1,192 research outputs found

    Analysis and Design Methodologies for Switched-Capacitor Filter Circuits in Advanced CMOS Technologies

    Get PDF
    Analog filters are an extremely important block in several electronic systems, such as RF transceivers, data acquisition channels, or sigma-delta modulators. They allow the suppression of unwanted frequencies bands in a signal, improving the system’s performance. These blocks are typically implemented using active RC filters, gm-C filters, or switched-capacitor (SC) filters. In modern deep-submicron CMOS technologies, the transistors intrinsic gain is small and has a large variability, making the design of moderate and high-gain amplifiers, used in the implementation of filter blocks, extremely difficult. To avoid this difficulty, in the case of SC filters, the opamp can be replaced with a voltage buffer or a low-gain amplifier (< 2), simplifying the amplifier’s design and making it easier to achieve higher bandwidths, for the same power. However, due to the loss of the virtual ground node, the circuit becomes sensitive to the effects of parasitic capacitances, which effect needs to be compensated during the design process. This thesis addresses the task of optimizing SC filters (mainly focused on implementations using low-gain amplifiers), helping designers with the complex task of designing high performance SC filters in advanced CMOS technologies. An efficient optimization methodology is introduced, based on hybrid cost functions (equation-based/simulation-based) and using genetic algorithms. The optimization software starts by using equations in the cost function to estimate the filter’s frequency response reducing computation time, when compared with the electrical simulation of the circuit’s impulse response. Using equations, the frequency response can be quickly computed (< 1 s), allowing the use of larger populations in the genetic algorithm (GA) to cover the entire design space. Once the specifications are met, the population size is reduced and the equation-based design is fine-tuned using the more computationally intensive, but more accurate, simulation-based cost function, allowing to accurately compensate the parasitic capacitances, which are harder to estimate using equations. With this hybrid approach, it is possible to obtain the final optimized design within a reasonable amount of computation time. Two methods are described for the estimation of the filter’s frequency response. The first method is hierarchical in nature where, in the first step, the frequency response is optimized using the circuit’s ideal transfer function. The following steps are used to optimize circuits, at transistor level, to replace the ideal blocks (amplifier and switches) used in the first step, while compensating the effects of the circuit’s parasitic capacitances in the ideal design. The second method uses a novel efficient numerical methodology to obtain the frequency response of SC filters, based on the circuit’s first-order differential equations. The methodology uses a non-hierarchical approach, where the non-ideal effects of the transistors (in the amplifier and in the switches) are taken into consideration, allowing the accurate computation of the frequency response, even in the case of incomplete settling in the SC branches. Several design and optimization examples are given to demonstrate the performance of the proposed methods. The prototypes of a second order programmable bandpass SC filter and a 50 Hz notch SC filter have been designed in UMC 130 nm CMOS technology and optimized using the proposed optimization software with a supply voltage of 0.9 V. The bandpass SC filter has a total power consumption of 249 uW. The filter’s central frequency can be tuned between 3.9 kHz and 7.1 kHz, the gain between -6.4 dB and 12.6 dB, and the quality factor between 0.9 and 6.9. Depending on the bit configuration, the circuit’s THD is between -54.7 dB and -61.7 dB. The 50 Hz notch SC filter has a total power consumption of 273 uW. The transient simulation of the circuit’s extracted view (C+CC) shows an attenuation of 52.3 dB in the 50 Hz interference and that the desired 5 kHz signal has a THD of -92.3 dB

    Contributions to switched capacitor filter synthesis

    Get PDF

    Analogue filter networks: developments in theory, design and analyses

    Get PDF
    Not availabl

    A digital tuning scheme for digitally programmable integrated continuous-time filters and techniques for high-precision monolithic linear circuit design and implementation

    Get PDF
    Multiple topics which all focus on precision monolithic circuit design but beyond this are not directly related to each other are presented. The first topic is a digital tuning scheme for digitally programmable integrated continuous-time filters (4), (8) - (10). Emphasis of this research is on development of a more general tuning scheme which can be applicable to various filter functions as well as high-frequency applications. The tuning scheme consists of two phases: system identification and adjustment. Various continuous-time filter identification methods including time-domain and frequency-domain approaches are investigated, and a filter adjustment algorithm is presented. Potential of high accuracy of the proposed tuning scheme and successful applicability to high-frequency filters with versatile functions have been demonstrated through simulations and experiments;Four other topics are separately presented. First, nonidealities associated with high-precision amplifiers (5), (7) are discussed. Special emphasis is given on analysis of statistical characteristics of random CMRR and offset of CMOS op-amps which can help estimating yield of high-volume production and help engineers design for a given yield. Next, an automatic offset compensation scheme for CMOS op-amps with ping-pong control (2), (6) is presented. A very low-voltage circuit design technique using floating gate MOSFETs (3) is introduced. Finally, an accurate and matching-free threshold voltage extraction scheme using a ratio-independent SC amplifier and a dynamic current mirror (1) is discussed

    AN INVESTIGATION INTO QUASI-TUNABLE RF PASSIVE CIRCUIT DESIGN

    Get PDF
    Modern wireless electronic circuit design is continually challenged by the needs to reduce circuit size, and to also function reliably with lower power levels. To that end, two aspects of RFIC circuit design and technology have gained great interest, i.e. RF MEMS switching technology, and RF MEMS passive component development. MEMS (Micro-Electromechanical Systems) technology, originally developed for the defense industry, has been in development since the 1970s, and today enjoys wide range of utilization, from the defense industry to the automotive industry. Spiral inductors used in RFIC circuits, e.g. silicon technology, are ubiquitous in wireless RFIC applications. The tradeoff with low cost fabrication processes are inductors with very low quality factors which greatly affect the losses in RF passive circuits, and hence their performance. Research in the area of RF MEMS inductors has shown promise for components with significantly higher Q, and hence has the potential for wide range of benefits in both tunable and non-tunable applications. Electronic design environments such as Agilent ADS provide automated tools for generating passive circuits, e.g. band-pass filters, based on a specified desired frequency response and circuit topology. However, they typically do not incorporate component Q, which can greatly affect the actual circuit’s performance, into the results of their suggested designs. With this in mind, the development of a systematic approach to predict the relationship between passive circuit component’s Q and its S-parameters can be of great benefit to the RF electronic circuit designer, especially in the area of wireless passive circuits. The first of part of this work develops an analytical approach, using mesh-current analysis to derive the relationship between inductor Q, and the S-parameters of a generalized passive RF circuit. For the analysis, the S-parameters of a 90ᵒ Lumped Element Hybrid coupler are derived in terms of even mode and odd mode coupler responses using mathematical functions that relate the S-parameters of each circuit to their associated even mode Q, and odd mode Q factors The results of this research demonstrate that work can still be done in the area of circuit analysis to extend the capability of common passive circuit design tools to include the effects of component Q on the design results, e.g. filter design tools which commonly utilize simple LC circuits as building blocks for more complicated filters. The second part of this work investigates the performance of different RF switching technologies, i.e. MEMS Switching vs. RF PIN Diode, to a 2-3 GHz quasi-tunable RFIC 90ᵒ Lumped Element Hybrid Coupler design utilizing high Q three-dimensional air-core solenoidal MEMS inductors, and IPD Capacitors. The results of this investigation demonstrated the following: The concept of a tunable RFIC Lumped Element Hybrid coupler in the 2-3 GHz range is feasible, and if implement with high Q inductors, comparable to that of off-the-shelf 90° Hybrid Couplers in terms of return loss and isolation performance, but in a much small area, ~ one fiftieth of the surface area at 2 GHz. RF PIN Diodes at low current levels can be sufficient when only the phase imbalance of the coupler is critical. If either magnitude loss or magnitude balance is critical, then RF MEMS switching may provide a better alternative. RF PIN Diode forward bias resistance approaches that of DC contact switch resistance at higher current levels, e.g. 60 mA, and hence their power consumption becomes the main issue in determining the technology best suited for this application. The concept of a ground switched tapped capacitor bank was developed to maximize the switched capacitor Q. This approach optimized the coupler performance compared to a signal switched design. In the third part of this work, a selectable dual-band 630 MHz and 900 MHz PCB lumped element hybrid coupler is designed, fabricated, and measured. The inductors and capacitors are fabricated with only printed conductors and metal patches respectively on a four-layer PCB. The S-parameters of the measured results and simulations correlated extremely well after adjustment of the substrate dielectric thicknesses used for the simulation of the capacitors. This work demonstrates that lumped element passive components can be cheaply fabricated in PCB technology that are useful in the frequency range of 600 MHZ to 1300 MHZ, partially covering the GSM and LTE bands, that can be used in quasi-tunable wireless PCB applications, e.g. base stations, while also reducing circuit size in place of commonly found in microstrip distributed circuits

    Advances in Solid State Circuit Technologies

    Get PDF
    This book brings together contributions from experts in the fields to describe the current status of important topics in solid-state circuit technologies. It consists of 20 chapters which are grouped under the following categories: general information, circuits and devices, materials, and characterization techniques. These chapters have been written by renowned experts in the respective fields making this book valuable to the integrated circuits and materials science communities. It is intended for a diverse readership including electrical engineers and material scientists in the industry and academic institutions. Readers will be able to familiarize themselves with the latest technologies in the various fields

    Computer-Aided Design of Switched-Capacitor Filters

    Get PDF
    This thesis describes a series of computer methods for the design of switched-capacitor filters. Current software is greatly restricted in the types of transfer function that can be designed and in the range of filter structures by which they can be implemented. To solve the former problem, several new filter approximation algorithms are derived from Newton's method, yielding the Remez algortithm as a special case (confirming its convergency properties). Amplitude responses with arbitrary passband shaping and stopband notch positions are computed. Points of a specified degree of tangency to attenuation boundaries (touch points) can be placed in the response, whereby a family of transfer functions between Butterworth and elliptic can be derived, offering a continuous trade-off in group delay and passive sensitivity properties. The approximation algorithms have also been applied to arbitrary group delay correction by all-pass functions. Touch points form a direct link to an iterative passive ladder design method, which bypasses the need for Hurwitz factorisation. The combination of iterative and classical synthesis methods is suggested as the best compromise between accuracy and speed. It is shown that passive ladder prototypes of a minimum-node form can be efficiently simulated by SC networks without additional op-amps. A special technique is introduced for canonic realisation of SC ladder networks from transfer functions with finite transmission at high frequency, solving instability and synthesis difficulties. SC ladder structures are further simplified by synthesising the zeros at +/-2fs which are introduced into the transfer function by bilinear transformation. They cause cancellation of feedthrough branches and yield simplified LDI-type SC filter structures, although based solely on the bilinear transform. Matrix methods are used to design the SC filter simulations. They are shown to be a very convenient and flexible vehicle for computer processing of the linear equations involved in analogue filter design. A wide variety of filter structures can be expressed in a unified form. Scaling and analysis can readily be performed on the system matrices with great efficiency. Finally, the techniques are assembled in a filter compiler for SC filters called PANDDA. The application of the above techniques to practical design problems is then examined. Exact correction of sinc(x), LDI termination error, pre-filter and local loop telephone line weightings are illustrated. An optimisation algorithm is described, which uses the arbitrary passband weighting to predistort the transfer function for response distortions. Compensation of finite amplifier gain-bandwidth and switch resistance effects in SC filters is demonstrated. Two commercial filter specifications which pose major difficulties for traditional design methods are chosen as examples to illustrate PANDDA's full capabilities. Significant reductions in order and total area are achieved. Finally, test results of several SC filters designed using PANDDA for a dual-channel speech-processing ASIC are presented. The speed with which high-quality, standard SC filters can be produced is thus proven

    Design and debugging of multi-step analog to digital converters

    Get PDF
    With the fast advancement of CMOS fabrication technology, more and more signal-processing functions are implemented in the digital domain for a lower cost, lower power consumption, higher yield, and higher re-configurability. The trend of increasing integration level for integrated circuits has forced the A/D converter interface to reside on the same silicon in complex mixed-signal ICs containing mostly digital blocks for DSP and control. However, specifications of the converters in various applications emphasize high dynamic range and low spurious spectral performance. It is nontrivial to achieve this level of linearity in a monolithic environment where post-fabrication component trimming or calibration is cumbersome to implement for certain applications or/and for cost and manufacturability reasons. Additionally, as CMOS integrated circuits are accomplishing unprecedented integration levels, potential problems associated with device scaling – the short-channel effects – are also looming large as technology strides into the deep-submicron regime. The A/D conversion process involves sampling the applied analog input signal and quantizing it to its digital representation by comparing it to reference voltages before further signal processing in subsequent digital systems. Depending on how these functions are combined, different A/D converter architectures can be implemented with different requirements on each function. Practical realizations show the trend that to a first order, converter power is directly proportional to sampling rate. However, power dissipation required becomes nonlinear as the speed capabilities of a process technology are pushed to the limit. Pipeline and two-step/multi-step converters tend to be the most efficient at achieving a given resolution and sampling rate specification. This thesis is in a sense unique work as it covers the whole spectrum of design, test, debugging and calibration of multi-step A/D converters; it incorporates development of circuit techniques and algorithms to enhance the resolution and attainable sample rate of an A/D converter and to enhance testing and debugging potential to detect errors dynamically, to isolate and confine faults, and to recover and compensate for the errors continuously. The power proficiency for high resolution of multi-step converter by combining parallelism and calibration and exploiting low-voltage circuit techniques is demonstrated with a 1.8 V, 12-bit, 80 MS/s, 100 mW analog to-digital converter fabricated in five-metal layers 0.18-µm CMOS process. Lower power supply voltages significantly reduce noise margins and increase variations in process, device and design parameters. Consequently, it is steadily more difficult to control the fabrication process precisely enough to maintain uniformity. Microscopic particles present in the manufacturing environment and slight variations in the parameters of manufacturing steps can all lead to the geometrical and electrical properties of an IC to deviate from those generated at the end of the design process. Those defects can cause various types of malfunctioning, depending on the IC topology and the nature of the defect. To relive the burden placed on IC design and manufacturing originated with ever-increasing costs associated with testing and debugging of complex mixed-signal electronic systems, several circuit techniques and algorithms are developed and incorporated in proposed ATPG, DfT and BIST methodologies. Process variation cannot be solved by improving manufacturing tolerances; variability must be reduced by new device technology or managed by design in order for scaling to continue. Similarly, within-die performance variation also imposes new challenges for test methods. With the use of dedicated sensors, which exploit knowledge of the circuit structure and the specific defect mechanisms, the method described in this thesis facilitates early and fast identification of excessive process parameter variation effects. The expectation-maximization algorithm makes the estimation problem more tractable and also yields good estimates of the parameters for small sample sizes. To allow the test guidance with the information obtained through monitoring process variations implemented adjusted support vector machine classifier simultaneously minimize the empirical classification error and maximize the geometric margin. On a positive note, the use of digital enhancing calibration techniques reduces the need for expensive technologies with special fabrication steps. Indeed, the extra cost of digital processing is normally affordable as the use of submicron mixed signal technologies allows for efficient usage of silicon area even for relatively complex algorithms. Employed adaptive filtering algorithm for error estimation offers the small number of operations per iteration and does not require correlation function calculation nor matrix inversions. The presented foreground calibration algorithm does not need any dedicated test signal and does not require a part of the conversion time. It works continuously and with every signal applied to the A/D converter. The feasibility of the method for on-line and off-line debugging and calibration has been verified by experimental measurements from the silicon prototype fabricated in standard single poly, six metal 0.09-µm CMOS process
    • …
    corecore