
UNIVERSITÉ DE MONTRÉAL

AN IMAGE PROCESSING APPROACH TOWARD A VISUAL INTRA-CORTICAL

STIMULATOR

ANTHONY GHANNOUM

DÉPARTEMENT DE GÉNIE ÉLECTRIQUE

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

MÉMOIRE PRÉSENTÉ EN VUE DE L’OBTENTION

DU DIPLÔME DE MAÎTRISE ÈS SCIENCES APPLIQUÉES

(GÉNIE ÉLECTRIQUE)

DÉCEMBRE 2012

c© Anthony Ghannoum, 2012.

UNIVERSITÉ DE MONTRÉAL

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

Ce mémoire intitulé :

AN IMAGE PROCESSING APPROACH TOWARD A VISUAL INTRA-CORTICAL

STIMULATOR

présenté par : GHANNOUM Anthony

en vue de l’obtention du diplôme de : Mâıtrise ès sciences appliquées

a été dûment accepté par le jury d’examen constitué de :

M. BRAULT Jean-Jules, Ph.D., président

M. SAWAN Mohamad, Ph.D., membre et directeur de recherche

Mme CHÉRIET Farida, Ph.D., membre

iii

ACKNOWLEDGEMENTS

I would like to start by thanking my Master thesis supervisor professor Mohamad Sawan

for his support and patience as well as the Polystim Neurotechnologies Lab members who

always provided a lighthearted mood and critical thinking environment.

I would also like to thank my sister Roula Ghannoum for her outstanding help throughout

this period.

Moreover, I would like to acknowledge support from NSERC and the Canada Research

Chair on Smart Medical Devices.

iv

RÉSUMÉ

La déficience visuelle n’est actuellement pas médicalement traitable. Par contre, des ap-

proches biomédicales modernes, tel que le projet Cortivision, emploient la micro stimulation

intra-corticale pour stimuler la vision électriquement. Cela fait apparaitre des «phosphènes»,

des points lumineux, dans le champ visuel du patient. Des constellations de ces phosphènes

peuvent être utilisées pour reproduire une certaine vision de base.

Le système comprend une caméra, un module de traitement d’images, un lien sans fil, et

des matrices de micro-électrodes implantées directement dans le cortex visuel du patient.

La carte phosphène (l’arrangement de point lumineux dans le champ de vision) est di-

rectement liée au placement physique des électrodes ; elle est généralement plus dense vers le

centre (plutôt que d’être espacée uniformément comme dans une image numérique). Cela veut

dire qu’il n’existe pas une fonction simple pour traduire les images acquises par la caméra

sur la carte phosphène, d’où la nécessité d’avoir un module de traitement d’image.

L’aide du patient est nécessaire pour déterminer sa carte phosphène particulière et réelle.

Une méthode de calibration qui expose le patient à des combinaisons de paires de phosphènes

différentes est utilisée avec des algorithmes de triangulation et minimisation d’erreur. Toute

erreur dans la phase d’estimation induirait des distorsions dans l’image finale (dans les stimuli

envoyés au cortex du patient).

Néanmoins, la plupart des systèmes utilisent une carte phosphène simplifiée uniformément

répartie ainsi que des techniques simples de traitement d’image comme un seuillage simple ou

la segmentation. Nous proposons d’utiliser un traitement d’image de plus haut niveau, comme

la reconnaissance d’objets, afin d’être en mesure d’identifier et de «simplifier» les données

avant de les envoyer au patient. Dans ce cas, nous envoyons une représentation du contenu

de la scène au cortex du patient, et non pas une version abrégée de la scène – l’algorithme

utilise les vraies images pour identifier les objets, tandis que dans le cas des autres systèmes,

le patient doit identifier les objets lui-même à partir d’une image très simplifiée ; une tâche

non-triviale. Une telle approche est coûteuse en terme de calcul, et nécessiteraient également

de rouler en temps réel pour notre application. Pour subvenir à ces besoins, nous proposons

d’accélérer les goulots d’étranglement de l’algorithme en utilisant une approche matérielle

parallélisable (FPGA).

L’objectif est de développer un système temps-réel, paramétrable, et efficace en termes

de ressources matérielles FPGA et de bande passante. Ceci nous permettra d’effectuer des

tâches de reconnaissance d’objet robustes rapidement qui peuvent ensuite être utilisés pour

stimuler la carte phosphène d’une manière plus adéquate, plus utile, et moins exigeante du

v

patient.

Après avoir examiné les algorithmes possibles et les approches qui peuvent être utilisées,

nous avons identifié le Scale Invariant Feature Transform (SIFT) comme un bon candidat

pour notre système, principalement en raison du fait qu’il est très robuste aux variations

d’images telles que l’éclairage, les transformations affines, et les occlusions partielles d’un

objet.

Le SIFT peut être divisé en deux grandes parties : l’extraction et la description de carac-

téristiques. L’étape d’extraction est basée sur le calcul de la différence de gaussiennes (DoG)

et peut être considéré comme un détecteur de blob invariant à l’échelle qui permet de dé-

tecter les points «intéressants» dans une image. La deuxième partie considère la région qui

entoure le point d’intérêt et constitue un vecteur de description (ou une signature), qui est

essentiellement une collection d’histogrammes de gradients normalisés à la rotation.

Après avoir mis en place un prototype logiciel de reconnaissance d’objet spécifique, nous

avons remarqué que le goulot d’étranglement qui empêche l’algorithme SIFT de fonctionner

en temps réel se trouve dans la partie DoG. Nous avons alors recueilli nos efforts pour migrer

cette partie de l’architecture vers du matériel parallélisable d’un FPGA.

La partie DoG nécessite le calcul d’une pyramide d’images, qui est essentiellement une

répétition de filtres Gaussien 2D (pour former des échelles), suivi d’un sous-échantillonnage

(pour former des octaves). Les résultats des différentes échelles doivent par la suite être

synchronisés et soustraits, et les points d’extrêmes locaux à travers les échelles sont considérés

comme des points d’intérêt.

Après avoir examiné les implémentations existantes du DoG, nous proposons une nouvelle

architecture efficace capable de partager les ressources FPGA bloc RAM pour le filtrage et

aussi de réduire la taille des FIFOs de synchronisation. Nous avons également exploité des

concepts tels que l’entrelacement d’octaves, la séparabilité des filtres 2D, et la symétrie des

filtres. Notre architecture utilise moins de ressources que d’autres implémentations dans la

littérature, tout en étant comparable en terme de précision à une implémentation logicielle à

virgule flottante. L’implémentation FPGA est capable de rouler à deux ordres de grandeur

plus vite qu’une implémentation logicielle équivalente.

De plus, notre architecture est paramétrable en utilisant les génériques VHDL, et nous

démontrons comment notre consommation de ressources est affectée en effectuant des ba-

layages de paramètres pour : le nombre d’échelles, le nombre d’octaves, la largeur des filtres,

et la largeur maximale de l’image.

Le système a été validé sur une carte de prototypage Xilinx ML605 en utilisant MATLAB

et Xilinx System Generator afin de fonctionner en mode co-simulation avec le matériel dans

la boucle. L’interface Ethernet est utilisée pour le transfert d’images.

vi

Afin de calculer les descripteurs de caractéristique (deuxième partie du SIFT), nous avons

parfois besoin d’envoyer la pyramide d’images à l’hôte, ou de la sauvegarder dans la mémoire

externe pour un traitement ultérieur. Après avoir remarqué la similitude des données (dans

les sens x et y) et aussi à travers les échelles adjacentes à cause du filtrage, nous sommes

arrivés avec une architecture pour un encodeur de Huffman parallèle qui est capable de

traiter plusieurs pixels à la fois. Cet encodeur peut être utilisé pour la compression sans perte

des images ou des pyramides d’images. Pour les pyramides d’images, nous avons utilisé une

version modifiée du prédicteur Paeth qui tient compte de l’échelle adjacente pour l’étape de

différenciation et nous avons réussi à atteindre des taux de compression de 27, 3% sur la base

d’images Caltech-256.

Une autre voie qui a été explorée concerne l’estimation de la carte phosphène. Dans la

littérature, certains avaient suggérer une installation de calibration qui consiste à utiliser un

écran tactile et des lunettes de réalité virtuelle pour simuler le champ de vue du patient. Le

patient est ensuite présenté avec des paires de phosphènes et devra fournir de la rétroaction

en utilisant deux doigts pour toucher l’écran tactile et essayer d’évoquer aussi précisément

que possible ce qu’il perçoit (distance et angle).

Nous proposons une configuration alternative qui n’utilise pas un écran tactile, mais plutôt

une installation d’une caméra qui localise et suit plusieurs marqueurs fiduciaires qui peuvent

être manipulés simultanément par le patient pour fournir une rétroaction pour la calibration

de la carte phosphène. La caméra sera placée sous une table de surface transparente et

les marqueurs fiduciaires seront donc toujours visibles par la caméra. L’image est rectifiée

pour enlever les distorsions et les marqueurs sont suivis simultanément. Ceci nous donne

l’avantage d’avoir une résolution plus élevé qu’un écran tactile, la possibilité d’utiliser des

constellations de phosphènes (au lieu de seulement deux paires à la fois) et la possibilité

de modifier l’estimation de la carte calibrée en temps réel en utilisant la rétroaction du

patient. Si le nombre de marqueurs est le même que le nombre de phosphènes, l’emplacement

physique final des marqueurs sur la table représente directement la carte phosphène qui est

effectivement perçue par le patient.

Pour résumer, nous avons identifié l’algorithme SIFT comme un bon candidat pour la

reconnaissance d’objets et nous l’avons accéléré en utilisant une nouvelle architecture pour

calculer l’extraction de caractéristiques (partie DoG) dans le matériel qui est paramétrable

et efficace en termes de consommation de ressources, tout en conservant une précision com-

parable à une implémentation logicielle. En outre, nous avons identifié la redondance des

données dans les images et les résultats intermédiaires pyramidales et nous avons proposé

une architecture pour un encodeur de Huffman parallèle qui peut être utilisée pour soulager

les goulots d’étranglement. Aussi, nous avons proposé une installation alternative à explorer

vii

pour la calibration et l’estimation de la carte phosphène.

Notre système permet un traitement d’information haut niveau pour l’implant intra-

cortical. La compréhension de l’entourage par des méthodes telles que la reconnaissance

d’objets nous permettra de simplifier les données avant de les envoyer vers la stimulation sur

un nombre limité de phosphènes.

viii

ABSTRACT

Visual impairment may be caused by various factors varying from trauma, birth-defects,

and diseases. Until today there are no viable medical treatments for this condition ; hence

bio-medical approaches are being employed to overcome that. The Cortivision team has

been working on an intra-cortical implant that can bypass the retina and optic nerve and

directly stimulate the visual cortex. In this work we aimed to implement a modular, reusable,

and parameterizable object recognition system that tends to “simplify” video data prior to

stimulation ; hence opening new horizons for partial vision restoration, navigational and even

recognition abilities.

We identified the Scale Invariant Feature Transform (SIFT) algorithm as being a robust

candidate for our application’s needs. A multithreaded software prototype of the SIFT and

Lucas-Kanade tracker was implemented to ensure proper overall operation. The feature ex-

tractor, difference of Gaussians (DoG) part of the SIFT, being the most computationally

expensive, was migrated to an FPGA implementation due to the real-time restrictions that

is not achievable on a host machine. The VHDL implementation is highly parameterizable

for different application needs and tradeoffs. We introduced a novel architecture employing

the sub-kernel trick to reduce resource usage compared to preexisting architectures while still

being comparably accurate to a software floating point implementation. In order to alleviate

transmission bottlenecks, the system also includes a new parallel Huffman encoder design

that is capable of performing lossless compression of both images and scale space image py-

ramids taking into account spatial and scale data correlations during the predictor phase.

The encoder was able to achieve compression ratios of 27.3% on the Caltech-256 data-set.

Furthermore, a new camera and fiducial markers setup based on image processing was pro-

posed in order to target the phosphene map estimation problem which affects the quality of

the final stimulation that is perceived by the patient.

ix

CONDENSÉ EN FRANÇAIS

Introduction et objectifs

La déficience visuelle, qui est définie par la perte totale ou partielle de la vision, n’est

actuellement pas médicalement traitable. Des approches biomédicales modernes sont utilisées

pour stimuler électriquement la vision ; ces approches peuvent être divisées en trois groupes

principaux : le premier ciblant les implants rétiniens Humayun et al. (2003), Kim et al. (2004),

Chow et al. (2004) ; Palanker et al. (2005), Toledo et al. (2005) ; Yanai et al. (2007), Winter et

al. (2007) ; Zrenner et al. (2011), le deuxième ciblant les implants du nerf optique Veraart et

al. (2003), Sakaguchi et al. (2009), et le troisième ciblant les implants intra-corticaux Doljanu

et Sawan (2007) ; Coulombe et al. (2007) ; Srivastava et al. (2007). L’inconvénient principal

des deux premiers groupes, c’est qu’ils ne sont pas suffisamment génériques pour surmonter

la majorité des maladies de déficience visuelle, car ils dépendent du fait que le patient doit

avoir un nerf optique intact et/ou une rétine partiellement opérationnelle ; ce qui n’est pas le

cas pour le troisième groupe.

L’équipe du Laboratoire Polystim Neurotechnologies travaille actuellement sur un implant

intra-cortical qui stimule directement le cortex visuel primaire (région V1) ; le nom du projet

global est Cortivision. Le système utilise une caméra, un module de traitement d’image, un

transmetteur RF (radiofréquence) et un stimulateur implantable. Cette méthode est robuste

et générique car elle contourne l’oeil et le nerf optique. Un des défis majeurs est le traitement

d’image nécessaire pour «simplifier» les données antérieures à la stimulation, l’extraction

de l’information utile en écartant les données superflues. Les pixels qui sont capturés par

la caméra n’ont pas de correspondance un-à-un sur le cortex visuel comme dans une image

rectangulaire, ils sont plutôt mis en correspondance avec une carte complexe de «phosphènes»

Coulombe et al. (2007) ; Srivastava et al. (2007). Les phosphènes sont des points lumineux qui

apparaissent dans le champ de vision du patient quand le cerveau est stimulé électriquement.

Ces points changent en terme de taille, de luminosité et d’emplacement en fonction de la façon

dont la stimulation électrique est effectuée (c’est à dire un changement dans la fréquence, la

tension, la durée, etc. ...) et même par le placement physique des électrodes dans le cortex

visuel.

Les approches actuelles visent à stimuler des images de phosphènes monochromes à basse

résolution. Sachant cela, nous nous attendons plutôt à une vision de faible qualité qui rend

des activités comme naviguer, interpréter des objets, ou encore lire, difficile pour le patient.

Ceci est principalement dû à la complexité de l’étalonnage de la carte phosphène et sa cor-

x

respondance, et aussi à la non-trivialité de savoir comment simplifier les données à partir des

images qui viennent de la camera de façon qu’on conserve seulement les données pertinentes.

La Figure 1.1 est un exemple qui démontre la non-trivialité de transformer une image grise

en stimulation phosphène.

Des techniques de traitement d’images comme la détection de bords, la segmentation et

des approches de vision stéréo ont été proposées dans la littérature comme un moyen de

réduire l’information avant la stimulation.

Le concept de réalité augmentée a récemment été introduit. Il s’agit d’un domaine de

recherche en informatique qui traite le mélange des données réelles avec des données générées

par ordinateur en temps réel.

Un problème principal qui est souvent ignoré, c’est que la carte phosphène n’est pas

assez précise ; d’où l’utilisation d’un système en temps réel de reconnaissance d’objets peut

amplement contribuer à la simplification de l’environnement pour que les patients non-voyants

puissent mieux naviguer dans leur environnement et se doter de capacités de reconnaissance.

Les systèmes de déficience visuelle précédents utilisent des techniques de traitement d’images

simples qui n’incorporent pas la reconnaissance.

L’objectif serait d’améliorer la qualité ou la méthodologie utilisée pour la perception

en temps réel en utilisant des techniques de traitement d’images accélérées sur le matériel

parallélisable (FPGA), offrant ainsi une réalité augmentée dans lequel des objets spécifiques

peuvent être localisés et/ou reconnus, puis transmis au patient.

Le système doit aussi être paramétrable et indépendant de la plateforme, pour être efficace

et réutilisable pour des taches différentes. En outre, la mise en œuvre d’un prototype se servant

des ressources FPGA doit être économe en ressources au cas où elle doit être mappée sur des

circuits intégrés dédiés.

Les objectifs peuvent être résumés de la façon suivante : 1) Identifier et développer un

algorithme logiciel robuste et parallélisable qui peut effectuer la localisation et la reconnais-

sance d’un nombre limité d’objets sur lesquels il a été formé ; ceux-ci devraient varier dans

la pose et l’éclairage. 2) Accélérer les goulots d’étranglement de l’algorithme en utilisant des

modules sur matériel (FPGA) qui sont en mesure d’atteindre des performances temps réel.

Ces modules doivent être suffisamment génériques pour être réutilisables (peuvent être faci-

lement transférées à une autre plate-forme) et paramétrable, tout en étant aussi efficaces que

possible à la fois en termes de ressources et d’utilisation de bande passante. 3) Valider la pré-

cision des modules matériels en les comparants à une mise en œuvre équivalente en logiciel.

4) Enquêter sur les méthodes possibles d’estimation et d’étalonnage de la carte phosphène.

Figure 1.2 montre une vue d’ensemble du système qu’on propose. Les détails des diffé-

rentes parties seront expliqués dans les chapitres à venir. Nous allons utiliser le Scale Invariant

xi

Feature Transform (SIFT) pour extraire et décrire des points clés. La première partie du SIFT

sera accélérée dans un FPGA en utilisant une nouvelle architecture pour économiser les res-

sources. Une base de données d’objet en forme de points-clés est utilisé pour les comparer

avec ceux des images qui viennent de la camera. La reconnaissance d’objets est faite quand

assez de point-clés sont assortis et après, une stimulation appropriée peut être envoyée aux

matrices d’électrodes. Un codeur de Huffman est utilisé pour réduire les goulots d’étrangle-

ment HW/SW, et on propose aussi une nouvelle configuration pour la calibration de la carte

phosphène.

Un exemple visuel qui décrit l’utilisation du SIFT pour la reconnaissance d’objets est

montré dans la Figure 2.8

Étapes de recherche

Nous avons commencé par examiner les différentes approches de traitement d’image et

des algorithmes qui peuvent être utilisés à des fins de reconnaissance d’objets. Après cela,

nous avons étudié comment les FPGA peuvent être utilisés efficacement pour nos tâches

spécifiques d’une manière optimisée.

L’une des méthodes de base de traitement d’image utilisées pour déterminer si un objet (ou

plutôt un modèle spécifique) se trouve dans une image d’entrée est la mise en correspondance

de modèle. Le modèle est généralement plus petit que l’image cible, et le but serait de

déterminer la bôıte qui englobe l’objet en question. En termes d’entrainement, cette méthode

nécessite un modèle exact de l’image ou de l’objet cible. Le score de correspondance peut

être calculée en utilisant de différentes méthodes d’où on peut avoir un compromis entre la

complexité de calcul et la robustesse, tels que : la différence des carrés, la corrélation et la

corrélation normalisée.

L’avantage principal d’une telle approche réside dans la simplicité algorithmique de la

méthode, mais dans des situations réelles il existe plusieurs désavantages, comme ceux qui

sont indiquées ci-dessous : 1) La dépendance d’illumination : Si la luminosité du modèle est

différente de celle de l’objet dans l’image de recherche, il serait difficile de trouver une bonne

correspondance. 2) Gradients d’éclairage : Bien que le processus de normalisation puisse être

utilisé pour cibler le problème précédent, un éclairage gradient va probablement échouer

même avec la normalisation. 3) La complexité de calcul : Comme il est clair d’après les

équations de correspondance, le temps de calcul dépend directement de la taille du modèle.

4) Les transformations affines et d’échelles, la rotation et/ou l’inclinaison de l’objet cible

dans l’image de recherche causerait cette méthode d’échouer, car elle ne tient pas en compte

les transformations affines ou les distorsions. 5) Occlusion/correspondances partielles : Le

xii

modèle ne doit pas être obstrué et doit avoir plus ou moins une correspondance parfaite sur

toute la surface du modèle pour une bonne détection. 6) Choix du Seuil : Choisir le seuil

approprié pourrait s’avérer un peu difficile quand on essaie d’adapter le système pour des

environnements différents.

Les méthodes basées sur les caractéristiques des images pour la détection d’objets ont

culminé dans la littérature, telles que celles qu’on trouve dans Lowe (2004), Bay et al. (2008),

Mikolajczyk et Schmid (2005), Bosch et al. (2007), Dalal et Triggs (2005). Ces méthodes ont

plusieurs applications tel que la détection d’objets Lowe (2004), Lowe (2001), Lowe (1999),

Bay et al. (2008), Bay et al. (2006), le mosäıquage d’images Brown et Lowe (2003), la carto-

graphie et localisation simultanée (SLAM) Montemerlo et al. (2002) Castle et al. (2010) et

même la classification de scènes et de contexte Lazebnik et al. (2006).

Les méthodes basées sur les caractéristiques utilisent des patchs (ou caractéristiques)

prises autour de points «intéressants» (ou points-clés) dans l’image qui seront utilisées pour

déterminer des correspondances.

Au lieu d’utiliser une image de référence comme modèle, nous extrayons les caractéris-

tiques intéressantes à partir de l’image modèle d’un objet et nous essayons ensuite de trouver

des correspondances de caractéristiques dans une image différente. Une telle approche va

supprimer la plupart des limitations qu’on avait mentionnées précédemment.

Ces algorithmes peuvent être divisés en deux grandes étapes : la localisation (ou l’ex-

traction) de point-clés et la description des caractéristiques. À l’étape de localisation des

point-clés, nous essayons d’extraire des points saillants et «intéressants» de l’image (pour

qu’on puisse plus tard décrire les caractéristiques ou patchs qui entourent ces points). Les

points-clés peuvent être considérés comme des arêtes, des coins, ou même des points invariants

à l’échelle.

Les coins d’une image sont généralement considérés comme des bonnes caractéristiques

car, ceux-ci ont des variations dans toutes les directions et donc sont relativement stables et

peuvent être extraits d’une manière robuste.

En termes de définitions mathématiques, un coin peut avoir de différentes caractéristiques

et certaines définitions peuvent être plus robustes en termes de rotation, mise à l’échelle,

transformations affines et/ou même pour extraire des blobs. Quelques détecteurs de coins

que nous avons étudiés sont : Le détecteur de coins Harris, Shi-Tomasi, détecteur de coins

morphologique et les détecteurs de coins multi-échelles.

Les détecteurs de coins multi-échelles ont l’avantage d’être en mesure de relocaliser le

même point-clé à une échelle différente ; ce qui est pas mal fréquent dans des situations

réelles.

Le résultat des détecteurs de coins, utilisés indépendamment comme coordonnées, peut

xiii

être assez bon pour correspondre des caractéristiques ou des points-clés à travers des images

avec des mouvements mineurs, par exemple pour des fins de suivre un objet. Mais pour l’exi-

gence d’apparier les caractéristiques ou même des objets entiers à travers des images avec

des différences en illumination, échelle et/ou rotation, un détecteur de coin tout seul ne fonc-

tionnera pas. Par conséquence on se fie plutôt à des approches basées sur les caractéristiques

tel le «Scale Invariant Feature Transform (SIFT)» Lowe (2004) ; Ces approches rajoutent

une description ou une signature aux coins (ou point-clés) afin d’obtenir des caractéristiques

distinctives et discriminantes.

Nous ferons appel à l’algorithme SIFT à cause de sa robustesse et sa capacité de faire

correspondre des caractéristiques avec des variations d’échelle, des changements de point de

vue, des rotations, des différences d’éclairage et même des occlusions partielles. De plus, les

caractéristiques sont assez distinctives pour les comparer à une grande base de données, ce

qui rend le SIFT idéal pour des applications telles que la détection d’objets, la classification

de scènes et la mise en correspondance d’images.

La méthode peut être divisée en deux parties majeures :

– L’extraction de point-clés : Cette partie est comparable à une extraction coin multi-

échelle (ou l’extraction blob) et est basé sur la pyramide d’images et plus spécifiquement

la différence de Gaussiennes (Difference of Gaussians DoG).

– Description de points-clés : Les patches autour d’un point clé sont choisies et caracté-

risées pour être utilisées comme un vecteur de signature en utilisant des histogrammes

de gradients qui sont normalisés en angle de rotation.

Après avoir identifié un algorithme approprié pour notre application nous avons étudié

les différentes techniques de traitement d’images à utiliser sur FPGA. Nous avons défini des

interfaces qui peuvent être montées en cascade et qui respectent le contrôle de flux simple.

En raison que les données sont en forme de flux de pixels et le fait que les FPGA sont

généralement limités en termes de mémoire interne, nous pouvons diviser les opérateurs de

traitement d’images en matériel en trois grandes catégories : 1) Traitement par pixel (aucune

mémoire tampon nécessaire) 2) Traitement par voisinage (des blocs RAM internes peuvent

être utilisés) 3) Traitement par trame d’image (une RAM externe sera nécessaire)

Nous avons également étudié les différentes architectures pour les filtres à réponse impul-

sionnelle finie qui optimisent les ressources et l’efficacité en terme de fréquence et latence.

Nous avons commencé par faire un prototype logiciel du système en question afin d’évaluer

la faisabilité et la robustesse. Nous avons utilisé la librairie OpenCV de traitement d’images à

cet effet. L’algorithme SIFT était lent pour des performances temps réel et donc nous l’avons

combiné avec l’algorithme Lucas-Kanade de flux optique pour suivre un objet qui a été

reconnu. Le principal goulot d’étranglement de l’algorithme SIFT est la partie de différence

xiv

de Gaussiennes (DoG) dont nous avions l’intention d’accélérer sur le FPGA.

En ce qui concerne la mise en œuvre du matériel, nous avons évalué de différentes méthodes

de mise en œuvre de la différence de gaussiennes et nous avons réussi à implémenter une

nouvelle architecture qui utilise une technique de partage de bloc de mémoire RAM pour les

opérations de voisinage ainsi que l’entrelacement des données, la séparation des filtres 2D, et

l’exploitation de la symétrie du filtre afin de réduire l’utilisation des ressources par rapport

à d’autres architectures dans la littérature tout en maintenant la précision.

Notre architecture est paramétrable en utilisant des génériques VHDL en termes d’échelles,

des octaves, de nombres de coefficients de filtres et de largeur maximale des images.

La plateforme de prototypage Xilinx ML605 a été utilisée en conjonction avec MATLAB

et Xilinx System Generator. Nous avons testé notre implémentation en utilisant de la co-

simulation matérielle, c’est à dire en utilisant le réseau Ethernet pour effectuer les I/O et en

testant avec le matériel en boucle.

Dans de nombreux cas, la pyramide d’image ou les images doivent être transférées à

l’hôte (ou mémoire externe) pour le traitement de niveau supérieur. Nous avons remarqué

deux choses, tout d’abord toutes les images floues (après le filtrage Gaussien) ont tendance à

avoir très peu de composantes haute fréquence dans les directions x et y. Donc l’histogramme

d’une image de différence spatiale et causale aurait tendance à avoir un pic très raide autour

de zéro. Ces images sont bien compressibles à l’aide d’un encodeur de Huffman.

Nous avons donc proposé une architecture parallèle pour un encodeur de Huffman qui

est capable de traiter plusieurs pixels en parallèle et de manière adéquate peut être utilisée

pour compresser des images individuelles ainsi que des pyramides d’image complètes. Pour

la compression de pyramides d’images, un prédicteur de Paeth modifié a été utilisé. Une telle

méthode de compression permettrait d’atténuer les goulots d’étranglement de bande passante

sans taxer l’exactitude en raison de sa nature de compression sans perte.

Une autre voie qui a été explorée concerne l’estimation de la carte phosphène. En générale,

après avoir effectué la reconnaissance des objets, une représentation de cette information

devra être transmise au patient. La représentation peut être évoquée par des signaux audibles,

ou même comme des stimulations intra-corticales pour le cas du projet Cortivision.

Pour qu’un tel système fonctionne, on dépend sur une supposition majeure que la carte

phosphène est déjà connue. Une carte approximative du cerveau où le placement physique

des électrodes se traduirait par un phosphène étant éclairé spécifiquement dans le champ de

vision a été présenté dans Dobelle et Mladejovsky (1974). Une telle carte est généralement

plus dense vers le centre du champ de vision et il ne faut pas s’attendre à obtenir une grille

parfaitement uniforme (comme une image de pixels).

Typiquement la carte phosphène peut être calculée avec l’aide du patient et ses réactions

xv

afin de minimiser l’erreur en estimant la position des phosphènes. Notez que si la carte est

déformée, la stimulation sera également déformée ce qui compliquera la reconnaissance.

RÉSULTATS

Une implémentation paramétrable en VHDL de la différence de gaussiennes et encodeur de

Huffman a été mise en œuvre sur un FPGA Xilinx Virtex-6 ML605 et testée en co-simulation

de matériel dans «System Generator». L’architecture peut fonctionner à 100 MHz, émet un

résultat à tous les deux cycles d’horloge (en raison de l’architecture entrelacée) et est à deux

ordres de grandeur plus rapide qu’une mise en œuvre en logiciel Vedaldi et Fulkerson (2010)

pour des images de 640 × 480 testées sur une machine hôte (Intel Core i5@2.27 GHz, 6 Go

de RAM).

En termes de précision numérique, nous avons montré que l’architecture utilisée est com-

parable à un modèle de logiciel en double précision utilisant des filtres de 31-coefficients.

Notez que nous pouvons réduire davantage la consommation de ressources en réduisant la

précision.

L’ensemble de données d’images Caltech-256 a été utilisé pour tester les taux de compres-

sion de l’encodeur Huffman. Une table fixe Huffman a été construise en prenant 10 images

d’entrainement de chaque catégorie d’objets. La même table a été utilisée pour encoder toutes

les images et leurs pyramides qui sont constitués de combinaisons octaves/échelles. Les résul-

tats de compression sans perte de 27, 3% ont été réalisés sur l’ensemble de données d’images

Caltech-256.

Conclusion

Notre objectif principal était de traiter les images afin de «comprendre» le contenu des

images et être capable de simplifier les données par le biais d’un système temps réel embarqué

de reconnaissance d’objets.

Nous avons principalement contribué en introduisant une nouvelle architecture pour la

différence de gaussiennes (DoG) qui partage les blocs RAM pour les opérations de voisi-

nage afin d’utiliser les ressources FPGA efficacement tout en conservant la précision et en

augmentant la vitesse de traitement de deux ordres de grandeur par rapport à une implé-

mentation logicielle. Nous avons également fourni une méthodologie d’utiliser un prédicteur

Paeth modifié combiné avec une architecture Huffman du codeur parallèle pour compresser

les pyramides d’images ainsi que des images courantes permettant d’économiser de la bande

passante de transmission. Par ailleurs, nous avons proposé une alternative qui peut en outre

être explorée pour l’estimation carte phosphène basée sur le suivi des marqueurs repères en

xvi

utilisant des outils de traitement d’image.

Nous avons adopté l’algorithme SIFT pour la reconnaissance d’objets. L’algorithme s’est

avéré être assez robuste pour gérer les variations d’image différents tels que la luminosité, le

contraste, redimensionnement, de rotation et de transformations affines.

Un prototype logiciel a été implémenté comme une application multithread qui fusionne les

algorithmes SIFT et Lucas-Kanade pour la reconnaissance et la poursuite d’objets. Le SIFT

n’est pas capable de fonctionner en temps réel pour le traitement vidéo sur un ordinateur

hôte, car il nécessite environ une seconde pour le traitement d’une seule image et à détecter

un objet. Le suiveur a été utilisé pour surmonter cette limitation de suivi de l’objet reconnu

en temps réel.

Après avoir identifié la différence de gaussiennes comme étant le goulot d’étranglement

de l’algorithme SIFT, nous sommes passés à la migration de cette partie de la mise en œuvre

d’un FPGA.

Nous nous sommes concentrés sur le codage d’une architecture hautement paramétrable

qui sera en mesure de cibler les besoins des différentes applications, soit la précision par

rapport aux arbitrages d’utilisation de ressources et le codage fixe de l’un des paramètres.

En outre, le VHDL a été codé pour être réutilisable et portable.

En reconnaissant un traitement de flux de données, nous avons examiné les différentes

techniques de traitement d’images pour les implémentations FPGA.

Afin de parvenir à une conception efficace des ressources, la mise en œuvre de notre DoG

utilise des concepts tels que : pipeline, les données d’octave entrelacement, la séparabilité du

filtre, la symétrie du filtre et le partage de blocs RAM pour les opérations de voisinage que

nous avons introduit.

Des balayages de paramètres (largeur, nombres de coefficients de filtres, octaves, échelles)

de l’architecture ont été réalisés et tracées et aussi comparés par rapport à d’autres architec-

tures en termes d’estimation des ressources FPGA.

La mise en œuvre DoG matériel a également été démontrée d’être comparable en terme

de précision à une mise en œuvre logiciel en virgule flottante.

Par ailleurs, nous avons introduit une nouvelle architecture pour un encodeur Huffman pa-

rallèle qui peut être utilisée à la fois pour pyramide d’images ainsi que la compression d’image

simple. Nous avons obtenu des taux de compression sans perte de 27, 3% sur l’ensemble de

données d’images Caltech-256.

Nous avons également proposé une nouvelle méthodologie d’effectuer la calibration de

carte de phosphènes en utilisant une installation simple qui emploie une caméra filmant une

table avec des marqueurs de repère qui peuvent être manipulés par le patient qui fournira

une sorte de rétroaction directe.

xvii

Recommandations

En raison de l’entrelacement d’octaves de données, le module de DoG est capable de traiter

1 pixel à chaque 2 cycles d’horloge. Cette limitation peut être surmontée par le traitement

de plusieurs pixels à la fois, quelques-uns des modules qui sont mis en œuvre supportent déjà

cette fonctionnalité.

Une autre limitation réside dans les tables de Huffman. Idéalement, le codeur de Huffman

devrait être en mesure d’utiliser des tables adaptatives.

Une autre amélioration sera la possibilité de calculer la deuxième partie de l’algorithme

SIFT (les vecteurs de description) sur un processeur embarqué comme ARM qui est présent

dans la nouvelle famille Xilinx Zynq.

Les caractéristiques SIFT peuvent également être utilisées pour la reconnaissance de scène

comme indiqué dans Lazebnik et al. (2006). Cette information peut être intégrée dans le

système pour modifier la base de données qui est utilisée pour la recherche d’objet en fonction

du contexte, par exemple si le patient est dans une cuisine, le système interrogera une base de

données d’articles de ménage, alors que s’il est à l’extérieur, une base de données de voitures,

motos et de panneaux d’arrêts pourrait être utilisée. Cela permettra de réduire le nombre de

faux positifs et de comparaisons inutiles.

Enfin, la technique de cartographie phosphène peut être testée avec la rétroaction de pa-

tients pour intégrer un ensemble de modèles par exemple en utilisant des formes géométriques

de base et des objets mouvants. Un émulateur peut être configuré avec des lunettes de réalité

virtuelle pour modéliser le champ de vision du patient et le patient pourra manipuler les

marqueurs de repères pour calibrer la carte phosphène perçue en temps réel.

xviii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

RÉSUMÉ . iv

ABSTRACT . viii

CONDENSÉ EN FRANÇAIS . ix

TABLE OF CONTENTS .xviii

LIST OF TABLES . xxi

LIST OF FIGURES . xxii

LIST OF ACRONYMS AND ABBREVIATIONS .xxiv

CHAPTER 1 INTRODUCTION . 1

1.1 Theoretical Framework . 1

1.2 Research Question . 3

1.3 Hypothesis . 3

1.4 Research Goals . 3

1.5 Objectives . 4

CHAPTER 2 LITERATURE REVIEW . 6

2.1 Template Matching . 6

2.1.1 Border Handling . 7

2.1.2 Matching Scores . 7

2.1.3 Advantages/Disadvantages . 8

2.2 Feature-Based Methods . 10

2.2.1 Corner Detectors . 12

2.2.2 Scale Invariant Feature Transform . 15

2.2.3 Other Feature-Based Algorithms . 21

2.3 Image Processing Techniques in FPGAs . 22

2.3.1 Image Protocols and Interfaces . 23

2.3.2 Types of FPGA Image Processing Operators 23

xix

2.3.3 Finite Impulse Response . 30

CHAPTER 3 APPROACH AND ORGANIZATION 34

3.1 Software Prototype . 34

3.1.1 Image Processing Libraries . 34

3.1.2 SIFT . 34

3.1.3 Keypoint Matching . 34

3.1.4 Object Localization . 35

3.1.5 Lucas-Kanade . 36

3.2 Hardware Implementation . 37

3.2.1 Xilinx System Generator . 37

3.2.2 VHDL Coding . 40

3.2.3 Architecture Optimization . 41

3.2.4 Huffman Encoding . 44

3.3 Phosphene Map Estimation . 46

CHAPTER 4 AN IMAGE PROCESSING SYSTEM DEDICATED TO A VISUAL

INTRA-CORTICAL STIMULATOR . 48

4.1 Introduction . 48

4.2 Difference of Gaussians . 52

4.3 Parallel Huffman Encoder . 55

4.3.1 Image Differentiation . 56

4.3.2 Architecture of the Proposed Encoder 57

4.4 Phosphene Map Calibration . 58

4.5 Simulation and Experimental Results . 61

4.5.1 DoG Precision . 61

4.5.2 VHDL Synthesis . 62

4.5.3 Huffman Encoding . 64

4.6 Conclusion . 65

CHAPTER 5 GENERAL DISCUSSION . 67

5.1 Algorithm Robustness . 67

5.2 Hardware Implementation . 67

CHAPTER 6 CONCLUSION AND RECOMMENDATIONS 70

6.1 Research Synthesis . 70

6.2 Future Recommendations . 72

xx

6.3 Concluding Remarks . 72

REFERENCES . 74

xxi

LIST OF TABLES

Tableau 4.1 Precision of cascaded DoG and sub-kernel DoG 63

Tableau 4.2 DoG Resource Usage . 63

Tableau 4.3 Parallel Huffman encoder resource usage 64

Tableau 4.4 Huffman Encoder Compression Ratio 66

xxii

LIST OF FIGURES

Figure 1.1 Example of mapping a gray image onto the phosphene map 2

Figure 1.2 Overview of the proposed object recognition approach 4

Figure 2.1 Template matching : Template (a) is swept over the search image (b)

until a match is found. 6

Figure 2.2 Distortions that will cause template matching to fail. 9

Figure 2.3 Feature-based object recognition. 10

Figure 2.4 Feature matching - Good features (green) have stable locations and are

distinctive. Bad features (red) can be easily mistaken for one another. . 11

Figure 2.5 Edge features are bad since they tend to slide along the edge and are

similar in nature. 12

Figure 2.6 Morphological operators applied to a binarized image. 5 × 5 square

structuring element were used in this case. 14

Figure 2.7 Morphological kernels used for corner detection : Cross ; Diamond ; X ;

Box. 15

Figure 2.8 SIFT example : Object recognition . 17

Figure 2.9 Image pyramid. 18

Figure 2.10 Gaussian Scale Space (GSS). 18

Figure 2.11 Difference of Gaussians (DoG). 19

Figure 2.12 SIFT descriptor. Note : The figure shows a sample 2× 2 grid of 8 bin

histograms, whereas the actual algorithm uses a 4× 4 grid. 21

Figure 2.13 Module with a generic FIFO interface. 23

Figure 2.14 RGB to YUV output . 25

Figure 2.15 Flat Field Correction - Pixel-based. 26

Figure 2.16 [5×5] Kernelizer. Line buffers are used to form a moving window around

the required pixel . 27

Figure 2.17 SRL16E - LUT can be configured as a shift register (maximum 16

latency). 27

Figure 2.18 FPGA external RAM buffering. 28

Figure 2.19 Multi-camera synchronization . 28

Figure 2.20 Image rotation - Backward mapping 29

Figure 2.21 FIR - Direct form using an adder tree 31

Figure 2.22 FIR - Transpose form . 31

Figure 2.23 FIR - Systolic form . 32

xxiii

Figure 2.24 FIR - Multiply Accumulate (MACC) 32

Figure 3.1 Snapshot of the multithreaded SIFT and Lucas-Kanade tracker. 37

Figure 3.2 Xilinx System Generator - Basic inverter. 38

Figure 3.3 Hardware co-simulation test bench. 39

Figure 3.4 [7× 7] Kernel. [5× 5] and [3× 3] Sub-kernels. 42

Figure 3.5 Cascaded approach for 2 scales. 42

Figure 3.6 Sub-kernel approach for 2 scales. 43

Figure 3.7 Gaussian blurring and differentiation (Diff.) effect on the image histo-

gram. 45

Figure 3.8 Example usage of Huffman encoder. 46

Figure 3.9 Original arrow symbol (left), distorted symbol (right) due to errors in

phosphene map estimation. 47

Figure 4.1 Overview of the Cortivision system. 49

Figure 4.2 SIFT : Image Pyramid. 2 Octaves 4 Scales. Blurring at every scale and

subsampling (2× 2) at every octave. Notation : Gaussian Scale Space

(GSS) and Difference of Gaussians (DoG). 50

Figure 4.3 Image processing system used for object recognition and tracking . . . 51

Figure 4.4 Interleaved DoG. (3 Octaves, 4 Scales) Notation : Kernelizer (Ker.) and

Interleaved (Inter.) . 52

Figure 4.5 2D Interleaved FIR filter. Taking advantage of the of 2D Gaussian

separability, we save resources by performing a 1D vertical filtering

followed by a 1D horizontal one. 54

Figure 4.6 Symmetric FIR with pre-adder. Notation : Registers are indicated with

a triangular notch. 55

Figure 4.7 Simplified Block Diagram of Parallel Huffman Encoder 57

Figure 4.8 Barrel Shifter (a) Basic Architecture (b) Multiplier-based (Notation :

� logical bit shift) . 58

Figure 4.9 Parallel Huffman Barrel Shift Register 59

Figure 4.10 Set-up of the phosphene map calibration. 60

Figure 4.11 DoG absolute mean error, compared to a double precision 31-tap kernel

(for all octave/scale combinations). 61

Figure 4.12 Cascaded DoG Resource Usage – Parametric Sweep 62

Figure 4.13 Sub-Kernel DoG Resource Usage – Parametric Sweep 64

Figure 4.14 Compression Buffering Scheme . 65

Figure 4.15 Caltech-256 samples : mars, galaxy, mussels & trilobite 65

Figure 5.1 BRAM utilization estimate . 68

xxiv

LIST OF ACRONYMS AND ABBREVIATIONS

BBF Best-Bin-First

BPP Bits per Pixel

BRAM Block Random Access Memory

BW Bandwidth

CORDIC Coordinate Rotation Digital Computer

DDR SDRAM Double Data Rate Synchronous Dynamic Random Access Memory

DEMUX Demultiplexer

DoG Difference of Gaussians

DSP Digital Signal Processing

FFC Flat Field Correction

FFT Fast Fourier Transform

FIFO First In First Out

FIR Finite Impulse Response

FOV Field of View

FPGA Field Programmable Gate Array

FPS Frames per Second

GSS Gaussian Scale Space

HSV Hue Saturation Value

HW Hardware

LK Lucas-Kanade

LoG Laplacian of Gaussians

LUT Look-Up Table

MACC Multiply Accumulate

MUX Multiplexer

PCA Principal Component Analysis

RAM Random Access Memory

RANSAC Random Sample Consensus

RGB Red Green Blue

RLDRAM Reduced Latency Dynamic Random Access Memory

RLE Run Length Encoding

ROI Region of Interest

ROM Read Only Memory

SAD Sum of Absolute Differences

xxv

SIFT Scale Invariant Feature Transform

SLAM Simultaneous Localization and Mapping

SRAM Static Random Access Memory

SURF Speeded Up Robust Features

SW Software

VHDL VHSIC hardware description language

VHSIC Very-High-Speed Integrated Circuits

1

CHAPTER 1

INTRODUCTION

Visual impairment, defined by the full or partial loss of vision, as of today is not medically

treatable. The causes of such a handicap vary widely and can range anywhere between trauma

and congenital issues.

Modern bio-medical approaches are being employed to recover or stimulate vision electri-

cally ; these may be divided into three main groups : the first one targeting retinal implants

Humayun et al. (2003); Kim et al. (2004); Chow et al. (2004); Palanker et al. (2005); Toledo

et al. (2005); Yanai et al. (2007); Winter et al. (2007); Zrenner et al. (2011), the second optic

nerve implants Veraart et al. (2003); Sakaguchi et al. (2009), and the third ones involving

cortical implants Doljanu and Sawan (2007); Coulombe et al. (2007); Srivastava et al. (2007).

The main drawback of the former two is that they are not generic enough to cope with most

of the visual impairment diseases, since they rely on the patient having an intact optic nerve

and/or a partially operational retina. This is not the case for the third. Other non-invasive

methods that may involve stimulation by sound are also being used, but these are not well

agreed upon to fit in the same scope.

1.1 Theoretical Framework

The Polystim Neurotechnologies team is currently working on an intra-cortical implant

that directly stimulates the primary visual cortex (V1 region) ; the global project name is

Cortivision. The process uses a front-end camera, an image processing module, an RF (Radio

Frequency) link, and an implantable stimulator for the purpose ; this method is robust and

generic since it bypasses the eye and optic nerve. One of the major challenges is the image

processing required to “simplify” the data prior to stimulation, extracting all of the useful

information and discarding the superfluous data. The pixels that are being captured by

the camera do not have a one-to-one mapping on to the visual cortex as in a rectangular

image ; they are rather mapped into a complicated map of “phosphenes” Coulombe et al.

(2007); Srivastava et al. (2007) which are bright dots that are perceived by the patients when

the brain is electrically stimulated. These dots change in size, illumination, and location

depending on how the electrical stimulation is performed (i.e. a change in frequency, voltage,

duration, etc. . .) and even by the electrode placement in the cortex.

Current approaches aim at stimulating low-resolution grayscale phosphene images. Knowing

2

that, we would expect a rather low-quality vision making it hard for the patient to navigate,

interpret objects, or even read. This is mainly due to the complexity of the phosphene mapping

and also to the non-triviality of knowing how to simplify the data in the captured images in

such a way that only relevant data is kept.

Figure 1.1 is an example that shows the complexity of illustrating a captured input video

stream onto a pre-calibrated phosphine map. The input image is shown on the left, the middle

image shows the available phosphene map (this is what the subject would be “seeing” in case

we showing a stimulating a white image or a white wall) , and the leftmost image shows the

mapping of the gray image onto the available phosphenes using the local gray value.

Input Image Estimated

Phosphene Map

(After calibration)

Stimulation Result

(Gray value)

Figure 1.1 Example of mapping a gray image onto the phosphene map

Edge detectors, segmentation, and stereo vision approaches have been proposed in the

literature as a way of reducing information prior to stimulation. A stereo vision module has

been implemented in Cortivision ; the output of such a module is a disparity map in which

close surfaces are indicated by a brighter intensity (or gray value) than ones that are further

away (black). The main drawbacks of this module is that it uses an infrared-light pattern

projector and a camera to achieve its purpose, which may be cumbersome, and the actual

output may not be meaningful enough by itself for the patient to interpret, which is why we

plan to add a degree of processing upon that.

The concept of augmented reality has recently been introduced and is proving to be

quite appealing. It is a field of computer research which deals with blending real-world data

with computer-generated data in real-time ; a common example is using special projective

eyeglasses to overlay text on the real-world (this could indicate shopping malls, object di-

mensions, etc. . .). Some medical applications intended for visual impairment Toledo et al.

(2005) have relied on that concept being implemented on Field Programmable Gate Arrays

3

(FPGAs) ; such approaches are used in retinal implants where the patient still has some par-

tial vision.

We would be investigating the use of such a system in terms of high-speed image proces-

sing modules and techniques that can be hardware implementable on FPGAs and or a mix

of hardware/software processing to attain real-time performance. Such techniques would be

targeted to provide a simplified and interactive environment for the patient.

1.2 Research Question

How to come up with a parameterizable and reusable system that can process, simplify,

and present the captured image stream in real-time in order to provide a more useful mapping

prior to stimulation ?

1.3 Hypothesis

– Hypothesis : The phosphene map is not accurate enough, hence the use of a real-time

object recognition system is required to simplify the environment for visually impaired

patients and lead to better navigation and recognition abilities.

– Justification of originality : Augmented reality systems are quite recent in the literature,

and are usually overlaid over a person’s natural vision system (being handicapped or

not), but in this case it overrides the actual vision and is interacting directly with the

visual cortex to provide better context awareness. Moreover, previous visual impair-

ment systems rely on simple image processing tasks rather than recognition to convey

information to the patient.

– Refutability : The hypothesis would be refuted if the system cannot operate in real-time

or is not robust enough to varying conditions.

1.4 Research Goals

The research goals would be to improve the quality or methodology used for perception

by means of real-time image processing techniques accelerated on parallelizable hardware

(FPGA), hence providing an augmented reality in which specific objects can be localized

and/or recognized and then passed on to the patient.

The system should be parameterizable and possibly platform-independent in order to be

efficiently reusable. Moreover, the FPGA implementation should be resource-efficient in case

it needs to be mapped on to smaller devices.

4

1.5 Objectives

– Identify and develop a robust and parallelizable software algorithm that can perform

localization and recognition on a limited number of objects on which it was trained ;

these are expected to vary in pose and illumination.

– Accelerate the algorithm’s bottlenecks using hardware (FPGA) modules to be able to

achieve real-time performance. These modules should be generic enough to be reusable

(can be easily transferred to a different platform) and parameterizable while being as

efficient as possible on both resource and bandwidth utilization.

– Validate the hardware modules’ accuracy as compared to a software equivalent imple-

mentation.

– Investigate possible methods for estimating the phosphene map.

Implanted microelectrode matrices
 (electrical stimulation)

Wireless data
and power
transmission

Frontend
camera

Real-time image processing, recognition
and phosphene mapping

Camera

Gaussian
Scale Space

Diff. of
Gaussians

Keypoint
Detection

Huffman
Encoding

Keypoint
Description

Keypoint
Matching/

 Recognition

Image
Database

(Keypoints) SW/Embedded

HW/FPGA

(a)

S
IF

T

Phosphene
Mapping

(Stimulation)

Estimated
Phosphene Map

(Calibration)

Figure 1.2 Overview of the proposed object recognition approach

Figure 1.2 shows an overview and the intended roadmap that we will be following throu-

ghout the text. The details of the different parts will explained in the chapters to come.

5

Basically we would be using the Scale Invariant Feature Transform (SIFT) to extract and

describe keypoints. The first part of SIFT (being computationally expensive) will be ac-

celerated in an FPGA using a novel architecture to save resources. An object database of

keypoints is kept and compared to the incoming frames, and whenever enough keypoints are

matched, an object is recognized and afterwards an appropriate stimulation image can be sent

to the electrode matrices. A Huffman encoder is to be used to reduce HW/SW transmission

bottlenecks and also a new setup for calibrating the phosphene map is proposed.

In what follows we will be investigating different image processing techniques that can

be used for the purpose of our application. After having identifying a suitable algorithm

and validating it in software, we will accelerate the computationally intensive parts using

reconfigurable hardware in order to be able to support real-time operation. While doing

so, we propose a novel architecture for sharing and saving hardware resources. Moreover,

the architecture, as will be seen in throughout the document, will be coded in a highly

parameterizable fashion in order to be reusable and portable. An architecture for a hardware

Huffman encoder is also proposed that can treat pixels in parallel and can be used for data

reduction. Finally, we suggest a viable setup for phosphene map estimation that makes use

of fiducial markers and image processing techniques as an alternative to the current tactile

screen approaches.

A literature review is covered in Chapter 2, followed by the overall approach that was

used in Chapter 3, the journal article entitled “An Image Processing System Dedicated to

a Visual Intra-Cortical Stimulator” in Chapter 4, a general discussion in Chapter 5, and we

will then conclude and discuss future improvements in Chapter 6.

6

CHAPTER 2

LITERATURE REVIEW

This chapter provides an overview of image processing approaches and algorithms that

can be used for the purpose of object recognition ; Moreover we will also review how FPGAs

are used in an image processing context by applying certain design rules and differentiating

between the various processing functions.

2.1 Template Matching

Template matching is one of the basic image processing methods used to determine if an

object (or rather a specific template) is found in an input image. The template is typically

smaller than the target image, and the purpose would be to determine the bounding box of

the object in question. In terms of training, this method requires an exact template of the

image to be pre-collected such as the one shown in Figure 2.1a and to be matched in a larger

image as indicated with the green rectangle in Figure 2.1b.

(a) (b)

Figure 2.1 Template matching : Template (a) is swept over the search image (b) until a match
is found.

In essence, template matching works by sliding a template T in a raster scan order (top-

left to bottom-right) over the input image I and calculating a correlation factor or matching

7

score to determine whether we have a positive match.

NOTE : in terms of image processing terminology, correlation and convolution are typically

used interchangeably.

In what follows, we will go over the border handling techniques, the various scores of

template matching and the advantages and disadvantages of this method.

2.1.1 Border Handling

Assuming that the template and target images have the respective dimensions (Width∗Height)

of M ∗N and W ∗H. Obviously, we will encounter the issue of border errors where the tem-

plate would actually surpass the image boundary. For that, either the template will only be

scanned inside the input image and the resulting “match image” would have smaller dimen-

sions than the original, or the input image would have to be border padded, resulting in an

input image of dimensions (W +M − 1) ∗ (H +N − 1). Border handling would be performed

in one of the following fashions :

– Zero padding : the border would simply be padded with zeros.

– Constant padding : a constant value (e.g. 128) would be used for the borders.

– Border replication : The edge pixel is replicated for the whole border.

– Mirroring : The image borders would be a mirrored version of the input image. This

technique tends to minimize the artifacts in convolution operators and will work well

for symmetric templates.

NOTE : These border handling techniques are also used in any image processing convolution

operations (e.g. Gaussian blurring) as will be seen later on in Section 2.2.2.

2.1.2 Matching Scores

In order to determine a positive match, a certain match score or result image R has to be

calculated ; afterwards a threshold is chosen to detect a match. Various ways of calculating

a matching score have been proposed in the literature Brunelli (2009),Bradski and Kaehler

(2008) ; these can be summarized as follows.

Squared Difference

Assuming that T is the template and I is the search image ; the simplest of the methods

would be to calculate the sum of squared differences

R(x, y) =
∑
x′

∑
y′

[T (x′, y′)− I(x+ x′, y + y′)]2 (2.1)

8

or the sum of absolute differences (SAD)

R(x, y) =
∑
x′

∑
y′

|T (x′, y′)− I(x+ x′, y + y′)| (2.2)

a lower match score (closer to zero) would actually indicate a better match.

Correlation

Alternatively, correlation can be used as the match measure

R(x, y) =
∑
x′

∑
y′

T (x′, y′) ∗ I(x+ x′, y + y′) (2.3)

A higher score in this case would indicate a better match. It should be noted that this method

would prove to be sensitive to white areas in the image which would result in false positives.

Normalized Correlation

By normalizing the previous method, we end up with what is known as the normalized

correlation

Rn(x, y) =

∑
x′
∑

y′ T (x′, y′) ∗ I(x+ x′, y + y′)√∑
x′
∑

y′ T (x′, y′)2 ∗
∑

x′
∑

y′ I(x+ x′, y + y′)2
(2.4)

The normalization step alleviates the issues where there is a mismatch in illumination between

the template and the input search image and even the false matches that could result from

white patches. This improvement definitely comes at the high computational cost.

2.1.3 Advantages/Disadvantages

Template matching is one of the straight forward methods used for object detection. Its

main advantage would lie in the algorithmic simplicity of the method, which works a bit as

a brute force approach. But, while it might prove to be useful for applications in controlled

environments (e.g. machine vision and inspection Crispin and Rankov (2007)), it has many

draw backs in real life situations, mainly the ones cited below :

– Illumination dependency : If the template brightness is different from the search image’s

one, a good match might not be trivial to attain.

– Illumination gradients : While the normalization process can be used to target the

previously mentioned problem, a gradient illumination (see Figure 2.2a) would probably

fail.

9

– Calculation complexity : As would be clear from the matching equations, the calculation

time is directly dependent on the template’s size.

– Affine transformations : Scaling, rotating, and/or skewing the target object in the search

image would cause this method to fail, since it does not account in any way for any

affine transforms or distortions (see Figure 2.2b).

– Occlusions/partial matches : The template is expected not be occluded and to have

more or less a perfect match over the whole area of the template for proper matching.

– Threshold choice : Choosing the appropriate threshold might prove to be a bit tricky

when one is trying to accommodate the system for different operating environments.

(a) Artificial Lighting Gradient

(b) Distorted Template

Figure 2.2 Distortions that will cause template matching to fail.

10

2.2 Feature-Based Methods

Feature-based methods for object detection have peaked in the literature such as the

ones found in Lowe (2004), Bay et al. (2008), Mikolajczyk and Schmid (2005), Bosch et al.

(2007), Dalal and Triggs (2005). Applications for such methods include object detection Lowe

(2004), Lowe (2001), Lowe (1999), Bay et al. (2008), Bay et al. (2006), image mosaicing Brown

and Lowe (2003), Simultaneous Mapping and Localization (SLAM) Montemerlo et al. (2002)

Castle et al. (2010) and even scene classification Lazebnik et al. (2006). Note that we will be

using the terms feature and keypoint interchangeably to describe an interesting point in the

image.

Feature-based methods differ from basic template matching ones in that a subset of

patches (or features) taken around “interesting” points (or keypoints) in the image would

be used to determine matches. A caricaturized description of these approaches is shown in

Figure 2.3.

Figure 2.3 Feature-based object recognition.

Instead of using a reference image as a template, we extract interesting patches from a

training image of an object for example and find matches of that same object in a different

image (or video stream). As will be seen later on, such an approach will remove many of the

previously mentioned limitations found in template matching.

These algorithms can be divided into two main stages : keypoint localization (or extrac-

tion) and feature description. At the keypoint localization stage, we mainly try to extract

11

salient and “interesting” points in the image (in order to later on describe the patches sur-

rounding these points). Keypoints can be thought of as edges, corners, or even scale invariant

points.

As previously discussed in template matching, one could choose patches to be matched

from one image to another ; a training image or set of images can be used for that purpose.

The problem with that approach is that some patches are more salient, or contain more

distinctive information, and thus can be matched more easily than others. Figure 2.4 shows

an example of good patches in green and bad patches in red.

Figure 2.4 Feature matching - Good features (green) have stable locations and are distinctive.
Bad features (red) can be easily mistaken for one another.

The red patches are not stable and are very similar in nature hence causing them to be

very easily mistaken for one another.

The matching procedure naturally assume a certain amount of resemblance in between the

images to be compared. From a first observation one could notice that if we sample patches

around corner points, these would tend to be more distinctive or uniquely identifiable.

In terms of a mathematical definition, weak features, that cannot be easily matched, have

12

a low variance like a plain wall for example. One may then argue that edges may form good

candidates. Looking at Figure 2.5, we can see, that even though edges do have significant

variance, they tend to have it in a single direction (e.g. in the x-direction). This causes what

is known as the aperture problem Todorovic (1996). The net result is that the motion vector

of the feature would be ambiguous, and if we slide along the edge we may find many similar

patches.

Figure 2.5 Edge features are bad since they tend to slide along the edge and are similar in
nature.

Corners, on the other hand, would make for good features since, these have variations in

all directions and hence will be relatively stable and can be extracted robustly.

2.2.1 Corner Detectors

Feature based methods depend on corner or interest point extraction. Corners may have

different mathematical definitions and some may be more robust in terms of rotation, scaling,

affine transformations, and even determining textured or blob regions.

Harris Corner Detector

The Harris corner detector Harris and Stephens (1988) is one the most commonly noted

methods for extracting corners in literature. In a nutshell it attempts to find windows around

a point in the image that when translated slightly produces a large difference. The window

13

has to be moved in both the x, and y directions. From a mathematical perspective, the boils

down to calculating the autocorrelation matrix of the second derivatives of the image as

shown in the equation below :

M(x, y) =


∑

−K≤i,j≤K
wi,jI

2
x(u, v)

∑
−K≤i,j≤K

wi,jIx(u, v)Iy(u, v)∑
−K≤i,j≤K

wi,jIx(u, v)Iy(u, v)
∑

−K≤i,j≤K
wi,jI

2
y (u, v)

 (2.5)

Note that u = x + i and v = y + j. The window size is defined using the K parameter.

Ix and Iy respectively indicate the image derivatives in the x and y directions. A weighting

window, typically a Gaussian one or a uniform one, can be applied to the equation using

the wi,j term. The second derivative terms do not respond to uniform gradient changes and

hence when the eigenvalues of the above matrix are considered, we end up with a quantitative

signature value that is invariant to rotations Bradski and Kaehler (2008).

A cornerness score R can be calculated using the determinant and trace value of the M

matrix, to determine whether a certain point qualifies as corner point.

R = det(M)− α ∗ trace(M)2 (2.6)

α in this case is a weighting factor and the score can then be compared to a fixed threshold

value.

Shi-Tomasi

Shi and Tomasi presented a slight variation to the Harris corner detector which improved

the performance and robustness of the method. Their method involved comparing the smaller

eigenvalue to a fixed threshold, and it was proven to be enough to determine corners Shi and

Tomasi (1994).

Morphological Corner Detection

Image morphology, whether in a grayscale or binarized context, can also provide an ap-

pealing approach to corner detection. These operators depend on the brightness level and

are typically computationally simpler in nature as compared to the other methods while still

being robust to noise Laganière (2011). Image morphology is typically formed of combina-

tions of dilate (or maximum) and erode (or minimum) operations operating with pre-define

mask structure or structuring element. Figure 2.6 shows erode and dilate operations being

performed on binarized image.

Sequential combinations of these operators can be used to perform morphological close

14

(a) Original (b) Binary (Thresholded)

(c) Dilate (d) Erode

Figure 2.6 Morphological operators applied to a binarized image. 5 × 5 square structuring
element were used in this case.

(dilate followed by erode) and open (erode followed by dilate). For the purpose of corner

detection asymmetrical closing morphological elements Laganière (1998) are used like the

ones shown in Figure 2.7.

The cornerness measure in this case would be calculated as such :

R = |Iccross,diamond − Ic×,box| (2.7)

15

Figure 2.7 Morphological kernels used for corner detection : Cross ; Diamond ; X ; Box.

where Ic denotes a morphological close operation. Afterwards, the cornerness can be simply

compared to a fixed threshold Laganière (2011). Note that sometimes this may lead to mul-

tiple pixel responses, not just a single corner location, hence non maxima suppression can be

applied to avoid such conditions.

Multi-Scale Detectors

It is to be noted that the Harris detector is not scale invariant ; for that a multi-scale

Harris detector is also found in the literature Lindeberg (1998). Instead of operating on a

single image scale, the image is repetitively blurred to form a scale-space and the cornerness

score is now compared with the finer and coarser scales. A corner would thus be an extremum.

Similar approaches, such as the Difference of Gaussians (DoG) that was used in the Scale

Invariant Feature Transform (SIFT), are scale invariant and will be discussed in Section

4.2. In depth reviews and comparisons of such interest point detectors were performed in

Mikolajczyk and Schmid (2005) Mikolajczyk and Schmid (2004).

2.2.2 Scale Invariant Feature Transform

Corner detectors, on their own, may be good enough to match features or keypoints

across images with minor movements, for example for tracking purposes. But for the require-

ment of matching features or even whole objects in images with varying illumination, scale,

and rotation, corner detectors alone fall short and hence feature-based method such as the

Scale Invariant Feature Transform (SIFT) Lowe (2004) come into play ; These add a feature

description or signature than enhances the matching and distinctiveness of features.

The SIFT algorithm is appealing to us since is it quite robust and able to match features

with variations in scale, rotation, illumination, and even partial viewpoint changes that can

be characterized as affine transformations. Moreover the features are distinctive enough that

any given one can be matched against a large database, making it ideal for applications such

as object detection, scene classification, and image registration.

An example of SIFT being used for an object recognition application is shown in Fi-

gure 2.8. The incoming video stream SIFT features are calculated by extracting “interesting”

16

keypoints and then describing the “patches” around these keypoints. Afterwards we try to

match know objects from our database with the incoming keypoints. For the matching stage,

a best-bin first (which is similar to a nearest neighbor search) is performed. The actual re-

cognition stage is done by the use of RANSAC which would eliminate false matches which

are considered as noise. In Figure 2.8 the purple lines and indicate correct matches whereas

the red line shows an incorrect match. The final output would be able to estimate the pose

of the object in the incoming video stream (shown as the blue rectangle).

The method can be divided into two major parts :

– Keypoint extraction : This part is comparable to a multi-scale corner extraction (or

blob extraction).

– Keypoint description : Patches around a keypoint are chosen and characterized to be

used as the patch signature.

Note that such algorithms tend to be computationally complex in nature due to the shear

amount of data required to be processed. On the other hand, some parts of the algorithm are

parallelizable and we will taking advantage of that as will be seen later on.

Keypoint Extraction

The keypoint extraction part can further be divided into smaller stages :

– Gaussian scale space (GSS)

– Difference of Gaussians (DoG)

– Keypoint localization

– Keypoint refinement

Gaussian Scale Space

Image pyramids as shown in Figure 2.9 are a common practice in the image processing

world Adelson et al. (1984) (image pyramid some history) and are typically used to model

scale variations. The image is progressively blurred to generate scales and then subsampled

to form a new octave.

The 2D Gaussian filter has the following form :

G(x, y) =
1√

2πσ2
e
−
[
x2 + y2

2σ2

]
(2.8)

The standard deviation σ defines the blurring factor. Moreover in order to use the Gaussian

kernel in a digital signal or image processing application, the kernel is sampled and the

17

Object Database

Input video stream

Difference of Gaussians (DoG)

Find scale invariant points

Keypoint Description

Describes the patches

around keypoints

Matching and object detection:

- Best-Bin First keypoint matching

- RANSAC eliminates incorrect matches

S

I

F

T

Figure 2.8 SIFT example : Object recognition

window is truncated and hence be applied as a Finite Impulse Response (FIR) filter. To

preserve accuracy, the kernel window can be chosen as a function of σ.

Figure 2.10 shows a Gaussian Scale Space (GSS) image pyramid.

Such a pyramid can be either calculated by repetitively blurring the image or blurring

18

Figure 2.9 Image pyramid.

Figure 2.10 Gaussian Scale Space (GSS).

the original with an increasing σ value. Notice how the image loses detail as the blurring

level increases through scales. The Gaussian blurring is at its base a low pass filter, thus after

a certain amount of blurring, the high frequencies are eliminated and some pixels become

redundant hence subsampling is performed without causing information loss.

Difference of Gaussians

At this point it would be pertinent to mention the Laplacian of Gaussians (LoG) Lindeberg

(1994), Lindeberg (1999) which is one of the most common blob detectors. Essentially the

LoG is second order derivative of the image ; such an operation is sensitive to noise so in

19

practice is it preceded by a Gaussian filter to reduce spurious effects. The operation responds

to corner points and edges.

The LoG is computationally expensive and here is where the Difference of Gaussians

(DoG) operation comes into play, Lowe (2004). The DoG is calculated by subtracting conse-

cutive scale images in the GSS from each other and provides a good approximation to the

LoG. Moreover the LoG at its base is not scale invariant and extending it to be so would

involve increasing the complexity. The DoG on the other hand involve a simple subtraction

of the pre-calculated scales and would provide us with scale invariant points which are better

for tracking and matching.

Another point worth noting is that the scale images resulting from the GSS can be reused

in the keypoint description stage of the algorithm.

Figure 2.11 shows some sample images resulting from the DoG operation. These images

are scaled to the range [0, 255] for visualization.

Figure 2.11 Difference of Gaussians (DoG).

Keypoint Localization

After having calculated the DoG images, we need to find the extrema points to determine

the points of interest. This is done by comparing a pixel to its direct neighbors (same scale)

and the neighbors in the finer and coarser scale. 3 × 3 × 3 comparators are used for that

purpose (compares a central pixel to its 26 neighbors), if a maximum or minimum is found,

the (x, y, s) coordinates are considered as a point of interest. Note that the scale s is also

kept into account at this stage since it will be used for the keypoint description stage that

follows.

Since only scales from a given octave can be compared to one another (having the same

20

image dimensions), the first and last scale in a GSS octave are redundant from one octave to

another in order to be able to transition smoothly through octaves.

Keypoint Refinement

The previous DoG and 3×3×3 comparators serve as a blob detector. The SIFT algorithm

was further refined as such : the corners that are found by preforming a sub-pixel localization ;

this is done by fitting a 3D quadratic function to the local pixel region, Brown and Lowe

(2002).

Some of the blobs can further be eliminated by checking if they have low contrast and if

the blob is located on an edge instead of a corner. The corner checking part was borrowed from

the Harris corner detector Harris and Stephens (1988). The difference is that the function

will now only have to be applied to small regions of interest instead of the whole image.

Keypoint Description

After having extracted stable keypoints at known scales, we now have to build the keypoint

descriptor. This stage can also be divided into finer parts as such :

– Orientation assignment

– Description vector

Orientation Assignment

The image gradients are used instead of the actual brightness values in order to be illumi-

nation independent. Image gradients are defined by a magnitude and angle as shown below :

m(x, y) =
√

(I(x+ 1, y)− I(x− 1, y))2 + (I(x, y + 1)− I(x, y − 1))2

Θ(x, y) = tan−1
I(x, y + 1)− I(x, y − 1)

I(x+ 1, y)− I(x− 1, y)

(2.9)

Keypoints at this point are scale invariant, but they still have to be formulated to be

rotationally invariant. For that, we choose a certain region around the keypoint usually define

by a 16 × 16 window. The orientation gradients are collected and binned into 36 bins, the

magnitude value sets the amount that has to be accumulated in a given bin. The highest

value in the histogram is used to determine the dominant orientation of the keypoint.

The orientation is used for the given keypoint and the description vector that will be

generated in the final stage is normalized according to this dominant orientation.

21

Description Vector

The final part of the algorithm consists of generating a distinctive signature or feature

vector to a given keypoint. One has to keep in mind that the image gradients around a point,

even if they are rotationally normalized, will never provide a perfect match. In order to

accommodate for slight variances, the SIFT algorithm rather subdivides the 16× 16 window

into smaller 4 × 4 sub windows and calculates the mini-histograms of orientation gradients

of each of these regions as shown in Figure 2.12.

Figure 2.12 SIFT descriptor. Note : The figure shows a sample 2×2 grid of 8 bin histograms,
whereas the actual algorithm uses a 4× 4 grid.

These histograms use 8 orientation bins and give a certain error tolerance and variation

robustness to the descriptor. Moreover the large window is weighted by a Gaussian smoothing

factor, this way gradients closer to the keypoint center contribute more significantly. The final

output of the description stage is a 4 × 4 × 8 = 128 vector that describes the small 8 bin

histograms around a keypoint. In order to be orientation invariant, the major orientation is

subtracted from the vector and the vector is also normalized.

2.2.3 Other Feature-Based Algorithms

Other feature-based algorithms are available in the literature ; One of the most noted ones

is the Speeded-Up Robust Features (SURF), Bay et al. (2008), Bay et al. (2006), which is

inspired from the SIFT algorithm. SURF attempts to reduce the computational complexity

by making use of integral images. Integral images were first used in Viola and Jones (2004)

to provide a fast way of performing simple large averaging convolutions. SURF makes uses

of box filters to achieve an approximation of the Hessian matrix to perform scale-based

22

corner detection, the authors label their detector as the Fast-Hessian detector. A box filtering

operation will require only 3 addition/subtraction operations to calculate the average of a

rectangular region independent of the filter size (assuming that the integral image is pre-

computed). This is quite advantageous for large filters and removes the requirement of using

image pyramids. The GSS pyramid, that was discussed in the SIFT part, could now be

replaced by several filters of increasing size. Note that such calculations will still be sensitive to

high frequency variation due to the box filter’s nature. After determining the corner points the

SURF method proceeds in a manner similar to SIFT by a calculating a dominant orientation

to the keypoint and binning the gradients into either a 64 or 128 dimensional vector. SURF

also has an upright version, U-SURF, which reduces calculations and only works for upright

features. Furthermore, a comparative study Juan and Gwun (2009) shows that the SIFT

descriptor remains more repeatable especially with large rotation differences.

PCA-SIFT, Ke and Sukthankar (2004) is another contender that is worth mentioning.

Instead of using SIFT’s weighted histogram to form the keypoint description, PCA-SIFT

uses Principal Component Analysis (PCA) to normalize the gradient patch and reduce the

dimensionality of the descriptor to 36 bins. The idea behind it is to make features more

robust to deformations and due to the smaller feature vector size the matching stage could

be done faster. The down side of such an approach is that although the matching might be

accelerated, the feature computation becomes more complex.

Gradient Location and Orientation Histogram (GLOH), Mikolajczyk and Schmid (2005)

is yet another SIFT variant, although the descriptor is more distinctive, is also makes use of

PCA which again increases the calculation complexity.

A slightly different approach to SIFT is presented in Dalal and Triggs (2005). The main

difference stems from the fact that instead of using a corner detector, the features are cal-

culated on a dense grid of uniformly spaced cells. HOG’s typical application is in pedestrian

detection, the fallbacks of this method is its inability to support object rotation and hence

assumes that a person will remain in a more or less upright position.

2.3 Image Processing Techniques in FPGAs

An FPGA is a highly configurable device that gives several degrees of freedom in order to

achieve many given functions and is well suited for DSP algorithms, Goslin (1995). One of the

first questions that we would encounter is whether to parallelize our design or serialize it at

a higher clock rate in order to reach the required throughput ? The answer is best explained

as a tradeoff between saving resources vs. meeting timing constraints.

As the parallelism increases, so does the resource consumption ; whereas serializing a

23

design (while maintaining the same throughput) would imply increasing the clock frequency

hence making it harder to maintain the timing constraints.

Note : Mixed approaches can also be employed in which the parallelism is reduced (not

necessarily fully serialized). Also different parts of a given algorithm can be implemented at

different parallelism and/or clock frequencies depending on the data sampling rate.

2.3.1 Image Protocols and Interfaces

Efficient coding practices such as the ones presented in Garrault and Philofsky (2005)

will accelerate designs and map efficiently on selected platforms. Typically, image processing

in FPGAs is performed in raster scan order, i.e. the pixels are streamed in sequentially from

the top-left corner to the bottom right. Additionally, due to the electronic nature of the

processing, there might be some idle clock cycles were no valid pixels are transferred. In

order to target the more general case, one would usually tend to define a series of signals or

an image protocol to define the image content and its validity at any point in time. For that,

signals such as the ones shown below can be used :

– Valid : Indicates whether the current data packet is valid.

– End of Line (EoL) : Indicates the end of the current line.

– End of Frame (EoF) : Indicates the end of the current frame.

In order to have reusable and standalone components, input and output FIFO interfaces can

be employed. This would imply the need to implement proper flow inside the components

to guarantee data integrity. Figure 2.13 shows an operator (or module) with a generic FIFO

interface. Note that the black arrows represent data flow whereas the blue arrows represent

flow control signals.

FIFO FIFOModule

Figure 2.13 Module with a generic FIFO interface.

Concerning the actual pixel or data types that are used, the conventional approach would

be to use a fixed point representation to perform arithmetic operation Meyer-Baese (2004)

whereas floating point would be reserved for applications that critically depend upon it.

2.3.2 Types of FPGA Image Processing Operators

Due to the fact that the pixel data is being streamed in and the fact that FPGA devices

are typically limited in terms of internal memory, one could divide the image processing

operators into three major categories :

24

– Pixel-based.

– Neighborhood.

– Frame-based.

Pixel-based Operators

Pixel-based operators only depend on the information found in the current pixel and

hence do not require any buffering or memory elements for the incoming pixels. Hence the

general case of such operators would be of the form :

J(x, y) = f(I(x, y)) (2.10)

where the current output pixel J(x, y) is solely a function of the input pixel at that same

coordinate I(x, y). Examples of such operators are given below :

– Color space conversions (e.g. RGB to HSV and RGB to YUV)

– Color Correction : This involves linear or non-linear matrix multiplication of the color

elements usually by matrices of 3x3 or 3x10.

– Flat Field Correction (FFC) : a gain and offset are applied to each pixel in order to

correct the image sensor’s non-uniformity.

– Arithmetic functions : Arctan, division, multiplication, addition, subtraction.

– Look-up tables (LUT).

The output and separate components of the YUV are shown in Figure 2.14.

Note that the YUV space is typically used in some compression algorithms. The main

reason behind is that the human visual system is more sensitive to edge and grayscale va-

riations. The Y component carries that information and hence the U and V components can

typically be subsampled while still maintaining the main gist of the image. Moreover, the Y

component can be used for grayscale processing (as the one our application would be based

upon).

In many cases the YUV and YCrCb terms may be used interchangeably. The images in

Figure 2.14 were calculated using Equation 2.11 ; Every output pixel is only dependent on the

current input pixel data and hence the raster output can be preserved without any buffering

requirements.

Y = 0.299 ∗R + 0.587 ∗G+ 0.114 ∗B
U = 0.492 ∗ (B − Y)

V = 0.877 ∗ (R− Y)

(2.11)

Some functions, such as the FFC and LUT, may fall into a gray region, these require

25

(a) YUV (b) Y

(c) U (d) V

Figure 2.14 RGB to YUV output

buffering some pre-defined coefficients, but again the input pixel stream is not being buffered.

Figure 2.15 shows a pixel-based FFC operation. I indicates the input image stream, A denotes

the address (typically depends on the x and y coordinates of the current pixel, and O, G,

and J respectively denote the offset, gain, and output images.

Note that the FFC look-up table, highlighted in blue in Figure 2.15, indicates the require-

ment of a memory element, typically in the case of 2D images the FFC coefficients will have

to be stored in external RAM (due to the limited number of BRAMs in an FPGA).

26

Alternatively, for 1D images (line-scan cameras) the FFC coefficients only span a single

line and storing them in BRAM maybe actually be a feasible and preferred alternative.

FFC LUT

(Offset, Gain)

Pixel

Counter
A(x,y)I(x,y)

O(x,y)

G(x,y)

+ J(x,y)

Figure 2.15 Flat Field Correction - Pixel-based.

In order to achieve the higher clock rates, many of these operators are highly pipelined

like the Arctan function which is based on the CORDIC algorithm.

Neighborhood Operators

Neighborhood operators differ from the pixel-based ones in that a region or sliding window

is required to calculate the current output pixel. It can formulated in a general form as shown

in Equation 2.12.

J(x, y) = f(I(x+m, y + n)) where m = [−wx,−wx+ 1, ..., wx]

n = [−wy,−wy + 1, ..., wy]
(2.12)

Examples of such operators are given below :

– FIR filters (e.g. Gaussian, Sobel, ...)

– Median filtering

– Morphology (e.g. Erode, Dilate, Open, Close, ...)

– Bayer conversion (grayscale to color)

Keeping in mind that our pixels are being streamed in a raster scan manner ; in order to

correctly buffer a window of pixels (or a kernel), we will need to store several lines of the

image as shown in Figure 2.16. We will denote this moving window operator as a“kernelizer”;

it is basically a long shift register. The blue components in the figure are registers that are

simultaneously output kernels, and hence a kernel stream would be formed from the incoming

pixel stream ; This could be fed to a filter core that performs a pipelined parallel multiply-

accumulate operation.

Assuming that the following variables WK , HK ,WI , HI , and bpp respectively denote the

kernel width, kernel height, image width, image height, and bits per pixel ; It should be noted

that the memory requirements of such an operator is highly dependent on the WI and the

HK . This is due to the fact that the required number of buffered lines is equal to HK − 1

27

and the line buffer size directly depends on the image width WI . The actual memory bits

(disregarding the output registers) would be equal to :

Total Memory Bits = (HK − 1) ∗WI ∗ bpp (2.13)

Typically, the long line buffers are implemented as cyclic RAM buffers which implement a long

line of fixed or even programmable latency. Note, in the case of a dynamically programmable

latency, one should define a maximum image width that has to be respected.

Line Buffer

I(x,y)

Line Buffer

Line Buffer

Line Buffer

Figure 2.16 [5 × 5] Kernelizer. Line buffers are used to form a moving window around the
required pixel

In the case of small (or relatively narrow images, one may opt to implement the line

buffers using shift registers. The current Xilinx devices contain the SRL16E blocks that can

be configured to use a single LUT as a 16-bit shift register Chapman (2000). Several SRL16E

blocks can also be cascaded into a programmable addressable shift register.

Mux

...

4

Figure 2.17 SRL16E - LUT can be configured as a shift register (maximum 16 latency).

It should be noted that the image height has no effect of the resource utilization, while

the kernel width and/or parallelism will only slightly affect the FPGA register utilization.

The details of such a kernelizer operator can be implemented in different fashions. Keeping

in mind that the operator has to flush the buffered pixels at the end of frame, i.e. either the

input has to stalled (for that a frame buffer has to precede the operator) or the kernelizer

would have to buffer an extra valid bit in order to perform a flush that does not stall the

input ; Borders will also have to be handled as mentioned in Section 2.1.1.

28

Frame-based

Frame-based operators typically require buffering an incoming frame (or even several

frames) to an external RAM as shown in Figure 2.18. In general, current FPGA devices are

External RAM

(Buffering)

FPGA

(Processing)

In Out

Figure 2.18 FPGA external RAM buffering.

only able to hold several lines of an image at a given time but do not have the required

memory capacity to store whole frames (except if the images are relatively small and/or have

a low number of bpp).

Examples of such operators are given below :

– Frame buffer (to decouple the camera source from the processing).

– Affine transform

– Multi-frame processing (e.g. Motion detection)

– Multi-camera synchronization (e.g. stereo vision) (see Figure 2.19)

Frame

Buffer

Sync

Frame

Buffer

Camera 1

Camera 2 Processing

Figure 2.19 Multi-camera synchronization

A rotation operator (which falls under the category of an affine transform) is described

in Figure 2.20 ; a forward mapping rotation approach is presented in Chen et al. (1999), it

provides insight into a method to reduce memory accesses, but typically a more conservative

backward mapping technique is used. Note that the output image is in raster scan order and

hence would have to access pixels, from the input frame, in a manner that cannot be confined

29

to a window but rather requires the whole frame to be buffered. Also multiple pixels might

be required and read in order to calculate a single output pixel, which is the case for when

interpolating (e.g. bi-linear, bi-cubic) pixels that do not fall on an integer (x, y) coordinate

of the original image.

Figure 2.20 Image rotation - Backward mapping

It may be argued that for a certain fixed rotation angle, only a limited number of lines

may be required, but for a 90◦ rotation the whole input frame will have to be buffered.

Frame-based operators is a rather generalized grouping since operators may differ in

the way they actually read or address the external memory. In other words some functions

would only read addresses sequentially (e.g. frame buffer) while others will perform “ran-

dom” reads/writes to the memory which can seriously impact performance depending on the

memory type being used.

Some commonly used forms of external memory components are DDR SDRAM, SRAM,

and RLD RAM. DDR SDRAM will tend to have a high capacity, high bandwidth, and lower

cost per byte, but such devices have long latencies and their performance will highly degrade

with random addressing (which would cause the component to constantly change its active

page) ; these devices are suited for frame buffers where line bursts (sequential addresses) can

be written and read.

On the other end of the spectrum is the SRAM, which does not need to be periodically

refreshed. This kind of RAM has a high bandwidth as well a low latency and it is well suited

to perform random accesses ; such components are expensive and would have a significantly

lower capacity than the DDR SDRAM.

As a third alternative, RLDRAM can be employed ; it provides a middle ground between

30

DDR SDRAM and the SRAM. RLDRAM capacities are a bit lower than the DDR SDRAM

counterparts while having lower latencies and hence being more suited for pseudo-random

accesses.

Depending on the required application (e.g. frame buffering, rotation, multiple small

ROIs), required throughput, and cost, one would have to choose the most appropriate type

of external RAM.

2.3.3 Finite Impulse Response

Image filtering operations, such as Gaussian blurring, fall into the category of performing

a convolution. Such types of convolutions can be performed in either the frequency, or time

domain. For most image processing FPGA applications using the 2D Fast Fourier Transform

(FFT) will typically be expensive due to the shear computing and frame buffering resources

that will be required and hence using a Finite Impulse Response filter would typically be

used. FIR filters are linear time invariant, the kernels size of such filters can be adequately

truncated depending on the filtering function.

FIR filters perform a convolution as shown below :

y[n] =
N−1∑
k=0

hkx[n− k] (2.14)

where x, y and h respectively represent the input signal, output signal, and filter coefficients.

The signal in our case is the processed image.

These types of filters require the use of constant coefficient multiplications. Different

hardware architectures can be used to implement a FIR, Hawkes (2005) as stated below :

– Direct Form

– Transposed Form

– Systolic

– Multiply Accumulate (MACC)

– Semi-parallel

A typical implementation of a FIR is shown in Figure 2.21, this makes use of the direct

form. We may notice the use of an adder tree at this point to perform the summation.

Although such an approach is simple to understand it does not always scale and/or fit nicely

into newer FPGA devices that contain dedicated multiplier blocks (or multiply accumulators)

such as the Xilinx DSP48E. Note that these dedicated multipliers are able to run at very

high speeds (around 500MHz, Patel (2005) depending on the device) as compared to the

rest of the FPGA fabric.

31

+

h3 h2

+

h1 h0

+

x[n]

y[n]

Figure 2.21 FIR - Direct form using an adder tree

A transpose form FIR is shown in Figure 2.22. As can be seen, this architecture fits nicely

into the multiply accumulate blocks which are individually indicated by the dotted boxes.

This type of filter has a rather low latency, but suffers from a high fan-out input which may

be problematic for larger filters.

+

h3

x[n]

c +

h2

+

h1
+

h0

y[n]

Figure 2.22 FIR - Transpose form

The systolic form shown in Figure 2.23, is adequate for high throughput and does not

suffer from the large fan-out problem, but on the other hand it has a high latency which

increases with the filter size. Note that in the actual implementation, the number of dedicated

multipliers found in an FPGA column may actually affect the final timing performance that

can be achieved due to the dedicated cascade connections.

The previously mentioned filters lend themselves to a fully parallel design where SampleRate ≤
ClockFrequency. One would typically calculate his or her requirements based on the data

sample rate, the actual clock frequency, and the number of taps used. One the other side of the

spectrum, we may find the Multiply Accumulate (MACC) filters similar to the one shown in

32

+

h3

x[n]

c +

h2

+

h1

+

h0

y[n]

Figure 2.23 FIR - Systolic form

Figure 2.24. Such filters depend on the fact the SampleRate×NumTaps ≤ ClockFrequency.

Notice how this filter saves resources by using a single multiply accumulate block ; The co-

efficients and incoming data samples are stored in a small RAM that can be appropriately

addressed using a small controller/counter. Note that the accumulator in the DSP48E blocks

+

Sample

Buff.

x[n]

AddrIn

Coeff.

Buff.
AddrCoef.

y[n]

Figure 2.24 FIR - Multiply Accumulate (MACC)

allows a maximum of 48 bits to be stored as a fixed point signed number format, and if the

results exceed this limitation, multiple block have to be cascaded together to perform that

same function.

Semi-parallel architectures can also be formed using the above mentioned concepts ; These

would provide a speed/resource usage tradeoff depending on the requirements.

In many cases the required filtering operations are symmetric, such as a Gaussian filtering,

and for that one can make use of this to half the number of required multipliers by using

a pre-adder and performing a single multiplication for the redundant coefficients. Note that

such an architecture is not applicable to the transpose form, hence the filter would typically

be implemented as a symmetric systolic FIR.

Another important feature, that can be exploited for image processing applications, is that

in many cases 2D filtering uses a separable kernel. 2D filter separability means that instead

of using a FIR with K × K taps, we can perform the filtering in the horizontal direction

33

(K × 1 taps) followed by another filter in the vertical direction (1×K taps), thus reducing

the number of taps to 2K. Gaussian filtering falls into that category of kernels.

Note in some cases multipliers can be saved by using coefficients that are powers of two

i.e. 2N . Such multiplications can be performed in hardware as a simple shift-left operation

that does not cost any resources. In some cases coefficients can be approximated to fit this

requirement.

34

CHAPTER 3

APPROACH AND ORGANIZATION

In this Chapter we will discuss the approach and organization of the research. We will

be explaining how the article in Chapter 4 fits in the research paradigm and will map the

undertaken steps to the objectives stated in the Introduction.

3.1 Software Prototype

After performing a comprehensive literature review of the object recognition algorithms

we were able to determine that the SIFT algorithm is best suited for our applications in

terms of robustness.

3.1.1 Image Processing Libraries

In order to implement image processing algorithms, several optimized libraries where

explored, such as the MATLAB image processing toolbox MATLAB (2010), the JAVA based

ImageJ, Abràmoff et al. (2004), and OpenCV (C/C++), Bradski (2000).

OpenCV was used for the SW implementation and validation due to the fact that it

contains a large range of functions and algorithms, is highly optimized, and can be easily

connected to almost any camera device.

3.1.2 SIFT

Several software implementations of the SIFT algorithm, Lowe (2004) can be found in

the literature. The author distributes the binaries on his website for academic purposes.

Other open source implementations are available such as the MATLAB/C implementation

by Andrea Vedaldi which is now superseded by VLFEAT, Vedaldi and Fulkerson (2010). A

rather flexible C/OpenCV implementation is provided in Hess (2010). We chose to use the

latter one for the software prototype.

3.1.3 Keypoint Matching

In order to perform single object recognition, the SIFT keypoint extraction has to be

performed on a training image as well as every incoming frame.

35

Due to the rather distinctive nature of the SIFT keypoint signature, every keypoint can

be individually compared and matched using a nearest neighbor measure. The training image

keypoints would then form a database for which we would try to find a matches.

A nearest neighbor match is basically a Euclidian distance measure. Instead of choosing

a single global threshold to determine a match, a better match criterion is to use the ratio of

the closest neighbor to the second-closest neighbor, Lowe (2004). If the ratio is greater than

0.8 the match is rejected.

NOTE : this comparison metric is necessary due to the fact that some keypoints are more

distinctive than others.

Typically an exhaustive search can be performed in order to find correct matches ; But such

an approach would prove to be very costly. Moreover KD-tree indexing can be performed to

speed-up the search process, but again this does not scale well to spaces with more than 10

dimensionality.

Since the SIFT keypoints have a 128 dimensionality, it was shown in Beis and Lowe

(1997) that a Best-Bin-First (BBF) algorithm can be used. The BBF is basically a modified

KD-tree method to approximate a nearest neighbor search. the two main differences from

a KD-tree is that the BBF performs backtracking using a priority based queue and a fixed

number of candidates are searched before the search gives up (in our case 200 nearest neighbor

candidates are explored).

BBF provides a speedup of approximately 2 orders of magnitude, Lowe (2004).

3.1.4 Object Localization

After performing individual keypoint matching, we now want to approximate the location

and even pose of the object in question. The main issues at this point are the following :

– The object might undergo affine transformations (zooming, rotation, skew, etc...)

– Objects might be occluded

– Some keypoints are erroneously matched (false positives)

– Some keypoints are missing (false negatives)

In order to overcome the aforementioned issues, we need to approximate a perspective

transformation matrix which would provide a good enough fit. For that, the Random Sample

Consensus (RANSAC) algorithm, Fischler and Bolles (1981) was used.

Keeping in mind that every keypoint carries x-y coordinates, scale, and orientation in-

formation, these can be combined to check for a correct match. RANSAC is an iterative

algorithm that will use a random subset of inliers to minimize an error function. Compared

to least-squares method of fitting, RANSAC is robust to outliers and noisy data.

36

Note that the generalized Hough transform, Duda and Hart (1972) can also be used to

approximate or “vote” for the best solution as was presented in Lowe (2004). RANSAC and

Hough matching methods were compared in Se et al. (2002) which draws the conclusion that

for distinctive features, RANSAC would be more computationally efficient.

3.1.5 Lucas-Kanade

The SIFT algorithm does not work in real-time on a host machine and will typically be

able to find a valid match at every second. In order to have a smoothly running software

prototype, we used the Lucas-Kanade (LK) method for optical flow, Lucas and Kanade

(1981).

The LK method is an iterative one that attempts to find feature or corner matches from

one frame to the next. The LK algorithm relies on three basic assumptions, Bradski and

Kaehler (2008) :

– Constant brightness : pixel values of an object do not change much from one frame to

the next.

– Small movements : Inter-frame movements are relatively small.

– Spatial coherence : Pixels that belong the same object tend to move together.

Inherently, the LK method relies on the features to be chosen at appropriate “seeding”

locations such as corners or DoG points.

In order to integrate the LK tracker with the SIFT, we used the Boost C++ libraries for

multithreading. The SIFT was running on a thread and during the computation for the next

frame the LK tracker would be used to estimate the object movements from one frame to

the next. The LK corner point would only be initialized inside the bounding box of the SIFT

detected object and the RANSAC computation would be performed on the tracked features.

Figure 3.1 shows a snapshot of the software implementation being run on an Intel Pentium

D 2.8GHz with 2GBytes of RAM. The camera used in this case is a PlayStation Eye which

is capable of capturing up-to 640× 480 pixels at a rate of 60 frames per second (FPS). The

window on the right shows the SIFT training object being matched in the incoming stream.

The purple lines indicate a match.

Note that incorrect matches do occur and are ignored by the RANSAC as false positives.

The window on the right of Figure 3.1 shows the Lucas-Kanade tracker. The tracker

initializes corner points, shown in green, inside the bounding box of the object that has been

found. The points are tracked from one frame to the next until the slower multithreaded

SIFT algorithm comes back with a new object bounding box.

A drawback of using this method is that the bounding box determination would have a

latency of several frames.

37

Figure 3.1 Snapshot of the multithreaded SIFT and Lucas-Kanade tracker.

3.2 Hardware Implementation

After performing a software evaluation of the overall system, we were able to prove that the

system is robust enough to perform accurate localization and recognition of objects varying

in pose and illumination. It also became apparent that the DoG part of the SIFT algorithm

was the most computationally expensive.

In order to overcome that, a hardware approach was employed mainly due to the fact

that the DoG is highly parallelizable. We presented a new pipelined and interleaved hardware

architecture that can be used to compute the DoG image pyramid as will be seen in Chapter

4. The proposed architecture is efficient on resources and bandwidth, and was proven to be

comparably accurate to a software floating point implementation.

3.2.1 Xilinx System Generator

The Xilinx System Generator for DSP was growing in popularity at the time, so it was

well worth evaluating the possibility of using the tool for the hardware implementation.

38

System Generator integrates in MATLAB Simulink as additional hardware (Xilinx) blocks.

Basically the user can switch almost seamlessly from the software to the hardware domain

by using Gateway In and Gateway Out blocks that perform floating point to fixed point

conversions and hence define the FPGA interface.

Figure 3.2 shows an example of how a basic inverter could be implemented in the FPGA

fabric. Notice the Gateway In/Out ports that indicate the FPGA boundary. All of the avai-

lable Simulink/MATLAB blocks can be used outside of the FPGA domain like the sources

and sinks (scopes in this case).

Figure 3.2 Xilinx System Generator - Basic inverter.

The Xilinx block set consists of both low-level and high-level blocks. The low level blocks

would be mainly concerned with bit manipulations, counting, registering and synchronization,

while some higher level blocks would be more concerned with more complex functions such

as hardware Divider, FIR Compiler, Fast Fourier Transform (FFT).

39

The user may build his hardware functions into complex systems using block diagrams.

Simulations can either be performed at the bit-level by connecting to an external hardware

simulator such as Modelsim or Xilinx Isim, or even by having a software equivalent MATLAB

implementation of the module which would tend to accelerate the simulation time.

One of the main features that makes System Generator attractive to the hardware designer

is the ability to perform hardware co-simulation (hw-cosim), also known as simulation with

hardware in the loop.

In our case, since we are using the Xilinx ML605 board, we were able to the Ethernet-based

hw-cosim. Basically, the user can perform data block transfers using a simplified memory

interface and/or a FIFO interface. The Xilinx tools would then generate the appropriate

Ethernet controller to send the data from and to the host computer. Moreover, a regis-

ter interface would also be automatically generate and controller from the Ethernet port to

control any dynamic constants (registers) that may affect the data flow in the FPGA module.

Figure 3.3 shows a test bench of a VHDL function. Note that in this case a wrapper is

used. Also the pixel data is propagated by the use of block transfers whereas other dynamic

parameterizations and data alignment signals are communicated through the slower register

interface.

Figure 3.3 Hardware co-simulation test bench.

A wrapper is required to interface the VHDL module in the MATLAB/SysGen environ-

ment. Basically, all generics are hardcoded and the port names should be correctly map-

ped. Moreover, we add some simple logic to add some image control signals like the end of

40

line/frame and data valid. In addition to that we have added a debug multiplexer in order

to be able to individually probe the image at each scale output.

Although using a schematic interface to insert and connect Xilinx components may sim-

plify design entry and visualization, it introduces a limitation in that we cannot cascade and

connect N blocks as we are able to do using a VHDL for generation loop.

In our case, we needed to construct a generic DoG hardware module that is highly para-

meterizable e.g. number of scales and octaves, number of filter taps, etc...

For that we favored using VHDL coding for the DoG implementation. The VHDL code

can then be wrapped into a System Generator custom block that was imported and simulated

as a hw-cosim module. System Generator was used as a test bench to validate the hardware

modules.

The FIFO interface was used to perform the image data transfers. In order to optimize

the transfer speeds, jumbo frames have to be used on the Ethernet adapter in question.

3.2.2 VHDL Coding

Having decided to code the DoG part in VHDL, in order to keep in line with our objectives,

we kept in mind that the design has to be :

– Reusable : We should be able to easily switch platforms.

– Parameterizable : Depending on the final application different parameters may be used.

– Resource efficient : This would have the advantage of being able to have other functio-

nality, smaller footprint, and even lower power consumption.

For that we started by coding all of our lower level components by inference ; such compo-

nents would include multipliers, FIR filters, line buffers, memories, and synchronous FIFOs.

More details concerning the FIR topologies are found in Chapter 2.

The final DoG implementation has the following parameters : maximum image width, num-

ber of scales, number of octaves, and number of filter taps. Moreover the architecture can be

also modified to treat higher parallelism which would be able to process several pixels in a

single clock cycle.

The number of scales and octaves are application dependent ; for applications that expect

the objects to be relatively located at the same scales or zoom level, less resources can be

utilized for that purpose. Parameters are cascaded through the use of VHDL generics and/or

package declarations.

41

3.2.3 Architecture Optimization

In order to achieve a resource efficient design, we had to optimize the design from several

aspects. The DoG inherently requires the repetitive Gaussian blurring and periodic subsam-

pling of the image in order to produce the scales S and octaves O. A direct approach would

imply using O × S, 2D filter banks.

Data Interleaving

One thing to be noticed is that the filter bank coefficients repeat at every octave (scales

have different coefficients). Also the data is reduced by a factor of 4 at every new octave due

to the 2×2 subsampling. In order to take advantage of that, our architecture instead uses an

interleaved approach hence reducing the number of filer banks to S. Octaves are interleaved

hence producing an output at every other clock cycle as is shown in Chapter 4.

Gaussian Filtering

Due to the fact that a Gaussian kernel is used, we can take advantage of two distinctive

properties. The first is the separability of the 2D Gaussian kernel ; typically a 2D parallel

hardware filter of M rows and N columns would require M × N taps. But in the case of

a separable filter, an equivalent result can be produced by performing the filtering in the

x-direction (horizontal) followed by a filter in the y-direction (vertical), hence reducing the

total number of required taps to M +N .

The second property of a Gaussian filter is its symmetry. For that we can even half

the size of our horizontal and vertical filters by using a pre-adder prior to performing the

multiplication. This saves multiplier resources that are typically limited especially on the

lower end devices or even in the case where multipliers are implemented using the FPGA

fabric.

We have implemented scalable VHDL versions of the FIR that use multiply-add chains

in order to be able parameterize the design using generics as will be seen in Chapter 4.

Kernel Buffer Sharing

A main issue of any cascaded image filtering design is the required amount of memory

resources. BRAM is used to perform line buffers that can spatially align the incoming pixel

stream prior to performing any kind of FIR operation. The image is typically fed in a raster

scan order (top-left to bottom-right), hence a pure horizontal filter does not require any line

buffers. On the other hand, any vertical or 2D filter would require buffering M−1 lines where

M is the number of rows in the 2D kernel.

42

At every subsequent cascade stage, the data has to be buffered again in order to calculate

a new scale output.

By noticing that, we came up with what we call the sub-kernel trick. Essentially instead

of using a cascade of filters for the every scale, we use parallel filters that share the buffering

resources.

Figure 3.4 shows how a [5×5] and [3×3] sub-kernel can be extracted from a [7×7] kernel

(or moving window). The extracted parts are shaded in gray.

Figure 3.4 [7× 7] Kernel. [5× 5] and [3× 3] Sub-kernels.

Note that the actual filter coefficients differ in the two approaches. The sub-kernel ap-

proach uses the direct Gaussian coefficients.

Figure 3.5 shows how a typical cascade of Gaussian filters can be implemented to calculate

the different scales. Notice how the image has to be buffered at every new scale.

Line Buffer

I(x,y)

Line Buffer

FIR
Vert.
[3x1]

FIR Horiz.
[1x3]

Line Buffer

Line Buffer

Line Buffer

Line Buffer

FIR
Vert.
[5x1]

FIR Horiz. [1x5]

Scale 0

Scale 1

Figure 3.5 Cascaded approach for 2 scales.

43

The Gaussian FIR filters at higher scales have a larger standard deviation, and hence

would typically require a larger number of taps to avoid abruptly truncating the filter kernel.

A key point is that the vertical filtering has to be performed prior to the horizontal one.

By doing that we have the following advantages :

– BRAM resources are shared.

– Output streams of the different scales are aligned.

No extra synchronization pipelines or FIFOs are required prior to the DoG part where

the outputs of the different scales have to be subtracted.

Figure 3.6 shows how the sub-kernel architecture differs from the cascaded architecture.

FIR Horiz.
[1x3]

Line Buffer

Line Buffer

Line Buffer

Line Buffer

FIR
Vert.
[5x1]

FIR Horiz. [1x5]

Scale 0

Scale 1

FIR
Vert.
[3x1]

I(x,y)

Figure 3.6 Sub-kernel approach for 2 scales.

Note that the horizontal filtering does not require BRAM buffering and would typically

be implemented using the fabric registers.

Note that the octave data interleaving was also integrated in our approach as is described

in Chapter 4.

Parameterization and Validation

After having implemented a parameterizable system for the DoG calculation, we perfor-

med parameter sweeps in order to estimate the total resource usage. The implementation is

platform independent since the lower level modules are implemented in a behavioral manner.

The parameters that were swept are :

– Image width.

44

– Number of scales.

– Number of octaves.

– Maximum number of taps.

Note that the image height has no effect on the resource utilization due to the fact that

we are performing stream processing on a neighborhood (kernel) as opposed to frame-based

region.

A software floating point equivalent model was coded for comparison and validation purposes

and the results were plotted in order to determine an appropriate value for the maximum

number of taps. Note that the value will also be dependent on the base blurring standard

deviation as shown in Chapter 4.

3.2.4 Huffman Encoding

After performing the DoG calculation, interest points coordinates are extracted as the

local extrema. After that the keypoint description has to be calculated from the Gaussian

image pyramid. The keypoint description involves floating point calculations which are often

better offloaded to a host machine or dedicated processor.

We noticed two things, first of all blurred images tend to have very few high frequency

components in the x and y directions and thus the histogram of a causal spatial differential

image would tend to have a very steep peak around zero. Such images are well compressible

using a Huffman encoder.

Figure 3.7 shows a test image and a Gaussian blurred version of it with their respective

histograms. Notice that in this case the histograms are rather spread over the whole bit range.

On the other hand, Figures 3.7e and 3.7f show what happens when the image is differen-

tiated. Notice how the differential histogram (Figures 3.7g and 3.7h is much narrower than

the original and also how the blurring has further gathered the majority of the pixel values

around 0.

The second thing that we noticed is that since the same image is being blurred over

and over to form new scales, the relative pixel variations from one scale to another are also

minimal and we can thus take advantage of a causal scale differentiator prior to encoding.

In order to incorporate the best of the two worlds, we came up with a modified Paeth

predictor as discussed in Chapter 4. The causal predictor takes into account spatial as well

as scale variations to calculate a prediction value.

The parallel Huffman encoder that is proposed in Chapter 4 is able to process several

pixels in parallel and can adequately be used to compress individual images as well as full

image pyramids.

Such a method of compression would alleviate bandwidth bottlenecks without taxing the

45

(a) Original (b) Blurred

−50 0 50 100 150 200 250 300
0

1000

2000

3000

4000

5000

6000

7000

8000

(c) Histogram (Original)
−50 0 50 100 150 200 250 300
0

1000

2000

3000

4000

5000

6000

7000

8000

(d) Histogram (Blurred)

(e) Diff. Original (f) Diff. Blurred

−40 −30 −20 −10 0 10 20 30 40
0

1

2

3

4

5

6

7

8
x 10

4

(g) Histogram (Diff. Original)
−40 −30 −20 −10 0 10 20 30 40
0

1

2

3

4

5

6

7

8
x 10

4

(h) Histogram (Diff. Blurred)

Figure 3.7 Gaussian blurring and differentiation (Diff.) effect on the image histogram.

accuracy due to its lossless nature.

A simple flow of how to use our parallel Huffman encoder is shown in Figure 3.8. First of

46

all a training image (or set of images) is used to construct our fixed Huffman table ; this part

is calculated in software based on the image histogram of the differential of these images,

alternatively one could assume a fixed histogram distribution such as a Gaussian with a small

standard deviation. Afterwards the calculated table is stored in BRAM and will be used for

all the incoming images.

Huffman Tables

Encoder
Image

Differentiation
Pixel

Packer
Buffer

Input Image

Stream

Compressed

Output Stream

Figure 3.8 Example usage of Huffman encoder.

Note that even though we are using a fixed table that does is not re-calculated for every

incoming frame, the compression results are comparable due to the differentiation stage that

precedes the encoding. Afterwards every incoming frame is packed into a higher parallelism

and buffered. Then the image is differentiated and fed to the Huffman encoder. The encoder

will wait until enough bits have been accumulated and then a valid output packet is generated.

Note that the encoder may temporarily output more bits than the input bandwidth (this

occurs when an image contains a lot of edges), but the buffer will even out these variations in

order to achieve and overall per-frame bandwidth reduction. The increased parallelism allows

the encoder to “catch-up” whenever such edges are encountered without having to stall the

input source.

3.3 Phosphene Map Estimation

A different path that was explored concerns the phosphene map estimation. Typically after

performing object recognition a representation of this information will have to be conveyed to

the patient. The representation can be represented as sounds queues or even as intra-cortical

stimulations for the case of the Cortivision project.

A major assumption is that the phosphene map is already known for such a setup to work.

An approximate map of the brain where the electrode placement would result in specific

phosphene being illuminated in the field of view (FOV) has been presented in Dobelle and

Mladejovsky (1974). Such a map is typically denser towards the center of the FOV and one

should not expect to obtain a perfectly uniform grid.

47

Typically the phosphene map can be calculated based on the patient’s feedback in order

to be able to provide an error-minimized estimated map. Note that if the map is distorted,

so will the stimulated phosphene image as illustrated in Figure 3.9.

Figure 3.9 Original arrow symbol (left), distorted symbol (right) due to errors in phosphene
map estimation.

A prototype that targets this issue and proposes an alternative to the ones found in the

literature is presented in Chapter 4.

48

CHAPTER 4

AN IMAGE PROCESSING SYSTEM DEDICATED TO A VISUAL

INTRA-CORTICAL STIMULATOR

Anthony Ghannoum, Ebrahim Ghafar-Zadeh, and Mohamad Sawan

Polystim Neurotechnologies Laboratory, École Polytechnique de Montréal

Submitted on 20 November 2012 to IET Image Processing

Abstract

In this article we focus on intra-cortical electrical microstimulation in order to cover the

broader spectrum of visual impairment, with the aim of providing a better suited navigational

and recognition aid for the patients. We present an overall modular architecture and focus

on creating re-usable image processing tools that can be used for image simplification and

recognition tasks. One of the main challenges in the image processing path is the real-time

restriction ; hence we resort to FPGA hardware acceleration. Herein we demonstrate and des-

cribe the architecture of an image feature extractor based on the difference of Gaussians that

is at once accurate, generic, and low on resources. This architecture also features a Huffman

encoding engine that proves useful when resorting to SW-HW hybrid implementations, and

a technique of calibrating and calculating the phosphene map.

4.1 Introduction

Visual impairment, defined as the full or partial loss of vision, is still not medically curable.

Biomedical approaches have risen to address the issue ; these take advantage of the fact

that electrical stimulations can be used to induce spots of light in the visual field called

“phosphenes”.

Different stimulation methodologies such as retinal implants and optic nerve stimulation

are currently being employed Humayun et al. (2003); Sakaguchi et al. (2009). Our group

targets the broader spectrum by using an intra-cortical stimulator which is made of a camera,

an image processing module, a wireless transmitter, and the stimulating electrodes. The direct

stimulation of the visual cortex bypasses the eyes and optic nerves thus these do not need to

be intact as compared to the other methodologies.

Fig. 4.1 shows an overview of how the system works. Basically, the head is mounted with

a frontal camera which might need to be high speed or even perform some minor processing

49

Ghannoum and Sawan (2007). What follows is an image processing module responsible for

“simplifying” the image content and performing recognition tasks. After that, the processed

image has to be fitted into the existing phosphene map in a way that is easy for the patient

to interpret. In order to avoid infections and other complications, a wireless transmitter is

then used to transfer the stimulation parameters and power across the skin. Finally, a set

of microelectrode matrices will perform the actual current injection, hence stimulating the

visual cortex and forming an image in the patient’s visual field.

One should note that the phosphene map or actual phosphene location is static ; it depends

on the electrode placement. Therefore, the map is expected to be an irregular one and will

have to be calibrated with the patient’s feedback as will be seen later on in Section 4.4.

Implanted microelectrode matrices
 (electrical stimulation)

Wireless data
and power
transmission

Frontend
camera

Real-time image processing, recognition
and phosphene mapping

Camera

Gaussian
Scale Space

Diff. of
Gaussians

Keypoint
Detection

Huffman
Encoding

Keypoint
Description

Keypoint
Matching

Sync

Image
Database

(Keypoints)

SW/Embedded

HW/FPGA

Lucas Kanade
Tracker

(a)

(b)

Figure 4.1 Overview of the Cortivision system.

Typically the number of stimulation sites is limited, hence the need for image pre-

processing prior to stimulation to extract the salient information and project it on a reduced

map/image than can be perceived and interpreted by the patient. Image segmentation, edge

detection Buffoni et al. (2005), and stereo processing techniques for building disparity maps,

have been used to aid in navigation. However, these methods do not permit actual object

recognition, sought-after in this paper, which calls for more complex processing to adequately

extract the information prior to stimulation. The Scale Invariant Feature Transform (SIFT)

algorithm Lowe (2004) presented itself as an ideal candidate for the purpose, and is extensi-

vely used in the literature for different applications such as feature matching, Simultaneous

Localization and Mapping (SLAM), stereo vision, and image mosaicing. It has been shown

50

to be one of the most stable feature detectors Mikolajczyk and Schmid (2005) compared to

other approaches such as Speeded-Up Robust Features (SURF) Bay et al. (2006) which relies

on integral images for quick approximate calculations.

In terms of speed, the downside of the software algorithm lies in the calculation complexity

of the feature localization stage which involves an image pyramid (Gaussian Scale Space)

calculation as the one shown in Fig. 4.2, which is performed by consecutively blurring an image

with a Gaussian kernel for several scales and then sub-sampling the results to form another

octave. Afterwards, the Difference of Gaussians (DoG) is used to find extrema points that

are stable across scales. Hence, hardware implementations and accelerators have increased in

popularity Bonato et al. (2008); Chang and Hernández-Palancar (2009).

The main drawbacks of the hardware, FPGA-based, architectures found in the literature

are typically the precision and resource usage ; therefore such implementations would tend

to simplify the algorithm to fit the specific application needs to minimize resources for a

particular platform.

Moreover, when an FPGA is used as a pre-processor or when inter-frame dependent

processing is considered, data transfer bandwidth can become the main bottleneck of the

application. To overcome that limitation, compression schemes such as JPEG, and MPEG

have been introduced to reduce and relax such limitations. Yet, some medical applications

cannot afford any precision loss induced by lossy encoders.

- -- - --

Octaves

Scales

GSS

DoG

In

Figure 4.2 SIFT : Image Pyramid. 2 Octaves 4 Scales. Blurring at every scale and subsampling
(2× 2) at every octave. Notation : Gaussian Scale Space (GSS) and Difference of Gaussians
(DoG).

Lossless compression methods such as Run Length Encoding (RLE) require the image to

have long runs of similar pixels, to achieve good compression. Alternatively, entropy encoders,

such as arithmetic and range coding, can be used to encode symbols that occur probabilisti-

cally more frequently in less number of bits thus reducing the overall number of transmitted

51

bits. The former’s major downside is the use of floating point operations which makes it trou-

blesome for an FPGA implementation. The latter, uses integer numbers for its representation

but division operations that are involved in the algorithm and re-normalizations of the range

by using power operators would complicate such a design even more if input parallelization

(multiple pixel input) was to be considered.

Noting the inherent data dependency in the Gaussian Scale Space (GSS) pyramid, we

propose an architecture for a pipelined parallel Huffman encoder that can be applied to gene-

ral lossless image compression to reduce bandwidth requirements. We implemented a generic

interleaved VHDL image pyramid that makes use of the sub-kernel trick, to save resources,

and incorporated with our encoder. The proposed DoG pyramid is portable and paramete-

rizable in image width, scales, octaves, and maximum number of filter taps, which allows

tailoring resource usage according to application needs. The presented results verify that the

FPGA implementation outperforms software ones, allowing real-time processing. The image

Camera

Gaussian
Scale Space

Diff. of
Gaussians

Keypoint
Detection

Huffman
Encoding

Keypoint
Description

Keypoint
Matching

Sync

Image
Database

(Keypoints)

SW/Embedded

HW/FPGA

Lucas Kanade
Tracker

Figure 4.3 Image processing system used for object recognition and tracking

processing architecture that we present is illustrated in Fig. 4.3. It is a hybrid implementation

where firstly the Gaussian scale space is calculated, followed by the difference of the adjacent

52

scales, and an inter-scale non-maxima suppression which performs the keypoint localization.

It should be noted that this part was chosen to be implemented on an FPGA due to the

fact that it is the most calculation intensive part and is highly parallelizable and would be

required for real-time processing.

Moreover the Huffman module compresses the intermediate blurred images and transfers

them to the next processing stage.

The software/embedded part of the system is responsible for matching the keypoints

to a pre-built database. The matching is performed using the Random Sample Consensus

(RANSAC) to eliminate false matches, and accelerated using k-d trees as in Lowe (2004).

Moreover, in order to be able to track an object for the case where the object might be “lost”

from one frame to the next, the Lucas-Kanade optical flow tracker is run as a separate thread

hence providing continuous tracking.

The remainder of the paper is organized as follows, we discuss in Section 4.2 the new diffe-

rential method of Gaussians architecture, Section 4.3 shows the parallel Huffman encoder and

the proposed pipelined architecture, Section 4.4 presents a phosphene calibration technique

which is a work in progress, Section 4.5 shows the synthesis results for a parametric sweep

and the compression ratios of the Huffman encoder, and the conclusion is in Section 4.6.

4.2 Difference of Gaussians

[3
x
1
]

[3
x
1
]

[3
x
1
]

[9x1]

[9x1]

[9x1]

[5
x
1
]

[5
x
1
]

[5
x
1
]

[7
x
1
]

[7
x
1
]

[7
x
1
]

[9
x
1
]

[9
x
1
]

[9
x
1
]

[1x1]

[1x1]

[1x1]

Ker.

Ker.

Ker.

Image src

Subsample

Subsample

Inter.
2D FIR

Inter.
2D FIR

Inter.
2D FIR

Inter.
2D FIR

Figure 4.4 Interleaved DoG. (3 Octaves, 4 Scales) Notation : Kernelizer (Ker.) and Interleaved
(Inter.)

53

The repetitive Gaussian blurring may be time-consuming for a host computer especially

if the kernel sizes tend to be large ; FPGAs on the other hand are ideal candidates for such

types of processing that can be pipelined. Image processing on FPGAs can be roughly divided

into three main types :

– Point operations (e.g. color conversion, gain and offset)

– Neighborhood operations (e.g. filtering, edge detection and morphology)

– Frame-based operations (e.g. frame buffer, frame difference and affine transforms)

Point operations operate on the incoming pixel stream. Neighborhood operations would typi-

cally buffer some lines of the image in order to provide a kernel to work with, i.e. the region

around the current pixel (borders are typically handled by constant padding, mirror, or re-

plication). In order to do that, the FPGA internal Block RAM (BRAM) is employed as dual

ported cyclic RAM buffers. Alternatively for relatively short lines, one could use the Xilinx

dedicated shift register blocks SRL16. Finally, frame based operations require buffering at

least a whole image frame to be used at a later time. For small images, the internal FPGA

BRAM would prove to be sufficient for such a task, but for larger images, one would have to

resort to external RAM such as DDR SDRAM, RLDRAM, or SRAM. Note that when resor-

ting to use DDR RAM, one has to keep in mind that random accesses such as image rotation

(i.e. accesses that induce page changes) would highly penalize the effective bandwidth of the

memory.

For the current architecture, we use neighborhood operations while effectively utilizing

our BRAM resources. As already mentioned, a pipelined interleaved architecture for the DoG

calculation was incorporated in Chang and Hernández-Palancar (2009).

It is to be noted that the DoG implementation in Bonato et al. (2008) utilizes O ∗ S
convolution blocks hence would be wasteful in terms of FPGA resources.

The fact that the image is sub-sampled (data size is divided by 4) at every octave induces

a lot of idle cycles for the higher octaves, thus allowing us to interleave the processing. The

assumption is that the pixel rate is half the FPGA clock rate, otherwise the first octave will

have a dedicated processing path, and the remaining octaves can be interleaved. Note that,

the Gaussian kernel is a separable one, and hence the filtering operation can be performed

in the vertical direction, followed by the horizontal direction, thus saving some multiplier

resources. The approach in Chang and Hernández-Palancar (2009) uses an interleaved cas-

cade of filters of fixed size e.g. 7 × 7 to obtain the intermediate Gaussian images. What

this means is that for every scale at every octave, the image has to be buffered repetiti-

vely for the new filter cascade to be implemented ; Although this is an improvement over the

architecture presented in Bonato et al. (2008), it still consumes the internal BRAM resources.

54

The Gaussian standard deviation σcn for every cascaded scale n can be calculated as such

(for 6 scales) :

σcn = σo2
n−1
3

√
2

2
3 − 1

Where σo is the base blurring of the pyramid which is typically set to either 0.8 or 1.6.

Typically the Gaussian kernel size is chosen to be 4 ∗ σ or 6 ∗ σ. What we propose is the use

of the sub-kernel trick instead of cascading filters, hence the standard deviation for the scales

is non-cascaded can be calculated as follows :

σn = σo2
n
3

By calculating the worst case σ, found at the top scale, we can set an upper limit for the

maximum kernel size. Fig. 4.4 shows an overview of the proposed DoG architecture for 3

octaves, 4 scales, and a maximum kernel size of 9.

The “Kernelizer” module represents a pixel buffering block, and the line notation [M×N]

suggests that the output of the current block is a buffered kernel stream (instead of a [1× 1]

pixel stream). Note that if M = 1, the block performs a purely horizontal buffering, and hence

no BRAM is used, otherwise internal line buffers are required.

The shaded triangular connections, shown in Fig. 4.4, represent the Sub-Kernel opera-

tion ; this block does not cost anything in hardware since we would be basically selecting a

subset of the kernel stream to form a smaller kernel stream at its output. The sub-kernel

is typically centered. It should be noted that although we took advantage of the Gaussian

separability, we adequately placed the vertical kernel first, hence sharing BRAM resources

for the different scales. The sub-sample blocks remove every other pixel and every other line.

The Interleaved 2D FIR block is shown in Fig. 4.5. It is made up of 2 Finite Impulse Response

FIR
Vertical

FIR
Horizontal

Kernel

Kernel

Kernel

m
u
x

m
u
x

[nx1]

[nx1]

[nx1]

[1xn]

[1xn]

[1xn]

d
em
u
x

d
em
u
x

Figure 4.5 2D Interleaved FIR filter. Taking advantage of the of 2D Gaussian separability,
we save resources by performing a 1D vertical filtering followed by a 1D horizontal one.

(FIR) filters for vertical and horizontal filtering, and other mux/demux blocks to perform

the interleaving operation. The internal architecture of the FIR filters is typically platform

dependent. For our current system, we are using the architecture shown in Fig. 4.6. Due to

55

c

k0,n k1,n-1 kn/2+1

Figure 4.6 Symmetric FIR with pre-adder. Notation : Registers are indicated with a triangular
notch.

the symmetric nature of the Gaussian kernel, we use a pre-adder to reduce the number of

required multipliers. Also, in order to get a good fit inside the Xilinx DSP48 components

we used an adder chain instead of an adder tree architecture. We can also get a free adder

for the first stage where we can cascade the “c” input shown in Fig. 4.6 ; this enables us to

perform rounding operations (add-half truncate).

One should keep in mind that FPGA devices are increasingly becoming equipped with

dedicated multipliers or multiply accumulate MACC engines ; such components are also able

to work at much higher clock rates than the rest of the FPGA fabric. The advantage of the

proposed architecture is twofold : we save BRAM resources and the numerical accuracy is

more precise compared to the cascaded filters.

BRAM resources are reduced in two ways : first due to the fact that a single large kernel

is used for all the scales in an octave, instead of a separate smaller kernel for each octave.

Second, when the sub-kernel trick is used, the output stream of all the sub-kernels are syn-

chronized, and hence at the subtraction stage, shown at the bottom of Fig. 4.4, no further

synchronization is required, on the other hand, the cascaded architecture would induce se-

veral lines of delay at every cascade stage, and hence the pixel streams would need to be

resynchronized prior to the final differentiation.

4.3 Parallel Huffman Encoder

For our purposes the Huffman algorithm presented itself as an ideal candidate. Huffman

encoding, is a way of distributing the number of bits for each symbol based on the probability

distribution. The encoder can be divided into three categories that store the encoding tables

56

differently.

– Static tables : typical probabilities are used to build a fixed table that would be used

for both the encoder and decoder.

– Adaptive tables : the table is updated on the fly while the transmission is occurring.

Note that in such a case, the decoder will also have to update its own table.

– Two-pass encoding : The probability distribution of each frame is calculated on the first

pass and the resulting table is sent to the decoder as a header along with the frame

which is encoded on the second pass.

We present a parallelizable architecture for a Huffman Encoder. For our application, we

opted for a static table implementation, where no preceding table header is required. The

same architecture would work with adaptive tables requiring more logic to update the tables.

4.3.1 Image Differentiation

Image differentiation is required to center the image histogram around 0, and can be

performed as inter or intra-frame. The former would perform extremely well for a fixed

camera layout, while the latter would typically differentiate the image in a causal manner

(left-to-right, top-to-bottom) enabling us to undo the differentiation on the receiving side.

For our specific application, of compressing an image pyramid made up of S scales and O

octaves formed under the GSS, a modified version of the Paeth predictor Paeth (1991) (used

in the PNG and TIFF standard formats) was used to obtain our differential images. The

DoG, inter-scale difference, is included in our differentiator since the pyramid scale images

are very similar to each other.

Let a, b, c, and d represent the respective left, top, top-left, and lower-scale pixels. The

original Paeth predictor approximates the slope of the pixel’s surrounding region using the

“poor man’s Laplacian”G(a, b, c) = a+ b− 2c and produces an initial estimate P by adding

the slope to c. The pixel closest to the initial estimate is hence used as the predicted value.

Our modified predictor takes into consideration the scale difference and reverts to the

original Paeth predictor definition if this difference is too large. The actual encoded value

is the difference between the current pixel and the predicted value. This predictor is useful

for the base image which has no scale below it, and when excessive blurring cause adjacent

57

pixels to have closer values to each other than to the scale below.

P := a+ b− c;

Pa := abs(P − a); Pb := abs(P − b);

Pc := abs(P − c); Pd := abs(P − d);

if (Pa ≤ Pb) & (Pa ≤ Pc) & (Pa ≤ Pd) return a;

else if (Pb ≤ Pc) & (Pb ≤ Pd) return b;

else if (Pc ≤ Pd) return c;

else return d;

Fig. 4.7 shows an overview of the proposed architecture for input parallelism of 4. The Huff-

man table is stored in a ROM for static tables. After that a pipelined Huffman concatenator

shifts the parallel inputs by the appropriate number of bits and appends the results. The final

stage, the Huffman barrel shift register buffer, accumulates enough bits prior to outputting

a valid, fixed-size, compressed packet.

Pixel0 Pixel1 Pixel2 Pixel3

Table
ROM

Diff Diff Diff Diff

Table
ROM

Table
ROM

Table
ROM

8

9

8

9

8

9

8

9

32 5 32 5 32 5 32 5C0 S0 C1 S1 C2 S2 C3 S3

Huffman Pipeline Concat.

Huffman Barrel Shift Register

Code Sel 7128

128 ValidEncoded

Figure 4.7 Simplified Block Diagram of Parallel Huffman Encoder

4.3.2 Architecture of the Proposed Encoder

Barrel Shifter

The data coming from the ROM is made up of pairs of code bits and a select value. The

select value indicates how many of the bus bits are valid and should be shifted in the final

buffer. In order to perform variable shifts, a barrel shifter is used. A simple and effective

58

In Out

1 2 4 2n
S0 S1 S2 Sn

One-hot
ROM

X

S In

Out

(a) (b)

Figure 4.8 Barrel Shifter (a) Basic Architecture (b) Multiplier-based (Notation : � logical
bit shift)

architecture such as the one shown in Fig. 4.8 (a) is used. Note that the select bits define

the maximum combinatorial path, which is acceptable in most cases. If timing closure is not

reached due to that path, the barrel shifter can further be pipelined.

An alternative architecture can be implemented by using the large, high-speed embedded

multipliers that are found on the newer FPGA devices (like the Xilinx XtremeDSP DSP48

in the Virtex families). As shown in Fig. 4.8 (b), by coupling a one-hot encoded ROM with

a multiplier, one could implement a high speed barrel shifter.

Encoder

In order to support parallel inputs, we used the pipelined Huffman concatenator archi-

tecture shown in the top part of Fig. 4.9. The selects Sn of the respective code Cn is used to

shift the next value Cn+1 and then the data is OR-ed to perform the actual concatenation.

The Huffman table that contains the codes is assumed to be zero padded for the unused bits

in the code. In order to cascade that, the selects are added and the result is cascaded to the

next barrel shifter of increasingly larger size.

The resulting pair is then fed into the Huffman barrel shift register shown in the bottom

part of Fig. 4.9. This module is the actual buffer and output control unit of the encoder.

It takes a single code/select pair as input and buffers the codes until a sufficient number of

bits have been accumulated, after-which a valid signal is emitted and the buffer feedback is

shifted right to align the data.

4.4 Phosphene Map Calibration

An important factor, that impacts the phosphene “image” that is perceived by the pa-

tient, is the actual phosphene map calibration. The phosphene map can be thought of as

the pixels that the patient will perceive. These are not regularly distributed, and their lo-

cations are determined by the actual electrode placement in the visual cortex. The doctors

59

+

+

+

H
u
ff
m

a
n
 s

h
if
t

re
g
is

te
r

P
a
ra

ll
el

 i
n
p
u
t

co
n
ca

te
n
a
ti
o
n

Barrel 2n

Barrel 3n

Barrel 4n

Barrel shifter (2N)

mux Shift/Valid
Controller

Register (2N)

C3 C2 C1 C0 S3 S2 S1 S0

Code N

Select

N
2N

N

Out

Shift flag

Figure 4.9 Parallel Huffman Barrel Shift Register

typically have a map of the brain Dobelle and Mladejovsky (1974) that would indicate the

approximate electrode sites, and the electrodes are built as stimulation matrices, hence fine

adjustments can be performed. Various methods exist in the literature to calibrate and ade-

quately approximate the map. The most common is a set-up with a tactile screen Chai et al.

(2008) or touch screen LCD ; the patient would be presented with two points (illuminated

phosphene pairs) at a time, and would have to indicate, using the touch screen, the distance

between the two perceived points. After collecting an adequate number of pairs samples, an

error minimization technique can be used to approximate the overall phosphene map.

The previous set-up can be quite limited, first by the touch resolution and second by the

number of pairs that can presented. What we propose is a set-up similar to the one shown

in Fig. 4.10. We basically use fiducial markers on a transparent table, these markers are

identified and tracked using a high resolution camera. The image processing was performed

60

Fiducial
markers

Tracking camera
(to host)

Calibration
pattern Transparent

surface

Figure 4.10 Set-up of the phosphene map calibration.

using the OpenCV Library Bradski (2000). First the camera’s intrinsic distortion matrices

(fish-eye and barrel distortions) are calculated. After that, the camera is placed as accurately

as possible, and a checker-board grid is used to perform a bird’s eye rectification.

The current fiducial markers that we are using are round, green colored markers that

can be easily identified in the HSV color space. A 2D block-based non-maxima suppression

Neubeck and Van Gool (2006) is used to find the markers, and we are able to track up to

256 markers in real-time. The tracking uses the global nearest neighbor scheme Yilmaz et al.

(2006) based on the Jonker-Volgenant algorithm LAPJV Jonker and Volgenant (1987).

This method offers several advantages over existing methods. For instance, fiducial mar-

kers can be located with sub-pixel accuracy or a large number of markers can be used at

once. Furthermore, tracking can be used to update the patient’s image in real-time.

Various options are currently being explored. Presenting the patient with different constel-

lations of phosphenes instead of pairs of them might increase the calibration accuracy during

the triangulation and error minimization stage. Another alternative would be to present

the patient with a full phosphene image of simple geometrical objects (with all the phos-

phene/markers at once), the patient will then have to adjust the markers’ map in real-time

to get an image that is not distorted. Also symbols and objects can be modulate as pulsa-

ting objects and/or swept across the visual spectrum. Further testing will be performed with

volunteers with head-mounted displays to evaluate the accuracy of the proposed method.

This work is currently in progress in the goal of achieving a more accurate phosphene map

estimate, which in turn would lead to high precision stimulation images that are perceived

61

with minimal distortions.

4.5 Simulation and Experimental Results

A generic parameterizable VHDL implementation of the Difference of Gaussians and

Huffman encoder was implemented on a Xilinx ML605 Virtex-6 board and tested as a black

box, in a hardware co-simulation loop in System Generator. The architecture can run at

100 MHz while returning a result at every two clock cycles (due to the interleaving), and

could run up to two orders of magnitude faster than a software implementation Vedaldi and

Fulkerson (2010) for images of 640 × 480 running on a host machine (Intel Core i5 @ 2.27

GHz, 6 GB RAM).

Max. Kernel Width

A
b
s.

 M
ea

n
 E

rr
o
r

5 10 15 20 25 30 35

3.5

3

2.5

2

1.5

1

0.5

0

= 0.8, ker.width = *4
= 1.6, ker.width = *4
= 0.8, ker.width = *6-1
= 1.6, ker.width = *6-1

Figure 4.11 DoG absolute mean error, compared to a double precision 31-tap kernel (for all
octave/scale combinations).

4.5.1 DoG Precision

In order to evaluate the numerical precision of the employed architecture, it was compared

to a double precision software model using filter of 31-taps (borders errors are ignored). Fig.

4.11 shows the absolute mean error plot for Gaussian pyramid filtering. The base Gaussian

standard deviation is shown for two values, σo = {0.8, 1.6}. Also the kernel width, or sub-

kernel width, at each scale is chosen according as a function of σ. A limiting parameter is

set on the maximum kernel width (this will affect the number of BRAM resources, since it

defines the upper limit on the vertical kernel width prior to the sub-kernel operations). Table

4.1, shows the precision of the cascaded difference of Gaussians implementation Chang and

Hernández-Palancar (2009). Using our implementation, a maximum kernel size of 15 can be

used to obtain better precision and for comparison a kernel size of 31 is also shown. The

62

precision was measured in terms of the absolute mean error, the standard deviation of the

error, and the maximum bits per pixel (bpp) error.

4.5.2 VHDL Synthesis

4000

Ressdsrs

9000
7000
5000
3000
1000

10000
8000
6000
4000
2000

400
300
200
100

0

4
5
6

Scales

Width

Octaves
Taps

4 5 6 4 5 6 4 5 6
9 7 5

3
2
0

5
1
2

6
4
0

1
0
2
4

2
0
4
8

4
0
9
6

3
2
0

5
1
2

6
4
0

1
0
2
4

2
0
4
8

4
0
9
6

3
2
0

5
1
2

6
4
0

1
0
2
4

2
0
4
8

4
0
9
6

3
2
0

5
1
2

6
4
0

1
0
2
4

2
0
4
8

4
0
9
6

3
2
0

5
1
2

6
4
0

1
0
2
4

2
0
4
8

4
0
9
6

3
2
0

5
1
2

6
4
0

1
0
2
4

2
0
4
8

4
0
9
6

3
2
0

5
1
2

6
4
0

1
0
2
4

2
0
4
8

4
0
9
6

3
2
0

5
1
2

6
4
0

1
0
2
4

2
0
4
8

4
0
9
6

3
2
0

5
1
2

6
4
0

1
0
2
4

2
0
4
8

4
0
9
6

B
R

A
M

 R
eg

is
te

rs

L
U

T

80000
40000

0

Figure 4.12 Cascaded DoG Resource Usage – Parametric Sweep

The design was implemented in portable VHDL code by inference, no Xilinx specific

components were used. Fig. 4.12 shows a synthesis parametric sweep for the Cascaded DoG

module.

Table 4.2 shows the resource usage of the O ∗ S cascaded implementation Bonato et al.

(2008), the interleaved cascaded architecture presented in Chang and Hernández-Palancar

(2009) on a Virtex-2 platform. For comparison purposes, we have also implemented the

interleaved cascaded architecture on a Virtex-6 platform (shown in the third column) ; and

finally our new sub-kernel based architecture is shown in the fourth column. The employed

parameters are : image width of 320 pixels, 4 octaves, and 6 scales. The cascaded architecture

uses 7 tap Gaussian filters and for our sub-kernel architecture a maximum kernel width of 15

was chosen. From that, we are able to deduce the resource usage savings that are gained by

our architecture especially for the BRAM, which further simplifies the placement and routing

stage.

It should be noted that for the Virtex-2 and Virtex-6, the main differences can be catego-

rized as 18kb BRAM/4-input LUTs and 36kb BRAM/6-input LUTs respectively. Our imple-

mentation of the interleave cascaded architecture is capable of flow control, border handling,

and flushing at the end of frames without requiring prior image buffering which would justify

63

Tableau 4.1 Precision of cascaded DoG and sub-kernel DoG

Cascaded FIR Sub-Kernel (15) Sub-Kernel (31)
σo 0.8 1.6 0.8 1.6 0.8 1.6

Absolute
mean error

0.3409 1.2200 0.2760 1.0041 0.2760 0.2640

Standard
deviation
error

0.2549 1.6678 0.1825 1.5665 0.1825 0.1664

Maximum
bpp error

2 19 2 19 2 1

the slight increase in BRAM. It can be observed that the LUT usage increases with taps, oc-

taves, and scales. As for the width dependency, we may notice a slight curvature. This could

be explained by the fact that, in the image pyramid, images are sub-sampled at subsequent

octaves. For small images, this sub-sampling reduces the image width to an extent where the

required line buffers are more readily implemented or inferred as LUTs rather than BRAM

components. Current Xilinx devices can configure their LUTs as SRL16E components (Shift

Register Look-Up-Table) which can be well cascaded to perform small line buffering functions

and in some cases reduce resource usage. From Fig.4.12, we can also notice an explosion of

LUT usage for the high scale, tap, and width combination. The reason behind that is simply

because we ran out of BRAM resources on our device and the synthesizer reverted to using

LUTs ; such cases are not practically implementable. The register usage is quite independent

of the image width, but on the other hand the BRAM usage is directly dependent on the

width. As shown in Fig. 4.12, the architecture consumes a lot of BRAM resources for large

images and hence trade-offs must be made in case the large images are to be processed.

Tableau 4.2 DoG Resource Usage

O ∗ S Interleaved Interleaved Sub-Kernel
Cascade Cascade Cascade

Stratix II † Virtex-2 ‡ Virtex-6 Virtex-6
(Compare) (This work)

LUT 15137 6880 3702 3669
Registers 7256 6028 5942 3193
BRAM 0.91Mb 120 (2.1Mb) 77 (2.7Mb) 21 (0.74Mb)

†Bonato et al. (2008)
‡Chang and Hernández-Palancar (2009)

64

4000
3000
2000

Width

Octaves

3
2
0

5
1
2

6
4
0

1
0
2
4

2
0
4
8

4
0
9
6

3
2
0

5
1
2

6
4
0

1
0
2
4

2
0
4
8

4
0
9
6

3
2
0

5
1
2

6
4
0

1
0
2
4

2
0
4
8

4
0
9
6

4 5 6

Scales

4
5
6

5500
4500
3500
2500

70
50
30
10

Figure 4.13 Sub-Kernel DoG Resource Usage – Parametric Sweep

On the other hand, our implementation using the sub-kernel trick is shown in Fig.4.13.

We may notice that our architecture’s BRAM usage is lower that the cascaded one and is

independent of the scale configuration used.

As for the Huffman encoder, the presented architecture was synthesized for various paral-

lelisms (simultaneous pixels or scales) and produces the resource usage shown in Table 4.3.

Note that BRAM resources can be halved (for even parallelism) by sharing Huffman tables

as true dual port RAM. Depending on the image pixel parallelism and the memory buffer

architecture that follows, one might opt for a single interleaved encoder with high parallelism,

as we did, or several encoders with a more elaborate control.

4.5.3 Huffman Encoding

The Caltech-256 image dataset was used to test the compression ratios of the Huffman

encoder. A fixed Huffman table was built by taking 10 training images from each object

category. The same table was used to encode all the images and their pyramid octave/scale

combinations. Table 4.4 shows the compression ratio achieved for different parameters. Note

that the parallelism parameter stands for the number of simultaneous pixels n that are input

at every clock cycle to the compression core as shown in Fig. 4.14. This is required since, in

Tableau 4.3 Parallel Huffman encoder resource usage

Parallelism 1 2 4 6 8

LUT 152 393 1169 2182 3451
Registers 254 708 1737 3741 5947
BRAM 2 3 6 9 12

65

Parallel
Up

Parallel
Down

Huffman
Comp.
Engine

Frame
Buffer

1 n n n 1

Figure 4.14 Compression Buffering Scheme

compression applications one would typically have an image buffer (or a multi-line buffer)

followed by the compression engine. The buffer would decouple the incoming input stream

from the compression core which should be able to support a higher input parallelism n than

the uncompressed stream in order to compensate for noisy bursts.

Hence, when using a smaller number of scales, the blurring difference per scale increases

thus making the original Paeth more attractive than the DoG for computing a pixel diffe-

rential that is closer to zero. Fig. 4.15 shows samples of the minimum/maximum compressed

categories. One can see that smoother images (mars, galaxy) are better compressed that the

ones with a lot of edges (mussels, trilobite).

Figure 4.15 Caltech-256 samples : mars, galaxy, mussels & trilobite

4.6 Conclusion

We presented a new scalable architecture for the difference of Gaussians that makes use

of the sub-kernel trick to save FPGA resources while still being more accurate than alter-

native implementations Chang and Hernández-Palancar (2009) ; the architecture shares line

buffers (BRAM) across scales and does not require re-synchronizing the scales streams prior

to differentiation. Also, our DoG implementation, which is used for feature extraction, is pa-

rameterizable as compared to the ones found in the literature Bonato et al. (2008)Chang and

66

Tableau 4.4 Huffman Encoder Compression Ratio

Scale = 4 Scale = 6
σ0 = 0.8 σ0 = 1.6 σ0 = 0.8 σ0 = 1.6

Avg.% 29.68 25.83 29.22 24.56
Min.% 19.69 17.59 18.75 16.84

mars galaxy mars galaxy
Max.% 41.24 35.49 40.73 33.45

mussels mussels trilobite mussels

Hernández-Palancar (2009). This is essential for our application in that it gives us the requi-

red flexibility bearing in mind that the feature description and matching, object recognition

stage that follows, might be iteratively changed or tweaked to fit the underlying hardware or

precision requirements. A parametric sweep was presented that shows the resulting resource

usage for different image widths, octaves, scales, and taps.

Moreover, the image pyramid that is reused in the subsequent processing stage was noted

to be the main cause of transmission and memory bottlenecks, hence the parallel Huffman

encoder architecture was presented and applied with a modified Paeth predictor which takes

advantage of the inter-scale similarity. The encoder showed average lossless compression ratios

of 27.3% on the Caltech-256 image dataset, hence alleviating the aforementioned bottlenecks.

Finally, a work in progress of new method of phosphene map calibration was proposed. The

system, being based on a camera set-up and image processing tools, is highly adjustable and

is capable of real-time tracking of 256 fiducial markers. This allows us to experiment with

larger phosphene constellations and even calibration techniques based on simple geometric

shapes with real-time patient feedback.

Acknowledgment

The authors would like to acknowledge support from NSERC and the Canada Research

Chair on Smart Medical Devices.

67

CHAPTER 5

GENERAL DISCUSSION

We discuss in this chapter how the article presented in Chapter 4 and the adopted me-

thodology pertains to the literature review in Chapter 2.

5.1 Algorithm Robustness

One of the main targets was to use a robust algorithm that can perform object recognition

in highly variable environments. Simplistic methods such as template matching that were

mentioned in Chapter 2 proved to be very sensitive to even the smallest of image variations.

The multithreaded software implementation of the SIFT and Lucas-Kanade tracker was

used as a robustness guide. We were able to prove that the system is able to recognize objects

with variations in illumination, scale, rotation, affine transformations, and even perspective

transformations up to a certain extent.

The SIFT, being a feature-based method, proved to be robust due to its loose modeling

of an object using gradient histograms descriptions around scale extrema points (comparable

to corner points). These features are at very discriminative while still allowing minor affine

variations and illumination changes.

5.2 Hardware Implementation

The hardware (FPGA) implementation was performed in VHDL. We focused on maintai-

ning well defined module interfaces that allow proper flow control to be propagated in case

of bandwidth bottlenecks or processing stalls.

The modules were coded by inference, using behavioral modeling and following synthesis

templates, in order to obtain portable and reusable code.

In the DoG implementation, we focused on obtaining a design which is, resource efficient,

highly parameterizable to fit different application needs, and comparable in precision to a

software floating point implementation.

The resource efficiency was mainly gained in terms of saving BRAM resources by the used

the proposed sub-kernel trick and performing the vertical filtering prior to the horizontal one.

This, coupled with the fact that the DoG system is also interleaved in octaves, proved to beat

other implementations in the literature such as the cascaded approach Bonato et al. (2008)

and the interleaved cascaded one Chang and Hernández-Palancar (2009).

68

An important thing to note, is that when we compared ourselves to the other architectures

in the literature in Table 4.2 we were using rather small images (320× 240) which does not

clearly show the gains achieved by our proposed architecture. One might notice that the

Stratix II implementation by Bonato et al. (2008) is quite close to ours in terms of BRAM

usage although they are using a cascaded approach. There are two reasons for that, first of

all they are treating one Octave less than we are and second they are using an Altera device

that contains smaller memory BRAM components which are better suited for small images

whereas we are always rounding up to the nearest 18kbit BRAM at every time.

A graph that explains the BRAM scaling with image size is shown in Figure 5.1. On the

left, we can see the resource usage if we do not need to perform rounding to the nearest

BRAM size, whereas on the right we show how the usage scales with the rounding up. Our

architecture consumption estimation is shown in blue and compared to the cascaded GSS only

in red and GSS + Synchronization for the DoG part in green. Note that our architecture does

not require any synchronization in order to perform the adjacent scale subtraction since our

scales are already in sync. Notice that we are able to use up to 9 times less BRAM resources

compared to a cascaded architecture.

• Cascaded-Interleaved (GSS)

• Cascaded-Interleaved (GSS + DoG Sync)

• Subkernel-Interleaved

0 1000 2000 3000 4000 5000 6000 7000 8000
0

100

200

300

400

500

600

700

800

0 1000 2000 3000 4000 5000 6000 7000 8000
0

200

400

600

800

1000

Image WidthImage Width

B
R
A
M
(n
o
 r
o
u
n
d
in
g
)

B
R
A
M
 (
ro
u
n
d
e
d
 t
o
 1
8
k
b
it
)

9x

2.6x

Figure 5.1 BRAM utilization estimate

As mentioned in Chapter 4, the architecture can be parameterized using generics to be

69

able to reconfigure the design according to the application needs. Also parametric sweeps

were performed to show the effect on resource utilization and even accuracy as compared to

a floating point software implementation. These also were compared to a cascaded interleaved

architecture to highlight the difference and resource savings that can be achieved.

Moreover, it is to be noted that we also handled some finer details that are often ignored

by other implementations such as providing the ability to perform different border handling

methodologies such as the ones mentioned in Section 2.1.1.

In order to be able to implement the current architecture we also had to separate some

modules into sub modules. Basically the FIR modules had to be separated into two major

parts, a data buffer (multi-line buffer) or kernelizer and the actual filtering core. Moreover,

the filtering was performed separately in the x and y directions. It is to be noted that the

line buffers were implemented as cyclic RAM buffers as mentioned in Section 2.3.2 versus a

direct shift register implementation which would not be suited for larger image widths.

Concerning the Huffman encoder, it was mainly implemented due to the high data re-

dundancy caused by the Gaussian blurring. Compared to a direct Paeth predictor Paeth

(1991) which uses the spatial image gradient to provide the best prediction, our modified

Paeth predictor also incorporates scale information. This allows our differentiator, prior to

the Huffman encoding, to have an even steeper histogram concentrated around 0.

Moreover, from our tests, it was shown that the Huffman table that was used did not have

much of an impact on the compression results, except if the training images were artificially

produced. An averaged table calculated from the Caltech-256 database proved to be generic

enough.

70

CHAPTER 6

CONCLUSION AND RECOMMENDATIONS

The Cortivision team is actively developing an intra-cortical implant to stimulate the

visual cortex and provide visually impaired persons with basic vision. Our main target was

to process images in order to “understand” image content and be able to simplify data by the

means of a real-time embedded object recognition system.

We mainly contributed by introducing what we call the sub-kernel trick for the DoG

implementation in order to save/share FPGA resources efficiently while still maintaining the

precision and increasing the processing speed of the by two orders of magnitude compared

to a software implementation. We also provided a methodology of using a modified Paeth

predictor combined with a parallel Huffman encoder architecture to compress image pyramids

as well as standard images to save on transmission bandwidth. Moreover, we suggested an

alternative way that may further be explored for phosphene map estimation based on tracking

fiducial markers using image processing tools.

6.1 Research Synthesis

In order to“simplify”an incoming video stream into a form that can be better transmitted

to a patient, we focused on implementing an object recognition module that can operate in

real-time.

Having reviewed the literature for various approaches as was discussed in Chapter 2, we

were able to adopt the SIFT algorithm as a robust candidate to be used. The algorithm

proved to be robust enough to handle different image variations such as brightness, contrast,

scaling, rotation, and affine transformations.

A software prototype was implemented as a multithreaded application that merges the

SIFT algorithm for recognition as discussed in Section 3.1. The SIFT is not able to operate in

real-time for video processing on a host machine since it requires approximately one second to

process a single frame and detect an object. The tracker was used to overcome that limitation

by tracking the recognized object in real-time.

After identifying the Difference of Gaussians (DoG) as being the bottleneck of the SIFT

algorithm, we moved on to migrating that part to an FPGA implementation. The DoG is

mainly focused around repetitive Gaussian filtering and subsampling in order to the be able to

detect stable keypoints through non-maxima suppression across scales. The resulting output

71

of the DoG is an image pyramid as the one shown in Figure 2.11.

The Xilinx System Generator was evaluated, in Section 3.2.1, as a potential tool for

implementing the DoG system. Albeit being user friendly due to its block diagram nature,

System Generator lacks the flexibility of performing generate loops such as the ones found in

the VHDL language.

We focused on coding a highly parameterizable architecture that will be able to target

different application needs, such accuracy vs. resource usage tradeoffs and did not hardcode

any of the parameters. Moreover the VHDL was coded to be reusable and portable by using

behavioral models where applicable and inferring instead of instantiating lower level blocks

such as BRAM, and dedicated multipliers.

By acknowledging a stream processing data flow, we reviewed the various image processing

techniques for FPGA implementations as shown in Section 2.3 and focused on having a proper

data flow control.

In order to achieve a resource efficient design, our DoG implementation uses various

concepts such as : pipelining, octave data interleaving, filter separability, filter symmetry,

and the sub-kernel trick that we introduced.

The sub-kernel trick, that is explained in Section 3.2.3 was the contribution that gave us

an advantage of the direct implementations and cascaded implementations. It basically relies

on sharing BRAM resources for the vertical filtering part of the algorithm.

Parameter sweeps (width, taps, octaves, scales) of the architecture were performed and

graphed as shown in Figure 4.13 and also compared to other architectures, see Figure 4.12,

for a comparison of the FPGA resource estimation.

The hardware DoG implementation was also proven to be comparably accurate to a

software floating point implementation.

The second part of the SIFT algorithm consists of calculating the keypoint descriptor

around the local extrema that are found by the DoG part. This part relies on floating point

calculations and is typically best offloaded to a host or dedicated sequential processor.

By noticing the data redundancy that is introduced by Gaussian blurring and the scale-

space formation, as explained in Section 3.2.4, we noticed that the data is readily compressible

and can save transmission bandwidth bottlenecks. We hence came up with a causal modi-

fied Paeth predictor that will take into account the spatial similarities as a well the scale

similarities.

Furthermore, we introduced a new architecture for a parallel Huffman encoder which can

be used for both image pyramid as well as simple image compression and showed lossless

compression results of 27.3% on the Caltech-256 image dataset as shown in Table 4.4.

Our object recognition system is dedicated to a visual intra-cortical stimulator, hence the

72

final recognition result will have to be modulated to fit the existing phosphene map in the

patient’s Field of View (FOV). We thus also investigated a new methodology of performing

phosphene map calibration based on a simple setup that employs a camera filming a table

with fiducial markers that can be manipulated by the patient for direct real-time calibration

feedback. Image processing tools such as the ones described in Section 4.4 were used to make

that possible.

6.2 Future Recommendations

Due to the octave data interleaving, the DoG module is able to process 1 pixel per 2

clock cycles. This limitation can be overcome by processing several pixels at once, some of

the implemented modules already support this feature.

Another limitation lies in the Huffman tables. Ideally the Huffman encoder should be

able to form a new table by training itself on the incoming pixel stream and/or use adaptive

tables.

Some future improvements may incorporate implementing the description formation and

matching part of the SIFT algorithm on a processor such as the ARM that is present in the

relatively new Xilinx Zynq family.

The SIFT features can also be used for scene recognition as stated in Lazebnik et al.

(2006). This information can be integrated into the system to change the object search

database depending on the context, for example if the patient is in a kitchen the system

would poll a database of household items, whereas if he is outdoors, a database of cars, bikes,

and stop signs may be polled. This will reduce false positive matches and useless comparisons.

Finally, the phosphene mapping technique can be further tested with patient feedback

to incorporate a set of training patterns e.g. basic geometric shapes and moving objects. An

emulator can be setup with virtual reality glasses to model the patient’s FOV and the patient

would manipulate the tracked fiducial markers to calibrate the perceived phosphene map in

real-time.

6.3 Concluding Remarks

An object recognition system was presented. We showed how we can accelerate the DoG

part of the SIFT algorithm in FPGAs while introducing the sub-kernel trick to implement

resource efficient designs. Also, a parallel Huffman encoder preceded by a modified Paeth

predictor was conceived for lossless image pyramid and image compression. Moreover, a new

method of phosphene calibration was introduced that differs from the ones in the literature

in that it relies on a camera setup combined with image processing techniques. Such a system

73

was conceived to be parameterizable and reusable for the purpose of providing the visually

impaired with simplified vision, better navigational and even recognition abilities.

74

REFERENCES

ABRÀMOFF, M., MAGALHÃES, P. and RAM, S. (2004). Image processing with imagej.

Biophotonics international, 11, 36–42.

ADELSON, E., ANDERSON, C., BERGEN, J., BURT, P. and OGDEN, J. (1984). Pyramid

methods in image processing. RCA engineer, 29, 33–41.

BAY, H., ESS, A., TUYTELAARS, T. and VAN GOOL, L. (2008). Speeded-up robust

features (surf). Computer Vision and Image Understanding, 110, 346–359.

BAY, H., TUYTELAARS, T. and GOOL, L. V. (2006). Surf : Speeded up robust features.

ECCV. 404–417.

BEIS, J. and LOWE, D. (1997). Shape indexing using approximate nearest-neighbour search

in high-dimensional spaces. Computer Vision and Pattern Recognition, 1997. Proceedings.,

1997 IEEE Computer Society Conference on. IEEE, 1000–1006.

BONATO, V., MARQUES, E. and CONSTANTINIDES, G. (2008). A parallel hardware

architecture for scale and rotation invariant feature detection. Circuits and Systems for

Video Technology, IEEE Transactions on, 18, 1703 –1712.

BOSCH, A., ZISSERMAN, A. and MUOZ, X. (2007). Image classification using random

forests and ferns. Computer Vision, 2007. ICCV 2007. IEEE 11th International Conference

on. Ieee, 1–8.

BRADSKI, G. (2000). The opencv library. Doctor Dobbs Journal, 25, 120–126.

BRADSKI, G. and KAEHLER, A. (2008). Learning OpenCV. O’Reilly Media Inc.

BROWN, M. and LOWE, D. (2002). Invariant features from interest point groups. British

Machine Vision Conference, Cardiff, Wales. 656–665.

BROWN, M. and LOWE, D. (2003). Recognising panoramas. Proceedings of the Ninth

IEEE International Conference on Computer Vision. vol. 2, 5.

BRUNELLI, R. (2009). Template matching techniques in computer vision. Wiley Online

Library.

BUFFONI, L.-X., COULOMBE, J. and SAWAN, M. (2005). Image processing strategies

dedicated to visual cortical stimulators : A survey. Artificial Organs, 29, 658–664.

CASTLE, R. O., KLEIN, G. and MURRAY, D. W. (2010). Combining monoslam with

object recognition for scene augmentation using a wearable camera. Journal of Image and

Vision Computing, 28, 1548 – 1556.

75

CHAI, X., ZHANG, L., LI, W., SHAO, F., YANG, K. and REN, Q. (2008). Study of tactile

perception based on phosphene positioning using simulated prosthetic vision. Artificial

organs, 32, 110–115.

CHANG, L. and HERNÁNDEZ-PALANCAR, J. (2009). A hardware architecture for sift

candidate keypoints detection. Proceedings of the 14th Iberoamerican Conference on Pat-

tern Recognition : Progress in Pattern Recognition, Image Analysis, Computer Vision, and

Applications. Springer-Verlag, Berlin, Heidelberg, CIARP ’09, 95–102.

CHAPMAN, K. (2000). Saving costs with the srl16e. Xilinx techXclusive.

CHEN, B., DACHILLE, F. and KAUFMAN, A. (1999). Forward image mapping. Procee-

dings of the conference on Visualization’99 : celebrating ten years. IEEE Computer Society

Press, 89–96.

CHOW, A., CHOW, V., PACKO, K., POLLACK, J., PEYMAN, G. and SCHUCHARD, R.

(2004). The artificial silicon retina microchip for the treatment of vision loss from retinitis

pigmentosa. Archives of ophthalmology, 122, 460.

COULOMBE, J., SAWAN, M. and GERVAIS, J. (2007). A highly flexible system for mi-

crostimulation of the visual cortex : Design and implementation. Biomedical Circuits and

Systems, IEEE Transactions on, 1, 258–269.

CRISPIN, A. and RANKOV, V. (2007). Automated inspection of pcb components using

a genetic algorithm template-matching approach. The International Journal of Advanced

Manufacturing Technology, 35, 293–300.

DALAL, N. and TRIGGS, B. (2005). Histograms of oriented gradients for human detection.

Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society

Conference on. Ieee, vol. 1, 886–893.

DOBELLE, W. and MLADEJOVSKY, M. (1974). Phosphenes produced by electrical sti-

mulation of human occipital cortex, and their application to the development of a prosthesis

for the blind. The Journal of physiology, 243, 553.

DOLJANU, A. and SAWAN, M. (2007). 3D shape acquisition system dedicated to a vi-

sual intracortical stimulator. Circuits and Systems, 2007. ISCAS 2007. IEEE International

Symposium on, 1313–1316.

DUDA, R. and HART, P. (1972). Use of the hough transformation to detect lines and curves

in pictures. Communications of the ACM, 15, 11–15.

FISCHLER, M. and BOLLES, R. (1981). Random sample consensus : a paradigm for model

fitting with applications to image analysis and automated cartography. Communications of

the ACM, 24, 381–395.

76

GARRAULT, P. and PHILOFSKY, B. (2005). Hdl coding practices to accelerate design

performance. Xilinx Xcell Journal, 31–35.

GHANNOUM, R. and SAWAN, M. (2007). A 90nm cmos multimode image sensor intended

for a visual cortical stimulator. Microelectronics, 2007. ICM 2007. Internatonal Conference

on. IEEE, 179–182.

GOSLIN, G. (1995). A guide to using field programmable gate arrays (fpgas) for application-

specific digital signal processing performance. Xilinx Inc.

HARRIS, C. and STEPHENS, M. (1988). A combined corner and edge detector. Alvey

vision conference. Manchester, UK, vol. 15, 50.

HAWKES, G. (2005). Dsp : Designing for optimal results. high-performance dsp using

virtex-4 fpgas.

HESS, R. (2010). An open-source siftlibrary. Proceedings of the international conference on

Multimedia. ACM, 1493–1496.

HUMAYUN, M., WEILAND, J., FUJII, G., GREENBERG, R., WILLIAMSON, R., LIT-

TLE, J., MECH, B., CIMMARUSTI, V., VAN BOEMEL, G., DAGNELIE, G. ET AL.

(2003). Visual perception in a blind subject with a chronic microelectronic retinal prosthe-

sis. Vision Research, 43, 2573–2581.

JONKER, R. and VOLGENANT, A. (1987). A shortest augmenting path algorithm for

dense and sparse linear assignment problems. Computing, 38, 325–340.

JUAN, L. and GWUN, O. (2009). A comparison of sift, pca-sift and surf. International

Journal of Image Processing, 3, 143–152.

KE, Y. and SUKTHANKAR, R. (2004). Pca-sift : A more distinctive representation for

local image descriptors. Computer Vision and Pattern Recognition, 2004. CVPR 2004.

Proceedings of the 2004 IEEE Computer Society Conference on. Ieee, vol. 2, II–506.

KIM, E. T., SEO, J. M., ZHOU, J. A., JUNG, H. and KIRN, S. J. (2004). A retinal

implant technology based on flexible polymer electrode and optical/electrical stimulation.

Biomedical Circuits and Systems, 2004 IEEE International Workshop on, S1/8–12–15.

LAGANIÈRE, R. (1998). Morphological corner detection. Computer Vision, 1998. Sixth

International Conference on. IEEE, 280–285.

LAGANIÈRE, R. (2011). OpenCV 2 computer vision application programming cookbook.

Packt Publ. Limited.

LAZEBNIK, S., SCHMID, C. and PONCE, J. (2006). Beyond bags of features : Spatial

pyramid matching for recognizing natural scene categories. Proceedings of the 2006 IEEE

77

Computer Society Conference on Computer Vision and Pattern Recognition - Volume 2.

IEEE Computer Society, Washington, DC, USA, CVPR ’06, 2169–2178.

LINDEBERG, T. (1994). Scale-space theory in computer vision. Springer.

LINDEBERG, T. (1998). Feature detection with automatic scale selection. International

journal of computer vision, 30, 79–116.

LINDEBERG, T. (1999). Principles for automatic scale selection. Handbook on Computer

Vision and Applications, 2, 239–274.

LOWE, D. (1999). Object recognition from local scale-invariant features. Computer Vision,

1999. The Proceedings of the Seventh IEEE International Conference on. Ieee, vol. 2, 1150–

1157.

LOWE, D. (2001). Local feature view clustering for 3d object recognition. Computer

Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer

Society Conference on. IEEE, vol. 1, I–682.

LOWE, D. G. (2004). Distinctive image features from scale-invariant keypoints. Int. J.

Comput. Vision, 60, 91–110.

LUCAS, B. and KANADE, T. (1981). An iterative image registration technique with an

application to stereo vision. Proceedings of the 7th international joint conference on Artificial

intelligence.

MATLAB (2010). version 7.10.0 (R2010a). The MathWorks Inc., Natick, Massachusetts.

MEYER-BAESE, U. (2004). Digital signal processing with field programmable gate arrays.

Springer Verlag.

MIKOLAJCZYK, K. and SCHMID, C. (2004). Scale & affine invariant interest point de-

tectors. International journal of computer vision, 60, 63–86.

MIKOLAJCZYK, K. and SCHMID, C. (2005). A performance evaluation of local descrip-

tors. IEEE Transactions on Pattern Analysis & Machine Intelligence, 27, 1615–1630.

MONTEMERLO, M., THRUN, S., KOLLER, D. and WEGBREIT, B. (2002). Fastslam : A

factored solution to the simultaneous localization and mapping problem. Proceedings of the

National conference on Artificial Intelligence. Menlo Park, CA ; Cambridge, MA ; London ;

AAAI Press ; MIT Press ; 1999, 593–598.

NEUBECK, A. and VAN GOOL, L. (2006). Efficient non-maximum suppression. Pattern

Recognition, 2006. ICPR 2006. 18th International Conference on. Ieee, vol. 3, 850–855.

PAETH, A. W. (1991). Graphics Gems II. Academic Press.

PALANKER, D., VANKOV, A., HUIE, P. and BACCUS, S. (2005). Design of a high-

resolution optoelectronic retinal prosthesis. Journal of neural engineering, 2, S105.

78

PATEL, H. (2005). Synthesis and implementation strategies to accelerate design perfor-

mance. Xilinx White Paper, 229.

SAKAGUCHI, H., KAMEI, M., FUJIKADO, T., YONEZAWA, E., OZAWA, M., CECILIA-

GONZALEZ, C., USTARIZ-GONZALEZ, O., QUIROZ-MERCADO, H. and TANO, Y.

(2009). Artificial vision by direct optic nerve electrode (av-done) implantation in a blind

patient with retinitis pigmentosa. Journal of Artificial Organs, 12, 206–209.

SE, S., LOWE, D. and LITTLE, J. (2002). Global localization using distinctive visual

features. Intelligent Robots and Systems, 2002. IEEE/RSJ International Conference on.

IEEE, vol. 1, 226–231.

SHI, J. and TOMASI, C. (1994). Good features to track. Computer Vision and Pattern

Recognition, 1994. Proceedings CVPR’94., 1994 IEEE Computer Society Conference on.

IEEE, 593–600.

SRIVASTAVA, N., TROYK, P., TOWLE, V., CURRY, D., SCHMIDT, E., KUFTA, C.

and DAGNELIE, G. (2007). Estimating phosphene maps for psychophysical experiments

used in testing a cortical visual prosthesis device. Neural Engineering, 2007. CNE ’07. 3rd

International IEEE/EMBS Conference on, 130–133.

TODOROVIC, D. (1996). A gem from the past : Pleikart stumpf’s (1911) anticipation

of the aperture problem, reichardt detectors, and perceived motion loss at equiluminance.

PERCEPTION-LONDON-, 25, 1235–1242.

TOLEDO, E., MARTINEZ, J., GARRIGOS, E. and FERRANDEZ, J. (2005). FPGA

implementation of an augmented reality application for visually impaired people. Field

Programmable Logic and Applications, 2005. International Conference on, 723–724.

VEDALDI, A. and FULKERSON, B. (2010). Vlfeat – an open and portable library of

computer vision algorithms. Proceedings of the 18th annual ACM international conference

on Multimedia. Firenze.

VERAART, C., WANET-DEFALQUE, M., GÉRARD, B., VANLIERDE, A. and DEL-

BEKE, J. (2003). Pattern recognition with the optic nerve visual prosthesis. Artificial

organs, 27, 996–1004.

VIOLA, P. and JONES, M. (2004). Robust real-time face detection. International journal

of computer vision, 57, 137–154.

WINTER, J., COGAN, S. and RIZZO, J. (2007). Retinal prostheses : current challenges

and future outlook. Journal of Biomaterials Science, Polymer Edition, 18, 1031–1055.

YANAI, D., WEILAND, J., MAHADEVAPPA, M., GREENBERG, R., FINE, I. and HU-

MAYUN, M. (2007). Visual performance using a retinal prosthesis in three subjects with

retinitis pigmentosa. American journal of ophthalmology, 143, 820–827.

79

YILMAZ, A., JAVED, O. and SHAH, M. (2006). Object tracking : A survey. Acm Compu-

ting Surveys (CSUR), 38, 13.

ZRENNER, E., BARTZ-SCHMIDT, K., BENAV, H., BESCH, D., BRUCKMANN, A., GA-

BEL, V., GEKELER, F., GREPPMAIER, U., HARSCHER, A., KIBBEL, S. ET AL. (2011).

Subretinal electronic chips allow blind patients to read letters and combine them to words.

Proceedings of the Royal Society B : Biological Sciences, 278, 1489–1497.

	ACKNOWLEDGEMENTS
	RÉSUMÉ
	ABSTRACT
	CONDENSÉ EN FRANÇAIS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ACRONYMS AND ABBREVIATIONS
	1 INTRODUCTION
	1.1 Theoretical Framework
	1.2 Research Question
	1.3 Hypothesis
	1.4 Research Goals
	1.5 Objectives

	2 LITERATURE REVIEW
	2.1 Template Matching
	2.1.1 Border Handling
	2.1.2 Matching Scores
	2.1.3 Advantages/Disadvantages

	2.2 Feature-Based Methods
	2.2.1 Corner Detectors
	2.2.2 Scale Invariant Feature Transform
	2.2.3 Other Feature-Based Algorithms

	2.3 Image Processing Techniques in FPGAs
	2.3.1 Image Protocols and Interfaces
	2.3.2 Types of FPGA Image Processing Operators
	2.3.3 Finite Impulse Response

	3 APPROACH AND ORGANIZATION
	3.1 Software Prototype
	3.1.1 Image Processing Libraries
	3.1.2 SIFT
	3.1.3 Keypoint Matching
	3.1.4 Object Localization
	3.1.5 Lucas-Kanade

	3.2 Hardware Implementation
	3.2.1 Xilinx System Generator
	3.2.2 VHDL Coding
	3.2.3 Architecture Optimization
	3.2.4 Huffman Encoding

	3.3 Phosphene Map Estimation

	4 AN IMAGE PROCESSING SYSTEM DEDICATED TO A VISUAL INTRA-CORTICAL STIMULATOR
	4.1 Introduction
	4.2 Difference of Gaussians
	4.3 Parallel Huffman Encoder
	4.3.1 Image Differentiation
	4.3.2 Architecture of the Proposed Encoder

	4.4 Phosphene Map Calibration
	4.5 Simulation and Experimental Results
	4.5.1 DoG Precision
	4.5.2 VHDL Synthesis
	4.5.3 Huffman Encoding

	4.6 Conclusion

	5 GENERAL DISCUSSION
	5.1 Algorithm Robustness
	5.2 Hardware Implementation

	6 CONCLUSION AND RECOMMENDATIONS
	6.1 Research Synthesis
	6.2 Future Recommendations
	6.3 Concluding Remarks

	REFERENCES

