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Kurzzusammenfassung

Kurzzusammenfassung

Der immense Aufwand für die Sicherheitsvalidierung eines automatisierten Fahrsystems des

SAE-Levels 3 oder höher ist bekanntermaßen nicht alleine durch reale Testfahrten darstellbar.

Daher ist die Simulation selbst für begrenzte Betriebsbereiche die Lösung für die Homologation

automatisierter Fahrfunktionen. Folglich müssen alle Simulationsmodelle vorher qualifiziert sein,

die hierfür als Werkzeug verwendet werden. Dafür ist neben deren Verifizierung und Validierung

auch die Unsicherheits-Quantifizierung (VV&UQ) und -Vorhersage in den Anwendungsbereich

für die Glaubwürdigkeit des Simulationsmodells erforderlich. Um eine solche VV&UQ zu

ermöglichen, werden am Beispiel einer eigens erarbeiteten Simulation von Lidar-Sensorsystemen

neue Metriken vorgestellt, die ganzheitlich zum Nachweis der Modellglaubwürdigkeit und -reife

für Simulationsmodelle aktiver Wahrnehmungssensorsysteme verwendet werden können.

Der ganzheitliche Prozess hin zur Modellglaubwürdigkeit beginnt bei der Formulierung der

Anforderungen an die Modelle. Die Schwellwerte der Metriken als Akzeptanzkriterien sind dabei

quantifizierbar durch die Relevanzanalyse der Ursache-Wirkungs-Ketten, die in verschiedenen

Szenarien vorherrschen, und sollten dafür intuitiv in der gleichen Einheit wie die simulierte

Messgröße vorliegen. Diese Zusammenhänge können über die vorgestellten, aufeinander abges-

timmten Methoden “Perception Sensor Collaborative Effect and Cause Tree” (PerCollECT) und

“Cause, Effect, and Phenomenon Relevance Analysis” (CEPRA) abgeleitet werden. Für die

Stichprobenvalidierung muss jedes Experiment von Referenzmessungen begleitet werden, da

diese dann als Simulations-Input dienen. Da die Referenzdatenerhebung neben aleatorischer

auch epistemischer Unsicherheit unterliegt, welche in Form unterschiedlicher Eingangsdaten

durch die Simulation durchpropagiert werden, führt dies zu mehreren leicht unterschiedlichen

Simulationsergebnissen. Bei der hier betrachteten Simulation von Messsignalen und Daten über

die Zeit lässt sich diese Kombination der Unsicherheiten am besten als übereinandergelegte

kumulierte Wahrscheinlichkeitsfunktionen ausdrücken. Die Metrik muss daher in der Lage sein,

solche sog. P-Boxen als Ergebnis der Massensimulationen zu verarbeiten.

Die Flächenvalidierungsmetrik (engl. AVM) wird durch eine detaillierte Analyse als beste der

bereits genutzten Metriken ausgewählt und erweitert, um alle Voraussetzungen erfüllen zu können.

Dabei entsteht die korrigierte AVM (engl. CAVM), die den Modellfehler in der Streuung der

simulierten Messwerte quantifiziert. Schließlich wird die Doppelvalidierungsmetrik (DVM) her-

ausgearbeitet als Doppelvektor aus dieser mit dem Schätzwert für den Modell-Mittelwert-Fehler.

Die neuartige Metrik wird beispielhaft auf die empirischen kumulativen Verteilungsfunktionen

von Lidar-Messungen und den P-Boxen aus deren Re-Simulationen angewendet. Dabei werden

zum ersten Mal aleatorische und epistemische Unsicherheiten berücksichtigt und die neuartigen

Metrik erfolgreich etabliert. Hierbei wird auch die Quantifizierung der Unsicherheiten und Fehler-

vorhersage für ein Sensormodell auf Basis der Stichprobenvalidierung erstmals demonstriert.
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Abstract

Abstract

The immense effort required for the safety validation of an automated driving system of SAE

level 3 or higher is known not to be feasible by real test drives alone. Therefore, simulation is key

even for limited operational design domains for homologation of automated driving functions.

Consequently, all simulation models used as tools for this purpose must be qualified beforehand.

For this, in addition to their verification and validation, uncertainty quantification (VV&UQ) and

prediction for the application domain are required for the credibility of the simulation model. To

enable such VV&UQ, a particularly developed lidar sensor system simulation is utilized to present

new metrics that can be used holistically to demonstrate the model credibility and -maturity for

simulation models of active perception sensor systems.

The holistic process towards model credibility starts with the formulation of the requirements for

the models. In this context, the threshold values of the metrics as acceptance criteria are quantifi-

able by the relevance analysis of the cause-effect chains prevailing in different scenarios, and

should intuitively be in the same unit as the simulated metric for this purpose. These relationships

can be inferred via the presented aligned methods “Perception Sensor Collaborative Effect and

Cause Tree” (PerCollECT) and “Cause, Effect, and Phenomenon Relevance Analysis” (CEPRA).

For sample validation, each experiment must be accompanied by reference measurements, as

these then serve as simulation input. Since the reference data collection is subject to epistemic

as well as aleatory uncertainty, which are both propagated through the simulation in the form of

input data variation, this leads to several slightly different simulation results. In the simulation of

measured signals and data over time considered here, this combination of uncertainties is best

expressed as superimposed cumulative distribution functions. The metric must therefore be able

to handle such so-called p-boxes as a result of the large set of simulations.

In the present work, the area validation metric (AVM) is selected by a detailed analysis as the best

of the metrics already used and extended to be able to fulfill all the requirements. This results

in the corrected AVM (CAVM), which quantifies the model scattering error with respect to the

real scatter. Finally, the double validation metric (DVM) is elaborated as a double-vector of the

former metric with the estimate for the model bias. The novel metric is exemplarily applied to

the empirical cumulative distribution functions of lidar measurements and the p-boxes from their

re-simulations. In this regard, aleatory and epistemic uncertainties are taken into account for the

first time and the novel metrics are successfully established. The quantification of the uncertainties

and error prediction of a sensor model based on the sample validation is also demonstrated for

the first time.
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1 Motivation and Methodology for this Work

1.1 Active Perception Sensor System (APSS)

Simulation and its Missing Credibility

As already stated by Emery in the journal of verification, validation, and uncertainty quantification

(VV&UQ), “we need to recognize that in today’s world almost every real situation will sooner

or later be modeled.” 1 Nevertheless, there cannot be any serious application of simulation (in

contrast to e.g. gaming) without profound VV&UQ beforehand. In this context, “Validation

addresses the question of the adequacy of a model to represent a real situation” 1 and “Uncertainty

Quantification is a recognition that different experiments will produce different results.” 1 While

questioning simulation results and model credibility is as old as computer simulation itself and

the terminology has been established for many years2, “VV&UQ methodology is an evolving field

of research” 3 until today.

Regardless of its level of driving automation, as defined by the Society of Automotive Engineers

(SAE)4a, there is a common sense on the impossible effort in safety validation of any driving

automation system (DAS) by actual test-driving in real world.5 In consequence, simulation is

seen as the key enabler for safety validation before release of any DAS on public roads. This

explains the need for simulation in the first place and the required high credibility of all tools and

models, e.g. the active perception sensor system (APSS) models discussed here.

There is evidently a high demand in simulation-based testing and there is already e.g. a well

described predictive capability maturity model (PCMM) for computer simulation6. However,

to the knowledge of the author, until now there is no detailed report available for any APSS

simulation regarding its PCMM level or similar reporting on any of the categories described by

Oberkampf et al.6 and depicted in Fig. 1-1. The PCMMoverview emphasizes that for qualification

or certification, as it is the case for safety validation of DAS, all elements of the simulation require

maturity level 3. There are a few publications on APSS model verification and validation (V&V),

such as that of Pliefke et al., but they lack the necessary details and do not provide metrics, a

complete scenario catalog, or a sensitivity analysis, let alone a quantification of uncertainty7.

1 Emery, A. F.: Special Issue: Sandia V&V Challenge Problem (2016).

2 Schlesinger, S. et al.: Terminology for model credibility (1979).

3 Hu, K. T. et al.: Introduction: The 2014 Sandia Verification and Validation Challenge Workshop (2016).

4 Society of Automotive Engineers: SAE-J3016 (2021). a: pp. 24-34.; b: p. 17.; c: p. 33.

5 Wachenfeld, W.; Winner, H.: Die Freigabe des autonomen Fahrens (2015).

6 Oberkampf, W. L. et al.: Predictive Capability Maturity Model for Modeling and Simulation. (2007), p. 38.

7 Pliefke, S. et al.: Validation of a Ray-tracing-based Radar Sensor Model (2021).
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1 Motivation and Methodology for this Work
 

 

          

                   MATURITY 
 

 ELEMENT 

Maturity Level 0 
Low Consequence, 

Minimal M&S Impact, 
e.g. Scoping Studies 

Maturity Level 1 
Moderate Consequence, 

Some M&S Impact, 
e.g. Design Support 

Maturity Level 2 
High-Consequence, 
High M&S Impact, 

e.g. Qualification Support 

Maturity Level 3 
High-Consequence, 

Decision-Making Based on M&S, 
e.g. Qualification or Certification  

Representation and 
Geometric Fidelity 
What features are neglected 
because of simplifications or 

stylizations? 

• Judgment only 
• Little or no 

representational or 
geometric fidelity for 
the system and BCs 

• Significant simplification 
or stylization of the 
system and BCs 

• Geometry or 
representation of major 
components is defined 

• Limited simplification or stylization of 
major components and BCs 

• Geometry or representation is well 
defined for major components and 
some minor components 

• Some peer review conducted 

• Essentially no simplification or stylization 
of components in the system and BCs 

• Geometry or representation of all 
components is at the detail of “as built”, 
e.g., gaps, material interfaces, fasteners 

• Independent peer review conducted 

Physics and Material 
Model Fidelity 

How fundamental are the physics 
and material models and what is 
the level of model calibration? 

• Judgment only 
• Model forms are either 

unknown or fully 
empirical 

• Few, if any, physics-
informed models 

• No coupling of models 

• Some models are 
physics based and are 
calibrated using data 
from related systems 

• Minimal or ad hoc 
coupling of models 

• Physics-based models for all 
important processes 

• Significant calibration needed using 
separate effects tests (SETs) and 
integral effects tests (IETs) 

• One-way coupling of models 
• Some peer review conducted 

• All models are physics based 
• Minimal need for calibration using SETs 

and IETs 
• Sound physical basis for extrapolation 

and coupling of models 
• Full, two-way coupling of models 
• Independent peer review conducted 

Code Verification 
Are algorithm deficiencies, 

software errors, and poor SQE 
practices corrupting the 

simulation results? 

• Judgment only 
• Minimal testing of any 

software elements 
• Little or no SQE 

procedures specified 
or followed 

• Code is managed by 
SQE procedures 

• Unit and regression 
testing conducted 

• Some comparisons 
made with benchmarks 

• Some algorithms are tested to 
determine the observed order of 
numerical convergence 

• Some features & capabilities (F&C) 
are tested with benchmark solutions 

• Some peer review conducted 

• All important algorithms are tested to 
determine the observed order of 
numerical convergence 

• All important F&Cs are tested with 
rigorous benchmark solutions 

• Independent peer review conducted 

Solution Verification 
Are numerical solution errors and 

human procedural errors 
corrupting the simulation results? 

• Judgment only 
• Numerical errors have 

an unknown or large 
effect on simulation 
results 

• Numerical effects on 
relevant SRQs are 
qualitatively estimated 

• Input/output (I/O) verified 
only by the analysts 

• Numerical effects are quantitatively 
estimated to be small on some 
SRQs 

• I/O independently verified 
• Some peer review conducted 

• Numerical effects are determined to be 
small on all important SRQs 

• Important simulations are independently 
reproduced 

• Independent peer review conducted 

Model Validation 
How carefully is the accuracy of 
the simulation and experimental 

results assessed at various tiers in 
a validation hierarchy? 

• Judgment only 
• Few, if any, 

comparisons with 
measurements from 
similar systems or 
applications 

• Quantitative assessment 
of accuracy of SRQs not 
directly relevant to the 
application of interest 

• Large or unknown exper-
imental uncertainties 

• Quantitative assessment of 
predictive accuracy for some key 
SRQs from IETs and SETs 

• Experimental uncertainties are well 
characterized for most SETs, but 
poorly known for IETs 

• Some peer review conducted 

• Quantitative assessment of predictive 
accuracy for all important SRQs from 
IETs and SETs at conditions/geometries 
directly relevant to the application 

• Experimental uncertainties are well 
characterized for all IETs and SETs 

• Independent peer review conducted 
Uncertainty 

Quantification 
and Sensitivity 

Analysis 
How thoroughly are uncertainties 

and sensitivities characterized and 
propagated? 

• Judgment only 
• Only deterministic 

analyses are 
conducted 

• Uncertainties and 
sensitivities are not 
addressed 

• Aleatory and epistemic 
(A&E) uncertainties 
propagated, but without 
distinction 

• Informal sensitivity 
studies conducted 

• Many strong UQ/SA 
assumptions made 

• A&E uncertainties segregated, 
propagated and identified in SRQs 

• Quantitative sensitivity analyses 
conducted for most parameters 

• Numerical propagation errors are 
estimated and their effect known 

• Some strong assumptions made 
• Some peer review conducted 

• A&E uncertainties comprehensively 
treated and properly interpreted 

• Comprehensive sensitivity analyses 
conducted for parameters and models 

• Numerical propagation errors are 
demonstrated to be small 

• No significant UQ/SA assumptions made 
• Independent peer review conducted 

Figure 1-1: Overview of all elements and levels of the PCMM for simulation from Oberkampf et al.6

In combination with the lack of experience in APSS simulation for safety validation, there is

no trust or confidence in such simulation at the moment, where actually highly (risk-)informed

decision making should take place. To address this need for confidence, the following dissertation

presents a holistic approach to requirements, testing, metrics, and uncertainty quantification (UQ)

for actual trust in APSS models.

However, there is a tendency towards regulation and standardization of simulation-based safety

validation of DAS, where credibility is seen as the key aspect for using simulation as validation

tool. There is e.g. the United Nations Economic Commission for Europe (UNECE) intersecretariat

working group for Validation Method for Automated Driving - SG 2 (Virtual testing) that aims for

a UNECE regulation on the use of simulation for homologation. Additionally, the International

Alliance for Mobility Testing and Standardization (IAMTS) has published a best practice8 and as

a “leading global body of organizations in testing, standardization and verification of advanced

mobility systems” the IAMTS is expected to publish several follow-ups. Several standards exist

for simulation-based testing, as e.g. the U.S. Department of Defense’s MIL-STD-30229 or the

U.S. National Aeronautics and Space Administration (NASA) standard NASA-STD-7009A10.

8 International Alliance for Mobility Testing and Standardization: IAMTS0001202104 (2021).

9 U.S. Department of Defense: MIL-STD-3022 (2008).

10 U.S. National Aeronautics and Space Administration: NASA-STD-7009A (2016). a: p. 57.
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 M&S Development M&S Use (Operations) Supporting Evidence 

Level Data 
Pedigree 

Verification Validation Input 
Pedigree 

Uncertainty 
Characterization 

Results 
Robustness 

M&S 
History 

M&S 
Process / 
Product 
Management 

4 All data 
known & 
traceable to 
RWS with 
acceptable 
accuracy, 
precision, & 
uncertainty. 

Reliable 
practices 
applied to 
verify the 
end-to-end 
model; all 
model errors 
satisfy 
requirements. 

All M&S 
outputs agree 
with data from 
the RWS over 
the full range 
of operation in 
its real 
operating 
environment. 

All input data 
known & 
traceable to 
RWS with 
acceptable 
accuracy, 
precision, & 
uncertainty. 

Statistical analysis of 
the output 
uncertainty after 
propagation of all 
known sources of 
uncertainty. 

Sensitivities 
known for 
most 
parameters; 
most key 
sensitivities 
identified. 

Nearly 
identical 
model and 
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Controlled 
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3 All data 
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end-to-end 
model; all 
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All input data 
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referent. 
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acceptable 
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precision, & 
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parameters 
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key 
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At most 
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model and at 
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in model 
use. 

Controlled 
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2 Some data 
known & 
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traceable with 
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verify all 
model 
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important 
errors satisfy 
requirements. 

Key M&S 
outputs agree 
with data from 
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referent 
system. 

Some input 
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traceable with 
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uncertainties. 

Most sources of 
uncertainty 
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correctly classified. 
Propagation of the 
uncertainties is 
assessed. 
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known for a 
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parameters. 
Few or no key 
sensitivities 
identified. 

At most 
moderate 
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model and at 
most 
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in model 
use. 
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processes are 
applied. 

1 Some data 
known and 
informally 
traceable. 
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practices 
applied to 
verify some 
features of the 
model and 
assess errors. 

Conceptual 
model 
addresses 
problem 
statement and 
agrees with 
available 
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Some input 
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and 
informally 
traceable. 

Sources of 
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estimates only 
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New model 
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model, or 
major 
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in model 
use; but, 
model/chang
es/uses 
documented. 

Informal 
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applied. 

Figure 1-2: U.S. NASAKey Aspects of Credibility Assessment Levels for Modeling and Simulation10a

Figure 1-3: U.S. NASAModeling and Simulation Credibility Assessment Synopsis11a
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1 Motivation and Methodology for this Work

NASA-STD-7009A contains “Key Aspects of Credibility Assessment Levels” 10a as depicted in

Fig. 1-2 that are very related to the already presented PCMM. However, NASA concentrates more

explicit on a profound data analysis that is used for modeling and model credibility assessment,

while PCMMhas this data analysis implicit within the UQ step. Therefore, maturity and credibility

are slightly different, but both aim for the decision if the simulation results can be trusted for a

given task. The NASA standard even has a handbook NASA-HDBK-7009A11 that explains e.g.

the credibility assessment and the final “Credibility Assessment Synopsis” 11a that is providing a

precise graphical visualization of the simulation credibility, as shown in Fig. 1-3.

In conclusion, PCMM and NASA-STD-7009A both show that random sample selection is simply

not fulfilling the high requirements on simulation models for safety validation of any automated

driving system (ADS) and model credibility demands not only comparison of measurements and

simulation, but as Fig. 1-3 shows a sensitivity analysis, measurement and reference data analysis

(pedigree), and UQ. Additionally, as Riedmayer et al. state, VV&UQ must be accompanied

by overall maturity / credibility assessment procedures, such as the PCMM.12 Consequently,

simulation requires a lot of effort to reach an acceptable level of credibility and maturity for

the usage as a serious tool for e.g. safety validation. The following dissertation will show the

cornerstones along this way.

1.2 Introduction of Most Important Terms in APSS

Simulation and Validation

The following section provides the definitions of terms used during this work to avoid misunder-

standings in communication to the reader. Starting from operational design domain (ODD) and

the respective parameter space, terms like scenario, effect, phenomenon, accuracy, and VV&UQ

are explained and defined for the scope of this work in the context of DAS and ADS.

1.2.1 Operational Design Domain (ODD) and Parameter Space

Any DAS like adaptive cruise control (ACC), automatic emergency braking (AEB), or lane

keeping assistance (LKA) should have a clearly specified ODD for its safety validation. Only an

ADS of SAE Level 5 has an unlimited ODD that doesn’t need any further restriction. Even active

safety systems (ASS) like blind spot warning (BSW), lane departure warning (LDW), or forward

collision warning (FCW) do have a specified ODD. Thereby, the exact definition of the term

operational design domain (ODD) from the SAE is: “Operating conditions under which a given

driving automation system or feature thereof is specifically designed to function, including, but

11 U.S. National Aeronautics and Space Administration: NASA-HDBK-7009A (2019). a: p. 134.

12 Riedmaier, S. et al.: Unified Framework and Survey for Model VV&UQ (2020), p. 27.
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1.2 Introduction of Most Important Terms in APSS Simulation and Validation

Figure 1-4: ODD relative to SAE driving automation levels from SAE-J30164c

not limited to, environmental, geographical, and time-of-day restrictions, and / or the requisite

presence or absence of certain traffic or roadway characteristics” 4b

There is already the 6-layer model as an ontology for ODD by Scholtes et al., derived from

originally four layers by Schuldt et al.13 The 6-layer model considers already basic compatibility

to standards like OpenDRIVE14 and OpenSCENARIO15, while still lacking a defined machine-

readable format. Recently, ASAM e.V. started the project OpenODD16 to overcome this issue.

It has the goal to establish a commonly agreed machine-readable format for any ODD, while

claiming that an “ODD must be represented so it can easily be used within simulation and other

machine processed environments.” 16

Nevertheless, machine-readable does not necessarily include that the parameter space spanned by

the ODD can be taken as-is for APSS model specification or even validation. For this purpose,

parameters at least need to be interval scaled values, as defined by Stevens17. This is necessary

for methods such as sensitivity analysis and, most importantly, for the application of metrics over

the parameter space on the model outputs for model calibration, validation, and UQ. Therefore,

in the context of the following work, the term parameter space stands for an at least interval

scaled parameter space as prerequisite of the new methods and metrics for model specification

and validation and the term ODD is therefore avoided later on and replaced. Still, the need of

verification of the - at least - interval scaling of the parameters remains.

13 Schuldt, F. et al.: Effiziente systematische Testgenerierung für Fahrerassistenzsysteme (2013).

14 ASAM e.V.: ASAM OpenODD - Concept Paper (2021).

15 ASAM e.V.: ASAM OpenSCENARIO® - User Guide (2021).

16 ASAM e.V.: ASAM OpenDRIVE® - Specification (2021).

17 Stevens, S. S.: On the Theory of Scales of Measurement (1946).
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1 Motivation and Methodology for this Work

1.2.2 Scenario, Objects, and Experiment

In addition to the ODD, Ulbrich et al.18 define the terms scenery, scene, situation, and scenario

in the context of DAS with its APSS: While a scenery is the description of all static objects and

the non-changeable environmental parameters, a scene is a snapshot of a scenario including all

(possibly) moving and changing objects and circumstances. “A scenario describes the temporal

development between several scenes in a sequence of scenes.” 18a The situation is the description

of all rules and (planned) behavior of all objects within the scene, so a kind of another abstraction

layer. Consequently, ODD is the unification of all possible scenarios in which DAS with its APSS

is used.

Since, to the author’s knowledge, there is no clear common understanding of the term object, at

least in the scope of this work, an object could be any element in the scene that has a name and/or

a unique ID. The ISO 23150, which standardizes data communication between perception sensors

and the data fusion unit for automated driving functions, defines objects even more generally as

“representation of a real-world entity with defined boundaries and characteristics in the vehicle

coordinate system” 19a. According to this definition, all actively moving scene elements such as

vehicles, pedestrians, animals, etc. are objects, but passively moving elements such as plastic

bags, etc. are also objects. Even more, all static scene elements like houses, road markings, traffic

signs, traffic lights, and even object parts like windows are called objects as well.

Furthermore, Menzel et al. subdivide scenario descriptions into three abstraction layers called

functional, logical, and concrete.20 The authors already have simulation-based testing in mind

and specifically design their layers to support e.g. OpenDRIVE and OpenSCENARIO. Still,

APSS simulation is not in the focus of this fundamental work. The lack of deeper knowledge

about sensors and especially APSS could lead to unnecessary scenarios for testing and safety

validation of DAS, which should be avoided by concepts considering e.g. the dynamically

changing perception ranges of APSS, as described in previous work of the author.21 In the context

of the following work, an experiment series for model calibration or validation is analogue to a

logical scenario and a single sample of the experiment series is a concrete scenario. Consequently,

the term scenario will be avoided in the following and replaced by experiment series and sample,

which includes the implicit consequence that the parameter space of each sample and each

experiment series is a subset of the full parameter space coming from the ODD description.

18 Ulbrich, S. et al.: Defining and Substantiating the Terms Scene, Situation, and Scenario (2015). a: p. 986.

19 International Organization for Standardization: ISO 23150:2021(E) (2021). a: p. 3.; b: p. 4.

20 Menzel, T. et al.: Scenarios for Development, Test and Validation of Automated Vehicles (2018).

21 Elster, L. et al.: Fundamental Design Criteria for Logical Scenarios (2021).
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1.2 Introduction of Most Important Terms in APSS Simulation and Validation

1.2.3 Signal, Cause, Effect, and Phenomenon

As the data at the interfaces is mentioned, it must be clarified what is propagated through the

functional blocks in between and what happens to the propagated information during this process.

Even if defined differently elsewhere, e.g. in the ISO 2315019a, in this work the term signal is

used in a physical way like in a previous work of the author as “a quantity of energy influencing

the sensor according to its measurement principle.” 22 Therefore, a signal is the basis for effects

to appear, regardless if it has been sent actively by a perception sensor or is passively collected.

The signal is received by the sensor’s front-end and processed. After this signal processing, the

produced data, now called detections, is handed over to the data processing part.

During signal propagation and processing, effects occur, defined as “deviation from the originally

existing information about the environment in the signal or data.” 22 By adding data at the

definition’s end, it is clarified that effects can still appear during data processing within the APSS.

In addition to that, the mentioned originally existing information about the environment represents

the so called “ground truth (GT) under clean room conditions.” 22

All effects have underlying causes, defined as the “condition leading to a deviation in the

information.” 22 Causes in this sense can be sensor hardware properties, weather conditions,

object material properties, and so on.

After signal and data processing, phenomena can be observed at the output of the APSS. By this

definition, phenomena are effects that are measurable and can influence subsequent functions like

the automated driving functions. Consequently, mostly phenomena are listed in the specifications

for APSS simulation, because they can be validated by comparison to real measurements.

1.2.4 Measurement, Reference, and Ground Truth

In this work, the termmeasurement is only used for the real data outputted by the APSS to be

modeled. In contrast to measurements, all other data collected during real world experiments for

calibration or validation of APSSs models is described by the term reference data. Reference

data includes all information that can be collected during real world experiments, e.g. object

poses, materials, trajectories, weather, etc. To clarify the term, it should be stated that the so called

“reference sensor measurements” that try to come closer to the ideal value of the measurand with

the same technology as the APSS itself could be a part of the collected reference data, but do not

stand in contrast to it. When the replay-to-sim approach is used e.g. to generate simulation data

for model validation, the reference data is used as parameters (e.g. weather, material) and input

data (e.g. poses, trajectories) for the simulation.

In simulation, it can be named ground truth (GT), but the term should be used with caution.

To the understanding of the author, simulation is the only domain where GT exists when it

22 Linnhoff, C. et al.: Towards Serious Sensor Simulation for Safety Validation of Automated Driving (2021), p. 2.
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1 Motivation and Methodology for this Work

is used as a simulated reference sensor with total accuracy and any precision and trueness is

possible and directly available as such. In contrast, when reference data is collected in real world,

measurements are never error-free. They can be minimized but never eliminated completely,

causing the reference data to be at least slightly different to the GT. The ideal value aimed for

with reference sensors is often called GT, but for the already mentioned reasons the terms “ideal”

and “GT” are avoided in further chapters of this work.

1.2.5 Error, Accuracy, and Measurement Uncertainty

ISO 5725-1 defines accuracy as combination of trueness and precision23 and ISO 23150 applied

in this work slightly refines the terms. It defines trueness as “closeness of agreement between

the average of an infinite number of replicated measured quantity values and a reference quantity

value.” 19b. Additionally, precision is the “closeness of agreement between indications or

measured quantity values obtained by replicate measurements on the same or similar measurands

under specified conditions.” 19b Neither trueness nor precision are quantities, but as depicted in

Fig. 1-5 they are measured in form of bias for the former and standard deviation for the scattering

error combined to themeasurement uncertainty. To estimate these quantities, measurements

are performed followed by re-simulations. During such campaigns, both repeatability of results

under identical conditions and reproducibility of results by a different experimentalist, in a

different laboratory, or at a different test track should be investigated.

accuracy

trueness

precision

Performance
characteristics

Type of 
errors

systematic
error

(total) error

random error

bias

measurement
uncertainty

standard deviation
repeatability /

within-lab reproducibility /
reproducibility

expression of
performance

characteristics

Quantitative

Figure 1-5: Relationships between type of error, qualitative performance characteristics and their quantitative

expression from Menditto et al.24 Reproduced with permission from Springer Nature.

When measurements are compared to a reference, or when simulated data is compared to real

data, two types of errors are differentiated that form the overall error. Systematic errors lead

to less trueness and appear as a bias in quantitative performance characteristics of a sensor or a

sensor model. Random errors cause less precision and provoke a scattering error in quantitative

performance characteristics. Menditto et al.24 summarize this relationship vividly in Fig. 1-5.

23 International Organization for Standardization: ISO 5725-1 (1994).

24 Menditto, A. et al.: Understanding the meaning of accuracy, trueness and precision (2007), p. 46.
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1.2.6 Model Verification and Validation (V&V)

According to Popper, model validity is only a temporary state with the prerequisite of an unsuc-

cessful but profound attempt of falsification.25 As computer model validation is a quite established

field of research 26,27,28, Viehof andWinner have recently collected V&V definitions and methods

and show that there is a common understanding in the field of automotive simulation.29 The

definitions written down by Oberkampf and Trucano30, which are oriented on the definitions

by the American Institute of Aeronautics and Astronautics (AIAA) and the American Society

of Mechanical Engineers (ASME), are widely used in predecessor’s works, e.g. by Viehof31a,

Schaermann32, Riedmaier and Danquah33, etc. so they will be used in this work as well:

■ Verification is the “process of determining that a model implementation accurately repre-

sents the developer’s conceptual description of the model and the solution to the model.” 30

■ Validation is the “process of determining the degree to which a model is an accurate

representation of the real world from the perspective of the intended uses of the model.” 30

Sargent discusses data validation as the basis for valid simulation modeling and then splits

simulation validation into three parts:34

■ Data validity is defined as “ensuring that the data necessary for model building, model

evaluation and testing, and conducting the model experiments to solve the problem are

adequate and correct.” 34

■ Conceptual model validation is defined as “determining that the theories and assumptions

underlying the conceptual model are correct and that the model representation of the

problem entity is ‘reasonable’ for the intended purpose of the model.” 34

■ Computerized model verification is defined as “assuring that the computer programming

and implementation of the conceptual model is correct.” 34

■ Operational validation is defined as “determining that the model’s output behavior has

sufficient accuracy for the model’s intended purpose over the domain of the model’s intended

applicability.” 34

25 Popper, K.: The Logic of Scientific Discovery (2002).

26 Schlesinger, S. et al.: Terminology for model credibility (1979).

27 Sargent, R. G.: Assessment Procedure and Set of Criteria in Evaluation of Computerized Models (1981).

28 Balci, O.; Sargent, R. G.: Cost-Risk Analysis in the Statistical Validation of Simulation Models (1981).

29 Viehof, M.; Winner, H.: Forschungsstand der Validierung (2017).

30 Oberkampf, W. L.; Trucano, T. G.: Verification and validation benchmarks (2008), p. 719.

31 Viehof, M.: Objektive Qualitätsbewertung von Fahrdynamiksimulationen (2018). a: pp. 13-14.; b: p. 46.

32 Schaermann, A.: Systematische Bedatung und Bewertung umfelderf. Sensormodelle (2020), p. 17.

33 Riedmaier, S. et al.: Unified Framework and Survey for Model VV&UQ (2020), p. 4.

34 Sargent, R. G.: Verification and validation of simulation models (2007), p. 126.
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1 Motivation and Methodology for this Work

Accordingly, Viehof finds that simulation validity (Sargent: Operational validity) is the superposi-

tion of model validity (Sargent: Conceptual model validity) and data / parameter validity, whereas

singularities can happen, where invalid model and parameters lead to a valid simulation.31a Con-

sequently, by comparison with real data, only the combination of model and parameterization is

possible to validate.

Data / parameter validity refers to the already defined model input uncertainty. Model validity

refers to the model form uncertainty defined above. Therefore, verification aims for a minimal

numerical uncertainty during simulation, the last of the three sources of uncertainty.

Furthermore, in line with Popper, Viehof explains that global simulation validity does not exist,

but only global falsification. However, he states that for singular samples, “Stichprobenvalidität”

(English: sample-validity) is possible to show.31b In consequence, he defines sample-validity as

the state that validity could not be falsified within an empirical series of sample experiments.

1.2.7 Model Uncertainty Quantification (UQ)

Terms are misleading if not used carefully when the topic is APSS model development and

validation regarding its fidelity in replicating the measurement uncertainty. In this dissertation,

uncertainty does not refer to the three often cited kinds of uncertainty in machine perception

defined by Dietmayer35, namely state, existence, and class uncertainty. Even if they seem to

be independent in the first place on object level, they are connected at the thresholding step for

detection identification from the signal.

In sensor modeling, especially on signal propagation and processing level, the key difference

to classical physical modeling is to mimic actual measurement behavior of a device and not

purely physics itself. The sensor’s accuracy depends on extra influence parameters with respect

to parameters that physically influence the system response quantity (SRQ). Consequently, the

sensor’s bias and scattering error must be modeled in addition to correct physical modeling.

Due to this work’s overall context of modeling for simulation-based safety validation of automated

driving, a risk assessment point of view is introduced here. Therefore, the model uncertainty

must be quantified to enable model credibility assessment. The model uncertainty to replicate

the measurement uncertainty is to be specified in the model requirements and estimated by

model validation studies as basis of UQ. Measurement bias with respect to the reference that

tries to capture the GT has to be replicated by a sensor model, while a model bias in form of a

deviation to the untrue measurement itself should be avoided by the modeler. Fig. 1-6 illustrates

the difference between the two types of bias, while indicating that there is a difference between

the measurement’s and the simulation’s scattering error as well.

35 Dietmayer, K.: Predicting of Machine Perception for Automated Driving (2016), pp. 412-413.
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Figure 1-6: Relationship between measurement and model bias

For the mentioned risk assessment context, Roy and Oberkampf classify model uncertainty into

epistemic and aleatory:

■ Epistemic model uncertainty exists because of “lack of knowledge by the modelers,

analysts conducting the analysis, or experimentalists involved in validation.” 36

■ Aleatory model uncertainty means the “inherent variation in a quantity.” 36

Due to its character, epistemic uncertainty should be minimized, especially when reference data

is collected for replay-to-sim model validation. Aleatory uncertainty is collected automatically

during measurement and reference data recording over time and is expressed as the measurement

scattering error.

Besides the two already mentioned types of uncertainty, Roy and Balch identify three sources of

model uncertainty:

■ Model input uncertainty originates in “not only parameters used in the model of the system,

but also data from the description of the surroundings (e.g., boundary conditions).” 37a

■ Numerical uncertainty has its source in “discretization error, iterative error, round-off

error, and errors due to coding mistakes.” 37b

■ Model form uncertainty exists due to the overall modeling approach chosen37c and e.g.

the physical equations used or the neuronal network design to learn a data-driven model.

36 Roy, C. J.; Oberkampf, W. L.: Framework for verification, validation, and uncertainty (2011), p. 2132.

37 Roy, C. J.; Balch, M.: A holistic approach to uncertainty quantification (2012). a: p. 366.; b: p. 368.; c: p. 369.
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1.2.8 Model Credibility and Maturity

Although the terms model credibility and model maturity have already been mentioned in

Sec. 1.1, they need to be defined for the rest of this dissertation. Maturity of scientific computing

is based on credibility, considering several factors as e.g. in case of the PCMM shown in Fig. 1-1.

They are in the order that is requested by the PCMM geometric fidelity, physics and material

fidelity, code and solution verification, model validation and UQ and sensitivity analysis. While

credibility is assessed as a single state in time, maturity considers the process that leads to this

credibility. The technology readiness levels (TRL) pioneered by NASA in the late 1980s are very

similar, but they only apply for hardware.38a

NASA defines model credibility shortly as the “quality to elicit belief or trust in M&S results.” 39

Oberkampf and Roy discuss credibility in scientific computing starting from a broader view on

the term.38b Starting from the motivation of an individual to trust a simulation, they switch the

perspective to a credibility from a viewpoint of a whole project team or even the public.

On the examples of the NASASpace Shuttle and US Nuclear Regulatory Commission, Oberkampf

& Roy define credibility as the degree to which a project manager would bet his career or company

on the results or an analyst would bet public’s safety and catastrophic damage to the environment

on them. If one considers safety validation of ADS to be the same kind of high-consequence

that has “major consequences beyond the project itself” 38c, the same degree of credibility is

demanded for simulation-based safety validation as for Space Shuttles or nuclear power plants.

Therefore, credibility is used in the following work in that sense and has no alternative when

using simulation as a serious tool from a scientist’s point of view, as Roache already stated in the

IEEE Journal of Computing in Science & Engineering in 2004 (cited later by Oberkampf & Roy

in 201038b) when asking “Is Western Culture at Risk?” 40

“In an age of spreading pseudoscience and anti-rationalism, it behooves those of us who believe in

the good of science and engineering to be above reproach whenever possible. Public confidence is

further eroded with every error we make. Although many of society’s problems can be solved with

a simple change of values, major issues such as radioactive waste disposal and environmental

modeling require technological solutions that necessarily involve computational physics. As

Robert Laughlin noted in this magazine, “there is a serious danger of this power [of simulations]

being misused, either by accident or through deliberate deception.” Our intellectual and moral

traditions will be served well by conscientious attention to verification of codes, verification of

calculations, and validation, including the attention given to building new codes or modifying

existing codes with specific features that enable these activities.” 40

38 Oberkampf, W. L.; Roy, C. J.: Verification and Validation in Scientific Computing (2010). a: p. 698.; b: pp. 8-15.;

c: p. 11.

39 U.S. National Aeronautics and Space Administration: NASA-STD-7009A (2016), p. 11.

40 Roache, P.: Building PDE codes to be verifiable and validatable (2004), p. 38.
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1.3 Methodology towards Credibility in APSS

Simulation

The holistic view in this work on VV&UQ to gain credibility in APSS simulation reflects the

sequential nature of this extensive process. It has originally been stated by Trucano et al.41 and

was confirmed later by Oberkampf and Roy in their standard work on V&V42. The process is

composed of the nine steps starting from specification and ending with documentation, as shown

in Fig. 1-7. While being mainly linear, code (software) and overall solution verification with

computation of SRQs are accompanying it from aside.

Assessment of
Model Adequacy

Design and Execution of
Validation Experiments

Prediction and Uncertainty Estimation
for the Application of Interest

Documentation of
Activities

Computation of
Validation Metric Results

Code Verification and
Software Quality Assurance
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Figure 1-7: Integrated view of the elements of verification, validation, and prediction from Oberkampf and Roy42

(adapted from Trucano et al.41). Reproduced with permission of The Licensor through PLSclear.

In the second chapter the components and categories of APSS models are described to ensure the

basic knowledge on the systems to be validated later on. The third chapter describes the exemplary

implementation of an APSS, the reflection-based lidar model that serves as application example.

Afterwards, in Chap. 4 the state of the art (SotA) of model validation and metrics (step 6) is

provided followed by an interim conclusion that leads to the actual challenges towards confidence

in APSS simulation in Chap. 5. These challenges identify specification (step 1), experiments (step

4), and prediction (step 7) as major challenges, besides other important remarks. The SotA of

APSS model validation and the further challenges lead to the central research questions in this

work in Chap. 6 on metrics for specification and VV&UQ of APSS simulation.

41 Trucano, T. G. et al.: General Concepts for Experimental Validation of ASCI Code Applications (2002), p. 17.

42 Oberkampf, W. L.; Roy, C. J.: Verification and Validation in Scientific Computing (2010), p. 59.
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To answer them and start filling the lack of confidence in APSS simulation, the main part of this

dissertation consists of the corresponding answers:

1. A modular APSS model architecture and the two methods PerCollECT and CEPRA as

basis of the fidelity requirements in Chap. 7.

2. Amethodical evaluation of metrics for APSS model VV&UQ from the long list of metrics

applied in literature collected in Chap. 8.

3. Further developed metrics tailored for sample validation of APSS simulation when real

data repeatability and reproducibility (R&R) is limited to enable model error quantification,

uncertainty aggregation and its prediction for credible simulation application in Chap. 9.

metric.

The theory from these main chapters is then applied in Chap. 10 on lidar detections as exemplary

APSS simulation to show its usage and value. Thereby, the steps 4 to 8 from the holistic view on

VV&UQ in Fig. 1-7 are exemplary described for the novel Finally, in Chap. 11 a conclusion and

outlook is provided to path the way for further progress towards credibility of APSS simulation

and to finally enable actual safety validation of DAS or even ADS in simulation.
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2 Components and Categories for APSS

Simulation

Having the most important terms defined, the purpose of the following chapter is to present the

functional structure of APSSs and the currently applied categories to prepare specification and

validation later in this work. Additionally, some implementation details are described to provide

the necessary background knowledge for the later described specification and validation concepts.

At first, functional blocks and interfaces are identified by functional decomposition and secondly,

the categories for sensor models by approach, fidelity, and input are discussed. Thereby, as the

chapter’s title already suggests, in this work and in the following chapter, only APSSs are in

focus. Of these, lidar sensors are explained in more detail, as they will later serve as application

example for model specification and VV&UQ.

2.1 Functional Decomposition of APSS

The high-level principle of automated driving functions is the well-known sense-plan-act scheme,

as e.g. summarized by Amersbach43a. This work mainly focuses on the sense task and its

simulation as input for testing the remaining tasks. In automobiles, sensing can be fulfilled

using APSSs like ultrasonic sensors, radars or lidars that send out signals into the environment.

Besides, passive perception sensors like cameras or microphones can be used that collect signals

originating elsewhere, but are out of scope in this work.

Amersbach decomposes automated driving functions into six functional layers.43b Layer 0 is

named “Information Access”, describing he generally available information. Layer 1, called

“Information Reception”, means everything that is perceived by sensors, ending with sensor “raw

data”. Layer 2 is the “Information Processing” including not only object detection and tracking,

but sensor fusion and building the overall environment model within the autonomous vehicle.

Therefore, all three layers at least partly tackled by APSSs (simulation) and their interaction

with the environment. This means that the actual driving function that is to be validated for its

safety using simulation models actually starts with layer 3: “Situational Understanding” or in

the middle of layer 2, depending on whether the sensor fusion is architecturally included in the

driving function or not.

43 Amersbach, C. T.: Functional Decomposition (2020). a: pp. 41-44.; b: pp. 52-60.
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2 Components and Categories for APSS Simulation

2.1.1 Functional Blocks of APSS

As already introduced in previous works of the author, the term “system” in APSS is used to

include not only a sensor’s front-end, but some data processing steps as well.44,45 So, the term

system in active perception sensor system stresses the inclusion of some processing and the at

least partial integration of layer 2. As lidar sensor systems are the application example to present

and discuss the methods and metrics for sample validation and specification of accuracies and

uncertainties in this work, Fig. 2-1 shows the decomposition of a lidar sensor system for object

detection, as described in earlier work of the author.44 There, the front-end is about emitting

signals in the environment and measuring their echoes and the processing unit includes all steps

to obtain a list of tracked and classified objects.

Lidar sensor system for object detection

Front-end Data processing unit

Reception

Emission

Signal

Processing

Alignment

&

Fusion

Clustering

&

Segmentation

Classification

&

Tracking

IF1 IF2 IF3

Figure 2-1: Lidar sensor system for object detection from Rosenberger et al.44 ©IEEE 2019

Following the more generic functional decomposition from later work of the author46 as depicted

in Fig. 2-2, APSS models are divided into sensor front-end, data extraction, and object tracking.

The front-end contains signal transmission, signal propagation channel, signal reception, and

signal processing. Data extraction implements detection sensing and detection fusion. The last

block represents all data processing to achieve a list of tracked and classified objects at the output

of the sensor system including clustering of detections, classification, tracking, and prediction.

Front-End Data Extraction Object Tracking

(Sender,)

channel,

interaction,

receiver

Signal

processing

Detection

sensing

Detection

fusion
Clustering

Track

association

Prediction
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Analog

raw

signal

Spectral

inten-
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Fused
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tions

Detect.

objects

Figure 2-2: Generic functional decomposition of APSS from Linnhoff et al.46

Reproduced with permission from Springer Nature.

44 Rosenberger, P. et al.: Benchmarking and Functional Decomposition of Lidar Sensor Models (2019), p. 2.

45 Rosenberger, P. et al.: Functional Decomposition of Lidar Sensor Systems (2020), p. 139.

46 Linnhoff, C. et al.: Highly Parameterizable Perception Sensor Model Architecture (2021), p. 6.
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2.1 Functional Decomposition of APSS

2.1.2 APSS (Model) Interfaces

While the term “raw data” has already been used in the previous section, this spot will be the last

time mentioning it in this work (besides citations), as it is often used, but ambiguous. In lidar

sensor context, some people mean analogue signals with it, others call data after analogue-to-

digital conversion “raw”, while others have a point cloud in mind, so this confusing term will be

avoided in the following. In Fig. 2-1 above and its source paper44, IF1 was called “raw scan” to

differentiate it, but it still remains indeterminate. The term “analog raw signal” in Fig. 2-2 and

its source paper46 for data at the very beginning of any signal processing seems quite clear in

the first place. As every receiver hardware already influences the signal and probably filters or

amplifies it, “raw” is still a misleading term here.

It is not correct that every APSS front-end contains analogue information, as recent developments

in lidar receiver units towards digital lidars with time-correlated single-photon counting (TCSPC)

using single-photon avalanche diode (SPAD) arrays or silicon photomultiplier (SiPM) arrays for

photon counting proof. Within the front-end, instead of the analog raw signal depicted in Fig. 2-2,

a histogram of photons over time bins is obtained, as shown in Fig. 2-3 by Gupta et al.47

Figure 2-3: SPAD-based pulsed lidar histogram of the time-of arrival of incident photons over multiple laser pulse

cycles from Gupta et al.47 for idealized measurements without ambient light. © IEEE 2019

Even if one could think of a standardization of an interface for such histograms over time bins per

beam, current data rates in real sensor systems do not allow that amount of data, so ISO 2315048a

does not provide it. In its current release v3.4.0 - OSI “Gallant Glock”,ASAMOpen Simulation In-

terface (OSI)49 would allow to transfer such data in the osi3::LidarSensorView::Reflection,

but here data rate prohibits its current usage as well.

47 Gupta, A. et al.: Photon-Flooded Single-Photon 3D Cameras (2019), p. 3.

48 International Organization for Standardization: ISO 23150:2021(E) (2021). a: p. 2.; b: p. 3.

49 Hanke, T. et al.: A generic interface for the environment perception of automated driving functions (2017).
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2 Components and Categories for APSS Simulation

The term detection is defined in the international standard ISO 23150 as a “sensor technology

specific entity represented in the sensor coordinate system based on a single measurement of a

sensor.” 48a It is used for data at IF1 from Fig. 2-1 between sensor front-end and data processing

unit within the APSS in the following. In the generic decomposition shown in Fig. 2-2, detections

are first available in between the data extraction block. Using the ISO 23150 term avoids

potentially misleading terms like “low-level data” or “point cloud” and is well defined for radar,

lidar, camera, and ultrasonic sensors.

Terms that will be avoided in the following, are “high-level data” or similar, which could mean

object lists, but e.g. occupancy grids or voxels as well. Instead, it is clearly stated what data

or interface is meant exactly. Here, again, ISO 23150 helps by setting internationally agreed

definitions. As it is of interest for the following thesis, the term object is exemplary taken here,

as has been done for IF3 in Fig. 2-1 above and the corresponding paper44. ISO 23150 defines

it as a “representation of a real-world entity with defined boundaries and characteristics in the

vehicle coordinate system.” 48b

The ISO 23150 defines the term feature for data derived from detections that do not (yet) represent

an object. It describes a “sensor technology specific entity represented in the vehicle coordinate

system (3.7.16) based on multiple measurements.”48b It fits quite well to the “point cloud” called

data at IF2 in Fig. 2-1 above and for the fused detections after the data extraction block in Fig. 2-2

and is therefore used for both in the following.

Besides detections and objects, several other interfaces within APSSs have been identified in

previous work of the author for lidar44,45 and radar50. Holder e.g. shows the information flow

and the available data for radar from reflection to detection, target, and object.51 Nevertheless,

the focus of this work will be on simulation of detections and the validation of such, therefore

there will be no further explanation on other interfaces here.

In its current release v3.4.0 - OSI “Gallant Glock”, the field names for data in APSSs of the

ASAM OSI49 standard do not fit completely to ISO 23150. While there are DetectedObjects

and LidarDetectionData, the lidar detections are part of FeatureData, which is in contrast to the

ISO 23150 definitions. In addition, the features from ISO 23150 are called LogicalDetectionData

in OSI. Nonetheless, due to the already ongoing alignment of OSI to the ISO 23150, this contra-

diction is expected to be eliminated in future OSI releases starting from v4.0 on.

Figure 2-4: Model types and interfaces as defined in the official OSI documentation52

50 Holder, M. F. et al.: Measurements revealing Challenges in Radar Sensor Modeling (2018).

51 Holder, M. F.: Synthetic Generation of Radar Sensor Data for Virtual Validation (2021), p. 18.
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2.2 Categorization of APSS Models

It is possible in OSI to include environmental effects during signal propagation within a single

sensor (system) model that consumes a SensorView and outputs SensorData, as depicted in

Fig. 2-4. Still, the OSI standard’s official documentation52 names two other types of models:

The environmental effect model that has a SensorView as in- and output and the logical model

mimicking data processing algorithms that has SensorData as in- and output.

2.2 Categorization of APSS Models

Before different modeling approaches and implementations are presented, at first the models are

to be categorized and their possible intended usage is presented.

2.2.1 Categorization by Input and Output Data

The first categorization results naturally from the input and output data of the model. As described

in the previous section, the ASAM OSI standard clearly defines the interfaces, which supports a

clear categorization in this case. E.g. for lidar, OSI contains in its current release 3.4 the data

types Object, Reflection, Detection, and LogicalDetection.

Having these data fields inmind, the author recently introduced a naming schemewith Linnhoff et al.53

categorizing by in- and outputs that has already been adopted within the simulation-based safety

validation community as <input>-based <technology> <output> model. For example,

object-based and reflection-based object models are differentiated. In tradition of the refer-

enced work, the naming scheme is applied here as well.

Fig. 2-5 shows a screenshot of the Institute of Automotive Engineering (FZD) reflection-based

lidar object model54 in action connected to CarMaker from IPGAutomotive as an example. The

simulation tool, in this case IPG CarMaker, on the left side of the picture generates the reflections

and sends them together with the GT object list to the APSS model. This model then computes

detections (color scale), the actual lidar point cloud, from the reflections (gray scale) and finally

identifies detected objects (blue) in this point cloud that are compared to the GT objects (green).

2.2.2 Categorization by Modeling Approach

There have been several attempts in the past, some motivated by different publicly funded research

projects, to categorize APSSs simulation by modeling approach. Even though already stated by

52 ASAM e.V.: ASAM OSI® (Open Simulation Interface) - Official Documentation (2022).

53 Linnhoff, C. et al.: Refining Object-Based Lidar Sensor Modeling (2021), pp.24239-24240.

54 Rosenberger, P. et al.: Reflection Based Lidar Object Model (2022).
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2 Components and Categories for APSS Simulation

Figure 2-5: FZD Reflection-based lidar object model54 in action

with GT objects and reflections from IPGAutomotive’s CarMaker

the author some years ago, still “there is no clear separation when to call a model gray-box or

black-box, stochastic, phenomenological, or data-based.” 55

The often used terms “white-box”, “gray-box” or “black-box” depict the level of provided

knowledge about the models. In contrast, the terms idealized, phenomenological, stochastic,

data-driven, or physical appear regularly when APSS models are categorized by modeling

approach. The terms are widely accepted within the community, as shown in the survey by

Schlager et al.56 or in previous work of the author57 as the source for Tab. 2-1. GT “models” that

only transform all objects from world to sensor coordinates do not actually reflect any sensor and

are therefore omitted in the following.

Before introducing the named model categories in more detail, it must be stated that very often

APSS models consist of a mixture of modules from all kinds of these categories. E.g. on the

example of Fig. 2-2, the front-end could be modeled physically, data extraction could be simulated

ideally and object tracking could be done on a stochastic basis. While Tab. 2-1 already names

phenomenological APSS models as combination of stochastic and physical model parts, the

former example points out that there are even models of three types of modules.

Idealized APSS Models

In early development phases, if no fidelity requirements on the APSS model are present, idealized

APSS models are implemented, neglecting any physical effects on the signal and any information

55 Rosenberger, P. et al.: Benchmarking and Functional Decomposition of Lidar Sensor Models (2019), p. 4.

56 Schlager, B. et al.: State-of-the-Art Sensor Models for Virtual Testing (2020), p. 238.

57 Rosenberger, P. et al.: Towards a Generally Accepted Validation Methodology for Sensor Models (2019), p. 3.

20



2.2 Categorization of APSS Models

Table 2-1: Categorization of sensor data generation by modeling approach.

Source: Rosenberger et al.57 (with slight adjustments)

GT “models”
Idealized

APSS models

Phenomenological APSS models

Stochastic Physical

Principle

Transformation

of global GT

in sensor

perspective GT

Perfect FoV

(only values

the sensor

can actually

measure)

Phenomena

from data

(probabilistics

& statistics)

Cause-effect chains

leading to phenomena

(e.g. signal attenuation,

reflection, absorption,

transmission, etc.)

Possible

specifi-

cations

None (only

transformation)

Position,

orientation,

idealized FoV

False detections

(FP/FN), noise,

pollution,

manipulation, ...

Wave lengths,

material properties,

surfaces,

signal processing, ...

Sensor

accuracy
Not modeled Not modeled

Realistic

stochastic

Realistic single

measurements

Complexity None Very small
Depends on

parameter space

Very high

to infinite

loss on the data. E.g. the term “idealized object-based APSS object model” means that the

simulation’s original GT object list on the model’s input is just transformed from world to vehicle

coordinate frame. As already described by von Neumann-Cosel58, idealized APSS models simply

select all objects inside their perfect field of view (FoV) with maximum measurement range

and angular range from the real APSS’s specification sheet, which means e.g. no occlusion is

considered.

Nevertheless, idealized APSSmodels are not limited to object list output, but can output detections,

too. E.g. the results of a simple lidar detection model using basic, “vanilla” ray casting as

described in former work of the author59 could be called idealized detections, as there are no

signal propagation effects implemented besides of the real APSS’s beam pattern as singular rays

for basic hit-point calculation.

Stochastic APSS Models

Stochastic APSS models or in other words data-driven APSS models learn stochastic processes

using statistics from real data, like false positive and false negative (FN) rates from real object

lists, in different scenarios and replay them during simulation of similar scenarios. As a prominent

example, noise models for object poses etc. or detection’s positions or intensities for instance are

typically built in a stochastic manner. Simpler models for manipulation, blockage, or failure of

APSS are mostly of stochastic nature as well.

Still, parameter spaces in the field of APSS are typically huge having many dimensions, for

instance for all different environmental conditions in which the APSS are operated. As bigger and

58 Neumann-Cosel, K. von: Virtual Test Drive (2014), p. 88.

59 Rosenberger, P. et al.: Sequential lidar sensor system simulation (2020), p. 192.
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2 Components and Categories for APSS Simulation

more complex the parameter space gets, the more data is needed to learn the stochastics, leading

to a tipping point at which physical modeling could be the more efficient way of modeling.

Therefore, the complexity of the modeling approach highly depends on the parameter space it

should cover and the entry in Tab. 2-1 has been changed compared to the original publication by

the author57.

Pure stochastic APSS models often are considered to be always object models, like the statisti-

cal object-based lidar object model from measurement runs by Hirsenkorn60a or the statistical

object-based lidar object error model by Hanke61a. However, there are examples for stochastic

APSS detection models like the statistical, non-parametric object-based lidar detection model by

Hirsenkorn60b and the stochastic reflection-based radar detection model by Eder et al.62

While stochastic modeling is already data-driven and therefore often uses machine-learning to

extract the statistics from data, there are models even using deep learning for mimicking the

physics between real APSS’s in- and outputs like the Deep Stochastic Radar Models by Wheeler

et al.63 In this particular case, the power loss following the radar range equation is learned with

conditional variational autoencoders trained with both autoencoder loss and adversarial loss. It is

remarkable that in this case not only the location of the detections from objects are reproduced,

but also the detections’ power and even roadside clutter, as well.

Phenomenological APSS Models

Physics are modeled using physical equations and relationships that are derived in a phenomeno-

logical manner. In consequence, there is a fuzzy interpretation and no clear distinction what is

meant with physical or phenomenological modeling and how both terms are separated. Both terms

stress the objective to formulate real world’s behavior by inspection. To clarify the fuzziness at

least for the scope of this work, as already stated in Tab. 2-1, the term phenomenological APSS

model is taken as umbrella term for mixture models with physical and stochastic parts.

There is e.g. the often cited phenomenological radar object model by Bernsteiner et al.64 It

combines geometrical equations for modeling the detection’s locations with stochastic noise

models on these locations and the detections’ signal strengths. To mention APSS models of other

output besides detections and objects, there are even phenomenological models for data before

detection level, as e.g. described by Slavik and Mishra65.

60 Hirsenkorn, N.: Modellbildung und Simulation der Fahrzeugumfeldsensorik (2018). a: pp. 22-51; b: pp. 52-91;

c: pp. 92-110.

61 Hanke, T.: Simulated Environmental Perception forAutomated Driving Systems (2020). a: pp. 33-64; b: pp. 65-96.

62 Eder, T. et al.: Data Driven Radar Detection Models (2019).

63 Wheeler, T. A. et al.: Deep stochastic radar models (2017).

64 Bernsteiner, S. et al.: Radar Sensor Model for the Virtual Development Process (2015).

65 Slavik, Z.; Mishra, K. V.: Phenomenological Modeling of Millimeter-Wave Automotive Radar (2019).
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Physical APSS Models

As stochastic APSS models are often confused with object models, physical APSS models

are mainly considered to be detection models. Again, both and even more output data levels

are possible. However, it can be stated that purely physical APSS models are rare and often

concentrated on signal propagation modeling. In most cases, there are physical parts inside

phenomenological models, as the geometry module by Bernsteiner et al.64

In other words, the rendering of the scene for the APSS wavelength, resolution, and sensitivity is

physical modeling. However, there are several different approaches to implement such rendering.

There is e.g. the so-called Z-buffer method that renders objects in optical simulation including

geometrical occlusion calculation. It consists of projection of visible object geometries onto a

cylindrical or spherical surface around the sensor and clipping of the shapes. The object-based

lidar model from former work of the author66 that is publicly available open source67 could serve

as an example in case of lidar simulation.

In radar modeling, there are approaches for complexity reduction and efficiency, called reflection

center models. As described e.g. by Danielsson68 or Cao69, where objects and their complex 360◦

scattering profiles are simplified into one or multiple reflecting points. The reflecting points can

be efficiently transformed into the sensor coordinate frame and further signal attenuation or even

more complex effects can be superimposed on the radar’s power attenuation equation70.

Z-buffer and reflection center models are very efficient, as points just need to be transformed into

the sensor’s coordinate frame to calculate their spherical coordinates in this frame. In contrast,

there are approaches where a direct or multiply-bouncing geometrical path is searched from the

sensor’s transmitter (the sensor frame’s origin) onto the object. These approaches are called

beam/ray casting/tracing depending on whether infinitesimally thin rays or volumes are “shot”

and on whether the path is just cast until the hit point at the object or if it is traced back to hit the

sensor front-end again. Meanwhile, especially ray casting is widely used in commercial and open

source APSS simulation because of the ability of paralleling the calculation of the rays. This

is supported by the advancements of graphics processing unit (GPU) technology for this exact

purpose and for machine learning tasks in the last decade. Currently, even central processing

units (CPUs) have adopted this trend for enhanced support of paralleling computations and are

capable to support ray tracing, as well.

To name some physical APSS models using ray casting in chronological order without claim

for completeness, there are detection models for radar by Gubelli et al.71, Hirsenkorn60c, Thiel-

66 Linnhoff, C. et al.: Refining Object-Based Lidar Sensor Modeling (2021), pp. 24240-24242.

67 Linnhoff, C. et al.: Object Based Generic Perception Object Model (2022).

68 Danielsson, L.: Tracking and radar sensor modelling for automotive safety systems (2010).

69 Cao, P.: Modeling Active Perception Sensors for Real-Time Virtual Validation (2018).

70 Winner, H.: Automotive RADAR (2016), p. 331.

71 Gubelli, D. et al.: Ray-Tracing Simulator for Radar Signals Propagation in Radar Networks (2013).
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ing et al.72, and Holder et al.73. The last is called Fouriertracing, based on the work of Linnhoff74,

as it outputs data before detection level, right after the fast Fourier transform (FFT).

Ray casting is not exclusive for radar, but in fact mostly applied for lidar simulation, as in

the models by Hanke61b, and Tamm-Morschel75, while there are many more approaches as e.g.

included in the benchmarking of lidar models in earlier work of the author76.

Physical modeling is not limited to rendering, instead there are reflection-based models or model

parts as described by Cao69 or by Prinz et al.77,78, where physical radar theory is superimposed on

beforehand calculated radar reflections to model interference. In such reflection-based approaches,

the way of rendering or reflection calculation does not matter for the subsequent calculations. As

reflections or ray casting results are provided by many simulation engines, OSI already provides

a standardized description for reflections and there are open source models like the ones provided

by the research group of the author79,80.

It should be stressed that in contrast to stochastic modeling, where only minimal comprehension

about the underlying cause-effect chains leading to the modeled phenomena is necessary to extract

these, physical modeling demands high efforts in comprehension and e.g. hypothesis testing to

validate every single physical equation. While it is possible to use stochastic models and model

parts in many use cases, physical modeling ensures higher maturity by design.

2.2.3 Categorization by Fidelity

The presented categorization of sensor models by approach transports a (possibly misleading)

impression of model fidelity. Fidelity is the aim of the modeling approach and must be validated,

but it is not the direct consequence. Especially when it comes to phenomenological approaches, it

is not generally true that stochastic APSS models show lower fidelity than physical APSS models,

even if it could be guessed in the first place.

To clarify fidelity levels, Schlager et al. divide in their survey into low fidelity, medium fidelity,

and high fidelity APSS models listing different criteria from operating principles to v-model

phases, as shown in Tab. 2-281a.

72 Thieling, J. et al.: Scalable and Physical Radar Sensor Simulation for Interacting Digital Twins (2021).

73 Holder, M. F. et al.: The Fourier Tracing Approach for Modeling Automotive Radar Sensors (2019).

74 Linnhoff, C.: Entwicklung eines Radar-Sensormodells (2018).

75 Tamm-Morschel, J. F.: Erweiterung eines Lidar-Sensormodells (2019).

76 Rosenberger, P. et al.: Benchmarking and Functional Decomposition of Lidar Sensor Models (2019).

77 Prinz, A. et al.: Validation Strategy for Radar-Based Assistance Systems (2020).

78 Prinz, A. et al.: Automotive Radar Signal and Interference Simulation for Testing Autonomous Driving (2021).

79 Rosenberger, P. et al.: Reflection Based Lidar Object Model (2022).

80 Elster, L. et al.: Reflection Based Radar Object Model (2022).

81 Schlager, B. et al.: State-of-the-Art Sensor Models for Virtual Testing (2020). a: p. 239.; b: p. 241.

82 Hanke, T. et al.: Generic architecture for simulation of ADAS sensors (2015).
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Table 2-2: Overview of the properties of low-, medium-, and high-fidelity sensor models by Schlager et al.81a

Permission conveyed through Copyright Clearance Center, Inc.

Low fidelity Medium fidelity High fidelity

Operating

principles
Geometrical aspects

Physical aspects,

detection probabilities

Rendering (rasterization,

ray tracing, etc.)

Input Object lists Object lists 3D scene (meshes)

Output Object lists Object lists or “raw data” “Raw data”

Pros
Low computational

power needed

Trade-off btw. computing

time and fidelity, a lot of

effects can be considered

Most realistic output

Cons
High abstraction level,

no realistic output

Lots of training data

may be required

High computational

power needed

V-model

phases

First specification

phases

Specification phases

in the middle and

integration phases

Component specification,

implementation and

integration phases

Design

question

What point(s) or shape

represents objects and

which need to be

in the line of sight

for detection?

What point(s) or shape

represents objects and

which need to be in the

line of sight for

detection? What effects

are considered?

What is the

detection threshold?

Which effects,

material properties,

and weather conditions

are considered?

83 Stolz, M.; Nestlinger, G.: Fast generic sensor models for testing highly automated vehicles in simulation (2018).

84 Muckenhuber, S. et al.: Object-based sensor model for virtual testing of ADAS/AD functions (2019).

85 Bühren, M.; Yang, B.: Simulation of Automotive Radar Target Lists: Novel Approach of Object (2006).

86 Bühren, M.; Yang, B.: Automotive Radar Target List Simulation based on Reflection Centers (2006).

87 Bühren, M.; Yang, B.: A Global Motion Model for Target Tracking in Automotive Applications (2007).

88 Bühren, M.; Yang, B.: Extension of Automotive Radar Target List Simulation (2007).

89 Bühren, M.; Yang, B.: Initialization Procedure for Radar Target Tracking (2007).

90 Bühren, M.; Yang, B.: Simulation of Automotive Radar Target Lists: Clutter and Resolution (2007).

91 Schneider, R.: Modellierung der Wellenausbreitung für ein bildgebendes Kfz-Radar (1998).

92 Mesow, L.: Multisensorielle Datensimulation im Fahrzeugumfeld für die Bewertung von Sensorfusion (2007).

93 Schuler, K.: Intelligente Antennensysteme für Kraftfahrzeug-Nahbereichs-Radar-Sensorik (2007).

94 Schuler, K. et al.: Extraction of Virtual Scattering Centers of Vehicles by Ray-Tracing Simulations (2008).

95 Hammarstrand, L. et al.: Adaptive Radar Sensor Model for Tracking Structured Extended Objects (2012).

96 Hammarstrand, L. et al.: Extended Object Tracking using a Radar Resolution Model (2012).

97 Cao, P. et al.: Perception sensor modeling for virtual validation of automated driving (2015).

98 Li, Y. et al.: LiDAR Sensor Modeling for ADASApplications under a Virtual Driving Environment (2016).

99 Zhao, J. et al.: Method and Applications of Lidar Modeling for Virtual Testing of Intelligent Vehicles (2020).

100Peinecke, N. et al.: Lidar simulation using graphics hardware acceleration (2008).

101Hirsenkorn, N. et al.: A ray launching approach for modeling an FMCW radar system (2017).

102Maier, F. M. et al.: Environment perception simulation for radar stimulation (2018).

103Holder, M. F.: Synthetic Generation of Radar Sensor Data for Virtual Validation (2021).

104Eder, T.: Simulation of Automotive Radar Point Clouds in Standardized Frameworks (2021).
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Table 2-3: Overview of radar and lidar sensor models for virtual testing of DAS/ADS by Schlager et al.81b,

classified into low-, medium-, and high-fidelity sensor models. (⋆: Additions by the author)

Radar Lidar

Low

fidelity

Hanke et al.82, Stolz and Nestlinger83,

Muckenhuber et al.84, Hanke61a⋆

Medium

fidelity

Hirsenkorn et al.60a,b⋆

Bühren and Yang85,86,87,88,89,90,

Schneider91⋆, Mesow92,

Schuler93, Schuler et al.94,

Danielsson68, Hammarstrand et al.95,96,

Cao et al.97, Bernsteiner et al.64,

Wheeler et al.63, Cao69, Eder et al.62⋆

Li et al.98,

Zhao et al.99

Linnhoff et al.66⋆

High

fidelity

Peinecke et al.100

Gubelli et al.71⋆, Hirsenkorn et al.101,
Hirsenkorn60c⋆, Maier et al.102,

Linnhoff74⋆, Holder et al.73,
Thieling et al.72⋆, Prinz et al.77,78⋆,
Holder103⋆, Eder104⋆,
Degen et al.105⋆, Maier106⋆

O’Brien and Fouche107, Goodin et al.108,

Doria109,110, Gschwandtner et al.111,

Rossmann et al.112, Wang et al.113,

Gschwandtner114, Wang115,

Bechtold et al.116, Hanke et al.117,

Alldén et al.118⋆, Su et al.119,
Fang et al.120, Woods121, Hanke61,

Rott122, Goodenough et al.123⋆

Nevertheless, these three fidelity categories from Schlager et al. are not always applicable for all

kinds of models that strictly. Especially the definition of high fidelity starting with rendering as

operating principle is up to discussion. The already introduced object-based lidar model from

105Degen, R. et al.: Methodical Approach to the Development of a Radar Sensor Model (2021).

106Maier, F. M.: Radar Perception Simulation for Automated Driving Tests (2022).

107O’Brien, M. E.; Fouche, D. G.: Simulation of 3D Laser Radar Systems (2005).

108Goodin, C. et al.: Sensor modeling for the Virtual Autonomous Navigation Environment (2009).

109Doria, D.: A Synthetic LiDAR Scanner for VTK (2009).

110Doria, D.: SyntheticLidarScanner (2021).

111Gschwandtner, M. et al.: BlenSor (2011).

112Rossmann, J. et al.: A Real-Time Optical Sensor Simulation Framework for Development and Testing (2012).

113Wang, S. et al.: Shader-based sensor simulation for autonomous car testing (2012).

114Gschwandtner, M.: Support framework for obstacle detection on autonomous trains (2013).

115Wang, S.: State Lattice-based Motion Planning for Autonomous On-Road Driving (2015).

116Bechtold, S.; Höfle, B.: HELIOS (2016).

117Hanke, T. et al.: Generation and validation of virtual point cloud data for automated driving systems (2017).

118Alldén, T. et al.: Virtual Generation of Lidar Data for Autonomous Vehicles (2017).

119Su, H. et al.: A Simulation Method for LIDAR of Autonomous Cars (2019).

120Fang, J. et al.: Augmented LiDAR Simulator for Autonomous Driving (2020).

121Woods, J. O.: GLIDAR (2021).

122Rott, R.: Dynamic Update of Stand-Alone Lidar Model (2022).

123Digital Imaging and Remote Sensing Lab: DIRSIG (2022).
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2.3 Existing Tools for APSS Simulation

former work of the author124 uses geometrical and physical aspects in combination with refined

bounding boxes and a modified Z-buffer method for rendering as well as stochastics.

The model has elements from all fidelity categories to achieve validity for modeled sensor effects

in terms of FoV and occlusion calculation with lower computational power requirements. In its

current state, as indicated in Tab. 2-3 one would call the model’s fidelity “medium”, but Z-buffer

is a rendering method and therefore, the model should be called high fidelity, if the rules by

Schlager et al. from Tab. 2-2 would be applied strictly. Still, the model shows the potential to rise

to high fidelity and challenge ray tracing as the actual magic bullet in lidar rendering.

Finally, Schlager et al. presented a list of the state-of-the-art in sensor modeling, ordering radar,

lidar, and camera models by their fidelity.81b Tab. 2-3 contains all models of radar and lidar sensor

systems from that survey. To complete the survey of the SotA of modeling, the list is extended by

the author (marked with ⋆) with work published afterwards or not considered by Schlager et al.

2.3 Existing Tools for APSS Simulation

An extensive overview of 40 simulation tools was given in 2019 by Kang et al.125. Raju and Farah

listed 32 tools in September 2021126. Recently, Salles et al. published a study on co-simulation

with open source tools127 that discusses CARLA and LG Silicon Valley Lab (SVL) besides listing

further open source tools like Microsoft’s AirSim, Gazebo, BeamNG or DeepDrive, as well as

commercial simulation tools Siemens PreScan, IPG Automotive CarMaker, TESIS veDYNA,

AVSimulation SCANeR, dSpace ASM, and NVIDIA DriveSim.

While the automotive simulation market is expected to grow significantly in the next few years,

big players like Ansys and Hexagon have already incorporated tool manufacturers, like Hexagon

with Vires VTD, or partner with them extensively, as is the case for the whole market these days.

Those partnerships make it almost impossible to give a sophisticated actual overview, besides the

high dynamic that is brought in by start up companies like AI Motive to name just one of many.

Due to the pressure on established companies through many new players, there is high dynamic

under the hood of simulation tools regarding e.g. graphics engines, scene and scenario design,

physics simulation, standardization, and many more. Therefore, as a snapshot of the simulation

market in early 2022, market consolidation in automotive simulation is as far away as credibility

andmaturity of APSS simulation, as e.g. described for seven technical issues by ElMostadi et al.128

124Linnhoff, C. et al.: Refining Object-Based Lidar Sensor Modeling (2021).

125Kang, Y. et al.: Test Your Self-Driving Algorithm (2019).

126Raju, N.; Farah, H.: Evolution of Traffic Microsimulation and Its Use (2021).

127Salles, D. et al.: AModular Co-Simulation Framework (2022).

128El Mostadi, M. et al.: Seven Technical Issues That May Ruin Your Virtual Tests for ADAS (2021).
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3 Exemplary Implementation of a Lidar Sensor Simulation

3 Exemplary Implementation of a Lidar Sensor

Simulation

After the different categorization principles and categories, the following chapter gives some

implementation details of the exemplary implemented lidar simulation by the author. Besides

all actually implemented effects, the most prominent effects and phenomena in lidar modeling

that are not implemented are briefly introduced as well. Like the model itself, the explanations

now are provided to support the methodological considerations later on. While some cause-effect

chains are more suitable to physical modeling, others are favorable for stochastic modeling. As

the goal is to obtain a phenomenological model at the end that serves as a reasonable example

for model specification and VV&UQ later in this work, only a subset of all possible cause-effect

chains has been implemented. The own development of this simulation model was necessary

even if there are commercial and open source lidar simulations available, as own implementations

are white-box, can be calibrated to available real sensors as necessary for validation, and do not

cause unwanted effects in the data without knowledge about their origin.

However, the methodology provided in this work for model specification and VV&UQ is designed

for all APSS simulations and the selection of lidar as one of many APSS is to some extent arbitrary

at this point. The selection is necessary just to reduce explanation and application effort in this

dissertation. Nevertheless, it would have been possible to select e.g. radar or ultrasonic sensor

system models as application area for this work, as well. The implementation as described in the

following, which has already been demonstrated in Fig. 2-5, has led to a reflection-based lidar

object model that has been made publicly available by the author on GitLab129 open source.

To adhere to the functional structure previously provided by Fig. 2-2, the following sections

about implementation details are sorted by functional decomposition blocks. They start with the

front-end including signal interaction with objects and the channel as well as beam divergence

and temporal behavior, followed by data extraction and ending with object tracking.

3.1 Front-End Modeling

Lidar or “light detection and ranging” means that the sensor transmits (infrared) light pulses and

measures the range r to reflecting objects by the signal’s time of flight until it is received tof

as r = c tof
2
. Therefore, implementation starts with modeling signal emission, interaction, and

reception for the correct calculation of the received power, the so-called “laser radar equation”.

129Rosenberger, P. et al.: Reflection Based Lidar Object Model (2022).
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3.1 Front-End Modeling

For hit object ranges robj much longer than the pulse length in meter cτp, the laser radar equation

for received laser power from a hit object is valid as e.g. shown by Rasshofer et al.130a and reads

Pr = Pt · Cr ·Hcnl(r) ·Hobj(r). (3-1)

Cr = ηrAr (3-2)

is the optical aperture constant including the area Ar and efficiency ηr of the receiver optic
130a.

Hcnl(r) =
η2cnl(r)χfov(r)

r2
(3-3)

denotes the range-dependent spatial impulse response of the channel with the total one-way

transmission efficiency ηcnl(r) squared for out and back multiplied by the crossover function

χfov(r) and divided by the squared range, as it is traveled twice, as well
130b. Channel is used in

this context to describe the signal’s interaction with fields and particles on its propagation path.

The crossover function χfov(r) for the intersection of the area covered by the receiver’s FoV

Afov(r) and the covered area of the transmitted beam At(r) at range r is defined as

χfov(r) =
Afov(r) ∩ At(r)

At(r)
(3-4)

and is constant for coaxial transmit/receive optics. However, it strongly depends on the range

r for bistatic beam configurations, where transmitted beam and receiver FoV do not overlap

completely (r < R2), as shown in Fig. 3-1. In recent lidar sensors, where application-specific

integrated circuits (ASICs) are used leading to very low displacement d between emitter and

receiver, R2 becomes relatively small and χfov(r) plays a minor role.
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Figure 3-1: Crossover of beams for bistatic optic configuration with parallel optical axis from Rasshofer et al.130b

d is the aperture displacement. R1 is the range of first contact between emitted beam and receiver’s FoV.

R2 determines where both overlap completely. ρt and ρr denote the radii of the transmission and reception aperture.
γt and γr depict their vertical opening angles.

130Rasshofer, R. H. et al.: Influences of weather phenomena on automotive laser radar systems (2011). a: p. 51.;

b: p.52.; c: p.53.
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3 Exemplary Implementation of a Lidar Sensor Simulation

The range-dependent spatial impulse response of any hit object

Hobj(r) = β0χobj(r) (3-5)

is a product of the differential reflectivity β0 of the object that e.g. equals Γ/π for Lambertian

reflection characteristic 0 < Γ ≤ 1, and the crossover function

χobj(r) =
Aobj ∩ At(r)

At(r)
(3-6)

of the area of the transmitted laser beam At(r) at range r and the object’s area in the beams

direction of sight Aobj.
130c

Inserting (3-2) - (3-6) into (3-1) leads to the more detailed form of the laser radar equation for the

received power

Pr = Pt · ηrAr ·
η2cnl(r)χfov(r)

r2
· β0χobj(r) (3-7)

However, in the current reflection-based lidar simulation, the ray tracing performed in a second

simulation tool which provides options for changing reflectivities and shapes of objects but

currently neglects the crossover function for possibly bistatic lidar front-ends (3-4).

3.1.1 Ray Casting / Tracing and Beam Super-Sampling

The SotA for lidar rendering is ray casting or tracing, as it is available in most game engines

and modern GPUs are designed for parallel hit point calculation for each ray. While ray casting

stops at the first hit point of the ray with bidirectional scattering distribution function (BSDF)

calculation, ray tracing starts new rays from this hit point. This then enables to model signal

propagation through transmissive objects and multi-path propagation over several reflections

back to the receiver, but comes with way higher computation cost and needs high-performance

GPUs for parallel computing of millions of rays. For this reason, often simpler ray casting is

chosen and not ray tracing, as is the case for the exemplary lidar sensor simulation used here.

Modern lidar sensor simulations like the here exemplary implemented model reproduce the

lidar beam pattern via super-sampling of the cone-shaped diverging lidar beams with multiple

rays in a brute force manner or with advanced methods like Monte Carlo path tracing. In this

work, the lidar sensor simulation as described by Tamm-Morschel 131 is used that contains the

brute force super-sampling method. Fig. 3-2 from previous work of the author132 illustrates the

super-sampling for a single lidar beam. As shown, when hitting an edge or two objects behind

131Tamm-Morschel, J. F.: Erweiterung eines Lidar-Sensormodells (2019).

132Rosenberger, P. et al.: Sequential lidar sensor system simulation (2020), p. 192.
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3.1 Front-End Modeling

each other within one single beam (A-B and C-D), the real lidar sensor can identify two echoes

in the signal, which can only be reproduced by shooting multiple rays per beam to produce hit

points a.k.a reflections from different objects and ranges.

On the right side of Fig. 3-2, the green dots depict reflections from super-sampling over the

exemplary analogue real world signal with its noise floor in blue. After application of the intensity

threshold Ith and echo pulse width (EPW) identification, the information from simulation and

real world could be identical detections. As marked in Fig. 3-2, EPW in this context depicts the

width of a received pulse, as for (A-B) and (C-D), in contrast to the intensity that corresponds to

the height of these pulses. The natural drawback of equidistant super-sampling rays is that the

inter-ray distance grows with range r and the area corresponding to a single ray grows with r2,

while Monte-Carlo super-sampling or other ray distributions aim to improve this. It should be

stated at this point that in contrast to the data from SPAD or SiPM arrays as shown in Fig. 2-3, ray

super-sampling is spatial discretization, not time binning, while both seem very similar at first.

••
• •
••

ABCD

⊗
••••••••••••••••••••••••••••••••••••
⊗

A B C D

⊗
Ith

r

I(r)

Figure 3-2: Super-sampling of a single lidar sensor beam and beam pattern application on the reflections for

detection calculation within the reflection-based lidar sensor simulation from Rosenberger et al.132. (A-B) and (C-D)

mark the two resulting echoes at the object (left) and in the intensity signal (right). ⊗ is the center of the beam that

one would get by single-ray-per-beam ray casting without multi-echo capability.

3.1.2 Range Dependency of the Received Power

Combining the range independent terms in (3-7) leads to similar forms of the laser radar equation,

as e.g. published by Gotzig133a, Schmitt et al.134a, and in former work of the author135. Such

simplification, where the range dependency is made clearer, is ensured for the following consider-

ations with the range considered to be long enough for full overlap of the transmitted beam and

the receiver’s FoV, so that Afov(r) ∩ At(r) = At(r) and χfov(r) = 1.

However, for the question of range dependency of the received power Pr from a transmitted lidar

beam that gets reflected by a hit object, the non-linear range dependency of χobj(r) from (3-6) is

the key to its magnitude. In other words, the area that is covered by the object within the crossover

of the transmitted beam and the receiver’s FoV determines the range dependency fundamentally.

In the first case, when the hit object is relatively big compared to the beam, e.g. when illuminating

a wall or vehicles in short ranges, χobj(r) = 1 and the received power Pr ∝ 1/r2 , as visible in

133Gotzig, H.; Geduld, G.: Automotive LIDAR (2016). a: p. 411.; b: p. 410.

134Schmitt, J. et al.: Phenomenological, Measurement Based LiDAR Sensor Model (2021). a: p. 427.; b: p.428.

135Rosenberger, P. et al.: Analysis of Real World Sensor Behavior (2018), p. 612.
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3 Exemplary Implementation of a Lidar Sensor Simulation

(3-7) and shown e.g. by Schmitt et al.134b as

Pr = Pt · ηrAr ·
η2cnl(r)

r2
· β0 ⇒ Pr ∝ 1/r2. (3-8)

With higher range between sensor and object, χobj(r) starts to be range-dependent. The horizontal

γt,h and vertical beam divergence γt,v of the transmitted beam that are prominent content in

specification sheets of real lidar sensor systems start to be the crucial factors together with

the range r. At intermediate ranges, when only one side of the beam area At = r2 γt,h γt,v

protrudes from the object area Aobj = wobj hobj, e.g. the upper part for lidars with higher vertical

beam divergence than in horizontal direction. In this case, χobj(r) can be approximated to

χobj(r) ≈
hobj
r γt,v

with χobj(r) ∝ 1/r leading to Pr ∝ 1/r3, as shown by Gotzig133b, yielding to

Pr ≈ Pt · ηrAr ·
η2cnl(r)

r2
· β0

hobj
r γt,v

⇒ Pr ∝ 1/r3 (3-9)

For relatively small objects, e.g. at high ranges, when the beam covers the whole object, the

received power Pr ∝ 1/r4. In this case, the numerator of χobj(r) equals Aobj and stays range-

independent. Consequently, χobj(r) ∝ 1/r2 leading to

Pr = Pt · ηrAr ·
η2cnl(r)

r2
· β0

Aobj

r2 γt,h γt,v
⇒ Pr ∝ 1/r4 (3-10)

Muckenhuber et al.136 also stress this range dependency to the reciprocal of the range r to the

power of two, three or four depending on the relative size of the laser beam compared to the size

of the illuminated object, and illustrate it as shown in Fig. 3-3.

Figure 3-3: Schematic illustration of the range influence on the receivable lidar power depending on transmitted

beam size (red circle) compared to the size of hit object (black rectangle) from Muckenhuber et al.136

136Muckenhuber, S. et al.: Automotive Lidar ModellingApproach Based onMaterial Properties and Lidar Capabilities

(2020), p. 6.
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3.1 Front-End Modeling

3.1.3 Signal Interaction with Hit Objects

Following up on signal interaction with objects, the power reflected back to the sensor has to

be computed to gather realistic data from simulation. In most cases, the absolute value is not of

interest, but the proportion of the transmitted power that theoretically can be received. This refers

to β0 from (3-5) that could be described by a BSDF in the general case, or if just the reflection is

calculated, by a bidirectional reflectance distribution function (BRDF) and is possible to tune

with the exemplary implemented lidar simulation.

In a BSDF, the geometry of the hit surface is considered by the angle between incident ray and

normal vector of the surface as interpolation between the mesh’s points for the hit point. The

surface roughness is considered by the reflection type. Most reflections are super positions of

specular and diffuse portions, while often only one type is considered for specific materials for

simplification. For correct BSDF calculations, reflectivities for different wavelengths need to be

provided in simulation as e.g. lookup tables. While 905 nm are still most common for real lidar

sensors, 885 nm in Ibeo NEXT, or 940 nm in Sense Photonics lidar, or even 1550 nm in AEye

lidar sensors exist and should therefore be provided for their simulation.

In case of specular reflections and in case of transmissive materials, new rays should be shot into

the simulated scene starting from the hit point in order to obtain all possible signal interactions.

In the exemplary model, further tracing of the rays is avoided for shorter computation time on the

available hardware. To some extend, every material has multi-path propagation potential, due to

the high sensitivity of modern lidar receivers, when e.g. retro-reflective materials exist within the

scene at small ranges to the sensor that reflect multiple magnitudes higher power than others. As

multi-path propagation and multiple interactions per path could lead to infinite calculation loops,

some sort of cut-off criteria must be given as e.g. a maximum number of interactions per path of

rays.

While diffraction is considered to play a minor role in lidar measurements, it does have an effect

on radar signal propagation and therefore enlarges the simulation challenge for these sensors.

Refraction plays a minor role in radar sensor cause-effect chains, but has an impact on lidar

measurements from transmissive objects. In all cases, the different absorption proportions for

different wavelength and materials matter and are considered by actual BSDFs.

However, as every ray is computed independently and in parallel with ray casting/tracing there is

no information for neighbor rays to be able to explicitly calculate a covered area on an object.

Nonetheless, the reflected power per ray is always divided by r2 and the higher-order dependency

is implicitly given by super-sampling of the beam and more lost rays at higher ranges when the

beam area rises.
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3 Exemplary Implementation of a Lidar Sensor Simulation

3.1.4 Signal Attenuation within the Channel

Besides its general range dependency of the signal’s energy during its propagation through the

environment that is called channel, as described in Sec. 3.1.2, interactions with particles of the

atmosphere take place, reflected by the term ηcnl(r) from (3-3). As already stated in previous

work of the author, this kind of attenuation includes weather effects like rain, snow, fog, and haze,

as well as exhaust gases and pollution of the sensor itself.137a

When those interactions within the channel are modeled, the implementation approach for particles

and especially particle clouds in the environment like dust or fog and spray becomes essential.

When they are modeled as artificial cluster objects, the same kinds of equations as for solid objects

can be applied. The already mentioned reflection-based lidar model from FZD contains a strategy

for environmental effects by Linnhoff et al.138 including a model for tire spray that produces lidar

detections, while occluding others due to the already mentioned cause-effect chains.

The same modeling applies when each particle or drop is modeled individually within the particle

cloud, as e.g. described by Hasirlioglu.139 Alternatively, some sort of stochastic model for the path

length within the particle cloud can be applied, needed to a probability distribution of simulated

detections within the space covered by the particles.

All signal attenuation effects during its propagation through the channel have in common to

produce a higher noise floor leading to a lower signal-to-noise ratio (SNR) which is easily

reproduced in simulation in a stochastic manner. Additionally, occlusions of detections and

consequently objects behind the particles in the atmosphere could occur leading to FN detections.

Such missing detections need to be left out directly during ray casting/tracing of the virtual scene

via absorbing particle clouds before them or they have to be eliminated after inserting the detections

from the particle clouds before them in post-processing, as implemented by Linnhoff et al. in the

reflection-based lidar model.140 However, signal attenuation within the channel is out of scope of

this dissertation, besides its general range dependency on its path.

Finally, more sparse point clouds and lower SNR with lower power or intensities of the measured

detections lead to different and possibly wrong identification, tracking, and classification of objects

or even FN objects, as e.g. described by Sebastian et al.141. This could be done stochastically in

object-basedmodels or it arises naturally during object identificationwhen applied on sophisticated

detection models.

137Rosenberger, P. et al.: Analysis of Real World Sensor Behavior (2018). a: p. 612.; b: p.615.; c: p.616.

138Linnhoff, C. et al.: Reflection Based Lidar Object Model · Environmental Effects (2022).

139Hasirlioglu, S.: Simulation-based Testing of Surround Sensors under Adverse Weather (2020), pp. 68ff.

140Linnhoff, C. et al.: Reflection Based Lidar Object Model · Environmental Effects (2022).

141Sebastian, G. et al.: RangeWeatherNet for LiDAR-Only Weather and Road Condition Classification (2021).
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3.1 Front-End Modeling

3.1.5 Temporal Lidar Behavior

There are several types of lidar sensors, each with different temporal data collection that should

be considered for simulation and its VV&UQ. In the following subsection, the most prominent

types are introduced, namely frequency modulated continuous wave (FMCW) lidar and time of

flight (ToF) pulse lidar, divided into scanning and solid-state lidar.

FMCW chirp-sequence lidar sensors with included Doppler measurement are said to be a game

changer for lidar, but are still under development and therefore expensive and not built by

most lidar manufacturers. The continuously and coherently emitted light must also be detected

continuously, with increased sensitivity, while even promising mm-precision (in contrast to several

cm in current lidars). Coherent measurement means that the data is less affected by unwanted

light influences from the sun or other lidar sensors, which is why FMCW results in a higher SNR

ratio than pulse lidar. While modeling FMCW lidar is different to pulse lidar and refers more to

radar modeling, besides modeling electromagnetic waves and not light pulses anymore, many

cause-effect chains would stick the same. However, due to limited capacity in this dissertation,

FMCW lidar simulation will not be further discussed in this work, just like radar modeling.

Scanning lidar on the other hand is the established SotA lidar approach and is used in series pro-

duction cars by companies like AUDI142. In contrast to solid-state lidars, it involves mechanically

moving parts, like a 360◦ turning mirror as illustrated byAUDI for the Valeo SCALA in Fig. 3-4 or

a completely turning optical aperture143 as within the Velodyne PUCK as shown by TechInsights

Fig. 3-5, that spread the pulsed lidar beams into the environment and direct the received light into

the receiver optic at (almost) the same time.

As the rotation of scanning lidars takes some time, effects well known from camera sensors occur

in lidar, namely rolling shutter, motion blur, and aliasing. Rolling shutter is caused when different

rows or columns of the lidar scan are recorded at different times leading to different positions of

moving objects in a single scan, causing distorted point clouds.137b Motion blur means a wrong

perceived size of an object (part) due to its movement during a single scan and capturing of it at

slightly different positions.137b Aliasing happens when object parts with periodic movements like

the wheels are recorded with a frequency that breaks the Nyquist-Shannon sampling theorem and

therefore seem static or moving with a wrong frequency.137c While scanning lidars are very prone

to the mentioned effects, they also occur in other lidar sensors depending on the receiver timing,

albeit to a lesser extent.

Such sensor systems that are less exposed to temporal effects are called solid-state lidars, as

they involve just very small or even no moving parts. As described by Li and Ibanez-Guzman144

and depicted in Fig. 3-6, three types of solid-state lidars are differentiated from mechanical

142AUDI AG: Laserscanner (2017).

143TechInsights Inc.: Velodyne LiDAR Puck Teardown (2019).

144Li, Y.; Ibanez-Guzman, J.: Lidar for Autonomous Driving (2020), pp. 54-55.
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3 Exemplary Implementation of a Lidar Sensor Simulation

Figure 3-4: Valeo SCALA scanning lidar used in AUDI A8 fromAUDI AG142

scanning (a): microelectromechanical systems (MEMS) (b), flash (c), and optical phased array

(OPA) (d). The first solid-state lidars are called flash lidars and spread the light with an optical

diffuser over a wide area in front of the sensor. Recent developments use sequential array-wise

flashing with vertical-cavity surface-emitting laser (VCSEL) emitters like the Ibeo NEXT145.

Others are using MEMS with multiple miniature mirrors on a chip, each steering one lidar beam,

leading to highly flexible beam patterns while getting rid of the motors involved in scanning lidars.

However, MEMS lidars are influenced by vibrations that regularly occur in vehicles caused by

their engines or by the suspension induced by the rough ground it is driving on. Alternatively,

completely solid-state sensors are achieved using OPA emitters, as promoted for the Quanergy S3

lidar146. OPA sensors use multiple coherent light emitters that are delayed by different numbers

of phases, which leads to a directed beam in the far-field as depicted in Fig. 3-7

All three mentioned temporal effects leave two options for their simulation: Either simulating

each transmitted beam in the same temporal manner as in reality by not stopping the virtual scene

for the complete scan, but for each time beams are transmitted, which could lead to way higher

computation time. Or it is implemented after calculating the whole scan at once in simulation and

shifting each detection to the spot where it would actually been recorded in real life afterwards,

which could lead to lower fidelity of the simulation. As both methods are theoretically possible,

they allow to decide their implementation to be selected depending on the requirements, but left

out of scope of this dissertation and the exemplary lidar model implementation.

145Ibeo Automotive Systems GmbH: Solid state LiDAR sensor (2022).

146Green Car Congress: Quanergy S3 Operation Principle (2016).
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3.1 Front-End Modeling

Figure 3-5: Velodyne Puck lidar teardown from TechInsights143

3.1.6 Receiver Effects

There are several receiver optics used in the industry within the still consolidating lidar market.

All (except coherent FMCW lidars) are affected differently by glare from other light sources

with the same wavelength like sun or other lidars, which should be modeled with different SNR

ratios. However, there is a tendency lately to evolve to so-called digital lidars that use either

SPAD arrays, d-SiPMs, or even SiPM arrays. Such digital lidar receivers using TCSPC directly

provide digital signal consisting of histograms over range bins. Today’s time-to-digital converter

(TDC) resolution of 10 ps147 means 3.0mm range resolution. Therefore, no cost intensive high

performance analogue-to-digital converter is needed in such sensor systems anymore.

SPADs are single photon detectors that collect one photon at a time and then need to recover for

some nanoseconds, thus limiting the maximum count rate to about 100MHz.148 Therefore, the

SPAD array receivers with many independent pixels, each one consisting of one SPAD148 still

suffers from the so-called “deadtime”. A SiPM consists of multiple SPADs in parallel logical gat-

ing, but does not provide spatial information regarding which microcell got triggered.148 (a-SiPM

exist, as well.) The most advanced receivers formed by SiPM arrays are pixel-wise detectors

where each is a SiPM (either a-SiPM or d-SiPM) and therefore provide spatial information,

“hence the imager spatial resolution is given by the number of SiPMs and not by the number

of microcells” 148 SiPM arrays today have a lower spatial resolution, but each pixel is photon

number resolved almost without deadtime (being composed by many SPADs)148

147Sesta, V. et al.: A novel sub-10 ps resolution TDC for CMOS SPAD array (2018).

148Villa, F. et al.: SPADs and SiPMs Arrays for Long-Range High-Speed LiDAR (2021), pp. 9-10.
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Figure 3-6: Lidar systems categorized by scanning approaches from Li and Ibanez-Guzman144.

(a) Mechanical spinning lidar, (b) MEMS lidar,(c) flash lidar, and (d) OPA lidar. © IEEE 2020.

There is already a publicly available detailed SPAD/SiPM simulation by Tontini et al.149 that could

possibly be ported into modular simulation frameworks, like the one described in former work

of the author and already mentioned in Sec. 2.1. However, as already mentioned in Sec. 3.1.1,

modeling digital lidars is not done by beam super-sampling, even the computed reflections over

range look very similar to the data output of such time-to-digital converters. In contrast, material

or particle cloud transmissivity modeling is crucial for simulation of the first available data in

digital lidars, the histograms over time/range per beam/pixel.

While PerCollECT - LidarLimbs150 and the work from Hinsemann151 give a condensed overview

on lidar cause-effect chains, most are not yet included in today’s lidar front-end simulation and

are therefore out of scope in this work, too. This will have consequences for validation sample

selection later in this work, while not limiting the applicability of the VV&UQ methods provided.

149Tontini, A. et al.: Numerical Model of SPAD-Based Direct Time-of-Flight Flash LIDAR (2020).

150Linnhoff, C. et al.: PerCollECT - LidarLimbs (2022).

151Hinsemann, T.: Analyse von Effekten in Lidardaten für die virtuelle Absicherung (2021).
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3.1 Front-End Modeling

Figure 3-7: Quanergy S3 operation principle.146 © 2016 Quanergy Systems, Inc.

3.1.7 Detection Threshold Modeling

When it comes to actually simulating the thresholding step before detections exist at every time

stamp, the correct simulation of the relative signal power or intensity becomes crucial. Considering

analog signal processing as shown in Fig. 3-2 as well as digital lidars as already described, a

list of spatially and temporally discretized data points exists in simulation at the point where

thresholding takes place. Here, the modeling of the SNR is of significant importance.

It is common practice to use the time when the signal (digital or analogue) crosses the threshold

(rising edge) as the point for computing the ToF, sometimes compensating the rise time of the

signal using its steepness. While it would be possible to use the peak of the echo or its center

between rising and falling edge for range calculation, for safety reasons selecting the range to the

object as soon as visible over the noise seems reasonable. Nonetheless, actual lidar simulation

models as the exemplary implemented lidar model provide the option to select it as a parameter.152

Thresholding is information reduction, but in some use cases, e.g. sensor fusion, confidence

in detections becomes important. Therefore, some lidars provide an existence probability in

152Rosenberger, P. et al.: Reflection Based Lidar Object Model (2022).

39



3 Exemplary Implementation of a Lidar Sensor Simulation

addition to location and intensity. For this reason such values are part of ISO 23150 in case of

lidar, providing an estimate of the “free space probability” of the area covered by the detection’s

beam before it from sensor’s perspective.153 More information can be provided from lidar data

by values like the EPW (A-B and C-D in Fig. 3-2) as well as the mean or standard deviation that

is used for background illumination or weather and road condition estimation.

3.2 Object Identification, Tracking, and Classification

Modeling

Besides actually implementing object identification, tracking and even classification algorithms

or neural networks for the same purpose to plug them onto the detection model, it is possible

to mimic their behavior taking advantage of the available GT object list in simulation. Such an

object model that does not require complex detection processing algorithms has been developed

byAust154 under supervision of the author. It provides the option to select either idealized, fast but

imprecise or sophisticated model behavior in case of the object’s position, orientation, velocity,

acceleration, and dimensions.

Additionally, tracking behavior is modeled by proving parameters for the amount of frames in

which the object must be visible before its actual listing at the output object list, and similar

options are provided for the loss of objects from the output list. Special attention is payed for the

actual reference point location of the object (either geometrical center, center of gravity of the

points, or even the nearest corner of the L-shaped point cloud of the object) and its stability over

time which directly influences track continuity.

It makes sense to filter out the ground reflections in a module that is upstream of the object model.

A task not tackled by Aust is the modeling of the classification of objects. For this purpose, a

feature-based classification is recommended, which assigns a class to the objects based on the

most important properties such as length, width and speed. Another uncertainty that could be

implemented in the model is the limited separation capability of the sensor due its limited spatial

resolution and lack of velocity management especially in case of parked vehicles. Nevertheless,

due to the complex task of VV&UQ, object modeling is left out of scope for the subsequent thesis.

153International Organization for Standardization: ISO 23150:2021(E) (2021), pp. 82-83.

154Aust, P.: Entwicklung eines lidartypischen Objektlisten-Sensormodells (2019).
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3.3 Alternative Object-Based Modeling Approach

Former work of the author shows high potential of object-based lidar models to challenge

reflection-based models using ray tracing.155 E.g. in development phases where requirements

on lidar sensor system simulation are not that high as for safety validation, the fast object-based

approach is an option. Core of the proposed new object-based modeling method are refined

bounding boxes for occlusion calculation instead of simple bounding box cuboids for each object.
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Figure 3-8: Rasterization of lidar detections at partly hidden objects over super-sampled reflections

from former work of the author.155a © IEEE 2021.

As shown schematically in Fig. 3-8155a, most lidars simply sort identified peaks from the signal

onto the regularly rasterized beam pattern instead of measuring the incident angle. This induces

high angular errors especially for hit objects at high ranges. Due to the beam divergence, the

actual signal’s peak often arises from object parts that are meters away from the beam’s center

line that is reflected by the rasterization.

When this behavior is simulated, it deprives precise ray casting and tracing techniques of most

of their advantages. However, such rasterization of reflections onto the regular grid and the

measurement bias it induces is already possible with the proposed object-based approach using

the bounding boxes. However, it comes with much less effort than super-sampling with ray

casting/tracing and therefore it is expected to have the potential to even outperform ray tracing

for this simulation task.

155Linnhoff, C. et al.: Refining Object-Based Lidar Sensor Modeling (2021). a: p. 24244.
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4 Existing Methodologies and Metrics for

Verification, Validation, and Uncertainty

Quantification (VV&UQ) of APSS Simulation

In the following chapter, existing VV&UQ approaches for simulation models of APSS are pre-

sented and the metrics involved are discussed. While there are no publicly available requirements

for APSS simulation, the classical V-model, as e.g. described by Hakuli and Krug156 cannot be

applied directly straightforward in this work. However, inspecting the right side of the V reminds

again that validation refers to the acceptance test against customer requirements and happens

after several verifications and calibrations of the (simulation) solution have already taken place.
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Verification Instruction

Verification

Verification
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Figure 4-1: Development process according to the V-model from Hakuli and Krug.156

Reproduced with permission from Springer Nature.

At least, validation has already been addressed in earlier publications about automotive APSS

simulation, like the ones from Roth et al.157 or Bernsteiner et al.158 Nevertheless, as stated by

Viehof159, the so-called validation is often limited to qualitative and subjective visual inspection

of plots of the measured and simulated values over time as e.g. for object existence, positions

and radial velocities.

156Hakuli, S.; Krug, M.: Virtual Integration in the Development Process of ADAS (2016), p. 5.

157Roth, E. et al.: Analysis and Validation of Perception Sensor Models (2011).

158Bernsteiner, S. et al.: Radar Sensor Model for the Virtual Development Process (2015).

159Viehof, M.: Objektive Qualitätsbewertung von Fahrdynamiksimulationen (2018), p. 24.
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4.1 Methodologies for Simulation VV&UQ

Repeating the definition for validation by Oberkampf et al. from Sec. 1.2.6, it is the “process of

determining the degree to which a model is an accurate representation of the real world from the

perspective of the intended uses of the model.” 160 Therefore, simulation validation involves real

APSS data to compare against accompanied by reference data to reproduce the measurements in

simulation, called replay-to-sim approach.

Model UQ, as defined in Sec. 1.2.5, is based on the V&V on multiple samples from the parameter

space. It consists of an inter- and extrapolation (prediction) of the deviations determined for the

chosen samples onto the whole parameter space including the confidence in this “model deviation

model”, as it could be named consequently. Model credibility is finally achieved only when all

9 steps of the linear process of VV&UQ in Fig. 1-7 have been performed and all categories of

the predictive capability maturity model from Fig. 1-1 as described in Sec. 1.2.8 are checked

including VV&UQ, but also physics, materials, geometries, numerical, and sensitivity analysis

and a data analysis as demanded by NASA’s key aspects for credibility from Fig. 1-2.

There are already methodologies applied in different simulation domains, which are designed to

achieve credibility in simulation. To the knowledge of the author, there is currently no holistic

and complete VV&UQ methodology specifically designed for APSS simulation. However, the

methodology for model V&V from Viehof based on an exhaustive literature review has been

discussed in former work of the author and used for APSS simulation thereby.161 Schaermann

proposes a methodology explicitly designed for V&V of APSS simulation and concentrates

on efficient and precise data collection, while not considering UQ. Finally, again based on an

exhaustive literature review, Riedmaier, Danquah et al. propose a holistic methodology for

VV&UQ, which will be discussed and evaluated in the following.

4.1.1 Methodology for Model V&V by Viehof

The first methodology to be discussed in detail is the one published by Viehof in 2018162. He

concludes after providing an exhaustive survey on existing model validation methodologies in

2017 that there is no universally valid strategy for model validation, while a tendency towards

systematic and objective decisions is present in literature.163 He derives from his literature

research that model validation is often designed differently, the selection of validity criteria as

well as the validation techniques are mostly subjective and validation mostly refers to single

model, parameter, and data set combinations, which only generates confidence in the model in

160Oberkampf, W. L.; Trucano, T. G.: Verification and validation benchmarks (2008).

161Rosenberger, P. et al.: Towards a Generally Accepted Validation Methodology for Sensor Models (2019), p. 10.

162Viehof, M.: Objektive Qualitätsbewertung von Fahrdynamiksimulationen (2018). a: p. 47.; b: p. 102.; c: p. 106.

163Viehof, M.; Winner, H.: Forschungsstand der Validierung (2017), p. I.
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combination with the respective parameter data set. Therefore, he identifies a need for objective

assessment of sample-validity, as defined in Sec. 1.2.6, as the consequence of an unsuccessful

falsification within an empirical series of sample experiments.
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Figure 4-2: Objective quality assessment by statistical validation.

Blue: Changes to the methodology of Viehof162a in former work of the author161.

In former work of the author161 the methodology of Viehof162a is discussed in detail and questioned

for its application on APSS models. As illustrated in Fig. 4-2, the methodology of Viehof consists

of six subsequent stages, starting with definition of requirements, over design of the validation

study, preparation of data acquisition, the data acquisition itself including its analysis, and

validation as the central part, ending in a statistical evaluation. It further includes methods like

a sensitivity analysis for sample selection for the validation study. Special focus is put on the

different possible causes for iteration loops, e.g. due to systematic measurement or simulation

errors.

Overall, the application study in former work of the author approves the methodology of Viehof.

Onlyminor changes are demanded, as depicted in blue in Fig. 4-2. After experiments are performed

in stage 4, it is necessary to inspect the recorded reference data leading to a first possible iteration

loop. As the reference data is collected for re-simulation, this can only take place if accuracies

of reference data in time and space are according to the requirements. In stage 5, three different

iteration causes are present due to three levels of validation. It starts with measurement and

simulation data validation, checking for systematic errors, e.g. significant differences between

reference and simulated object trajectories, and data collection and processing failures.
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Second comes scenario (originally: parameter) validation. It involves checking the selection

of samples and if the sensitivity analysis estimations are fulfilled. Finally, the actual sample

validation is performed, which leads to the validity assessment map, shown in Fig. 4-3, and its

statistical evaluation, depicted in Fig. 4-6. As shown in Fig. 4-2, an additional iteration loop after

sample validation is proposed to stress the option for new model calibration.

Figure 4-3: Validity assessment map of a single metric validity criterion from Viehof162b, translated by the author

Viehof leaves it open, which metric validity criterion (MVC) are chosen for evaluation. It could be

a deterministic simulated/real measurand, or characteristic values like mean or standard deviation

extracted from a Gaussian aleatory process. The MVC should be defined in the preceding

requirements definition in stage 1. They should cover the output variables of the simulation,

but also the characteristic quantities of subsystem interfaces, when considered in the model

specification. When multiple experiments are performed for each sample from the parameter

space, the student’s t-distribution is estimated from theMVCs for measurement and (re)-simulation

of the experiments, as shown in Fig. 4-4. Then, from the estimated probability density function

(PDF), a tolerance interval is extracted, symmetrical around the mean of the distribution and with

a tolerance level, predefined in the model’s specification.

The assumption of a normal distribution in the MVCs is questionable and should be justified

beforehand. Another assumption for a t-distribution is that the scale applied to the collected data

follows a continuous or ordinal scale. Furthermore, for calculation of an arithmetic mean from

the MVCs, they must be interval scaled, which should be checked beforehand, too. Depending

on the difference of the mean values, the overlap of the specified tolerance intervals from the

estimated t-distributions, and the confidence levels demanded for the labeling, sample validity

labels are given for each MVC, as illustrated in Fig. 4-5. While Viehof applies the commonly

used, but subjective confidence level of 95%, other confidence levels are possible as well.
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Figure 4-4: Elicitation of a tolerance interval from sample values by Viehof162b, translated by the author

Fig. 4-5 shows on the top how the PDFs from simulation and measurement overlap for the five

corner-cases (a - e) for labeling. A green label indicates that the estimated MVC distributions

do not differ significantly, whereas a red label indicates that there is a significant difference. A

yellow label states that the significance for a green (sample valid) or red (not sample valid) label

is not given. For relative comparisons, a black label is introduced, when a change from one

sample to another causes a different tendency of the MVC that is present in a different sign of

the present minimum and maximum change in MVC. However, he implicitly assumes that the

simulation’s PDF is smaller as the measured counterpart. This is fine for models that predict single

uncertain numbers like vehicle consumption or cornering stiffness. Simulation of a complete

sensor signal and the sensor’s behavior over time including its scattering, is only valid if the

simulation reproduces a similar or same PDF, to the understanding of the author.

Only some metrics like difference in mean and standard deviation between simulation and

measurement can form a MVC. Nevertheless, if the samples are sorted accordingly and the reflect

the parameter space meaningfully, the validity assessment map already suggests in which parts of

the parameter space the model performs fine (when every label is green), and where it might be

necessary to start a new iteration on model calibration. Overall, no uncertainties on the labels are

provided and no further credibility assessment is given, which would be beneficial for informed

decision making.

The mentioned validity assessment map is basically a cross table for each MVC over all samples

from the possible parameter space. It contains all sample validation results in form of labels

for absolute comparison of simulation and measurement per sample on the main diagonal, and

relative comparison for stepping from one sample to the next. For example, if the samples are

lidar sensor measurements or simulations for different ranges, on the main diagonal are the results

for each range, while the labels above it arise from comparison of the data deviations when

stepping from one range to the next.
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Figure 4-5: Justification of the label assignment by Viehof based on the probability of error162c,

translated by the author

The labels from Viehof form a classical traffic light scheme (1: green, 2: yellow, 3: red) plus

4: black as worst label. While such a scheme provides a good visual overview about the absolute

and relative sample validity, it is up to discussion, if the statistical evaluation at the end benefits

from such intermediate information reduction. Viehof concludes that the labels seem to fulfill all

needs of a validation study.164b Furthermore, he states that a continuous validity assessment instead

of his Boolean labels, which would be based on similarity assessment of the real and simulated

distributions, is only applicable if a high number of measurements is available / performable, while

the additional effort is not justified after his research.164b Both conclusions are up to discussion

and it is not justified, why such comparison should mean higher overall effort.

The impression from inspecting the validity assessment map can generate confidence in the model,

but it is at least debatable where it comes from. At the very least, however, one would have to

consider how to interpolate between the samples, which is probably straightforward for small

parameter spaces and a few samples, but definitely not trivial in an N-dimensional parameter

space. Therefore, the validity assessment map is only straightforward for simple examples. In

164Viehof, M.: Objektive Qualitätsbewertung von Fahrdynamiksimulationen (2018). a: p. 153.; b: p. 161.
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addition, the number, selection, and concentration of samples must be taken into account if one

wants to draw conclusions about the unprovable overall credibility for the given parameter space

from the validity assessment map. However, Viehof states in his conclusion that the samples span

a parameter space that allows interpolation when the system is step-free.164a

The objective statistical assessment proposed by Viehof as shown in Fig. 4-6 takes place after

several MVCs are applied filling several validity assessment maps. It consists of a percentage

preparation of the assigned labels for absolute and relative comparison and a significance indicator.

The significance indicator is the ratio of the variation range of the MVC’s expected value on the

measurement data over the variance in the measurement data. Such statistical evaluation is only

helpful for the application of the model under the beforehand formulated assumption that the

samples included in the validity study span a fully-interpolatable parameter space and that the

application area is completely covered. Both assumptions are highly critical and must be checked

before every serious application.

Figure 4-6: Statistical Assessment of VAMs from multiple metrics by Viehof162c, translated by the author
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4.1.2 Methodology for Model V&V by Schaermann

Schaermann derives a methodology for APSS Model V&V165 from previous approaches from

Sargent166 and Oberkampf and Trucano167. He discusses his approach following Roth et al.168 that

mainly treats data collection and its re-simulation. Although aleatory and epistemic uncertainties

are mentioned, they are not addressed separately in Schaermann’s methodology.165a He concludes

that all methodologies have different purposes andmetrics must be chosen according to the specific

use case.165b Therefore, Schaermann develops an own solution, which is illustrated in Fig. 4-7.169

Similar to Viehof’s stages 2-5, it includes a reference data check and it adds comparison on ”raw

data” and object level, which reflects its specific design for V&V of APSS simulation.
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Figure 4-7: Validation methodology from Schaermann169, iR: Real-recorded data, iS: Simulated data,
Ref: Reference data, OL: Object list, Raw: Raw data. HLF: High level fusion, LLF: Low level fusion. © 2017 IEEE.

Schaermann lists requirements for V&V methodologies:165c They should be continuous for the

whole model lifecycle, scalable for different model expansion stages, specifiable for its usage but

holistic. He demands that V&V should be traceable, intuitive, objective and documented. Finally,

he proposes to minimize measurement uncertainties and to avoid errors of type I, II, and III.165c

He provides a parameter reductionmethod for lower V&V complexity165d and proposes a reference

data collection method165e to reduce aleatory and epistemic uncertainties. He applies several

validation metrics on lidar detections, occupancy grids (OGs) filled with lidar detections and

object lists.165f However, there is no error prediction towards the application parameter space or

any UQ that would allow to call it a VV&UQ methodology for model credibility.

165Schaermann, A.: Systematische Bedatung und Bewertung umfelderf. Sensormodelle (2020). a: p. 19.; b: p. 25.;

c: pp. 26-27.; d: pp. 40-50.; e: pp. 50-55.; f: pp. 59-100.

166Sargent, R. G.: Verification and validation of simulation models (2010).

167Oberkampf, W. L.; Trucano, T. G.: Verification and validation benchmarks (2008).

168Roth, E. et al.: Analysis and Validation of Perception Sensor Models (2011).

169Schaermann, A. et al.: Validation of vehicle environment sensor models (2017), p. 408.
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4.1.3 Methodology for Model V&V by Ngo et al.

Ngo et al. follow the tradition of Schaermann, Viehof, Oberkampf, etc. and consequently present

a two-step model validation process for a radar detection simulation that combines explicit and

implicit sensor model evaluation, as depicted in Fig. 4-8.170a Again, a re-simulation approach of

real world scenarios is proposed, where reference data like object trajectories are captured and used

as input for re-simulation afterwards. With real and synthetic radar detections (“point clouds”)

at hand, the explicit model evaluation is performed with high level comparison of detection

ranges to each other and low level evaluation of range, azimuth, and Doppler velocity separately.

Subsequently, the same clustering and tracking algorithms are applied to both detection lists to

obtain object lists and trajectories that are fed into the implicit sensor model evaluation. After

both evaluations, the overall so-called “Simulation-to-Reality Gap G” is computed.

Figure 4-8: Validation methodology from Ngo et al.170a. © 2021 IEEE.

In this regard, Ngo et al. divide the evaluation into four fidelity levels depending on the evaluated

functional layer and the metrics involved, as shown in Fig. 4-9.170b Multiple metrics are applied

in each level, normalized to the interval [0, 1] and aggregated for each layer. At the end, the

Simulation-to-Reality Gap G is computed by the average over all four fidelity levels.

Figure 4-9: Fidelity levels for APSS simulation from Ngo et al.170b. © 2021 IEEE.

However, the metrics selection is crucial for the finally calculated gap G and averaging over the

mutably chosen fidelity levels is up to discussion, as the authors state themselves. Still, having a

final single score at the end that could possibly be predicted into application conditions of the

simulation is a desirable objective, as also targeted for by Huch171.

170Ngo, A. et al.: Multi-Layered Measuring the Simulation-to-Reality Gap for Radar (2021). a: p. 4009.; b: p. 4011.

171Huch, S.: Metrik zur Bewertung der Lidar-Sensor-Simulation (2018).
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4.1.4 Methodology for Simulation VV&UQ by Riedmaier and Danquah

The third methodology further discussed in detail was published by Riedmaier, Danquah et al. in

2020172. Similar to Viehof, they provide an exhaustive survey and evaluation of model VV&UQ

approaches at first.173 They state that V&V must be accompanied by UQ and therefore only

consider complete VV&UQ methodologies in their evaluation172a of six approaches in total:

1. The probability bound analysis (PBA) by Oberkampf and Roy174a that uses Frequentist

statistics while propagating aleatory/epistemic uncertainties differently through the model.

2. The Bayesian approach by Sankararaman andMahadevan175 that includes subjective a-priori

assumptions and therefore leads to lower uncertainties when compared to PBA.174b

3. The interval predictor model by Crespo et al.176,177 that directly predict interval valued

quantities to bound all future experiments within them.

4. The meta-model by Hills178 that corrects model predictions with a data-driven model.

5. The output uncertainty integration by Eek et al.179 that makes simplifications to the PBA.

6. The tolerance approach for deviations between simulation and experiment from ISO 19365.180           

 

             
         

          
         

     
         

         
        

         
       

        
        

       

      
       
          

      
            

      
        

         
        

         
       

         
        

         
         
         

      

       
           

        
        
     

       
       

        
         

         
        

         
         

       
          
        

       
       

          
         

        
        

       
      
         

       
       

      

         
         

         

         

         

           

 

             
         

          
         

     
         

         
        

         
       

        
        

       

      
       
          

      
            

      
        

         
        

         
       

         
        

         
         
         

      

       
           

        
        
     

       
       

        
         

         
        

         
         

       
          
        

       
       

          
         

        
        

       
      
         

       
       

      

         
         

         

         

         Figure 4-10: Comparison of VV&UQ approaches from Riedmaier, Danquah et al.172b

172Riedmaier, S. et al.: Unified Framework and Survey for Model VV&UQ (2020). a: p. 1.; b: p. 27.; c: p. 3.

173Danquah, B. et al.: Potential of statistical model VV&UQ in vehicle dynamics simulations (2020).

174Oberkampf, W. L.; Roy, C. J.: Verification and Validation in Scientific Computing (2010). a: p. 99.; b: p. 664.

175Sankararaman, S.; Mahadevan, S.: Integration of model V&V, and calibration for UQ (2015).

176Crespo, L. G. et al.: Interval predictor models with a formal characterization of uncertainty and reliability (2014).

177Lacerda, M. J.; Crespo, L. G.: Interval predictor models for data with measurement uncertainty (2017).

178Hills, R. G.: Roll-up of validation results to a target application. (2013).

179Eek, M. et al.: Definition and Implementation of a Method for Uncertainty Aggregation (2017).

180International Organization for Standardization: ISO 19365:2016(E) (2016).
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For the Kiviat diagrams in Fig. 4-10, Riedmaier, Danquah et al. evaluate the six selected VV&UQ

approaches on twelve categories172b that are listed in Tab. 4-1.

Table 4-1: Criteria for the comparison of VV&UQ approaches from Riedmaier, Danquah et al.172b

IP: Intellectual property, PI: Prediction interval.

Criteria Description
Ratings

1 2 3

V&V process
Model calibration accompanied

by model verification & validation
Only cal. Own verif. Own valid.

Physics
Add extrapolative power instead

of only extrapolating the error
None Correction Extrapol.

Hierarchy
Different types of architectures

possible for hierarchical systems
None One type Many types

Dynamics

Different types of representations

such as differential equations

or discrete state-space equations

None One type Many types

Guarantees

Interval-based VV&UQ has abs.,

probabilistic has statistical,

deterministic has no guarantees

Determ. Probabil. Interval

Extrapolation

Inter- and extrapolation uncert.

at best combined with its

inherent prediction uncert.

None Without PI With PI

Bias correction

Bias correction for the sim.

model with a PI for thereby

inherent prediction uncert.

None Without PI With PI

Uncert. expans.

Uncertainty expansion adding

conservatism with uncertainty

bounds as tight as possible

None Wide bds. Tight bds.

Uncert. sources
Separately quantify each source

of errors and uncertainties
None Jointly Separately

Uncert. types
Explicit aggregation of epistemic

(E) and aleatory (A) uncertainties
None E or A E and A

Computing Computational complexity Heavy Medium Light

IP protection
Handle gray-/black-box models

for IP protection
White-b. Gray-box Black-box

As no approach covers everything, Riedmaier, Danquah et al. do not find a clear winner. The

left Kiviat diagram in Fig. 4-10 shows that PBA handles all sources and types of uncertainties

separately, but the strong uncertainty expansion provides very conservative extrapolation. The

Bayesian approach “is based on subjective probabilities with priors, cannot naturally represent

epistemic and aleatory uncertainties, currently lacks extrapolation uncertainty and includes heavy

inverse calculations.” 172b Interval predictor models have no separate calibration and validation,

but tight uncertainty bounds. The right Kiviat diagram in Fig. 4-10 gives the impression that the

meta-model would win with its connection between the validation and extrapolation and by its

bias correction with prediction interval, but the required linear dependency in the meta-model and
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the small application parameter space prevent this. The output uncertainty approach is widely

applicable due to not quantifying all sources of uncertainty. The tolerance approach is even

simpler, fast and flexible, but does not consider uncertainties and neglects aggregation.172b           

 

         
        

         
        

      
          

       
 

           
           

            
            

           
           

        

Figure 4-11: Generic model VV&UQ framework from Riedmaier, Danquah et al.172c

To be able to use modules from different approaches to combine them into a proper approach at

the end, Riedmaier, Danquah et al. developed a generic, (almost) holistic framework for model

VV&UQ, which is depicted in Fig. 4-11. The first three domains are verification of code and

numerical solution, calibration of parameters, and validation of form by comparison with physical

data. The basic assumption is that these three domains follow the same scheme, only differing
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in application details “to address various types and sources of errors and uncertainties” 172c.

The framework is however only almost holistic, as the model specification and requirements

definition is not included, while being essential to start the model evaluation in the first place.

As an example, the methodology of Viehof as shown in Fig. 4-2 (stages 2-6, as requirements in

stage 1 are excluded) is a concrete example for the validation domain. Validation scenarios are

defined, MVCs are derived as application assessment for model and (real) system, validation

metrics are applied and (sample) validation decision making is addressed as well as (statistical)

macroscopic validation decision making. However, validation error learning in inference for the

application domain is not addressed by Viehof, as already discussed earlier.

In the application domain of the model, model prediction is accompanied by an integration

of all errors and uncertainties. This allows to assess the beforehand validated model for its

application without collecting and processing new data in that application domain. The objective

of considering errors and uncertainties from validation for possible applications after all helps,

besides argumentation for the usage of simulation in the first place, to give concrete confidence

values when reporting is needed for e.g. safety argumentation and homologation of ADS. Methods

for model error learning and bias correction including the corresponding uncertainty aggregation

will be discussed in the following in Sec. 4.1.5.

While the framework from Riedmaier, Danquah et al. is clear and generic, its practical value can

only be shown by application in specific use cases. Therefore, Riedmaier, Danquah et al. show

that it is capable of handling deterministic and non-deterministic VV&UQ approaches. Their

results indicate that the non-deterministic PBA approach is more conservative, but outperforms the

deterministic approach in precision with equal recall. However, the non-deterministic approach

requires a higher effort, as the uncertainties need to be quantified and propagated through the

simulations.181a The uncertainty treatment from identification, quantification, propagation, and

aggregation within the framework from Danquah, Riedmaier et al.182a is illustrated in Fig. 4-12.

Nevertheless, Riedmaier, Danquah et al. decide to use PBA within their generic framework

for safety validation of ADS, in their subsequent publications, as it is the “main approach of

Frequentist VV&UQ” 181b. They prefer it over Bayesian approaches, as it does not incorporate

subjective beliefs as prior probabilities, nor distort the original model based on Bayes’ theorem.

“Therefore, it meets the requirements of an independent type approval.” 181b

Danquah, Riedmaier et al. apply the PBA-framework on a vehicle consumption simulation,

quantifying all sources of uncertainty, just omitting the extrapolation uncertainty to the application

domain at first.182 Later, the application domain is addressed and the full PBA-framework is

applied and validated while concluding advancements compared to the SotA of 2021.183a

181Riedmaier, S. et al.: Non-deterministic model validation methodology (2021). a: p. 16.; b: p. 6.

182Danquah, B. et al.: Statistical Model Verification and Validation Concept (2020). a: p. 265.

183Danquah, B. et al.: Statistical Validation Framework for Automotive Vehicle Simulations (2021). a: p. 19.; b: p. 6.
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B. Uncertainty Quantification ObservationsA. Uncertainty Identification

(Uncertainty identification through analyzing 
the sources of error in the Modeling and 
Simulation process)

C. Uncertainty Propagation

Model Uncertainty
(Model form, extrapolation, 

numerical solution, 
implementation)

Model: y=G(x, θ)

θ: Input 
Parameter

x: Input 
Signals

D. Total Prediction Uncertainty
- Total prediction uncertainty 
of System Response 
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- allocate parameter, model 
form, numerical, 
measurement uncertainties 
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parameter uncertainty 
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 Figure 4-12: Uncertainty treatment within the framework from Danquah, Riedmaier et al.182a.

They summarize that with the applied methodology binary, low-information validation results

are superseded by high-information aggregated prediction uncertainty in the form of a p-box,

uncertainties and non-deterministic simulations are considered, low extrapolation capability of

model reliability is solved by uncertainty learning and the former small application domain is

enlarged by uncertainty prediction.183 Danquah finally summarizes the framework184a, explains

the findings from its application on vehicle dynamics184b and applies PBA in his dissertation

on reliability determination of vehicle simulations184c. Special focus must be provided to the

error prediction and uncertainty aggregation as inter- and extrapolation into application parameter

space, shown in Fig. 4-13 and later discussed in this dissertation in Sec. 4.1.5, as this is the core

of the overall model credibility.

Application 
domain

Validation 
domain

Application parameter
configurations 

Validation parameter
configurations 

Extrapolation

Interpolation

Figure 4-13: Inter- and extrapolation into application parameter space from Danquah, Riedmaier et al.183b.

184Danquah, B.: Zuverlässigkeitsbestimmung von Fahrzeugsimulationen durch statistische Validierung (2022).

a: pp. 45-60.; b: pp. 61-78.; c: pp. 79-85.
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4.1.5 Uncertainty Aggregation and Model Error Prediction

Re-simulation with reference data as input is the preferred method for validation of APSS

simulation, starting with von Neumann-Cosel for an ideal sensor model and object (range)

output against real lidar sensor object output185 and continued by e.g. Schaermann or Ngo, as

already described in Sec. 4.1.2 and Sec. 4.1.3. However, no re-simulation for validation of APSS

simulation in literature considers epistemic uncertainty, so far.

Handling epistemic and aleatory uncertainties means combining an epistemic interval and an

(estimated) aleatory cumulative distribution function (CDF). This cannot result in a new stretched

CDF, as Roy and Balch already state: “While it is common practice to treat epistemic uncertainties

as random variables with uniform (or normal) distributions, when little is known about the value of

an epistemic uncertainty, a probabilistic treatment is not justified and an interval characterization

is appropriate.” 186a

Williamson and Downs187 therefore introduce the so-called probability box (p-box) that results

from expanding (not stretching) an aleatory CDF (or empirical distribution function (EDF)) with

an interval, as illustrated in Fig. 4-14. For a given parameter or measurand x, it gives the possible

interval of cumulative probabilities and for a given cumulative probability, it gives a possible

interval of values. P-boxes can be derived from credal sets and Dempster–Shafer structures 186b,

as discussed in detail e.g. by Ferson et al.188

Figure 4-14: P-box for a mixture of aleatory and epistemic uncertainty from Roy and Balch.186c

185Neumann-Cosel, K. von: Virtual Test Drive (2014).

186Roy, C. J.; Balch, M.: A holistic approach to uncertainty quantification (2012). a: p. 380.; b: p. 367.; c: p. 365.;

d: p. 370.; e: p. 377.; f: p. 379.

187Williamson, R. C.; Downs, T.: Probabilistic arithmetic (1990).

188Ferson, S. et al.: Constructing Probability Boxes and Dempster-Shafer Structures (2003).
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In a first demonstration of a p-box for uncertainty aggregation, Roy and Balch validate nozzle

thrust simulations for different stagnation pressures using the area validation metric (AVM), the

area between the two compared CDFs, as can be seen for one sample validation in Fig. 4-15.

Figure 4-15: Simulated and real CDFs with the AVM in between for nozzle thrust from Roy and Balch.186d

They obtain metric results for different samples from their parameter space and apply linear

regression for error propagation towards a new stagnation pressure that is far higher than all

other pressures in their validation data, as shown in Fig. 4-16a. The 95% confidence interval is

provided by linear regression and adds (half) to the error estimate resulting in the overall model

form uncertainty. Afterwards, Roy and Balch combine this model form uncertainty with the two

other uncertainty sources already defined in Sec. 1.2.7: Model input and numerical uncertainty.

(a) AVM extrapolation to prediction conditions with

uncertainty for nozzle thrust simulation over stagnation

pressure from Roy and Balch.186e

(b) P-box from extrapolation of nozzle thrust simulation

by Roy and Balch, separating model input, model form,

and numerical uncertainty.186f

Figure 4-16: Prediction of validation sample errors towards application conditions by Roy and Balch.186
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Two possibilities exist to obtain model input uncertainty from epistemic and aleatory uncertainty

in reference data: Either starting with aleatory uncertainty around a first point from the epistemic

interval and then shifting the center of the resulting CDF with the output from propagating epis-

temic uncertainty (E-outer), or the other way around (A-outer). However, Roy and Balch already

find that theA-outer and E-outer propagation of an input p-boxes can differ significantly.186d For a

fixed (unknown) bias uncertainty and a random uncertainty in an experimentally measured quan-

tity, they suggest E-outer propagation.186dAfter model input uncertainty is propagated through the

simulation, numerical uncertainty is obtained during verification of the implemented computer

simulation and the hardware where it is running on. The summation of all three sources results in

a p-box, as depicted in Fig. 4-16b. The inner blue p-box depicts model input uncertainty from

reference data, the green part on both sides is the model form uncertainty from the predicted model

error including a confidence interval, and the red outer parts arize from numerical uncertainty.

The evaluation of VV&UQ approaches by Riedmaier, Danquah et al. in Fig. 4-10 identifies

bias correction as major gap in existing VV&UQ approaches besides the lack of extrapolative

power instead of error extrapolation. Therefore, they provide a mechanism in their generic

framework (Fig. 4-11) to enable bias correction, as shown in the detailed insight into the error

learning, interference, and integration blocks from their framework in Fig. 4-17 189a Bias errors

and uncertainties influence each other. Nevertheless, they are quantified separately.189b

Riedmaier, Danquah et al. generalize error learning and interference: It is possible to calculate

either point errors or error intervals, depending on the metric’s either deterministic point output

or non-deterministic interval output. They state that an error metric with (symmetric) confidence

interval extends a former deterministic simulation into non-deterministic. Furthermore, they find

that an error estimate can be interpreted as an uncertainty, either as symmetrical safety factor

around a simulated value or one sided, resulting in a corrected value or interval. It depends

on the individual point of view, if the error prediction including its uncertainty from Roy and

Balch in Fig. 4-16 resulting in model form uncertainty is uncertainty aggregation or model error

correction. However, this interpretability is inherent due to the interdependency of bias error and

uncertainties.

As choosing the right error model learning algorithm is crucial for confidence, it must be chosen

very carefully. Danquah, Riedmaier et al. evaluate several approach regarding their applicability,

amount of data learning points, over-fitting tendency, extrapolation capability and prediction reli-

ability.190a Based on these requirements, basic surrogate models using the Gaussian process (GP),

surrogate models using polynomial chaos expansion (PCE), and higher pronominal optimization

are dismissed and simple linear regression is chosen, as also proposed by Oberkampf and Roy191

and Roy and Balch186.190a

189Riedmaier, S. et al.: Unified Framework and Survey for Model VV&UQ (2020). a: p. 27.; b: p. 7.; c: p. 19.

190Danquah, B. et al.: Statistical Validation Framework forAutomotive Vehicle Simulations (2021). a: p. 13.; b: p. 15.

191Oberkampf, W. L.; Roy, C. J.: Verification and Validation in Scientific Computing (2010).
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Figure 4-17: Generalization of the error pipeline by Riedmaier, Danquah et al.189c. The deterministic and

non-deterministic simulation as well as metric are alternatives and just visualized in parallel for comparison. The

stars are placeholders for measured or simulated, respectively.

Figure 4-18: Uncertainty prediction of a vehicle consumption simulation from 10 validation samples in a

3-dimensional parameter space of vehicle mass, tire pressure, and aerodynamic drag coefficient with linear

regression from Danquah, Riedmaier et al.190b.
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An exemplary result from Danquah, Riedmaier et al. is provided in Fig. 4-18, where linear

regression is used to predict model form uncertainty of a vehicle consumption simulation from

10 validation samples in a 3-dimensional parameter space of vehicle mass, tire pressure, and

aerodynamic drag coefficient. As expected, the plot shows lower predicted uncertainty where

samples are validated and increasing uncertaintywhenmoving away from those samples. However,

selection and distribution of validation samples within the parameter space highly influences the

uncertainty in the application parameter space.190b

4.2 Metrics for VV&UQ of APSS Simulation

Similar to sensor models themselves, also metrics for sensor model validation can be categorized

by in- and output, by approach, by implementation, and by quality. Riedmaier, Danquah et al.192

divide metric inputs into deterministic values and probability distributions, while metric outputs

are separated into Boolean, probabilistic, or real-valued. However, both can be either static or

dynamic, while dynamic metric outputs are neglected for the scope of this dissertation, which

leads to Tab. 4-2 as excerpt from the list provided by Riedmaier, Danquah et al.192

As a first subsumption, deterministic metric inputs are mainly obtained when validation is per-

formed on key performance indicators (KPIs) for feature or object level data processing like

object classification or tracking. In this case, tolerance checks or bands output Boolean decisions

as defined in the ISO standards for vehicle dynamics simulation193,194,195,196, or differences/vec-

tor metrics200 provide real values. Distributional metric inputs are gained by one or multiple

measurements over time on all APSS interfaces and reflect inherent epistemic and aleatory uncer-

tainties. While static inputs are the regular case in APSS simulation VV&UQ and evaluated with

(Bayesian) hypothesis testing197 or area validation metric201, time series metric inputs need to be

transformed to a simplified static form with approaches like KPIs198, wavelets199, or principal

component analysis202.

Table 4-2: Taxonomy of VV&UQ metrics including examples from Riedmaier, Danquah et al.192

HT: Hypothesis testing, KPI: Key performance indicator,

PCA: Principal component analysis, AVM: Area validation metric.

Metric

outputs

Deterministic metric inputs Distributional metric inputs

Static Dynamic Static Dynamic

Boolean
Tolerance

check193
Tolerance

band194,195,196
HT197 HT with KPIs198

Probabilistic - -
Bayesian

HT197
Bayesian HT

with wavelets199

Real

valued
Difference Vector metric200 AVM201 AVM with PCA202

192Riedmaier, S. et al.: Unified Framework and Survey for Model VV&UQ (2020), pp. 13-14.
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Schaermann recommends to perform APSS simulation V&V on subsequent interface levels like

detection, feature, and object level.203a Huch204 therefore collects and applies several metrics

initially proposed e.g. by Schaermann205 and Ackermann206. As already explained in Sec. 4.1.3,

Ngo introduces the terms explicit and implicit sensor model evaluation to separate metrics directly

applied on detections from others.207 The collection of metrics in the following shows that

(implicit) data processing output is often used as metric for sensor (detection) model validation as

it is the source for requirements on sensor models.

4.2.1 Discussion of Visual Inspection of Plots as V&V

In some cases, as e.g. in recent radar simulation evaluation by Degen et al.208, visual inspection

is still chosen as validation tool. UNECE R157 requires that “Manufacturers shall demonstrate

the scope of the simulation tool, its validity for the scenario concerned as well as the validation

performed for the simulation tool chain.” 209 However, it is unclear what exactly is required for

the therefore demanded “correlation of the outcome with physical tests.” 209 As this point is left

open, e.g. German TÜV Süd together with dSPACE provide only some visual inspection of plots

for comparison of real and simulated range, velocity, and acceleration of the tested vehicle as a

validation of their simulation. Furthermore, a calculation of simulated and time-to-collision (TTC)

criticality metrics is also just visually inspected in their recent report for virtual homologation of

an automated lane keeping system (ALKS) according to UNECE R157.210

Viehof discusses CDF as intermediate processing step for the measured / simulated signal, as it

considers all information contained in a signal. He finds that it has no absolute time reference and

193International Organization for Standardization: ISO 19365:2016(E) (2016)

194International Organization for Standardization: ISO 19364:2016(E) (2016)

195International Organization for Standardization: ISO 19585:2019(E) (2019)

196International Organization for Standardization: ISO 22140:2021(E) (2021)

197Rebba, R.; Mahadevan, S.: Computational methods for model reliability assessment (2008)

198Viehof, M.: Objektive Qualitätsbewertung von Fahrdynamiksimulationen (2018)

199Jiang, X.; Mahadevan, S.: Bayesian wavelet method for multivariate model assessment (2008)

200Sarin, H. et al.: Comparing Time Histories for Validation of Simulation Models (2010)

201Ferson, S. et al.: Model validation and predictive capability (2008). pp. 2416-2419.

202Xi, Z. et al.: Validation Metric for Dynamic System Responses under Uncertainty (2015)

203Schaermann,A.: Systematische Bedatung und Bewertung umfelderf. Sensormodelle (2020). a: p. 32.; b: pp. 20-21.

204Huch, S.: Metrik zur Bewertung der Lidar-Sensor-Simulation (2018).

205Schaermann, A. et al.: Validation of vehicle environment sensor models (2017).

206Ackermann, S. M.: Systematische Untersuchung von Radar Tracking (2017).

207Ngo, A. et al.: Multi-Layered Measuring the Simulation-to-Reality Gap for Radar (2021), pp. 4010-4011.

208Degen, R. et al.: Methodical Approach to the Development of a Radar Sensor Model (2021).

209United Nations Economic Commission for Europe: UNECE 157 (2021), p. 37.

210Miethaner, C.; Stavesand, J.-E.: Virtual homologation of an ALKS according to UNECE R157 (2022), p. 13.
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therefore independent of the signal frequency and is thus not suitable for identifying frequency-

dependent deviations between signals, under specific conditions. However, he states that the

specific conditions are relatively unlikely in practical validation. In order to nevertheless be

able to identify deviations of this type, it is proposed to supplement the CDF evaluation with a

comparison of the power spectral density (PSD).211a

Holder et al. use CDFs / EDFs intensively for evaluation of synthetic radar data. After comparison

of CDFs from simulated and real received power, Holder et al. use OGs and automatically

derived free-space estimations for evaluation of synthetic radar detections by visual inspection

of accumulated plots.212 Additionally, decision making algorithm output regarding driveable

paths on the road are given as KPI plot. Accordingly, the evaluation of a new approach for object

simulation in former work of the author is performed by simple object position and dimension

comparisons in a static scenario.213

In his dissertation, Holder evaluates his synthetic radar detections by comparison of real and

simulated radar cross-section (RCS) and SNR. He starts with a visual inspection of RCS over

1/r and as amplitude characteristic over 1/r and compares EDFs with log(1EDF) scaling.214a

Furthermore, signal propagation modeling is evaluated with range-Doppler plots and EDF plots of

the SNR with regular scaling 214a. Additionally, for evaluation of reflectivity modeling, 360◦-RCS

plots and SNRs over range r are visually compared.214b Uncertainty modeling is assessed on

noise in received power via box plots and on range accuracy with EDF214c. Finally, an object

tracking algorithm is applied on synthetic and real radar detections. The resulting trajectories

are visually compared accompanied by some KPIs like mean range to object or range at first

sight.214d Overall, no objective metrics as listed in the following are used.

For checking systematic errors in measurement or reference data collection and or setup of the

re-simulation, Viehof proposes the application of t-statistics and he chooses the full overlap of

the 95% confidence intervals on the CDFs from the arithmetic mean of several measurements

and simulations as objective metric. His research proves that this specific metric is able to detect

all errors like wrong virtual sensor mounting position.211

In his actual validation study, Viehof applies t-statistics for estimation of the PDF fromMVCs and

extracts a tolerance interval, e.g. of 95%, as shown in Fig. 4-4. Then he awards labels depending

on the overlap of the estimated t-distributions and depending on the confidence levels, as depicted

in Fig. 4-5. The discussion and the counterarguments about this approach are already contained

in Sec. 4.1.1.

211Viehof, M.: Objektive Qualitätsbewertung von Fahrdynamiksimulationen (2018). a: pp.83-87.; b: p. 81.

212Holder, M. F. et al.: How to evaluate synthetic radar data? (2020).

213Linnhoff, C. et al.: Object Based Generic Perception Object Model (2022).

214Holder, M. F.: Synthetic Generation of Radar Sensor Data for Virtual Validation (2021). a: pp. 119-126.; b: pp. 127-

136.; c: pp. 137-140.; d: p. 143-151.
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In contrast to subjective visual inspections, as already explained in Chap. 1, a complete VV&UQ

is inevitable for the credibility of APSS simulation used as a tool for safety validation of ADS.

Therefore, to follow the overall goal in this dissertation to gain model credibility, in the following

only publications that include at least actual metrics and sophisticated validation studies are

considered.

4.2.2 Collection of VV&UQ Metrics Applied for APSS Simulation

In this section, actual metrics that have already been applied for APSS simulation VV&UQ in

literature are collected, briefly described and listed in Tab. 4-3. A collection of all possible metrics

for APSS simulation is out of the scope of this work. Nonetheless, a comprehensive overview is

provided, that allows metric selection for further development and application in this dissertation.

Besides, the application notes from literature are shortly discussed.

Ackermann provides a study on metrics for object tracking evaluation on synthetic data215a. He

explains the progress from Hausdorff distance over Optimal Mass Transfer (OMAT) and Optimal

Sub-Pattern Assignment (OSPA) metrics towards the proposal by Rahmathullah et al. For his

own application, he chose OSPA-T as the most commonly used metric and the metric from

Rahmathullah et al. as the SotA of tracking analysis at that time.215b Nevertheless, he finds that

both tracking metrics have parameters themselves, which have to be chosen appropriately and

documented.215c

Huch lists many possible metrics for detection, feature (OGs and segmentation), and (tracked and

classified) objects and selects 18 of them for application and evaluation216. He concludes that

the metrics on feature level like OGs (No. 13-20 in Tab. 4-3) highly rely on parameters like grid

cell size.216b He finds that point-to-point distance (metric 10) in point clouds of lidar detections

relies on a balanced number of detections and that Hausdorff distance (metric 8) is sensitive to

outliers, which prevents its usage on point clouds. Metrics on object level, especially on tracking

(No. 25-28 in Tab. 4-3) in his evaluation heavily rely on parameters, too.216b Intersection over

union (IoU) suffers from its inability to penalize larger distances, when there is no overlap of

the bounding boxes. Furthermore, he stresses that time synchronization of simulated and real

data plays a critical role, when metrics are applied on tracking or for the mentioned OGs for

time accumulated data. His overall goal however, to find a comprehensive metric that is build

of metrics from different functional layers fails, while at least correlation between metrics on

different layers is shown.216a

Huch suggests to extend the calculation of all presented OGs metrics by first optimizing the

created simulated OGs.216c Possible editing steps are translating, rotating or scaling the OGs.

After each editing step, the cross-correlation coefficient is calculated between the real and the

215Ackermann, S. M.: Systematische Untersuchung von Radar Tracking (2017). a: pp. 45-59.; b: p. 67.; c: p. 75.

216Huch, S.: Metrik zur Bewertung der Lidar-Sensor-Simulation (2018). a: pp. 89-92.; b: pp. 93-98.; c: p 38.
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edited simulated OGs, aiming to maximize it e.g. regarding cross-correlation. The calculation of

the metrics can also take into account how many processing steps are needed to maximize the

cross-correlation coefficient. Furthermore, if OGs would be accumulated over time, the metrics

could be used for dynamic and even distributional input data.

Schaermann and Hanke perform validation of lidar sensor simulation on detection and feature

(OG) level with OE, CB, and CP.
217,218 To be able to use all three methods that are originally build

for image comparison, data must be available in a map schematic. For this purpose, lidar detections

are sorted into a matrix-shaped range view image, which is possible for regular (spherical) beam

patterns, and further available information on the detections like range or intensity can be used

as the (RGB)-values of such pixel-like fields. In mathematical sense, the detections must be

projected into a matrix with azimuth angles as columns and elevation angles (layers) as rows to

calculate their Euclidean distance matrix as illustrated in Fig. 4-19.218
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Figure 4-19: Projection of spherical coordinates into Euclidean distance matrix from Schaermann219c.

Schaermann chooses in his dissertation eight different metrics for evaluation of a phenomenolog-

ical lidar object model regarding real and simulated object positions over time.219a He applies

the metrics 1, 4, 6, 20, 21, 23, 30, and 32 on object position vectors ζ, ˜︁ζ and finds that Kull-

back–Leibler divergence DKL and AVM outperform the other metrics in absolute error detection,

while correlations and dynamic time warping are insensitive to phase shift. However, as the

model object list output is more noisy than the real object trajectories due to low pass filtering

from applied Kalman filters, the chosen metrics struggle to give reasonable evaluation results

217Schaermann, A. et al.: Validation of vehicle environment sensor models (2017).

218Hanke, T. et al.: Generation and validation of virtual point cloud data for automated driving systems (2017), pp. 4-6.

219Schaermann, A.: Systematische Bedatung und Bewertung umfelderf. Sensormodelle (2020). a: pp. 59-78.;

b: pp. 79-101.; c: p. 86.
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and he therefore decides to apply additional intensive auto-correlation (metric 22) analysis on the

time signals, which is not included in Tab. 4-3.

In a second study, Schaermann chooses four metrics for a physical lidar detection model to evaluate

it on detection (Euclidean distance matrix) and feature (OG) level.219b For the physical model

and the metrics 2, 5, 13, and 18, he concludes that systematic model errors can be detected well,

but can hardly be distinguished. Therefore, he recommends to use static scenarios in combination

with test specimens for the detection of errors that may arise due to sensor displacement or

rotation. Another finding is the necessity of unfiltered measurements for sensor model validation,

otherwise non-systematic errors such as object losses can be overlooked, which represent critical

scenarios and must therefore also be represented in sensor models.

Berghöfer stresses the challenges in data generation for APSS model validation, especially regard-

ing the re-simulation approach and the objects and materials (not) available or (not) calibrated in

simulation.220 For his analysis, he applies the metrics 10 and 11 on detection level and metrics 2

(normed), 14, 15, 16, 17, and 19 on feature (OG) level. His first observation is that metrics 15

and 17 are useless for sparse point clouds, since most cells are free and both metrics tend towards

unity. Still, they are used to help interpreting metrics 14 and 16, as both a simulated OG occupied

on all cells and a simulated OG completely matching the real OG would return unity and only the

former help distinguishing these cases.220a A second observation by Berghöfer is that all metrics

applied to OGs in his work have similar trajectories and correlate over time of the performed

and simulated parking scenario.220b A third observation from his work is that metrics 10 and

11 on detections show a similar tendency, whereas 10 highly depends on the overall number of

detections, as it is not normalized.220b

The challenging selection and sometimes parametrization of metrics is discussed in former work

of the author on the example of occupied cells ratio (metric 14).221 Tamm-Morschel applies

metrics 10 and 14 for the evaluation of his lidar detection model.222 As both metrics are very

sensitive for a difference in the number of detections, the new sensor model has difficulties to

outperform an ideal model, as the modeling approach tends to produce less detections than the

idealized model.

The same metrics are applied on simulated and real detections in former work of the author223

together with metrics 24 and 27 on objects that are identified from the real / simulated detections

with the same algorithm. All metrics seem to be equally suited for validation, as all show the

tendency of the benchmarked lidar simulation to have lower fidelity for far detections/objects.

On the other hand, they fail to distinguish the (similar) modeling approaches. However, the

220Berghöfer, M.: Generierung realer und synthetischer Sensordaten zur Simulations-Validierung (2019).

a: p. 72.;b: p. 74.

221Rosenberger, P. et al.: Towards a Generally Accepted Validation Methodology for Sensor Models (2019).

222Tamm-Morschel, J. F.: Erweiterung eines Lidar-Sensormodells (2019).

223Rosenberger, P. et al.: Benchmarking and Functional Decomposition of Lidar Sensor Models (2019).
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correlation between detection and object list level metrics is evident and further usage of such

two-level evaluation is recommended.

Aust presents a new approach for APSS object output simulation by mimicking actual tracking

algorithm behavior without performing the computational-expensive calculations involved.224

He evaluates the fidelity of the approach by also applying the metrics 24 and 27 besides root

mean squared error (RMSE) (metric 7) for comparison of simulated and real object positions,

velocities, and dimensions. As object dimensions are besides their positions a key factor of the

new object list simulation approach, intersection over union and RMSE are better suited in his

case. RMSE for comparing object dimensions and trajectories/positions from simulated and real

detections is also applied in former work of the author, when synthetic object list generation is

evaluated on static and dynamic vehicles.225

Eder et al. apply machine learning to learn radar detection models with object list input from syn-

thetic radar detection lists and GT object lists simulated with a phenomenological radar detection

model that incorporates ray tracing. They compare their results from a kernel density estimator

against four different neural networks.226 For the comparison, they apply three different metrics:

They start with the absolute mean error (metric 3), develop an own metric to obtain the mean of

the mean detection to bounding box distance (metric 12), and finally use the Kullback–Leibler

divergence (metric 30) to measure the differences of the spatial distributions within Cartesian

bins of 0.1m. All metrics show that the kernel density estimator significantly outperforms the

neural networks, while the metrics are no further discussed.

In a second publication, Eder et al. present a hybrid radar detection model that starts with ray

casting towards object bounding boxes and then adds further radar-specific effects like range

and angular dependent detection existence probabilities and range measurement accuracy.227

Two validation studies are performed. The first one compares real and synthetic radar detections

accumulated data for a full scenario, the second adds time and position reference to only compare

synthetic and real data from the same aspect ratio towards the hit object. The validation of the

radar detection simulation against real radar detections is based on testing the hypothesis that

the simulated and real detection lists are from the same distribution. Therefore, the efficient

multi-dimensional Kolmogorov-Smirnov test is chosen to test the hypothesis as described by

Fasano and Franceschini.228 Furthermore, Eder et al. use the frequency of positive K-S tests for

multiple repetitions of experiments as validation metric (metric 33). During their validation study,

they find that their radar detection model fails to replicate detections in the bounding box center

that are present in the real data. Real data against itself accumulated from several measurement

224Aust, P.: Entwicklung eines lidartypischen Objektlisten-Sensormodells (2019).

225Rosenberger, P. et al.: Sequential lidar sensor system simulation (2020).

226Eder, T. et al.: Data Driven Radar Detection Models (2019), p. 4.

227Eder, T. et al.: Szenarienbasierte Validierung eines hybriden Radarmodells (2020).

228Fasano, G.; Franceschini, A.: Amultidimensional version of the Kolmogorov–Smirnov test (1987).
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runs of the scenario mostly gets positive test results. Still, the frequency is significantly lower

when position and time stamps are fitted at first and only very few detection lists are validated.227

In his dissertation, Eder follows up on the two already presented publications.229 At first, the same

radar detection model and the same metrics (3, 12, 30) as in the first publication are presented

and the same results as above are obtained when neural networks are compared against the kernel

density estimator approach.229a Then special focus is laid on hypothesis testing for APSS model

validation. Eder starts this section with stating that “acceptance, intuitiveness and interpretability

of validation methodologies is of utmost importance.” 229a He furthermore states that for the

frequency of positive K-S tests, which he uses as validation metric, several test runs should be

accumulated to gather enough data. Additionally, he finds that only data from the same position

and time within the re-simulated scenario should be compared. Therefore, he suggests and

performs 100 repetitions of the same scenario in real world. Even if the simulation performs

poorly in the validation, at least real against real data finally has higher frequency of positive tests

to come from the same underlying distribution.229b

Ngo et al. state that radar detection model validation must be performed on different subsequent

interfaces like detection and (tracked) object lists. They find that despite a “sensor model might

lack accuracy in a direct comparison, the results from a subsequent algorithm can still show

a great consensus.” 230 Consequently, as already explained in Sec. 4.1.3, Ngo et al. follow a

multi-layered approach for validation of radar detection simulations as shown in Fig. 4-8.231 They

obtain real and synthetic radar detections and reference data from eight different scenarios for the

V&V of an idealized, a data-driven and a ray-tracing-based radar detection model. They split the

evaluation into four different fidelity levels of the evaluation as depicted in Fig. 4-9 to obtain an

overall simulation-to-reality gap G as the average over the four fidelity levels.

In this regard, Ngo et al. choose several metrics from literature without detailed reasoning for the

different levels. Fidelity level III for explicit radar detection comparison consists of detection-list’s

Wasserstein and point-cloud-to-point-cloud distance (metrics 9, 10). Level IV consists of specific

Wasserstein distances for range, azimuth, and Doppler velocity and a simple difference in the

number of detections. In level I for implicit sensor model comparison, the OSPA (metric 25)

is applied to obtained real and synthetic trajectories besides the intersection over union (metric

24). The fidelity level II applies RMSE on longitudinal and lateral object positions (metric 7)

and the absolute cardinality error. As already mentioned, their metric selection and averaging of

arbitrary fidelity levels is questionable. Nevertheless, the sheer amount of performed scenarios

within the evaluation from Ngo et al. besides the scenario design itself and the obtained results

set benchmarks for future work on radar detection simulation and its V&V.

229Eder, T.: Simulation of Automotive Radar Point Clouds in Standardized Frameworks (2021). a: p. 57.;b: p. 86.

230Ngo, A. et al.: A Sensitivity Analysis Approach for Evaluating a Radar Simulation (2020), p. 123.

231Ngo, A. et al.: Multi-Layered Measuring the Simulation-to-Reality Gap for Radar (2021).
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In a follow-up publication, Ngo et al. present a new approach for finding a metric for APSS

model V&V by using deep learning.232 It is called “Deep Evaluation Metric” (metric 34) and

uses the PointNet++ architecture. The training (and testing) data consists of real and synthetic

radar detections. The model is optimized to distinguish the detection source. When applied to

new (synthetic) data, its classification probability is used as metric. Ngo et al. compare the Deep

Evaluation Metric results with conventional ones like dPP (metric 10) and Wasserstein distance

dWa (after normalizing all three with their respective maximum to the interval [0, 1] and show

that the trained neural network is able to distinguish data even where conventional metrics fail.

The deep learning approach for metrics looks promising for falsification of models, but such a

learned black-box for credibility assessment of simulations for safety critical simulations cannot

be recommended for decision making, at least not alone.

Magosi et al. present a non-deterministic radar detection model and its validation.233 They state

that statistical evaluation methods are best suited for such highly stochastic simulation, as the

detections can be treated as realizations of a PDF.233a They reference Maupin et al.234 as source

for their metric selection for comparing histograms and EDFs and decide for Jensen-Shannon

distance dJS (metric 31). It is the square-root of the Jensen-Shannon divergence, a symmetrized

version of the DKL and is an actual metric in mathematical sense. As it is the state of the art

in validation, Magosi et al. also apply re-simulation of real measurements and reference data

captured beforehand, while special attention is put on the reference data measurement equipment

and its accuracy.233b

The following table Tab. 4-3 lists and summarizes all metrics applied in the mentioned publications.

Besides metric number, name, and formula/description, the output value range from best to worst

(B-W) is given and the applying publications are attached. While there cannot be a claim for

completeness in this case, a comprehensive overview is provided about the sheer amount and

diversity of metrics applied for APSS simulation in literature. While it is consensus to apply the

method of re-simulation of real world experiments for model validation, the best suitable metric

has not yet been found.

Table 4-3: List of metrics applied for APSS simulation. B-W: Best/worst results

# Metric Formula / Description B-W Applic.

1
Manhattan distance

dMa(ζ, ˜︁ζ) for ζ, ˜︁ζ ∈ Rn
∥ζ − ˜︁ζ∥1= ∑︁n

i=1|ζi − ˜︁ζi| [0,∞[ 219

2
Overall Error (OE)

for Z, ˜︁Z ∈ Rn×m

∥Z − ˜︁Z∥1
=

∑︁n
i=1

∑︁m
j=1|ζi,j − ˜︁ζi,j| [0,∞[

216, 217,

218, 219,

220

232Ngo, A. et al.: Deep Evaluation Metric (2021).

233Magosi, Z. F. et al.: Evaluation of Physical Radar Perception Sensor Models (2022). a: p. 10.; b: pp. 4-8.

234Maupin, K. A. et al.: Validation Metrics for Deterministic and Probabilistic Data (2019).
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# Metric Formula / Description B-W Applic.

3
Mean Error

d(ζ, ˜︁ζ) for ζ, ˜︁ζ ∈ Rn
1
n

∑︁n
i=1|ζi − ˜︁ζi| [0,∞[ 226, 229

4
Euclidean distance

dEu(ζ, ˜︁ζ) for ζ, ˜︁ζ ∈ Rn ∥ζ − ˜︁ζ∥2= √︂∑︁n
i=1(ζi − ˜︁ζi)2 [0,∞[ 216

5
Residual sum of squares

(RSS) for Z, ˜︁Z ∈ Rn×m

∑︁n
i=1

∑︁m
j=1(ζi,j − ˜︁ζi,j)2 [0,∞[ 219

6
Chebyshev distance

dCh(ζ, ˜︁ζ) for ζ, ˜︁ζ ∈ Rn
∥ζ − ˜︁ζ∥∞= max|ζi − ˜︁ζi| [0,∞[ 219

7
Root mean squared error

(RMSE)

√︂
1
n

∑︁n
i=1(ζi − ˜︁ζi)2 [0,∞[

216, 224

225, 231

8

Hausdorff distance dHa for

compact subsets Z, ˜︁Z of a

metric space and a distance

d(ζ, ˜︁ζ) (e.g. Euclidean)
max(max

ζ∈Z
min˜︁ζ∈ ˜︁Z d(ζ, ˜︁ζ),

max˜︁ζ∈ ˜︁Z min
ζ∈Z

d(ζ, ˜︁ζ)) [0,∞[ 215, 216

9

Wasserstein distance dWa

for point sets Z, ˜︁Z
and a distance

d(ζ, ˜︁ζ) (e.g. Euclidean)

∑︁n
i=1

∑︁m
j=1 fm,nd(ζ, ˜︁ζ)∑︁n

i=1

∑︁m
j=1 fm,n

,

fm,n: optimal flow to re-

arrange the distributions

[0,∞[ 231, 232

10

Point cloud to point cloud

distance dPP

for ζ ∈ Rn, ˜︁ζ ∈ Rm

max(
∑︁n

i=1 min∥ζi − ˜︁ζ∥1,∑︁m
j=1min∥ζ − ˜︁ζj∥1) [0,∞[

216, 220,

222, 223,

231, 232

11

Point cloud center of gravity

distance dPC for

two subsets Z, ˜︁Z of

n,m detections ζ, ˜︁ζ ∈ R3

∥ζcog − ˜︁ζcog∥2, ζcog = 1
n
∥Z∥1 [0,∞[ 216, 220

12

Bounding box error (BBE)

for two subsets Z, ˜︁Z of n,m

detections ζ, ˜︁ζ ∈ R3 and

their bounding boxes B, ˜︁B
1
n

n∑︁
i=1

∥dBB(ζ,B)− dBB(˜︁ζ, ˜︁B)∥22,

dBB(ζ,B) = 1
n

n∑︁
i=1

∥ζi −B∥1
[0,∞[ 226, 229

13

Map score (MS)

for Z, ˜︁Z ∈ Rn×m with

ζi,j ∈ {0, 1}, 0: free, 1: occ.

∑︁n
i=1

∑︁m
j=1[1 + log2(∥Z∥1·∥ ˜︁Z∥1

+∥¬Z∥1·∥¬ ˜︁Z∥1)],
¬Z = 1−Z

[nm, 0] 216, 219

14

/

15

Occupied / Free cells ratio

(OCR / FCR)

for Z, ˜︁Z ∈ Rn×m with

ζi,j ∈ {0, 1}, 0: free, 1: occ.

OCR:
∥Z∥1
∥ ˜︁Z∥1

, FCR:
∥¬Z∥1
∥¬ ˜︁Z∥1

,

¬Z = 1−Z

[1, 0/∞]

216, 220,

221, 222

223
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# Metric Formula / Description B-W Applic.

16

Occupied picture distance

function (OPD)

for Z, ˜︁Z ∈ Rn×m with

ζi,j ∈ {0, 1}, 0: free, 1: occ.

1−
∑︁No

n=1min(dM, rsr)

norsr
,

dM = min˜︁Z ∥(i, j)no − (i, j) ˜︁Z∥1,
no: No. of occ. cells in Z,

rsr: Search radius in ˜︁Z
[1, 0] 216, 220

17

Unoccupied picture distance

function (UPD)

for Z, ˜︁Z ∈ Rn×m with

ζi,j ∈ {0, 1}, 0: free, 1: occ.

1−
∑︁Nu

n=1min(dM, rsr)

nursr
,

dM = min
¬ ˜︁Z ∥(i, j)nu − (i, j)¬ ˜︁Z∥1,

nu: No. of unocc. cells in Z,

rsr: Search radius in ¬ ˜︁Z
[1, 0] 216, 220

18

Picture distance

function (PD)

for Z, ˜︁Z ∈ Rn×m with

x = Þ(x = 1)

∑︁
f∈F

dM(ζ, ˜︁ζ, f) + dM(˜︁ζ, ζ, f),
dM(ζ, ˜︁ζ, f) = (dM|ζi,j = f) =

= min˜︁Zf

∥(i, j)nf
− (i, j) ˜︁Zf

∥1
[0,∞] 219

19

Baron cross-correlation

(CB)

for Z, ˜︁Z ∈ Rn×m

with ζi,j ∈ {0, 1},
0: free, 1: occ.

Z · ˜︁Z −Z · ˜︁Z
Z · ˜︁Z , Z = 1

nm
∥Z∥1,

Z =

√︄
1

nm

n∑︁
i=1

m∑︁
j=1

(ζi,j −Z)2
[1,−1]

216, 217,

218, 220

20

Pearson correlation (CP)

for Z, ˜︁Z ∈ Rn×m with

ζi,j ∈ {0, 1}, 0: free, 1: occ.

(Z −Z) · ( ˜︁Z − ˜︁Z)

∥Z −Z∥2∥ ˜︁Z − ˜︁Z∥2
[±1, 0]

216, 217,

218, 219

21

Cross-correlation

(CC) for ζ, ˜︁ζ ∈ Rn,

τ : shift

(n−τ)
n−τ∑︁
i=1

ζi˜︁ζi+τ−
n−τ∑︁
i=1

ζi
n−τ∑︁
i=1

˜︁ζi+τ√︄
(n−τ)

n−τ∑︁
i=1

ζ2i −(
n−τ∑︁
i=1

ζi)2

√︄
(n−τ)

n−τ∑︁
i=1

˜︁ζ2i −(
n−τ∑︁
i=1

˜︁ζi)2 [±1, 0] 219

22

Auto-correlation difference

(ACD) for ζ, ˜︁ζ ∈ Rn,

τ : shift

MA(τ)− ˜︂MA(τ), with

MA(τ) =

n−τ∑︁
t=0

(ζ(t)−ζ)(ζ(t+τ)−ζ)

n∑︁
t=0

(ζ(t)−ζ)2

[0,±1] 219

23

Dynamic Time Warping

(DTW) for ζ, ˜︁ζ ∈ Rn,

τ : shift

DTW does not compare

the time series by index,

but calculates the min. dist.

that can be found by

shifting the two signals

against each other.

[0,∞[ 219
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# Metric Formula / Description B-W Applic.

24

Jaccard metric as arithm.

mean of intersection over

union for areas A, ˜︁A
as ground-projection of

bounding boxes over time

series with i ∈ 1, ..., n

ki, ki =

⎧⎪⎨⎪⎩1− |Ai ∩ ˜︁Ai|
|Ai ∪ ˜︁Ai|

0 if |Ai ∪ ˜︁Ai|= 0

[0, 1]

216, 219,

223, 224,

231

25

Optimal Sub-Pattern

Assignment (OSPA)

for two subsets of object

positions (Z, ˜︁Z)

Find optimal assignment of

all objects from Z , ˜︁Z with

Wasserstein dist., calculate

their dist. with cutoff param. c,

and calculate p-th order of

metric by (ap)1/p

[0, c] 216, 231

26
OSPA for tracks

(OSPA-T)

Like OSPA plus track

continuity and timing

by identification error

[0, c] 215, 216

27
OSPA for multiple tracks

(OSPA-MT)

Like OSPA-T, but with

tracks as vectors of traject.

instead of single-frame states

[0, c]
216, 223,

224

28
Generalized OSPA

(GOSPA)

Like OSPA, but with

different calculation of

the cardinality error and use

of assignment optimization

instead of traject. permutation

[0, c] 216

29 Rahmathullah et al.

Sum of localization errors for

properly detected objects and

a penalty for missed objects and

objects with wrong object ID

[0,∞] 215

30

Kullback–Leibler di-

vergenceDKL(Þ(ζ), ˜︁Þ(ζ))
between simulated and real

probability distributions

∑︁
ζ∈{ζ∩˜︁ζ}Þ(ζ) · log2(

Þ(ζ)˜︁Þ(ζ)) [0,∞]
219, 226

229

31

Jensen-Shannon

distance dJS(Þ(ζ), ˜︁Þ(ζ))
between simulated and real

probability distributions

dJS =

√︂
DJS(Þ(ζ), ˜︁Þ(ζ)),

DJS = 1
2
DKL(Þ(ζ),Þ(ζ))

+1
2
DKL(˜︁Þ(ζ),Þ(ζ)),

Þ(ζ) = Þ(ζ)+
˜︁Þ(ζ)

2

[0, 1] 233
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4 Existing Methodologies and Metrics for Verification, Validation, and Uncertainty

Quantification (VV&UQ) of APSS Simulation

# Metric Formula / Description B-W Applic.

32

Area validation metric

(AVM) dAVM btw. simulated

and real (empirical) CDF

F (ζ) and ζ ∈ {ζ ∪ ˜︁ζ}
∞∫︁

−∞
|F (ζ)− ˜︁F (ζ)| dζ [0,∞] 219

33

Frequency fKS of positive

Kolmogorov-Smirnov

tests of the null hypothesis

that two sets Z, ˜︁Z of

n,m ≥ 12 observations ζ, ˜︁ζ
are from same distribution

sup
ζ∈{ζ∪˜︁ζ}|F (ζ)−

˜︁F (ζ)|≥ cα

√︂
n+m
nm

,

with cα =
√︂

ln 2−lnα
2

,

and significance level α

[0, 1] 227, 229

34
Deep Evaluation Metric

(DEM)

PointNet++ trained with real

and synthetic radar detections

to classify them.

[0, 1] 232

4.3 Interim Conclusion on the SotA in VV&UQ

Methodologies and Metrics

This chapter provides a broad overview about methodologies and incorporated methods for V&V

(Viehof, Schaermann, Ngo) and later VV&UQ Riedmaier and Danquah. Afterwards, all metrics

applied for validation of APSS simulation are listed. In the course of the chapter, some key factors

appear regularly: The ability to consider epistemic and aleatory uncertainty from reference data

(model input) and the enabling of model bias and scattering error prediction from just a few

validation samples (model form) for the whole application domain. Both topics are described in

literature, but have not been performed for APSS simulation yet.

As mentioned in Sec. 4.1.1, Viehof introduces a practical concept for confidence-motivated

labeling for sample validity, as shown in Fig. 4-5. However, the implicit assumption of smaller

PDFs from simulation compared to measurements is only reasonable in case of simulated single

uncertain numbers as e.g. for vehicle consumption modeling. In case of simulated sensor signals

over time including its exact scattering behavior, the model should reproduce a similar or the same

PDF, which would help the simulation to overlap in the first place. Here, introducing epistemic

uncertainties and calculating the overlap from p-boxes could be beneficial.

Schaermann and Ngo both provide methodologies specifically for validation of APSS simulation.

However, they focus onmetrics and interfaces that could be used for detections, features (OGs) and

objects, but also do not consider uncertainties in the data or the necessity of intuitive understanding

of the metrics for their usage in specifications.

72



4.3 Interim Conclusion on the SotA in VV&UQ Methodologies and Metrics

Riedmaier and Danquah also discuss the methodology for model validation from Viehof. They

find his introduction of “probabilistic simulations into automotive vehicle dynamics is an im-

portant contribution.” 172d However, they miss in Viehofs validity assessment some aspects

of experimental comparison described by Oberkampf and Roy235. Since they only have the

simulation of scattering time signals in mind, they state that in this case “the simulation PDF

should have exactly the same width as the experimental PDF and not a smaller one.” 172d Again,

not considering parametric (epistemic) uncertainties “under-approximates the true input uncer-

tainties and leads to small simulation PDFs and erroneously to valid model hypothesis, even if

the model-form might be inaccurate.” 172d Also in alignment with the statements in Sec. 4.1.1,

Riedmaier, Danquah et al. deny that the binary results from the hypothesis test could be used for

aggregation of uncertainties to the application parameter space.172d

While presenting a generic framework that can be used for deterministic and non-deterministic

simulation validation236, as a result of the discussion of several VV&UQ methodologies, Ried-

maier, Danquah et al. decide for application of PBA in their work on either safety validation of

ADS (Riedmaier) or vehicle consumption and vehicle dynamics simulation (Danquah). PBA

incorporates a separation of epistemic and aleatory uncertainties and the propagation of uncertain-

ties through simulation before comparing simulated and real measurements. Furthermore, sources

of uncertainty (input, model form, and numeric) are treated differently when the uncertainty is

aggregated and inter-/extrapolated into the application domain. The uncertainty treatment within

the framework from Danquah, Riedmaier et al. is illustrated in Fig. 4-12. Additionally, methods

for bias correction are proposed to be included besides uncertainty aggregation, as visualized in

Fig. 4-11.

The diversity and sheer amount of metrics applied for APSS validation in Sec. 4.2.2 and the

summarizing Tab. 4-3 shows that there is no consensus on how to validate APSS simulation.

Some prefer comparison of subsequent interfaces and combine them to an overall score like

Ngo et al. or Huch, while others only validate on detection level. Some use strict mathematical

metrics, while others use hypothesis testing or the comparison of distributions. However, there

seems to be no difference in radar or lidar model evaluation, which leads to the first conclusion

that all metrics and methodologies presented can be used for sensor modalities summarized as

APSS.

235Oberkampf, W. L.; Roy, C. J.: Verification and Validation in Scientific Computing (2010), p. 490.

236Riedmaier, S. et al.: Non-deterministic model validation methodology (2021).
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5 Further Challenges towards Credible APSS

Simulation

There are several challenges that prevent APSS model credibility at the moment, some are

discussed in literature, some are introduced in this dissertation. The lack of uncertainty distinction

in metrics for APSS simulation VV&UQ has already been identified and the lack of UQ for

APSS simulation credibility has already been discussed as well. Before the research questions

for this dissertation can be deduced in Chap. 6, further identified challenges are presented in the

following. This chapter serves as the bridge between the fundamentals in Chap. 2, the state of the

art in the previous Chap. 4, and the innovations presented in the dissertation.

5.1 Lack of Requirements for APSS Simulation

Hirsenkorn presents a list of high-level requirements in his dissertation before presenting his

developed sensor simulation method.237 He states at first that concrete requirements demand a

specific use case and as such an intended usage is not present in his case, no concrete values or

acceptance criteria are provided. His list of shortly explained criteria reads as:

■ Completeness: All relevant behavior of APSS should be included like signal interactions.

■ Representativeness: Effects appear with realistic incidence.

■ Individuality: Every individual situation in driving simulation must be covered.

■ Scalability: The model should be improvable with more effort.

■ Robustness: The model should cover incompletely described environments.

■ Interfaces: Ideally, standardized interfaces are used.

■ Implementation: The model is implemented independent from the simulation tool.

■ Computation time and storage: Real time capability depends on the intended usage.

■ Parameterization: Calibration of parameters like materials, etc.

■ Traceability: Errors in simulation should be traceable.

■ Back-traceability: Simulation should be back-traceable to its calibration measurements.

■ Mounting position: Validity should be ensured for different mounting.

237Hirsenkorn, N.: Modellbildung und Simulation der Fahrzeugumfeldsensorik (2018), pp. 9-11.
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5.1 Lack of Requirements for APSS Simulation

■ Independence: Not (yet) existing sensors (under development) should be simulatable.

■ Raw data: Sensor data should be generated as unprocessed as possible.

Nevertheless, this list from Hirsenkorn is just a list of criteria and not a list of requirements. Some

of the items even contradict each other, like computation time and generation of unprocessed data,

while others currently seem unrealistic, like the coverage of every possible situation. Furthermore,

validity, credibility, or maturity are missing from the list. In conclusion, it is obviously no concrete

specification, as it lacks e.g. acceptance tests and criteria.

Former work of the author already identified and addressed the persistent lack of concrete

requirements for APSS simulation to some extent238 as well. In the mentioned work, features

(in the sense of machine learning input parameters) in lidar sensor system data like standard

deviation and mean value of detection locations, EPW of detections, as well as dimensions of

objects identified by the sensor system were analyzed regarding their feature importance for

object classification. This is a method to reduce features for machine learning by neglecting the

less important ones and cross-validated. For derivation of important features, mutual information,

principal component analysis, and a random forest are trained. As a result, a reduction from

89 features to 20 simple ones only reduced the classification accuracy of a random forest from

94.0% to 93.7% for the six classes for moving object in the OSI at that time. Therefore, the

conclusion is drawn that these simple features are the most relevant to address when modeling

the lidar sensor system and furthermore, it is proposed to start with simple sensor models, as only

simple features are contained in the list. However, no method for specification or any further

steps towards it are provided.

Additionally, as a lack of experience with APSS simulation and metrics for its validation is

identified as the major cause for not having requirements for such simulation in contrast to

e.g. vehicle dynamics simulation, first benchmarks for lidar detection models with different

metrics on subsequent functional layers are derived in another former work.239 In a subsequent

work of the author the lack of requirements is further discussed and a guideline for formulating

requirements for sensor system simulation is provided, for the first time.240 Still, an exemplary

list of requirements from a concrete intended function (e.g. an assistance system) is still not

included and proposed to elaborate in future work.

A recent publication by the author is again dedicated to the lack of requirements for APSS

simulation. It targets for functional requirements and starts with a comprehensive collection of

known cause-effect chains and phenomena in APSS, as such lists are the SotA for requirements

for simulation. As such lists are clearly no requirements in the strict sense, further methods are

provided to derive them from such a collection. At first, the Perception Sensor Collaborative

238Holder, M. F. et al.: Data-driven Derivation of Requirements for a Lidar Sensor Model (2018).

239Rosenberger, P. et al.: Benchmarking and Functional Decomposition of Lidar Sensor Models (2019).

240Rosenberger, P. et al.: Towards a Generally Accepted Validation Methodology for Sensor Models (2019).
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Effect and Cause Tree (PerCollECT) method is advised as important step to collaboratively

draw tree-shaped graphs of cause-effect chains ending in phenomena and starting from design

parameters of the APSS and environmental causes. Then the Cause, Effect, and Phenomenon

Relevance Analysis (CEPRA) method is proposed to derive relevance of all cause-effect chains

in an failure mode and effects analysis (FMEA)-like manner with scores for their occurrence in

the specific sensor system and its impact on a specific function. At the end, and in analogy to

the first publication discussed in this section, a methodically derived list of causes, effects, and

phenomena is achieved, but still no actual APSS model specification. Nevertheless, there are no

further attempts or publications regarding such requirements to the knowledge of the author and

the lack is still present.

5.2 Selection of Validation Samples and Experiment

Design

Before describing specific challenges for sample selection and experiment design for APSS

simulation validation, some guidelines for such experiments from literature are presented at first.

As a starting point and to stress the high requirements that exists for validation experiments, the

six instructions from Oberkampf and Roy are:241

1. A validation experiment should be jointly designed by experimentalists, model developers,

code developers, and code users working closely together throughout the program, from

inception to documentation, with complete candor about the strengths and weaknesses of

each approach.

2. A validation experiment should be designed to capture the essential physics of interest, and

measure all relevant physical modeling data, initial and boundary conditions, and system

excitation information required by the model.

3. A validation experiment should strive to emphasize the inherent synergism that is attainable

between computational and experimental approaches.

4. Although the experimental design should be developed cooperatively, independence must

be maintained in obtaining the computational and experimental system response results.

5. Experimental measurements should be made of a hierarchy of system response quantities,

for example, from globally integrated quantities to local quantities.

6. The experimental design should be constructed to analyze and estimate the components of

random (precision) and systematic (bias) experimental uncertainties.

241Oberkampf, W. L.; Roy, C. J.: Verification and Validation in Scientific Computing (2010), pp. 372-373.
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Additionally, Saam states that “validation experiments should not only be distinguished from

scientific discovery experiments, model calibration experiments and experiments serving as system

performance tests. They should also be designed, executed and analyzed separately.” 242 The

guidelines from Oberkampf and Roy stress the high effort and the necessary diligence connected

with validation experiments and the statement from Saam highlights the necessary independence

of validation data from the data used for calibration and verification.

The model calibration experiments must be documented carefully regarding the samples taken

from parameter space, to be able to take other samples for validation, analogue to train and test in

machine learning. As one approach to distinguish between experiments, Amersbach addresses

the question for sample independence that are taken from the parameter space by his definition in

the context of safety validation scenarios: “Two concrete scenarios are equal if their respective

parameter combination is situated in the same volume cell of the common parameter space” 243

As already briefly discussed in Sec. 4.1.1, Viehof proposes to perform a diligent sensitivity

analysis at first to find the parameters with highest impact on the simulation and applies extended

Fourier amplitude sensitivity testing (eFAST) for his exemplary vehicle dynamics simulation

validation.244 Ngo et al. follow his advice and apply Fourier amplitude sensitivity testing (FAST)

for radar detection simulation.245 Besides, Viehof lists three concerns that are addressed with

respective questions for finding relevant scenarios244:

1. Relevance of changeable parameters in real experiments → Which parameters should be

varied according to the sensitivity analysis and in which range?

2. Required degree of statistical validation→ How granular should the parameter space be

resolved? How many scenarios or configurations should be inspected?

3. Practicability→ How many scenarios or configurations are feasible to be inspected or

performed?

From own experiment design experience, even more questions are to be asked for sample selection

from the immense parameter space. With regard to the required degree of statistical validation,

global and regional coverage should be discussed in addition to granularity in parameter space.

This includes considering that some cause-effect chains and phenomena are visible in absolute

values already in singular experiments, while others are only visible by relative changes in the

course of one or several experiments like changing the range to a target object for the change in

signal intensity.

For feasibility, in addition to the number of experiments, the number of their repetitions must

also be taken into account. With respect to the parameters, there are some cause-effect chains

242Saam, N. J.: Validation Benchmarks and Related Metrics (2019), p. 438.

243Amersbach, C.; Winner, H.: Defining Required and Feasible Test Coverage (2019), p. 428.

244Viehof, M.: Objektive Qualitätsbewertung von Fahrdynamiksimulationen (2018), pp. 65-66

245Ngo, A. et al.: A Sensitivity Analysis Approach for Evaluating a Radar Simulation (2020).
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in APSS sensors that are static, while others are dynamic. Either case reveals totally different

spatial and temporal experiment designs. Obviously, there are different levels of complexity in

modeling cause-effect chains and different gradations of effort when designing experiments for

testing them, which gives some additional weights on the experiments when designing a complete

validation study. Furthermore, the documentation of the validation experiments adds to the overall

effort. This includes not only a semantic description and often a video of what is happening, but

a searchable and logical cataloging of the measurement and reference data including a temporal

synchronization of all measurements.

Hadelli performs a first rough estimate for the parameter space and its coverage with only static

lidar sensor experiments.246 He applies a decomposition on the complete set of parameters and

divides it into five groups: Environment, surrounding, lidar sensor, target object, and sensor

mounting. In total, he finds around 70 different parameters. and lists all possible values for each

parameter. Furthermore, he gives estimates for the accuracy of measuring each of the value and

estimates the duration of the complete measurement study where every parameter is varied once

(not every point in the parameter space) to about 80 days netto (without preparation, waiting

for weather effects, etc.) for a single person. Even if this is not a representative number of

studies planned nor a very experienced engineer to plan the study, it gives a first educated guess

and an impression to the effort needed for sample validation. Besides the estimation for the

effort, Hadelli documents his experiments in detail and produces measurement and reference

data that can serve as validation data set for lidar detection simulation. Additionally, there are

some important findings on signal processing and especially thresholding that has high influence

on real detections and therefore plays a crucial role in his exemplary experiments to a negative

extend regarding repeatability of the data and especially on relative changes of signal intensity

and EPW.

Riedmaier et al. summarize several approaches for sampling scenarios within parameter ranges,

from parameter distributions, from accident data bases, criticality-based, and complexity-based in

the field of driving scenarios for safety validation of ADS, which are applied in literature.247 They

further access the listed approaches regarding scenario representativeness, parameter compatibility,

corner case identification, coverage, expansion, applicability, etc. As none of the beforehand

found approaches solves all criteria and challenges, they advise to combine approaches for better

results. Additionally, they state that model validation is not tackled in most research on scenario

variation for safety validation and all scenario validation in simulation would have ”no credibility

in terms of their use in decision making” without addressing that lack.

246Hadelli, A. A.: Messkampagne zur Parametrisierung und Validierung von Lidar-Sensor-Modellen (2020).

247Riedmaier, S. et al.: Survey on Scenario-Based Safety Assessment (2020), pp. 87464-87465.
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5.3 Limited Repeatability and Reproducibility of APSS

Measurement Data

R&R as already defined in Sec. 1.2.5 are generic challenges for experiment design and measure-

ment data collection. Full repeatability of measurements does not mean an ideal and deterministic

case, where all measurements constantly provide the ground truth value. In contrast, total repro-

ducibility would mean to gather measurement data with the same distribution and same mean

and variance, when the same experimentalist repeats an experiment under identical conditions

(however defined). Reproducibility is broader conceived and allows different experimentalists

and different laboratories or test tracks and is therefore not limited to (idealized) identical condi-

tions. However, the limited R&R is the reason for some portion of aleatory and mostly epistemic

uncertainty in measurement data.

Still, as Oberkampf and Roy already correctly mention, “control and repeatability of the ex-

periment are less important in a validation experiment than precisely measuring the conditions

of an uncontrolled experiment. Variability in the surroundings of a validation experiment, for

example due to weather conditions, is not critical, as long as the conditions of the surroundings

are precisely measured.” 248a Nevertheless, as reference data is never perfect, R&R is a major

target for experiment design and of special importance for model credibility assessment. E.g. in

the case when validation results are questioned, experiments are repeated to investigate aleatory

and epistemic uncertainties of measurement and reference data.

Oberkampf and Roy exemplary list influence factors for systematic uncertainties in measurements

to be overcome by randomization or blocking, if possible.248b All are true challenges especially

for APSS measurements and read:

■ Experimental instrumentation

■ Experimental procedures

■ Experimental hardware

■ Facility characteristics

■ Data recording and reduction

■ Experimental personnel

■ Time of experiment

■ Weather conditions

248Oberkampf, W. L.; Roy, C. J.: Verification and Validation in Scientific Computing (2010). a: pp. 373-374.;

b: pp. 441-442.
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APSSs are very challenging regarding R&R, as they are prone to so many environmental and

surrounding parameters that controllability outside of specially isolated laboratories and radar

chambers simply does not exist. Radar is a very prominent example for very limited R&R of

measurement data, as already presented in former work of the author.249 In this work based on

joint experiments within the ENABLE-S3 project250, special focus is given to occlusion and

separability of objects in radar detections as well as to the variation of RCS. In consequence

of the efforts spend to perform and analyze the measurements, it is stated that “radar sensor

measurements are characterized by their stochastic behavior, which complicates reproducibility”

and that “such behavior complicates sensor model validation, as the singular-comparison of

measurement to simulation results is not meaningful.” 249a

However, as already mentioned in the previous Sec. 5.2, this challenge in very low R&R of

intensities of detections from objects is not limited to radar, but also appears in lidar. Hadelli

investigates repeatability of measurements during his intensive exemplary validation study and

describes the influence of dynamic thresholding in lidar on the detection’s EPW and intensities

that destroys R&R and the data’s value for model V&V.251

APSS like radar and lidar are simply not designed for measurement R&R, as they do not provide

calibrated absolute intensities, EPWs, or RCSs. Therefore, only a comparison of such measurands

on a relative scale for changing samples is possible, but no absolute sample validation. For single

samples, only the order of magnitude of the values can be checked for identity. Consequently, the

importance of the test equipment for lidar validation is also explained by Gomes et al. 252

When describing his carefully prepared validation study, Eder mentions the importance of repro-

ducibility multiple times and stresses that “the demands on data quality are significant. Even

minor deviations during the reproduction of the maneuvers can affect the result. Therefore, an

exact reproducibility of individual maneuvers is of great importance for the scenario selection.

Moreover, it is important to determine potential limits of tolerance.” 253 As already described

in an earlier publication254, Eder tries to eliminate epistemic uncertainties and the influence of

limited R&R by the law of large numbers and repeating experiments 100 times.

In consequence of the challenges explained after the mentioned experiments in the ENABLE-S3

project and from an immensely wealth of experience in conducting experiments for calibration,

verification and validation of radar detection simulation, Holder gives a lot of sophisticated

recommendations for data acquisition in his dissertation. He states that signal interactions cannot

249Holder, M. F. et al.: Measurements revealing Challenges in Radar Sensor Modeling (2018). a: p. 6

250AVL List GmbH: ENABLE-S3 Project (2019).

251Hadelli, A. A.: Messkampagne zur Parametrisierung und Validierung von Lidar-Sensor-Modellen

(2020), pp. 84, 94.

252Gomes, T. et al.: Evaluation and Testing Platform for Automotive LiDAR Sensors (2021).

253Eder, T.: Simulation of Automotive Radar Point Clouds in Standardized Frameworks (2021).

254Eder, T. et al.: Szenarienbasierte Validierung eines hybriden Radarmodells (2020).
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be isolated and can be seen in his measurement repetitions carried out with different vehicles

when studying the shaking factor in the radar equation. Furthermore, he finds that small variations

in the repeated execution of the experiment turn determinism into randomness.255

A recent publication from Holder et al., as already mentioned in Sec. 4.1.5, tackles the mostly

neglected validation of the reference data measurement equipment. In all other publications

on APSS simulation and its V&V listed in this dissertation like the recent Dynamic Ground

Truth Sensor Model Validation Approach (DGT-SMV) and re-simulation by Magosi et al.256,

the re-simulation is conducted with taking reference data as perfect (almost GT) sensor data,

which is simply not the case. Holder et al. proof that the uncertainties in systems like real time

kinematic (RTK) GNSS for object localization and trajectory caption over time are not negligible

by applying a so-called super-reference measurement to check the actual reference. Therefore,

the challenge of R&R is always present and in the best case, as said by Oberkampf and Roy248b,

the uncertainties are known for validation and simply treated as either aleatory or epistemic

uncertainties that are propagated through the simulation, as already described in Chap. 4.

5.4 Selection of Environment and Rendering

Simulation Tool / Engine

Besides the explained academically valuable challenges explained in the previous sections, there

exist a very practical challenge, namely the selection of the environment and rendering tool/engine

when applying APSS simulation. The simulation of the environment and objects around the APSS

is obviously influencing its performance. All parts of the simulation explained in Chap. 3 rely more

or less on it. It starts with the implementation and parameterization of ray tracing in the rendering

engine and e.g. the available techniques for beam super-sampling, as described in Sec. 3.1.1,

followed by materials and shapes and the implementation of bidirectional scattering distribution

function for their different kinds (Sec. 3.1.3) and the information provided for modeling of signal

attenuation (Sec. 3.1.4), ending at the possibilities to model timing effects (Sec. 3.1.5).

While available commercial simulation solutions like IPG CarMaker, dSPACEASM, Vires VTD,

Siemens PreScan, and others provide their own sensor modeling, all have in common to be

extendable with custom APSS models to various extent. However, open source simulation

solutions exist that cover APSS simulation to a limited extent, and several startup companies

are pushing into the growing market of simulation. Besides, the simulation solutions can select

from several rendering engines like UNREAL, Unity, etc., which all provide similar but slightly

different possibilities to implement ray tracing, materials, geometries, etc. Therefore, the solutions

255Holder, M. F.: Synthetic Generation of Radar Sensor Data for Virtual Validation (2021), pp. 153-156.

256Magosi, Z. F. et al.: Evaluation of Physical Radar Perception Sensor Models (2022).
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are not consolidated and some kind of dynamic is present, which undermines credibility on the

one hand, but promises a lot of progress in the near future on the other hand.

Besides fidelity, performance with regard to hardware support and demand for high performance

GPUs and central processing units (CPUs) evolves as well. Furthermore, the tools are (slowly)

extending their support for different operating systems like Microsoft Windows and Linux.

Nevertheless, selecting a tool or engine is still challenging today. There is an initiative to tackle

the selection challenge with objective criteria, called SimCert, founded by Dupuis257. He states

that a function or system developer whose task is to ensure that the system under test (SuT)

performs as intended within its ODD might require in-depth knowledge of simulation technology

in general and the implementation of individual features in particular to perform an assessment

of a simulation solution’s fitness for a given task.257a Therefore, Dupuis proposes an expert-

knowledge-based basic assessment of available solutions along criteria derived from the most

common use cases as a short list of candidate-solutions, which a potential user might want to

investigate further.257b The actual hierarchical list currently encompasses 1063 criteria.257b The

objective of the initiative is that a user, an expert on the own use case, will not have to be an

expert on simulation technology itself.257c However, the challenge is not eliminated and many

simulation tools still struggle to create sophisticated synthetic data.257e

5.5 Standardization of APSS (Simulation) Interfaces

Consequently, after pointing out the challenge of simulation tool and engine selection, standardiza-

tion of simulation interfaces comes into mind as possible solution or at least support in repeatable

simulation results. However, the standards itself in the field of real APSS (e.g. ISO 23150258 or

AUTOSAR259) and their simulation (OSI260) are brand new and still massively evolving, when

e.g. compared to vehicle dynamics simulation.

The interface at which the APSS simulation starts and where the environment simulation ends

is crucial and up to discussion. Reflection-based models, like the one presented in Fig. 2-5,

provide already some remarkable results, but are limited to some extend in performance (due

to the amount of reflections from beam super-sampling that need to be transferred) and limited

in fidelity or effect implementation, as ray tracing is not part of the model. Therefore, a more

flexible solution for APSS simulation is to be object-based and create an own scene graph for

own rendering/ray tracing from the input GT object list. However, this reveals the need for

standardization of material descriptions and highlights the need for sophisticated standardization

257Dupuis, M.: Paving the way for certified performance (2022). a: p. 110-1.; b: p. 110-2; c: p. 110-3; d: p. 110-4.;

e: p. 110-6.

258International Organization for Standardization: ISO 23150:2021(E) (2021).

259AUTOSAR development cooperation: AUTOSAR (AUTomotive Open SystemARchitecture) (2022).

260Hanke, T. et al.: Open Simulation Interface (2017).
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of describing environmental effects, and many more. Nevertheless, it provides the possibility to

validate such models without any dependency to the simulation tool that is coupled to the sensor

model when simulation data is computed for model V&V.

Some standards (e.g. ASAM OpenDRIVE) are not only new and dynamically evolving, but also

leave room for interpretation through ambiguous definitions.257d OSI sees a lot of improvement

and refinement of fields mainly revealed in the research projects ENABLE-S3261, PEGASUS262,

and SET-Level263, with strong engagement of the author in the project working groups and as an

active member of the standards change control board (CCB). This engagement for the simulation

standard is accompanied by continuous effort by the author for alignment of OSI with standards for

real APSS’s interfaces e.g. by participation in the working group (ISO 23150) or by establishing

a regular exchange (AUTOSAR).

5.6 Interim Conclusion on Further Challenges

The first interim conclusion of all listed further challenges is that obviously they cannot be

tackled all in a single dissertation. Consequently, an excerpt must be selected to address in this

work, which is presented in the following Chap. 6. However, the presented challenges serve as a

snapshot of the SotA of the whole field of APSS simulation.

Requirements engineering is a lot of effort and experience and carefulness are key for a specifi-

cation sheet that is accepted by all parties involved. While carefulness mainly means applying

agreed methods, this part of the specification is solvable for APSS simulation. Experience is

missing in this quite new field of research and application and comes naturally with iterations

and repetition over time, while it cannot be solved by this dissertation. While selection of sam-

ples from the parameter space could possibly be solved by iteration loops as well, experiment

design and R&R are always present challenges and need carefulness during preparation and

execution, but no new methods or theory development. Environment simulation tool selection

and standardization are both evolving fields each for itself and also taken together. Here, a slightly

optimistic prediction can be given as many talented people are involved in further development.

However, this dissertation addresses such development and hopefully stresses the importance of

credibility assessment at the end that is based on error prediction and uncertainty aggregation in

the application portion of the parameter space.

261AVL List GmbH: ENABLE-S3 Project (2019).

262Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR): PEGASUS Project (2019).

263Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR): SET Level Project (2022).
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6 Research Questions on Specification and

VV&UQ of APSS Simulation

After the provided comprehensive overview of the SotA of APSS simulation, the discussed

methodologies for its VV&UQ and the extensive collection of applied metrics in Chap. 4, and

the explanation of further challenges in Chap. 5, the major research questions to tackle in this

dissertation are to be selected in the following.

The interim conclusion of the remaining challenges in Sec. 5.6 already hints that a method for

requirements definition is missing. There is simply no validation without requirements, as already

depicted in Fig. 4-1. None of the presented publications contains such s specification sheet or an

exemplary excerpt of such, as discussed in Sec. 5.1. Therefore, the first choice is to elaborate a

method for model specification, as resulting in the first research question:

RQ. 1: How to specify an APSS simulation?

Metrics for VV&UQ of APSS models are selected as main topic for this dissertation. Tab. 4-3

provides an overview of the diverse and wide range of metrics used for APSS V&V. However, the

major goal in this work is to provide methods and tools towards credibility in APSS models and

their usage in simulation. Overall, such simulation should serve as a qualified and certified tool e.g.

for safety validation of ADS, yielding to the highest possible requirements for the qualification of

the tool (see Chap. 1), which consists of the VV&UQ of the simulation. The research question

that follows from advancing from sample V&V (testing) to VV&UQ (qualification) therefore is:

RQ. 2: Which metrics are useful for sample validation of APSS simulation to enable model

error quantification incl. uncertainty aggregation for credible simulation application?

Nonetheless, it can be estimated that only selecting a metric from a long list of already applied

and evaluated examples is not enough. The high requirements for qualification of simulation as a

tool for safety validation make a comprehensive discussion of the best metric option inevitable

and some kind of further development and adaption to its usage in the field of APSS simulation

qualification with the limited R&R (Sec. 5.3) is essential. This results in the last of the three

major research questions:

RQ. 3: How to apply or further develop the selected metric(s) for VV&UQ with limited

R&R of real APSS measurements?
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The demand for methods to systematically derive requirements has already been identified and the

SotA is part of Sec. 5.1. This chapter starts tackling the previously identified research questions

by addressing RQ. 1, the lack of requirements for APSS simulation.

As briefly introduced in Sec. 5.1, the author already proposed a method for requirements definition

in former work264. In detail, it reads as follows:

1. At first, the SuT with inputs defines the outputs of the sensor system simulation.

2. Having these, the requirements engineer needs to have a catalog of possible phenomena

that can be observed on real measurement data at the selected sensor system outputs.

3. Now, the SuT has to be analyzed in detail and its sensitivity with respect to the listed possible

phenomena needs to be determined. As an example, object tracking and classification

is mostly insensitive to noise on point clouds, but highly sensitive to simple features like

length and width of L-shapes.265

4. The next step is to define whether a stochastic or physical approach should be used to

describe the selected phenomena in particular. Here, the required fidelity and accuracy of

the sensor data generation should be considered.

5. Finally, the actual accuracies of the different effects or phenomena should be determined.

Even if these instructions already exist for quite a long time, no other publication has addressed

the items in this order to gather a specific list of requirements, so far. The underlying chapter now

tackles them step-by-step. It starts at first with simulation model interfaces and the necessity of

a modular simulation framework, to secondly provide a method for collection and ordering of

cause-effect chains including first comprehensive results. Third, a method for relevance analysis

of the identified cause-effect chains is explained and finally a first exemplary list of specific

requirements and acceptance tests and criteria is presented.

While the completeness of the methods is a novelty in this case, some of the items have been

tackled in previous work of the author and are therefore marked as such. The exemplary results

of the requirements and acceptance criteria is a product of a research work group within the VVM

project266, mainly together with consortium partners from Valeo, TÜV Süd, ZF, and dSPACE, but

with the methods introduced by the author of this dissertation.

264Rosenberger, P. et al.: Towards a Generally Accepted Validation Methodology for Sensor Models (2019), p. 5.

265Holder, M. F. et al.: Data-driven Derivation of Requirements for a Lidar Sensor Model (2018).

266European Center for Information and Communication Technologies – EICT GmbH: VVM Project (2022).
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7.1 Modular Framework as Basis for Specification,

Development, and Validation

A popular approach to manage complex systems is to decompose them into subsystems and

components that can be handled.267 Therefore, modular simulation frameworks are popular, as

e.g. the simulation by Danquat et al.268, the approach for sensor error models by Hanke269, or the

highly-scalable sensor modeling approach by Thieling and Roßmann270. While it is popular in

general, existing APSS approaches mainly address single interfaces like radar or lidar detections,

but no subsequent interfaces. In other words, these modules do not reflect the functional blocks

of real APSS as they are described in Sec. 2.1.1 and depicted in Fig. 2-1 and Fig. 2-2, but only

sub-modules of only one or two of these blocks, like emission, reception, and signal processing.

However, multiple validation approaches are based on the evaluation of subsequent interfaces

of real APSS, e.g. Schaermann (Sec. 4.1.2) and Ngo et al. (Sec. 4.1.3). Additionally, earlier

publications like the one from Hirsekorn et al.271 demand that simulation should address multiple

interfaces at best with standardized interfaces.

Accordingly, a modular simulation framework has been developed and presented in earlier work

of the author at first for lidar sensor system simulation272 and later as a general framework.273

Functional decomposition of real APSS as briefly discussed in Sec. 2.1.1 and explained in earlier

work of the author274 is the basis for the modules. The interfaces are the result of different working

groups in research projects like ENABLE-S3275 and PEGASUS276. The usability of the framework

has already been demonstrated in these research projects together with industry partners. It is

designed to work in combination with multiple environment simulation tools and to test the full

range of perception and sensor fusion functions from different parties. Co-simulation standards

are met by implemented standardized interfaces like OSI and its sensor model packaging with

Functional Mock-up Interface (FMI). Distributed simulations over e.g. TCP/IP connection are

possible and ensured by the FMI standard.277 The connection between the simulation tool and

the framework is sketched in Fig. 7-1 from former work of the author.272 Finally, the author has

published the framework open source on the platforms GitLab and GitHub with FZD.278

267Liu, F.; Yang, M.: The Management of Simulation Validation (2019).

268Danquah, B. et al.: Modular, Open Source Simulation Approach (2019).

269Hanke, T.: Simulated Environmental Perception for Automated Driving Systems (2020), pp. 36-42.

270Thieling, J.; Rosmann, J.: Highly-Scalable and Generalized Sensor Structures (2018).

271Hirsenkorn, N.: Modellbildung und Simulation der Fahrzeugumfeldsensorik (2018), pp. 9-11.

272Rosenberger, P. et al.: Sequential lidar sensor system simulation (2020). a: p. 191.

273Linnhoff, C. et al.: Highly Parameterizable Perception Sensor Model Architecture (2021).

274Rosenberger, P. et al.: Functional Decomposition of Lidar Sensor Systems (2020).

275AVL List GmbH: ENABLE-S3 Project (2019).

276Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR): PEGASUS Project (2019).

277Modelica Association: Functional Mock-up Interface (2022).

278Rosenberger, P. et al.: Modular OSMP Framework (2022).
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                     Figure 7-1: Interfaces of modular FZD simulation framework on the example of a reflection-based lidar object

model in closed loop simulation from former work of the author272a

As shown in Fig. 7-1, the framework ensures the standard conformity to OSI and provides all

necessary functions to ensure its packaging according to the OSI sensor model packaging specifica-

tion279 and the supported FMI standard. This includes the SensorViewConfigurationRequest

mechanism, which happens as initialization of the co-simulation, where the sensor model is

virtually mounted on the ego vehicle and both sensor model and simulation tool are parameterized.

In case of the depicted reflection-based sensor model, e.g. the ray tracing and the super-sampling

of rays (referring to Sec. 3.1.1) within the simulation tool is specified by the sensor model to serve

its needs.

The actual sensor system simulation logic is contained in so-called strategies or strategy modules.

The framework then takes the SensorView as input, wraps it into a more genericSensorData

object and passes this to the first strategy. The strategies always take SensorData and output the

same structure while manipulating information contained in the data fields like moving object

positions and/or adding FeatureData with lidar detections, etc. Consequently, a singular data

stream is implemented with subsequent strategies and the framework ensures the exchange of

SensorData from one to another. At the end, the framework outputs the product of the last

strategy.

In case of the reflection-based lidar object model, as explained in Chap. 2 and shown in action

in Fig. 2-5, several such functional strategies are implemented, as drawn in Fig. 7-2 from its

open source repository provided by the author with FZD on GitLab and GitHub280. The modules

are detection sensing, lidar sensor fusion, segmentation, and tracking. They can be sorted to a

real lidar system’s front end(s), a possible fusion of data from several lidar front ends including

a coordinate transformation, and detection clustering, segmentation, and tracking. Additional

279ASAM e.V.: ASAM OSI® (Open Simulation Interface) - Official Documentation (2022).

280Rosenberger, P. et al.: Reflection Based Lidar Object Model (2022).
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debugging and output strategies are provided open source too and can be plugged in easily at the

end of the functional strategies or in between. The figure shows several interfaces of real APSS

and which strategy provides such data at which possible output interface.

Figure 7-2: Strategy modules of the reflection-based lidar object model within FZD simulation framework280

Together with the framework comes a list of parameters of the APSS simulation in form of a profile

structure and every strategy can bring further parameters to that profile structure. The profiles

containing the values of the parameters are specific for different sensors in real world (e.g. Valeo

SCALA, Fig. 3-4, or Velodyne Puck, Fig. 3-5). Such profiles contain values for e.g. mounting

position and orientation, number of vertical/horizontal beams, number of super-sampling rays

per beam, scanning frequency, and many more. In a FMI conform co-simulation, the simulation

master can select and change profiles as a whole to set the APSS model as a different kind of

sensor for easy exchange in simulation. Furthermore, such fixed parameter sets enable traceability

of validity once the model is used by third parties.

However, other approaches exist that are totally granular like the configurable sensor model

architecture by Schmidt et al. 281 It has a similar logical structure as the FZD framework with

parameter sets instead of profiles and sequential manipulation of OSI SensorData. For every

single effect, one module is introduced, instead of one strategy per functional layer. While

providing clear instructions how to build up the overall model, the atomic structure neglects

interconnections and correlations between effects and the needed isolation of effects for validation

of each module is questionable. Therefore, the presented structure provides a good compromise

between granularity and testability, while reflecting the real APSS interfaces as major advantage

for V&V.

281Schmidt, S. et al.: Configurable Sensor Model Architecture (2021).
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7.2 Perception Sensor Collaborative Effect and Cause

Tree (PerCollECT)

As already briefly introduced in Sec. 5.1, a recent publication of the author282 gives a method for

solving the second task of the steps towards requirements: The catalog of cause-effect chains

to choose from for modeling. The method is called Perception Sensor Collaborative Effect and

Cause Tree (PerCollECT) and involves the collection of cause-effect chains and their sorting into

a tree-shaped graph to visualize all interconnections between effects. The first contribution of

the publication is the sorting of an immense list of around 70 effects in lidar, radar and camera

sensor systems into a table282a, already sorted by the generic functional layers, as described in

Sec. 2.1.1. The existence of every effect is proven with one or multiple literature sources. Simply

collecting effects and modeling them directly, is useful and produces respectable results283, but it

is not very systematic, so the relationships between effects must be explored in order to model

them systematically.

Consequently, the listing table is taken as the basis for an ontology based on the functional layers.

Every effect is put into a node and then the nodes are sorted to the respective layer. The effects

are then connected to causing effects and caused effects, forming the cause effect chains. Finally,

top-level effects are becoming phenomena, as they are visible on the output of the overall APSS

and bottom-level effects are becoming environmental causes (marked green in Fig. 7-3) and design

parameters (marked light blue in Fig. 7-3), depending on whether they are in the environment or

can be caused by changes to the APSS. In this manner, a tree-shaped graph is formed that reflects

a top-down structure from phenomena to causes.

The results are available open source onGitHub284 and accompanied by an interactive visualization,

where interconnections from and to every node can be highlighted and a short description and

sources describing the existence of the effect and the cause-effect chains are provided. Fig. 7-3

shows an excerpt of PerCollECT for lidar, called ”LidarLimbs”.

Hinsemann provided the first but comprehensive collection of cause-effect chains in lidar sensor

systems285 and completed the first version of PerCollECT together with his Bachelor thesis

supervisors from FZD including the author. Fig. 7-4 shows the massive amount of causes and

effects and the bunch of interconnections of this first full scale of PerCollECT - LidarLimbs and

the functional layers that are connected and selectable for the analysis of effects and phenomena

on subsequent functional layers. Fig. 7-5 shows an exemplary zoom on a single effect-node of

282Linnhoff, C. et al.: Towards Serious Sensor Simulation for Safety Validation of Automated Driving (2021).

a: p. 2690.; b: p. 2692.

283Holder, M. F. et al.: Modeling and Simulation of Radar Sensor Artifacts (2019).

284Linnhoff, C. et al.: PerCollECT - LidarLimbs (2022).

285Hinsemann, T.: Analyse von Effekten in Lidardaten für die virtuelle Absicherung (2021).
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Figure 7-3: Exemplary excerpt of Perception Sensor Collaborative Effect and Cause Tree (PerCollECT) -

LidarLimbs from former work of the author284

PerCollECT - LidarLimbs, the “low received power from object” and the highlighted intercon-

nections (red) coming from other effects, environmental causes, or design parameters of the real

sensor system, as well as the output-connections of the node to subsequent effect-nodes (blue).

As the term collaborative in the acronym of PerCollECT suggests, the method is targeted to be

constantly developed further by the community through collaborative introduction of new nodes

and intersections. However, the first impulse and collection of effects is provided and already

successfully used in projects like VVM286. PerCollECT is “one-way coupling” 291a and as generic

as necessary to reflect all kinds of sensors per sensor technology, like scanning and solid-state

(see Sec. 3.1.5) in case of lidar, and use case independent. It helps identifying inter-dependencies

between effects and is therefore used when scenarios are designed, as demonstrated in a recent

publication of the author.287 Furthermore, a relevance analysis of cause-effect chains can be

performed to derive requirements and decent acceptance tests, as will be presented in the next

section.

286European Center for Information and Communication Technologies – EICT GmbH: VVM Project (2022).

287Elster, L. et al.: Fundamental Design Criteria for Logical Scenarios (2021).

90



7.2 Perception Sensor Collaborative Effect and Cause Tree (PerCollECT)

F
ig
u
re
7
-4
:
F
u
ll
ex
te
n
t
o
f
P
er
C
o
ll
E
C
T
-
L
id
ar
L
im
b
s,
sc
re
en
sh
o
t
fr
o
m
it
s
h
o
m
ep
ag
e2

8
4

91



7 Specification of APSS Simulation

F
ig
u
re
7
-5
:
Z
o
o
m
in
to
o
n
e
ef
fe
ct
n
o
d
e
an
d
h
ig
h
li
g
h
te
d
ca
u
se
-e
ff
ec
t
ch
ai
n
s
o
f
P
er
C
o
ll
E
C
T
-
L
id
ar
L
im
b
s,
sc
re
en
sh
o
t
fr
o
m
it
s
h
o
m
ep
ag
e2

8
4

92



7.3 Cause, Effect, and Phenomenon Relevance Analysis (CEPRA)

7.3 Cause, Effect, and Phenomenon Relevance

Analysis (CEPRA)

As already shortly presented in Sec. 5.1, a method for relevance analysis of cause-effect chains is

proposed in former work of the author282b. It is dedicated to any test engineer (team) that needs

to specify an APSS simulation for development or safety validation. The prerequisites are that

the ODD of the SuT is already clarified and PerCollECT is fully available for the sensor to be

replicated in simulation as test tool within the test-suite for the SuT. It consequently addresses the

third step of the instructions from the beginning of this chapter, the systematic, wise foreseeing

analysis of the possible impacts of phenomena on the SuT. However, it extends this instruction to

an analysis of the impact for the given ODD and an accompanying assessment of the occurrence

of cause-effect chains up to different phenomena in the selected APSS to be modeled.

PerCollECT is built top-down, from the top phenomena over cause-effect chains down to the

causes and design parameters, whereas CEPRA is flexible and can be performed either top-down

or bottom-up. Anyways, all possible cause-effect chains for the selected APSS are to be listed

in the first three left columns of CEPRA. Tab. 7-1 shows an exemplary provided excerpt of a

CEPRA for a lidar sensor system simulation. Three rows are given for the phenomenon “false

negative in object list”, one for occluding objects, one for low received power from reflecting

objects, and one for attenuation of the signal by an absorbing atmospheric aerosol. The first

two reflect different ways through PerCollECT from the same causes to the same phenomenon,

while the third one has different causes. Consequently, the first half of the table is filled from

PerCollECT, which could be performed (semi) automatic from the provided Extensible Markup

Language files on GitHub.

Table 7-1: Exemplary Cause, Effect, and Phenomenon Relevance Analysis (CEPRA)

for APSS Modeling from former work of the author282b

Pheno-
menon
(P)

Effect chain (EC)
of phenomenon

Causes of
effect chains

P&EC occurrence in ODD∗

(O, filled by sensor expert)
P&EC impact on SUT in ODD∗

(I , filled by SUT expert)
Relevance
of P&EC

[1, 10] Rationale [1, 10] Rationale O + I

False
negative
in
object
list

→ FN features → FN detections
→ Not dist. from noise floor
→ Low rec. power from object
→ Occlusion by objects
→ Occlusion by object parts
→ Reflection by object parts

• Materials of
reflect. obj. parts
• Roughness of
reflect. obj. parts
• Shapes of
reflect. obj. parts
• Size of
reflect. obj. parts
• Emitter wavel.∗∗

4

FN objects caused by
occluding reflecting objects
occurs rarely in a front
radar on a highway, because
of multi-path propagation.

6

FN obj. occurring because
of occlusion in a front radar
have a moderate impact
because mainly only direct
neighbor objs. considered.

10

→ FN features → FN detections
→ Not dist. from noise floor
→ Low rec. power from object
→ Reflection by object parts

2

FN objects caused by compl.
away-reflecting obj. cannot
be ruled out, but are not
expected on highway.

9

FN objects occurring
in a front radar
have a very high impact
on a highway pilot.

11

→ FN features → FN detections
→ Not dist. from noise floor
→ Low rec. power from object
→ Attenuation by atm. aerosol
→ Absorption by atm. aerosol

• Signal dist.
in atm. aerosol
• ...
• Emitter wavel.∗∗

3

FN objects caused by
completely absorbing
atmospheric aerosol occur
only in harsh weather in
a front radar on a highway.

5

FN objects occuring
in harsh weather conditions
may be covered by safety
concept with a moderate
impact on the highway pilot.

8

• • •

• • •

ggLegend: Normal font: Automatically generated content from PerCollECT after sensor output definition; Italic: Expert knowledge needed
∗Operational Design Domain (ODD) must be defined beforehand (here: a German highway with all its elements for a highway pilot as SUT).

∗∗These causes are design parameters by the SUT (here: a highway pilot’s radar at the front center) and must be defined beforehand.
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At this point, the relevance analysis for all cause-effect chains starts. Two experts or expert groups

need to be consulted by the mentioned test engineer. The first information source is needed to

assess the occurrence of possible phenomena and cause-effect chains in the given ODD and the

APSS to be simulated. The occurrence scoresO in CEPRA have the same criteria as the frequency

scores in a regular and standardized FMEA.288a The frequency scores are provided in Tab. A-2 in

AnnexA. They are selected for CEPRA, not only because they fit quite well, but also they are

well established and promoted by Automotive Industry Action Group (AIAG) and Verband der

Automobilindustrie (VDA). The score will be used to calculate the relevance score at the end,

but the rationale is especially important for documentation of the whole requirement definition

process and should be given carefully.

The same arguments hold for the impact scores I from the second expert (group) to be consulted,

the SuT expert(s). The scores are in line with the severity scores from FMEA Handbook by

AIAG and VDA.288b The severity scores are provided in Tab. A-1 in AnnexA. Impact I means

the expected impact on the SuT, which is not as negative in its meaning as the mentioned severity,

but the criteria for the scores read very similar to the classical FMEA.

The overall score is the sum of impact and occurrence for each cause-effect chain. Using a sum

for the overall score calculation instead of e.g. multiplication does not immediately eliminate

cause-effect chains with extremely low or high individual scores for I or O. With respect to

the usage of the simulation for safety validation, this is necessary to keep very rarely occurring

phenomena with medium to high impact. This result is the basis of decision-making for the

overall model specification.

Such expert-knowledge-based assessment of occurrence and impact is obviously subjective and

requires a high level of oversight over all factors (ODD, sensor, SuT, etc.) However, FMEA

like methods are always exposed to this uncertainty, but well established and professional teams

can be trusted to fulfill such extensive challenges. Independent control instances can qualify the

teams and can oversee the process to increase the overall credibility of the results. It should be

clarified that the final relevance scores do not count as absolute values, but as relative scores

against all other cause-effect chains listed for the given modeling-task defined by the given ODD,

sensor, and SuT. In this regard, it is very well suited to select the most relevant phenomena and

cause-effect chains from the immense number of possible tasks to model depending on the given

monetary budget, test capacity, computer hardware, time budget, etc.

As a proof of concept, CEPRA is already successfully applied in the German publicly funded

research project VVM289 together with project-internal working group partners from the industry

(simulation tool vendors, OEMs, TIER1s, testing organizations, etc.). In this project, it is derived

from PerCollECT - LidarLimbs and used for specification of a simulation of the Valeo SCALA

lidar sensor system, as illustrated in Fig. 3-4. The project has defined several functional use

288AIAG; VDA: FMEAHandbook - Failure Mode and Effects Analysis (2019). a: pp. 123-124.; b: p. 122.

289European Center for Information and Communication Technologies – EICT GmbH: VVM Project (2022).
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cases, where one is an occlusion scenario at an urban intersection with another vehicle and a

crossing vulnerable road user. The ODD including possible weather influence and all possibly

involved objects is defined to a certain extent as well. While the sensor expert column is filled

out together with the sensor manufacturer, the SuT column is filled with the provider of the fusion

and planning function that demands an object list as input. The results have already been shown

by the author in a public presentation.290 An exemplary excerpt of this CEPRA from the project

is kindly provided and attached to this dissertation in Tab. A-3 in AnnexA.

The novel method CEPRA is specifically designed for APSS simulation specification. How-

ever, there is one method in the field of simulation and its validation that is comparable, called

Phenomena Identification and Ranking Table (PIRT)291. Oberkampf and Roy shortly present its

historical development and state that it is a “much more powerful tool than originally conceived

when it was invented in the late 80s” 291b. As PIRT is an expert knowledge-based method like

CEPRA, they stress the importance of the assembly of the team that performs the action. Besides

definition of objectives and specification environments and scenarios, which is very similar to

the definition of an ODD in the case of safety validation of ADS, the “identification of plausible

physical phenomena” 291c is a major step before the actual PIRT is constructed. This is very

similar to the proposed steps in this dissertation and the proposed efforts resulting in PerCol-

lECT. Oberkampf and Roy even propose a tree-shaped graph to derive relevant SRQs, called

environment-scenario-SRQ tree. However, PerCollECT is totally generic and independent from

concrete or logical scenarios, while Oberkampf and Roy try to solve two steps in one with their

analysis. Furthermore, the method lacks the literature proof that is fundamental for PerCollECT.

The core of PIRT is a ranking table for phenomena that is very similar to CEPRA at first sight, as

the rows of the table are formed by the physical phenomena. Nonetheless, the columns have a

totally different meaning, making it a fundamentally different tool. There are two alternatives

given from Oberkampf and Roy, which are displayed in Fig. 7-6 left and right. In its first version,

the columns are the different SRQs and the importance of each SRQ per phenomenon is gray

scaled in three levels. The second version is more or less a process diagram, which has the

different steps towards model credibility as columns. They are formed in this case by modeling,

verification, validation, and UQ and the fulfillment levels are adequate, inadequate, and unknown.

While both tables help with different tasks during the overall process, they are not designed for

requirements engineering, but for development. Therefore, no documentation is demanded inside

the PIRT, in contrast to the rationale columns in CEPRA. However, they show that tables help

structuring tasks a lot, as is the case for CEPRA.

290Rosenberger, P. et al.: Validation of Test Infrastructure (2022).

291Oberkampf, W. L.; Roy, C. J.: Verification and Validation in Scientific Computing (2010). a: p. 705.; b: p. 678.;

c: p. 679.; d: p. 683.; e: p. 688.
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Figure 7-6: Phenomena Identification and Ranking Table (PIRT) from Oberkampf and Roy.291d,e

Reproduced with permission through PLSclear.

7.4 Graduated Definition of Requirements for

Successive Interfaces

As defined in the fourth step of the instructions for model specification from former work of

the author at the beginning of this chapter, the next step after having the prioritized cause-effect

chains from CEPRA at hand is to define the modeling approach and its actual requirements. It

includes to define the overall required fidelity and accuracy of the sensor data generation. Finally,

the actual accuracies of the different cause-effect chains including acceptance tests is determined,

completing the already given instructions. In specification, functional decomposition and the

functional layers from Fig. 2-1 are needed, again. Besides specifying the overall APSS simulation,

both intermediate interfaces, detection and object level, are specified as well. Such a graduated

specification is best suited for complex systems like APSS and is a common approach.

As already described in Sec. 4.1.1, Viehof separates requirements in three priority levels as well:292

1. Global key requirements from intended use of the simulation

2. Subsystem requirements from functional decomposition for individual model parts

3. Statistical requirements on parameterization effort, sample selection, and parameter space

coverage

There is no specification without intended usage of the APSS simulation. For this reason, the

functional use case from the VVM project293 is taken as working example, again. In the project,

the mentioned working group defined requirements step wise, starting from general requirements

for the lidar sensor system simulation, over the lidar object model requirements, down to the

292Viehof, M.: Objektive Qualitätsbewertung von Fahrdynamiksimulationen (2018), pp. 51-52.

293European Center for Information and Communication Technologies – EICT GmbH: VVM Project (2022).
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7.4 Graduated Definition of Requirements for Successive Interfaces

lidar detection model requirements, as illustrated in Fig. 7-7 and already publicly presented by

the author.294

Icon sources: https://www.flaticon.com/authors/becris,
https://www.flaticon.com/authors/Icongeek26,
https://www.flaticon.com/authors/freepik

Lidar detection
model requirements

Lidar object
model requirements

Acceptance Tests 
for the lidar sensor
system simulation

General requirements for the 
lidar sensor system simulation

Lidar sensor
system

experiment data

Reference data
requirements per
lidar sensor system
experiment

Figure 7-7: Graduated definition of requirements for successive interfaces from recent presentation of the author294

An exemplary excerpt of the requirements on all all functional levels is kindly provided by the

project in AnnexB. To give an impression of such differentiated specification, the exemplary

excerpt from the lidar detection model specification is provided in Tab. 7-2. The interconnections

with the other lists is ensured by the IDs and the lists of related IDs from different tables in the

respective columns. Due to the consistency of CEPRA and the specifications from the same

working group in the same research project, there are even interconnections provided from the

given specifications in AnnexB to the filled CEPRA in AnnexA.

To ensure credibility at the end, each requirement is accompanied by one or multiple acceptance

tests, as depicted in Fig. 7-7 and listed e.g. in Tab. 7-2. Additionally, every acceptance test for the

lidar sensor system simulation that uses real data has connected lidar sensor system experiment data

requirements. As already explained several times, only specifying experiments and measurement

data collection is not enough for re-simulation. Therefore, reference data requirements per lidar

sensor system experiment are defined in the VVM project as well. Exemplary excerpts of all of

the mentioned lists are provided in AnnexB for completeness.

With this set of tables, for the first time ever, the APSS specifications list is complete. Of course,

for the scope of this dissertation, only exemplary excerpts of the huge amount of tables are

contained. So, the methodology for requirements definition from PerCollECT over CEPRA and

the final specifications and acceptance tests is complete and a first application is provided.

294Rosenberger, P. et al.: Validation of Test Infrastructure (2022), p. 12.
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8 Metric Evaluation for Specification and VV&UQ

of APSS Simulation

This chapter addresses RQ. 2, the evaluation of a metric for VV&UQ of APSS simulation, as

identified in Sec. 4.3. Before this evaluation begins, the criteria for such metrics are to be clarified.

For this purpose, Schaermann203b condensed seven criteria for validation metrics, combining the

lists of six criteria by Oberkampf and Barone295 and the seven desired features from Liu et al.296.

As they are already used for metrics selection in literature e.g. by Magosi et al.297, they are taken

in this dissertation as well. They demand that:

1. Metrics are intuitive. (=> easily understandable & output in unit of measurand)*

2. Metrics are applicable to both deterministic and non-deterministic data.

3. Metrics are quantitative and objective. (=> no own parameters)*

4. Metrics do not include acceptance criteria. (=> no Boolean output)*

5. Metrics consider uncertainties. (=> epistemic and aleatory, as defined in Sec. 1.2.7)*

6. Metrics define a confidence interval with respect to the number of measurement data.

7. Metrics meet the mathematical properties of a metric. (=> unbounded results)*

Most criteria need further explaining, as it is originally left open what is meant by “intuitive” and

how uncertainties should be considered (if and how epistemic and aleatory should be distinguished).

Therefore, the metric criteria defined by Ferson et al. with a more practical point of view298 are

reflected by additions from the author in parenthesis behind some criteria and are applied in the

following metric evaluation. For completeness, the four mathematical properties of a metric, as

originally defined by Fréchet299 in 1906, are:

1. Non-negativity: d(ζ, ˜︁ζ) ≥ 0

2. Symmetry: d(ζ, ˜︁ζ) = d(˜︁ζ, ζ)
3. Triangle inequality: d(ζ, ˜︁ζ) + d(˜︁ζ, z) ≥ d(ζ, z)

4. Identity of indiscernibles: d(ζ, ˜︁ζ) = 0 if and only if ζ = ˜︁ζ
295Oberkampf, W. L.; Barone, M. F.: Measures of agreement between computation and experiment (2006), pp. 11-12.

296Liu, Y. et al.: Toward a Better Understanding of Model Validation Metrics (2011), p. 2.

297Magosi, Z. F. et al.: Evaluation of Physical Radar Perception Sensor Models (2022), p. 11.

* Additions by the author

298Ferson, S. et al.: Model validation and predictive capability (2008), pp. 2415-2416.

299Fréchet, M. R.: Sur quelques points du calcul fonctionnel (1906).
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8 Metric Evaluation for Specification and VV&UQ of APSS Simulation

8.1 Evaluation of Metrics Applied for APSS V&V

In Sec. 4.2.2, a comprehensive description and list of metrics applied for APSS V&V in literature

is provided in Tab. 4-3. For metric selection later in this dissertation, the following section is the

evaluation of that metric collection with Tab. 8-1 as the condensation of all information about the

metrics from literature. If a metric is capable of a category given by the column title, it is marked

in a specific shade of green, otherwise the cells stay blank.

The evaluation starts with the interfaces that the metrics are applied to and all possible interfaces

it could have been applied to (D: Detections, F: Features/OGs, O: Objects). Then, the scenarios

that are producing the data it is applied to (•/⇝ : (Quasi) static/dynamic) are provided, some

have already been introduced in Sec. 5.2. Additionally, in Tab. 8-1 the scale of measurement it

is able to process is considered (M: Metric (interval or ratio), O: Ordinal). The character of the

uncertainties it is able to face (
∫︁
/ : Aleatory/epistemic) is given as well. For these first columns,

indicators are inserted that mark if the metrics are applied without modification in literature (x),

or if the metrics are applied in literature with adaptions like arithmetic mean, aggregation over

time, or Euclidean distance matrix (⋆). Furthermore, the output it is providing is considered

for the evaluation (R: Real valued, P: Probabilistic). Special attention is given to covering the

seven criteria for validation metrics from literature at the beginning of this chapter, which were

expanded by the author to be able to objectively answer the binary assessment.

The scale of measurement plays a crucial role in statistics, when metrics are applied for comparison

of measurements and simulations. In most cases, metric scales (interval or ratio) are necessary

for application, as not only frequency (nominal scale) or rank (ordinal scale), but also e.g. the

arithmetic mean of a set of values can be computed. For example for averaging given values, the

arithmetic mean
1

n

∑︁n
i=1 xi of n values xi...xn and the geometric mean

n
√︁∏︁n

i=1 xi exist. However,

the arithmetic mean can already be computed for interval-scaled values, whereas geometric mean

needs ratio-scaled values. Therefore, before any metric is applied, the scaling must be checked

and sometimes normalization or logarithms must be applied to avoid misleading evaluation of

statistics, as explained in Sec. 8.2.5.

A first analysis of all metrics in Tab. 8-1 indicates that the usage of data processing like OGs

and object tracking for validation is very subjective to a specific use case due to all parameters

and embodiment of such algorithms. When the simulation is used to test an algorithm or a

function with synthetic data, the comparison of results can be used for model falsification for

that purpose. In the case of no difference between a function’s reaction on real or synthetic data,

sample validation for that specific function is possible, but to generalize this for other functions or

function updates remains questionable. In other words: Using subsequent data processing is not a

metric in the sense of measuring the distance between simulated and real detections, but mainly a

falsification tool. Additionally, data processing cannot be generalized or used for benchmarking,

as this would require standard algorithms to apply in the exact same form in every case.
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8.1 Evaluation of Metrics Applied for APSS V&V

Table 8-1: Evaluation of metrics applied for APSS simulation, see Tab. 4-3 for metric acronyms and calculation.

Green color: Metric is capable of a category, x/⋆: Metric applied in literature without/with adaptions.

# Metric
Interface Scen. Scale Unc. Out Covered criteria

D F O • ⇝ M O
∫︁

R P 1 2 3 4 5 6 7

1 dMa x x x

2 OE ⋆ x x x x

3 d x x x

4 dEu x x x

5 RSS ⋆ x x x

6 dCh x x x

7 RMSE x x x x

8 dHa x x ⋆ x

9 dWa x x x x

10 dPP x x ⋆ x

11 dPC x x ⋆ x

12 BBE x x ⋆ x

13 MS ⋆ x x ⋆ x

14 OCR x x ⋆ x

15 FCR x x ⋆ x

17 UPD x x ⋆ x

16 OPD x x ⋆ x

18 PD ⋆ x x ⋆ x

19 CB ⋆ x x ⋆ x

20 CP ⋆ x x ⋆ x

21 CC x x x

22 ACD x x x

23 DTW x x x

24 Jaccard x x x x

25 OSPA x x x

26 OSPA-T x x x

27 OSPA-MT x x x

28 GOSPA x x x

29 Rahmathulla x x x

30 DKL ⋆ x x x x x

31 dJS x x x x

32 dAVM x x x x

33 fKS x x x x

34 DEM x x x
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8 Metric Evaluation for Specification and VV&UQ of APSS Simulation

As already stated, it is up to discussion, what is meant by “intuitively understandable” and how

the uncertainties and their epistemic or aleatory character should be considered. However, there

is only a single metric that outperforms all others regarding the coverage of the metric criteria, as

visible in Tab. 8-1: The AVM (dAVM, metric 32). Besides criterion 6 regarding the confidence

interval that is only met by hypothesis testing in the derived list, it fulfills all criteria and is

furthermore able to process all kinds of interfaces, data and scenarios. Furthermore, a confidence

interval will be addressed by error prediction later on and is not necessarily part of a validation

metric, from the experience of the author.

The AVM is intuitive, as calculating areas between two curves in a plot is very figurative to most

people, either on CDFs, EDFs, or p-boxes. Besides, AVM results in a value in the unit of the

measurand, which is very useful in specification of model acceptance and even practicable for

project managers300.

Additionally, AVM is the only already applied metric in literature that can theoretically handle

p-boxes from epistemic and aleatory uncertainties301, no other metric has this column filled green

in Tab. 8-1. Therefore, it is the preferred metric after the evaluation of all already applied metrics

in literature. Still, more investigations and a direct comparison of the AVMwith the other possible

metric candidates that can handle probabilistic data reflecting uncertainties (even if only aleatory)

is provided in the next section. These candidates are Kolmogorov-Smirnov divergence, Jensen-

Shannon distance/divergence, and frequency of positive Kolmogorov-Smirnov tests (metrics 30,

31, 33).

8.2 Assessment of Area Validation Metric (AVM) and

Other Metric Candidates

For comparing the best metrics from the previous evaluation and some new candidates in detail, the

method of manufactured universes is applied, as proposed for assessing VV&UQ approaches by

Stripling et al.302 or in the validation metric assessment by Liu et al.303 In real world, uncertainty

is always present and no GT exists, but an artificial, manufactured universe provides GT, as it is

self-defined. Several EDFs of artificial range measurements are manufactured for the purpose of

this section, as can be seen in Fig. 8-1. One serves as the measurement (real) EDF, seven other

EDFs serve as simulation results to apply the metrics for measuring their difference to the real

data. With that manufactured universe at hand, a detailed metric assessment and comparison is

possible.

300Ferson, S. et al.: Model validation and predictive capability (2008), p. 2415.

301Oberkampf, W. L.; Ferson, S.: Validation Under Aleatory and Epistemic Uncertainty (2007).

302Stripling, H. F. et al.: The Method of Manufactured Universes (2011).

303Liu, Y. et al.: Toward a Better Understanding of Model Validation Metrics (2011).
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8.2 Assessment of Area Validation Metric (AVM) and Other Metric Candidates

All manufactured EDFs consist of n = 100 random samples from a normal distribution N (ζ, ζ ).

The values of the respective means ζ and standard deviations ζ are given in Tab. 8-2. The first

simulated EDF is sampled from a higher mean and doubled standard deviation than the real. The

second simulated distribution has the same mean as the first one, but the same standard deviation

as the real distribution. The third simulation produces data with half the standard deviation of

the real data and a marginally smaller mean than the real data. Simulation 4 has a three times

higher standard deviation, but the same mean as the real data. The fifth simulation’s EDF is the

exact same as the fourth, but shifted by −0.50m. The sixth simulation’s EDF is the exact same

as the second, but shifted by −0.65m. The seventh simulation has the exact same underlying

distribution as the real data, but produces different samples.

Table 8-2: Manufactured real and simulated EDFs

EDF real sim1 sim2 sim3 sim4 sim5 sim6 sim7

ζ 22.00m 22.55m 22.55m 21.91m 22.00m 21.50m 21.91m 22.00m

ζ 0.20m 0.40m 0.20m 0.10m 0.60m 0.60m 0.20m 0.20m

20 20.5 21 21.5 22 22.5 23 23.5 24
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Figure 8-1: Manufactured EDFs for metric testing

The first important evaluation, however, is the comparison of the number of values from real

data n and the number of values from simulationm. It seems trivial at first, but already contains

information of detection or object existence uncertainty, which is based on the underlying signal

thresholding for detection identification from the signal, as already mentioned in Sec. 1.2.7.

Therefore, it is sometimes actually quite challenging to replicate a similar amount of detections,

e.g. when environmental effects are considered. A comparable amount of values is a prerequisite

when comparing CDFs or EDFs, as imbalanced data distorts the results.
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8 Metric Evaluation for Specification and VV&UQ of APSS Simulation

8.2.1 AVM for Model Bias and Scattering Error

Quantiles like the median are characteristic values of distributions, essential in CDF and EDF

plots, and can be compared even for ordinal data. Furthermore, as measurement data is mostly

metric, as is the case for the range measurements of the manufactured universe, arithmetic

mean and standard deviation can be computed. Both latter values together characterize (normal)

distributions completely and are often the basis for stochastic model calibration. Therefore,

median error (dmedi), model bias (mean error d, metric 3), and scattering error (dstdv) results are

provided as a starting point for the metric evaluation in Tab. 8-3. Additionally, AVM results are

listed there.

Table 8-3: First metric results for a (manufactured) real vs. seven simulated EDFs

real vs. dmedi d dstdv dAVM

sim1 0.59m 0.60m 0.22m 0.60m
sim2 0.60m 0.60m 0.00m 0.60m
sim3 0.04m 0.04m 0.11m 0.07m
sim4 0.03m 0.00m 0.44m 0.34m
sim5 0.53m 0.50m 0.44m 0.57m
sim6 0.04m 0.04m 0.00m 0.05m
sim7 0.00m 0.00m 0.00m 0.02m

Ametric for probabilistic data should reflect if the underlying distribution is the same or just

slightly different or even very different. At first sight, median and mean error provide almost

the same information, while the median is a bit more sensitive to small differences. Both are

insensitive to scattering errors, as the results for simulation 4 show. Nevertheless, no visual

inspection of the seven simulated EDFs would say that the fourth simulation is as good as e.g.

simulations 3, 6, and 7, so scattering error must be considered as well.

Here, AVM has its benefits, as it considers a combination of both. As can be taken from Tab. 8-3,

not-overlapping EDFs (simulations 1 and 2) are penalized most, but simulations with different

standard deviations get relatively high metric values, even if the mean is identical to the real data

(simulation 4). It finds the very small difference between simulation 7 and the real data, so it is

sensitive even for tiny deviations. And it provides the results in the unit of the measurand, as

has been mentioned already earlier, which provides an intuitive feeling for the differences of the

simulations.

A closer look at the initial results shows that when there is no overlap, as is the case with the first

two simulations, AVM is very close to the median and mean error. This can be explained by AVM

being an integral, so it can be computed either over the abscissa or over the ordinate. Therefore,

on the one hand, as listed in Tab. 4-3 (metric 32), AVM is the integral of the absolute difference
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8.2 Assessment of Area Validation Metric (AVM) and Other Metric Candidates

between the cumulative distribution functions over all real and simulated sensor measurements

dAVM(F, ˜︁F ) = ∫︂ ∞

−∞
|F (ζ)− ˜︁F (ζ)| dζ . (8-1)

On the other hand, due to the fact that cumulated probability F (ζ) is limited to [0, 1] and unitless

withm (e.g. 100) quantiles, the integral over probability can be written as the mean error (metric

3) of allm quantiles of the CDF like

dAVM(F, ˜︁F ) = ∫︂ 1

0

|ζ(F )− ˜︁ζ(F )| dF =
1

m

m∑︂
i=1

|ζ(Fi)− ˜︁ζ(Fi)| . (8-2)

In this form, the AVM is only slightly different to the mean error (metric 3 in Tab. 4-3) build over

all n measurements

d =
1

n

n∑︂
i=1

|ζi − ˜︁ζi| . (8-3)

8.2.2 Evaluation of Other Metric Candidates

There are other metric candidates found from Tab. 8-1 that can compare probabilistic data, namely

Kolmogorov-Smirnov divergence, Jensen-Shannon distance/divergence, and frequency of positive

Kolmogorov-Smirnov tests. Essentially, using the frequency of positive hypothesis testing as

done by Eder et al. for Kolmogorov-Smirnov tests is a trick to not result in binary output, which

would eliminate such a metric candidate according to criterion 4 from the beginning of this chapter.

In the detailed metric evaluation by Liu et al., Bayes factor and the frequentist metric have also

been evaluated and their results disqualified them for the scope of this dissertation due to being

not objective (Bayes) or by not including all sources of uncertainty.304

Besides, there is a wide debate ongoing in the last decade in different fields of science on the

excessive and often wrong usage of hypothesis testing, the p-value, and the significance level α of

5%.305,306,307 Still, there are sound arguments for hypothesis testing, when applied correctly, and

also using the frequency of such tests is somewhat permissible. A conclusion from the ongoing

discussion is that when such tests are applied, at least all data and values should be given to a full

extend and not only a binary statement on significance or not.306 In this regard, in the following,

all values produced by the tests are listed for the metric candidates. To obtain the listed results,

for both tests, the widely used implementations by The MathWorks, Inc.308,309 are applied.

304Liu, Y. et al.: Toward a Better Understanding of Model Validation Metrics (2011), p. 12.

305Nuzzo, R.: Scientific method (2014).

306Amrhein, V. et al.: Scientists rise up against statistical significance (2019).

307Matthews, R.: The p-value statement, five years on (2021).

308The MathWorks, Inc.: Two-sample Kolmogorov-Smirnov test (2022).

309The MathWorks, Inc.: Anderson-Darling test (2022).
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As listed in Tab. 4-3 (metric 33), the Kolmogorov-Smirnov test computes the hypothesis result

based on the test statistic

DKS = sup
ζ∈{ζ∪˜︁ζ}|F (ζ)−

˜︁F (ζ)|, (8-4)

with HKS =
(︂
DKS ≥ cα

√︂
n+m
nm

)︂
, cα =

√︂
ln 2−lnα

2
, and significance level α. Its results for the

seven simulated EDFs and the real EDF are given in Tab. 8-4.

For a full impression on the metric candidates’ capabilities, not only this test already used for

validation of APSS simulation, but also Anderson-Darling310 test results are computed with the

test statistic computed as

DAD = n

∫︂ 1

0

(F (ζ)− ˜︁F (ζ))2 w(ζ) dF (ζ), (8-5)

with w(ζ) = [F (ζ)(1− F (ζ))](−1) being provided in Tab. 8-4. While the former compares the

supremum of the difference between two CDFs, the latter is a quadratic EDF statistic like the

Cramér–von Mises test (that uses w = 1), but puts more weight on the tails of the EDF.

Table 8-4: Kolmogorov-Smirnov and Anderson-Darling test results, both with α = 5%,

compared to AVM results for a (manufactured) real vs. seven simulated EDFs

real vs.
Kolmogorov-Smirnov Anderson-Darling

dAVMHKS DKS pKS HAD DAD pAD

sim1 1 0.70 0.00 1 ∞ 0.00 0.60m
sim2 1 0.89 0.00 1 400 0.00 0.60m
sim3 1 0.27 0.00 1 11 0.00 0.07m
sim4 1 0.28 0.00 1 ∞ 0.00 0.34m
sim5 1 0.59 0.00 1 310 0.00 0.57m
sim6 0 0.16 0.14 1 4.3 0.01 0.05m
sim7 0 0.06 0.99 0 0.68 0.57 0.02m

The results for the hypothesis tests show that the Anderson-Darling test is a much more sensitive

test for comparing two distributions, as it only considers simulation 7 as originating from the

same underlying distribution as the real data, which is very accurate as well. On the other hand,

experts would probably vote like the Kolmogorov-Smirnov test and tell that simulation 6 is

not distinguishable from the real data regarding the underlying distribution as well. Both tests

somehow reflect the intuitive order of similarity between the simulations to some degree, while

the Anderson-Darling test is again too extreme to be useful, as both simulation 1 and 4 get an∞
statistic. Kolmogorov-Smirnov, however, makes a counter-intuitive statement for simulation 1

and 2, as both have a bias, but the first one has double the standard deviation than the real data

and therefore should intuitively be penalized more than the second.

310Anderson, T. W.; Darling, D. A.: Asymptotic Theory of Certain ”Goodness of Fit” Criteria (1952).
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It should be noted that Ferson et al. find similar issues with counter-intuitive Kolmogorov-

Smirnov test results for CDF comparison in contrast to the AVM matching intuition very well.311

To conclude on hypothesis testing, the necessary trick to use their frequency, as Eder et al. did,

the reported discussions on using them at all, and the sometimes misleading and counter-intuitive

results are the reasons to be not considered further in this dissertation.

Finally, the last metric candidates left are the divergences defined by Kolmogorov-Smirnov and

Jensen-Shannon, the metrics 30, 31 from Tab. 4-3. Their formula have already been written there,

but are repeated here, as a third divergence is introduced for comparison with the AVM, which

is a symmetrical version of the Kullback–Leibler divergence. In order, the Kullback–Leibler

divergence of two distributions is obtained by

DKL(Þ(ζ), ˜︁Þ(ζ)) = ∑︂
ζ∈{ζ∩˜︁ζ}

Þ(ζ) · log2(
Þ(ζ)˜︁Þ(ζ)). (8-6)

The symmetrical version of the Kullback–Leibler divergence is the mean of both possible unsym-

metrical Kullback–Leibler divergences that is given by

Dsym(Þ(ζ), ˜︁Þ(ζ)) = Þ(ζ) =
1

2
[DKL(Þ(ζ), ˜︁Þ(ζ)) +DKL(˜︁Þ(ζ),Þ(ζ))]. (8-7)

The Jensen-Shannon divergence uses this mean and is itself symmetrical, calculated by

DJS(Þ(ζ), ˜︁Þ(ζ)) = 1

2
DKL(Þ(ζ),Þ(ζ)) +

1

2
DKL(˜︁Þ(ζ),Þ(ζ)), (8-8)

while being normalized to the interval [0, 1]. The results from the three divergences together with

the AVM are given in Tab. 8-5.

Table 8-5: Divergence results compared to AVM results for a (manufactured) real vs. seven simulated EDFs

real vs. DKL Dsym DJS dAVM

sim1 1.62 4.82 0.41 0.60m
sim2 7.11 5.70 0.66 0.60m
sim3 2.34 1.41 0.13 0.07m
sim4 0.95 4.39 0.27 0.34m
sim5 1.37 8.52 0.37 0.57m
sim6 0.06 0.05 0.01 0.05m
sim7 0.02 0.02 0.01 0.02m

As with hypothesis testing, again counter-intuitive results are given for the first two simulation

EDFs that have no overlap with the EDF from real data. The intuition tells that the second

simulation with the same standard deviation as the real distribution should have less deviation

scores than the first one with twice the standard deviation, but the opposite is shown in Tab. 8-5.

311Ferson, S. et al.: Model validation and predictive capability (2008), pp. 2418-2419.
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The symmetrical Kullback–Leibler divergence in this example penalizes the simulation 5 with

same mean but different standard deviation the most, while both other divergences are more

focused on bias errors in this case. As it is up to discussion what type of error is more critical,

again the main difference compared to the AVM is the missing output unit of the measurand,

which is of major importance for interpreting the results, as e.g. stated by Ferson et al.311

8.2.3 AVM with Epistemic Uncertainty in P-Boxes

As already stated in Sec. 4.1.5, none of the reported re-simulations of reference data for validation

of APSS simulation considers epistemic uncertainty. P-boxes are already introduced in the same

chapter for reflecting aleatory and epistemic uncertainty and model error estimation based on

sample validation with AVM as the metric and uncertainty aggregation including confidence from

other simulation domains are given and visualized in Fig. 4-16b and Fig. 4-18.

Aleatory uncertainty is the omnipresent scatter of measurements around the GT value. Referring

to Sec. 1.2.7, epistemic uncertainty is unfavorably called “uncertainty of the lazy experimentalist”,

as it should be minimized as far as possible. Nonetheless, accuracy limitations exist even for

so-called GT odometry sensors using global navigation satellite system (GNSS) with real time

kinematics (RTK), as shown by Holder et al., which recently published their massive efforts for

reference data calibration while determining and minimizing the inherent epistemic uncertainty312.

Consequently, reducing epistemic uncertainty is associated with considerable expenses and its

elimination is impossible. However, the immense effort is justified in the trivial observation

that high epistemic uncertainty leads to wide p-boxes, which can make it impossible to falsify

any simulation, as the EDF compared to the simulation is completely covered at some point.

A validation metric can be viewed as the evidence for mismatch between real and simulated

measurements. Consequently, when the uncertainty in simulation encompasses the real data, as

written by Oberkampf and Roy, “there is no evidence of mismatch because accuracy is distinct

from precision.” 313

On the other hand, allowing epistemic uncertainties as simulation input is fairness to the simulation

when it is validated against not completely reproducible measurement data, as the results have

better chance to fit to the measurement values. When re-simulation is performed with p-box as

input, it must be decided how the uncertainty is propagated through the simulation model(s), as

discussed in Sec. 4.1.5. Either way, in the regular case, every (sample) validation task afterwards

consists of a comparison of a EDF from real data with a p-box from simulation. Fig. 8-2 therefore

contains seven simulated p-boxes that are expanded versions of the EDFs from Fig. 8-1, forming

a new manufactured universe. The EDFs are expanded by ±0.10m reflecting the epistemic

uncertainty in target location and measurement device positions during the fictional experiments.

The EDF from real data is exactly the same as in the previous example.

312Holder, M. F. et al.: Digitalize the Twin (2022).

313Oberkampf, W. L.; Roy, C. J.: Verification and Validation in Scientific Computing (2010), p. 545.
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Figure 8-2: Manufactured p-boxes for metric testing

Ferson and Oberkampf 314a give the more general form of the AVM from (8-1), when it is applied

on two p-boxes or on a p-box and a EDF, which is written as

dAVM(F , ˜︁F) =

∫︂ ∞

−∞
dmin

(︂
[FL(ζ), FR(ζ)], [ ˜︁FL(ζ), ˜︁FR(ζ)]

)︂
dζ , (8-9)

with F = [FL(ζ), FR(ζ)] and dmin(F , ˜︁F) = min
∀F∈F
∀ ˜︁F∈ ˜︁F

|F − ˜︁F |. (8-10)

In this form, the smallest possible area is considered and not the mean or maximum of all possible

AVMs that could be computed e.g. with the borders of the p-box. This is based on the statement

from Oberkampf and Roy, who point out that “a validation metric should not penalize the model

for the empiricist’s imprecision. [...] Thus, the validation metric between a point prediction and

an interval datum is the shortest difference between the characterizations of the quantities.” 313

Nonetheless, for a full impression, Tab. 8-6 provides the range of areas with dAVM,min = dAVM and

dAVM,max, which uses dmax instead of dmin. Thereby, the smallest possible area is straightforward

computed, but the largest possible area is a complex optimization problem, as inside a p-box

exists an infinite number of possible EDFs. Fig. 8-3 illustrates this problem, showing the smallest

possible AVM on the left and largest AVM in the middle. The distribution leading to this largest

possible AVM are depicted on the right.

314Ferson, S.; Oberkampf, W.: Validation of imprecise probability models (2009). a: p. 13.; b: p.17.; c: p.18.
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Figure 8-3: Exemplary computation of the range of AVMs for p-boxes, redrawn from Ferson and Oberkampf.314b

Besides, the results of the so-called “Double Metric” from Ferson and Oberkampf314b are given,

that is a two-dimensional vector of the AVM results for the left and right border-EDFs, as

dAVM,2 =
(︂
dAVM,L, dAVM,R

)︂
=

(︂
dAVM(FL, ˜︁FL), dAVM(FR, ˜︁FR)

)︂
. (8-11)

Fig. 8-4 from Ferson and Oberkampf314c shows three examples of how the Double Metric is

calculated in case of uncertain numbers and intervals of epistemic uncertainty.

dAVM,2 = (5, 6)dAVM,2 = (7, 12) dAVM,2 = (9, 9)
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Figure 8-4: Example for two-dimensional Double Metric of AVMs for p-boxes,

redrawn from Ferson and Oberkampf.314c

The values for the differently computed AVMs are given with two digits as all metric results

before. The results show that again, the AVM scores of the two simulated p-boxes with no overlap

with the real EDF have the same scores. In general, the smaller side of the Double Metric is often

equal and always at least similar to the minimal AVM.

With the introduced epistemic uncertainty, the p-boxes from simulation 6 and 7 cover the EDF

from real data almost completely and get a result for identity with the given two digits precision.

Additionally, simulation 3, which is derived from data with half the standard deviation (see

Tab. 8-2) also benefits from the epistemic uncertainty and the AVM of 0.02m marks almost

identity as well. Simulation 5 gets a metric result of 0.47m, which is almost as high as the

results for simulation 1 and 2, whereas a small overlap with the real EDF is present. Finally,

simulation 4, even if it has the same mean as the real data, still gets a metric result of 0.25m, due

to its three times higher standard deviation. Therefore, the AVM has the same capabilities in the

case of present epistemic uncertainty and the comparison of p-boxes, as shown for only aleatory

uncertainty, when only EDFs are compared in Sec. 8.2.1.
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Table 8-6: First metric results for a (manufactured) real vs. seven simulated p-boxes

real vs.
Range of AVMs Double Metric

dAVM dAVM,max dAVM,L dAVM,R

sim1 0.50m 0.70m 0.50m 0.70m
sim2 0.50m 0.70m 0.50m 0.70m
sim3 0.02m 0.14m 0.12m 0.11m
sim4 0.25m 0.45m 0.36m 0.35m
sim5 0.47m 0.67m 0.65m 0.50m
sim6 0.00m 0.15m 0.14m 0.06m
sim7 0.00m 0.13m 0.10m 0.10m

It should be noted that the AVM is no metric in the mathematical sense anymore, when applied

to one or two p-boxes, as in the case of a full coverage of one p-box or EDF by the other p-box,

the area in between falls to zero without the data becoming identical.313 In contrast, the Double

Metric is a mathematical metric and easily computed but too strict in assessing the equality of two

distributions, as shown by Ferson and Oberkampf, while they “expect that the shortest distance

[AVM] will be most useful in many practical applications.”314c

8.2.4 AVM Insensitivity at Non-Overlapping Distribution Functions

All evaluations of the AVM have shown that it is the superior approach when comparing proba-

bilistic data and in fact the only reported metric that can be applied to compare data with epistemic

uncertainty successfully. Nevertheless, the results in Sec. 8.2.1 and Sec. 8.2.3 also reveal a limita-

tion of the metric, namely the insensitivity to scattering error, when there is no overlap between

the EDFs or p-boxes.

Oberkampf and Ferson already find that property of the AVM in their own study in 2007315a, as

shown in Fig. 8-5, which contains 6 different simulation results compared to a single uncertain

number that serves as the real data in this case. The upper three plots show the ability of the AVM

to distinguish smaller bias errors caused by higher epistemic uncertainty favoring the simulation

results, even when there is no overlap. The lower three plots then show the insensitivity to different

standard deviations, when there is no overlap or crossing point. Oberkampf and Ferson emphasize

that this behavior shows an advantage of the AVM, namely the distinction between aleatory and

epistemic uncertainty.315a Furthermore, they state that the insensitivity is intuitive in this shown

example, as the three lower plots may have a smaller distance for higher quantiles, but have a

higher distance for lower quantiles of the same amount and therefore should be penalized equally.

However, the investigations in the previous sections of this dissertation show a different image

that leads to the conclusion that in case of EDFs/p-boxes, the insensitivity is counter-intuitive and

therefore a limitation and not a feature.

315Oberkampf, W. L.; Ferson, S.: Validation Under Aleatory and Epistemic Uncertainty (2007). a: p. 22.; b: p.7.
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Figure 8-5: Insensitivity of AVM for increasing variance from Oberkampf and Ferson315a

8.2.5 AVM (not) for Ordinal Data

The scale of measurement is a quite important topic that has not yet been discussed in literature,

to the knowledge of the author. It is common sense, that scaling of data, as defined by Stevens316,

matters and decides which metrics and statistical values can be obtained and when. While

questioning the scale of measurement is not very popular, when sensormeasurements are evaluated,

it is known that already for calculating an arithmetic mean of data, strictly speaking, interval

scaling (a.k.a. metric scaling) should be proven, beforehand. For measuring ranges, this seems

quite trivial on first sight, but asking the question, “Does the range from 1.00m to 2.00m actually

count the same as the range from 1000.00m to 1001.00m?” can lead to some intense discussions

and the answer is not that trivial anymore, especially, when criticality is influencing the discussion

on range measurements to objects with APSS.

The question on the underlying scale of measurement gets even more difficult, when real and

simulated intensity measurements of APSS are to be compared. Some, like the RCS are given

in logarithmic scale, others, like the intensities given by some lidar sensors are coded with 8 bit

in [0, 255], while [0, 100] is reserved for linear scaling and [101, 255] is a logarithmic scale.317

Besides the lack of R&R, as already discussed in Sec. 5.3, these scaling problems could be the

cause that no publication has described lidar detection model V&V on intensities, yet.

There is an ongoing debate in science on metric application for ordinal data, e.g. in medicine and

psychology, when using the Likert scale.318 Some authors are very strict and completely prohibit

316Stevens, S. S.: On the Theory of Scales of Measurement (1946).

317Velodyne LiDAR, Inc.: VLP-16 User Manual (2019), p. 32.

318Likert, R.: A technique for the measurement of attitudes (1932).
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the usage of metrics on non-metric data. Others have a more practical viewpoint and make it

dependent on the necessary discussion of the results.319,320 At least, it is common sense, that the

scale of measurement should be discussed, which is performed in the following.

For demonstration purpose, a manufactured universe is created, where the application of any

metrics on ordinal data is allowed. The sensor output to be simulated is the output of an object size

classification, which has classes ordered by road user size that are explicitly not interval scaled,

namely: Bicycle-sized (1), motorbike-sized (2), coupe-sized (3), sedan-sized (4), SUV-sized (5),

and truck-sized (6). Each set of simulated or real data consists of n = 100 values. The relative

frequencies of the real data and both simulated EDFs are depicted in Fig. 8-6a. The same real data

with respective simulated p-boxes is plotted in Fig. 8-6b. In this case, the epistemic uncertainty

results in an interval width of 1 size class to the left for the first simulation and to the right for the

second.
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Figure 8-6: Manufactured EDFs (left, a) and p-boxes (right, b) for metric testing on ordinal scale

Table 8-7: Metric results for a (manufactured) real vs. two simulated ordinal EDFs

real vs. dmedi d dstdv DKS DAD DKL Dsym DJS dAVM

sim1 0.00 0.05 0.26 0.08 80.6 0.06 0.06 0.01 0.33
sim2 1.00 0.57 0.13 0.16 193 0.10 0.09 0.02 0.57

Table 8-8: AVM results for a (manufactured) real vs. two simulated ordinal p-boxes

real vs.
Range of AVMs Double Metric

dAVM dAVM,max dAVM,L dAVM,R

sim1 0.19 0.89 0.88 0.33
sim2 0.57 1.4 0.57 1.4

319Sauro, J.: Can You Take the Mean of Ordinal Data? (2016).

320Sullivan, G. M.; Artino, A. R.: Analyzing and Interpreting Data From Likert-Type Scales (2013).
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While being very careful with such results that are treating ordinal data as metric, Tab. 8-7 shows

that the first simulation has the same median and pseudo-mean size class as the real data, while

the second simulation output is about half a size class to high on average. The pseudo standard

deviation of the first simulation is way smaller than in the real measurements. The second

simulation is not only biased, but has a slightly different pseudo standard deviation as well, even

if the model scattering error is smaller. Considering this, all other metric results, be it from

hypothesis testing, be it divergences, or the AVM, have the same message: The second simulation

is double as different as the first one, when compared to the real data.

This exemplary demonstration is designed to stress the importance of checking the scale of

measure. On purpose, it raises questions about the meaning of the intervals between the artificial

size classes. In this case, the pseudo mean or pseudo scattering error do not have a meaning to

anybody, as no one would say that the step from bicycle-sized to motorbike-sized is equal to SUV-

sized to truck-sized. As already mentioned in Sec. 8.1, some time-based criticality metrics like

the time-to-collision (TTC)321 as discussed by Junietz322 are prominent real world examples for

values that are incorrectly treated as interval-scaled, while actually being only ordinal. Even if the

TTC is measured in seconds, which suggest interval scaling, its meaning is the counterargument.

A TTC interval of 0.5 s has a totally different meaning for TTC between 1.0 s and 1.5 s or TTC

between 10.0 s and 10.5 s.

Deprived of its capability to return values in the unit of the measurand, the AVM is as good or

bad for ordinal EDFs as the other metrics in this evaluation. Nonetheless, it is still the only one

handling epistemic uncertainty and p-boxes. In this case, as the first p-box has some overlap with

the real EDF and the second simulation overlaps not at all, the second one is three times as bad as

the first. Clearly, all comparisons in this section are of relative nature, and no absolute differences

can be measured. This is a huge problem regarding model specification, as the simulation won’t be

specified with respect to a benchmark or reference simulation, but with absolute error thresholds,

which is more or less impossible with simulations of ordinal data (and actually not allowed, with

regard to strict statisticians).

8.3 Interim Conclusion on the Selected AVM

After all investigations on different metrics for data with and without epistemic uncertainty, the

AVM is clearly the best metric candidate. Its capabilities are already used in automotive (vehicle

consumption) simulation validation by Danquah et al.323 While Schaermann neglects its usage on

321Hayward, J. C.: NEAR-MISS DETERMINATION THROUGH USE OFA SCALE OF DANGER (1972).

322Junietz, P. M.: Microscopic and Macroscopic Risk Metrics (2019).

323Danquah, B. et al.: Statistical Validation Framework for Automotive Vehicle Simulations (2021).
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absolute APSS measurement values as “its discrepancy values can result arbitrarily high” 324, a

bounded metric result is no criterion. Unboundedness is the case for most metrics evaluated, but

there is no drawback on limiting the output, but quite the contrary. When there is a higher model

bias, there should be a higher metric output.

Therefore, the AVM as defined by Ferson et al.325 is unbounded and reflects differences in full

distribution. Furthermore, it is intuitively calculated and gives results in the physical units of the

measurand (and not some “esoteric statistical units”315b), and generalizes even to application on

uncertain numbers and on deterministic values as well. Nonetheless, the insensitivity to variance,

when there is no intersection, as shown in Fig. 8-5 is a known limitation. Finally, it has been

shown that it can be used for cumulative relative frequency distribution of ordinal data, when the

results are handled carefully as well.

324Schaermann, A.: Systematische Bedatung und Bewertung umfelderf. Sensormodelle (2020), p. 67.

325Ferson, S. et al.: Model validation and predictive capability (2008), pp. 2416-2419.
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9 Tailored Metrics for Specification and VV&UQ of

APSS Simulation

This chapter addresses RQ. 3, the application and further development (if necessary) of the best

metric candidate. It should be tailored to the specifically high requirements in VV&UQ of APSS

simulation, while being capable to handle epistemic uncertainty in the measurement and reference

data arising from the limitations in R&R of APSS experiments.

9.1 Estimation of Model Bias and its Tendency

For validation, the sign of the metric does not matter, and the AVM consequently uses the absolute

distance between two EDFs, as written in (8-1), or p-boxes as in (8-9). Nevertheless, for model

development and calibration, the tendency of the simulation output compared to the real data is

of high interest. In this regard, Voyles and Roy separate the AVM into two portions, d+ and d−,

where the simulated EDF326 or p-box327 is higher (+) or lower (-) than the real EDF/p-box, which

is illustrated for the latter in Fig. 9-1.

Figure 9-1: Portions of the AVM, where the simulated p-box is higher (d+) or lower (d−) than the real EDF,
based on Voyles and Roy327a

With this distinction of its portions, the AVM computes as

dAVM(F , ˜︁F) = d− + d+ . (9-1)

326Voyles, I. T.; Roy, C. J.: Model Validation in the Presence of Uncertainty (2014), p. 4.

327Voyles, I. T.; Roy, C. J.: Model Validation in the Presence of Aleatory and Epistemic Uncertainties (2015). a: p. 5.;

b: p. 7; c: p. 4
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9.2 Possible Modifications on the AVM

Voyles and Roy conclude with the two portions at hand, an estimate for the model bias ˆ︁dbias can
be computed326 as

ˆ︁dbias(F , ˜︁F) = d− − d+ . (9-2)

It simply eliminates symmetrically distributed area portions, which reflect the model scattering

error and therefore only keeps the model bias.

As already described in Sec. 8.2.1 with the results in Tab. 8-3 and also found by Voyles and

Roy327b, there is only a (slight) difference between AVM and model bias, when there is an overlap

between the real and simulated EDFs/p-boxes. Now with the two portions of the AVM, it is

clarified that this slight difference is a very good estimate for the model scattering error. In case

there is no overlap and no epistemic uncertainty, the model bias estimate dbias and the AVM are

exactly the same as the mean error d (metric 3 in Tab. 4-3).

Furthermore, (9-2) can be used to estimate a “corrected”326 simulated p-box as

˜︁F c(ζ) = ˜︁F(ζ − ˆ︁dbias(F , ˜︁F)) = ˜︁F(︂
ζ − (d− − d+)

)︂
. (9-3)

For better readability, the model bias estimate ˆ︁dbias will be written in the following without hat
(ˆ︁ ) simply as dbias.

9.2 Possible Modifications on the AVM

Voyles and Roy find that the AVM is limited in model bias elimination due to its symmetrical

approach. Therefore, after introducing the two portions d+ and d− and the directed model bias

estimation (9-2), as described in the previous section, they construct amodifiedAVM (MAVM).327c

The MAVM is a two-dimensional metric like the Double Metric in (8-11) and calculated as

dMAVM(F , ˜︁F) =
(︂
(− d− − d+

2
− S d

− + d+

2
), ( − d− − d+

2
+ S d

− + d+

2
)
)︂
, (9-4)

with a so-called safety factor S , which depends on the number of available data n.

By aggregating the MAVM to the simulated EDF or p-box, the model form uncertainty is obtained,

which is now directed towards the real data. While being less conservative than the original

metric, the safety factor S is clearly not an objective parameter, but found by the authors in a

subjective evaluation. Furthermore, the calculation of the MAVM is not intuitive anymore, which

deprives the AVM of one of its key-features for the scope of this dissertation, where the metric

is chosen to be used in a specification and possibly discussed with people without engineering

background.
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9 Tailored Metrics for Specification and VV&UQ of APSS Simulation

9.3 Corrected AVM (CAVM) and Double Validation

Metric (DVM)

As concluded in Sec. 8.3, the AVM is the best metric candidate. However, it has the limitation

of being insensitive to scattering errors, when there is no overlap between real and simulated

EDFs/p-boxes. The MAVM from the previous section, as possible modification, does not bring

any benefits needed, but complicates the computation, as already described. Therefore, a novel

metric called corrected AVM (CAVM), is introduced as an advancement of the original AVM to

be able to validate model bias and model scattering error separately.

The CAVM is basically the AVM of the corrected simulated p-box ˜︁F c from (9-3). It therefore

uses the model bias estimate dbias from (9-2) and by that the two portions of the original AVM

d− and d+ as its basis. Fig. 9-2 illustrates this two-step calculation. At first (a), d+ and d− as

the areas where the simulated p-box is higher (+) or lower (-) than the real EDF are calculated.

Afterwards, dbias = d−−d+ is computed and ˜︁F is shifted with this model bias estimate, resulting

in the corrected p-box ˜︁F c (b). Finally, the CAVM is the area between the real EDF F (in general:

real p-box F ) and ˜︁F c with d
−
c = d+c . It is therefore formulated as

dCAVM(F , ˜︁F) = dAVM(F , ˜︁F c) = d−c + d+c . (9-5)
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(a) Calculation of d+ and d− for dbias of ˜︁F
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(b) CAVM calculation with corrected p-box ˜︁F c

Figure 9-2: Explanation of the two-step calculation of the CAVM

rnom and rref are the nominal and reference range in Fig. 9-2. n and ˜︁n1 are the number of detections

from real data and simulation sim1. F is the EDF from real data. ˜︁F is the p-box from simulation.˜︁F c is the simulated p-box corrected with the estimated model bias dbias. d
+ and d− mark areas

where the simulated p-box ˜︁F is higher (+) or lower (-) than the real EDF F . d+c and d−c mark

areas where the corrected simulated p-box ˜︁F c is higher (+) or lower (-) than the real EDF F .
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9.3 Corrected AVM (CAVM) and Double Validation Metric (DVM)

This surprisingly simple concept for the CAVM follows the popular KISS principle from Kelly

Johnson.328 It is an intuitive and straightforward evolution of the AVM, corrected by the accurate

model bias estimate. Therefore, the CAVM is an accurate approximation for the model scattering

error.

To achieve a complete overview of a model’s fidelity for sample validation and even model

calibration, the author of this dissertation strongly advises to use the dCAVM in combination with

the bias error estimate dbias. Consequently, all necessary information for an intuitive model

assessment is provided with an universally applicable metric to be used when aleatory and

epistemic uncertainty is present in the data. The proposed combination of CAVM and dbias is

therefore introduced as a two-dimensional metric called double validation metric (DVM):

dDVM(F , ˜︁F) =
(︂
dbias(F , ˜︁F), dCAVM(F , ˜︁F)

)︂
. (9-6)

According to Ferson et al., the DVM is a “quasimetric” 329, as it is non-symmetric, but satisfies

the other criteria from Chap. 8. It fulfills the requirements for error prediction and uncertainty

aggregation from Riedmaier, Danquah et al. being a “correction in combination with tight

uncertainty bounds.” 330 When several results for different samples are obtained using the DVM,

they can be inter- and extrapolated with a confidence interval, as demonstrated by Roy and

Balch331 or Danquah, Riedmaier et al.332, shown in Fig. 4-16 and Fig. 4-18 from Sec. 4.1.5.

328Rich, B. R.: Clarence Leonard (Kelly) Johnson (1995), p. 231.

329Ferson, S. et al.: Model validation and predictive capability (2008), p. 2416.

330Riedmaier, S. et al.: Unified Framework and Survey for Model VV&UQ (2020), p. 27.

331Roy, C. J.; Balch, M.: A holistic approach to uncertainty quantification (2012).

332Danquah, B. et al.: Statistical Validation Framework for Automotive Vehicle Simulations (2021).
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10 Demonstration of the Novel DVM for VV&UQ of APSS Simulation

10 Demonstration of the Novel DVM for VV&UQ of

APSS Simulation

It is fundamentally different to show the capabilities of a metric instead of showing the capabilities

of a simulation model. In the case of the latter, it is a challenge to assess only the APSS model

fidelity without the influence of the simulated environment. In the case of the first, simulation

serves as data generation as a whole and functional decomposition to find the origin of errors is

not necessary.

Best case for metric assessment would be a kind of a reference metric, which is not present in the

field of APSS simulation assessment, as discussed earlier. Consequently, only expert intuition

can be used to deduce metric performance in this case. Such conclusions can be drawn best, if

the metric is applied to non-epistemic EDFs first, where it can be compared to e.g. bias error

d and scattering error dstdv, which will be the metric assessment procedure in the following.

Furthermore, it is beneficial, if the measurement and reference data and the simulation model

are known in every detail, to draw conclusions about the applied metric. Additionally, model

capabilities are assessed in an uncertain environment, where epistemic and aleatory uncertainties

that must be tackled by the metric are known precisely, at best.

10.1 Specification of the Lidar Sensor System

Simulation to Validate

As shown by Hadelli in his feasibility study, it is impossible to cover a complete validation study

in a single thesis or dissertation and only an exemplary excerpt of it can be executed.333 CEPRA

based on PerCollECT presented earlier in Sec. 7.3 is the only systematic method to prioritize

cause-effect chains for selecting the most relevant in a feasible exemplary sample validation.

Here, the CEPRA excerpt in Tab. 7-1 is taken into account and the most relevant cause effect chain

is chosen for validation. A lidar detection simulation is validated in this work, which means to

end after detection sensing in Fig. 2-1 and validate on detection output. The selected phenomenon

for demonstration is False negative detection with the cause-effect chain→ Not distinguishable

from noise floor → Low received power from object & Distance between sensor and object

→ Reflection by object parts and the causes Materials of reflecting object parts, roughness of

reflecting object parts, shapes of reflecting object parts, size of reflecting object parts, emitter

wavelength, ...

333Hadelli, A. A.: Messkampagne zur Parametrisierung und Validierung von Lidar-Sensor-Modellen (2020), pp. 46-

54.
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10.1 Specification of the Lidar Sensor System Simulation to Validate

In line with the requirements for the lidar detection model in Tab. 7-2 and AnnexB, two intuitive,

short, and strict requirements are formulated. For simplicity, they are linearly range-dependent

and independent from material/shape/orientation of hit object parts and read as:

1. Lidar detection model shall output detections that only differ in range on average from real

bias at maximum by 0.5 % of the reference range and in scattering error at maximum by

1.0 % of the reference range.

2. Lidar detection model shall contain range dependency of received power and therefore

output lower EPW per detection at higher range. The relative descent of EPW should be

the same ratio as in the real APSS with absolute deviation in relative descent lower than

1.0 % of the reference range. Absolute values of EPW should not differ in mean more than

1.0 m and the scattering should not differ more than 10.0 cm.

Clearly, a single dissertation cannot cover complete APSS model specification and acceptance

testing. In this regard, a single randomly chosen cause-effect chain and only two short requirements

derived from it are only a very small excerpt of a full CEPRA and the long list of requirements

and acceptance tests that is to be expected later on in real industrial projects. Nevertheless, this

exemplary excerpt already allows to demonstrate the holistic approach of this dissertation and the

application of the elaborated novel metric, called DVM.

10.1.1 Description of the Validated Lidar Detection Simulation

The validated APSS simulation in this dissertation is the reflection-based lidar detection model

developed by the author. It is built with the modular framework described in Sec. 7.1 and has

therefore the same architecture as the reflection-based lidar object model334, but uses only a subset

of strategies. Instead of the Velodyne VLP32 profile shown in Fig. 2-5 that is reproducing a 360◦

scanning lidar as depicted in Fig. 3-5, now the Ibeo LUX profile is used for the simulation. The

model implements a ray casting approach where the nominal beam divergence is simulated with

super-sampling, as described in Sec. 3.1.1.

As it is a reflection-based lidar model, the range dependency of the received power, as described

in Sec. 3.1.2 and the signal interaction with hit objects in Sec. 3.1.3 is provided by the environment

simulation tool, where the ray casting is performed. Sensor model and environment simulation

tool are connected via FMI and the beam pattern is configured by the sensor model via OSI. The

main part of the lidar detection model consists of reproducing the signal per beam from spatial

super-sampled ray casting results, thresholding this signal (Sec. 3.1.7), finding one or more peaks

in this thresholded signal per beam (Fig. 3-2) that form the detections, and calculating the correct

ranges and intensities/EPWs for each detection. Signal interaction within the channel (Sec. 3.1.4),

temporal lidar behavior (Sec. 3.1.5), and detailed receiver effects Sec. 3.1.6 are not implemented

and therefore not validated in this dissertation.

334Rosenberger, P. et al.: Reflection Based Lidar Object Model (2022).
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10 Demonstration of the Novel DVM for VV&UQ of APSS Simulation

10.1.2 Description of the Simulated Lidar Sensor System

The real lidar sensor system simulated and used for measurement data collection is the Ibeo LUX

2010, a scanning lidar and the predecessor of the Valeo SCALA, which is pictured in Fig. 3-4. The

sensor’s specification is described by Hadelli335a himself, in previous work of the author336,337,

and by Tamm-Morschel338a. It has four layers of elevation angles and an angular range for the

two lower reception angles (1, 2) of about −50◦ to 50◦ and for the upper layers (3, 4) of about

−60◦ to 35◦. The two lower layers are shifted by half the angular distance in azimuth.

88 mm 175 mm 28 mm

279 mm

Layer 1

Layer 2

Layer 3

Layer 4 ⊗⊗⊗⊗⊗⊗

⊗⊗⊗⊗⊗⊗

⊗⊗⊗⊗⊗

⊗⊗⊗⊗⊗

Figure 10-1: Nominal beam size at 20m of the Ibeo LUX 2010 lidar sensor with marked beam centers points (⊗)
from former work of the author337

Each beam has a divergence of 0.8◦ vertically and 0.08◦ horizontally, as illustrated in Fig. 10-

1, which shows the nominal beam size at r = 20m. Tamm-Morschel documented the actual

illumination beam pattern of the Ibeo LUX with a modified consumer photo camera, where he

removed the infrared filter338c, as shown in Fig. 10-2. Comparing this photograph with the nominal

beam pattern (Fig. 10-1) already reveals several differences that an accurate lidar detection model

should reproduce.

However, available automotive scanning lidar sensor systems do not measure an incident angle of

the light received from the shown imperfect illumination of the scene. They are simply clipping

the detections that are identified from the back scattered signal to the nominal beam centers, as

discussed in Sec. 2.3. Therefore, the lidar detection model mimics this behavior, as illustrated in

Fig. 3-8. Consequently, the true illuminated area on the object has to be determined first, when

measurements are performed for validation, to diminish this source of epistemic uncertainty.

Fortunately, Hadelli has ensured to illuminate the targets as intended in his experiments.335b

335Hadelli, A.A.: Messkampagne zur Parametrisierung und Validierung von Lidar-Sensor-Modellen (2020). a: pp. 13-

16.; b: p. 63.; c: pp. 66-67.; d: 83-85.

336Rosenberger, P. et al.: Analysis of Real World Sensor Behavior (2018).

337Rosenberger, P. et al.: Sequential lidar sensor system simulation (2020), p. 192.

338Tamm-Morschel, J. F.: Erweiterung eines Lidar-Sensormodells (2019). a: pp. 33-35.; b: p. 44.
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10.2 DVM for Single Beam VV&UQ of APSS Simulation

Figure 10-2: Photograph of illumination of a target by the Ibeo LUX lidar at 11m with an exposure time of 8 s
from Tamm-Morschel338c

10.2 DVM for Single Beam VV&UQ of APSS Simulation

Measurement data from Hadelli, more precisely from his fourth test setup335c is used for the

single beam sample validation. Single beam comparison is a good starting point to evaluate

the basic capabilities of a sensor system and its simulation, which is the case for range depen-

dency investigations. Hadelli’s experiment design aims to evaluate the expected tendency of

EPW/intensity to fall with greater range, which perfectly serves as an acceptance test for the

selected requirement from Sec. 10.1.335d He set up the experiments in a hangar at the August

Euler Airfield near Darmstadt to eliminate weather and other atmospheric effects and sun glare,

which is beneficial for validation experiments where validated effects should occur as isolated as

possible. All experiment setups and all results were reviewed by the author of this dissertation as

his supervisor.

In his thesis, Hadelli documented in detail the entire experimental design and the collection of

measurement and reference data. His full report is publicly available (at least in German) for

possible repeatability and reproducibility. The separation of personnel between the experimenter

and the data evaluator/model validator is the general case in industry, so the practicality of the

presented method and novel metric is demonstrated.
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10 Demonstration of the Novel DVM for VV&UQ of APSS Simulation

As a first sample, the central lidar beam is selected as single combination of azimuth and elevation

to validate the lidar detection simulation. The respective range resolution for each dimension is

determined by the sensor’s counter resolution and the used digits and arithmetic precision of those

digital output values. The central beams of a spherical measurement principle and especially 0◦ in

azimuth is the same as 0m in y-direction of a Cartesian coordinate frame with same origin and the

range is equivalent to the distance in Cartesian x-direction. Furthermore, when objects are placed

in front of the sensor that would be parallel to the y-axis with constant distance in x-direction

produce non-constant range measurements that grow with the absolute azimuth angle. Therefore,

as range matters for intensity, as shown in Sec. 3.1.2, the central azimuth angle is preferred for

range-dependency evaluations.

Hadelli’s experimental setup with gray cardboard as lidar target located centrally in front of the

lidar sensor is shown in Fig. 10-3. Hadelli reports that gray cardboard is a good reference for

a dirty car surface, as the measured EPW “standard deviation is almost identical and only the

mean value shows that the gray cardboard has a slightly higher echo pulse width of 4%”339a

compared to the dirty car surface. To obtain different validation samples, the measurements are

performed with different ranges between sensor and target that are listed in Tab. 10-1. Nominally,

the experiments start at rnom = 10m and with steps of 2.5m end at 20m, which gives in total

five samples. The reference ranges rref in Tab. 10-1 are provided reasonably in mm by Hadelli,

while he reports an accuracy of the reference laser range measurement device of 1.5mm.

Table 10-1: Central nominal and reference ranges in experiments from Hadelli339c

# 1 2 3 4 5

rnom 10.000m 12.500m 15.000m 17.500m 20.000m
rref 9.984m 12.436m 14.995m 17.410m 19.865m

In this exemplary sample validation study, the orientation of the cardboard target with respect to

the lidar sensor’s front-end is assumed to be perfectly parallel. With the photographs from the

experimental setup in Fig. 10-3 at hand that indicate only small deviations from that assumption

and for the investigated central lidar beam and the relatively small beam size at the selected nominal

ranges, resulting from the known beam divergence, it is a reasonable assumption. It simplifies

the sample validation study a lot, as it results in less parameters, less epistemic uncertainties to be

considered for re-simulation, and finally less simulations to be performed.

Noise is present and responsible for most of the aleatory uncertainty in reference and measurement

data. The SNR influences detection existence, but also location (range), and the intensity/EPW

values, as can be seen in the cause-effect chain visualization PerCollECT.340 Consequently, this

effect can never be eliminated by experiment design. As mentioned in the previous section, due to

339Hadelli, A. A.: Messkampagne zur Parametrisierung und Validierung von Lidar-Sensor-Modellen (2020). a: p. 82.;

b: pp. 74-80; c: pp. 46-54.

340Linnhoff, C. et al.: PerCollECT - LidarLimbs (2022).
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10.2 DVM for Single Beam VV&UQ of APSS Simulation

Figure 10-3: Experimental setup (left) and movable target covered with gray cardboard (right) from Hadelli339c

performing the validation experiments indoors, no other influences on the SNR should be present

in the data except a global background illumination through the hangar’s windows, the relative

humidity of the air and the temperature. However, both influences have been investigated in- and

outdoors by Hadelli and no measurable correlation on the lidar detections is reported.339b

10.2.1 DVM for Single Beam Validation of APSS Simulation

For single beam sample validation, only a central beam fits the reference range best, due to a

higher range for higher azimuth angles by the cosine relation. As the simulated sensor has an

alternating beam pattern, only the two upper layers of the four total layers actually illuminate the

scene at nominally 0.0◦ azimuth. To obtain only a minimal vertical incident angle at the target, the

lower layer of the two upper layers at nominal elevation θ = 0.8◦ is selected. Nonetheless, both

real and simulated detections are facing the same elevation angle, so no deviations should arise

from it. Three of the five sample ranges are taken for validation at first, the other two samples

are reserved to evaluate the error prediction and uncertainty aggregation, later on. The selected

nominal ranges rnom are 10m, 15m, and 20m, while the reference ranges rref measured with the

reference laser range measurement device slightly differ, as can be read in Tab. 10-1.

A virtual scene is generated with a three-dimensional model of a gray carton box placed at the

respective ranges, big enough to cover the investigated central beam completely to obtain the
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10 Demonstration of the Novel DVM for VV&UQ of APSS Simulation

desired data. In this example, all real experiments were repeated three times shortly after another

leaving everything as is and keeping the lidar sensor on, with a measurement duration of around

50 frames each. Therefore, in total around n ≈ 150 detections are obtained that are justifiably

combined into a single EDF F from the measurements. Each simulation was run for a similar

number of frames to get a comparable amount of detections ˜︁n ≈ 150. The numbers of detections

are plotted into each plot in Fig. 10-4 and also in all other plots, where relevant.

To reflect the epistemic uncertainty in reference measurements of the range between sensor and

target, each simulation is performed with the exact reference range (sim1, black) as measured and

a variation of±2.0mm in two more simulations (sim2/sim3, blue). The relatively small epistemic

uncertainty is only reasoned in the reported accuracy of the reference measurement device of

±1.5mm and a small tolerance on top for further uncertainty sources, while e.g. epistemic

uncertainty in materials, etc. is ignored for simplification in this exemplary validation study.

Due to noise on range and EPW measurements in reality and the respective noise models in

simulation341, aleatory uncertainty is present in both data. In this regard, the so called “E-outer”

uncertainty propagation is performed, according to Roy and Balch342, and leads to the blue

p-boxes, while the real EDF is red. It should be noted that the obtained left and right side of each

p-box is not necessarily an EDF from the same simulation, but the most left or right data at each

quantile. Fig. 10-4 shows the resulting plots of the cumulated probabilities. On the left (a) is the

simulated and real range r and on the right the simulated and real EPW (b). A first observation

on both inspected measurands is that each step size or simulated counter resolution is fine. For

range measurements this is 1.0 cm, as visible in the middle plot, and for the EPW it is 4.0 cm.

Consequently, the simulation passes this possible falsification by simple visual inspection.

To support the initial visual inspection for possible intuitive falsification of the simulation, each

sample validation plot should contain as much information as possible. Besides the respective

detection numbers n for real data and ˜︁n1 for simulation sim1 at rref , in Fig. 10-4 box plots for

each real and simulated experiment are included at the bottom of each plot. These box plots

show the median as a vertical line between the notches that depict its 95% confidence interval.

Thee mean is plotted as a diamond marker and the standard deviation to each side is visible as a

triangle marker. Additionally, the 25% and 75% quantiles are depicted with the actual boxes and

the whiskers to each side have a length of 1.5 times of the interquartile range at maximum, while

plus sign markers represent outliers that are further away.

A closer look on the 6 plots in Fig. 10-4 gives the impression that the counter resolution for the

simulated range is 1.0 cm and seems to small at first. Only the small step in the EDF from real

data in the middle left plot for rnom = 15.0m shows that the real data has the same counter

resolution as simulated, but the scattering happens in larger steps in most cases. The step size for

EPW is correctly simulated with 4.0 cm and happens regularly in real data too.

341Rosenberger, P. et al.: Sequential lidar sensor system simulation (2020), p. 192.

342Roy, C. J.; Balch, M.: A holistic approach to uncertainty quantification (2012), p. 370.
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(a) Simulated vs. real range r of central lidar detections
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Figure 10-4: Comparison of simulated and measured central lidar detections for different nominal ranges rnom.
n and ˜︁n1 are the number of detections from real data and simulation sim1. rref is the reference range.
The nominal ranges are rnom = 10.0m (top), rnom = 15.0m (middle), and rnom = 20.0m (bottom).˜︁F is the p-box from simulation with ˜︁F1 being the EDF from sim1 at rref . F is the EDF from real data.

d+ and d− mark the areas where the simulated p-box is higher (+) or lower (-) than the real EDF.
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The objective metric results are listed in Tab. 10-2. While the corrected simulated p-boxes ˜︁F c

are not plotted in Fig. 10-4 for readability, they are calculated according to (9-3) from Sec. 9.1.

With the respective ˜︁F c at hand, each CAVM is computed as described in (9-5) from Sec. 9.3 and

illustrated in Fig. 9-2.

Table 10-2: DVM results for single beam sample validation with measurements from Hadelli

ζ rnom
F vs. ˜︁F1 dDVM(F, ˜︁F1) dDVM(F, ˜︁F )

d dstdv dbias dCAVM dbias dCAVM

r
10.00m 0.029m 0.017m −0.029m 0.019m −0.027m 0.015m
15.00m 0.005m 0.015m 0.005m 0.018m 0.006m 0.015m
20.00m 0.039m 0.018m 0.039m 0.019m 0.036m 0.015m

EPW

10.00m 0.030m 0.029m 0.030m 0.026m 0.027m 0.022m
15.00m 0.030m 0.019m 0.030m 0.023m 0.028m 0.019m
20.00m 0.039m 0.006m 0.039m 0.006m 0.038m 0.005m

It is worth mentioning again that the goal here is to evaluate the metrics rather than the simulation.

Therefore, the novel DVM is first applied only to simulation ˜︁F1 with the target at exactly the

reference range rref to be able to compare it with the ordinary bias and scattering error d and dstdv

that only can handle CDFs/EDFs. Here, the results are almost identical except that the estimated

bias error as first part of the DVM is signed to enable to correct the bias error. Consequently, the

novel DVM passes this practical test. Finally, the validation results considering the epistemic

uncertainty in each p-box ˜︁F are provided. As can be seen in Tab. 10-2, the results considering the

p-box from simulation instead of the singular EDF leads to equal or slightly better results. This

is the expected behavior and reflects that considering epistemic model input uncertainty from

reference data collection is fairness to the simulation for its VV&UQ.

In this case, the simulation model is sample valid, as its absolute biases for range r are always

less than 0.5% of rref , the associated scattering errors are less than 1.0% of rref , and the relative

errors and the orders of magnitude of the simulated EPW mean and scattering are as required, too.

However, an important finding of the here presented small sample validation study is that all

simulations tend to have higher scatter than in reality, which is very rare for most simulations

of single uncertain numbers, e.g. for vehicle dynamics simulations discussed by Viehof.343 The

here presented metric for scattering error is unsigned and therefore does not provide information

on whether the modeled scatter is too high or too low, which is also not initially of interest for

just validating a specified performance. Nevertheless, it would be of great benefit for model

calibration if this information could be obtained, but this is beyond the scope of this dissertation.

343Viehof, M.: Objektive Qualitätsbewertung von Fahrdynamiksimulationen (2018).
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10.2.2 DVM for Single Beam and Error Prediction

As discussed, model credibility can only be assessed after error prediction and uncertainty

aggregation for its application. To evaluate the previous predictions, the two remaining sample

measurements fromHadelli at 12.5m and 17.5m serve as the application domain in this exemplary

model credibility assessment. The linear interpolations between the results for the two area

portions ˆ︁d+ and ˆ︁d− and for the model bias ˆ︁dbias including 95% confidence bounds ˆ︁dbias,95 are
calculated. Subsequently, the results for the CAVM are also linearly interpolated to obtain ˆ︁dCAVM

and ˆ︁dCAVM,95.

All interpolations are performed in this case with a linear polynomial curve with the poly-1 fit

provided by The MathWorks, Inc.344 and plotted in Fig. 10-5. Both measurands in this example,

range r (left, a) and EPW (right, b), are treated equally and stay in acceptable value ranges with

respect to the requirements from Sec. 10.1. The distance metric ˆ︁dCAVM and its confidence interval

are bounded to not fall below 0.0m during inter- and extrapolation.
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(b) DVM interpolation for EPW of central detections

Figure 10-5: Interpolation of DVM results from single beam sample validation with

+: d+, ×: d−, ∗: dbias, ⋆: dCAVM

Uncertainty aggregation is performed with these predicted curves and confidence intervals to

validate the error predictions with the two beforehand reserved data sets for rnom = 12.5m and

rnom = 17.5m, as plotted in Fig. 10-6. At first, the simulated p-box ˜︁F (blue) and the EDF F from

the real data (red) at the respective reference ranges rref are drawn. Additionally, the corrected

p-box
ˆ︁˜︁F c shifted by the predicted model bias ˆ︁dbias is given together with its 95% confidence

interval.

344The MathWorks, Inc.: Fit curve or surface to data (2022).
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Figure 10-6: Validation of model bias prediction for a single beam with DVM

The two left plots show that in case of the simulated range, model bias predictions are accurate,

as the predicted corrected p-box from simulation
ˆ︁˜︁F c is very close (top left, rnom = 12.5m)

or overlaps at the median (bottom left, rnom = 17.5m) with the real EDF F . In this case, the

predicted model bias is very small, therefore, its 95% confidence interval enlarges the predicted

overall uncertainty only to a small extent, while it is still a convenient recommendation to add it

too.

When investigating the scattering error of the simulated ranges in Fig. 10-6, the scatter is obviously

a tiny bit too high in simulation, as already found for the three different sample ranges during

sample validation shown in Fig. 10-4 from top to bottom. There, the box plots at the bottom of

each plot stress the existing differences in scatter of real data and the data from each simulation

run sim1, sim2 sim3. However, the scattering error of the simulated ranges in absolute numbers

is always around or lower than 1.5 cm, which is significantly less than required.
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The two plots on the right show the predicted model bias for the simulated EPW. It can be seen

that the EDF from real data F sometimes falls even outside the more conservative uncertainty

predictions with 95% confidence. The reason for these too optimistic predictions for model bias

is that in case of the evaluated EPW simulations from the investigated samples the model bias is

very small, leading to too small model bias estimates in this case. Visual inspection indicates that

the scattering error of the simulated EPWs is almost correct, being just a little too high.

The predicted scattering error is not part of the model uncertainty aggregation here and therefore

not contained in Fig. 10-6. At first, this seems to be contrary to the reference literature, e.g. by

Roy and Balch345. However, it is justified with the difference between the modeling of physical

correlations leading to single uncertain numbers, as e.g. in vehicle dynamics simulation. In

case of APSS simulation, the scattering error of the real sensor is an essential part to simulate.

Nonetheless, simply adding the predicted scattering error on both sides of the shifted simulated

p-box would mix up the evaluation of model bias and scattering error again and should be

avoided consequently. In contrast to such plotting and visual inspection of EDFs and aggregated

uncertainties, comparing actual and predicted results in a table is more clear and objective.

Therefore, after the initial visual inspections of the results for the predicted model bias ˆ︁dbias, as
first part of the DVM, the predictions are objectively compared to the actual sample validation

results for both nominal ranges. As listed in Tab. 10-3, the two beforehand reserved data sets for

rnom = 12.5m and rnom = 17.5m are used.

Table 10-3: DVM predictions and actual values for single beam sample VV&UQ of simulated lidar detections

The confidence bounds ˆ︁dbias,95 and ˆ︁dCAVM,95 are the ones with highest absolute value.

ζ rnom
Predicted DVM Actual DVMˆ︁dbias
ˆ︁dbias,95

ˆ︁dCAVM
ˆ︁dCAVM,95 dbias dCAVM

r
12.50m −0.011m −0.023m 0.015m 0.016m −0.018m 0.015m
17.50m 0.020m 0.032m 0.015m 0.016m 0.031m 0.007m

EPW
12.50m 0.028m 0.061m 0.020m 0.055m 0.085m 0.020m
17.50m 0.034m 0.066m 0.011m 0.046m 0.080m 0.003m

Tab. 10-3 enables an objective comparison of the predictions, their 95% confidence bounds, and

the actual values for both elements of the DVM. A first finding from this relatively small sample

validation study and the here presented validation of the subsequent DVM result prediction is that

in case of the predicted model bias ˆ︁dbias the more conservative ˆ︁dbias,95 is the more accurate choice
for both the range r and the EPW. Furthermore, it shows that the predicted CAVM is almost

perfect in case of the simulated ranges, but too small in case of the simulated EPWs. It becomes

evident that reserving some of the sample measurements from each sample validation study for

validating the DVM result predictions is crucial and necessary for the targeted model credibility.

345Roy, C. J.; Balch, M.: A holistic approach to uncertainty quantification (2012).
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Later, in practical application during actual VV&UQ studies, such (possibly automated) validation

of the error predictions supports the model credibility in any case, but is expected to be performed

only to a very limited extent due to the additional effort of extra experiments only for this purpose.

Nonetheless, the fit options (linear, quadratic, etc.) for the DVM result inter- and extrapolation

should be evaluated. During the investigations for this dissertation, higher order polynomials

seem to lead to narrower/broader intervals compared to linear regression where many/little data is

available, i.e. more conservative to estimate when the coverage of the parameter space is limited.

10.3 DVM for Full Scan Validation, and Error

Prediction of APSS Simulation

The next consecutive step when validating a lidar sensor simulation after single beam investi-

gation is a full scan evaluation. Therefore, a target is needed that is wide enough to cover the

whole angular range of the full scan in reasonable distances. For the selected lidar sensor with

110◦ azimuth coverage, a large building or wall is sufficient, while for other sensors possibly

scanning 360◦ cylindrical artificial targets or indoor areas with different sizes would be required.

Alternatively, also half scan or thirds scan measurements could be combined to a full scan, while

it would be necessary to investigate possible side effects. In the presented example, an airfield

hangar’s wall serves as the target and the sensor is placed in front at different ranges, which are

listed in Tab. 10-4. Similar to the single beam validation in Sec. 10.2, four samples (no. 1, 3,

4, and 5) are taken as validation samples and two other samples (no. 2 and 6) are reserved for

validation of the predicted DVM results.

Table 10-4: Central nominal and reference ranges in full scan experiments

# 1 2 3 4 5 6

rnom 1.000m 1.500m 2.000m 3.000m 5.000m 9.000m
rref 0.974m 1.478m 2.014m 2.997m 4.988m 8.938m

The same material is chosen in simulation as for the single beam validation with the assumption

that the wall has a similar reflectivity as the gray cardboard. While this assumption is not proven

by reference measurements for the reflectivity of both materials here, this simulation serves as

exemplary SuT and incorrect modeling of reflectivities supports demonstrating the capabilities to

measure the model mean and scattering error. The geometry of the virtual object is enlarged to

cover the simulated full scan. The reference measurement device in the case of the used real lidar

sensor measurements has lower accuracy than in the indoor experiments from Hadelli before. To

reflect this epistemic uncertainty exemplary as one of many more possible uncertainty sources,

two simulations in this full scan evaluation are performed with a different range to the wall of

±5mm besides the first simulation at exact reference distance (sim1, black).

132



10.3 DVM for Full Scan Validation, and Error Prediction of APSS Simulation

With the described measurements and simulations at hand, the EDF F from real data and the

p-box from all simulation runs are calculated as depicted in Fig. 10-8 for x and Fig. 10-9 for EPW.

The reason for taking the Cartesian x coordinate in this case instead of the range measurements

is that the spherical range rises with 1/(cos(ψ) cos(θ)) leading to indistinguishable EDFs, as

demonstrated in Fig. 10-7. As the Cartesian x simply eliminates the influence of the incidence

angles by x = r cos(ψ) cos(θ), it will be the investigated property of the real and simulated

detections for full scan evaluation, besides the EPW. Nominal and reference range are measured at

ψ = 0 and θ = 0, so x and r are equivalent in this special case with xnom = rnom and xref = rref .

The EDF F from real data is always plotted in red as already in Sec. 10.2, the p-box ˜︁F is filled

blue, with simulation sim1 at xref again denoted in dotted black lines. As before, the box plots of

all data are given at the bottom of each plot to help interpreting the results and to stress possible

differences in the probability distributions. Besides, the investigated number of detections from

each real measurement n and simulation run sim1 ˜︁n1 are given. Thereby, it becomes apparent that

there are always less simulated detections, most likely because too less full scans are included in

the data. Nonetheless, the validation is possible in this case, as the numbers are still comparable.

The plots for x in Fig. 10-8 indicate accurate simulation results with almost no model bias and a

slightly too small scatter. They also indicate a tendency that higher ranges lead to wider p-boxes

with higher probability for valid lidar detection simulations. However, when investigating the

plots for EPW in Fig. 10-9 higher deviations occur. While the distribution of the measured EPW

stays almost constant for the different range samples, the simulated mean is changing from being

too high at xnom = 1.0m to being almost 1.0m too small at xnom = 5.0m.

The objective results for the DVM are given in Tab. 10-5 to clarify the visual impressions.

The results for EPW show higher differences as for x, as these are almost zero and fulfill the

requirements from Sec. 10.1. While themodel bias for the selected samples is absolutely still below

1.0m and therefore as specified, the scattering error especially of the first sample at xnom = 1.0m

is slightly higher than specified. This deviation is caused by the known but wrong material and

its scattering characteristic and shows the metric’s sensitivity for such fidelity limitations of the

simulation.

As the distribution’s mean of the real EPW is almost constant, the relative descent of the EPW of

the simulated detections is falsified, as well. Besides, Tab. 10-5 lists the results for the EDF F

from real data with only the EDF ˜︁F1 from simulation sim1 at xref and with the whole simulated

p-box ˜︁F . As with the single beam sample VV&UQ, the p-box intentionally leads to slightly less

modeling error, as discussed in Sec. 4.1.5.
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Figure 10-7: Indistinguishable EDFs for spherical range r of detections from full scan at rnom = 5.0m
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Figure 10-8: Comparison of simulated and measured lidar detections for x = r cos(ψ) cos(θ) from full scans.

n and ˜︁n1 are the number of detections from real data and simulation sim1. xref is the reference range.˜︁F is the p-box from simulation with ˜︁F1 being the EDF from sim1 at xref . F is the EDF from real data.

d+ and d− mark the areas where the simulated p-box is higher (+) or lower (-) than the real EDF.

Top left: xnom = 1.0m, Top right: xnom = 2.0m,

Bottom left: xnom = 3.0m, Bottom right: xnom = 5.0m.
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Table 10-5: DVM results for sample validation for full scan

ζ xnom
dDVM(F, ˜︁F1) dDVM(F, ˜︁F )

dbias dCAVM dbias dCAVM

x

1.00m −0.001m 0.010m −0.003m 0.008m
2.00m 0.005m 0.008m 0.003m 0.004m
3.00m −0.001m 0.007m 0.000m 0.003m
5.00m −0.001m 0.007m 0.000m 0.003m

EPW

1.00m 0.456m 0.121m 0.456m 0.119m
2.00m −0.129m 0.162m −0.127m 0.160m
3.00m −0.451m 0.118m −0.446m 0.111m
5.00m −0.920m 0.099m −0.915m 0.095m
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Figure 10-9: Comparison of simulated and measured lidar detections for EPW from full scans.

n and ˜︁n1 are the number of detections from real data and simulation sim1. xref is the reference range.˜︁F is the p-box from simulation with ˜︁F1 being the EDF from sim1 at xref . F is the EDF from real data.

d+ and d− mark the areas where the simulated p-box is higher (+) or lower (-) than the real EDF.

Top left: xnom = 1.0m, Top right: xnom = 2.0m,

Bottom left: xnom = 3.0m, Bottom right: xnom = 5.0m.
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Figure 10-10: Inter- and extrapolation of DVM results from full scan sample validation with

+: d+, ×: d−, ∗: dbias, ⋆: dCAVM
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Figure 10-11: Validation of model bias prediction for a full scan with DVM
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10.3 DVM for Full Scan Validation, and Error Prediction of APSS Simulation

Linear regression of the DVM results is performed as already described for single beam VV&UQ

and depicted in Fig. 10-10. This is necessary, as without such interpolation between metric results

for the validation samples no argumentation would be possible for the application of the lidar

detection simulation in scenarios that do not exactly fit to one of the investigated samples. It is

worth noting that with the outlier sample at rnom = 9.0m an extrapolation of the model form

uncertainty is assessed besides the interpolation for rnom = 1.5m.

The provided plots show that the confidence intervals are increasing towards higher ranges, as

there are no validation samples above 5.0m, which could bound it otherwise. Nevertheless, the x

coordinate of the simulated detections stays fine in absolute numbers in the given interval. The

model bias of the EPW is expected to grow over 1.0m at ranges higher than 5.0m, which is

finally not fulfilling the last remaining requirement anymore.

To be able to check the interpolation of the sample validation results, Fig. 10-11 shows the

predicted model bias and its 95% confidence interval for x and EPW at xnom = 1.5m and

xnom = 1.5m together with the EDF from the real measurements and the simulated p-box, similar

to Sec. 10.2.

This investigation of the predictions again proves the former claim that the effort does not end

with the inter- and extrapolation of the sample validation results and that they must be checked.

While there was almost no model bias or model scattering error in all four validation samples,

the interpolation for the model bias at xnom = 1.5m for the x coordinate in the upper left plot

of Fig. 10-11 shows that there is evidently a model bias. The predicted p-box
ˆ︁˜︁F c completely

overlaps with the simulated one ˜︁F , as the estimated model bias ˆ︁dbias is 0.000m. However, the
EDF from the measured detections F locates even fully outside of the 95% confidence interval

for ˆ︁dbias. Still, the bias prediction error ˆ︁dbias − dbias is not big in absolute values, as can be seen

for this sample in Tab. 10-6.

Table 10-6: DVM predictions and actual values for full scan sample validation of simulated lidar detections.

The confidence bounds ˆ︁dbias,95 and ˆ︁dCAVM,95 are the ones with highest absolute value.

ζ xnom
Predicted DVM Actual DVMˆ︁dbias
ˆ︁dbias,95

ˆ︁dCAVM
ˆ︁dCAVM,95 dbias dCAVM

x
1.50m 0.000m 0.008m 0.006m 0.012m 0.019m 0.003m
9.00m 0.001m 0.029m 0.000m 0.018m 0.012m 0.003m

EPW
1.50m 0.160m 0.613m 0.134m 0.210m 0.025m 0.218m
9.00m −2.290m −3.763m 0.061m 0.310m −1.326m 0.140m

In case of the extrapolation for xnom = 9.0m, the predicted model bias for x is very small, but

the 95% confidence bounds cover the real EDF in this case. Clearly, the reason for the accurate

prediction and the higher bounds in this case is a lack of samples nearby and not a well-balanced

sample selection leading to it.
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10 Demonstration of the Novel DVM for VV&UQ of APSS Simulation

The scattering error prediction based on the CAVM results shown in Tab. 10-6 is also too small

for x, but its more conservative 95% confidence bounds slightly underestimate the actual value

at xnom = 1.5m, while slightly overestimating it for xnom = 9.0m. Similar to the validation of

the model error predictions for the single beam evaluation in Sec. 10.2, using the 95% confidence

bounds is a reasonable choice to not underestimate the model errors for the range simulation.

Despite the already falsified simulation results for EPW, the interpolated results are investigated

as well. For both samples at the different ranges / x coordinates of the wall in front of the sensor,

the measured EPW is still almost not changing, as already found during sample validation. The

linear interpolation of the model bias is expected to cover the model’s gain error in case of the

EPW, but the predicted bias is overestimated by more than 1.0m at xnom = 9.0m. The prediction

of the scattering error with the CAVM results for the EPW is in the correct magnitude and most

importantly correctly falsify the simulation with respect to its specification in this case.

10.4 DVM for Object Oriented Validation of APSS

Simulation

Gating is a widely used detection tracking technique346 and has already been applied for radar

model validation by Magosi et al.347. It means that a gating area, as depicted in Fig. 10-12, is

drawn around a vehicle to cluster detections that mainly arise from actual reflections caused by it.

Figure 10-12: Gating area around a vehicle including

associated detections (⋆) and not associated detections (⋆) from Magosi et al.347

Nevertheless, spatial gating of the scene reveals several side-effects. It means that the model is

possibly validated against detections that do not necessarily origin in the object reflecting in simu-

lation, but are received from e.g. ground reflections. In this regard, it is hard to distinguish where

metric results are mainly caused from, which is at least a drawback for simulation calibration.

346Wang, X. et al.: Gating techniques for maneuvering target tracking in clutter (2002).

347Magosi, Z. F. et al.: Evaluation of Physical Radar Perception Sensor Models (2022), p. 10.
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10.4 DVM for Object Oriented Validation of APSS Simulation

For validation purposes only, it means that the digital twin of the environment must be validated

beforehand. If the differences between the real and simulated environment and objects are

well known, however, validation of measurand distributions in gating areas is possible using

the proposed DVM and gating can be applied even in dynamic scenarios, as demonstrated by

Magosi et al.347

To be able to use the novel DVM, a frame-per-frame comparison of dynamic scenarios is proposed,

as it is equal to comparing several static scenes, especially when adverse temporal effects can be

neglected due to low velocities. When the movements of all objects involved are tracked with

high accuracy, a correct re-simulation would lead to comparable lidar scans that can be processed

like the static scenario in the full scan evaluation in the previous section. When high velocities of

objects are to be investigated, e.g. for VV&UQ of Doppler measurement simulation, as is the

case for radar sensors or frequency modulated continuous wave (FMCW) lidars, reference sensor

requirements rise even more, while not being impossible to fulfill, as shown by Holder et al.348.

Additionally, time stamping and the synchronization of all measurement devices during each

experiment must be ensured for frame-per-frame comparison afterwards, leading to immense

efforts but supporting repeatability and reproducibility.

Each frame actually becomes a new sample from the parameter space due to e.g. variation of

range or aspect ratio of the objects and a dynamic scenario reflects a subspace of the overall

parameter space resulting in research demand how to tackle all mentioned challenges. Because of

all the mentioned drawbacks, dynamic scenarios are left out of scope of this dissertation without

restricting the applicability of the novel DVM, as explained.

Berghöfer349 highlights another aspect of object oriented validation of APSS simulation in his

thesis. His comparison of a real and virtual scene in Fig. 10-13 serves as a realistic example for

possible differences between simulation and reality concerning sensor/object positions and the

more or less accurate virtual representations e.g. of the objects, the ground, and the vegetation.

 

          

 
  

 
 

 
  

 
 

          
          

 
  

 
 

 
  

 
 

          
          

 
  

 
 

 
  

 
 

Figure 10-13: Comparison of real and virtual scene in actual model validation studies from Berghöfer349

348Holder, M. F. et al.: Digitalize the Twin (2022).

349Berghöfer, M.: Generierung realer und synthetischer Sensordaten zur Simulations-Validierung (2019), pp. 60 & 62.
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10 Demonstration of the Novel DVM for VV&UQ of APSS Simulation

In the following object oriented sample validation of simulated lidar detections, data from an

experiment already described in former work of the author350 is used. The scene consists of

a mid-size car in front and a partly occluded delivery van in the back. A sketch of the scene

together with a photograph are shown in Fig. 10-14. However, the depicted removable bounding

box mock-up was not present during measurements or simulations used in this dissertation. The

spatial gating tolerance applied in this case is 10 cm around each vehicle. Tab. 10-7 lists the

nominal and reference ranges from the sensor up to each vehicle.

Partially Occluded Vehicle

Occluding Vehicle

Sensor

Removable Bounding Box Mock-up

Figure 10-14: Experimental setup with partially occluded object as sketch and photograph

from former work of the author.350 © IEEE 2021.

Table 10-7: Central nominal and reference ranges in object occlusion experiments

Object Front, occluding Back, partially occluded

rnom 9.00m 34.00m
rref 9.27m 34.19m

Fig. 10-15 shows three plots for each measurand. The range r is shown on the left (a) and the EPW

is plotted on the right (b). On top are full scan evaluations with the two objects, the middle plots

are from detections inside the gating area around the occluding object in front, and the plots at the

bottom show the results for gating around the partially occluded object in the back. In simulation,

besides simulating both cars at the positions measured with the reference measurement device,

several simulations are performed varying lateral and longitudinal positions by ±5.0 cm. The

multiple simulations result in several box plots below each EDF plot in Fig. 10-15 and lead to

obviously wider p-boxes compared to the two sample validation campaigns before.

In contrast to full scan validation, the object oriented validation is performed in this case on range

rmeasurements and not with the Cartesian x coordinate of the detections. Therefore, the influence

of azimuth and elevation of the detections on the range measurements is not neglected in this case.

This is allowed as on the one hand, the influence influences measurement and simulation results

in the same way and on the other hand, both objects are positioned in central azimuth range and

in relatively far range from the sensor. However, this should be checked for other scenarios and

sometimes validating on Cartesian coordinates instead or additionally has to be considered.

350Linnhoff, C. et al.: Refining Object-Based Lidar Sensor Modeling (2021), p. 24240.

140



10.4 DVM for Object Oriented Validation of APSS Simulation

0 5 10 15 20 25 30 35

sim17
sim16
sim15
sim14
sim13
sim12
sim11
sim10
sim9
sim8
sim7
sim6
sim5
sim4
sim3
sim2
sim1
real

0

0.2

0.4

0.6

0.8

1.0
d− →

n: 68929˜︁n1: 72732

r in m

C
u
m
u
la
ti
v
e
p
ro
b
ab

il
it
y

˜︁F˜︁F1

F
d−

d+

9 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 10 10.1 10.2

sim17
sim16
sim15
sim14
sim13
sim12
sim11
sim10
sim9
sim8
sim7
sim6
sim5
sim4
sim3
sim2
sim1
real

0

0.2

0.4

0.6

0.8

1.0

d− →

rnom: 9.0 m

rref : 9.270 m

n: 65106˜︁n1: 66880

r in m

C
u
m
u
la
ti
v
e
p
ro
b
ab

il
it
y

˜︁F˜︁F1

F
d−

rref

34 34.05 34.1 34.15 34.2 34.25 34.3 34.35 34.4 34.45 34.5 34.55 34.6

sim17
sim16
sim15
sim14
sim13
sim12
sim11
sim10
sim9
sim8
sim7
sim6
sim5
sim4
sim3
sim2
sim1
real

0

0.2

0.4

0.6

0.8

1.0
← d+

rnom: 34.0 m

rref : 34.190 m

n: 3021˜︁n1: 5434

r in m

C
u
m
u
la
ti
v
e
p
ro
b
ab

il
it
y

˜︁F˜︁F1

F
d+

rref

(a) Range r of detections from occluding/occluded objects
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Figure 10-15: Comparison of simulated and measured lidar detections from occluding/occluded objects.

Top: Full scan, Middle: occluding vehicle, Bottom: occluded vehicle

n and ˜︁n1 are the number of detections from real data and simulation sim1. is the reference range.˜︁F is the p-box from simulation with ˜︁F1 being the EDF from sim1 at rref . F is the EDF from real data.

d+ and d− mark the areas where the simulated p-box is higher (+) or lower (-) than the real EDF.
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10 Demonstration of the Novel DVM for VV&UQ of APSS Simulation

As indicated by the numbers of real (n) and simulated (˜︁n1) detections in Fig. 10-15, there is a sig-

nificantly smaller number of detections from simulation than in real data for the partially occluded

object due to a imprecise 3d model of this object and its windows in simulation. In contrast,

the numbers of detections for the occluding object and even for the full scan are comparable.

However, the higher number of detections from the partially occluded car in simulation id the

only reason for the area between the real EDF F and the p-box from the 17 simulations, as it

pulls the cumulative probability of the detections at the occluding object (rnom=9.00m).

This example of an object oriented sample validation and especially the plots for the range simula-

tion at the left of Fig. 10-15 show how a wider p-box eliminates any measurable error with DVM.

One can imagine how many reference measurement devices are necessary for complex scenarios

including e.g. weather influence. Therefore, the reference sensors must be highly accurate to not

automatically prove any simulation as valid simply by the high epistemic uncertainty. On the other

hand, the width of the p-box correctly is fairness for the simulation, as it should not be compared

to a single simulated EDF, when there evidently exists a significant epistemic uncertainty.

In case of simulated range r of each detection, due to the relatively wide p-boxes, both EDFs

for each vehicle are almost fully covered. The objective results in Tab. 10-8 for model bias

and model scattering error prove the visual impression of sample valid simulation for the range

measurements and the simulation pass the specifications from Sec. 10.1. The results for the full

scan are there for completeness and the wrong virtual car model for the partially occluded vehicle

is the reason for the too high values in this case, as explained.

However, the simulated EPW is not as accurate as the range. For the occluding object in front at

the relatively short range of rnom=9.00m, the simulated values are slightly too high, as can be

seen in the plot proven by the results in Tab. 10-8. For the higher range, the simulated EPW is

far too low. Basically, the same model gain error is found as in the full scan evaluation in the

previous section. For EPW the different number of detections from simulation does not effect the

results in contrast to the range.

Table 10-8: DVM results for object gating sample validation

ζ Gating
dDVM(F, ˜︁F )

dbias dCAVM

r
Full scan 0.484m 0.784m

Occluding obj. 0.007m 0.004m
Occluded obj. −0.001m 0.001m

EPW

Full scan 0.096m 0.116m
Occluding obj. 0.154m 0.073m
Occluded obj. −0.716m 0.034m

It has been shown that EDF/p-box plots incl. the number of values from measurement and

simulation n, ˜︁n are a valuable tool for validation. The object oriented sample validation also
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10.4 DVM for Object Oriented Validation of APSS Simulation

shows that it supports finding systematic errors in reference data e.g. for object positions or even

object geometry errors. Finally, the plot for cumulative probabilities of the real and simulated

azimuth ψ of the detections in Fig. 10-16 indicates a slightly misplaced virtual car in lateral

direction. Consequently, systematic simulation errors can be found very well with the presented

method too.
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Figure 10-16: EDF/p-box plot for partially occluded object
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11 Conclusion and Outlook towards APSS

Simulation Credibility

As Trucano et al. state in their conclusion of their description of the Sandia Validation Metrics

Project in 2001, there “is not a unique set of steps one follows to establish model validity for a

complex application. Validation is a continuous process that must adapt as it progresses.” 351

Nonetheless, the whole VV&UQ process for APSS simulation is addressed in this dissertation,

alongside the exemplary development of a reflection-based lidar model as application example. In

the following final chapter, a conclusion is given for the novel specification method and the novel

DVM and an outlook towards further work following up on the presented findings is provided.

11.1 Conclusion

The treatise has a holistic aspiration for credible simulation of APSS. Thereby, credibility of

APSS simulation is named for the first time as overall goal. To be able to demonstrate the novel

metrics for VV&UQ, at first an APSS model is needed. Therefore, the reflection-based lidar

model is exemplary developed to have a white-box lidar simulation that can be calibrated and

validated. However, it relies on reflections that are computed in a separate simulation environment.

Therefore, the validation of the model output detections is always in combination with a ray

tracing tool and only true for this specific investigated tool, even if standardized interfaces like

OSI and standardized material libraries are hopefully covering this issue in the future.

After presenting the SotA of APSS modeling and the implemented reflection-based lidar model

approach, the SotA of APSS modeling and VV&UQ (APSS) simulation is recorded and discussed.

An extensive collection of all known metrics applied in the field of APSS is presented, resulting

in a list of 34 possible metric candidates.

The VV&UQ discussion starts after describing the most urging challenges in this field of science

with a novel requirements methodology for APSS simulation, based on the methods PerCollECT

and CEPRA, both elaborated by the author. Furthermore, every element of simulation credibility

assessment from Fig. 1-7 is discussed.

From the collection of 34 SotA metrics, the most promising candidates to handle probabilistic

data, namely hypothesis testing, divergences like the Kullback-Leibler, and the AVM are selected

to be evaluated in more detail. From this pre-selection, the AVM, which is the area between two

CDFs/EDFs/p-boxes is elaborated as best possible candidate and analyzed in more detail. One of

351Trucano, T. G. et al.: Description of the Sandia Validation Metrics Project (2001), p. 55.
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the most beneficial properties of the AVM is that it provides intuitive results in the unit of the

measurand. Computing the area between two cumulative probability distributions is an intuitive

step, while this is equivalent to calculating the mean of the differences between the quantiles of

the two CDFs/EDFs/p-boxes. Nonetheless, the drawbacks of the AVM are not ignored, like the

insensitivity to scattering differences, when there is no overlap of the curves.

The novel metrics are based on the AVM, but improve it by not mixing up model bias and

scattering error. The CAVM measures the scattering error of the model with respect to the real

sensor and the DVM, which combines the CAVM with the model bias with respect to the real

sensor’s bias, is the finally recommended and demonstrated metric. CAVM and DVM are novel

metrics introduced here for the first time, while their approaches follow Einstein’s principle,

where he stated that “Everything should be as simple as it can be, but not simpler.”352

It can be applied to probabilistic data in any form and origin as single uncertain number, CDF,

EDF, or p-box. In other words, it is able to process real and simulated data considering aleatory

and epistemic uncertainty in sensor measurements to model and in reference measurements as

simulation input, as both parts of the DVM are derived from the AVM. Additionally, the DVM

is not only useful for VV&UQ, but also for model calibration and for model verification, as

described and demonstrated.

After the elaboration of the novel DVM, its applicability for VV&UQ of lidar detection simulation

is demonstrated. Validation of lidar simulation has already been tackled in literature by other

authors with the listed metrics. However, in this dissertation UQ and its inter- and extrapolation

to the application domain within the possible parameter space spanned by the ODD of the SuT

is shown for the first time. To be able to predict the errors, the separation of model bias and

scattering error with the novel DVM is of special importance for the confidence bounds of the

model error prediction.

It should be stressed again that it is a crucial step to investigate the validity of predicted model

error for application. Even if some investigated validation samples do not fulfill the requirements,

one could still use the simulation, if the model error predictions would be accurate, as they could

be used to eliminate the invalidity during application. Without interpolation between the metric

results for the validation samples, they just stay samples. However, as linear regression is applied

for inter- and extrapolation, the model needs to be sample valid at first to have a chance to stay

below the specified error limits with the predictions and the uncertainties on them reflected by

the 95% confidence bounds.

While one could argue that instead of reserving some sample validation results for validating the

error prediction, they better would have been used for more accurate inter- and extrapolation in

the first place. Clearly, the author of this dissertation strongly recommends to at least reserve

a small portion for a final cross-check. However, a good balance of prediction and test at the

352Calaprice, A.: The Ultimate Quotable Einstein (2010), pp. 384-385.
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end relies on the personal experience of the team performing the VV&UQ and is expected to get

progressively better balanced over time.

Three different use cases are demonstrated to stress the applicability of the novel DVM and its

prediction towards the application domain. A single-beam evaluation of the simulation, a full-scan

evaluation, and an object oriented validation. The first two model assessments include a validation

of the model error prediction, the final step of every consequent VV&UQ. All three use cases

include a VV&UQ not only of the range value of the simulated detections, but also their echo

pulse width (EPW), which is similar to intensity and a specialty of the exemplary simulated lidar

sensor. Neither lidar detection intensity nor EPW simulations have been validated in literature

yet, to the knowledge of the author.

Nonetheless, it has been shown and explained that simulating lidar detection intensities or EPWs

is very complex and relies on many parameters and influences to simulate. Besides, it is hard to

calibrate due to huge differences between sensors of the same margin. This is analog to the radar

cross-section (RCS) simulation challenge described in former work353.

The concentration on static scenarios might seem as a limitation at first sight, but they equal a

frame-by-frame comparison of dynamic scenarios. The usability of the metric is based on its

property to provide results in the unit of the measurand that is simulated and validated. Therefore,

it is very intuitive for writing and understanding requirements, even for non-experts, closing the

loop on the holistic approach in this dissertation.

Overall, the novel metric, the DVM, is not meant to be used exclusively. Instead, other metrics are

expected to be used, as well. Especially in case of model calibration, a hypothesis test for same

distribution like Kolmogorov-Smirnov test or Anderson-Darling test is expected to be useful,

among others.

In conclusion, the combination of the individual parts of the holistic process towards simulation

credibility and making adding a systematic process for requirements engineering to the methodol-

ogy is a major contribution besides the novel metrics CAVM and DVM and their demonstration.

Additionally, and in consequence of the holistic claim of this dissertation, even small, but possibly

painful conditions like scaling of axes for metric application are discussed.

11.2 Outlook towards APSS Simulation Credibility

One aspect that has not yet been explicitly demonstrated regarding the applicability of the presented

DVM is its application on FMCW lidar or radar data including Doppler velocities. Nevertheless,

radar detections are similar to lidar detections in general, which leads to the assumption that the

presented metrics apply, with the slight difference of RCS instead of intensity and additional

353Holder, M. F. et al.: Measurements revealing Challenges in Radar Sensor Modeling (2018).
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velocity measurements that should be validated like the other measurands. Still, the applicability

to radar and other sensor simulations is to be demonstrated in the future.

Additionally, investigations for the novel DVM for quasi-static scenarios with constant velocities,

possibly reflecting only a single sample in parameter space, or even dynamic scenarios covering

a set of samples from parameter space and how repeatability and reproducibility of covering the

same cells of that specific parameter space should follow.

Furthermore, a possible extension to the presented approach would be to reflect the epistemic

uncertainty in measurement data due to missing calibration of intensity / EPW / RCS output in

real APSS as a p-box as well. This would lead to a comparison of two p-boxes for validation,

which is possible with the presented metrics without limitation.

In some cases, the p-box from simulation can become large due to high epistemic uncertainty or

many parameters to sum up for it. Then, calculating the area of the p-box besides the values in

the DVM is necessary to support the sample validation.

The chosen linear interpolation of the DVM results for error prediction is up to discussion, as it

is explicitly performed for the first time in this dissertation for APSS simulation. Alternatively,

exponential functions could be the better choice for CAVM interpolation, as they do not fall below

0, so clipping negatively interpolated values to 0 would not be necessary anymore. Sigmoid

functions should also be considered for an investigation, as they are constrained for high values.

While experiment design and sample selection with sensitivity analysis has been discussed in this

dissertation, sample representativeness is still a research topic for the future. Representativeness

in this context is the objective to find the right samples from the parameter space e.g. by sensitivity

analysis, but could alternatively be motivated by criticality of scenarios and the so-called corner-

cases. In this regard, the question of effect chain isolation for validation of each modeled effect

chain separately should be investigated in the future as well. While it is obviously not possible to

reach a complete isolation, at least the experiment design is to be optimized in this regard.

An automated process or a software tool for full VV&UQ and also for the validation of the model

error and uncertainty prediction seems possible and reasonable for the future. It should get the

data from simulation and the real measurements and analyze it at first for systematic errors in

re-simulation, as e.g. shown for lateral shift of virtual objects or imbalanced amounts of values.

Then the DVM results are to be calculated and interpolated, if an application domain is specified.

Eventually, a VV&UQ report should be provided.

The final goal and a consequent next step after VV&UQ and model error prediction would be

a (self-)conscious simulation based on the predictions, where each model reports its current

predicted error and confidence bounds live during the simulation run. While most parameters of

the parameter space do not change during a scenario, when scenario-based safety validation is

performed, some still vary during simulation, so the actual error predictions must be calculated

for each simulation step.
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A Exemplary Excerpt of CEPRA

Table A-1: Severity S between 1 and 10 based on the FMEAHandbook by Automotive Industry Action Group

(AIAG) and Verband der Automobilindustrie (VDA)354a

S Severity Criteria

10
Very High

Affects safe operation of the vehicle and/or other vehicles, the health of

driver or passenger(s) or road users or pedestrians.

9 Noncompliance with regulations.

8
High

Loss of primary vehicle function necessary for normal driving during expected service life.

7
Degradation of primary vehicle function necessary for normal driving

during expected service life.

6

Moderate

Loss of secondary vehicle function.

5 Degradation of secondary vehicle function.

4 Very objectionable appearance, sound, vibration, harshness, or haptics.

3
Low

Moderate objectionable appearance, sound, vibration, harshness, or haptics.

2 Slightly objectionable appearance, sound, vibration, harshness, or haptics.

1 Very Low No discernible Failure Effect.

Table A-2: Frequency F between 1 and 10 based on the FMEAHandbook by Automotive Industry Action Group

(AIAG) and Verband der Automobilindustrie (VDA)354b

F Frequency Criteria

10

Extremely high

or cannot be

determined

Frequency of occurrence of the Failure Cause is unknown or known to be

unacceptably high during the intended service life of the vehicle.

9
High

Failure Cause is likely to occur during the intended service life of the vehicle.

8
Failure Cause may occur often in the field during the intended

service life of the vehicle.

7

Medium

Failure Cause may occur frequently in the field during the intended

service life of the vehicle.

6
Failure Cause may occur somewhat frequently in the field during the intended

service life of the vehicle.

5
Failure Cause may occur occasionally in the field during the intended

service life of the vehicle.

4 Low
Failure Cause is predicted to occur rarely in the field during the intended

service life of the vehicle. At least ten occurrences in the field are predicted.

3
Very low

Failure Cause is predicted to occur in isolated cases in the field during the intended

service life of the vehicle. At least one occurrence in the field are predicted.

2

Failure Cause is predicted not to occur in the field during the intended service life of

the vehicle based on prevention and detection controls and field experience

with similar parts. Isolated cases cannot be ruled out. No proof it will not happen.

1 Cannot Occur

Failure Cause cannot occur in the field during the intended service life of the

vehicle or is virtually eliminated. Evidence that Failure Cause cannot occur.

Rationale is documented.

354AIAG; VDA: FMEAHandbook - Failure Mode and Effects Analysis (2019). a: p. 122.; b: pp. 123-124.
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B Exemplary Lidar Sensor System Simulation

Requirements

Important information:

■ Status can be ”accepted”, ”rejected”, or ”under review”

■ Scheme for requ. IDs: <Phenomenon>_<Causes>_<No.>

■ The lidar sensor system simulation consists of two subsequent models that are specified

here:

■ Reflection based lidar detection model

■ Detection based lidar object model.

■ If values are given e.g. for ODD description, the measurement device to be used should be

listed as well.

■ Tests can be performed in two ways depending on the requirement:

■ Simulation-only tests:

■ Regression tests (is there any change?)

■ Against specific KPIs

■ Against GT from simulation

■ Against results from another simulation model

■ As re-simulation with an experiment performed at first, collecting reference data, as

input for the simulation later, and real sensor data to compare the simulated sensor

data against after re-simulation.

■ The experiment can be performed in the field, in the lab (sensor, subsystem, full ADS), ....
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