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SUMMARY

This thesis describes a series of computer methods for the design of 

switched— capacitor filters. Current software is greatly restricted in the types of 

transfer function that can be designed and in the range of filter structures by 

which they can be implemented. To solve the former problem, several new filter 

approximation algorithms are derived from Newton's method, yielding the Remez 

algortithm as a special case (confirming its convergency properties). Amplitude 

responses with arbitrary passband shaping and stopband notch positions are 

computed. Points of a specified degree of tangency to attenuation boundaries 

(touch points) can be placed in the response, whereby a family of transfer 

functions between Butterworth and elliptic can be derived, offering a continuous 

trade— off in group delay and passive sensitivity properties. The approximation 

algorithms have also been applied to arbitrary group delay correction by all— pass 

functions.

Touch points form a direct link to an iterative passive ladder design 

method, which bypasses the need for Hurwitz factorisation. The combination of 

iterative and classical synthesis methods is suggested as the best compromise 

between accuracy and speed. It is shown that passive ladder prototypes of a 

minimum— node form can be efficiently simulated by SC networks without 

additional op— amps. A special technique is introduced for canonic realisation of 

SC ladder networks from transfer functions with finite transmission at high 

frequency, solving instability and synthesis difficulties. SC ladder structures are 

further simplified by synthesising the zeros at ±2fs which are introduced into the 

transfer function by bilinear transformation. They cause cancellation of 

feedthrough branches and yield simplified LDI— type SC filter structures, although 

based solely on the bilinear transform.

Matrix methods are used to design the SC filter simulations. They are shown 

to be a very convenient and flexible vehicle for computer processing of the linear 

equations involved in analogue filter design. A wide variety of filter structures can 

be expressed in a unified form. Scaling and analysis can readily be performed on 

the system matrices with great efficiency.

Finally, the techniques are assembled in a filter compiler for SC filters called 

PANDDA. The application of the above techniques to practical design problems is 

then examined. Exact correction of sinc(x), LDI termination error, pre—filter and 

local loop telephone line weightings are illustrated. An optimisation algorithm is 

described, which uses the arbitrary passband weighting to pre— distort the transfer 

function for response distortions. Compensation of finite amplifier gain— bandwidth 

and switch resistance effects in SC filters is demonstrated. Two commercial filter



specifications which pose major difficulties for traditional design methods are 

chosen as examples to illustrate PANDDA's full capabilities. Significant reductions 

in order and total area are achieved. Finally, test results of several SC filters 

designed using PANDDA for a dual— channel speech— processing ASIC are 

presented. The speed with which high— quality, standard SC filters can be 

produced is thus proven.
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1.1 INTRODUCTION AND GENERAL AIM

Switched— capacitor filters (SCFs) are analogue integrated circuits found as 

building— blocks in a variety of communications and signal processing systems 

[1—3]. Their low cost, precision and compactness make them an ideal choice for 

telephone networks where they are used in modems, signalling systems and voice 

coders— decoders in digital transmission systems. Success in telephony led to 

further application in audio equipment, speech analysers, test instruments and 

electronic musical instruments. Continued interest is being shown in extending the 

operating frequency range of SCFs to permit application to video and radar/sonar 

systems.

The introduction of the SCF in the 1970s solved many of the problems 

associated with other analogue filter technologies [4—8]. Traditional passive RLC 

networks were made up of bulky, lossy discrete components which could not be

integrated on a silicon chip. Active resistor— capacitor (RC) filters — composed of

op— amps, resistors and capacitors — may only be partially integrated. External 

resistors are required which make the filter large and expensive. Fully integrated 

active— RC filters are not successful because neither capacitors nor resistors can be 

fabricated precisely enough on silicon and the resistors particularily take up too 

much room. The switched— capacitor, a component consisting of a capacitor 

continuously switched between voltages, provides an accurate, integrateable 

replacement for the continuous— time resistor. An SCF is composed of op— amps, 

capacitors and switching transistors integrated on a silicon chip in a combination 

of continuous— time elements (op— amps) and sampled— data elements (switches

and capacitors). The precision of the filter characteristics is determined by

capacitor ratios which may be set to an accuracy of better than 0.1 per cent in 

MOS technology. These ratios are also very stable, negating fabrication process 

errors, temperature and signal level variations and ageing. Several filters may be 

integrated on a single chip as the circuits themselves are very small.

A modern alternative to the SCF is the digital filter which samples analogue 

signals and processes them in digital form [9—10]. These filters have greater

flexibility and lower noise but suffer from large power consumption, design

complexity and high cost. In digital filters there is always a trade— off between 

the accuracy, in terms of the number of bits, and the processing rate. They 

require analogue—to—digital (A D ) conversion at input and output, and the speed 

and accuracy of the A D  and D/A converters is often the limiting factor to the

performance of the digital system. Internally, signals must be manipulated by
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arithmetic operations which are time— consuming, especially multiplication. In this 

respect, SCFs will always have a speed advantage due to their direct processing 

of analogue signals.

Sampled— data filters also possess certain inherent drawbacks such as clock— 

feedthrough, aliasing and signal distortion due to sinc(x) effects. Thus, the pursuit 

of fully integrated continuous— time filters has continued, with much research 

devoted to solving the problems of active— RC technology. Accurate RC time 

constants can be obtained by controlling the nonlinear drain— source resistance of 

the MOSFET by an adaptive feedback system. These so— called integrated C— T 

filters have relatively good performance for lower frequency signals [11]. Various 

problems due to parasitic effects, power supply noise and intermodulation still 

undermine the quality of integrated C— T filters. For low— power, precision and 

compactness SCFs are still the best choice against these rival technologies.

The design of integrated SCFs is often considered a fairly mature area, with 

a great number of design techniques for synthesizing high— performance precision 

SCFs. There are a series of distinct stages common to the synthesis process;

1. Calculation of a transfer function to meet specifications of amplitude and 

delay of signal frequencies.

2. Choice of a suitable filter network structure and calculation of capacitor 

values to realise the transfer function.

3. Layout of network on a silicon or GaAs chip.

The quality of the resulting filter is strongly dependent on how well these 

steps have been completed. Factors such as size, sensitivity to capacitor value 

errors, noise and tolerance of switch and amplifier non— idealities are important. 

For example, a well— designed transfer function can provide a circuit with 

minimum size and passband sensitivity. The choice of a suitable filter structure 

influences the capacitor area and sensitivity to capacitor value deviation and 

careful layout can reduce noise and ensure good capacitor ratio accuracy. Since 

these stages involve much laborious numerical calculation and many design 

decisions they are tim e-consum ing and tedious to perform manually. It is natural, 

then, to apply computer— aided design (CAD) techniques to SCFs since, unlike 

other analogue circuits, their design process is well— defined and relatively regular. 

Automated filter design can greatly reduce chip turn-around time and expense. 

The quick delivery of good quality, error— free filters has already been proven 

feasible for a range of standard applications [12—15].
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The aim of this thesis is to study the development of advanced CAD tools 

for SCFs. Current software demonstrates the lack of a unified approach to the 

design process which has led to a variety of restrictions being placed on the 

designer, impairing his/her ability to tackle the more difficult kinds of filtering 

problems. Some examples are low clock— to— signal frequency ratio distortions, 

asymmetric response specifications, amplitude and group delay equalisation and a 

limited choice of filter structure. These difficulties will be detailed in the 

remainder of this Chapter. The techniques presented in the succeeding Chapters 

will offer solutions, and will form the basis of a software package for integrated 

filter design called PANDDA.

1.2 SW ITCHED- CAPACITOR FILTER SYSTEMS

1.2.1 A switched— capacitor filter system

The architecture of a switched—capacitor filter system is shown in Fig. 1.1. 

It is composed of a number of different stages in cascade [4—8,16]. At the input, 

it employs a continuous— time anti— aliasing filter to avoid any ambiguity of the 

signal frequencies detected by periodical sampling. Similarily, at the output an 

anti— imaging filter smooths the sampled waveform, removing higher frequency 

spectral images. Both these filters require MOS resistors which occupy a large 

silicon area, and so they are normally kept as simple as possible, implying very 

low order and selectivity.

The demands on the continuous— time filtering can be further reduced by 

including some decimator/interpolator filter stages in the system [17]. In effect, 

these are switched— capacitor anti— aliasing/imaging filters which operate at a 

higher clock frequency than the main SC filtering. Decimator stages are used to 

reduce the sampling rate towards that of the central SC filter stage and 

interpolator stages increase it again. This has an additional benefit, since a 

switched— capacitor filter operating at lower clock— to— signal frequency ratio will 

be accompanied by smaller capacitors and less silicon area. The central SC filter 

may be subdivided into an amplitude selective filter and an all— pass group delay 

equaliser.

Although designed separately, the blocks of a SCF system are not completely 

independent and some interactions are apparent. The most obvious is the effect 

of the group delay of an all— pass equaliser on that of the amplitude filter.

4
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Although this is accounted for in the design process, some distortions are not e.g. 

the additional amplitude and group delay contributed by decimator/interpolator and 

continuous— time filters. Furthermore, each stage operating with a different

sampling frequency adds an associated sinc(x) weighting effect. It is difficult at

present to trade— off the characteristics of each block to improve the overall 

response of the system. This is one of the objectives of the work in this thesis.

1.2 .2  Non— ideal effects in SC filters

Switched— capacitor filters are prone to various errors in the designed 

frequency response [18—20]. One unavoidable distortion is due to the

sampled— and— held nature of the internal time— domain signals and takes the

form of a sinc(x) weighting of the amplitude response (Fig. 1.2). The influence 

of this function becomes greater as the clock— to— signal frequency ratio decreases. 

Normally the clock frequency is chosen to be much higher than the centre 

frequency of the filter response. This ensures that the anti— aliasing/imaging 

continuous time filters are kept as simple as possible (typically second order). 

However, a large clock—to—centre frequency ratio (e.g. 100:1) will normally also 

entail a large capacitance spread which is costly in silicon area. It is therefore 

desirable; to reduce this ratio towards the feasible limit set by the Nyquist 

criterion of 2:1. Practically, ratios in the range 8:1 upwards are used because of 

the selectivity limitations of the anti— aliasing/imaging filters. At these lower ratios 

the sinc(x) effect and errors due to approximate design methods become quite

significant [21]. Thus there are two conflicting pressures on the choice of

clock—to—centre frequency; one to increase the ratio to reduce distortion, the 

other to reduce it to ease the capacitance spread.

Other distortions are caused by random errors in manufacture or the 

non—ideal behaviour of MOS components in the filter [19]. Parasitic capacitances 

exist at each and every node in an integrated filter. Unless the circuits are 

carefully designed, the charge injection from these parasitic capacitances will 

significantly disturb the signals being processed by the filter. Capacitance ratios 

are also affected by stray— capacitance as well as layout inaccuracies. Large ratios 

are particularily prone to error, whereas more common small ratios (close to 

unity) can be realised to better than 0.1—0.5% tolerance.

Switches are realised by MOS transistors and they have a certain finite 

resistance in the 'on' state which, depending on the size of the switch, can range 

between 1—30K (in the 'off' state the resistance is very large (= 10^ 0) [19]).

6
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Switches with small resistances will occupy a larger area and consume more power 

and therefore it is desireable to use poorer, small switches. However, switch 

resistance causes delay in the charging of capacitors which limits the maximum 

operation speed of the circuit. If the clock frequency is too high, the capacitors 

will not charge completely in each cycle, leading to signal errors and a distorted 

frequency response.

Operational amplifiers are afflicted by gain and bandwidth limitations [20], 

This is a particular problem in high— frequency GaAs circuits where the gain can 

be lower than 1000 despite a very wide bandwidth. All such 'non—idealities' 

distort the desired filter response in the frequency domain by disturbing the ideal 

pole and zero positions. Other problems are caused by amplifier offset voltages 

and phase errors.

1.2.3 Design methods

In the design of an SC filter the tolerance of the non— ideal effects

mentioned in Section 1.2.2. is very important. A filter which is sensitive to such 

influences will often fail to meet the specified performance criteria, resulting in 

low yields in manufacture. It is essential therefore, to choose filters with good 

sensitivity properties. This leads immediately to the rejection of filter structures 

that are sensitive to stray— capacitance, e.g. voltage— inverter switch (VIS)

approaches, component simulation and wave filters [22—24]. In addition those with 

notoriously high sensitivity to capacitance ratio errors must also be rejected, e.g. 

follow—the—leader, FIR [25—26]. Remaining, are two popular architectures; 

biquad cascade and operational ladder simulation filters. Further discussion will be 

restricted to these categories.

A biquad is a second order filter section (Fig. 1.3), realised using a loop of 

an inverting and non—inverting integrator [27]. A higher order filter is realised as 

a cascade of these circuits. The design of a biquad filter is accomplished by 

taking the filter transfer function to be realised, factorising it into second order 

terms in the z— domain and comparing each term in turn with the coefficients of 

a symbolic formula for the transfer function of an SC biquad section. The 

capacitor values are calculated by solving the set of resulting overdetermined

equations. The simplicity of this process has made this design approach a popular

one.
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Doubly—terminated passive ladder networks (Fig.1.4a), designed for maximum 

power transfer over the filter passband, are known to have very low sensitivity to 

variations in their component values [4—8]. SC filter structures which simulate the 

internal workings of the ladder inherit this property (Fig. 1.4b). Their design 

procedure is much more complicated than biquads; a passive ladder filter must 

first be synthesised, and then a SC filter composed of a connection of first order 

blocks must be determined to implement the internal current— voltage (I— V) 

relationships of the L and C elements in the prototype. An approximate method 

using the lossless discrete integrator (LDI) transform, results in SC ladders which 

do not properly simulate the resistive terminations of the prototype [28—31]. An 

upward sloping distortion of the amplitude response, becoming worse with 

decreasing clock—to—signal frequency ratio, is observed. Nevertheless, LDI ladders 

are efficient realisations of certain prototypes and remain popular.

Synthesis methods which result in an SC filter whose transfer function is 

identical to the desired one are termed exact , and they make use of the bilinear 

transformation. The design procedures are not as straightforward as for LDI 

filters, as the correspondance between prototype and SC implementation is no 

longer by simple I— V relationships. There are a number of different ladder 

simulation methods, the most popular of these provide the so— called leapfrog 

(Fig. 1.4b) and coupled—biquad filter structures [32—35].

In summary, ladder filters excel by their inherent low sensitivity properties. 

However, their multi— feedback nature and the need to synthesise a prototype 

complicate their design procedure. The class of transfer function that may be 

realised must normally be of the minimum— phase type and is often restricted in 

order and form. Biquad filters, on the other hand, are very simple to design and 

can exactly realise a general class of transfer function. Unfortunately, their 

sensitivity is normally poorer than that of a comparable ladder, although there is 

a great deal of flexibility in their design procedure, offering many possible 

trade— offs to the designer. The implementation cost of both structures, in terms 

of numbers of components, is almost identical, but the range of component values 

may differ widely.

1.2.4 Present and future applications of switched— capacitor filters

In this section, the present applications of SCFs are reviewed. Difficulties in 

the design process of present filter systems are highlighted. Potential application 

areas of SCFs are then indicated, together with the limitations which are

10



Fig. 1.4a Doubly-terminated passive ladder
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Fig. 1.4b Simulation of passive ladder by leapfrog SC filter
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preventing their exploitation. The role of CAD in tackling these problems is then 

discussed.

Currently, SC filters are most commonly found as a component in 

voice— band communications systems, typically in modems and echo— cancellers. As 

they normally form part of a larger system, the correction of distortions 

introduced by other signal processing stages is necessary. For example, a local 

loop telephone line can introduce a signal loss of as much as — 16dB at 1kHz 

[37]. Another example is the sinc(x) attenuation introduced by external sampling 

processes. Some degree of amplitude equalisation is therefore called for, realised 

either by special circuits or more conveniently combined with the filtering process 

itself. The latter approach requires some developments in the field of filter 

approximation to obtain non— flat passband filter characteristics. Non— uniform 

stopband characteristics are also important since, for example, modem channel 

filters often have extremely asymmetric stopband requirements. It is concluded that 

some general approach to the approximation of both passband and stopband 

characteristics is necessary. Further applications exist in FM radio filters, 

transducer compensation filters and class—E transmitter filters [38].

Another problem exists in the realisation of notch filters for hum rejection. 

These notches occur at low frequency (e.g. 50Hz, 60Hz, 180Hz) and they imply 

large time constants which demand enormous capacitor ratios (>1000) [39]. CAD 

can assist by optimising the Q— factors in transfer function which influence the 

capacitance spread and also by designing area—efficient circuit configurations [39].

A very promising future application for SCFs is within FM radio receivers 

where very narrow bandwidth, high—selectivity filters are required [40]. They 

cannot be made at present with the quality necessary for high-fidelity reception. 

Narrowband filters are difficult to realise with low order, small capacitor ratios 

and low sensitivity. Further applications exist in bioelectronic applications, such as 

pacemakers, hearing aids and other implantable measurement devices [40]. The 

low power, low voltage and low noise operation of the SCF makes it ideal for 

these purposes. Hearing aids require some general hearing— loss compensation 

implying a reconsideration of the traditional role of the SCF [41]. It must now 

perform as a general spectrum shaping device rather than simply pass or stop 

signals. General non— minimum phase filter design techniques are needed.

Research is progressing into implementation of SCFs on GaAs for high 

frequency applications such as video filters [40], Technological constraints make

12



high— gain amplifiers and low— resistance switches difficult to realise. The response 

distortion introduced by the low gain (<1000) and high switch resistance can be 

removed by appropriate computer optimisation techniques [42].

1.3 FILTER DESIGN SOFTWARE

1.3.1 Aims of com puter-aided design

Computer— aided design (CAD) software is able to assist the designer to 

produce an integrated filter circuit in the following ways;

1. Reduced design time and cost. Designs which would take weeks to 

complete by hand calculation can be done in minutes. In this way many possible 

alternatives may be assessed.

2. Fast estimation of silicon area and implementation cost. This is important

to assess the feasibility of filter specifications and for chip floorplanning.

3. Detail and numerical calculation are conveniently handled, so that no 

specialised knowledge is needed to derive a filter.

4. An optimal design of filter can be obtained. Improvements may be made to 

filter attributes such as capacitor area, dynamic range and sensitivity to component 

deviation. Computer assistance is essential in this computationally expensive task.

5. Error— free network construction and layout. Mistakes in the filter network 

which go undetected to manufacture cost a great deal of money and time. Layout 

is particularily prone to human error. The computer can provide a filter layout 

which is correct by construction.

6. Advanced design techniques are made accessible. New filter structures are 

continually being developed. However, they are often slow to gain acceptance 

because of the complicated design process. Computer software can ensure that all 

designs are produced with equal ease and that the use of a given filter structure 

is not prejudiced by the effort demanded to construct it.

In concept, a designer should be able to specify a filter frequency response

in an arbitrary manner with respect to both magnitude and group delay. A set of
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switched— capacitor filter structures which efficiently meet these specifications 

should then quickly be presented. After a preliminary assessment of the offered 

designs, the selected one should be optimised for various physical parameters. 

Finally, the circuit should be translated to a layout for a silicon chip. Results 

should be able to be viewed rapidly in graphical form at all stages. The designer 

should be freed as much as possible from constraints on order, bandwidth, 

response symmetry, applicable types of structure, prototype.

The following section will indicate the techniques involved in translating this 

ideal scheme into computer software. A survey of the currently available software 

will then show the extent to which the imagined objective has been achieved.

1.3.2 Design of integrated filters by computer

Filters are particularily amenable to computer— aided design because, unlike 

other analogue circuits, the design process can be broken down into a series of 

w ell-defined  steps [43]. Many of the steps involve either evaluation of explicit

mathematical design formulae or numerical algorithms. They are laborious and 

time— consuming to execute manually and are ideally suited to implementation on 

a computer. The main steps and actions performed therein are now detailed (Fig. 

1.5).

i. Specification

The principal requirement of an electronic filter is that it should process an

input spectrum to pass certain bands of frequencies and to suppress all others.

Amplitude response constraints are therefore of greatest importance, specified by 

frequencies of band edges and passband and stopband attenuation tolerances. Filter 

responses fit into five main categories according to which frequency bands are to 

be passed; low—pass, band—pass, high—pass, band—stop and all—pass.

In digital telecommunications, the group delay must also be considered to 

avoid inter— symbol interference. For minimum signal distortion, the group delay 

should be constant over the filter passband although, in practice, some deviation 

must be allowed.

Circuit performance may also be specified by placing acceptable limits on 

such measures as noise, sensitivity, power supply rejection ratio (PSRR) and

harmonic distortion.

14



Specification 
and approximation \ K \\\W  /

CO u

Z (s )

i-1
H(s)

Prototype design

i-1

Filter realisation

ladder

1. Total capacitance and capacitance spread

2. Sensitivity

3. Dynamic range and noise

4. Finite op-amp gain-bandwidth and switch resistance effects

5. Pre-distortion for frequency response weightings 

e.g. sinc(x), LDI error

Optimisation

.« i .  .t s .

Layout

Fig. 1.5 Conceptual stages of integrated filter design
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ii. Approximation

Design of a transfer function to meet frequency response specifications is 

called approximation.  The transfer function of an analogue filter network is a 

rational polynomial function of frequency. Its coefficients must be determined such 

that its amplitude and group delay response lie within a given tolerance scheme. 

The order of the function must be minimised to lower the complexity of the 

resulting filter network.

The simplest approximations are classical functions with flat or equi— ripple

amplitude behaviour in the passband or stopband e.g. Butterworth, Chebyshev, 

Inverse Chebyshev, Elliptic. They have closed— form or simple algorithmic 

solutions and can be consulted in tabular form [4]. However, these functions do

not offer optimal solutions for asymmetric or irregular specifications of either 

amplitude or delay and so some more general approximation methods are required 

[44].

Amplitude specifications are commonly satisfied by designing a minimum 

phase transfer function which takes no account of the group delay. An all— pass 

function can then be designed to equalise the resultant group delay without 

disturbance of the amplitude response [45].

iii. Prototype Design

In prototype design the transfer function is expanded into a form which

represents a realiseable network. This is commonly done in one of two ways;

a. factorisation into second— order rational terms. This represents a series of 

simple second— order networks (biquads) connected in cascade.

b. continued— fraction expansion of an impedance function. This process is 

known as classical synthesis and results in a passive RLC ladder network. It is 

very ill— conditioned and often incurs severe accuracy loss within finite precision 

computer arithmetic, even in the design of relatively low— order filters of high 

selectivity. Accuracy preservation entails advanced numerical methods which greatly 

complicate the software [46].
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Many different prototype functions can be derived from a given transfer 

function. Each instance of a prototype function results in a different network. 

The choice of prototype function will later influence the capacitor spread and 

dynamic range of switched— capacitor implementations.

iv. Filter Design

At this stage the prototype function is realised as a filter network. The 

network structure must be established and the component values must be 

calculated. Two topologies dominate active circuit realisations due to their 

insensitivity to parasitic capacitance; biquad cascades and ladder simulations. Both 

possess a family of alternative equivalent realisations. For instance, a biquadratic 

prototype can be simulated by biquads due to Laker or Sanchez—Sinencio [4,7]. 

Likewise, ladder prototypes can be simulated by leapfrog, LUD or coupled— biquad 

ladders [32,33,36]. Each structure will have different properties of dynamic range, 

capacitor spread and sensitivity to component value errors. In general, filters 

based on ladder prototypes have lower sensitivity than those based on biquads. It 

is difficult, however, to generalise on which network should be chosen for a given 

problem. The design procedures for different prototype simulations are usually 

quite different and this prevents easy comparison.

Various scaling operations and optimisations may be performed to improve 

the dynamic range, capacitance spread and tolerance of non— ideal effects.

v. Realisation and Layout

Techniques to improve circuit performance are employed at this stage e.g. 

special amplifier designs, switching schemes and noise cancelling techniques [16]. 

The layout of the network on silicon is a straightforward but laborious task. 

Careful layout can reduce noise and ensure good capacitor ratio accuracy.

1.3.3 Survey of design software

A number of filter design programs have been presented in the literature, all 

originating from university sources. The earliest programs for passive RLC filter 

design, FILSYN [47] and FILTOR2 [48], have been included, since they are used 

for RLC prototype design within S/FILS YN [49] and AUTO— SC (SICOMP) 

[50,12] respectively. Their capabilities will now be examined under the headings 

of Section 1.3.2. Table 1.1 offers a brief comparison of their main features.
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Name Re f Dat e S p e c i a l  F e a t u r e s

FILSYN 47 1977 Be s t  known p a s s i v e  l a d d e r  s y n t h e s i s  p r o g r a m.  F i l t e r s  up t o  
4 0 t h  o r d e r .  C l a s s i c a l  a p p r o x i m a t i o n s .  P o l e  p l a c e r  p r ogr am.

FILT0R2 48 1979 Good c l a s s i c a l  p a s s i v e  l a d d e r  s y n t h e s i s  p r o g r a m.  C l a s s i c a l  
a p p r o x i m a t i o n s .  P o l e  p l a c e r  a p p r o x i m a t i o n .

S/FILSYN 49 1988 Up d a t e d  v e r s i o n  o f  FILSYN. S w i t c h e d - c a p a c i t o r  f i l t e r  d e s i g n  
by  a p p r o x i m a t e  LDI l e a p f r o g  a n d  b i q u a d  me t h o d s .

AUTO-SC 50 1988 SC l a d d e r  f i l t e r  d e s i g n  w i t h  FILTOR2.  Exa c t  and  a p p r o x i m a t e  
LDI and  r e s i s t o r  e q u i v a l e n c e  l a d d e r  d e s i g n s .  DR+CS s c a l i n g

SICOMP 12 1987 FILTOR2 + AUTO-SC. A u t o m a t i c  l a y o u t  a nd  u s e r  i n t e r f a c e .  
B i q u a d  d e s i g n .

FILCAD 58 1987 C l a s s i c a l  a p p r o x i m a t i o n .  L a d d e r  d e s i g n .  B i l i n e a r  l e a p f r o g  
SC s i m u l a t i o n .  A u t o m a t i c  l a y o u t .

VITOLD 14 1987 C l a s s i c a l  a p p r o x i m a t i o n .  P o l e  p l a c e r .  Cr oup  d e l a y  e q u a l i s e r  
z - d o m a i n  a p p r o x i m a t i o n  a nd  l a d d e r  s y n t h e s i s .  L e a p f r o g  and 
b i q u a d  d e s i g n .  S e n s i t i v i t y  a nd  h a r mo n i c  d i s t o r t i o n  o p t i m i s 
a t i o n .  DR+CS s c a l i n g .  A u t o m a t i c  l a y o u t .  Commer ci a l  pa c k a g e .

I MAN 15 1988 C l a s s i c a l  a p p r o x i m a t i o n .  E x a c t  LDI l a d d e r  s y n t h e s i s  and  
l e a p f r o g  s i m u l a t i o n .  DR+CS s c a l i n g .  A u t o m a t i c  l a y o u t .

MASFIL ■54 1988 S i m u l a t e d  a n n e a l i n g  o p t i m i s a t i o n  a l g o r i t h m  f o r  a m p l i t u d e  
a p p r o x i m a t i o n .  B i q u a d  d e s i g n .  D e c i m a t o r / i n t e r p o l a t o r  d e s i g n  
A n t i - a l i a s i n g  f i l t e r  d e s i g n .  DR+CS o p t i m i s a t i o n .

AROMA 13 1985 C l a s s i c a l  a p p r o x i m a t i o n .  B i l i n e a r  b i q u a d  d e s i g n .  C a p a c i t a n c e  
a r e a ,  s e n s i t i v i t y  and  dynami c  r a n g e  t r a d e - o f f s .  E x h a u s t i v e  
p o l e - z e r o  p a i r i n g .

SCSYN 53- 1987 Exa c t  LDI l a d d e r  s y n t h e s i s  by LADNET. S t r u c t u r e  t r a n s f o r m s  
t o  e n s u r e  r e g u l a r  SC c i r c u i t s  f o r  ma s k - p r o g r a mma b l e  c h i p .  
Bi q u a d  d e s i g n .  Aut o  r o u t i n g  and  l a y o u t .  C a p a c i t a n c e  s p r e a d  
and  n o i s e  o p t i m i s a t i o n .  No a p p r o x i m a t i o n .

? 55 1986 C l a s s i c a l  a p p r o x i m a t i o n .  B i q u a d  d e s i g n .  A u t o m a t i c  l a y o u t .

PANDDA 52 1988 C l a s s i c a l  a p p r o x i m a t i o n s .  A r b i t r a r y  p a s s b a n d  and  s t o p b a n d  
a p p r o x i m a t i o n .  High o r d e r  t o u c h  p o i n t s .  Group d e l a y  e q u a l 
i s a t i o n .  C l a s s i c a l  s y n t h e s i s  a nd  i t e r a t i v e  l a d d e r  d e s i g n .  
L e a p f r o g ,  LUD, coup  1e d - b i q u a d , TWINTOR s i m u l a t i o n s .  Exact  
b i l i n e a r / L D I  s i m u l a t i o n .  B i q u a d  d e s i g n .  P o l e - z e r o  p a i r i n g .  
DR+CS o p t i m i s a t i o n .  A l l - p a s s  l a d d e r  a n d  b i q u a d s .  I n t e r n a l  
a n a l y s i s .  O p t i m i s a t i o n  f o r  n o n - i d e a l  s w i t c h  and  a m p l i f i e r  
p a r a m e t e r s .

N.B.  DR+CS = Dynamic R ange a nd  C a p a c i t a n c e  S p r e a d

Table 1.1 Comparison of filter design software
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i. Specification

Only amplitude specifications are accepted by most programs. If these are to

be solved by classical approximations certain standard parameters will be requested

(order, passband ripple, stopband attenuation or passband edges). A template 

defining the bounds on the stopband attenuation is required by FILTOR2 and

FILSYN. This is entered by a series of frequency/attenuation breakpoints.

Graphical specification entry is being investigated for SICOMP.

PANDDA [51—52] accepts templates defining amplitude and group delay 

bounds. Amplitude boundaries may be weighted in both passband and stopband.

ii. Approximation

The ability to derive classical functions (Butterworth, Chebyshev, Inverse

Chebyshev and Elliptic) is common to all programs.

Both FILSYN and FILTOR2, permit more general approximation. These 

programs will determine the zero positions and minimum order of a transfer

function with arbitrary stopband shape. The poles positions for a flat, equiripple

passband are then determined. SCSYN is handicapped by being without

approximation capability [53].

VITOLD [14] includes a quasi—Newton minimisation method for group delay 

as well as general stopband attenuation. MASFIL [54] uses a simulated annealing 

method to adjust the poles and zeros of the transfer function to meet 

simultaneous amplitude and delay specifications. The method seems successful but 

demands long computation time.

PANDDA supports a full range of classical functions as well as a general 

rational approximation capability. Both passband and stopband characteristics can 

be tailored to arbitrary templates. Points of a specified degree of flatness (high 

order touch points) can be used to create hybrid equiripple/maximally— flat 

responses to trade— off amplitude and group delay. The specifications can be 

weighted automatically to compensate for distortion due to sinc(x) weighting, LDI 

termination error or telephone line attenuation. Group delay can be equalised by 

all— pass functions.
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iii. Prototype Design

FILSYN is the pre— eminent program in passive ladder synthesis. It was the 

first to solve the inherent ill— conditioning in the filter synthesis problem in finite 

computer arithmetic. The order of the ladder networks which could be accurately 

derived was raised to around 40. It has been expanded to encompass 

switched— capacitor design methods in S/FILSYN. A rival program called FILTOR2 

has also been developed, and incorporated similarily into SICOMP.

However, these programs are predominantly concerned with the constraints 

on passive filter technology, e.g. positive element values and minimum— phase 

transfer functions. These properties can be relaxed when the passive ladder is 

simulated by active circuits. For this reason, LADNET, IMAN and VITOLD 

[53,15,14] perform synthesis in the z—domain so that the ladder is directly 

implementable as a switched— capacitor network without further transformation. 

LADNET is a special z— domain synthesis program for LDI filters which 

synthesises and transforms the ladder prototype for regular gate— array type 

layout.

PANDDA employs an iterative method for ladder design combined with 

classical synthesis in order to avoid the accuracy problem, allowing passive 

prototypes to be designed well beyond typical orders of around 20 (up to 100 in 

certain special cases). Special ladder structures with negative element values can 

be synthesised to reduce the complexity of SC simulations. The ladders can all be 

exactly realised by regular bilinear SC filter structures.

Factorisation of a polynomial for biquad implementation is a straightforward 

numerical task compared to ladder synthesis and is performed by all programs.

iv. Filter Design

Two types of switched—capacitor filter have achieved popularity for practical 

design due to their insensitivity to parasitic capacitance; the biquadratic cascade 

and leapfrog ladder. AROMA [13] specialises in biquad design and permits many 

tradeoffs between various performance parameters such as spread and dynamic 

range. S/FILS YN employs approximate LDI simulation of a passive ladder designed 

by FILSYN. AUTO— SC, VITOLD, IMAN and SCSYN choose exact LDI leapfrog 

structures to avoid distortion from approximate design methods. Scaling of circuits
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for maximum dynamic range and minimum capacitance spread is a commonly 

available. S/FILSYN, SICOMP, SCSYN and VITOLD can also realise biquad 

filters. SCSYN includes a feature to tradeoff total capacitance and dynamic range. 

A total capacitance area can be specified and the filter capacitors will be 

expanded or reduced to make best use of the available area.

VITOLD is the only program to provide a design centreing capability. The 

component values are assigned an allowable percentage deviation and optimised for 

maximum yield.

PANDDA can design both ladder and biquad filters. A wide variety of 

implementations is offered including leapfrog, LUD and coupled— biquad ladders 

with either LDI or bilinear topology. Special techniques are available to realise 

highpass and bandstop ladders [56—57]. Laker's type—E or F biquadratic sections 

are also available [4]. All—pass group delay equalisers can designed by new 

low— sensitivity ladder topologies or by special all— pass biquads.

v. Layout

Switched— capacitor filters, being very regular structures are quite convenient 

for automatic computer layout. SCSYN constructs layouts from second— order 

integrator loops and synthesises the ladder networks to be a simple connection of 

these blocks. SICOMP constructs the filter from general first— order blocks. 

Routing and capacitor layout are done to minimise charge injection and 

stray— capacitance.

PANDDA has no internal layout software, since this step is highly dependent 

on fabrication process and style of a design house.

1.4 PURPOSE OF THE RESEARCH

The purpose of the research presented in this thesis is to study computer 

techniques for the design of switched— capacitor filter systems. Chapters 2 to 5 

present a series of efficient computer methods for each of the main stages of the 

design process. Chapter 6 illustrates their application within a software package to 

tackle several difficult practical filter problems.

Since sinc(x) and LDI termination error are frequency response distortions 

inherent to SC filters there is a need for some degree of amplitude equalisation
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in the design of the filter frequency response. In addition, since an SC filter must 

exist in an environment of anti— aliasing stages, there must be some capability to 

trade— off the influences on the frequency responses of each stage. These call for 

more general transfer approximation capabilities in both amplitude and delay. 

These topics will be approached in Chapters 2 and 3 respectively.

Chapter 4 covers the design of prototype ladder filters for simulation by SC 

circuits. Methods of designing ladders with weighted frequency response are 

considered. The accuracy of the synthesised ladder is maintained without 

excessively complicating the software by a combination of iterative and synthesis 

approaches. Certain restrictions in the design of passive ladders can be removed, 

when they are to be simulated by SC circuits. Negative element values are 

acceptable and are even shown to be useful in the design of LDI— type filter 

structures. It is of importance that the prototype ladder can be simulated by

canonical SC networks. Certain rules are presented to ensure that this will always 

be the case.

In Chapter 5 the design of SC circuit structures to simulate a prototype 

transfer function is considered. At present, the design techniques for SC filters

vary greatly and are as a result not easy to implement in computer form.

Current filter CAD packages reflect this lack of uniformity by adopting only a

single architecture. Matrix methods, which have been successfully applied to circuit 

analysis, are now shown to be an excellent means for processing filter designs in 

computer form. The regularity achieved permits a wide variety of filter structures 

to be quickly compared. Scaling and realisation steps become greatly simplified.

A software package, PANDDA (Program for Advanced Network Design 

Digital and Analogue), has been constructed employing the design methods

described in this thesis. Chapter 6 explores a range of design problems and 

illustrates the improved solutions available by the application of the filter design

tools. Several practical design examples are considered which cannot be 

satisfactorily solved by traditional methods. The use of PANDDA to design a 

commercial speech processing chip is demonstrated and test results of the

integrated circuit are given.

Chapter 7 summarises the achievements of the research in this thesis and

proposes some extensions of the work.
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1.5 STATEMENT OF ORIGINALITY

The following results of the research in this thesis are, as far as is known, 

original and have been published or submitted for publication:

In Chapter 2, the derivation of efficient approximation methods for arbitrary 

amplitude boundary functions and the use of high— order touch points. The

relationship of Newton's method to Remez approximation methods is 

demonstrated. A new approximation technique is proposed called the unilateral 

algorithm.

[Li Ping, R.K.Henderson and J.I.Sewell, "A New Filter Approximation and Design 

Algorithm", Proc. IEEE ISCAS '89, pp., Portland, Oregon, U .S.A ., May 1989.] 

[R.K.Henderson, Li Ping and J.I.Sewell, "Extended Remez algorithms for filter

amplitude and group delay approximation", in preparation.]

In Chapter 3, the use of the Remez amplitude approximation methods for 

group delay approximation by all— pass functions.

[R.K.Henderson and J.I.Sewell, "A new design algorithm for all— pass delay 

equalisers", Proc. IEE Saraga Colloquium on Electronic Filters, London, June, 

1989.]

[R.K.Henderson, Li Ping and J.I.Sewell, "Extended Remez algorithms for filter

amplitude and delay approximation", in preparation.]

In Chapter 4. the unified use of touch points by approximation and iterative 

ladder design algorithm affords a direct connection which can avoid the

ill— conditioned Hurwitz factorisation step. The development of special prototypes 

for simulation by bilinear/LDI filter structures. Zeros at ±2fs introduced by

applying the bilinear transform to z— domain designed transfer functions. An exact

scheme to correct distortion due to improperly realised resistive terminations by

LDI— type SC filters. A method to design canonical simulations of passive ladder 

networks with finite transmission at high frequency.

[Li Ping, R.K.Henderson and J.I.Sewell, "A New Filter Approximation and Design 

Algorithm",Proc. IEEE ISCAS '89, pp. 1063—1066, Portland, Oregon, U.S.A., 

May 1989.]

[Li Ping, R.K.Henderson and J.I.Sewell, "Matrix methods for switched— capacitor 

filter design", IEEE ISCAS '88, pp. 1044—1048, Espoo, Helsinki, Finland, 1988.]
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In Chapter 5. the use of matrix methods for the description and processing 

of SC filters on a computer. Scaling for maximum dynamic range and minimum 

capacitance spread by matrix operations. Zero removal permutations as a means 

of reducing total capacitance of ladder simulations.

[Li Ping, R.K.Henderson and J.I.Sewell, "Matrix methods for switched— capacitor 

filter design", IEEE ISCAS '88, pp. 1044—1048, Helsinki, Finland, June 1988.]

[Li Ping, R.K.Henderson and J. I. Sewell, "Switched—capacitor filter design by

matrix methods", submitted for publication.]

[R.K.Henderson, Li Ping and J.I.Sewell, "A unified approach to the design of 

canonical integrated ladder filters", submitted for publication.]

In Chapter 6 the software package PANDDA is presented. A series of novel 

design examples, demonstrating the use of high order touch point responses to

ease group delay equalisation requirements, exact correction of sinc(x) distortion 

and filter optimisation by pre— distortion of the specifications.

[R.K.Henderson, Li Ping and J.I.Sewell, "A design program for digital and 

analogue filters : PANDDA", Proc. ECCTD '89, pp. 289—293, Brighton, U.K., 

Sept. 1989.]

[R.K.Henderson, Li Ping and J.I.Sewell, "PANDDA : A program for

advanced network design : digital and analogue", Digest of Saraga Colloquium on 

Electronic Filters, pp. 4/1—4/8, London, 1988.]
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2.1 INTRODUCTION

In Chapter 2, computational methods for the design of filter amplitude 

functions will be examined. Classical functions which approximate ideal filter 

specifications are reviewed. These functions have special properties of symmetry 

and constant equiripple attenuation in passband or stopband. Their coefficients can 

be calculated conveniently by explicit formulae or simple iterations [1—7].

However, classical approximations are not suitable for highly asymmetric 

specifications or amplitude equalisation tasks commonly encountered in modern 

communications systems [8]. Approximation methods for such specifications are not 

well developed. They are usually highly specific to a given filtering task and are 

not flexible enough for a general, easy—to—use software package [9—17].

Although, general multiple— criterion optimisation techniques can certainly be 

applied, they tend to involve a large amount of computation and do not always 

guarantee convergence [18—21]. Frequently, this is because they do not make 

enough use of the special properties of filter functions, which are special cases of 

rational polynomials with well— confined root locations. Moreover, the 

approximation problem is often not expressed conveniently for a filter designer 

without detailed knowledge of optimisation theory [22].

In the remainder of the Chapter, methods for the approximation of 

polynomial filter functions within arbitrarily weighted amplitude specifications are

considered. Several new algorithms are proposed bearing some interesting

relationships to the Remez minimax approximation technique [23— 25]. The 

concept of maximal flatness is generalised to allow compromises between 

equiripple and flat band properties. The computational aspects of the algorithms 

are discussed. Accuracy is particularily critical in the approximation of filter 

functions in finite wordlength computer arithmetic. Methods to preserve accuracy 

without recourse to the complications of transformed variables are given [1—2,26].

The design of minimum— phase rational functions with arbitrary passband and 

stopband tolerance schemes is investigated. These functions are of particular 

importance because they can be efficiently realised as the transfer functions of 

linear analogue networks, including SCFs. Numerator and denominator polynomials 

have special properties which are best designed by a combination of two different 

methods. The four main classes of filter can be handled and computed examples 

meeting arbitrary passband and stopband specifications are given.
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2.2. CLASSICAL FILTER APPROXIMATION

2.2.1 Definitions

The magnitude response of an ideal filter is defined by the "brick wall" 

template in Fig. 2.1. It is not feasible to obtain a transmission function which 

exactly matches these characteristics and so certain tolerances must be introduced 

(Fig. 2.2). The function is allowed some small deviation from full transmission in 

the passband and from zero transmission in the stopband, and a transition region 

is provided to allow the function to move between levels. This introduces a series 

of design parameters which control how closely the filter function approximates 

the ideal specifications.

fplo, fphi : lower and upper passband edge frequencies (Hz) 

fslo, fshi : lower and upper stopband edge frequencies (Hz)

Ag : Minimum stopband attenuation (dB)

Ap : Maximum passband attenuation (dB)

In general, as these parameters are made more severe, e.g. very small

transition region, or very large stopband attenuation, an increasingly high order 

(N) of approximating function will be required.

A transmission function is designed by working with a magnitude squared 

function. It has the following property;

T ( s ) T ( - s ) I  . = T(x) I  , ( 2 . 1 )I s=jco I x=—co /

The phase information has been removed and the function has been

linearised in terms of a single real variable, avoiding the use of complex

arithmetic. Besides the transfer function T(x) another function called the

characteristic function  K(x) is useful in classical approximation.

K ( s ) K ( - s )  = l / ( T ( s ) T ( - s ) ) -  1 ( 2 . 2 )

Since the transmission function must vary between 0 and 1, the characteristic 

function will vary between 0 and oo. It is normally a simpler computational task 

to design such a function [1].
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2.2.2 Classical Approximation Methods

Classical functions are approximations to ideal filter specifications. They have 

the following general form

1
T ( s ) T ( - s )  = ------------------------ ( 2 . 3 )

1 + K ( s ) K ( - s )

The zero and pole frequencies of K(s) correspond exactly to the positions of 

the maxima in the passband and minima in the stopband of the transmission 

function. The positioning of the poles and zeros frequencies of K(s) is done to 

control the maximum deviation of the transmission function in passband and 

stopband. In each band the transmission function will usually have one of two 

forms; maximally flat and equiripple. The permutation of these properties in 

passband and stopband yields the four best—known classical functions; elliptic, 

Chebyshev, inverse Chebyshev, Butterworth (Fig. 2.4).

Table 2.1 gives a set of formulae for the pole and zero frequencies of these 

approximations. Conventionally, a lowpass prototype function is designed with 

normalised passband edge lrads- 1 and stopband edge 0 ^ 0 =  2-7rfp^/fplo. In 

general, it is not possible to satisfy all the above parameters simultaneously and 

only a subset can be defined. For example, in a Chebyshev function if N, fplo, 

fphi and Ap are specified then fslo, fshi and As are determined uniquely. Table

2.1 adopts the convention that the order, passband ripple and stopband edges will 

be met where possible. Note that the poles and zeros of K(s) lying on the 

imaginary axis are calculated here, the complex natural modes of T(s) can be 

obtained by equally direct formulae or root extraction applied to (2.3).

It can be seen from Table 2.1 that only simple formulae or iterations are 

required to compute the classical functions. Thus the computational expense is 

minimal and the software relatively straightforward.

The four main classes of filter; lowpass, bandpass, bandstop or highpass (Fig. 

2.3); can all be obtained by the application of frequency transformations to the 

lowpass prototype (Table 2.2). Filters obtained by lowpass—bandpass and 

lowpass— bandstop transformations exhibit geometrical symmetry about 1 rads- 1. 

Multi—band filters can also be obtained by frequency transformations [2],
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Type Lowpass p r o t o t y p e  
s t o p b a n d  edge

T r a n s f o r m a t  ion Not es

LOWPASS ^ s  = f s l o / f p h i s = P / Wphi ^ p l o  = ^x f p l o  

^ p h i  = ^ ^ f p h i  

ws l o  = ^Trfgio 

ws h i  = 2 ir f s h i  

2
wo = ^ p l o ^ p h i  

2
u o ^ s l o ^ s h i  

B -  u)ph i  -  wp l o

HIGHPASS u s = f p l o / f s h i s -  wp l o / P

BANDPASS
f s h i  -  f s l o

ws “
f p h i  ~ f p l o

2 2 
p + w0

s — -------------
pB

BANDSTOP
f p h i  -  f p l o

ws =
f s h i  “ f s l o

pB
s — ---------------

2 2 
P + ^0

Note: in the above table, s is used for the lowpass prototype domain, while p is used for the 
actual filter domain (denormalised).

Table 2.2 Symmetrical frequency transformations

fphi f  slo

lowpass

fshi fp lo  f
___  __z -------------- ►

J
/ / / / / /

\
\T

highpass

q fs lo fp lo  fphi fshi f

^ s 3
fp lo fslo  fshi fphi f

bandpass

!
As n!

bandstop

Fig. 2.3 Templates for various filter classes
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2.2.3 Limitations of classical functions

Classical approximation functions are optimal with respect to various 

properties such as roll— off, stopband attenuation or degree of flatness. However 

each devotes all its approximation power to making only one property optimal, 

neglecting the others. In this way, for example an elliptic function will have 

optimal roll— off into the stopband but will have very poor group delay 

characteristics. A Butterworth filter has optimal passband flatness but poor 

roll— off and stopband attenuation. There is a lack of freedom to trade— off 

between these characteristics, to say have sub— optimal degree of flatness in the 

passband in order to improve the roll— off into the stopband.

The symmetrical frequency transforms introduce additional inconvenience and 

lack of design freedom. An inherently asymmetric specification, such as a 

bandpass filter with unequal attenuation in lower and upper stopband, can be met 

by a symmetrically transformed filter. However the filter will have equal numbers 

of zeros in either band and equal attenuation, rather than concentrating the zeros 

where they are most necessary, in the high attenuation band. Similar inefficiencies 

result from the geometrical symmetry of the stopband edges. A sharp roll— off

required in the lower band must be accompanied by and equally sharp roll— off

in the upper band, regardless of the relative transition band widths.

Classical functions have flat or equiripple characteristics over the passband 

and stopband. Although this is satisfactory for ideal filter systems, often some 

external influences create a need for amplitude equalisation and non— flat

attenuation. Examples are prevalent in digital and switched— capacitor filter

systems which, by their sampled— data nature, introduce various systematic 

frequency response distortions such as LDI termination error and sinc(x) effects. 

In general, some degree of amplitude equalisation must be combined with filtering 

operations without increasing the order of the system. The classical approximations 

are therefore quite unsuitable and some generalised approximations are required.

2.3 GENERAL FILTER AMPLITUDE APPROXIMATION

Approximation methods for functions with more arbitrary behaviour including 

amplitude weightings and degree of flatness are now presented. The theoretical 

development is given initially for single polynomials. It will later be shown how 

the methods can be extended to rational functions.
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2.3.1 Curve Fitting Problem

Consider the problem of fitting a polynomial p(x)= anxn-t- aQ in a 

minimax  sense to some prescribed function m(x) on the interval [a,b] such that 

the maximum error max |p(x)—m(x) | is minimised. A variant of this problem is 

of interest for filter designers, Fig. 2.5. Two curves, u(x)=m (x)+  5 and 

Z(x)= m(x)— 5, can be seen as boundary functions and p(x) is sought to fit 

between them. At a series of points, the so— called touch po in ts , p(x) will touch 

u(x) and Z(x) alternately, which implies that p(x) will have the same zero and 

first order derivative values of u(x) or Z(x). In a general sense u(x) and Z(x) can 

be any functions satisfying u(x)> l(x) on [a,b] and the order of tangency at the 

touch points can greater than one. At M points (the touch points) on the upper 

and the lower function, (x^ | a< xtj< xtj+  | <  b}

where i=  1 ,2,3, . . . ,M. The exact locations of {xt|} are unknown but the sequence 

{f t}  is specified (Fig.2.6). For convenience we fix the two end points by

then altogether there are Nc specifications on the values and the derivatives of 

p(x), where

M
Nc = 2 + I  ( j i j+1)  ( 2 . 6 )

i= l

The aim of the curve fitting problem is to find the lowest order 

approximating polynomial which fits the specification (2.4) and (2.5).

2.3.2. Interpolation

The unknown positions of {xtj} provide M degrees of freedom, which can be 

used to reduce the order of the polynomial from the nominal problem order Nc. 

Thus Nc— M of the specifications can be chosen as constraints to form a 

polynomial of order N, where

p ( r ) ( x t i ) = u ( r ) ( x t i ) or / ( r ) ( x t i ) r = 0 , 1 , 2 , .  . . >/M ( 2 - 4 )

p ( a )  = A p(b)  = B Z(a)<A<u(a)

Z(b)<B«u(b)

( 2 . 5 )

N + 1 = Nc -  M ( 2 . 7 )
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The remaining M specifications must be met by adjusting the M positions of the 

touch points.

The relation between the behaviour and the order of a polynomial is a 

complicated issue. To decide the minimum order is a difficult problem and some 

theoretical discussion can be found in [27], however in most cases the order 

determined by (2.7) is satisfactory. A N^1 order polynomial can always be 

interpolated by N + 1 constraints. Oscillatory Newton interpolation  [28] can be 

used to interpolate a number of derivatives with certain computational advantages 

over other interpolation methods [29].

2.3.3 Bilateral Method

Assume that for the specifications,

i) all pi are odd,

ii) the touch points are assigned alternately to u(x) and l(x), i.e. 

(xtj |i=  1 ,3, . . . ,MU} and {xtj |i=  2 , 4 , . are the set of touch points on u(x) and 

l(x) respectively (where Mu=  M and Mj= M— 1 if M is odd and Mu=  M—1 and 

M^= M if M is even).

These assumptions are true for a Chebyshev function where all p\=  1 (osculatory 

points) and are valid for most filter functions. The Weierstrass polynomial 

approximation theorem guarantees that if the filter order is high enough then a 

solution lying between the two boundary functions will exist [27].

Interpolate p(x) such that,

p ( r ) ( x t i ) = u ( r ) ( x t i )

p<r ) ( x t i ) = f ( r ) ( x t i )

r = 0 , 1  m - l  ( 2 . 8 a )

i = 1 , 3 , 5 , . . . ,MU

r = 0 , 1 ,  . . . , /Xi- l  ( 2 . 8 b )

i = 2 , 4 , 6  M,

and p ( a )  = A p(b)  = B ( 2 . 8 c )

Thus exactly Nc— M specifications are met by interpolation. It now remains to 

adjust {xtj} to make {p(/*i)(xtj)} satisfy the other M specifications.

41



Defini tions:

u p p e r  e r r o r  f u n c t i o n  

lo w e r  e r r o r  f u n c t i o n  

m id  f u n c t i o n  

s e a r c h  f u n c t i o n

eu(x) = p(X> - u(X) 
e/(X> = l (x) ~ P(x)
m (x)  = ( I ( x )  + u ( x ) ) / 2  

s ( x )  = max [  e u ( x ) , e [ ( x )  ]

- e u ( x )  i f  p ( x ) > m ( x )
c o m b in e d  e r r o r  f u n c t i o n  e ( x )  =

e [ ( x )  i f  p ( x ) i m ( x )

From assumption i) 1} are restricted to be even, so in general the touch 

points are now points of inflection (Fig.2.3) and s(x) will change sign in the 

neighbourhood of each touch point {xtj}. If the polynomial is manipulated such 

that p(x) does not cross u(x) or Z(x) at these points, then p(x) must possess an

extra order of tangency to u(x) or /(x), having then up to the pjth order

tangency at {xt }̂ required for p(x) to be a solution. At this stage, max[s(x)]= 0

in the neighbourhood of {xtj}. Notice that from assumption ii) there must be at

least one minima of e(x), denoted as xmj, on [xtj_ j ,xt}+ 1 ]. Therefore if

is achieved then p(x) is a solution. Some approximation scheme can be adopted 

to generate an adjustment {Axt }̂

to reduce {e(xmi)}.

2.3.4. Newton's Method

Obviously {Axtj} can be generated by a technique based on Newton's method 

which is found by solving a Jacobian system [28]

xmi _ x t i i-1,2,3,...,M (2.9)

{ x t i } { x t i +Axt i } ( 2 . 1 0 )

Si(xm l ) S2(xml) •• SM(xml) 
Sl(xm2)

2bct i

Axt2

e ( xml) 

e ( xm2)
( 2 . 1 1 )

Sl(xmM> S2(xmM) •• SM(xmM> Ax tM e (xmM)
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where

dp(x)
§ i ( x ) = -------------  ( 2 . 1 2 )

a x t i

The computational cost of setting up the Jacobian matrix J  and solving the 

Newton system is usually large (O(n^)). Efficient methods to obtain the

derivatives gi(xmj) and to solve for the touch point increments {Axtj} are now

presented.

Theorem 1

D ef in e  a N ^  order polynomial q(x) subject to the fo llow ing  N + l  interpolation  

conditions

= e ( x m i)  1 = 1 , 2 , . . . , H  ( 2 . 1 3 a )

q ( r > ( x t i ) - 0  r  -  0 , l , . . . , n r 2  ( 2 . 1 3 b)

i -

and

( x - x t  i ) q ( x )
5 f ( x )  =  ----------------------- i = 1 , 2 , . . . ( 2 . 1 3 c )

Pi e ( x )

then the Newton system (2.11) can be solved f o r  the touch point increments

{ t e a )  by

t e t i  = l im  8 j ( x )  ( 2 . 1 4 )
i

Proof of Theorem 1

Consider the solution of the Newton system for touch point movements A x t j 

by interpolation of q(x). Two remarks are necessary for the proof.

Remark 1:

Suppose u(x) or l(x) (and so e(x)) are d if fe ren t ia b le  up to order at all 

the touch points. Then the function gi(x) fo rm e d  by d if fe ren t ia t in g  the 

interpolated polynomial p(x) with respect to a touch point x ti is i tse lf  an N 1̂
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order polynomial o f  x. It can be calculated by interpolation subject to the 

following constraints

( 2 . 1 5 a )

g \ N  1 } ( * t i )  = e ( f i i } ( x t i )  r  = 0 , 1 , . . . ,  fi} - l  ( 2 . 1 5 b)

Proof:

Equation (2.15a) is evident since the /*j interpolated derivatives of p(xtj) are 

fixed with respect to another touch point xtj, i^j. The proof of (2.15b) follows. 

Suppose that one of the touch points on u(x), xtj, changes to xtj'=  x -̂t- h and the 

abscissa from u(xtj) to u(xtj+ h ). Define the new polynomial interpolated from 

(xt i , xt2»---xti'*---xtM} by Ph(x)- As  the polynomial is interpolated up to /q—1th 

tangency to u(x) at this touch point,

Ph ( r > ( x t i +h) -  u ( r ) ( x t i +h) r -  0 , 1 , 2 ,  . . .  , / t j - l  ( 2 . 1 6 )

Expand Ph(x) at xtj‘ by a Taylor series and evaluate pj1fr)(x) at x= x tj and 

notice (2.16)

Ph( r ) ( x t i >  =
oo Ph( k ) ( x t i +h)
2  --------------------  ( “h ) k

(r )
( 2 . 1 7 )

k=0 k!

= u ( r ) ( x t j+h) -  pj1( r+l )  ( x t j+h)h  + 0 ( h 2 )

for r= 0 ,1 ,2 ,. . . ,^ — 1

8^r ) <x t i )
>£r ) (x)

3x t i x=x t i
1 im 
h-»0

__ ( r ) / v  v „ ( r ) ,  V 
Ph ( x t i ) “P ( x t i )

( 2 . 1 8 )

= 1 im 
h-»0

[ u ( r ) ( x t i + h ) - p h ( r+1) ( x t i +h)h ] -  u ( r ) ( x t i ) + 0 ( h 2 )

( 2 . 1 9 )
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= u ( r +1 ) ( x t i ) -  Ph^r+1^ ( x t j) ( 2 . 2 0 )

Eq. (2.15b) follows by noting that lim p^C1"4-^)(xtj+ h )=  ^)(xtj) as h->0

and the definition of e(x) for r= 0 ,1 ,2 ,.../q — 1. In general, the above proof can 

be applied to all {xtj}, which may be touch points on either u(x) or /(x).

Remark 2:

4
The Newton system can be solved f o r  the touch point increments {Axti }  by

A xt j = ----------------------  =   i = 1 , 2 ,  . . .  ,M

(x.t , )  e ^ l > ( x t I )  ( 2 . 2 1 )

Proof:

A single row of the Jacobian system (2.11) is 

M
“  e <xmj> ( 2 . 2 2 )

and define

M
q ( x )  = J g i (x ) Axt i  ( 2 . 2 3 )

i = l

From Theorem 1 q(x) is also a polynomial and meets the constraints (2.13). 

Substitute x= xtj into (2.23) and

M
q ^ j _ 1 ) ( x t j )  = ( x t j ) A x t i  = g^/ij ) ( x t j ) A x t j

i = l

( 2 . 2 4 )

Eq.(2.21) follows.

From (2.13b) and (2.8a) xt} is a jq—2*  ̂ order zero of q(x) and p-— 1th 

order zero of e(x). They can be expanded by a Taylor expansion at xtj as,
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q ( x )  -  Aq ( x - x t j ) - 1 + 0 [ ( x - x t j ) ^*  ] ( 2 . 2 5 )

e ( x )  -  Ae ( x - x t i / i  +  0 [ ( x - x t j ) , l i + 1 ] ( 2 . 2 6 )

From (2.21), (2.25) and (2.26)

q ( F i - 1 ) ( X ( . )  ( Mi- 1 ) ! A  A
4 x t l -----------------------------3 --------------------------------------------------  ( 2 . 2 7 )

e ^ 1  ̂ ( x t i ) Hi !Ae m  Ae

From (2.25), (2.26) and (2.27) it is easily seen that (2.14) is true.

As both numerator and denominator of (2.13c) tend to zero at xtj, each 

touch point increment Axt| can only be calculated from the limiting values of the 

increment polynomial q(x) and error function e(x) in the proximity of the touch 

point, xtp+- h. The distance h must be chosen suitably according to wordlength

and order of touch point. A suggested rule is /qXK)~~6/N for double precision 

arithmetic.

Involving only repeated interpolation, the computational cost of the whole 

procedure is very small. The O(n^) step of solving the Newton system has been 

reduced to an O(n^) interpolation. Each evaluation of the interpolated polynomial 

costs O(n) multiplications.

2.3.5 Generalised Remez Methods

As has been shown, Axtj can be approximately evaluated by <5j(x) at a point 

close to Xfj. If this point is selected as x= xmj, then a very simple adjustment to 

the touch point positions is revealed, (notice (2.13a)}

( xmi - x t i )  xmi - x t i
^ t i  “  5 i ( x mi )  =    =    ( 2 . 2 8 )

Pi  e ( xmi) Pi

In the special case of the curve fitting problem with all ^ = 1 ,  then (2.28) 

results in the well— known Remez method which updates the variable vector by

( x t i > <- ( x m i ) i = l , 2 ,  . . . , M ( 2 . 2 9 )
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This indicates that the interpolation ordinates are simply exchanged with the 

locations of the extrema and re—interpolated (Fig. 2.6). It may be expected that 

ordinates separated by an excessively large ripple will be brought together and 

those separated by an insufficiently large ripple will be moved apart. When the 

{xtj} are close to the solution, the {xmj} are also close to {x^}, and the 

adjustment given by (2.28) becomes similar to that given by a Newton method. 

This confirms that the Remez method achieves the good convergency of Newton 

iteration on approach to the solution. Convergency of this algorithm is guaranteed

[30] for sufficiently large N and it has been widely adopted in FIR and HR 

digital filter design [31—37]. For the case of pt\ >  1, the simple exchange

process of (2.29) is unsuitable. Instead the adjustment given by (2.28) is 

applicable,

{xt i } <- { x t i  + (xmi -  x t i ) / / ^ }  i = l , 2 , . . . , M  ( 2 . 30)

This can be seen as a generalisation of the Remez method of (2.29) in which 

instead of moving the ordinate all the way to the extremum it is moved by a 

fraction of the distance dependant on the order of the touch point.

2.3 .6  Unilateral Method

In most filter applications, emphasis is given to one of the bounding 

functions. For example, in the passband region of a filter, u(x) is most important 

as it determines the points of maximum transmission. All the high order touch 

points (with ^ > 1 )  could be assigned to u(x) for greatest effect. In a unilateral 

method the Nc—M specifications can be met by directly interpolating p(x) to /ijth 

order tangency at all the touch points on u(x). The lower curve l(x) is used only 

as a bound for the ripple, so that all touch points on Z(x) should be adjusted to 

Z*i= l ,  Fig. 2.7. The difference between p(x) and l(x) is used as the objective 

function. Only half of the touch points are kept as variables compared with the 

bilateral method.
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Fig. 2.7 The unilateral method
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2.4 COMPUTER IMPLEMENTATION

2.4.1 Computer algorithm

The approximation methods proposed in the previous section can be 

implemented on a computer by the following algorithm.

Step  1 : read the boundary functions  u(x) and /(x) as p iece—wise linear  

functions on range [a,b]. Read number o f  touch points and sp e c i f ie d  orders

S tep  2 : distribute  {xtj} u n iform ly  spaced over [a,b] assigning  xtg= a and 

xtn=  b.

Step  3 : in terpolate  {xtj} alternately to boundaries u(x) and  /(x).

Step  4 : set xmQ= a

i —0 , 2 , 4 , . . . , n ; ch o o s e  xmj t o  maximise

( p ( x ) - u ( x ) ,  xmi_1 <x<xt i + 1 ) 

i = l , 3 , 5 , . . . , n-1 ; ch o o s e  xmj t o  maximise

{ / ( x )  -  p ( x ) ,  xmi _1 <x<xt i + 1 )

Step  5 : compute im proved touch point estimates by one o f  the methods in 

Section  2.3. The extended Remez method indicates that ,

xti =  xti +  ((xmi— xti)^ i)

Step  6 : compute convergence estimate f o r  k**1 iteration as

2 e ( xmi ) 
i - 1

ek =  ---------------------------------
n
2 1u ( xmi ) ” ^(xmi ) I 

i = l

Terminate i f  tolerance or ek> e k + l  (divergent)
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2.4.2 Software considerations

a. Interpolation

The interpolation of the polynomial at Step 2 can be done by osculatory 

Newton interpolation. This is an extended form of the well— known Newton

interpolation whereby a number of derivatives can be matched to the specified 

function.

It is particularily important in a filter problem that care is taken with the 

accuracy of construction and representation of the polynomials within finite 

wordlength arithmetic. Cancellation errors can be seen to be particularily severe

as the touch points of a filter function become closely spaced near a band edge. 

A typical calculation would be,

f ( x t 0 ) -  f ( x t i )
f Cx tO>x t l ]  = -----------------------------  ( 2 . 3 1 )

x t 0  “ x t l

where cancellation errors occur in numerator and denominator as xtg 

approaches xtj .

The effects of these cancellation errors can be minimised by calculating 

interpolated values by the z i g - z a g  path  method [29]. The principle is that a 

path is taken through the Newton table such that the coefficents with the largest

errors are multiplied by ordinates with the smallest differences. By using this

accurate interpolation and representation of polynomials high order functions can 

be obtained (up to length 110 FIR designs). This avoids the complications of 

transformed variable methods [26].

b. Searching

At Step 4 a search must be made for the touch point extrema. For 

reliability, the best method is found to be a single linear search over a uniform 

grid of points. Normally only 10—20 points are required per touch point for a 

terminating accuracy better than 1%. The linear search requires a fairly large 

number of function evaluations for higher order approximation. Faster searching is 

available by applying cubic, quadratic or golden section search methods requiring 

only 5 or 6 steps per touch point for very high accuracy (10 &%>). However
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when the attenuation boundaries are specified in piece— wise linear form and not 

by a smooth function with continuous derivatives these search methods can be 

misled and may determine the extrema erroneously. Some combination of the 

reliability of the linear search with the speed of gradient search methods is 

discussed by Antoniou [38—40].

c. Cluster method

In most cases the boundary functions are only given by values and the 

derivatives are not available. Although the derivatives can be calculated by 

numerical differentiation, it is notoriously inaccurate for high orders. The 

polynomial obtained by a Newton interpolation may become totally unreliable in 

the neighbourhood of a high order touch points. A better conditioned method is 

to interpolate the polynomial at a cluster of points with first order tangency to 

the boundary function. A h order touch point with /q odd, requires ( /q + l)/2  

first order touch points distributed in the neighbourhood of xtp In practice it is 

found spacing of 10— 6 (with normalised passband width of 1) can be chosen. 

The error caused by this approximate method can be controlled and made much 

smaller than the allowed ripple (the separation of u(x) and /(x)).

d. Damping

D am ping  is the term used for the process whereby the step sizes determined 

by Newton's method may be reduced to avoid divergence. A form of damping is 

found useful where Newton's method is used to predict adjustments Axq and the 

touch points would cross one another or move entirely outside the approximating 

region [a,b]. In these cases (usually far from solution), it is found useful to limit 

the movement of the touch points to half the distance in the direction of its 

closest neighbour. In this way, no touch point may cross or escape the region 

[a,b] and yet the direction required to reduce the extrema is observed.

e. Convergency. accuracy and storage

Computation costs are O(n^) for passband approximation. Stopband 

approximation requires solution of a matrix system with O(n^) efficiency. 

Convergence is quadratic near solution, a property of algorithms based on 

Newton's method. Divergence occurs only in those cases where the boundary 

functions are too severe for the selected order of the function. The accuracy of 

the algorithm is limited solely by the fineness of the search grid used to
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determine the positions of the extrema. Storage is dominated by the matrix

system and Newton interpolation tables and is of O(n^) size.

2.5 RATIONAL APPROXIMATION

2.5.1 Approximation method for minimum phase rational functions

Filter approximations based on a single polynomial e.g. FIR or all— pole

functions have generally lower selectivity than comparable functions based on a

ratio of two polynomials (rational functions). A study of a typical elliptic 

approximation reveals that zeros from the numerator of the transfer function 

enable much steeper roll— off into the stopband than for a similar order all— pole 

Chebyshev approximation. Thus rational functions are much more efficient to

satisfy filter problems requiring high amplitude selectivity without severe contraints 

on group delay. They are also highly suitable for realisation by active integrated

circuits since feedback of signals is straightforward, yielding recursive filter 

structures.

In this section, a design technique for rational filter transfer functions will be 

considered. The filter amplitude specifications need not be ideal, and can have 

arbitrary weightings in both passband and stopband. The approximating function 

can be designed in a minimax fashion with high order touch points assigned to

certain positions in each band. Classical functions result as special cases from a

general algorithm.

For simplicity, a lowpass filter specification will be considered first. The

filter specification is defined as a piece— wise template of attenuation in dB 

against frequency in Hz. The following parameters must be specified by a 

designer.

fplo, fphi : passband edge frequencies (Hz)

fslo, fshi : stopband edge frequencies (Hz)

NN, ND : numerator and denominator orders

The transfer function to be designed is

N(x)
T ( x ) ----------

D(x)
( 2 . 3 2 )

x= - oj2
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The zeros of T(x) are contained in the numerator polynomial. In a filter 

transfer function they are most effectively assigned to the imaginary axis of the 

s— plane (real x— plane locations) and placed in the stopband region for maximum 

attenuation. By making this restriction the rational polynomial becomes a 

minimum phase function. The denominator polynomial contains the complex pole 

locations which must be positioned in order to control the passband transmission 

characteristics.

The following procedure is used to design a rational filter approximation

S tep  1 : read  ND, NN, fpi0 , fphj, fslo, fshi, touch point orders {/*tsj}, {/itpj} 

and p iece—wise linear descriptions o f  L(oo) and  U(oj).

S tep  2 : in itia lise  {xtpj} in the passband region  [xp^.Xp^j] and {xtsj} in the 

stopband region  [x ^ ^ x ^ ] ,  equ id istan tly spaced. Set N (x )= l.

S tep  3 : solve passband approxim ation  problem  on [xp^Q.Xp ĵ] using  D(x)

such that

u ( x) = N(x) /L(x)

Z(x) = N(x)/U(x)

and com pute in itia l convergence estim ate  ep .

S tep  4 : solve stopband approxim ation  problem  on [x ^ ^ x ^ ]  using  N(x)

such that

u(x)  = |SU(x)/D(x)

I (x)  = |SL(x)/D(x)

and com pute in itia l convergence estim ate  es .

S tep  5 : term inate i f  ep and es <  tolerance or k >  maxiter

Due to the special properties of the numerator and denominator polynomials

two different approaches are appropriate to solve Steps 3 and 4. Note that a 

multiplying factor |3 is introduced in Step 4 so that the stopband attenuation will 

only be met to a constant dB error. In general it is not possible to meet the 

stopband and passband specifications exactly and some error margin must be 

allowed in either passband or stopband or both. In this approach, the passband 

specifications will be met as closely as possible, and the stopband attenuation
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characteristics will have some error above or below the specified attenuation. This 

expression of the filtering problem is practically useful since good control of the 

passband characteristics is usually of greater importance than the stopband. Note 

that if the factor is greater than 1 then the specifications have been exceeded 

and it may be possible to reduce the order of the function or the number of 

zeros. Conversely if /3< 1 then the order must be increased or more zeros should 

be introduced.

Passband Design

Any of the methods of Sections 2.3—4 are suitable for the design of the 

passband function N(x). It is found that the bilateral method has very good global 

convergence. The unilateral method is then useful to ensure that the function 

does not exceed maximum transmission (T (x )> l)  for passive filter realisation. The 

touch points are all fixed to the upper boundary.

Stopband Design

The numerator polynomial is of the following particular form 

n f
N(x) = Kxn°  n (x  -  x t s i / t s i  (2 .3 3 )

i - 1

This corresponds to a special case of the unilateral method where all touch points 

are tangent to the lower boundary which is 0. It remains to compute the 

attenuation margin 0 (Fig. 2.8). Two methods can be applied; the heuristic 

method of [36] permits the approximation methods of Sections 2.3— 4 to be used. 

However a variant of the method of Temes and Smith [26] has been found more 

stable and more easily extended to multi— band approximations. A Jacobian matrix 

of the peak positions with respect to the touch points must be set up and solved.

dT (xmsO)
d xtsP

dT (xmsn>)
a x t s 0

aT( xmsO)
3x t sn

aT(xmsn)
dx ts n

-U (xmsp)

- U(xmsn)

^ t s P

^x t s n

(3

■^(xmsP)

-T(xmSn)

( 2 . 3 4 )
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t s 3

tsO

Fig. 2.8 Scheme for approximation of arbitrary lowpass filter 

by rational function
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and since

3 T ( x )
^ --------  T ( x )3 x t s i  (x  -  x t s I )

Eq. (2.34) can be rearranged and evaluated as

(2 .3 5 )

MO Mn U(xmsO)
AxtsO 1

( x msO- x tsO) ( xmsO- x ts n ) T (xms0)

MO Mn u ( xmsn) A xtsn 1
( xmsn“x t sO) ( xmsn-x t sn) T (xmsn) (3

(2 .3 6 )

The touch points are updated as

x t s i  = x t s i  ^ t s i  (2 .3 7 )

and some damping may be necessary.

Note that the constant K must also be determined. A good method of 

assigning a value to K is to fix the passband edge position between passband and 

stopband iterations.

K = L (xp h i ) /T ( x p h i) (2 .3 8 )

2.5.2 Multi—band cases

Since frequency transformations are only appropriate to the design of 

symmetric filters, the design of general multi— band rational filter approximations 

is no longer a trivial extension of the lowpass case. Special design techniques for 

the four most popular classes of filter are considered; lowpass, bandpass, bandstop 

and highpass and generalisations drawn from these.

Highpass approximations are obtained in the same manner as lowpass, with 

passband and stopband regions transposed.
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Bandpass filters have three bands, one passband and two stopbands. The

numerator polynomial must now be divided into two parts, one containing zeros

assigned to the lower stopband the other containing zeros assigned to the upper 

stopband (Fig. 2.9). The number of constraints in the problem requires that two 

unknown parameters be introduced. These take the form of lower and upper

stopband error margins @1 and 02- The new Newton system is

mo
(xmsO~x tsO)

_MQ_
(xmsr x tsO)

MO
(xmsr+l x tsO)

MO
(xmsn-xt sn)

Mil
(xmsO-xt sn)

Mil
(xmsr x tsn)

Mn
(xmsr+l-x tsn)

Mn_____
(xmsn-x t sn)

u ( xmsQ) o 
T (xmsO)

u (xmsr) o 
T (xms r )

0 u (xmsr+l) 
T(xmsr+1)

u ( xmsn)
T (xmsn)

A x tsO 1

A x t sr 1

A x t sr+1 1

Ax tsn

01 1

^2 1

( 2 . 3 9 )

The constant k can be determined in a similar manner to the lowpass case. The 

allocation of the zeros of N(x) between lower and upper stopband must initially 

be guessed. If the approximation exceeds the specification in one stopband and 

falls below in the other, some re— distribution will be necessary.

Bandstop filters also have three bands, one stopband and two passbands. As 

before, the number of contraints demands two additional degrees of freedom. In 

this case only one of these may be met by introducing a stopband error margin

(3. The other degree of freedom can be chosen to be either the stopband or a

passband edge frequency or a passband error margin. The latter choice requires 

the solution of a system of equations as in the McLellan— Parks algorithm

[31—34], Relaxation of the passband edge can be done by omitting the fixed 

interpolation point at the edge of the upper passband. The algorithm then

proceeds as for the lowpass case.

Each increase in the number of bands of the filter demands a single extra degree 

of freedom. These can be satisfied by relaxing the band edge of each additional 

passband. An alternative method is to allow all passbands and stopbands to have 

ripple errors [39]. Multi—band filters can generally be created by parallel
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Fig. 2.9 Approximation scheme for stopband of asymmetric bandpass filter
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connection of the four popular filter classes. This avoids very high— order single 

filters which have severe noise and accuracy problems in practical intergrated 

circuit realisations.

2.5.3 Computed examples

A series of computed approximation examples is now given to illustrate the 

power and flexibility of the above methods. Fig. 2.10 shows a polynomial (FIR) 

approximation to arbitrarily shaped boundaries. A touch point of fifth order 

tangency is seen at the centre of the function. High order approximations to filter 

bounding functions are computed in Figs. 2.11 and 2.12. FIR approximations up 

to length 110 (N= 55) have been obtained using double precision arithmetic.

A series of rational polynomial (HR) filter approximations is displayed next. 

Fig. 2.13 shows a lowpass filter with arbitrary passband and stopband 

specifications. An 11th order function is fitted touching the passband boundaries 

and meeting the stopband boundary to within some constant dB error. Fig. 2.14 

illustrates the application of high order touch points in passband and stopband. 

This 18th order lowpass filter has a sequence of two 3rd order followed by a 5th 

order touch point incident to upward sloping passband boundaries. By placing a 

9th order touch point at the lower stopband edge a very deep notch is created. 

Figs. 2.15 and 2.16 show arbitrary bandpass approximations with asymmetric 

stopbands. Fig. 2.17 shows an arbitrary bandstop approximation of 18th order.
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2.6 SUMMARY

The chapter began by reviewing the design methods and properties of 

classical filter approximations. It was seen that, despite the convenience with 

which the functions can be derived, they will provide inefficient or inappropriate 

solutions to irregular filter specifications. To overcome this inadequacy, a set of 

approximation methods to fit single polynomials within arbitrarily bounded 

amplitude specifications was proposed. Based originally on Newton's method, the 

Remez algorithm appears as a special case, confirming its quadratic convergency 

property near solution. The formulation of the methods includes a generalisation 

of the maximal flatness concept, known from classical approximations. In this way 

compromises between equiripple and flat band properties can be obtained. The 

computational costs of the methods are assessed. Accuracy loss due to calculation 

within finite wordlength is particularily severe in filter problems. It was combatted 

by careful interpolation and polynomial storage schemes. Finally, since 

minimum— phase rational polynomials can be used to form the transfer functions 

of analogue networks their approximation is specially investigated. Since numerator 

and denominator polynomials have different properties a combination of techniques 

is used to design these in turn. Filters of the four main filter classes, low— pass, 

band— pass, band— stop and highpass can then be constructed with arbitrary 

passband and stopband properties.
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3.1 INTRODUCTION

In the previous section, various methods were proposed to approximate filter 

amplitude specifications ignoring the group delay. However, modern digital 

commmunications and signal processing systems often require filters which satisfy 

simultaneous specifications on amplitude and  group delay. A common practical 

design approach is to separate the two approximation problems by employing an 

all— pass function to equalise the group delay of a minimum phase amplitude 

function. The latter function should first be optimised to reduce the peaking of 

the delay towards the passband edges, either by smoothing the passband amplitude 

function (e.g. Butterworth) or reducing the roll— off into the stopband. The 

general amplitude approximation methods of the previous chapter offer various

ways to trade— off between the amplitude and group delay characteristics. High 

order touch points can be introduced into the passband and notches can be 

placed to tailor the stopband roll—off. Although, the demands on the group delay 

correction can be reduced in these ways, it is still costly to use all— pass

functions. They are known to offer a non— canonic solution to the combined 

amplitude and group delay approximation problem. Greater efficiency can be 

achieved by employing a general non—minimum phase function [1—8]. However, 

these functions cannot be simulated by low— sensitivity SCFs at present. The

argument for all— pass equalisation is strengthened by the recent development of 

low—sensitivity all—pass SC ladder structures [9—10].

This chapter is concerned with efficient computer methods for the 

approximation of all— pass transfer functions to meet arbitrary group delay

specifications. In particular, a method is sought whereby the techniques developed 

to approximate the amplitude of a transfer function can also be applied to the 

group delay of an all— pass function. Unfortunately, when this group delay 

function is interpolated, a system of ill— conditioned non— linear equations arise 

which becomes very difficult to solve with increasing order [11]. Since Newton 

and Remez— type approximation methods depend on an efficient interpolation step 

they are difficult to apply with efficiency or reliability [12]. Alternative methods 

based on optimisation techniques have therefore been studied [13—14],

A new algorithm is proposed which permits direct application of Remez— type 

approximation methods to the problem [15]. By observing the similarity between 

the group delay function and a filter amplitude function, the techniques and 

theorems for amplitude approximation are still valid. A stable, accurate algorithm 

is then developed for arbitrary group delay correction.
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3.2 GROUP DELAY APPROXIMATION BY ALL-PASS FUNCTIONS

3.3.1 Definitions

The all— pass function in the continuous time s— domain is

T ( s )  =
X( - s )  

X( s )

where

( 3 . 1 )

X( s )  = J  d p *  
i=0

( 3 . 2 )

and the phase is given by

(3(u) = - 2 t a n “l

- ^ 0 ) 1  
odd i

^diO)1
even  i

( 3 . 3 )

The group delay is defined as

T ( 0 ) )  2  -

d(3(o))

dw
( 3 . 4 )

3.3.2 Delay approximation problem

The filter am plitude  approximation problem has been most successfully solved 

by stable, accurate Remez—type algorithms [12,16—17]. Two main steps are 

necessary in a Remez algorithm; interpolation and determination of the extrema. 

Unfortunately the group delay function is not amenable to direct interpolation by 

the simple Newton or Lagrange schemes. In fact, a set of nonlinear equations 

must be set up and solved. If the roots of X(s) are s p  apt- jbj and the specified 

group delay is rs(to) then the following nonlinear system is implied,

n /2

2 [
i= l

a .l a .l
2 , . U N 2a . + (co; + b . )l J i

2 2 a . + (co; -  b . ) l J l

-  r o (co;) = 0
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f or  j= 1 , . . . , n+1 ( 3 . 5 )

Solution of this system is a necessarily iterative procedure and becomes difficult 

for moderate values of n [11]. Alternatively, it is possible to interpolate the phase 

function directly through solution of the following Vandermonde— type matrix 

system, set up by solving (3.3) at a series of frequency points.

a>0 t a n ( 0 s ( u o ) ) u o2 C0 03 . 

w, t a n ( 0 s  ( co , ) ) to1 2 t t l 3 .

. t a n ( | 3 s (co0 ) )o)Qn 

. t a n ( ( 3 s (co1 ) ) w 1n

d ,

d 2

- t a n ( / 3 s (oj0 ) ) 

- t a n ( / 3 s (o>1) )

wn  t a n ( / 3 s (cdn ))oon 2 o>n 3 . . t a n ( £ s (can ) )o )n n d n - t a n ( 0 s (can ) )

( 3 . 6 )

with d 0= l  and (3S(co) is the specified phase function.

Gregorian and Temes [11] found that this system is very ill-conditioned and 

proposed an improved interpolation method for both phase and group delay. 

Despite being better conditioned, this method does have certain drawbacks. The 

necessity to specify the phase at certain frequencies as well as the group delay 

means that the form of the group delay function cannot be completely controlled. 

The extrema cannot then be manipulated by a Remez scheme. Additionally, 

polynomials are interpolated in coefficient form which is known to be an 

inaccurate representation in finite computer arithmetic, leading to problems for 

high order or narrow— band filters. So, although the scheme can provide good 

initial parameter values for a Remez iteration, it does not remove the need to 

solve nonlinear equations.

Other schemes involving least pth optimisation or linear programming have 

thus been considered to avoid the problems of the Remez algorithm [13—14], 

These methods involve extensive computation and do not necessarily guarantee the 

stability of the solution.

3.3 ALL-PASS FILTER DESIGN METHOD

3.3.2 Amplitude and group delay relations
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The group delay function can be expressed as

2Re X(s) dX(-s)
ds

r(o)) =
X ( s )X ( - s )

N(o0 

s=jco D(o)) ( 3 . 7 )

Since the denominator of (3.7) is a magnitude squared function it can be 

designed by standard Remez— type methods. The numerator function is an even 

function of s which can be formed by Hurwitz factorisation of the denominator 

polynomial.

3 .3.2 New Remez—type algorithm

Consider now the problem of fitting the delay function to lower and upper 

boundaries L(co) and U(co) in a minimax sense over a frequency interval ojiq to 

<̂ hi (Fig- 3.1). It is required that

N(co)
L(oj) + C <   < U(a)) + C ( 3 .8 )

X(jo>)X(-jo))

Where the unknown constant delay offset C is necessary to ensure that

0̂0
I r(co) do) = n i  ( 3 . 9)

o

The constant C can be added in as necessary without affecting the relative 

delay variation over the approximating region.

The all— pass approximation method may be summarised by the following

steps

S tep  I : read lower and upper delay boundaries as p iece—wise boundaries 

L(oo) and  U(co) and equaliser order n.

S tep  2 : Set numerator function  N(o))= 1 and guess constant

C— nir/(o)fii~ tyo)

75



“Zo
O)

“ hi

Fig. 3.1 Approximation scheme for allpass group delay



Step 3 : A pply  Remez approximation techniques to solve

u(o>) = N(w)/ (L(w)+C)  

I (a>) = N(m)/ (U(u)+C) ( 3 . 1 0 )

over the range co/0 to oifa using D(x).

S tep  4 : Recalculate C as average delay constant between sp e c if ie d  and

approxim ated  t ( gj)  over gj/ 0  to oifa.

S tep  5 : Form numerator fu n ction  by H u rw itz fac torisa tion  o f  D(a>). Let

the roots be Sj =  — aj +  jbj, then the delay fu n ction  is

S tep  6 : Repeat fro m  S tep  2 until converged.

3.3.3 Computer implementation

The factorisation at Step 4 can be made very efficient by utilising root 

positions from the previous factorisation as good initial guesses of roots for the 

present factorisation. Using Muller's quadratic interpolation method this typically 

only requires 2 to 3 iterations per root [18].

Accuracy is preserved in the algorithm by avoiding representation of

polynomials in coefficient form. Instead Newton interpolated form is used at step 

3 and factored form at Step 4. Both forms are well—conditioned on the 

approximation region allowing high order functions and narrow band all— pass 

functions to be designed.

No theoretical proof has been obtained of convergence. However experience 

has shown that convergence is good and that 5 or 6 cycles will generally suffice.

The mechanism of the algorithm is dependent on the similarity between the group

n /2r* a- . a .
L - 5 ---------- '---------- n + 7  ' ( 3 . 1 1 )

i - 1  aT + (a) + b .)  a f  + (a) -  b .)1 1 1 l '

The numerator fu n ction  can be calculated fro m  (3.11) and  (3.12).

N(co) = D(o>) X t ( co) ( 3 . 1 2 )
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delay function r(oo) and the denominator magnitude function D (gj) in (3.2). The 

numerator is observed to be a smooth function over the approximating region 

which warps the delay function of the denominator. Further theoretical 

investigation is being undertaken.

Digital all— pass functions can be obtained by bilinear transformation. The 

delay specifications must be pre— warped by a factor of cos(oiT/2)^.

Group delay equalisation can be performed by combining L(oo) and U(a>) with 

the additive inverse of the group delay function of the amplitude filter. In this 

case, the total group delay of the all— pass and amplitude filter stages will meet 

the desired specifications.

3.3 .4  Computed examples

A series of unusual group delay approximations is presented. Fig. 3.2 shows

the group delay of a 16th order all— pass function fitted within peaked boundaries

U(o>) and L(co). Figs 3.3 and 3.4 show sloping and stepped forms of group delay 

respectively. High order touch points can be introduced into the delay function by 

the approximation methods of Chapter 2. Fig. 3.5 shows a 12th order maximally 

flat group delay response (11th order touch point). Fig. 3.6 shows a 28th order

stepped group delay response with a 5th order touch point at the lower band

edge.
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3.4 SUMMARY

An iterative design procedure which works on the group delay function and 

employs Remez— type approximation has been proposed. Advantages of this 

algorithm are:

1. Good initial guesses of parameters are not required for convergence. As 

with the Remez approximation the interpolation ordinates can be arbitrarily spaced 

on the approximation region (normally equi—distantly).

2. The algorithm is well— conditioned. Accuracy is maintained by representing 

the design polynomials in either Newton or factored form instead of the 

ill— conditioned coefficient form. High orders (>  40) and narrow band design can 

be obtained. High order designs are of some interest for digital filters where a 

very selective linear— phase filter is required and would be too expensive in 

non— recursive form.

3. Stability of the solution is guaranteed at all stages of the algorithm. The 

roots of the denominator of the all— pass function must lie in the left— half plane 

because of the Hurwitz factorisation step.

4. Computational requirements are light. The process only involves the fast 

Remez exchange and a factorisation steps.

5. The convergence of the algorithm is good.

In computer terms, this algorithm can be conveniently combined with 

amplitude approximation software, since it draws on the same numerical methods 

of interpolation and factorisation.
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4.1 INTRODUCTION

Computer methods for the approximation of a transfer function within given 

amplitude and group delay tolerance schemes have been presented in previous 

chapters. However, a transfer function designed in this way will not be 

immediately realiseable in circuit form and it must be decomposed algebraically 

into simple operators describing basic circuit elements [1]. This procedure is 

known as prototype design and forms the basis of circuit implementation in a 

variety of technologies. There are two principal means of decomposition; 

factorisation into second order terms and expansion as a continued fraction, 

representing biquad and ladder circuit topologies respectively. This chapter will 

concern itself with the numerical methods involved in prototype design. Since 

many reliable methods are known for polynomial factorisation, the emphasis will 

be on the accuracy—critical ladder design methods [2]. A unified approximation 

and iterative ladder design algorithm will be presented which avoids the 

ill— conditioned Hurwitz factorisation step [3— 4].

Design of passive ladders purposely for further simulation by active circuits 

will be considered. Passive ladders make good quality prototypes because their

low—sensitivity properties are usually inherited by corresponding active circuits [5]. 

However, the advantages of simulating passive ladders have always been 

compromised by their complicated design procedures and associated implementation 

cost [6 ]. Biquadratic cascade filters are popular because they have a very regular 

structure which grows by a uniform progression with increasing filter order, 

regardless of the type of transfer function. Design techniques for ladder structures 

are strongly dependent on the type of the transfer function and no simple

progression with order is known at present [1,7].

A series of methods is proposed for the design of special passive ladder

prototypes for simulation by active circuits. The simulating active network will be 

of a regular form with a minimum number of components. Canonic simulation in 

terms of the number of operational amplifiers can be guaranteed for all transfer 

function classes with imaginary zeros. Negative element values are employed to 

design special prototypes which unify LDI and bilinear SC ladder filter structures. 

The distortion introduced by approximate LDI filter design can also be removed

[8 -9 ] .
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4.2 PASSIVE LADDER PROTOTYPE DESIGN

4.2.1 Passive ladder synthesis

A brief review of the computational steps involved in the synthesis of a 

doubly—terminated passive ladder network will be given [1], Synthesis begins from 

a rational transfer function in the s— domain

P(s)
T (s )  -  -------  ( 4 .1 )

E(s)

where the standard naming convention is used for E(s) and P(s) as the

numerator and denominator polynomials of the transfer function.

Step  1 : The characteristic function K(s) must be obtained. It is related to 

T(s) by Feldtkeller's equation :

T ( s ) T ( - s )  = 1 + K (s)K(-s )  (4 .2 )

and this introduces an additional polynomial F(s) which must be determined from

F ( s ) F ( - s )  = E ( s ) E ( - s )  -  P ( s ) P ( - s )  (4 .3 )

For classical functions K(s) has purely imaginary roots and can be determined 

analytically. However, for general transfer functions which do not necessarily have 

maximum transmission points a Hurwitz factorisation step is involved.

Step  2 : Construct the intermediate polynomials

Ee v (s )  = Even(E(s))  Fe v (s )  = Even(F(s))  (4 .4 )

Eod( s )  -  Odd(E(s)) Fod(s )  = Odd(F(s))

EPFe v (s )  = Ee v (s )  + Fe v (s )  EPFod(s)  = Eod( s )  + Fod(s)

EMFe v (s )  = Ee v (s )  -  Fe v (s )  EMFod(s )  = Eod(s )  -  Fod(s )

(4 .5 )
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Step  3 : According to the order of P(s) construct short or open circuit 

impedance polynomials. For the case of even P(s) then

z lO<s) = R1
EMFe v ( s )

EPFo d ( s )
z 20<s ) = r 2

EPFe v ( s )

EPFo d (s )

Z1 S (S) = R1
EMFo d ( s )

EPFe v ( s )
Z2S(s) = R2

EMFo d ( s )

EPFe v ( s )  ( 4 .6 )

For the case of odd P(s) then

EMFo d (s )
z 1 0 ( s )  = R1

EPFe v ( s )
z 2 0 ( s ) = r 2

EPFo d ( s )

EPFe v ( s )

z l S ( s > = Ri
EMFe v ( s )

EPFo d ( s )
Z2 s ( s )  = R2

EMFe v ( s )

EMFo d ( s )  ( 4 .7 )

Step  4 : Select highest order impedance polynomial and extract from it a 

series of two port networks by pole removal operations. This is the forward 

synthesis step.

Step  5 : Perform a reverse synthesis using the highest order impedance seen 

from port 2. Determine the terminating resistor value R2  by ratio of 

corresponding elements to the forward synthesis.

Pole Removal Operations

A passive ladder network can be viewed as a cascade connection of 

two—port networks, each realising a loss pole (or a zero of P(s)). The pole 

removal operations at Step 4 of the synthesis procedure involve decomposing an 

impedance polynomial into a succession of these two— port impedances.

Starting from a given driving point resistance Z |(s) can be decomposed as a 

connection of a two— port network to an unknown network impedance of lower 

order Z2 (s). The type of two—port section that may be removed depends on the 

position of the loss poles of the impedance polynomial. In minimum phase 

transfer functions there are three main types of loss pole,
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Pole at zero  : can be realised by a series capacitor or a shunt inductor. For the 

former case (Fig. 4.1)

1

Z l ( s )  + Z2 ( s )  ( 4 .8 )
sC

where C is the value of the capacitor. It can be seen that

lim  Z]_(s) = 1 im —  
s-»0 s-»0 sC

( 4 .9 )

and so C can be determined from

C = 1 ira 
s - » 0 s Z i ( s )

(4 .1 0 )

where the remaining unknown impedance may be calculated from

1

Z2 ( s )  = Z1 ( s ) ------- (4 .1 1 )
sC

Further pole removal steps may proceed from Z 2 (s). Note that for a finite value 

of C to be obtained from (4.10) Zj(s) must have a single pole at s= 0 . Thus 

certain conditions are imposed on the form of Zj(s) for a given pole removal 

operation to be appropriate.

Pole at in f in i ty  : appropriate two— ports are a shunt capacitor or a series 

inductor. For example, the value of a shunt capacitor (Fig. 4.2) may be 

established by examining the behaviour of the reactance function Zj(s) at s-*».

C = 1 im
S-»oo s Z i ( s )

(4 .1 2 )

and the remainder reactance is



C = 1 im 
s-»0 s Z i ( s )

Z2 ( s )  = Z1 ( s )  -------
sC

Z9 (S)

Fig. 4.1 Removal of a pole of impedance at s=0

1 l

C = 1 im 
s-*» s Z i( s )

-  sC
Z2 ( s )  Z ! ( s )

Z i ( s )  Z2 ( s )

Fig. 4.2 Removal of a pole of admittance at s=infinity
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1  1

--------  = -------------------sC
Z 2 ( s )  Z ^ s )

( 4 . 1 3 )

Pole at s =  /ofo : an appropriate two— port section is a shunt capacitor with a 

series resonant LC branch (several others are also possible). This two—port is 

composed of a shunt and series branch. The shunt capacitance branch is removed 

first. Its value can be determined by supposing that the series resonant network 

to follow will produce an open circuit (infinite impedance) at the required pole 

frequency o^. At this frequency the network reduces simply to the single shunt 

capacitor. Thus

C =  1 im
s Z 1 ( s )

( 4 . 1 4 )

and the remainder impedance is

1  1

   ---------------- sC ( 4 . 1 5 )
Z 2 ( s )  Zx ( s )

This operation is called a partial pole removal since the effect of the shunt 

capacitor is to prepare for a full pole removal by the series resonant branch 

(Fig. 4.3). The element values may be obtained from (re—assign Z j(s)= Z 2 (s))

Cn =
( s 2+con 2 ) Z 1 ( s )

:2 = - O V 2

( 4 . 1 6 )

and the final remainder impedance Z2 (s) is

Z2 ( s )  =  Z2 ( s ) ------------  —  ( 4 . 1 7 )
Cn ( s 2+ u n 2 )

There are various other two— port sections which can be removed. For a full 

treatment see [1—4].
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Fig. 4.3 Removal of a pole of impedance at s= jun
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4.2.2 Computational issues in synthesis

The pole removal operations involved in synthesis are numerically ill— conditioned

[2]. They involve many subtractions of nearly equal numbers causing cancellation 

errors. Sources of inaccuracy can be seen to arise from

1. Representation of polynomials in coefficient form e.g.

a 0 s -n  + + a 2 s - ( n_ 2 ) + 4 . an -1 s + an

The loss of accuracy due to this polynomial form may be illustrated by 

means of a simple example: if the factor (s -+- 1 .0 1 0 ) is multiplied by (s +

1 .0 2 0 ) the result is (rounded to four decimal digits),

s 2  + 2 .0 3 0 s  + 1 .0 3 0

If this function is now re— factored the factors are calculated to be (s •+•

1.000) and (s -+- 1.030). Thus information has been lost about the variation of 

the function around the root positions by the coefficient representation.

An improved method is to store the roots of the polynomial directly 

(factored form) and never to multiply out into coefficient form [10]. The

multiplication of polynomials involves simply adding lists of root positions, whereas 

addition must be done by root finding of the combined polynomial. This is not 

inconvenient since a factorisation of a similar kind must be undertaken at Step 2.

2. The poles of the transfer function tend to cluster tightly around the passband 

region of the imaginary axis [11]. The finite precision of numbers on a digital

computer means that there is insufficient resolution for the accurate representation 

of these pole positions. A loss of accuracy in the position of these roots causes a 

distortion of the designed passband response of the filter. The numerical 

conditioning may be improved by increasing the separation of the root positions 

by a bilinear transformation,

1 - s 2
z 2 ------------------------------------------------- (4 .1 8 )

1 + s  2
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All calculations must be done in terms of the transformed variable z, to 

benefit from the improved relative spacing of roots in the z— plane. Methods have 

been presented to perform both filter approximation and ladder synthesis in the z 

variable [11]. However certain complications are also introduced into the software, 

associated with the need to manipulate surds. In addition, the transforms involved 

must vary according to the class of filter making it difficult to write a 

comprehensive program. The technique is particularily successful for the design of 

maximum transmission filters of the classical types.

The quality of the element values can be further improved by synthesising 

from all four ABCD parameters, and taking average values from a forward and 

reverse synthesis [1 2 ].

4.2.3 Iterative design of passive ladder networks

Orchard has proposed a very simple but efficient algorithm to design an 

RLC ladder from a given reflection function p(co) [13]. The structure of the 

ladder is prescribed and only the component values remain to be determined. A 

set of real and imaginary parts, {Re[p(o>tj)], Im[p(<Jutj)]} are used to set up the 

objective function vector, F, for Newton type iteration and component values, 

{yjJ, form a vector of variables Y [14]. The core of Orchard's algorithm is an 

elegant, well conditioned method to compute F and the Jacobian matrix of 

derivatives

Re a P (j^ tk )  
a y i

and Im aP( .fotk) 
ay i

by chain matrix calculations.

4.2.4 Computational issues

Unlike synthesis, an analysis of a ladder network can be done with great 

precision. Orchard's method therefore offers excellent accuracy of final component 

values (comparable to those obtainable from explicit formulae). In addition the 

program required is simple and concise. Execution time is greater than for a 

synthesis approach and the convergence can be unreliable from poor initial 

guesses.
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4.3 COUPLED ITERATIVE DESIGN METHOD

4.3.1 Computer method

In the case of certain classical approximations, where the points of maximum 

or minimum transmission (p(jto) = 0  or p(joj)=l) are known, the explicit calculation 

of p(joj) is not necessary for Orchard's algorithm. However in general, Orchard's 

method requires the formation of p(joo) by Hurwitz factorisation of |p |^  as in 

classical synthesis, which is an ill-conditioned procedure [2]. In the following an 

extension of Orchard's method is described which works with more general forms 

of |p |2  but eliminates any root finding requirement [15].

The value of | p 1 2 and its derivatives at the touch points {xtj} can be 

chosen as the objective function for the Newton's scheme. The derivatives of 

| p | 2  with respect to the element values, (yjJ, are required for the construction 

of the Jacobian matrix and are given by (let xt^= — o \^ )

_a_ ( ^ u l L 2, .  2 { Re(?(Mi) , (4.i9)

f o r  r  =  0 ,  . .  , /aj a n d  i = 1 , 2 , . . . , M

Notice that here ~  (the conjugate of p) and 3p/3yjc are obtained from the 

approximate network with guessed component values, which can be generated by 

Orchard's algorithm and then the remaining part of (4.19) can be calculated by a 

numerical differentiation. Here it is also found efficient to use 'cluster' method 

mentioned earlier in Section 2.4.2. The objective function |p(cotj)|^ and 

derivatives are obtainable from a unilateral passband approximation of Section 

2.3.6. This provides a direct link between approximation and ladder design 

procedures, bypassing the traditional Hurwitz factorisation step.

4.3.2 Computational issues

No additional programming effort or computation cost is incurred by the 

extended algorithm. Both the original and extended Orchard's algorithms have 

good convergency for lowpass functions.

The advantages of both iterative design and classical synthesis methods can 

be usefully combined. A synthesis program, can be used to decide the structure
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of the ladder and can provide initial guesses of component values. An iterative 

algorithm can then be used for accuracy refinement. The synthesis program may 

be much simplified by dropping the use of complicated accuracy preservation 

measures.

Continuation methods [14] are particularly useful in this problem to maintain 

the convergency of Newton iteration. It is important that the values of the 

components obtained are realiseable i.e. positive and not too large or small. 

Continuation methods ensure that if the iteration is started with a set reasonable 

initial values, then it usually terminates with a set of reasonable solution values.

4.3.3 High order ladder design

In the case of very high order design (above 50) where ordinary synthesis

programs would meet severe numerical difficulties a special approach may be 

taken. Observation of standard filter tables [16] reveals that there is some pattern 

of progression in element values of filters having similar ripple specifications for 

different orders. This raises the possibility of predicting the element values for 

higher order ladders from lower order ones. The procedure starts with a relaxed

specification and a low order ladder, (n =  5 ,6 ,7 ,...,)  is produced by any

conventional method. The component values for high order ladders are predicted

by a third order extrapolation technique. Because the structures of even and odd 

order ladders differ topologically, it is better to increment the order by 2  at each 

step to retain the even or odd property. As the orders increase, the specifications 

also approach their prescribed state. Filters up to 100th order have been designed 

in this way without loss of accuracy.

4.4 DESIGN OF LADDER PROTOTYPES FOR SC SIMULATION

4.4.1 Special topologies

Ladder networks which are designed for the purpose of simulation by active 

or switched— capacitor circuits must conform to certain rules to ensure efficient 

implementation. An unsuitable structure of ladder can, depending on the 

simulation method, result in a circuit with an excess number of op— amps, 

switches and capacitors. In this thesis, operational simulation methods are 

employed which choose the node voltages of the ladder as internal variables of 

the SC filter. The efficiency of the simulation is directly dependent on the 

number of nodes in the prototype. Therefore, ladder networks are sought with a
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minimum number of nodes (normally half the order of the transfer function). 

Synthesis operations must be restricted to a set of two— port sections without 

unnecessary internal nodes (Fig. 4.4). Note that the dual two—ports have more

nodes but fewer loops and would be suitable if loop currents were the simulated 

variables.

4.4 .2  Negative element values

Certain sequences of pole removal operations may cause negative element

values to occur in the passive prototype. Their occurence can be predicted from

the Fujisawa conditions [17]. Although negative elements cannot be realised by 

strictly passive RLC circuits, they can be easily simulated by active circuits. In

fact, it will be seen that provided

1

2 c ij  + 2 —  + 2 G j j  >  o
j j Li j  j

then the passive prototype can be simulated by switched— capacitor circuits without 

the need for inverted signals. No ladder derived from a stable, passive transfer 

function has been observed to disobey this rule. It has also been proven [18] that 

the presence of a negative element does not influence the inherent stability or 

sensitivity properties. The ladder synthesis program can be further simplified by 

relaxing the criterion that all element values be positive.

4.4.3 Zeros at ±2fs by bilinear transformation

It can be shown that transfer function zeros at ±2fs (fs is the sampling

frequency) on the real axis of the s— domain can be efficiently realised by 

switched—capacitor ladder filters [18]. There is no need for capacitor loops or 

special feed— in branches which are required for realisation of imaginary axis 

zeros.

Real axis zeros at ±2fs can be introduced by bilinear transformation of a 

transfer function approximated in the z—domain. The transfer function can be 

linearised in terms of cos(o)T) by working with a magnitude squared function;

N(cos(coT))
T(z )T (z"1) --------------------  (4 .20 )

D(cos (coT))
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where the numerator order is NN and the denominator order is ND. The bilinear 

transformation is

2 1 -  z"1
s = —

T 1 + z"1
(4 .2 1 )

and

z + z - 1

cos(o)T) = ( 4 .2 2 )
s= ju

1  +
2fs

cos(a)T) = (4 .2 3 )

1  -

2 fs
S=JO )

If (4.23) is substituted into the magnitude squared function (4.20) and 

N N < N D  then the result is

T ( s ) T ( - s )  =
N (s )N ( - s )

D ( s ) D ( - s )

2
s

1 -
2 f s

L J

(ND-NN)

(4 .2 4 )

Thus (ND— NN) zeros at infinity in the z— domain are transformed to ±2fs 

on the real axis of the s—domain in T(s). Zeros at z=  —1 are transformed to 

infinity.

4.4.4 Realisation of zeros at ±2fs

When the order of numerator and denominator polynomials differs by even 

degree pairs of zeros at +  2 fs and — 2 fs are introduced into the s— domain 

transfer function. The transfer function is now of non— minimum phase type and 

hence does not have a strictly positive RLC prototype realisation. In fact a single 

negative element must be synthesised as part of a parallel tuned circuit (Fig 4.5).
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A simple modification to the classical synthesis program can be made to 

permit these negative tuned circuits to be realised. A sign must be associated with 

the square of the resonant transmission zero frequencies. If the sign is negative a 

negative component value must be synthesised.

4.4.5 Synthesis for exact— LDI type SC ladder filters

The synthesis of prototype ladders for exact simulation by LDI switched— 

capacitor filter structures has received much attention [19—23]. Unfortunately, the 

resistive termination of classical ladder prototypes cannot be simulated properly by 

LDI— type integrators and the approximate simulation introduces a distortion of 

the desired frequency response (Fig. 4.6) [8—9]. Classical synthesis procedures can 

be modified to take this distortion into account, producing a special prototype 

which can be simulated exactly by replacement of LDI— type integrators. However, 

the prototype must be synthesised in terms of LDI— type frequency variables, 

requiring complex, special— purpose synthesis and Hurwitz factorisation software 

rather than re—using existing, well—tested programs [24—25].

A method is now proposed which can produce prototypes for LDI— type SC 

ladder filter structures using mainstream s— domain synthesis methods. The 

expected LDI— type distortion is removed, resulting in SC filters with exact 

frequency response. The approximation and instability problem inherent in the use 

of the LDI transform is avoided. Only the exact bilinear transform is employed.

It has been shown [26] that an approximate realisation of a passive ladder 

by an LDI— type SC filter structure introduces a distortion factor into the 

frequency response of

1

1T' ( jod) | = ---------------  |T(jo>) | (4 .25)
cos (coT/2)

This produces an upward weighting which becomes worse as the 

signal—to—sampling frequency ratio is reduced. If instead a transfer function with 

an inverse weighting is designed

cos(odT/2) |T(jo>) I
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the resulting approximate realisation will have the original intended frequency 

response.

There are two ways of weighting the transfer function,

1. The filter amplitude specifications can be weighted by the factor 

|cos(coT/2)| in the passband. The general approximation methods of the previous 

chapter can be applied to design a pre— distorted transfer function.

2. If the difference between the orders of the numerator and denominator of 

the approximated transfer function is an odd number then an unpaired numerator 

factor (1—s/(2fs)) will occur after bilinear transformation to the s—domain. If this 

term is deleted from the transfer function this is equivalent to scaling by a factor 

cos(wT/2) and introducing an additional zero at infinity. The same effect can be 

obtained by multiplying the transfer function by a factor

1

s

2 f s

However this has the effect of increasing the order of the transfer function by 1.

Synthesis of the prototype proceeds as normal from the s— domain transfer 

function. Simulation of the prototype is done using the bilinear transform. Special

considerations are presented in the next chapter.

4.4.6 Special transfer functions

Transfer functions with finite (non— zero) transmission at high frequency are 

difficult to realise efficiently by integrated ladder filters. A common example of 

this problem occurs in the realisation of even order elliptic functions. Passive

ladder networks must have open or short circuit characteristics (implying full or 

zero transmission) at zero or infinite frequency respectively [27]. Therefore, 

lowpass or bandpass functions with finite (non— zero) stopband transmission at 

these extreme frequencies cannot be synthesised as passive ladders. 'Pure' even 

order elliptic functions and their frequency— transformed versions belong to this

category (Fig. 4.7). To obtain a realiseable function, a finite transmission zero 

must be shifted to infinite frequency [28]. This has the dual penalty of degraded
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filter performance and non— uniform passive ladder structure between odd and 

even order design (Fig. 4.8), reflected also in the simulation by integrated 

circuits. For this reason, such transfer functions are practically undesirable for 

ladder simulation, since they are so close in cost to their related higher odd 

order function.

Another difficulty occurs in the realisation of bandstop or highpass transfer 

functions. Circuits obtained by straightforward operational simulation of bandstop 

or highpass ladder prototypes are found to be unstable [8 ]. Various methods have 

been presented to overcome this problem [29] but these further increase the 

complexity of design procedure.

Filter transfer functions with finite transmission at infinite frequency are 

taken to be of the following form

Where the order of numerator and denominator polynomials are identical. 

The function can be partitioned in the following way

2 2 
A n  ( s  +  coj)

j= l
H ( s )  = (4 .2 6 )

2 2 
As n  ( s  +  co;)

J - l
2coN

H ( s )  = X ( s  + ) (4 .2 7 )
N 2 wi s

Define a new subsiduary transfer function as

H ' ( s )  =  H ( s ) / F ( s ) (4 .2 8 )

where

2coN
F ( s )  == s  + ( 4 .2 9 )

s
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H'(s) now posesses zero transmission at both zero and infinite frequency and 

can be synthesised as a passive prototype of a minimum node form (Fig. 4 .8 b).It 

should be re— scaled to have a maximum transmission at a point in the passband 

to ensure optimal passive sensitivity. A canonical active simulation can now be 

designed with an altered input stage to realise F(s) [30].

4.5 CONCLUSIONS

The difficult problem of the design of passive ladder prototypes for SC 

simulation has been considered. It has been shown that an iterative ladder design 

method can be linked directly to the results of the approximation algorithm and 

can assist classical synthesis methods toward greater accuracy. A combination of 

classical synthesis methods and an iterative approach would seem to offer the best 

compromise in terms of accuracy and low software complexity. Transformed 

variable methods can be avoided greatly simplifying the synthesis part. Good 

initial values are then obtainable which can be further refined by a simple 

iterative algorithm. Very high order ladder networks have been obtained by a 

repeated prediction scheme.

Aside from the numerical problems of passive prototype synthesis, there is 

the technological one of how to design a prototype for efficient simulation by 

active circuits. Negative element values in the prototype can be simulated without 

stability or sensitivity problems. They are then employed to design LDI— type SC 

filter structures without the need for special synthesis software. These filters are 

simpler than corresponding bilinear structures but will usually have some frequency 

response distortion due to approximations inherent in the simulation method. 

However by incorporating the distortion at the approximation stage a unified 

'exact' synthesis approach is obtained. Only the exact bilinear transform is 

employed. A major objection to ladder simulations is that it is difficult to obtain 

regular, canonic filter structures. By restricting the prototypes to a minimum node 

form of prototype regular structures can be guaranteed, without loss of generality. 

Furthermore, by modifying transfer functions with highpass transmission or even 

numerator order a prototype can always be synthesised and simulated by a stable, 

canonic active network.
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5.1 INTRODUCTION

Filter realisation is concerned with producing a realiseable circuit description 

from a given prototype expansion of a filter transfer function. Just as there are a 

number of different ways to expand a given transfer function into a prototype, 

there are many filter networks possible to realise a given prototype [1]. Chapter 5 

concerns itself with computer techniques for filter network design from a 

pre— computed prototype. Due to the diverse nature of the procedures involved, it 

has been difficult in the past for software to handle more than a single filter 

structure, restricting the choice of filter architectures to a user [2—3]. To 

illustrate this point, the most popular stray— insensitive SC filter design methods, 

biquad and leapfrog ladder simulation are first reviewed [4— 5].

A unified approach to circuit description and processing is then presented. 

Matrix methods, which have been so successfully applied in circuit analysis, are 

shown also to be an excellent vehicle for the processing of linear equations

involved in circuit design [6 ]. A variety of design methods, both new and old can 

now be brought together within a single program. Various filter implementations

can also be treated in a uniform manner e.g. switched— capacitor, active— RC and

digital. Scaling for maximum dynamic range and minimum capacitance spread is 

accomplished by performing very simple matrix operations. Large component 

spreads can sometimes make a filter realisation not feasible due to circuit area 

and sensitivity. A set of computer methods are considered to ease this problem.

5.2 SWITCHED-CAPACITOR FILTER DESIGN METHODS

A review of the current procedures involved in realising a filter prototype as 

a switched^ capacitor circuit is now undertaken. Only the most successful, stray 

capacitance insensitive filter structures are examined. There are two main

architectures; cascade biquad and passive ladder simulation filters.

5.2.1 Cascade biquad design

A brief summary of the design steps involved in the design of a general 

parasitic— insensitive biquadratic filter section is given [7— 10].

Step 1 : Select a single second order rational term from the factorised

transfer function in the z— domain. It will have the following general form;
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y  + ez  1 + S z “ 2
H ( z )  = ------------------------------- ( 5 . 1 )

1 + a z " ^  + |3z- 2

Step  2 : By nodal analysis of the general second order SC filter section in 

Fig. 5.1 the following transfer function is obtained;

DI + (AG -  DI -  D J)z - 1  + (DJ -  AH)z“ 2

T (z )   ------------------------------------------------------------------------------------------- -
D(F + B) + (AC + AE -  DF -  2DB)z" 1  + (DB -  AE)z" 2

( 5 .2 )

Step  3 : Compare coefficients of (5.1) and (5.2) to obtain the following set 

of overdetermined, nonlinear equations

7  = DI

e = AG -  DI -  DJ

6  = DJ -  AH

1 = D(F + B) 

a  = AC + AE -  DF -  2DB

(3 = DB -  AE (5 . 3 a - f )

Step  4 : Set A = B = D = 1  to yield the simplified equations

7  = I

e = G -  I -  J

5 = J -  H

F = 0

a  -  C + E -  2
(3 = 1 + E (5 . 4 a - f )

S tep  5 : Assign the values of the feedback capacitors to position the poles 

of T(z)

E = 1 -  (3

C -  1 + (S +  a

F = 0 ( 5 . 5 a -c )
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Fig. 5.1 General parasitic-insensitive biquad
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and assign the values of the feedforward capacitors to position the zeros of T(z)

I = 7

J = 5 + x

G = 7 + 5 + e  + x 

H = x  ̂ 0 ( 5 . 6 a -d )

Step  6 : According to the type of zero being realised, attempt to cancel

one or more of the feedforward capacitors e.g. often H= 0.

Note that the above circuit automatically dispenses with the need for the F 

capacitor, using instead the E capacitor (Fig. 5.2a). It is therefore named the 

E— type biquad. An F— type biquad is also possible when E= 0, and uses  ̂ the F 

capacitor as feedback (Fig. 5.2b). The design equations at steps 4 and 5 are then

y / P  = i
e/(3 = G -  I -  J

5/(3 =  J -  H

1/(3 = F + 1

a//3 = C -  F -  2

E = 0 ( 5 . 7 a - f )

leading to feedback capacitors

F = (1 -  (3)/(3 

C = (1 + a  + |3 )/0  

E = 0 ( 5 . 8 a -c )

and feedforward capacitors

I -  7 /(3  

J -  ( 8  + x)/(3  

G = ( 7  + 5 + e + x )/|3  

H = x/(3 > 0 ( 5 . 9a -d )

The biquad section must be arranged in a cascade and scaled for optimum 

capacitance spread and dynamic range.
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Fig. 5.2a E-type biquad

D =T=

V

Fig. 5.2b F-type biquad
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5.2.2 Passive ladder simulation

LDI leap— frog simulation

The design of a SC circuit to simulate the operation of a passive ladder 

prototype will now be illustrated [11—12]. Consider the 5th order all—pole 

doubly—terminated LC low—pass filter shown in Fig. 5.3a.

Step 1 : Write a complete set of integral voltage/current relations for the 

ladder as follows

VX = ( 1 / s C x ) ( J i n  -  GxVx -  I 2 )

I 2 = ( 1 / s L2 ) ( V x -  V3 )

V3 = ( l / s C 3 ) ( I 2 -  I4 )

I 4  = ( 1 / sL4 )(V 3  -  V5 )

V5 = ( l / s C 5 ) ( I 4 -  C2V5 ) ( 5 . lOa-e )

Step  2 : Draw a signal flow graph to represent these relations (Fig. 5.3b)

and invert the signs of alternate variables.

Step 3 : Realise the integration branches by alternately phased inverting and

non—inverting LDI integrators (Fig. 5.3c). The capacitor ratios can be obtained 

by comparing the integrator coefficients and denormalising to the cut— off 

frequency in radians (the LHS capacitors refer to the SC network of Fig.

5.3c).

C 1  c 2 0  C 2 1  To)c

C2 C2 C2 Cx

c4 Cg Ttoc

c6 c6 l 2

117



J

Fig. 5.3a 5th order all-pole lowpass prototype
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Fig. 5.3b Signal flow graph
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Fig. 5.3c LDI leapfrog simulation
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c 5 Cg To)c

C10  C10  C3

c 12  c 16 Twc

c 1 4  c 1 4  l 4

C i 3 C19  Twc

c 18  c 18 c 5 ( 5 . l l a - e )

Note that the terminating loop in the signal flow graph is not realised exactly by 

the SC circuitry, giving rise to the so— called LDI termination error distortion of 

the frequency response [4,13]. Thus the SC filter is only an approximate 

simulation of the prototype.

The ladder prototype may have a different structure, such as where an LC 

series tank circuit is used to realise a finite transmission zero. In this case the 

design process is more complicated. The prototype of Fig. 5.4a is transformed 

into an equivalent form with voltage—controlled voltage sources in Fig. 5.4b. 

Equations (5.10a), (5.10c) and (5.10e) are now rewritten as

Vi  = ( l / s C i 2 ) ( J i n  -  C2V1 -  I 2 ) + , K l 3 v 3 ( 5 . 1 2 a )

V3 = ( 1 / s C 2 3 4 ) ( 12 “ l O  +  k 3 1 v 1 +  k 5 3 v 5 ( 5 . 1 2 b )

V5 -  ( I / S C 3 4 X I 4  -  G2V5 ) +  K3 5 V3 ‘ ( 5 . 1 2 c )

defining

c 12  =  C1 +  c 2 

c 2 3 4  “  c 2 +  c 3 + c 4  

C45 -  C4  +  C5

K13 = c 2 / c 12 
K31 -  C2/ C 234

K53 = C 4 /C 234

K35  = C4 / C 34  ( 5 . 1 3 a - g )
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Fig. 5.4a 5th order elliptic lowpass prototype

234 45

J
W  53 5

Q ) k ,3v,

in

35 3
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Apart from the integration terms, there are now multiplications and additions 

to be performed. Pairs of capacitive feed— through branches linking voltages V | to 

V3  and V3  to V5  can be used to realise these terms (Fig. 5.4c). The integrator 

time constants are changed accordingly. Note that the realisation of a finite

transmission zero, generally requires a pair of cross— coupled integrators in SC 

implementation (Fig. 5.4d).

The above method yields only an approximate simulation of the ladder

prototype. Direct realisation of the continuous— time integrations by backward

Euler sampled— data integrators introduces two distortions of the filter response.

The first is a straightforward warping of the frequency scale which can be easily 

taken into account in the design process. The second is an error introduced by

improper realisation of the recursive integral relationships of (5.10a) and (5.10b)

representing the resistive terminations of the prototype. This so— called LDI 

termination error can be removed by synthesising a special ladder prototype 

[14—18]. In this case, the ladder involves only the LDI variables y =  sin(coT/2) and 

fi= cos(coT/2). Direct replacement by LDI integrators which automatically realise 

7  and /* transfer functions at the termination yields an exact simulation. The

design procedure is essentially the same, although the ladder synthesis is

complicated.

Bilinear leapfrog simulation

The bilinear transform may also be used to yield an exact simulation of a 

passive prototype. Lee and Chang [19—20] found that a ladder, bilinearly 

transformed from the continuous—time domain, could be exactly simulated by the 

LDI design process above. Their process requires that each inductor in the 

prototype be compensated by adding a negative valued capacitor of appropriate 

value in parallel. The resulting LDI filter realises the exact bilinearly transformed 

transfer function. A special stray— capacitance insensitive input stage is necessary 

[21].

Coupled— biquad simulation

The internal operation of the ladder prototype was simulated in the leapfrog 

method by a series of current- voltage integral relations. Another technique is to 

simulate a set of voltage-voltage relations [22]. In this case the method is only 

suitable for even order prototypes such as the sixth order bandpass ladder of Fig. 

5.5a. The following set of equations describe the voltage coupling relationships

122



C2 / C ]2 C4/ C 234

234

out

234

J In O-

Fig. 5.4c Signal flow graph

1612

out

1 0 1 8

21 T
1 9

1 4 T

13

'20

Fig. 5.4d LDI leapfrog simulation

123



/YVW

Fig. 5.5a 6th order bandpass prototype

Fig. 5.5b Interconnection of biquadratic blocks



V1 =  T i l J i n  + T 3 1 V3

v 3 = t13v 1 + t 53v 5

v 5 = t 35v 3 ( 5 . 1 4 a - c )

where the transfer functions are defined as

T i l  =
Vl

in v3=o
t 31 =

Vl

v3 J i n- 0

T l3 =
V3

Vl v5=o

v3
t 5 3 -------

v5 v3=o

T 35
Vc

v3
( 5 . 1 5 )

The transfer functions can be calculated as second order rational terms of 

the form e.g.

or

T i l  =
c l + c 2

+ s-
R i ( C i + c 2 ) l 2 ( c 1+ c 2 )

s  +

T31 =
c 2 l 2 c 2

c l + c 2

+ s-
Rl ( c l + c 2)  L2 (C i +C2 )

( 5 . 1 6 )

( 5 . 1 7 )

Each second order term can be bilinearly transformed and realised by a biquad 

section. The interconnection of the biquads is done according to the signal flow 

graph of Fig. 5.5b. resulting in the circuit structure of Fig. 5.5c.
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Fig. 5.5c Coupled-biquad simulation
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5.2.3 Overview

The design methods above are now examined for suitability for computer 

implementation. Biquad and ladder simulation methods differ greatly and do not 

seem amenable to a unified treatment. The latter suffer from a lack of

consistency whrn simulating different ladder topologies. The formulation of the set 

of voltage— current relations must be changed according to the position and type 

of elements in the ladder. In addition, there is no simple progression in ladder 

structure with increasing order of transfer function. Certain types of transfer 

function cannot at present be simulated at all by ladder structures due to

instability problems or unrealisability of the passive prototype. Biquadratic filters

however have no such constraints and have achieved popularity because of their 

flexibility and ease of design. Increases in filter order simply require additional

biquad stages to be added to the cascade. Any non— minimum phase transfer 

function can be simulated by the general biquad section. These factors have 

contributed greatly to the popularity of biquad implementations over ladders.

A lack of unity exists for different ladder simulation strategies. Ladder design 

is inherently more complicated than biquad design due to the multi— feedback 

nature of the ladder structure. Different simulations appear to involve entirely 

different processing steps to set up their characteristic equations. Special design 

techniques are required depending on whether the bilinear, approximate LDI or 

exact LDI transformation methods are employed. Dynamic range scaling will 

generally require a full network frequency analysis for both filter structures, 

costing a great deal of computation.

5.3 SYSTEMATIC DESIGN METHODS

5.3.1 A general matrix form

A matrix description is introduced, suitable for the description and processign 

of both biquad and ladder filter structures. A m ulti- input m ulti- output filter 

network can be described by the equation,

MX = J  ( 5 . 1 8 )

where M is the system matrix

X is a vector of internal filter variables 

J is a vector of input variables
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It is convenient to regard M as composed of submatrices, defining coupling 

relationships between sets of internal variables within X.

Mil ] • 
1

c 
1 

z: 
I *1 Jl

Mnl [ • • • j Mnn Jn

where Xj is the i* * 1 vector of internal filter variables,

Mij is the submatrix relating variables Xj to Xj,

Jj is the input vector to the i1-*1 variable set

Furthermore each sub— matrix can be expressed as;

m

Mi j  -  I SkM ijk ( 5 . 2 0 )
k - 1  J

where Mjjk is a matrix of same dimension as M jj, defining connection of the k^ 1 

building block,

©k is the transfer function of the k ^  realiseable block, 

m is the number of distinct types of block used in the system

The input vector is defined similarily,

m

J i = I  e ^ i k  ( 5 . 2 1 )
k- 1

where Jjk is a vector of same dimension as J}, defining connection of the kth

input block,

©k is the transfer function of the k**1 realiseable block, 

m is the number of distinct types of block used in the system

A n on - zero entry mpq of matrix Mjjk represents the connection of a block

with transfer function ©k between the pth variable of set Xj to the qth variable
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of set Xj. The block has parameter value mpq. A zero entry marks the absence 

of such a connection.

A non— zero entry jp of vector represents the connection of an input

block with transfer function 6  ̂ to the p ^  variable of set Xp A zero entry marks

the absence of such a connection. In fact, this matrix form describes a general 

signal flow graph in terms of a set of constituent building blocks.

5.3.2 Matrix description for SC filters

The type of stray— insensitive SC filters which are considered here can be 

constructed from the first order branch shown in Fig. 5.6. The building blocks 

that are used are the inverting and non— inverting integrator and capacitive 

feed— through gain element. They have special transfer functions which are 

denoted as

z “ l  - 1
^  = ------------  $  =----------------  ( 5 . 2 2 )

1 -  z “ l  1 -  z - l

Two blocks are used solely as filter input stages, one for bilinear ladders and the 

other for LDI ladders and biquads.

Although we shall deal mainly with SC circuits, the matrix methods can 

easily be extended to active RC circuits, by the identification of $  =  — $ =  1/s. 

The basic building blocks in active— RC are damped and lossless integrators. The 

design of digital circuits using matrix descriptions has been discussed elsewhere 

[23].

5.3.3 Bilinear ladder design

A ladder network can described by a matrix nodal equation [24],

1
( s C  + —r  +  G)V = J  ( 5 . 2 3 )

s

where C, T and G are nodal matrices formed by contributions of capacitors, 

inductors and resistors in the prototype. V is a vector of node voltages and J is 

a vector of input currents.

129



Feedthrough

LDI

Inverting
LDI

Bilinear
input

LUD
input

oCC

yttC

P . 9

1+z' j j  -  p (1+z ! ) j k
1 -z '

Fig. 5.6 Stray-insensitive SC first order building blocks
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Li [25] describes how this equation can be bilinearly transformed and decomposed 

into realisable form. This is done by introducing a set of intermediate variables, 

and partitioning the system into two linear equations in terms of the simple 

realiseable building blocks. Decomposition of the right and left hand sides of the 

original system yields two families of circuits. The type of decomposition can be 

varied to yield structures with different op— amp coupling. The derivations are not 

of concern here, merely the computational procedure. An admittance matrix 

composed of entries of all the elements in the ladder must be set up,

A =  C +  T +  G ( 5 . 2 4 )

LUD ladder design

LUD ladder simulations result from a left-hand  decomposition of A by LU 

factorisation [25—26].

A =  LU ( 5 . 2 5 )

The matrix system is

44>r +  2G 

U

* 1

* 2

( l + z ) J
0

0

( 5 . 2 6 )

T y p e — E  cou p led  biquad design

Coupled- biquad designs can also be expressed in matrix form. They result from 

the direct decomposition of A =A I or A= LA. These give rise to two dual forms 

using E— type biquads,

A j 44>r +  2 G *1
( l + z ) J

0

$1  j I * 2 0

I j 44>r + 2G *1
( l + z ) J

0

tf l  j A * 2 0

( 5 . 2 7 )

( 5 . 2 8 )
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Leapfrog design

Leapfrog simulation results from a right hand decomposition of T by LU 

decomposition.

= LU ( 5 . 2 9 )

* 1

* 2

( 5 . 3 0 )

F— type coupled biauad design

Coupled biquad simulation by type— F biquad blocks results from direct 

factorisation of T as

r  = i r ( 5 . 3 1 )

* i  ; A + 2
* 1 i

N"9
1

-O' O
 

1 
1 

&v-' 
1

1 ! * 2
0

( 5 . 3 2 )

4 * r  | A + 2¥G 

i !

* i

* 2
0

( 5 . 3 3 )

These four design methods are used to simulate the prototype of Fig. 5.5a 

yielding the circuits in Fig. 5.7. The procedure for the design of a ladder 

simulation in this matrix form are as follows,

Step 1: Form the C, T and G nodal matrices o f  the prototype by adding  

an appropriate  stamp f o r  each component in the ladder [24].

Step  2: Form the A  matrix.

Step  3: Perform  a factorisation o f  either A or T, depending on whether a 

l e f t  or right simulation is desired. There are then two possibilities; LU  

factorisation  or straightforward separation using the identity  matrix.
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Fig. 5.7 Alternative realisations of 6th order bandpass filter
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Fig. 5.7b Left-direct design (type-E coupled-biquad)
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Step 4: Enter the relevant matrices into the general matrix fo rm .

Any form of ladder prototype filter can be simulated by the above procedure 

regardless of its internal structure.

5.3.4 Ladders with finite transmission at high frequency

Design and simulation of prototypes with finite (non— zero) transmission at 

high frequency presents various special problems. Straightforward bilinear 

simulation of highpass or bandstop prototypes will result in unstable circuits [4], 

Lowpass or bandpass transfer functions with finite transmission at high frequency 

(e.g. pure even order elliptic functions) must first be modified before they can be 

realised. Simulation of the resulting ladder (which possesses an extra node) will 

yield an inefficient circuit unless a special technique is applied [25], These 

drawbacks have been a contributory factor in hindering the application of ladder 

simulation circuits.

However by the methods of Sections 4.4.3 and 4.4.5 a minimum node 

prototype can be synthesised for such transfer functions. The input term F(s) 

remains to be realised by adjusting the input branches of the filter. There is now 

an input to each of the two variable sets. The filter system matrices of Section

5.3.3 become

LUD ladder simulation

LUD ladder simulations result from a left— hand decomposition of A by UL 

factorisation.

A = UL ( 5 . 3 4 )

The matrix system is

u 4 $ r  + 2G *1
40)^2 $>J 

0

*1 L *2 0
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Type—E coupled biquad design

4 $ r  +  2G *L

x2

>j
0

( 5 . 3 6 )

Leapfrog design

Leapfrog simulation results from a right hand decomposition of T by UL 

decomposition.

4 f  = UL ( 5 . 3 7 )

4>U A + 2tfG

*L

X2

* 1

( 0 ) ^ + 1 )  J  
0

4o)^J
0

( 5 . 3 8 )

F— type coupled biauad design

Coupled biquad simulation by type— F blocks results from direct factorisation

of r.

r  = ir ( 5 . 3 9 )

A + 2*G

* 4 r

* 2

( c d j ^ + l )  J  
0

4ooj^ J  
0

( 5 . 4 0 )

The prototype of Fig 5.5a can also realise the pure sixth order elliptic 

function of Fig. 4.5 by the methods of Sections 4.4.6 and 4.4.1. Four circuits 

can then be designed to simulate this prototype (Fig. 5.8). These structures, 

together with those of Section 5.3.3 are sufficient to realise all transfer functions 

with purely imaginary axis zeros with canonical numbers of op -am ps. Notice the 

similarities with E and F biquads in Fig 5.2, to which these circuits reduce for 

second order transfer functions.
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Fig. 5.8a Canonic left-LUD design

Fig. 5.8 Alternative realisations of pure 6th order lowpass elliptic filter
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Fig. 5.8b Canonic left-direct design (type-E coupled-biquad)
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Fig. 5.8c Canonic right-LUD design (leapfrog)
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Fig. 5.8d Canonic right-direct design (type-F coupled-biquad)
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Alternative methods to realise highpass or bandstop transfer functions also 

exist and can be expressed in the matrix form. Ladder simulations based on 

Twintor circuits for bandstop filter realisation have been derived by matrix 

methods [26]. Highpass filters can be designed by the modulation method of 

Montecchi [27] can also be easily written in this way.

All— pass ladders have recently been described in SC implementation 

[25,29—30]. Once again the derivation of these circuits has been achieved by 

matrix methods and can quite simply be described in the general matrix system. 

A special singly— terminated prototype must be synthesised from the all— pass 

transfer function. Negative element values are used to cancel excess components

in the SC simulation. The leapfrog, LUD and coupled— biquad systems can be set

up in a similar manner as above.

5.3.5 Bilinear/LDI ladder design

The ladder prototype realised directly by LDI integrators often results in a

simplified SC circuit. Cross— over capacitors are not required to realise bilinear

zeros and the bilinear input stage can be reduced in complexity, dispensing with

a sample—and—hold circuit [31]. LDI ladders can be designed by simulating a

special LDI— transformed prototype, entailing a complicated exact synthesis 

procedure or by an approximate procedure with a distorted transfer function.

An alternative method which yields identical circuit structures using the 

bilinear transform is now proposed. Bilinear zeros are introduced by transforming

zeros at infinity in an s— domain function. However, transformation of zeros at

infinity in a z— domain function has been shown to yield s— domain zeros at ±2 fs 

on the real axis. These can be realised by using negative elements in shunt LC 

tank sections (Fig 5.9a). The element values are given by the formula

L { C { = - 4 f s 2 ( 5 . 4 1 )

when the A matrix is formed these elements cause cancellation of off-diagonal 

elements which remove cross- over capacitors from the SC circuit. A single 

off-diagonal element in the A matrix is formed by the calculation

2 T
a  _ q  + ------- ( 5 . 4 2 )

T 2 L |
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Fig. 5.9a 3rd order passive prototype with zeros at + /-2 fs

12 T

Fig. 5.9b Simulation of 3rd order prototype showing cancellation 
of feedthrough capacitors



and when (5.41) is true then ajj becomes zero. An example of this cancellation 

is given in Fig. 5.9b.

The replacement of the bilinear input stage by an LDI input results in a 

failure to realise a single bilinear zero at half the sampling frequency [6 ]. This is 

equivalent to an upward warping function on the exact filter response of

W(co) = 1 /c o s  (coT) (5 .4 3 )

The pre— distortion scheme of Section 4.4.5 can be used to cancel this effect.

5 .3 .6  Biquad design

Biquad circuits may also be described in matrix form. Consider the signal 

flow graph of Fig. 5.10 in which the branch relations of single biquad section 

have been expressed in terms of the SC building block functions. This signal flow 

graph can be entered as a stamp into a matrix description. A single variable set 

* 1  is chosen as successive output voltages in the cascade of biquads. Let the 

system be formed as

Ml l x l  = J 1 ( 5 . 4 4 )

where X j=  (V j,V 2 >V3 ,...V n)T and

M u  = ^ 1 1 1  + 3 ^ 1 1 2  " ^113 ( 5 . 4 5 )

An input voltage Vj from a previous stage enters a biquad with outputs Vj+  j 

and Vj+ 2 - The three submatrices in the system, can be formed from additions of 

contributions of successive biquad sections. The stamp for M m  (inverting 

switched— capacitors) is

Vi Vi+2 
r v i+ i  

1 1 1

Vi
1 1 I

-  -  0 0 0 -

Vi+ 1 - - H 0 0 -

Vj+2 -  -  J A 0 -  
1 1 1 
1 1 1
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Fig. 5.10 Signal flow graph of general parasitic-insensitive biquad

146



The stamp for M j-^ (non—inverting switched—capacitors) is

Vi vi+2 
V i + 1  

I I I 
I I I

-  -  0 X 0 -  -

-  -  G 0 C - -

-  -  I 0 F -  -

The stamp for feedthrough capacitors Ml 1 3

Vi v i + 2

v i + 1  

1 1 1

v i
1 1 1

-  -  X 0 0 -  -

V i+ 1 -  -  0 D 0  -  -

Vi + 2
-  -  0 0 B -  -  

1 1 1 

1 1 1

The capacitance values must be calculated by the formulae of Section 5.2.3. Note 

that the matrices are pentadiagonal. The system can also be expressed in a 

tridiagonal form: write the system in terms of two variable vectors Xj and X2, 

representing output voltages of inverting and non— inverting SC integrators in the 

cascade. The entries in the sub— matrices now lie directly above or below the 

main diagonal since a given output is at most connected to the next or previous 

output.

5.3.7 Analysis and scaling

The general matrix system is in a very convenient form for network analysis 

and scaling. The switched- capacitor circuit can be easily analysed by the 

following steps

Step  1 : Evaluation o f  the block transfer functions  {%} at frequency  to.

Step 2 : Calculate the submatrices by multiplying by corresponding

transfer  function  0 .̂

Vi

v i+ l

V i+ 2
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Step 3 : Calculate the input vector J similarily. 

Step 4 : Assemble submatrices into  M and J. 

Step  5 : By Gauss elimination solve the system

MX = J ( 5 . 4 6 )

f o r  the internal voltage levels {xj}.

To reduce the amount of computation, the known sparse structure of the

component submatrices can be used to advantage. System solution can usually be 

done with linear efficiency.

A frequency sweep analysis of the filter passband is performed during

dynamic range scaling, to determine the maximum signal levels of the internal 

voltages. To avoid amplifier saturation and to optimise the signal—to—noise ratio 

the voltage levels must be scaled to a single maximum level. Scaling can be done 

by multiplying column j of M by the maximum value of the variable xj for all

variables in X. This is equivalent to creating a new variable xj/xj, where xj is

the maximum value attained by xj. Clearly the maximum value that the new 

variable can attain is unity. This is performed for all variables. The following 

matrix operation can be employed,

M -  MS ( 5 . 4 7 )

where

x> 0 0  . . 0

0 x 2 0  . . 0

0 0 % • . 0

0 0 0  . . X

( 5 . 4 8 )

Scaling for minimum capacitance spread is done to normalise all capacitors 

to a basic unit capacitor. The minimum n on- zero entry rhj in the ith row of the 

M matrix must be determined, and then all the entries in the ith row of M are 

divided by irq. This operation does not change the poles of the system. It merely
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scales each linear relationship at a given operational amplifier to some elementary 

unit capacitance value. This is equivalent to the following matrix operation.

M -  SM

where

( 5 . 4 9 )

S =

-  0  0  

mi 

0 - 0  
m2

0  0  -  
m3

0 0 0

( 5 . 5 0 )

5.3.8 Network realisation from matrix form

The matrix system can be seen to represent a signal flow graph of the filter 

by the following rules

To illustrate the principle consider a single row equation,

a 2 2 x 2 =  “ ( a 2 1 x l  + a 2 3 x 3)  + ^ ( b 2 i y i  +  e 2 1 x l )  + $ ( c 2 i y i + f 2 1 x l )  +

+ ^ (b 2 2 y 2  + d 2 i y i ) +
( 5 . 5 1 )

The terms appearing in this equation can be represented by the signal flow graph 

(SFG) of Fig. 5.11 which can be implemented with branches of the SC circuit in 

Fig. 5.6. The following principles for construction of the SFG from a matrix 

equation are applied:

For the i —th row o f  (5.51) the variable is selected as the nodal variable

in the SFG. The i —th row equation is just the linear relationship at this node.

149



Delay - free
oop-ax

-a.23

'22

Fig. 5.11 Elementary signal flow graph of single row equation
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The following rules are used for the SC replacement of the SFG:

Each variable in X  represents the voltage o f  an opam p output node and

each feedthrough diagonal entry o f  M is realised by a damping capacitor. Every  

other non—zero entry in a matrix represents the connection o f  a circuit element 

between opamps.

The one— to— one correspondence between the circuit elements and the

matrix entries indicates that the efficiency of the SC implementation in terms of 

numbers of capacitors is related to the sparsity of the system matrices.

These rules can be used to form a netlist of the SC filter.

Step I : Create a series o f  operational am plif iers  f o r  each o f  the variables 

within  X. The output o f  each o p —amp simulates the variable in X and the input 

is a summing junction.

Step  2 : Consider entry  nipq in submatrix I f  nipq is non—zero then

create a block o f  type  9^ connected fro m  the output o f  the o p —amp simulating  

the qth variable in set Xj to the input o f  the o p —amp simulating the p ^

variable in set Xj. The block has parameter value nipq. No connection is present

i f  nipq is zero.

S tep  3 : Repeat Step 2 fo r  all entries in all submatrices in M.

Step 4 : Consider entry jp in subvector Jjj{. I f  jp is non—zero then create

an input block o f  type between the input source and the input o f  the

o p —amp simulating the p 1̂1 variable in set Xj.

Step 5 : Repeat Step 3 fo r  all entries in all subvectors in J.

The network realised by the above scheme will normally be inefficient in terms

of hardware, since the block description of the network prevents sharing of 

components. A further processing stage can be undertaken to remove redundant 

components.

5.3.9 Computational issues

The cost of the design process is very small. Once the component matrices 

have been set up by a summation of stamps, only a well known LU 

decomposition algorithm need be applied. The known sparse structure (tridiagonal 

or banded) of the matrices can be used to greatly improve the efficiency of this 

operation (O(n)). This knowledge can be further employed in the solution of the
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full matrix system during the frequency sweep of the passband for dynamic range 

scaling. The pre— computed block transfer functions ^ and <t> already provide a 

significant improvement in computational efficiency by avoiding repetitive analysis 

of common blocks in the structure.

The netlist output step only involves a traverse of the matrix system. A 

special sparse matrix storage scheme could be adopted to avoid unnecessary 

testing of zero entries at all stages of the processing. In this case the storage cost

would be O(n) rather than O(n^) for full matrices.

5.4 CAPACITANCE SPREAD REDUCTION TECHNIQUES

5.4.1 Dynamic range tradeoff

A filter which has been scaled for optimal dynamic range will have good

noise rejection and will assure maximum signal handling capability of the

amplifiers [4,21]. However this scaling does not take into account sensitivity of 

the filter response to random component value errors in fabrication. Often, a 

capacitor will have attained a particularily large value during scaling to ensure 

maximum dynamic range, particularily in narrow band filters. Large capacitor 

ratios (>  40) are particularily prone to fabrication errors and so the filter 

sensitivity becomes poor.

However it is always possible to tradeoff between the capacitance spread and 

the dynamic range of the filter. Rather than scale voltages to a common

maximum level, certain ones can be scaled to some lower value to relax the size 

of large capacitors. The loss in dynamic range can be kept bounded. A

multivariable quasi— Newton algorithm has been implemented to adjust the voltage 

levels within this bounded space to obtain the optimal capacitance spread.

Fig. 5.12a shows a 10th order bandpass LUD SC filter scaled for maximum 

dynamic range. In Fig. 5.12b a 6 dB loss of dynamic range is allowed, causing a 

slight spread of the peak levels of the internal voltages. By this measure, a

saving of 12% of the total capacitance is obtained. A loss of 6 dB will half the

largest capacitor value. Ladder networks are more tolerant of this adjustement 

than biquads as their signal levels are very often bounded throughout the passband 

within some small range.
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Fig. 5.12b 6dB trade-off between dynamic range and capacitance spread
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5.4.2 Pole removal permutations for ladders

The structure of a typical 7th order lowpass passive ladder network is shown 

in Fig. 5.13a with response in Fig. 5.13b. Each parallel resonant LC branch

realises a single loss pole. By choosing the sequence of poles optimally, a 

significant reduction in the component spread may be achieved, Table 5.1. When 

the passive prototype is simulated by a leapfrog switched— capacitor network 

similar savings in capacitance spread are observed, Table 5.2. For low order

filters an exhaustive check of all pole sequences can be made. It is expected that 

the dynamic— range properties may also be improved.

5.4.3 Pole—zero pairing for biquads

In the design of biquad prototypes there is great freedom in the sequence of 

realisation of the second— order pole and zero terms. The pairing of a pole term 

with a zero— term can greatly influence the capacitance spread and dynamic range 

properties of the filter [1]. To determine the optimal sequence often requires as 

many permutations to be tested as possible. Since this is of factorial efficiency 

the computational cost becomes exorbitant after a certain point (e.g. 1 2 th order). 

Thus efficient scaling and spread cost calculations are necessary to test as many

sequences as possible. Sparse analysis and scaling of the biquad matrix system 

becomes essential. Various 'rule of thumb' sequences can be examined when

exhaustive testing becomes too costly [32].

Another effective method of reducing the size of large capacitors in a SCF 

is to adopt a low-spread structure [33-36]. This will often entail some sensitivity 

to stray capacitance or loss of dynamic range.
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P o l e  o r d e r C s p r e a d T o t a l  C A v e r a g e  C

mICM1
1—1 2 3 . 7 5  ■ 1 0 4 . 6 3 . 7 4

1 - 3 - 2 1 6 . 6 8 9 9 . 3 8 3 . 5 5

2 - 1 - 3 2 4 . 8 5 1 0 8 . 1 3 . 8 6

i—iiCO1
CM 1 5 . 1 7 9 8 . 2 0 3 . 5 1

3 - 2 - 1 1 5 . 9 3 9 2 . 3 6 3 . 3 0

3 - 1 - 2 1 6 . 6 7 1 0 1 . 4 3 . 6 2

Table 5.1 Variation of capacitance statistics with pole sequence 

for 7th order LC prototype realised by LDI leapfrog SC filter

l o w e r  p a s s b a n d  e d g e  

p a s s b a n d  r i p p l e  < 

s a m p l i n g  f r e q u e n c y

20 kHz 

1 .OdB 

200KHz

l o w e r  s t o p b a n d  e d g e  

s t o p b a n d  a t t e n u a t i o n  

Cl  = 1 . 0  C2 = 1 . 2

25 kHz 

> 65dB

Po 1 e 
o r d e r

Cl C2 L2 C3 C4 L2 C5 C6 L6 C7

1 - 2 - 3 1 . 6 3 1 . 0 7  0 . 5 8 2 . 3 0 0 . 5 9 0 . 7 8 2 . 8 1 0 . 1 9 0 . 9 1 2 . 2 2

1 - 3 - 2 1 . 6 3 1 . 0 6  0 . 5 8 2 . 6 3 0 . 1 7 0 . 9 8 2 . 8 4 0 . 6 6 0 .  70 1 .  86

2 - 1 - 3 1 . 8 8 0 . 6 4  0 . 7 1 2 . 2 8 0 . 9 6 0 . 6 4 2 . 5 9 0 . 1 9 0 . 9 1 2 . 2 2

2 - 3 - 1 1 . 8 8 0 . 6 4  0 . 7 1 2 . 8 3 0 . 1 7 0 . 9 8 2 . 6 5 1 . 0 9 0 . 5 6 1 . 6 1

3 - 2 - 1 2 . 2 3 0 . 1 8  0 . 9 2 2 . 8 0 0 . 5 9 0 . 7 8 2 . 3 2 1 . 0 9 0 . 5 6 1 . 6 1

3 - 1 - 2 2 . 2 3 0 . 1 8  0 . 9 2 2 . 5 8 0 . 9 6 0 . 6 4 2 . 2 9 0 . 6 6 0 . 7 0 1 . 8 6

Table 5.2 Various pole orderings of 7th order lowpass LC ladder
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5.5 SUMMARY

A matrix description suitable for computer description, analysis, scaling and 

realisation of filter networks has been introduced. Both biquadratic cascade and 

ladder simulations can be constructed within unified framework. The design of 

ladder simulations is treated in a very systematic manner, which does not vary

according of the form of the prototype or type of transfer function. A variety of

ladder simulation structures can be produced by simply altering the matrix 

operations used to set up the filter system. The procedures are further unified by 

the bilinear transform which maps filters between digital and analogue domains.

Indeed, filters in entirely different implementations such as active— RC, 

MOSFET— C or digital can be produced with very little change to the methods. 

The sparse properties of the matrices permit efficient computer processing and 

storage. A number of techniques to reduce large capacitance spreads have been 

proposed for both ladder and biquad filters.
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6.1 INTRODUCTION

Previous chapters have seen the development of a set of fast, accurate, 

flexible computer methods for the various stages of filter design; approximation, 

prototype design and realisation. In the present Chapter, the assembly of these 

design tools into a practical filter CAD package called PANDDA is reported. The 

philosophy of the program is explained and its internal structure is examined. 

PANDDA is then applied to various practical design problems.

The use of specialised transfer functions is illustrated. High order touch 

points are shown to produce compromises between the classical approximations 

elliptic and Chebyshev, with respect to their amplitude, group delay and passive 

sensitivity properties. By employing sloping and asymmetric approximations the 

transfer function can be tailored to difficult yet realistic filter specifications. In 

particular, correction of systematic weighting of the amplitude response is possible 

by inverse— weighting the original specifications. Important examples of weightings 

for SCFs are those due to sinc(x), LDI termination error and telephone line 

transmission characteristics. The group delay response of the amplitude filter is 

equalised in a similar manner; by designing an all—pass function to 

inverse— weighted group delay boundaries.

A simple, effective optimisation algorithm is proposed, using the design 

facilities in an iterative loop with an analysis program. Distortions induced by 

non— ideal circuit parameters such as op— amp gain— bandwidth and switch 

resitance can be corrected. Various practical examples are given.

As an illustration of the combined use of all PANDDA's facilities, the 

process of design of several practical SCFs is traced from specification to 

fabrication on silicon. PANDDA is applied to two commercial filter specifications 

which pose special difficulties for standard design techniques. The program is 

shown to produce efficient, practical realisations of the SCFs. Finally, PANDDA  

was used to design a group of filters for a speech processing chip by engineers in 

the AMSYS group of GEC Research. Test results of the fabricated ASIC 

(application specific integrated circuit) are presented. This demonstrates the speed 

and ease with which good quality, straightforward SCF designs can be obtained.
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6.2 AN INTEGRATED FILTER COMPILER : PANDDA

6.2.1 Design philosophy

The key aims in the construction of the PANDDA filter design system are 

as follows;

1. Modularity. The program has been arranged as an array of distinct 

software tools with simple interfaces. This permits easy intervention in the design 

process at intermediate stages. Often a designer will concentrate on a single phase 

of a design at a time, rather than proceed from start to finish. Thus several runs 

of an approximation program to find the 'best' transfer function, may be followed 

by a few trial syntheses of passive ladder prototypes.

2. Flexibility. A design program should not present a set of irregular 

restrictions to the user. This statement is difficult to realise if there is insufficient 

unity in the underlying design methods. PANDDA presents a series of unified 

filter design algorithms which can approximate arbitrary filter functions and can 

guarantee efficient realisation by an array of different filter structures.

3. Rapid evaluation of results. A set of fast analysis programs are provided 

internally to PANDDA. These make use of the internal knowledge of the filter to 

speed up analysis. Quick feedback of results is essential for iterative refinement of 

the design. External analysis programs need only be used as a final check.

4. Simplicity. Complex methods should be restricted to difficult, nonlinear 

problems. Most of the computational tasks in filter design can be tackled by 

general optimisation methods. However, they do not take sufficient account of the

linearity of filter design, at a cost of long computation times and slower

convergency. Furthermore, special transformations which complicate present 

software have been avoided, e.g. LDI transform, symmetrical frequency 

transforms, accuracy preservation transforms.

PANDDA is distinguished particularily by the following features,

1 . the design of general forms of amplitude and group delay response,

2 . easy construction and comparison of the many different filter structures, 

especially to allow new structures to compete with the popular, well— tested ones,

3 . optimisation methods to improve the performance of circuits within

physical constraints.
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6.2.2 Internal structure

The software package PANDDA [1— 2], has been constructed as a 

comprehensive SC filter design tool. Its internal structure is illustrated in Fig. 6.1. 

Further details are to be found in Appendix A.

PANDDA has been structured in levels, matching the conceptual stages in 

the filter design process as discussed in this thesis. Each level has a well— defined 

series of inputs and outputs allowing them to be developed and run 

independently. Following sections describe the facilities offered within each level 

with examples illustrating practical applications.

6.2.3 Specifications

The frequency response is defined either by parameters of a classical 

approximation or as a piece— wise linear tolerance plot of filter attenuation and 

group delay.

Filter options require selection of design method (biquad, LUD, 

coupled—biquad, leapfrog etc.), circuit implementation (switched—capacitor, 

active—RC, digital), non—ideal circuit parameters (unit capacitance, switch 

resistances, op— amp parameters, wordlength) and scaling directives.

6 .2 .4  Filter approximation

Classical approximation methods have been implemented, most notably elliptic 

approximation by Darlington's method [3—4].

Specialised amplitude responses may be designed by a combination of the 

Remez— exchange [5] and Newton [6 ] approximation algorithms. The latter is a 

new approach which permits the order of tangency of certain extreme points 

(touch points) of the amplitude response to attenuation boundaries to be specified. 

The designer has the freedom to specify the sequence of passbands and stopbands 

and the distribution of touch points in each. A sequence of high order touch 

points placed in the passband of a filter approximation will yield a discrete 

sequence of functions, between Butterworth and Elliptic. Fig. 6.2 illustrates a set 

of 14th order bandpass functions with various sequences of touch points, together 

with their associated group delay. Note that as the touch points smooth the
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amplitude function, the delay peaking near the passband edge lessens, at the 

expense of poorer stopband rejection. The two extreme cases are the elliptic and 

inverse Chebyshev responses, formed by selecting seven 1st order or a single 13th 

order touch point respectively. Thus a family of responses are available which lie 

between classical forms offering a greater trade— off between their properties. Fig.

6.3 further emphasises this point; a series of 9th order lowpass functions have 

been designed to fixed passband and stopband edge frequencies and stopband 

attenuation of 65dB. Normally there are only two classical approximations with 

finite zeros. However by utilising various high order touch points, a series of 

responses can be obtained with associated progression of group delay. Some 

special methods have been presented for the design of such compromise functions 

e.g. transitional elliptic—inverse Chebyshev filters (Fig. 6.4) and transitional 

Butterworth—Chebyshev filters (Fig.6 .5) [7]. They can be easily designed by

selecting a single high order touch point at the band edge.

High order touch points in the filter stopband create deep, multiple notches

for single frequency rejection. These notches are realiseable by filters with greater

symmetry and hence improved sensitivity [8 — 9]. A filter response with single

ripple in passband and stopband created by high order touch points is shown in 

Fig. 6 .6 .

A further application of high order touch points is in the design of FIR

differentiators with improved linearity at low frequency [10]. This can be done 

quite simply by specifying linearly sloping boundaries and by selecting a single

high order touch point at 0Hz (Fig. 6.7). FIR transfer functions with specified 

degree of flatness are also required in the design of decimators [1 1 ], in order to 

introduce as little amplitude distortion into succeeding filtering as possible. A 

single high order touch point incedent to a flat upper frequency boundary has the 

same effect (Fig. 6 .8 ).

The attenuation function in each band is specified by a pair of arbitrary 

piece— wise linear boundaries between which a linear— phase FIR, HR or

multi— rate transfer function will be fitted. This means that the response can be

weighted or shaped arbitrarily in passband or stopband. Weighting of the

amplitude response in the passband can be of use in a number of ways.

Equalisation of the sinc(x) effect is done by approximating to boundaries warped

by the upward sloping l/sincx(x) function. Weighting to correct LDI termination

error distortion requires a warping of the boundaries by cos( ojT/2) function; a

downward sloping function. It is normally convenient to combine this with the
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sinc(x) weighting to produce a tanc(o/T/2) warping, which is a flatter function 

because of the tendencies of the distortions to cancel (Fig. 6.9). An example of 

sinc(x) correction of a wideband 14th order bandpass filter is shown in Fig. 6.10. 

Tanc(x) correction is shown for the same filter in Fig. 6.11.

Local loop telephone lines have a transmission characteristic which exhibits a 

monotonous roll—off over the voice band (Fig. 6.12a). Correction of this function 

can be done by inverting the loss function over the filter passband. Modem filters 

often require this kind of equalisation (Fig. 6.12b). The r o ll-o ff  of anti-aliasing  

filters can also disturb the ideal passband response (Fig. 6.13). In this case, a 

distributed— RC anti— aliasing filter has been chosen because it has certain 

advantages over lumped implementations [12]. Analysis of this distributed circuit 

has been done by a special program (Appendix B). Correction of this distortion is 

achieved by sloping the passband in a contrary direction (Fig. 6.14). The filter is 

a 14th order asymmetric bandpass with 200kHz sampling frequency. Note that, 

unlike other techniques of amplitude correction, this method will result in a 

bounded minimax function [13—15].

Tapering of the filter passband ripple is of use to decrease the sensitivity of 

passive filter realisations [16]. This can be achieved by weighting the lower 

passband boundary suitably (Fig. 6.15a). Combined with high order touch points 

(Fig. 6.15b) the sensitivity improvement is even more marked (Fig. 6.15d) at the 

expense of poorer stopband rejection (Fig. 6.15c).

Weighting of the filter stopband is sometimes also required. For example, in 

a transmitter system it is required to attenuate the harmonics of the carrier 

frequency. These harmonics are progressively smaller in amplitude as the 

frequency increases and so an efficient filter will attenuate those at low frequency 

most and those at higher frequency less [17—18]. This amounts to an upward 

sloping gain specification (Fig. 6.16).

Bandpass filters with unequal stopband attenuation requirements are most 

efficiently approximated by functions with unequal numbers of zeros in either 

band. Asymmetric functions, as they are known, can be designed by PANDDA. 

High order touch points, weighted passband and stopband and asymmetry may all 

be combined in a single approximation to create a very specialised transfer 

function.
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All— pass transfer functions can be designed to equalise the amplitude filter

delay response by a new algorithm [19]. In general, the group delay can be fitted 

between a pair of piece— wise linear boundaries. Often the required order of the 

all— pass function will be large if full equalisation over the whole passband is

required. A 28th order equalisation of a 10th order elliptic function with passband

from 2kHz to 4kHz is illustrated in Fig. 6.17.

6.2 .5  Prototype design

The basis of the succeeding filter design stage is either a normalised 

doubly— terminated LC ladder or a transfer function in factorised form.

Design of passive ladder networks is accomplished by an extension of an 

iterative design method due to Orchard [20] in conjunction with a simplified 

insertion—loss synthesis [21] program. The latter is used to set up the structure 

and provide initial component values for the iterative part. Features of the 

iterative algorithm are very good accuracy and the ability to design high order

networks (up to 100th). It is therefore useful for accuracy refinement and order 

augmentation.

Passive networks are of particular interest for operational simulation by active 

and digital circuits. The low— sensitivity properties of an original passive ladder is 

usually inherited by its simulation. Ladders with minimum node configurations can 

be most efficiently simulated. Negative element values are permissible and are 

even useful to eliminate certain excess components in the filter.

6.2.6 Circuit design and scaling

A variety of filter designs are available, including general biquads (including 

all—pass) [22] and coupled—biquad, LUD or leapfrog bilinear ladders [23—25]. 

Among several new ladder simulations [26], LUD structures are notable because of 

the abscence of unswitched capacitor loops and good capacitance spread for 

narrow bandpass applications. Simulation of highpass ladders is achieved by the 

modulation method of [27] and bandstop ladders by the new twintor circuits [28]. 

All— pass functions can also be realised as low— sensitivity ladder networks using 

newly—developed circuits [29]. SCFs which are canonic in terms of numbers of 

op— amps are guaranteed for both ladder and biquad topologies. Interesting 

comparisons of the sensitivities, component value spreads and size of the different 

structures can be quickly made.
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All filter structures are designed by a matrix methods [26]. A matrix system

is a very concise and flexible means of representation of a wide variety of

networks. Each non— zero entry in a matrix represents the connection of a

building— block between nodes. Building— blocks may belong to a variety of 

different technologies e.g. Miller integrator in active— RC, LDI integrator in 

switched— capacitor (SC) and delay element in digital. The sparse structure of the 

matrices is known at the design stage and this information is used to provide a 

fast internal analysis for dynamic range and capacitance spread scaling. Some 

tradeoff between these two factors is available to reduce any large capacitors.

Various permutation strategies for pairing the poles and zeros of biquad

cascade networks are available to improve their total capacitance. Similarly for 

ladder simulations where the sequence of zero removals is significant.

An internal network description may be translated into an external format

suitable for layout or analysis by standard programs SWAP, SWITCAP, SCNAP or 

SPICE.

6.2.7 Optimisation

Fast frequency analysis of non— ideal switched— capacitor circuits is available 

from the QUICKSCNAP program [30]. Results of a passband analysis of a filter 

with realistic switch resistance and op— amp parameters will reveal some deviation

from the designed frequency response. Correction of the error is achieved by

pre— distorting the attenuation specifications and re— designing the filter.

Step  1 : Design filter to meet ideal amplitude specifications

Step  2 : Analyse under non— ideal circuit conditions

Step  3 : Create error function between distorted passband function and ideal 

passband function.

Step  4 : Pre— distort the original amplitude specifications by the error

function.

Step  5 : Re— design the filter to meet the pre— distorted specifications and

repeat from Step  2 until converged.

Note that it is only likely to be useful, provided that the degree of

distortion is such that ripples are still recognisable.
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This simple optimisation scheme has certain advantages over a full SC 

network optimisation [31];

1. The problem on the order of the original filter, not on the number of 

components in the SC circuit. This represents a considerable saving in 

computation (a typical 10th order filter will have as many as 40 capacitors).

2. No special derivatives are necessary.

3. Provided a suitable analysis program is available, any distortion can be

eliminated.

4. Ease of designer intervention in the optimisation process.

5. Re—design is very fast compared to analysis.

An example illustrates the use of the design algorithms within the PANDDA  

filter design program. A sixth order bandpass filter is designed to typical modem 

specifications, with sloping passband amplitude response to correct transmission

line attenuation (Fig. 6.18). A left—LUD SC realisation is simulated with 

non—ideal circuit parameters (Fig. 6.19) and the ideal response is distorted. By 

pre— distorting the specifications to compensate for the error and re— designing the 

RLC ladder prototype the original response can be restored after only a few

iterations. In this case, the optimisation converged in 5 iterations with 5 minutes 

of CPU time on a MicroVAX II computer. The optimised component values are 

given in Table 6.1.

6.3 DESIGN OF A  FM RADIO FILTER

The specifications of an FM radio filter are shown in Table. 6.2 and the

amplitude template of Fig. 6.20. The filter requires a — 20dB/decade slope over 

the passband range which cannot be met by the classical approximations 

Butterworth, Chebyshev or elliptic. The general HR approximation capability must 

be employed. Various stopband schemes of a sixth order filter function are tested, 

the passband specifications being exactly satisfied (Fig. 6.21). Only two of these 

meet the specifications, one with a low frequency notch in the lower stopband

(Fig. 6.21b) and the other with a triple notch at zero frequency (Fig. 6.21c).

After designing a suitable ladder prototype various realisations of this transfer 

functions are viewed. The component spreads of the first filter are exorbitantly 

high (Table 6.3). This a problem caused by the low time constant introduced by

the notch at 80Hz. However, the second transfer function reduces the

implementation cost to practical levels by placing the notches at zero frequency 

(Table 6.4).
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N o r m a l i s e d  d a t a  f o r  LC l a d d e r  o f  F i g .  6 . 1 9 a

upper passband edge 1 .1 3 4 2  lower passband edge 0 .8817
upper s topband edge 1 .3 5 7 0  lower  stopband edge  0 .7 369
passband r i p p l e  < O.ldB stopband a t t e n u a t i o n  > 30dB
G1 1 . 0  G2 1 .6 3 6 3 8  Cl 4 .01347  Ll 0 .2 5 8 0 6  C2 1 .8 3882
L2 1 .0 8 8 6 7  C4 0 .9 4 0 3 9  L4 0 .5 3119  C5 5 .7 0 6 4 3  L5 0 .16995

Component v a l u e s  fo r i d e a l  SCF o f  F ig . 6 .1 9b

Cl 7 .3567 C2 6 .0 4 3 1 C3 38 .648 C4 3.3890
C5 1 .0 C6 7 .9 1 9 8 C7 18 .978 C8 1 .0264
C9 1 .0 CIO 3 .7 8 8 9 C l l  40 .347 C12 4 .8 186
C13 1 .0986 C14 7 .5 0 8 7 C15 5 .3223 C16 1 .0
C17 1 .0 C18 1 .0 C19 10 .023 C20 1 .2739
C21 1 .0 C22 7 .6 0 6 1 C23 2 .2936

t o t a l c a p a c i t a n c e 1 7 3 .5 1 5 c a p a c i t a n c e s pread 40 .347

Component v a l u e s  fo r o p t im i s e d  SCF o f F ig .  6 .1 9b

Cl 7 .1491 C2 4 .8 0 6 6 C3 4 1 .475 C4 3 .7 176
C5 1 .0 C6 7 .7 3 7 6 C7 19 .978 C8 1 .1041
C9 1 .0 CIO 3 .3 7 5 4 C l l  40 .721 C12 4 .9457
C13 1 .1 4 C14 7 .7 2 7 8 C15 5 .2695 C16 1 .0
C17 1 .0 C18 1 . 0 C19 9 .9 4 2 2 C20 1 .2856
C21 1 .0 C22 7 .3 9 4 3 C23 2 .1483

t o t a l capac i  tance 1 7 5 .9 1 8 c a p a c i t a n c e spread 4 1 .475

number o f  c a p a c i t o r s 23 number o f  s w i t c h e s 25
number o f  op-amps 6 c l o c k  f re q u en cy 64kHz
lower passband edge 1050Hz upper passband edge 1350Hz
u n i t c a p a c i t a n c e lpF

Table 6.1 Specifications and component values for Fig. 6.18 
and Fig. 6.19
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Design example

FM radio filter:

F i l t e r  c l a s s  =  BANDPASS C l o c k  f r e q u e n c y  =  2 0 0 k H z

L o w e r  p a s s b a n d  e d g e  =  3 0 0 H z  U p p e r  p a s s b a n d  e d g e  =  3kH z
L o w e r  s t o p b a n d  e d g e  =  1 0 0 H z  U p p e r  s t o p b a n d  e d g e  =  7k H z

P a s s b a n d  r i p p l e  =  0 . 5 d B

- 2 0 d B / d e c a d e  s l o p e  o v e r  p a s s b a n d  f o r  i n t e g r a t i o n

Table 6.2 FM radio filter specifications

Or-

-60

-9 0
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-150

F r e q u e n c y  (Hz)

Fig. 6.20 Amplitude template for FM radio filter
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6th order asymmetric filter approximation 
(1 zero at origin, 2 notches in upper stopband)

6th order asymmetric filter approximation 
(notch in lower stopband, notch in upper stopband)
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6th order asymmetric filter approximation 
(3 zeros at origin, notch in upper stopband)

6th order asymmetric filter approximation 
(notch in lower stopband. 3 zeros at infinity)
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6th order asymmetric filter approximation 
(3 zeros at origin, 3 zeros at infinity)

Fig. 6.21 Various 6th order filter approximations 
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Design method Total
C

C
Spread

Average
C

No. 
Swi tch

No.
Caps

No.
Op-amps

LUD 10484 5387 .4 41 9 .4 27 25 6

Leapf rog 8999.6 5664.9 359.9 32 25 6

Coupled-
biquad 10252 5387 .4 41 0 .4 27 25 6

Biquad 2099.1 1436 .5 91 .3 28 23 6

Table 6.3 Statistics of various SC realisations of filter in Fig. 6.21b

Design method Total
C

C
Spread

Average
C

No. 
Swi tch

No. 
Caps

No.
Op-amps

LUD 573.9 102.8 24 .9 27 25 6

Leapf rog 1334 .9 757.8 58 .0 32 25 6

Coupled-  
bi quad 556 .6 107 .6 24 .2 27 25 6

Bi quad 523 .7 1 11 .4 23 .8 28 23 6

Table 6.4 Statistics of various SC realisations of filter in Fig. 6.21c

192



6.4 DESIGN OF A TELECOMMUNICATIONS FILTER

The specifications of a bandpass telecommunications filter are shown in Table

6.5 and the template of Fig. 6.22. Note that this filter has an asymmetric 

amplitude requirement and a group delay tolerance in the passband.

The simplest design approach is to meet the amplitude specifications by a 

classical approximation. However as seen from Fig. 6.23 the order of these 

functions is rather high, clearly due to the fact that they do not make efficient 

use of the freedom in the stopbands. The general HR approximation methods can 

therefore be applied in order to tailor the response more closely to the irregular 

specifications (Fig. 6.24). A 10th order function is estimated as the improvement 

over the best classical approximation, the 14th order elliptic. A 3rd order lower 

stopband, and a 7th order upper stopband are guessed initially to reflect the 

asymmetry of the specifications. After various alterations to the stopband zero 

distributions much of the remaining stopband freedom can be used up. Remaining 

room can be taken up by adjusting the passband form. By adopting high order 

touch points in the stopband the group delay peaking is also improved over the 

equiripple form. Furthermore the passive filter sensitivity can be lessened by 

tapering the ripple towards the passband edge and introducing a high order touch 

point (Fig. 6.25). The final approximation appears in Fig. 6.24e with passband as 

in Fig. 6.25c.

Having obtained a suitable minimum— order transfer function to meet the 

amplitude specifications various circuit realisations must be considered. Table 6 . 6  

shows the cost of both ladder and biquad implementations. It appears that the 

biquad and left— LUD circuits have the most favourable implementation cost in 

terms of capacitance. All the filters are canonical in number of op—amps and 

very similar in the number of other components. The designer should also study 

the mean sensitivity to capacitance value deviations before making the final 

selection of filter structure (Fig. 6.26). As expected the ladder structures offer 

better sensitivity than the biquad. If it is desired to further reduce the total 

capacitance some trade— off in the dynamic range can be allowed, in this case 

6 dB (see Fig. 5.19). Some 10—20% saving is typically obtained as shown in 

Table. 6.7. A LUD filter is then selected as the best choice. A netlist can then 

be produced and the response checked by an external analysis program. Often, at 

this stage, some non— ideal deviation of the designed frequency response will be 

observed. This may take the form of sinc(x) weighting or LDI termination error 

or more generally some distortion due to non— ideal realisation of components.
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Design Example 1

Telecommunications filter:

F i l t e r  c l a s s  = BANDPASS Clock frequency = 100kHz

Lower passband edge = 1kHz Upper passband edge = 2kHz

Lower stopband edge = 250Hz Upper stopband edge = 2.2kHz

Passband r i p p l e  = 0.2dB

Group d e la y  v a r i a t i o n  = ±50^ts w i t h i n  10% o f  passband edges

Table 6.5 Specifications of a telecommunications filter

-20
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-60

-80

-100

-120

F r e q u e n c y  (kHz)

Fig. 6.22 Amplitude template for a telecommunications filter
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F r e q u e n c y  ( H z )

24th order Chebysbev approximation
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24th order Inverse Chebysbev approximation

Fig. 6.23 Various classical filter approximations
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Fig. 6.24 Various asymmetric filter approximations
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Fig. 6.25 (d) Comparison of group delays of (a) and (b)
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Design method Total
C

C
Spread

Average
C

No. 
Swi tch

No.
Caps

No.
Op-amps

LUD 203.8 21 .7 5.2' 43 39 10

Leapf rog 321 .7 55 .7 8 .3 48 39 10

Coupled-
biquad 269 .6 51 .8 6 .9 43 39 10

Biquad 21 8 .4 28 .2 6 .1 44 36 10

Table 6.6 Statistics of various SC realisations of filter in Fig. 6.24e

Design method Total
C

C
Spread

Average
C

No. 
Swi tch

No.
Caps

No.
Op-amps

LUD 194 .8 17 .9 5 .0 43 39 10

Leapf rog 298.1 55 .7 7 .6 48 39 10

Coupled-  
bi quad 199 .6 26 .0 5.1 43 39 10

Bi quad 188.6 24 .5 5 .2 44 36 10

Table 6.7 Statistics of various SC realisations of filter in Fig. 6.24e 
after capacitance spread optimisation
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In a SC filter the switches can have finite resistances and the op— amps finite 

gain— bandwidth product. This will cause a typical distortion as shown in Fig. 

6.27. The optimisation method of Section 6.2.7 can be applied to remove this 

effect after a few re— design iterations.

Once the design of the amplitude filter has been satisfactorily completed, the 

group—delay equaliser can be designed. In this case a 10th order equaliser must 

be approximated to meet the specifications (Fig. 6.28). It can be realised by both 

ladder and biquad topologies with the implementation cost shown in Fig. 6.8. In 

this case the ladder and biquad have much lower total capacitance than the 

biquad. Comparing sensitivities reveals that the structures have relatively similar 

properties (Fig. 6.29). The final filter implementation is shown in Fig. 6.30. It is 

a cascade of a 10th order LUD ladder with a 10th order allpass group delay 

equaliser. Notice, that a pair of capacitors have been cancelled in the ladder 

filter, realising a notch at ±2fs.

6.5 A  SW ITCHED- CAPACITOR FILTER ASIC

Table 6.9 shows the specifications of a group of filters of lowpass, bandpass 

and bandstop (notch) classes. They form the main part of a dual— channel speech 

processing chip. Engineers in the AMSYS group of GEC research running 

PANDDA, were able produce acceptable designs of these filters in a period of 6 

weeks, and fully working silicon ASIC in 12 weeks. They obtained elliptic 

approximations of 7th, 6th and 6th order respectively and chose leapfrog and two 

biquad cascades as their SC realisations. Layouts of the filters were then produced 

(Fig. 6.30). At that time (June 1987) this was done manually, though it has now 

been fully automated (see Appendix A). The filters were subsequently fabricated 

using a 3 micron double—poly process with a die size of 20mm^ (Fig. 6.31). 

Each filter has two channels, making a total of 50 orders of filtering on a single 

chip. Test results of the filters are shown in Figs 6.32—6.34.
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Fig. 6.28 (a) Group delay equalisation of 10th order bandpass filter 

(b) Passband detail
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Des ign  method Total
C

C
Spread

Average
C

No. 
Swi tch

No.
Caps

No.
Op-amps

LUD 286.9 50 .7 8 .4 45 34 10

Leapf rog 313 .7 50 .6 9 .2 47 34 10

Bi quad 677 .7 54 .7 16.1 54 42 10

Table 6.8 Statistics of various SC realisations of lOth order 
group delay equaliser
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Lowpass f i l t e r

Clock frequency = 1 0 6 . 7kHz

Upper passband edge - 3 . 4kHz

Passband r i p p l e < 0.  5dB

Passband ga in = 6dB

Bandoass f i l t e r

Clock frequency = 53.3kHz

Lower passband edge = 642Hz

Passband r i p p l e < O.ldB

Passband ga in = 6dB

Bandstoo f i l t e r

Clock frequency = 5 3 . 3kHz

Lower passband edge = 500Hz

Passband r i p p l e < O.ldB

A t t e n u a t io n  o f  2dB at 150kHz

Lower stopband edge = 8kHz 

Stopband a t t e n u a t i o n  > 80dB

Upper passband edge = 710Hz 

Stopband a t t e n u a t i o n  > 40dB

Upper passband edge = 800Hz 

Stopband a t t e n u a t i o n  > 60dB

Table 6.9 Specifications of lowpass, bandpass and bandstop filters
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Fig. 6.30 Floorplan of SC filter ASIC
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REF 6 . 6  DBM 
10 D B /O IV RANGE 1 0 . 0  DBM
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Fig. 6.32 (a) Frequency response of 7th order lowpass filter
(b) Passband detail
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Fig. 6.33 (a) Frequency response of 6th order bandpass filter
(b) Passband detail
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6.6 SUMMARY

Chapter 6  concerns the assembly of the computer design methods of this 

thesis into a software package for integrated filter design (PANDDA). The 

program attempts to unify the diverse methods of approximation, synthesis and 

realisation to provide a structured design tool with simple interfaces and few 

restrictions. The modularity of the program and its wide range of design options 

are described.

Section 6.2 shows how filter specifications can be approximated very closely 

by specialised transfer functions. Departure of filter approximations from their 

well— known classical forms can be done in a progression of metamorphoses. 

First, the equiripple passband can be evolved towards maximally flat to trade— off 

group— delay and amplitude. Second, the constant passband and stopband 

tolerances can be relaxed to arbitrarily taper the filter ripple. Third, the 

specifications may be arbitrarily weighted or sloped. A series of practical problems 

illustrate the usefulness of the unorthodox filter responses obtainable by these 

transformations. A further application of pre— warping functions is to correct 

amplitude distortion due to non— ideal circuit parameters.

The program is applied in Sections 6.3—5 to practical filter designs. They 

are traced from specification to network, and network to silicon. Test results of 

filters fabricated for GEC research are given.
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7.1 DISCUSSION OF RESULTS

The objective of this work was to study computer techniques for SC filter 

design. In many cases, current techniques were developed by manual derivation 

and, because of the effort involved, only special examples were considered. 

However, in developing a computer program, the aim is that it should be as 

flexible as possible and present as few conceptual restrictions to a designer as 

possible. For example, if a 7th order elliptic transfer function can be designed as 

a canonical leapfrog circuit, so should an 8 th order one. If a bandpass function 

can be designed by a ladder circuit, so should a bandstop function. If the 

passband response can be made flat or equiripple, why not forms between these? 

If the response can be made flat why not sloping as well? A design capability, 

say, in the approximation of the transfer function should not exclude a capability 

in circuit realisation. All this necessitates a uniform treatment of the various 

stages of filter design. In many cases, the current approaches must be extended 

and regularised to make them suitable for a computer— aided design. Contributions 

towards this objective have formed the main achievement of this thesis.

A summary of the main results now follows. Methods for the approximation 

of ideal filter characteristics were reviewed. It was observed that although these 

function were optimal approximations in various senses and were easy and quick 

to compute, they were unsuitable for many practical filtering tasks. This is largely 

due to the departure of real filter systems specifications from ideal forms. In 

particular, the properties of symmetry and flatness rarely conform closely to 

required performance. For example, sampled—data filters suffer from inherent 

amplitude response distortions due to sinc(x) effect which make flat passbands 

unsuitable. Asymmetric filters often occur in modem channels. Thus the ideal role 

of the filter must be partially reconsidered. Rather than purely passing or 

stopping signals in certain bands the filter must additionally be considered as 

requiring to shape the input spectrum in some arbitrary manner. Thus the filter 

frequency response must be matched as closely as possible to some template 

defining this shaping. This is the task approached in Chapter 2, in which some 

general computer algorithms are advanced to fit polynomial functions in a 

minimax sense to shaped boundaries of attenuation. A relationship to the Remez 

algorithm was discovered. A generalisation is introduced, allowing the transmission 

characteristic to vary continuously between equiripple and maximally flat forms. 

So— called high order touch points can be introduced at which the approximated 

function matches the boundary functions to a certain number of derivatives. A
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subsiduary result is the generation of a whole family of intermediate ideal filter 

approximations between elliptic and inverse Chebyshev. The approximation was 

done in the discrete time domain and bilinearly transformed to the continuous 

time domain. In this way, both continuous and sampled— data filters could be 

designed from a common basis. Special accuracy preservation measures were 

considered to remove order limitation problems, successfully raising the design 

orders to practical levels.

The dual filter characteristic to amplitude response is the group delay 

response. Both are of concern in the design of filters which must often transmit 

signals with uniform delay in the passband. In minimum phase types of transfer 

function, employed to effect the amplitude response the two are directly 

inter—related [1]. It is commonly observed that where the amplitude response 

varies most rapidly there are peaks in the group delay. Accordingly, by 

tailoring the amplitude response to the specifications the disturbance in the group 

delay can also be minimised. In this respect, high— order touch points are of 

particular interest since they smooth the amplitude, using up excess stopband—  

rejection towards more uniform group delay. This represents a further advantage 

of the arbitrary amplitude approximation capability.

The two filter characteristics can also be treated independently by adopting 

an all— pass function to equalise the group delay of the minimum phase function, 

without disturbing its amplitude response. The design of arbitrary group delay

equalisers is considered in Chapter 3. The aim of this work was to unify the 

treatment of group delay with that of amplitude. As before, the group delay

specifications should be allowed to be of arbitrary forms, not simply flat, as 

defined by two bounding functions. The similarity of the allpass group delay

function with an amplitude function was observed. An algorithm was developed 

whereby the same approximation techniques for amplitude could be re— used for

group delay equalisation. Although group delay equalisation by all— pass functions is 

known to be a non— optimal solution to a filter problem, it has become more 

attractive by the recent development of low— sensitivity all— pass integrated ladder 

filter realisations. Both amplitude and delay filtering can now be performed by 

low— sensitivity circuits, an option not yet available for non— minimum phase 

transfer functions.

The next stage is the synthesis of a ladder prototype. Traditionally this has 

been done by a Hurwitz factorisation of the transfer function followed by a pole
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removal synthesis step. Both stages are extremely sensitive to round— off and 

cancellation errors caused by implementation in finite wordlength computer 

arithmetic. This severely limits the order of the ladder prototype that can be 

synthesised without crippling loss of accuracy. To avoid this problem, transformed 

variable methods can be applied, but these greatly complicate the software and 

require different transformations for different transfer functions. An extension of 

Orchard's iterative algorithm was proposed, offering the compromises of high 

accuracy and simple software but slower computation times and the need for

initial values. The novel feature of the method is that it works directly from the

touch point information from the amplitude approximation steps without requiring 

ill— conditioned Hurwitz factorisation. The iterative method was used to design 

very high order ladder prototypes in full double precision accuracy (up to 1 0 0 th). 

A combination of the synthesis method and the iterative method was suggested as 

the best compromise, the former providing approximate initial values and the 

latter refining the accuracy of the solution.

The design of passive ladders as prototypes for simulation by SC circuits was 

given special consideration. Here, the concerns are whether the ladder can be

simulated by an SC circuit with a minimum cost in components (principally

op— amps) and with an exact transfer function. Some ladder prototypes entail 

extra op— amps or feedthrough branches in the SC simulation unless special steps 

are taken. As in the case of approximate LDI simulation, it is possible that the 

SC circuit will realise the transfer function with some distortion. In certain cases, 

a passive prototype cannot be realised at all or when simulated will cause an 

unstable SC circuit. However, it shown that by anticipating these problems at the 

prototype design stage they can be avoided. The first development is to permit 

negative element values in the prototype. Although disallowed by strictly passive 

realisations, they can easily be simulated by active circuits. The removal of this 

constraint also eases the development of software. The negative element values 

are also shown to be of use in design of blinear/LDI filter structures. A negative 

component can be synthesised in the prototype, which when simulated by a 

bilinear SC circuit will cause cancellation of capacitive feedthrough branches. This 

in fact, produces a circuit structure akin to that obtained by LDI simulation 

methods. Normally LDI simulation will cause a distortion of the designed transfer 

function. This can also be avoided by introducing certain pole positions into the 

transfer function or pre— warping the response. This allows the ladder simulation 

to be unified solely under the use of the bilinear transform. In order to assure 

canonic ladder simulations and regular SC circuits, a simple rule is introduced 

into the prototype synthesis whereby only minimum node configurations are
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permitted. The class of transfer functions with finite attenuation at high frequency 

cannot normally be realised as a passive ladder would cause instability when

straightforwardly simulated by bilinear circuits. A common example, is the pure 

even order elliptic function or bandstop or highpass functions. By a modification 

of the transfer function a suitable minimum node prototype can always be

designed. This uniform treatment of prototype design ensures that stable, canonic 

SC simulations can be produced with exact frequency response.

The final stage in the filter design process is circuit realisation from a

suitable prototype. Only stray— capacitance insensitive SC circuits are examined. 

They belong to either biquadratic cascade or ladder simulation architectures. Until 

now, the treatment of the two approaches has differed greatly. Particularily within 

the latter, the design techniques vary widely according to form of prototype, type 

of transformation, class of transfer function and simulation method. Ladder

simulation is inherently more difficult than biquad design because of the highly 

coupled form of the circuit, which makes the equations harder to manipulate. 

These problems have made it very difficult for any single computer program to

produce more than a few standard filter types. In Chapter 5, the use of a matrix

scheme to regularise the processing of linear equations involved in the design,

scaling and realisation of SC filters is presented. The methods are centrally based 

on the bilinear transform avoiding the specialised problems with the LDI 

transform. Both biquad and ladder filters can be set up by adding stamps into a 

general matrix scheme. The derivation of different filter types can then be 

accomplished in a uniform manner by a series of matrix decompositions which do 

not alter according to the form of the prototype. LUD, coupled— biquad and 

leapfrog topologies are easily provided. The interconnection pattern of the filter 

circuit can be seen from the non— zero structure of the matrix, and the canonic 

properties can be seen from the order of the system. The known sparse structure 

of the matrix means that the computer processing and storage of the filter can

be made very efficient. A canonic SC filter is guaranteed for both architectures 

of filter, biquad or ladder, regardless of the type or order of transfer function. 

This assurance can normally only be given for biquad filters. Dynamic range and 

capacitance spread scaling can be performed by simple matrix operations. A 

variety of techniques have been investigated for capacitance spread reduction.

The filter design program PANDDA has been written, encompassing all the 

theoretical developments above. An optimisation loop, making use of the various 

design stages in this program was discussed. This algorithm makes use of the fast 

re— design and general approximation capabilities to pre— distort the original
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frequency specifications for non— ideal effects. In Chapter 6 . PANDDA was 

applied to a set of difficult filtering problems illustrating how its facilities can 

be applied to produce improved design solutions. It was demonstrated that high 

order touch points can be introduced into the transfer function to ease the group 

delay peaking near the passband edges. The asymmetric responses can be 

employed to tailor the responses closely to the specifications, offering reductions 

in the order of the transfer function. The sloping properties are used to correct 

sinc(x) and LDI termination error distortion. The cost of implementing the

transfer functions in a variety of networks is then investigated. The uniform

design strategy in PANDDA ensures that biquad and ladder now compete very 

fairly in terms of silicon area and numbers of components. The same conclusions

are true for delay equalisation by all— pass functions.

To summarise, the results of the present research and that of Li Ping [2] 

have contributed towards a powerful CAD tool for integrated filters, PANDDA. It 

presents the user with a conceptually uniform, flexible set of design features 

which remove traditional limitations. The program is actively being used by the 

AMSYS group at GEC Hirst Research and has been succesfully used to produce 

fabricated SC filters.

7 .2 PROPOSALS FOR FUTURE WORK

Certain extensions of the approximation methods of Chapter 2 would be

worthwhile. The standard filter classes lowpass, bandpass, bandstop and highpass 

were considered in detail. However, there is occasionally a need to design filters 

with multiple bands, e.g filter banks, comb filters, in which case a formalisation 

of the techniques to multi— band cases is necessary. An extra degree of freedom 

is introduced by each additional band which must be assigned in some useful way 

to a designer, e.g variable passband edge, passband ripple. The problem is then 

to re— express the design algorithms suitably to take into account these extra

parameters.

The approximation methods at present generate minimum phase functions

with imaginary transmission zeros. This means that zero transmission will occur at

certain points in the stopband. However, in certain applications it is undesirable 

to completely suppress signals e.g. hearing— aid design. In fact, the abscence of a 

stopband implies that the concept of a filter must be reconsidered. The filter 

must be generalised to become a spectrum shaping device. The design of 

non— minimum phase transfer functions with complex zero positions is necessary.
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They are also known to offer better combined amplitude and group— delay 

properties than a minimum phase amplitude stage with a group delay equaliser. 

At present, there is no simple, uniform algorithm to compute these functions. It 

would seem possible to extend the Newton approximation methods to this task 

and to apply the techniques of the all— pass group delay algorithm. A greater 

insight into the operating principle and proof of convergence of the latter would 

seem necessary pre— requisites.

Further research into low— sensitivity integrated ladder realisations of the 

non— minimum phase transfer functions would therefore be valuable. It seems 

likely that the filter structures could be easily designed in terms of the matrix 

scheme presented in Chapter 5. However, some extension in filter synthesis 

methods must be made to develop special ladder prototypes. These would no 

longer be singly or doubly— terminated ladders, but lossy, multi— resistor structures. 

Complex transmission zeros would be realised by LC tank circuits shunted by a 

resistor. In this case, the traditional insertion— loss synthesis method is no longer 

valid. However, the iterative methods of Chapter 4 could be applied quite 

straightforwardly. Convergency is likely be the main problem.

At present, canonical filter realisations with arbitrary amplitude response can 

be designed with good reliability. The ability to design the different stages in a 

complete SC filter system has not been fully integrated into the PANDDA  

software. Although simple decimators and interpolators have already been 

designed, more sophisticated structures should be investigated [3]. This will 

demand an extension of the approximation methods to multi— phase transfer 

functions and description of the structures in matrix form. In addition, the 

trade— off between the responses of the decimator/interpolators and SCF should be 

incorporated automatically at the approximation stage. Furthermore, since 

continuous— time anti— aliasing/ imaging filters must accompany the sampled— data 

parts of the system, it would be desirable to couple the design of these stages 

together. An analysis package for active distributed— RC anti— aliasing filters has 

been written and awaits incorporation (Appendix B). Eventually, this will allow 

the filter to be designed as one system, with an automatic trade— off of one stage 

against another.

Indeed, the view of the filter as a system poses the next challenge for CAD 

software for analogue circuits. At present, a set of reliable basic tools exist for 

the design of the building blocks of the system; SCF, group—delay equaliser, 

decimator. The filter designer must use his expert knowledge to drive the
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software, knowing for example how to obtain the most efficient transfer function, 

how to choose the best filter realisation for a given type of filtering and how to 

trade— off between the influences of the different blocks in the system. This 

knowledge must now incorporated into a higher level expert— system shell which 

will control the basic facilities and guide the designer towards a good— quality 

system. Ultimately, the different filter implementations, active— RC, digital and 

continuous— time should be comparable within the one package. An overall filter 

design tool can then join other CAD systems for signal processing such as D/A  

converters, phase locked loops, modulators etc.
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APPENDIX A : DESCRIPTION OF PANDDA FILTER DESIGN SOFTWARE

A .l FUNCTIONAL SPECIFICATIONS

The internal structure of the PANDDA filter design program is shown in 

Fig. A .I. A brief summary of the function of each stage is now given with 

examples.

A.1.1 Filter specification (USER)

This program allows of a valid filter design to be specified a user. The 

outputs are a series of files defining the current filter design to all succeeding 

stages of PANDDA. In the version being run by the AMSYS group of GEC 

Research on Apollo workstations, the program has been given a menu— driven 

fron t-en d  (Fig. A .2). The specification of a filter to PANDDA is divided 

conceptually into two parts:

(S) set the desired type of frequency response required of the filter,

(O) define the physical implementation of the filter as a circuit.

Option (S) is then subdivided into

(A) define the amplitude characteristics of the filter response,

(D) define the group delay characteristics of the filter response.

When non—classical filters are required, option (A) is again subdivided into

(PB) define the passband amplitude characteristics,

(SB) define the stopband amplitude characteristics.

The options offered to the user are now examined under each of these 

categories

Frequency Response Parameters

F i l t e r  c l a s s  : [LOWPASS, BANDPASS, HIGHPASS, BANDSTOP]

Passband and stopband edge f r e q u e n c ie s  must be 

d e f in e d  when the f i l t e r  c l a s s  i s  s p e c i f i e d .  Highpass
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FILT.DL* ( i

A m p litu d e

A p p ro x im a tio n

G roup delay  

e q u a l is a t io n filte r a p p ro x im a tio n

LAD

S y n th e s i s

OPTM
O ptim isa tion

f ilte r a n a ly s i sDesign

SWAP

Fig. A.1 Internal structure of PANDDA program showing file usage
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PANDA Version 1 .000 1 6 -J u n -8 9  AMSYS Filter Compiler

D E S IG N  : Decoder Output Filter D E S IG N E R : nc&mos.fi l t ers.&m sys.D07C DATE 1 6 : 1 1  :1 9 8 9 12 : to  : 38

D E FIN IT IO N  

ORDER ft SA 

ORDER ft FS

p a s s b a n d  : 0 . 0 0 p a s s b a n d  : 3 4 0 0  0 0

RIPPLE : 0 . 03 LOWER BAND UPPER BAND

s t o p b a n d  : 0 . 0 0 s t o p b a n d  : 6 0 0 0 . 0 0

FS ft SA FCLK : 12 800 0.0 0 r e j e c t i o n  : 0 . 0 0 r e j e c t i o n  : 4 0 . 0 0

5 t h  o r d e r  f  11 t e r  
8 z e r o s  a t  DC 
F i n i t e  z e r o  p a i r  a t  
F i n i t e  z e r o  p a i r  a t  
P o l e  p a i r  a t  3884,
P o l e  p a i r  a t  3287
P o l e  a t  2 6 8 4 . 7 4 Hz  
5 t h  o r d e r  f i l t e r  
8 z e r o s  a t  DC 
F i n i t e  z e r o  p a i r  a t

APP ROX IM AT IO N

C H E B Y S C H E V

M IS C E L L A N E O U S

Fi l l e r  C l a s s e s . -  
ELLI PTI C

C H E B Y C H E V
I N V C H E B Y

B U T T E R W O R T H
B E S S E L

L E G E N D R E
HR

6 3 L  _____
9675" .m ”

24HZ 8 3 . 6 1
45Hz 8 8 . 9 1

: M o s t  c o m m o n l y  u s e d  f i l t er  s h a p e .
R i p p l e  In p a s s b a n d .  R a p i d  rol l  off 
Al l  p o l e  f i l t er ,  r i p p l e  In p a s s b a n d .

: M e e t  s a m e  a t t e n u a t i o n  s p e c  a s  c h e b y c h e v .  
B e t t e r  g r o u p  d e l a y  p e r f o r m a n c e .
M a x i m a l l y  f l at  p a s s b a n d .
Ma x i m a l l y  f l at  g r o u p  d e l a y  r e s p o n s e .
S l o w  roi l  off
M o n o t o n i c  p a s s b a n d  wi t h  mo s t  r a p i d  rol l  off 
D e s i g n  a r b i t r a r y  f i l t er  r e s p o n s e .

dd o r d e r  f i l t e r ,  
c e  r e q u i r e d  

1 2 
2 14 3 . 5 2  u n i t s  

S e c t i o n  1 2 2 . 8  u n i t s
S e c t i o n  2 2 8 . 7  u n i t s
S e c t i o n  3 1 8 . 3  u n i t s
t o t a l  c a p a c i t a n c e  u s e d  i s
w r i t i n g  swap f i l e s  
w r i t i n g  fiLF f i l e

START : 10 .00

S IM ULATION

STOP : 20 00 0 .0 0

NPOINTS : 200

53.793 812 u n i t s

Fig. A.2 Screen display of PANDDA showing menus and help facility
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Approx. type

Order

Defn type

We i ght i ng

and bandstop r e a l i s a t i o n  by ladder networks uses  new 

d e s ig n  t echn iq ues

: [ELLIPTIC, CHEBYSHEV, INVCHEBY, BUTTERWORTH, BESSEL, 

LEGENDRE, IIR]

The f i r s t  s i x  are c l a s s i c a l  approximation  forms.

(F ig .  A .2 ) .  The l a s t  a l lo w s  the passband and stopband  

s p e c i f i c a t i o n s  to  be t a i l o r e d  to  a r b i t r a r y  

a t t e n u a t i o n  boundaries .

: [2 -30]

Orders o f  f i l t e r s  may r e l i a b l y  be d e s ig n ed  in  t h i s  

range. Even order d e s ig n s  w i l l  o f t e n  requ ire  canonic  

ladder f i l t e r  d e s ig n  t e c h n iq u e s .  Odd order bandpass  

or bandstop f i l t e r s  (parametric )  are not d e s ig n ed  at  

p r e s e n t .

: [ORDER&SA, ORDER&FS, FS&SA]

The s p e c i f i c a t i o n  o f  a c l a s s i c a l  f i l t e r  may be done 

by f i x i n g  any three  o f  the four parameters:

1. order,

2.  stopband edge f r e q u e n c i e s ,

3. passband r i p p l e ,

4.  stopband a t t e n u a t i o n .

The passband r i p p l e  i s  always d e f in e d  in the present  

program le a v in g  three  p o s s i b l e  ways o f  choos in g  the  

other  two required  parameters ,  a t h i r d  be ing  

undef ined.  Under the IIR o p t io n  the order ,  passband  

r ip p le  and stopband edges are f i x e d  l e a v i n g  the  

stopband a t t e n u a t i o n  f r e e .

: [FLAT, X/SINX, LDI, LDI&X/SINX, BANANA, OPTIMISATION] 

This o p t io n  d e f i n e s  the form o f  the amplitude  

w eight ing  o f  the passband reg ion .

The p o s s i b i l i t i e s  are:

1. FLAT -  no w e ig h t in g ,

2. X/SINX -  in verse  s i n c ( x )  w e ig h t in g ,

3. LDI -  LDI t erm in at ion  error  c o r r e c t i o n ,

4. LDI&X/SINX -  2. and 4. combined,
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5. BANANA -  whimsical  sagg in g  passband,

6. OPTIMISATION -  w e ig h t in g  d e f in e d  by e x te r n a l  

t e m p l a t e .

Warping : [NONE, BILINEAR]

Compensation for frequency  a x i s  d i s t o r t i o n  o f  

sampled-data  f i l t e r s .

Sampling frequency, passband ripple, stopband attenuation, lower/upper

passband/stopband edge frequencies : standard parameters. The upper edge

frequency of the highest band is always at the Nyquist frequency fs/2.

With IIR approximation type selected the following additional parameters 

become available

No. I t e r a t i o n s  : [5-10]

Parameter c o n t r o l l i n g  the number o f  i t e r a t i o n s  

between passband and stopband o f  approximat ion  

algor i thm .  It may be n e c e s s a r y  to a l lo w  more

i t e r a t i o n s  for  sharp t r a n s i t i o n  band or high

order f i l t e r  (normally  <10 ) .

Grid s i z e  : [30-100]

Parameter c o n t r o l l i n g  number o f  search  p o in t s  

e v a lu a te d  in order to f in d  r ip p le  extrema. For 

a narrow band f i l t e r  the parameter may have to be 

increased  at the p e n a l t y  o f  longer run t im es .

Accuracy : [10_^-10- ^]

Maximum r e l a t i v e  error  in p o s i t i o n s  o f  minima 

to  template boundaries .  R e la te d  to g r i d - s i z e .  

Increased g r i d - s i z e  w i l l  a l lo w  minima p o s i t i o n s  

to  be determined more a c c u r a t e l y  a l l o w in g  the  

t er m in at ing  accuracy to  be reduced.

Further commands available under IIR filter definition are required to set up the 

passband and stopband characteristics. The filter is now regarded as a series of
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bands whose characteristics may be set up independently. A template is defined in 

each band as a series of piece— wise linear points on upper and lower boundaries 

between the band edge frequencies. An example template and definition are given 

in Fig. A .3. Notice that in the stopband the lower boundary is, in reality, always 

— oodB, but is set to — 120dB for convenience. The following options may be also 

be set in either stopband (SB) or passband (PB) mode.

Band type : [EQUIRIPPLE, MAXFLAT, GENERAL]

Three a t t e n u a t i o n  c h a r a c t e r i s t i c s  are d e f in a b le

1. EQUIRIPPLE -  r i p p l i n g  f u n c t i o n  l i k e  e l l i p t i c  

passband (not  n e c e s s a r i l y  e q u a l ) .

2. MAXFLAT -  maximally f l a t  as in  Butterworth .

3. GENERAL -  a r b i t r a r y  o s c u l a t o r y  band d e f in e d  

by a s e r i e s  o f  h igh  order touch p o i n t s  

in c id e n t  to upper passband boundary or 

lower stopband boundary ( 0 ) .  L i s t  o f  touch  

point  orders  must be e n t e r e d ,  a l l  even  

except at extreme f r e q u e n c i e s  0 or f s / 2 .

Band order : [0-30]

Order o f  band. This c o n t r o l s  the order  

o f  the polynomial  approximat ing the band.

The t o t a l  stopband order should  be l e s s  than  

or equal  to  the t o t a l  passband order for  

a r e a l i s a b l e  SC f i l t e r .

Commands are available to insert, delete and clear template points.

Delay approximation offers a series of options

F i l t e r  c l a s s  : [ALLPASS]

At presen t  group d e la y  approximat ion i s  done 

by e q u a l i s a t i o n  due to  an a l l p a s s  f u n c t i o n .

Des ign mode : [EQUALISER, INDEPENDENT]

The group d e la y  may be approximated independent ly  

or to e q u a l i s e  the group d e l a y  peaking due to  

a p r e -d es ign e d  amplitude f i l t e r .
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G
ai

n 
(d

t3
)

freq. lower(dB) upper(dB)
0 . 0  - 1 2 0 . 0 0 0 0  - 5 0 . 0
1 5 0 0 0 . 0 0 - 1 2 0 . 0 0 0 0 - 5 0 . 0
1 5 0 0 0 . 1 0 - 1 2 0 . 0 0 0 0 0 . 0
1 9 9 9 9 . 9 0 - 1 2 0 . 0 0 0 0 0 . 0
2 0 0 0 0 . 0 0 - 1 . 0 0 0 0 0 0 0 . 0
5 0 0 0 0 . 0 0 - 1 . 0 0 0 0 0 0 0 . 0
5 0 0 0 0 . 1 0 - 1 2 0 . 0 0 0 0 0 . 0
5 9 9 9 9 . 9 0 - 1 2 0 . 0 0 0 0 0 . 0
6 0 0 0 0 . 0 0 - 1 2 0 . 0 0 0 0 - 7 0 . 0
1 0 0 0 0 0 . 0 - 1 2 0 . 0 0 0 0 - 7 0 . 0

- 4 0

- 6 0

- 8 0  -

-  1 0 0

- 1 2 0 -

0.0 0 . 2 0 . 4  0 .6

F r e q u e n c y  ( H z )

0. 8

Fig. A.3 Filter template with numeric description (inset)
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Approx. type : [CLASSICAL, GENERAL]

C l a s s i c a l  group d e lay  e q u a l i s a t i o n  i s  done to  

approximate constant  d e la y  by an e q u i r i p p l e  

f u n c t i o n .  However, general  e q u a l i s a t i o n  may be 

to  a r b i t r a r y  boundaries  and may inc lud e  high  

order touch p o i n t s .

Order : [1 -30]

Order o f  the a l l p a s s  f u n c t i o n .

Edge f r e q u e n c i e s  : [ 0 - f s / 2 ]

E q u a l i s a t i o n  i s  done over a s i n g l e  frequency band 

Normally i n s id e  the passband edges  o f  an 

amplitude f i l t e r .  Multi band e q u a l i s a t i o n  may be 

done by cascad ing  e q u a l i s e r s .

Remes i t e r a t i o n s  : [1-10]

Parameter c o n t r o l l i n g  maximum number o f  Remez 

i t e r a t i o n s  o f  approximat ion a lg o r i th m .  May need 

to  be in c re a s e d  for  high  order examples .

S c a l in g  i t e r a t n s . :  [1-10]

Parameter c o n t r o l l i n g  number o f  i t e r a t i o n s  to  

determine constant  d e la y  o f f s e t .

G r i d s i z e ,  accuracy : as before

Delay : C l a s s i c a l  d e la y  e q u l i s a t i o n  parameter

s p e c i f y i n g  ac c ep ta b le  d e la y  r i p p l e  over the  

frequency range.  Otherwise d e l a y  s p e c i f i e d  by 

t e m p l a t e .

As before commands are available to insert, delete and clear template points. The 

lower delay boundary may have an arbitrary constant offset which will be ignored.

F i l t e r  A t t r i b u t e s

T i t l e  : [aut omat i c ]

A f i l t e r  t i t l e  wi l l  be generated  a u t o m a t i c a l l y  from
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Implementat ion

Ladde r

Input s ta g e

Ladder ty p e

S y n t h e s is  mode

th e  p r e se n t v a lu e  o f  th e  f i l t e r  o p t io n s  e . g .

6 th  o rd er  e l l i p t i c  h ig h p a ss  LUD la d d er  SC f i l t e r

[SC, RLC, ACTIVE-RC]

F i l t e r  im p lem en ta tio n  may be s w i t c h e d - c a p a c i t o r , 

d i g i t a l ,  p a s s iv e  RLC or a c t iv e -R C . A ctive-R C  

n etw ork s are  a t p r e s e n t  o n ly  a v a i la b le  fo r  p a s s iv e  

la d d er  s im u la t io n .  D i g i t a l  d e s ig n  i s  p la n n ed .

[LUD, LEFT-DIRECT1, LEFT-DIRECT2, LEAPFROG, 

RIGHT-DIRECT1, RIGHT-DIRECT2, TWINTOR]

P a s s iv e  la d d er  s im u la t io n  m ethods (F ig .  A .4 ) .  

L e f t - d ir e c t  and r i g h t - d i r e c t  b e lo n g  to  th e  

c a t e g o r ie s  o f  ty p e -E  or ty p e -F  c o u p le d -b iq u a d .  

T w intor i s  o n ly  s u i t e d  to  b a n d sto p  s im u la t io n .

[ONE-PHASE, TWO-PHASE]

The ty p e  o f  inp u t s ta g e  to  a la d d er  SC f i l t e r  

can  be s e l e c t e d .  A tw o -p h a se  in p u t im p lie s  th a t  

a sa m p le -a n d -h o Id  c i r c u i t  must be added -  a 

s i z e a b l e  ov erh ea d  fo r  a sm a ll o rd er  f i l t e r .  I t  may 

be dropped by a d o p tin g  a s i n g l e  p h ase inp u t w ith  

th e  p e n a lty  o f  L D I-typ e fr e q u e n c y  rep o n se  

d i s t o r t  io n .

[DOUBLY-TERMINATED, SINCLY-TERMINATED]

R e s i s t i v e  te r m in a t io n  ty p e  o f  p a s s iv e  RLC la d d e r .  

D o u b ly -te r m in a te d  la d d e r s  a re  known to  have n ear  

o p tim a l p assban d  s e n s i t i v i t y .  However s i n g l y -  

te r m in a te d  s t r u c t u r e s  have e x c e l l e n t  dynam ic 

range and can improve c a p a c ita n c e  sp rea d  o f  an 

SC s im u la t io n .

[AUTOMATIC, INTERACTIVE, EXPERT]

T h is  param eter c o n t r o ls  th e  d eg re e  to  w hich  a 

u se r  need  g u id e  th e  p a s s iv e  la d d er  s y n t h e s i s  

o p e r a t io n . A u tom atic s y n t h e s i s  im p lie s  no 

in t e r v e n t io n  a t a l l ,  p ro d u c in g  a s ta n d a rd  la d d er  

s t r u c t u r e .  I n t e r a c t iv e  s y n t h e s i s  a l lo w s  th e  ze r o
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PANDA Vers ion  1 .0 0 0  1 6 - J u n - 8 9  AMSYS Fi lter  Compi ler

D E S IG N  : Decoder Output Filter D ESIG N ER  : n c a m o s.filte rs .»m jy j.D 07C  DATE 16 : 11 : 1989

D E F IN IT IO N

ORDER & SA

ORDER ft FS

FS & SA

p a s s b a n d  : o . o o p a s s b a n d  : 3 4 0 0  00

RIPPLE : 0 .0 3 LOWER BAND UPPER BAND

s t o p b a n d  : 0 . 0 0

FCLK : 128000 .00 r e j e c t i o n  : 0 . 0 0

5 t h  o r d e r  f 1 1 t e r  
6 z e r o s  a t  DC
F i n i t e  z e ro  p a i r  a t  6300.48Hz
F i n i t e  z e ro  p a i r  a t  9675.11Hz
P o le  p a i r  a t  3884.24Hz Q 3 .61
P o le  p a i r  a t  3287.45Hz Q 8 .91
P o le  a t  2664.74Hz 
5 t h  o r d e r  f i l t e r  
8 z e r o s  a t  DC
F i n i t e  z e ro  p a i r  a t  6300.48Hz

s t o p b a n d  : 6 0 0 0 . 0 0

r e j e c t i o n  : 4 0 . 0 0  I

AP PRO XIM ATI ON

ELLIPTIC

C H E B Y S C H E V

IN V C H EB Y

BUTTERWORTH

LEGENDRE

M IS C ELLA N EO U S

TYPE LEAPFROG

[ STRUCTURE

I OPTIONS

| W EIGHTING

1 W ARPINGI BEBEEH3I
 ̂ OPT FILE VALU ES j

START : 10.00

J STOP : 2 0 0 0 0 .0 0

NPO INTS : 200

SYNTHESISE

*•  WARNING ** Odd o r d e r  f i l t e r ,  
To ta l  c a p a c i t a n c e  r e q u i r e d  

4 8 .7 8  u n i t s  1 2
4 3 .52  u n i t s  2 1

S e c t i o n  1 2 2 .8  u n i t s
S e c t i o n  2 2 8 .7  u n i t s
S e c t i o n  3 1 8 .3  u n i t s
t o t a l  c a p a c i t a n c e  used  i s
w r i t i n g  swap f i l e s  
w r i t i n g  ALF f i l e

53 .79381 2 u n i t s

Fig. A.4 Filter realisation options
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seq u en ce  to  be d e f in e d .  E xpert s y n t h e s i s  mode 

a l lo w s  b oth  th e ze r o  seq u en ce  and th e  ty p e s  o f  

tw o -p o r t s e c t i o n s  to  be d e f in e d .

B i quad

P o le - z e r o

I d ea l

OA P a ra s .

: [TYPE-E, TYPE-F, AUTOMATIC SELECTION]

A b iq u a d r a t ic  ca sc a d e  may be com posed e n t i r e l y  

o f  ty p e -E  or ty p e -F  t o p o lo g ie s  a s  in  th e  f i r s t  

two p a ra m e ter s . A l t e r n a t i v e l y ,  an a u to m a tic  

s e l e c t i o n  o f  b iq u ad  to p lo g y  can  be made in  ord er  

to  m in im ise  th e  c o s t  in  c a p a c ita n c e  sp r e a d .

p a ir in g  : [NONE, RING, STATISTICAL, EXHAUSTIVE, 

INCREASING-Q]

The p o le s  and z e r o s  o f  a g iv e n  t r a n s f e r  

fu n c t io n  can  be p a ir e d  to  red u ce  th e  c a p a c ita n c e  

sp rea d  o f  a b iq u ad  SC r e a l i s a t i o n :

1 . NONE -  no p a ir in g  d on e , i n i t i a l  seq u en ce  

em ployed .

2 . RING -  n -p a r in g s  t r i e d  a c c o r d in g  to  s im p le  

modulo s h i f t - t e s t  r u le .  No ch a n g es in  

s e q u e n c e .

3 . STATISTICAL -  a random s e l e c t i o n  o f  100 

p a ir in g s  i s  t e s t e d .

4 . EXHAUSTIVE -  a l l  n! p o s s ib l e  p a ir in g s  are  

t e s t e d .  Not u s e fu l  above 1 4 th  o rd er  due to  

e x c e s s iv e  co m p u ta tio n  r e q u ir e d .

5 . INCREASING-Q -  p o le s  a re  o rd er ed  by 

in c r e a s in g  Q -fa c to r  from in p u t to  o u tp u t .  

Minimum n o is e  r u le .

: [IDEAL, NON-1 DEAL]

For th e  p u rp o ses  o f  netw ork  s im u la t io n  th e  c i r c u i t  

r e a l i s a t i o n  may be id e a l  or n o n - id e a l . For s w itc h e d -  

c a p a c ito r  c i r c u i t s  s w itc h e s  a re  g iv e n  f i n i t e  

o n - r e s i s t a n c e  and a m p l i f i e r s  f i n i t e  g a in  and  

band w id th .

: [GAIN, BANDWIDTH]

D.C. g a in  and 3dB bandw idth  o f  o p e r a t io n a l
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a m p l i f i e r s .  T y p ic a l v a lu e s  a re  shown in  F ig .  A . 5.

S w itch  R es. 

U n it C

Max. CSpread

S e a l in g  

Output form .

S c a l in g  range

S c a l in g  e r r o r  

F i l t e r  s ta g e

[ON-RESI STANCE, OFF-RESI STANCE]

[ lp F - lF ]

For an id e a l  SC netw ork  th e  d e f a u l t  u n it  c a p a c ito r  

v a lu e  i s  IF . For a n o n - id e a l  n etw ork  th e  v a lu e  i s  

lp F .

[ 10000]

P aram eter c o n t r o l l i n g  maximum t o l e r a b l e  c a p a c i t o r .  

I f  any c a p a c ito r  e x c e e d s  t h i s  v a lu e  i t  i s  d e le t e d  

from th e  c i r c u i t .  N orm ally , t h i s  i s  o n ly  r e q u ir e d  

to  d e l e t e  c a p a c i t o r s  c a n c e l l e d  by z e r o s  a t ±2 f s .

: [ON, OFF]

S c a l in g  fo r  maximum dynam ic ran ge and minimum 

c a p a c ita n c e  sp rea d  may be s w itc h e d  o f f  or on .

: [ SCNAP, SWITCAP, SWAP, SPICE]

N e t l i s t  o u tp u t fo rm a t. A ctiv e-R C  n etw o rk s may be 

a n a ly s e d  by SCNAP or SPICE. S w itc h e d -c a p a c ito r  

n etw ork s by SWAP, SWITCAP or SCNAP.

: [ 1 . 0 - 1 0 . 0 ]

F a c to r  c o n t r o l l i n g  fr e q u e n c y  l i m i t s  

o v er  w hich  dynam ic range s c a l i n g  i s  p erfo rm ed . 

E x p ressed  a s  a f a c t o r  o f  cu r r e n t p a ssb a n d  w id th

i . e .  1 . 1  i s  s c a le d  b etw een  1 0 % o u t s id e  p assb an d  

e d g e s .

: [0-60dB ]

A llo w a b le  l o s s  o f  dynam ic range a s  t r a d e - o f f  

wi t h  c a p a c ita n c e  sp rea d  o f  SC f i l t e r .  O fte n  6 dB 

i s  th e  most u s e fu l  v a lu e  a s  i t  can  h a l f  th e  

la r g e s t  c a p a c ito r  r a t i o  i n t he  f i l t e r .

: [AMPLITUDE, CROUP-DELAY EQUALISER]

The f i l t e r  s ta g e  th a t i s  c u r r e n t ly  b e in g  co m p iled .
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PANDA Vers ion 1 .0 0 0  1 6 - J u n - 8 9  AMSYS Fil ter  Compiler

D E S IG N  : Decoder Output Filter DES IG N E R  : n cem os.filtere .im sye.D 07C  DATE 16 : 1 1 : 1989 12 : 10 : 38

D E F IN IT IO N

ORDER & SA

ORDER & FS

FS 8. SA

RIPPLE : 0 .0 3

F C IK  128000 00

APP ROX IM AT IO N

ELLIPTIC

C H E B Y S C H E V

I N V C H E B Y

BUTTERWORTH

BESSEL

LEG ENDRE

5 t h  o r d e r  f i l t e r  
0 z e r o s  a t  DC
F i n i t e  z e r o  p a i r  a t  6300.48Hz
F i n i t e  z e r o  p a i r  a t  9675.11Hz
P o le  p a i r  a t  3084.24Hz Q 3 .61
P o le  p a i r  a t  3287.45Hz 0 0 .91
P o le  a t  2664.74Hz 
5 t h  o r d e r  f i l t e r  
0 z e r o s  a t  DC
F i n i t e  z e r o  p a i r  a t  6300.48Hz

M I S C E L L A N E O U S

M a x i m u m  c a p a c i t a n c e  s p r e a d  ( u n i t s )  : j o o o . o o

Uni t  c a p a c i t o r  ( F )  . 2 . 0 0 E - 0 1 3

O n  r e s i s t a n c e  ( o h m s )  : 1 0 0 0 . 0 0

Of f  r e s i s t a n c e  ( o h m s )  : 1 0 0 E + 0 0 7

O p a m p  g a i n  : 3 0 0 0 0 . 0 0

O p a m p  b a n d w i d t h  ( H z )  : 2 B 0 E * 0 0 6

S C H EM A TIC

4 3 .52  u n i t s  2 1
S e c t i o n  1 2 2 .8  u n i t s
S e c t i o n  2 2 0 .7  u n i t s
S e c t i o n  3 1 0 .3  u n i t s
t o t a l  c a p a c i t a n c e  used  i s
w r i t i n g  swap f i l e s  
w r i t i n g  ALF f i l e

53.793812 u n i t s

p a s s b a n d  : 0 . 0 0 p a s s b a n d  : 3 4 0 0 . 0 0 START : 10 .00

LOWER BAND UPPER BAND SIM U LA TIO N

s to p b a n d  : 0  0 0 s to p b a n d  : Booo.oo STOP : 2 0 0 0 0 .0 0

re je c t io n  : 0 0 0 re je c t io n  : 4 0  00 N POINTS : 200 LOG

Fig. A.5 Non-ideal circuit parameters
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At present  i t  may e i t h e r  be an ampl i tude f i l t e r  

or a group de l ay  e q u a l i s e r .  In f u t u r e ,  t h i s  may be 

extended to a n t i - a l i a s i n g  f i l t e r s  and dec i mat ors .

A .1.2 Amplitude approximation (APPROX)

This program will design a transfer function to filter amplitude specifications. 

If the approximation type belongs to a classical form then a series of explicit 

formulae are available for the pole and zero positions. A  report is given of the 

achieved order, passband and stopband edge frequencies, passband ripple and 

stopband attenuation. This is very fast and reliable up to extremely high orders 

(> 5 0 ). When the approximation belongs to the general IIR category a 

Remez— type optimisation algorithm is invoked. The transfer function is then fitted 

within an amplitude template (Fig. A .4). In both cases the output is a factorised 

transfer function scaled to maximum transmission of OdB.

A .1.3 Group delay approximation (DLA)

This program designs an allpass group delay function of a specified order 

within specified bounds. An iterative Remez— type algorithm is once again 

employed, giving a report of convergency. The output is a factorised allpass 

transfer function in the same form as the amplitude transfer function above.

A. 1.4 Prototype design (LAD)

This program is an implementation of the classical insertion loss synthesis 

method for passive ladders. It takes a normalised factorised transfer function and 

transforms it into the component values of a passive ladder prototype. Negative 

element values may be synthesised from poles placed on the real axis of the 

s— plane. All polynomials are maintained internally in factored form to preserve 

accuracy. The program can be coupled to an itarative passive ladder design stage 

for further accuracy refinement.

A .1.5 All—pass ladder design (ALPLAD)

A special singly terminated ladder is required for efficient design of SC 

all— pass ladder simulations. This program is a specially modified version of the 

previous one.
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A .I .6 Transfer function plotting (TFPLOT)

Evaluate the factorised transfer function over a specified frequency range 

with a certain number of points. This is a very fast way of viewing the filter

transfer function. Both group delay and amplitude are plotted (Fig. A .6 ).

A .1.7 Circuit design (DSN)

Designs an SC circuit to simulate the current transfer function or passive 

prototype. The circuit is scaled for maximum dynamic range and minimum

capacitance spread. A report of the saving in total capacitance by dynamic range 

optimisation or pole— zero pairing is issued. An internal netlist of the designed 

filter in block format is produced.

A .1.8 Internal filter analysis (ANALYSIS)

Analyses the current filter design from its matrix system description. The 

amplitude and group delay are evaluated. Sensitivity of amplitude and group delay 

with respect to component value deviations are also calculated according to a 

variety of different norms. The dynamic range performance of the filter is also 

estimated by recording the minimum internal voltage levels. A rescaled filter 

matrix system and netlist are also produced.

A .1.9 Network linker (LINKER)

This program links netlists together. Networks can be added in series or 

parallel. This is primarily of use to cascade group delay equalisers with their

amplitude filter.

A .1.10 Netlist output (SCOUT)

Translate the internal filter netlist to external form suitable for a network

analysis program or a layout synthesiser. An analysis range is prompted for. 

Redundant components are eliminated at this stage. A report of the final cost of 

the filter in components and total capacitance is issued (Fig. A.7). A typical 

netlist is shown in Fig. A .8 .
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A.1.11 Optimisation (OPTM)

Create error function between analysed filter performance and ideal specified 

passband response. This function will pre—warp the original filter template.

A .1.12 Schematic generation

GEC Research have written software which will generate circuit schematics of 

SCF designs (Fig. A.9).

A .1.13 Automatic layout

GEC Research has added the facility of automatic layout of the filter 

networks to PANDDA (Fig. A .10). Further description of PANDDA in its 

industrial environment can be found in the advertising material of Fig. A . l l .
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PANDDA —  Switched Capacitor Filter Output —  PANDDA 
Version 1.0 (c) R. K. Henderson 13-NOV-89 20:16:09

Design : 14th order elliptic bandpass type-e biquad sc filter 
Output file format : SCNAP 

Start frequency ? <0.1000E-01>
Stop frequency ? <0.1000E+06>
Number of points ? <201>

! Total capacitance = 320.1165units 
I Capacitance spread = 43.53361units 
! Average capacitor = 7.807721units 
1 Number of capacitors = 41 
I Number of switches = 48 
I Number of op-amps = 10

Fig. A.7 Report from filter output program (SCOUT) showing 
filter statistics
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! Total capacitance = 32.41205units 
! Capacitance spread * 5.782805units
1 Average capacitor = 2. 315146units Statistics
I Number of capacitors = 14 
! Number of switches = 20 
! Number of op-amps = 3
title '3th order elliptic lowpass leapfrog ladder sc filter' 
analyze

freq 0.1000000E-01 10000.00 lin 201 
output 2 

end
timing

def
T - 0.2500000E-04

end clock w a v e f o r m  definitionseven T (0 0.0) (1 1.0) (2 1.0) 
odd T (0 1.0) (1 0.0) (2 0.0) 

end
subckt opamp 1 2  3 4 (gain, BW) 

r 1 0 500M 
r 2 0 500M 
r 1 2 2M
vccs i 2 5 o l.o o p - a m p  m o d e l  definition
r 5 0 gain/100 
c 5 0 50/PI/gain/BW 
vccs 5 0 3 4 4/3 
r 3 4 75 

end
circuit 
def

ron = 1000.000 
roff - 0 .1000000E+08 

end
vs 1 0 ac 1.000000 0.0 
opamp 0 3 4 0 (100000.0, 10.00000)
opamD 0 5 6 0 (100000.0, 10.00000)
opamp 0 7 2 0 (100000.0, 10.00000)
opamp 0 22 21 0 (1.000000, 0.1000000E+09)
c 9 10 0.2242162E-11 
c 9 12 0.2242162E-11 
c 13 14 0 .1435307E-11 
c 15 14 0 .1000000E-11 
c 17 10 0 .1435307E-11 
c 19 12 0.1000000E-11 
c 4 3 0.5645035E-11 
c 6 5 0 . 5782805E-11 
c 2 5 0 .1478378E-11 
c 6 7 0.2121926E-11 
c 2 7 0.4028968E-11 
c 22 0 0.1000000E-11 
c 23 5 0.1000000E-11 
c 24 10 0.2000000E-11 
s 4 9 odd 
s 9 0 even 
s 10 5 even 
s 10 0 odd 
s 12 7 even 
s 12 0 odd 
s 6 13 odd 
s 13 0 even
s 14 3 odd 
s 14 0 even 
s 2 15 odd 
s 15 0 even 
s 6 17 even 
s 17 0 odd 
s 2 19 even 
s 19 0 odd 
s 1 22 odd 
s 21 23 even 
s 21 24 odd 
s 24 0 even 
end

Fig. A.8 Netlist of filter in SCNAP format

switch resistances

op-am ps
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A D V A N C E D  M I C R O E L E C T R O N I C  S Y S T E M S

SW ITCH ED -CAPACITO R F IL T E R  EXPERTISE
Background

• Work performed in the area of switched capacitor filters since 1979
• First SCFs implemented on silicon in 1981
• System chips designed including SCFs

♦ PCM Combo
♦ V22 bis Modem Front End
♦ Speech codecs
♦ Echo cancelling transceiver
♦ SCF ASICs

Upper limits of performance achieved
20th Order voice band filters 
Simpler filters at cutoff frequencies up to 250KHz 
Low distortion filters (THD typically less than -90dB)
Low noise filters (Dynamic range typically 90dB)
Multiple filters on a chip maintaining > 70dB crosstalk isolation

■ Full continuous time anti-aliasing and anti-imaging filters also provided.

SCF Design and Compilation suite

AMSYS has developed an extensive SC Filter compiler suite that allows rapid design 
and layout of both standard SC Filters and high complexity, arbitrary specification 
filters.

The whole suite is presented in a menu-driven environment running on Apollo 
workstations and allows a system designer to specify his requirements interactively with 
AMSYS. The following features are supported :

Low-pass, band-pass, high-pass, band-stop and all-pass types
Standard Butterworth, Chebvshev, Elliptic, Bessel etc approximations
General amplitude responses specified by arbitrary piecewise linear templates 
and degree of flatness of frequency bands.
Superimposed weighting functions e.g. sincx, LDI terminations etc 
Group-delay equalisation using all-pass functions 
Cascaded biquad and several ladder based configurations available 
Automatic generation of SCF schematic diagrams 
Detailed simulation of real effects in SCFs via SWAP1 

Automatic generation of SCF layout for biquads

Note 1 SWAP is a trademark of Silvar Lisco.

Advanced Microelectronic Systems 
PO Box 227 
East Lane 
Wembley 
Middlesex HA9 7TZ
<D The General Electric Company pic, 1988. This document gives only a general description o f  the product(s) or service(s) and  
shall not form  part o f  any contract. From time to time changes may be made in the products or services or conditions o f  supply.

Tel : 01 -  908 9200 
Fax : 01 -  904 7582

290559 -  110

Fig. A .ll AMSYS advertising material
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A D VANCED M ICROELECTRONIC SYSTEM S

SW ITC H E D -C A P A C ITO R  FILTERS

integrated filters
Traditional techniques for the implementation of filters in PCB or thick-film hybrid based  system s have 
relied on accurate LCR or RC time constants to produce accurate  filter responses. Passive filters and 
thick-film hybrids are  expensive, and must be trimmed in production to m eet perform ance requirem ents. 
Stability and long-term  reliability of such system s can also be a problem.
Typical CMOS p rocesses cannot integrate inductors, and the absolute accuracy of resistors and capacitors 
is not well controlled, leading to RC time constants with a tolerance typically worse than ±40%  which is 
also tem perature and signal-level dependent. Audio-frequency time constants also require large RC 
values and consequently high silicon area.

Switched-capacitor filter techniques
Sw itched-capacitor filter techniques have been developed over the last 10 years, and are particularly 
suitable for integrated circuit applications which require precision filtering. The basic principles are 
essentially very simple.
Consider a simple resistor and first-order RC filter network in passive and sw itched-capacitor forms.

Passive network : Sw itched-capacitor equivalent :

V IN ^ Y yvV O U T

1 = ( VIN -  VOUT ) / R

—#  Csw #—  For each twitch transition, a 
\  | charge Q flows

•  1 •  Q = Csw ( VIN -  VOUT )
1 J If the switches are clocked at 

/ / /  / s s  a rate Fclock. the charge 
flowing per second is given by

1 = ( VIN -  VOUT ) . CSW . Fclock

- A M A - j -

Time constant = RC

— •  Csw « ---------

1

Time constant = C / ( Csw . Fclock )

Provided the capacitors are switched at a rate much higher than the signal frequency, switched-capacitor 
time constants depend only on the matching accuracy of capacitors and the clock frequency. Very 
complex filtering functions can be performed based  on extensions to this technique. There are two mair. 
approaches, usually starting from a passive LCR ladder filter :
O Simulate the passive ladder voltages and currents directly.

There are several techniques available, leading to filters with theoretically low sensitivity to compone 
values, although in practice such structures are only used in the design of lowpass filters due to 
problems with their implementation on silicon.

O D ecom pose the passive ladder into its poles and zeros, and im plem ent pole-zero pairs as biquadra: 
sections.
This is a very popular technique, as it is relatively easy  to autom ate the design and layout of any 
filter shape in such an architecture. Allpass filters can also be designed for group-delay equalisation.

Advanced Microelectronic Systems Tel : 01 -  908 9200
PO Box 227 Fax : 01 -  904 7582
East Lane
Wembley 280388 -  103
Middlesex HA9 7TZ
©  The General Electric Company pic. 1988. This document gives only a general description o f  the product(s) or service(s) and  
shall not fo rm  part o f  any contract. From lim e to time changes m ay be m ade in the products or services or conditions o f supply.
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ADVANCED M ICROELECTRONIC SY STEM S

SW ITCHED -CAPACITOR F ILTER S  -  PERFORMANCE

These performance figures are intended to give a general guide to the capabilities of sw itched-capacitor filters 
on a particular p rocess, and apply only to the process specified below.

Process G en eric  3 m icron  d o u b le  p o ly  s in g le  m e ta l p - w e l l  C M O S  p r o c e s s .

General points

#  Any filter shape can be synthesised using AMSYS proprietary software.

#  There is no limitation on the order of the filter. Filters from 2nd to 20th order have been implemented.
#  Several filters can be implemented on the sam e chip.

50 orders of filtering on a chip is not unusual.

Performance guidelines

These figures indicate perform ance levels for a typical filter in the given technology. Som e performance 
figures are highly dependent on the filter type.

•  5V or 10V operation
•  Maximum cutoff frequency

•  Clock to cutoff frequency ratio

•  DC offset voltage
•  Current consumption
•  Power supply rejection
•  Slew rate
•  Dynamic range
•  Crosstalk between filters on sam e chip
•  Typical standard amplifier perform ance

SC filter amp

Standard off-chip driver

30kHz to 50kHz
Can be higher depending on application and filter complexity. 
>20
Lower values make anti-aliasing m ore difficult.
10mV
1 OOjiA per filter order

Dependent on filter complexity. Figures on request.
>5V/ns
>70dB dependent on filter complexity.
>70dB dependent on chip complexity.

Signal voltage range Vdd -  0.5V
Vss + 0.5V

Drive capability 100kH
20pF

Unity-gain bandwidth 3MHz

Signal voltage range Vdd -  0.5V
Vss + 0.5V

Drive capability <1kC
400pF

Unity-gain bandwidth 4MHz

The standard amplifiers above are designed to m eet the performance levels required for the majority of filter 
applications. Other amplifiers are available with higher drive level, voltage range and unity-gain bandwidth.

Advanced Microelectronic Systems Tel : 01 -  908 9200
PO Box 227 Fax : 01 -  904 7582
East Lane
Wembley 280388 -  109
Middlesex HA9 7TZ
€> The General Electric Company pic, 1988. This document gives only a general description o f  the product(s) or service(s) and  
shall not form  part o f  any contract. From time to time changes may be made in the products or services or conditions o f  supply.



A D V A N C E D  M I C R O E L E C T R O N I C  S Y S T E M S

SW ITC H ED -C APAC ITO R F ILTE R  SYN TH ESIS

Features
•  Starting point -  LCR ladder or pole-zero specification file from AMSYS  passive filter synthesis software.

•  Choice of biquad or several ladder realisations, including LDI and Bilinear.

•  Rapid estimation of silicon area.
•  Simulation of ideal and non-ideal frequency, impulse response and sensitivity analysis, 

using s ta te -o f-the-art simulator -  Silvar Usco SWAP "*.

•  Parasitic capacitance extraction, back-annotation and resimulation of physical circuit layout.

•  Automatic generation of schematic diagram.

•  Automated layout of filter cells.

•  Automatic layout generation of continuous-time anti-aliasing and smoothing filters.

SWCAPFS Version 1.100b 28-Jan-88 AMSYS Switched-Capacitor Filter Synthesis
DESIGN: J.0WPASS7 DESIGNER ■ Ilea Amos

FILTER •  10WPASS

PASSBAND EDGE •  3400.0

STOPBAND EDGE* 70000

UNITCAP 0IHE8SI0N (am) : 23

UKITCAP VALUE (pF}:0A 0 ' ' '

B l i & S

[rtnrryil
TOTAL CAPACITANCE ■ 241 units

LARGE CAPACITORS * . 33.7 2 6 0  24.1 anils

AREA ESTIMATE« - 1400 *  6 6 0 0 0 *  924000 sq on

SWAP FILE* LOWPASS7.NOF

Capability
The AMSYS sw itched-capacitor filter synthesis software is an integrated CAD package to generate 
sw itched-capacitor filter blocks from an LCR ladder or pole-zero  specification, usually defined using the 
AMSYS passive filter synthesis suite. Customers can call on the extensive expertise within AMSYS to assist and 
advise on sw itched-capacitor filter specification and realisation, and integrate such filters into larger systems 
with associated anti-aliasing and smoothing filters.
The synthesis of the switched-capacitor filter design has been completely autom ated, the program allowing 
designers to select the particular filter topology which results in the lowest silicon a rea  or gives the lowest 
sensitivity to capacitor values. Theoretically, ladder structures have lower sensitivity than cascaded  biquad 
realisations, but are normally only used in lowpass filters due to silicon implementation problem s. Biquadratic 
sections can be used to synthesise any filter response, including allpass sections.
The software runs on Apollo workstations, and produces a sw itched-capacitor filter topology with full dynamic 
range scaling within seconds. The resulting circuit may then be simulated to include non-ideal effects such as 
opam p gain-bandwidth and switch resistance.
Ideal and non-ideal simulation responses can be com pared before and after layout, so that any parasitic 
capacitances occuring in the integrated circuit layout of complex filter structures can be rem oved prior to 
manufacture.
Switched-capacitor filters up to 20th order have been implemented successfully using this synthesis package.

Advanced Microelectronic Systems Tel : 01 -  908 9200
PO Box 227 Fax : 01 -  904 7582
East Lane
Wembley 280388 -  102
Middlesex HA9 7TZ
C  The General Electric Company pic. 1988. This document gives only a general description o f  the product(s) or service(s) and  
shall not form  part o f  any contract. From time to time changes m ay be m ade in the products o r services or conditions o f  supply.
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APPENDIX B : ANALYSIS OF DISTRIBU TED- RC NETWORKS

B .l Distributed—RC networks

Active filters with distributed RC components have found application recently 

as anti-aliasing/smoothing filters in analog sampled data systems [1]. The choice

of a distributed RC network over a discrete network has the following advantages.

1. The passband is flatter for a distributed RC network compared with a 

discrete network with the same — 3dB corner frequency, while the stopband rolloff 

is much steeper.

2. A  large reduction in silicon area due to the overlap of resistance and 

capacitance areas.

3. Elimination of substate power supply coupling of discrete polysilicon 

resistor realisations.

Some additional improvement in the frequency response of the distributed 

network is possible if the distributed RC components are tapered: a steeper rolloff

in low pass filters and a narrower rejection band in notch filters may be obtained

[2]. Commonly available circuit analysis programs are not able to analyse tapered 

components so that the potential benefits of tapering have not been realised in 

current designs [3—4]. An interesting recent development concerns the use of 

distributed— RC elements to design accurate continuous— time integrator structures 

whose time constants track with temperature and processing variations [5].

B .2 Program for the analysis of distributed— RC networks

A computer program capable of analysing networks of discrete and distributed 

RC components in the frequency domain has been written. The distributed RC 

components may be tapered in a uniform, linear or exponential manner.

The program is capable of producing a frequency analysis of linear networks 

of discrete and distributed components. Inputs are requested interactively from the 

user. A file containing a network description and (possibly) some default analysis 

options must be written. Once the program is run, the user may specify the 

input and output filenames, the frequency range and the type of frequency step, 

and the output nodes of the network. Any network file may then be loaded and 

analysed and the results viewed at the terminal or written to an output file. The 

output of the program is a list of the magnitude and phase of the voltages at the
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output nodes of the network. The magnitude may be in dBs or absolute and the 

phase is in degrees.

The program is capable of analysing the following lumped elements.

1. Inductors

2. Capacitors

3. Resistors

4. Independent a.c. voltage and current sources

5. Controlled sources (VCVS, CCVS, VCCS, CCCS)

The program is capable of analysing the following distributed elements.

1. uniform RC lines (URC)

2. linearly tapered RC lines (LRC)

3. exponentially tapered RC lines (ERC)

The definition of these RC lines allows for an arbitrary number of tap 

points on the surface of the distributed resistor.

The main stages in the analysis procedure are given below.

S tep  1: read a network description f r o m  an input f i l e .

Step 2: check network topology and build a lis t  o f  node numbers used.

S tep  3: f o r m  M N A  system matrices f o r  d iscrete components

(G +  sC)V =  W

where G and C  are m o d i f ie d  nodal admittance m atrices and  W is  an excitation  

vector.

S tep  4: p r e -p r o c e s s  d is tr ibu ted  RC components. This involves sp lit t ing

tapped  lines into individual d is tr ibu ted  sections and p r e —calculating constants  

used very freq u en tly  in later calculations.

S tep  5: fo r m  a system  o f  complex linear equations describ ing the network

at frequency

(G *+■ }uC +  Dre +  jDjm)V — W

where  D  =  Dre -+■ jDjm is a nodal adm ittance m atrix  o f  the d istributed

components in the circuit.  This is fo r m e d  by calculating the real and imaginary

components o f  the y —parameters o f  the d is tr ibu ted  components and adding them 

into the system m atrix  [2]. These y —parameters have no constant or linearly
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dependent on frequ en cy  terms and so must be recalculated at each new

fr e q u e n c y . In the case o f  the linearly tapered RC lines this involves evaluating  

Bessel functions  by a series approximation.

S tep  6: LU  fa c to r ise  the M N A  m atrix  using the Crout method.

S tep  7: solve f o r  the node voltages by fo r w a r d  and backw ard  substitution.

S tep  8: repeat f r o m  S tep  5 at each new frequ en cy  o f  interest

B.3 Analysis examples

A series of analyses of circuits containing distributed— RC lines is illustrated. 

Fig. B .l gives a comparison of the results of a SPICE analysis of a uniform

distributed RC line simulated as a succession of many RC sections with that of an

exact model [4], A large number of RC sections is required to produce a

realisatic analysis result, at great cost in computer time. Fig. B.2 shows that by 

increasing the degree of taper ( r )  of a linearly tapered distributed RC line the 

roll—off can be increased [2], Fig. B.2 shows a simple distributed—RC notch 

circuit, variation of the taper factor can greatly increase the selectivity. Finally 

the frequency response of a 3rd order lowpass filter is shown in Fig. B.4 with 

two sets of optimised component values [6 ].
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Fig. B.1 Comparison of approximate (SPICE) analysis of URC network 
with exact response
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Fig. B.2 Variation of frequency response of linearly tapered 
distributed-RC line with taper factor
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Fig. B.4 Frequency response of various 3rd order lowpass URC filters
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