarks is found by computing an error heat map for the application area. The
accuracy is obtained from the determinant of the Fisher Information Matrix (FIM).

The landmark placement problem has been studied previously, mainly in mobile
robotics, and several different approaches have been proposed. In order to address
the shortcomings of the works that can be found in the literature, we propose a
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novel landmark placement method; with the objective of covering the disadvantages
of outdoor localization reference systems.

The proposed reference system is composed of two parts. On the one hand is a
landmark-based localization system, which is able to provide an estimation of the
vehicle’s pose with respect to the set of landmarks. On the other hand, there is
an offline optimization algorithm; that exploits a simulation of the environment to
find the optimal number and position of landmarks. Instead of only considering
a predefined vehicle trajectory, we assume that the vehicle can move freely inside
the confined testing area. For this reason, we propose a method that exploits the
knowledge of the a priori landmark measurement model in order to estimate the
localization error at every possible point in the testing area. Consequently, the
proposed landmark placement algorithm exploits this error information to find the
optimal number and position of landmarks, such as the maximum error in the
localization estimate is guaranteed to remain under a user-defined bound parameter,
σmax in the whole area.

While the proposed method covers multiple limitations from existing similar ap-
proaches, it is not yet perfect and still relies on two assumptions:

1. The vehicle can only move freely inside of a limited environment because only
the testing area has been optimized to guarantee the upper error bound in
the localization reference. Additionally, the testing environment must have
sub-areas where new artificial landmarks can be physically placed.

2. The system requires prior knowledge about the landmark measurement model,
i.e., the a priori error distribution of the landmark detection must be known.
This information is used to estimate the final a posteriori localization error for
a given set of landmarks in the offline environment simulation. In addition
to the proposed localization and optimization algorithms, we also present
a possible method to calibrate and extract the measurement model for any
generic detection algorithm in Section 4.2.3.

Regarding the landmark detection method, the proposed approach is sensor agnostic
and does not depend on any specific detection algorithm, as long as the error model
is provided. For simplicity, the presented examples in this chapter are based on a
LiDAR sensor, although other sensors such as cameras could also be used.

After all, considering the required assumptions, the proposed method can be applied
in multiple environments where extra landmarks could be placed, such as proving
grounds, parking lots, warehouses, or parks.
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4.2 Proposed approach

The whole approach is based on a simulation of the environment where everything
can be computed offline, removing real-time limitations. In order to carry out the
simulation, it is required a map of the environment; that outlines which are the
drivable areas and which areas can be used to place new landmarks. In addition, the
environment map may also include neutral spaces, which represent those areas that
are both non-drivable and that cannot contain new landmarks. The required map
is later on discretized into an occupancy grid map representation. This occupancy
grid map includes a set of free (drivable) cells, F , where the vehicle may freely
move, and a set of land cells, L, where landmarks can be placed. The resolution
of the grid map (or cell size), δ, is parameterizable and must be manually selected
according to the computational power and time available. Normally, this selection
should allow an acceptable computation time without a significant sacrifice in spatial
resolution.

Additionally, the landmark measurement model provides the system with knowledge
about the expected error when the vehicle detects a landmark. This error model
depends on the type of landmark used, the sensor and detection algorithm used, and
the relative position between the sensor and the landmark (distance and angle).

With this information (the map of the environment and the landmark measurement
model), the proposed approach presents two major contributions. On the one hand,
the accuracy model system is able to generate an accuracy heat map, given a set of
landmarks V . This accuracy heat map represents the maximum expected localization
error at each drivable cell in F . This system can also be used independently of
the landmark placement optimization algorithm; to only estimate the expected
localization error in an environment where landmarks are already placed. On the
other hand, an optimization algorithm exploits the heat map generation to find a
set of landmarks such as the heat map is minimized until an accuracy condition is
met. Additionally, the algorithm also tries to maintain the number of placed land-
marks as low as possible. The optimization problem is categorized as NP-hard, and
finding the global optimum is usually not feasible. For this reason, we introduce a
user-defined parameter, σmax, which determines the desired target accuracy. Conse-
quently, the optimization algorithm will stop after a suitable landmark configuration
V which satisfies inequation 4.1 is found.

HVi,j < σmax, ∀{i, j} ∈ F (4.1)
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Fig. 4.1: Gazebo simulation environment.

In this inequation,HV represents the accuracy heat map, which contains the standard
deviation of the localization error at each free cell with coordinates {i, j} ∈ F . With
this constraint, it is possible to guarantee that the localization error will always
remain below the desired limit across the whole testing area.

4.2.1 Simulation environment

In order to validate the proposed approach, an absolute ground truth of localization
and landmark detections is mandatory. For this reason, all the experiments have
been carried out in a simulation environment implemented with Gazebo simulator
[272]. There, different testing scenarios have been designed with the purpose of
calibrating the landmark detection algorithm and validating the proposed landmark
placement algorithm.

An example of one of the testing environments implemented in Gazebo is presented
in Figure 4.1, where the white areas represent the areas where landmarks can be
placed.

In these simulation scenarios, we have included a vehicle model of a Toyota Prius 2,
which can be either teleoperated or automatically controlled. On top of the vehicle,
we have integrated a model of a 64-layer LiDAR as the main perception sensor,
which is a common type of LiDAR used in autonomous driving platforms. Both
the vehicle and the LiDAR are fully connected with a Robotic Operating System

2Prius Gazebo model available in github.com/osrf/car_demo
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(ROS) ecosystem [273]. ROS is used to communicate the algorithms and tools
implemented with the Gazebo simulation.

Finally, the types of landmarks used in the experiments are lamp posts, like the one
shown in Figure 4.2. These pole-like objects are easy to detect with a LiDAR sensor
and are abundant in most driving scenarios. The type of lamp post object that was
used has a diameter of 17cm and a total height of 9m.

Fig. 4.2: Lamp post model used as a pole-like landmark.

The decision to use the Gazebo simulator instead of other more realistic simulators,
such as Carla [274], is based on two facts. On the one hand, the sensor used is a
LiDAR, so the quality of the visuals is irrelevant for our simulation. If we were to
simulate a camera sensor for the detection of landmarks, a more realistic simulator
would be preferable in order to have images with features closer to the real world.
On the other hand, the simplicity of Gazebo allows us to modify the environment in
runtime without having to recompile the whole map. This is useful when adding
new landmarks and updating their position.

4.2.2 Landmark detection algorithm

Before being able to estimate the localization error from the landmark-based local-
ization method, a landmark detection algorithm must be provided. This topic has
been widely studied in the literature, and many different approaches have been
proposed, as introduced in Section 2.2. This type of detection algorithm relies
heavily on the sensor used and the type of landmark that must be detected (e.g.,
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poles, traffic signs, or specific structures). Instead of integrating and calibrating
one of the state-of-the-art landmark detection methods, a naive LiDAR-based pole
detector has been specifically implemented to detect the lamp posts displayed in
Figure 4.2. This implementation is oversimplified to work on the provided test
cases and shall not be compared with other algorithms presented in the literature.
However, a custom implementation allows us to have more control over the whole
process and simplify the integration of all the systems. Furthermore, the design of a
landmark detection algorithm is out of the scope of this work, even though one is
needed in the process.

This customization allows us to simplify the implementation; because it is only
required to work with the selected sensor and specific landmarks. The input point
clouds have a horizontal resolution of 0.3 deg, and the pole diameter is 17cm.
Therefore, it is guaranteed that a layer from the LiDAR will have at least one point
hitting the pole if the distance between them is 32.4m at most. At further distances,
we might obtain only one point per layer, and the pole could even be missed. For
this reason, the maximum detection range is set at 30m in order to ensure that the
method is reliable and that no landmarks are missed.

The pole detection process, which is illustrated in Figure 4.3, is divided into three
steps.

Ground
Filter

Cluster
Extraction

Cluster
Filter

Point
Cloud Poles

Fig. 4.3: Pole-like landmark detection process.

1. Ground filtering: The first step is to remove the points from the ground in
order to better segment the objects in the scene. If the environment is flat, as
is the case in the designed testing areas, it is possible to remove all the ground
by filtering out all points with a z coordinate less than a fixed threshold. In
other environments where the ground is not flat, it is possible to implement a
different approach based on height maps as done in [11].

2. Cluster extraction: Once the ground points are removed from the cloud, it
becomes easier to segment the different objects in the environment. This
process is carried out by a clustering algorithm based on the euclidean distance
between neighbor points. We include additional constraints for the minimum
and the maximum number of allowed points in each cluster, according to the
size of the lamp post.
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3. Cluster filtering: The clustering process yields a list of objects that must be
processed further, removing those clusters that are not poles, even if the size is
similar to the lamp post. This post-filtering step analyzes the height of each
of the extracted objects and compares it with the expected height of the pole
object at that distance.

This process generates multiple sets of points corresponding to each detected pole.
Each of these sets must undergo a final process in order to estimate the center of
the pole and generate the final detection output. In this process, clusters are first
cleaned, removing the highest points from the object to eliminate the lamp part
and keep only the pole. Afterward, the center of mass xm of each set of points is
computed using equation 4.2, where xi are the coordinates of each filtered cluster.

xm = 1
N

∑
xi (4.2)

This center of mass, however, does not correspond to the center of the pole because
the LiDAR points hitting the pole are only on the side of the cylinder that is facing
the sensor. Therefore, the is an offset distance, doffset, between the detected center
of mass xm and the actual pole center, xc, as depicted in Figure 4.4.

LiDAR

Pole

xm xc

doffset

Fig. 4.4: Offset between center of mass and actual pole center.

Since this offset is not fixed because it depends on how the LiDAR rays hit the pole,
we have performed a statistical study to find the average deviation between the
pole center and the detected center of mass. This study consists in taking multiple
measurements at different distances and comparing the detected center of mass
with the actual pole center obtained from the simulation ground truth. Finally, the
offset is manually added to the detected center of mass, obtaining an estimation of
the pole’s center.
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(a) Simulation environment to validate the landmark detection algorithm.

(b) LiDAR point cloud with segmented poles by different colors. Red arrows mark the detected
pole centers.

Fig. 4.5: Simulation environment to validate the landmark detection algorithm.

The implemented algorithm has been validated in a custom testing scene designed
in Gazebo, presented in Figure 4.5.

4.2.3 Landmark measurement model

Regardless of the sensor and the landmark detection algorithm used, the most
important thing that makes the proposed approach work is a trustworthy model of
the landmark measurement process. This model provides the system with knowledge
of the probability distribution of the measurement error.
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In the heat map generation process, the simulation ground truth is used to generate
virtual landmark measurements. The landmark measurement model is used in
that step; in order to recreate the simulated measurement by adding an error
component as close to reality as possible. The way the proposed system is designed
makes the type of noise irrelevant, as long as it can be replicated in the simulation
environment. Therefore, the proposed approach is able to deal with non-gaussian
error distributions, thus overcoming one of the limitations of most state-of-the-art
techniques.

Generally, a landmark measurement is defined as the transformation between the
vehicle and landmark poses. If the localization system is working in 3D, then the
vehicle pose is represented in a SE(3) space. The landmark, however, can typically
be expressed as a 3D point if its orientation is not relevant. Accordingly, a 2D local-
ization system would use a SE(2) vehicle pose and a 2D landmark representation.
The transformation between the vehicle pose and the landmark point is defined in
equation 4.3.

z = l	 x (4.3)

This transformation, representing the landmark measurement, is altered by an error
that depends on different factors such as the noise in the sensor measurements
or the performance of the landmark detection algorithm. The measurement error
model includes knowledge about the statistical distribution of the measurement
error, providing an estimation of the expected error based on several variables.

In this Section, we also propose a data-driven calibration method that was designed
to find the measurement error model for the landmark detection algorithm presented
in Section 4.2.2. Please note that, although the presented results are focused on
a LiDAR sensor and pole-like landmarks, the proposed calibration method is can
be generalized and applied to other sensor types. Furthermore, this calibration
approach should be repeated if the type of sensor is changed, or if the landmarks to
be detected are different.

In order to find the distribution of the measurement error, a simulation environment
is created with a LiDAR in a fixed position and one lamp post that is placed at
different points to take multiple measurements. The recorded data consists of
multiple sequences of 10 seconds each, with around 100 point clouds per sequence,
since the LiDAR runs at 10Hz. Furthermore, the sequences can be generated by
combining different variables according to the following criteria:
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• Distance: The distance between the sensor and the landmark. It is absolutely
necessary to consider this variable in the measurement model.

• Angle: The angle between the sensor coordinate system and the landmark.
The selected sensor has a FOV of 360 deg, and the horizontal resolution is
constant, so this angle should not affect the error. However, it is a good
practice to test different angles, so the LiDAR rays do not always hit the object
the same way. This variable would have a more meaningful contribution
if we were using a different type of sensor, such as a camera, to detect the
landmarks.

• Landmark orientation: The relative orientation of the landmark with respect
to the sensor. This variable is not important for our test case because the land-
marks are cylindrical and, therefore, are rotationally invariant. Nevertheless,
the landmark’s orientation must definitely be considered with other types of
landmarks, such as traffic signs, for example. In those cases, the orientation of
the landmark with respect to the sensor can influence the detection process.

In order to validate the proposed landmark detection algorithm, we generated
multiple sequences by combining a range of distances with a number of random
angles. At each distance, which ranged from 1m to 30m with increments of 25cm,
100 random angles were generated, thus producing a total of 11600 landmark
poses. Figure 4.6 shows all the landmark positions that were used in the calibration
process.

Each one of the positions is recorded for 10 seconds, yielding around 100 measure-
ments per sequence. The sheer amount of data has been manually analyzed through
data visualization techniques; in order to understand how the distance and angle
variables affect the measurement error.

Due to the nature of the LiDAR measurements, it makes sense to perform the analysis
in polar coordinates (i.e., distance and angle) instead of using a cartesian system.
For this reason, the identification study will be focused on those two variables.

The first step in this model identification process was to confirm if the measurement
error is really invariant to the angle of the measurement. To that end, the mean
and standard deviation of the measurement error, grouped by distance and angle, is
analyzed. As it can be seen in Figure 4.7, the error in the detected angle does not
depend on the landmark angle. The angle error values represented in that graph
are also colored by the distance to the landmark, which at first glance seems to
be irrelevant as well. Next, the distance error with respect to the landmark angle
is analyzed. These results, which are presented in Figure 4.8, are also colored
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Fig. 4.6: Every landmark position used in the measurement model calibration process.

by landmark distance. Although there seems to be a trend in the error when the
distance increases, the distance error is invariant to the angle of the landmark, as
can be clearly seen in both the mean and the standard deviation graphs.

With these insights, we can validate the initial hypothesis stating that the angle
of the landmark does not affect the measurement error in any of its components.
Consequently, the next step consists in studying the measurement error with respect
to the distance.

Regarding the angular component of the measurement error, the results obtained
are presented in Figure 4.9. In the first subplot, we can see that the error does not
seem to be biased and that the dispersion remains more or less constant with respect
to the distance, with some oscillations. These oscillations are even more noticeable
when visualizing the standard deviation of the error in the second subplot. Although
there seems to be a pattern, the standard deviation of the angle error does not
increase nor decrease with the distance to the landmark. Therefore, we find it safe
to model the angle component from the measurement error with a fixed Gaussian
distribution with zero mean and a standard deviation resulting from the average
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Fig. 4.7: Angle error with respect to the landmark angle. Each point corresponds with the
average error of each landmark position. Points are colored depending on the
distance to the landmark.

Fig. 4.8: Distance error mean and standard deviation with respect to the landmark angle.
Each point corresponds with the mean (top) and standard deviation (bottom) of
all measurements from each landmark position. Points are colored depending on
the distance to the landmark.

of the standard deviation of the results data for each distance. More precisely, the
estimated standard deviation for the angle error is σangle = 0.001069 rad.

Finally, the focus is shifted to the distance error with respect to the distance variable.
While the angle error remains almost constant on all measurements, we started to
perceive in Figure 4.8 that the distance error seems to increase when the distance
to the landmark increases. The question to address is how this error increases and
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Fig. 4.9: Angle error and standard deviation with respect to the distance to the landmark.
Each point in the top subplot corresponds with the mean of all measurements from
each landmark position. The subplot at the bottom shows the standard deviation
of all the average error points displayed above.

what its distribution is. First, the error of each sequence is presented in Figure 4.10,
showing the mean error measurements on the top and their standard deviation at
the bottom. The dispersion of the points increases evidently with the distance, as is
reflected in the standard deviation. By the looks of the second graph, we could take
one more step and suggest that the standard deviation of the distance error increases
linearly. Therefore, a linear regression process was carried out, fitting a line with
coefficients a = 0.00054798 and b = 0.00070023. Nevertheless, even though we have
determined the relation between the distance error and the distance, the distribution
of the error cannot be easily identifiable from Figure 4.10.

In order to further analyze the distribution of the distance error, the data used in
Figure 4.10 is used to extract multiple histograms at different distances. These
histograms, presented in Figure 4.11, provide more visual information about the
distribution of the error data. Unfortunately, the distance error seems to follow a
distribution that is not consistent at different distances, thus difficulting the model
identification. Consequently, a compromise is made by fitting the data with a
Gaussian distribution with zero mean and variable standard deviation that depends
on the distance. Although the Gaussian distribution is not the perfect fit for most of
the distances, it is certainly good enough for the task.
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Fig. 4.10: Distance error and standard deviation with respect to the distance to the land-
mark. Each point in the top subplot corresponds with the mean of all mea-
surements from each landmark position. The subplot at the bottom shows the
standard deviation of all the average error points displayed above and the linear
model of the standard deviation, estimated by linear regression.

To conclude, the final error parameters estimated for the landmark measurement
model are presented in equation 4.4. The standard deviation of the distance error is
defined in equation 4.5 with the coefficients obtained by the linear regression.

Ed ∼ N (0.0, σ2
d)

Eθ ∼ N (0.0, 0.001069)
(4.4)

σd = 0.00054798 + 0.00070023 · d (4.5)

Furthermore, the measurement error can also be modeled as a multivariate Gaussian
with covariance Σp, defined in equation 4.6, whith σθ = 0.001069. Note that the
correlation terms are zero because no correlation between variables was found when
analyzing the data.

Σp =
(
σ2
d 0

0 σ2
θ

)
(4.6)

Last but not least, the proposed covariance matrix addresses the measurement error
in its polar form. However, the generated landmark detections are expressed in
cartesian coordinates, which is the coordinate system used by the rest of the system.
Therefore, if this model is to be used to generate virtual measurements from the
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Fig. 4.11: Histogram of distance error at different distances.

simulated ground-truth data, it is required to transform the covariance matrix Σp to
its cartesian form, Σc. Such transformation is defined as follows:

σθ,d = d · tan σθ

Σ′p =
(
σ2
d 0

0 σ2
θ,d

)

R =
(

cos θ − sin θ
sin θ cos θ

)
Σc = RΣ′pR−1

(4.7)
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First, the standard deviation of the angle error is scaled with the distance and
replaced in the covariance matrix Σ. Then, this covariance matrix is transformed by
a rotation matrix, resulting in a covariance matrix representing the same error in
cartesian coordinates.

4.2.4 Visibility model

In addition to the landmark measurement model, a visibility model is introduced
in the system; in order to only generate virtual measurements for the landmarks
that could actually be detected. Given a vehicle pose x and a set of landmarks
V, the visibility model is defined as a function g(x,V) that returns the subset of
landmarks V∗ ∈ V that would be observable in the real world from the vehicle
pose x. A realistic and reliable visibility model is important to the system, so the
simulation does not consider measurements that would not be possible in the real
world. Therefore, the following details should be considered when building the
visibility model:

• Sensor characteristics: The visibility model must consider the sensor limita-
tions, such as the maximum operating range or the field of view.

• Detection algorithm limitations: In addition to the sensor’s physical limita-
tions, some landmarks might not be detected by the detection algorithm, even
if the sensor has information about them. For example, a LiDAR sensor might
receive some point measurements from a distant landmark, but if the point
cloud density is very low in that area, the detection algorithm might miss the
detection.

• Static elements: Since the system has access to a map of the environment, the
static elements can be considered to determine if a landmark will be occluded
from the vehicle pose x.

• Other landmarks The visibility model function g(x,V) takes the whole set of
landmarks as an input. Therefore, the occlusions caused by other landmarks
can also be taken into account when generating the visibility output.

4.2.5 Landmark-based localization

Localization systems based on landmarks have been widely used in robotics since
autonomous mobile systems began to exist. Assuming that the position of the
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landmarks is known within a common reference system (usually a map), it is possible
to estimate the vehicle’s pose from a set of measurements to those landmarks.
This nonlinear problem, which is depicted in equation 4.8, consists in finding
an estimation for the vehicle pose x∗ such as the residual error function F(x) is
minimized. The most common method that is used in the literature to solve this
problem is the NLLS approach.

x∗ = argmin
x
{F(x)} (4.8)

Next, the process to define the residual function F(x) is described. Let Z be a set of
landmark measurements from the real vehicle pose x (which is actually unknown)
to each of the visible landmarks. Each landmark measurement, zi is defined as a 3D
vector, as presented in equation 4.3, and suffers an error with covariance matrix Σ.
Furthermore, let x̂ be an estimator of the vehicle’s true pose, representing the belief
that the system has regarding the vehicle’s pose. Considering the estimation x̂ and
the set of landmarks V, we can generate the set of the expected measurements, Ẑ,
representing the landmark measurements that would be expected if the vehicle’s pose
was x̂. This concept can be seen in Figure 4.12, presenting the actual and expected
measurements from the true vehicle pose and the estimated pose, respectively.

x
x̂

x̂

z
i

ei

ẑ
i

Σ

z
i ẑ

i

Σ

Fig. 4.12: Left: Received measurement from x and expected measurements from x̂. Right:
Difference (error) ei between received and expected measurements, with respect
to x̂.

As it is also depicted in Figure 4.12, the difference between the received measure-
ments zi and the expected measurements ẑi is defined as the measurement error.
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The measurement error, defined in equation 4.9, is then applied in equation 4.10 to
build the resiual function for the measurement system.

ei = zi − ẑi (4.9)

F(x) =
∑
i

eTi Σ−1ei (4.10)

Finally, a solution to the nonlinear system can be estimated by solving equation
4.8 with the proposed residual function. The estimation of the optimal x̂ can be
obtained using a popular NLLS solver like the Levenberg-Marquardt algorithm [275].
However, algorithms such as the Levenberg-Marquardt method may find problems
when the variables to be optimized are not defined in a Euclidean space. This is the
case for the rotation component of the vehicle’s pose, which is non-Euclidean. In
order to overcome this problem, the optimization can be performed on a manifold,
as introduced in [178]. In the manifold, the changes in the rotation appear to be
locally Euclidean. Therefore, since the Levenberg-Marquardt algorithm performs the
optimization taking relatively small steps, the optimization on a manifold approach
can be exploited to overcome this problem.

4.2.6 Accuracy metric

One of the two main contributions presented in this chapter is the ability to generate
an accuracy heatmap representing the expected localization error at each point in
the testing area. In order to determine what is the expected error in every position
of the map, having a localization system based on landmarks is not enough. Even
if it is possible to obtain an estimation of the vehicle’s pose using the proposed
localization method, the a posteriori distribution of the localization error must also
be estimated.

The a posteriori distribution of the error depends mainly on the a priori error from
the landmark measurements. This estimation problem is not straightforward, and
simplifications cannot be applied because of the possibility of losing accuracy and
because the system should not be limited to a single type of error distribution
(e.g., Gaussian error). The problem of estimating the a posteriori error distribution
can be tackled by two different approaches. On the one hand, the most basic
approach consists in directly sampling from the posterior. This way, it is possible
to take multiple measurements and estimate the distribution from all the collected
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samples. However, this approach is usually not available in most situations, so it is
not common in the literature. On the other hand, when only one measurement is
available, the a posteriori distribution can still be estimated using sampling methods
such as the Markov Chain Monte Carlo (MCMC) method [276]. This sampling
approach builds a Markov Chain and takes multiple steps in that chain to sample and
estimate an approximation of the a posteriori distribution. One of the advantages
of the MCMC method is that it can deal with non-Gaussian distributions and only
requires one single measurement, making it a suitable method for a wide range of
applications.

Although the MCMC is a robust method and is suitable for the proposed system, the
posterior is just an approximation that consists of a single measurement. On the
other hand, directly sampling from the posterior is the most natural way to estimate
the distribution of the localization error, and the accuracy of this estimation can be
controlled by the number of samples taken. One of the reasons to implement the
proposed approach as an offline simulation is having the advantage of being able to
repeat multiple virtual measurements with known ground truth. Consequently, it
is possible to exploit this advantage and sample the posterior directly, using these
samples to determine the distribution of the localization error. This process consists
in obtaining multiple sets of landmark measurements from the same vehicle pose
and then using each of the measurement sets to estimate the vehicle’s pose using the
proposed NLLS method. Afterward, all the localization error samples are analyzed
to extract the standard deviation of the error, thus obtaining an assessment of the
localization accuracy at the testing vehicle pose for the given set of landmarks.

In order to determine the number of samples N required to extract a robust esti-
mation of the posterior, a small simulation experiment was carried out, analyzing
the localization error after combining N samples. Figure 4.13 shows the results
obtained for the translation part, where the error (top graph) is defined as the
absolute difference between the mean of all the samples taken and the ground truth
pose of the vehicle. Additionally, the graph at the bottom represents the standard
deviation of the samples, providing an estimation of the expected error. It is not
difficult to notice how incrementing the number of samples makes the error tend to
zero, whilst the standard deviation converges to the a posteriori error std.

Finally, this process can be repeated for each point in the testing area, generating
an accuracy heatmap like the one shown in Figure 4.14. To summarize, the combi-
nation of a proper landmark measurement model and the offline simulation of the
environment allows us to estimate the expected localization error at each cell in the
map for a given set of landmarks, V.
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Fig. 4.13: Sampling the posterior of the NLLS pose estimation.

4.2.7 Landmark placement optimization

Being able to estimate the expected localization accuracy in the whole testing area
with a given set of landmarks is a major contribution on its own, albeit being only
half of the proposed approach. Additionally, we propose an optimization method
based on genetic algorithms to solve a landmark placement problem in the testing
area. This algorithm has four inputs:

1. Environment map,M, represented as an occupancy grid map containing free
cells (where the vehicle can drive) and land cells (where landmarks can be
placed).

2. Landmark measurement model, as defined in Section 4.2.3. Usually defined
as a covariance matrix if the error is assumed Gaussian.

3. Visibility model, g(x,V), as defined in Section 4.2.4.

4. Accuracy target, σmax, determining the maximum standard deviation allowed
for the localization error. This is a user-level parameter to adjust the algorithm
depending on the accuracy required. Note that some accuracy levels might be
unreachable if the landmark detection error is too high.

The output of the optimization algorithm is a set of landmarks V that satisfies
inequation 4.1 while trying to use the minimum number of landmarks. The genetic
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Fig. 4.14: Accuracy heatmap for one of the testing environments. The color of the cells
represent the standard deviation of the localization error.

algorithm will exploit the accuracy metric previously proposed to determine if a set
of landmarks is able to generate a heatmap (like the one presented in Figure 4.14)
where inequation 4.1 is satisfied. After any solution is found, the genetic algorithm
will stop iterating.

Nonetheless, this approach requires computing the accuracy heatmaps at every
iteration for every set of landmarks that must be evaluated. Evidently, this process
requires a gigantic computational effort since the system must simulate the mea-
surements and solve the NLLS problem numerous times for each cell in each map.
In consequence, we propose performing the actual optimization using a different
metric function based on coverage maps. Although the optimization is performed
on the coverage maps, the heatmaps are still periodically computed after a defined
number of iterations; in order to estimate the solutions’ accuracy and check for the
stop condition.

Previous works have used similar metric functions based on landmark coverage to
solve the landmark placement problem with successful results [277]. A coverage
map is based on the landmark visibility model defined in Section 4.2.4. Consequently,
the coverage value of each cell in the map is calculated by counting the number of
landmarks that can be detected from that cell. Figure 4.15 presents an example of
a coverage map with the same set of landmarks as the one used in Figure 4.14. A
close analysis of these two figures can reveal that there is a clear correlation between
coverage and localization accuracy.
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Fig. 4.15: Coverage map for one of the testing environments. The value of each cell
represents the number of visible landmarks from that point.

Finally, the genetic algorithm can exploit the proposed coverage maps to optimize the
set of landmarks, where the optimization problem now consists in the maximization
of a fitness function, defined in equation 4.11, based on the coverage map.

Fitness(V) =
∑
i,j∈F

tanh
CVi,j
k

(4.11)

In equation 4.11, CV is the coverage map computed with the set of landmarks V,
F is the set of free (drivable) cells, and k is the minimum number of landmark
measurements required to obtain a solution for the NLLS problem. The purpose
of the hyperbolic tangent process is to grant a higher fitness reward when a low-
coverage cell improves its fitness while providing a much smaller benefit if a cell
with an already high coverage gets even more. Furthermore, the inflection point in
the proposed hyperbolic tangent function equals the parameter k, which is defined
as the minimum number of landmarks needed to obtain a localization estimate. This
feature allows a fast initialization, granting better fitness rewards to actions that
cover the minimum coverage over actions that improve the coverage of areas that
are already covered by the minimum number of landmarks.

The presented optimization problem is solved by a genetic algorithm that has
been purposely designed for this specific task. The population of the proposed
genetic algorithm is a set of elements, P, where each element represents a set of
landmarks. Accordingly, each element is composed of multiple genes, where each
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gene corresponds to a landmark position. Therefore, the number of genes in each
element corresponds to the number of landmarks in that possible solution.

The proposed genetic algorithm is described in Algorithm 1. The main process
is composed of an outer and an inner loop. First, the population is initialized,
considering the minimum theoretical number of landmarks needed to cover the
map area. All elements in the population are initialized following a greedy method
that will be presented below. Then, the inner loop is responsible for the coverage
optimization while the outer loop manages the number of landmarks, periodically
incrementing it. The inner loop process consists in modifying the set of landmarks by
applying the genetic process, always maintaining a fixed number of landmarks, N .
If the algorithm is not able to find a valid solution with N landmarks after the inner
loop has been executed for Imax iterations, the inner loop ends, and N is increased.
Concurrently, the accuracy heatmaps are computed every 100 iterations in order to
check if the target accuracy has been reached.

The genetic process that is executed inside the inner loop is mainly composed of
the three common genetic operators (i.e., selection, crossover, and mutation). First,
the best elements in the population are selected via a tournament process. This
tournament-based selection process takes small subsets of the population and selects
the element within the subset with the highest fitness. The set of selected elements
is often called the set of parents because the remainder of the population will be
generated from their genetic information. After selecting the set of parent elements,
a special crossover process is applied, using their genetic information to generate
the offspring and complete the new population. This crossover process combines all
the parents’ genes into a gene pool, meaning that all landmark positions that exist in
the set of parents are separated from their original elements and mixed all together
in the gene pool. Afterward, each new element from the offspring will be created by
combining random genes from the pool, so each one of the new elements can have
genes from any of the selected parents. The motivation that leads to this crossover
design is that each element is a possible solution to the problem, and elements with
high fitness are those that contain good landmark positions. Instead of combining
the information from two parents, all the potentially good landmark positions are
mixed, and the offspring set is generated from the gene pool instead, allowing
a larger genetic variety. Finally, the new elements that form the offspring might
be randomly affected by a mutation process, which can affect each of the genes
individually. When a gene is mutated, the corresponding landmark position will not
be drawn from the pool, but instead, a new landmark position will be generated
using the auxiliary greedy algorithm.
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Input: Map,M
Output: Optimal landmark configuration, V∗
/* Maximum number of landmarks */

Parameter :Nmax

/* Number of inner iterations */

Parameter : Imax
/* Compute the theoretical minimum number of landmarks to have full coverage */

N = MinNumberOfLandmarks(M)
/* Initialize population */

P = InitializePopulation(N,M)
while N < Nmax do

i := 0
while i < Imax do

/* Update population fitness */

Fitness = CoverageF itness(P,M)
/* Tournament Selection */

Parents = TournamentSelection(Fitness)
/* Offspring generation and mutation */

Offspring = GenOffspring(Parents)
P = Parents ∪Offspring
/* Local optimization */

P = LocalOptimization(P)
/* Check accuracy every 100 iterations */

if i mod 100 = 0 then
/* Compute accuracy heat maps */

forall k ∈ P do
Hk := ComputeHeatmap(Vk)

end
/* Extract agent with the minimum maximum heat map error */

kbest := argmin
k
{max{Hk}}

if max{Hkbest
} < σmax then

return Vkbest

end
end
i = i+ 1

end
/* Add new landmark to each agent based on greedy algorithm */

forall k ∈ P do
Vk := GreedyAddLandmark(Vk,M)

end
N = N + 1

end
/* If no solution is found after adding Nmax landmarks, return an empty set */

return ∅

Algorithm 1: Genetic algorithm for the landmark placement problem
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After going through the three typical genetic operators, the new population of
solutions is finally constituted. Nonetheless, before computing the population fitness
and finishing the current iteration of the inner loop, the new population is subject to
a local optimization procedure. The purpose of this last process is to allow every
element in the population to improve its own fitness, emulating a training process
before the next selection tournament. The local optimization procedure, illustrated
in Figure 4.16, consists of a simple process where each of the landmarks is allowed
to move one cell from its original position. If the new landmark position results
in a better fitness value, the landmark is moved to that position. Otherwise, the
landmark is kept in its initial position.

Fig. 4.16: Local optimization process.

At some points, the proposed system needs to add a new landmark to one of the
sets. The steps where such a feature is required are the initialization process, the
element mutation operation, and when a new iteration of the outer loop occurs. For
this purpose, a greedy algorithm to incrementally add new landmarks based on the
coverage fitness has been designed. For a given set of landmarks, this algorithm will
find the new landmark position that would maximize the fitness of the coverage
map. In order to find the cells with higher coverage gains, a score map is built,
where each land cell has a score based on the number of free cells that are covered
if a landmark is placed there. This map, presented in Figure 4.17, allows finding the
position with the best coverage in a straightforward manner. However, if the best
cell is always directly selected, the obtained solutions are more likely to converge to
a local maximum because a fully-greedy approach will produce configurations with a
low variety. Consequently, instead of selecting the cell with the best score, we select
one of the cells with the highest scores; in order to make this auxiliary algorithm a
bit more exploratory. This selection process is based on a score threshold, generating
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a set of landmarks, Vbest, which contains all cells with a score higher than a given
percentage of the maximum score. For example, if the maximum score is 1000, and
the randomness threshold is set at 10%, then Vbest will be composed by all cells with
a score higher than 900. This process is described in equation 4.12, where G is the
computed score map, and r is the randomness threshold that controls the amount of
randomness allowed in the selection process.

Vbest = {i, j}, ∀{i, j} | Gi,j ≥ (1− r) max G (4.12)

Finally, the final location for the new landmark is selected randomly from the Vbest
set. This selection mechanism also allows different levels of randomness or greed-
iness by adjusting the parameter r, which determines the amount of exploration.
Consequently, the different methods that use this auxiliary algorithm have different
configurations for this parameter. For example, the initialization algorithm is config-
ured to allow a high amount of randomness in order to generate a variety of initial
solutions with more differences between them.

Last but not least, once the genetic algorithm is finally able to find a set of landmarks
that satisfies the accuracy requirements, the obtained solution is simplified by a
postprocessing method. This method consists of an ablation process that tries to
remove unnecessary landmarks. Therefore, for each landmark in the proposed
solution, this method will recompute the accuracy heatmap without that specific
landmark and verify if the accuracy requirement is still satisfied. If the accuracy map
is still good enough, the landmark is removed, and the cleaning process continues
until there is nothing left to take away.

4.3 Experiments and results

The proposed approach (both the accuracy heatmap generation and the landmark
placement optimization) has been validated using the ground truth from the sim-
ulation environment. To that end, two different scenarios have been designed,
testing the implemented algorithms with different configurations. The validation
approach is to execute the landmark placement optimization algorithm for each of
the experimental scenarios and use the generated sets of landmarks to localize a
moving vehicle. Then we verify that the obtained localization has an accuracy within
the required limits. In this Section, the experimental setup and the configuration of
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Fig. 4.17: Score maps for the auxiliary greedy algorithm. Brighter cells (more orange)
have a higher score. The top map is empty; hence the score is higher towards
the center with cells with higher coverage. The bottom map already has some
landmarks, so the score is higher in the right area, which is less populated.

both scenarios are first described. Then, the experimental results from the simulated
environments are presented and discussed.

4.3.1 Experimental setup

The experimental setup is divided into two validation stages that feature two simula-
tion scenarios with different test environments and configuration parameters.

The first scenario has been designed to be simple. The testing area, depicted in
Figure 4.18, does not have any type of elements that could create occlusions. The
map is formed by a drivable area with asphalt texture and a semi-elevated area (in
white) where landmarks can be placed, with a total area of 150× 90m.
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Fig. 4.18: Gazebo environment for scenario 1.

The second scenario, which is the environment designed for the second validation
stage, has a more realistic setup and includes occluding elements such as buildings.
This map has a total size of 80 × 50m and makes use of the three types of space,
as seen in Figure 4.19. The gray inner area is the drivable space, the white area is
where landmarks can be placed, and the buildings are neutral spaces, where the
vehicle cannot drive and also landmarks cannot be placed.

Fig. 4.19: Gazebo environment for scenario 2.

Afterward, the gazebo world model is transformed into an occupancy grid map
representing the three types of areas. As an example, the processed occupancy grid
map for the second scenario is presented in Figure 4.20, with free cells as white,
land cells as gray and neutral cells as black. This occupancy grid map is the one
used as the input for the optimization algorithm to estimate accuracy and coverage
and to find the landmark positions.

Regarding the landmark measurement and visibility models, these setups are also
different in both validation stages. On the one hand, the first validation stage
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Fig. 4.20: Occupancy grid map for scenario 2.

was carried out before performing the measurement calibration analysis presented
in Section 4.2.3, so a handcrafted mode was used instead. In order to cover for
the inaccurate model, the standard deviation of the noise was inflated, resulting
in a very pessimistic model. Consequently, the virtual landmark detections were
assigned an error with a standard deviation between 5cm and 20cm, increasing with
the distance to the landmark. Additionally, because of the simplicity of this first
validation stage, the sensor visibility model only accounted for the maximum range
(30m), but occlusions from other landmarks were not considered. On the other
hand, the second validation stage is more focused on making the simulation as close
to reality as possible. Accordingly, the complete study presented in Section 4.2.3 is
used as the landmark measurement model, with a more accurate standard deviation
that ranges from 2mm to 2cm, as shown in Figure 4.10. Furthermore, the visibility
model is properly implemented in this stage, taking into account occlusions created
by buildings and by other landmarks, as it is visible in Figure 4.22.

Once the grid maps are generated, the landmark placement algorithm is executed
for both scenarios, resulting in two landmark configurations that are (presumably)
guaranteed to satisfy inequation 4.1. In the first scenario, the parameter σmax,
which limits the maximum standard deviation of the translation error across the
whole map, is set to 5cm. With this parameter and the measurement model defined
before, the landmark placement optimization algorithm is able to find a suitable
set of landmarks with 27 landmark locations. Similarly, the second scenario is
configured with a maximum error of σmax = 1.5cm. In this second stage, it is
possible to reach a lower localization error because the measurement model has
a lower standard deviation compared to the pessimistic approach used in the first
scenario. Furthermore, the landmark configuration generated by the placement
optimization algorithm is composed of 14 landmarks.

Finally, to complete the simulation environment for the validation experiments, the
calculated landmark positions are used to spawn new lamp posts in the gazebo
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scenario. Figure 4.21 provides a global picture of the validation environment,
including the testing area, the generated landmarks, and the vehicle. The final
accuracy heatmap from the second scenario is also presented in Figure 4.22, next to
the corresponding coverage map.

Fig. 4.21: Gazebo environment used in the validation experiments of scenario 2.

After completing the setup of the validation environment, a vehicle is integrated into
the simulation environment, including a LiDAR sensor. The simulation ground truth
is used to reference the true pose of the vehicle at every moment, and the proposed
approach is validated by comparing the localization estimate obtained from the
landmark-based localization method proposed in 4 with the simulator reference.
The simulated vehicle is then teleoperated through ROS using an external joystick
and driven around the testing area.

4.3.2 Results

The validation runs carried out for the first stage are presented in Figure 4.23,
showing the three different trajectories followed by the vehicle and the landmark
set provided by the placement optimization algorithm. Accordingly, the landmark
positions and validation trajectories used in the second validation stage are presented
in Figure 4.24. The driving of the vehicle was performed manually by teleoperation,
and the performed trajectories were focused on covering as much of the testing
area as possible. Furthermore, the validation trajectories were also conducted in a
way that the most critical points were covered. These points, which have a higher
localization error in the heatmap, generally include corners and areas that are far
from the landmarks placed, such as map borders.
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Fig. 4.22: Accuracy and coverage maps obtained with the landmark configuration calculated
for scenario 2.
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Fig. 4.23: Validation trajectories followed by the vehicle in scenario 1. Landmarks are
displayed as magenta triangles.

Regarding the error metrics used to evaluate the proposed approach, the most
suitable metric for this task is the APE metric. The reason is that the proposed
localization method is designed to be used as a global reference localization system,
so the error should be evaluated individually at each pose. Therefore, the absolute
error between each pair of poses is computed using equation 4.13, where Pref,t is
the reference pose from the simulation ground truth at timestamp t and Pest,t is the
pose estimated by the proposed landmark-based localization system.

Et = Pref,t 	 Pest,t (4.13)

Then, the translation and rotation components are separated to be analyzed individ-
ually, similarly to the approach followed in Section 3.2.3.

Etrans = ‖E‖2
Erot = ∠ [E]

(4.14)

These metrics are then applied to the estimated localization data, computing the
mean and the standard deviation of the localization error. Additionally, the maxi-
mum translation error is also extracted for each one of the validation sequences. The
maximum translation error is of special interest because it constitutes the main vali-
dation indicator for the proposed approach. If the proposed approach is valid, then
the maximum translation error should not exceed σmax. These values are presented
in table 4.1 and table 4.2 for the translation and rotation error, respectively.
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Fig. 4.24: Validation trajectories followed by the vehicle in scenario 2. Landmarks are
displayed as magenta triangles.

Mean (cm) Std (cm) Max (cm) σmax (cm)

St
ag

e
1

Trajectory 1 1.404 0.779 4.922 5.0
Trajectory 2 1.252 0.697 4.787 5.0
Trajectory 3 1.227 0.649 4.309 5.0

St
ag

e
2

Trajectory 1 0.230 0.140 1.354 1.5
Trajectory 2 0.249 0.175 1.455 1.5
Trajectory 3 0.289 0.185 1.499 1.5

Tab. 4.1: Translation error of each validation sequence.

As it can be appreciated in table 4.1, the translation error is kept under the upper
bound σmax at all times. This fact proves that the proposed landmark placement
optimization approach is able to solve the presented problem, generating a set of
landmarks that is suitable to keep the error under the desired bound. Furthermore,
it is important to remark that although the maximum error is close to the parameter
σmax, the average error is several times lower. In fact, the translation error only gets
closer to σmax in some critical points in the testing area, resulting in a localization
system that can provide a high accuracy consistently while guaranteeing an upper
error bound. The quality of the localization solution is also ratified by the low values
of the standard deviation, which indicate a stable estimation.

Regarding the rotation component of the localization error, while it is true that the
optimization target is solely focused on the translation component to simplify the
system, the results obtained for the rotation error are exceptionally good. Although
the optimization method is not paying attention to the rotation error, this one is
being reduced indirectly due to the nature of the NLLS estimator. The reason is that
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Mean (deg) Std (deg) Max (deg)

St
ag

e
1

Trajectory 1 0.041 0.031 0.205
Trajectory 2 0.040 0.030 0.169
Trajectory 3 0.042 0.031 0.181

St
ag

e
2

Trajectory 1 0.0009 0.0008 0.0035
Trajectory 2 0.0012 0.0009 0.0043
Trajectory 3 0.0058 0.0063 0.0411

Tab. 4.2: Rotation error of each validation sequence.

in the residual function, defined in equation 4.10, even a small error in the rotation
component will result in a higher residual cost, as is also visible in Figure 4.12.
Nevertheless, the accuracy target σmax can also be easily adapted to include the
rotation error or any other cost function by modifying the accuracy metric presented
in Section 4.2.6 used in the heatmap generation.

4.4 Concluding remarks

In this chapter, a method aimed at controlling the localization error in controlled
environments is proposed. On the one hand, it is possible to estimate the localization
error produced by a landmark-based localization system. To that end, we propose
a system that can use the landmark measurement model to compute a heatmap
that represents the expected error at each point in the testing area. On the other
hand, this accuracy heatmap can be exploited to implement a landmark placement
optimization method that is able to find a set of landmarks that guarantees an upper
bound in the localization error.

In order to have access to actual ground-truth data, the proposed approach has
been validated using a simulation environment. Multiple experiments have been
carried out, featuring different environments, sensor models, and configurations.
The obtained results confirmed that the proposed approach is able to generate a
localization reference with a constrained error while actually achieving a very high
accuracy level.

The proposed method has been designed to build accurate and reliable localization
systems in a controlled environment, such as proving grounds, where the envi-
ronment can be modified in order to add new landmarks in the testing area. The
obtained results show the feasibility of having a localization reference system based
on landmarks using the proposed approach, with the reliability that provides the
guaranteed upper error bound of the localization error.
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However, it has only been possible to validate this approach in a simulation environ-
ment, as outdoor reference systems do not provide actual ground truth. This task
remains open for future work, being an interesting topic that is still open to study.
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Cooperative Localization 5
„The more complex the world becomes, the more

difficult it is to complete something without the
cooperation with others.

— Alexander Fleming

The future of transportation systems is rapidly evolving towards autonomous driving
technologies. Likewise, urban development techniques are beginning to integrate
IoT technologies, evolving toward the so-called smart cities. With the development
of new communication technologies, such as 5G, high-bandwidth, low-latency
communication between the multiple agents involved in the driving scene becomes
now a possibility.

This chapter revolves around the idea of exploiting the advances in communication
and ITS technologies to improve the localization systems of vehicles. Localization
systems usually rely on GNSS systems, which are known to behave badly in urban
areas due to the reduced satellite visibility and the structured environment caus-
ing multipathing problems. Instead of proposing the use of specific sensors and
technologies for an accurate localization system where GNSS systems fail, the work
presented in this chapter advocates for the reuse of the perception systems already
operating in autonomous vehicles.

5.1 Introduction

In this chapter, a cooperative localization system for autonomous vehicles is pre-
sented. This system requires a low-latency communication system that allows
sharing of different data between the vehicles, such as the localization estimate or
the detected obstacles. Therefore, the recent advances in technologies developed
for smart cities are perfect to finally bring a powerful communication system for
autonomous vehicles, enabling new forms of cooperative algorithms.

Urban environments are characterized by their complexity when performing au-
tonomous driving tasks. Cities are very dynamic environments, and vehicles must be
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able to detect multiple elements, such as other vehicles, infrastructure elements, and
VRUs like pedestrians or cyclists. Consequently, great efforts have been carried on in
recent research to improve perception systems in autonomous vehicles; in order to
guarantee a safe operation.

Additionally, GNSS systems have been established as the defacto standard local-
ization system for outdoor, autonomous systems due to their high availability and
their relatively low cost. One of the problems of GNSS systems, however, is that
despite the multiple low-cost solutions available in the market, accurate systems are
generally very expensive. Furthermore, GNSS systems perform better in open spaces,
where proper satellite coverage is available, and the connection with the satellites is
not interrupted. This ideal is the opposite of what is found in urban environments,
where tall buildings form urban canyons that limit satellite coverage, and the vision
of the sky changes at each new intersection. The lack of signal coverage is even
worse in closed spaces such as tunnels or covered parking lots, where the GNSS
position estimation is usually completely lost.

While it is possible to design better localization systems for urban environments, they
usually rely on additional sensors and the use of digital maps. High-definition digital
maps, nonetheless, have limited availability and are costly to produce due to the
precision level required. Moreover, such localization systems require an additional
computational load in the vehicle processing system to extract features from the
environment and match them with the map data.

Nevertheless, it should be possible to reuse the processed data from the perception
systems, avoiding an unnecessary overprocessing of the sensors’ data. Particularly,
a system where vehicles are able to share their position estimation (from GNSS)
and the list of detected objects (from the perception system) could combine that
information to improve the initial localization estimation of each vehicle.

Several works have been presented in recent years proposing different approaches
to deal with the problem of cooperative localization in autonomous vehicles. The
objective in outdoor cooperative localization problems is always to enhance the
performance of the GNSS-based system using the additional positioning information
that is inferred from the relative transformation between vehicles. The relative
transformation between vehicles can be acquired from onboard sensors and provides
information about the distance or the full 3D transformation between one vehicle
and another. Although these measurements also carry some uncertainty, it is usually
much lower than the error from the GNSS estimation, thus being able to improve its
accuracy.
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The most common way to obtain this information is by measuring the distance
between vehicles. In most cases, such as the one presented in [278], the same
communication system used to share data between vehicles is used to estimate the
distance between them by exploiting the signal’s RSSI. This approach, however, has
the inconvenience of being only available when the communication is performed
directly between the vehicles, as it is done in cooperative systems based on Vehicular
Ad-Hoc Network (VANET) technologies. Moreover, relying on distance measure-
ments to enhance the GNSS estimation does not provide as much information as the
detection of a vehicle from a perception system, which includes 3D coordinates and
even the orientation of the target.

Regarding the estimation output, most cooperative localization methods present
an egoistic approach by focusing only on estimating the pose of the ego vehicle.
This decision simplifies the algorithm implementation because the number of free
variables to optimize is greatly reduced. However, an estimation algorithm focused
only on the ego vehicle has more restrictions and is more sensitive to the bias of the
GNSS estimation obtained from the other vehicles. Some works, such as [260], cope
with this problem by implementing a mechanism to select the best vehicle poses as
anchors; in order to obtain a better estimation of the ego vehicle’s pose. Still, this
approach relies on having enough vehicles nearby with high-quality GNSS systems,
which in practice is not a realistic scenario.

Accordingly, an enhanced localization system through sensor fusion and data sharing
for autonomous vehicles is proposed in this chapter. This cooperative localization
system relies on vehicles sharing their initial localization estimation and their lists
of detected vehicles. The objective is to design a system that is able to improve
the already existing localization systems (based on GNSS) with the help of vehicle
detections and the combination of the data shared by multiple vehicles. Furthermore,
instead of centering the focus on the pose of the ego vehicle, the proposed system is
designed to optimize the pose of all vehicles, improving the localization performance
globally. Such a localization system requires a low-latency communication system
that vehicles can use to share the processed data. Fortunately, the raw sensor
data is not required; hence the size of the shared information is relatively small,
making efficient use of the communication channel and avoiding the necessity of
high bandwidth.

5.1 Introduction 103



5.2 Proposed approach

In this section, the proposed solution to the cooperative localization problem is
described.

5.2.1 Problem statement

The presented problem is formulated as it is usually done in the literature, but with
the difference that instead of estimating the ego vehicle’s pose, the system must
estimate all poses simultaneously. Despite increasing the complexity of the method
because of the extra degrees of freedom, we believe this approach can result in
better results than the egoistic one. The reason is that common methods generally
optimize the pose of the ego vehicle while assuming that the rest of the poses are
fixed. Therefore, localization bias has a strong contribution to the estimation and
can lead to converging to wrong estimates. On the other hand, when all poses
are optimized concurrently, the localization system has more flexibility, creating
new opportunities to mitigate the bias in the optimization process. The proposed
approach is exemplified in Figure 5.1, including all the information sources used in
the data fusion mechanism.

Due to the numerous variables to optimize, and in order to deal with the nonlineari-
ties associated with the orientation of the vehicles, we propose a Genetic Particle
Filter (GPF) to solve the cooperative localization problem. This type of Particle Filter
shares most of its process with a generic Bootstrap Particle Filter, with the particular
exception that the resample process is performed by a Genetic Algorithm. The
proposed estimation algorithm has been implemented in a cooperative localization
framework based on ROS2 named LoCo, which was specifically designed for this
task.

The inputs and outputs of the proposed cooperative localization method are summa-
rized in Figure 5.2. This method has several inputs that are required from each of
the vehicles in the system:

• GNSS prior estimation: The initial (noisy) pose estimation provided by the
GNSS system.

• Vehicle detections: The list of vehicle detections extracted from the percep-
tion system.
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Fig. 5.1: Proposed cooperative localization approach.

• Local odometry: Odometry source obtained from the vehicle’s wheel odome-
ter or a different odometry algorithm. This input is optional but can be used
to improve the prediction step.

5.2.2 LoCo framework

The proposed cooperative localization method is based on a Genetic Particle Filter,
but the whole approach requires a bigger framework to integrate the data from the
multiple vehicles that form the cooperating system. For this reason, we have designed
and developed the LoCo framework 1, which is a software suite implemented in
ROS2 that handles the received data and prepares it for the estimation process.

This framework is based on ROS2 for two reasons. On the one hand, this second
version of the Robot Operating System has a communication system based on
Data Distribution Service (DDS) protocol to share messages between the different

1LoCo framework is open source software available at https://github.com/butakus/loco
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Fig. 5.2: Inputs and outputs of the proposed cooperative localization method.

process nodes. The use of a standard protocol such as DDS as the communication
middleware provides multiple advantages to cooperating systems compared with the
previous ROS version, especially for systems based on wireless communications. On
the other hand, ROS2 provides multiple features that simplify software integration
in both simulation environments and real-world platforms.

One of the purposes of the LoCo framework is to handle the input data. This step
consists in synchronizing the received messages, associating the received measure-
ments with each of the vehicle agents, and providing the appropriate data to the
estimation algorithm. Furthermore, the core estimation process is implemented as
an independent module, so the LoCo framework can be used to compare different
cooperative localization algorithms by exchanging the core estimation module (in
our case, the Genetic Particle Filter). Finally, the implemented framework is able to
handle 2D and 3D data in their SE(2) and SE(3) forms, respectively. Nevertheless,
the work presented in this chapter has been represented only in 2D for the sake of
simplification.

5.2.2.1 Data synchronization

The cooperative localization process is executed in a centralized way, where every
vehicle receives all the required data and runs the estimation algorithm by itself. In
a later stage, the vehicle poses estimated by each of the vehicles could be shared to
keep the best estimation, but that kind of post-processing is not considered in the
proposed approach.
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Before processing the shared data, it is important that the information shared
between the vehicles is time stamped and that all agents share the same clock. This
clock synchronization process can be carried out at the system level by a Network
Time Protocol (NTP) process, which would provide enough precision for the problem
at hand. If necessary, better clock synchronization approaches are possible within
5G communication schemes, as presented in [279].

Even if the system clock of each vehicle is synchronized, the data shared from each
vehicle is not acquired at the same exact moment, so an additional message synchro-
nization process is carried out after receiving the data from all vehicles. The LoCo
framework is implemented in multiple threads, isolating data acquisition, estimation,
and output generation in concurrent processes. This way, the data acquisition is not
blocked by the estimation process, which takes most of the computation time.

When the estimation process starts, the system takes a snapshot of the latest data
received from each vehicle. If the time difference between a message and the current
time is too high, the data is interpolated using the current odometry data for the
given vehicle. In normal operating conditions, the data is received at 10Hz, and
the delay is only about a few milliseconds, so this interpolation does not provide a
significant benefit.

5.2.2.2 Data association

In addition to synchronizing the input data, the received vehicle measurements must
also be processed before being ready for the estimation process. The reason is that
the vehicle detections from the perception system do not provide an identification
of which vehicle was detected at each position. Moreover, not all vehicles can be
detected from every vehicle, so the list of detections provided by each vehicle will
likely not contain the whole set of vehicles participating in the cooperating system.

The vehicle measurement data is sent to the estimation algorithm as a detection
matrix MV×V , where V is the number of vehicles in the system and Mi,j represents
the vehicle detection from vehicle i to vehicle j. An additional matrix M∗

V×V is also
provided, where M∗

i,j indicates if the detection from i to j exists and is valid. Each
detection is represented as a SE(2) pose zi,j with an associated 3 × 3 covariance
matrix Σi,j . Finally, the list of detections received from each vehicle is defined as
Z1×V ′ , with V ′ ≤ V .

In order to determine which vehicle corresponds to each one of the measurements
contained in Zi, an unbalanced assignment problem must be solved. Given a set of
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vehicles V , which constitutes all the vehicles in the system, and a list of measure-
ments Zi, the problem consists in finding which measurement zi,j corresponds to
which vehicle in V . The optimal assignment is obtained by the Hungarian method
[280], which makes use of a cost matrix Cj,v to determine the best assignment of
measurements. Each element of the cost matrix represents the cost of assigning
the measurement zi,j to the vehicle v ∈ V . This cost is based on the difference
between the previously estimated pose of vehicle v, xv and its virtual pose x̂jv, which
is calculated according to equation 5.1 and represents the pose that vehicle v would
have if the measurement zi,j was assigned to it.

x̂jv = xi ⊕ zi,j (5.1)

Afterward, the assignment error is defined as the difference between the pose xj
and the virtual pose x̂j:

Ej,v = xj 	 x̂jv (5.2)

Using this assignment error in SE(2), different alternatives are available when calcu-
lating the assignment cost. In the LoCo framework, the following three assignment
cost metrics are implemented:

• Translation error:

Cj,v = ‖Ej,v‖2

• Weighted translation plus rotation errors:

Cj,v = ωt‖Ej,v‖2 + ωr∠ [Ej,v]

• Frobenius norm of the SE(2) error matrix:

Cj,v = ‖Ej,v‖F

5.2.3 Particle Filter

With all the inputs synchronized and properly prepared, the pose estimation is
performed by a Particle Filter, which is a localization method that has shown good
performance in other similar state-of-the-art approaches such as [261]. The proposed
Particle filter, however, has gone through several modifications from the generic
Bootstrap Particle Filter that is used in Monte Carlo localization methods. On the one
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hand, the filter has been adapted to handle a state composed of multiple vehicles.
On the other hand, the designed Particle Filter implements genetic operators in the
resampling step, making this estimation algorithm a hybrid between a Particle Filter
and a Genetic Algorithm.

The benefits of this kind of hybrid Genetic Particle Filter have been studied before
for robot localization [281] and target tracking [282], leading to the conclusion that
a genetic resample is able to deal with the problem of sample impoverishment better
than other typical resample approaches. In addition, these two algorithms are easy
to combine because they have multiple similarities, sharing different elements:

• The set of particles in a Particle Filter is equivalent to the population of a
Genetic Algorithm. Therefore, a common data encoding can be used.

• The particle weights in a Particle Filter can be seen as a representation of the
population fitness in a Genetic Algorithm.

• The likelihood function to compute the weight of each particle has its counter-
part in the Genetic Algorithm in the fitness function.

• The resample step in a Particle Filter generates a new set of particles from the
old set based on their weights. Similarly, each iteration in a Genetic Algorithm
also generates a new population, based on the previous elements and their
fitness.

In this work, the localization problem involves a state composed of the poses
from multiple vehicles. Consequently, the state encoding into the filter population
(or particles) P, which is illustrated in Figure 5.3 is done as follows: The whole
population set is a list of N elements, where each element constitutes a potential
solution to the localization problem. Furthermore, each element is composed of the
pose of each of the vehicles in the cooperating system, forming a list of V elements.
The vehicle poses are represented as transformation matrices in a SE(2)/SE(3)
form, where each vehicle pose might be considered as a chromosome from that
element.

With this state configuration, the Particle Filter process is summarized in Algorithm 2.
Nevertheless, the resampling step is just defined as a black box because, in addition
to the proposed genetic algorithm, it can also be implemented as one of the typical
resampling methods, such as the Sequential Importance Resampling (SIR). This will
be used in Section 5.3 to compare the proposed genetic resample method with other
resampling alternatives. The proposed genetic resample method, nonetheless, is
described in Section 5.2.4.
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Fig. 5.3: Population state encoding for the Genetic Particle Filter.

This process can be divided into five parts, which are marked as comments in Algo-
rithm 2. The first step in the filter is to initialize the population. This initialization
process is only executed when the algorithm starts and makes use of the initial
measurements from the GNSS system. The GNSS measurements form the prior
estimation xp, where the GNSS measurement from each vehicle, xp,i, is used to
initialize the corresponding chromosome on each element. In order to add dispersion
to the initial population, an extra noise is added to each of the initial poses according
to the covariance of the prior estimation.

Afterward, the remaining steps are executed in cyclic iterations, which are executed
whenever new data is ready or at a fixed frequency. The second step is the prediction
step, also known as the motion update step. In this process, the particles are
propagated according to the vehicle motion model, which is based on the local
odometry measurements encoded in ui.

Then, the particle weights are updated in step number three. This process is often
called the sensor update because the filter state is updated with the information
received from the sensors. In the proposed filter, the weights are calculated according
to the detections received from each vehicle, which are combined into a detection
matrix ZV×V , as defined previously.
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Parameter :V ≡ Number of vehicles
Parameter :P ≡ Number of particles
/* 1. Initialize population */

P = InitializePopulation(xp)
while True do

/* 2. Prediction */

for k = 1 to P do
for i = 1 to V do

xk,i = MotionUpdate(xk,i,ui)
end

end
/* 3. Compute likelihood and update particle weights */

for k = 1 to P do
ωk = L(xk,Z)

end
/* Normalize weights */

for k = 1 to P do
ωk = ωk∑P

k=1 ωk

end
/* 4. Update estimation (mean and covariance of each vehicle pose) */

for i = 1 to V do
x∗i =

∑P
k=1 ωkxk,i

Σi =
∑P

k=1 ωk(xk,i−x∗i )T (xk,i−x∗i )
1−
∑P

k=1 ω
2
k

end
/* 5. Resample particles */

P = Resample(P)
end

Algorithm 2: Particle Filter process

The proposed likelihood function L(xk,Z) serves as well as the fitness function for
the current population, and it is defined in equation 5.3.

ωk = L(xk,Z) =
V∑
i=1

V∑
j=1

l(xk,i,xk,j ,Zi,j), if Zi,j 6= ∅

l(xk,i,xk,j ,Zi,j) =
exp

(
−zT

e Σsze

2

)
2π
√

det Σs

(5.3)

Where ze is the measurement residual error reduced to its translation component,
defined as ze = ‖zi,j 	 (xj 	 xi)‖2. Moreover, the covariance matrix Σs is a scaled
version of the measurement covariance provided by the perception system. This
scaling is required when the perception system is very accurate and provides a very
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small covariance. In these cases, most of the resulting weights will be very close to
zero. Consequently, a positive scaling of such small covariances results in keeping
the weights meaningful and avoiding particle depletion. Finally, the weights are
normalized, so their sum is equal to 1.

Once the weights are calculated, it is possible to extract the pose of each vehicle
from the set of particles. This process, presented in point number four, estimates the
mean and the covariance of each one of the vehicle poses. First, the sample points
from each particle are separated and grouped by vehicle. Then, the set of sample
poses for each vehicle, xk,i, ∀k, is used to extract the mean and the covariance of
the data using the given equations. Note that the samples are weighted according to
the particle weights when the mean and covariance are computed.

The next and final step is to resample the current set of particles and generate a new
one. In the presented literature, the resampling step is implemented following a
Sample Importance Approach, where the particles are randomly sampled according
to their weights, and the normalized weights represent the probability of being
drawn. In the proposed approach, however, this resampling process is carried out by
a genetic algorithm, which is presented in the next section.

5.2.4 Genetic resampling

The genetic resampling process makes use of the particle weights as the population
fitness and exploits the typical genetic operators to generate a new generation of
particles after each iteration. Every iteration in the Particle Filter is followed by one
iteration in the Genetic Algorithm, making the population grow and converge to the
actual vehicle poses.

The genetic process is composed of three steps, applying three genetic operators:
selection, crossover, and mutation.

5.2.4.1 Selection

The selection process extracts a subset of the particle set based on their weights.
The set of parent particles, or the selection winners, has a fixed size based on a
percentage of the total size, defined by a parameter wp. Consequently, the number
of selected particles is defined as W = wpP .
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Adjusting this parameter affects the behavior of the estimation algorithm because,
with bigger values of wp, the new set of particles will be very similar to the previous
one, limiting the exploration provided by the crossover operator. On the other hand,
a small value of wp will result in having a new generation based on new particles,
while most of the previous particles will be lost.

This selection process is controlled by a tournament process, where each one of
the W particles is selected from a small subset of the population. The tournament
size is defined by the parameter tp, which is a percentage of the total population.
Accordingly, the total number of particles that go to each tournament round is
T = tpP .

Smaller values of tp produce tournament rounds with a smaller number of particle
contestants, so there is a higher chance of getting a parent whose fitness is not
among the best. This, however, promotes exploration by not always sticking to the
W best particles, so this parameter must be adjusted in a balanced way.

5.2.4.2 Crossover

After selecting the subset of parent particles, the remainder of the population is
filled with the offspring, which is created by combining chromosomes from the
parents in a crossover process. This crossover process, which is exemplified in Figure
5.4, is performed by pairs of parents. For each new offspring particle, two random
parent particles are selected. Then, each one of the chromosomes that form the
offspring particle is chosen randomly from one of the two selected parents, with a
chromosome representing a vehicle pose.
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…

P8

…

Parents

x2,1 x2,2 x2,3 x2,4 x8,1 x8,2 x8,3 x8,4

x2,1 x8,2 x8,3 x2,4
Offspring1

…

New 
Population

Parents

Each pose is selected randomly 
from one of the parents

Fig. 5.4: Genetic crossover example.
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This mating crossover process combines the vehicle poses from different parents
with good fitness. The motivation behind this type of crossover is that one particle
from the subset of parents might have good fitness because most of the vehicle poses
are estimated correctly, but other poses might be wrong. By combining the poses
from different parents, it is possible to obtain a new particle with better vehicle
poses overall.

5.2.4.3 Mutation

The last of the genetic operators applied is a mutation process that only affects the
new offspring elements when they are being created. As opposed to the previous
operators, this mutation process is based on a novel approach that integrates the
prior estimation from the GNSS measurements into the resampling process.

The mutation might affect individual chromosomes when generating a new offspring
particle, as illustrated in Figure 5.5. Furthermore, the probability of a chromosome
being affected by a mutation is defined by the parameter mp.

x2,1 x2,2 x2,3 x2,4 x8,1 x8,2 x8,3 x8,4

Xp,1 x8,2 x8,3 x2,4

GNSS Prior 
estimation

Mutation

Fig. 5.5: Genetic mutation example.

When a chromosome is mutated, the corresponding vehicle pose is not copied from
either of the parents. Instead, a new pose is drawn from the prior estimation
obtained from the latest GNSS measurement, similarly to how it is done in the
initialization process.
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This type of mutation has the ability to destabilize the filter if it converges to a biased
estimation that might happen if all vehicle poses are transformed by the same offset.
In that case, the vehicle measurements would result in a high likelihood, even though
the poses are wrong. If the filter was to converge into such a state, then this mutation
mechanism can make some particles jump closer to the actual pose, providing some
global consistency. This global consistency cannot be guaranteed otherwise because
the GNSS measurements are only used in the initialization step, and the rest of the
time, the filter only uses detection and odometry measurements, which are local to
the vehicles. Furthermore, this mutation mechanism also prevents the kidnapped
robot problem, which is a common problem in Monte Carlo Localization methods.

Consequently, this process makes mutation one important tool in the proposed
estimation algorithm. However, the obtained effect is very dependent on the selected
value for the mutation rate mp. If the mutation rate is very high, the vehicle poses
created for the offspring particles will be reset to the GNSS distribution, considerably
reducing the effect of the filter. On the other hand, a low mutation rate might not
have enough power to change the population in a way that the previously mentioned
problems can be avoided.

Furthermore, the contribution of the mutation rate mp is highly tied to the param-
eter wp, which controls the number of parents and the size of the offspring. The
reason is that the mutation process only affects particles from the offspring subset,
so the effect of each one of these parameters is also affected by the other. Conse-
quently, the parameter-tunning process must consider this, thus jointly adjusting
both parameters.

5.3 Experimental results

The performed experiments are directed to three different objectives. The first series
of tests are destined to find a proper configuration of the filter parameters that
require a tuning process, as previously described. Then, the genetic resampling
approach is validated by comparing its performance against another resampling
method used typically used with Particle Filters. Finally, the overall performance of
the proposed approach is evaluated.

In this section, the experimental setup is first described. Then, the different tests
and scenarios used are detailed, followed by the presentation and discussion of their
corresponding results.
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5.3.1 Simulation environments

One of the most common problems that arise when developing cooperative al-
gorithms is the lack of resources to perform proper experiments with real-world
platforms. This case is especially true for cooperative autonomous vehicles due to
their high cost. For this reason, the majority of the works presented in the literature
are based on simulation environments. Likewise, all the experiments carried out in
this work have been implemented in simulation environments, making use of the
simulation ground truth and overcoming the lack of enough physical resources.

In order to test and validate the proposed approach, two different simulation
environments are introduced. On the one hand, we introduce a simplistic agent
emulator that has been designed for the testing of cooperative algorithms in simple
and controlled environments without any complex physics simulation. On the
other hand, we use Carla simulator [274] to carry out a proper simulation of the
environment, obtaining a simulation of the vehicles closer to the real world and thus
obtaining more realistic results.

5.3.1.1 Agent emulator

The agent emulator is a software tool that has been specifically designed to perform
simple tests on cooperative algorithms implemented in ROS or ROS2. This tool
provides multiple mechanisms to emulate moving agents, which are represented as
poses without volume. In order to keep it as simple as possible, only the movement
is simulated without accounting for collisions or friction physics.

Despite being based on a simple simulation, this tool is very useful in the early stages
of the development of an algorithm, allowing one to quickly perform simple tests
with multiple vehicles without requiring a powerful computer. Additionally, one of
the main advantages of this simulation approach is that the software modules are
fully integrated with ROS and ROS2 ecosystems. Therefore, the implemented coop-
erative software can be easily integrated later on into a more powerful simulation
environment or in actual real-world platforms.

The agent emulator suite does not provide a graphical interface to visualize and
control the simulation. Instead, the state of the agents can be monitored by using
ROS tools, such as Rviz. Figure 5.6 shows a snapshot of one of the tests with three
agents, displaying the ground truth and localization data of one of the agents.
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Fig. 5.6: Agent emulator environment.

In these simulations, the agents’ movement can be controlled either by position
setpoints or by sending velocity and/or acceleration commands. The kinematic
model, however, is not based on the Ackermann model, which is the appropriate
model for car-like vehicles. Since the agents are just considered points in space with
an orientation, their movement is calculated by modeling their linear and angular
accelerations independently. To ease the setup of testing scenarios, several velocity
and acceleration controllers are included in the software suite.

Regarding the sensors implemented in the agent emulator, the ROS node that controls
each agent provides the following data:

• Global localization: The global localization output imitates the behavior of
a GNSS system, providing an estimation of the global pose of an agent with
an added Gaussian noise of adjustable covariance. The covariance can be
modified in runtime, to simulate the effect of urban canyons or tunnels. In
Figure 5.6 this measurement is displayed as a red arrow with a filled ellipse
around that represents the uncertainty.

• Local odometry: This output simulates the measurements of a local odometry
system, which are displayed in Figure 5.6 as blue arrows. To compute this
odometry, the emulator integrates the agent’s velocity. In each iteration, the
agent’s velocity is modified by adding Gaussian noise before it is integrated.
Therefore, these measurements suffer from drift, as any other local odometry
system would do.
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• Agent detections: The agents are also able to provide detections of other
agents relative to their pose, simulating a perception system. Detections are
also affected by a parameterizable Gaussian noise, and have a maximum range,
albeit occlusions are not considered.

Finally, the ground truth of the complete state of each agent is provided to be used
as the reference in the performed experiments.

5.3.1.2 Carla simulator

Carla is a simulator built on top of Unreal Engine, which is an engine that was initially
developed for game development applications. For this reason, the environments
simulated with this simulator are very close to reality, and the data obtained from
the virtual sensors have a high degree of fidelity.

The Carla simulator was specifically designed for the development of autonomous
driving applications, so the vehicle and sensor models have been implemented with
special attention to detail. Therefore, the experiments performed in Carla-based
simulation environments will use simulated data that will be as close to reality as
possible. Furthermore, the simulator has integration with ROS and ROS2, so all the
software implemented for this work can be easily integrated with Carla.

The only drawback of the Carla simulator is that these simulations require a serious
amount of computational resources, requiring a powerful machine and more time
than other simulation suites.

In order to perform the validation experiments for the proposed approach, three
different environments have been modeled in Carla. Considering that the proposed
approach is only concerned about the movement of the vehicles and the vehicle
detections, the designed environments only include the roads, thus simplifying the
simulation model and allowing us to include more vehicles in the simulation with
the same amount of computational power.

The first two simulation environments have been designed from scratch to represent
simple navigation settings such as a straight road, displayed in Figure 5.7, and a
curved road, shown in Figure 5.8. These two environments present one-way roads
with a single lane, providing the vehicle agents with an environment where it is easy
to drive.

The last of the simulation environments introduced has been extracted from a
real-world location using OpenStreetMap. Particularly, this is a location next to
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Fig. 5.7: Carla simulation scenario 1: Straight line.

Fig. 5.8: Carla simulation scenario 2: Curved line.

the University Carlos III de Madrid building in the technological park in Leganés,
which is also close to the main campus, where the laboratory is located. The map
data extracted from OpenStreetMap has been processed using a tool from the Carla
simulator to generate the simulation environment with the same roads as the map.
This scenario is presented in Figure 5.9, where the top image shows the map area in
OpenStreetMap and the bottom subfigure provides an aerial view of the environment
simulated in Carla with some cars.

The selected area has the benefit of forming a closed circuit, forming a triangle
composed of two roundabouts and a simple intersection. Being a closed circuit, the
simulation can be run for an unlimited time, while always having the same amount
of vehicles inside the circuit.
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Fig. 5.9: Carla simulation scenario 3: Real-world location.

Regarding the vehicles used in the simulation environments based in Carla, these
are based on a model of the Toyota Prius. The simulated cars are equipped with
virtual sensors that provide localization data, such as a GNSS localization system,
an IMU, and an odometer.

Additionally, the vehicles were initially equipped with a 3D LiDAR of 64 layers,
which was going to be used as a perception sensor to obtain the vehicle detections
using the method presented in [9]. Unfortunately, simulating a LiDAR sensor for
each one of the vehicles requires a huge amount of computational resources, which
made this approach unfeasible. Alternatively, the vehicle detection method used in
the agent emulator was adapted to simulate vehicle detections from Carla’s ground
truth.
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Finally, the vehicles implemented in Carla come with an autopilot system that is able
to drive inside its current lane while maintaining a safe distance from the vehicle in
front, if any. When the vehicle reaches an intersection, the autopilot is programmed
to take a random option among the ones available. This autopilot has been used
in all the experiments that were carried out, leaving the vehicle control to Carla.
The implemented autopilot is perfect for the proposed simulation environments
because the first two maps are single lanes and the last one is a closed circuit with
well-defined lanes and intersections.

5.3.2 Processing time

One of the most important things to consider when implementing such an algorithm
is how much time is required to run each iteration, and how well it escalates when
the number of vehicles increases. Due to the high complexity of the method, the
estimation process not only becomes more costly when the number of vehicles V
increases, but also when the number of particles P selected for the Particle Filter is
increased.

For this reason, the first study that was performed on the proposed algorithm was to
analyze the computational time used with different values of V and P . This study
aims to determine the limits and the feasible configurations of V and P that allow
running the implemented algorithm in real-time. While the number of vehicles is
not an actual parameter of the algorithm, it is decisive in the computational time,
and it is useful to know how many vehicles can be handled in the estimation while
providing a real-time output. On the other hand, the number of particles is a crucial
parameter that must be adjusted. Generally, the number of particles should be
increased as much as possible because with more particles it is possible to obtain
a better estimation (more pose samples). The main drawback of increasing the
number of particles is that the estimation requires more time. Therefore, this study
has also the objective of finding a proper configuration value for the number of
particles, P .

In order to perform this analysis, a simple scenario has been implemented using the
agent emulator simulation environment. Because these tests are only focused on
computational time, the performance of the estimation algorithm is not a concern.
Therefore, these scenarios have all agents moving in circles at a constant velocity.

Then, the processing time is evaluated individually for each of the different sub-
processes that constitute the algorithm:
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• Prediction: The motion update step requires updating the pose of all vehicles
in all particles, resulting in a complexity of O(V P ).

• Likelihood: The likelihood process where the weights are computed is the
most complex because the measurements between each pair of vehicles must
be considered. Therefore, the complexity of this step is O(V 2P ) if the vehicle
detection matrices are complete, meaning that all vehicles were able to detect
all vehicles in the system.

• Update: The update step, where the pose of each vehicle is estimated requires
estimating the mean and covariance of each pose. Consequently, this process
has a complexity of O(V P ).

• Selection: The selection process is based on a tournament selection, which
only considers the weight (or fitness) of each particle, regardless of the number
of vehicles. For this reason, this is one of the most simple processes, since the
complexity is lower than O(P ) because only the set of parents is processed
and W ≤ P .

• Crossover: Finally, the crossover operation also has a complexity of O(V P ),
because each chromosome (vehicle) must be processed for each element in
the offspring set.

Using the agent emulator environment, multiple test sequences are executed with
different combinations of V and P values. Each sequence has a duration of 1
minute, providing a sufficient number of iterations to obtain an estimation of the
computation time.

The average total time used in each iteration is presented in Figure 5.10, for up to 20
vehicles and 2000 particles. These measurements have been obtained using an AMD
Ryzen 5 3600 CPU running at 3.6GHz, which can be considered an average CPU in
terms of performance. Moreover, a special remark should be done to mention that
the tested implementation of the proposed algorithm runs on a single CPU core. The
nature of the proposed algorithm has a high potential for parallelization because
most of the computations are independent for each particle. Therefore, the values
presented in Figure 5.10 could be highly reduced with a better implementation that
would favour parallelization.

As mentioned before, the most complex sub-process in the estimation process is
the likelihood estimation, with a complexity of O(V 2P ). The processing times of
this single sub-process are displayed in Figure 5.11. Comparing these two figures
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Fig. 5.10: Total processing time of each iteration, averaged for 1 minute-long sequences.

clearly shows that most of the total time in the process is consumed by the likelihood
estimation, as was initially hypothesized.

Again, it should be noted that these measurements assume full detection matrices,
implying that all V vehicles are able to detect all V vehicles, which is a pessimistic
scenario. A more likely reality would have some pairs of vehicles that are not able to
detect each other, thus leaving empty spaces in the detection matrix. These elements
are not processed, so the total likelihood time will always be lower in a realistic
scenario.

Considering all this, we believe that the proposed approach is suitable for real-time
operation in environments with up to 20 vehicles without any problem. Actually,
finding a scenario with more than 20 vehicles where the detection matrix is complete
is not easy, because more vehicles lead to more occlusions and a higher separation
between vehicles, keeping them out of range. Therefore, we find 20 to be a rea-
sonable upper bound to evaluate the processing time since it is not likely to have
detection matrices with more elements.

Regarding the number of particles, 10Hz is generally assumed to be the lower
bound frequency for a global localization system to operate in real-time conditions.
Therefore, if the system needs more than 100ms to obtain an estimation, it will be
considered too slow.

With the obtained results, we could raise P up to 1500 particles, and this constraint
would be satisfied. Nevertheless, the remainder of the experiments will set the
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Fig. 5.11: Processing time of the likelihood process, averaged for 1 minute-long sequences.

number of particles P to 1000 for two reasons. On the one hand, 1000 is a well-
round number that should be more than sufficient to reach a proper estimation of
the vehicle poses. On the other hand, this setting would allow the algorithm to
easily run at up to 20Hz, providing a higher-rate estimation and reducing the time
between predictions.

5.3.3 Parameter tuning

The performance of the proposed approach is very sensitive to the parameters that
control the behavior of the proposed genetic resampling method. For this reason, it
is important to properly adjust these parameters.

In this section, the parameter tunning process that has been performed is described.
First, the different simulation scenarios that were designed to carry out the tun-
ning process are detailed. Then, the tunning process is presented, explaining the
methodology used. Finally, the obtained results are discussed.

Since this process requires changing and testing multiple combinations of parameter
values, a high number of simulations must be carried out. Therefore, these tests
are performed using the agent emulator environment, allowing us to automatically
change the parameter configuration and run the multiple tests in batch. The simula-
tion scenarios used to obtain the data for this process included a fixed number of
vehicles V = 6 and particles P = 1000. Additionally, the movement of the vehicles
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follows a circular trajectory with a linear velocity of around 2m/s. Regarding the
detection system, these tests have no restriction in the maximum detection range,
thus allowing all vehicles to detect each other. Finally, the error of the GNSS system
that provides the prior estimations of the vehicle poses is considered a variable as
well, because it is used in the initialization and mutation steps and should affect the
quality of the final estimation.

In the proposed algorithm, the parameters that require a tuning process are the
following:

• Number of particles (P ): The number of particles has been fixed at P = 1000
according to the results obtained in the time processing analysis.

• Number of selection winners (W ): This parameter determines how many
potential solutions have a direct pass from one iteration to the next. The
parameter that is actually controlled is wp, which is a percentage of the total
population.

• Tournament size (T ): The tournament size is also defined as a percentage
of the population size, by tp. This parameter determines how many particles
enter the tournament in the selection process.

• Mutation rate (M): The mutation rate is a percentage that determines the
chances that each chromosome from an offspring particle has to be affected by
the mutation process described previously.

The procedure that was followed to understand how these parameters affect the
performance of the filter is based on testing the algorithm with different combina-
tions of values. Fortunately enough, the three remainder parameters are defined as
percentages, so their possible values are constrained.

Each combination of parameter values represents a testing scenario, and each
scenario is repeated 10 times to have more samples and avoid relying on a single
run. The sequences have a duration of 1 minute each, which provides enough
measurements due to the fact that the estimation algorithm is set to run at 20Hz.
For each sequence, the ground truth and the poses estimated by the LoCo framework
are recorded and analyzed offline using EVO [264]. The metric used to evaluate
the localization performance is the APE, as defined earlier in the previous chapter.
Particularly, the average and standard deviation of the APE metric are first computed
for each individual vehicle in the system. Then, the mean and the standard deviation
of the APE are computed, by combining the APE of each vehicle in each one of the
10 sequences.
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Finally, the results are analyzed using data visualization techniques to find proper
values for the presented parameters. Note that this type of analysis will not reach the
actual optimal configuration of parameters. Instead, the objective of this procedure
is to understand the contribution of each parameter and to find a configuration that
is good enough.

An initial test is performed, evaluating all parameters with variable values. Due to
the high amount of time required to evaluate each scenario, this initial test is done
with a reduced set of possible values for each variable, resulting in a coarse analysis.
The values used in this initial test are wp = {30, 50, 75}, tp = {10, 20, 30, 50, 75}, and
M = {10, 50, 75}. Additionally, the standard deviation of the GNSS error is set to
2m, which is approximately what low-cost solutions are able to offer. As it can be
noted, this test has a higher number of possible values for the parameter governing
the tournament size, intending to find a proper value for this parameter and leave it
fixed in future tests.

The obtained results in this preliminary test are displayed in Figure 5.12. In this
figure, the rows and columns are associated with the values of wp and tp, respectively.
Then, inside each subgraph, the mean of the error is divided by the mutation rate
M . The values for T , W , and M are percentages (%).
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Fig. 5.12: Average error mean for the initial tuning test, averaged on 10 sequences.

While the amount of information might be too much, it is shown that the perfor-
mance is mainly affected by the number of winners, W , and the mutation rate, M .
Regarding the tournament size, even though it does not seem to have a contribution
as big as the other two variables, it can be appreciated that the values around
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30% seem to have better performance overall, especially when the values of W are
small.

For this reason, the value of T is fixed to 30% in the next experiments. Fixing
this parameter allows us to focus deeper on the effect of W and M , increasing
the number of values that can be evaluated for each parameter. Moreover, the
performance of the proposed algorithm is more sensitive to changes in W and M
than it is to the changes in T , so it is a good idea to focus the testing efforts on
studying the effect of the former two parameters.

Accordingly, the second stage of the tuning tests is aimed at exploring the configu-
ration space formed by the parameter W and M . After fixing the tournament size
at 30% of the total population, the possible parameter values that are explored in
this stage are wp = {10, 20, 30, 40, 50, 75} and M = {0, 5, 10, 25, 50, 70, 90}. Further-
more, we acknowledge that the quality of the prior GNSS pose estimation is of great
significance in the proposed method and directly affects the posterior estimation.
For this reason, the error of the prior estimation is also considered a variable in this
test, which follows the configurations represented in table 5.1.

GNSS
Setting

Translation
error std (m)

Rotation
error std (rad)

XS 0.1 0.001
S 0.5 0.005
M 2.0 0.02
L 5.0 0.02

Tab. 5.1: GNSS noise settings.

The proposed GNSS settings emulate four different cases. The XS configuration
would be the equivalent of a very accurate system with RTK corrections, reaching
an accuracy level with a standard deviation of 10cm. The next configuration has
a standard deviation of 50cm, similarly to the average output of a GNSS system
with differential corrections. Finally, the last two settings correspond to a low-cost
system, with good (M) and bad (L) signal coverage.

Similar to what was done in the first stage, the possible parameter values are com-
bined and each configuration scenario is repeated 10 times, generating multiple
sequences to afterward average the resulting data. The collected results are pre-
sented in Figures 5.13 and 5.14, which show the mean and standard deviation of
the localization error, respectively.

After carefully studying the data resulting from the multiple experiments performed,
it is possible to extract the following insights:
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Fig. 5.13: Average error mean for the second tuning test, divided by GNSS noise and
averaged on 10 sequences.

• Having high W values means that the initial solutions are more likely to be
kept in the population. Since only the offspring introduces new solutions and
mutations, a high W means having less variation in the estimation, with the
possibility of getting stuck with the initial estimation for a longer time.

• If the GNSS is very accurate (RTK level), it is usually better to have a high
W . If the system has a good GNSS, but a low W , it is more likely that the
good initial position will be corrupted by the filter. Keeping more solutions
from previous iterations helps maintain a stable estimation, assuming that the
initial estimations are good.

• If the GNSS is bad, and M is low, the offspring will receive fewer mutations,
so it is more likely to keep the initial solutions, which are probably inaccurate.
For that reason, it is better to have a low W , so the population changes faster
and the wrong initial solutions can be forgotten and improved.

• If the GNSS is bad, but M is high, the offspring will receive many mutations
with inaccurate estimations from the GNSS system. In that case, it is better
to have a high W , so the number of generated children is reduced and fewer
mutations occur.

• If the GNSS is bad, M should be low (low but not zero, see next point). It is
not clear if it is better to have high r low W, but with a bad GNSS, M must be
lo (<30%).
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Fig. 5.14: Average error std for the second tuning test, divided by GNSS noise and averaged
on 10 sequences.

• If the GNSS is bad, it could seem reasonable to leave M = 0, so the offspring
never receives mutations from a bad GNSS estimation. This, however, always
gives bad results. The reason is that if the GNSS is bad, it is more likely to get
a very bad initialization. That means that the filter might converge to a bad
estimation, or not converge at all because the measurements will never make
sense. For that reason, it is good to have a small mutation rate (5-10%) even
with a bad GNSS, so those mutations can help redirect the estimation to the
actual position.

• If the GNSS is good, it is always better to have a high M , allowing the offspring
to benefit from the accurate mutations.

• The proposed system is very sensitive to the GNSS error. Even though the final
estimation error can outperform the GNSS system with the proper parameter
settings, the estimation error is increased when the prior estimation is worse.

In order to analyze the contribution of GNSS errors at the initialization and mutation
steps, a final experiment is conducted. This test has the same parameter combina-
tions as the previous one, but this time the mutation rate is set to M = 0, completely
removing mutations from the system. This way, the only contribution of the GNSS
prior estimation is in the initialization step. Figure 5.15 presents the results ob-
tained from this last experiment, where it can be seen how a bad GNSS system still
affects the quality of the estimation, even if it is only used in the initialization of the
population.
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Fig. 5.15: Error mean analysis with M = 0, divided by GNSS noise and averaged on 10
sequences.

As one can observe in Figure 5.15, the systems with poor GNSS accuracy tend to
perform bad regardless of the value of W . Since the mutation is eliminated in this
test, the GNSS system is only used to initialize the particles. Therefore, it can be
concluded that a bad initialization can lead to the system converging to the wrong
estimation. While this could be seen as a bad thing, it only confirms our initial
hypothesis and corroborates the importance of the proposed mutation approach.
This problem, which arises when M = 0, is drastically reduced as soon as the
mutation rate increases, as can be observed in Figure 5.13.

To summarize, a balance between W and M must be reached; in order to be able
to handle different types of GNSS systems. In cases where the vehicles that form
the cooperative system have a specific, previously known, type of GNSS system, the
parameters can be better tuned for that specific system according to the performed
study. In conclusion, the proposed values for the remainder of the experiments are
W = 30 and M = 10, resulting in a balanced configuration that has been reached
after carefully analizing Figures 5.13 and 5.14.

5.3.4 Genetic resample validation

One of the major contributions of the proposed approach is the genetic resampling
in the Particle Filter to estimate the vehicle poses. This resampling approach should
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theoretically perform better than traditional resampling methods in the given lo-
calization problem due to the high dimensionality of the state. Nevertheless, this
hypothesis must also be validated experimentally.

To that end, a new batch of experiments is prepared, evaluating the performance of
the proposed algorithm and a typical resampling method under different GNSS noise
settings. These experiments are also based on the agent emulator environments and
have a setup similar to the one used in the tuning experiments. In addition to the
tunning tests, where the number of vehicles was fixed in V = 6, these experiments
include tests with different numbers of vehicles from the set V = {4, 7, 9}.

In addition to the GNSS noise settings previously defined, a new scenario is added in
these experiments, where the noise of the GNSS system is randomly selected among
the defined configurations (XS, S, M, L) for each vehicle. This new setup resembles
a more realistic scenario where each vehicle might have a different type of GNSS
unit.

Regarding the resampling comparison, the baseline is a Sample Importance Re-
sampling (SIR) approach as defined in [108]. With this resampling method, the
particles for the new iteration are drawn with a probability according to their weight.
Since the weights are normalized (i.e.,

∑
k ωk = 1), each weight ωk represents the

probability that the particle k has of being resampled for the next iteration. The rest
of the Particle Filter algorithm implementation is exactly the same, using the LoCo
framework, to ensure that the comparison of the two resampling methods is as fair
as possible.

Each scenario is also repeated 10 times, generating multiple sequences to average
the error afterward. In the scenario where the vehicles have a random GNSS noise
setup, the random combination of GNSS settings is computed once and maintained
for the 10 sequences.

After gathering the localization data from each scenario and aggregating the results
from all the sequences in each scenario, the extracted results are summarized
in Figure 5.16. The graph presented in this figure shows the distribution of the
localization error of each resampling method (simple vs genetic) in addition to the
error distribution of the prior estimation obtained directly from the raw GNSS data.
The last GNSS configuration (R) represents the scenarios where the GNSS unit of
each vehicle has a random noise setup selected from the other four.

From the extracted results, it is clear that the proposed approach outperforms the
SIR method and also improves the accuracy of the prior estimation, as was expected.
However, the SIR approach is not even able to achieve a better estimation accuracy
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Fig. 5.16: Error distribution with each resampling approach.

than the prior estimation from the GNSS system. While this approach is suitable
for cooperative localization problems that only estimate the pose of the ego vehicle,
the problem to solve presents a much higher degree of complexity because all poses
must be estimated jointly. For this reason, the simple resampling approaches that
are typically used in Monte Carlo localization methods are not able to reach a good
estimation of the presented problem. In addition to the problem of having a wrong
initialization (as seen in Figure 5.15), these resampling approaches have limited
exploration capabilities resulting in an impoverishment of the population after some
iterations.

Another interesting observation is that the proposed approach performs very well in
the scenario where the GNSS noise is randomized. This indicates that the proposed
approach is able to benefit from the vehicles that have a good prior estimation in
order to improve the estimation of all vehicles.

Finally, Figure 5.17 presents a zoom of the boxplots for the genetic resample results
and the prior GNSS estimation for the XS and S configurations, which were not
properly visible in the previous graph. In this zoomed section it can be perceived
that the proposed approach is only outperformed by the raw GNSS estimation when
it has very high accuracy (around 10cm of error).
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5.3.5 Performance analysis

Finally, the proposed approach is further validated using a more realistic simulation
environment implemented in the Carla simulator. The main disadvantage of the
agent emulator is that the vehicle trajectories are too artificial and do not follow
an Ackermann model. For this reason, an extra set of experiments is performed on
the simulation environments presented in Section 5.3.1.2, which are based on the
Carla simulator. The main benefit of these experiments is being able to evaluate the
performance of the proposed approach with realistic car-like trajectories.

Furthermore, the performance of the proposed approach is also compared with
the pose estimation results obtained with a more traditional method based on the
Kalman filter. More specifically, the proposed cooperative localization approach
will be compared with a UKF estimator that estimates the pose of each vehicle
independently without using any information about the rest of the vehicles.

5.3.5.1 Experimental setup

The simulation environments used in these experiments are those defined in Section
5.3.1.2. The first two environments present simple scenarios with a single-lane
road that is either straight (first environment), or curved (second environment).
Additionally, the third environment is based on a real-world location and includes
a closed circuit with a triangular shape, composed of two roundabouts and an
intersection.
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Regarding the number of vehicles included in these simulations, the first two simu-
lation environments have different scenarios with 4, 7, and 15 vehicles. The third
environment, however, has scenarios with 20 and 30 vehicles driving at the same
time. All these vehicles move using Carla’s autopilot, with a cruise velocity of around
20Km/h. In addition to increasing the number of vehicles, another difference
from the previous experiments performed using the agent emulator is that now the
maximum detection range is set at 80m, also following a more realistic approach.

Furthermore, the GNSS noise is configured to have a standard deviation around 2m,
similar to the configuration S previously defined. This is a typical noise value for
most common low-cost GNSS receivers, similar to the ones equipped in cars and
phones, thus resembling a realistic real-world scenario.

Finally, the UKF estimator is configured to fuse the prior estimation from the GNSS
system, the local odometry of the vehicle, and the IMU system. The UKF implemen-
tation is the one provided in the ROS robot_localization package [283].

5.3.5.2 Results

The localization data from each one of the experimental scenarios are recorded in
sequences with a duration of approximately 1 minute. These sequences include
the simulation ground truth, the prior estimation from the GNSS system, the pose
estimation from the proposed cooperative localization method (obtained with the
LoCo framework), and the UKF pose estimation (obtained with the robot_localization
package).

Then, the estimated poses from the proposed approach and the UKF estimator are
evaluated using EVO [264] to extract the APE metric for each individual vehicle in
each recorded sequence. The proposed analysis of the localization data is the same
as the one used in the resampling evaluation experiments, where the APE metric
obtained from each vehicle in each sequence is combined.

The distribution of the error according to the APE metric is represented in Figure
5.18, by using violin plots. These plots show the distribution of the error, in addition
to the mean (white point) and the quartiles (inner black line).

From these results, one can see that the proposed approach is able to improve
the localization accuracy of the prior estimation provided by the GNSS system, in
the same way as was observed in the agent emulator experiments. Likewise, the
pose estimation obtained from the UKF data fusion is also able to outperform the
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standalone GNSS localization system, justifying why it is one of the most used filters
in localization systems for autonomous vehicles.

When comparing the proposed cooperative localization approach with the traditional
UKF estimator, it can be observed that both estimators seem to perform similarly,
although the error distribution of the proposed approach is bigger towards the lower
values. A summary of the numerical results is presented in Table 5.2, showing the
mean, standard deviation, and maximum value of the APE metric. In this table, it
is easier to see that the proposed approach is able to slightly outperform the UKF
estimation, with the help of the cooperation between the vehicles.

GNSS LoCo UKF
Error mean (m) 0.743 0.410 0.455
Error std (m) 0.573 0.261 0.326
Error max (m) 2.701 1.505 1.857

Tab. 5.2: Performance results on Carla’s simulations.
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5.4 Concluding remarks

The problem of cooperative localization in outdoor vehicles is a real challenge for
the future of smart cities, especially in areas where the availability of GNSS systems
is limited or inexistent. In this chapter, a cooperative localization algorithm based
on a Genetic Particle Filter is proposed; in order to jointly estimate the pose of
all the vehicles that constitute the cooperative system. While other works in the
literature perform pose optimization just for the ego vehicle, the proposed method
approaches the problem by jointly estimating all poses, trying to improve some of
the deficiencies of the state-of-the-art methods.

The proposed Genetic Particle Filter has been proven to perform better than other
state-of-the-art methods used in cooperative localization when concurrently esti-
mating all poses. Particularly, the benefits of genetic resampling against traditional
resampling approaches have been demonstrated through experimental data in a
simulation environment. The fact that typically used resampling methods are not
able to solve the presented problem is that finding multiple poses instead of just one
drastically increases the complexity of the problem. In that scenario, it is required
a filtering method capable of exploring and generating more potential localization
solutions when processing the sensor data.

Additionally, a tuning mechanism for the proposed approach has been presented,
manually adjusting the multiple parameters based on data visualization techniques.
This mechanism has been exploited to study and understand the inside of the
genetic resampling method, analyzing the contribution of each parameter to the
performance of the estimator. In future work, an automatic tuning method should
be considered, allowing the localization system to adapt to each scenario.

Finally, the performance of the proposed approach has been validated in a simulation
environment based on Carla, which is one of the most realistic ways to perform such
type of experiment without a fleet of 30 real autonomous vehicles. In these exper-
iments, the proposed approach has been compared with a traditional localization
approach based on a UKF estimator. While both estimators are able to provide a
localization solution that outperforms the initial GNSS solution, their performance
is similar. Nevertheless, the proposed cooperative localization approach has shown
better results than the UKF, as displayed in Table 5.2. Even though the proposed
approach has a higher complexity, it is still able to run in real-time (20Hz) on a
modest machine, so the additional complexity can be justified since the cooperative
solution outperforms the classical UKF approach.

136 Chapter 5 Cooperative Localization



Conclusion and Future Work 6
„Never confuse education with intelligence, you

can have a PhD and still be an idiot.

— Richard P. Feynman

Autonomous driving technologies have shown a high potential for improving road
safety and providing new means of transportation without human drivers. Further-
more, the numerous and remarkable advances in recent years have demonstrated
the suitability of these technologies, making autonomous driving a tangible reality.
The perspectives for the future include even greater adoption of these technologies
in our daily lives. Therefore, it is essential to continue research lines related to
autonomous driving, especially the topics focused on improving the safety and
reliability of vehicle systems.

Accordingly, the work presented in this thesis aims to push the current state of the art
of localization technologies for autonomous vehicles. Particularly, the humble contri-
butions of this thesis are focused on understanding and exploiting the perception of
the environment to increase the reliability of localization systems.

This section presents a summary of the conclusions extracted from the work pre-
sented in this thesis and introduces a series of suggestions for future work to continue
these research lines.

6.1 Conclusion

With the rapid advances in autonomous driving technologies, commercial vehicles
are getting more intelligent. Among these advances, the research community has
placed most of its focus on perception technologies, which have shown a huge boost
in performance in the latest 10 years. Localization technologies, on the other hand,
have not received as much attention, and GNSS systems are still widely used as the
primary localization system in vehicles.
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The objectives that were marked for this thesis were, overall, directed at improving
the accuracy and reliability of localization systems by the means of exploiting such
advances in perception systems. With that global goal in mind, a summary of the
main contributions of this work is presented below:

• Globally, all the contributions presented in this thesis use the strengths of per-
ception systems to improve localization. The perception technologies exploited
include 3D semantic segmentation to pre-filter point clouds, infrastructure
detection methods to use traffic lights or lamp posts as landmarks, and vehicle
detection systems to find the position of other vehicles in a cooperative system.

• An exhaustive study of the performance of LiDAR-based odometry when
the input point clouds are filtered based on semantic knowledge has been
carried out. In this work, the input point clouds have been filtered using the
information from a 3D semantic segmentation method.

The experimental results obtained using the SemanticKITTI dataset show
an overall improvement with some specific filtering configurations, while
providing very useful insights regarding the influence in the odometry of each
type of element in the environment. The proposed filtering approach has been
tested in a real-world research platform, where most of the insights previously
extracted have been corroborated.

• A novel technique to estimate the expected localization error using a landmark-
based localization method in controlled environments has been presented.
In this work, a sensor-agnostic calibration method is proposed; in order to
determine the measurement error covariance of a landmark detection method.
This calibration method is also independent of the type of perception algorithm
used to detect the landmarks. Then, the landmark measurement model is ex-
ploited to build an accuracy heatmap that represents the expected localization
error at each point in the testing area.

This method can provide useful information about the accuracy of the localiza-
tion estimation in an environment with a given set of landmarks, allowing a
vehicle to use it to its advantage.

• A landmark placement optimization algorithm that exploits the previously
presented accuracy heatmaps has been proposed. This method is suitable for
finding a configuration of landmarks that guarantees an upper error bound in
the localization estimation from a landmark-based localization algorithm. The
applications of such an optimization method are relevant for the evaluation of
other localization systems, as it can be used to generate a reference system with
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a controlled error. Additionally, the proposed approach is of particular interest
for controlled environments such as proving grounds, parks, or warehouses.

The proposed optimization method has been validated through multiple sim-
ulation experiments, showing that the localization error obtained with the
generated reference never exceeds the desired limit.

• A novel Genetic Particle Filter has been proposed to solve the cooperative lo-
calization problem with multiple connected vehicles. The presented algorithm
solves the pose estimation of all vehicles jointly, and it has been proven that
the proposed genetic resampling approach outperforms traditional resampling
methods. The proposed multimodal cooperative system makes use of vehicle
detections to estimate the relative transformation between the vehicles in the
system, instead of using a specific ranging system as other approaches in the
literature. The vehicle detections are obtained from the vehicle’s obstacle
detection system, thus reusing the output from the perception system.

Multiple experiments in different simulation environments have shown that
the proposed approach is able to improve the localization estimation from
GNSS systems. Additionally, a study on the contribution of each parameter in
the filter has been presented for tuning purposes.

In general, all these contributions properly cover the objectives that were initially
marked for this thesis, which could be considered successfully covered. Consequently,
the works presented in this thesis were focused on enhancing localization systems
through perception data in intelligent vehicles, by covering the disadvantages of
GNSS systems and concentrating on the reliability of the systems.

Last, but not least, the work presented in this thesis, and other works derived from
it, have contributed to the publication of 4 journal articles, 9 conference articles,
one book chapter, and the submission of one patent. The details of the scientific
publications produced with this work, in addition to other research merits are
detailed in the preamble sections.

6.2 Future Work

There is still a long road ahead of us concerning fully autonomous vehicles. While
the obtained results in this thesis are satisfactory, some points could be improved:
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• In Chapter 3, it would have been beneficial, for the sake of completeness,
to test other LiDAR-based odometry algorithms. Furthermore, the use of
additional datasets would have increased the variety of driving scenarios in
the study. Particularly, driving sequences with a higher number of dynamic
agents would have helped in the analysis of the filtering configurations where
dynamic objects were removed.

• The landmark placement optimization method proposed in Chapter 4 has been
designed to work offline. For this reason, the initial implementation was not
focused on the performance of the optimization algorithm, as long as a valid
output was generated. Therefore, an additional study could be performed to
analyze the convergence of the proposed optimization algorithm and adjust
the parameters of the genetic algorithm.

• The mutation rate in the cooperative localization method presented in Chapter
5 is set as a fixed value, although the parameter tunning study showed that this
parameter is linked to the GNSS accuracy. In order to increase the adaptability
of the system, a dynamic mutation approach could be studied, where the
mutation rate of each vehicle depends on the covariance of the prior GNSS
estimation. This way, the system would be more likely to mutate a chromosome
if the prior estimation is more accurate.

• The cooperative localization system was only validated in simulation experi-
ments, mainly because gathering a fleet of intelligent vehicles big enough is
usually out of reach. However, it would have been valuable to also test the
proposed approach with real-world platforms using real sensor data.

Additionally, future work on the research lines followed by this work could expand
the presented contributions in different ways. Firstly, the insights extracted from
the semantic study could be exploited to build or enhance LiDAR-based odometry
algorithms. Regarding the calibration method proposed to estimate the landmark
measurement model, better approaches could be applied. Instead of performing
the calibration manually based on data analysis and visualization, designing an
automatic calibration method based on machine learning could provide significant
value. Finally, part of the work presented in this thesis has been only validated in
simulation environments, for justified reasons. Nonetheless, the integration of the
proposed methods into real-world platforms would be the next natural step in this
work.
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