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and Systems, December 1990, Vol.137, No.6, pp.439-445 (with Li Ping?). (50%) 
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50. "Design of high order sigma-delta modulators with minimum weighted noise", Proc. 
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3. Statement of Contribution and Originality 

The motivating forces behind the research and scholarship described in my 

publications in the learned society literature are quite diverse: some are pure research, some 

are responses to an industrial problem requiring a solution or an improvement to that which 

currently exists; others reflect the quest to close obvious gaps created by the progress of 

technology or the need to convey knowledge as an educator. As an engineer my ultimate 

goal has always been to find solutions to real problems, in the hope that some of these might 

translate through to commercial products or facilitate the design of electronic apparatus that 

will ultimately redound to the benefit of mankind. 

A selection of my published work is presented under the following headings: 

Active Filter Synthesis and CAD (Section 4) 

Network Analysis and CAD (Section 5) 

Communication Circuit Design (Section 6) 

Analysis and Design of Sigma-Delta Modulator Systems (Section 7) 

Educational Papers (Section 8) 

Papers under Review (Section 9) 

I acknowledge the fruitful collaboration with colleagues and postgraduate students 

over many years, resulting in publication under joint authorship. Whilst it is impossible to 

delineate precisely the balance of contribution, I was responsible in general for the 

conception and initiation of the major themes of the work and have carried the task of 

maintaining the continuity of topics over an extended period of time. A l l the work 

undertaken by my research students and assistants was supervised by me at all times. 

Proportions of contribution have been attributed in summary list. I adopted the principle of 

listing authors alphabetically, though occasionally where one student has contributed 

significantly more than another student, he has been given precedence. 
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3.1 Active Filter Synthesis and CAD (Section 4) 

(Papers 2, 6,7, 8, 10, 12, 18, 21, 22, 32, 34, 35, 37, 38, 39, 40, 41. 42, 43, 44, 45, 47, 48, 52, 

54, 56, 58, 59). 

The origins of active filter theory emerge from classified work carried out during 

World War I I , though it was not until demands on circuit size were imposed by Space 

exploration that the real stimulus for serious work appeared. The whole topic gained new 

impetus from the requirements imposed by IC developments, a demand which persists to the 

present time. The initial designs were committed to low frequency and audio band operation, 

but this expanded over the years so that the range of frequencies being covered now 

extends from below 1 Hz to 500 MHz and beyond. In the development of synthesis 

techniques, the aim has been towards general applicability rather than specific solutions for a 

particular frequency range or building block. However, various examples are given in the 

works cited, where application to certain problems with specified fabrication technologies 

have required a particularisation of certain general theories to good advantage. 

The early papers [2, 6, 7] address the design of multi-loop feedback active filters, the 

development of a general synthesis theory and the production of a number of new circuit 

implementations. These realisations employed the voltage operational amplifier as the basic 

active element. This has transpired to be a very significant operational element in the whole 

of active filter work and v/hereas early work on analysis anticipated the emanation of other 

amplifiers, it was many years before some of these were actually utilised. Three more early 

papers [8, 10, 12] show further development of synthesis theories and various operational 

amplifier configurations, in the realisation of basic elements such as floating inductors or 

more hierarchical devices such as active circulators and transformers. 

A major contribution to the theory of active equivalent networks is represented by 

three papers [18, 21, 22]. Prior to this, such theory had been limited to classical passive 

networks and the only attempt at the extension to active topologies proved to be very 

restricted. These papers develop the rigorous mathematics for the general equivalence 

transformation in active networks containing operational amplifiers. When used in 

conjunction with a general constrained nonlinear optimisation routine, significant 



improvements in practical realisation parameters such as component spread and total sum, 

together with minimisation of component sensitivity, were reported- At a later date these 

principles were developed further in the context of switched capacitor networks [32, 34] and 

again significant improvements to network implementation costs were demonstrated. 

With the advent of switched-capacitor (SC) implementations of filter networks in 

integrated circuit form, a major step forward was apparent in the design of filters for the mass 

communication market. This technology has proved to be most reliable and extremely 

robust. The initial designs were very closely linked to existing active-RC solutions and could 

be classified as cascades of biquadratic sections or leapfrog ladder approaches. The former 

had an early attraction because of ease of design in a mathematical sense. It had been 

established many years earlier, that active filter realisations, derived from a passive ladder 

prototype circuit, could demonstrate superior sensitivity properties. However SC ladder-

based synthesis was troubled by inexact simulation of termination resistances and by the 

requirement for a strays-free realisation, in order to avoid the deleterious effects of stray 

capacitance which is invariably present in the integrated circuit realisation. A series of 

papers [ 35, 37, 38, 39, 41, 42, 43, 45, 47, 48, 52, 54, 56, 58] began to address the above 

problems in the general synthesis of ladder-based SC filters. It rapidly became apparent that 

not only was there a good solution to the difficulties associated with the existing ladder 

approach (leapfrog), but a completely general matrix scheme could be formulated to describe 

the whole synthesis process. Furthermore, many new realisations were forthcoming merely 

by applying standard matrix decomposition techniques. The general theory was equally 

applicable to active-RC and digital ladder-based filters [37, 39] and many new realisations 

followed. Later, the same general theory was also found to be applicable to 

transconductance-C [52, 56] and switched-current (SI) ladder-based filters [58]. 

Simultaneously, two other important developments were taking place. The first was the 

extension of the realisation of ladder-based allpass filters from purely digital configurations 

to active ones [41]. This circumvented the need for lattice type or differential structures and 

retained the essential low sensitivity ladder property; a further benefit was that these 

realisations were also encompassed within the matrix formulation. A second major 



breakthrough was the development of a completely arbitrary approximation theory [42] 

which could include all the properties of existing classical approximations, together with a 

new high order touch point concept and general template weighting functions. The general 

theory could be used to approximate to any set of specifications - commonly amplitude or 

group delay. These developments not only allow a designer the freedom to explore many 

unusual approximations whilst maintaining readability of the circuit, but other very 

important practical consequences follow. Many low frequency stop-band zeros can be 

forced to the origin, thus reducing the number of large time constants required in circuit 

realisation. Specific, sharp notches produced by high order zeros can be incorporated to 

shape the characteristic and remove particular frequencies. Non-switched capacitance 

feedthrough paths can be eliminated, thus breaking long delay free paths that cause restricted 

settling times when many amplifiers appear in series connection. High order touch points 

can be used within the passband to create "smoother" ripples which are particularly helpful at 

the band edges in reducing circuit sensitivity and group-delay equalisation requirements. 

Ripple characteristics can be tapered to reduce circuit sensitivities. Weighted passbands can 

be developed to satisfy the frequency characteristics demanded by other processes within a 

communication system and to absorb or equalise the amplitude characteristics of 

transmission lines. Most importantly, a new form of optimisation was now available in 

which the order of the search space was not dictated by the number of circuit components, 

but simply by the original order of approximation. Optimisation could be used to offset the 

effects of non-idealities in the circuit (amplifier gain/bandwidth, switch resistance, integrator 

imperfections in switched-current (SI) realisations). It could also counter the effects of 

numerical truncation due to quantisation introduced by the assembly of components such as 

capacitors and even transistors from combinations of unit-sized elements in integrated circuit 

layout. Thus a unified scheme based on the iterative Remez method was applicable to both 

filter approximation and optimisation. A combination of various ideas also enabled progress 

on the realisation of canonic ladder-based structures, when a modified function is actually 

synthesised and then input circuitry of the resultant filter is adjusted to return the original 

response [43, 56]. The climax of this work was a seminal paper on the methodology for 



integrated ladder filter design [45] and the application of many of these principles to 

industrial problems. One design [47] has been of noted commercial success with large 

volume sales. The group of papers [41, 42, 43] were awarded the 1992 I E E J.J. Thompson 

Premium. 

The philosophy behind the software suite which incorporates the general synthesis 

theories was outlined [48] and developed to a commercial level as X F I L T software. The 

control of accuracy during the synthesis of high order networks is assured by methods 

conventional and novel. Recent extensions include multirate SC and SI systems design [59], 

when more attractive solutions can often be obtained for filters with particularly demanding 

specifications, for example very narrow band ones. Powerful network analysis software [49, 

53] has been incorporated and the suite can deliver full sensitivity and noise analysis to aid 

the design task. A wide range of biquadratic sections has been added to provide a 

comprehensive synthesis tool. A typical application might require the comparison of 

numerous possible solutions to a set of filter specifications on a sensitivity basis [54]. 

Two other papers on filter design [40, 44] have been included in this section. These 

describe the combined work of a team of investigators including the author, which produced, 

in 1990, the highest frequency SC filter known to date. GaAs fabrication technology was 

employed and many design obstacles needed solution. My contribution was extensive circuit 

simulation using software outlined in the following section. The simulations revealed 

limitations due to initial amplifier and switch designs and it was possible to incorporate 

certain improvements prior to fabrication. 

3.2 Network Analysis and CAD (Section 5) 

(Papers 1, 3,4, 5, 9, 13, 14, 15,16, 19, 20, 24, 25, 26, 28, 29, 30, 31, 33, 36,49, 53, 57). 

Network analysis is the handmaiden of circuit synthesis and design. Traditionally the 

linear analysis methods consisted of general matrix or topological techniques together with a 

"bag full of tricks" - simplifying transformations, symmetry considerations, equivalent 

network and superposition theorems. Certain networks, such as ladders, lent themselves to 

closed form solutions. Before the advent of computers, the circuit designer was forced into a 



selection of special techniques and approximations for his analysis tools. Over the past 30 

years, as computing power has become more readily available, it has been possible to observe 

the move away from the analysis magician towards general matrix methods which are 

capable of providing analysis to whatever degree of detail and accuracy is required by the 

designer. The papers selected herein reflect this general trend quite accurately. The forward 

progress has not always been a smooth transition from particular to general, as evidenced in 

the case of SC networks. During the peak of activity in their development throughout the 

early 1980's, a variant on the traditional approach appeared, when methods for computer 

analysis of such networks were divided into ideal and non-ideal. The former assumed ideal 

devices (switches and operational amplifiers) within the network and permitted 

straightforward and quick solution for the first pass in design. When non-idealities (finite 

switch resistance, finite GB values for the amplifiers) were allowed in the device 

macromodels, then approximations, gross or otherwise, were required to produce any 

answers in a finite computing time. And how accurate were these solutions anyway? The 

techniques and routines have been refined to such an extent that the user of a modest 

workstation or PC can now expect to obtain reliable answers for complex noise or sensitivity 

analysis of switched networks, within a realistic time frame. 

The work represented is mainly concerned with linear networks though, more 

recently, extensions have been made into the analysis of dominant nonlinear effects in 

switched networks. 

The development of closed form solutions [1, 3, 9] for multi-loop feedback networks 

containing an operational amplifier represents a classical approach to the analysis of a certain 

class of network when the operational device is assumed ideal. The networks were important 

active filters, whose synthesis is outlined in the papers of Section 4. A hybrid ideal/nonideal 

solution [4] for these networks when non-ideal marcromodels for the amplifiers were 

assumed, presented interesting principles for computer analysis that could be extended to 

many other classes of network. Early work on the derivation of admittance matrices for all 

four basic types of operational amplifier [5] pre-dated much of the application and design 

work that has followed from many authors. An interesting manipulation of matrix 



descriptors for networks of active circulators [13] provided not only a simple analysis tool 

but also gave a compact method for examining novel interconnection strategies. 

Symbolic analysis has been the bete noir of a considerable number of researchers for 

many years. It is universally acknowledged that the production of fully symbolic transfer 

functions of networks by computer, in terms of the constituent circuit components and 

parameters, could provide very attractive insight for the designer and the generation of 

differentials for sensitivity and optimisation studies. But it was realised at an early stage, by 

a large majority of investigators, that the exponential Cor worse) growth in size of expression 

and the associated storage requirements would render the technique impractical for all but 

small circuits. A number of researchers still continue such an approach and even with 

"gardening" and truncation, the restriction to circuits of modest size persists. A number of 

rather more realistic variations on symbolic techniques have been proposed and I have been 

involved in the development of a semi-literal interpolative approach to considerable effect 

[14, 15, 16, 19, 20, 29, 57]. In this case the results of computer analysis are polynomials in s 

or z or both variables, whose coefficients are numeric (though a small number of symbolic 

components can be included at the cost of repeating the whole procedure for each element). 

The first significant step was to establish the general application of interpolation techniques 

to the efficient analysis of active networks [14, 15]. As the size of network was increased, 

problems of accuracy arose and major progress towards resolving this issue was produced by 

partitioned polynomial interpolation [16]. This utilises sample points located in a circular 

manner and involves circles of different radii or sets of samples on the same circle with 

different initial set angles or combinations of both. The work was important for two reasons; 

it was an elegant solution to the accuracy problem and secondly the choice of circular 

samples prompted other investigators to realise that the Fast Fourier Transform (FFT) was 

the exact implementation of the interpolation scheme when a circle of unit radius was used. 

This meant that all of the highly efficient FFT routines could be used as the basic numerical 

engine for semi-literal interpolative analysis, a situation which prevails to the present time. 

Other techniques, such as network partition methods [19, 20] were developed to cope with 

the problems of large networks. These contributed to further improvements in accuracy and 



storage improvements, together with features useful in the computation of symbolic network 

sensitivities. With the advent of SC networks, the application of interpolative schemes to 

their ideal semi-symbolic analysis proved to be successful, although analysis of networks of 

modest size by interpolation in the z domain, raised more severe accuracy concerns than had 

been experienced previously with active RC networks. A combined conformal 

transformation of the plane and partitioned polynomial interpolation again proved to be very 

successful in maintaining accuracy during the analysis of high order SC networks [29]. The 

extension of semi-symbolic analysis to include non-ideal effects in SC networks was not at 

all straightforward. An early attempt using a Kader sequence for matrix inversion [31] 

enjoyed some success, but application was limited to circuits of moderate order because of 

the computing resources needed. The system was considered as a general one with 

polynomials in s and z. The problem has been reconsidered very recently [57], when an 

interpolative approach has once again been used to advantage in the general analysis of non-

ideal SC and SI networks. Essentially there is no closed form symbolic expression for the 

transfer function of a non-ideal switched network, since the computation of an extended state 

transition matrix is implicit to all solutions and at best this can only be approximated in a 

numerical manner. However, using an over-interpolation scheme, modified polynomials in z, 

of slightly higher order than those expected in the ideal case, are produced to describe exactly 

the network behaviour [57]. Accuracy has been maintained during the analysis of large non-

ideal SC and SI networks. It is also shown that significant advantages can result when this 

technique is used in noise analysis of switched networks with 2 clock phases. All the aliasing 

effects of wide band noise are easily computed by numerical substitution of a large number 

of frequency values into the polynomials. Unfortunately such advantages are quickly eroded 

when the number of clock phases increase in multirate circuits. 

As already indicated, the introduction of SC networks during the late 1970's and 

early 1980's brought great demands for comprehensive analysis. Initially many schemes 

abounded, even for ideal networks, and I was able to make contributions to the early work 

[24]. This paper was also chosen as a selected reprint [30] by I E E E Press for a volume on 

significant papers in the subject. Translation of analytical techniques into CAD tools was an 



obvious development, but the success story associated with SC filters in particular 

encouraged designers to be more ambitious in extending their requirements to high order 

circuits. This quickly brought about the demise of much of the less durable analysis 

software and triggered the search for improved mathematical and algorithmic routines. A 

compaction scheme [28] was very effective in coping with multi-phase higher order SC 

networks. A preliminary attempt to include some circuit non-idealities proved to be limited 

to simple circuits [25]. A series of papers [33, 36, 49, 53] made a serious attack on the 

efficient computation of all non-idealities in large linear switched networks. A whole 

compendium of numerical techniques were fully exploited, including sparse matrix methods, 

optimal ordering, interpretive code generation, Hessenberg techniques, extensive frequency 

independent pre-processing, polynomial approximation of excitations and full discretisation 

of the non-ideal switched network description. The resultant software has gained a reputation 

for speed, accuracy and robustness, the current version of SCNAP4 is in use at a number of 

industrial and university sites around the world and negotiations for full commercial 

exploitation are in hand with two companies. The analysis of the largest known multi-rate 

switched networks to give frequency responses, sensitivity behaviour and noise performance 

can now be accomplished on modest work stations and PCs in very realistic computational 

times. 

An investigation into the description and design of digital active networks [26] 

produced very interesting results. However these have been largely superceded by the 

irrepressible development of digital filters and DSP on the one hand and by SC and SI 

networks on the other. 

3.3 Communication Circuit Design (Section 6) 

Papers (17, 23). 

These two papers report work on practical circuit design for telephone applications. 

In many telephone networks worldwide, problems occur when matching the wide variations 

in local subscriber lines caused by different line lengths, line material (Cu or Al), conductor 

dimensions and mixtures of all of these in different proportions. In rural areas the length of 



local lines can aggravate the problem. In urban districts the runs are shorter and 

approximately equivalent in length, but the actual lines may have been modified so often 

with odd pieces of cable of such random specifications that the resultant line characteristics 

often exhibit considerable variations. The adaptive electronic circulator was developed for 

use in these situations, as an effective means for providing isolation between transmit and 

receive signals and a constant level of side-tone for user comfort. Basic problems of voice 

switching were addressed by extra feedback. The initial work was confined to resistive 

matching only. In the second paper, a more general adaptive impedance match was 

successfully demonstrated, low and high frequency pilot tones being used to derive error 

signals for two term control. The voice switching problem was eliminated and good adaptive 

performance was demonstrated over a wide frequency range for a great variety of subscriber 

lines and loads. 

The advantage of these circulator circuits over traditional passive hybrids was their 

ease of realisation as part of any integrated circuitry associated with a modern telephone set. 

3.4 Analysis and Design of Sigma-Delta Modulator Systems (Section 7) 

(Papers 46, 50,51,55) 

In recent years there has been an explosion of interest in over-sampling data 

converters. Such circuits offer highly attractive solutions to the analogue/digital/analogue 

interface problems, they permit shaping of the noise characteristic, provide multi-bit 

conversion and above all they can be realised in integrated circuit form without the need for 

highly accurate passive components. 

One of the major problems in this area of work is the complexity of simulating the 

behaviour of multirate sigma delta systems. A general behavioural simulator was developed 

[46] with an emphasis on providing a user-friendly interface. The software FUNSIM has 

been used extensively in one industrial establishment. It has also facilitated studies in the 

design of high order sigma-delta modulators with tailored noise characteristics [50] suitable 

for high quality digital audio applications. 



Studies on the design of low over-sampling ratio sigma-delta modulators [51] have 

utilised techniques for adaptive step size to give companding and have developed ideas on 

noise gating. It was also shown that when these ideas are applied to the problem of speech 

coding/decoding, the resultant system can give significant performance improvement over 

existing linear PCM techniques. 

More recent work has been concerned with digital sigma-delta modulators [55], the 

speeds of which are limited by latency in loop filters. An interesting solution has been 

developed by employing a redundant number system instead of a traditional two's 

complement number system. There seems to be scope for many further developments and 

some of these are curre itly under investigation. 

3.5 Educational Papers (Section 8) 

(Papers 11,27) 

These papers describe two course developments in which I was involved. In the early 

1970's the introduction of CAD into the teaching of electronic circuits began to receive 

attention. Unfortunately many of the schemes were piecemeal and somewhat ad hoc. The 

first paper [11] details a scheme to integrate a student's acquisition of theoretical knowledge 

from lectures, with his practical experience from laboratory work and attempts to force a 

convergence of these skills through the medium of a 4 week design project. Further 

motivation derived from the use of analysis software to evaluate designs in a controlled 

manner. The whole exercise proved to be very successful with students and ran with early 

analysis software for a period of 10 years, until more general software became common 

place. 

The second paper [27] describes a different educational initiative. In the late 1970's 

there were numerous high level reports on how to improve the quality of engineering 

graduates. At the University of Hull, I chaired a working party which had the task of 

producing a realistic scheme for an enhanced degree in electronic engineering. The scheme 

enjoyed considerable success over a number of years. However, it is interesting to note that 

many of the premises on which that initiative was based have been eroded over the 



intervening years and many of the caveats mentioned at the conclusion of the paper have 

been ignored. The standard of education of electronic engineers in UK might well be sinking 

below the international "electronic Plimsoll line". 

3.6 The Future 

This set of collected papers covers a period of 30 years, during which electronics has 

developed from an advanced art into a highly sophisticated one. Surely it must be one of the 

few experiences of modern existence, when after such a length of time, more functionality 

can be obtained at less cost. Furthermore, there is no sign that these trends have run their 

course; more is yet to come. 

And more is in store across the landscape presented in this work. The human form 

operates almost exclusively in an analogue mode and relates to a largely analogue, physical 

world by analogue means. Yet the most powerful forms of collecting data, processing 

information and stimulating response lines reside firmly in the digital domain. The way 

forward is not by a frantic search for remaining "analogue gaps" and the development of 

electronic solutions for these niche areas only. It must be via fully engineered interfaces 

between analogue and digital environments and technologies - completely integrated designs 

where the advantages of each domain are utilised to maximum effect. As the possibilities of 

truly mixed-mode design unfold, the demands for new simulation facilities increase, which in 

turn reveal new avenues for optimisation and creative design. 

Many of the techniques reported in this work and the resultant software packages 

have been applied to the design of signal conditioning circuits whose frequencies of 

operation lie in the frequency range 1 Hz to 500 MHz. We are already addressing the 

problems associated with designs operating at 1 GHz and in the near future 12 GHz should 

be within reach. The challenge is to develop proper engineering design techniques and 

supporting simulation software to meet these demands. 

"Si jeunesse savait; si vieillesse pouvait" 

(if only youth knew; if only age could) 

Les Premiees, Henri Estienne, 1531-1598 
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amplifier to obtain biquadratic responses 
A . G. J . Holt, Ph.D. , A .M. I .E .E . , and J . I. S e w e l l , B . S c , Graduate I .E .E . 

Synops is 

In this paper, networks are presented in tabular form to simplify the design of RC active filters having 
magnitude responses characterised by pass-band attenuation ripples and stop-band transmission zeros. 
The responses of these networks may be described by biquadratic rational functions. In all, the form and 
element values for 11 different networks are tabulated. 

The basic network discussed in the paper is an operational amplifier with multiloop feedback in cascade 
with a passive RC circuit and having a second-order response. Higher-order responses than the second may 
be obtained by cascading second-order stages of the tabulated networks, with suitable isolating stages 
when necessary. 

Two different forms of passive circuit are given, together with their design formulas. Both low-pass and 
high-pass filters are considered; these can be cascaded to give band-pass or band-stop characteristics. 

The operational amplifier is assumed to have infinite input and zero output impedance; the effects of 
departure from these ideal conditions on the filter response is considered. 
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List of symbols 
D = general transfer function 

DA = transfer function of active section 
Dp = transfer function of passive section 

p = Laplace-transform variauie 
(70 — numerator polynomial coefficient of over

all transfer function 
h0, 6, -— denominator polynomial coefficients of 

overall transfer function 
Bn = numerator coefficients of general active 

section 
. b„ = denominator coefficients of general active 

section 
, Ys = admittances of active-section components 

admittance parameters of 2-port network 
arbitrary divisor polynomial 
coefficients of arbitrary divisor polynomial 
unsealed series resistive element in high-

pass ladder section 
F{p) = numerator polynomial of active section 

« — parameter in passive synthesis procedure 
a — constant attenuation coefficient for pas

sive network 
x, - - constant attenuation coefficient for 

Guillemin network 
ot, = constant attenuation coefficient for net

work design from Reference 15 
DHP — high-pass transfer function 

M — amplifier open-loop gain 

3' 
>'2|. )'22 

1 Introduction 
Filters having responses described by biquadratic 

rational functions are well known in passive-/LC-network 
design. These networks may have transmission zeros (often 
known as poles of attenuation) at finite frequencies which lie 
on the imaginary axis of the p plane. The responses of 
certain classes of these networks may be described by the 
elliptic functions. 

Paper 4855 E , firs! received 27th August I964 and in final form 5th 
August 1965 
Dr. Holt and Mr. Sewell are with the Department of Electrical Engineer
ing. University of Newcastle upon Tyne, Newcastle upon Tyne 1 

PROC I EE. Vol. 112. No. 12. DECEMBER 1965 

Responses of the biquadratic form may also be obtained 
with active RC filters employing operational amplifiers and 
inductor-free passive feedback networks. The use of active 
networks in filter design is of increasing importance with the 
introduction of integrated circuits, in which it is difficult to 
obtain satisfactory inductors. Active filters are also used to 
deal with the very low-frequency signals which arise in 
control applications. The size and cost of the inductors which 
would be required in conventional LC filters become pro
hibitive at these frequencies. 

Amplifier circuits which may have biquadratic responses 
have been described in the literature,1"5 but these either 
require a number of amplifiers, sometimes used as integrators, 
or if only one amplifier is used, employ at least two parallel 
ladder networks. 

It will be shown that for a second-order stage only one 
parallel ladder network is required, together with a single 
operational amplifier having multiple-loop feedback. The 
sensitivity of the circuit to changes in amplifier gain is made 
small by the feedback applied. Responses of the biquadratic 
form may also be obtained with circuits employing negative-
impedance convenors and gyrators. Synthesis procedures for 
negative-impedance-convertor circuits have been described by 
Linvi l l 1 6 and by Yanagisawa; 1 7 a set of design Tables for 
second- and fourth-order filters employing the Yanagisawa 
procedure has been presented by Holt and Stephenson.1 8 

ft is known that parallel ladder networks may be somewhat 
difficult to adjust, and a method which reduces their number, 
while yielding the same form of response, would appear to be 
advantageous. 

The methods of design described in this paper are intended 
to provide networks having responses described by elliptic 
functions of the second order; other biquadratic responses 
may be obtained by the same method. Responses described by 
higher-order functions may be obtained by cascading second-
order stages. 

2 Principles 
The derivation of all transfer functions considered in 

this paper is based on the cascaded sections shown in Fig. I. 
An operational amplifier and multiloop feedback circuit, as 
shown in Fig. 2. are included in the active network. It is 
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assumed lhat the input impedance of ..he amplifier is infinite 
and its output impedance is zero, conditions which are easily-
approached in practice (deviations from ideal-impedance 
conditions are considered later). 

active passive 

B 0 » B , p * p 2 

a 0 * P 2 

b 0 *b,p+p 2 8 0 * B , p * p 2 

Fig. 1 
Arrangement of ciclive and passive sections 

<?2 

Fig. 2 
Basic active multiloop feedback section 

The biquadratic function having transmission zeros on the 
imaginary axis of the pplane is given by eqn. 1: 

p2 ^ b l P 

(1) 

It can be shown that the active circuits used produce transfer 
functions of the form 

D = 
B0 + B,p 4- B2p2 + B„p" 
bo + b\p 4 - b 2 p 2 4 b„p" 

(2) 

Thus, if an active circuit of this type is used to produce the 
denominator of eqn. 1, the resultant transfer function of the 
active section has the form 

b0 + b { p - p-
(3) 

In order to obtain the complete transfer function of eqn. 1, 
it is necessary to place in cascade a network having the 
transfer function 

»„ = a0 - p< (4) 

This latter function can be realised as a passive RC network 
provided the polynomial B0 S,p — p2 has only real roots. 

The active network used to produce the function has the 
general form shown in Fig. 2. The circuit is of the form used 
by Taylor. 1 2 

It is found that, for any transfer function of the type under 
consideration, all branches of the active network may be 
single resistors or capacitors except one which is a series or 
parallel RC circuit. 

The general transfer function obtained using the idealisa
tions mentioned in the first paragraph of this Section is 

k5( y , - v2 - v } ) 
(5) . • 3 - r 4( r , - Y2 - Y3) • • • 

In choosing the elements such th;. eqn. 5 has the form of 
eqn. 3. many possibilities exist: one combination which yields 
2228 

a simple result is with a parallel RC network and )', • 1/R,. 
Y2 -- pC:. K, - p C j . > 4 = l / / ? 4 and >'? - PC\ - l / R 5 . 

The transfer function becomes 

R, 

Equating coefficients between eqns. 6 and 3 gives 

" c I 
. 6 , 1 

( b ) 

(7) 
R\R* a 4 

In order to use as many standard components as possible 
and using normalised values, all capacitors are set to unity: 

C ; = C 3 = C2 = C = I 

This gives 

2 _ bt_ 

2b0-

If /?, = !, the transfer function becomes 

b, 
(8) 

b0 ^ b l P ->- p2 

A passive network is required with a transfer function 

o 0 - P2 

(9) 

(10) 

This may be synthetised by the Guillemin parallel-ladder 
method, provided the function has only real poles; 

(in 

This condition ensures that the response described by eqn. 10 
is obtainable with a passive RC network and gives the limits to 
the range of functions realisable with configuration 5 from 
Table 1. 

The parallel-ladder synthesis may be performed in two ways: 
one 1 4 yielding a terminated structure, and the other 1 3 an 
unterminated structure. There is little to choose between the 
two methods. The latter usually produces a network with a 
lower output impedance; this is important in cascaded systems 
if isolating stages are to be avoided. It has the disadvantage 
of using one more component. 

3 Act ive-sect ion configurations 
There is an abundance of solutions for active sections of 

the type under consideration. Unfortunately only a limited 
number can be used to synthetise second-order functions 
having coefficients of the elliptic function without negative 
elements being required in the feedback network. Two classes 
of configuration emerge: those having one parallel RC element. 
and those with one series RC element. 

3.1 Circuits with one parallel element 
Table 1 shows useful solutions of this class. These keep 

to a minimum the number of components which have a 
nonunity normalised value. Ali elements are normalised to 
unity unless they are listed under the heading of variable. 
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Some solutions require the choice of an arbitrary variable to 
satisfy readability conditions. 

Configurations 1 and 5 in Table 1 give simple solutions, 
having four standard elements using only two resistive 
elements with nonunity normalised values. 

3.2 E x a m p l e us ing four s tandard e l e m e n t s 
Fig. 3C shows the measured response obtained when 

solution 5 from Table ! is used to realise the typical example 
of a second-order function: 

D = 
pi 7.464 

(12) p2 J - 0-6075p - 0-7559 • • • • 

Fig. 3A shows the passive networks. In the active section, the 
calculated element values are Rt = 3-921, Rx =0-4019 (to 
four significant figures). 

00368 0 01022 O3770 
o V W 1 | « | H 

01682 02420 02195 
o - W — « J V W U J ( W o 

02142 

Fig. 3A 
High- and low-pass ladder sections before combination and 
denormalisation 

)59-2k0 

0-Ol^F 
— w / — 1 \ \ 
63-95k0 OOl/iF 

O O l / i F 
II 

524kO O O O y F 
444k0 / 0O377/4F 

-MHh 1|-

- A / W -
9 4 5 k f l 

37-7kf) 0 0214 

656kO 

00145 

F i g . 3B 
Complete circuit for example of Section 3.2 

3.3 D e n o r m a l i s a t i o n 

It is frequently advantageous to denormalise the 
active and passive sections to different impedance levels. 
This enables the designer to obtain convenient component 
values and also avoid distortion due to drawing large currents 
from the amplifier. Fig. 3B shows the circuit designed for a 
cutoff frequency of lOOc/s: R = l59 -2k£} . C == 0 01 tiF for 
the active section, and R = 15 -92kQ and C = 0-1 uF for the 
passive section. 

3.4 E x a m p l e us ing three standard e l e m e n t s 

Consider alternative 4 (Table I). Let C , = 20/^F, and, 
for the function of eqn. 12, R, = 0-5902kfl and R 2 = 
01067kf i . 

The numerator 

F(p) = 0-5532 - 10-4203/j - p2 . . . . (13) 

choosing 

q(p) = (p - 0 \)(p ~ 20) (14) 

= P2 — K] P - K0 

and proceeding through the synthesis of Reference 13 gives 
the network of Fig. 4. This is denormalised for the passive 
section R = 15 -92kfl and C = 0-1 / i F ; for the active section 
R = 159-2kfi, C = 0 01 p.F. 

159-2kO 
r-AAAA 

93-93kO 
— w 

E l 

O-OVF- UAA^ 
1698k0 

00003/<F 
246-5k0 t 0O297 /uF 

- A W - i l O-OyF 

29Olk0 1877kO l8-27kl) 

554kO 

F i g . 4 
Complete circuit for example of Section }.4 

20 

+10 

til Ul 

\ o -10 

\ 

\ 20 

\ \f 30 + 

T 

Y 40 
1000 10 100 

freauency. c/s 

F i g . 3C 
Response of active, passive and combined sections of example of 
Section 3 2 
a Active section 
b Resultant response 
c Passive section 
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The transfer function for the passive section is 

p1 - 7-464 
D 

p2 - 10-4203/) - 0-5532 
(15) 

With these coefficients, it is convenient to use the synthesis 
technique of Reference 15. 

For 
«o ~ P2 

B0 - B,p - p 2 
(16) 

the components of the circuit shown in Fig. 5 become 

1 
( A~ 2) 

It 

C2 = 0 5» 

^3 •= ~ 
Ry = 

C - ^ GV") 

(17) 

where u = ~ (B, - 1) - 0-5 
2B, 

Hl -

F i g . 5 
Basic canonical form of the syiillw.sk procedure of Reference 15 

The second network produces a response with a slightly 
greater gain; this is due to the different constant multiplier 
produced by each synthesis method. 

The passive function produced by these methods has the 
form 

«o ~ P1 

°" ^ B a ^ B l P - p 2 

For the first (Guillemin) network, 

„ >}B0 

where 
B0 ~ '•.<'() 

(18) 

(19) 

BoK0 

KnB, K\Bn KnB, K, Bn 

(20) 

For the second network. 

Bo 
x = x-> — -

" "o 

The ratio 3t 3/a, gives the gain difference, for this example 

I 148 

i.e. 1 -208dB. 
The complete tiller consisting of feedback amplifier in 

cascade with the loaded twin-T network is shown in Fig. 6. 
PROC I EE. Vol. 112. So. 12. DECEMBER 1965 

3.5 C i r c u i t s with one ser ies RC e lement 

Table 2 shows solutions which are applicable for the 
range of functions under consideration. 

Some solutions are more complex than others and require 
the choice of one or more arbitrary variable components in 
order to satisfy readability conditions. 

93 9jkr> 

0 0 0 5 ' J J 

II 
159 2 

3786kfi 4 7 73ki) 

16-95 kf) 01 kn 
0 0 6 2 

F i g . 6 
Complete circuit for the filter using method of Reference 15 for the 
passive network 

For example, taking alternative 3, again the required trans
fer function is 

D 
o2 - f 7-464 

0-6075/j - f 0 7559 
(21) 

Substitution of R4 = 4 k O and C 2 = 1 fif gives /?, = 
0-3174kQ and R 3 = 0-l684kQ; setting « 5 - 1 kQ the 
numerator polynomial of the active section is 

(22) F =- 0-8322(2-3408 — 5-5429p — p2) . . 

factorising (disregarding the constant multiplier) 

F = (p - 0-515)(p - 5 04) (23) 

choosing the polynomial as (p — I )(p - 6) ensures realisa-
bility. The parameters are 

7-464 
2-3408 

; 5•5429 
6 

•- 1 

Continuing the synthesis yields the network shown in 
Fig. 7. The passive section is denormalised to R = 15-92kfl, 
C = 0 1/xF, and the active section to /? = 159-2 k i l , 
C =-- 0 01 fiF. 

26-BhO OOl^lF 
r A W |h 

159-2kfl 
i—WA 

6366kf) 

OOlpF 

187-4 0 0014 
kfl uF 

i—wHP 

O-0341 

63-61 kO 28 23kO 

0O324 

5595 r 
kO 00185 

F i g . 7 
Complete circuit diagram for the active-section configuration using 
one series combined element 

The response of this configuration is identical with previous 
methods, apart from a constant gain factor. 

3.6 Effect of finite input and nonzero output 
impedances of amplifier on filter response 
As stated in Section 2, the theory presented in this 

paper was derived on the assumptions that the input impe
dance of the operational amplifier is infinite, and it's output 
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impedance is zero. It is of imeresi 1 0 consider ihe effect of 
departure from these ideal conditions on the response of the 
filters. 

The input impedance of the amplifier used was found to 
be of the order of tens of megohms and its output impedance 
to be approximately 50U. The open-loop voltage gain was 
approximately 10000. An experimental check was carried out 
on the effects of changing these impedance values. First a 
variable resistor was connected between amplifier input 
terminals and the response measured. Fig. 8 shows the 

cn-20 

reduced input 
impedance 

freauency, c/5 

F i g . 8 
Effect of i ciliu ini! atnpli/lcr input impedance on tiller response 

measured response of the filter circuit of Fig. 3B when the 
amplifier input impedance is 50k£>. together with the curve 
for the unmodified amplifier. It is clear from these curves 
that an input impedance as low as 50kU has very little effect 
on the response. Another test was carried out to find the effect 
of increasing the output impedance. A resistor was connected 
in series with the amplifier output at the position marked A 
in Fig. 3B. N O measurable effect on the filter response was 
observed until this resistor was increased to about I0k£2. 
It was concluded that departures from the ideal values of 
input and output impedances have little effect on the filter 
response. 

The results discussed above were obtained with an amplifier 
circuit using valves. A transistor amplifier may be expected 
to have a lower input impedance than a valve amplifier. In 
order to reduce the effects of low input impedance of such 
an amplifier on the filter response, it is possible to lower the 
impedance level of the feedback network by choice of the 
denormalising factor. Another possibility arises from noting 
that the effect of an amplifier input resistance Rln may be 
cancelled by removing a conductance I/((I — A7)/?,„} from 
v4 in Fig. 2. Thus the effect of a known input resistance may 
be reduced or removed by adjustment of the value of the 
feedback resistor. 

4 Alternate order of cascade 
So far, an active section followed by a passive section 

has been considered; frequently this is satisfactory because the 
operational amplifier has small output impedance and presents 
a voltage source to the passive network. If the reverse order 
of cascade is required, precautions must be taken to prevent 
one section from loading the other. A simple method of 
overcoming this difficulty is to denormalise the passive 
network to much lower impedance level than that of the 
active section. This was done using the terminated Guillemin 
network, which has a lower output impedance, with the 
PROC. I EC. Vol. 112. No. 12. DECEMBER 1965 

passive network denormalised 10 l< l-5v2kL2. C 1/iF. 
and the active network to R 159• 2ki.2, C 0 01 ,iF. 
The results obtained show very little difference with the 
passive network preceding or following the active section. 
Greatest error occurred at high frequencies, where, owing to 
the higher impedance of the high-pass ladder, the loading 
effect of the active section will be greater: the error rises to 
about 0-5dB. 

5 High-pass filter 
Considering eqn. I. 

h0 - b t p - p-

substituting the high-pass transformation p --

" ( 2 ) -

( i - , 0 
\an 1 (24) 

Following tfu- procedure outlined in Section 3, and taking 
alternative 5 (Table I) gives, for the active section, 

(.25) 
V ' 2 

Substituting the coefficients gives the numerator 

F = 1 -6458 - 4-2916p - p-

= (p - 3-87)0 - 0-4261) (26) 

using an arbitrary polynomial, 

q = (/> - !>(/> - 5) (27) 

and continuing the synthesis gives the network shown in 
Fig. 9. 

O O I J J F 

159-2kf) 
3 9 6 inn 

W — 1 

O0351JJF 

9 9 5 9 R O / 0 4 5 7 3 I J F 

, - v . v — I I - , Ih 
I M 2kO 

— sjvs— 
89 36kO 

00108. 
3168kf}| i / H F y l J . 

4898 
kQ 

0 0 0 7 6 

Fig. 9 
Circuit diagram for high-pass filter 

6 Conclusions 
It has been shown that second-order responses may 

be produced by cascading an active section, using an opera
tional amplifier with multiple feedback loops, and a passive 
section. A number of solutions have been tabulated, from 
wnich the coefficients of the elliptic response may be obtained. 
The general pattern emerging shows there are two simple 
solutions, using four standard elements in the active section, 
and a number of more complex solutions. Two different 
passive networks have been used in conjunction with the 
active sections derived, and, for simple responses, the method 
of Holt and Reineck yields the best results, as far as numbers 
of elements and gain are concerned. The Guillemin synthesis 
method becomes more useful when functions of greater com
plexity than the second order are considered. 
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The sections may be arranged with the active section 
preceding the passive, as shown in Fig. 1: alternatively the 
passive section may be placed first. When the latter method is 
adopted, high-order functions may be synthetised by cascading 
second-order stages without interaction taking place. 
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Synthesis of mult iple loop feedback systems 
Part I f 
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[Received 27 June 1968] 

This paper presents a general synthesis method for multiple loop feedback systems 
which is applicable to the realization of all the known configurations together with 
othc s resulting from this investigation. The active device may be an amplifier of an;' 
type, gain or phase characteristics. 

The basic method utilizes an extended node introduction synthesis theory, which 
facilitates the generation of many possible realizations for a given function. 

Although the theory developed is used to synthesize R C multi-loop feedback 
structures, it is equally applicable to the synthesis of R L C multi-loop feedback systems. 

Rules for the numbers of active and passive node introductions are given, and a 
number of examples illustrate the implementation of the technique and the various 
transformations required. 

Synthesis of various functions is considered, emphasis being laid upon the 
realization of those which provide filter characteristics. 

1. Introduction 

Mult ip le loop R C feedback systems in which the constraining device is a single 
amplif ier have eluded rigorous synthesis for some t ime. A considerable number 
and var ie ty of circuits belonging to this class of system have been reported in 
the l i terature (Aggarwal 1963, Br idgman and Brennan 1957, Nichols and Rauch 
1954, Shumard 1960, Wadhwa 1962). The m a j o r i t y of papers so far . w i t h the 
exception o f (Hazony and Joseph 1964. M i t r a 1967, Pande and Shukla 1965) 
have been directed towards obtaining these networks by a t r i a l and error method 
based on analysis; a network f o r m having been assumed a priori and then 
formulae fo r the ne twork elements to simulate various transfer funct ions 
developed. This approach has many obvious drawbacks and a systematic 
synthesis procedure for these systems wou ld undoubtedly be a great improve
ment, 

The methods out l ined in Hazony and Joseph (1964), M i t r a (1967), Pande 
and Shukla (1965) present techniques applicable only to ind iv idua l systems 
and rely upon an analysis step which reduces the problem to one of passive 
synthesis. 

The synthesis procedure to be described is capable of producing networks 
having useful filter responses and provides a general synthesis method for systems 
constrained w i t h one amplifier irrespective of its type, gain, or phase characteristic. 
This embraces all the present known single amplif ier feedback type filters and 
others produced as a consequence of this investigation, which include systems 

t Communicated by the Authors. 
i N o w wi th the Department of Electronic Engineering, University of Hu l l . 

cox. 
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Fig. 1 

General structure. 

One practical realization. 

(a) 

General structure. 

One practical realization. 

(b) 

(a) Single ladder active multi-loop structure, (b) Double ladder active mul t i 
structure. 
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having feedback t h a t is whol ly negative, whol ly positive or h y b r i d . The 
general f o r m of the systems are shown in f ig . 1 («. b). Emphasis is la id upon the 
synthesis of R C mul t i - loop feedback systems, bu t the general theory is equally 
applicable to the active L C R case. 

2. Node introduction synthesis 
I n the general work on synthesis by node in t roduct ion , Piercey (1962) has 

out l ined a method whereby passive, and certain active networks can be synthe
sized by a m a t r i x expansion technique. However, this theory is not 
immediately applicable to the synthesis of mul t ip le loop structures (Sewell 
1966). The reasons for this , and the modificat ions of the theory to overcome 
these diff icult ies , are as follows. 

2.1. The 2 x 2 node matrix 

Consider any mul t i - loop feedback network, constrained w i t h 
an ideal voltage amplif ier at the ou tpu t po r t of the network, 
admittance m a t r i x fo r any such network w i l l contain entries of 
I t is therefore no t possible, as in conventional synthesis, to 
i den t i f y ing a 2 x 2 m a t r i x containing the relevant or given 
funct ions, w i t h the two po r t admittance m a t r i x of the network, 
f u n c t i o n to be synthesized is of the f o r m : 

where A (p) and D(p) are polynomials i n p. 
X o r m a l l y i t is possible to wr i te a m a t r i x 

, for instance, 
The t w o por t 
inf in i te value, 
commence by 
characteristic 

Suppose the 

(1) 

1 n 

I Vnl linn 

\ n 
Um 

X{P) D(P) 

Q(P) Q(P) 

(2) 

Q(p) being some a rb i t ra ry divisor polynomial . 
For the present systems the two por t m a t r i x w i l l assume a general f o r m : 

1 

II n 
n 

Y = (3) 

n L x x j 

and the ident i f ica t ion of polynomials and admittance parameters as i n (1), (2) 
cannot be achieved. 

To overcome this di lemma, consider another ma t r ix , say } ' * which 
characterizes the performance between nodes 1 and k o f an n node network, i.e. 

1 k 

1 ( Un Uu. 1 

y* > (4) 

k i Ui.i Ui.k j 

2 L 2 
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where /: is the in ternal p ivot or reference node 1 < A ' < « . Before this ma t r ix 
can be ut i l ized i t is necessary to be able to determine the relationship between 
matrices Y and Y*. Because of the type of ne twork under consideration., 
namely networks w i t h many loops f r o m nodes i n the f o r w a r d signal pa th to the 
ou tpu t node, the signal at any node in the f o r w a r d pa th w i l l have some simple 
direct relationship to the signal at the ou tpu t node, i.e. 

V' kk~JlO £> ~J:z(!n' l'n)' 

For single and double ladder systems this linear relationship can be simply 
expressed by a suitable divisor polynomia l , i.e. the fo l lowing ident i f icat ion 
f r o m (4) , (1) is possible : 

1 k 
1 { . '/n* .'/,/, ' 

r , j v »(P) \ • ( 5 ) 

where Q(p) is some divisor polynomial . As Q(p) determines the relationship 
between nodes k and n i t is not an a rb i t ra ry func t ion and therefore cannot be 
chosen as such. The choice of Q.(p) cannot be undertaken pr ior to synthesis, 
b u t must be delayed u n t i l the node in t roduct ion mechanism displays the 
expl ic i t f o r m of po lynomia l required. 

2.2. Expansion of the Y* matrix 

Norma l ly i n node in t roduc t ion synthesis i t is necessary to expand the m a t r i x 
by in t roduc t ion of in te rna l nodes, but here a s l ight ly different approach is 
adopted. As the characterizing m a t r i x represents the response of some internal 
par t of the ne twork and the final expanded m a t r i x is required to represent the 
response at the output node, nodes are introduced which are in ternal as far as 
the Y* ma t r i x is concerned, b u t one of which w i l l f o r m the ou tpu t node of the 
overall network. 

For convenience k is o f t en taken as 2, and the m a t r i x (4) expanded node by 
node f r o m 1 to n. to give : 

1 2 n 
1 f Vll J/12 • • • Vl,,' 

y-n y*2 • • • y-m' 

n y.n (6) 

lJ,a V,,i 
' 1 y n-i, n-i y n -1 . H ! 

,_y_n. »—1 y mi j 

(The bo t tom r ight -hand 2 x 2 m a t r i x includesthe active ( inf ini te) parameters.) 
Hence 

r = r 8 + r u 

where Y s is a symmetric ma t r i x realizable by passive means and i n part icular 
i n this case is R C realizable. Y u is an unsymmetr ic m a t r i x realized by the 
active device. I f the synthesis is performed fo r systems w i t h inf in i te ou tpu t 
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admittance i t is necessary for the last in t roduct ion to uncondi t ional ly generate 
an inf ini te parameter term i n the nn position. None of the existing node 
introduct ions (Piercey 1962) are applicable in such circumstances, and i t is 
necessary to develop introductions (type I I I after Piercey) to satisfy these 
demands (see Appendix) . The appropriate passive and active introduct ions 
are shown i n f ig . 2 (a, b). 

I t w i l l be noticed that no a t ten t ion is being paid to the numerator of the 
original f unc t ion X(p). W i t h this method of synthesis emphasis is laid 
p r ima r i l y upon obtaining the required denominator func t ion , and realization 
of the numerator func t ion is included at a later stage. 

2.3. Xumber of introductions ride 

A second phenomenon which occurs i n the synthesis of these mul t ip le loop 
systems is concerned w i t h the types of amplif ier encountered. Piercey out l ined 
the method b y which active devices may be incorporated in node in t roduc t ion 
synthesis, and a s t ra ight forward applicat ion of this theory is sufficient for the 
synthesis when the amplif ier required has a ma t r i x containing in f in i te terms of 
order no higher than un i ty . I n many cases doubly inf in i te , or even t r i p l y 
in f in i te parameters occur and at f i r s t sight i t may appear tha t new types of act ive 
node in t roduc t ion are required. However, these are not necessary, since the 
required terms can be generated by applying the active in t roduct ion an appro
priate number of times. The number of active and passive in t roduct ions 
required i n the synthesis of single and double ladder networks are given by the 
fo l l owing rule. 

Rule 1. / / an active device, having a, 2 x 2 admittance matrix containing infinite 
terms the highest order of which is q, is required in the synthesis of a rational function 
whose denominator is of order m; then the number of active introductions u-ill be q 
and the number of passive introductions m — q, where q > 3. 

A n exception to this rule occurs when i t is required to generate a compact 
ne twork in which there are fewer node introduct ions permissible than the order 
o f the inf in i te parameters. I n this case i t is necessary to use an in t roduc t ion 
having higher-order inf in i te parameters. I f g > 3 then mult iple-order in f in i te 
parameter introduct ions are also required. 

3. Synthesis of finite and infinite gain amplifier systems 
The developed theory embraces the synthesis of all mul t ip le loop amplif ier 

systems. This may be demonstrated by synthesizing some we l l -known 
amplif ier f i l t e r circuits. 

3.1. Synthesis of a Sallen and Key circuit 

Synthesize the func t ion IIi(p~ + b:ip + bn) as a voltage transfer rat io using 
a un i ty gain voltage amplif ier of non-reversing phase characteristic, and an 
E C mul t i - loop structure (i.e. after Sallen and K e y (1955). 

The amplif ier has an admittance m a t r i x : 

CO 0 ] 

r= | (?) 
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A p p l y i n g Rule 1, m = 2, g = l ; hence one passive and one active in t roduct ion 
only w i l l be required. 

Commencing w i t h the two por t admittance ma t r ix 1' and der iving the 
2 x 2 node m a t r i x Y* w i t h & = 2. 

A passive in t roduc t ion is performed first., where Y o n = yn. Y v 2 = y1„. Y n i = y.n 

and are a rb i t ra ry in this example ; Y K 2 = (p'2 + bxp + b0):Q(p). 
Assuming tha t there is no node br idging in the fo rward path, the 13 and 

31 terms (f ig . 2 (a)) should be zero. This can be ensured b y setting <v12 - 0 1 2 = 1' 1 2 

and g2i — # 1 2 = Y 2 l g iv ing the m a t r i x : 

1 2 3 

1 

3 

^ Oil 0 1 2 - 0 1 2 0 

021 — &12 
y , ( ! ? 3 2 - 0 2 3 ) ( ! 7 2 3 - 0 2 3 ) 

033 + ^ 33 
023 _ ^23 

0 032 - #23 033 + 1 33 

The active node in t roduc t ion is then performed on the b o t t o m r igh t -hand 
2 x 2 m a t r i x . Inspection of the active m a t r i x of the active node in t roduc t ion 
f ig . 2 (6) shows t h a t i n order to generate the active m a t r i x required, al l of i ts 
terms must approximate or be equal to zero except the 32 and 33 terms. To 
ensure this , the fo l lowing identif ications are made, A 3 3 = 1, A 2 1 = A 1 2 = 0, 0 < A 2 3 <«: 1 ; 
( i f A 2 3 = 0 indeterminate terms appear). 

A p p l y i n g this in t roduc t ion gives : 

1 2 3 4 

1 ^ 011 </l 2 -012 0 0 

f / 2 i - « i 2 

v - ( ! 7 » 2 - ^ . i ) ( ( / « - « « ) 
1 0-12 1 , 

173 3 • ^ .13 

T ^ ( 9 . S ' + 1 V ) 
'^32 

4 - I ~ 
3 0 # 3 3 ~ T i 33 ^ 3 2 ^ 2 3 - » 2 3 ' 

4 0 
" 3 3 

- 0 , 3 ' + A 3 2 i £ l " 3 3 ' - f - A ' 

This m a t r i x is of the correct f o r m (6 ) and i f i t could be made symmetr ic 
(apart f r o m the active terms) the object wou ld be achieved. Symmet ry around 
node 2 can be ensured by setting {/ 1 2 = gr21 = 0. The remaining unsymmetr ic 
passive terms 24. 42 . may be made symmetric as follows. I f # 1 2 ' = — Y21' the 
42 te rm is removed and, for convenience, set 812 + Y l 2 ' = — # 2 3". M u l t i p l y i n g 
column 4 by — and adding to column 2, setting 623' = 0 and A 3 2 = — 1 gives 
the characteristic nodal admittance m a t r i x of a Sallen and K e y circui t . 

i 2 3 4 

1 ^ on -012 0 0 

0 

1*4-.. " 

-012 
y ! (!/32- 023)(ry23- 023) 

033 + ^ 33 
-012' - 023" 

3 0 -0 ,2 ' 033+ ^ 33 0 
4 0 - 623" Y33' + K 

(8) 
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For RC realizability main diagonal terms can be no more complex than 
first-order factors, this may be ensured by setting Q(p) = #33 + F 3 3 ^q^p + q0-
Let (g„2 — d23) = 1 and. assuming indefinite dominance 

au= 2 k'ol) (where each a is a matrix element) 

at node 2. the 22 term is: 

0 #23 

9iP + % 
= 9V2 + 612 + 02 3". (9) 

Various restrictions on component spread and size may now be imposed. For 
instance, i f i t is required to have all unity normalized resistors, this wil l give 

Now, 

# 2 3 - 0 2 3 = Y l 2 = - ( 0 2 3 " + (10) 

Let 623", 623 be frequency dependent terms, and these are equal because of 
indefinite dominance, i.e. 

Hence, from eqn. (10) g23 — — 8l2 . Thus (9) becomes : 

p- +p{b1 + 623") + b0- g23 = (qlP + q0)(d12 + B12' + 02 3") 

= VAP2 +P{h + ? l [ » 1 2 - #23]) + ^12 - #23- (11) 

Comparing coefficients of (11) give 0 : 

? A = 1 , (12 a) 

bl + Bi," = ei + ql[ei2-g23l (12 6) 

(7(p)= 1 

I f 

1 + l-62;p+p 2 ' 

Setting # 2 3 = — 1 a n d solving 12 («. — c ) gives the following matrix: 

1 2 3 4 

1 1 - 1 0 0 

o - 1 2+1-24^ - 1 -1-242J 
•1-4 = 

3 0 - 1 14-0-812? 0 

4 0 - \ U p — A' l-242> + A' 

which gives the circuit of fig. 3. 
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O A A A A A / V V -

E. 

=r 1-24 

2 

O . B I O 
" o u t 

Second-order Sallen and Key circuit. For all circuit realizations the element values 
are in mhos and farads. 

3.2. Synthesis of a third-order multi-loop network 

Synthesize the third-order f u n c t i o n : 

1 
G(p) = 

using a voltage operational amplif ier and an R C mul t i - loop structure. 
A p p l y i n g Rule 1 w i t h TO = 3, q = 2 reveals t h a t one passive and t w o active 

int roduct ions are required. The method of synthesis is as before, one po in t t o 
note is t h a t when mul t ip le active introduct ions are performed the penul t imate 
one is of special significance, i t is t e rmed the ' K a l ignment node i n t r o d u c t i o n ' 
and i ts f u n c t i o n is to provide in f in i te parameter terms in the last column of the 
m a t r i x , pr ior to the final amplif ier in t roduc t ion . These terms are necessary to 
ensure a correct m a t r i x when the mul t ip le order in f in i te terms appear. The 
na tura l order of introduct ions is passive, K a l ignment and then the amplif ier . 

The 2 x 2 node admittance m a t r i x Y* (k==2) i s : 

1 
1 £/n l/l2 

2/21 
^ p3 + btp2 + b1p + b0 

Q(P) 

(13) 

For node introductions in (13) 3 r

0 n = !/ii*> ^ ' i 2 = 2/i2*> ^ 21 = 2/21* : 

_ pt + bvpt + btf + bo 
022 m • 

A p p l y i n g a passive in t roduct ion w i t h Y l 2 = cy12 — 0 1 2, F 2 i = (J21 ~ ^12 gives: 

Y — 0 

1 33 ~ -

1 0 3 

^ Oil 0 

i"21 
y ! Uhi-023.(92*-023,) 

U23 ~ ^23 i"21 
#33 + ^ 33 

U23 ~ ^23 

0 (Ii3 - #33 + ^ 33 
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A K alignment in t roduct ion is now to be performed on the bo t tom r igh t -hand 
2 x 2 ma t r ix . As transformations are necessary on the f ina l ma t r ix before the 
ne twork realization, i t is convenient to carry out some of these at this stage of 
the proceedings. 

Concentrating on the in t roduct ion, wh ich is an active type w i t h A 1 2 = A 2 1 = 0 
and A 3 2 = a /A where A"^>« the basic in t roduc t ion ma t r i x is t hen : 

^ nn - 0 1 2 
- - 3 - 3 - [ t f , 2 + } ' l 2 ' ] 

- 0 1 2 
V '̂ 23̂ 23 , L"^23 
1 022 x + \ 

A33 A33 
- 0 2 3 + A ' A 2 3 

0 -6,s + ix >' 3 3+ A ' A 33 

L e t 1 1 2 = — 6i2 + j8/A 3 3 ) hence the 13 entry is { — Kfija). M u l t i p l y column 3 by 
— ( a / A 3 3 A ) and add to column 2. m u l t i p l y the bo t tom line by ( K y j Y 3 3 + KX3S) 
(<xpy) and add to row 1 : /3/A 3 3 = (# 2 3 y /A 3 3 ) . As a > y the t e rm (A'j3/a) can be 
subsequently neglected. The resultant ma t r ix is now used as the node i n t ro 
duct ion g i v i n g : 

Y 

1 011 Y l 2 
0 0 

o 
Y-n v i,-2-e,3)(a,3-e,3) 

f / 3 3 - 1*33 
- 0 , , ' A'y 

4 . 4 = 

3 0 - 0 . 2 ' < ? 3 3 ~r J 3 3 , 

^ 3 3 

4 0 0 33 ~~T-K\3:l 

The f ina l active in t roduct ion is performed on the bo t tom r igh t -hand 2 x 2 
ma t r ix , w i t h An.2 = A 2 1 = 0. A 3 3 = l . 0 < A 2 3 < | 1 . A f t e r fu r the r t ransformat ion the 
m a t r i x o f e q n . (14) results. 

1 2 3 4 

nil Yx*. 0 i) 0 

1"« 
;/.n - 1 3 3 

- 9 , = ' (1 — y 

u - 0 , 3 ' ? . , 3 -r 1 3 3 , 

'V|3 

(I 0 

0 — y - A . , 

(14) 

Setting T*12 = 3~21 = J / 1 2 and collecting the various parameter relationships: 

f/-2j - #23 = 5 1-2' = - #12' + 7 - • 
/V33 

#23 = "\ : 6l2 = #23= #32 - #23 = ^ 2l'> 
"33 
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let 

032 = 0, 

P = 0-nY> Ki = 6<£i"> On" = Git-

Is ow examine the dominance conditions at the appropriate nodes. 

Xode 4 

This is the amplif ier input node. i.e. a v i r t u a l earth point and therefore 
indefinite dominance is desired, thus : 

3 V = fli2" + 0,3". (15) 

Node 3 

Def ini te dominance 

( i a u > 2 \au\j (where each a is a ma t r i x element) 

3 ? ! 

is possible here; introduce a te rm 6' to allow for th i s : 

#33 + Y 3 3 - ^ = V + 0 i 2 " + A 2 3 + 0'. (16) 
l33 

Xode 2 

Defin i te dominance is also possible here; introduce a te rm 8" to allow for 
th i s : 

Y 0 2 3 ( ^ 3 3 - 0 2 3 ) f. , , n„ - v 
i o 2 2 „ , v — = y i 2 + y + 2/i2 + y • ('•<) 

#33 + 1 33 
Subst i tu t ing in (16) f r o m (17) fo r the t e rm g33 + T 3 3 gives: 

023(ftM33 - 0 23) — ,/ 1 y I y i 2 I g" (18) 
8l2' + 8V1" + A 2 3 + 8' + (A 2 3#237^33) 

A t this point there are a number of al ternative methods fo r producing a 
f ina l circui t . One method, which yields an already k n o w n ci rcui t f o r m , is to 
divide the f rac t ion o f (18) top and bo t tom by A 2 3 0 2 3 ' / A 3 3 : as 0 2 3 = 0 1 2 ' this gives : 

v (012^ - A330l2"2)/A23023 , a , , , , „ , a» 11 n\ 
" (A33/A23023')(012' + 012" + 0 ' + A 2 3 ) + l = " » + r + ' J « + e ' ^ 

Choose Q{p) to be equal to the denominator of the f rac t ion , thus : 

p* + b2p«- + b l P + b0- (012'/3 - A 3 A 2 ' 2 ) / A , 3 0 2 3 ' 
(A 3 3/A 2 3<9 2 3 ' )(# 1 2 ' + 8V," + A, 3 + 8') + 1 = 0 i 2 ' + 7 + 2/12 + 0"- (20) 

Synthesis continues by making the fo l lowing simple assumptions: 

(i) As the func t ion is characteristic of a low pass f i l te r , the excess dominance 
terms are the frequency dependent ones. 
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( i i ) To complete a second-order factor necessary for cancellation, le t : 

' \ j3=/Q») = *'33;P-

( i i i ) A l l resistances in the f ina l network are equal in value, i.e. 

, / a i = 0 1 2 ' = 0 1 2 " = A 2 3 = y = 0. 

Equa t ion (20) then becomes : 

p3 + b«p2 + p (b1 + 
* - 3 3 Q 2 

^23^23 
+ bn-Q 

l A 2 3 t / 2 3 A 2 3 W 2 3 J J 

Simpl i fy ing and d iv id ing the r ight -hand side b y (#'#"A: 3 3/A 2 3fJ 2 3) (6', 6" are now 
assumed to be mult ipl iers of p), gives: 

p* + b2p* + b1p + b0 = k |V + {30U-330 + 30(9'A-33} 

^23^23 '̂ 23^23 

0 A 2 3 r j 2 3 ' "1 

6'6"k3, J • 

Disregarding the constant mul t ip l i e r and equating coefficients gives 

_ 4 0 A 2 3 f l 2 3 ' 
°0 — wain. ' d'6"k 33 

(21) 

(22) 

(23) 

For the numerical f u n c t i o n given, 6" is chosen as u n i t } 7 . Solving eqns. (15), 
(21)-(23) then yields the ma t r ix : 

b = W + 8 0 2 

1 ^'^"33 S'6" 

ft, = 3 0 l^+i-. 

1 3 4 0 

1 01992 -0 -1992 0 0 0 

o - 0 1 9 9 2 p -0-5976 -0 -1992 0 - 0 1 9 9 2 

3 0 - 0 1 9 9 2 0-426/; 4-0-5970 - 0 1 9 9 2 - 0 1 9 9 2 

4 0 0 -0 -1992 0-1992+/;0-0742 - p 0 - 7 4 2 

5 0 - 0 1 9 9 2 - 0 1 9 9 2 - 0 - 0 7 4 2 / > - f A ' s 0-0742;j -f-0-3984 4-A' 

This gives the circuit shown in fig. 4, a thi rd-order m u l t i - l o o p feedback f i l t e r 
(Wadhwa 1962). 
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Third-order multi-loop circuit. 

There are many possible variations of this synthesis process, par t icular ly 
regarding the choice of divisor polynomial , real izabi l i ty constants and non-
excess dominance terms. 

4. Conclusion 
The synthesis technique out l ined provides a method whereby mul t i - loop 

feedback systems may be synthesized i n a rigorous manner. As the method 
requires the determinat ion of one or more roots of a polynomial of order equal 
to the denominator of the characteristic func t ion , high-order ne twork funct ions 
demand the use of a d ig i ta l computer. W i t h increase in order, the number 
and complexi ty of node introduct ions increase and the t ransformat ion work is 
also mul t ip l i ed . 

The synthesis technique permits the inclusion of any type of amplifier, e.g. 
voltage, current t ransadmittance. transimpedance, finite or inf in i te gain, as 
the constraining device of a mul t i - loop feedback network. Whether the device 
is ideal or not is of no consequence as i t is possible to incorporate the non-idealities 
i n the synthesis. 

The method is applicable to the realization of both transfer ratios and d r iv ing 
po in t imittances. 

Constraints concerning component ratios have been used here, bu t the 
in t roduc t ion of others determining sensi t ivi ty is also a feasible extension. 

As w i t h many synthesis techniques there are usually numerous physical 
realizations of a specific func t ion , the examples shown here i l lustrate some 
realizations of various transfer funct ions . I t was indicated at various points 
dur ing the synthesis of these networks that , had other identif ications been made, 
different networks wou ld result. The method does not restrict realization to one 
part icular f o r m , b u t can be used to display different ones. 

The funct ions synthesized here al l have constant numerators, and therefore 
no emphasis was la id upon numerator realization. Numera tor inclusion is the 
subject considered i n a fu r the r communicat ion. 
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Appendix 
The der ivat ion of the required node introductions is presented here. 

Fo l lowing the normal der ivat ion (Piercey 1962). i.e. commencing w i t h a 2 x 2 
m a t r i x : 

Y,.,= 

I 
using a 1-node in t roduc t ion gives: 

Y , 

IIL1 ^ 12 

1 022 

^ 3 3 — 

^ O l l + W l - " 1 ! yu+a.2A1 a3Al 

} ' , ! + « ! J , Y 0 2 2 + a.2A, a3A, 

M s a,A3 « 3 ^ 3 

(24) 

(25) 

f / 3 ^ 3 — 033 + 1 33' 

f ' 2 ^ 3 = J / 3 2 _ ^ 2 3 ! 

M i = ffia-flia-J*i2. ! 

CtxA 2 = f?21 ^12 — 21 • j 

where the (/"s are frequency independent terms, ffs and Y s can be funct ions of 
the complex frequency variable. 

B y subst i tut ion the remaining unknowns may be determined: 

(#32 - ^ s X f e - #23) a2A.2 . - ) 
033 + * 33 

(gai ~ g i 2 ~ y 2 1 ) ( g 3 a ~ 0 2 3 ) (033 + y 3 3 ) 

(032 ~ ^ 3 ) ( f e - ^ 2 3 ) 

( g l 2 - ^ 1 2 ~ ^12)(y23-^23)(!733 + ^33) 

(032 - 023)(023 - ^23) 

(.012 - ®12 ~ ^12)(6 fai ~ 012 ~ ^2l)(ff33 + ^33) 

(032 - 023)(023 - ^23) 

Subst i tu t ing in (24) yields the passive node in t roduc t ion as shown i n f ig . 2(a). 
Ac t ive devices can be taken account of by the in t roduct ion of inf in i te para

meters, these are obtained by setting ( j i j = XijK, (A%*co). The result ing 
expressions are then expanded i n a Taylor series and any t e rm which is d iv ided 
by K or higher powers of A' is neglected. The frequency independent constraint 
on (jjj is now removed, i.e. A ( J - may be a func t ion of frequency ; A' is a real constant. 

Equat ions (25) now become : 

« 3 ^ 3 = A 3 3 A + 3' 3 3 ! 

«.,.43 ='W^' -
a3A2 = A.vj /v - ^ 2 3 -

a,Av = A 1 2 A - #12- r 
= A 2 1 A - 0 1 2 - Y 21-
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A f t e r expansion 

a.,A,,= 
K A 2 3 A 3 , ( A o 3 ^ 2 3 ' a.,A,,= 

A 3 3 A 3 3 

«3-4i = 
A 3 2 A 3 2 

a i - J 3 = 
^ V A 2 1 A 3 3 , 

\ 1 

A 2 3 A 2 3 

A AjoAojAjg A 3 3 

A03 A 3 2 A 2 3 A 3 2 

+ 
A 1 2 A . 2 1 A 3 3 / ̂ 2 3 # 2 3 N 

# 2 3 A 3 2 > 

+ 
A 2 3 A 3 2 V 

^ 2 3 # 2 3 N 

# 2 3 A 3 2 > 

A33l"#21 + ^12]) + *i 3 3 . 
A 3 2 " 

A 3 3 L y 2 1 - T 1 2 l J ) + •• 
A 2 3 ~ 

( A 1 2 [ 0 1 3 + r 2 1 ] + A 2 1 [ 0 K + r 1 2 ] ) 

+ 

These terms are subst i tuted in the m a t r i x of eqn. (24), and separating the terms 
in K i n to a separate (active) ma t r ix , leaving the finite parameters i n the passive 
ma t r ix , gives the required active node in t roduct ion as shown i n f i g . 2 (b). 
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Synthesis of ail-pole functions ha* already been demonstrated. The paper describes 
the extension of the method to realize various types of rational functions which arc 
used in filter networks. 

The method is demonstrated on known networks and in the synthesis of a new 
class of parallel systems. The technique of numerator inclusion by choice of div isor 
polynomial and ' branch introduction ' arc shown. 

The transformation from the nodal matrix to the node matrix for the parallel 
systems is formulated and Number of Introductions Rule for such systems is given. 

1. Introduction 
The general method of synthesis of mul t i - loop feedback systems has already 

been described (Hol t and Sewell 1.968). w i t h particular emphasis on the synthesis 
of functions w i t h constant numerators. Many useful network functions have 
numerators tha t are polynomials and i t is therefore necessary to include the 
realization of a numerator polynomial in the synthesis. 

2. Numerator polynomial inclusion 
As can be appreciated there is not complete l iberty to synthesize any con

ceivable numerator polynomial w i t h any particular denominator polynomial 
when dealing with'these mul t i - loop systems. For. although in certain circum
stances the denominator is not affected by the numerator, the numerator is 
never to ta l ly independent of the denominator. There are a number of ways 
of including the numerator polynomial according to the fo rm of the func t ion . 

2.1. Xuineralor inclusion by choice of divisor polynomial 

I f the numerator consists of a single term., which is not s imply a constant, 
the method is to proceed through the synthesis as outl ined for realizing the 
given denominator funct ion. Then by suitable choice of the divisor polynomial 
Q(p). the required numerator is produced. 

Consider the synthesis of the func t ion 

cm- '"' 

by a mult i - loop network using an inf ini te gain voltage amplifier. A p p l y i n g 
Rule L (Hol t and Sewell 1908). /».= 2. q = 2. thus all introductions are of the active 

t Communicated by the Authors. 
t Now with I . . iiartment nf Electronic Engineering, I niversitv of Hul l , England. 
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type. Performing these as shown previously wi l l yield a matrix:: 

1 •> 3 4 

] ' mi - f . - . u U 

o 
r 4..,= 

-" .2 
v '̂ 23̂ 23 

-•;,23 

o 
O 0 - f l - > ' 

4 0 \ 

''2'! •-2,' ' 

As the numerator func t ion contains a term in p. t l ie appropriate co-factor 
should produce this term. Setting 912 = 'p w i l l achieve this end. Examine 
dominance conditions : assuming indefinite dominance at node 3. and since no 
excess dominance term is required to supply frequency dependent terms, 
indefinite dominance at node 2 is possible. 

W i t h A 3 3 = kMp. Q(p)=p the realization equation at node 2 is : 

= P + V\» + ' W 

Setting (A2g023/A\,3) = 3 wi l l give A 2 3 + 0, 2 ' = 3- i f 0 , . / = 0.rs then A.,.,2 - 3A.,:i + 3/.\i;i = 0 ; 
/ . 3 3 = p, gives convenient roots yielding A 2 3 = -A or 5. 0 1 2 ' = § or \. Taking the 
first root yields the circuit shown in rig. 1. 

Other numerator functions of this type may lie realized in a similar manner. 

Fig. 

V 

Multi-loop circuit, for a function having a second-order denominator and first-order 
numerator. 

2.2. Branch introduction 

When the numerator func t ion is a complete polynomial of the same order as 
the denominator, the method of synthesizing the denominator is again followed. 
Suitable terms can then be added into the matr ix which have a desired modi fy ing 
effect on the numerator but have no effect on the denominator. For example : 

synthesize the func t ion G{p) = 
1-25+ 3-o2}+;pa 

(y~Q+ ()•(}]]+ pi 
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Synthesis of the denominator funct ion proceeds as before (§2.1). The 
numerator is of the same order as the denominator, so tha t the divisor poly
nomial Q(p) need only be a constant, e.g. Q(p) = k. also let \ 3 3 = k. Examining 
dominance conditions at node 2 gives: 

To permit reduction, let A 2 3 = 6>,3=/> and 6V,'=823 thus yielding k — 0-3 and 
0 1 , = 2 ,5. I f the numerator co-factor is now evaluated i t appears t o f a i l to 
produce the required funct ion . Examin ing the m a t r i x again, i t is seen tha t i f a 
term is introduced in the 13, 31 positions, the denominator co-factor is unaltered 
bu t the numerator may be affected at w i l l . I f this te rm is (1 + -p) the required 
numerator func t ion is realized. The circuit is shown in f ig . 2. This last step 
is known as ' branch in t roduct ion " and is extremely important i n the realization 
of mult i-loop systems chai'acterized by rational functions. 

Fig. 2 

i 
I 

A / v W W <> 
0 - 3 

II 

in 

Multi-loop realization of a biquadratic function. 

The question of synthesizing functions having imaginary and r igh t -ha l f 
plane zeros now arises. The latter has been dealt w i t h elsewhere (Sewell 1966) 
and the, former problem w i l l be dealt w i t h i n the next section. 

3. Parallel systeui synthesis 
The general systems so far described cannot produce imaginary axis zeros 

unless some degree of positive feedback is introduced. For sensit ivity and 
stabil i ty i t is often advisable to avoid such a step and the fo l lowing shows how 
this is achieved. 

Consider a general rational transfer funct ion : 

this may be wr i t t en as: 

a { p ) = y t M . 
' { 1 ) , f , D{p) ' 

where Xj are single or groups of numerator terms, r being their number. 

2 M 2 
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Double ladder active multi-loop structure, (a) General st ructure. (//) One realization 
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This suggests a parallel ladder synthesis method and the f o r m of system 
which results is shown in f ig . 3. This approach therefore presents a method of 
realizing numerator functions not included by the previous techniques. 

I n the work presented here the fol lowing assumptions are made: 
(i) The array of elements i n the system w i l l be of a symmetrical f o r m , i.e. 

each passive ladder has the same number of nodes. 
(ii) Each ladder is responsible for one te rm of the numerator func t ion . 
W i t h these constraints, the fol lowing rule is postulated. 

3.1. Xumber of introductions rule 

Rule 2. If cm active device, having a 2x2 admittance matrix containing infinite 
terms the highest order of which is q, is required in the synthesis of a rational function 
whose denominator is of order m. and r is the number of terms in the numerator 
polynomial: the number of active introductions required will be q and the number 
of passive introductions is m—q + (m— l ) r _ 1 . 

Where r />3 , and for q=3 i t is again possible, and occasionally necessary, 
to use the multiple-order inf ini te parameter introductions. 

3.2. The 2 x 2 node matrix 

The only alteration required in the synthesis procedure to incorporate these 
parallel systems is connected w i t h the determination of the Y* ma t r ix . I n the 
cases of single and double-ladder systems the t ransformation was accomplished 
via a simple divisor polynomial , whereas here subtractive terms are necessary 
to effect the transformation. 

Thus the I ' * mat r ix becomes: 

1 k 

1 = Dip) '-' 

w here D{p) is the denominator of the rational funct ion , and Q{p) a divisor po ly
nomial . Thef^p) functions are determined during synthesis and depend upon 
the characteristics of the individual ladders, i.e. they express the relationship 
between the voltage and current at the reference node in one ladder and those at 
various nodes in other ladders. 

The follow ing example illustrates the method. 

3.3. Synthesis of a second-order elliptic function 

Synthesize a second-order ell iptic funct ion : 

as a voltage transfer ratio, employing an RC mult i - loop feedback circuit and a 
voltage operational amplifier. 
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W i t h k = 2 the ma t r ix is : 

r * 
.'/12* 

C M 
J L\l') i 

I f 

022 -

P2 + b1p + b0 

and y 0 2 2

; ; : = Y 023-A{p), 

then the m a t r i x f r o m which synthesis proceeds is: 

Y* = 
* | ^ O i l "̂ 12 

Y Y * 
J 21 J 022 

2/n*= I^oiu 2/i2*= 5 ' i 2 : #21* = Y-21- Kule 2 ( m = 2 , <7 = 2 and >- = 2), shows tha t 
one passive and two active introductions are required. 

Per forming the passive in t roduct ion w i t h j / , . ,=gr M = 0 and 6.,./ = 0 gives: 

l 2 3 

3 

( f l , , . - l ' , 2 ) ( ! 7 3 3 - l ' ; l 3 ) 
J m i 

•J y/l,.; 

j - « • ff23<7a2 
J 022 i i -

!/33 T"
 1

 3 1 
r / 2 3 

(9| 2 + I ' 5 i ) ( f f ,a + l''.-.3) T/:i3 -^33 

A p p l y i n g a K alignment introduct ion to the bot tom r ight -hand 2 x 2 ma t r ix , 
w i t h A 1 2 = A 2 1 = 6V2 = 0 : 

3 4 

Oil - f l u 
( e I S - r 1 5 ) f r / : , : , - r „ ) 

0 

- e , . 
y # , " ! 3 V , . 
J 02-2 . -.-

f/33 J 33 
0 ' W a a 

( e , i - 5 ' 1 2 ) ( f f , 3 - V : , : , ) 

f/ia 
n - v *2302.l' "" 2̂3 

f/.S3 1 33 \ } - 0 2 : , ' - A \ V , : ! 

fl 'V, 3 r/ 3 2 
A ; 3 

r : 3 - A r A : i : l 
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Performing the mat r ix manipulat ion outlined for the third-order 1\ alignment 
(Ho l t and Sewell 1968). mu l t ip ly ing the bot tom row by - ; / . , . , ' A 2 3 A" and adding 
to row 2 gives a mat r ix in which a f inal active introduct ion yields the mat r ix 
shown in eqn. (3) (see p. 506). 

For symmetry. A 3 3 " = K. 0 . , 3 " = A 3 3 . 0 1 2 " = 0 . J 3 ' : 

(#ia + •>'.••)(.'/,,:. + I'aa) ( # 1 2 + ^ i X f i t o + 1*33) fl = = tf13. 
032 ! /23 

examining dominance conditions at nodes 2. 3. 4. 

Aotfe 2 
Here definite dominance is possible : 

f/.33 + 33 A 2 3 

V * , if 231/32 V 3 2 ^ " 3 3 / 3 2 , , / ) . „ / I \ 
1 022 + r — ~ - = — + y + + . ' /22- ( 4 ) 

Aoc/e 3 

Again definite dominance is possible : 

\ 0 ' 
f/33 + ^ 3 3 = 6vl" + A 2 3 + #13 + Z/33- ( 5 ) 

A 3 3 

Xode 4 

This is the v i r tua l earth node and thus only indefinite dominance is pract ical : 

A 2 3 
A t the ou tpu t node : 

J V = 7 + A.,3 + 0.,3". 

X o w / ^ p ) expresses the relationship between the variables at nodes 2 and 3, a 
convenient choice for which not onlv ful f i l s this requirement b u t simplifies 
(3) is : 

r , „ x #23"32 , A 23^23 
MP) = , v + —y • 

.733 +
 1

 33 A 3 3 

Equat ion ( 4 ) becomes: 

v f/327 ^23#2:i ' A 33f/32 . , n , „ 
- 1 (122 - - T x = " I + 7 + #12 + U-Z2-

A 2 3 '"33 "23 

I f Q(j)) = p., A 3 3 = A- ; T 3 /J and A 2 3 - > A 2 3 T J . Then 

p- + b [ p + hll _ _ A 2 3 0 2 3 ' = / , 3 3 ( / 3 2 

P ^23 P / l 3 3 A 2 3 

I f ho = (< / 3 2y) ''"W- then : 

+ y + 0 1 2 + /y 

, 1 ^ 2 3 ^ 2 3 ^ 3 3 ? 3 2 , , / ) , , , /•r-x 

i J + fcj : = - r + 7 + 0 1 2 + # 2 2 - ( 0 
K 3 3 " 2 3 
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X o w the func t ion under consideration wi l l require at least one high-pass and 
one low-pass ladder in a parallel configuration. For the low pass branch the 
periodic term is associated w i t h the excess dominance term as usual, thus 
f r o m (7): 

where 62i = (A-33<732).'Aa3 or 

b1 = e 2 i + Y + e 1 2 + b - ^ . (s) 

For a symmetrical network, and to ensure cancellation of unwanted numerator 
terms, i t is necessary tha t eqns. (4) and (5) are equal. 

I n the high-pass branch the periodic term is associated wi th the series 
elements, thus : 

Subst i tut ing for y in (8) gives: 

b1 = e . 2 i + + g l 2 + 6 1 - ( y M + A t a ) . (10) 
& l - ( ! / 3 3 + ^ 3 ) 

I f the numerator co-factor A 1 5 of the mat r ix is evaluated, then provided the 
above cancellation conditions are va l id , the numerator is : 

x(p) = e l 2 e 2 i + e1,o.23'. ( i i ) 

I t has already been determined tha t 613, 0 2 3 ' arc frequency dependent , thus let 
^i3~^ i3P- ^ a ' ^ ^ n ' i 5 - Thus f r o m (11) and (2) (neglecting any constant mult ipl ier 
produced): 

^ 1 2 ^ 2 4 n a 0 ^ 1 3 ^ 2 3 or 0 1 2 = 3 ^ L . (12) 

For symmetry of the circuit components i t is convenient to l e t : 

Subst i tut ing for 613 in (12) gives: 

e v l = a 0 d . 2 3 ' ( } - e ^ y e u . 

Substi tuting in (10) for 9l2 yields: 

0242(&l - l > 3 3 + A 2 3 ] ) + M & l - L'/33 + 'VJ)( - [y33 + A, 3 ] ) 

+ a 0( 1 - 0 2 3 ' )0 2 3 ' (&i - [,y3 3 + A, 3 ] ) + 6 0 A 2 3 t f 2 3 ' = 0. (13) 

Solutions of this equation are possible for elliptic functions. Take the numerical 
example : 

; j 2 + 7 . 4 f i 4 

p2 + 0-607.3/; + 0-7559 
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I t is advantageous to have as many equal components as possible, hence choose 
^ = A.,3 = 0-1 and 0 2 3 ' = 0-001 then (13) becomes: 

0-4075# 2 4

2 - 0-08150.24 4- 0-003.1 1.41 = 0. 

One solution of this equation is 0 2 4 = 0-14855. which gives: 

d l n = 0-050190. 
0 1 3 = 0-999. 

y= 1-2487 x 10" a

: 

. _ o 
33 — " 

The resulting circuit is shown in f ig . 4. 

Fig. 4 

k33 = 2-45397 x 

O O O I 3 5 O - 0 0 0 2 4 5 

O - O 5 0 2 
2 0 - 1 4 8 6 

0 . 9 9 9 3 O - O O I 

Multi-loop circuit realizing a second-order elliptic function. For all circuit realizations 
the element values are in mhos and farads. 

4. Conclusion 
I t has been demonstrated how various numerator polynomials can be included 

in the synthesis of mult i - loop feedback systems. This increases the range of 
functions which may be synthesized using these systems. 

The method of synthesis for parallel systems may be extended to include 
circuits of order n and rank m (Hol t and Sewell 1966) . There is, of course, 
increased complexity associated wi th the realization of such networks. 
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A Method of Power Measurement 
A b s t r a c t — A m e t h o d of m e a s u r i n g the p o w e r in jec ted into a net

w o r k is d e s c r i b e d . E i ther input c u r r e n t or v o l t a g e w h i c h are both 
c o m p l e x w a v e f o r m s , m u s t be e lec t r i ca l l y in tegrab le and p h a s e -
locked to the o ther . T h e m e t h o d is par t icu lar ly app l i cab le to c a s e s 
w h e r e o n e of the var iab les is s i n u s o i d a l . 

Fig . l ia i represents the general case of a one-port network with a cur

rent ilrl injected by a voltage generator v\i). T h e periodic voltage and 

current waveforms may be of any form with the stipulation that one must 

be electrically integrable and phase-locked to the other. Suppose iV) can 

be integrated to give r , U l . T h e closed curve of F i g . l ib ) may be assumed to 

represent the resulting plot of Ht) against c ,U). T h e total area enclosed is 

given by the line integral of current around the curve. T h u s . 

( I I .-1 = © i d r 

but 

: | vdt. 
Jo 

v (t) 

(at General one-port network, tbi input current versus integral 
of input voltage for general one-port network. 

Substituting (2) into (1) gives 

ivdt (3) 

where T is the time taken for one excursion around the closed contour of 

F i g . K b ) . 

T h e integral on the right-hand side of (3), and hence the a.^a enclosed 

by the curve of F i g . K b ) , is directly proport ional to the average power 

flowing into the c ircuit . 

T h i s method is particularly applicable to the case where one of the 

variables is s inusoidal . Integration can then be performed by imposing 

a 90 c phase shift on the s inusoidal waveform. 

T h e power flowing into a network N was measured using the experi

mental layout illustrated in F i g . 2. T h e input voltage was sinusoidal and of 

frequency f v — 50 k H z . T h e input current waveform was periodic and it 

consisted of a number of s inusoidal frequency components which were all 

multiples of a fundamental frequency / , . Frequency f v was an integral 

multiple o f f , ; otherwise, the power input would have been zero. T h u s , in 

this case. T equaled 1//J. 

T h e resistance-capacitance network provided the necessary 90" phase 

shift. T h e integral of the driving voltage was displayed on the X plates of 

the oscilloscope and the input current on the Y plates. T h e resulting 

L i s s a j o u figure then corresponded to the general plot o f F i g . I (b). T h e trace 

on the C R O was photographed a n d the negative was placed in an enlarger. 

T h e area enclosed by the magnified image was measured using a planimeter. 

F o r the purpose of cal ibrat ion, network /V was replaced by a standard 

resistance and. for the same camera and enlarger setting as above, an area 

corresponding to a known power was found. T h e power flowing into 

network N was obtained by compar ing the area enclosed by the u n k n o w n 

curve with that of the cal ibrat ion curve. T h e inherent errors in measure

ment thus tended to cancel out. since they were characterist ic of both 

curves. 

A more direct approach of determining the power flowing into the net

work would be to multiply/(. ') and i ( / ) a n d integrate the result. T h e product 

of /( /) a n d r ( / ) is generated in a multiplier which is a costly and complex 

piece of equipment with severe l imitations on accuracy especially at high 

frequencies. T o integrate the product of i(t) and tit), which is a complex 

waveform, would require a much more sophisticated circuit than the phase 

shifter used to integrate the s inusoid in the method described here. A n 

alternative method of measuring the input power would entail the measure

ment of the amplitudes of components of voltage and current waveforms 

and their relative phase displacement at the frequency of the sinusoidal 

waveform. T h i s would involve filtering out the required frequency com-

tes i 
R O 

Y 
Plates 

T 
,ft) current 

vft N 

Fig. 2. Experimental circuit for measurement of input power. 

ponent of the complex waveform which, as a result, would preclude an 

exact determination of phase angle. 

T h e above method of power measurement lends itself particularly to 

cases where either the current or the voltage waveforms are easily integra

ble; for example, s inusoidal and exponential waveforms. It makes possible 

the accurate measurement of power in parametric amplifiers, harmonic 

and subharmonic oscil lators, and other forms of frequency converters. 

J. A. NELSON 

W . D . R Y A N 

Dept. o f E l e c . E n g r g . 

T h e Queen's Univers i ty 

Belfast, Northern Ireland 

A Simple Method for Producing Floating Inductors 
A b s t r a c t — A s i m p l e m e t h o d for p r o d u c i n g u n g r o u n d e d i n d u c t o r s 

us ing a gy ra to r is d e s c r i b e d . F l o a t i n g i n d u c t o r s may be o b t a i n e d f r o m 
e i ther g r o u n d e d or u n g r o u n d e d c a p a c i t o r s . T h e t e c h n i q u e h a s an a d 
v a n t a g e in t h e l o w n u m b e r of a m p l i f i e r s requ i red . 

T h e problem of realizing floating inductors using gyrators and ca

pacitors has led to some ingenious solutions [ l ] - [ 3 ] and has provoked 

interest in using other devices such as c irculators [4] to overcome the dif

ficulty. In a recent report [5] , a technique for simply producing an un

grounded inductance was indicated and the general method can be 

established as follows. C o n s i d e r a parallel connection of two 5-terminal 

Manuscript receded Juno 2. 1969: revised August 19. 1969. Manuscript received August I I . 1969. 
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F i g . I . G y r a t o r circuit using 5-terminat amplifier*. 

F i g . 2. G y r a i o r circuit producing a floating inductor from a grounded capacitor. 

quired in an\ circuit realization. For a lou-pasb tiller, the number of 
amplifiers required by (he above techniques is 2n in being the number of 
inducme elements normalh required!, whereas the "tuo-gvraior method" 
[1 ) needs An amplifiers and the Deboo technique [3] needs }n amplifiers 
or 2n amplifiers and associated floatation circuits [2\. The alternative 
circulator technique [4] requires }i\ amplifiers when using third-order 
circulators or 5((>i-f\) 2} amplifiers with fourth-order circulators. The 
multiierminal gyraior method [7] wouldneed 2 \2n -r 11 unii>-Cain cti.Tem-
and voltage amplifiers. 

J. I. St\vi;u 
Dept. of Electronic Engrg. 
University of Hull 
Hull. England 
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transadmittance amplifiers (6] (voltage-controlled current sources) as 
shown in Fig. 1. The amplifiers are ideal and have a transconductance g. 
The definite admittance matrix for such a circuit is 

" 0 0 9 -9 
0 0 -9 9 

-9 9 0 0 

9 -9 0 0 

which can be partitioned as 

This matrix has precisely the same form as that of the common two-port 
gyrator. 

If a capacitor is connected between nodes 3 and 4. it can be easily shown 
by pivotal condensation that the matrix describing the input port (nodes 
I and 2) represents an inductor of value C/g2 connected between these 
nodes. 

The negative sign of one of the G matrices can be obtained by appro
priate connections of amplifier inputs or outputs. 

It is possible, however, to progress further and produce an ungrounded 
inductor from a grounded capacitor using this type of circuit. The gyrator 
circuit shown in Fig. 2 has an admittance matrix 

0 0 \ 9 
0 0 \ ~9 

-9 9 ! o 

A capacitor connected between node 3 and ground will produce a float
ing inductor between nodes 1 and 2. There are two other methods of realiz
ing gyrators which are inherently capable of producing floating inductors. 
The connection of two transimpedance amplifiers (current-controlled 
voltage sources) in series is one of these, but one which uses ungrounded 
amplifiers, This circuit will give a floating inductor from a floating ca
pacitor, or with one amplifier grounded, the circuit will give a floating 
inductor from a grounded capacitor. The gyraior produced by a negative 
impedance convenor iNICl. negative impedance inverior (Nil) cascade 
using an entirely active Nil [8] will produce a floating inductor from a 
grounded capacitor. This circuit employs two grounded amplifiers. 

The advantage of these methods is the low number of amplifiers re-

On the Reflection Pattern Made by a Laser Beam on the 
Etched Surface of Germanium 

A b s t r a c t — A laser b e a m is s h o t on the s u r f a c e of s i n g l e - c r y s t a l 
g e r m a n i u m , a f t e r e t c h i n g . F r o m the re f lec t ion pa t te rn , the c h a r a c t e r 
i s t i c s of e t c h e d p i ts a n d h i l locks a r e e x a m i n e d a n d it is f o u n d tha t 
e t c h e d p i ts not on ly are s i m p l e h o l e s but a lso are c o n v e x . 

In add i t ion , a n e w re f l ec t ion pa t te rn in the o r i e n t a t i o n of [110] is 
r e p o r t e d . T h e s e n e w d a t a w i l l be app l ied to d e c i d e t h e o r i e n t a t i o n of 
s i n g l e - c r y s t a l g r o w t h a n d the e f f e c t of d i s l o c a t i o n in c r y s t a l . 

A determination of the orientation of semiconductor single crystals is 
needed for many purposes such as the use of seed in the growth of single 
crystals and the study of dislocation and isotropy of the crystal. Until now. 
two methods of measuring this have been known. One is an X-ray tech
nique, the other involves using the reflection pattern of visible light. The 
former has accuracy, the latter has ease of measurement and the benefit of 
inexpensive machinery. When a high degree of accuracy is not required, it 
is more convenient to use the latter system. 

The method of the reflection pattern of visible light is used in the follow
ing manner. A single crystal is first cut at an appropriate orientation and 
the surface is polished with emery paper. After that, the crystal is etched 
with a substance such as superoxol ( H F : H 2 0 2 : H 2 0 ) (ratio 1:1:4). 

In the configuration outlined in Fig. 1. visible light (our experiment used 
a laser beam) is shot through a pinhole onto the pits and hillocks that have 
been etched into the surface of the crystal. From the reflected light pat
tern, the orientation of the axis and the degree of incline of the surface 
from the axis can be determined. 

In our experiment, we tried to control the width of the laser beam by 
using slit diameters from 0.5 mm to 1.0 mm. The photographs obtained 
under such conditions are shown in Fig. 2; etched pits appear in the orienta
tion of [111 ] and [100] and hillocks appear in the orientation of [110]. 

We concluded that the reflective surface was convex because the re
flected , :;iht pattern was enlarged more than the diameter of the laser beam. 
Besides this, the size of the reflection pattern changed when the distance 
between sample and screen was changed. We can observe the effects of a 
convex mirror in the targe etched pits of orientation [ 100 J and [110]. and 
the effects of a concave mirror in [111]. However, we were interested in 
why there were such special pits and hillocks corresponding to each orien-

Manuscr ipt received F e b r u a r y 17. 1969. 
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Synthesis of active devices f 

J . I . S E W E L L 

Department of Electronic Engineering. University of Hull 

[Received 9 June 1970] 
The paper considers the synthesis of active network devices from a mathematical 
point of view. It is demonstrated how various devices can be realized without any 
detailed prior knowledge of the circuit form. Commencing with a matrix which 
characterizes the device performance, an appropriate admittance matrix is produced 
and then expanded by node induction until a network consisting of amplifiers and 
resistances only can be recognized. The validity of the method is demonstrated by 
synthesis of some accepted practical device realizations. 

1. Introduction 
I n recent years there has been considerable interest shown in the design and 

use of active ne twork devices fabricated f r o m operational amplifiers and 
resistors. Devices such as gyrators (Morse and Huelsman 1964, Anton iou 
1967) negative impedance converters (Morse 1964, An ton iou 1965), active 
transformers (Ho l t and Stewart 1968, Keen and Glover 1968 b), circulators 
(Keen ef al. 196S, Rol le t t and Greenaway 1968), and various others have been 
realized in this f o r m . These devices are finding extensive use i n active 
network theory. 

Certain mathematical techniques have been employed in the design of 
these elements, such as the technique using a basic active f o r m of network 
(Keen and Glover 1968 a) and then ut i l iz ing a m a t r i x factorizing method. 
This method appears to be the sole a t tempt at approaching the whole problem 
mathematical ly , al though even here some basic active f o r m is assumed a priori. 
I n the references cited, no rigorous mathematical techniques are employed in 
the circui t realization. 

The method to be out l ined does not assume any detailed i n i t i a l active 
topology or rely upon any particular design sk i l l . F r o m the i n i t i a l device 
specifications, the f ina l c i rcui t is derived by basic ma t r i x operations. The 
technique of node in t roduc t ion is employed ; this mathematical method has 
been-rigorously defined (Piercey 1962) and successfully applied t o the synthesis 
of certain active networks employing operational amplifiers (Ho l t and Sewell 
1969). 

2. Synthesis of 2-port devices 
A typ ica l active 2-port device in current usage is the negative impedance 

converter (NIC) . The synthesis of a current inversion negative impedance 
converter ( I X I C ) w i l l demonstrate the principles involved. 

j . E . 

j Communicated by the Author. 
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2.1. Admittance matrix of an, IXIC 

The transmission mat r ix of an ideal 1X10 w i t h u n i t y conversion rat io is 
(Mitra 1969) : 

' 1 01 
.4 = 

0 - 1 

A non-ideal one has « 1 2 . a.2l^0, let a f . = S(- —>0. (i ^ j ) . Hence 

~1 3, 
A = 

Transforming to a Y ma t r ix 

Y = 

6, - 1 

i i + sa 

1 1 

since S, -»0 any higher power or mul t ip le 5(- terms can be neglected and fo r 
convenience define 

£ j -+Kg, 

where K is a real constant tending to i n f i n i t y , g is some f ini te real constant. 
Thus 

Y = 
- Kg Kg 

- Kg Kg_ 
(1) 

2.2. Method of synthesis 

The general technique employed here is t h a t of node in t roduct ion . The 
general theory and application of this have been discussed elsewhere, b u t the 
basic idea is to commence w i t h a 2 x 2 admittance ma t r ix , which may consist 
of complex entries, and expand the ma t r i x one node at a t ime u n t i l an nxn 
mat r ix is obtained, the elements of which can be di rec t ly recognized as the 
elements of an n node network. Most of the int roduct ions are already k n o w n , 
but the addi t ional ones required in this work and the method of der iving them 
are given i n the Appendix . 

• I t is not possible to commence synthesis immedia te ly w i t h eqn. (1) i f i t is 
required to have a ne twork consisting of a voltage difference amplif ier and 
resistors only. The compactness of such a ne twork prevents the in t roduc t ion 
of sufficient terms i n the expanded m a t r i x . 

However, this problem is overcome by sp l i t t ing the ma t r i x Y in to t w o 
matrices ; per forming node introduct ions on these, the resultant matrices 
represent two networks in parallel which realize the required device : 

Y=YA+YB, (2) 

Kg 0 

Kg 0 

0 Kg 

L0 Kg. 
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Consider Y B and use an Act ive I I I b in t roduct ion w i t h A 3 3 = 4, A ) 2 = 0. A 2 1 = 0, 
0 < A 2 3<^ I . A 3 2 = A'. 

0 -812 - A ( 0 1 2 + r 1 2 ) 
A 

^ B(3 '3 ) — - d l 2 Kg-2K623 - ^ 3 

^23 

r 3 3 + 2 A 

W i t h d12 = o, 9,3 = \g and r 3 3 = flr this becomes : 

y B(3-3 ) — 

0 0 

0 0 

0 =J>+K* , +

 K-

I n order to ensure reai izabi l i ty of the final network, terms which constitute 
the passive elements, i.e. any terms other than K, w i l l have to produce a 
symmetric sub-matr ix when Y A i n n ) . r B ( n . n ) a r e u l t ima te ly added. I t is 
therefore necessary to pe r fo rm a t ransformat ion of the type TlBYT.2B ; the 
response of the system is invar ian t under such a t ransformat ion . 

For the above ma t r i x Y B ( 3 . 3 ) , T 1 B and T 2 B have the f o r m 

M 0 0 " "1 0 0' 

?'i = 
0 1 9 

A 2 . T2 = 
0 1 0 

0 0 1 0 ~9 
K 

1 

The transformed mat r ix becomes 

0 0 Z l 

Y B ( 3 ' 3 ) — z i 
•~> 

(3) 

0 -g + K2 g+-

2 N 2 
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N o w consider ] ' A and use an Act ive I l i a in t roduct ion w i t h A 3 3 = -J. 
A 1 2 = A 2 1 = 0, 0 1 2 = O. 0 < \13<z 1. A 3 1 = - A " . = (f?'2) ? l ' m = g. 

0 0 

0 0 — 2 •> 

Again a t ransformat ion o f the type T1XYTS^ is necessary to ensure, u l t imate 
r e a d a b i l i t y o f the passive network. T 1 A ! f 2 X have the f o r m : 

1 0 -9 
K-

" 1 0 0" 

T — 
J 1A — 

0 1 0 T — 
' 2 A — 

0 1 0 

0 0 1 -9 
_ K 

0 1 

Performing the t ransformat ion yields 

A ( 3 - 3 ) — 9 0 0 — 2 o 

-9-K1 0 g + 

Fig. 1 

K 
o 

(4) 

Current inverting negative impedance converter. 



Synthesis of active devices 505 

Because of the basic properties of node in t roduct ion , ecjn. (2) wi l l hold fo r 
these expanded matrices, hence the ne twork m a t r i x is obtained by adding 
eqns. (3), (-4) 

g o -9 

Y = -9 

ig - ( / - A ' * -g + K* 

which leads to a known I N I C circui t shown in f ig . 1 (Morse 1964). 

2.3 Synthesis of other 2-port. devices 

I t is possible to extend the method shown to include gyrators and other 
devices. B u t as a gyra tor can be constructed f r o m a cascade of circuits 
employing N I C ' s fu r the r elaboration is fe l t unnecessary. 

3. Synthesis of multi-port devices 
A n interesting development arises in the synthesis of active circulators 

which belong to this class and have received some a t tent ion recently (Keen 
et at. 1968, Ro l l e t t and Greenaway 1968). 

3.1. N-port. circulator transmission matrix 

The admittance m a t r i x of an A l p o r t circulator is skew symmetric and can 
be expressed as follows : 

YX,,: = KGCK, 

where Gv is the circulator mat r ix of the f o r m 

0 1 - 1 
- 1 

1 
0 
I 

1 
0 

1 - 1 

the phase pa t te rn of (? e is always that fo r A7 odd. The phase ma t r ix K is 
used to produce the correct phase pattern, w i t h par t icular reference to even 
order circulators where a phase reversal may be introduced between any two 
ports to ensure s tab i l i ty . A" is a diagonal mat r ix containing elements ± 1, 
wr i t t en as { 1 . 1] and is of the same order as Gc. 

Synthesis could commence by considering the ma t r i x (?,. and applying 
node introduct ions u n t i l a realizable network resulted. However, this would 
involve dealing w i t h matrices of higher order and t ransformations of associated 
complexi ty . A n alternative approach is suggested. 

Most circulators consist of cascaded identical uni ts enclosed w i t h i n an 
overall feedback loop. I f this loop is broken, i t is then possible to derive a 
transmission ma t r ix describing the path between the open ends of the feedback 
loop. The mat r ix for an A t h factor fol lows f r o m easy factor izat ion. 
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The overall transmission ma t r ix has the f o r m 

"1 01 
Ax = ' 

when N is even the mat r ix becomes : 

-4.v = 

0 0 

- 1 0' 

0 0 

(5) 

(6) 

b u t the removal of a phase reversing stage w i l l produce eqn. (5). 
A x can be spl i t in to X A matrices of the type 

""1 0] 
A,= 

0 0 
(~) 

3.2. Basic elemevt admittance matrix 

For synthesis of an ind iv idua l un i t , by node in t roduct ion , i t is necessary to 
commence w i t h an admittance ma t r ix . Immedia te t ransformat ion of A( 

would lead to a ma t r i x w i t h in f in i te entries, hence i t is obligatory to consider 
the transmission ma t r ix of a non-ideal un i t : 

where 5, ->0. 
S2 S2 

I f a n = 1 and S^ is so small t ha t only f irst-order terms are significant 

r . . = 

Now investigate these terms in the l i m i t 

Si 

- 1 1 

Si 

Hence 

( ^ \ where g. a are constants. 

-. where K->oo and is a real constant. 

a 

g -g 

- A 2 A 2 

a is a constant introduced to aid synthesis, i f a = 2 synthesis proceeds in a 
convenient manner : 

Y,= 

g_ 

2 2 

- A 2 A 2 

(8) 

This ma t r ix is obviously not realizable by passive means. 
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3.3. Method of synthesis 

The ma t r ix of eqn. (8) is expanded by node in t roduct ion in the usual 
manner, commencing w i t h an Act ive I I b in t roduct ion wi th the fo l lowing 
iden t i t i es : A 1 2 = 0. A 2 1 = 7v/2 : A 2 3 = - A". 0 2 3 = O. A 3 2 = -</,./A"-. 0vl = (/;-, 
Y 22 • 

Y, (3-3) — 

- g 

-g A"- A 2 q „ 
— + — — 4 - - + A •? •> o •> 

L - 0 c 

• A 2 

0c 

The next step is to per form a passive I I b in t roduct ion on the bo t tom 
r ight -hand 2 x 2 ma t r ix w i t h the conditions 

and 
(021 - #12 - 3*2l) = (022 + YSi) = (023 - 0 2 3 ) -*0 

/Z, (021 - #12 - Y21) , ft (023 - ^23) £ (022 + 5' 2 2 ) 
j _ /9 1023 ~ P23 
2 ' ^ ( 0 2 , + J ' 9 

I . 

?12 = °> 021 = °.- 023 = , ) . 012= - 0 -

i ( 4 ' 4 ) : 

0 
•> 0 0 

- 0 A 2 

— + — A + < / -gr - < / + A 2 

•0c 0 0e 

-032 
032 032 

Again i t is necessary to per form an elementary t ransformat ion of the type 
2 \ 7 / T 2 w i t h 

' 1 0 0 0" ~\ 0 - 1 1 "1 
2 

0 1 0 0 , T 2 = 0 1 0 6 
0 0 I 0 0 0 1 0 

_ I 0 - 1 1 0 0 0 1 

and w i t h g32 = -g the fo l lowing ma t r ix results : 

0 + 0c 0 -gc 

^ • u - 4 > = 0 K + g - A 2 

- 0 c 0 j / , 
- 0 - 0 0 

- 0 

0 
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which can be recognized as the circuit shown i n tig. 2. A cascade of these as 
shown in f ig . 3 w i l l realize an A - p o r t circulator of the f o r m reported by Rol le t t 
and Greenaway (1968). 

Fig. 2 

3 
I W 1 

3 ' 

Circulator section. 

Fig. 3 

9 3 g 

3 
I — v w - i -

1 V W — t — 

3 

I V W — f — Si^^ 
3c 3 

I 2 N 

U U L 
Alpor t circulator (A7 odd). 

4. Transformation of amplifier type 
I f the amplif ier used i n a ne twork has inf in i te gain, then i t is immater ia l 

which of the four types, voltage, current, transadmittance or transimpedance 
of the same configuration, are employed, as the system response is identical . 

W i t h f in i te gain devices i t is possible to show a certain equivalence between 
amplif ier types of different configurations. For instance, i t has already been 
shown (Ho l t and Carey 1966) t h a t a voltage amplif ier can be t ransformed in to 
a current one merely by t ak ing the transpose of the amplif ier ma t r ix . Now 
for any m a t r i x Y. det Y = det Y T , and i f the determinant is identical then the 
class of device remains unchanged, although there may be a change w i t h i n the 
class, which is true in the case of negative impedance converters. The transpose 
t ransformat ion w i l l convert a difference voltage amplif ier in to a current para-
phase amplif ier i n a reverse direction. Similar ly the transpose of a difference 
transimpedance amplif ier is a paraphase transimpedance amplif ier facing in 
the opposite direct ion. I n the case of the N I C device both of these transforma
tions have the effect of changing an I N I C to a V N I C . 

There is also an equivalence between a f in i te gain voltage difference amplifier 
and a f in i te gain transadmittance difference amplifier . 
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I t is therefore possible to realize the devices synthesized earlier w i t h 
di f ferent types of amplifier, provided tha t the fo rward gain is large, compared 
to the other parameters of the amplif ier admittance ma t r ix . I n the case of 
f in i te gain amplifiers some interchange of amplifiers is permit ted by the transpose 
rule, a l though there may be some change w i t h i n the class of device. 

5. Conclusion 

The mathematics of synthesizing active devices has been presented and 
demonstrated on t w o different types of devices. I t is possible to realize a l l 
the devices i n the 2-port group and the mul t i -po r t one using the techniques 
derived. The techniques could be modif ied to include amplif ier non-idealities. 

B y employing the transformations indicated and others such as nul lator-
norator pair ing (Antoniou 1968) a mul t i tude of equivalent c i rcui t realizations 
can be realized. 

Appendix 

Fol lowing Piercey (1962) and H o l t and Sewell (1969) i t is easy to derive 
the node introduct ions used in this work . For a ma t r i x 

v -
1 2-2 — 

Y Y ' 
- ' O i l J 12 

Y Y 
1 21 1 022. 

a 1-node in t roduc t ion gives 

Y -
1 3-3 — 

Y o n + a1A1 Y x 2 + a2Ax a3A1 

Y2i-haiA2 Y 0 2 2 + a2A2

 a3A2 

axA3 a2A3 Q 3 ^ 3 J 

For the Passive I I b node in t roduct ion : 

a*A2 = g22 + I 22' 

0 3 J ^ 2 = 9 r 2 3 — ^23' 

a 2 ^ 3 = !732 — ^23' 

On subst i tu t ion the in t roduct ion becomes : 

^ O i l 

1 ( ! 7 l 2 - 0 1 2 - * ' l 2 ) ( l / 2 1 - 0 1 2 - 3 ' 2 l ) 0 1 2 - 0 1 2 ( 0 i 2 - 0 i 2 ~ Y12)(g23 - B23) 

0 2 2 + Y 2 2 

0 1 2 - 0 1 2 

0 2 2 + ^ 2 2 

$21 - #12 022 922 22 023 — 023 

(021 ~ # 1 2 - ) r2l)(<732 - # 2 3 ) 032 - ^23 ( 0 2 3 - 0 2 3 ) ( 0 3 2 - 023) 

g22 + }'.„ 
032 - ^23 

022 + Y-.2 
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1) in t roduct ion lias the fo l lowing identities : 

a.2A.2 = K + Y.22. 

a2A3 = A 3 2 / v - 6.23. K -> x . 

o3Ao = A 2 3 / Y — $03. 

Fig. 4 

• Y . „ - [ ( 9 . . * Y . . ) A „ - l « . i * > . . ) X „ ] 

~ Y J T 

- 9„ 
- Lce.i - y . o x , 5 . x „ s » 1 

- Y J I X>1 X ji. 

- 6ij Y o n • V H 

- [ S J J X J J - t S j j X j j ] - Y M X J 5 \ J J 

K X J I A n k X„ X 5 5 

k 

K X j , X j 2 
K X 5 J K X13 \ 3 3 L 

Active IT b node introduction (A 2 2 = l ) . 

Fig. 5 

-9 .1 -ft, 

y „ „ + K^uhil^ „ o „ \ X i , y 5 i - (8,,+v,) 

- 9 , 

X,. X s , ( J 
+ 9,, X 5 5 Xj, 

4 , 

X.JYJS - >.» (e .^Y.) e,j x„ X„ 
x:, Y 5 I 

K X 3 1 X . 3 
X53 

K X,» K X„ 

K X 1 1 
K X, t Xi, x ! 5 

K Xj, X J J 
K X 1 1 

X , } X), X), 

K X j , K X,i X J J 

X>* 
K X35 

Active U f a node introduction ( A 3 3 ^ l ) . 
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Fig. 6 

o i l 

- e , 2 

'•n 

+ 9j3 X, l X55 

Xn 

y 5 „ _ — (x«o J S -x„f l„ ) - y„x„>, , . 
*3S < = -e, s 

J - ( X j , Y : 3 - X53 [Pa + fl3s X „ \ 5 , 
XJJ X 1 

A 15 
>51 

- t -

K X , i X . , X 5 i 

Xl5 X 3 ^ 

K X . J 

*J1 

K Xj , K X j , X ! S 

X 3 3 

K X J J 

K X „ Xj , 
X T 5 

K X U 
K X S 5 

Active I I I b node introduction ( A 3 3 ^ l ) . 

The Act ive I I I a ( A 3 3 ? i 1) in t roduct ion has : 

(<3A3 = ^33^- + ^ 33' 

« i ' 4 3 = A 3 1 /v - d 1 3 . 

a 3 A l = A 1 3 A ' ~ ^13-

and s imi lar ly for the Act ive I I I b ( A 3 3 ^ 1) in t roduct ion : 

C<3A3 = K s ^ + ^ 33-

a2A3 = A 3 2 A - 823. 

a3A2 = X23K - 623. 

Subst i tu t ion , expansion in a Taylor series, and neglecting any terms div ided by 
A" or higher powers of A' wi l l y ie ld the introduct ions shown in figs. 4. 5. 6. 
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The imultiterminal active transformer^ 

J . I . S E W E L L 

Department of Electronic Engineering. University of H u l l 

[Received 19 August 1971] 
A method is presented for realizing an active multiterminal transformer which can 
then be used to produce a multiport transformer. This technique overcomes 
previousl}' encountered restrictions and permits replacement of the floating trans
former used in conventional network synthesis. 

1. Introduction 

O f the act ive realizations which have been produced fo r t ransformers 
(Weiss 1966, Su 1966, Brodie and Crocker 1966, H o l t and Stewart 1968) on ly 
one does no t have the restr ict ion t h a t one t e rmina l on the i n p u t side and one 
on the o u t p u t side f o r m a common ear th . This na tu ra l ly prevents realizations 
o f m u l t i p o r t t ransformers by these techniques. However the method developed 
by Weiss (1966) allows the real izat ion of the m u l t i p o r t t ransformer , b u t un
fo r tuna t e ly employs a considerable number o f negative resistances and requires 
them to be f loa t ing . The method to be described overcomes the restr ict ions 
so far encountered. 

2. Transformer realization 

The basic procedure is to realize a m u l t i t e r m i n a l t ransformer , each t e rmina l 
of wh ich represents one end of a w ind ing t h a t has the other end grounded. 

Fig. 1 

1. 
M U L T I -

T E R M I N A L 

G Y R A T O R 

1 

M U L T I -

T E R M I N A L 

G Y R A T O R 

G 2 

1 

2 n 
M U L T I -

T E R M I N A L 

G Y R A T O R 

2 M U L T I -

T E R M I N A L 

G Y R A T O R 

G 2 

2 

n o 

M U L T I -

T E R M I N A L 

G Y R A T O R 

m 

M U L T I -

T E R M I N A L 

G Y R A T O R 

G 2 

M U L T I -

T E R M I N A L 

G Y R A T O R 

M U L T I -

T E R M I N A L 

G Y R A T O R 

G 2 

Multi terminal active transformer. 

t Communicated by the Author. 
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Suitable combinat ions of pairs of terminals w i l l produce ports . The admit tance 
m a t r i x seen at the input of a m u l t i t e r m i n a l gyra tor (Ho l t and L ingga rd 1968) 
is 

Y = GYI~1GT, 

where G is an nx m gy ra t ion matrix,, and Y L is an m x »> load m a t r i x . Con
sider two m-ultitci .mina l gyrators in cascade as shown -in f ig . 1, the i n p u t 
m a t r i x is then 

Y = G1(G2Y,-1G2':)-lGT, ( l ) 

where Gx is an n x m gy ra t i on m a t r i x , 
G2 is an m x I gy ra t i on m a t r i x , 

and Y L is an / x I load m a t r i x . 

2 .1 . Realization with square G matrices 

I n the case when the G matrices are square, s t r a igh t fo rward man ipu l a t i on 
o f eqn. ( I ) yields : 

Y = G 1 ( u ^ Y L G 2 - K ^ (2) 

and a number of al ternat ives fo r the matrices Glt G2 are w o r t h y o f considera
t i o n . 

2.1.1. Unequal symmetric G matrices, G2 non-singular 

This presents a valuable pract ica l s i tua t ion ; i f G1 = gxA G2 — g2B where 
g2 are constants and A. B are matrices, A^B, and | . B | ^ 0 then eqn. (2) 

becomes 

Y 
J7,2 

AB-lYLB~lA. 

This (equation represents t ransformer act ion on the load m a t r i x , wh ich may 
be readily observed bv considering an example. 

Let 

~9L 0" i - r bi - b 2 

YL = 
0 9L. - I I _-b2 6X_ 

subs t i tu t ion gives 

where 

C: 
b , - b 2 

I n this case the constant 2c 2((/ 1

2/'</ 2

2) can be considered to represent a turns 
ra t io effect. The inpu t m a t r i x corresponds to the admit tance m a t r i x of a 
f loa t ing resistance and, as the load m a t r i x describes t w o resistances wh ich are 
grounded at one end, an isolation effect is apparent. 
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F i g . 2 

o 
o 
o 

• — i + 

r x 

Floating 2-port active transformer. 

A simple realization of a two-port transformer as shown in fig. 2 follows, 
where the amplifiers are ideal transadmittance amplifiers (Sewell 1 9 0 9 ) with 
appropriate transconductances. A unity turns ratio effect is available for 
9I = 9-L and b1 = 1 + 8(8<z 1) , 6 2 = 1 . 

2 . 1 . 2 . Unequal symmetric G matrices, both non-singular 
I f CT 1 = <71JB, G2 = g2B and \B\ ^ 0 then by eqn. ( 2 ) 

Y = % BB~lYjB-lB = —n Yr. 
<72

2 S'2 2 ^ 

The action of this circuit differs from the previous one in that although there 
is a turns ratio effect represented by (gi!g2)~, the form of the input matrix is 
the same as the load one and hence does not reveal the same isolation effect. 

2 . 1 . 3 . Unequal symmetric singular G matrices 
Let G1 = g1A and G2 = g2A where | d | = 0 . Since this wi l l give a singular 

matrix for G2 the formulae derived cannot be applied and this situation does 
not represent a practical circuit. However, two comments are appropriate: 
first, in practice i t would never be possible to ensure perfect equivalence between 
the two .4 matrices ; secondly, precise symmetry of A may be fairly difficult 
to ensure physically and thus there is a possibility of an inverse matrix existing. 
Hence a working circuit of this type is not too impractical, although the reasons 
for operation are more related to § 2 .1.1 than to the properties of the matrices 
of this section. 

2 . 1 . 4 . Unequal unsymmetric non-singular G matrices 

This choice of unsymmetric G matrices gives a type of transformer action, 
but the resultant input matrix demonstrates isolation properties which are a 
combination of those encountered in § § 2 . 1 . 1 and 2 . 1 . 2 . 

2 . 2 . Realization with non-square G matrices 
A further significant step is obtained i f fig. 3 is considered; the input matrix 

is again given by eqn. ( 1 ) . As the 6' 2 matrix is not symmetrical it is not 
possible to utilize eqn. ( 2 ) . However, i t is obvious that G2Y L~1G2'1 = constant 
of the form g.r y, . where yL is some complex admittance. Hence 
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G , 
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T E R M I N A L 

G Y R A T O R 

G„ 

Improved multiterminal transformer, 

and if G1 = g1A, where A is a connection matrix, then 

Again transformer action is recognizable, this can be illustrated b\ considering 
a simple example. 

Let 

i.e. 

then 

A--

1" 

- 1 ] and G1 = 9i 
_ — 1 

r ~9L 0" 

, Y L = 3 

- I 0 9L. 

G*Y,;-*C? = g f [ \ - 1 ] 

S i 
Or, 

' 1 

9L 
0 

0 — 
1 

9LJ 

and hence 

-1/2 

[1 - 1 ] 

1 - 1 

which is a similar result to that of § 2 . 1 . 1 . 
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A realization of a nuilt i terminal transformer. 

A realization o f such a t ransformer can be obtained d i rec t ly b y employ ing 
t w o m u l t i t e r m i n a l gyrators as shown, this wou ld require 2(n + vi + 2) amplif iers 
o f the u n i t y gain current and voltage types. Another convenient real izat ion 
is shown in f ig . 4, this utilizes 4- terminal t ransadmit tance amplif iers to produce 
the f loa t ing gyrators (Sewell 1969). The ampl i f ie r requirements are, f o r TO, n 
b o t h even, m + n; m or n odd, m + n+1 ; b o t h TO, n odd, TO + re+ 2. A n 
a l ternat ive c i rcui t fo r a floating two-po r t t ransformer fo l lows immedia te ly . 

3. Conclusions 

The removal of the res t r ic t ion of grounded terminals wh ich the above 
technique has fac i l i t a ted , means t h a t act ive realizations o f the ideal t rans
former can now be used t o replace f loa t ing 2-port t ransformers i n numerous 
synthesis techniques, a l though i t m a y be necessary, f o r d.c. s t ab i l i t y con
siderations, t o ground one t e rmina l of some of the structures presented. These 
techniques, together w i t h induc to r replacement by gyrators and capacitors 
w i l l enable complete mic romin ia tu r i za t i on of the convent ional circui ts . I t also 
provides a novel method fo r producing a m u l t i p o r t t ransformer by act ive means. 
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A Theory of Equivalent Active Networks 

L E S L I E G. G R A N T AND J O H N I . S E W E L L , M E M B E R , I E E E 

Abstract The effective application of equivalence transformations to 
active networks has been prevented by the difficulties produced by the 
nonsymmetric terms introduced by the active elements. These problems 
are overcome by constraint theory, and it is demonstrated bow equivalent 
networks can be generated for active structures in which important param
eters such as component spread and value, and sensitivity, can be optim
ized. Methods of controlling the number of elements in the equivalent 
networks are also given. 

I . I N T R O D U C T I O N 

TH E theory of equivalent networks as presented [1], [2], 
and wi th later elaborations [3], [5], has been effec

tively applied to passive networks. However the nonsym-
metry of the nodal admittance matr ix due to the presence 
of active devices renders the application of the theory to 
active networks d i f f i cu l t . On transformation, unsymmetric 
terms appear in the admittance matr ix to such an extent 
that i t is almost impossible to ident i fy any conventional 
active devices. By constraining the nodal admittance 
matr ix of the passive part of the circuit , i t is shown that a 
general scaled H o w i t t t ransformation may be applied to 
circuits incorporating operational amplifiers. The opt imi
zation of network criteria may then be undertaken using a 
constrained nonlinear programming method. The type of 
active element remains unchanged and its position wi th in 
the network is constant, but the passive elements may 
change in number, k ind , and connection between the 
nodes of the in i t ia l structure. 

I I . C O N S T R A I N T T H E O R Y 

The embedding of a d i f fe rent ia l input operational 
ampli f ier w i th in a passive network may be considered as a 
constraint imposed upon the nodal admittance matr ix of 
the passive part of the circuit [6]. [7], Consider a passive 
network 91 wi th admittance matrix Y. Embed a di f feren
tial ampli f ier gain A w i th in 9 1 , positive input node i , 
negative input node j , and output node k. This introduces 
a constraint in the network forc ing (he potentials Vt, Vj, 
and Vk at node ;', j , and k to obey the relation 

* { V - V j ) = K - ( i ) 

As A-*oo, (1) becomes 

Manuscript received June 12, 1975; revised November 26, 1975. This 
work was supported by the Science Research Council. 
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so V/ = Vj\ hence add column j to column / of Y and then 
delete column j. The current l k at node k is arbitrary, 
being the output f r o m a voltage source, so delete row k of 
V. producing Y r , the constrained admittance matr ix of the 
active circuit . I n the case of an embedded single input 
operational ampli f ier wi th in 9 i between nodes / and k, 
the constraint imposed on Y consists of removing column 
/ and row k. Also i t is well known that in the l i m i t of 
inf in i te gain the ideal current amplif ier has exactly the 
same effect as the ideal voltage amplif ier , hence the 
method may be generalized to include current amplifiers. 

Keeping the numbering of the rows and columns of the 
constrained matr ix Y r unchanged, network functions may 
be calculated f r o m Y r in the usual manner. Y' is a 
nonsymmetric matr ix; however, due to the symmetry of Y 
certain pairs of elements are equal. I t is postulated that 
matr ix transformations can be applied to Y' producing a 
scaled equivalent constrained matr ix Y", which has the 
necessary symmetry in the same places as Y r . Then the 
matrix Y' is rebuilt to produce a symmetric admittance 
matr ix Y' of the passive part of a network 9 1 ' wi th 
voltage amplifiers embedded in the same positions as in 
the original passive network 9 1 . This rebuilt admittance 
matrix must obey the usual realizability constraints of a 
passive nodal admittance matr ix 

Y f < 0 (2a) 

v i ; - 2 ^ > o , i - i . ( 2 b ) 

r ; - r ; - o . (2c) 

I I I . S C A L E D E Q U I V A L E N C E 

Definition: T w o networks 9 1 , 9 1 ' are scaled equivalent 
w i th respect to some voltage transfer func t ion T„(s) if and 
only i f T;.(s)= HTc(s),H ER. Note that H= \ gives the 
usual def in i t ion of equivalence. Scaled equivalence w i l l be 
considered w i th respect to the voltage transfer f unc t i on 

I V . G E N E R A L I Z E D S C A L E D H O W I T T 

T R A N S F O R M A T I O N 

Consider two networks 9 1 , 9 l ' wi th their admittance 
matrices Y,Y' (not necessarily symmetric) related by the 
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equation 

Y-(s) = V(s)Y(s)S(s) (3) 

where TJ(J ) ,4 (J) are nonsingular. 
Then fo r 9 1 , 9 1 ' to be scaled equivalent networks with 

respect to the voltage transfer func t ion Tv(s). 

(4) 

I t is required to determine the sufficient conditions on 
T | ( J ) , J ( J ) f o r (4) to hoid . First we prove three lemmas. 

Lemma I: 

det [ ^ B C - Z l ^ 2 2 2 ' • 
abc 

2 (det [A ]iadei [ fi]fl4det [ C ] f c • • • det [ Z ] „ ) . 
Z 

Proof: We need only show 

d e t [ ^ 5 ] j , = 2det[/l] udet[a] v, 
3 

Let A',B' be the ad jo in t matrices of A,B, respectively. 
Then 

N o w 

Put 

B'A'M-2^,= 2 < t e t [ f i ] „ d e t [ ^ ] f c . (5) 

C = ^ B = > C ' = f l ' / l ' = > f l ' / l ' / 1 = d e t [ / i f l ] , > , 

Hence f r o m (5) 

d e t [ / l B ] i y = 2 d e t [ / ( ] i l d e t [ S ] i y . 
i 

The lemma follows by obvious extension. 
Lemma 2: I f the i t h row (column) of a matrix A 

= mw,,«, the / th unit vector, then 

d e t [ y « ] f l - J - d e i [ / » ] . 

/Voo/.- The result is obtained by expanding det [A] 
along row (column) /'. 

Lemma 3: 1) I f the / th co lumn of a matr ix A = mui,ui 

the /'th unit vector, then 

det [ / ) ] „ = (), V p * / . 

2) I f the 7th row of a matrix A=muJ

T,uj the yth unit 
vector, then 

d e t [ < 4 ] „ = 0, Vp+j. 

Proof: For 1), removing any column p¥=i f r o m A 
makes column /' of [A]lp all zeros. Hence dei[A]ip = Q 
Vp¥=i. The proof of 2) fol lows. 

Theorem: Sufficient conditions on T | ( j ) . | ( i ) to produce 
a scaled equivalent transformation are: 

1) the / th column of T)(s) = mui; 
2) the /'th row of £(s) = / u , r : 
3) the y'th row of £(s) = ATH/; mJ,k£R 

and the scaling factor H = l / k . 
Proof: 

A ^ ) - d e t [ > " ( * ) ] „ 

- d e t y (*)«(*) ]„ 

= 2 2 d « [ l ( * ) ] h d « [ ^ ) L d e t (lemma 1) 

= d e t [ r , ( J ) ] , i d e t [ l T ( s ) ] ^ e t [ £ ( i ) ] ^ ( lemma 3) 

= ^ d e t [ T , ( i ) ] d e t [ y ( i ) ] y ^ d e t [ | ( J ) ] ( lemma 2). 

Similarly, 

AM') = ~det [ TJ(') ]det [ Y(s)}}det [ { ( , ) ] 

tyj) , d e t [ y ( 5 ) ] . . A , 

A ; , ( J ) * det [ > - ( * ) ] , , W V 

Thus the transformation V ( S ) = T / ( S ) K ( j ) £ ( . r ) w i th the re
strictions on T ) ( J ) , £ ( J ) being d e t [ T ) ( j ) ] ^ 0 , det [£(*)] =^0, 
and 1), 2), 3) of the theorem has been shown to be a 
scaled equivalent t ransformation. I n the case H = k — I = 1 
the generalized H o w i t t t ransformation results. 

N o assumptions about the nature of Y(s) were made in 
the proof of the theorem, hence this t ransformation may 
be applied to produce a scaled equivalent constrained 
matr ix Yr'(s) f r o m a constrained matrix Y'(s) 

K"(j)-H(j)r(*)£(j). 

The elements of V ( s ) , and hence Y'(s) are nonlinearly 
dependent on entries of TJ(J) and £ ( J ) 

p i 

Hence the elements of the passive part of the scaled 
equivalent network may be found after rebui lding Y'(s) 
in symbolic f o r m as quadratic equations in the entries of 
T | ( J ) and i{s). 

The scaling factor H w i l l enable the generation of 
equivalent networks wi th d i f ferent gain factors, which is 
of some significance in active RC network synthesis. 
Furthermore, the transformation matrices T)(J),£(J) can 
assume any type of entry, and hence i t is easy to demon
strate the equivalence transformation of an RLC network 
into an active RC network containing FDNR elements. 

A n important observation is that whereas in generation 
of passive equivalent networks the quadratic transforma
tion is generally required to retain symmetry and hence 
realizability, no such limitations are imposed in the active 
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situation. As the constrained matrix is unsymmetric i n i t i 
ally, a simple left-hand or right-hand transformation is 
usually quite sufficient. A sequence of these can, of 
course, be used. 

V . A L G O R U H M F O R C O N S T R A I N I N G AND 

R E B U I L D I N G T H E E Q U I V A L E N T 

A D M I T T A N C E M A T R I C E S 

Let N be the number of nodes in the network, 1 the 
input and 2 the output node, and Y-is) the value of 
admittance between nodes i and j of the passive part of 
the network. 

I f A is the number of single-input operational amplifiers 
embedded in the network, then let IX,IV-•• ,IA = output 
nodes of single-input operational ampl i f ie r s I • • • A ; 
y , , y 2 , • • • ,JA = input nodes of single-input operational 
amplifiers 1 • • • A. 

I f D is the number of different ial- input operational 
amplifiers embedded in the network, then let 0, ,0 2 , - • • ,0D 

= output nodes of differential- input operational amplifiers 
1 - - -Z) ; PVP2,- • • ,P 1 , = positive input nodes of d i f fe ren
tial input operational amplifiers l - - £ > ; A / , , M 2 , - • • ,MD 

= negative input nodes of dif ferent ia l input operational 
amplif iers [•••D. k,m,l are scaling factors, H = i / k ; Sv 

the Kronecker delta. The algorithm fol lows. 

1) Construct component conductance and capacitance 
admittance matrices Y c , Y c f r o m admittances Ytj(s). 

2) F o r m the const ra ined c o m p o n e n t admi t t ance 
matrices Y'a, Y'c by the fo l lowing operations on Y 0 , Yc: 

a) remove rows / , , • • • ,IA; 
b) remove columns 7,,- • • ,JA; 
c) remove rows 0,, - • • ,0^,; 
d) add columns P, and M X , P 2 and M 2 , - - - , P D and 

MD; 
e) remove columns MYT - • • ,MD. 

3) F o r m the symbolic transformation matrices w i th 
dimensions {N-A — D)X(N — A - D) where 

V 
m8y. 7 = 1 

• > 1 

where X, is a symbolic variable and t = (N — A — D-
and 

« = 2 

i>2 

5) Fo rm the scaled equivalent component admittance 
matrices of the passive part of the network, Y^. Y'c by the 
fo l lowing operations on Y^, Y£: 

a) Expand Y^, Y'c to dimension N x N by inserting 
rows of zeros in positions / , , • • • .lA,(),.• •• , 0 o , and col
umns of zeros in positions Jx,- • • ,JA,Aix," • • , A / ^ . 

b) Put 

Y£»=Y£„+Y^, V j * p /> = /„••,IA,0T,•••,0D 

r ^ = l Y ^ , /> = / „ • • • , I A , 0 i , - - - f l D . 

where Y, is a symbolic variable and t = (N — A — D — 2) 
0 - 1 ) + i-2. 

4) Trans form the constrained component admittance 
matrices YQ, Y{- to the scaled equivalent constrained 
component admittance matrices Y^', Y^'. Thus 

YQH = 2 2 % * G " £ j / 
p 1 

YC' = 2 2 % Yc"&qj-

c) Put 

Y ^ - Y ^ + Y ^ , V i # / » 

> G » = 2 YG*' P = Jl< 

d) Put 

YQP, — YQ„ + YQ„ 

Y£~ = 0 

e) Put 

Yc» =
 YQ* + Y£*, 

f ) Put 

YQI, = YQI, ~ YQI,, 

fo r the pairs 

p=M]yq = Pl; 

p = M2,q>=P2,-

P = MD,q = DD. 

• V ( * V • • , / „ ; < > „ • •• ,<)„; MT, 

• • • ,MD', P\,' • • ,PD f ° r t n e P a ' r s 

p = Mi,q = Pl;p = M2,q = P2; - • 

p = MD,q = P D . 

g) Put the resulting matrices equal to Y^, Y^.. 
6) W e now have symbolic scaled equivalent passive 

part matrices Y'G, Y^. which are symmetrical in a l l but 

N2-(l+4(A+D))N 
+ (A+D)(2 + A + D) 

pairs of entries. 

V I . O P T I M I Z A T I O N 

I n general, i f a least squares error cr i ter ion is used to 
op t imize some pe r fo rmance f u n c t i o n of the scaled 
equivalent circuits, the resulting cost func t ion is quartic i n 
entries of T / ( J ) and and the realizability constraints 
necessary to satisfy (2a)-<2c) are quadratic in the entries 
of r/0) and £ (J) . 

The requirement that the equivalence transformations 
be executed in symbolic f o r m so that the t ransformat ion 
algebra is needed only once introduces quite large storage 
requirements for the arrays involved. This is especially 
true w i th the quadratic t ransformation when quadratic 
terms of the t ransformation variables occur in the con
straint arrays. W i t h a one-sided transformation the con-
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straint arrays contain linear combinations of the transfor
mation variables, and hence storage requirements are less 
crucial. I n consequence, the results obtained in the present 
implementation have been produced by application of a 
one-sided transformation wi th real entries. 

The programming problem produced is 

/ = 1 , 

m i n / ° ( x ) , x = ( X | , x 2 , 

subject to G, ( x ) > 0, 

H j ( x ) = 0, j=m+l,--,m + q 

where x is the vector of entries of T/ (S) or £(.$) depending 
on whether a left- or r ight-hand transformation is used. F 
is the nonlinear cost func t ion . The inequality constraints 
G,(x) derive f r o m consideration of (2a) and (2b), and the 
equality constraints Hj(x) fo l low f r o m (2c). 

The method used to solve this constrained nonlinear 
programming problem uses a modi f i ed S U M T [8], [9] 
program. The basis of the method is to determine a 
starting point x° such that G , ( x ° ) > 0 , i = 1, - • • ,m and then 
solve a sequence of unconstrained minimizat ions of the 
sequence of functions 

P(x,rk) = F ( x ) - r k 2 i l o g t G ^ x ) 
i 

+ 2 l + i [ « , ( x ) ] I A * + x £ i » W 
j I 

where [ r k ) is a sequence that decreases strictly monotoni-
cally to zero, the conjecture being that the sequence of 
unconstrained min ima {x(rk)} w i l l approach the solution 
to the or iginal programming problem as rK—>0. 

I n general, the inequality constraints G,(x) in this prob
lem fo rmula t ion w i l l never be all satisfied strictly, and so 
a small boundary term 5 , « m i n ( G , ) , where G^O, was 
added to each inequality constraint, enabling an interior 
starting point x ° to be found . 5, is somewhat dependent 
upon the computer word length, and the particular prob
lem, for the examples included, B = 10~ 8 proves satisfac
tory; i f Bi is much larger, then an excessive number of 
nonzero elements is introduced in the solution. For a 
smaller value of Bi rounding errors prevent profi table 
solutions. 

The method generally leads to solutions which have 
more ' elements than the original network; i t is found 
useful to be able to control the number of new elements 
introduced using the f ina l penalty term of the objective 
func t ion \^{w,x,n. A f t e r an ini t ia l run wi th A = 0 it is clear 
which x, tend to zero in order to satisfy the constraints; 
grouping these x ( w i th the x, which are zero in order to 
prevent elements being grown across certain branches 
forms the set X= {x,: x , - > 0 } . Then by put t ing A large and 
specifying nonzero values for the weights correspond
ing to the x , e A \ convergence to solutions yielding feasi
ble networks wi th the desired restrictions upon topology is 
effected. 

0 . 4 U 9 

1 . 1 1 ( 1 

0 .1)11 

1.7010 1.0149 

0 . 0 791 

0.4141 0.4141 

0 .079] 

0.1716 0.4141 0.4)41 

1.1040 

Fig. 1. (a)Original Rauch fourth order Butterworth realization. (Ele
ments in Siemens and farads). (b)Equal resistance realization, (c) 
Combined equal capacitance and resistance realization. 

V I I . R E S U L T S A N D C O N C L U S I O N S 

The computer implementation of the problem is in two 
parts. One program produces a symbolic t ransformation 
of the networks; this avoids the use of the optimizer and 
transformation simultaneously and the t ransformation is 
required only once. The two output files of the transfor
mation program enable the in format ion to be presented in 
a simple manner so that objective funct ions can be set up 
easily; at the same time the large arrays of constraints are 
available for input to the optimizer. The programs are run 
on an I C L 1906A, C D C 7600 computer conf igurat ion. 

A typical objective func t ion can be formulated f r o m a 
least squares approach 2 , ( 0 , — G ) 2 , which can be used to 
reduce resistance spread to center the values on some 
mean G. Similar objective functions are used fo r capaci-
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0.1647 

0 . 5 ( 1 1 

are executed by the 1CL 1906A and only take a few 
seconds on all the problems tackled. The optimization 
step for these circuits required about 70 s on the C D C 
7600. The -circuits of Fig. 2 show similar results when a 
f ini te gain Sallen-Key circuit is transformed. 

I t has been demonstra ted how equivalent active 
networks can be produced. Because active circuits have to 
satisfy more crit ical criteria than passive ones, more work 
is required in producing practical realizations. I t is likely 
that parameters such as sensitivity, component spread, 
and size wi l l produce conf l ic t ing demands under transfor
mat ion, and fur ther investigation is required in opt imizing 
wi th compound objective funct ions. 

11J 

(21 
13) 

W 

15) 

1*1 

[71 

[81 

C I 

Fig. 2. (a)Original Sallen-Key elliptic realization. (b)Equivalent realiz
ation. 

tance spread and size. A t the present time the method 
using such objective funct ions has been applied success
f u l l y in circuits up to fou r th order and containing a 
number of operational amplif iers. There is no l imi t to the 
number of amplif iers in a network; the main l imi t on the 
t ransformat ion program is dictated by the symbolic 
storage required. The optimizer, using the N e w t o n -
Raphson alternative in S U M T , has worked effectively on 
problems wi th 20 variables and 98 constraints. 

The diagrams of Fig. 1 show alternative realizations for 
a four th order But terworth func t ion , starting w i t h the 
circuit of Fig. 1(a); an equal resistance solution wi th two 
pairs of equal capacitors was produced [Fig. 1(b)]. The 
circuit of Fig . 1(c) has a combinat ion of as many equal 
capacitors as possible, together w i th numbers of equal 
resistances. The t ransformation program and file handling 
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[networks 
L . G . Gran t and J . I . Sewell 

Indexing terms: Active networks. Minimisation, Sensitivity 

Abstract: Following the extension of equivalence transformations to a general class of electrical networks 
containing active devices such as operational amplifiers, the theory is developed to accommodate the mini
misation of the sensitivity of the network response function to component variations. Theorems for passive-
component sensitivity invariance and for updating routines applicable to the optimisation step are proved. 
Previous limitations imposed upon the optimisation routine by equality readability constraints are com
pletely eliminated by a partitioned approach. This leads to a new form of transformation. The partitioned 
transformation can be implemented in both discrete and continuous forms, and applied to the optimisation 
of component values and sensitivities in active networks. 

1 Introduction 

Equivalent-network theory is well established in the passive-
filter field,1,2 and the application to sensitivity studies and 
component value optimisation is well documented. For 
active networks it has been shown recently 3 that 

(1 ) 

is a scaled equivalence transformation wi th respect to the 
voltage transfer function, where Y R is the constrained 
admittance matrix of a passive network wi th embedded 
operational amplifiers and r\ , § are suitably constrained 
generalised Howitt transformation matrices. The solution o f 
problems involving the minimisation o f component spread 
and size has been successfully attempted using this trans
formation. The implications o f this theory upon sensitivity 
minimisation o f active RC networks obviously require 
investigation. The initial implementation o f the transform
at ion 3 resulted in large arrays o f equality and inequality 
constraints that must be satisfied to maintain realisability. 
In particular, the equality constraints can prove to be quite 
a nuisance in the constrained optimisation routine. A new 
transformation is developed f rom a partitioned approach, 
and this completely eliminates all equality conditions. 

2 Active-network sensitivities 

Assuming that the active elements are ideal operational 
amplifiers, whose effects upon the network can be rep
resented as ideal constraints, then only the sensitivities of 
the passive components need be considered. 

The relative sensitivity S f y of the voltage transfer func
tion Tv to some passive element e p q 

and q is defined as 

<;Tv = 
PQ 

where 

o ST 
~pq K" 0 
Tv deDa 

_1_ _w; 
Tv deBa 

between the nodes p 

(2) 

(3) 

Paper T 1 3 8 E , first received 28th October 1977 and in revised form 
6th January 1978 
Dr. Grant and Dr. Sewell are with the Department of Electronic 
Engineering, University of Hull, Hull HU6 7RX, England 

is termed the semi-relative sensitivity. Noting that 

det IYR]U = N(s) 

" det [YR]„ £>(*) (4) 

we define as follows the entry sensitivities Eft o f the 
numerator and the denominator to the entry ykt of Y R : 

dN 

dD 

Hence 

Qpq T I I 

3(det [ ¥ „ ) „ ) 

a(det [ r R ] „ ) 

det [ Y R ] i L „, 

det [ K H ] „ , W 

(5) 

(6) 

= I I 
h 1 

F N 

N 

3e„ 

EM 

D 
(7) 

Sensitivity polynomials are considered, since this enables 
sensitivity optimisation over a range o f frequencies to be 
undertaken without further development. 

We define the variable 

< , = 6 f c,(5*p + &KQ + 6 K P 8 K Q ) - ( 5 K P 6 L Q + &KQ&LP) (8) 

dyM | AP'q i f e p q is a conductan. 

3e, PQ V sAPq i f e p q is a capacitor 

Therefore, once the matrix o f entry sensitivities is 
obtained, the relative sensitivity o f any element may be 
found using eqns. 9, 7 and 2. 

During the generation o f equivalent active networks, i t is 
advantageous to be able to calculate the current-sensitivity 
values (in terms of the current transformation matrices) and 
the entry-sensitivity values of the original network without 
further sensitivity analyses. The following theorem demon
strates how the current entry sensitivity matrix may be 
evaluated at any point of the transformation: 

Theorem I 

(9) 

N' N 
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where EN is the current entry numerator sensitivity 
matrix, EN the original entry numerator sensitivity matrix, 
and n , % the current transformation matrices. 

Proof 

N /V7 a Z 
3(det [ i ' f i l . v ) 

d e t [ K ^ ] , 7 avj 

det [ Y R ] I J I pq 

det [Y'R]u 

Now 

det [ Y R \ „ det [ n 5 - R § ] j y 

= det n det [ K R ] , 7 det § 

for a scaJed equivalence transformation. 3 Form.F such that 

det y = det [y f l ] , , 

=» det [ K R ] „ = det n det y det § 

= det [T|^5] 

=* det [KAlo.pa = det [ t L v g ] M 

therefore 
I Z det [ n ] p „ det LHo6 det [ f ] b a 
a b 

Theorem 2 
The sum of the relative sensitivities of all passive compo
nents of one type in an RC network with embedded 
operational amplifiers is invariant under a generalised scaled 
Howitt transformation. 

Proof 
Let Y A be the conductance component of Y R . Then, where 
'sum of diagonal entries' is represented by s.d.e., 

I S r " = s.d.e. of >'J E S D 

all 
conductance!) 

Putting 

S = YQ E N D , IS r " = I [ 5 ] , 
p 

=» I S T " = s.d.e. of [ Y Q ] T E N D 

all 
conductances 

(12) 

= s . d . e . o f [ t , K 0 « ] r [ ( » 1

r ) - ' £ J V I ' ( 5 T ) - l 

= s . d . e . o f§ r y G V ( n

r r ' £ " D (§V 
= s.d.e. of § T K j i T N D ( § T r I 

= 111 l 5 r l p . [ * U l ? r W 
p a b 

= ZIZ [s]o»K]»KU 
Now 

det n det [ Y K \ T J d e t f 

x I I det [ n ] O T det [ Y R ] I J : ^ det [ f ] „ , 
a b 

Z I 
1 d(detn) 

„ b detn dVpa 

1 3(det [YR]„) 1 3(detg) 

del [ y R ] „ 

= 11 
a b 

3v„6 det 5 3 £ 6 , 

1 3/V" 

-V 3}'ab bq 

Hence the theorem is proved. 
Using theorem 1 and its equivalent for the entry 

denominator sensitivity matrix, the current relative sensi
tivity of some element e p q during a generalised scaled 
equivalence transformation may be found in terms of the 
original entry sensitivities using the relation 

ZZZzf V 

-1 

k 1 a b { ha ab 

where 

N 

f ^ e p q (10) 

(11) 

Z iSUtSW = Sat, 
P 

I ^"=11 WabSab 
a b 

= Its]-

ail a b 
conductances 

= Z ST" f romeqn. 12. 
all 

conductances 
Hence the theorem is proved, and an alternative proof is 

given o f sensitivity invariance of active networks generated 
by the scaled equivalence transformation (eqn. 1). 

The theory presented here has been used to formulate 
objective functions designed to minimise sum squared 
sensitivity, using the computer program described in Refer
ence 3 and utilising a s.u.m.t. optimisation technique." 

01992 01992 00742 

0-1992 01992 01992 
^ < K 2 6 1 

Fig. 1 Initial realisation of a Srdorder Buttervmrth function 

Conductances i n Siemens (S): capacitances in fa rads (F) 
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Fig. 1 shows an initial circuit fur a 3rd-order Butterworth 
function; the value of sum squared sensitivity function at 
s = / ' l is7-7016. The circuit of Fig. 2 results f rom sensitivity 
minimisation and has a comparative sensitivity value of 
6-8393. This solution is a local as opposed to a global mini
mum. The increase in number of elements is apparent, but 
this is not unexpected as the limiting solution to these 
problems is a ful ly connected network with equal element 
sensitivity values. 

The results shown here were obtained using one-sided 
transformations only, because of the problems reported in 
Reference 3 and the difficulties arising f rom the nonlinear 
form of the equality constraints generated by the quadratic 
transform. 

06666 

Fig. 2 Reduced sensitivity realisation of a 3rd-order Butterworth 
function 

Conductances in Siemens (S): capacitances in farads (F) 

3 Partitioned transformation 

The equality constraints, which are necessary to keep sym
metric the passive part of the admittance matrix during 
optimisation, have prevented, up to now, the formulation 
of a continuous quadratic transformation for active RC 
networks like that proposed for passive networks. 5 Essen
tially, continuous techniques depend on the transformation 
being small and the ability to make linear approximations 
to quadratic constraints. I f the constraints are inequalities, 
good linear approximations may be made; however, it is 
almost impossible to make efficient linear approximations 
to quadratic equality constraints. The elimination of 
equality constraints in the discrete transformation will 
reduce the complexity o f the optimisation problem. 

Here, a transformation is constructed which eliminates 
the equality constraints by means of topological transform
ations o f the constrained nodal admittance matrix, and 
which utilises the redundancy of the row o f the constrained 
nodal admittance matrix corresponding to the input node 
to simplify the application o f the transformation. 

Consider an n-node RC network /V with m embedded 
operational amplifiers. The constrained admittance matrix 
Y R , formed by deleting rows corresponding to amplifier 
output nodes and columns corresponding to amplifier input 
nodes, h&, dimensions (n —m)x (n —m) and is symmetri
cal in (n — 2m — 1)(« — 2m)/2 pairs o f entries. From eqn. 
4, 

Tv = 
det [YR] det [YA.j 

det [Yr]., D(s) 
(13) 

t ion reveals that Yr is symmetrical in (n — 2m — 2)(n— 
2m — l ) /2 pairs of entries. Now consider Yr re-ordered so 
as to place these symmetrical entries in an (n — 2m — 1) x 
(n — 2m — 1) symmetrical submatrix in the top right hand 
corner. That is, form 

Y* = 

f = n - 2m - 1 

(14) 

det [YH], 

where Yr is formed by removing the /'th row o f Y R . Inspec 

where Y, is an / x /symmetric matrix. 
The following well-known matrix properties are used: 
(i) the interchange o f columns /' and / of a matrix A is 

obtained by forming the product A rj<;-, and 
( i i ) the interchange of rows /' and j o f a matrix A is 

obtained by forming the product 7} *jA 
where the topological transformation matrix 7} ,y is the unit 
matrix wi th its / t h and / t h rows interchanged. 

Let the unloaded nodes (those not connected to an 
amplifier, and not the input node / ) be p , , p2,. . . ,pallet 
the corresponding rows and columns be / - j , r 2 , . . . , / y ; 
<?!, c 2 , • . . , Cf. Then the topological transformations f rom 
Yr -+ Y* take the form 

~ iTf-*f • • • i r 2 -+2 ' r , -»1 *rMCf*n-m 'Cf.i+n-m-l • • • 

. . . r C l < B . a 0 5 ) 
where the T n M are (n — m — 1)x (n — m — 1) and the 
Tc.^k are (n — m ) x (n —m). Hence, taking inverse trans
formations, and noting 7} < ;- is self inverse, 

= Tr, •>\TTj->l • • • Trf^fY*Tc^nn.2 • • • TCf*n-.m (16) 

In practical terms, this amounts to simply re-ordering the 
nodes. 

The following results emerge and are proved where 
necessary. 

Theorem 3 

det [ 7 - p . J l 7 = ( - - 5 p a ) ( « „ 6 / p +SLP6IA) 

- « « 0 - « P , X 1 - « / P ) ( 1 - 8 i ( I ) + 8 p , 6 ( j . 

= 0, or - 1, or 1 

Theorem 4 

For fixed p , q, i there exists only one / such that 
det [ T p . J y # 0 

For fixed p , q,j there exists only one /' such that 
det [ f p . J i , * 0 

Theorem 5 

det [AB . . .Z]jj 

= I I ... 2 det [A]ia det [BU . . . det 

a b 2 

Proof 

See Reference 3. 
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Theorem 6 

If A is ( I - l ) x ( / - 1), V is ( / - l ) x l.Bislx /.then 

i 
det [AYB]j = X det A det [>'] . , , det [B}bj 

b = 1 

Proof 

Construct 

A = 
' i : <i," 

Y' = 
0 0 

0 : 
0 : 7 
0 : A Y 
0 : _ 

1\ 

then 

A'Y'B a, Y B 

I - 1 A Y B 

Hence, from theorem 5, 

det [A'Y'B]X, = £ £ det [A']ia det [Y']ab det [B]bj 

Now 

det [A']la = 0 for all a * 1 

=» det [A'Y'B]^ = I det [A')n det [ H i o det [£]„, 
6 

=» det [AYB]j = £ det .4 det [Y].B det 
6 

Theorem 7 

I f / I is ( / - l)x ( / - 1), Y is ( / - 1) x / and B, C . . .Z are 
/ x /, then 

det [A YBC... Z]j = £ £ . . . I det / I det [Y],b 

b e 2 

x det [B]bc . . . det [ Z ] z , 

/Voo/ 

By extension of theorems 5 and 6, writing 

A = ^ , -.1 7*r, -»2 • • • 1y->f" 

using eqn. 16 and theorem 6, we get 

det [Yr\j 

= X £ . . . X d e t / l d e t [K*]. a det [TCi .„ ,7 U . .. 

• det [r e r„-m] z ; 
(17) 

and 

det [Yrh 

= I I - . . Idet ^ det [Y'].a det [rc, . . . 
a b <•> 

. . . det [ r (18) 

Hence, from theorems 3 and 4. 

det [Yr],- = ± d e t [Y*] , 

det [Yr]j = ± d e t [ ) ' * ] . , 

(19) 

(20) 

where /. / are the unique solutions of the equations. The 
signs are ignored, as inverse transforms are taken later. Then 

det [T- ->m +2 lib det [ 7 - C i < m + 3 ] be • • • 

. . . d e t [ T C R N . M ) 4 * 0 (21) 

det [Tti -m +2 1 Iff det [ 7 " c , , m + 3 ] 3 T . . . 

•••det [ T ^ . n ] ^ * 0 (22) 

Eqns. 21 and 22 are solved easily by a computer 
algorithm using the result of theorem 3. 

We observe from eqns. 19 and 20 that the problem o f 
applying transformations to Yr to retain invariant [det Yr] J 
det [ K r ] ,• is equivalent to that of applying transformations 
to Y* to retain invariant det [ K * ] ,/det [Y*] ,. 

We now wish to form Y*' by transformations upon Y , 
such that 

det [Y* _ / /de t [r*]. 
det [ ¥ * ' ) . , ~ det [Y*]., 

where //e ( ^denotes real space). 
Put 

Y*' = n K * § 

(23) 

(24) 

where r| is (ii — m — 1) x (n — m — 1) and E is (n — m) x 
(n — m), and where 

/ m 

f n' : ° "So . o " 
£ _ 
s — 

m 1 i • To 5. 

m + 1 

(25) 

m+l f 

Considering eqn. 14, eqn. 24 becomes 
n — m 

Y" 

f 

n.v15o'+n;n§r':n1'F,V + 
+ 1oJ'o§o +1o> V 2§i - n o ^ c ; ' 

\n — m—\ 

(26) 

(27) 

where 1^ = x]'Ys%'. Putting r | ' T = § ' gives 

n' = n'nn'7". 
transformation v 
p-right-hand subr 

det [Y*'h = det h K ' S J . i 

(28) 

a transformation which retains the symmetry o f the f x f 
top-right-hand submatrix. Now 

I det i,det [Y*).b det [£]„, (29) 
b 
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from Theorem 6, and 

det [Y"h = I det ndet [ } '* ]„ det [§]„, (30) 

Putting the / th row of § = 05,v and the a h row of £ = co<5,7 

O, u> € J?), then from eqns. 29 and 30 we have 

det [Y*'] , = det ndet [ > " ] . , 0 M detg 

det [ } ' * ' ] . , det n det [Y*\, to" 1 d e t § 

det [ K * ] . , 
= H 

det [ K * ] . ( 

(32) 

where H = CJ /0. 

Hence we have the following theorem: 

Theorem 8 
Constraining n, § such that 

(0 5' = l ' T and 5 , n have the partitioned form of 
eqn. 25 

( u ) § , n are nonsingular 
( i i i ) the llh row o f 5 = #6,-, 
(iv) the r t h row o f | = co6l;-

then the transformation K*' = t i K ' f is a scaled equivalence 
transformation with scaling factor co/0, and the necessary 
symmetry properties of Y are conserved under the trans
formation. 

Once we have Y*' in symbolic form, inverse transform
ations are applied to produce K r'; thus 

~ ^r, +1 - - • Trf-*f Y TCi ^ M + 2 • . . TCf +n-m (33) 

The matrix Y' is then rebuilt f rom YR by inserting suitable 
symbolic rows and columns corresponding to the con
strained nodes, to form the symmetric nodal admittance 
matrix of the passive part of an equivalent active network. 
The symmetry of this matrix has been ensured entirely by 
the form of the transformation and not by equality con
straints imposed on the optimiser in a previous implemen
tation. 3 

4 The continuous partitioned transformation 

The partitioned transformation may be implemented in a 
continuous form. Let 

(34) 

where I f t m , I f t m * i are identity matrices, q , § are of the 
form described in theorem 8 and x is a small real scalar. 
Then i j , g clearly obey the conditions of theorem 8 and 

Y*' = i\Y*% (35) 

is a generalised scaled equivalence transformation. Substitut
ing eqn. 34 into eqn. 35 gives 

Y"(x) = ( 7 , + m + n ^ ) V * ( / f + m t l +ix, 

= Y* + ( T , K * + Y*S)x + (r,Y^)x2 (36) 

I f the transformation parameter* is small, a linear approxi
mation can be made to eqn. 36: 

(37) 

The consequence of eqn. 37 is that, for a small x, a trans
formation may be applied producing an equivalent network 

Y" = Y* + (x]Y* + Y*$)x 

which is close in some metric sense to the originai. The 
readability constraints obtained from eqn. 37 are linear, 
and i f a linear approximation to the objective function is 
made then a linear programming problem may be solved for 
a sequence of step sizes. Using eqn. 36 as a check of realis-
ability, and cutting the step size .v i f readability is 
contravened, a series of networks which tend towards some 
optimum may be obtained. 

From eqn. 10 it can be seen that the matrices of entry 
semirelative sensitivities for an active network under 
equivalence transformation are related as follows: 

"< V D ' - r«T] rND f~T\ - l 

but 

•r+m ' M A ~~ 

(" ) - 'r+m — n * + n n * + • • 

and 

(38) 

(39) 

(40) 

therefore 

E N D ' = ( / , + m + n

T x r 1 ^ D ( ^ m . l + 5 r v ) - ' 

= ilf+m - r\Tx + r i V * 2 . . . ) 

x E N D ( l , . m . l - Z T x + ST?x>+...) 

= E N D - ( r f E N D + E N D f ) x + 0(x2) (41) 

The sensitivity minimisation techniques of Section 1 can 
now be implemented using linear programming methods; 
this avoids matrix inversion each time the semirelative 
sensitivities are updated. 

5 Conclusion 

A method for the minimisation o f the sensitivity of active 
networks using equivalent-network transformations has 
been produced, and appropriate sensitivity updating 
routines derived. A new transformation is given which 
eliminates equality constraints and enhances the application 
o f the quadratic transformation, both in the minimisation 
o f element spread and in the sensitivity of active networks. 
It also enables a continuous form of the transformation to 
be used. The choice between discrete and continuous forms 
is somewhat subjective, as some assessment of the effect o f 
the truncation steps in the continuous form must be 
weighed against the avoidance of matrix inversion present 
in the discrete implementation. The equivalent networks 
produced by the two forms can differ quite considerably. 
Both methods wil l produce new networks containing more 
elements than the original, an effect observed particularly 
when the optimisation of total sum squared sensitivity is 
attempted. 
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Some further sensitivity theorems in 
active equivalent - network theory 

J . Dunning-Davies, Faith D. Faulkner and J.I. Sewell 

Indexing terms: Active networks, Sensitivity analysis 

Abstract: The relevance of various sensitivity measures in the study of active equivalent networks is inves
tigated. It is known that the summed differential sensitivity of the passive components in an active RC 
network is invariant under the transformation; it is now shown that the similar sums of large-change sensitivities 
and the large-change multiparameter sensitivity are both invariant for component changes within specified 
bounds. Even more practical sensitivity measures derive from integral definitions over a specified frequency 
interval. It is demonstrated that the sums of integral sensitivities are noninvariant under transformation 
but the integral of the multiparameter sensitivity function again remains invariant. These results are of 
significance in any attempted optimisation of the sensitivities of active-filter structures. 

1 Introduction 

The theory of equivalent networks1'" h-s been extended 
to the case of networks containing active devices such as 
operational amplifiers together with passive elements,3 

and some interesting results have followed. The active 
devices are regarded as constraints on the passive network 
/V with a nodal admittance matrix Y from which a con
strained matrix Y R is obtained by deleting appropriate 
rows and columns. The characteristic network functions 
are available from YR by the usual ratio of cofactors and 
determinants. In particular, the voltage transfer function 
Tv, which is a function of the complex frequency s and 
the passive elements, is 

d e t [ r K ] „ = N 

det [ / „ ] , , D 
(1) 

Whole series of equivalent networks, maintaining this 
function constant, but which are optimised with respect 
to component size and spread,3 and component differ
ential sensitivity4 have been generated. Some basic theo
rems on differential sensitivity have been noted." 

In this paper expressions are obtained for both the 
large-change and multiparameter large-change sensitivities, 
which obviously have considerable practical significance.5 

In each case it is shown that the summed sensitivity for 
component changes within certain practical bounds is 
invariant under a generalised scaled Howitt transformation. 
The next Section investigates the question of invariance of 
the integral definition of the differential, large-change, 
and multiparameter large-change sensitivities. 

2 Large-change sensitivity 

Two networks N, N', consisting of active devices (in the 
same positions in both networks) together with passive 
elements, are scaled equivalent3 with respect to some 
voltage transfer function Tv iff, T'V=HTV\ H&J%. De
fining the entry sensitivities and of the numerator 
and denominator of Tv (eqn. 1) with respect to the entry 

ykl of Y R as 

fTN -
dN 

B P 

?>yM 

the complete relationships between entry and element 
sensitivities are outlined elsewhere.4 

Now Tv = Tv(s, e) where e is the passive element of 
interest between nodes p, q and sensitivity calculations 
assume the bilinear properties of network functions.5 

Hence 

ATV = Tv(e + Ae)-Tv(e) 

_ N(e + Ae) N(e) 

D{e + Ae) D(e) 

dN(e) 
D(e) N(e) + Ae • 

he 
D(e) + Ae 

W(e) 
be 

Die) D(e) + Ae 
bD(e) ' 

de 

AT„ 

where 

Cfel 

k _ j 

de 

J_ 3/V(e) __1_ dD(e) 

N bykl D dykl 

(2) 

Now large-change sensitivity is defined to be 

* A e T Ae 

From eqn. 2 
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k i D de 

(3) 
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(dN/de bD/be 

N D 

1 + Ae 
dD/be 

(4) 

as A e - » 0 , S ^ -.^"(differential sensitivity). Now 

where Y G is the conductance component of YR the con
strained admittance matrix. 
Let S = YSEND then 

I YSEND = 1 [ S ] P P 
diagonal P 

and for a scaled equivalent network 

and for changes in e of up to 10%, eqn. 3 can be expanded 
to give a bounded large-change sensitivity function 

- e L Lbkl , 

EH W 2 

(5) 

The computation of such a sensitivity measure during 
each cycle of optimisation would obviously be expensive. 
However it is possible to update eqn. 5 without further 
evaluation of the complete function. Direct application 
of the updating theorem4 to eqn. 5 gives the current 
sensitivity function of some element e', during a generalised 
scaled equivalence transformation, in terms of the original 
entry sensitivities as 

sli = e , z z z z [ i v T ) ; i [ E N D u n T r t 
h I a b 

be' 
- w I I I I 

diagonal 

= I h i c s n c V r ' ^ a V ] 
diagonal 

= 1 iTYjnT(nTriEs'D(iTr 
diagonal 

= I I I [ E T U [ s U K T J i J . 
P a b 

= 1 i i i s u m a p u u 
a b p 

= I 11^1 "b &ob (8 = the Kronecker de'ta) 
a b 

= I [S]aa = I YSEND 

° diagonal 

Let y= YQEND (A YG )T — then 

I YSEN°(AYG)T \ = £ M < 

diagonal U q 

Now 

rf I Yg'E"°X*YG) 
diagonal \ U 

(8) 

- i i rF Di f t T i - i On 
[V ika pit 1 ab I? ] bl 

(6) 

Theorem I: The sum of the bounded large-change sensi
tivities of all passive components of one type in an RC net
work with embedded operational amplifiers is invariant 
under a generalised scaled Howitt transformation. 

Proof: Consider all the conductances in the network. By 
induction (see Appendix 7) it may be shown that 

all 
conductances 

I YZE* 
diagonal 

D diagonal 
I Y£END(AYG)TED 

= I [ r » r o H T [ 0 j V £ N D ( { V ] 
diagonal 

W A r c ) £ ] T [ ( T j V ^ t t V l 

= I iTYjEND(AYGf^r 
diagonal " 

= I I I U T ] „ a [ ^ U [ T O 
0 0 6 

= I M « = I YZEN°(AYG)T ±-
a diagonal L> 

Similarly, the third term gives 

I YS'END\*Y0f[^\ ( A r G ) r ' f ^ 
diagonal ^ U J \D 

diagonal 

(9) 

(10) 

Henu 

diagonal 

Y l E m } { A Y a ) T E D ( A Y c ) T E 

I Slv 
all 

conductances 
( i i ) 

The same proof will hold when considering capacitances. 
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Tlieorem 2: The bounded large-change multiparameter sensi
tivity of all the passive components of one type in an RC 
network with embedded operational amplifiers is invariant 
under a generalised scaled Howitt transformation. 

froof: In reality Tv = Tv(s, <?,, e„) hence 

A T . = 
A'(c, + Ac, , 

D(e, + Ac, . . e„ + i f „ ) £>(e, 

Using the same methods of proof as for eqns. 8-10. it 
follows that 

S^; ~ S% (17) 

Hence theorem 2. and of course this also implies the in-
variance of the differential multiparameter sensitivity of the 
same networks. 

| isV 
| Dn\ . . . . c „ ) [ . V ( c , . . . . c„l + Ac, (e, 
I Be, 

nl + 
a.v 

A<<„ — I f , . 
''n) 

dD ZD 
+ Ac, — (e, , . . . c„) + . . . + Ae n — (e, . . . . c „ ) ] 

flic,,. ..en)\D(e 
dD 

c n ) + Ac, — (c, 
dc. 

+ Z A C ; Z 

•«n) + 
3£> 

3c„ 
-<•„)] 

(12) 

For convenience define the large-change multiparameter 
sensitivity as: 

1 V 

i ft t 0 e i 

i + Z ^ Z Z § ^ 

For 

i k l u o e i 
< 1 

(13) 

(14) 

3 Integral sensitivity 

The previous definitions of sensitivity and the resultant 
theorems do have both theoretical and practical implic
ations and although proved in general, their meaningful 
interpretations are restricted to a point-by-point frequency 
basis. It has been rightly pointed out 6 that a more signif
icant sensitivity measure over a relevant frequency band 
will involve the integral of the appropriate functions. 

The relative sensitivity is commonly defined as 

STV = e_ ar„ 
T„ de 

3A//3<? dD/de 

N D 
(18) 

Now N = ans" + a„-|S n _ 1 + . . . + a0 where fl, =aj 
((?,, . . . e p ) where p is the number of network elements. 
Hence 

Z Ae, Z Z ^ £ 
3>'h! 
3e, 

i - z - , z z - ^ M ^ ^ ! ? 
(15) 

which is a definition for bounded large-change multi
parameter sensitivity. 
Using an induction proof similar to that given in Appendix 
7, it may be shown that 

V r N D - 1 Z <.AYC)TEND Sit, •• Z i*Ya)TEND-
diagonal diagonal 

+ 1 X (-AYG)'EN 

diagonal 
F° 

Z (*Yc)T 

diagonal *̂  

E 
Z ( A K c ) r ^ - 1 (16) 

\ diagonal U } 
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3A//3g = 3a n/3e 

N ~ a„ 

sn + (3a n-i/3e) (3flo/3e) 
(3a n/3e) 5 " '(bajbe) 

s" +-

Let A/ have n distinct roots s, = a, + jpt t = 1, 
3fl,/3e = a/. Tlien 

A/ 

A/ " 

where 

III l + ^ + 
S — S i 

'n-1 

(S,-S,)(S( - s j ) . . . ( s , - s„) 

and similarly for 

If = b\n 

D bm 

i + Z 
G(Sr) 

r = l S — Sr 

. « and 

(19) 

(20) 
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where D has/?; distinct roots s = yr + jer, r = \ . 
stituting eqns. 19 and 20 into eqn. 18 yields 

. m. Sub-

' A'' a'n b'm 

N D ) s = jw 

+ "-» V 

y G(Sr) 

- a, + /(to - (i, ) &,„ r^l 7r + / (e r - to) 

eU + eV I — ^ 5 j v 

+/(to-M] 
+ y 

r"i [ T r + / ( e r - " ) ] 
(21) 

where 

a„ b„ 
W 

Hence, from eqn. 21, 

\sJB\s=>w<\eU\ + )eV\Z 

bm 

\F{*t)\ 

ffi K +(co-(3,)2]' 

+ ieW| I lC(*r)l 
[7? + ( e r - t J ) 2 ] " 2 

and for the case of a lowpass filter the integral of sensitivity 
over the passband interval is 

sinh 

eU\u+\eV\ t \F(s,)\ 

e r — co 
effl I |G(s r)lsinh"' 

ui=0 
(22) 

Theorem 3: The sum of the integrals of the differential 
modulus sensitivities of all the passive components of one 
type in an RC network with embedded operational ampli
fiers is noninvariant under a generalised scaled Howitt 
transformation. 

Proof : Since the summations concerned are finite 

t f lS l"tdw = [ l i S ^ l r f w (23) 

Under a generalised scaled Howitt transformation it has al
ready been established that 

I = I (Slv)', i.e. invariance. 

Proof: From eqns. 4 and 5 

/V D 
Sll = e 

D 
1 -Ae (26) 

"The first term corresponds with that of the differential 
sensitivity already studied. Now consider the second term 

-eAeW G(sr) i + y 
T i - s , 

t s - s, ' s — sr 

Integration over the passband interval co = [0, 1] gives 

I S i A e U , - u , da><\eAeW\ \U\u~\V\ £ |f*(s,)l 

s inh - 1 [ ^ - ) ~ |G(s r ) | s inh _ 1 i^J^ 

Jo 

+ sinh" IH'I I I 
r, * r , 

\G(sr,)l\G{sr2)\ 

V(e r , - e r j ) 2 +(7, , - 7 r ! ) J 

sinh 

+ sinh 

tan 
7r 

1*1 X |C J(* r)l 

A similar expression may be obtained for the third term. 
Direct application of theorem 3 establishes the non-

invariance of the sum of the integrals of the moduli of 
expressions of the type given in eqn. 26. Hence the 
corollary. 

Theorem 4: The integral of the modulus of the bounded 
large-change multiparameter sensitivity of the passive com
ponents of an RC network with embedded operational 
amplifiers is invariant under a generalised scaled Howitt 
transformation. 

Proof: With reference to eqns. 15-17 the bounded large-
change multiparameter sensitivity function is invariant 
under transformation, and hence the integral of the mod
ulus is also. 

However 

I I IC^T I 

and so 

(24) 

I f \sj'\du* I f \(S??y\du (25) 
i -'o 1 i Jo ' 

Hence the theorem. 

Corollary : The sum of the integrals of the bounded large-
change modulus sensitivities of all the passive components 
of one type in an RC network with embedded operational 
amplifiers is noninvariant under a generalised scaled Howitt 
transformation. 

4 Examples and conclusions 

Fig. 1 shows an initial circuit for a 3rd-order Butterworth 
function and Fig. 2 an equivalent network produced by 
transformation but having a reduced value for the sum 
squared sensitivity function evaluated at a typical value 
of s = / l . For the first circuit this numerical value taken 
over all components is 7-7016 and for the second circuit 
6-8393, a moderate reduction. Examining the summed 
sensitivities according to the definitions given, over all 
conductances say, yields for the differential case values of 
2-9154 and 2-9008. For component changes of 10% the 
bounded large-change sensitivity sums are 2-9030 and 
2-8795 and for the bounded large-change multiparameter 
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sensitivity 0-2416 and 0-2416 for the respective circuits 
at s = / ' l . So considering the limits of accuracy in the 
calculations, these results confirm the invariance theorems. 

For the integral definitions the following values are ob
tained, over all conductances, for the first circuit : 

£ 1 1\Sj v |t/co < — 1 -9999 
•'o 

and for the transformed circuit 

J o 

\dcj<- 7-3133 

and bounded large change integral sensitivity evaluations 
give 

i-i 
I j ISA" I 2-7486 

and 

I J ' \ s Z |c /co<-6-7217 

The results demonstrate again the care required in speci
fying sensitivity measures. The sums of the integrals of the 
moduli of differential and large-change sensitivities are 
noninvariant and can be grouped with the other non-
invariant measures such as the sum of sensitivity squares or 
moduli. 

The sensitivity measures having real practical signific
ance, the bounded large-change multiparameter sensitivity 
and the integral of the modulus of this function exhibit a 
complete invariance, when the network is subject to a fairly 
general class of equivalence transformations, and this con
firms an underlying practical feature. 

019921 019921 00742 n 

01992 01992 01992 
±0 4261 

Fig. 1 Initial realisation of a Srdorder Butterworth function 

Elements in Siemens and farads 

06666 

Fig. 2 Reduced sumsquaredsensitivity realisation of a 3rd-order 
Butterworth function 
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7 Appendix 

Consider the second terms in eqns. 5 and 6. It is necessary 
to show that 

k I & k t all conductances 

E% Qki 
D be 

1 
£ Y

T E N D ( A Y G ? E D 

U diagonal 

(27) 

(28) 

where A Y a is the matrix of entry increments. 
For a network with n nodes and m operational ampli

fiers, for simplicity consider single input/output type, 
where / ( is the input at the node / and O, is the output at 
node /. Let f=n — 2m, the number of nodes not 
connected to an amplifier. Also etj = e;i- and e / ; Ae f c / = 0, 
V(i Eqn. 27 gives: 

j f f m m 

ii J , = — n L Z L, all conductances £ > a = 1 b = 0 + I , = l t = 1 

[eaa*eaaE™E?a +eabAeab(E»D + E»b

D -Ea

N„D 

" ££.")(£?. + E?b - Eg - Eg) + e a Q l Aea0l 

(Eg - ££) + e Q l h Ae0lI> ( - £ $ ? , ) ( - f £ 0 j ) ] 

Equating to eqn. 28 

S S L = I W ^ A V f E " = P n m 

D diagonal v ' n > m 

For a network of n + 1 nodes, m amplifiers a n d / ' = / + 1 
free nodes 

D 
e r r A e i r E ^ E f f 

+ 1 eafAeaf.{E™+E?r Era) 

+ £ e / 0 , A e y 0 l ( / f # ? - E % ^ E ? r - E ? 0 , ) 
(=1 

m 
+ l e f [ l A e r i l ( E ^ - E ^ ) ( E f . f - E ? l f . ) 
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• t r f 
a = \ u = I b= a+l 

(•/TiVD j _ r . V f l _ r-.VD _ ,-.VD, \ oo ' £ bb £ o 6 £ 6a ) 

i c aa ^ c bb L ab £ ba I 
f m 

+ 1 1 ea0lAea0l(F™-E^iFg-EZo.) 
a - l 1=1 

+ i i ^ . ^ ( f - s ' - ^ x f s - £ • { , „ ) 

m m 

+ I Ie,,o. £™.K- f So.) 
= + I. m 

Similarly for a network with n nodes, m + 1 amplifiers 
/ • '= /"-2 

/" m + l m + 1 

I I I I »„^£-2?£? 

(£"£ + f £ b - f ? 6 - £ , g , ) 

' • / ) o s - l t ; l o 3 

l-inallv. for a network with n + 1 nodes, in + 1 amplifiers. 
. / " = / - ! 

/' r" m + 1 m * I 
V V V V 

« = l b = « t l ( - I s= 1 
+ eab Al>ab {E^ + t 'J'f — C ab~ 

f r D j _ I'D _ r-D _ pD 

•f f « A „ ,r-wn /r.VD* 

1 aa —if- aa*- aa u t 

e"0,Aea0l^J>^E^l){Fg-Ea0l) 

+ e^Ae^E™ - E%S)(ES, ~ E?ia) 

+ ell0sAell0s(-E™s)(-E?l0s) 

= P 
1 n + 1 , m + 1 

For a specific case of n - 3, m = 1 these expressions hold, 
hence the second term can be written 

I &. = - k l YTEND(A Y)TED 

all U diagonal 
conductances 

The same process can be used to identify the other terms in 
eqn. 6. 
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ON THE GENERATION OF EQUIVALENT SWITCHED CAPACITOR NETWORKS 

D.J. G i l b e r t and J . I . Sewell 
Department of Electronic Engineering 

University of Hull 
H u l l , HU6 7RX, United Kingdom 

Abetraat - By reformulating the fundamental describing matrices i n a manner 
that permits access to basic theorems governing the existence and structure of 
relevant transformation matrices, t h i s paper develops a general theory for the 
generation of equivalent switched capacitor (SC) networks. The method is pert
inent to the common 2-phase SC networks and i s easily demonstrated on a simple 
second order SC f i l t e r network. I t also provides the foundation for a general 
transformation program SCNAPT. 

1. INTRODUCTION 

The generation of equivalent networks using matrix 
transformations was originated by H o w i t t [ l ] . The 
method was l a t e r adapted by Schoeffler and others 
to obtain passive networks with minimal s e n s i t i v 
i t i e s [ 2 ] . More recently, equivalent network the
ory has been extended to include active RC c i r c 
u i t s [ 3 ] , [ 4 ] . Some l i m i t e d r e s u l t s f o r the SC 
case include a method f o r obtaining an equivalent 
strays free active c i r c u i t from a given strays 
sensitive c i r c u i t [s], an adaptation of Schoeffler's 
method using SC bui l d i n g blocks (SCB's) [ 6 ] , and 
an application of state space methods to produce 
equivalent c i r c u i t s w ith minimum capacitor r a t i o 
and t o t a l capacitance [ 7 ] . 

I n t h i s paper a systematic general theory i s pre-
ented which enables modification to be made to 

c i r c u i t parameters and topology at component l e v e l , 
and applies equally to passive and active networks. 
Using ii-domain formulation of the nodal charge 
equations, i t i s demonstrated both i n theory and 
by example that a wide class of d i s t i n c t but equi
valent networks can be obtained using two sided 
scal;.r transformations o f a reformulated MNA 
matrix (RMNA). For s i m p l i c i t y of presentation, 
only c i r c u i t s with two non-overlapping clock pha
ses w i l l be considered; the corresponding time 
slots w i l l be referred to as odd and even respect
i v e l y . 

2. EVALUATION OF TRANSFER FUNCTIONS USING MODI
FIED NODAL ANALYSIS 

A variety of equivalent presentations of the nodal 
equations of SC networks are i n current use. The 
presentation described i n t h i B section combines 
nodal analysis i n the s-domain [sj w i t h the modi
f i e d nodal approach (MNA) [ 9 ] , to produce a matrix 
description which always includes the complete 
admittance matrix of the passive p a r t of the net
work i n symmetric form. Details of the matrix 
formulation are shown i n ( 1 ) ; since the evaluation 
of solutions i s not involved, arguments favouring 
a f u l l clock cycle d e f i n i t i o n of a, as used i n 
[10], do not apply. The scheme i s based on the 
elemental switch time f o r the d e f i n i t i o n of a,and 
has the advantage of ret a i n i n g the t o t a l system 
description w i t h i n the matrix. 
Suppose that the network under consideration has 
n nodes, and that of these the f i r s t p form an 
independent set of nodes a f t e r both even and odd 
switching has taken place. (This r e s t r i c t i o n i s 

not essential to the subsequent analysis,- however 
i t s s i m p l i f y i n g e f f e c t enables the p r i n c i p l e feat
ures of the argument to be presented more c l e a r l y ) . 
The 2p x 2p passive admittance matrix (PAM) Y i s 
constructed from the capacitor matrix C and the 
even and odd switching matrices S and S using 

o e| 
I 

t 
s cs 

The switching matrices are i n standard form [sj; 
note that separate current and voltage derivations 
of S s ' and S , S„ respectively, are unneces-e P e o J 

sary. Note also that a l l non-zero o f f diagonal 
terms i n S e and S Q occur i n rows p+1, ...,n and 
columns 1, ...,p, and that Y i s obtained from N by 
deletion of the zero rows and columns p+1, .,.,n, 
n+p+1, . . . , 2 n . 

The submatrix R of T includes the constraints due 
to the active devices {assumed here to be VCVS's), 
the vector I represents the current variables i n t 
roduced as a re s u l t of the MNA method, and S con
tains entries due to the r e s u l t i n g current balance 
equations. Note that input i s at node 1, and that 
(1) represents the equations for even e x c i t a t i o n . 
Since Vye has been normalised to 1, the transfer 
functions H e e ( 3 ) , H e o(z) may be equated to V 2

e 

and V 2 0 respectively, which are readily evaluated 

! l 0 
JO . 
I . I •!• ' 
i • 

- i f : ~ ? j 
o 

I. • 
i , 

lo 0 

n 1 

or, simply, TX = u 2 p + 1 

(1) 

697 



E7.1 

3 r U 2 p+l bY u 2 o + 2 , 
for V->° and*V,e 

necessary to replace the u n i t sector 
then solve the r e s u l t i n g equations for V 2 0 and'vj 
respectively. 
Two c i r c u i t s w i l l be said to be equivalent (reap. 
scaled equivalent) with respect to a given trans
fer function i f the transfer function of the 
second c i r c u i t i s the same as (reap, a scalar mul
tiple oft that of the f i r s t . 

3. REFORMULATION OF THE MNA 

<Se> S t = 
. . (4) 

and i f s,t e D 
10 i f s f t 
1 i f s = t 

Also, 
det S e = I ± ( S e ) l j (2 e )2k 

where { J , k, . . r } = U,...n} and the sum i s taken 
over a l l permutations of the second subscripts. 
Prom (3) every non-zero element i n t h i s sum has 
the form 

. < S „ ) r 

Consider whether a class°f two-sided transforma
tions of T exists such that T'=GTH i s the matrix 
representation of a d i s t i n c t SC network i n modi
f i e d nodal form. I f G and H were to have scalar 
entries and a block diagonal form, then scalar 
and non-scalar entries i n T' would automatically 
occur i n the correct positions. I f i n addition, 
the subnatrix o f G consisting of elements i n rows 
and columns l , . . . 2 p were transpose of the corresp
onding submatrlx P of H, then symmetry of the 
transformed PAH would be assured (see ( 2 ) ) . 

t l P , 0 
I | 

0 IP, 

V 

2 oe 1 

-1 t 1 

-3 P, Y P, 1 . _ _ _ J - _ ? ° _ 2 _ J pS, 
P, Y_P„ | 2 oo 2 

I 

or, simply, GTH = T 
!2) 

Unfortunately, the following d i f f i c u l t y arises 
I f two d i s t i n c t capacitor matrices C an3 C1 with 
the same rank and dimension are given, and i f Y 
and Y' are corresponding PAMs,then,in general, no 
block diagonal scalar matrix P exists f or which 
Y' =ptYP. A primary reason-is that the number of 
unknowns i n P, 2p , i s smaller than the number of 
equations needing to be s a t i s f i e d , which i s , t a k i n g 
due account of symmetry, 2p +p. 
To overcome t h i s d i f f i c u l t y , without s a c r i f i c i n g 
the advantages of transformations of the type 
shown i n (2) we s h a l l reformulate the matrix pre
sentation ( 1 ) . The key to the problem i s the s i n 
g u l a r i t y of the switching matrices S e and SD. 
Consider a modified switching matrix S e defined by: 

< S e ' i j = < s e ' i j V i , j E { l , . . . , n ) , i + j 
( ^ e > i i = 1 V i e { l,...,n) 

Thus S e i s i d e n t i c a l to S e except that zeros on 
the diagonal have been replaced by l ' s . Suppose 
3 0 i s defined s i m i l a r l y . Then 

Lemma l : ?>e and s D are non-singular. 

Proof: Let I = ( 1 , . . . , p}, D = {p + 1 , . , .,n) be 
the sets of independent and dependent nodes resp
e c t i v e l y . As noted e a r l i e r , the non-zero o f f dia
gonal terms i n S e occur only i n rows p + l , . . . , n 
and columns l , . . . , p . 
Hence, i f 1 E I , 

( S J t n = 
= l , (3) 

" f t < § e ) i i TT < §e>st 
1 = 1 s,t t D 

so th a t , from ( 4 ) , the only non-zero element of 
the sum i s n 

TT <3 e>ii 
i = i 

I t follows that det S e = 1; s i m i l a r l y det S0= 1 
so the lemma i s proved. 

Lemma 2: 
If M = 

" t ~ r " r - - t " 
. C S E I s„ cs„ 

and if Y* is obtained from H by deleting rows and 
columns p + l , . . . , n then ? = Y. 

e ' t q c q r 'se'rm 

Proof: I f I,D are as i n Lemma 1, then i f t e I 

and i f m e I , 
( Se>rm = ( se'rm v r e ( 1'-- n ' Hence f o r each I , ?>nJn I 
(^e^e'tm = 1 I Cs^) 

= ! I O w ^qr< se>rm q=l r = l 

and a si m i l a r r e l a t i o n s h i p holds for S e C S 0 , S 0 C S E , 
S0*-CS0. The lerma now follows from the construct
ion of Y. 

From henceforth the matrix H i n Lemma 2 w i l l be 
referred to as the extended passive admittance 
matrix (EPAM). The following corollary to Lemma 1 
i s immediate: 

Corollary: If S and M1 are EPAMe corresponding to 
two distinct capacitor matrices C and c' which 
have the same dimension and full rank, then there 
exists a block diagonal scalar matrix P such that 
M1 = ptRp. 
Proof; Since C and C 1 are pos i t i v e d e f i n i t e , 
there exists a non-singular matrix Q such t h a t C 1 

= Q'CQ. By Lemma 1, 3 e and S 0 are non-aingular 
so i f , 

" , I 
1 I 

1 

) | r j 
where P j , P 2 are n x n matrices such that 

p l = se" X<2 Se 
then P s a t i s f i e s fi' 

...(5) 

Thus by Lemma 2 , M contains the PAM Y as a submat-
r i x , and by Lemma 2 and the Corollary, one PAM can 
now be obtained from another by means of a very 
convenient type of congruence transformation. I t 
would therefore seem desirable i f fi rather than Y 
could be Incorporated i n t o the matrix formulation 
of the nodal equations i n such a way that the ex
istence of the extra rows and columns d i d not 
a l t e r the solutions V i e , Vl 
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Consider the set of equations presented i n matrix 
form i n (6). The presence of the four submatrices 
I n _ p e f f e c t i v e l y removes rows and columns p + l f . . . , 
n,n+p+l, ..2n i n the evaluation of the determinant 
of any submatrix of T containing these four ident
i t y blocks. Therefore by Cramer's Rule and Lemma 
2- Vi e= v i

e , $1°= Vj° V 1 e { l , . . . , p } , where fv e, 
V,°, i = 1, ... p) are solutions of the o r i g i n a l 
set of equations ( 1 ) . 

I 0 . 
o . . 

0 0 

o ' 1 0 

j 

.v.. 

. 1 ~ ... (6) 
or amply M TXQ = u 2 n + 1 

Comparing (1) with (6), i t i s seen that a number 
of new unknowns have been introduced i n t o the sec
ond set of equations, i n the vectors J-yf J2' J3-
However, a l l solutions of i n t e r e s t are the same i n 
both formulations, so the formulation (6) may be 
adopted instead of (1), as convenient. The advan
tages are clear i n the context of two sided trans
formations of T. 
Consider the transformation of T* shown i n (7),where 
G and H are scalar matrices and P i s as i n the 
Corollary. 

ation of the RMNA shown i n (7). Only quite simple 
adjustments are required to obtain the analogous 
conditions for any or a l l of the other transfer 
functions. The approach i s a natural extension of 
e a r l i e r methods [ l ] , [ 4 ], and r e a l i s a b i l i t y con
s t r a i n t s on C do not occur as conditions i n the 
theorem but must be separately considered. 

Theorem: Let the non-singular matrix T* be the 
RMNA of a SC networks with n nodes, invut and out
put being at nodes 1 and 2 respectively. Let G 
and H be scalar block diagonal matrices as in (7) 
with the following properties: 

( i ) 
( i i ) 

( i i i ) 
( i v ) 
(v) 

G is non-singular 
the first row of H i s l " 1 U j t 

the second row of H is k u 2
t 

the ( 2 n + l ) f i row of G is t u 2 n + i 
the (2n+l)tfc column of G is £U2n+l 

where u^ denotes the ith unit vector. 
Then if GTH is the RMNA of a realisable network, 

H e e' (a) = *k> _ 1H e e(s) 
where H e e(z) and H e e' W ore the even input/even 
output voltage transfer functions of the networkB 
corresponding to T and T'= GTH respectively. 
Proof: I t suffices t o show th a t the f i r s t and 
second entries Xj and X2 of the solution vector 
X of ~ G T H X = U. ...(8) u2n+l 
are suitable scalar multiples of the f i r s t and 
second entries (XQ)± and (X 0)2 of the solution 
vector Xo of 

T Xo " "2n+l •••<9> Now by condition (v) 
! _ 1 G u2n+l = u2n+l so t h a t from (8), condition ( i ) and (9) 
fc T H X = U 2 n + 1 = T Xo 

Since T i s non-singular, i t to 1lows that 
i H X = XQ 

so that X2 = . i * * ) " 1 <xo>2 b v condition ( i i ) 
structure of T ensures that ( X Q ) ^ = V^e = 1 

The 
(see 

( 6 ) ) , and conditions (11) and (iv) ensure that the 
(2n+l)th row of GTH 1B rT 
The theorem i s now proved." 

so that X̂  = 1. 

or, simply, T' = G T H 

0 | B 

(7) 

Not only i s one PAH readily obtained from another 
on account of the Corollary, the remaining equa
tions which need t o be s a t i s f i e d present no obst
acle e i t h e r . For, consider the equations AVP = V 
ptwB = w ' , or equivalently, AV = v'p" 1, BB = 
' b t i ' - l . W (P x),where A and B are k x k matrices; c l e a r l y 
for f i x e d V,v', W, W , the number of unknowns i n B , 
A and P, 2(k^ +n^), cannot be less than the number 
of l i n e a r equations to be s a t i s f i e d i n these un
knowns, which i s 4nk. Therefore, subject t o the 
entries of P being such that C = Q*CQ i s r e a l i s 
able, there seems a good prospect that d i s t i n c t 
networks can be obtained by transformations of the 
RMNA T as shown i n (7). 

4. EQUIVALENCE TRANSFORMATIONS USING THE RMNA 

Let us suppose that matrix transformations of the 
RMNA can y i e l d r ealisable new SC networks and en
quire whether i t i s possible t o r e s t r i c t the ent
ries of such transformations so that equivalence 
of the new networks i s assured. 
The theorem presented below gives a set of s u f f i 
cient conditions f o r the invarlance of H e e(2) up 
to a scalar mu l t i p l e under the type of transform-

I f 3? i s the RMNA of a realisable network, i t seems 
reasonable t o expect t h a t , i n general, f w i l l be 
non-singular as i n the hypothesis of the theorem. 
Note t h a t conditions ( i ) - (v) ensure only that 
certain solutions are preserved a f t e r transform
ation of f, and t h c t additional conditions are 
necessary t o ensure that GTH has the structure of 
an RMNA. For example, i f the o r i g i n a l a m plifier 
and switching arrangements are t o be retained, 
then conditions (11) and (iv) would be replaced 
by AVP = V and P^ffl = H, i n the notation of (6), 
and r e a l i s a b i l i t y constraints on H would also be 
necessary. Nevertheless, application of the 
theorem can produce equivalent SC networks i n i n 
f i n i t e v a r i e t y , as w i l l now be shown. 

5. APPLICATION TO SECOND ORDER FILTER 

Consider the second order active SC f i l t e r shown 
i n Fig 1. Nodes 1 - 4 are independent, nodes 
5 - 7 are dependent, and i f C i s the capacitor 
matrix of the f i l t e r then 

C' = QtCQ . . . (10) 
where 

0 
0 
k-q 
0 
o 
o 
k 

.111) 
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k > 0 ' c + c + c + c c q < k • • • C 1 2 } 

L l L2 ^3 ^4 
is a realisable capacitor matrix. Moreover, i f P 
is derived from Q using (5) , and A. and B from the 
relations AVP = V, P̂ TB = W {cf ( 7 ) ) , then GTi: i s 
a transformation of the RMNA T of the f i l t e r satis
fying the conditions of the theorem, where G and 
H are i n (7). Therefore, each SC network whose 
capacitor matrix c' s a t i s f i e s (10), (11),(12) above 
and whose switching and amplifier arrangements 
are as i n Fig 1 i s equivalent to the f i l t e r i n 
Fig 1. Two examples are shown i n Figs 2 and 3; 
note that the o r i g i n a l network corresponds to 
k = q = 1. Analysis of these three equivalent 
networks using the computer program SCNAP 2 shows 
good agreement-of the transfer functions. 
Note that, since k and q can take a continuous 
range of values, the same i s true of the capacit
ance values of the networks i n the equivalence 
class. Moreover, t h i s class of equivalent net
works i s only a small subset of the class of a l l 
networks which are equivalent to the f i l t e r of 
Fig. 1 and can be obtained using the conditions of 
the theorem. Hence optimisation with respect to 
such parameters as component sum and spread, or 
s e n s i t i v i t y would seem to be one possible applic
ation of the theory. 
A general transformation and optimisation program 
SCNAPT which i s being developed w i l l f a c i l i t a t e a 
comprehensive implementation o f t h i s theory. 

6. CONCLUSIONS 

A s i m p l i f i e d theory has been developed to enable 
the generation of equivalent SC networks. Funda
mental theorems r e l a t i n g to the existence of equi
valence transformations have been proved and the 
application to one simple SC f i l t e r network i s 
shown. Results from the application of the gener
a l transformation program SCNAPT to a vari e t y of 
larger f i l t e r networks w i l l follow. 
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ABSTRACT 
Provided a si n g l e network r e a l i s a t i o n of a d e s i r 

ed t r a n s f e r f u n c t i o n i s a v a i l a b l e , an i n f i n i t e 
class o f d i s t i n c t but equivalent networks can be 
generated using s p e c i a l congruence transformations 
o f the capacitor m a t r i x . C o n t i n u i t y p r o p e r t i e s o f 
these transformations enable improvements t o net
work parameters, such as capacitor sum and spread, 
dynamic range or s e n s i t i v i t y , t o be achieved while 
d e s i r e d t r a n s f e r f u n c t i o n s are preserved. To 
implement the method, a program SCNAPT, incorpora
t i n g a constrained o p t i m i s a t i o n subroutine, has 
been developed; as i l l u s t r a t i o n , the a p p l i c a t i o n to 
a range of two-phase strays i n s e n s i t i v e switched 
capacitor networks i s discussed. 

INTRODUCTION 
The recent development of a theory o f equiva

lence transformations f o r switched capacitor (SC) 
networks enables m o d i f i c a t i o n s t o component values 
and network topology t o be achieved while preserv
in g one or more t r a n s f e r f u n c t i o n s . S t a r t i n g from 
a s i n g l e network r e a l i s a t i o n , an i n f i n i t e class of 
equivalent networks can normally be generated using 
matrix transformations; possible m o d i f i c a t i o n s t o 
network parameters which can be achieved include 
the growth and loss o f cap a c i t o r s , and a l t e r a t i o n s 
to capacitor values, a m p l i f i e r gain or switching 
arrangements [ 1 ] , [ 2 ] , [ 3 ] . 

Owing t o c o n t i n u i t y p r o p e r t i e s o f the transform
in g matrices, equivalence theory can be applied t o 
network design using constrained non-linear o p t i m i 
s a t i o n techniques. I t i s normally possible t o 
optimise a given network w i t h respect to component 
sum, spread, dynamic range, s e n s i t i v i t y or indeed 
any other performance f a c t o r s which can be formu
l a t e d s u i t a b l y i n terms of a continuous o b j e c t i v e 
f u n c t i o n . Other features of i n t e r e s t , such as 
layout or number of components, can also be taken 
i n t o account by appropriate adjustments t o the 
c o n s t r a i n t s . 

EQUIVALENCE TRANSFORMATIONS 
To adapt the c l a s s i c a l method of Howitt [ 4 ] , the 

MNA representation o f nodal charge equations i n the 
s-domain i s reformulated i n terms of an enlarged 
RMNA system matrix T. This enables a class o f 
transformation matrices {G,H} t o be i d e n t i f i e d 
which have the property t h a t r e l e v a n t s o l u t i o n s , 
and hence t r a n s f e r f u n c t i o n s , of the matrix equa
t i o n (1) representing the i n i t i a l network 

T X = w (1) 
and of the transformed system 

GTHX1 = W (2) 
are i d e n t i c a l . R e s t r i c t i o n s t o the e n t r i e s o f G 
and H ensure not only the invariance o f c e r t a i n 
s o l u t i o n s , but also t h a t T" = GTH has the s t r u c t u r e 
of an RMNA matrix. The r e s u l t i n g networks may be 
exact or scaled equivalents w i t h respect t o any or 
a l l of the voltage t r a n s f e r f u n c t i o n s , as desired 
[ 1 ] , [ 2 ] . 

Equivalence transformations can alsc be express
ed as congruence transformations 

C = QtCQ (3) 
of the nxn capacitor matrix C c.̂  the i n i t i a l net
work, the e n t r i e s o f Q being s u i t a b l y r e s t r i c t e d ; 
t h i s formulation can be deduced from (2) and i s 
more convenient from the p o i n t of view of computer 
implementation. The u n r e s t r i c t e d e n t r i e s of Q 
c o n s t i t u t e an n - dimensional Euclidean space, 
and the r e s t r i c t e d e n t r i e s a constrained space tj) 
Every p o i n t i n (j> corresponds t o a r e a l i s a b l e net
work which i s equivalent t o the i n i t i a l network, 
and may have the same, or d i f f e r e n t , a m p l i f i e r and 
switching arrangements. 

I f equivalent networks are required which have 
the same a m p l i f i e r and switching arrangements as 
the i n i t i a l network, the corresponding subset o f 
ip w i l l u s u a l l y include a simply connected region K. 
which contains the p o i n t Q = I corresponding t o 
the i n i t i a l network. S t a r t i n o from Q = 1^, i t i s 
then normally possible t o move around i n K i n 
incremental steps u n t i l some desired optimal p o i n t 
i s reached. For t h i s reason equivalence transform
ations which preserve the switching and a m p l i f i e r 
arrangements of an i n i t i a l network may be applied 
to SC network design using standard o p t i m i s a t i o n 
techniques. The fundamental theorem governing 
equivalence transformations o f t h i s type may be 
stated f o r two phase networks as f o l l o w s : 

Theorem: Let the nxn matrix C be the capacitor 
matrix of a given SC network N with n nodes. Let 
the scalar matrices s , s and K , K denote the 
modified even and odd*switching matrices and gain 
matrices respectively, suppose the RMliA matrix of N 
is non-singular, and that non-singular nxn matrices 
p , p and Q satisfy e o ^ % _v ^ 

U ) Q = S P S 1 S P S 
o o o e e e 

are non-svngu \ar, 
j . ,+K IP J o i l o o 21 
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l i i i ) 
( i v ) 
(v) 

( v i ) 
i v i i ) 

' V l 2 = P o l 2 " ° R K = K [P 1 = K 
i s U 

is k 

o ( P o i 2 2 e 22' o 
itoe 1st column of R 
t/ie 2nd row of P „ .. t e —2 C = Q CQ is a realisable capacitor mat-

-1 k>0, 

where U 
I f H 

ru, 
denotes the i t / i u«it vector. 
(z) and H '(2) respectively denoze the even 

input/e^en output Voltage transfer function of N 
and o/1 ifte network with capacitor matrix C and t/je 
same suitemng arjd amplifier arrangements as N, then 

phase networks, f o r example, only those categories 
of connections l i s t e d i n Table I can ever c o n t r i b u t e . 
One method of overcoming the problem of low rank i n 
the capacitor m a t r i x , t h e r e f o r e , i s t o incorporate 
a d d i t i o n a l f u n c t i o n a l l y redundant, or 'phantom', 
capacitor elements i n t o the i n i t i a l network date i n 
order t o increase the rank of the i n i t i a l capacitor 
matrix C. A f t e r applying an equivalence transform
a t i o n ( 3 ) , any f u n c t i o n a l l y redundant capacitors i n 
the network w i t h capacitor matrix C' are removed t o 
y i e l d the f i n a l equivalent network [ 3 ] . 

( B ) = k H (z) ee 
Further d e t a i l s and n o t a t i o n may be found i n [2]. 

Since P = S "' Q S , P = ^ _ 1 Q S and the e n t r i e s 
of S ,^E,K and K i r e ?ixed°real numbers determined 
by tne f n i f i a l ne?work N, the co n d i t i o n s of the theo
rem c o n s t i t u t e , i n e f f e c t , a set of c o n s t r a i n t s on 
the e n t r i e s o f Q. Where the i n i t i a l network i s 
strays f r e e , some s l i g h t adjustments are normally 
required t o ensure t h a t a s a t i s f a c t o r y class o f 
equivalent networks i s generated; t h i s aspect w i l l 
now be considered. 

STRAYS INSENSITIVE NETWORKS 
In the p r a c t i c a l implementation o f SC f i l t e r s t r u c 
tures using MOS technology i t i s important where 
possible t o adopt topologies which ensure i n s e n s i t i -
v i t y t o stray capacitances t o ground. I t i s usual 
therefore to design such networks so t h a t 

(a) the amplification of the op-amps is large 
(b) in each switching phase, every node is either 

a low impedance node or a virtual ground 
(c) a capacitor node is never switched from a low 

impedance node, other than ground, to a 
virtual ground. 

I t has been shown th a t conditions (b) and (c) are 
s u f f i c i e n t t o ensure complete i n s e n s i t i v i t y t o strays 
under the assumption o f i d e a l o p e r a t i o n a l a m p l i f i e r s 
[ 5 ] . From now on, "strays i n s e n s i t i v e " w i l l r e f e r 
only t o networks s a t i s f y i n g ( a ) , (b) and ( c ) , and 
for the purposes of equivalence transformations, such 
networks are assumed t o have i n f i n i t e a m p l i f i e r gain. 

I f a given SC network N s a t i s f i e s ( a ) , (b) and ( c ) , 
then the same i s tr u e o f every network generated from 
N using the co n d i t i o n s of the theorem; t h i s i s be
cause the only possible m o d i f i c a t i o n s t o network 
topology are the growth and loss o f capacitors which 
cannot a f f e c t the c l a s s i f i c a t i o n of nodes. I n theory, 
t h e r e f o r e , the co n d i t i o n s o f the theorem are s u f f i 
c i e n t not only t o preserve the t r a n s f e r f u n c t i o n 
H (z) but also t o preserve strays i n s e n s i t i v i t y when
ever t h i s i s present i n the i n i t i a l network. 

I n p r a c t i c e , however, many of the p o t e n t i a l l y 
equivalent topologies cannot be generated from an 
i n i t i a l network which i s strays i n s e n s i t i v e by 
st r a i g h t f o r w a r d a p p l i c a t i o n of the theorem. This i s 
because congruence transformations preserve rank,and 
the t y p i c a l l y low rank of the capacitor matrix i n 
strays i n s e n s i t i v e networks i s l i k e l y t o be a f f e c t e d 
by small changes i n network topology. Fortunately, 
some s l i g h t adjustments t o the usual procedure enable 
t h i s problem t o be overcome. 

In strays i n s e n s i t i v e networks, a s i g n i f i c a n t 
p r o p o r t i o n of possible capacitor connections never 
c o n t r i b u t e t o network f u n c t i o n i n g ; i n the case of 2-

Typo 
Capacitor Plato I Capacitor Plate 2 

Typo 
connected 

to 
switching 
phase 

coonocted 
to 

(witching 
phase 

I i/p of network Q vi r t u a l ground e 

I I v i r t u a l ground a ap-anp 0/p a 

I I I i/p of network e v i r t u a l ground o 

rv v i r t u a l ground. • op-asp o/p a 

V op asp o/p o v i r t u a l ground o 

VI v i r t u a l ground o op-cap o/p a 

TABUB I t CATBGORIBS Or C A P A C I T O R COKMECTXOKS WBICB GCBTUBUTS 
T O l ^ n i I K 1 - P H A S S n u n nunsrnvs ransom 

An a l t e r n a t i v e approach, which avoids the e x p l i 
c i t i n t r o d u c t i o n o f phantom elements, i s based on 
the removal o f unnecessary r e a l i s a b i l i t y c o n s t r a i n t s 
from the transformed matrix C. I n t h i s method, C 
i s the capacitor matrix o f the i n i t i a l network, and 
the e n t r i e s o f Q and C i n (3) are r e s t r i c t e d i n 
accordance w i t h the condi t i o n s of the theorem, 
except t h a t now only those e n t r i e s i n C which rep
resent capacitor connections i n categories I - V I 
i n Table I need t o s a t i s f y the usual capacitor mat
r i x r e a l i s a b i l i t y c o n s t r a i n t s ; the remaining e n t r i e s 
of C may be p o s i t i v e , negative or zero. To ob t a i n 
the capacitor m a t r i x C" of the f i n a l equivalent net
work from C, a l l o f f diagonal terms which do not 
represent connections i n any of the categories 
I - V I are equated t o zero; then the on-diagonal terms 
are adjusted t o y i e l d n 

£ C ± J = 0 f o r each i = 1,.. . ,n 
These two methods f o r generating equivalent s t r a y s 

i n s e n s i t i v e networks can be r i g o r o u s l y j u s t i f i e d , 
and are, i n f a c t , i n t i m a t e l y r e l a t e d . The capacitor 
connections not l i s t e d i n Table I are p r e c i s e l y 
those connections which can never c o n t r i b u t e t o net
work f u n c t i o n i n g , and hence may be used as phantom 
elements. Although the use of phantom elements i s 
i n t u i t i v e l y more appealing, the removal o f constra
i n t s from the transformed capacitor m a t r i x achieves 
the same goal more economically and more systemati
c a l l y . The r e s u l t i n e i t h e r case i s t h a t strays 
i n s e n s i t i v e networks whose capacitor matrices may 
have d i f f e r e n t ranks can now be r e l a t e d by equiva
lence transformations. 

I f an increase i n the number of switches i s 
acceptable, a f a r wider v a r i e t y o f equivalent strays 
i n s e n s i t i v e networks can be generated by I n s e r t i n g 
redundant switch p a i r s a t s u i t a b l e nodes i n the 
i n i t i a l network. This technique enables networks 
whose capacitor matrices may have d i f f e r e n t dimen
sions t o be r e l a t e d by equivalence transformations 
[ 3 ] . Sometimes the equivalence class can be s t i l l 
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f u r t h e r extended by using the f a c t t h a t the inputs 
of o p e r a t i o n a l a m p l i f i e r s are v i r t u a l grounds t o 
weaken c o n d i t i o n ( v i ) . 

FORMULATING THE OPTIMISATION PROBLEM 
The mathematical complexity of the o p t i m i s a t i o n 

problem means t h a t a computational approach i s 
e s s e n t i a l i n a l l but the simplest cases. A Fortran 
77 program SCNAPT has th e r e f o r e been developed 
which f i r s t determines equivalence and r e a l i s a b i l i t y 
c o n d i t i o n s from the i n i t i a l network data, and then 
optimises a chosen o b j e c t i v e f u n c t i o n subject t o 
these c o n s t r a i n t s . I t i s necessary t o sp e c i f y at 
the outset whether the i n i t i a l network i s i n s e n s i 
t i v e t o s t r a y s , so t h a t appropriate c o n s t r a i n t s 
and o b j e c t i v e f u n c t i o n s are u t i l i s e d i n the program. 

I t i s evident from the theorem and from the 
discussion i n the previous s e c t i o n t h a t equivalence 
and r e a l i s a b i l i t y c o n d i t i o n s can be expressed i n 
terms of the e n t r i e s o f Q; the equivalence condi
t i o n s are mostly l i n e a r e q u a l i t y c o n s t r a i n t s and 
the r e a l i s a b i l i t y c o n d i t i o n s quadratic i n e q u a l i t y 
c o n s t r a i n t s . Since the only v a r i a t i o n i n network 
components under the equivalence transformations i s 
to capacitor elements, every o b j e c t i v e f u n c t i o n can 
be expressed as a f u n c t i o n of the e n t r i e s of C , 
and hence a l s o , by ( 3 ) , o f the e n t r i e s of Q; how
ever , where the i n i t i a l network i s i n s e n s i t i v e t o 
s t r a y s , only those e n t r i e s o f C should be involved 
which correspond t o one or more of the types o f 
capacitor connection l i s t e d i n Table I . 

Formulating the, problem i n terms of the e n t r i e s 
of Q r e s u l t s i n n v a r i a b l e s f o r a network w i t h n 
nodes; t h i s would be extravagant on computer time 
f o r even q u i t e small networks, and f o r l a r g e r net
works could jeopardise the o p t i m i s a t i o n process 
completely. The l i n e a r e q u a l i t y c o n s t r a i n t s , once 
these have been determined, are t h e r e f o r e used w i t h 
i n the program t o reduce the number of v a r i a b l e s ; 
the r e d u c t i o n achieved i s normally around 75%. I f 
ther e are s t i l l too many v a r i a b l e s f o r o p t i m i s a t i o n 
t o proceed e f f i c i e n t l y , the user has the o p t i o n o f 
imposing a d d i t i o n a l c o n s t r a i n t s which w i l l reduce 
both the number of v a r i a b l e s and the constrained 
space over which the o b j e c t i v e f u n c t i o n i s minimi
sed. 

Each p o i n t x i n the constrained space corresponds 
t o a s p e c i f i c network N(x) which i s equivalent t o 
the i n i t i a l network and has the same switching and 
a m p l i f i e r arrangements. I f x i s an i n t e r i o r p o i n t , 
then N(x) can be expected t o have the most general 
equivalent topology, whereas, i f x i s a boundary 
p o i n t , N(x) w i l l have fewer capacitor elements, 
since a t l e a s t one of the r e a l i s a b i l i t y c o n s t r a i n t s 
i s a c t i v e . The most general equivalent topology 
incorporates a l l the c a p a c i t o r connections which 
occur i n any of the other equivalent topologies; 
because of t h i s property, an equivalent network N 

G 
w i t h the most general topology can be generated 
from the i n i t i a l network by using i n d i v i d u a l capa
c i t o r elements (which are continuous on the whole 
constrained space) as o b j e c t i v e f u n c t i o n s and then 
maximising w i t h SCNAPT. The remaining equivalent 
topologies can be obtained by successive minimisa
t i o n s of capacitor elements present i n N . 

Within each of the equivalent topologies, the 
capacitor elements normally take a continuous range 
of values; o c c a s i o n a l l y , however, the values are 
unique up t o a scalar m u l t i p l e i n minimum element 
topologies. A sequential augmented Lagiangian 
technique i s used i n the o p t i m i s a t i o n subroutine i n 
SCNAPT, the minimisation subproblems being solved 
by a quasi-Newton method; the o b j e c t i v e f u n c t i o n s 
should t h e r e f o r e be continuous, and p r e f e r a b l y 
continuously d i f f e r e n t i a b l e , over a s u i t a b l e con
st r a i n e d space. Many network parameters of i n t e r e s t , 
f o r example, normalised capacitor sum ( t o t a l sum v 
smallest capacitor) or spread ( l a r g e s t capacitor f 
smallest capacitor) give r i s e t o o b j e c t i v e f u n c t i o n s 
which are not continuous on a l l of the constrained 
space, but are continuous on regions corresponding 
to a f i x e d topology. Since regions corresponding 
to f i x e d topologies are u s u a l l y simply connected, 
o p t i m i s a t i o n o f such parameters can be c a r r i e d out 
f o r each of the equivalent topologies i n t u r n i n 
order t o ob t a i n the g l o b a l optimum. 

Suppose a network N i s given, and t h a t , proceed
ing as above, equivalent networks N ,N. w i t h 
d i s t i n c t topologies Tj,...,T r e s p e c t i v e l y have 
been obtained whose components are scaled so t h a t no 
capacitor value i s less than 1. For each i = 1 ,. . . , 
*' ^ Cj (a) C ^ ( q , 
denote the capacitor elements present i n T., where 
q i s a vector i n the space of reduced v a r i a b l e s . To 
obt a i n an equivalent network w i t h topology T. and 
minimal spread S^ffJ^' using SCNAPT, i t i s required 
t 0 minimise { F i (<i) = max{Cj (gj ,... . c ^ (g_) ) ) 
subject t o equivalence and r e a l i s a b i l i t y c o n s t r a i n t s , 
and, a d d i t i o n a l l y , 

C i < i > ^ ( g j i 1 
a l l other possible capacitor connections being con
s t r a i n e d t o zero. Since the value o f the smallest 
capacitor i s forced down t o 1 by the minimisation 
process, , min „ , . 

Vai' - a Va' 
subject t o the above constraints,and the g l o b a l m i n i 
mum i s 

Smin = m i n S i ( l i ' 
A s i m i l a r approach i s adopted t o minimise normalised 
capacitor sum; note t h a t t h i s technique avoids the 
problem of i d e n t i f y i n g the smallest c a p a c i t o r s . 
Sometimes the number of equivalent topologies i s so 
large t h a t i t i s only p r a c t i c a b l e t o consider a 
sample of the p o s s i b i l i t i e s . 

A number of o b j e c t i v e f u n c t i o n s have already been 
incorporated i n t o SCNAPT, both f o r the purpsoe of 
i d e n t i f y i n g the equivalent t o p o l o g i e s , and i n order 
t o improve s p e c i f i c performance f a c t o r s such as 
capacitor sum and spread. There i s no d i f f i c u l t y 
i n p r i n c i p l e i n i n c o r p o r a t i n g f u r t h e r o b j e c t i v e 
f u n c t i o n s , f o r example, weighted o b j e c t i v e f u n c t i o n s 
which r e f l e c t those parameters considered t o be most 
important, provided they can be simply evaluated 
w i t h i n the program, and are continuous on i d e n t i f i 
able simply connected regions o f the constrained 
space. A d d i t i o n a l range c o n s t r a i n t s may be used t o 
prevent improvements t c some parameters from r e s u l t 
ing i n unacceptable d e t e r i o r a t i o n i n others. 
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APPLICATION TO PRACTICAL NETWORKS 

Some r e s u l t s o f a p p l y i n g e q u i v a l e n c e t r a n s f o r m a 
t i o n s to 2 -phase s t r a y s i n s e n s i t i v e f i l t e r s e c t i o n s 
a r e shown i n F i g s . 1-3. I n each c a s e the g o v e r n i n g 
e q u i v a l e n c e e q u a t i o n s a r e g i v e n , { C . } and { C ! } b e i n g 
the s e t s o f c a p a c i t o r s i n the i n i t i a l and r e s u l t i n g 
e q u i v a l e n t n e t w o r k s r e s p e c t i v e l y ; no te t h a t c o n n e c t 
i o n s not p r e s e n t i n the i n i t i a l ne tworks a r e marked 
v / i t h - a broken l i n e . . 

The range and e x t e n t o f improvements to network 
p a r a m e t e r s w h i c h a r e p o s s i b l e i n a g i v e n c a s e depend 
both on the t o p o l o g i c a l s t r u c t u r e and on the compon
ent v a l u e s o f the i n i t i a l n e t w o r k . I n the f i r s t 
o r d e r s e c t i o n , no improvements t o c a p a c i t o r sum and 
s p r e a d a r e p o s s i b l e w i t h i n t h e i n i t i a l t o p o l o g y , u n 
l e s s a s c a l i n g f a c t o r i s u s e d ; however , i n s e c o n d 
and h i g h e r o r d e r f i l t e r s t h e r e a r e more d e g r e e s o f 
freedom and s i g n i f i c a n t r e d u c t i o n s c a n u s u a l l y be 
a c h i e v e d both w i t h i n the i n i t i a l topo logy and i n 
many o f the more g e n e r a l e q u i v a l e n t t o p o l o g i e s . I f 
s c a l e d e q u i v a l e n c e i s a c c e p t a b l e ( t h i s may be t r u e 
where a f i l t e r i s c o n s t ) a c t e d from c a s c a d e d s e c t i o n s , 
f o r e x a m p l e ) , then t h e r e i s an a d d i t i o n a l degree o f 
freedom w h i c h c a n be u s e d t o o p t i m i s e p e r f o r m a n c e . 

I n some o f the e q u i v a l e n t t o p o l o g i e s , s w i t c h e s 
a r e e f f e c t i v e l y l o s t b e c a u s e they become r e d u n d a n t ; 
t h i s o c c u r s i n the f i r s t o r d e r s e c t i o n i f = C 5 = 
0, s i n c e no c a p a c i t o r s a r e c o n n e c t e d t o node 4 , and 
i n the low p a s s f i l t e r where many s w i t c h e s a r e s h a r 
ed i n the e q u i v a l e n t n e t w o r k s i n F i g . 3 b . T h i s p r o 
c e s s c a n be r e v e r s e d by the u s e o f redundant s w i t c h 
p a i r s [ 3 ] . 

s w i t c h e d c a p a c i t o r f i l t e r s ; P r o c . I E E S a r a g a 
C o l l . E l e c . F i l t . , p p . 3 / 1 - 3 / 7 , London, 1986. 
N. H o w i t t , "Group t h e o r y and the e l e c t r i c 
c i r c u i t " , P h y s . R e v . 3 7 , p p . 1 5 8 3 - 1 5 9 5 , 1 9 3 1 
M. H a s l e r , " S t r a y c a p a c i t a n c e i n s e n s i t i v e s w i t c h 
ed c a p a c i t o r f i l t e r s " , P r o c . I E E E I S C A S - 8 1 , p p . 
4 2 - 4 5 , C h i c a g o , 1981. 

c ' 4 
1 
1 H I - -

C}»C£.»k ( ( c - b l C ^ e c , ) 
C 4 = c < V " - a l <c-b)C 2 

C 7 ' = a ( c - b ) C 2 

C 8 ' = b ( l - a l c 2 

k = s c a l i n g f a c t o r >o 
2 o<ac1,o<b(c 

F I G . 1 : F I R S T ORDER SECTION 

C ! ( C J 

c;ic 3), " i c,' 

C ( O 

CONCLUSION 

The f o r m u l a t i o n o f e q u i v a l e n c e t r a n s f o r m a t i o n s 
a s congruence t r a n s f o r m a t i o n s o f the c a p a c i t o r mat 
r i x e n a b l e s o p t i m i s a t i o n o f SC network p e r f o r m a n c e 
f a c t o r s t o be a c h i e v e d u s i n g c o m p u t a t i o n a l methods. 
I n a d d i t i o n to the 2 -phase s t r a y s i n s e n s i t i v e n e t 
works c o n s i d e r e d i n t h i s p a p e r , e q u i v a l e n c e t r a n s 
f o r m a t i o n s may be a p p l i e d t o p a s s i v e , s t r a y s s e n s i 
t i v e and m u l t i p h a s e n e t w o r k s , a n d , i n d e e d , the p r o 
gram SCNAPT has been d e s i g n e d t o cope w i t h a l l o f 
t h e s e c a s e s . A l though i n p r i n c i p l e a p p l i c a b l e t o 
ne tworks o f a r b i t r a r y s i z e , the p r a c t i c a l implemen
t a t i o n o f the t h e o r y i s dependent bo th on t h e 
e x i s t e n c e o f s a t i s f a c t o r y o p t i m i s a t i o n a l g o r i t h m s 
and on the a v a i l a b l e h a r d w a r e ; however , r e a s o n a b l e 
r e s u l t s a r e c e r t a i n l y a c h i e v a b l e w i t h s m a l l and 
medium s i z e d n e t w o r k s . 
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Fig. 4. Layout of a testable serial-parallel multiplier. 

in the logic block, the output PZ should be low (connected to 
KJJ) in the case of n-logic and high (connected to VDI) in the case 
of p-logic. 

In the case of static CMOS, the presence of a stuck-on tran
sistor may result in both p- and n-networks being conducting. 
The output voltage thus depends on the resistance of the p- and 
n-network and hence increases the complexity of fault detection. 
Such cases do not happen in NORA CMOS because the p- and 
the n-network cannot be both conducting at the same time even 
if stuck-on occurs in the logic block. This is because the clock (<p 
or <f>) is applied to both the pMOS and the nMOS transistor that 
are in series with the logic block and thus prevent both tran
sistors to be conducting at the same time. Hence the output 
voltage is not dependent on the resistance of the networks and, 
therefore, it is easier to detect stuck-on faults. The procedure for 
testing stuck-on is similar to those described for other faults. For 
the circuit with n-logic block shown in Fig. 2, TEST2 is charged 
high prior to the evaluation phase. A low TEST2 during the 
evaluation phase with appropriate test vector inputs TV1 applied 
prior to, and kept constant at the evaluation phase indicates a 
stuck-on condition. Similarly, for the circuit with p-logic block as 
shown in Fig. 3, a low TEST4 during the evaluation phase with 
appropriate test vector inputs TV2 indicates a stuck-on condi
tion. It can again be seen that the test for stuck-on fault and the 
test for stuck-at fault are overlapped to some extent, because a 
device stuck-on could result in the output to be either stuck-at-one 
or stuck-at-zero. 

V . A R E A A N D T I M E C O N S I D E R A T I O N S 

The additional circuits (shown in F<°s. 2 and 3) used to detect 
stuck-at, stuck-open, and stuck-on faults occupy only a small 
amount of area overhead and is independent of the complexity of 
the gate to be tested. The amount of contact cuts for the layout is 
also very small. This is favorable because contact cuts occupy 
large areas and degrate reliability of the circuit. However, by 
connecting many nMOS devices or pMOS devices in series may 
reduce the speed of operation for testing. This disadvantage is 
not so important because the clock can be slowed down for 
testing. Moreover, buffers can be inserted between the devices to 
reduce the delay. 

V I . A P P L I C A T I O N S A N D C O N C L U S I O N S 

This testability enhancement technique is employed in imple
menting a testable serial-parallel multiplier. A prototype of multi
plier with 4-bit multiplicand and 3-bit multiplier has been imple
mented using 4-/i m CMOS (NORA) technology, Fig. 4, the total 

layout area is found to be 3.89 mm 2 . The multiplier takes around 
11 ns to produce the product and the error signal. The additional 
cost for the error detection circuitry is only in the range of 10 
percent of the total area. 

The testability enhancement technique is useful especially where 
the internal nodes of the system are difficult to test. I t can also be 
used for probe testing of wafer. In conclusion, the proposed error 
detection circuit, based on the structure, properties, and oper
ations of NORA CMOS, can detect stuck-at, stuck-open, and 
stuck-on faults. It occupies only a small amount of area overhead 
and is independent of the complexity of the cell to be tested. 
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The L U D Approach to Switched-Capacitor Filter Design 
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Abstract —A new design method for switcned-capacitor filters (SCF) is 
presented. It is based upon an LU matrix decomposition technique and has 
the distinct advantage of producing SC filter realizations containing no 
delay free loops. These are formed traditionally by capacitors and op-amps 
in leapfrog realizations. It is demonstrated that this feature should render 
reduced dependence of me filter response to nonideal effects such as finite 
amplifier GB and switch resistance. Results from realistic leapfrog and 
LUD SC filter realizations confirm this. 
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I N T R O D U C T I O N 

Passive terminated LC ladder simulations are popular tech
niques in switched-capacitor filter (SCF) design, as they retain 
the low sensitivities of the prototype passive ladders. Among 
various simulation methods the leapfrog-type SCF has received 
most attention because of its strays insecitive property [ l ] - [3 ] . 

There are two kinds of transformations commonly adopted in 
designing leapfrog SCF's: L D I and bilinear transformations [1]. 
L D I SCF's have the problem of strictly unrealizable termina
tions. Some approximation must be made and this limits their 
applications. Bilinear leapfrog SCF's using L D I integrators are 
more favorable. However, there is a major drawback for the 
bilinear leapfrog SCF (and, also, for L D I leapfrog SCF when the 
transfer function has finite transmission zeros) that there always 
exist delay-free loops formed by capacitors and op-amps. This 
increases the op-amps settling times. As a result, some consider
able distortion of the transfer function may be caused by the 
finite GB product of op-amps and on-resistance of switches [3], 
[4], [6]. Incidentally the existence of delay-free loops makes 
digital circuit realization difficult [7}-[9], 

I n this paper, the matrix form derivation of leapfrog SCF is 
viewed first. Then a new structure of SCF based on L U decom
position is presented and the corresponding digital circuit realiza
tion is briefly discussed. No delay-free loops exist in these 
circuits. Examples are given to show that the new approach 
produces circuits with better performances than leapfrog-type 
circuits when nonideal effects of op-amps and MOS switches are 
considered. 

D E R I V A T I O N O F L E A P F R O G SCF I N M A T R I X F O R M 

The first bilinear leapfrog SCPs were sensitive to stray capaci
tance. A further development [1] allowed application of the 
bilinear transformation whilst using modified L D I integrators 
which are completely strays insensitive. We shall derive this kind 
of SCF as the preliminary to the new approach. 

Starting from a passive RLC prototype network which can be 
described by nodal equation: 

sC + -J + G^V = J (1) 

where C, I " , and C stand for the contribution of capacitors, 
inductors, and conductors respectively. Performing the bilinear 
transformation on (1) we have (when T = 2 for simplicity) 

l l - z - 1 1 + ) 

( i T ^ c + r ^ r + G r = y ( 2 ) 

Equation (2) is equivalent to 

/ 4 * - ' 2z" 1 \ l + z ' 1 

AV={ j T TG}V + TJ (3a) 

with 

A = C+T + G. (3b) 

The inverse inductance matrix T in (3) can be decomposed 
into 

T~ALDLAT

L (4) 

where AL is the incidence matrix of the network obtained by 
removing all elements except inductors, and Dt = d i ag ( l /L , ) . 
Let 

A~D„ + B ( 5 ) 

(a) 

a,, la 12 

21 22 J 2g.<t> 
33 

1-Z 21 
1 

(b) i - z 

T. T. 

i i 

•1 
o i 

(c) 

4 V ' . T V SH 

13 II II II 

19 r r r 
Fig. I. (a) A terminated LC ladder passive prototype, (b) Leapfrog-type 

signal-flow-graph simulation of the circuit in (a), (c) Leapfrog SCF simula
tion of the circuit in (a). 
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Fig 2. (a) L U D type signal-flow-graph simulation of the circuit in Fig. t(a). 
(b) L U D SCF simulation of the circuit in Fig. 1(a). 
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T A B L E 1 

D E S I G N D A T A FOR THE S C FILTER EXAMPLES OF F I G . 1 A N D F I G . 

Normalized Data for the LC Ladder of P i g . ( l a ) 

F i f t h o r d e r Lowpass E l l i p t i c Case 
passband edge 1. 
passband r i p p l e 0.0436 dB 
Gi - GL - 1 L I 0 CI 0 
C3 1.S1194B L4 0.940651 C4 0 

S i x t h o r d e r Bandpass E l l i p t i c c a s e 
upper passband edge 1.034 
upper stopband edge 1.173 
passband r i p p l e < 0.25 dB 
G l - G2 - 1 C3 - 0 CI 
L2 0.088285 C3 0.27356 L3 

stopband edge 1.555723827 
srophand r i p p l e 41.9 dB 

867058 L2 1.223976 C2 0.L37493 
406594 C5 0.669168 L5 0 

lower passbad edge 
lower stopband edge 
stopband a t t e n u a t i o n 

1.6310 L I 0.014807 
0.063504 C4 1.6310 

967 
895 

> 34 dB 
C2 0.38030 
L4 0.014807 

Component V a l u e s f o r the L e a p f r o g SCF of F t g . ( l c ) 

p assband edge 
C I 
C5 
C9 
CI 3 
c n 
C21 

4.3117021 
3.8212329 
3.319450S 
2.1279985 
1.3110067 
1.0000000 

number of c a p a c i t o c s 
number of op amps 
c a p a c i t a n c e s p r e a d 

3.225 kHz 
C2 
C6 
C10 
C14 
C18 

3.8187507 
2.7566618 
8.8680304 
3.0446682 
1.7601345 

21 
5 
8.8680 

stopband edge 
C3 
C7 
C l l 
C15 
C19 

1.0000000 
1.0000000 
1.3122242 
1.2372708 
3.5202689 

C4 
C8 
C12 
C16 
C20 

number of switchrtG 
t o t a l c a p a c i t a n c e 
c l o c k f r e q u e n c y 

1.1283536 
1.0000000 
1.6543911 
1.0000000 
3.2856668 

30 
52.2778 
32 kHz 

Component V a l u e s for the LUD SCF of Fig.12b) 

F i f t h o r d e r Lowpass E l l i p t i c Case 
passband edge 3.325 kH2 
C I 1.125332 C2 1.125332 
C5 5.732167 C6 7.104417 
C9 1.000000 C10 1.000000 
C13 4.867762 C14 7.053555 
C17 1.351268 C I S 1.000000 
C21 1.000000 C22 1.595858 

number of c a p a c i t o r s 24 
number of op amps 6 
c a p a c i t a n c e s p r e a d 7,4646 

s i x t h o r d e r Bandpass E l l i p t i c Case 
upper passband edge 1 kHz 
upper stopband edge 1.08 kHz 
C I 1.000000 C2 1.000000 
C5 2.353740 C6 2.807107 
C9 3.930910 C10 1.000000 
C13 4.977363 C14 5.842078 
C17 1.000000 C18 1.000000 
C21 1.000000 C22 1.375713 

number of c a p a c i t o r s 24 
number of op amps 6 
c a p a c i t a n c e s p r e a d 23.3567 

stopband edge 4.8 kHz 
C3 
C7 
C l l 
C15 
C19 
C23 

C4 
C8 
C12 
C16 
C20 
C24 

3.664828 
1.000000 
7.464650 
1.295663 
1.905143 
2.100672 

number of s w i t c h e s 
t o t a l c a p a c i t a n c e 
c l o c k f r e q u e n c y 

lower passband edge 
lower 6topband edge 
C3 23.35666 C4 
C7 2.180592 
C l l 7.101668 
C15 6.643089 
C19 12.62665 
C23 1.432187 

number of s w i t c h e s 
t o t a l c a p a c i t a n c e 
c l o c k frequency 

C8 
C12 
C16 
C20 
C24 

1.128354 
1.938541 
3.953S23 
1.654369 
1.000000 
1.430766 

26 
62.4922 
32 kHz 

0.9 kHz 
0.829 kHz 
13.72274 
1.030186 
4.910849 
5.464835 
10.11870 
1.000000 

26 
116.8751 
8 kHz 

where Da is diagonal and all diagonal elements in B are zeros. 
Then (3) can be written as 

DUV=- BV -

Az

iz' 
-GV-

l + z~ 

DLAT

LV, (6b) 

These equations can be represented in signal-flow-graph form. 
Fig. 1 gives a terminated passive LC ladder with its correspond
ing signal-flow-graph in the discrete domain and the SCF imple
mentation. Notice branches representing the term - BV in (6a) 
form two delay-free loops. 

L U D E C O M P O S I T I O N ( L U D ) - T Y P E S C F 

In the last section it was shown that a leapfrog-type signal-
flow-graph is formed by decomposing matrix T and realizing all 
nondiagonal elements in A by feedthrough branches. If A is of 
upper triangle or lower triangle form then these branches will not 
form delay-free loops. Unfortunately, A is neither of these cases 
for a practical ladder prototype. 

One way to solve this problem is to decompose A into L U 
form. Let 

A = L U (7a) 

1 - 2 " 
•UV. 

From (3) and (7) we have 

Z T = | ^ - r r - 2 G | = ( - - j - ^ T r - 2 G ) K + ( i + z ) J 

uv= + -l - z ' 

(7b) 

(8a) 

(8b) 

A signal-flow-graph can be drawn to represent (8); Fig. 2(a) 
shows one for the prototype given in Fig. 1(a). 

The SCF implementation is shown in Fig. 2(b). Normally for a 
prototype network with n nodes, 2n op-amps are required. It 
seems that for a prototype having more loops than nodes, we can 
start from a loop equation instead of the nodal equation in (1). In 
more general cases, a hybrid description of the prototype network 
can be used. 
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Fig. 3. (a) Response of ideal fifth-order low-pass elliptic filter ( L U D ) (b) 
Comparison of filter passband characteristics with typical amplifier and 
switch parameters, (sine not included). 

Fig. 2(a) can be realized directly by digital circuits. In this case 
the number of multiplication operations must be taken into 
consideration. So we can decompose A into (note A is always 
symmetrical) 

^ = L„D„LT„ (9) 

where diagonal entries of Ln are all 1 and £>„ is a diagonal 
matrix. Thereby (8) can be rewritten as 

L n D J = \ - ^ - ^ T - i c \ v +z)J (10a) 

L " y = + J Z ~ ^ Y <10b) 

Approximately in (n is ihe number of the nodes) coefficients 
need lo be stored and 4n multiplications performed in each 
period, l i can be shown that this kind of digital filter is highly 
insensitive to finite length of coefficients. 

Examples 

A program named SCNDf (SC network design program) has 
been developed using L U D as well as leapfrog approaches. This 
is used in conjunction with analysis programs S C N A P 1 F and 
SCNAPNIF [ 5 ] . 

Some typical filter realizations are shown in Figs. 1 and 2. The 
extra components in the passive prototype are required for the 
bandpass realization. The calculated capacitance values are listed 
in Table I . In the L U D realization it can be seen that one extra 
amplifier is only required for low-pass filters, the bandpass case 
utilizes the same circuit topology with changed component values 
and is canonic in number of amplifiers. A leapfrog bandpass 
realization would require a changed topology and a simple com
parison does not follow. The one extra amplifier in the low-pass 
case will require more chip area, but this difference reduces in 
significance as the filter order increases. The op-amp's outputs in 
all circuits are adjusted to give the same level as the input. No 
attention has been given to minimizing the capacitance spread. 

Fig. 3(a) shows the ideal filter response. Fig. 3(b) gives a 
comparison between ideal performance and non-ideal responses 
in the passband for L U D and leapfrog realizations with typical 
amplifier and switch parameters. The L U D realization demon
strates some improvement in per.o.mance over the equivalent 
leapfrog circuit for typical parameter values. 

Preliminary sensitivity studies indicate that the L U D realiza
tion possesses similar properties to the leapfrog structure, except 
at u> = 0 in the low-pass case where a drop in magnitude response 
is observed. This is a subject of further work. 

C O N C L U S I O N 

A new kind of structure for S C filters is presented. Results 
obtained show that the proposed circuits demonstrate better 
performance than leapfrog circuits in certain non-ideal cases. It 
can be observed also that the particular ranges of non-ideal 
parameters pose serious influence on both circuits. Work is being 
undertaken to formally eliminate these effects in the design 
procedure. 
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Abstract: General simulation methods of passive 
networks are investigated. A new simulation 
approach based on L U matrix decomposition is 
presented. This approach can be used to design 
active-RC, switched-capacitor and digital net
works. The resulting system demonstrates very 
low sensitivities w i th respect to component values. 
New digital realisations, in particular, reveal struc
tures of low complexity, high speed of operation 
and low cost of implementation. 

1 I n t r o d u c t i o n 

A wide variety of design methods are available for digital 
filter circuits. Direct methods, including cascade biquads 
and follow-the-leader (FL) , have the advantage of simpli
city but the penalty of high sensitivity [ 1 ] . The effor t 
devoted to low-sensitivity structures has achieved notable 
success. I n particular, wave and lattice approaches have 
developed into a distinguished family [2 , 3 ] . Modi f i ca t ion 
of the leapfrog method drawn f r o m active-RC circuits has 
also attracted much attention [ 4 - 6 ] . A n interesting 
recent development is the introduct ion of the lossless 
bounded real (LBR) concept wi th several promising 
structures emerging [ 7 - 9 ] . The remaining problem wi th 
these low-sensitivity circuit designs is that they are gener
ally complicated, suffering f rom high hardware cost or 
l imi ta t ion of operation speed, especially for high-order 
realisations. 

This paper discusses a new approach based on passive 
ladder s imulat ion in matr ix fo rm. The L U matr ix decom
position is employed to derive new filter structures. 
Besides retaining the low-sensitivity of the prototype, the 
new method also has the important property of relatively 
low hardware cost and high operation speed. Some stra
tegies are adopted to obtain structures most suitable 
for parallel processing. Because the design method is uni
fied through matr ix manipulations, the resulting circuit 
structures are regular, al lowing easy programmable 
implementation. 

This method has been previously proposed for 
switched-capacitor (SC) realisation [10, 11]. For simpli
city of comprehension, the application to active RC 
circuit design is outlined first in this paper, and the devel
opment of the digital case is then discussed in detail. 
Examples are given comparing the performance of the 
new design w i t h those of other methods. 

Paper 6134G (E10), first received 24th August 1987 and in revised form 
24th March 1988 
The authors are with the Department of Electronics and Electrical 
Engineering. University of Glasgow, Glasgow G12 8QQ, United 
Kingdom 

Discussions are restricted to the lowpass case. The 
principles are the same for other types of RC circuits and 
also for bandpass digital design [10, 11]. For the high-
pass digital case a well known transformation of 
2 _ 1 -» — z _ 1 can be used. For the bandstop digital case 
the technique adopted is somewhat different and wi l l be 
presented elsewhere. 

2 M a t r i x f o r m s i m u l a t i o n o f p a s s i v e l a d d e r s 

Leapfrog structures have been very popular in active-RC 
and SC filter design and are conventionally explained as 
methods simulating the voltage/current relationships in 
RLC ladders [12-14] . The structure is derived according 
to these voltage/current relations, which can be a tedious 
procedure. A more systematic derivation is now present
ed as the preliminary to further developments in suc
ceeding sections. 

The procedure starts wi th a typical passive RLC 
prototype network, Fig. la , which can be described by 
the nodal equation 

(sC + s - T + G)V = J (1) 

where C, T and G represent the contributions of capac
itors, inductors and conductors, respectively. For conve
nience V is defined by [i>„ — v2, v3, —1>4, . . . ] r to make 
all the entries of C, T and G positive. Notice the inverse 
inductance matrix T in eqn. 1 can be decomposed 
according to network topology into 

T = ALDLAl (2a) 

where AL is the incidence matrix of the inductor sub
network and DL = diag ( L , - ' , L I . . . ) . 

Define a new set of variables 

X 

with 

l D T

L A L y (2b) 

(sC + G)V= -ALX +J (2c) 

For an allpole lowpass filter (Fig. la) C is diagonal and 
(sC + G)~l = diag [(sc, +gj-\(sc2)-\(sc3rl (sc„ 
+ 9L) ' ] • X and Vcan be expressed in a recursive fo rm 

0 -(sC 

•c 0 1 (3) 

A signal f low graph (SFG), Fig. li> can be drawn to rep
resent eqn. 3 and the corresponding active-RC implemen
tation follows directly (Fig. lc). The output of every 
op-amp represents a variable either in V or in X. For 
every nonzero entry in the coefficient matrix of eqn. 3 
there is a corresponding connection between two op-
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amps. For circuits w i th series capacitors (Fig. 2a) matrix 
C wi l l have off-diagonal elements and this would appear 

realisation diff icult . In the next Section, a new simulation 
structure is suggested to overcome this problem. 

1 1 ~ V > 1 1 V 3 I 1 

i i ; i j I i 

s c S C , - 9 „ su su t " S C 5 ' 5 L 6 t 'SC ; .g L 

1 1 X , I I X ? 1 1 X 3 1 

b 

i n i n i n i n i n in 

h i 

Fig. 1 7th-order Chebyschev lowpass ladder 
a Circuit diagram 

9 I „ = I S 9 L = I S 
r , = 3.585F L 2 = 4.330H 
Cj = 6.370F L 4 = 4.789H 
c , = 6.370F Lb = 4.330H 
c , = 3.585F 

b Leap-frog type S F G simulation of the passive circuit 
c Corresponding aclive-RC realisation (normalised) 

to make the matrix inversion (sC + G)~1 in eqn. 3 some
what more complicated. In this case eqn. 3 can be rewrit
ten as 

( s C ^ + O - ' s Q , 

s~lDLAT

L 

-(sCdiai + G ) l A L 

0 

o (4) 

where C = C d i a g + C o f f d . C d i „ = {cu} and C o f f d = 
icij 1 1 ^ j} contain the diagonal and off-diagonal elements 
of C, respectively. N o w the SFG and the corresponding 
circuit implementation can be obtained f r o m eqn. 4 (see 
Figs. 2b, c). Branches representing the term 
_ ( s Q i a 8 + C) ~'sCVffd > n e 1 n - 4 f o r m three feed-through 
loops, shown in the upper part of Fig. 2b. These feed-
through loops, which are realised by cross-coupled 
capacitors, increase the high-frequency noise levels; as 
can be seen f rom Fig. 2c, the high frequency noise created 
by each op-amp wi l l be fed directly via the cross-coupled 
capacitors to the output. They also extend the settling 
time of op-amps in SC realisations and render digi tal 

168 

0 9 . n T L l 

C 6 

T C 3 t C 5 T C 7 119, 

S C „ * g i n 

1 

1 

1 

1 

1 

1 

] 

1 I 1 
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s c 2 2 " S C 3 3 

S L 6 "5C w >g L 
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\ 0 6 k n l.OOkn I .00W1 1.23W) lOOkn l.65kn 

72nF 85nF 
2.0nF 

A 
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Fig. 2 7th-order elliptic lowpass ladder 
a Circuit diagram 

9i. = I S 9 t = l s 

C . - 3.450F c 2 = 0.1717F L , = 4 . 1 3 7 H 
Cj = 5.60IF C 4 = 0.80I6F L, = 3.828H 
c, - 5.328F c 6 - 0.5722F Lt = 3.659H 
c , = 3.082F 

b Leap-frog type S F G simulation of the passive circuit 
c Corresponding active-RC realisation (scaled for maximum dynamic range and 
denormalised, 3.4 kHz) 

3 T h e L U d e c o m p o s i t i o n s i m u l a t i o n m e t h o d 

The el imination of feed-through loops is possible. Let 
matrix C i n eqn. 1 be decomposed into L U form [15 ] 

C=LU (5a) 

As matr ix C in the nodal equation (eqn. 1) is always sym
metric for passive networks, eqn. 5a can be expressed in 
symmetric fo rm wi th D being a diagonal matr ix. 

C = UTDU (5b) 

Choose L = I f D and introduce a new set of variables 

X = sDUV (5c) 

From eqns. 1 and 5 

UTX= -s'VV-GV + J (6a) 
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DUV = s ]X (6b) 

To show how the system of eqns. 6 can be represented by 
a SFG form, choose V w i th all the diagonal entries being 
1 and separate V into diagonal and off-diagonal terms: 

V = I + l / „ , (7) 

From eqns. 6 and 7 a recursive representation of V and X 
is obtained: 

' D 1 

- ( J T T + (7) 

- I / . . I V 
+ _0_ _0_ 

(8) 

Then the so-called L U D - t y p e SFG and corresponding 
active-/?C implementation can be obtained according to 
eqn. 8 (see Fig. 3). This circuit configuration wi th altered 
component values can also realise an 8th order bandpass 
filter. N o feed-through loop exists in the circuit. Only in 
the lowpass case is one extra op-amp required when com
pared w i th the leapfrog approach. I n other cases the 
number of amplifiers can be made canonical. 

6 6 l n F 

B6.1nF 1 96nF 7e OnF II OnF S74nF l l .5nF Ul OnF 

2 2 l k n ?36kfl I 6 7 k f l 3.23k(l 

I 6 5 k f l 63 O n F J ; [ 

I 0 6 k f l 35 9nF 

A 
2.54nF 4 9 8 n F 42.8nF 

It 
43.8nF 

II 
4 B . 0 n F 

I 
Z16nF U 35nF 

"Out 

Fig . 3 LUD type simulation of circuit in Fig. 2a 
a Diagram 
b Corresponding aclive-RC realisation Iscaled for maximum dynamic and denor-
malised. 3.4 kH2) 

For a prototype wi th more loops than nodes, it is pos
sible to start wi th a loop description of the network 
instead of eqn. 1. I n more general cases, hybrid descrip
tions of the prototype can be used. 

4 T h e L U D a n d l e a p f r o g ( L L ) a p p r o a c h f o r 
d i s c r e t e s y s t e m s 

It is now logical to examine the application of this theory 
to discrete implementations. T o afford some means of 
comparison wi th existing approaches. Fig. 4 shows cas
caded biquad and wave digital realisations of a standard 

elliptic filter (Fig. 2a). Both the biquad and wave filters 
are canonical in terms of the number of multipliers 
whereas the wave digital filter requires a higher number 
of add i t io - - and delays and offers a slower speed of oper
ation because multiplications must be performed in some 
hierarchical sequence [ 1 , 9 ] . This Section wi l l develop 
new structures which offer some noteworthy improve
ments. 

4.1 Standard LL discrete system 
Perform the bilinear transform on eqn. 1 (let sampling 
period T = 2 s for simplicity) 

1 + 

1 + . 
v + G\v = j (9) 

To produce a system without delay-free loops, the fo l low
ing manipulations are required. Eqn. 9 is equivalent to 

A + r + - + z 

(1 

w i th 

A = c + r + G 

For simplicity rewrite eqn. 10a as 

(A + Nf<D4r + V2G)V = ^ ( l + z)J 

with 

T = z - ' / ( l - z ~ l ) 

<D = 1/(1 - z " ' ) 

J (10a) 

(10ft) 

(11) 

(12a) 

(12fc) 

I t is interesting that ¥ and * constitute a pair of L D I 
integrators [ 4 ] . The relationship between bilinear and 
'exact' L D I transformed systems is discussed elsewhere 
[11 ] . As matrix A is always symmetric, it can also be 
decomposed into the fo rm 

A = UTDU (13) 

where D is used in the same way as in eqn. 5 and let 
U = / + U o f i A . This leads to the discrete L U D system 

^ I J - ^ -(<D4r + 2C)TX"] ( 1 + 4 / 
0 

(14) 

The corresponding SFG is shown jn Fig. 5, and is suit
able for SC realisation [ 1 0 ] . The realisation of input 
funct ion (1 + z) can be accomplished by mul t ip ly ing by 
z " 1 giving (1 + z " ' ) . but introducing a delay of one 
period. 

For digital realisation T can be decomposed as in the 
leapfrog method, r = ALDLAl, in this way the number 
of multiplications is reduced. The corresponding stan
dard L L (LUD-leapfrog) can be realised directly by the 
circuit shown in Fig. 6a. 

N o w it is essential to take into consideration some 
factors related to the operation speed. Let 

m = order of the filter (15a) 

n = number of nodes of the prototype (15b) 

Ts = sampling period (15c) 

T„ = time for one mult ipl icat ion operation (\5d) 

T* = time for one addit ion operation (15e) 

For an ordinary odd-order lowpass RLC ladder, 
m = In - 1. Examining eqns. 15 and Fig. 6a carefully, i t 
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13 6 

can be seen that when the transfer factors {c,} of the hori- along horizontal branches must be performed serially, for 
zontal branches in Fig. 6a are general numbers, the oper- the upper line f rom left to right and for the lower line 

f =2 816 x 10"" 

; ) A ^ J l ^ J ) A^nLj^A u^x__ 

o / p 

Fig. 4 Realisations of the elliptic filler 
a Cascade biquadratic digital realisation 

a, = 1 498 6, - 0.6331 c, = 0.3442 
u, = 1 488 b, = 0.7751 c 2 = -1.013 
a, = 1.522 b, = 0.9252 cs = -0.7097 
a . = 0.7541 

ation speed is l imited by 

m + 5 m + 1 

b Wave digital realisation 
m, = -0.7748 m, = -0.7532 m, = 0.1203 
m, = -0.4140 mt =0.1511 m l 0 = -0.6899 
mj = 0.08522 m, = -0.8550 m,, = -0.5811 
m 4 = -0.9366 m, - -0.6774 

(16) 
2 ° 2 

because in every period, additions and multiplications 

^ 2 ^-2 ^ 3 ^ 3 1 t Z 

Fig. 5 LUD-type SFC for the elliptic filter 
j , = 0.2056 6, = -0.9668 r, = -0.0850 
a, = 0.1420 b, = -0.9668 c, = -0.1509 
a j = 0.1412 fi, = -2.011 c, = -0.1201 
u, = 0.2070 6. = - 1.045 

fc, = -2.138 J , = - 2 
ft, = -1.093 tf; = - 2 
b- = - 1.093 

f rom right to left. Since 7"m > 7^, the l imi t is dominated 
by the mult ipl icat ion time. I n the fo l lowing we shall show 
some strategies to improve this l imi ta t ion on operation 
speed. 

42 Modified LL system 
The l imi ta t ion given by eqn. 16 can be reduced by scaling 
all nonzero elements in U to the nearest powers of 2, as 
the operation required to mul t ip ly a number by 2~k is 
simply to shift it by k bits. I t is also possible to scale all 
nonzero entries in U to ± Is, but this results in a very 
large coefficient spread, which is undesirable. The scaling 
procedure can be performed in terms of matrix trans
formations. Let 5 be a diagonal constant matrix, pre- and 
post-multiply the matrices in eqn. 11 by S. Let 

AS = SAS fls = SAL4DLAlS GS = S2GS 

Vs = S ' l V JS = SJ (17) 

A new system is obtained wi th a transfer function differ
ing f rom that of eqn. 11 only by a constant. 

(A, + V<t>Bs + <VG,)VS = 4>(1 + z)J, (18) 

Scaling is carried out so that A, w i l l decompose into 

AS=UJDSU, (19) 

170 /££ PROCEEDINGS, Vol. US, Pt. G, No. 4, AUGUST 1988 



where every diagonal element of Us is 1 and also the 
upper-diagonal elements are powers of 2. It can be veri
fied that this procedure is possible provided As is t r i -
diagonal, which is always the case for a ladder structure. 

According to the decomposition of Bs, several systems 
can be obtained as listed in the fo l lowing : 

(i) Type Ml (Fig. 6b) 
Use the straightforward decomposition of Bs according 
to eqn. 17: 

B. = SAL4DLAlS (20) 

In the lowpass case there are (n - 1) inductors in the 
prototype (Fig. 2a). DL is (« — 1) x (n — 1) and AL is 
n x (n — 1). This also means that the rank of Bi is at 

most ' l — l . which is an important property related to the 
system behaviour at to = 0. as shown in the next Section. 

(ii) T'-"? M2(Fig. 6c) 
L U decomposition can also be performed on Bs 

Bt OlDhUb (21) 

with diagonal entries of Ub being 1. As just mentioned, 
the rank of Bs is n — 1, so that at the last step of L U 
decomposition the pivot is zero. In this case Db and Ub 

can be expressed in (n — 1) x (n — II and (n - II x n 
matrices, respectively, 

(iii) Type M3 (Fig. 6d) 

B, = AtD„Al + D„ (22) 

A V A v A 
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with all entries of Ah being either 1 or - 1 . It wi l l be 4.3 Examples 
shown that although this type of circuit has an improved The fo l lowing example illustrates the design procedures 
speed l imi ta t ion, it has high sensitivity at cu = 0. for a Standard L L and a Type M l circuit. For the 

A y A V A v A 

f_.= 0 5 7 8 7 

o /p 

A v A A v A A v A A v A A 

f = 0 . 5 8 5 

Fig. 6 Digital realisations of the elliptic filter 
a Standard L L 

u, - 0.2056 *, = -0.9668 r, = -0.0850 
a, = 0.1420 b, = - 1 0 4 5 r i = -0.1509 
a, = 0.1412 - -1.093 = -0.1201 
a, = 0.2070 <>,., = _ 2 

NType M l 
a, = 0.5651 = -09668 c, « 06032 
a. =0.7219 = -1.045 C y = 0.4435 
uj = 02616 = -1.093 c3 = 07347 
a, = 0.3541 <'« = 07646 

c Type M2 
a, - 0 8807 fc, = -0.226 r , = 0.7352 
u, = 1.125 b2 = -0.131 Cj = 1.657 
a, = 0.4078 r>, = -0.379 c , = 1.041 
a . = 0.5519 </, = -0.4670 

d, - -0.7S02 
dType M3 

u, =0.8911 f), = -0.1640 c, = -0.5907 
a, = 1.138 J>, = -0.2159 r , = 0.1290 
as = 0.4126 fij = -0.3894 r , = -0.1265 
<i, = 0.5583 c, . -0.01587 

= - 0 4 6 1 5 
= -0.7416 
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passive network. Fig. lit. eqn. 1 becomes 

3.62 0.171 

0.17! 6.57 0.802 

0.802 6.71 0.577 

0.577 3.66 

0.242 0.242 

0.242 0.503 0.261 

0.261 0.535 0.273 

0.273 0.273 

1 

0 
V = 

0 

0 

0 

(23) 

where V=[vu - t > 2 > V 3 , - V 4 ~ ] T . Let s = ( l — z ~ ' ) / 
(1 + z~l) and fol low the procedure eqns. 9-14. The rele
vant matrices are 

0.085 1 

0.151 

4.86 

7.04 

7.08 
0.121 1 

1 0.085 

0.1<! 

4 r = 
l I 

I I 

0.968 

1.06 

1.09 

I 0.121 

1 

I 1 

1 1 

4.83 

(24a) 

1 1 

2G = 

(24b) 

(24c) 

The standard L L realisation can now be drawn (Fig. 6a). 
T o produce a type M I realisation, continue by choos

ing the scaling matrix S ( f r o m eqn. 17) 

S = diag [0.603, 0.444, 0.735, 0.765] 

Then for eqns. 17-20 

(25) 

A = SAS = U.D.UT 

2 ~ J 1 

.77 

1.39 

3.82 

2.82 

2 - 4 

1 2 " 2 

1 2 " 3 

1 

flt = S4TS = 

G< = S2GS = 

0.603 

0.444 

0.735 

0.765 

0.968 

1.06 

1.09 

0.603 

0.444 

0.735 

0.765 

1 1 

1 1 

1 1 

I 1 

I 1 

0.603 

0.444 

0.735 

0.765 

2_ 

0.603 

0.444 

0.735 

0.765 

(26) 

The type M l realisation shown in Fig. 6b follows imme
diately. 

4.4 Comments 
Since the transfer coefficients of the horizontal branches 
in Figs. 6b-d are all 2*, and assuming shift and add has 
the same cost as addit ion, then for M l and M 2 the oper
at ion speed is limited by 

T . > ^ T . + 3Tm 

and for M 3 the l imi t is given by 

m + 5 
Ta + 2Tm 

(27) 

(28) 

A l l these new systems demonstrate a high degree of 
parallelism [ 1 ] , and types M l and M 2 wi l l show low 
sensitivity; thus a combination of the features of the 
biquad cascade and the wave filters is possible. As these 
new structures only use some simple matrix operations 
(see eqn. 14), they are particularly attractive in the case 
where an array processor is available. 

I t is important to distinguish between the number of 
multiplications and the number of mult ipl icat ion coeffi
cients to be stored in the new structure. Tradi t ional ly, in 
biquad and wave realisations these two processes are 
inextricably linked. In some of these new methods 
(standard L L , types M l and M2) , because of their sym
metrical structures, two identical multiplications {c,} can 
be undertaken serially by one multiplier. For hardware 
implementation, therefore, the number of multipliers 
required is nearly cononical for these circuits. The adders 
can be shared in a similar way. 

The methods introduced in this Section can be applied 
directly to bandpass but not to highpass and bandstop 
design. The diff icul ty is that for these latter cases the 
transfer funct ion is not of zero value at z = — 1 
(corresponding to s = oo in continuous domain). 
However, the input funct ion of eqn. 14, ( I 
+ z " ' ) l 2 = - i = 0 - This implies that the transfer funct ion 

f r o m (1 + z)J to the output must be infinite at z = — 1 to 
facilitate cancellation, which inevitably results in an 
unstable system. For the highpass case this dif f icul ty can 
be overcome by using a frequency transformation of 
z~ 1 -» — z " 1 to obtain the desired system f r o m a lowpass 
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reference. For the bandstop case some different tech
niques are adopted which are beyond the scope of this 
paper. 

5 C o m p a r i s o n of t h e v a r i o u s a p p r o a c h e s 

In the above Sections four types of digital filters simulat
ing passive ladders have been proposed (standard L L 
and types M 1 - M 3 ) . N o w they are compared wi th each 
other as well as wi th cascade biquad and wave realis
ations. 

5.1 Sensitivity estimates 
When the coefficient matrices in eqns. 11 and 18 are rea
lised by digital circuits, they wi l l deviate f rom their ideal 
values owing to finite wordlength. This also happens 
when they are realised by SC circuits, owing to element 
deviations. I t is observed that the sensitivities of all four 
types of circuits differ most significantly at u> = 0. This 
effect is now explained mathematically. 

M a k i n g the standard substitution 

jSl = ;' tan (to772) = 
1 

(29) 
1 +z~ 

eqn. 9 becomes 

[ j ( n c - n - l r ) + G]y = j (30) 

Denote 

Y=j(ClC-n ' D - t - G (31) 

Use the fol lowing properties, which always hold true for 
a nodal description of a passive ladder (eqn. 1): 

(a) C , T and G are all tri-diagonal matrices; hence, Y is 
also tri-diagonal 

(b) J has only one nonzero element, i.e. J = (Jm, 0 , . . . , 
0) 

(c) G has only two nonzero elements g M = g-,„ and 
9nn = 9L 

(d) output is the nodal voltage v„. 

From these properties and Cramer's rule it can be found 
for output v„ 

(32) 
JUjncti+i.o-unrVi.iJ 

= ' d e l m J , ° 

where r = and C = {c[iJt}. 
I t can be shown that when CI -» 0, 

det | Y\->(jtl)~" det (D + (jnr" ,~"[0i1 det ( T ) , , 

- r ^ d e K r U + O f i ) - ' - 2 ' (33) 

By comparing the power of (jQr 1 in the denominator 
and numerator it can be seen that in order to retain the 
output i„ nonzero, the coefficient of (jni"" in det | Y\ 
must be zero. This leads to the fo l lowing: 

Remark: The system given in eqn. 30 has nonzero 
response at Q = 0 only if T is singular. The response is 
given by 

n * i 
4?, i det ( T ) , , + gm det (D„„ 

J-ti at Q = 0 (34) 

Otherwise, i f r is nonsingular, then vn = 0 at fi = 0. 
Using this result for a lowpass filter, it would seem 

mandatory to ensure that T is singular. However, for 
L U D it is easily seen that deviation in the entries of r 
may cause it to become nonsingular; this is also true for 
type M 3 f r o m the relation that r = S'l(BJ4]S~K Only 
Standard L L , M l and M 2 wi l l always guarantee singular 
T or Bs whatever the deviation in entries, since the 
decompositions of r or Bs in these three structures 
involve multiplications of matrices wi th only (« — 1) rows 
or columns. The resulting matrices can never have rank 
greater than n — 1. 

Incidentally, the extra zeros introduced at the origin 
can be viewed as an advantage or disadvantage accord
ing to the filter application; for instance, low-frequency 
noise suppression can be facilitated by these zeros. 

5.2 Implementation cost 
Table 1 gives a comparison of the implementation cost of 
the various types of digital filter proposed in this paper, 
as well as for the biquad and wave filters used for refer
ence. I t can be seen that type M 3 is a special case. In the 
remaining five structures the numbers of multiplier coeffi
cients to be stored are roughly equal. For the number of 
additions, delays and speed of operation, the biquad 
approach appears best, the wave filter is worst, wi th 
Standard L L , M l and M 2 being in between these 
extremes. 

The lower l imi ta t ion on T s for the cascade biquad is 
achieved by assuming that a delay is inserted between 
every successive biquad block, so ensuring independent 
processing of the signal, but this increases the signal 
delay between input and output. 

I f adders are time-shared, then the numbers required 
for L L and its derived types can be much less than the 
numbers of additions listed in Table 1. For example, the 
min imum number of adders for type M l is (m + l) /2 , 
provided that other relevant figures in Table 1 are kept 
unchanged. 

Table 1: Compar ison of implementat ion cost and operation speed of var ious digital real isat ions for an odd-order lowpass 
el l iptic funct ion 

Lower bound on T, (TM and TM are 
multiplication and addition times, 
respectively) 

m + 5 m + 1 m + 5 . 
r. + 3 r „ 

m + 5 
T. + 37\, 

Function Cascade Wave Standard Type Type Type 
biquad LL M1 M2 M3 

Number of additions 7m 6 m - 2 3m + 1 3m + 1 3m + 1 
7m+ 5 

2 

Number of multiplier coefficients to be 3m - 1 3m + 1 I'm + 1) 3m + 5 §(m + l ) 3 m - 5 
stored (scale factor f , c not included) 2 2 2 2 

Number of delays m 
3vn - 1 

2 
m + 1 m + 1 m + 1 

3m + 4 
2 

m + 7 . 
T. + 2TM 

m = order of function 
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5.3 Design examples 
in Fig. 7 the ideal response of a bilinear transformed 
digital elliptic lowpass response is given. Its prototype is 
simply the lowpass ladder in Fig. 2a (C-071536 Saal nota
tion [16]). All six type digital structures are simulated 
using the same prototype. Sampling frequency is 32000 
Hz. It is assumed that floating-point storage of coeffi
cients is used. All the coefficients are truncated to the 
nearest smaller number. 

6 Conclusions 

m -100 h 

° > - 1 2 5 

frequency , kHz 

500 1000 1500 2000 
frequency, H z 

2500 3000 

Fig. 7 Ideal response of elliptic filler 

a Overall ideal response (wave digital with 16 bitsl 
b Ideal passband response of elliptic filter 

The detailed passband responses for 8-bit implementa
tion given in Fig. 8 show that a droop at zero-frequency 
occurs for type M3 and quite serious overall distortion 
for the biquad, whereas all other responses are almost 
ideal. When the wordlength is reduced to 4 bits, the 
overall filter response for wave and M l is retained with 
reasonable accuracy while biquad response variation is 
dramatic, Fig. 9. The passband detail comparison of 
wave. M l , M2 and M3 realisation with 4 bits is also 
shown in Fig. 10. The zero-frequency droop exhibited by 
type M3 supports the mathematical prediction. 

A new approach to the simulation of passive filter struc
tures by active-RC and digital means has been developed. 
A detailed comparison of the various digital implementa
tions has been undertaken and reveals that although the 
sensitivity of a wave digital filter is usually optimum, it 
can be approached by types standard L L , M l and M2. 
However, in practical realisations types M l and M2 will 
out-perform all others, apart from the biquad, in terms of 
speed of operation and number of additions and delays. 
-For increased order, the wave filter shows linear increases 
in both multiplication and addition times, whereas the 
alternatives have a linear dependence only in addition 
time. So for sensitivity, speed of operation and cost of 
implementation, the new structures offer attractive pos
sibilities, especially for high order realisations. 

The scaling technique introduced in modified L L types 
in this paper may also find useful application in other 
digital filter implementations, and is worthy of further 
investigation. 

5 -0.4 

500 1000 1500 2000 2500 3000 

frequency , H z 

Fig. 8 Filter passband responses with 8-bit digital realisation 

Biquad 
M3 
Wave. M l . M2 

5 - 6 0 

12 16 

Fig. 9 
realisation 

6 8 10 
frequency, kHz 

Overall frequency response of elliptic filter with 4-bit digital 

M2 
Wave 
Biquad 
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The problem of truncation error analysis in these new 
structures is a more complex study and is the subject of 
future work. 

o 
0 1 

0 2 

0 3 ] 
0 4 A 

CD 
u 
c - 0 5 

en 
0 6 

0 7 

0.8 
_f l ; , i 
5 0 0 1000 1500 2 0 0 0 2500 3 0 0 0 

f r e a u e n c y . H z 

Fig. 10 Filler passband responses with 4-bit digital realisation 

O—O Wave 
Standard LL 
Type Ml 
TypcM3 
TypeM2 
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T A B L E I 
ELECTRONIC CHARACTERISTICS OF THE 8 X S NEURAL N ' E I 

G 0 " * t c3 

Meut Vilue 101 . 70 DV sio E n 

DUtribntion 5 4 

T A B L E II 
PERFORMANCE ESTIMATION OF THE 8 X 8 N E U R A L N E T CONTROLLER 

Avoraga rank Avenge Throng hps I 
Efficiency 

Analog Computation 

S 110a* 

6 U0u 

4 1009 120u 

2 100O UOna 

totally optimal configuration matrices, the analog computation 
which results from the set of synaptic weights of (4) leads to very 
satisfactory throughput performance. 

I V . REAL-TIME SIMULATION AND OPTIMIZATION OF AN 
8x8 NEURAL NET CONTROLLER 

Given an arbitrary input request matrix, the problem of maxi
mizing the throughput of the crossbar reduces to finding numeri
cal values for the set of synaptic weights defined in (4), and the 
characteristics of the amplifiers of an N x N neural net which 
would compute optimal configuration matrices in the least 
amount of time. It is clearly impossible to simulate the analog 
computation of a configuration matrix for each of the 2" N X N 
binary matrices. For N = 8, there are already of the order of 10" 
possible input request matrices. In order to estimate the perfor
mance of the net, we have generated separate subsets of 500 
input request matrices by choosing their matrix elements to be 
" 1 " with a probability x and "0" with a probability 1 - x. X 
being a positive number between 0 and 1. Within each subset, the 
analog computation of a configuration matrix associated to each 
input request matrix has been real-time simulated by integrating 
on a VAX 8650 the set of coupled differential equations (1). The 
selected electronic characteristics of a VLSI implementation of 
the neural cells are reported in Table I for the 2-jim CMOS 
technology. 

In Table I , G„, u^ r , p and y denote the average gain, offset, 
input resistance and propagation delay of the amplifiers respec
tively, and Q is the capacitance per connection. Such a distribu
tion of the input resistances of the neurons is chosen in order to 
break the symmetry of the neuron time-constants so as to en
hance the performance of the neural dynamics. 

For N = 8, the resistances between neurons of the same row 
and the same column have been randomly chosen distributed 
around 4 kf l within 1 percent. The initial voltages of the "free" 
neurons have been randomly distributed in the interval [-2.5 
mV, + 2.5 mV] around the ground potential. The stability of the 
analog computation with respect to noise has been tested by 
simulating, at the input of each inverter, a white noise gaussianly 
distributed around 0 V with a standard deviation of 10 jiV. With 
this set of parameters and initial conditions, the time-evolution of 
the 8 x 8 neural net controller has been simulated for a period of 
120 ns. The results of the simulation are reported in Table I I for 
subsets of input request matrices having an average rank of 2, 4, 
6, and 8 respectively. (The rank of an input request matrix being 
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interpreted here as the maximum total number of packets that 
ean be transmitted through the crossbar switch without destruc
tive interference.) 

The statistical estimations reported in Table 11 indicate that an 
8x8 neural net controller which has the above characteristics is 
expected to compute configuration matrices within a period of 
120 ns, and with at least 98 percent of average throughput 
efficiency. 

V. CONCLUSIONS 

This letter has demonstrated the efficiency of neural networks 
to arbitrate the packets at the input of an 8 X 8 crossbar switch 
with nearly optimal throughput performance. The proposed ar
chitecture computes configuration matrices in a lapse of time of 
approximately 100 ns, with an average throughput efficiency of 
at least 98 percent. 

The number of neural interconnections of this architecture is 
of the order of A/3 (instead of N4 for a fully connected neural 
net), N being the dimension of the crossbar. This reduction in 
the number of neural interconnections will facilitate hardware 
implementation of the proposed neural net arbitrator with VLSI 
technology, and perhaps of larger size controllers, e.g., 16x16. 
As for the 8x8, the resistance of the larger neural nets can be 
optimized through computer simulations of the real-time evolu
tion of their neurons for various samplings of the input request 
matrices. 

Finally, in view of the simplicity of this architecture, i.e., 
synaptic weights having the same sign a_.d absence of exterjal 
input currents, an implementation based on opto-electronic or 
photonic technologies would probably be more suitable for the 
larger size and faster switch controllers. 
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C O y?,„ 4=c, 4c, n 9 l 

entries of the mairices non-negative. It is well known that in the 
continuous-time domain a symmetric bandstop function can be 
derived from a normalized low-pass one by transformation [5), 
(see Fig. 1(b)): 
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Fig. 1. (a) A Ihird-order normalized low-pass ladder, (b) Low-pass to band-
stop transformation, (c) The signal flowgraph of leapfrog-type simulation. 

I . INTRODUCTION 

Switched-capacitor (SC) filter structures based on passive lad
der simulations have attracted much attention because of their 
low sensitivity properties. However, an instability problem exists 
in the design of bandstop SC ladders by stray-insensitive LDI 
integrators [1]. A second-order building block technique has been 
proposed in [2] to overcome this difficulty. 

In this paper a new type of second-order building-block called 
a TWINTOR (TWinned INTegraOR) is introduced for bandstop 
SC ladder design. The circuit uses two signal channels to directly 
realize the basic bandstop operators without term cancellations 
[2], and also reduces the required opamp operation speed by a 
factor of two. Either single-inp'H or differential-input integrators 
are allowed, giving flexibility for fabrication. 

I I . THE TWINTOR CIRCUIT 

Following a matrix leapfrog method [3], [4] a passive low-pass 
reference RLC ladder, Fig. 1(a), is described by the nodal admit
tance matrix equation 

| i C + ^r + cj = ^ = / ( i ) 

where C, I" , and C are admittance matrices formed by the 
contributions of capacitors, inductors, and resistors, respectively. 
The voltage vector V= [u, , - v2. u 3 , - i>4, • • ] to ensure all the 

( 2 ) 

with 

! = / i d * UI 

Substitute (2) into (1) and perform the bilinear transformation 
i = 2(l-r-')/r(l + z ' ' ) . 

2 1- H.,7" 1 + 2' 

2 1-

2 1-
T~ 1 - 2 " 

V + G)V=J. ( 3 ) 

Multiply through (3) by the coefficient of V and rearrange to 
give 

(A-4az-lVQT-4>2G) = ( - 1 + * ) / (4) 

where 

0 - ( ^ - ' - l ) / ( l - z - J ) 

* - ( 2 - ' - / ! ) / ( l - ; " J ) 

A=a'C+ aT-T-G 

with 

a = a(nl 

^-(/i-'-^/U-'+ji). 
Topologically, decompose T into 

T = ALDLAl (5) 

where AL is an incidence matrix of the inductors in the ladder, 
DL is a diagonal matrix of reciprocal inductance values. With this 
(4) can be rewritten in the form 

AV=Q(ALfV + 2GV) + ( - l + Q)J (6a) 
W = Aa-lz-x*DLAT,y (6b) 

A signal flowgraph can be drawn to represent (6), Fig. 1(c) 
which can be replaced by a SC circuit. The frequency-dependent 
operators * and 4> given by (4) are realized with a new 
TWINTOR second-order strays-insensitive biquad scheme. Fig. 
2(a). In a TWINTOR each opamp is operated only in every other 
period, T. The charge relations for the circuit of Fig. 2(a) are 

Ce[y'(n)-y<(n-2)) = -Clx'{n) + C2x°(n-l) 

when n even (7a) 

Q [ / ( » ) - / ( » - 2 ) ] = - C 1 x ° ( n ) + C 2 x ' ( n - l ) 

when n odd. (7b) 

Therefore, the overall transfer function is given by 

1 C 2 z - ' - C , 
y ( z ) . 

c, 1-
•X{z). (8) 
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Fig. 2. (a) A TWINTOR circuil. (b) The clock waveform, (c) Two channel 
equivalent connectors of TWINTOR's. 

Fig. 3. A sixth-order bandslop SC bichannel Titter realization. 

Notice that the denominator (1 - z~2) is exactly realized without 
term cancellation. 

It can be seen from Fig. 2(b) that now the clock period is 27* 
compared to T in a conventional LDI integrator SC circuit. This 
means that the operation speed for the whole circuil, determined 
by sampling frequency, can be doubled without requiring an 
increase in opamp speed. 

By selecting suitable capacitance values 4> and * can be easily 
implemented. When TWINTORS are connected together to form 

a ladder structure, some simplifications are possible by separat
ing signals into two channels, Fig. 2(c). The first equivalence in 
Fig. 2(c) is obvious. For the second equivalence, notice that a 
sampling signal of an even (odd) channel opamp output in a odd 
(even) period is actually the signal held from the previous period, 
therefore a delay factor, z~l, is realized. A number of switches 
are saved by this two channel technique. 

An overall sixth-order bichannel bandstop SC ladder is shown 
in Fig. 3 with the low-pass RLC ladder of Fig. (la) as reference 
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T A B L E I 

D E S I G N D A T A FOR THE SIXTH-ORDER SC BANDSTOP FILTER 

S p e c i f i c a t i o n s fot the Bandstop SC F i l t e r 

lower passband edge A.5 kHz upper passband edqe 
lower s t o p b a n d edqe i.% Vtu upper stopbsr.d edge 
p a s s b a n d r i p p l e < 0.1 dB stopband a t t e n u a t e 
s a m p l i n g f r e q u e n c y 100 kHz 

N o r o a l i i e d Data f or the Lowpass SC Ladder R e f e r e n c e F i l t e r 

G l - GL - 1 C I 0.91646 L.2 0.96995 C2 0.17046 C3 0.916*6 

Component V a l u e s f o r the B a ndstop SC F i l t e r 

C I H.79097 C2 1.414525 C3 \ . 398662 C4 1.614900 C5 1.633215 
C6 15.64070 C7 37.44417 C8 37.86882 C9 1.000000 C10 1.141830 
C l l 1.154780 C12 10.93656 C I S 37.86304 C14 38.2924% C I S 10.57509 
C16 1.011341 C17 1.000000 C l B 1.977572 C19 2.000000 C20 1.000000 

nuober of c a p a c i t o r s 40 rtunber of s w i t c h e s 30 
number of op araps 6 t o t a l c a p a c i t a n c e 439.51 
c a p a c i t a n c e s p r e a d 38. 29 
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Fig. 4. Computed response of the SC bandstop filter. 

prototype. The specifications and the component values are listed 
in Table I . The simulated response of the SC bandstop ladder is 
shown in Fig. 4. A negative input is required to realize the 
constant term in (6a), which may be avoided by the technique 
of (6). 

I I I . C O N C L U S I O N S 

A new strays-free SC circuit scheme has been proposed for 
bandstop SC ladder design. A major feature of the new circuit is 
that the clock period required is 2T so that the circuit can 
operate at a higher speed without extra demands on opamp 
performance. 
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An Improved Search Algorithm for the Design of 
Muitiplierless FIR Filters with 
Powers-of-Two Coefficients 

HENRY SAMUELI 

Abstract — An improved algorithm is presented for the discrete optimiza
tion of FIR digital filter coefficients which are represented by a canonic 
signed-digit (CSD) code, i.e., numbers representabte as sums or differ
ences of powers-of-two. The proposed search algorithm allocates an extra 
nonzero digit in the C S D code to the larger coefficients lo compensate for 
the very nonuniform nature of the C S D coefficient distribution This 
results in a small increase in the filter complexity however the improve
ment in the frequency response is substantial. The coefficient optimization 
is performed in two stages. The first stage searches for an optimum scale 
factor and the second stage consists of a local bivariate search in the 
neighborhood of the scaled and rounded coefficients. 

I . I N T R O D U C T I O N 

High-speed digital filtering applications (sample rates in excess 
of 10 MHz) generally require the use of custom application 
specific integrated circuits (ASIC's). Programmable signal proces
sors cannot accommodate such high sample rates without an 
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Abstract: A unified investigation is presented for 
low-sensitivity and limit-cycle-free filter structures. 
It is shown that important properties like 
boundedness and pseudopassivity are closely 
related to the symmetry of the system matrix 
description. Negative elements can be incorpo
rated in certain prototypes leading to real advan
tages in switched-capacitor (SC) realisations. 
Stability and noise problems are also discussed. 
According to the realisation, component varia
tions can result in matrix symmetry being main
tained, or more generally, in the introduction of 
assymmetry. Sensitivity considerations are out
lined for both situations. Implementation by 
passive RLC, SC and digital circuits are con
sidered. 

1 Introduction 

There are a number of attractive features about filter 
structures derived from passive RLC network simula
tions: they show very low sensitivity in the passband, 
which is an important factor for active-/?C and switched-
capacitor (SC) filter fabrications [1-7] . They can be made 
limit-cycle free for digital-filter implementation, as shown 
for wave structures [8-10], and they usually have better 
dynamic range compared with cascade biquads or other 
direct-form structures, which can be observed from many 
practical designs. Limit-cycle suppression and better 
dynamic range can improve the noise behaviour of the 
circuits. 

Theories have been proposed to analyse and generalise 
the properties of passive ladders and their simulations 
[10, 14]. A unified investigation has been proposed in 
References 17 and 18 for digital circuits. It was shown 
that general low-sensitivity filters can be constructed by 
properly connecting LBR (lossless-bounded-real) sec
tions, which include adaptors for wave digital circuits as 
specific examples. In general, this approach is mainly 
concerned with the topological point of view. 

This paper investigates the problem of high-quality 
network design based on matrix principles. Attention is 
given to the properties of the system descriptions of the 
circuits. It is shown that matrix symmetry is a crucial 
factor to ensure optimal performance of the systems. Two 
concepts considered by many other authors, boundedness 

Paper 6942G (E10), first received 7th November 1988 and in revised 
form 10th July 1989 
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and pseudopassivity, are proved to be closely related to 
the matrix symmetry. 

A difference between the topological [8-18] and 
matrix approaches is that the former analyses the behav
iour of local building blocks, whereas the latter examines 
the overall system. The two approaches complement each 
other to provide insight into the filter design problem. 

The matrix system discussed in this paper can be used 
to produce prototypes for various implementations. 
Detailed realisation methods are discussed elsewhere 
[20-22]. It is also shown that the symmetric matrix 
system is a generalised concept of a passive network, 
allowing negative elements. Examples will be given to 
show that advantages can be gained for SC and digital 
simulations. 

The problem of sensitivity behaviour for asymmetric 
deviations is also investigated. In active-RC or SC imple
mentations the component deviations may destroy the 
symmetry of the system description. From practical 
observations the sensitivities of active-RC and SC ladder 
simulations are nevertheless very good; this is attributed 
to their multifeedback nature. Sensitivity formulas are 
presented which clearly indicate that better performance 
is assured by more complete symmetry. 

2 Basic concepts 

The concept of boundedness can be traced back to an 
observation by Orchard about the low-sensitivity proper
ties of doubly terminated ladders [1] . 

Definition I. Boundedness: The transfer function H(P) of 
a system is said to be bounded with respect to the change 
of a set of parameters, P = {p,}, if there is a positive 
number M and 

\H(P)\^M (1) 

is always satisfied when P varies within the allowed 
range. 

When a bounded system is properly designed to make 
\H(P)\ attain M at a frequency point in the passband 
jwm, then the deviation of P can only cause | H{P) \ to 
decrease. This means that | H(P) | must have zero deriv
ative with respect to any parameter p, at jmm, and conse
quently the sensitivity is also zero, i.e. 

Pt S\H(P)\ 
I H(P) | dPi 

= 0 at s = jwm (2) 

and it may be reasonably expected that over the whole 
passband the sensitivity will remain small, a reassuring 
argument used by many other authors for ladders as well 
as various simulation methods [23-25]. 
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The generalised concept of pseudopassivity has been 
employed in discussion for wave digital filters [10], which 
is, in fact, based on the principle of the Lyapunov func
tion. Consider a standard state-space system in the con
tinuous domain 

sX = AX + BJ 

or in the discrete domain 

X=z~xAX + BJ 

(3) 

(4) 

Definition 2-. Pseudopassioily: A slate-space system eqn. 3 
or 4 is said to be pseudopassive if 

e(t) = xT(t)x(t) (5) 

is a monotonically decreasing function for any initial 
value JC(0) = X0 with 7 = 0. (For a discrete system x{t) is 
examined at a discrete instance, i.e. f = nT). 

e(f) can be seen as an energy function and it is always 
decreasing for a pseudopassive system without excitation. 
The pseudopassive property in a discrete system is 
important for the suopression of parasitic oscillations. If 
the input 7 = 0, the s.ate-space variables x(nT), and so all 
the variables, in a stable digital system (eqn. 4) will 
approach zero regardless of ihe initial state in the ideal 
linear case. However, when the necessary quantisations 
are adopted in a digital filter, x(nT) may oscillate and 
take nonzero values due to nonlinear effects, which may 
even cover the entire number range in the filter when 
overflow occurs. These parasitic oscillations, so-called 
limit cycles, can be avoided if the discrete system is 
pseudopassive and magnitude rounding for quantisation 
of x(nT) is adopted. In magnitude rounding, a number a 
is truncated to a finite number of bits Q[a], with 
1Q\_a] | ^ | a |. Let Q[JT] denote the vector of x after mag
nitude rounding, and suppose in a pseudopassive system 
(eqn. 4) that these are the only quantisation operations, 
then according to eqn. 5 

erW"T)]eWnT)] < xT(nT)x(nT) H Q\x({n - 1)T)] 

x Q[x((n - 1)7)] «: x((n - l)7)jr((n - 1)7) sj • • • (6) 

Therefore, if x(nT) -* 0 in the ideal case, then in the non-
ideal case it will still approach zero. This will completely 
suppress limit cycles [10, 18]. 

The second norm of a matrix A is given by [27] 

x1A7Ax 
Mil = max f — (7) 

1*0 x x 

The time-domain equation (eqn. 4) gives (when 7 = 0) 

x(n) = Ax(n - 1) (8) 

Hence, from eqns. 7 and 8 a necessary and sufficient con
dition for pseudopassivity is 

Mil £ 1 (9) 

In this case 

xT\n + k)x{n + &)$•••«£ xT(n)x(n) 

= xT(n - \)ATAx(n - I K xr(n - \)x{n - I) (10) 

It has been proved on a topological basis that the condi
tion in eqn. 9 is met by wave, normalised-lattice and LBR 
structures [18], and the same concept has been used in 
the design of second-order 'minimum norm' building 
blocks [19]. In Section 4 it will be shown that higher 
order networks, based on a symmetric matrix decomposi
tion approach, can also be designed to meet this condi
tion. 

3 Continuous symmetric matrix systems 

Consider the matrix system of the following form: 

YV=J (lid) 

with 

sC + s-T + G (Mb) 

Output functions may be added in the form 

y=DV + EJ (12) 

but only the system in eqn. 11 will be considered, since 
sensitivity and noise problems arise mainly from the feed
back loops in eqn. 11. 

Eqn. 11 is a generalised form of the standard state-
space equation (eqn. 3). Indeed, eqn. 11 is reduced to eqn. 
3 when T = 0. Alternatively, eqn. 11 can always be rear
ranged into the form of eqn. 3 by introducing some inter
mediate variables. However, the advantage of using the 
system description of eqn. 11 is that optimal performance 
can be achieved by imposing some simple conditions 
(notably symmetry) on the matrix. If the matrices in eqn. 
3 are constrained to be symmetric, then the system can 
only have real poles, which is too restrictive for most 
applications. 

The most convenient way to set up the system in eqn. 
11 is the formulation of the network equations (nodal, 
loop or hybrid) of a general passive RLC ladder, designed 
either by a synthesis process or with the help of tables. It 
can be easily shown that in this case all the matrices of 
eqn. 1 lb can be made non-negative if nodal or loop for
mulations are used. For more general cases, an opti
misation procedure can be used to adjust the entries of 
the matrices of eqn. 11 to make the transfer function fit 
the prescribed specifications. In this case conditions are 
required for testing the stability of the resulting system. 

3.1 Critical stability 
It can be shown that the system in eqn. 11 is critically 
stable if C, T and G are all symmetric non-negative. Let 
\Sm = Cm + j D . j be the set of roots of det Y(s) of eqn. 11 

det(s*C + s m G+r) = 0 (13) 

So there is a non-zero vector X which satisfies [27] the 
equation 

X*(s2

mC + smG + r)X = 0 (14) 

(X* denotes the transposed conjugate of X) or 

as2

m + bsm + c = 0 (15) 

with 

a = X*CX b = X*GX c = X*TX (16) 

As C, G and T are all definite non-negative, a, b and c are 
all non-negative numbers [27]. But in this case, eqn. 15 
has no roots with 

Re ( s j = <rm > 0 (17) 

That is, the system in eqn. 11 has no poles in the right-
haif plane if C, T and G are all symmetric non-negative. 

3.2 Absolute stability 
The absolute stability condition for the system in eqn. 11 
is that <rm < 0 for all in. Therefore, some extra constraints 
should be added to ensure that no roots lie on the ima
ginary axis. This can be checked by evaluating 
det | Y(jw) |. In most cases the system in eqn. 11 is 
designed to realise a transfer function H(s) which has no 
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poles on the imaginary axis. If the system is properly 
designed without redundancy so that the order of the 
system is equal to the order of H[s\ or in other words it 
is observable from the output, then it will have no poles 
on the imaginary axis either, as in this case H{s) and the 
system have the same set of poles. 

The non-negative property of the symmetric matrices 
C, T and G can be easily tested. For instance, decompose 
Cinto symmetric LU form [28] 

C=LCDCLJ (18) 

where Dc~\& a diagonal matrix. C is non-negative if, and 
only if, all the entries of Dc are non-negative. The compu
tational requirement for this test is nearly equal to per
forming Gaussian elimination. 

3.3 Boundedness 
From network topology it is known that the output 
power of a doubly terminated ladder is bounded by 
maximum input power, a reasonable fact since a passive 
ladder cannot create power within itself. This result can 
also apply to the system in eqn. 11 in a more abstract 
sense. Let eqn. 11 be evaluated on the imaginary axis 
s = jm and denote 

Q = w C - c u - ' r 

The system can be written as 

YV = (jQ + G)V = J 

19) 

(20) 

Suppose matrix G in eqn. 11 can be separated according 
to input and output parts, respectively, 

G = Gin + G0M (21) 

Then eqn. 20 can be written as 

jQV+Gm,y+Gi„V=J (22) 

We first prove a general relation. 

Theorem I: Assume that in eqn. 11 
(i) Gin X = J has at least one solution 

(ii) all matrices are symmetric non-negative. 

Then the following inequality holds: 

y*Gomv^y*Rij (23) 

where Rin is the Moore-Penrose inverse of G,„. 

Proof: According to Moore-Penrose's theories [28, 29], 
Rin is defined by 

(G,„ RJr = G h K,„ {Rin G,„) r = Rin G„ 
(24) 

and Xs = RinJ is a solution of G,„ X = J. if it has a solu
tion at all, which means 

G,„ R,J = J (25) 

Now multiply eqn. 11 by V* 

j y*Q y + y*Gou V + V*G-m V = V*J (26) 

Take the real part of eqn. 26 

y*Gamy=Re{ y*j} - y*Giny (27) 

Notice from eqns. 24 and 25 

V*R,„J - (J* - 2y*Gin)RJJ - 2G 1 „n ] /4 

= [2J*RinGiny- 2y*GmRmJ - 4^G i „/f ,„G,„K]/4 

= Re { y*J] — y*Gin y (28) 
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From eqns. 27 and 28 

V*GaMV=iJ*RinJ 

-{J* - 2y*GjRjJ (29) 

If G,„ is non-negative, then from eqn. 24 / f i n is also non-
negative, which means that (7* - 2 Y'GJRjJ - 2G i nK| 
is a non-negative number. Theorem 1 follows from eqn. 
29 immediately. 

3.4 Boundedness for terminated reactance network 
Eqn. 23 is a general expression which can be applied to 
multi-input/output systems. To provide some insight of 
its physical meaning, consider the special case of a single-
input/output system. Suppose eqn. 11 has only one input 
J = [ J , , 0, 0] and one output t;„. G,„ and GQM have 
only one non-zero diagonal entry, respectively, corre
sponding to the input and output, i.e. 

G i n = diag ( 9 l l , 0 , 0, . . . ,0 ) 

C o u, = diag (0, 0 0, g j 

Then /?,„ can be generated by 

/ f i n = diag (3,7.0, 0 0) 

Therefore, in this case eqn. 29 is reduced to 

1 
. K f = [ l " H - 2 9 n [ > L / J , | 2 ] 

40,, 
I A I 2 

2(y,,9„„) TTJI-M 

(30a) 

(30fc) 

(31) 

(32) 

(33) 

(34) 

A typical example of the system constrained by the con
ditions of eqn. 30 is a doubly terminated ladder (Fig. 1), 

Fig. 1 Terminated LC ladder passive prototype 

in which case (eqn. 11) are its nodal equations with input 
and output nodes labelled l and M, respectively. The 
physical meaning of eqn. 32 can be seen by rewriting it as 

9 „ „ | f J 2 = [ l - | p l 2 ] 9 r , ' U i l 2 / 4 

with p defined by 

p = l - 2gnv1/Jl 

(35) 

(36) 

Consider a passive ladder with the source resistor being 
rn = 9ii a n d input impedance of the two-port ladder 
including the load is z j n = y[„1 

2 g u

- ' i / ^ i = I 
2gu 

y i n + 0 1 , 

Yin + 011 + z,-. 
(37) 

3 2 9 
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So p is just the reflection function and the upper bound 
of | r „ | is attained at p = 0. This result is well known in 
network theory. 

In the proof of the boundedness, no condition has 
been imposed on C and T except that they must be sym
metric and non-negative. Accordingly, zero-sensitivity 
with respect to symmetric deviation can be achieved at 
the frequency points where the transfer function attains 
its upperbound. 

tributioti to Y of a branch admittance jqk between nodes 
a. b be jqk \ f a h . where 

(43) 

4 Sensitivity formulas 

The above result provides only an estimation of sensi
tivity for symmetric deviations. More general sensitivity 
formulas are now derived. To simplify the problem, only 
single-input/output system will be considered. 

Suppose a single-input/output system meets the condi
tions of theorem 1 and eqn. 30. Let the system in eqn. 1 la 
be excited by another arbitrary input K instead of J and 
let the response be U. The system can be written as 

(38) 

then the output of the new system is related to the old 
system by 

u„ = (2g„„vj-'CpYT - Y*)K (39) 

C indicates conjugate). The derivation of eqn. 39 is given 
in Appendix 10.1. 

So 

dY,'dqk =jMah 

ft is easily seen that 

yTMaby=v2

k and VMaby=\vk\1 

(441 

(45) 

where vk is the voltage across jqk. Then eqns. 41a and b 
are reduced to 

dvjdqt = (2g„„! v„ \)~'(-fpv2

k + | vk | 2 ) (46a) 

and 

d\v„\ldqk = (2g„n\K\y> Im [>n (46b) 

Eqn. 46b is zero at the frequency points where p = 0 or 
equivalently \v„ \ attains maximum bound. This is just the 
well known zero-sensitivity property for doubly terminat
ed ladders. An alternative derivation of eqn. 46 based on 
a topological approach is given elsewhere [31]. 

4.1 Sensitivity formulas 
Differentiate eqn. 11a w.r.t. some network element c, to 
get 

YdV/d£, + YdY/dQ=0 (40) 

Here the second term can be viewed as the new input 
vector for eqn. 38 and we have 

Theorem 2: 

dvJdQ = (2gn„-v„) \ - p V T + y*) dY/di y (41a) 

and 

d>„|/<i£ = Re [t„ dvJd^lM 

= (2ga„\v„\r> R e [ ( - p ^ + y*)dY/dtn (41b) 

In particular, if the deviation of { only perturbs the ima
ginary part of Y, jX say, and dY/dS, = j dX/di is sym
metric, then 

d\v„\/dc = (2g„n | P. | ) " ' Re [ - j p VT dX/dc, V 

+ j\y* dxid^yn 

= (2g„\vm\)-1 Re[-jpyT dX/d£ 

= - U y j u j r 1 \m{PyT dXId^y] (42) 

So d 11-„ | jdi, = 0 when p = 0. This again confirms the 
conclusion for single-input/output system, that \v„\ 
attains its upper bound and has zero-sensitivity at p - 0, 
if the deviation is symmetric. 

4.2 Application to passive networks 
When the system in eqn. 11 is implemented by a real 
passive RLC network, i e {Rt, L,, C,} and dY/dc is 
always symmetric. Then a very simple alternative to the 
topological derivation of sensitivity follows: let the con-

3 3 0 

4.3 Application to digital and active networks 
In the following Sections it will be shown that the system 
in eqn. 11 can be simulated by digital or active networks. 
For digital simulations, even in non-ideal cases, it is still 
possible to keep deviations in Y symmetric by carefully 
selecting the coefficient quantisations, so the zero-
sensitivity property can be preserved. For active-/?C and 
SC simulations, it is difficult to keep deviations of Y sym
metric, since the element value drift is a random pheno
menon. The component drift may cause the equivalent 
system description (eqn. 11) to become nonsymmetric, so 
that the output may exceed the bound given by eqn. 23 
or 34. However, in practical active-RC or SC implemen
tations, low sensitivity is still observed, a property due to 
the multifeedback nature of the structures. Eqns. 41a and 
b are valid for these general cases. 

5 Discrete symmetr ic matrix systems 

The results in the previous Section can be readily 
extended to the discrete domain if a bilinear transform
ation is applied to the system in eqn. 11 

YV - J (47a) 

with 

Y="VC+"V T + C (47b) 

where 

Eqn. 47 can be rearranged as 

(P+ :->() +z~2R)V = {\ -z~2)J (48a) 
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1 5 3 

with 

P = 11 c + y r + G 

' - < f c - I r (486) 

J? 
2 ^. T 
r c + 2 r 

which can be seen as a generalised form of the standard 
state-space equation (eqn. 4), by introducing a second-
order term. 

As bilinear transformation will keep the stability pro
perty and map the imaginary axis in the s domain to the 
unit circle in the z domain, it is easy to show: 

Remark: The system in eqn. 47 has no poles outside the 
unit circle z = e i a T if C, T and G are all symmetric non-
negative and has the same boundedness and sensitivity 
properties as indicated by theorems 1 and 2, except that 
eqn. 47 is evaluated on the unit circle z = e J t ° r . 

As indicated in Section 2, the pseudopassive property 
is of particular interest for discrete systems in order to 
suppress parasitic oscillations. Consider the problem of 
constructing a pseudopassive state-space system from 
eqn. 47, which can be written in an equivalent form 

(1C + \ T + G)V 

2 -2z" ^ T 2z" 1 

c + 2 ~ 

Let C and T be decomposed into symmetric forms 

r }V = J (49) 

T 

Define 

X = 

i i r — r — i i T 

^c^c 2 i r L r 

Xc 

Xr. 

2z~ 
+ z" 

-2z" 
1 - z" 

From eqns. 49 and 50 

Lc 

C+-T+G [ i c i r ] + J 

(50a) 

(50b) 

(51) 

Substituting eqn. 51 into eqn. 50 we get a state-space 
description 

X = z-'AX + 

with 

A = 2 ' £ ? Y - c + ^ i 
_-LTj\T + 2 

r + G\ [ I c I r ] + 

( I 
C+-T+G 

(52) 

(53a) 

(53/3) 

Theorem 3: \\A\\ ^ 1 if C, T and Gare non-negative. 

Proof: First, only if C and T are both non-netative can 
the decompositions of eqn. 5 be carried out. Substantial 

manipulation of eqns. 50 and 53a gives 

ArA 
I 

I 
2 T 
j c + 1 r + c 

2 T 
- c + ^-r + G 
T 2 

154) 

From eqns. 51 and 54 it can be seen that the following 
relationships hold when J = [ 0 ] : 

xT[n\ATAx[n\ = .vr(ii).r(n) rT(n)Gv{n) (55«) 

If G is non-negative, then vT[n\Gv{n) is a non-negative 
number, and therefore 

xT{n)ATAx(n) < jrr(n)x(n) 155b) 

no matter what the value of x(n). The theorem follows 
from eqns. 7 and 9. Incidentally, from eqn. 54 it can be 
seen that matrix A is orthogonal if G — [0] . 

Conditions for the continuous time-domain systems 
have no direct practical applications; however, for com
pleteness a derivation is given in 10.2 Appendix. 

6 Circuit implementations 

In the previous Sections effort has been given to the 
investigation of the theoretical properties of symmetric 
matrix systems (eqn. 11) and their discrete form (eqn. 47). 
Now the circuit implementations of these systems by 
various techniques, general RLC networks, active-RC, SC 
and digital networks, are considered. The discussion is 
brief as RLC and wave circuit designs are well known 
and matrix methods for circuit design have presented in 
other recent publications. 

6.1 General passive RLC implementations 
Eqn. 11 can always be derived from a nodal-voltage or 
loop-current formulation of a passive RLC network. In a 
nodal-voltage approach the contribution of every com
ponent is indicated by eqn. 43. The reverse procedure, 
from an equation with symmetric non-negative matrices 
to a network, is not always possible unless negative 
element values are allowed. Advantage can be gained by 
permitting negative elements [7] , as regular structures 
easier for fabrication may result. According to the last 
Section, negative elements would not appear to cause any 
special sensitivity problems. 

6.2 Active - RC circuit implementations 
Let matrices C and T in eqn. 11 be decomposed into the 
form, C=LcLl[, T = LrL[. Then eqn. 11 can be 
written as the left-LUD form 

LCW= —(s" ' T + G)V + J 
LlV -

(56a) 
(56b) 

or the right-LUD form 

UsC + G)V= -LrU+J (57a) 
{ U=s-lLJ

vV (57b) 

Both eqns. 56 and 57 can be realised directly by active-
RC circuits. Every non-zero entry is realised by a corre
sponding element. To illustrate the implementation 
technique, consider a typical row equation in eqn. 56a 

Crii.i-i) + 'el,-. ,))*'.• = + Vii.i)f( 

+ ,/ii.i+o l ,.+ i ] + + J> (58) 
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This can be represented by a signal-flow graph (SFGl 
(Fig. 2«l and the corresponding active circuit. (Fig. 2b). 
The overall active-RC simulations of the passive proto
type (Fig. I ) are shown in Figs. 2c and d. 

In an example of sensitivity analysis for a right-LUD 
form (eqn. 57), i corresponds to a single entry c(j in C. 
then from eqn. 41a 

dvjdc,, = (2y„v,r\-f>VT + V*)jm dCdc V 

= (2<J„„[~„r ' M - p V i V j + V f i - j ) 159) 

Similar formulas can be derived in the same way for 
other elements. 

For the lowpass case, the right-LUD system (eqn. 57) 
results in identical circuit structures to those derived 
from a leapfrog approach. The left-LUD simulation (eqn. 
56) has a significant advantage for elliptic transfer func
tions in that there are no capacitor-coupled op amp 
loops in the circuit implementation. The right-LUD 
simulation may produce such loops, and high-frequency 
oscillations may exist in these loops, resulting in undesir
able noise problems. 

6.3 Switched capacitor circuit implementations 
Eqn. 47 is equivalent to 

/ - 1 z~l T \ 
\P + 4 ; - r + 2 r G V 

1 + z'' 
= T T 7 ^ Y <60> 

As matrix P is always symmetric, it can be decomposed 
into the form 

P=LpLT

p (61) 

Similar to active-RC design, eqn. 60 can be written in the 
left-LUD form 

L ' W = - ( j ~ ~ i \ T + 2 G ) V + ( X + Z ) J <62fl> 

Lly = yr^w (62b> 

or the right-LUD form (with Lr L\ = T/2 V) 

PV= -~^—l(LrU + GV)+ ' + Z _ ' J (63a) 
1 - z 1 1 — z 

V = ^—nL\V (63b) 
1 — z 

A number of new realisations have been derived in Refer
ences 20-21. Here only an application of adopting nega
tive elements in the prototype design is discussed. When 
the prototype relation (eqn. 11) is produced by nodal-

Fig. 2 
a SFG representation of a continuous domain equation 
b Corresponding active-RC realisation 
c Left-LUD type active-RC realisation 
d Right-LUD type active-RC realisation 
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voltage simulation of a passive ladder, matrix P. given by 
eqn. 48, is generally not diagonal. The design procedures 
according to eqn. 62 or 63 require cross-coupling capa
citors to realise the non-zero off-diagonal entries of P. 
However, in an all-pole case, negative elements can be 
introduced to simplify the circuit structure. If every 
series-inductor branch L, in a Chebyshev ladder has a 
parallel negative capacitor, C,, added according to the 
relation 

duced bv these series branches and are aiven bv 

7 C< 
1 1 
2% 

(64) 

This is shown by dotted lines in Fig. 3a. Then, from eqn. 
48f>, it can be verified that the off-diagonal entries of C 

/ ' - ' 21"22 \ / - F 3 2 / P 3 3 \ 

1 I — s 
1 1 1 

h 11 

1 
L 7 P22 

1 

2g * 

1-—' P33 

Cl6 c6 
I I 

c7 
I I 11 

C13 
II 

\ 

r , 
I I 

L° ] 
H I I 

'o 
II 

I' I 
Fig. 3 
a Terminated all-pole LC ladder prototype 
Component values Tor normalised ladder 
C, =0.93106 C , - -0.073694 L , = 1.4326 
C 3 = 1.9453 C, = -0.071313 L. = 1.4804 
C, = 1.5760 j , , = g„ = 1 
b Leapfrog {or right-LUD) simulation 

c Leapfrog SCF simulation of the circuit in Fig. 3 A 
Capacitance . ilues for the SC ladder 
C, = C, = C 1 0 = C , , = £",,= I 
C , = 3410 C , = 1.658 C, = 1.352 
C , = 3.125 C T = 1.194 C , = 1.846 
C, = 4029 C , , = 1.925 C 1 3 = 1 769 
C 1 4 = 1.072 C 1 0 = 1.547 

and T will cancel each other and make P diagonal. This 
will remove the coupling capacitor in the simulation and 
save on the fabrication cost. However, zeros are intro-

- 1 _4_ 
T 1 

(65) 

A response error is thereby incurred, but this can be 
eliminated in the approximation procedure, by placing 
transmission zeros on the real axis. Examples of a right-
LUD SFG and SC circuit are shown in Fig. 3b and c. 
The input stage is modified to realise r " ' ; ( l - r " 1 ) - The 
resulting distortion is compensated, together with that 
caused by real zeros. The response is shown-in-Fig; 4. i f 

. 0 1 

• 0 . 5 

- 0 9 j-
cn j 
"D i 

i 

f r e q u e n c y , kHz 

2 3 

- 2 . 1 

Fig. 4 Simulated response of the circuil in Fig. J C 

the off-diagonal entries of P are not zero, then the dotted 
branches in the SFG and the SC circuit would be 
required. Notice that in this lowpass case the right-LUD 
structure corresponds with that produced by a leapfrog 
approach. 

6.4 Digital implementations 

6.4.1 Matrix method: Eqn. 52 has already given one 
realisation of the system (eqn. 47). Direct implementation 
of the multiplication of X and U by A and B can require 
a high number of multiplications and additions, as 
usually A and B are full matrices. If A and B are decom
posed according to eqn. 53, the multiplications of A and 
B are then carried out by a sequence of multiplications 
by factors. Efficiency is achieved by taking into consider
ation matrix sparsity. Numerical methods, such as LU 
factorisation, can be employed in the multiplications by 
(2/T C + T/2 T + G)-1 (Fig. 5a). This method could have 
advantages for implementation on concurrent array pro
cessors. However, for conventional single-processor 
implementation an excessive number of multiplications 
are required. 

Digital structures can also be derived from eqn. 62, 
since there are no delay-free loops in the corresponding 
signal-flow graph (Fig. 5b). This approach has advantages 
concerning the properties of sensitivity behaviour, paral
lelism and the ability to be pipelined [22]. However, no 
efficient way to suppress parasitic oscillation for this type 
of structure has yet been found. As pseudopassivity is 
only a sufficient condition for limit-cycle suppression, a 
possible solution should not be ruled out. 
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Fig. 5 
a Block realisation of wave-related structure 
b Block realisation of LDI-relaled structure 
c Realisation of frequency-dependent factors 

a r - ' * 

6.4.2 Topological method: As indicated above, the 
prototype system (eqn. I I ) can always be realised by a 
general passive RLC ladder. Consequently, a indirect 
realisation of system (eqn. 47) can be 

(i) determine eqn 11 from eqn. 47 according to the 
bilinear transformation relationship 

(ii) construct a general passive circuit from eqn. 11 
(iii) design a wave digital circuit from the general 

passive circuit. 

In Appendix 10.3 it is shown that the rounding of wave 
variables is equivalent to the rounding of the stale vari
ables given by eqn. 50 to keep the pseudopassivity pro
perty of the system. This agrees with the early theories of 
wave circuits using the property of adaptors. It can also 
be shown that the wave approach represents a special 
decomposition of matrices A, B in a topological way. 

The results of this paper can also be applied to the 
circuits containing not only adaptors. For example, a 
standard wave circuit may require a excessive number of 
delays [25]. Techniques have been proposed for the 
design of wave filters with a canonical number of delays 
[9], resulting in a circuit structure which does not follow 
the rules of the connection of adaptors [25]. But, accord
ing to the discussion of Section 5 and Appendix 10.3, 
provided rounding is carried out at the points where 
wave variables can be accessed, limit cycles can still be 
suppressed. 

It is interesting to point out that the discrete system 
(eqn. 47) can be rearranged into two equivalent forms, 
that of eqn. 49 and that of eqn. 60. Using these two differ
ent forms as the basis of derivation produces two major 
families of circuits, wave [8] and L D I [11]. In wave 
approaches the basic frequency-dependent factors are 
- z " 7 ( l - z " 1 ) and z " ' / ( I + z~l) (Appendix 10.3). On 
the other hand, in L D I approaches the basic frequency-
dependent factors are —1/(1 - z " 1 ) and z " ' / ( • — z " 1 ) , as 
shown in eqn. 60 which can be seen as a stable and exact 
LDI-type realisation. The system expression of eqn. 49 
involves matrices P, C and T, whereas that of eqn. 60 
involves matrices P, T and G. Usually, matrix C is more 
complicated than G. Therefore, implementation based on 
eqn. 60 may result in simpler structures. However, no 
simple method for oscillation suppression has been found 
for standard LDI-type [11-12] digital structures nor for 
the exact structures based on eqn. 60. Therefore, struc
tures based on eqn. 49 are suitable for digital design, if 
both sensitivity and noise due to number-truncation-
induced oscillations are considered. Realisations based 
on eqn. 60 are interesting for other discrete systems, in 
particular for SC filter design, due to the fact that the two 
L D I factors coincide with the transfer functions of a pair 
of stray-insensitive integrators, resulting in efficient fabri
cations [6]. 

7 Conclusions 

A family of low-sensitivity/noise systems have been 
studied for both continuous and discrete filter design. It 
is shown that symmetric matrix systems can be designed 
with optimal performance. Sensitivity can be minimised if 
the deviation of component values is kept symmetric, 
which is possible for a digital-filter design by carefully 
selecting the coefficient truncations. In fact, it can be 
proved that for some structures like wave circuits the 
coefficient truncations will always result in symmetric 
deviations. 
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For active-KC and SC circuits, asymmetric deviations 
may occur. Efficient sensitivity analysis and optimisation 
can thus be carried out utilising theorem 2. 

The matrix decomposition method for filter design is 
the subject of continuing research and other articles will 
describe the application of these theoretical studies to the 
practical synthesis of traditional and novel circuit struc
tures. 
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1 0 Appendix 

10.1 Derivation of the perturbed system output 
equation 

Commence with 

YU = K (66) 

Left multiply by V* gives 

V*YU= V*K (67) 

Note that when J is a real vector 

[V*Y)T = YV = {)Q + G)V 

= -(-}Q + G)V + 2GP 

= 2GV - / 

= (2^iit ' , - J „ 0 , . . . , 0 , 2gmvf 

= (pJ^0 0. 2g„„-v„)T (68) 
Substitute eqn. 68 into eqn. 67 and make some rearrange
ment to get 

2gmv„un-pJiui + y*K = 0 (69) 

Again left multiplying eqn. 66 by V and noticing that 
VrY = r = [ J „ 0 , . . . , 0 ] we have 

VTK= VTYU=JrU=Jlu1 (70) 

Eqn. 39 follows by substituting eqn. 70 into eqn. 69. 

102 Continuous time-domain pseudopassive systems 
We first show that a continuous time system (eqn. 3) is 
pseudopassive if -(A + AT) is non-negative. Set J = 0 in 
eqn. 11. Then the time-domain solution is given by 

x{t) = exp (At)x0 (71) 

where x0 is the initial value vector. Take the derivative of 
e(t) = xT[t)x{t) 

de/dt = xT exp (At)T(A + AT)t exp (ATt)x0 (72) 

e(x(t)) is monotonically decreasing if de/dt ^ 0, or equiva
lent^, the system in eqn. 11 is pseudopassive if 
— {A + AT) is non-negative. 

Let a state space system X = s~lAX + L^J be con
structed from eqn. 11 by 

X = 

with 

C = 

and 

A = 

Xc 

Lc'GLcT 

IT f T 0 

(73) 

(74a) 

(14b) 
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It is easily seen that 

-{A + Ar) = 2 
0 0 

(751 

is non-negative. The pseudopassivity of eqn. 73 follows 
immediately. 

10.3 Wave variables 
When eqn. 11 is derived f rom a passive ladder by nodal 
formulat ion, the matrices can be generated by topological 
means [26] 

C = ACDCAT

C 

T = AvDrAl 

(76«) 

(766) 

where Dc and Dr are diagonal branch-admittance 
matrices wi th entries consisting of the corresponding 
capacitance or inverse inductance values. AC and AT are 
the corresponding incidence matrices. Let V c , / c , VT and 
/ r be vectors of the voltages and currents of the capac
itance and inductani : branches, respectively, then the 
voltage vectors are related to the nodal-voltage vector V 
by 

yc = AT

CV 

VT = A\V 

(77a) 

(lib) 

The current vectors are related to the nodal-voltage 
vector by 

2 1 

T 1 + z 
-XDCAT

CV 

T 1 + *~ 1 

(78a) 

(786) 

According to the definit ion of wave variables: incident 
wave vectors are 

and reflected wave vectors are 

Wch = V c - [ - Dc ) l c 

•>•-> 
- A l - Y = : l W c l (80a) 

1 - . 
(806) 

By comparing eqns. 50, 76 and 80 it can be found that 

2 
x'(n)x(n) = - O c >» ' c «(" ) 

+ » f . l » ) y f l r » r « ( » ) (81) 

When the branch admittance matrices Dc and Dr are 
diagonal wi th positive element values, the magnitude 
rounding of h'cr and >vrR wi l l have the same effect as 
magnitude rounding on x(n) to cause a reduction of 
xT{n)x(n). 
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4 0 0 M H z S W I T C H I N G R A T E G a A s 
S W I T C H E D C A P A C I T O R F I L T E R 

Indexing terms: Fillers, Gallium arsenide. Integrated circuits 

The letter presents experimental results for a second order 
switched capacitor bandpass filter designed to operate with a 
250 MHz switching frequency and implemented using 
gallium arsenide (GaAsI technology. Measurements on a chip 
fabricated in a 0-5 ton GaAs process confirm that the filter 
design, amplifier and switching components meet the desired 
performance specifications. The filter operates with high pre
cision at 300 MHz and bandpass filtering at a switching fre
quency of 400 MHz is demonstrated. 

Introduction: Gallium arsenide (GaAs) technology has an 
important role in the realisation of high speed analogue 
sampled data systems.1 Reference 2 describes the design and 
optimisation of a second order switched capacitor (SC) 
bandpass filter for implementation using GaAs technology 
and with a maximum design switching frequency of 250 MHz. 
Since Reference 2 was published, the filter chip described has 
been fabricated and very encouraging experimental results 
obtained. The objective of this paper is to report these results. 

Switched capacitor filter design: The second order switched 
capacitor bandpass filter was designed to realise a Q-factor of 
16, midband gain of unity and midband frequency of l/25th of 
the switching frequency for a maximum switching frequency of 
250 MHz . 2 The circuit used the single-stage, double-cascode, 
double-level-shifting operational amplifier design of Reference 
3, which had a simulated gain of 60 dB, typical gain-
bandwidth product of 3-5 GHz and a minimum settling time 
of 630 ps. The switch control circuit used is that of Reference 
4, which features low power consumption and low signal 
dependence of clock feedthrough. The switch capacitor circuit 
was optimised for high frequency operation using the tech
nique of References 2 and 5, whereby amplifier load capac
itances are introduced to maintain acceptable settling 

behaviour and stability in all switching states. The filter archi
tecture is shown in Fig. 1. where capacitors C,,. C f and Cc 

have been introduced as a result of the optimisation pro
cedure. 

0 2361DF 
nput 39 0 IpF 0 lpf(F3s 
n — m 

C7C:06p 
01?668pF " T " J _ 0V 

LpF j . -
0V OV 

Fig. 1 Second order SC filter for implementation 

The circuit was layed out using MAGIC with a specially 
written technology file for the Anadigics 0 5/rm GaAs process 
and a layout plot is shown in Fig. 2 The size of the chip, 
which was fabricated by Anadigics, is 3 3 x 2 6 mm and the 
power consumption is 440 mW. 

Testing and experimental results: The chip was bonded within 
a dual-in-line package, which was mounted in a dual-in-line 
socket on a circuit board. The input signal level for all tests 
was +7dBm, o r0 5 V R M S . 

The filter was found to operate very accurately up to and 
beyond its design maximum switching frequency of 250MHz. 
The amplitude/frequency response was measured for switch
ing frequencies of 300 MHz, 350MHz and 400MHz. The 
responses for 300 MHz and 400 MHz are shown in Figs. 3a 
and b, respectively. Expanded passband plots for the above 
switching frequencies are shown in Figs. 4a and b. Peak gains, 

0 
Fig. 2 Layout plot for GaAs switched capacitor filter 

Total size = 3 3 x 2 6 mm 

1696J2 I 
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— 3 d B frequencies and calculated midband frequencies and 
<2-values are (abulated in Table I. Midband frequency accu
racies range from less than 1% to about 2°o and represent a 

cn-30 

frequency, MHz 

10 20 
frequency, MH z 

b 
Fig. 3 Measured amplitude/frequency response offilter 

a 300 MHz switching frequency 
b 400 MHz switching frequency 

frequency, MHz 

frequency, MHz 

Fig. 4 Measured expanded passband response 
a 300 MHz switching frequency 
b 400 MHz switching frequency 

Tsble 1 MEASURED FILTER PERFORMANCE DATA 

Switching Peak 
frequency gain 

-3dB frequencies F0 Q-factor 

MHz dB MHz MHz MHz 

300 - 0 1 5 11-7 12-5 12 1 15 
350 -0-20 13 5 14-7 14-1 12 
400 - 0 1 5 146 169 15 7 7 

strated. In spite of the results achieved, the operational ampli
fier used in the design is relatively slow compared with more 
recent designs and advanced designs implemented using 
state-of-the-art technology.8 This opens up future 
opportunities for S C systems operating with gigahertz clock 
rates. 
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O N T H E R E L E V A N C E O F T H E S T R I C T 
A V A L A N C E C R I T E R I O N 

considerable improvement over the previous results presented 
in Reference 6. The Q-factor accuracy is reasonable for a 
300 MHz switching frequency, but the Q-factor is reduced for 
the higher switching frequencies. The noise at the output of 
the filter was measured for a measuring bandwidth of 10kHz 
The peak noise is at — 75 dB relative to the maximum signal 
level. Observation of the filter output signal at the resonant 
frequency indicated a DC offset voltage of less than 50 mV 
and reasonably low levels of clock feedthrough. Future testing 
on an improved j ig could improve these results. 

Conclusions: A significant increase in the maximum switching 
frequency for switched capacitor filters has been demon-

Indexmg terms: Codes, Boolean functions 

Some recent work concerning the strict avalanche criterion 
for a Boolean function has been motivated by the claim that 
a certain cryptographically useful property will be true of any 
function satisfying the criterion. In the letter it is observed 
that not only is this claim untrue, but that possession of the 
property in question is in fact precluded by satisfaction of the 
strict avalanche criterion. 

Definitions and motivation: Webster and Tavares1 introduced 
the strict avalanche criterion (SAC) for a Boolean function to 
combine the concepts of completeness and the avalanche 
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Active and digital ladder°bas@d aiBpass filters 

Li P ing , MS , PhD 
Prof. J . I . S e w e l l , BSc, PhD, C E n g , FIEE 

Indexing terms: Filters and filtering. Circuit theory and designs 

1 G 3 

Abstract: Ladder-based allpass filters are 
extended for active RLC, active RC, SC and 
digital realisations. The resulting circuits have the 
attractive properties of parallel structure and very 
low amplitude sensitivity to component changes. 
The analogue implementations are canonical wi th 
respect to the number of op amps and the digital 
ones are multiplier canonic. Detailed examples are 
given for SC designs and these are critically 
assessed for capacitance spread and sensitivity. 

1 Introduction 

Allpass filters are pr imari ly designed to provide phase 
characteristics and any interference wi th an existing mag
nitude response should be avoided. However, in practical 
realisations, the amplitude response wi l l inevitably be 
influenced by component variations, l i is important 
therefore to use circuits w i th low amplitude sensitivity 
characteristics. Because allpass functions are non-
min imum phase by defini t ion, low-sensitivity ladder-
based design remains an open problem. Instead, cascaded 
biquad sections are typical in active and digital realis
ations, and such topologies are highly sensitive to com
ponent deviations, especially in high-Q cases [ 1 - 3 ] . 

A novel method for allpass digital filter design has 
recently been proposed [4 , 6 ] . The allpass transfer func
tion is decomposed into two terms: a constant and a 
funct ion realisable as the dr iv ing point impedance of a 
passive network, which is, in turn , simulated by a digital 
circuit. The resulting system is structurally allpass, that is, 
wordlength truncation wi l l not introduce any distort ion 
into the amplitude response. Switched capacitor (SC) 
simulations of the Foster I I structure used in Reference 4 
are also known [ 5 ] . 

In this paper, a ladder-based approach is presented for 
the design of prototypes. The op amps can be made 
canonical in number for SC implementations, if the 
allpass equaliser and amplitude filter are considered 
together (this can also be insured in fu l ly differential 
active-RC circuits). The new configurations are also very 
suitable for parallel digital circuit implementations and 
lead to circuits canonical in the number of delays. 

M a j o r emphasis w i l l be placed on SC circuit realis
ations. Design examples are given and comparisons made 

Paper 753IG (E10). first received 14lh December 1989 and in revised 
form 29ih May 1990 
Prof. Sewell is. and Li Ping was formerly, with the Department of Elec
tronics and Electrical Engineering, University of Glasgow. Glasgow 
G12 8QQ. United Kingdom 
Li Ping is now with the Department of Electrical and Electronics 
Engineering. University of Melbourne, Parkville, Victoria 3052. Aus
tralia 

between the different ladder-based structures and wi th 
cascade biquads. I t w i l l be demonstrated that the sensiti
vities of the amplitude responses of ladder systems are 
much lower than those of cascade biquad structures and 
that the sensitivities of the delay responses are similar for 
all realisations. L o w capacitance spreads are also 
observed for ladder-based methods. 

2 Continuous domain allpass ladders 

I t can be shown [ 6 ] that an allpass function in the s-
domain 

HJLs) = ± 
P(s) 

can be rearranged as 

1 - V(s) 
H„(s) 

where 

V(s) = 

1 + Y(s) + Y(s) 

EvP(s) 

OdP(s) 

OdP(s) 

if n is even 

if n is odd 

(1) 

(2) 

(3) 

(4) 

(5) 

EvP(s) 

for the Hurwi tz polynomial 

P(s) = EvP(s) + OdPLs) 

A signal f low graph (SFG) is given in Fig. 1 for the realis
ation of eqn. 2, where the transfer function I + Y(s) can 
be synthetised by a singly terminated LC ladder. I t is 
well-known that, i f P(s) is Hurwi tz , then Y(s) - EvP(s)/ 
OdP(s) can be expanded in continued fract ion fo rm and 
realised according to the ladder circuit of Fig. 2. 

Fig. 1 Realisation of allpass function 
For s-domain. a = b = g = l.h = -2 
For 2-<lomain. a = b = g = \,h = - ( I + z) 

Tradit ionally, passive allpass filters are realised as cas
caded lattice-derived bridged-T structures. T w o major 
disadvantages are associated wi th this method. First, the 
amplitude response is sensitive to all components, and, 
secondly, the circuits are not canonical, requiring approx
imately 2.5n reactance elements in their implementation. 
For the scheme shown in Fig. 2, the amplitude response 
is completely insensitive to the deviation in the reactance 
elements (Section 4) and only n reactance elements are 
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required. The summing amplifier and several resistors are summation stage 
an extra cost. , 3 

reactive *.wc c<y' 

summation stage 

reactive two Dor'. V 

passive ladder stage 
Fig. 2 Actiue-RLC allpass circuit 
.•i = «" 'L , . y ,= * ~ ' C , 
For s-domain, i^=s ~', <1> = s '\h 
For 2-domain, ill = z~ '/(! - l|, <] 1/(1 -z-\h= -(1 

2 . 1 Active RC ladder design 
The passive ladder network part of the circuit of Fig. 2 
can be simulated by active RC circuits. The nodal admit
tance matrix equation for the passive ladder subnetwork 
is 

sC + -r + G)y = j (6) 

where J = [ - ghvin, 0 , . . . , 0 ] and C, T and G are admit
tance matrices formed by the contributions of capacitors, 
inductors and resistors, respectively. V is defined as V = 
[ f t . ] , where alternate signs are intro
duced to insure that all entries in eqn. 6 are positive. 

The matrix decomposition method for active RC 
network design described in References 9-11 can be 
readily applied here. Eqn. 6 can be wri t ten in the L U D 
form, (because all of the capacitors in Fig. 2 are con
nected to earth, C is simply diagonal and no real decom
position of C is necessary) 

W = —(s~ ' f + G)V + J (7a) 

(lb) 

or, f rom the topological decomposition of T = ALDLAT

L, 
the leapfrog fo rm results: 

(C + s~lG)V = s~l(-

tV = s lDLAT

Ly 

ALW + J) (8a) 

(86) 

Both eqns. 7 and 8 are linearised wi th respect to s~' so 
that they can be realised directly wi th active-RC circuits. 
For a sixth order circuit, the signal flow graphs (SFGs) of 
Figs. 3a and b (case A) and the simulation circuits of 
Figs. 4a and b ( incorporating the summation stages) can 
be obtained. Inversion in the output stage is incorporated 
in the simulation part. Notice the different termination 
stages in L U D and leapfrog realisations. 

The summing amplifier employed in the output stage 
in Fig. 4 need not be realised explicitly in delay equalised 
filter systems. Provided the allpass filter is succeeded by 
an amplitude filter stage, the virtual earth of the input 
integrator of the amplitude stage can be directly con
nected to P,. to realise the summation funct ion. In a ful ly 
differential implementation, separate inverters are not 
required and thus realisations wi th a canonical number 
of op amps are possible. 

3 Discrete domain allpass ladders 

There are several approaches to the derivation of allpass 
ladders in the z-domain. In particular, it has been found 

c» »-c * -
-0 I T-_» , y , jv_ 

V,„ J,'W. W; W, 

passive iaGtier stage 

summation 
staae reactive two port 

-0 

W, w 2 w 3 

passive ladder stage 

Fig. 3 SFGs for allpass realisation 
a LUD type 
Case A: 5-domain 
» = * = s " ' . a > = » . i i = j = l . . i = 2,/I=0 
Case B: ;-domain 
* = 1/(1 - z l"' ,* = ;-'/(! - ; '|. i = b = d = g = i. I = 2.0 = I 
Case C: 2-domain 
<J> = 1/(1 =-'"'/(! -z'),a = 3 =d - g - l,b= I +z.fi = 0 
b Leapfrog type 
Case A: 5-domajn 
®^ti/=s~l.a = b = d = g= ],tt = 2 
Case B: z-domain 
4> - 1/(1 - z " 1 ) , ill - 2" 7(1 - r"'),h= I + :"'.u =* = d = g = 1 

Qa=1 Qd= 

Fig. 4 Active-RLC allpass fillers [elements in fiF and fiS) 
a LUD type 
b Leapfrog type 
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most efficient to use the so-called b i l inea r -LDl method, 
as it is both exact in frequency response and efficient in 
terms of implementation cost. Such a structure could be 
derived by the technique of Reference 11, which places 
real zeros in the ladder prototype to introduce the cancel
lation of capacitors after bilinear transformation. 
However, a more straightforward derivation is presented 
here, which uses a continued fraction expansion for z-
domain transfer functions [6 -8 , 12]. 

3.1 LUD method for SC and digital ladder design 
For an alipass function in z-domain 

1 + z 

1 + . 

zP(z)±z"P(z->) 
I + 

P(z) + z"P(z-

= 1 -
1 + Y(z) 

{— sign for n — 2m, + sign for n = 2m 4- 1) 

(9) 

T o avoid the noncausal term z in eqn. 9, the transfer 
funct ion is modified to 

z~lHJ<z) = z ' 1 
+ z 

1 + Y(z) 

which introduces only a single extra delay. Define 

(D = 
1 

1 - z - ' 
T = 

(10) 

(11) 

The digital realisations of 4* and <1> are shown in Fig. 5. 
The continued fraction expansion of Y(z) can be achieved 
in terms of *P " 1 and <t> ~1 alternately [ 1 2 ] : 

Y(z) = yV'lCi + 
1 

V ' C , + 

where 1 = 2. jJ = 1. This can be again represented by an 
SFG, Fig. 3rt (case B), including the output stage. Notice 
that the corresponding digital implementation is canon
ical wi th respect to both multiplier coefficients and 
delays. The SC realisation is straightforward, but this 
method results in a large capacitance spread. There is 
another realisation of eqn. 13, by choosing 2 = 1 + z 
and P = 0, Fig. 3a (case C) results. Note that % and b can 
be exchanged without affecting the overall transfer func
tion. The corresponding SC circuit can be obtained by 
replacing the branches in the SFG by SC elements, see 
Fig. 6a. The singie z~' of eqn. 10 is realised by a 
rearrangement of switching in the sample-and-hold and 
other input/output circuitry. The sampled input f rom an 
even phase is transferred to the output summing ampli
fier dur ing the subsequent odd phase. The unit delay is 
realised when the output is sampled in the even phase of 
the next clock period. This scheme usually results in a 
lower capacitance spread than for case B. 

L U D type SC circuits wi l l always require an even 
number of op amps, which is canonical for even order 
cases, but not for odd cases. 

3.2 Leapfrog method for SC and digital ladder design 
Use of 13 to derive directly the leapfrog type circuit 
causes diff icul ty in realisation of the termination terms. 
Instead, it is easy to verify the equivalence between eqn. 
13 and the fo l lowing system: 

(Lc + vr + Gy (15) 

<J>~'L, + 

4- ' C „ + 
(12) 

y=0x x " 1 — 1 y = yx 

Fig. 5 Digital realisations of<t> and 4* 

For n odd, eqn. 12 wi l l terminate wi th a 4*" ' C m + 1 term. 
Positive values of {C,} and { L , } are guaranteed [ 1 2 ] . By 
analogy wi th eqn. 2, it can be seen that a ladder simula
t ion is appropriate. The passive ladder part in Fig. 2 can 
again be used to realise eqn. 12 by means of a 'passive 
network", w i th admittance y ^ f ' C , and impedance 
z, = (J>~ 1L j . Al though physically unrealisable, it can be 
used as prototype for SC and digital simulations. A nodal 
description can be set up for the ladder section of Fig. 2 
in terms o f f and Q>: 

-C + ®r + G)V = (\ +z)J (13) 

L U D SC and digital circuits can be obtained [ 9 - 1 1 ] by 
rewrit ing eqn. 13: 

W = -(d>r + G)V + aJ (14a) 

(14b) 

0 > - ' L „ 

where 

C = C - G (16) 

The right matrix decomposition structure can be derived 
[ 9 - 1 1 ] by rewri t ing eqn. 15. as 

\C + ®G)V = <D(-

W=*VDLAT

LV 
' J ) (17a) 

(17b) 

The SFG of Fig. 3b (case B) can be used to represent eqn. 
17 and an i l lustration of SC replacement is given in Fig. 
6b, which is comparable to an independently reported 
realisation [ 7 ] . Notice that the z " 1 factor in eqn. 17a 
cancels the noncausal factor of 1 + z in eqn. 10. 

Leapfrog SC simulation can always realise a circuit 
w i th a canonical number of op amps, provided the ampli
tude and allpass stages are considered together. However, 
for narrow band SC design, it wi l l result in a larger total 
capacitance than the L U D method. 

F rom Fig. 3b (case B), i t is seen that there is a delay-
free loop at the termination stage: vt-*—g 
- » J , -••P/ci For a digital realisation this can be 
eliminated by the equivalent circuit transformation 
shown in Fig. 7. The resulting circuit is highly parallel 
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and requires only a canonical number of multipliers for 
digital implementation. The number of additions 

summing stage 

"C 

racies in the values of {C{\. { L , [ and all unity-valued ele
ments of Figs. 4 and 6 would affect the sensitivity. 

S/H stage 

summing stage 

" C 

5/H stage 

Fig. 6 SC allpassfilters 
a LUD lype b Leapfrog type 

\_ 1 
C,l-z-' 

bo-

I t wi l l be proved that the amplitude response of the 
structures introduced in this paper, unlike their biquad 
counterparts, are completely insensitive wi th respect to 
deviation of most of the element values and are bounded 
for a few terminating elements. The transfer functions of 
Figs. 2 , 4 and 6 have the fo rm 

Fig. 7 Network transformation to eliminate delay-free hop 

required is also relatively small (roughly 2n). The digital 
leapfrog realisation requires one more delay than the 
equivalent canonical L U D realisation (case B). 

4 Sensitivity estimations 

In the fabrication process, nonideal factors wi l l inevitably 
lead to deviation in the system parameters. In the digital 
case, the nonideal factor would be the truncation of 
mult ipl ier coefficients to . nite wordlength, which wi l l 
affect only {C,} and [L , ( . For analogue cases, inaccu-

— = Ha = + | a 
bav,/Jl 

I + dvJJ, 
(18) 

For Figs. 2 and 4, a=b=d=g= 1, and a = 2, and, for 
Fig. 6, b = b, + b2 z~1 and a = fc, =b2=a = d = g= 1. 

Remark : For the circuits in Figs. 2 , 4, and 6, i f a, b (or fc,, 
b2) and a are fixed, then \Ha \ = 1, regardless of all other 
parameters, even the unity valued elements. 

Proof: I n the s-domain (Figs. 2 and 4), eqn. 18 becomes 

1 - v J J i 

1 + t ) , / J , 

It is easily seen that | Ha \ = 1 if D , / J , is imaginary. 

19) 
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For the circuit in Fig. 2, is certainly imaginary, 
being the admittance of a reactive network. 

For the circuit in Fig. 4a, we can apply the Mason 
formula [1 J] to derive uJJ t: 

Ji 

with 

I (9k K ) 
all forward 

paths 

A = 1 - I Pml + I Pm2 ~ I Pm3 + 

(201 

(2!) 

where gk is the product of edge weights for fcth forward 
path. P„R is the product of loop transmissions for the mth 
set of vertex-disjoint feedback loops and A t is the value of 
A for the part of the graph wi th no vertices in common 
wi th the /cth forward path. 

Every loop in the subnetwork of the reactive two port 
in Fig. 3a (case A) involves exactly one 4* term and one $ 
term. In the s-domain, *¥<t> = (jm) -o) and, there
fore, PM = n O F / C . X - O / L ; ) wi l l be real, and so wi l l all A 
and { A k } . There is only one forward path f rom J , to u, , 
9 i = 4 7 C , = jo>/Ct, hence, f r o m eqn. 20, v J J t is imagin
ary and I HA \ = I . A similar proof can be applied to Fig. 
4b. 

For the z-domain circuit of Fig. 6a, note that all A and 
{ A k } are, again, real. Referring to Fig. 3a (case C), 

(1 ' ) 2 i f for z = e*" (22) 

Since the only forward path is g, — 4 7 C , , f r o m eqn. 20, 
v J J l wi l l have the fo rm vJJ, = t f , w i th £ real. Hence, 
the fo l lowing identities are derived: 

1 + z 

1 + •/,/!>, 

1 + • 
1 

1 +Z 

z 2 J i / f i 
1 + z 

1 + • 
1 + z 

2 2 JJvi 
1 + z 

1 + 1 + 
2 \ 1 

1 + z 

1 + 1 + 
2 \ 1 

+ z 

As (1 — z)/(l + z) = j tan (OJT /2) is imaginary for z = 
e i a T , one can see that \HA \ = 1. A similar result can be 
proved for the circuit in Fig. 6b. 

The sensitivity formulas for the remaining elements in 
the circuits of Fig. 4 can be derived (since Y(ju>) = J\/vl 

is a pure imaginary number) as 

1 
_a_d\HA 

da 
= + • I W I 

l+\Y(joj)\ 
€ 1 (24a) 

b c\HA\_ 1 c\HA 

\HA\ ch 
+ 2 

\H„ 1 + ! Y(j(o)\2 

-2 < • 
d c\H„ 

<c 2 

(24b) 

(24r! 
\H„\ cd 1 +1 y<yaj | | 2 

Similar formulas can be derived for the circuits of Fig. 6. 

5 Examples and Comparisons 

The design procedure presented above has been incorpo
rated into the filter design software package P A N D D A , 
where cascade biquad structures are also available [14] . 
As an example, a sixth order allpass SC filter (case C) is 
designed to achieve an equiripple correction of the delay 
distort ion caused by a sixth order SC bandpass filter, see 
Table 1. The design data given in Table 2 relate to the 
two ladder-based equaliser structures, L U D and leapfrog 
of Fig. 6. Each of these circuits can be followed by the 
amplitude stage in Fig. 8. designed as a sixth order ellip-

(23) Fig. 8 Sixth order bandpass SC elliptic LUD filter 

tic L U D - t y p e SC circuit, see Table 1. A l l of the circuits 
have been scaled for maximum dynamic range. The P„ 
point of either circuit of Fig. 6 can be directly connected 
to the input of the circuit of Fig. 8. The amplitude and 
delay responses are shown in Figs. 9a and b. 

The fo l lowing formula is used to measure the overall 
system sensitivity: 

\HCI\ dc, 
(26) 

Table 1: Design date for sixth order bandpass SC elliptic filter 
Specification for amplitude filter 

Lower passband edge 8000 Hz Upper passband edge 10000 Hz 
Lower stopband edge 7200 Hz Upper stopband edge 10800 Hz 
Passband ripple <0 .3dB Stopband attenuation > 2 5 d B 
Approximation type elliptic Filter order 6 
Sampling frequency 150000 Hz 

Component values for LUD S C ladder 

C , 1000 C2 1 000 C, 10.83 C 4 2.769 C 5 1.000 Ce 2.182 
C 7 5.041 C„ 1.000 C, 1 335 C , 0 1.356 C , , 10.76 C 1 2 4.055 
C , 3 1.794 C,„ 3.733 C , 5 5.873 C 1 6 2.573 C , 7 1.263 C 1 8 1.000 
C , 9 7.265 C2Q 3.285 C 2 1 1 000 C 2 2 2 4 30 

Total capacitance 74 units Capacitance spread 10 units 
Number of switches 25 Number of capacitors 22 
Number of op amps 6 
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The system delay sensitivity can be denned in the same 
way. For comparison, two cascade biquad SC circuits are 
designed for the delay equalisation stage, using biquad 
topologies 1 and 2 of Reference 3. The resulting design 

parameters are listed in Table 3. As in Reference 3, topol
ogy 1 has quite a small spread, but very high sensitivity, 
whereas topology 2 has an improved sensitivity at the 
cost of high spread, see Fig. 10. Other biquad topologies 

Table 2: Design data for SC delay equalisers 
Specification for delay equaliser 

Lower equalisation edge 8000 Hz Upper equalisation edge 10000 Hz 
Approximation type equiripple In-band ripple <0.00014 s 
Filter order 6 Sample frequency 150000 Hz 

Poles of normalised allpass transfer function in s-domain 

-0.0518242 + y1.01293 -0.0518242 -/1.01293 
-0.0482866 + j\.08983 -0.0482866 -/1.08983 
-0.0458278 + y0.93370 -0.0458278 -/0.93370 

Component values for the LUD S C ladder 

C. 1.000 C t , 1.023 Cb2 1.023 C , 2.333 C„ 2.386 
C, 9.903 C 2 2.380 C 3 3.273 C, 1.000 C 5 1.000 C„ 1.011 
C , 24.22 CB 2.478 C , 8.660 C , 0 1.000 C , , 1.000 C,2 1 000 
C , 3 29.29 C,, 2.651 C , 5 10.99 

Total capacitance 109 units Capacitance spread 29 units 
Number of switches 27 Number of capacitors 21 
Number of op amps 6 

Component values for the leapfrog S C ladder 

C, 1.015 C„, 1.000 C 6 3 1.000 C , 1.015 Cd 1.000 
C , 8.878 C2 9.546 C3 3.289 C„ 3.982 C 5 1.000 C 6 1.000 
C1 20.34 C 8 22.19 C , 8.305 C 1 0 7.565 C , , 1.000 C , 2 1.000 
C,3 29.21 C 1 4 2.660 C 1 5 1.000 

C 1 0 7.565 C , , 1.000 

Total capacitance 138 units Capacitance spread 29 units 
Number of switches 28 Number of capacitors 21 
Number of op amps 6 

Table 3: Comparison of various SC delay equalisers 
LUD Leapfrog Biquad topology 1 Biquad topology 2 

Total capacitance 
Capacitance spread 
Number of op amps 
Number of switches 
Number of capacitors 

109 units 
29 units 

6 
27 
21 

138 units 
29 units 

6 
28 
21 

102 units 
26 units 

6 
32 
24 

311 units 
62 units 

6 
32 
24 

S/H and summation stages excluded 

f requency, Hz x10 
comb ined 0 3 
r e s p o n s e 

12 

20 

1.0 
4 0 

equa l i sa t i on s tage 
0 8 6 0 

10 2 9 0 78 8 4 
01 

0i 0 1 - 8 0 ^ 0 6 

10 

100 
0 4 

1 9 

1 20 

p a s s b a n d 
2 8 

140 
8.1 108 9 0 

f requency , kHz frequency, kHz 

Fig. 9 SC circuit responses 
h Delay response of equalised S C filter system a Amplitude response of sixth order S C L U D filter 
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[ 3 ] show some tradeoff of sensitivity and spread between 
these two extremes. However, it is seen that ladder-based 
structures demonstrate the significant advantage of both 
low sensitivity and low capacitance spread. 

AO 
b i q u o d 
topo logy I 

32 

b i quad 
I' \ t opo logy 2 a* 

2A a* 

16 

/ 

8 
LUD l eap f rog LUD 

/ / 
N / ' / ' •• 

I . ' ' i - ^ ' i ^ -,. ~- / I ~ r -
7 2 81 9.0 9.9 10 8 

f r e q u e n c y . kHz 

LUD 

15 

f c b iquad 

i 

12 

l e a p f r o g ^ / / 

\ t t 7 ' 3i t tl 
/ I t 

btquad 
topo logy 2 

I \ / 

/ 

9 0 10 8 7 2 8 
f requency , kHz 

b 
Fig. 10 £i;ua/iser seniitinKics 
o Amplitude b Delay 

The amplitude sensitivities for ladder-based circuits, of 
the type shown in Fig. 6, are mainly determined by five 
parameters, i.e. a = CJC,, b , = C M / C S , b 2 = C b 2 / C s , 
at = C c / C , and d = CJCX. Provided these ratios are care
fu l ly controlled, good allpass properties can be expected. 

6 C o n c l u s i o n s 

A systematic approach has been proposed for active and 
digital allpass ladder-based design and novel L U D struc
tures have been developed that demonstrate very low 

amplitude sensitivity, as well as other advantages, such as 
high parallelism for digital realisation and low total 
capacitance for SC realisation. It is shown that L U D 
ladder-based structures can be implemented wi th a 
canonical number of multipliers and delays for digital cir
cuits or with a canonical number of op amps for ana
logue circuits. 

A formal sensitivity analysis of the ladder-based all 
pass structures has indicated that amplitude sensitivities 
are strictly bounded, and this is confirmed by detailed 
examination of example circuits. 

The allpass ladder-based networks have direct applica
t ion in delay equalisation and also in the realisation of 
general amplitude functions by a sum of allpass functions 
[15] to achieve low-sensitivity and low-noise properties. 
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Abstract: Various Remez-type algorithms for the 
computation of rational fil ter functions of a 
general fo rm are proposed. They allow filter 
amplitude and group delay functions to be arbi
trarily shaped and tapered. Such functions can be 
applied to predistort for undesirable effects in 
communication systems such as sine (x), transmis
sion line weighting or dis tort ion due to nonideal 
components. High-order touch points are intro
duced as a generalisation of the concept of 
maximum flatness. They are used to trade o f f 
between the amplitude, group delay and passive 
sensitivity properties of a filter. The high-order 
touch points can be used directly to design a 
passive ladder prototype by an iterative algori thm. 

1 Introduction 

The paper is concerned wi th computational methods for 
the design of rational filter functions. Classical functions 
which approximate ideal filter amplitude specifications 
are commonly known. These functions have special 
properties of symmetry and constant equiripple attenu
ation in passband or stopband. Their coefficients can be 
conveniently calculated by explicit formulas or simple 
iterations [ 1 , 2 ] . However, classical approximations are 
not suitable for highly asymmetric specifications or 
amplitude equalisation tasks which are often encountered 
in modern communications systems [ 3 ] . Approximat ion 
methods for such specifications are not well developed. 
They are usually highly specific to a given filtering task 
and are not flexible enough for a general, easy-to-use 
software package [ 3 - 7 ] , Al though genera) multiple-
criterion optimisation techniques can certainly be 
applied, they tend to involve a large amount of computa
tion and do not always guarantee convergence [8 -10 ] . 
This is frequently because they do not make enough use 
of the special properties of filter functions, which are par
ticular cases of rational functions wi th well-confined 
root locations. Moreover, the approximation problem is 
often not expressed conveniently for a filter designer 
without detailed knowledge of optimisation theory. 
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Methods for the approximation of polynomial filter 
functions wi th in arbitrari ly weighted amplitude specifi
cations are considered. Several new algorithms are pro
posed, which bear interesting relationships to the Remez 
minimax approximation technique [ 1 1 , 12]. The concept 
of maximum flatness is generalised to allow compromises 
between equiripple and Hatband properties. The compu
tational aspects of the algorithms are discussed. As accu
racy is particularly critical in the approximation of filter 
functions in finite word length computer arithmetic, 
methods to preserve accuracy without recourse to the 
complications of transformed variables are given [ 1 , 2 ] . 

The design of min imum phase rational functions wi th 
arbitrary passband and stopband tolerance schemes is 
investigated. These functions are of particular importance 
because they can be efficiently realised as the transfer 
functions of linear analogue networks, including 
switched-capacitor filters (SCFs). Numerator and 
denominator polynomials have special properties which 
are best designed by a combination of two different 
methods. 

The approximation discussion so far has considered 
only filter amplitude functions and has ignored their 
associated group delay. Modern digital communications 
and signal-processing systems often require filters which 
satisfy simultaneous specifications on amplitude and 
group delay. A common practical design approach is to 
separate the two approximation problems by employing 
an all-pass funct ion to equalise the group delay of a 
min imum phase amplitude function. The latter funct ion 
should first be optimised to reduce the peaking of the 
delay towards the passband edges, either by smoothing 
the passband amplitude function (e.g. Butterworth) or 
reducing the ro l lo f f into the stopband. The general ampli
tude approximation methods offer various ways to trade 
of f between the amplitude and group delay character
istics. High-order touch points can be introduced into the 
passband and notches can be placed to tailor the stop-
band rol loff . Al though the demands on the group delay 
correction can be reduced in these ways, it is sti l l costly 
to use allpass functions. They are known to offer a non-
canonic solution to the combined amplitude and group 
delay approximation problem. Greater efficiency can be 
achieved by employing a general nonminimum phase 
function [13, 14]. However, these functions cannot be 
simulated by low-sensitivity SCFs at present. The argu
ment for all-pass equalisation is strengthened by the 
recent development of low-sensitivity all-pass SC ladder 
structures [ 1 5 ] . 

A method is presented whereby the techniques devel
oped to approximate the amplitude of a transfer funct ion 
can also be applied to the group delay of an allpass func-

IEE PROCEEDINGS-G, Vol. 138. No. 3. JUNE 1991 289 



t ion. Unfortunately, when this group delay function is 
interpolated, a system of ill-conditioned nonlinear equa
tions arises which becomes very difficult to solve with 
increasing order [16] , Since Newton- and Remez-type 
approximation methods depend on an efficient inter
polation step, they are diff icul t to apply wi th efficiency or 
reliability [ 17 ] . Alternative methods based on opti
misation techniques have therefore been studied [18, 19]. 

A new algorithm is proposed which permits direct 
application of Rernez-type approximation methods to the 
problem [20] , By observing the similarity between the 
group delay function and a filter amplitude function, the 
techniques and theorems for amplitude approximation 
are still valid. A stable, accurate algorithm is then devel
oped for arbitrary group delay correction. 

2 Filter amplitude approximation 

A transmission function is designed by working wi th a 
magnitude squared funct ion. It has the fol lowing pro
perty: 

T(s)T(-s) T(x) (1) 

The phase information has been removed and the func
tion has been linearised in terms of a single real variable, 
avoiding the use of complex arithmetic in later computa
tions. 

2.1 Curve-fitting problem 
Consider the problem of fitting a polynomial p(x) = a„ x° 
+ • • • + a0 in a minimax sense to some prescribed lunc-
t ion m(.x) on the interval [a , b] such that the maximum 
error max | p(x) - m(x)| is minimised. A variant of this 
problem is of interest to filter designers (Fig. 1). Two 
p(x ) 

Fig. 1 Solution of minimum curve-fitting problem by polynomial pix) 

curves, u(.x) = m(x) + 6 and f(.x) = m(.x) — <5, can be seen 
as boundary functions and p(.x) is sought to fit between 
them. At a series of points, the so-called touch points, p(x) 
wil l touch u(x) and l(x) alternately, which implies that 
p(.x) w i l l have the same zero- and first-order derivative 
values of u(.x) or /(.x). In a general sense, u(x) and /(.x) can 
be any functions satisfying u(.x) > l(x) on [a, b~\ and the 
order of tangency at the touch points can be greater than 
one. At M points (the touch points) on the upper and the 
lower function, \xti: a < x„ < xu + , < b) 

p " 1 ! ^ ) = u">(.x„) or H . x J r = 0, 1, 2, . . . , M i (2) 

(Fig. 2). For convenience we fix the two endpoints by 

p{a) = A !{a) s: A ^ u{a) 

pib) = B Hb) « S S u{b) (3) 

where A and B are usually fixed to the upper and lower 
boundaries, but could be assigned to some arbitrary 
values in between. In total there arc Nc specifications on 
the values and the derivatives of p( v) where 

w 
Nc = 2 + Lijij + 1) (4) 

i = i 

The aim of the curve-fit t ing problem is to find the lowest 
order approximating polynomial which fits the specifi
cations in eqns. 2 and 3. 
p(x ) 

where i = I , 2, 3, . . . , M and the superscript (r) signifies 
the r th derivative wi th respect to ,x. The exact locations 
of {.x„} are unknown but the sequence {//,} is specified 

Fig. 2 Bilateral approximation 

2.2 Interpolation 
The unknown positions of {.x„} provide M degrees of 
freedom, which can be used to reduce the order of the 
polynomial f rom the nominal problem order Nc. Thus 
Nc — M of the specifications can be chosen as constraints 
to fo rm a polynomial of order N, where 

N + 1 = N{ - M (5) 

The remaining M specifications must be met by adjusting 
the M positions of the touch points. 

The relation between the behaviour and the order of a 
polynomial is a complicated issue. To decide the 
min imum order is a diff icult problem and some theoreti
cal discussion can be found in Reference 2 1 ; however, in 
most cases the order determined by eqn. 5 is satisfactory. 
A N t h order polynomial can always be interpolated by 
N 4- 1 constraints. Osculatory Newton interpolation [22 ] 
can be used to interpolate a number of derivatives w i th 
certain computational advantages over other inter
polation methods [23 ] . 

2.3 Bilateral method 
Assume that, for the specifications 

(i) all fi-, are odd 
(ii) the touch points are assigned alternately to u(x) 

and l(x), i.e. {x„\i = 1, 3 M„} and {xti\i = 2, 4, 
M , } are the set of touch points on u(x) and l(x), respec
tively (where M , = M and M, = M — 1 i f M is odd and 
Mu = M — 1 and M , = M if M is even). 

These assumptions are true for a Chebyshev funct ion 
where all fi( are equal to 1 (osculatory points) and are 
valid for most filter functions. The Weierstrass poly
nomial approximation theorem guarantees that, i f the 
filter order is high enough, a solution lying between the 
two boundary functions wi l l exist [21 ] , 
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Interpolate p(x) such that 

p1"!*,,-) = u"%x„) r = 0, I , 

= 1, 3, 5, 

0, I . . . . 
: 2, 4, 6, 

• H, ~ 1 

M , 

, f t - 1 

. . . W, 

(da) 

(661 

( f i r ) 

p'"(x„.) = /<"(x„.) 

and 

p(fl) = A n(b) -. 

Thus, exactly Nc — M specifications are met by inter
polation. It now remains to adjust {.\„} to make 
{p^'\x„)} satisfy the other M specifications. 

Definitions 

upper error function e„(x) = p(x) — u(x) 

lower error function ej(x) = l(x) — p(x) 

mid-funct ion 

search funct ion 

combined error 

function 

m(x) = (l(x) + u(x))/2 

s(x) = max [e„(x), efcx)] 

-eu(x) i f p(x) > m(x) 

e^x) if p(x) ^ m(x) 
e(x) = 

From assumption (i) above, { f i , — 1} are restricted to be 
even, so, in general, the touch points are now points of 
inflection (Fig. 2) and s(x) wi l l change sign in the neigh
bourhood of each touch point {x„}. I f the polynomial is 
manipulated such that p(x) does not cross u(x) or l(x) at 
these points, p(x) must possess an extra order of tangency 
to u(x) or l(x), having then up to the ftth order tangency 
at {x„} required for p(x) to be a solution. At this stage, 
max [s(x)] = 0 in the neighbourhood of {*„•}. Notice that 
f r o m assumption (ii) there must be at least one min imum 
of e(x), denoted as xm,,,on [ x „ _ , , x , i + J.Therefore, i f 

i = 1, 2, 3, M (7) 

is achieved, p(x) is a solution. An approximation scheme 
can be adopted to generate an adjustment {Ax,,} 

{x„-} - {x„ + Ax,,} i= 1 ,2 ,3 , . . . , At (8) 

to reduce {<Kx„,)}. 

2.4 Newton's method 
Obviously, {Ax, ,} can be generated by a technique based 
on Newton's method which is found by solving a Jaco-
bian system [ 2 2 ] 

9 i (x„ i ) 

3 . ( 0 
9i(xm 9**(xml) 

0 A f ( x m M ) 

AX,! 

A x , 2 

A x , M j 

e{xm 

e(xml) 

where 

9,{x) = 
dx„ 

(9) 

(10) 

The computational cost of setting up the Jacobian matrix 
J and solving the Newton system is usually large (0(n3)). 
Efficient methods to obtain the derivatives gt{xmj) and to 
solve for the touch point increments {Ax, ,} are now pre
sented. 

Theorem I: Define a A'th order polynomial q(x) subject 
to the fol lowing A' + 1 interpolation conditions 

<7(xmi) = e(xmi) \= 1. 2, 

q l r |(.\„.) = 0 r = 0, 1 

and 

(x - xH)q(x) . 

2, ; = 1,2, M 

<V.x) 
MiHx) 

1, 2, M 

( l l f l ) 

(116) 

( H i ) 

then the Newton system (eqn. 9) can be solved for the 
touch point increments { A x , . j by 

Ax„ = l im <5,-(x) (12) 

Proof of theorem I: Consider the solution of the Newton 
system for touch point movements Ax„ by interpolation 
of q(x). Two remarks are necessary for the proof. 

Remark 1: Suppose u(x) or l(x) (and so e(x)) are differen-
tiable up to / i , th order at all the touch points. The func
tion gJ(x), formed by differentiating the interpolated 
polynomial p(x) wi th respect to a touch point x „ , is 
therefore itself an N t h order polynomial of x. I t can be 
calculated by interpolation subject to the fo l lowing con
straints: 

?!"(x,;) = 0 r = 0, 1 , . 

; = 1,2,. , M 

1 

fl!*-1>(xj = e<*>(x11.) r = 0, l , . . . , / v 

(13a) 

(136) 

Proof: Eqn. 13a is evident as the fij interpolated deriv
atives of p(x,j) are fixed wi th respect to another touch 
point x„, i ^ / The proof of eqn. 136 follows. Suppose 
that one of the touch points on u(x), x„, changes to x'ti = 
x„ + h and the ordinate f r o m u(x„) to u(x„ + h). Define 
the new polynomial interpolated f r o m {x,,, x, 2 , x'H, 
• • •. xm} by P*W- As the polynomial is interpolated up to 
ft: — 1 th tangency to u(x) at this touch point. 

p^(Xli + h) = u<"(x„. + h) r = 0, 1, 2 , . . . , ^ - (14) 

Expand p f t(x) at x'ti by a Taylor series and evaluate p%\x) 
at x = x„ and notice (eqn. 14) 

Pi, r ,(*„) < 

= u"\Xli + h ) - Pr "(x„ + h)h + 0(h2) 

for r = 0, 1, 2, - 1. 

dp"'(x) 

(15) 

Sxti 

l im 
d - 0 

Pr(x„.) - p<"(x„.) 

[^'''(x,, + h) 

•• l im • 
* - 0 

- u | r»(x„) + Q(h2) 

(16) 

(17) 

(18) 

Eqn. 136 follows by noting that l im p} , ' + "(x„ + 6) = 
p,r+ u ( x „ ) as h - » 0 and the definit ion of e(x) for r = 0, 1, 
2, . . . , (ij: — 1. In general, the above proof can be applied 
to all {x„}, which may be touch points on either u(x) or 
/(x). 
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Remark 2; The Newton system can be solved for the 
touch point increments [Ax,,' by 

„ ( « - >>f 

A.x„ 
31/"-"(.*„•) 

<?""-"(*„•) 
e?"'{xu) 

I, 2. (19) 

Proof: A single row of the Jacobian system (eqn. 9) is 

X i/iU^.) A.v„ = e(xmJ) j - \ , 2 , M (20) 

and define 

(21) 

From theorem 1, q(x) is also a polynomial and meets the 
constraints of eqn. 11. Substitute x = xtj into eqn. 21 and 

= g f \ x t j ) Ax, ; ( 2 2 > 

Eqn. 19 follows. 
From eqns. life and 6a, x„ is a (/ij — 2)th order zero of 

q{x) and (/i, — l)th order zero of e{x). They can be 
expanded by a Taylor expansion at x„ as 

q(x) = Aq(x - X / " 1 + 0[(x - x „ H 

e{x) = Ae(x-xlir + OUx-x,ir*^ 

From eqns. 19, 23 and 24, 

(23) 

(24) 

(25) 

e""'(x„) 

_ /4, 

" f t - 4 . 
From eqns. 23, 24 and 25, it is easily seen that eqn. 12 is 
true. 

As both numerator and denominator of eqn. 19 tend 
to zero at x „ , each touch point increment Ax I ( can only 
be calculated from the limiting values of the increment 
polynomial q{x) and error function e(x) in the proximity 
of the touch point, x„ + h. The distance h must be chosen 
suitably according to word length and order of touch 
point. A suggested rule is x 1 0 ~ 6 / N for double preci
sion arithmetic. 

The computational cost of the whole procedure is very 
small as it involves only repeated interpolation. The 0(n3) 
step of solving the Newton system has been reduced to 
an 0(n 2 ) interpolation. Each evaluation of the inter
polated polynomial costs 0(n) multiplications. 

2.5 Generalised Remez methods 
As has been shown, Ax„ can be approximately evaluated 
by <5,(x) at a point close to x„ . If this point is selected as 
x = xmi, a very simple adjustment to the touch point 
positions is revealed (notice eqn. 1 la) 

A.x„ = <M.xmi) 

= (Xml - x M x m i ) 

(26) 

In the special case of the curve-fitting problem with all 
ixt• = I, eqn. 26 results in the well-known Remez method 
which updates the variable vector by 

{*.,-}«-{**.} / = 1 . 2 , . . . , A f (27) 

This indicates that the interpolation ordinates are simply 
exchanged with the locations of the extrema and reinter-
polated (Fig. 2). It may be expected that ordinates 
separated by an excessively large ripple will be brought 
together and those separated by an insufficiently large 
ripple will be moved apart. When the {x„} are close to 
the solution, the {xmi\ are also close to {.x,,}, and the 
adjustment given by eqn. 26 becomes similar to that 
given by a Newton method. This confirms that the 
Remez method achieves the good convergency of Newton 
iteration on approach to the solution. Convergency of 
this algorithm is guaranteed [21] for sufficiently large N, 
and it has been widely adopted in F I R and IIR digital 
filter design [24-26]. For the case of / i , > 1, the simple 
exchange process of eqn. 27 is unsuitable. Instead, the 
adjustment given by eqn. 26 is applicable 

{*„• [x,t + (x m l - xn)IHi} i ' = l , 2 , M (28) 

This can be seen as a generalisation of the Remez method 
of eqn. 27 in which, instead of moving the abscissa all the 
way to the extremum, it is moved by a fraction of the 
distance dependent on the order of the touch point. 

2.6 Unilateral method 
In most filter applications, emphasis is given to one of the 
bounding functions. For example, in the passband region 
of a filter, u(x) is most important as it determines the 
points of maximum transmission. All the high-order 
touch points (with / i ( > 1) could be assigned to u(x) for 
greatest effect. In a unilateral method the Nc — M specifi
cations can be met by directly interpolating p(x) to ^,th 
order tangency at all the touch points on u(x). The lower 
curve /(x) is used only as a bound for the ripple, so that 
all touch points on l(x) should be adjusted to = 1 (Fig. 
3). The difference between p(x) and l(x) is used as the 
objective function. Only half of the touch points are kept 
as variables compared with the bilateral method. 

p(x) 

10 "m0 

F i q . 3 Unilateral approximation 

2.7 Computer algorithm 
The approximation methods proposed in Section 2.6 can 
be implemented on a computer by the following algo
rithm: 

Step I Read the boundary functions u(x) and /(x) as 
piecewise linear functions on range [a, t>]. Read the 
number of touch points and specified orders / j , . 
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Step 2: Distribute j x , j uniformly over [a, ft] assigning 
x l 0 = a and x,„ = b. 

Step 3: Interpolate jx,,} alternately to boundaries u(x) 
and l(x). 

Step 4: Set x m 0 = a 

i = 0, 2, 4, n; choose xm , to maximise 

{p\x) - u(.v), x m i _ , sS x $ x I i + , } 

i = 1, 3. 5, . . . , n — 1; choose xm, to maximise 

{((x) - p(x), x m i _ , ^xsS .v , , .* , } 

Step 5: Compute improved touch point estimates by 
one of the methods in Section 2.3. The extended Remez 
method indicates that 

X„ = X„ + ((xm i - X„)/fli) 

Step 6: Compute convergence estimate for klh iter
ation as 

Z «<*-> 
E* = ~; — 

X | u ( . x „ , ) - / ( x m l . ) | 

Terminate if et < tolerance or e„ > ek + , (divergent) 

2.8 Software considerations 
2.8.1 Interpolation : The interpolation of the polynomial 
at Step 3 can be done by oscillatory Newton inter
polation. This is an extended form of the well known 
Newton interpolation, whereby a number of derivatives 
can be matched to the specified function. 

It is particularly important in a filter problem to take 
care with the accuracy of construction and representation 
of the polynomials within finite word length arithmetic. 
Cancellation errors are particularly severe as the touch 
points of a filter function become closely spaced near a 
band edge. A typical calculation would be 

/ [ . x , o . - X M ] = / ( X ' o ) ' { ( - X l l ) (29) 

where cancellation errors occur in numerator and 
denominator as x, 0 approaches x,,. 

The effects of these cancellation errors can be mini
mised by calculating interpolated values by the zig-zag 
path method [22]. The principle is that a path is taken 
through the Newton table, such that the coefficients with 
the largest errors are multiplied by abscissae with the 
smallest differences. By using this accurate interpolation 
and representation of polynomials, high-order functions 
can be obtained (up to length 110 F I R designs). This 
avoids the complications of transformed variable 
methods [1 ,2] . 

2.8.2 Searching: At Step 4 a search must be made for 
the touch point extrema. For reliability, the best method 
is found to be a single linear search over a uniform grid 
of points. Normally only 10-20 points are required per 
touch point for a terminating accuracy better than 1%. 
The linear search requires a fairly large number of func
tion evaluations for higher order approximation. Faster 
searching is available by applying cubic, quadratic or 
golden section search methods which require only five or 
six steps per touch point for very high accuracy (10~ 8%). 
However, when the attenuation boundaries are specified 
in piecewise linear form and not by a smooth function 

with continuous derivatives, these search methods can 
mislead and may determine the extrema erroneously. A 
combination of the reliability of the linear search with the 
speed of gradient search methods is discussed by Anton-
iou [27]. 

2.8.3 Cluster method: In most cases, the boundary func
tions are only given by values and the derivatives are not 
available. Although the derivatives can be calculated by 
numerical differentiation, this is notoriously inaccurate 
for high orders. The polynomial obtained by a Newton 
interpolation may become totally unreliable in the neigh
bourhood of a high-order touch point. A better condi
tioned method is to interpolate the polynomial at a 
cluster of points with first-order tangency to the bound
ary function. A /i,th-order touch point with ftt odd 
requires (/i, + l)/2 first-order touch points distributed in 
the neighbourhood of x„ . In practice, it is found that a 
spacing of 10" 6 (with normalised passband width of 1) 
can be chosen. The error caused by this approximate 
method can be controlled and made much smaller than 
the allowed ripple [the separation of u(x) and /(x)]. 

2.8.4 Damping: The term damping is used for the 
process whereby the step sizes determined by Newton's 
method may be reduced to avoid divergence. A form of 
damping can be useful where Newton's method is used to 
predict adjustments Ax„ , and the touch points would 
cross one another or move entirely outside the approx
imating region [a, ft]. In these cases (usually far from 
solution), it is found useful to limit the movement of the 
touch points to half the distance in the direction of their 
closest neighbour. In this way, no touch point may cross 
or escape the region [a, ft], and yet the direction required 
to reduce the extrema is observed. 

2.8.5 Convergency, accuracy and storage: Computa
tion costs are 0{n2) for passband approximation. Stop-
band approximation requires solution of a matrix system 
with 0(n 3 ) efficiency. Convergence is quadratic near solu
tion, a property of algorithms based on Newton's 
method. Divergence occurs only in those cases where the 
boundary functions are too severe for the selected order 
of the function. The accuracy of the algorithm is limited 
solely by the fineness of the search grid used to determine 
the positions of the extrema. Storage is dominated by the 
matrix system and Newton interpolation tables and is of 
0(n2) size. 

3 Rational approximation 

3.1 Approximation method for rational functions 
In this section, a design technique for rational filter trans
fer functions will be considered. The filter amplitude spe
cifications need not be ideal and can have arbitrary 
weightings in both passband and stopband. The approx
imating function can be designed in a minimax fashion, 
with high-order touch points assigned to certain posi
tions in each band. Classical functions result as special 
cases from a general algorithm. 

For simplicity, a lowpass filter specification will be 
considered first. The filter specification is defined as a 
piecewise template of attenuation in dB against frequency 
in Hz. The following parameters must be specified by a 
designer. 

fpivfpu'- passband edge frequencies (Hz) 
f,io<fshi- stopband edge frequencies (Hz) 

NN, ND : numerator and denominator orders 
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The transfer function to be designed is 

N[x) 
T{x) = 

D(x) 
(30) 

The zeros of T(x) are contained in the numerator poly
nomial. In a filter transfer function they are most effec
tively assigned to the imaginary axis of the s-plane (real 
x-plane locations) and placed in the stopband region for 
maximum attenuation. By making this restriction, the 
rational function becomes a minimum phase function. 
The denominator polynomial contains the complex pole 
locations which must be positioned to control the pass-
band transmission characteristics. 

The following procedure is used to design a rational 
filter approximation. 

Step I: Read ND, NN, f p l o , /„,, /„„ J M , touch point 
orders {(!,#}, {M,Pi} and piecewise linear descriptions of 
L(o>) and U(a>). 

Step 2: Initialise {xlpi} in the passband region [ x p ( o , 
Xpj,] and {x, s i } in the stopband region [ x s l o , x s J l l ] , equidis-
tantly spaced. Set N(x) to 1. 

Step 3: Solve the passband approximation problem on 

Opi . . -V>] u s i n B D M s u c h t h a t 

u(x) = N(x)/Ux) 

l(x) = N(x)/U(x) 

and compute initial convergence estimate e,p. 
Step 4: Solve stopband approximation problem on 

I X i a . *,*,-] using N(x) such that 

u(x) = PV(X)ID(X) 

l(x) = 0Ux)/D(x) 

and compute initial convergence estimate e,. 
Step 5: Terminate 

k > maxiter. 
if £_ and £, < tolerance or 

Owing to the special properties of the numerator and 
denominator polynomials, two different approaches are 
appropriate for solving steps 3 and 4. Note that a multi
plying factor p is introduced in step 4 so that the stop-
band attenuation will only be met to a constant dB error. 
In general, it is not possible to meet the stopband and 
passband specifications exactly and some error margin 
must be allowed in either passband or stopband, or both. 
In this approach, the passband specifications will be met 
as closely as possible, and the stepband attenuation char
acteristics will have some error above or below the speci
fied attenuation. This expression of the filtering problem 
is useful in practice, as good control of the passband 
characteristics is usually of greater importance than the 
stopband. Note that if the factor fi is less than 1, then the 
specifications have been exceeded and it may be possible 
to reduce the order of the function or the number of 
zeros. Conversely, if p > 1 the order must be increased or 
more zeros should be introduced. 

3.1.1 Passband design: Any of the methods of Sections 
2.3-4 are suitable for the design of the passband function 
D(x). It is found that the bilateral method has very good 
global convergence. The unilateral method is then useful 
to ensure that the function does not exceed maximum 
transmission (i.e. 0 < T(.x) < 1) for passive filter realis
ation. The touch points are all fixed to the upper bound
ary. 

3.1.2 Stopband design: The numerator polynomial is of 
(he following particular form: 

N(x) = K.v"» f l (* - • (31) 

This corresponds to a special case of the unilateral 
method where all touch points are tangential to the lower 
boundary which is zero. It remains to compute the 
attenuation margin 0 (Fig. 4). Two methods can be 
p(x) 

U M 

X l p 0 X t p ' X t p 2 x t p 3 x t p i X p h i x t s ! x l s 2 x t s3 
xtp5 x s lo 

*ts0 
F i g . 4 Scheme for approximation of an arbitrary lowpass /titer specifi
cation by a rational function 

applied: the heuristic method [26] permits the approx
imation methods of this section to be used. However, a 
variant of the method of Temes and Smith [1] has 
proved to be more stable and more easily extended to 
multiband approximations. A Jacobian matrix of the 
peak positions with respect to the touch points must be 
set up and solved. 

S^lx^o) 

dx.,o 

• 3 r ( x „ 0 ) 
A x M 0 

Sx,s„ 
- U ( X m 3 n ) L P _ 

and because 
8T(x) 

T(x) 
dx,si (x - x,,,) 

Eqn. 32 can be rearranged and evaluated as 

(32) 

(33) 

( x msO - x u o ) X,J 

msn -*isnr 

V(Xm30) 
r(*,™o) 

Vix^) 

A x , s 0 
1 

Ax,„ 

P _ 
1 

(34) 
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The touch points are updated as 

* . s i = x,si + &X„i <35' 

and some damping may be necessary. Note that the con
stant K must also be determined. A good method of 
assigning a value to K is to fix the passband edge posi
tion between passband and stopband iterations. 

K = L{xphi)/T{xpki) (36) 

3.3 Computed examples 
A series of computed approximation examples is now 
given to illustrate the power and flexibility of the above 
methods. Fig. 5 shows a polynomial ( F I R ) approximation 
to arbitrarily shaped boundaries. A touch point of fifth-
order tangency is seen at the centre of the function. F I R 
approximations up to length 110 (N = 55) have been 
obtained using double precision arithmetic. 

0 96 

3.2 Passive ladder design 
Often the transfer function designed by the methods of 
previous sections will be decomposed into a passive 
ladder prototype for later simulation by active circuits. 
This is an error-prone numerical procedure. In this 
section, it will be demonstrated that the ladder can be 
designed directly from the touch points to provide high 
accuracy at the ripples that characterise the filter 
response. 

Orchard has proposed a very simple but efficient algo
rithm to design an R L C ladder from a given reflection 
function p(co) [28], The structure of the ladder is pre
scribed and only the component values remain to be 
determined. A set of real and imaginary parts 
{Re [/Kto,,)], Im W c o J ] } are used to set up the objective 
function vector F for Newton-type iteration, and com
ponent values { y t } form a vector of variables Y [22]. The 
core of Orchard's algorithm is an elegant, well condi
tioned method to compute F and the Jacobian matrix of 
derivatives 

Re and Im 
. 3yt . 

by chain matrix calculations. 
In the case of certain classical approximations, where 

the points of maximum or minimum transmission 
(pO'cu) = 0 or p(j<o) = 1) are known, the explicit calcu
lation of p(jw) is not necessary for Orchard's algorithm. 
However, in general, Orchard's method requires the for
mation of p\jo)) by Hurwitz factorisation of \p\2 as in 
classical synthesis, which is an ill-conditioned procedure 
[1]. An extension of Orchard's method is described 
below which works with more general forms of \p\1 but 
eliminates any root-finding requirement. 

The value of |/>| 2 and its deriatives at the touch points 
{*„} can be chosen as the objective function for the 
Newton scheme. The derivatives of \p\2 with respect to 
the element values {yk} are required for the construction 
of the Jacobian matrix and are given by (let *„• = tuj-) 

j^(d'\p(u,i)\ 
dx' 2 dco' 

Re (37) 

for r = 0 , . . . , //, and i = 1, 2 , . . . , M. 
Notice that here p (the conjugate of p) and dp/Syk are 

obtained from the approximate network with guessed 
component values, which can be generated by Orchard's 
algorithm and then the remaining part of eqn. 37 can be 
calculated by a numerical differentiation. Here it is also 
found to be efficient to use the 'cluster' method men
tioned in Section 2.8.3. The objective function \p(w,i)\1 

and derivatives are obtainable from a unilateral passband 
approximation of Section 2.6. This provides a direct link 
between approximation and ladder design procedures, 
bypassing the traditional Hurwitz factorisation step. 

-5 0 80 

0 72 

0 64 

high-order touch point 

0 0 0 2 Oi. 0 6 0 8 10 
x 

F i g . 5 Length 51 FIR approximation to arbitrary boundaries 

Arbitrary rational function (IIR) filter responses are 
shown in Figs. 6-7. An llth-order function is fitted 
touching the passband boundaries and meeting the stop-
band boundary to within some constant dB error (Fig. 6). 
A bandpass approximation with asymmetric stopband 
and sagging passband is shown in Fig. 7. High-order 
touch points can be placed in the passband to trade off 
between group delay, stopband attenuation and passive 
sensitivity properties. A series of such passbands is shown 
in Fig. 8, including inverse Chebyshev and elliptic forms 
as special cases. The effects on stopband attenuation and 
group delay is shown in Table 1. As high-order touch 
points are introduced into the response, there is a signifi
cant reduction in the peaks of the group delay, which 
follows from the progressive smoothing of the amplitude 
characteristic. There is also an accompanying improve
ment in sensitivity behaviour of the resulting passive filter 
realisation, as would be expected from Orchard's cri
terion [29], since the higher order touch points ensure 
adherence to maximum transmission over a wider inter
val. This property is inherited by active simulations, 
where sensitivity considerations are of major concern. 
There is some attendant cost, with a corresponding loss 
in stopband attenuation. Trade-off between these factors 
must be considered in design. It is obviously not possible 
to dictate the location, sequence and order of the touch 
points in a general manner, but it is recommended that 
they are deployed in regions where the filter character
istic is most critical. 

Practical examples of the use of amplitude-shaping 
capabilities are given in Figs. 9-10. In Fig. 9 a length 69 
differentiator is designed with a high-order touch point at 
0 Hz for increased D C linearity [4]. A 14th-order wide
band S C filter with 200 kHz clock frequency shows a 
1 dB passband droop due to sine (x) weighting The orig
inal 0.1 dB flat equiripple passband behaviour can be 
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17 8 

restored by prewarping the filter response upwards. 
Attenuation line-weighting and L D I ladder termination 
distortion can be treated in a similar manner. This tech
nique is used in a more general sense (Fig. 11) to compen
sate for distortion caused by switch and amplifier 

0.4 0 6 

frequency, Hzx 10 

0.00 

- 0 0 5 

- 0 1 0 

-0.1 5 

-0 .20 

-0 .25 

-0.3 0 L 
0.0 0.5 1.0 1.5 

frequency H z x 10 

2.0 

F i g . 6 

a I llh-order lowpass filler with arbitrary passband and stopband specifications 
b Passband detail 

nonidealities in a lOth-order S C left -LUD ladder filter 
[30]. In fact, the optimisation process involves a few iter
ations of circuit analysis and redesign to inverse weighted 
specifications. However, it is significantly more efficient 

T a b l e 1 : C o m p a r i s o n o f g r o u p d e l a y a n d s t o p b a n d a t t e n u 
a t i o n o f f i l t e r s in F i g . 8 

Filter N a m e 
number 

G r o u p delay S t o p b a n d 
variat ion, ms reject ion. d B 

1 inverse 0.7 22 
C h e b y s h e v 

2 2 - 1 0 - 2 1 .35 4 3 
3 4 - 6 - 4 1.4 4 7 
4 2 - 2 - 6 - 2 - 2 1.9 5 3 
5 6 - 2 - 6 1.3 4 8 
6 4 - 2 - 2 - 2 - 4 1.6 5 5 
7 el l iptic 2 .2 58 

-20 

c -60 

-80 

-100 

-120 
0.0 0.4 0 8 12 16 

u 
frequency, Hz x 10 

0 0 

-0 .6 

-1.2 

8. - 1 8 

- 2 . 4 

-3 0 

9.0 9 5 10.0 

frequency, Hz x10 3 

10.5 110 

F i g . 7 

a lOth-order asymmetric bandpass filter with sagging passband 
b Passband detail 

B 0 6 

8 . - 0 . 8 

12 15 18 3 
frequency .HzxlO 

2 
0 0 , ^ i f l 

-1 .2 
-1 .5 

12 15 18 3 
frequency .HzxlO 

3 
-0 .0B 

12 15 18 < 
f requency .Hzx lO 

5 

12 15 18 2 
f requency .Hzx lO 

12 15 18 3 

frequency .HzxlO 

12 15 18 3 

frequency, Hzx10 

6 
0 .0 . 

- 0 3 
- 0 6 
- 0 9 
-1.2 
-1 5 

12 15 18 3 

f requency .Hzx lO 

F i g . 8 Sequence of Nth-order filter passbands employing high-order 
touch points 
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10 
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o frequency. Hz 

F i g . 9 A Length 69 FIR differentiator 

compar i son of linearity at D C 

0.00 0 0 5 0.10 
frequency Hz 

frequency, Hz 

F i g . 9 B Length 69 FIR differentiator with l3th-order touch point at 0 
Hz (linearity comparison shown as inset) 

- 2 0 

- 4 0 

m - 6 0 
x> 
c" 
o 

°> - 8 0 

-100 

-120 

-140 200 400 600 800 

frequency, Hz x 10 

F i g . 1 0 A Wideband bandpass SC filter with sine (.t) distortion 

IEE PROCEEDINGS-G. Vol. 138. No. 3. JUNE 1991 

than a full circuit optimisation as the computation is 
dependent on the order of the filter rather than the 
number of components in the circuit (e.g. a lOth-order 
filter will be realised as a circuit with 40 components). 

correc .ee 

sincCx) distorted 

predistorted 

-1 0 

frequency, Hz xlO^ 

F i g . 1 0 B Sine (x) correction 

9.4 9 8 10 2 
optimised 

p r e - d i s t o r t e d distorted 

F i g . 11 
and switch nonidealities 

frequency , Hz x 10 

Optimisation of distortion in left-LUD SC filler due to op-amp 

4 Group delay approximation by allpass functions 

The allpass function in the continuous time s-domain is 

X{-s) 
T(S): 

X(s) 
(38) 

and the group delay function can be expressed as 

dX(-s) 
2 Re <X(s) 

T(W) = • 
ds 

X(s)X(-s) D M 
(39) 

As the denominator of eqn. 39 is a magnitude-squared 
function, it can be designed by standard Remez-type 
methods. The numerator function is an even function of s 
which can be formed by Hurwitz factorisation of the 
denominator polynomial. 
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4.1 New Remez-type algorithm 
Consider now the problem of fitting the delay function to 
lower and upper boundaries L(a>) and V(<.o) in a minimax 
sense over a frequency interval wio to ioki (Fig. 12). It is 
required that 

N(w) 
Lieu) + C ^ $ Uivj) + C (40) 

X{j(o)X(-ja)) 

u(oj) 

I 00 

F i g . 1 2 Approximation scheme for allpass group delay 

where the unknown constant delay offset C is necessary 
to ensure that 

T(O>) da> = nn (41) 
J o 

The constant C can be added without affecting the rela
tive delay variation over the approximating region. 

The allpass approximation method may be sum
marised by the following steps . 

Step I: Read lower and upper delay boundaries as 
piecewise boundaries L(co) and U(o>) and equaliser order 
n. 

Step 2: Set numerator function N(a>) = 1 and guess 
constant C = nn/(a>ki — co,J 

Step 3: Apply Remez approximation techniques to 
solve 

u(w) = NM/(L<w) + C) 

/(co) = N((o)/{U{w) + C) 

oveT the range a)h-whi using D(x). 
Step 4: Recalculate C as average delay constant 

between specified and approximated T(CO) over cu^to . 
Step 5: Form numerator function by Hurwitz factor

isation of D(w). Let the roots be s, = — a, + j'ft,, then the 
delay function is 

"'2 { a - a ) 

\af + (OJ + ft,)2 af + (cu - ft,)2 J 

The numerator function can be calculated from eqns. 43 
and 44 

N(u>) = D M x T(O>) (44) 

Step 6: Repeat from step 2 until converged. 

4.2 Computer implementation 
The factorisation at step 5 can be made very efficient by 
utilising root positions from the previous factorisation as 
good initial guesses of roots for the present factorisation. 

298 

Using Muller's quadratic interpolation method, this typi
cally only requires two to three iterations per root [31]. 

Accuracy is preserved in the algorithm by avoiding 
representation of polynomials in coefficient form. Instead, 
Newton interpolated form is used at step 3 and factored 
form at step 4. Both forms are well conditioned on the 
approximation region, allowing high-order functions and 
narrow band allpass functions to be designed. 

No theoretical proof has been obtained of con
vergence. However, experience has shown that con
vergence is good and that five or six cycles will generally 
suffice. The mechanism of the algorithm is dependent on 
the similarity between the group delay function t(co) and 
the denominator magnitude function D(w) in eqn. 39. The 
numerator is observed to be a smooth function over the 
approximating region, which warps the delay function of 
the denominator. Further theoretical investigation is 
being undertaken. 

Digital allpass functions can be obtained by bilinear 
transformation. The delay specifications must be pre-
warped by a factor of cos (coT/2) 2, 

Group delay equalisation can be performed by com
bining Um) and V(w) with the additive inverse of the 
group delay function of the amplitude filter. In this case, 
the total group delay of the allpass and amplitude filter 
stages will meet the desired specifications. 

4.3 Computed examples 
High-order touch points can be introduced into the delay 
function by the approximation methods of Section 2. Fig. 
13 shows a 12th-order maximally flat group delay 
response (llth-order touch point). Fig. 14 shows a 
stepped form of group delay. Fig. 15 shows a 28th-order 
stepped group delay response with a 5th-order touch 
point at the lower band edge. Finally, a 28th-order 
allpass function is employed to equalise the delay of a 
lOth-order elliptic amplitude filter to a variation of 
+ 50 fis over the passband (Fig. 16). 

4.4 Advantages 
An iterative design procedure which works on the group 
delay function and employs Remez-type approximation 
has been proposed. Advantages of this algorithm are as 
follows: 

(1) Good initial guesses of parameters are not required 
for convergence. As with the Remez approximation the 
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F i g . 1 3 12th-order maximally flat allpass group delay approximation 
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interpolation abscissae can be arbitrarily spaced on the 
approximation region (normally equidistantly). 
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F i g . 1 4 28lh-order stepped allpass group delay approximation 

high-order touch point 
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F i g . 1 5 28th-order allpass group delay approximation with high-order 
touch point 

(2) The algorithm is well conditioned. Accuracy is 
maintained by representing the design polynomials in 
either Newton or factored form, instead of the ill condi
tioned coefficient form. High orders (>40) and narrow 
band design can be obtained. High-order designs are of 
some interest for digital filters where a very selective 
linear phase filter is required, which would be too expen
sive in nonrecursive form. 

(3) Stability of the solution is guaranteed at all stages 
of the algorithm. The roots of the denominator of the 
allpass function must lie in the left-half plane because of 
the Hurwitz factorisation step. 

(4) Computational requirements are light. The process 
only involves the fast Remez exchange and a factor
isation step. 

(5) The convergence of the algorithm is good. 

In computer terms, this algorithm can be conveniently 
combined with amplitude approximation software, since 

it draws on the same numerical methods of interpolation 
and factorisation. 

n 
60 

corrected response 

equansei response 
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20 

10 original fitter 
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100 300 200 400 500 600 
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corrected response 

2 0 2.5 3 0 3 3 5 4 0 
b frequency, Hz x 10 

F i g . 1 6 

a Equalisation of lOth-order elliptic filter delay response by 28th-order allpass 
function 
b Passband detail 

5 Conclusions 

The amplitude and group delay response of filters can be 
designed with great flexibility by a series of extended 
Remez exchange algorithms. The amplitude response can 
be weighted arbitrarily in passband and stopband. High-
order touch points have been introduced as a gener
alisation of the idea of maximum flatness. They are 
shown to offer the designer freedom to influence the filter 
characteristic in critical regions, when trade-off in the 
properties of group delay, passive sensitivity and stop-
band attenuation can be effected. Similar manipulations 
are possible in the group delay of an allpass function. The 
new algorithms are fast and efficient and have found suc
cessful application in the P A N D D A filter compiler [30]. 
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Canon sea i design of integrated ladder filters 

R.K. Henderson, BSc, PhD 
Li Ping, MS, PhD 
Prof. J.I. Sewell, BSc, PhD, CEng, FIEE 

Indexing terms: Active fillers. Ladder fillers. Simulation 

Abstract: Necessary conditions are given for the 
existence of a one-opamp-per-pole (canonical) 
realisation of a transfer function by an active 
ladder filter designed by operational simulation 
methods. The parity of the transfer function is 
shown to be critical. Some new design methods 
are applied to guarantee canonical low-sensitivity 
realisation of hitherto problematic filter types. 
These ensure a uniform progression of circuit 
structures with filter order. Hybrid matrix 
methods are shown to be useful to minimise th; 
use of opamps in the simulation of arbitrary 
prototype ladder topologies. 

1 Introduction 

Low-sensitivity integrated active RC or switched-
capacitor (SC) filter structures based on passive ladder 
simulation have been widely used for more than three 
decades [1, 2]. Among many alternatives, the most 
popular are the leapfrog and coupled-biquad circuits by 
virtue of their stray insensitivity [3, 4] . However, the 
advantages of these circuits have always been compro
mised by their relatively complicated design procedures, 
requiring different design techniques to meet different 
filter specifications. For this reason, matrix methods have 
been introduced to regularise the design procedures, 
ensuring that the steps involved do not change signifi
cantly according to the form of prototype and system 
order [5, 6]. Some inconsistencies still remain, and it is 
the purpose of this paper to address these. 

An efficient integrated filter design will normally mini
mise the use of opamps, since these consume power and 
are sources of noise. Realisations with less than one 
opamp per pole are normally sensitive to component 
deviations and, in particular for S C circuits, to top and 
bottom plate stray capacitance. Therefore, it is generally 
accepted that one-opamp-per-pole realisations are canon
ical for low-sensitivity ladder circuits. However, this is 
not always achievable. For example, a 'pure' even-order 
lowpass elliptic function cannot be realised by a proto
type passive ladder, unless the function is modified at the 
cost of poorer attenuation in the stopband [7]. Another 
problem exists for bandstop or highpass functions where, 
although a prototype can be synthesised, its straightfor-
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ward active simulation would be unstable [2]. Hence it is 
of both theoretical and practical interest to develop a 
procedure for canonical ladder design for general forms 
of transfer function. 

A necessary condition is derived to assess whether a 
given transfer function possesses a canonical ladder 
realisation. The outcome is shown to be dependent on 
the parity of the numerator. This condition is also 
believed to be sufficient, although a rigorous proof has 
not been obtained. For transfer functions with the wrong 
parity, a novel method is introduced to realise canonical 
ladder circuits by changing the parity of the numerator 
and compensating for the distortion in the simulation 
procedure. Thus a wide family of hitherto problematic 
transfer functions can be realised by canonic active cir
cuits. A regular progression of circuits with increasing 
order is now possible, in the same way as for biquadratic 
cascade realisations. The simulation of arbitrary forms of 
ladder prototype which do not belong to the minimum 
node type is considered. Hybrid matrix methods are 
shown to be useful to ensure canonical realisations in 
these cases. 

2 Standard ladder simulation methods 

A passive ladder can be described by the nodal equation 

YV = J (1) 

where 

Y(s) = (sC + s ' T + G) (2) 
and where C , T and G are matrices formed from the con
tributions of capacitors, inductors and resistors respec
tively, V is the vector of node voltages and J is the input 
vector. A design procedure has been developed to realise 
eqn. 1 by active RC and S C circuits [8] . This is done by 
creating a set of intermediate variables and decomposing 
the system eqn. 1 into two interrelated systems. For 
example, in active RC circuits this decomposition can be 
performed in the following ways. 

2.1 Left matrix decomposition 
Factorise the matrix C i n t o 

C = C , C r (3) 

The following pair of equations is equivalent to eqn. 1: 

CXW =(-s~lr -G)y-(-J) (4a) 

CrV = s'xW (4b) 

where W is the vector of intermediate variables. 

2.2 Right matrix decomposition 
r can also be factorised as 

r = r,r r (5) 
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The following pair of equations is equivalent to eqn. 1 

CV = '[r,>f + GV + (-/)] 
iw = s lr, v 

(6a) 

(6b) 

The details of the design procedure can be found in [5, 6. 
8, 9], covering the well known leapfrog and coupled-
biquad methods together with some new ones, notably 
those obtained by adopting L U decompositions [10]. As 
system eqn. 1 with size n can at most realise a 2nth-order 
or a (2n — Uth-order transfer function for an even-order 
or an odd-order system respectively, then: 

Definition I: System eqn. 1 with size n is said to represent 
a canonical ladder prototype if it realises a 2nth-order or 
a (2n — l)th-order transfer function. 

In [10] it has been shown that system eqn. 1 can always 
be simulated by an active RC or S C ladder with 2n 
opamps; alternatively, if the transfer function is of order 
2n — 1 a simulation with 2n — 1 opamps is possible. 
Therefore the problem of finding a canonical standard 
ladder simulation becomes that of finding a canonical 
ladder prototype. 

3 Canonical iadder prototypes 

In the following, conditions will be derived for a ladder 
prototype eqn. 1 to be canonical. First some properties of 
the prototype eqn. 1 are stated as follows: 

Remark I: The nodal description of a doubly-terminated 
ladder synthesised from the minimum node two-port sec
tions in Fig. 1 has the following properties: 

s h u n t C 

o— h II 

shunt C . s e r i e s I X s h u n t L , s e r i e s LC 

F i g . 1 Minimum node two-port sections 
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(a) C. r and G are all tridiagonal matrices. So Y is also 
tridiagonal. 

(b) J has only one nonzero element, i.e. J = [ J , , 0 

or. 
(c) G has only two nonzero elements glt = gin and 

Q<m — 3L- s o l n a t m general 
V i * 1.1 — sci± i . , s '/,-- 1.1 

(d) The output is the nodal voltage L-„ 

(7) 

The constraints for a transfer function to be realisable by 
a canonical doublv-terminated ladder are as follows: 

Theorem 1: 
(a) The numerator of the transfer function vJJ, of a 

canonical even-order doubly-terminated ladder is an odd 
polynomial. 

(b) The numerator of the transfer function u„/J, of an 
odd-order doubly-terminated ladder is an odd poly
nomial if | C | is nonsingular or an even polynomial if |T | 
is nonsingular. 

Proof: From remark 1 the nodal admittance matrix of a 
doubly-terminated ladder is tridiagonal. By Cramer's rule 
[12] it can be found for the output v„ that 

A(s) 
(8) 

where A(s) is the determinant of Y and A l n is the appro
priate cofactor. It can be shown that 

n - 1 

n o . 

A(s) 

and C -

(9) 

where T — 
the form of a rational function 

N(s) 

D(s) 

Let vJJt be expressed in 

(10) 

D(s) and N{s) are the denominator and numerator poly
nomials respectively, and they contain only non-negative 
powers of s. Consider first the case of an even canonical 
realisation. Notice that by using the Laplace expansion 
[12] repeatedly the determinant of A(s) can be expanded 
as follows, where n is the size of the coefficient matrices: 

A(i) = | C | s " + a„ 

+ ••• + «_ ' + i r | a - (11) 

A ladder realising a 2«th-order function must have a 
nonsingular T, and so the denominator can be rear
ranged to be a 2nth-order polynomial as 

D(s) = s"A(s) 

and the numerator becomes 

ii - t 

N(s) = s"]~I [ s c ( + l i , - 5~' ) ' , • + , . , ] 

(12a) 

(12fc) 

Here c l + l i and + (for all i) cannot both be zero, 
otherwise the transfer function would be zero. Suppose 
c, + , , are nonzero for all i; then it can be seen that N{s) is 
a (2n — l)th-order polynomial with only odd terms. If 
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any c, + 1 ; is zero then N{s) will reduce to a (2»i - 3)th-
order polynomial (since in this case y i T , , must be 
nonzero) and N(s) will stay odd. It is easy to deduce that 
N{s) will remain odd for cases of more zero J c i + , _ , } . The 
same reasoning can be applied to the cases that some 
{}>,,, + ,} are zero. 

Now consider the case of odd-order design, where 
either C or T must be singular to make D(s) in eqn. 12a 
odd. If T is nonsingular, exactly the same reasoning as 
for the even case can be used to show that N{s) must be 
odd. If C is nonsinguiar then 

D(s) = s""'A(s) (13(j) 

N(s) = s"-' n W i . i - * " ' y i + i . J H36) 
i = 1 

and it is easily shown that N(s) must be an even poly
nomial. 

Theorem 1 establishes some necessary conditions for a 
transfer function to have a canonical realisation. It 
appears that these conditions are also sufficient for reali-
sability provided that the transfer function is stable. 

It is seen from theorem 1 that the constraint on the 
parity of the numerator is related to the singularity of the 
matrices C and T. The singularities, however, cannot be 
arbitrarily chosen. 

Theorem 2: A doubly-terminated ladder has a nonzero 
response at co = oo only if C is singular and has a 
nonzero response at co = 0 only if T is singular. 

Proof: Let s = j<o. From eqn. 12 it can be seen that when 
CO -> OO, 

A ( s ) - | r | s " + a „ _ l X " - 1 (14) 

and from eqn. 9 the numerator is at most to the power of 
s""1. Therefore if | C | is not zero then eqn. 9 must be 
zero. Similar reasoning can be used at co -> 0. 

It is mandatory that lowpass transfer functions have 
nonzero values at co = 0 and highpass and bandstop 
functions at co = oo. This indicates that the singularity of 
the matrices is predetermined by the filtering types, and 
therefore the parity of the numerators of odd-order cases 
is also constrained. 

Since the singularities of C and T mean that their rank 
can at most be n — 1, according to eqn. 14 a list of the 
upper bounds for various filtering types by a ladder with 
order n is obtained in Table 1. 

T a b l e 1 : U p p e r b o u n d s o n s y s t e m o r d e r f o r v a r i o u s c l a s s e s 
o f l a d d e r f i l t e r w i t h n n o d e s 

C l a s s e s Cons tra in t U p p e r b o u n d of 
s y s t e m order 

L o w p a s s W(O) # 0 T s ingular 2n - 1 
B a n d p a s s 2n 
H i g h p a s s H ( ° o ) / 0 C s ingular 2/7 - 1 
B a n d s t o p H ( 0 ) / 0 W ( c o ) # 0 In - 2 

both C a n d V s ingular 

It is easily seen that canonical designs can be achieved 
only by bandpass, odd-order lowpass and odd-order 
highpass. For other cases, constraints given in theorem 2 

make a canonical realisation impossible. In the suc
ceeding sections it will be seen that a noncanonical 
ladder prototype will lead to an integrated circuit simula
tion of excessive size, unless some complicated procedure 
is adopted. It will also be shown that the wrong parity of 
numerator can be easily corrected, and a simple tech
nique is introduced to eliminate the error caused by this 
modification. This results in a unified procedure, with 
very regular structures, to realise a wide family of transfer 
functions. There is a uniform progression in the form of 
the circuit structures regardless of the type of specifi
cation or order. 

4 Canonical ladder simulation by modified 
prototype 

The numerators of the transfer functions considered in 
this paper are restricted to be polynomials with purely 
even or odd terms. This means their zeros are restricted 
to lie on or have quadrantal symmetry about the imagin
ary axis. Such a constraint is valid for most filter design 
problems. With this constraint and from theorem 1 the 
problem concerned in this paper has been greatly simpli
fied : whether a given transfer function can be realised by 
a canonical standard ladder depends solely on the 
numerator parity. 

The most common example of a transfer function with 
the wrong parity is an even-order 'pure' elliptic function 
with an even-order numerator. It is well known that this 
kind of function cannot be realised by a doubly-
terminated ladder [13], Traditionally the solution to this 
problem is to modify the numerator by moving a pair of 
finite zeros to infinity [7], which incurs the penalty of a 
loss of stopband attenuation (Fig. 2). 

x lO 

CQ 

modi f i ed pure 
o> . 5 

8 

100 200 300 400 x l 0 2 
f r e q u e n c y , Hz 

F i g . 2 Modified and 'pure' eighth-order bandpass elliptic functions 

A new scheme is introduced here to realise the transfer 
function exactly without any sacrifice of filtering quality. 
Let H(s) be a transfer function with all its zeros on the 
imaginary axis or at infinity. If the constraints of 
theorem 1 are not met, or more precisely if N{s) has the 
wrong parity, some simple manipulation of the transfer 
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function can be made to cope with the problem. Consider 
three possibilities: 

(a) The numerator of H is a constant. 
(b) The numerator of H has a single root at M, = 0. 
(c) The numerator of H has a pair of imaginary roots 

at + a>,- (cu, can be zero). 

To change the parity, manipulate as follows: 

(a) Let tf'(s) = H(s)s. ] 
(b) Let tf'(s) = H(s)s or H'(s) = W(s)/s | (15) 
(r) I,el H'(s) = H{s)s/{s2 + cof). j 

Then the parity of H' is opposite to that of H, and W(s) 
can now be realised by a canonical prototype ladder 
described by the nodal equation 

(sC+ s " T + G)F =J (16) 

4.1 Canonical ladder simulation by active RC circuits 
A system realising the original transfer function H(s) can 
be obtained by multiplying the input vector / by the 
inverse of the modification function. For case (c) we have 

(sC+s'lr + G)V = {s + tufs^V (17) 

This system can now be expressed in realisable form by 
matrix methods [5, 6], 

4.1.1 Left matrix decomposition form: Let C = C,Cf. 
Then the system can be written as 

c, w= -s-'iry + Gv + ojfi-j)-] 

cry = s~lw-c,-\-j) 
(18a) 

(186) 

4.1.2 Right matrix decomposition form: Let r = r,Tr. 
Then the system can be written as 

cv= -s-\r,w + GV)~(-J) 

}v = s - , i r r y + w?rr,(-J)-] 

(19a) 

(19b) 

Active RC networks can be obtained directly from these 
two equations. It is found that the most efficient method 
in either case is to use U L factorisation, which minimises 
the required number of input branches (only two). 

The prototype in Fig. 3 is simulated by the two canon
ical eighth-order left-ULD and right-ULD active RC cir
cuits shown in Fig. 4. These canonical designs differ from 
standard ones in the position of the input stage branches. 

F i g . 3 Eighth-order prototype ladder designed from partitioned trans
fer function 

4.2 Canonical discrete ladder simulations 
The design of a discrete ladder simulation starts from the 
modified prototype system eqn. 17, which after bilinear 
transformation becomes 

T 1 + : " ' 2 1 - z' 
r + G)V 

J + ~ cjfJ (20) 

The system can be rearranged as 

1 
A + <DB+ D \y 

A = 2 TC + T'lr + G 

D = 2G xV = z','(\ 

0) = 1/(1/:"') 

ico? + ') ^ + 4<D(u? 

5 = 2 7 T 

(21a) 

(21b) 

••xA/ i c , o r A / ' ' c » i A y . CISTJ> 

G 5 Gg G 1 3 G,7 G ? 1 G?$ 

F i g . 4 Canonic eighth-order active RC ladder filters 

a L e f l - U L D active RC circuit 
b Right-ULD active R C circuit 

^A+QB+Djf ((of + l ) - + 44V \J (21c) 

A = 2/TC + T/2r — G fl = 2 7 T 

D = 2G y = : 'A1 - z ' 1 ) 

4> = 1/(1 - * " ' ) 

(2\d) 

T 1 + . 2 1 

The above equations can be linearised respectively as 
follows. 

4.2.1 Left matrix Decomposition 

AtW= —(<t)B + G)y- <D4<oi2(-/) (22a) 

A,y=VW-Ar1(<of+\)/(-J) (22b) 

4.2.2 Right matrix decomposition 

Ay=-<t>(B,H' + G y ) - ( ( o f + \ ) ( - J ) (23a) 

W = xV(Br y + 4w?B[ ' X - y > (23b) 

The prototype in Fig. 3 is simulated by the two canonic 
eighth-order left-ULD and r ight-ULD S C circuits shown 
in Fig. 5. The sensitivity behaviour of the new structures 
must be examined, as they are no longer strictly ladder 
simulations and would seem to depart from Orchard's 
low-sensitivity criterion [1], From the following exam
ples, and many others studied by computer simulation, 
the sensitivity for the new structures has been confirmed 
to be much better than their biquad counterparts, and 
very close to traditional ladder simulations. 
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F i g . 5 Canonic eighth-order SC ladder filters 
a Lef t -ULD S C circuil 
h R igh l -ULD S C circuil 

5 Circuit design examples 

The circuits of Fig. 5 are generated by the P A N D D A 
filter compiler [14] to realise the 'pure' eighth-order ellip
tic bandpass function of Fig. 2. The design data are given 
in Table 2. A passband sensitivity comparison is shown 
in Fig. 6 with a corresponding cascade biquad desi 6n. A 
left-ULD realisation proves preferable in all respects, 
having lower sensitivity and total capacitance. 

T a b l e 2 : D e s i g n d a t a f o r e i g h t h - o r d e r b a n d p a s s f i t t e r r e a l i s 
a t i o n s 

C o m p a r i s o n of c a n o n i c a l l e f t - U L D ladder a n d b iquad S C filters 

U L D B i q u a d 

Total c a p a c i t a n c e 188.03 193.91 
C a p a c i t a n c e spread 57 38 41.54 
Average capac i tor 5.88 6.46 
Number of capaci tors 32 30 
Number of s w i t c h e s 34 36 
Number of o p a m p s 8 8 
Capac i tor va lues of l e f t - U L D S C ladder filter in Fig 5a 

c, = 18.20 c,= 57.38 2.28 c . = 7.69 c 5 = 3.82 
c 6 = 1.05 c,= 1 00 c„ = 4.80 c, = 5.25 C , 0 = 14.09 

c„ = 3.12 c , 2 = 10.72 C , 3 = 1.00 c,« = 1.12 c , 5 = 1.36 
C,6 = 5.36 c „ = 3.96 C, B = 12.66 c „ = 1.00 c 2„ = 2.87 
c„ = 1.00 c „ = 2.01 c 3 3 = 1.26 c „ = 3.21 c 2 5 = 2.57 
c J 6 = 11.05 c „ = 1.00 c 3 B = 2.16 c 2 3 = 2 05 c 3 0 = 1.00 
c „ = 1.00 C 3 2 = 1.00 

c 3 B = c 2 3 c 3 0 = 

C l o c k f r e q u e n c y = 200 k H z ; P a s s b a n d ripple < 1 d B ; S t o p b a n d 
attenuat ion > 50dB; L o w e r p a s s b a n d edge = 9 k H z ; Upper pass -
band e d g e = 11 kHz 

The passive ladder of Fig. 3 can also be used to realise 
the partitioned transfer function of an eighth-order 
lowpass function in Fig. 7. The circuits of Fig. 5 are once 
again employed. The design data for a right-ULD S C 
realisation are given in Table 3. A sensitivity comparison 
is shown in Fig. 8. The left-ULD has a serious peak 
towards low frequency, a known problem for lowpass 
design, and would not normally be considered. The right-
U L D design has very low sensitivity, well below the 
cascade biquad realisation. In this case, the ladder has a 
larger total capacitance. 

left - U L D 

9 0 9 5 10 0 

t r e q u e n c y . Hz 
11 0 

x ! 0 3 

F i g . 6 Passband sensitivity comparison for canonic eighth-order 
bandpass fillers 

Xl02 

- 0 2 

- 1 0 

modi f i ed 

200 WO 600 
f r e q u e n c y , Hz 

800 
K l O ' 

F i g . 7 Modified and 'pure'eighth-order lowpass elliptic functions 

T a b l e 3 : D e s i g n d a t a f o r e i g h t h - o r d e r l o w p a s s f i l t e r r e a l i s 
a t i o n s 

C o m p a r i s o n of c a n o n i c a l r i g h t - U L D ladder a n d b i q u a d S C filters 

U L D B i q u a d 

Total c a p a c i t a n c e 189.43 107.83 
C a p a c i t a n c e spread 75.16 14.08 
A v e r a g e capac i tor 5.92 3.59 
N u m b e r of capac i tors 32 30 
N u m b e r of s w i t c h e s 34 36 
N u m b e r of o p a m p s 8 8 

C a p a c i t o r va lues of r i g h t - U L D S C ladder filter in F ig . 56 

c, = 13.15 c 2 = 7516 c 3 
= 2.21 c. = 7 96 c 5 = 13.99 

1.04 c 7 = 1.00 = 6.15 c, = 2.19 C.o = 11.61 
c,, = 1.00 c, a = 6.33 = 2.30 c , 4 = 1.27 c„ = 1.04 
c,.= 1.72 c „ = 1.10 c „ = 5.86 c,„ = 1.00 c 2„ = 6.72 
c 2 , = 1.00 c „ = 1.66 c 2 3 = 6.01 c 2 . = 1.45 c 2 5 = 2.49 
c 3 6 = 3.11 c 2 7 = 1.00 c 2 B = 4.27 c 2 s = 2.61 c 3„ = 1.00 
c 3 , = 1.00 c31 = 1.00 
C l o c k f requency = 2 0 0 k H z ; P a s s b a n d edge = 10 k H z ; P a s s b a n d 
ripple < 0.1 d B , S t o p b a n d attenuation > 7 0 d B . 
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F i g . 8 Passhand sensitivity comp -ison for canonic eighth-order 
lowpass filters 

6 Hybrid matrix approaches 

The above techniques, which guarantee the existence of a 
canonic ladder simulation, require restrictions to be 
made on the structure of the passive prototype. Given a 
prototype which does not have this structure, how can a 
canonic simulation be obtained? The restrictions were 
made in order to provide an efficient matrix nodal 
description. For arbitrary prototypes, more general 
hybrid matrix descriptions can be adopted to minimise 
the size of the matrix systems and their resulting simu
lated circuits. The drawback of the hybrid method is that 
there is no unified rule. The exact design method depends 
on the individual prototype structures and the selection 
of the internal variables, which can be seen from the fol
lowing examples. 

An even-order lowpass circuit shown in Fig. 9a has 
n + 1 nodes but the filter order is 2n. The rank of T is n 
as there are n inductors in the circuit, making the total 
number of opamps required 2n + 1; so even a leapfrog 
design cannot directly provide a canonical circuit. 

L2 

However, if a single mesh current /„ is selected as a vari
able to replace r„. ,. the last two row equations will have 
the following form : 

+ s 

0 

J (24) 

The output is now i„, which differs from [;„+, by only 
a constant gL. The rank of matrix T will be n — 1 since 
the contribution of the mth inductor is now moved to 
the first matrix. If a r ighl -LUD decomposition method 
r = LV is used, two zero rows will appear in matrix LI. 
According to eqn. 6b the intermediate variable vector 
W = s ~ 1 U V contains two variables which can be deleted. 
This means that the total number of variables is 2rt and 
only n opamps are necessary, providing a canonical solu
tion. 

The same technique can be applied to the left decom
position designs for a 2n-order bandpass prototype (Fig. 
96) derived from an nth-order lowpass reference with n 
even. There are n + 1 nodes in the ladder, so a nodal 
description is not efficient. If a single mesh current /„ is 
selected as a variable to replace v„ and u „ + , , the last two 
row equations can be arranged into the following form, 
providing a canonical solution: 

£.-„_, + c m _ 2 0 

+ s , L m l , 0 

0 I 

-1 

J (25) 

J 9 , n T C | 

1-2 m - 3 m-2 era V n - l L n. m 
l / - Y V \ 

C 3 m-3 m-2 

8 
c. J L \ U 9L m - U m- m-

0 

F i g . 9 Canonical simulation scheme 
a Even-order lowpass prototype 
b 2nth-order bandpass prototype 
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7 C o n c l u s i o n 9 R e f e r e n c e s 

An objection to the use of active ladder simulation filters 
is the diff icul ty of guaranteeing a canonic filter circuit. By 
standard methods, a passive ladder realisation may not 
exist or the simulation of the ladder would yield non-
canonic circuits. This paper has presented a set of condi
tions on the transfer function and prototype structure 
whereby a canonic simulation is obtainable. For the 
exceptions, a new design method and new canonic ladder 
structures are proposed. These circuits are applicable to 
all active technologies and are stray insensitive in 
switched-capacitor implementation. Despite departing 
f rom the strict conditions for low-sensitivity passive 
ladder simulation, the circuits are shown to have very 
good sensitivity properties. Al though competitive wi th 
biquad cascade realisations for certain types of transfer 
function, there is some cost in component spread for 
others. The design is formulated in a very regular manner 
in terms of matrix equations, making i t highly suited to 
computer implementation. The problem of obtaining a 
canonic simulation of an arbitrary ladder sturcture is 
demonstrated to be one of properly choosing the system 
variables to ensure a sparse matrix description. Some 
example techniques are illustrated for symmetric 
bandpass elliptic ladder filters. 
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Design Optimization and Testing of a GaAs 
Switched=Capacitor Filter 

David G . Haigh , Senior Member, IEEE, C h r i s T o u m a z o u , Member, IEEE, Stephen J . H a r r o l d , 
K . Steptoe, J o h n I . Sewel l , Senior Member, IEEE, and Rober t Bayruns , Member, IEEE 

Abstract—This paper is concerned with the design uf high 
frequency switched-capacitor filters implemented using GaAs 
M E S F E T technology. The design techniques developed are illus
trated by means of a 2nd-order switched-capacitor bandpass 
filter designed to operate at a switching frequency of 500 MHz. 
The design incorporates a recently proposed operational ampli
fier architecture with a simulated gain of 60 dB and a recently 
proposed switch driver circuit Amplifiers are characterized in 
terms of settling time performance and a general procedure is 
presented for optimization of the switched-capacitor circuit to 
majdmize switching frequency. Measurements on a fabricated 
chip confirm the design of the filter and its components. 

I . INTRODUCTION 

HIGH-precision tunable sampled-data analog filters 
can be integrated using the switched-capacitor ( S O 

circuit approach. Using presently available C M O S tech
nology, switching frequencies up to 30 M H z have been 
achieved [1] and an absolute maximum frequency limit of 
130 M H z has been predicted [2]. The higher peak elec
tron velocity and resulting higher lowfield electron mobil
ity of G a A s have been exploited for high-speed analog 
sampled-data signal processing applications [3]. In [4] and 
[5], a switching frequency of 2S0 M H z has been achieved 
for a G a A s 2nd-order bandpass filter with midband fre
quency of 10 M H z and Q-factor of 16. The accuracy of 
the midband frequency was only a few percent, which is 
inadequate for precision applications. The errors were 
attributed to low amplifier gains of 40 dB; low capacitor 
Q-factors were due to the use of polyimide dielectric and 
suspected back-gating effects [7], 

Larson et at. [6] have accepted a low value for amplifier 
gain and have proposed the use of finite gain insensitive 
S C circuits. A more suitable capacitor dielectric, namely 
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silicon nitride, was used, and novel switching circuits with 
the introduction of diodes to reduce the signal depen
dence of clock feedthrough were explored. Excellent filter 
results for switching frequencies up to 100 M H z were 
obtained. 

This paper is concerned with the design, optimization, 
and testing of a G a A s 2nd-order bandpass filter using a 
recently proposed high-gain operational amplifier [8], 
which can have a low frequency gain of over 60 dB, and a 
recently proposed switch control circuit [9]. The amplifier 
is characterized in terms of its minimum settling time and 
the S C circuit is optimized for maximum possible clock 
frequency. The design procedure is evaluated by measure
ments on a fabricated chip. Some of the work described 
in this paper has been reported in [10], [11], and [12]. 

I I . FILTER ARCHITECTURE 
A well-demonstrated approach for the realization of 

high-order S C filters is to interconnect a number of 
parasitic insensitive integrators according to a leapfrog 
configuration that simulates a low sensitivity L C R filter 
[13]. For the evaluation of S C filters realized in G a A s 
technology, a 2nd-order bandpass filter consisting of two 
such integrators was chosen as shown in Fig. 1 [5]. T h e 
circuit requires a nonoverlapping clock as shown in Fig. 2 
with two phases ( E and O ) and guard intervals ( I N T ) 
where all switches are open. The capacitor values shown 
provide a Q-factor of 16, a midband gain of unity, and a 
midband frequency equal to l / 2 S t h of the switching fre
quency, which is a typically chosen value taking into 
account the problems of aliasing and imaging [13]. 

I I I . SWITCH DRIVER CIRCUITS 
When S C circuits are implemented in C M O S technol

ogy, the switches can be realized by M O S F E T ' s , the gates 
of which may be driven from the negative to the positive 
power supply rails to open and close the switches. This is 
possible because in C M O S technology the gate is sepa
rated from the channel by an insulating layer (oxide). The 
situation in G a A s technology is quite different In that the 
gate forms a Schottky diode with the channel, and there
fore, large gate currents will flow if the gate voltage 
exceeds the voltage at the source or drain by more than 
about 0.5 V , resulting in a failure of normal F E T opera-

0O98-4O94/9l/080O-O825$01.0O ©1991 I E E E 
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GND GND 

GND GNO 

Fig. 1. 2nd-order SC filler circuit ( C „ = 1. C P = C \ , = 15.W7. C , 
C ; = 63.330). 

SWITCHHj PERIO0 T 

Hi CUBED 

OPEN 

01? C l 0 S £ D 

02 OPEN 

Fig. 2. 2-phase clock waveforms. 

tion. Thus we cannot apply the simple switching arrange
ment used in C M O S SC circuits. 

The switches in Fig. 1 may be divided into two cate
gories. The switches adjacent to the amplifier inputs (e.g. 
S1-S4) are switching signals close to ground and they may 
be realized as a M E S F E T with gate voltage switched 
between 0 V (on-state) and K l , where V\ <VT (off-state). 
The remaining switches in Fig. 2 (S5-S10) are associated 
wi th the integrator input terminals. Four of these switches 
(S7-S10) are switching large analog signals, and it is 
necessary to introduce a switch control circuit ( S C O for 
them in order to l imi t the high-level voltage on the 
switching M E S F E T gate to track the analog voltage so 
that the switching MESFET ' s gate Schottky diode is not 
forward biased [5]. The remaining two switches (S5 and 
S6) are switching signals at around 0 V and, therefore, do 
not strictly need the introduction of SCC's; they were, 
however, included in order to obtain balanced drive sig
nals for each pair of switches. 

A number of SCC circuits have been previously em
ployed [4 ] - [6 ] , [9], [12], all of which can be derived f rom 
the general architecture shown in Fig. 3(a). The digital 
input is fed to an inverter, the output of which drives the 
gate of the switch M E S F E T M l . The output of the 
inverter switches between the inverter negative supply 
voltage - Vs, which opens the switch, and the inverter 
positive supply voltage. The inverter positive supply is 
derived f r o m the output of a unity-gain voltage buffer , the 
input voltage of which is the voltage on one of the switch 
terminals X. As a result, the voltage on the gate of M l is 
equal to the voltage at node X, as required, when the 

MI R 

M O - / - 6 V 

M Q - ° 0 9 'P 

-8V 

(b) 

Fig. 3. Switch control circuits for GaAs technology, (a) Basic architec
ture, (bl Circuit adopted (Gatewidths: Ml—>0 fim: M2—IS um: M3. 
M4—24 M m). 

switch is in the closed state. It may appear that the gate 
diode of M l might become forward biased i f the voltage 
at Y is significantly less than that at X at the start of a 
closing transition. In fact, this does not occur because, 
well before the voltage VCY reaches the critical 0.5 V , the 
switch would start to go into its closed state, tending to 
make the voltage of V change towards that at X. A l 
though several SCC circuits have been proposed, they 
have several deficiencies including voltage buffer gain 
errors, large chip area, high power consumption, and high 
levels of signal-dependent clock feedthrough. Thus the 
design of SCC's remains a critical step in the realization 
of sampled data systems in GaAs. 

Some of the problems associated wi th the voltage buffer 
in Fig. 3(a) can be avoided by replacing it wi th a short 
circuit with the consequence that the circuit now draws a 
f ini te dc current at switch node X, when the switch is 
in the open state [6]. This can be accepted when the 
operational amplifier driving this node can supply the 
current. In any case, the voltage at this node when the 
switch is in the open state is not sampled. The circuit to 
be used in this work is an example of this approach and is 
shown in Fig. 3(b) [9]. MESFET's M 2 and M 3 constitute 
the inverter; diodes, as in [6], make clock-feedthrough 
signal independent, and signal dependence is fur ther re
duced by the use of inverter cascode device M 4 [9]. 
Having considered the realization of the switches in the 
SC circuit, we now turn our attention to the operational 
amplifiers. 

I V . T R A N S C O N D U C T A N C E A M P L I F I E R 

S E T T L I N G B E H A V I O R 

Ampl i f i e r settling time is the most important dynamic 
performance parameter for sampled data circuit design 
because it determines the maximum frequency l imi t and 
affects response accuracy [14]. Suitable amplifiers are 
generally of the single-stage, transconductance type, for 
which settling time is critically dependent on load capaci
tance [13]. Since, in general, the amplifiers in an SC fi l ter 
experience different capacitative loads, the settling time 
of each amplifier has to be assessed separately. Most SC 
circuits, like that in Fig. 1, operate with a 2-phase switch
ing scheme. Thus, as shown in Fig. 2, there are three 
distinct states ( " E , " " O . " and " I N T " ) for which an ampli
fier's settling characteristics have to be considered. 
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Fig. 4. General amplifier embedding. 

Fig. 5. High gain double cascode amplifier {Vs = 5 V). 

In order to investigate the effect of switching state on 
settling t ime, we ini t ia l ly make two simplifications. Firstly, 
we begin by assuming that the switches are ideal, i.e., 
open or short circuit , depending on switching state. Sec
ondly, whereas in certain switching states some of the 
amplifiers are coupled together, as for example in Fig. 1 
in the " E " phase, we investigate the settling characteris
tics of each ampl i f ier in turn under the assumption 
that the remaining amplif iers are ideal. The validity of 
these simplifications w i l l be conf i rmed by simulation in 
Section V I I I . 

Under the above assumptions, each ampli f ier in an SC 
filter may be considered to have an embedding of the 
general f o r m shown in Fig. 4 for each switching state. I f 
the ampli f ier is modeled as an ideal transconductance 
gm, the system in Fig. 4 is first order and has a settling 
time given by 

— gan.dB 
--phase, deg 

2O0r 70 

' 2 0 ° L i k 10k KX* 1M 10M10CM16 DG100G 
frequency, Hz 

Fig. 6. Simulated amplifier frequency response. 

T A B L E I 
K E Y P A R A M E T E R S FOR J F E T M O D E L O F G A A S M E S F E T 

Parameter Name Value Units 

VTtJ - 1 V 
B E T A 0.067E-3 m A V " 2 

L A M B D A ( L F ) 0.06 v - ' 
L A M B D A (HF) 0.3 v - ' 
R D 2920 Ohms 
RS 2920 Ohms 
C G S 0.39E-15 F 
C G D 0.39E-15 F 
PB 0.79 V 
IS 0.075E-15 A 

constant T is given by 

T = [Ci + CL + C i C L / C f ] / g m . ( 2 ) 

Thus ampli f ier settling time ( to wi th in 0.5% settling value 
tolerance) may be expressed as 

r, = 5.3 C L e f f / g m ( 3 ) 

where 

CLef( = Ci + CL + C i C L / C f . ( 4 ) 

As well as describing the dependence o f settling t ime on 
an amplif ier 's external embedding, (3) also describes the 
dependence of settling t ime on the ampl i f ier circuit itself 
via the transconductance gm. I n this paper, the required 
transconductance values are obtained by u n i f o r m scaling 
of the gatewidths o f all the M E S F E T devices in the 
amplif ier . Thus we may wri te 

gm = Kgx (5) 

where x ( in fim) is a reference gatewidth factor that 
scales the gatewidths of all the devices in the amplifier, 
and K„ is a constant. Thus we have 

5.3 CL e f f 

f . - r inO/d) (1 ) Kg 
(6 ) 

where T is a t ime constant and d is the settling value The term CL e f f / x is referred to as the amplif ier " load-
tolerance. Matsui et al. [15] have shown that the t ime ing factor." 
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V . A M P L I F I E R C I R C U I T AND C H A R A C T E R I Z A T I O N 

GaAs MESFET's have a number of disadvantages for 
the design of high gain operational amplifiers, including 
the lack of a suitable P-channel device, the general lack 
of enhancement mode devices (depletion mode devices 
are easier to manufacture), and a low value for the 
open-circuit voltage gain (transconductance/output con
ductance) of the device, typically only 20. The require
ment for high bandwidth and voltage gains of the order of 
60 dB has led to the development of a range of circuit 
techniques [16]. High voltage gain is achieved by introduc
ing double cascode techniques and biasing the MESFET's 
using a "double level-shift ing" approach. Performance is 
optimized for a given power consumption and chip area 
by using a single-stage push-pu l l architecture based on a 
high performance GaAs current mir ror [17]. 

The amplif ier circuit to be used is shown in Fig. 5. [8]. 
I t is a single-stage double cascode push-pul l transconduc-
tance ampli f ier design using double level-shift biasing. 
The gatewidths of the MESFET's in Fig. 5 are specified 
in terms of the reference gate width factor x. Ampl i f i e r 
performance is simulated using SPICE via a M I N N I E 
graphics interface [18] wi th a J F E T model for the GaAs 
MESFET's . For the f i l ter to be designed, the model 
parameters shown in Table I [8] were assumed. For an 
amplif ier gate width factor x of 100 fi and a load capaci
tance of 0.8 pF, the simulated gain and phase frequency 
responses are shown in Fig. 6. Key performance parame
ters, taken f r o m these curves, are given in Table I I . 
Unl ike previous amplifiers [4 ] - [6 ] used in SC fi l ters, the 
amplifier in Fig. 5 has a single-ended input (rather than a 
different ia l- input) and the quiescent input voltage is equal 
to the negative power supply voltage. These features lead 
to min imum circuit complexity, since internal dif ferent ia l 
and level-shifting circuitry is avoided, and hence provide 
opt imum high-frequency performance. The use of a 
single-ended input ampli f ier w i l l result in a nonopti-
mum power supply rejection ratio and, therefore, a well-
regulated power supply is required. Dif ferent ia l input 
amplifiers, i f required, can be realized using different ia l 
to-single-ended converters in conjunction wi th single-
ended input designs, but settling time is increased [16]. 
We have already seen in (3) and (4) that for the ideal 
single-stage transconductance type of amplifier, settling 
time is proportional to effective load capacitance value 
C L eff. For real amplif ier implementations this linear 
relationship is not strictly observed [20], [21]. Our ap
proach is to characterize the settling time of the particu-

T A B L E 11 
O P E R A T I O N A L A M P L I F I E R P E R F O R M A N C E P A R A M E T E R S 

( G A T E W I D T H F A C T O R x = 100 n) 

Parameter Value Units 

dc Gain 6.1 dB 
G B Product 3.1 GHz 
Phase Margin 64 deg 
Load Capacitance 0.8 pF 

Cf 
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Fig. 7. Test setup for amplifier characterization. 
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Fig. 8. Settling lime characterization curves for amplifier in Fig. 5. 

lar amplif ier design by simulation in a test circuit such 
that the embedding (see Fig. 4) satisfies both 

Ci-^CL (7 ) 

C 7 « C / (8) 

in which case we have f rom (4) that CL e f f = CL. Settling 
time may be simulated for a range of load capacitance 
values CL, which may be interpreted as CL e f f values, 
and hence used via (4) to predict settling behavior wi th in 
the SC f i l ter for the capacitative embedding correspond
ing to a particular switching state. 

The characterization test circuit is shown in Fig. 7. The 
ideal unity gain buffer amplif ier is included i f required in 
order to establish inequalities (7) and (8), depending on 
the amplif ier input capacitance [22]. The excitation is a 
f ini te charge AQ applied to the inverting amplif ier input 
using a pulsed current source to give a required output 
voltage step AV = AQ/Cf. The voltage step AV is nor
mally chosen to be the maximum voltage step the ampli
fier is to experience in a particular sampled data applica
t ion. Settling time is determined using SPICE wi th the 
GaAs M E S F E T parameters of Table I . For characteriza
tion of the amplif ier in Fig. 5, the value of Cf was 0.7 pF 
and the buffer amplif ier in Fig. 7 was omit ted. The input 
current pulse was of amplitude 1.36 m A and durat ion 200 
p= giving an output voltage step for Cf = 0.7 pF of 
0.37 V . 

The settling time versus load capacitance fo r the ampli
f ier of Fig. 5 wi th gatewidth factor x of 100 f t is shown in 
Fig. 8. I t can be seen f r o m Fig. 8 that, for CL greater 
than about 1 pF, settling time increases linearly wi th CL 
as expected f r o m (3) and (4) wi th inequalities (7) and (8) 
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satisfied. However, for CL of about 1 pF, there i i a 
turning point, and settling time increases for smaller 
loading leading to instability for very small loading. This 
is due to high-frequency poles in the amplif ier transfer 
funct ion, which represent a deviation f r o m ideal transcon
ductance behavior and reduce phase margin for light 
loading [20], [21]. The min imum, or fastest, settling time 
of about 630 ps is obtained for a load capacitance of 
0.8 pF. 

Since for an ideal transconductance amplif ier settling 
time is proport ional to loading factor (effective load ca
pacitance divided by gate wid th factor—see (6)) we divide 
the load capacitance scale in Fig. 8 by gatewidth factor x 
(in this case, 100 n) to obtain a graph o f settling t ime 
versus loading factor, which forms the starting point fo r 
opt imizat ion o f the SC f i l t e r circuit . 

V I . H I G H - F R E Q U E N C Y C I R C U I T O P T I M I Z A T I O N 

Switching states may be divided into crit ical and non-
crit ical switching states. Cr i t ica l switching states are those 
in which the ampl i f ie r is receiving charge at its input or 
conveying charge to a subsequent integrator. It is desir
able that in a cri t ical switching state, the operating point 
on the ampli f ier characterization curve should be close to 
that for m i n i m u m settling t ime. Other switching states are 
denoted noncrit ical and usually include the guard I N T 
state. Effective load capacitance CL eff , as defined in (4), 
is frequently close to zero in noncritical switching states 
since Ci and CL are usually very small in practice. I t can 
be seen f r o m the characterization curves in Fig. 8 that this 
leads to possible unstable oscillation. We now present a 
technique for avoiding such instability and maintaining 
control of ampl i f ie r settling behavior by specifying the 
ampl i f ier operating point in all switching states. This 
control is achieved by the introduct ion of grounded capac
itance at the ampl i f ier output terminals. 

For each switching state, denoted ;', let the values of 
C L e f f and Ci / Cf before addit ion of load capacitance be 
denoted CZ, ef f , and a,, respectively, and let the value of 
added load capacitance be A C L / . From (4), the aug
mented effective load capacitance for the ;'th switching 
state may be wr i t ten 

C L e f f , = C L e f f ; + A C L , ( 1 + a , ) . ( 9 ) 

Denot ing the loading factor required in this switching 
state as / , and the amplif ier gate width factor x, we may 
write 

C L e f f ) = x f t . (10) 

Thus combining (9) and (10), we have 

xf, = CL eff , + A C L , ( l + a , ) . (11) 

This equation may be wri t ten for each switching state. We 
require to solve this set of equations for the ampli f ier gate 
width factor x and for the added load capacitances ACL^ 
for i=\,2 - n. Since the number of variables n + \ 
exceeds the number of equations n by one, we may 
constrain the added load capacitances to be equal in two 

T A B L E III 
E X P R E S S I O N S FOR C I R C U I T OPTIMIZATION 

_ C L e f f ) ( ) i - a t ) - C L e H 1 ( l + ^ ) 

/ . U + « » ) - A ( I + a ( j 

CLeUJ, - r / . p ( f . f 
±CL, = A C / . , = — " " ' 

/ , ( l + a » ) - A ( l + " , ) 

switching states, which we denote ; and fe. Equation (11) 
for these two switching states allows us to solve for 
A C L , = ACL A . and x. A C L for the remaining switching 
states may then be determined f r o m (11) for these re
maining states. The expressions obtained for x and the 
A C L , are given in Table I I I . I t can be seen that i f / • = f k 

and either C L e f f , = C L e f f k or a ( = ak, then the values o f 
x or A C L y = A C L t w i l l become indeterminate. Thus i t is 
important to choose carefully the two switching states for 
which A C L is the same. 

The addit ion of ampli f ier load capacitance wi l l not 
increase min imum settling time because the ampli f ier 
gatewidth factors are adjusted to remain at prescribed 
operating points on amplif ier characterization curves. This 
w i l l , however, increase chip area and power consumption 
and therefore, the values of added load capacitance must 
be carefully optimized. The application o f the expressions 
in Table I I I to optimize an SC circuit w i l l be illustrated in 
Section V I I I . 

V I I . E F F E C T O F A M P L I F I E R P A R A S I T I C 

C A P A C I T A N C E S 

A m p l i f i e r input and output capacitances can each be 
considered as the sum of two contributions. One, which is 
pr imari ly due to interconnections, is independent o f am
pl i f ie r gatewidth factor and can be included in the capaci
tances Ci and C L o f the embedding circuit in Fig. 4, and 
hence allowed for in the circuit optimizat ion. The other 
contr ibut ion derives f r o m M E S F E T model capacitances, 
which are proportional to gatewidth factor x. A m p l i f i e r 
input capacitance is related to M E S F E T gate-source ca
pacitance, which is typically much larger than the gate-
drain capacitance, which determines ampl i f ier output ca
pacitance. We therefore now extend the above circuit 
opt imizat ion procedure to allow for ampl i f ie r input capac
itance, which scales wi th the gatewidth factor o f the 
amplif ier . A method for determining ampl i f ier input ca
pacitance by computer simulation is presented in [23]. 

We denote the amplif ier input capacitance as x fee, 
where fee is a constant and x is the ampli f ier gatewidth 
factor. It may be shown that the augmented effective load 
capacitance for the i t h switching state, previously given by 
(9), becomes 

C L eff; = C L eff, + A C L , ( 1 + a, + xbt) (12) 
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T A B L E IV 
E X P R E S S I O N S FOR C I R C U I T OPTIMIZATION INCLUDING A M P L I F I E R 

INPUT C A P A C I T A N C E 

Ax2 + Bx + C = 0 
••••here A = f,bk - fkb, 

B = M l + a k ) - + a,)+ b,CLeffk - bkCL eff, 
C - CL e f f t ( l + a,)-CL e f f / l + ak) 

A C L , = A C L , = 
x f j -CL eff, 

1 + a, + xb. 

A C L , = 
x f . - C L e f f , 

1 + a, + xfc, INPUT S9 
• — B 

where bt denotes k c / C f t . F rom (10) and (12), we have 

j / f = C L e f f f + A C L , ' 1 + <!,. +**>,•) (13) 

which may be wri t ten for each switching state. Constrain
ing, as before, the added load capacitances to be equal in 
two switching states, j and k, we again solve fo r A C L , = 
A C L t and x. I n this case, x is given by the solution to a 
quadratic equation, which is given in Table I V . Having 
obtained the value of x, the added load capacitance in 
the and k switching states A C L , = A C L t is given by the 
expression given in Table I V . Finally, (13) fo r the remain
ing switching states gives the added load capacitances 
A C L , fo r these states according to the expression in 
Table I V . 

V I I I . O P T I M I Z A T I O N O F AN SC F I L T E R 

A. General Considerations 

We now describe the optimizat ion of the GaAs 2nd-
order bandpass f i l t e r in Fig. 1. The circuit is shown again 
in Fig. 9 wi th some modifications; capacitor C I 1 has been 
replaced by an equivalent capacitor "T" network in order 
to reduce capacitor spread; we have added a buf fe r am
pl i f ie r f o r driving of f -ch ip loads; capacitors Co, Cb, and 
Cc w i l l be discussed later. The circuit uses the high-gain 
push-pu l l amplif ier o f Fig. 5. The switch control circuit to 
be used is that shown in Fig. 3(b). 

Since the ampli f ier in Fig. 5 has the property that the 
quiescent input voltage is equal to the negative power 
supply voltage, the ground connections fo r switches SI 
and S3 in the f i l t e r of Fig. 9 have to be connected to the 
negative power supply. The settling t ime characterization 
curve for the ampl i f ier has already been shown in Fig. 8 
and i t is shown again in Fig. 10(a) w i th the addit ion of 
chosen operating points (note that the horizontal scale is 
now loading factor as mentioned in Section V ) . Since 
points to the le f t of the m i n i m u m settling t ime point 
correspond to underdamped behavior it was considered 
safer, in view of process tolerances, to select the opt imum 
operating point fo r the crit ical switch phases to the right 
of the min imum corresponding to a loading factor of 
0.012 pF/nm, indicated " O p t " in Fig. 10(a). For noncri t i -
cal switching states, we shall adopt operating points corre
sponding to loading factors of 0.004 and 0.006 p F per j i m , 
indicated " P I " and "P2" in Fig. 10(a). Points " P I " and 
"P2" are strictly outside the range of loading factor for 

OUTPUT 

OT7M8P O7O206P 

ov ov 

Fig. 9. 2nd-order SC filter for implementation. 

which the amplif ier behaves like an ideal transconduc
tance, but the computer simulations to be given in Section 
I X conf i rm that reasonably accurate prediction of settling 
time is obtained using the transconductance approxima
tion for these operating points. The settling curves fo r the 
three operating points to be used are shown in Fig. 10(b), 
i l lustrating the dif ferent degrees of damping. The settling 
times for a 0.5% settling value tolerance are given in 
Table V . We now apply the optimization method of 
Section V I . 1 

B. Amplifier I 

The values o f Ci, CL, and Cf (as defined in Fig. 4) for 
amplifier 1 in the three switching states are given in Table 
V I . The values of C L e f f (as defined in (4)) and a = Ci /Cf 
are also given. I n the case of amplif ier 1, the " E " phase is 
the critical phase, and its loading factor fe is to corre
spond to the op t imum operating point on the characteri
zation curve. We assume that the operating points in the 
noncritical " O " and " I N T ' switching states are identical 
and we denote the corresponding loading factor f a . This 
makes all parameters in the " O " and " I N T " switching 
states identical (see Table V I ) and therefore, they may be 
treated fo r optimization as a single switching state. A p p l i 
cation of the equations in Table I I I (wi th j = e and k = o) 
to the data in Table V I yields added load capacitor value 
and amplif ier gatewidth factor given by 

A C L , = ACL„ 
/ . C L e f f . 

/ , - / „ ( ! + « . ) 

C L e f f . 

/ . - / . ( ! + « « ) ' 

(14) 

(15) 

Table V I I shows values of A C L and x for a range of " O " 

'The optimization technique (including scaled amplifier input capaci
tances) had not been developed at the time the integrated filter was 
designed. 



H A I G H el ai: D E S I G N O P T I M I Z A T I O N 831 

ivp(Votts) 
Ofcr 

M 

02 

0-1 

0 

-0-1 

•OPT-

075 > » V75 225 275 
Tnt(ns) 

Ve sefUrg 

ve settling 

ooo5 <H»W o-oir 
Loading factor pF/pm 

(a) 
o/plW>lrsl 

075 >K V7S 22S 275 
Traa (ns) 

(b) 

oxeb 

fr5 

01 

<» 

02 

01 

0 

-M 

-02 

o/pivwrsl 

• P 2 . 

0-75 125 >75 225 215 
Time tnsl 

Fig. 10. Amplifier settling characteristics, (a) Characterization curve with operating points, (b) Transient settling curves for 
"OPT," " P I , " and "P2" operating points. 

T A B L E V 
A M P L I F I E R S E T T L I N G T I M E S 

Negative Settling 
Operating Point Positive Settling Time (ps) Time (ps) 

Opt 670 778 
PI 881 910 
P2 615 643 

T A B L E VII 
E F F E C T O F "O" P H A S E L O A D I N G F A C T O R FOR AMPLIFIER 

! ( / , = 0.012 pF/>m) 

f0 (pF/Mm) ACT. (pF) x (/im) 7s (ps) 

0 0 50 oo 
0.002 0.129 65 5000 
0.004 0.366 90 900 
0.006 0.930 155 700 
0.008 4.190 524 600 

T A B L E VI 
SC F I L T E R L O A D I N G FOR A M P L I F I E R 1 IN F I G . 9 T A B L E V I I I 

Phase Ci (pF) C / ( p F ) CL (pF) O-eff (pF) a( = Ci/C[) SC F I L T E R L O A D I N G FOR A M P L I F I E R 2 IN F I G . 9 Ci (pF) C / ( p F ) CL (pF) O-eff (pF) a( = Ci/C[) 

E 0.2545 0.7131 0.2545 0.5998 0.3569 Phase a (pF) Cf (pF) CL (pF) CZeff (pF) a ( = C / / C 7 ) 

O 0 0.7021 0 0 0 E 0 0.7021 0.1767 0.1767 0 
Int 0 0.7021 0 0 0 O 0.1767 0.7021 0 0.1767 0.2517 

Int 0 0.7021 0 0 0 

phase loading factors fQ for the op t imum / , of 0.012 pf 
per micron. From Table V I I , a value of / „ of 0.004 pF per 
nm, corresponding to operating point " P I " in Fig. 10(a), 
provides a reasonable amplif ier device width factor x of 
90 fi and a bCL value of 0.366 pF, which is indicated as 
Ca in Fig. 9. 

C. Amplifier 2 

The relevant parameters for amplif ier 2 in the three 
switching states are given in Table V I I I . In this case, 
phases " E " and " O " are both critical phases, and the 
required loading factor should be the same and corre
spond to the opt imum operating point (we denote the 

loading factor / , ) . Table V I I I indicates that for these two 
phases, the values of CL eff are also the same and there
fore, as discussed in Section V I , the added load capaci
tances in these switching states cannot be made equal. 
Selecting the " O " and " I N T " phases as the phases for 
which the load capacitances are equal and denoting the 
loading factor in the noncritical " I N T " phase by / i n l , the 
equations in Table 111 yield: 

ACL„ = ACL„, = 
C L eff 0 / t a 

/,-/.•.(!+ 0 
CL e f f„ 

( 1 6 ) 

( 1 7 ) 
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T A B L E IX 
S I M U L A T E D AND D E S I G N F I L T E R S E T T L I N G T I M E S (ps) 

E-phase E-phase 
Amp Sign Int-phase O-phase Isolated Coupled 

A l + Simulated 778 778 689 935 
Design 381 881 670 -

A l Simulated 797 797 739 894 
Design 910 910 778 -

A2 • Simulated 605 658 652 811 
Design 615 670 670 -

A2 _ Simulated 507 747 772 865 
Design 643 778 778 -

1/p • 

SAMPLE 
WP 

Fig. 11. Output buffer circuit. 

m 0 I 
I 

Fig. 12. Macromodels for S C filter, (a) Amplifier macromodel. (b) Switch macromodel. 

A C L . 
C L e r f , / . 

- C L eff, . (18) 

A value for /;„, of 0.006 p F per fim (operating point "P2" 
in Fig. 10(a)) gave an amplifier gatewidth factor x of 40 
Mm and values for A C L „ and A C L , of 0.2361 p F and 
0.2955 pF, respectively. These load capacitor require
ments are met by adding the 0.2361-pF capacitor Cb 
directly to the output of amplifier 2, as shown in Fig. 9, 
and a 0.0594-pF capacitor Cc to the node "x." If the load 
capacitances had been made equal in the " E " and " I N T " 
switching states, then the equations would still have been 
soluble, but then A C L ^ , , would have been greater than 
A C L „ ; this would have made implementation difficult as 
no switches are closed in the " I N T ' switching state. 

I X . SIMULATION OF SETTLING BEHAVIOR 
Having optimized the S C filter for prescribed settling 

behavior of the two amplifiers in each time slot, we now 
verify the settling behavior of the circuit as a whole by 

computer simulation. At this stage, we still assume that 
the switches in the filter of Fig. 9 are ideal; the effect of 
nonideal switches will be considered in Section X I . 
Whereas up to now we have considered amplifiers settling 
in isolation, we now consider the settling behavior of the 
whole filter. We thus consider the filter in each of the 
three switching states " E , " " O " and "Int." For each 
switching state, the filter degenerates to an amplifier-
capacitc: subcircuit. For these subcircuits, S P I C E was 
used to simulate the settling times of the transient output 
voltages of the two amplifiers for positive and negative 
output voltage steps [24]. The excitation, consisting of 
current pulses applied to the amplifier virtual ground 
nodes, and the initial conditions were chosen to give 
realistic amplifier output voltage steps of 0.37 V . The 
results of the simulation are shown as "Simulated" in 
Table I X . The settling times denoted "Design" are the 
design settling times of Table V for the chosen operating 
points. In the " E " phase, the two amplifiers in Fig. 9 are 
coupled by a capacitor; thus in reality there is interaction 
between the amplifiers during settling, which was not 



2 0 0 

HA1GH et ai: DESIGN OPTIMIZATION 833 

F l t o m ) I HHl) Fr«»nncy IhWi) 

Fig. 13. Simulated amplitude response of integrated filter with ideal curve, (a) 250-MHz switching frequency, (b) 500-MHz 
switching frequency. 

H Q * ] ® 0 
Fig. 14. Layout plot for GaAs S C filter, total size 3.3 mm x 2.6 mm. 

allowed for in the above design procedure. For the results 
denoted "Isolated" in Table I X , the interaction was bro
ken by replacing the other amplifier by an ideal voltage 
source. The results denoted "Coupled" include the inter
action. It can be seen that the interaction between ampli
fiers increases settling times by about 3 0 % . For the " O , " 
"Int," and noncoupled " E " cases, there is reasonable 
agreement between design settling times and those ob
tained by simulating the filter. 

X . OUTPUT BUFFER 
The design for the output buffer of Fig. 9 is shown in 

Fig. 11. It consists of two unity gain sections separated by 
a switching circuit and hold capacitor. The unity gain 
sections are very high-quality modified source followers 
derived from the operational amplifier of Fig. 5 . The 
switching circuit is similar to that in Fig. 3(b). By feeding 

an appropriate clock signal to the digital input, the buffer 
acts as a sample and hold circuit where the sampling 
instant may be freely chosen. Alternatively, with a dc 
digital input, the circuit acts as a nonsampling buffer. 
S P I C E simulation of the circuit in switched and non-
switched modes showed that in both cases there is negligi
ble performance deterioration over the required fre
quency band. 

X I . SYSTEM VERIFICATION 
The frequency response of the final S C filter system is 

simulated using a sophisticated S C system analysis pack
age, which can simulate resistive effects, thus allowing for 
nonideal switch resistance to be included. The package 
used is the University of Glasgow S C N A P software suite 
[25] . The analysis is based on the use of small signal 
macromodels for the amplifiers and the switches. 
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The gain and phase responses of the amplifier are 
analyzed using the stead-state analysis facility of SPICE 
to give results of the kind already shown in Fig. 6. 
Examination of these curves indicates that they can be 
approximated to a sufficient accuracy over the frequency 
range of interest by a linear macromodel possessing two 
poles and a single zero. The circuit diagram of the macro-
model chosen is shown in Fig. 12(a). The component 
values are adjusted by tr ia l and error to give the best f i t to 
the gain and phase characteristics and to give correct 
input and output impedances. For the switches, SPICE 
transient analysis o f the step response of a single switch 
device connected to a capacitor allows the determination 
of on-resistance and off-resistance, leading to a switch 
macromodel of the fo rm shown in Fig. 12(b). The SC 
f i l ter system of Fig . 9, w i th its amplifiers and switches 
replaced by macromodels consisting of capacitors, ideal 
switches, resistors, and controlled sources, is analyzed 
using the SC system simulator SCNAP. The amplitude 
response curves are shown in Fig. 13 for switching fre
quencies of 250 M H z and 500 M H z . 

X I I . LAYOUT AND FABRICATION 
The 2nd-order SC filter based on Fig. 9 was laid out 

using M A G I C wi th a specially wri t ten technology f i le for 
the Anadigics GaAs process, which provides 0.5-fim gate-
length MESFET ' s and silicon ni t r ide meta l - insu la tor -
metal ( M I M ) capacitors. Separate lines and pads were 
used fo r the analog and digital grounds and power sup
plies. Reasonable precautions were taken to avoid back-
gating effects. A plot o f the circuit layout is shown in Fig. 
14. The size o f the chip is 3 .3x2 .6 mm and the power 
consumption is 440 mW. From the simulation results in 
the previous section, i t was expected that the circuit 
would operate wi th high precision at a switching fre
quency of 250 M H z and that operation would sti l l be 
possible up to 500 M H z . The f i l te r had been designed to 
realize a Q-factor of 16, a midband gain of unity (0 dB), 
and a switching frequency to midband frequency ratio 
of 25. 

X I I I . TESTING AND EXPERIMENTAL RESULTS 
For testing, the chip was thermo-compression gold-wire 

bonded wi th in an 18-pin ceramic dual-in-line package. 
For measurements at a 250-MHz switching rate, the pack
age was mounted in a dual-in-line socket, which was 
placed on an insulating circuit board. For measurements 
at a 500-MHz switching rate, the package was mounted 
directly on a copper-clad board, which formed a ground 
plane. B N C sockets were provided for the two switching 
signals and the input and output signals. The signal input 
and the switching inputs were terminated in 51-0 resis
tors as close to the chip as possible. For the tests to be 
described here, the output buffer amplif ier was operated 
in continuous, nonsampling mode wi th a dc sample volt
age of - 10 V . The input signal level for all tests was + 7 
dBm, or 0.5 Vrms. 

M l " 

fnajsici I r t t t l 

(a) 

Fig. 15. Measured amplitude response of filter, (a) 250-MHz switching 
frequency, (b) 500-MHz switching frequency. 

The measured ampli tude/f requency response of the 
filter for switching frequencies o f 250 M H z and 500 M H z 
are shown in Fig. 15(a) and (b), respectively. These re
sponses are insensitive to power supply voltage variations. 
Expanded passband plots for the above switching f re 
quencies are shown in Fig . 16(a) and (b). The peak gains, 
midband frequencies, and Q-factors for 250 M H z and 500 
M H z switching frequencies are +0 .2 dB and - 0 . 4 dB, 
10.02 M H z and 20.01 M H z , and 15.1 and 16.7, respec
tively. These frequency response accuracies represent a 
considerable improvement over the previous results of [4]. 
The zero-input noise measured at the output of the filter 
is shown in Fig. 17 for a measuring bandwidth of 100 k H z 
compared wi th the response fo r an input signal level of 
+ 7 dBm; the average noise at the midband frequency is 
about - 7 0 d B relative to the signal level used giving a 
dynamic range of about 76 dB. Observation of the filter 
output signal at the resonant frequency indicated a dc 
offset voltage o f less than 100 m V and reasonably low 
levels of clock feedthrough. 

X I V . CONCLUSIONS 
A significant increase in the maximum switching fre

quency for S C f i l ters has been achieved and good re
sponse precision demonstrated at these frequencies. This 
work has contributed towards demonstrating the engi
neering feasibility of GaAs technology for sophisticated 
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Fig. 16. Measured expanded passband response, (a) 250 MHz switching frequency, (b) 500 MHz switching frequency. 
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Fig. 17. Measured noise of filter. 

analog applications. Comparison of the computed and 
measured response curves indicates a need for more 
realistic computer simulation o f the integrated system, 
perhaps along the lines proposed in [24]. I n spite of the 
results achieved, the operational ampli f ier used in the 
design is significantly less fast than more recent designs 
[26] and advanced designs implemented using state-of-
the-art technology [27]. Thus fu ture opportunit ies are 
opened up for SC systems operating wi th gigahertz clock 
rates. I t is thought that the techniques for ampli f ier 
characterization and opt imizat ion of an SC circuit for 
maximum switching frequency that have been presented 

are also applicable to other technologies, including 
C M O S . 
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A Methodology for Integrated Ladder 
Filter Design 

Li Ping, Member, IEEE, Robert K..Henderson, Member, IEEE, 
and John I . Sewell, Senior Member, IEEE 

Abstract—The design procedures for integrated ladder niter 
design by operational simulation are regularized in terms of 
matrix operations. This provides a systematic framework for the 
derivation of standard circuits, such as leapfrog and coupled-
biquad, as well as several novel structures. Each circuit is now 
seen to belong to a certain family, dependent on the type of 
matrix factorization employed. A detailed comparison of the 
properties of the different structures is undertaken for a range 
of filter specifications, demonstrating that ladder filters offer 
good solutions to several hitherto difficult filtering problems. 
The methods are applicable to all active filter technologies 
including active- RC and switched capacitor (SO. 

I . INTRODUCTION 

Integrated active filters designed by passive ladder sim
ulation have long been known to have the property of 

low sensitivity to fabrication errors [ l ] - [3 ] . Among various 
design approaches the leapfrog ladder and coupled bi-
quad methods are the most popular [4], [5]. A recent 
alternative is the LUD ladder simulation technique, which 
has the notable feature of being free from capacitor-
coupled op-amp loops [6]. However, the advantages of 
adopting ladder simulation methods have always been 
compromised by their complicated design procedures and 
overheads such as chip area, which are highly dependent 
on proper selection of the prototype and simulation tech
nique. 

This paper provides a comprehensive study of inte
grated ladder filter design by operational simulation 
methods. A unified matrix form is introduced, which 
permits the design procedures to be expressed in terms of 
a series of matrix operations. This provides a systematic 
basis for design of filters with different prototype struc
tures and response specifications. Most existing opera
tional ladder simulation and cascade biquad approaches 
are described, as well as several novel strategies. 
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Some constraints will first be stated to define a class of 
matrix equations that are directly realizable. These equa
tions are linear in s~' so that op-amp circuits can be used 
to perform additions, multiplications, and integrations. 
Techniques are then introduced to render the matrix 
description of the ladder prototype realizable, by decom
posing it into several linear subequations. A large family 
of circuit structures is revealed depending on the choice 
of matrix decomposition, including the existing leapfrog, 
coupled biquad, and LUD ones as specific cases. A l l 
circuits are insensitive to parasitic capacitance in SC 
implementation. 

LDI-transformed SC ladders are discussed initially [3] 
and it is shown that the design procedure for the active-HC 
ladders is nearly the same. However, since LDI design 
requires a complicated procedure to eliminate the distor
tion caused by improperly realized terminations [7], so-
called bilinear-LDI methods will be adopted to develop 
exact z-domain SC circuits. In many cases, the LDI and 
bilinear-LDI structures are identical except for different 
input stages. However, for prototypes with purely induc
tive branches (without a parallel capacitor) the LDI struc
ture is simpler than the corresponding bilinear-LDI one. 
A technique is introduced in this paper to cancel excess 
components in the bilinear-LDI structures, hence combin
ing the advantages of simplicity of the LDI structure and 
exact frequency response of bilinear transformations. 

Finally, a detailed comparison of various circuit struc
tures is presented for different applications. With the 
help of a filter compiler, PANDDA [8], some studies of 
the various structures over a range of relative bandwidths 
(for bandpass designs) and transition bandwidths (for 
low-pass designs) are undertaken. This provides guide
lines as to the suitability of each structure to a given filter 
specification. 

I I . D I R E C T L Y REALIZABLE MATRIX SYSTEMS 

The basic building blocks for active-/?C and SC net
works are shown in Fig. 1, realizing the elementary trans
fer functions of feedthrough, inverting, and noninverting 
integration. 

Directly Realizable Matrix Systems 

Matrix methods are known to be an efficient means of 
representing large interconnected networks. The inverse 

O098-4094/91/080O-0853$0I.OO C1991 I E E E 
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considered to be directly realizable if it meets the follow
ing assumptions. 

i) The matrix equation is linear with respect to the 
transfer function of the basic building blocks. 

ii) In each matrix equation only one variable vector and 
associated coefficient matrix will be written on the 
left-hand side. 

iii) The coefficient matrix on the left-hand side is square 
and nonsingular with all the diagonal elements 
nonzero. 

With the above assumptions a directly realizable matrix 
equation will have the following form: 

v o u « ( * > 
1 - z -1 C 2 

V i ( z ) 
1 - 2 " 1 Cft 

— V 2 ( z ) V 3 ( z ) 

(b) 

Fig. 1. First-order building blocks, (a) Active-/?C building block, (b) 
SC building block. 

4> 

(a) (b) 

Fig. 2. Representations of a linear systems, (a) Signal flow graph, (b) 
SC circuit realization. 

procedure is how to construct an active-i?C or SC circuit 
from a set of predetermined matrix equations. If the 
equations are linear with respect to the transfer functions 
of the basic building blocks, then the problem becomes 
most simple. For example, consider the following single 
algebraic equation: 

C„„D„ + C . 
1 - Z" 

(1) 

This equation can be directly represented by the SFG in 
Fig. 2(a). Let the variables {u,} and {w,} be the voltages of 
op-amp outputs, then the SFG can be replaced by the SC 
network shown in Fig. 2(b). 

This simple example can be generalized to the case of 
constructing an SFG and an SC circuit from a set of 
algebraic equations in matrix form. A matrix equation is 

k 
(2) 

where [Xk) are vectors of variables, [Jk] are input vectors, 
[Ajk) are connection matrices, and { ( i k ] and { ( k ) are the 
transfer functions of the building blocks. 

The following rules are used to derive S F G ' s and 
circuits directly from matrix equations throughout this 
paper. 

1) Every entry in the variable vectors is represented by a 
nodal variable in the SFG and by an output of an 
op-amp in the circuit. The input variables are repre
sented by independent voltage sources. 

2) The ith row equation represents the linear relationship 
at the node corresponding to or, for the circuit, 
the input - output voltage relationship of the op-amp 
corresponding to x{. 

3) Each diagonal entry a„ is realized by an integrating 
element. Every other nonzero entry in a matrix repre
sents the connection of a circuit element between 
op-amps. 

Notice that Assumptions i ) - i i i ) are only sufficient con
ditions for readability. I f •* matrix system meets these 
assumptions, then using the above rules its realization 
becomes straightforward and unique. The major task of 
this research is to develop systematic procedures to real
ize matrix systems which initially fail to meet these as
sumptions. 

I I I . CONTLNUOUS-TLME AND L D I TRANSFORMED 
DISCRETE LADDER SYSTEMS 

A passive ladder can be described by the nodal equa
tion [9] 

(sC + s-'T + G)V=J. (3) 

To ensure that all the entries in C, I \ and G are positive, 
we introduce alternating signs in V, i.e., let V -
[ r „ - L ' 2 , i : 3 > - v4, • ]. 

A. LDI Transformed Systems 

The L D I transformation is defined as j - » ( 2 / 7 " X O _ 

z~1)/z~'/2] (T is the sampling period) and a pair of L D I 
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integration operators are 
<t> = 1/(1 - (4a) 

* = z " 7 ( l - ( 4 b ) 
Applying the L D I transformation to (3) a"d introducing 
an extra half-period delay at the terminations for stability 
[10], (3) becomes 

Y(z)V = J (5a) 

2 1 - z " 1 T z~>/2

 l / 7 1 
T73-C + -T + z±'/2C (5b) 

T z " l / 2 2 1 - z~] J 
,1/2 

T A B L E I 
V A R I O U S M A T R I X DECOMPOSITIONS 

K(z) = 
2 1 - 2 " 

multiplying equation (5a) through by z' 

^ A + <&B + G^V = f 

A = (2/T)C, 
B = (T/2)T, 

Multiply (5a) through by z ~ 1 / 2 to get 
1 

gives 

(6a) 

(6b) 

(6c) 

A = (2/T)C, 
B = ( r / 2 ) r , 

f = z - i / 2 J . (6d) 
Since the transfer functions from J and J' to the output 
differ only by a delay of a half period, we will not 
distinguish between them in the following discussion. 

As system (6) can be made identical to (3) by replacing 
\jr = <j> = j - ' f there is virtually no difference between 
active-/?C and L D I transformed ladder design, apart from 
replacing a pair of LDI integrators by a pair of inverting 
and noninverting continuous domain integrators. For this 
reason, only L D I SC ladder design will be detailed, as
suming that all the techniques can be used directly for 
active-/?C design. 

B. System Linearization by Matrix Decompositions 

Equation (3) contains nonlinear combinations of the 
basic functions ¥ and <t>; therefore, it does not meet 
Assumption i). It is more convenient to linearize the 
system into the form of (2). This can be done by creating 
a set of intermediate variables and decomposing the sys
tem of (3) into two inter-related systems. This decomposi
tion can be performed in various ways. 

C. Left Matrix Decomposition 

Factorize the left hand matrix A into 

A = A,Ar. (7a) 
The following pair of equations is equivalent to (6a): 

\A,W=(-<t>B-G)V-{-J) (7b) 

\ArV = VW (7c) 

where W is the vector of intermediate variables. 

Category Name Matrix Decompositions 

Left 
Decom
positions 

Left-LUD 
Left-direct (1A) 

A = LJJ, 
A = \K A,= \ 

A. = 
A, = 

U. 
A 

Right 
Decom
positions 

Right-LUD 
Right-direct (BI) 
Leapfrog 

B = L„Vb 

B = BI 
B = 4ArDrAr

r 

B, = L„ 
B, = B 
B, = 4 / ) r 

B, = 
B," 
B, = 

f » 
/ 
DTA\ 

Fig. 3. 6th-order bandpass ladder prototype. 

D. Right Matrix Decomposition 

B can also be factorized as 

B = B,B f 

The following pair of equations to (6c): 

(8a) 

AV= -<D[B,H '+ GV + ( - / ) ] (8b) 

(8c) 

From the rules given in Section I I , (7) and (8) can be 
realized by SC circuits, provided that the relevant matri
ces are obtained by certain decompositions. The one-to-
one correspondence between the circuit elements and the 
matrix entries indicates that the efficiency of the SC 
implementation in terms of numbers of capacitors is re
lated to the sparsity of the system matrices. Consequently, 
a good simulation of a prototype by matrix methods will 
attempt to maintain the sparsity property of (3). 

E. Further Matrix Decompositions 

The following methods are commonly known to pre
serve the sparsity of the matrices to be decomposed: the 
LUD method [6], the topological method [11], and, sim
plest of all, the direct methods that decompose matrix A 
into Al or I A; see Table I . There are also some dual 
systems, which can be obtained by replacing LU decom
position by UL decompositions, or by replacing A = IA 
and B = BI by A = AI and B = IB, respectively. The 
dual methods are useful in realizing a family of canonical 
structures [12]. 

From network topology it is known that DrAT

TV = IL is 
the current vector of the inductance branches. This con
firms that topological decomposition of B, derived as 
shown at the bottom of Table I , yields the same structures 
as those by a conventional leapfrog method. In general, if 
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Fig. 4. Various SC niter realizations, (a) Left-LUD type SC circuit, (b) Left-direct (IA) type SC circuit, (c) Right-LUD 
type SC circuit, (d) Right-direct (BI) type SC circuit. 

topological decomposition is applied to the left-hand ma
trix A, it cannot be assured that the resulting A, and Ar 

will be square. Consequently, the resulting system (6) may 
violate Assumption (iii) in Section I I . I f A, and Ar, 
obtained from a topological decomposition, are square, 
then in most cases they are identical to those derived by 
LU decomposition. Therefore, the topological decomposi
tion will not be considered for left-hand matrices. 

F. Examples of Various Circuit Structures 

The passive ladder prototype of Fig. 3 is simulated by 
left-LUD, left-direct, right-LUD, and right-direct SFG's 
and circuits of Fig. 4. 

Interestingly, it is found that the circuits in Fig. 4(b) 
and 4(d) resulting from direct decompositions can be 
identified as a coupled type-E and type-F biquad circuit, 
respectively [5]. By comparing the intermediate variables 
introduced in the two approaches it can be shown that 
they differ only by voltage scaling factors. 

IV. O T H E R SYSTEM LINEARIZATION APPROACHES 

A. Inverse Matrix Approaches 

If a left-direct decomposition is used, i.e., A, = I, Ar-
A, then (7) is equivalent to 

/ W = ( - < U B - G ) K - ( - y ) 

IV = VA~1W. 
(9a) 
(9b) 

Similarly, if a right-direct decomposition B = IB is used, 
then an alternative realization of (8), by inverting B, 
results 

= -4>[lW+GV + ( - J ) ] (10a) AV 

BlW = VIV. (10b) 

The significant properties of these inverse matrix methods 
occur in the continuous-time domain, when ¥ = <I> = 
A = C and B = T, (9) is a minimum capacitor realization 
while (10) is a minimum resistor realization. This is be
cause the nonzero entries of the matrices in the left-hand 
side require only capacitors for realization while those of 
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Fig. 4. (Continued) 

the right-hand side with coefficient ¥ = <P = s~l require 
resistors. The identity matrix / on the right-hand side has 
the fewest nonzero entries and hence requires a minimum 
number of resistors. Minimum capacitor or resistor prop
erties are useful for certain fabrication technologies such 
as continuous-time transconductance-C [13]. 

The disadvantage of this method is that even when C 
or T is tridiagonal, C - 1 or T~l is usually a full matrix, 
representing a fully interconnected system. This will cost 
extra elements, the number increasing with the square of 
the matrix order. For high-order filters with multiple 
zeros at infinity, C or T can be made a block diagonal 
matrix with 2 x 2 blocks and the realization will not incur 
any extra cost. A block diagonal C ( D means that there 
must be pure series jnductor (capacitor) branches in the 
prototype which realize transmission zeros at infinite 
(zero) frequency. Another restriction of the inverse 
method is that C~1 or P ' may contain negative entries 
whose realization is efficient only if differential signals 
are available. 

B. UL- LU Approaches 

UL and LU factorizations can be applied to both the 
left- and right-hand matrices of (3). Restricted by the 

requirements of preserving matrix sparsity and maintain
ing a canonical number of variables, derivations for such 
structures are not straightforward and are explored in this 
section. Rearrange (3) as 

^ A + <t>B + zD1 + Dny = (l + z)J' (1 

A = 2 / TC + T/2T - G, + G„ 

and let 

Define 

la) 

B = 1TT 
Dl = 2Gl 

Dn = 2Gn ( l i b ) 

A = VaLa (12a) 
B-LbU„. (12b) 

= V-1{L0V + U a - l j ) (13a) 

w„ = V„V (13b) 

G, = d i a g [ g 1 1 , 0 , - - , 0 ] (13c) 
G„ = diag[0, •• ,0 ,g„„] (13d) 

Du 
= 2 G , t ; 1 (13e) 

Dn, = 2G„t/ ( r 1 . (13f) 



858 I E E E TRANSACTIONS ON CIRCUITS AND SYSTEMS. VOL. X. NO. 8. AUGUST 1WI 

C. ^0 C, T T 
I f—II f—U 

\ ° 

V ! " 

X 

J . " ) . 
1 I 1 

Fig. 5. U L - L U type SC circuit. 

(14a) 

(14b) 

The upper triangular matrix and lower triangular 
matrix Lbs are defined (Appendix) to satisfy the identity 

UasLc = LbsUb. (13g) 

Also let 

f=-(l+DlsA-')J (13h) 

Then (11a) can be linearized as 

fV,W. = -{(<t>Lb + D„s)Wb + <t>DlsWa\ 

-{2+DisV;l)j 

\Lb,wb-vv.,w.-u„u;lj. 

Notice now that the output is wbn. As Ub is upper 
triangular, wbn differs from the original output un by only 
a constant factor. An example of a U L - L U circuit is 
shown in Fig. 5. Such circuits are found to be useful for 
special wide-band filtering problems [14]. 

V . B I L I N E A R - L D I LADDER DESIGN 

In L D I transformed ladders, a z± 1 / 2 factor is intro
duced to represent the improperly realized terminations 
and to ensure stability, causing a distortion of the de
signed frequency response. The bilinear transformation, 
on the other hand, has the advantage of both stability and 
exactness. Unfortunately, bilinear integrators are sensitive 
to the stray capacitance and are not practically useful. 
Instead, an equivalent SC ladder utilizing L D I integrators 
can be formed. 

After bilinear transformation $ - » ( 2 / r X l - z~l)/(\ + 
z ' 1 ) , (3) becomes 

2 1 

r i + z-

T 1 + z" 

2 1-z - r + G V = J (15) 

and multiplying the system through by (1 + z~')/(l -
gives 

2 
2 T l + z-'' 
-C+-
T 2 1 - z" ' 

l+z-1 

V = 
1+ z" 

C , 1 + Z - ' 

C , 1 - z - ' 

r. I 

M 1 — 

i i 
Fig. 6. SC realization of bilinear input functions. 

Equation (16) can be rearranged as 

—A + <PB + (17a) 

A = 2/TC + T/2T + G 
B = 27T 
D = 2G 
r=(i + z ) j ( i7b) 

A + <t>B + (17c) 

A = 2/TC + T/2T-G 
B = 2TT 
D = 2G 
J"-(l + z~l)J. (17d) 

z ' ) A. Termination Problem 

Although system (6) is derived by L D I transformation 
1 while system (17) arises from the bilinear transformation, 
jJ- they both have the same appearance apart from the input 

terms. This equivalence makes it possible to design bilin-
(16) ear ladders using L D I integrators, a fact indicated first by 
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Fig. 7. Exact bilinear-LDI SC fillers, (a) Left-ULD type SC circuit, (b) Right-ULD type S C circuit. 
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II I 

II 3 1 

13 10 

Fig. 8. A 20th-order bandpass ladder prototype. 

Lee and Chang [4] from a topological basis for SC cir
cuits. Application of the methods of Section I I to (17) 
results in a similar range of circuit structures. 

The input of (17a) has a (1 + z) or (1 + z _ 1 ) multiplier. 
The realization of the noncausal factor ( 1 + z ) can be 
accomplished by multiplying by z - 1 giving (1 + z _ 1 ) , and 
introducing a delay of one period. Several realizations are 
possible. 

Direct realizations of (l + z ' 1 ) for left-decomposition 
designs and (1+ z " ' ) / ( l - z~l) for right-decomposition 
designs can be achieved by using some special circuit 
arrangements [15], Fig. 6. 

Alternatively, the following systems can be used for left 
and right decompositions: 

A,W = -(<t>B + D)V-2(-J) (18a) 

ArV = V W - A f \ - J ) (18b) 

lAV= -<t>(B,W+ DV)- ] (19a) 

\W =VBrV-2BrlJ- (19b) 

It can be verified that (18) and (19) are equivalent to the 
original system (16), respectively. They can be directly 
simulated by SC circuits with LDI type integrators. Notice 
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Fig. 9. Lef l -LUD SC ladder simulation with broken loops. 

if J has only one nonzero input, i.e., J = [y,,0, • • • 0], it is 
preferable to have the first column of A f l and Bf' with 
as few nonzero entries as possible. This number is mini
mized to one when Aj~l and B," 1 are upper triangular 
matrices, which occurs when UL or IA or IB decomposi
tions are selected. Fig. 7 shows examples of exact left-and 
right-ULD circuits. 

Both the above methods require some extra compo
nents that may introduce a significant layout overhead for 
low-order filters. They may be simply dispensed with by 
replacing the 0 + z~') factor in the numerator function 
by 1 or z~\ resulting in the same circuit structures as 
LDI ones. However, this incurs a penalty warping func
tion of (1 + z ) - 1 or z" l / 2 cos" '(<u7y2), and a zero at half 
the sampling frequency is lost. The distortion introduced 
in the passband by cos(<o7"/2) can be corrected by pre-
warping the original prototype ladder. This can also be 
conveniently combined with sin(^r)/jr correction resulting 
in a x / t a n ( * ) function, which can then be superimposed 
on the frequency response specifications [16]. I f the sam
pling frequency is very high compared with the center 
frequency, as is often the case in practice, x / t a n ( j : ) = 1 
and no real compensation is necessary. 

B. Modification of Bilinear Discrete Ladders 

In some cases matrix A in (17) has more nonzero 
entries than its counterpart matrix in (6), costing more 
circuit elements in realization. This happens when there 
are inductance branches without corresponding parallel 
capacitance branches in the prototype, and consequently 
A is less sparse than C after adding the nonzero entries of 
(T/2)T to the zero entries of ( 2 / D C . The pure induc
tance branches are normally used to realize poles at 
infinity. Since the entries in (T/2)Y are usually much 
smaller than those in ( 2 / D C , addition of (7"/2)r to 
( 2 / D C also causes an uneven distribution of values in A 
and results in a large capacitance spread in the SC 
implementation. 

The difficulty can be overcome by placing a negative 
capacitor, C,, in parallel with the purely inductive branch. 

Frequency IkHzl 
5 8 11 It 17 

-30 -

-50 -

2 -70 -

a 

90 

Si 110 

-130 -

(a) 

Frequency IkHzl 
101 107 11.2 11.6 12.2 

9 55 

-9 63 -

-9 71 -

5 

c 
5 - 9 79 -

(b) 

Fig. 10. A 20th-order bandpass filter, (a) Overall response, (b) Pass-
band response. 
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T A B L E I I 
D E S I G N D A T A FOR A 20TH-ORDER S C L A D D E R F I L T E R 

Normalized Data for the RLC Ladder 

Sin 1.0 G L 
0.51020 

c , 2.4200 L , 0.39346 C , 9.1911 L , 0.084942 
c 5 7.9789 1-3 0.16361 c ; 8.5633 L4~ 0.11936 
c 5 

•0.001237 L 5 
2.5595 1.4699 L„ 0.99020 

c , 10.453 L , 0.09341 c 8 3.2603 L 8 
0.23531 

c , 0.59787 c , „ 10.308 L,o 0.095873 
c „ -0.0016599 L , , 1.9075 C 1 2 

3.1240 L P 0.42852 
C,3 7.6061 0.14009 C „ 3.04204 L , 4 

0.23821 
C,5 0.51578 

L , 4 

lower passband edge 0.9075 upper passband edge 1.1065 
lower stopband edge 0.877 upper stopband edge 1.132 
passband ripple < 0.03 dB 
lower stopband atten. >95dB upper stopband atten. >85 dB 

Component Values for the SC Ladder 
NODE1 NODE2 V A L U E NODE1 N O D E 2 V A L U E NODE1 NODE2 V A L U E NODE1 NODE2 V A L U E 

4 3 24.38 4 5 10.37 6 5 9.095 6 7 40.92 
8 7 39.09 10 9 47.51 10 11 6.576 12 11 25.31 

12 13 4.401 14 13 5.049 14 15 4.493 16 15 43.78 
18 17 46.54 18 19 7.795 20 19 14.39 20 21 4.113 
22 21 2.712 24 23 16.32 26 23 18.05 26 25 28.15 
28 25 18.62 28 27 30.77 30 29 28.71 32 29 9.335 
32 31 22.63 34 31 9.969 34 33 34.52 36 33 3.243 
36 35 31.09 38 37 32.58 40 37 15.40 40 39 28.45 

2 39 6.541 2 41 30.91 43 44 1.000 45 46 1.000 
47 48 1.000 49 50 1.000 51 52 1.000 53 54 1.000 
55 56 1.000 57 58 1.000 59 60 1.000 61 62 1.000 
63 64 3.764 65 64 4.341 63 68 1.670 65 68 3.558 
71 68 1.000 65 74 6.805 71 74 13.62 77 74 1.000 
71 80 1.000 77 80 10.02 83 80 2.349 77 86 1.000 
83 86 5.139 89 86 2.533 83 92 1.000 89 92 1.852 
95 96 10.65 97 96 1.000 95 100 1.000 97 100 10.70 

103 100 4.128 97 106 1.463 103 106 4.049 109 106 1.000 
103 112 1.243 109 112 1.000 24 3 2.993 2 21 1.383 
115 3 1.000 

total capacitance 814 units capacitance spread 47.5 units 
capacitance unit l p F clock frequency 800 kHz 
number of capacitors 73 number of switches 81 
number of op-arnps 20 
lower passband edge 10.1 kHz upper passband edge 12.45 kHz 
lower stopband edge 9.18 kHz upper stopband edge 13.00 kHz 

Lj, of value 
T2 1 

C — TL,- ( 2 0 ) 

Then from (17) the contributions of C , and L, will cancel 
each other. This reduces both the number of capacitors 
and spread of capacitance values. The resonant frequency 
of the pole due to C, and L, is given by 

^ = 7 ^ - = 7 2 = ( ± 2 / , ) 2 (21) 

where / , is the sampling frequency. If JL, is a series 
inductance branch in a ladder, sr will become a zero of 
the transfer function. The response error thus caused can 
be eliminated in the approximation procedure, by replac
ing poles at infinity by ones at - 2 f s on the real axis. The 
negative capacitance required can then be incorporated in 
the synthesis of the passive ladder prototype [16]. The 
low-sensitivity properties are not influenced by the intro
duction of negative elements [17]. 

For high-order S C filters, these inductor and negative 
capacitor pairs can be used to cancel the off-diagonal 

nonzero entries in A, and therefore, break the unfavor
able unswitched capacitor op-amp chains that influence 
op-amp settling times. A 20th-order bandpass ladder (Fig. 
8) is simulated by the left-LUD circuit (Fig. 9). The 
structure is very regular and the long unswitched capaci
tor op-amp chains have been broken by introducing two 
negative elements into the prototype. The response of the 
circuit is shown in Fig. 10; note that special approxima
tion techniques have been used to taper the ripple at the 
band edges and hence improve sensitivity in these re
gions. The component values for the circuit are listed in 
Table I I . 

V I . COMPARISONS AND APPLICATIONS 

Two notable novel categories of ladder simulations 
presented in Table I are left-LUD and right-LUD (and 
their duals by UL decompositions) circuits. Both have 
some characteristic features. 

In the left-LUD method the below-diagonal and 
above-diagonal elements of A are separated to matrices 
La and LT

a, respectively, effectively removing all capaci
tor-coupled op-amp loops. They also demonstrate excel-
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lent properties regarding component spread and dynamic 
range for bandpass design. However, since Z.„ and LT

a 

must be square, the dimension of the intermediate vari
able vector W is n (the number of nodes), and so alto
gether W and V contain 2n variables. Sometimes this is 
more than necessary. For instance, the left-LUD simula
tion of Fig. 4(a) could also be used to realize a fifth-order 
low-pass function. Alternatively, right-LUD methods 
would use only 2n - 1 variables, a canonical number for 
an odd order prototype. 

For right matrix decompositions, Bt and Br can be 
made rectangular and the dimensions of V and W are not 
necessarily equal. Consequently, the dimension of W can 
be smaller than that of V. In the case of a low-pass filter 
simulated by LUD methods, it is mandatory that T be 
singular [17] so that a zero column in Lr will appear after 
LU decomposition. It can be then deleted, making Lr an 
n x ( n - l ) matrix. Thus one variable is saved in form
ing W. 

There are also sensitivity problems in Iowpass design 
for all the methods mentioned above except right-LUD. 
Deviation in the entries of B, caused by the inaccuracy of 
the element values associated with these entries, may 
cause B to become nonsingular, introducing a zero at 
ft) = 0. Extra zeros introduced at the origin can be viewed 
either as an advantage or disadvantage; for instance, 
low-frequency noise suppression can be facilitated by 
these zeros. The right-LUD method does not have this 
problem as it involves multiplication of matrices with only 
(« - 1 ) rows or columns. The resulting matrices can never 
have a ful l rank n. 

The right-LUD method, however, does have the draw
back of possessing capacitor-coupled op-amp loops. Un
desirable large component spread and poor dynamic range 
are also observed for certain bandstop designs. 

These arguments indicate that right-LUD is a good 
candidate for low-pass design. It is more complicated to 
reach any conclusion about bandpass designs as the per
formances the circuits vary dramatically according to the 
relative bandwidth. This can be seen from some compara
tive studies. 

A. Comparison of Bandpass SC Ladder Designs 

The following indices are used as global measures of 
system sensitivity and dynamic range, respectively: 

1/2 
:,- d\H(u>)\ux 

and d((o) over the passband 

5 = - s(w)do> (23a) 

* ( « ) - E \H(io)\ 

< * ( « ) - { n i * u / « » ) i } 

Be, 

l/M 

(22a) 

(22b) 

where (c,) and (W m ) are the sets of capacitances and 
op-amp output voltages, respectively, and M is the num
ber of op-amps. 

As the passband behavior is of most interest to filter 
designers, define two indices for system sensitivity and 
dynamic range, which are the average measures of s(a>) 

width of passband Vssband 
1 

J d(u>)dw. (23b) width of passband •'passband 

Normally the chip area required for fabrication of an 
SC filter is measured by 

Tc= E cf (23c) 
all capacitors 

but to reflect the influence of capacitance spread the 
following index will also be used 

C - f E c / ] ' / 2 . (23d) 
all capacitors 

An overall performance index of an SC filter can be 
defined by 

CS 
/ »« — (23e) 

For these indices, it is desirable to have lower S, Te, C, 
and P (the lower limit is 0). The maximum op-amp output 
will always be assumed to have been scaled to 1, so that 
D will always be a positive number less than 1. It is 
desirable to have D close to 1. which means that all the 
op-amps have equal output swing in the passband. 

For a bandpass filter, the relative bandwidth is defined 
by 

R B W = ( a > + - a > - ) / a , m , a>m = (a +<o~ ) ' / 2 (24) 

where a i + and a>~ are the upper and lower band-edge 
frequencies, respectively. It is known that RBW has a 
great influence on the system performance. For sixth-order 
elliptic designs, let the passband ripple be fixed as 0.1 dB, 
stopband attenuation 50 dB and f , / f m ratio 25 ( 2 i r / m = 
<om,f, is the sampling frequency). Computations of S, Tc, 
D, and P are displayed against relative bandwidth (Fig. 
11). The same analysis has been performed for higher 
order elliptic type designs and similar trends are ob
served. 

B. Narrow Bandpass Filter Design 

From Fig. 11 it can be seen that the left-decomposition 
designs have very good total capacitance over the 
narrow-band range, but the biquad method is better 
around R B W = 1 . Regarding the sensitivity index S, all 
the ladder designs are much better than the biquad 
method over the whole range as expected [1]. The plots 
for cascade biquads are occasionally discontinuous; this is 
due to the fact that E-type and F-type biquads are se
lected according to Q-factor required, and discontinuity 
of internal nodal voltages may take place when the design 
is switched from E-type to F-type or vice versa affecting 
the dynamic range index. Another reason is that the 
pairing of biquadratic sections is carried out to achieve 
minimum total capacitance, which does not take into 
consideration voltage levels. 
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Fig. I I . Performance comparison of 6th-order bandpass filter realizat ions, (a) Dynamic range, (b) Sensitivity, (c) Total 
capacitance, (d) Performance index. 
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(b) 

6th-order asymmetric bandpass filler realization, (a) Overall response, (b) Passband response, (c) Sensitivity, (d) 
Dynamic range. 

T A B L E I I I 
D E S I G N D A T A FOR A W I D E - B A N D P R O T O T Y P E L A D D E R O F F I G . 3 

C , 0.3465 c 2 0.1580 1-2 0.2484 
C , 0.6119 c . 0.0596 0.3006 
C 5 0.4836 L s 4.0362 
G i n 1.0000 0.8802 

Sampling frequency 100 kHz 
Lower passband edge 300 Hz 
Upper passband edge 3400 Hz 
Passband ripple < 0.2 dB 
Lower stopband edge 10 Hz 
Lower stopband ait. > 3 0 d B 
Upper slopb'and edge 5000 Hz 
Upper stopband att. >45 dB 

T A B L E IV 
D E S I G N D A T A F O R W I D E - B A N D S C L A D D E R SIMULATIONS 

A comparison of the overall performance indices indi
cates that the left-LUD method is the best candidate for 
narrow-band design RBW < 1 and the biquad method is 
best for bandpass design with RBW around 1. 

C. Wide Bandpass Filter Design 

From Fig. 11 it is seen that both ladders and biquads 
are far from ideal for a very important area of filtering 

Left- Left- Right- Right-
L U D Direct (LA) L U D Direct (BI) 

c , 1.000 1.000 3.147 3.147 
c 2 9.174 9.174 9.392 9.392 
c , 1.000 1.000 1.000 1.000 
c . 3.620 3.620 9.821 9.821 

1.615 1.615 3.387 1.615 
c 6 1.266 1.266 1.266 1.266 
c . 4.445 3.435 3.435 3.435 
c a 1.375 1.375 4.044 4.044 
c , 3.736 3.736 2.391 5.433 

21.697 25.451 22.474 22.474 
c „ 4.632 5.433 1.690 3.736 

21.169 22.474 11.201 25.451 
c „ 1.573 1.573 2.935 1.000 

1.000 1.000 1.000 1.573 
c 1 5 1.612 i.oob 2.074 1.473 

1.000 1.000 1.000 1.000 
C , 7 1.000 1.000 1.000 2.137 
c 1 8 8.326 9.325 9.953 7.070 
C , 9 1.000 1.265 1.000 1.000 

4.804 5.475 51.232 10.686 
c 2 l 

3.907 3.907 1.252 1.252 
c „ 4.999 4.999 1.407 1.000 
c a 

3.120 3.120 1.000 1.000 

total 111.199 117.373 150.109 123.014 
spread 21.697 25.451 51.232 25.451 
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Fig. 13. Performance comparison of 8th-order asymmetric bandpass filter realizations. 
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applications, that is, for the voice band application with 
passband from 300 Hz to 3400 Hz whose RBW> 3. It is 
found that for this type of wide-band design the most 
significant factor causing the deterioration of all designs 
is the location of lower band finite zeros, which approach 
zero as the RBW increases. Realization of these zeros 
requires large capacitance spread. The deterioration pro
cess can be reduced if the lower band finite zeros are 
replaced at the origin. Since the zeros in the lower stop-
band are very close to origin anyway, this shifting will 
have only a slightly deleterious effect on the characteris
tic. The performance of a 6th-order design of this t>pe is 
shown in Fig. 12. The design data of four SC circuits are 
given in Tables I I I and Table IV. The left-LUD has the 
lowest capacitance spread and best dynamic range. 

A sweep of an 8th-order design is done over a range of 
relative bandwidths comparing the performance with four 
alternative ladder circuits with cascade biquads (Fig. 13). 
This result echoes the conclusions for the previous spe
cific example—that left-LUD design is still the best choice 
for this family of filtering applications, exceeding all oth
ers over the whole bandwidth range. 

D. Low-Pass Design 

Fig. 14 shows a sweep of performance index P against 
transition bandwidth ratio (passband edge/stopband 
edge) for various 5th-order elliptic low-pass filters. The 
passband ripple is fixed at 0.1 dB; the passband edge is 
1 kHz and the sampling frequency is 200 kHz. Note that 
only cascade biquad and right-LUD circuits provide one-
op-amp-per-pole realizations; the others require six op-
amps. Overall, the right-LUD is the best choice followed 
by biquad. The low sensitivity and good dynamic range of 
the right-LUD are its main advantages despite the lower 
total capacitance of the biquad. A sensitivity peak at the 
origin mitigates against the left-decomposition circuits for 
low-pass design. 

E. Software Development 

The matrix scheme discussed in this paper is also highly 
suitable for software development. A wide range of circuit 
structures, including both ladders and cascade biquads, 
can be represented in a unified format. The PANDDA 
software package [8] has been developed employing this 
scheme together with many other sophisticated approxi
mation, ladder synthesis, and optimization algorithms. 

V I I . CONCLUSIONS 

A methodology has been developed for the design of 
acWe-RC and SC ladder simulation filters. A wide range 
of circuits can be derived by adopting different matrix 
factorizations, notably LU and UL decompositions, in
cluding both existing and novel structures. A detailed 
comparison of various SC circuit structures has been 
undertaken and some notable conclusions are: the left-
LUD method is the best choice for filters with very 

narrow and very wide passbands; the leapfrog method is 
the best choice for sharp transition low-pass filter design; 
and cascade biquads are the best choice for moderately 
selective low-pass and bandpass filter design. Some spe
cial design techniques can be applied to produce efficient 
circuits in other technologies such as continuous-time 
transconductance-capacitor filters. 

APPENDIX 

When A and B are tridiagonal, La and Ub are also 
tridiagonal as well as triangular. Separate the diagonal 
and off-diagonal parts of the matrices 

La = Lad + Lao (25a) 

V „ ' V M + U b o (25b) 

where Lad and Lbd are diagonal matrices, LaB has 
nonzero entries only on the first lower off diagonal, and 
Vbo has nonzero entries only on the first upper off-diago
nal, 

I' .1., — 

Ub„ = 

0 
0 

0 

(26) 

where * stands for the nonzero entries. 
In (13) assume that Uas and Lbs are also tridiagonal 

and triangular matrices. Separate Uas and Lbs as 

V „ - V ^ + U m (27a) 

L b s - L b s i + Lbso. (27b) 

Equate the different parts of (13) according to the posi
tion of the nonzero entries: 

(28a) 

A „ (28b) 

b ! 0 U b o . (28c) 

Since in (28a-c) the number of constraints is less than the 
number of variables, we can assign 

L„st = l (29) 

which guarantees the readability of system (14). From 
(28) and (29) we have 

^ d - ( L a d - L a o V j U b o y x(Ubd-UboLjL.a) (30) 

and remaining variables can be solved from (28): 

(31a) 

(31b) 

The matrices in (30) and (31) may be singular and the 

Lbso ~ Uasa-LaoUbd 
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normal inverses do not exist. In these circumstances, 
Moore-Penrose's generalized inverse can be used [18]. As 
the matrices in (30) and (31) are all diagonal, the proce
dure to obtain their Moore-Penrose inverse is very sim
ple. The Moore-Penrose inverse of a diagonal matrix 
D = d iag[d n , - • -,dnn] is also a diagonal matrix given by 
M = d iag[m u , - • • ,mnn] with 

I/da, i f t f „ # 0 (32a) 
0, if du = 0. (32b) 
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Design of a Switched-Capacitor Filter for a Mobile Telephone Receiver 

L i Ping. R. C . J . Taylor . R. K . Henderson, and J . I . Sewell 

Abstract—Conventional SC realizations of wide-band filters 
demand large capacitance spread and exhibit serious sensitivity 
problems. The U I . - L U structure is a ladder type simulation 
which demonstrates superior sensitivity performance and 
maintains low capacitance spread. The design illustrates how 
the facilities of a modern filter compiler can be utilized to solve 
some quite difficult practical problems in a real application. 
Results from fabricated devices confirm the predicted proper
ties. 

I . INTRODUCTION 

TH E voice-band frequency range normally extends 
from 300 Hz to 4 kHz. The difficulty of designing 

filters in this range is that the relative bandwidth, defined 
by 

R B W = ( u

x - c j") / t j„„ u>m = (w* x a)") 1'' 2 

has a typical value of 3 . 5 . which is quite high. Switched-
capacitor (SC) realizations of such wide-band filters will 
have a large capacitance spread and serious sensitivity 
problems. In general, ladder-based realizations are known 
to produce low sensitivity solutions [1 ] , though computer 
simulations (2) have shown that capacitance spread is par
ticularly serious for bandpass leapfrog circuits [3] that use 
F-type damping. The sensitivity problem for cascade bi-
quads is well known. It is also observed that coupled bi-
quads [4] and L U D methods [5] suffer from high sensitiv
ity at very low frequencies; in the case of low-pass filter 
filter designs, it has been proven [6] that this property will 
always result when the so-called right-hand matrix is not 
decomposed. Similar reasoning can be extended to the 
bandpass case. 

In this paper, a practical voice-band filter design for a 
mobile telephone application is presented. A novel vari
ant of the L U D method is utilized. It combines a low 
capacitance spread with low sensitivity, which are impor
tant in reducing silicon area and easing the design require-
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ments of the amplifiers and switches compared to other 
solutions [7 ] . The strategy is to retain E-type damping 
(low capacitance spread) simultaneously with right-hand 
matrix decomposition (low sensitivity), which is not read
ily available with existing approaches. A modern filter 
compiler | 9 ) has been used and exercised considerably to 
provide an optimum solution. 

I I . W I D E - B A N D F I L T E R DESIGN 

An audio receiving filter for mobile telephony appli
cations typically has a wide passband extending from 300 
Hz to 3 kHz and exhibiting a -20-dB/decade slope for 
frequency de-emphasis. A notch is included to remove 
unwanted mixed down frequencies which are close to the 
upper passband edge. The template can be seen in Fig . 1. 

If the specification is met by a function with an elliptic-
type zero distribution, a very large capacitance spread will 
be incurred. The finite zeros in the lower stopband create 
very large time constants that require large capacitors. A l 
ternatively, if these zeros are avoided by choosing an all-
pole approximation with zeros at zero and infinite fre
quency, the required order will be very high. A compro
mise is to use a function with all lower band zeros at 
zero frequency and elliptic-type zeros in the upper stop-
band. Since the lower band edge of the filter is at low 
frequency, the movement of the lower band zeros to the 
origin has only a slightly deleterious effect on the filter 
characteristic [2 ] . Such a transfer function which meets 
the required template is shown in F ig . 1. It is a tenth-order 
function with a third-order zero at the origin, a zero at 
infinity, a pair of imaginary axis zeros, and two pairs of 
mirror image real axis zeros. The latter zeros are spe
cially placed to cause negative element values in the pas
sive prototype which cancel components in the S C simu
lation 12]. The number of capacitors required to realize a 
pair of mirror image real axis zeros at +2/ , ( / s is the 
sampling frequency) is less than that to realize a pair of 
zeros on the imaginary axis. The capacitance spread can 
also be greatly reduced this way. S ince / , is much higher 
than the passband frequency, a pair of zeros at + 2 / , has 
the same function as those at infinity. The approximator 
tidies up after these forcing modifications and ensures that 
the original specifications are still satisfied. 

A comparison of sensitivities is available from the filter 
compiler P A N D D A [9] . This has been made for a number 
a different realizations | 3 ] - | 6 ] and the results are shown 

0018-9200 92S03.00 : 1992 I E E E 
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Fig. I. Template and frequency responses of tenth-order filter. 
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Coupled - biquad 
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FIJI . 2. Passband sensitivity comparison for tenth-order filter realizations 

in Fig. 2. The sensitivity measure being used is 

Mu'l = i s 
H(u) | dc 

It can be seen that both l e f t - L U D and coupled-biquad 
circuits suffer from a low-frequency sensitivity peak, 
whereas the leapfrog and cascade-biquad circuits exhibit 
poorer sensitivity performance at the higher band edge. 
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T A B L E I 
COMPARISON or CAPACIFANCT. COSTS F:OH FII.IT:K RF ATION 

Structure Total Capacitance Capacitance Spread 

U L - L U 746.4 1 I M 
LUD 703,3 1 12.5 
Couplcd-E-Biquad 756.4 1 12.5 
Leapfrog 1 714.7 957.8 
Biquad 728.8 122.5 

J , „ t w U G , ?>-, 

" j rYYY\-_-3~ 

"6 

Fig. 3. Tenth-order passive prototype. 

Fig. 4. U L - L U SC circuit realization. 

The new U L - L U structure (detailed in the next section) 
maintains a low sensitivity over the whole passband. T a 
ble I gives a comparison of capacitance cost and high
lights the penalty of choosing a leapfrog realization. The 
conclusion of these studies is that the U L - L U structure 
offers the best solution to this filtering problem. Fig. 3 
shows the structure of a passive prototype synthesized 
from this transfer function. Note that the position of a 
series capacitor between the first and second nodes is re
quired to ensure E-type terminations [7] in the S C circuit 
realization shown in Fig . 4. The simpler structure of the 
filter towards the output is due to the cancellation of 
feedthrough capacitors by the specially positioned real 
axis zeros (capacitors Ch and C s in Fig . 3 therefore have 
negative values). 

The circuit uses a clock frequency of 128 kHz and has 
been fabricated onto silicon using a 3-^m single-metal, 
double-poly. 5-V process. The amplifiers used are single-
stage folded cascode without compensation capacitors, 
stability being ensured by the capacitors in the filter: the 
input devices are laid out as cross-coupled common cen-

troid to help with matching and to reduce offsets. The 
area-to-perimeter ratio of unit to nonunit capacitors is kept 
constant so that parasitic peripheral capacitance effects are 
cancelled. The size of the filter is 3027 jim x 894 nm. 
which is relatively small considering the complexity of 
the response. Passband details of the measured frequency 
response can be seen in Fig . 5. The response meets the 
template very well and over a number of devices there 
was hardly any deviation. This illustrates the low sensi
tivity of the filter to process variations and hence the ro
bust nature of the design. For commercial production this 
is an important factor in ensuring an increased yield and 
reliability of the devices. The noise floor at 1 kHz was 
- 6 0 dB and was approximately level at this value over 
ihe entire passband: no harmonic level could be detected 
above the noise floor. 

I I I . DERIVATION OF THE U L - L U STRUCTURE 

The derivation utilizes a U L - L U decomposition to
gether with a bil inear-LDl ladder design |2 ] . Starting from 
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Fig. 5. Passband detail of tenth-order niter 

the nodal equation of a passive prototype ladder 

(sC + s _ l r + G)V = J, (1) 

applying a bilinear transformation, and separating out a 
pair of L D I integration operators * = 1/(1 - ; " ' ) and 
• = z ~ ] / ( \ — z ~ ' ) . equation (1) becomes 

(Jj; A + <t>B + fljv = (I + z)J (2) 

where A = 2/TC + T/2T + G.B = 4 7 T , and D = 2 G 
A simplified U L - L U form has A = Uu L„, B = Lh Uh, 

Wa = V-'La V. Wh = Uh V, and Ds = DUh~] Again the 
upper triangular matrix f j m and lower triangular matrix 
Lhs are defined to satisfy the identity Uus £.„ = Lh, Uh. 
Then (2) can be linearized in terms of the L D I operators 
as 

Va Wa = - ( * L „ + D,)W„ - (I + z~*)J (3a) 

Lhs W„ = t Vus W„. (3b) 

The scheme described by (3) is a variation on those 
derived in [2]. In general DK is less sparse than D. as the 
entry Du when multiplying the first row of (/,,"'. which is 
the upper triangle, would produce a full nonzero row. 
However, in this design, the first row of L',,"' has onlv one 
nonzero entry, resulting from the fact that the first in
ductance L , in the prototype is separated from the other 
inductors. The beneficial effect of this is to ensure E-type 

damping at the input of the S C realization and this is con
sistent with E-type damping already implicit at the output. 
The virtue of E-type damping is to reduce capacitance 
spread in the termination sections of the S C realization. 
Notice now that the output is wh„: as Uh is the upper tri
angular. whn differs from the output by only a constant. 
The realization procedure for (3) by an S C circuit follows 
matrix methods [2], [9) and yields the circuit shown in 
Fig . 4 . A further point of interest is to note that the input 
factor 1 + in (3a) has been implemented implicitly 
by prewarping the original specification by a 1 + c~' 
function. This is conveniently combined with the sin (x)/x 
correction, resulting in tan (x) / x prewarping. 

I V . CONCLUSIONS 

In this paper we have examined the problem of design
ing voice-band S C filters with wide-band specifications. 
Such filters do not have satisfactory realizations by con
ventional design techniques due to excessive area require
ments or sensitivity to component value deviations. Low-
frequency notches, which cause the large component 
spread, are eliminated by designing a transfer function 
with lower band zeros at the origin. A new ladder sim
ulation structure has been proposed to overcome the sen
sitivity and capacitance spread problems of other real
izations. A tenth-order filter with sloping passband 
response has been fabricated and the measured results 
verify that difficult audio frequency responses can be met 
practically using a relatively small area of silicon. This 
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particular design illustrates the potential of modern filter 
compilers and their application to difficult practical design 
problems. 
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Abstract. A review of the progress in automated design of analog integrated filters is presented. Such tools are 
ahead of other analog circuit automation in terms of the acceptance by designers and practical applicability. A 
survey of the present-day commercial and academic systems is made and the range of facilities available is com
pared. The problems faced in the design of this type of software are typical of the problems of analog design systems 
in general; lack of openness for introduction of new design knowledge, difficulties of dealing simultaneously with 
expert and novice users, poor integration in design environments, and user-interface problems. The structure of 
a typical system is studied and the computer methods used within are discussed with regard to such issues as speed, 
flexibility, and ease-of-use. Some future directions for analog fil ter compilers are proposed. 

1. Introduction 

Synthesis and compilation tools for analog circuits have 
been slow to develop compared to their digital counter
parts. This has been in part due to the greater diff iculty 
in identifying the rules involved in analog design and 
a certain reluctance on the part of the designer to accept 
automation of his or her highly knowledge-intensive 
skil l . Tools that do exist fall mainly into the categories 
of design capture, analysis and verification. Filter de
sign is an exception; a set of clearly defined hierarchical 
steps backed up by a large body of vvell-established 
mathematical theory renders the discipline amenable 
to automation. The earliest design programs were devel
oped in the 1950s and 1960s for passive RLC filters and 
demonstrated the feasibility of automatic circuit synthe
sis [1]. The domain witnessed the earliest application 
of several computer techniques to circuit design prob
lems (notably optimization). When the modern inte
grated filter technologies such as active-/?C, switched-
capacitor (SC), and continuous-time arrived in the 1970s 
and 1980s they were followed up quickly by computer 
automation [2 ] . Moreover, these tools were successful 
in gaining acceptance by designers. There are two main 
reasons for this confidence. Unlike other analog blocks, 
high order filter circuits are a common requirement, 
demanding a considerable number of trade-offs and 

tedious numerical design steps. These increase greatly 
with order, quickly exceeding the scope of manual 
design but ideally suited to the capabilities of the com
puter. Second, the filter technologies (for mainstream 
applications) are now very well mastered, allowing a 
sufficient degree of assurance in "what you design is 
what you get" to permit computer aids to take over. 

What are the main aims in the development of CAD 
tools for filters? 

1. To reduce design time and cost. Filter design turn
around is reduced f r o m months to a matter of days. 
Quick estimates of silicon area and power allow 
designers to make important trade-offs at system 
level. Filters synthesized by compilers come with 
a "correct-by-construction" guarantee (meaning that 
i f there are no errors in the CAD software then the 
network connectivity and component values must 
be correct!). No errors means no costly redesign. 

2. To provide optimal designs. Filter attributes can be 
tailored to specifications reducing wasted area and 
power. Computer assistance is essential in this com
putationally expensive task. 

3. To adapt quickly to changes in the technology. Now 
that filter design tools are accepted the challenge is 
to make them more capable to absorb new techno
logical developments, new circuit topologies and 
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design methods. This need has been made particu
larity evident by the continual emergence of new 
technologies, recently switched-current and 
MOSFET-C circuits [3 -5 ] . 

Several filter compilers are now offered commer
cially and many more reside in academia. Filter design 
aids are also increasingly found as extensions to digital 
signal processing packages, standard circuit analyzers, 
and mathematics and systems simulation languages. 
This article w i l l look at some of the issues faced in the 
design of this kind of software as a small illustration 
of the problems facing the current generation of analog 
CAD tools. One particularity significant issue, in view 
of the rapid technological developments over the past 
30 years, is the extent to which "technology indepen
dent" filter design can be achieved. This means the 
degree to which the shared design methodology of filter 
in various technologies can be exploited to provide 
reusable programs (a major goal of present-day com
puter science). Good design software must not only be 
flexible enough to adapt easily to the changing possi
bilities offered by the technology but must also be able 
to incorporate the increasing base of knowledge of cir
cuit structures. Versatile databases and algorithms are 
essential to provide this flexibili ty and some important 
contributions to this are reviewed. CAD, in general, is 
encountering increasingly the problem of tool integra
tion; tools which were developed as stand-alone entities 
are being asked to work together to build larger systems. 
Filter compilers are no exception and their lack of inte
gration is hindering the development of mixed analog/ 
digital filter systems. Another theme w i l l be the extent 
to which automation techniques can hide complexity 
f rom the user to provide simpler design decisions. 
There is always a tension between offering an excessive 
number of options to a designer and hiding too much 
("push-button design"). The former risks bewildering 
the newcomer and the latter risks losing the confidence 
of the expert. A continuum between these two extremes 
needs to be offered by well-designed software with a 
sufficiently uniform view of the design process. These 
themes w i l l be illustrated by developments and exam
ples drawn from the X F I L T filter compiler [6 ] . 

2. Background 

Integrated filter compilation is the translation of a filter 
from a high level design description into layout [7], 
There is a hierarchy of levels of description, involving 
more and more detail as we approach layout. Moving 

between levels is accomplished by a synthesis step 
which converts a design from a behavioral to a struc
tural description. For example, filter synthesis com
mences with the description of the design in terms of 
a frequency response and terminates with a netlist of 
parameterized building blocks, e.g., op amps, transcon-
ductors, capacitors, resistors, and switches. Several syn
thesis steps follow before we finally arrive at silicon; 
for example an analog ceLl generator wi l l translate from 
building block to sized device schematic and a layout 
tool f rom sized device to layout geometry. A typical 
organization of such a system is shown in figure 1 and 
the "state-of-the-art" is summarized in table 1 which 
compares some of the most reputed systems (this list 
is by no means exhaustive). 

Some pertinent comments follow: 
1. There is a very dominant forward path in the com

pilation process. Most compilers adopt the principle 
of making fast synthesis modules and placing the de
signer in control of a "weak" optimization (manual 
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Taole 1. Comparison of integrated filter design software. 

Name 

C
la

ss
ic

al
 

ap
pr

ox
im

at
io

ns
 

Ex
te

nd
ed

 
ap

pr
ox

im
at

io
n 

A
llp

as
s 

Eq
ua

lis
at

io
n 

La
dd

er
 

sy
nt

he
si

s 

C
as

ca
de

 
bi

qu
ad

 

La
yo

ut
 

sy
nt

he
si

s 

Pa
ss

iv
e 

R
LC

 

Sw
itc

he
d-

ca
pa

ci
to

r 

C
on

tin
uo

us
-ti

m
e/

 
Ac

.ti
ve

-R
C

 
C

om
m

er
ci

al
ly

 
av

ai
la

bl
e 

Special 
features/ 
comments 

S/F1LSYN • m m • m m m m m The original passive filter synthesis program. New extended 
to various filter implementations and design methods |8], 

filtorX • m • • • • 9 • A compendium of programs written by graduate students at 
the University of Toronto.[9-12| 

VITOLD • • • • • • Fairly complete commercial package. Z-domain approximation and 
synthesis. Sensitivity and THDoptjmoation.(13] 

AutoFilter • • • • Commercial package from Mentor Graphics [14], 

PANDDA • m • # m m m 
High order touch point approximations.VVide variety of 
filter structures including new topologies, Non-ideal optimtsation.fl7] 

IMSYS • • m • Exact z-domain ladder synthesis. Leapfrog simulation 
ANACAD product. Good practical design options .[15]. 

FIESTA • m • • • First OTA-C filter synthesiser (16). 

SCSYN • • • • Gate-array SC filter synthesiser. Unified design of biquad 
and ladder structures. Noise and capacitance optimisation.(18J 

AROMA • • • • One of the earliest SC filter compilers. Cascade biquad trade-offs. [2] 

MASFIL e e 
Simulated annealing design algorithm. Anti-alias filter design. [19] 

CAST/ALEX • • Dedicated SC filter layout synthesis tool. Amplifier and 
switch sizing.|20] 

SCULPTOR • • • • • Japanese contribution to filter automation. [21] 

PSpice • • • • • • • Promising PC synthesis tool in popular environment of 
SPICE analysis tools. 

S C D S • • • • • • • Belt Northern Research SC synthesis toolplus University of Waterloo 
analysis software market ad by Cadence [22] 

iteration round the tools, viewing circuit simulation 
results and altering specifications). The alternative 
"strong" optimization approach consists of a core cir
cuit simulator, a multivariable optimization package, 
and a graphical user's interface for viewing simulation 
results. In this case, an ideal design is taken as a start
ing point and circuit element values are manipulated 
by the optimizer to improve the circuit response in the 
presence of nonidealities such as switch resistance or 
amplifier bandwidth. However the "weak" approach 
is more efficient since there are generally many fewer 
filter specifications than circuit element values, but it 
relies on designer expertise to interpret simulation 
results and modify specifications accordingly. The 
"strong" approach trades speed for generality and ease-
of-use tending toward the "push-button" end of design 
automation. Both (and a range of possibilities in be
tween) are necessary for a complete system. 

2. Very few existing compilers offer the complete 
cycle as depicted in figure 1. In particular, the system 

decomposition is rarely automated leaving this step to 
be performed by rule-of-thumb and system designer's 
expertise. This is a prospective area for future auto
mation. The aim would be to help system designers to 
set-up realistic specifications and to obtain quickly a 
feel for the trade-offs involved between blocks and the 
possibilities offered by the technology. 

3. At each of the filter description levels there is a 
potential to save the state of the design in some data 
format. There is very little standardization of these for
mats (except at netlist or layout level) leading to a d i f f i 
culty in porting information between systems. For ex
ample, a standard frequency domain specification 
format or transfer function description format would 
allow much more shareable and extendable use of ap
proximation software. At present however, advanced 
approximation techniques become an inaccessible part 
of a single system and there is very poor reuse of even 
standard software. Standard simulator formats for ana
log and switched-capacitor circuits are emerging by 
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default as SPICE and SWITCAP. Layout descriptions 
have already the GDSII and EDIF formats available. 
In certain cases this is the domain of analog behavioral 
modeling languages such as the projected analog exten
sion to V H D L . 

4 . Compilers are normally devoted to only one 
design strategy and technology. Commercial compilers 
in particular restrict themselves to the mainstream 
design flow of cascade biquad designs in switched-
capacitor technology derived from classical approxima
tions (Butterworth, Chebyshev, etc.). This limits the 
designers ability to combine and compare technologies 
(e.g., active-/?C and SC) and the benefits of different 
topologies (e.g., biquad and ladder). Not enough work 
has been put into an open framework of description for 
the design methods and the networks. 

5. The importance of having more powerful approx
imation software is emerging [23]. As the design steps 
close to the fabrication technology are optimized the 
"room for improvement" shifts toward the higher levels 
of design (see also point 2) such as approximation. For 
example, traditional approximations based on classical 
functions (Butterworth, etc.) yield fruitions wither 
passbands which are suitable for frequency division 
multiplexing applications. However, filters with shaped 
frequency response can also compensate for signal dis
tortions f rom other parts of a communications system 
(typically antialiasing and transmission line losses). 
Compared to a standard equalizer/filter solution the in
corporation of an equalizing capability in the filter 
results in smaller circuits and better overall perfor
mance. Approximation for such designs is increasingly 
being recognized as a necessary uti l i ty in a compiler 
and several packages offer some facility to optimize a 
frequency response to an arbitrarily shaped template 
[17, 19, 22]. 

Instrumentation and data communications require 
approximations based on phase and time domain re
quirements. There is very little software available for 
such tasks and mostly designs are either "handcrafted" 
or cast in terms of problem to be solved by an optimiza
tion package. 

6. The majority of compilers originate from univer
sities. As with all analog CAD software it covers a very 
narrow and highly specialized group of users. The ratio 
of diff icul ty of development of the software to poten
tial market is high, making it commercially unattrac
tive. One solution to this problem is to place the soft
ware under the "umbrella" of digital C A D tools (i.e., 
make use of the schematic capture, layout, database, 
and user-interface standards). Closer integration would 

allow the digital tool to claim " f u l l mixed analog/digital 
synthesis capability" while protecting the analog tool's 
interests. 

3. Computer Methods for Analog Filter Compilation 

The previous section has taken an external view of the 
existing filter compilers and the trends in their develop
ment. The present section wi l l take an internal view 
and w i l l examine some of the computer techniques 
being used inside such systems. 

3.1. Approximation 

In filter approximation a realizable transfer function 
must be computed to meet specifications of amplitude 
and delay in time or frequency domains. Obtaining a 
good approximation is a struggle between conflicting 
demands of filter selectivity, group delay variation, time 
domain response, and transfer function order. Approx
imation software can either help or hinder this process 
depending on its flexibility, speed and ability to satisfy 
both advanced and beginner users. 

Table 2 shows a survey of the most successful algo
rithms for filter approximation. From a software per
spective, a major remaining issue is simply the degree 
of accessibility to the user. Entering the specs and view
ing the responses of classical filters such as Butterworth 
or elliptic is a fairly simple matter of entering fixed 
parameters and viewing the approximated solution. The 
order of the response can be determined from passband, 
stopband ripple, and frequency edge specifications (in 
fact any one of these can be left open, to be determined 
automatically f rom the specs on the other three). There 
is usually very little exploration of responses to be done 
(often the specification w i l l even define the order and 

Table 2. Comparison of different filter approximation algorithms. 

U u ' Speed Flexibility Approximation 
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type of approximation to choose) and menu-driven input 
is quite satisfactory. 

Design of more complex responses is quite another 
matter, the designer has great freedom to vary the char
acteristics of the filter in the passband(s) and stop-
band(s) by exploring different pole and zero placements. 
Here, graphical specification aids are important for the 
designer to visualize the response in the different 
domains of interest (frequency, time, and group delay). 
Often a problem is to view superimposed filter response 
plus a distortion function f rom another part of the sys
tem or f rom another cascaded filter. Easy manipulation 
of the plots and feedback into the pole placer algorithm 
is needed (e.g., the ability to select and place zeros or 
to interactively edit the shape of the template). Usually, 
a graphical input needs to go hand in hand with textual 
specification for detailed manipulation. 

3.2. Prototype Synthesis 

Prototype synthesis is the process of decomposition of 
the transfer function into simple terms corresponding 
to a realizable circuit building block. It is here that the 
basic topology of the filter begins to be seen. The algo
rithms are essentially numerical and are divided into 
the two principal categories of cascade biquad design 
and passive ladder synthesis (see table 3). The algo
rithms themselves are now well known. The problem 
is now largely how to present the bewildering (combi
natorial) number of possible deompositions to the 
designer. Each decomposition of the transfer function 
w i l l result i n a circuit with different noise, dynamic 
range, area, and sensitivity. 

Ladder synthesis is particularly difficult to automate 
satisfactorily because it requires an understanding of 
a number of theoretical conditions on the types o f de
composition allowable, yet is worth the bother because 
of the higher quality circuits it generally provides. For 
the "push-button" user a default ladder structure can 
normally be proposed using inbuilt knowledge of the 
allowable synthesis steps. For the expert who wants to 
improve on the silicon area, or who needs a special 
structure of prototype the ladder synthesizer can pro
pose a prioritized choice of structures. 

Cascade biquad design requires a choice of a pole 
sequence and corresponding zero sequence ("pole-zero 
pairing") of which there are a factorial number. It is 
feasible up to around 14th order filters to investigate 

— I I — i 
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a(s) = -l/(sRC) 

ais) = 1/isRC) 

aiz) = - C 2 / C , 
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a(s)=-gmC J/C, 

a(s) = -g„AsC) 

a(s) = g r o / (sC) 

* only v u l d when a special l o w impedance input i i available in the uaiuconductor 

Fig. 2. Filter building-block library in different technologies. 

Table 3. Comparison of different filter prototype design methods. 
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all possible combinations. However the assessment 
needs to be based on some performance measure of the 
filter, e.g., area and sensitivity. A compiler can have 
a built-in performance measure or can allow a user to 
supply his own based on access to analysis results. The 
expert should also be permitted to enter a user-defined 
pairing while the "push-button" user can be offered 
default pairings based on reasonable rule-of-thumb 
choices, e.g. increasing Q factor for lowest noise 
transmission. 

3.3. Network Compilation 

Network compilation is the stage at which a filter proto
type is decomposed into a netlist of ideal linear net
work blocks (capacitors, transconductance amplifiers, 
switches, op amps, etc.). There is very little standard
ization here, and the algorithms used are often rewritten 
for each different structure of filter. Yet a certain degree 
of technology independence can be maintained at this 
level so that the designs do not need to be recoded when 
the implementation of the building blocks change. The 
main task at this stage is the construction of a linear
ized flow graph of the circuit in terms of the building 
blocks. The flow graph structure itself stays essen
tially constant between implementations. The basic 
integrator or resonator building blocks do change in 
implementation (switched-capacitor, switched-current, 
transconductor-D, active-RC). 

A convenient and portable representation of a flow 
graph is a matrix system. Several authors make use of 
such a system but no convention has emerged [30-32]. 
One possible form is a pseudostate space description 

X = AX + BY (1) 

a\\(p) a n ( p ) a\^P) *1 

*2 = « 2 i ( p ) aitip) <J23(P) *2 

_ * 3 _ . «3 l (P ) a32(.P) « 3 3 v P ) . -X3 . 

' b n ( p ) bn(P) M P ) " )'\ 
+ *2l(P) bjjip) ^23(P) }'2 

. b3\(P) M P ) . _-V3 . 

where p can be either s or z and where the functions 
fly(p) and bjj{p) represent the transfer function of the 
building block (typically but not necessarily integrator 
or resonator transfer functions). Figure 2 shows exam
ples of possible block functions plus their realizations. 
Note that such a scheme has several advantages for 
computer implementation: 

1. The netlist can be generated directly from the matrix 
form by representing each ,v variable by an active 
device (op amp, transconductor. etc.) output and 
linking the appropriate block as represented by an 
a„ f rom output ito input /'. The y vector represents 
an input signal (normally only one), and they should 
be linked to the corresponding .v input via the blocks 
indicated by the b terms. 

2. A library of the standard cells and their block trans
fer functions can be set up and modified according 
to changes in the technology or development of new 
cell topologies, e.g., low offset integrator structures. 

3. Being based on a matrix representation the scheme 
is ideal for computer implementation and storage. 
A library of matrix manipulation routines can be 
made available to allow quick coding of new designs. 

4. The matrix can be analyzed directly by substituting 
the numerical values of the block transfer functions 
and solving by conventional L U decomposition 
methods. This provides a quick first check before 
an external circuit simulator is called and can supply 
estimates of sensitivity and dynamic range. Note that 
since the matrix rank is normally dependent on the 
order of the filter rather than the number of compo
nents in the eventual circuit that the analysis is very 
efficient. The matrix is built up f rom the transfer 
functions of the building blocks rather than those 
of the individual components inside them (as it 
would in a standard M N A scheme). This avoids 
reanalyzing each occurrence of a building block in 
the circuit to determine its transfer function. 

5. The matrix allows scaling for minimum area and 
maximum dynamic range to be performed with ease. 
Simple row and column multiplications are required. 

Both cascade biquad and ladder structures in a vari
ety of technologies can be represented by the above 
scheme. The designer is then faced with problem of 
choosing an appropriate topology of cascade biquad or 
ladder. There are many possibilities such as single op 
amp biquads, E or F-type biquads, low C-spread 
biquads as well as leapfrog, coupled-biquad, L U , 
gyrator-based ladder simulations [29-30]. Each struc
ture has its own characteristic properties of noise, 
dynamic range, sensitivity and area requirement. The 
choice is strongly dependent on 

1. The class of filtering (bandpass, low-pass, all-pass, 
etc.) 

2. The bandwidth or g-factor 0 f the filter (narrow
band, wide-band) 
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Fig. 3. Screen shot of X F I L T showing template specification of lower passband and approximation of eighth order filter. 

3. The order of the transfer function (particularly for 
ladders) 

It is difficult to make general rules but usually some 
helpful defaults can be proposed, e.g., leapfrog struc
tures are good for low-pass odd order designs, coupled-
biquad, and L U D are best for bandpass, whereas cas
cade biquads excel at bandstop designs. Based on exper
imental running of a compiler over a range of specs 
a rule base can be established to make a reasonable sug
gestion of a structure. I t is as important to preserve 
knowledge of successful as well as unsuccessful trial 
designs to avoid repreating the same mistakes. Other
wise this involves the "weak" optimization of a designer 
comparing possibilities by repreatedly rurLning the com
piler. This is not necessarily a bad thing in terms of 
designer "psychology" as it keeps him or her as a 
valuable part of the design process. 

3.4. Module Synthesis and Layout 

The interface between tho jlock-level network descrip
tion and silicon is fil led by analog cell generators and 

layout tools. These have been the slowest parts of the 
design cycle to automate because they deal with d i f f i 
cult nonlinear design problems and are near the fast-
changing demands of the technology. Nevertheless, sev
eral systems have been presented dedicated to switched-
capacitor filters [33]. These programs interpret the 
loading demands and required charging times from the 
netlist as specifications on amplifier and switch designs. 
They then dimension the devices in order to minimize 
the power and area of the circuit either by an optimizer 
or by using rearranged device equations. This is nor
mally the least accessible part of the process. Analog 
block generators are making efforts to become more 
open to the designer but are still evolving [34-35]. 
Often the solution is just to use a handcrafted standard 
amplifier cell and to accept the overspecification of the 
design. 

Analog routers capable of taking into account special 
requirements of sensitive and noisy nets, power sup
plies and variable analog transistor sizes and styles have 
been developed [36]. The inherent regularity of the 
filter topologies makes this a more amenable task than 
for more general classes of analog network. Several 
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dedicated layout strategies for switched-capacitor net
works have been reported [18-21]. Normally a fixed 
topology is adopted (as in random logic layout), row of 
op amps, row of capacitors, row of switches. The routing 
problems are greatly simplified and dedicated algorithms 
can be used. Sensitive nets such as the connections to 
the virtual ground of the op amp are known in advance 
and crosstalk can be avoided. Capacitors are designed 
in units with constant area-perimeter ratios for high-
accuracy matching. The user can often control the rela
tive positions of switches, op amps, and capacitors. 

4. Automated Filter Synthesis Example 

In this section an example of a complete synthesis of 
a nonstandard filter w i l l be illustrated f rom the X F I L T 
compiler. Figure 3 shows a screenshot of a filter fre
quency response being defined to the filter compiler. 
The response characteristics are defined in stopband 
and passband by a piecewise template of lower and 
upper bounds on amplitude and delay. The order and 

form of the transfer function are specified band by band 
(in this case the passband). Passbands can be assigned 
forms anywhere between equiripple and maximally flat 
and stopbands can have user-defined zero distributions. 
Of particular note is the 20 dB/decade slope in the pass-
band for preemphasis. Three zeros have been placed 
at the origin to reduce capacitance spread over an 
elliptic-style zero distribution. Two notches are placed 
in the upper stopband but are not seen because of the 
frequency range of the plot. Figure 4 shows the designer 
evaluating different realizations of the filter. Depending 
on the designer's level of expertise so-called automatic, 
interactive or expert modes of design offer progressively 
more possibility for user intervention and customiza
tion of the circuit design. For example, capacitance 
spread can be reduced by different pole-zero pairing 
algorithms. In automatic mode, all possible combina
tions are tried, in interactive mode the designer chooses 
f rom among certain simple preprogrammed pairing 
rules aimed at making certain specific trade-offs while 
in expert mode he chooses the sequence by hand. The 
designer w i l l normally also try a number of different 
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Fig. 4. Screen shot of X F I L T showing circuit design of eighth order S C biquad. 
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circuit structures, comparing component area, power, 
dynamic range, noise, and sensitivity before arriving 
at a final choice. A selection of ladder simulation and 
cascade biquad structures are available. For this filter
ing problem, an eighth order cascade biquad circuit 
provides the best cornprornise between area and sensi
tivity considerations. Normally the final structure wi l l 
have been selected after a number of iterations between 
approximation and circuit realization stages. The meas
ured results of the filter (figures 5 and 6) show excellent 
agreement with the original template and ideal 
response. Finally a filter layout is shown in figure 7. 
The op amps and capacitors are standard cells taken 
f rom a library. 

has been established. More work is now necessary on 
unifying the framework and offering better access to 
the design facilities. Integration with digital tool envi
ronments and more standardization of data formats is 
to be hoped for in this direction. Greater gains in terms 
of design efficiency should now become available at a 
system level. For example, by allowing the designer to 
more easily observe trade-offs between different blocks 
in his filter system design and offering more guidance 
in the setup of reasonable specifications. This means 
using the compiler in fast first-cut design mode and by 
storing informaton about already explored design space. 
Filter compilers should lead the way toward more inte
grated analog system design exploration tools. 

5. Conclusions Acknowledgments 

As regards the basic algorithms for filter design the field 
is now fairly mature. Moreover, the reliability with 
which filter compilers can produce good quality designs 

The assistance of Wolfson Microelectronics Ltd . and 
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Fig. 5. Ideal passband response (solid) amd measured passband response (dotted) of eighth order S C filter. 
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Fig. 6. Overall ideal response (solid) and measured reponse (dotted) of eighth order SC fiiici 

l 

Fig. 7. Circuit layout of eighth order SC biquad filter. 
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Abstract: Matrix-based methods for the design of 
transconductor ladder filters are presented. These 
allow the realisation of any bandpass or lowpass 
prototype using only one or two values of trans-
conductance. The new methods are illustrated by 
experimental results f r o m a 1 M H z elliptic 
lowpass filter, a 400 k H z elliptic bandpass filter, a 
400 k H z Chebyshev bandpass filter, and a P L L 
frequency-control loop, all fabricated in a 1 j im 
C M O S process. 

1 I n t r o d u c t i o n 

In recent years, much research has been directed towards 
the development of continuous-time transconductor 
filters [ 1 - 7 ] as an alternative to switched-capacitor (SC) 
filters [ 8 ] , particularly in the frequency range 100 k H z to 
10 M H z . Although many linear transconductor circuits 
have been presented in the literature [ 9 - 1 2 ] , less pi ogress 
has been evident in the development of filter structures 
that are well suited to transconductor realisation. 

A significant problem has been how to design ladder 
filters wi thout recourse to ratioed transconductances. 
Ratioed transconductors are undesirable because the 
transistors which determine the value of a particular 
transconductor can vary in size wi th in only a small range 
without suffering f rom poor matching in one extreme or 
producing significant parasitic capacitance and high 
power consumption in the other. Moreover, it is 
inconvenient for a designer to have to produce a different 
set of ratioed transconductors for each new filter design. 
This problem is specific to transconductor filters as the 
corresponding variables in RC and SC filters (resistors 
and sampling capacitors, respectively) can be scaled rela
tively freely. 

Most methods used to derive active RC and SC filters 
f rom passive prototypes have been based, explicitly or 
otherwise, on the simulation of nodal voltages and induc-
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tor currents [13, 14]. Examples of such filters are leapfrog 
and coupled-biquad ladders, as well as circuits obtained 
by simulating inductors using gyrators [15 ] . These 
methods have been applied successfully to the design of 
lowpass transconductor ladders but they cannot gener
ally be applied to bandpass ladders without the use of 
ratioed transconductor inputs. This is because, when the 
voltages of a coupled-biquad bandpass filter are scaled 
for dynamic range, the summing coefficients between 
biquads take values which are lower than the coefficients 
within each biquad by a factor typically close to the frac
tional bandwidth of the filter. The conventional coupled-
biquad bandpass structure can only be used for 
transconductor ladders having an all-pole response of 
moderate selectivity [16] . The problem described above 
is compounded for highly selective filters which require 
large transconductance ratios, and for prototypes con
taining inductor loops as these lead to noninteger ratios 
that cannot be implemented by combinations of a unit 
transconductance [ 8 ] . 

In this paper, we present matrix-based methods for the 
design of transconductor ladder filters [17, 18], which 
can be applied to many more response types than con
ventional techniques. Ladder filters are considered to be 
preferable to those formed f rom cascaded biquad stages, 
the latter typically having much greater passband sensi
tivity. The objective of this work is to be able to realise 
any passive ladder as a canonical transconductor filter 
using only a single value of transconductance, or a small 
number of values in simple integer ratios. 

Similar matrix methods have already been developed 
for the design of switched capacitor and active RC filters 
[19, 20] . As well as formalising the design procedure and 
providing a framework for computer-aided design tools, 
the use of matrices has facilitated the discovery of 
superior active filter structures which are not intuitively 
obvious. The same advantages are found for trans
conductor filters. 

The authors wish to thank Wolfson Microelec
tronics L td . for permission to publish the experi
mental results. The filters were laid out by 
Cameron Aitken of Wolfson Microelectronics and 
fabricated by G E C Plessey Semiconductors. The 
photomicrographs were taken by Alan Gundlach 
of Edinburgh University. Financial support was 
provided by the Department of Trade and 
Industry ( U K ) and the Science and Engineering 
Research Council ( U K ) . 
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The design procedure can be summarised as follows: 
(i) A set of equations (derived by Kirchhoff ' s laws) 

which describe the passive prototype are combined to 
form a matrix equation 

J = (G + sC + s~lr)V (1) 

where V is a vector representing the nodal voltages 
(and/or branch currents), J is a vector representing the 
input current source and G, C, and T are matrices whose 
elements are simple algebraic combinations of the passive 
component values. 

(ii) The nodal voltages and branch currents of the 
prototype can be scaled i f required by performing simple 
mult ipl icat ion operations upon eqn. 1. 

(iii) The second-order matr ix equation is decomposed 
into two first-order design equations by the introduction 
of a vector of auxiliary variables, X. A large number of 
decompositions are possible, of which we present those 
most useful for transconductor filters. The choice of 
decomposition for a particular filter design is dictated by 
the type of bui lding b.ock available and the nature of the 
desired response. 

(iv) T o fo rm the active filter, each row of each design 
equation is implemented by a first-order transconductor/ 
capacitor section. 

(v) Finally, the filter is scaled in frequency by the 
appropriate choice of transconductor and capacitor unit 
values. 

and 

— 0 

- 1 1 1 - 1 

0 
- I 

L4 

I 

(2a-e) 

- J 

In genera!, where the L C pairs in a ladder are parallel, it 
is best to use the (•'-representation. As an example, Fig. 2 

C 2 . .0088 C 4 | | 0 239 

3 = "oul 

1 079 225 

1 383 2.050 1.253 T1 

Fig. 1 Fifth-order elliptic lowpass RLC ladder 

L 2 8.793 L 4 4 917 

C 2 0 203 C 4 0.118 

V:„/R 

1 I Ml 2 i H -
Ti2 "joe 1 758 ?1 319 .1 763 ?1.430 TlZ 

2 M a t r i x r e p r e s e n t a t i o n o f t h e p a s s i v e p r o t o t y p e 
l a d d e r 

For a given passive prototype ladder, various forms of 
the second-order matrix equation (eqn. 1) can be con
structed, depending on the choice of variables used to 
form the vector V. We use the terms ^-representation, 
/-representation and ^/-representation to refer to the use 
of nodal voltages, branch currents and mixed variables, 
respectively, in V. The choice of representation is 
governed mainly by two factors. First, the order of the 
matrices (which equals the number of variables in V) 
should be kept to a min imum so that the resulting active 
circuit is canonical, i.e. has one integrator per pole of the 
desired transfer function. Secondly, a representation 
should be chosen which leads to the matrices C, C and T 
being as sparse as possible, as the sparsity of these 
matrices is reflected in the complexity of interconnect in 
the resulting active circuit. 

Each R L C ladder has a 'min imum inductance' and a 
'm in imum capacitance' version. Identical matrices are 
obtained if the K-representation is used for the former 
and the /-representation for the latter. However, the 
correct representation must be used for a particular 
prototype to ensure canonicity. Fig. 1 shows the 
min imum inductance version of a fifth-order elliptic 
lowpass prototype wi th 0.28 dB passband ripple and 
60.5 dB stopband attenuation. In the K-representation, 
this ladder is described by the matrices 

I 
0 0 \ 

G = — I 0 0 0 
Mo 0 I 

Fig . 2 Sixth-order elliptic bandpass RLC ladder 

shows a sixth-order elliptic bandpass prototype wi th 
0.1 dB passband ripple and 50 dB stopband attenuation. 
In the ^-representation this is described by the matrices 

1 0 o\ 
6 = ± l 0 0 0 , 

* V 0 0 1/ 

c = 

and 

r = 

Li + L, 

L2 

0 

1 I 1 

r+T + r 
'-2 L J L 4 

- 1 
^ 4 Another example is the asymmetric Chebyshev bandpass 

ladder shown in Fig. 3. 
I t wi l l be demonstrated in Section 4 that the complex

ity of a symmetric bandpass transconductor ladder can 
be reduced if the condition C = T is satisfied. This is the 

"1 
C 2 0.0949 C. 0.0949 

l,Rl J_Ci J j L i _ | _ C 3 !>L3 

flQ ~jo.942PO.969 ~[o.850j'0.969 ~jo.942|o.969 J10 
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Fig . 3 Sixth-order asymmetric Chebyshev bandpass RLC ladder 
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case if the bandpass prototype is obtained by transform
ation of each component of a lowpass ladder individually 
[13, 14] and i f the (//-representation is used. For 
example, the sixth-order elliptic ladder shown in Fig. 4 is 

0 627 

1 59^ 

C20116 L,8 508 

1 20.80)00481 20.80 ) 0 0461 

Fig. 4 Another sixth-order elliptic bandpass RLC ladder 

obtained by transforming each component of a th i rd-
order elliptic prototype. In the ^/-representation, this 
ladder is described by 

• , o\ 
0 - l , 

(Ci + c 4 

and 

I t L, + L 4 

- 1 

C2R2 

0 

0 (4a-e) 

T o maintain dimensional consistency, the current I2 is 
represented by the voltage variable V12, the mult iplying 
factor being the termination resistance R. In this VI-
representation, the C and T matrices are identical 
because by defini t ion L , = 1/C f. 

3 T r a n s c o n d u c t o r - c a p a c i t o r b u i l d i n g b l o c k s 

The general first-order transconductor-capacitor bui ld
ing block has the transfer funct ion 

(5) 

It is desirable that only one value of 3, be used in a par
ticular filter, but where more than one value is used, they 
should be in low-integer ratios. Using a conventional 
transconductor only, eqn. 5 is implemented by the circuit 
shown in Fig. 5. In this case, the capacitors C, represent 
bidirectional coupling paths [ 2 1 ] when driven by internal 
nodes, as these nodes are all high-impedance. This can be 
a serious restriction, as many of the techniques available 
to maintain low-integer capacitor ratios in a filter 
(Section 4) rely on the use of unidirectional capacitive 
paths. 

T o obtain unidirectional capacitive coupling paths, a 
first-order stage wi th a low-impedance input and/or 
output is required. The most obvious realisation of this 
requires the addit ion of an opamp to create a virtual 
earth (Fig. 6). This is expensive in silicon area and current 

consumption, particularly as the opamp wi l l need a very 
high bandwidth for video frequency operation. However. 

2(C-2C, 

2(C-2C,) 

Fig . 5 First-order section using conventional transconductor 

I -

,2Cj 

. 2C: 

2C 

2C 

'2C 

1 
Fig . 6 First-order section with transconductor and opamp 

these problems are offset by the fact that the design of the 
transconductor itself can be somewhat simplified because 
it is only dr iv ing into the vir tual earth and does not need 
a very high output impedance. I n the extreme, the trans
conductor can be reduced to a pair of M O S F E T s oper
ating in triode mode, giving a so-called ' M O S F E T - C 
circuit [ 22 ] . 

A n alternative solution is to use a recently reported 
transconductor w i th low-impedance inputs [ 2 3 ] . The 
first-order section using this circuit is shown in Fig. 7. 

v , . i 

Hr 

,2C, 
1 

| 2 C , -1 
I 
| 2 C H 

I 

t ^ 2 C 
v 0 Ui -A-

"1 
X 2C 

Fig . 7 First-order section using transconductor with low-impedance 
inputs 
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The output current of the transconductor is the sum of 
the transconductance multiplied by the voltage at high-
impedance input (V + , V—), and the current entering the 
low impedance input (Z + , Z-). The circuit diagram of a 
transconductor wi th low-impedance inputs is given in 
Fig. 8. 

300/5 ir'SO/S 

300/3 |T50/3 IT300/3 ir50/3 

50pA I 5 0 M A 

300/3 300/3 

100/5 

II 1 600/5 L i | "l 

f 1 1 1 
< 

L100/5 1L 100/5 

AGNDO-i 

100/5 

v ( r ) D - | [ i o / 5 AO/S]\ |[io/5 Ao ; | ] [ -c ]v ( r ) 

100/5 l—jPioo/S 

Fig. 8 Folded cascade transconductor with low-impedance inputs {a) 
and common-mode feedback circuit (b) 

4 M a t r i x d e c o m p o s i t i o n s 

Five ways of obtaining an active ladder f r o m the general 
second-order equation (eqn. 1) are now given, together 
wi th design examples. The first is recommended for 
lowpass and the remaining four for bandpass responses. 
For clarity, single-ended ladders are shown. However, 
practical transconductor circuits (including those pre
sented in Section 5) are normally ful ly differential , for 
several reasons: to obtain linear transconductance func
tions, to allow the realisation of negative f loat ing capa
citors, and to maximise power supply rejection. 

In each decomposition, a scaling factor (g or co0) is 
introduced in the defini t ion of the vector X. This factor 
may be used to perform nodal »oltage scaling between 
the .V and V voltages in the transconductor ladder. The 
scaling of the voltages wi th in each of X and V is deter
mined by the design of the passive prototype. This may 
also be optimised by matrix techniques, as shown on 
pages 127-128 of Reference 18. 

4.1 Topological decomposition 
The r matr ix is factorised as 

r = ADA7 (6) 

where D is a diagonal matrix whose elements are the 
reciprocals of the inductances in the prototype (assuming 

a K-representation), and A is a conventional incidence 
matrix. The auxiliary variables are defined by 

(7) 

where g is a scaling factor wi th the dimensions of con
ductance, Eqns. 6 and 7 are substituted into eqn. 1 to 
obtain 

X = {sg) ~lDATV 

CV = s'l[_J -GV - gAX] (8) 

Substituting the matrices (eqn. 2a-e) into llie design eqns. 
7 and 8, and implementing each row with a conventional 
transconductor stage (Fig. 5) gives the active filter shown 
in Fig. 9, which is equivalent to a standard leapfrog 

c, c. 

agorg-g 

Fig . 9 Lowpass elliptic ladder using conventional transconductor 

ladder. Using transconductors wi th low-impedance 
inputs instead, we obtain the circuit shown in Fig. 10. 
The advantage of the first realisation is that there are 
fewer capacitors and the transconductors are simpler. 
The advantage of the second is that bot tom plates of the 
floating capacitors can be connected to the low-
impedance inputs, so the associated parasitic capac
itances do not need to be estimated and subtracted f rom 
the grounded capacitors [ 4 ] , 

CtqOiqZ -g gZ. - « g 

Fig . 10 Lowpass elliptic ladder using transconductor with low-
impedance inputs 

This topological decomposition is most applicable to 
lowpass ladders. I t is less satisfactory for highly selective 
bandpass filters, in which case nodal voltage scaling 
forces high-transconductance ratios, and it cannot be 
applied to prototypes containing inductor loops as the 
resulting active circuits are unstable. For bandpass 
ladders, the fol lowing four decompositions are proposed. 
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4.2 Left-inverse decomposition type 1 (LID1) 
The auxiliary variables are defined by 

gX = sCV (9) 

where g is again a scaling factor wi th the dimensions of 
conductance, and eqn. 9 is substituted into eqn. 1, giving 

gX = J - GV - s Ty (10) 

The L I D 1 design equations are obtained by rearranging 
eqn. 9 and mul t ip lying eqn. 10 by the inverse of T: 

r'-x g-'CV--

gr~lx= - s -
in ) 

(12) 

From eqns. 11 and 12, the main features of L I D 1 can be 
deduced. First, both integrated terms (i.e. those contain
ing the factor s~') are vectors, so only a single value of 
transconductance is required in the active ladder. Sec
ondly, both nor.integrated terms on the right-hand side 
of eqn. 12 are generally asymmetric, so they must be real
ised using unidirectional capacitivc coupling paths. In 
other words, the dependence of V upon X is not the same 
as the dependence of X upon V in these terms, so each 
branch must be realised by a separate capacitor, rather 
than symmetric branches being realised by a single capa
citor connected between the nodes concerned. A single 
capacitor can be used for symmetric nonintegrated 
branches arising f rom off-diagonal terms on the left-hand 
sides of eqns. 11 and 12, as long as first-order sections 
wi th high-impedance outputs are used. 

Fig. 11 shows the L I D 1 realisation of the sixth-order 
elliptic prototype of Fig. 2. This was obtained by substi
tut ing the K-representation matrices, (eqn. 3a-e), into 
eqns. 11 and 12 and translating each row of each equa
tion into a first-order section of the type shown in Fig. 7. 

A general feature of inverse matrix decompositions is 
that the number of components and the density of inter
connect may be high in the transconductor ladder i f the 
sparsity of T (or C) is lost upon inversion. This is not a 

serious problem for the sixth-order elliptic ladder of Fig. 
11, but for higher-order filters care should be taken with 
the choice of prototype. Essentially this means placing 
capacitors such that long chains of directly connected 
inductors are avoided. Some passive prototypes also exist 
whose F matr ix may not be inverted at all, due to the 
determinant being zero. The only examples of such filters 
known to the authors are bandstop. A question yet to be 
investigated is to what extent an inverse matrix filter pre
serves the low-passband sensitivity properties of its 
passive ladder prototype. 

4.3 Left-inverse decomposition type 2 (LID2) 
The auxiliary variables are defined by 

co„x = sy (13) 

where io0 is a scaling factor wi th the dimensions of angu
lar frequency, and eqn. 13 is substituted into eqn. I , 
giving 

m,cx = j - GV - s 'ry (14) 

Rearranging eqn. 13 and mult ip lying eqn. 14 by r 1 

gives the L I D 2 design equations 

cu„r 'cx= r ~ ' J - r xGV - s~'y 

and 

y = t 

(15) 

(16) 

As in the other left-inverse decomposition, only one value 
of transconductance is required, together wi th unidirec
tional nonintegrated paths. The distinguishing feature of 
L I D 2 is the term f ' C , which gives the opportuni ty to 
obtain a relatively sparse transconductor ladder is a 
prototype can be used for which T = C. As shown in 
Section 2, this condit ion is satisfied for a symmetric 
bandpass fi l ter derived by the transformation of each 
component of a lowpass ladder individually. Fig. 12 
shows the sixth-order bandpass elliptic transconductor 
ladder obtained by substituting eqns. 4<j-e into eqns. 15 
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Fig. 11 Elliptic bandpass ladder obtained by LI decomposition type I 
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Fig. 12 Elliptic bandpass ladder obtained by LI decomposition type 2 

and 16 and implementing each row of each design equa
tion wi th the first-order section of Fig. 7. 

4.4 Right-inverse decomposition (RID) 
For the R I D , X is defined by 

gX=s~irV (17) 

This is substituted into eqn. 1 to give 

J=(G + sC)V + gX (18) 

The design equations are obtained by mul t ip ly ing eqn. 17 
by r - 1 and rearranging eqn. 18: 

0 0 0 3 0 003 0 042 0 045 

0.225 

gr~lx = s-lv 
GV)-X] 

(19) 

(20) 

g 

"0.707 

0.720 

/-«g ttg-g \ 

0.244 

"0 515 

0.519 

Conventional transconductors can be used to implement 
eqns. 19 and 20 because the only nonintegrated terms are 
those arising f rom the offdiagonal elements of F ~1 and 
C, which represent bidirectional coupling paths. Neither 
V nor X is premultiplied before integration, so no unreal-
isable summing coefficients are introduced. T o scale the 
filter correctly for dynamic range, a second (smaller) 
value of transconductance is usually required to realise 
the input branch and filter terminations. This use of a 
second transconductance value is acceptable because it 
can be chosen to be in integer rat io to the first and it is 
used only to represent the termination resistors which are 
the least sensitive components of the prototype. Such a 
realisation compares favourably w i th a coupled-biquad 
ladder in which high and/or noninteger transconductor 
ratios can occur throughout the filter. 

Fig. 13 shows the R I D transconductor ladder obtained 
f rom the sixth-order elliptic prototype of Fig. 2, using the 
K-representation. 

[A 

"0.777 
r - o v o u , 
0.685 

-uq 3 
-0 335 -0.266 

-0.080 
F i g . 13 Elliptic bandpass ladder obtained by Rl decomposition 

Eqn. 21 is substituted into eqn. 1 to give 

J = GV+gX+s-lrV (22) 

and the design equations are obtained by rearranging 
eqns. 21 and 22: 

CV = s~xgX 

X= - ( s g y ' r y - g ' G y + g ^ J 

(23) 

(24) 

4.5 Left-direct decomposition (LD) 
The vector of auxiliary variables X is defined by 

gX = sCV (21 

The principal features of the L D decomposition are as 
follows. First, the matrix T should be diagonal to avoid 
the requirement for summing integrators which would 
imply the use of randomly ratioed transconductor values. 
Secondly, the damping and coupling branches (as rep
resented by the term g~'GV) are nonintegrated. These 
branches are unidirectional, as they describe a depend
ence of X upon V which is not matched by an identical 
dependence on V upon X. Therefore, transconductors 
wi th low-impedance inputs (Fig. 7) or opamp-based 
integrators (Fig. 6) must be used in a left-direct filter. 

94 IEE Proc.-Circuits Devices Syst.. Vol. 141, No. 2, April 1994 



Fig. 14 shows the L D ladder obtained f rom the sixth-
order asymmetric Chebyshev prototype of Fig. 3. using 
the (/-representation. Transconductors with low-
impedance inputs are used only for the termination capa
citors. 

, 0 . 0 9 4 9 , 0 0 9 4 9 

. 0 0 9 6 9 

• 0 872 

0 .845 

1 v 2 

• 0 . 9 6 9 

0 . 8 5 0 

/ - ; \ / 
1 

1 

, 0 . 0 9 6 9 

-HI-
0 9 6 9 - C 3 V 0 U , 

0 .845 

v . n < = H , 
' 0 0 9 6 9 

Fig. 14 Chebyshev bandpass ladder obtained by LD decomposition 

Left- and right-decomposition filters employ capacitive 
and resistive damping, respectively, hence we can refer to 
them as 'E-type' and 'F-type' circuits by analogy wi th the 
terminations and terminology used for SC biquads [24] . 

5 E x p e r i m e n t a l r e s u l t s 

To verify the methods described above, a set of high-
frequency transconductor ladder filters has been designed 
and fabricated on a I double-poly double-metal 
C M O S process. I n this Section, results are given f rom 
three filters: one lowpass elliptic, one bandpass elliptic, 
and one bandpass Chebyshev. Each of the bandpass 
filters includes a phase-lock frequency-control loop, a 
description of which is also given here. The operating fre
quencies and selectivities of these filters are not high 
enough for amplitude-control loops [ 3 ] to be required. 

5.1 Elliptic lowpass filter 
Fig. 15 shows the schematic of the experimental lowpass 
filter, which is a ful ly differential version of the filter 
shown in Fig. 9, scaled to a cutoff frequency of 1 M H z . 
Table 1 summarises the specification and measured per
formance. Fig. 16 shows the measured amplitude 
response. 

The circuit diagram and a photomicrograph of the 
double-input transconductor used are shown in Figs. 17 

and 18. The compact layout is achieved by dividing the 
larger transistors into units 100 / jm wide so that the tran
sistors of each polarity can be assembled in rectangular 
areas, supplied by the respective power lines. Between the 
two sets of transistors lies a routing bus, which occupies 
area that would have to be used anyway due to the 
relatively large 'p-well to n + diffusion ' design rule. The 
input and output ports run over the V D D line (to the 
right in the photograph). Including the bias lines in the 
central bus enables the transconductors to be butted 
directly. A photomicrograph of the complete lowpass 
filter is given in Fig. 19. The transconductors are laid out 
in a single row, and the capacitor bank (with units of 
0.5 pF) is shaped to have approximately the same length. 
Another bus is used to provide efficient rout ing between 
the transconductors and capacitors. 

5.2 Elliptic bandpass filter 
Fig. 20 shows the schematic of the experimental elliptic 
bandpass filter, which is a ful ly differential version of the 
filter shown in Fig. 13, scaled to a centre frequency of 
400 kHz. Table 2 summarises the specification and meas
ured performance. Fig. 21 shows the measured amplitude 
response. A photomicrograph is given in Fig. 22. The 
noise spike in the stopband at 1.9 M H z is breakthrough 
f rom the control loop used to set the centre frequency 
automatically wi th respect to a reference clock (see 
below). 

Table 2 : S p e c i f i c a t i o n and measured p e r f o r m a n c e o f e l l i p t i c 
bandpass f i l t e r 

Parameter Designed Measured 

Order 
Centre frequency 
Tuning range of centre freq. 
Bandwidth 
Stopband attenuation 
Noise density in passband 
Intermodulation distortion 
Common mode rejection 
Power supply rejection 
Current consumption 

6 
400 kHz 

10% 
50 dB 

100kHz-525kHz 
10% 
49.5 dB 
920 nV/^Hz 
-43.8 dB 
72 dB 
40 dB 
11.3 mA 

5.3 Chebyshev bandpass filter 
Fig. 23 shows the schematic of the experimental Cheby
shev bandpass filter. This is a ful ly differential version of 
the left-direct filter shown in Fig. 14, scaled to a centre 
frequency of 400 kHz. T o the knowledge of the authors, i t 
is the first example of a transconductor ladder fi l ter that 
is capacitively terminated and has only a single value of 
transconductance (100 /iS). Table 3 summarises the spe
cification and measured performance. Fig. 24 shows the 
measured amplitude response. A photomicrograph is 
given in Fig. 25. 

Table 1 : S p e c i f i c a t i o n and measured p e r f o r m a n c e o f 
l owpass f i l t e r 

Parameter Designed Measured 

Order 5 
Cutoff frequency 1 MHz 
Tuning range of cutoff Iraq. 
Passband ripple 0.28 dB 
Stopband attenuation 60 dB 
Noise density in passband 
THD (200 mV rms input) 
Common mode rejection 
Power supply rejection 
Current consumption 

250 kHz 12 MHz 
0.4 dB 
61.5dB 
97 nV/,/Hz 
-67.7 dB 
71 dB 
43 dB 
to m A 

Table 3: S p e c i f i c a t i o n and measured p e r f o r m a n c e o f 
Chebyshev bandpass f i l t e r 

Parameter Designed Measured 

Order 
Centre frequency 
Tuning range of centre freq. 
Bandwidth 
Noise density in passband 
Ref. signal breakthrough 
Intermodulation distortion 
Common mode rejection 
Power supply rejection 
Current consumption 

6 
400 kHz 

10% 
100kHz-550kHz 
10% 
920 nV/VHz 
200/JV 
-48.7 dB 
72 dB 
46 dB 
11.6 mA 
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Fig. 15 Fully differential lowpass transconductor ladder filter [bias lines omitted) 
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Fig. 16 Measured amplitude response of elliptic lowpass filler 
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Fig . 17 Schematic of double-input folded cascode transconductor 
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Fig. 18 Photomicrograph of double-input folded cascade trans
conductor 

5.4 Frequency-control loop 
The frequency-control loop fabricated w i th the test filters 
is a phase-lock loop (Fig. 26). Based on a voltage-
controlled oscillator. This is similar in principle to those 
described in References 9 and 22, the main difference 

Fig. 19 Photomicrograph of elliptic hwpass filler 

being that here a triangle-wave oscillator is used instead 
of a harmonic oscillator. 

The triangle-wave oscillator is illustrated in Fig. 27. 
A n analogue switch selects either + A K or — A ^ as the 
input to the transconductor and, respectively, + A K / 2 or 
— A K / 2 as one of the inputs of the comparator. I f + A K 
is selected, the voltage across the capacitor wi l l slew up 
linearly at a rate (AVg/C). When this voltage exceeds 
A K / 2 , the comparator changes state so that the output of 
the analogue switch changes to — A K Then the output of 
the transconductor slews down unt i l its value reaches 
—AK/2 and the comparator changes state again. I n each 
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Fig. 20 Fully differential elliptic bandpass filler [bias tines omitted) 
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Fig. 22 Photomicrograph of elliptic bandpass Jiher 

F i g . 21 Measured amplitude response of elliptic bandpass filter 

period, the transconductor output has to slew twice 
through a range of magnitude AV, so the frequency of 
oscillation is 

AVg/C _ g 
2AK 2C 

(25) 

The output of the comparator is, of course, a square 
wave at the same frequency. 

The phase of the V C O output is compared to that of a 
reference square-wave clock by an X O R gate followed by 
a single-order lowpass filter. The result of the phase com
parison is used as the control voltage for the trans
conductor in the V C O . When the P L L reaches lock, the 
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Fig. 23 Fully differential Chebyshev bandpass filler tbias lines omitted) 
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reference and V C O frequencies are identical, and so 
according to eqn. 25 the time constant of the trans
conductor and capacitor in the V C O are set. The same 
control voltage is used for each transconductor in the 
'slave' filter. Therefore, wi thin the accuracy of trans
conductor and capacitor matching, the frequency 
response of the filter is scaled wi th respect to the refer
ence clock. 

20 

40 

60 

80 

0 0 5 1 0 1.5 20 
f r e q u e n c y , MHz 

Fig. 24 Measured amplitude response of Chebyshev bandpass filter 

1 

p 
Fig. 25 Photomicrograph of Chebyshev bandpass filter 

The operation of the control loop is illustrated in Fig. 
28 which shows the measured amplitude response of the 
elliptic bandpass filter for three different values of clock 
frequency (865 kHz. 965 k H z and 1.065 M H z l . 

or 

\ 
fir \ 

60 

-80 
200 300 400 500 600 700 800 

Fig. 28 Measured elliptic bandpass filler response for three values of 
reference clock frequency 
a 865 kHz 
[3 965 kHz 
0 1.065 MHz 

6 C o n c l u s i o n s 

A matrix-based methodology for the design of trans
conductor ladder filters has been presented. Many alter
native design routes are possible, depending upon: how 

Table 4 : C o m p a r i s o n o f d i f f e r e n t r ep resen ta t ions o f RLC 
p r o t o t y p e 

Name Variables of Comments 
prototype used 

V voltages Best for a 'minimum inductance' 
prototype containing only 
parallel LC pairs 

VI voltages and currents Best when prototype contains 
both parallel and series 
LC pairs 

1 currents Best for a 'minimum capacitance' 
prototype containing only 
series L C pairs 

p h a s e 
d e t e c t o r l o o p f i l t e r 

Table 6: C o m p a r i s o n o f d i f f e r e n t d e c o m p o s i t i o n s o f 
second-o rde r m a t r i x e q u a t i o n 

Fig . 26 PLL control loop 

Fig. 27 Triangle-wave voltage-controlled oscillator 
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Name 
(acronym) 

Defining Comments 
equations 

Topological 
(TD) 

Left-inverse 
type 1 

(LID1) 

Left-inverse 
type 2 
(LID2) 

Right-inverse 
(RID) 

Left-direct 
(LD) 

7, 8 Most applicable to lowpass filters. 
When conventional uansconductors 
are used, gives standard 
leapfrog filters 

11,12 Applicable to any bandpass filter. 
Only one value of transconductance 
needed per filter. Requires 
transconductor stages with 
unidirectional nonintegrating 
paths 

15,16 Similar to LID1, but gives sparser 
active circuit if a prototype is 
used, for which the condition 
r = C is satisfied 

19, 20 Applicable to any bandpass filter. 
Conventional transconductors may 
be used, with up to two 
values required 

23. 24 Applicable to all-pole bandpass filters 
Only one value of transconductance 
needed per filter. 
Requires transconductor stages 
with unidirectional nonintegrating 
paths 



Table 6 : Comparison of di f ferent f irst-order transconductor 
stages 

Active circuit 
used 

Comments 

Conventional 
transconductor 
(Fig. 5) 

Cpamp plus 
conventional 
transconductor 
or MOSFET 
resistor' 
(Fig.6) 

Transconductor with 
low-impedance 
inputs (Fig. 7) 

Best for VHF, due to simplicity. 
Unidirectional nonintegrating paths 
are not available. 
Parasitic input and output capacitance 
must be compensated for. 
Parasitic capacitance does not 
affect filter, tn first order. 
Presence of low-impedance 
nodes makes unidirectional paths 
available. Opamp dominant pole 
must be much higher in 
frequency than filter poles 
Combines good high-frequency 
performance of conventional 
transconductor with usefulness 
of unidirectional paths. 
But parasitic capacitances have 
first-order effect 

the prototype ladder is represented by a second-order 
matrix equation, the way this equation may be decom
posed into first-order equations, and the type of trans
conductor stage that is used to realise the first-order 
equation. The choices available and their relative merits 
are summarised in Tables 4 to 6. The ut i l i ty of the tech
niques described is demonstrated by results f r o m three 
high-frequency C M O S transconductor ladder filters. 
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A COMPARISON STUDY OF SC BIQUABS 
IN THE REALISATION OF SC FILTERS 
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ABSTRACT No.C Total C C Spread 
TypeE 22 144.27 45.85 

A comparison for SC filter realisation based on different TypeF 22 130.49 44.58 
biquads is given. The total capacitance, capacitance spread. L G F 21 181.10 43.91 
sensitivity, non-idealities and dynamic range of the SSGI 27 170.87 21.96 
designed filters are presented. Some conclusions are SSGH 27 170.87 21.96 
obtained as very useful guidelines for the choice of a G-T 21 145.09 43.91 
suitable biquad structure according to die nature of the filter M-S 21 151.39 43.91 
problem. Nagaraj 27 199.25 43.91 

1. INTRODUCTION 

During the past decade several SC biquads have been 
reported and used in practical applications. Most of the 
biquads proposed have been analysed individually and the 
investigations have been based on the characteristics of the 
biquad itself. However the various filters proposed are 
intended for different applications, frequency ranges, 
sensitivity requirements, dynamic range etc., therefore it is 
difficult to judge the suitability of the biquads. By using 
XFILT filter compiler! 1], a systematic comparison for the 
realisation of SC filters using most popular SC biquads is 
given in this paper based on filter system realisation. 
Although the software has the facility to design a SC system 
with combined biquads. we restrict cur comparison here to 
systems only composed of one kind of SC biquad, in order 
to simplify the question and make the guidelines of 
selecting SC biquads more practical for the S C filter 
designer who does not have an SC filter compiler or only a 
compiler with limited biquad structures. 

2. BIQUAD CONFIGURATIONS 

The biquads that we adopt here are: 
Type-E:Fleischer and Laker's E-type biquad in [2]. 
Type-F:Fleischer and Laker's F-type biquad in [2]. 
FGL Type: Modified Fleischer and Laker's biquads[3]. 
G-T Type: Gregorian and Temes's biquad presented in [4]. 
M-S Type: Martin and Sedra's biquad in [5]. 
SSGI Type and SSGII Type: Sanchez-Sinencio, Silva-
Martinez and Geiger's type-I and type-II biquads in [6]. 
Nagaraj type: Nagaraj's biquad proposed in [7]. 

3. F I L T E R R E A L I S A T I O N COMPARISON 

a) Lowpass Filter : A 6th-order elliptic filter response is 
shown in Fig. 1(a). The Table 1 shows the realisation 
statistics of different biquad cascades. 

Table 1.6th-order lowpass filter realisation 
b) Wide bandpass filter: The filter frequency response is 

No.C Total C C Spread 
TypeE 22 315.90 78.49 
TypeF 22 706.13 191.48 

L G F Type 21 329.02 95.09 
SSGI 27 351.27 94.78 
SSGII 27 351.27 94.78 
G-T 21 329.02 95.09 
M-S 21 328.95 95.16 

Nagarai 27 213.24 47.11 
Table 2. Bandpass filter design results 

c) Narrow bandpass filter. The filter response is given in 

No.C Total C C Spread 
TypeE 20 1150.40 333.81 
TypeF 20 1112.97 332.04 

L G F Type 20 1126.48 337.18 
SSGI 25 1235.07 168.60 
SSGII 25 1152.21 168.59 

G-T 20 1126.48 337.18 
M-S 20 1126.40 337.20 

Nagaraj 27 5795.65 1050JS1 
Table 3. Narrow band bandpass filter design results 

d) Highpass Filter: The higtipm» filter frequency response 

No.C Total C 1 C Spread 
TypeE 18 538.77 156.35 
TypeF 18 318.89 62.88 

L G F Type 18 484.69 137.61 
SSGI 23 366.23 66.53 
SSGII 23 366.23 66.53 

G-T 17 522.23 123.55 
M-S 17 458.29 135.93 

Nasaraj 21 158.32 27.58 
Table 4.4th-order highpass filter realisation 
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e) Bancistop Filter: The bandstop filter response is shown 
in Fig. 1(e) and the design results are given in Table 5. 

No. C Total C C Spread 
Type E 29 220.97 29.24 
TypeF 29 1309.69 361.34 

L G F Type 28 219.72 33.18 
SSGI 36 259.41 25.45 
SSGH 36 259.41 25.45 
G-T 28 555.12 107.12 
M-S 28 213.04 22.88 

Nasaraj 36 142.55 22.66 
Table 5. 8th-order Elliptic bandstop filter realisation 

4. S E N S I T I V I T Y AND DYNAMIC RANGE 
COMPARISON 

The following indices are used as global measures of system 
sensitivity S(co) and dynamic range D(C0), respectively 

S(w) = 8.686. 
| H M 

/100.0 

D(co) = -^£201og|H M (cD)| 
M m 

where Q and IHm(co)t are the sets of capacitances and 
opamp output voltages, respectively, and M is the number 
of opamps. S(co) should be as small as possible. D(o>) is 
related to SC filter dynamic range. It is hoped that the 
dynamic index curve D(a>) is as flat as possible and as 
close to zero or a fixed gain as possible in passband. 
Because of the similarity of some biquads. the total 
sensitivity index curves are sometimes very close to each 
other. Fig.2(a)-(e) gives the comparison of sensitivities of 
the five designs and the comparisons of the dynamic index 
curves are given in Fig.3(a)-(e). 

5. F I N I T E G B AND S W I T C H R E S I S T A N C E 
E F F E C T COMPARISON 

The non-idealities of SC circuits is simulated by non-ideal 
SC analysis software SCNAP4[8]. For the comparison, we 
choose the opamp with 2MHz G B . switch on resistance of 
lk £2. and switch off resistance of 1MQ. Fig.4(a)-(e) show 
the non-ideal circuit response of the designed circuits. 

6. C O N C L U S I O N 

Nagaraj's biquad has significant advantages for wide 
bandpass, bandstop, and highpass filter designs in total 
capacitance and capacitance spread. It also has very good 
dynamic range performance, but with comparatively large 
non-ideality effect and slightly high sensitivity compared to 
other biquad realisations. Therefore the compensated 
structure is critical in cascading Nagaraj biquad 
realisation^]. 

SSGI and SSGII biquads have very good dynamic range 
performance and they are best candidates for narrow band 
filters in total capacitance and capacitance spread. They also 
give best capacitance spreads in lowpass filter realisations. 
However, SSGI and SSGII structures usually have slightly 
high sensitivity to component change. 
G-T biquad has lowest sensitivity and small non-ideal 
effect in the filter realisation. 
Generally, type-E, L G F , M-S, and G-T structures have 
similar total capacitance and capacitance spread, except in 
bandstop, where G-T biquad needs large total capacitance 
and capacitance spread. They also have lower sensitivity 
and good dynamic range, and small non-ideal effect. 
Type-F biquad is good in total capacitance and capacitance 
spread in highpass case, but poor in wide bandpass, and 
bandstop cases. It has fairly good sensitivity performance 
and dynamic range, and small non-ideal effect 
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Fig.1(a) Lowpass Filter Response Fig. 1(b) Wide Bandpass Filter Response 
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Fig.3(a) Dynamic Range Index of Lowpass Filter Fig.3(b) Dynamic Range Index of Wide Bandpass Filter 
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Tabic 1 
A I ' I ' K O M M A T I : i.;.-\is-PKOPUC"r sr.ssi nvniES 

l .N. l .C. SK 

1 

12. N . I.C. Sk 

1 0 
4 
K 

F..0 
2 

~ k 

l . N . l . C . E .N . I .C . 

I 1 
4 ( 1 - a,) 2 

E . 1 
2(1 - a.) 1 

II jd;. a i U 2 ° i " i 

1.2 
4(1 - a.) 2u 2 

"i 
E.2 -

2(1 - «,) 1 
a t a 2 a 1 

1.3 - 2 
2 

a i 
E.3 i i i 

a 2 a, 

The approximate gain-product sensi
tivities or all four e.n.i.c. circuits are 
listed in Table 1, alongside those for the 
respective dual i.n.i.c. circuits. The factor-
of-two enhancement in sensitivities of the 
circuits in the e.n.i.c. subclass compared 
with those in the i.n.i.c. subclass prevails 
throughout. 

Finally, it might be noted from Table 1 
that, if stabilisation and improvement in 
sensitivity performance is to be effected by 
use of Darlington-compounded transistors 
(as in Fig. 3c). it suffices to do this only 
for transistor T . in each circuit, whether 
i.n.i.c. or e.n.i.c., because the factor 1 — u, 
appears in four cases, whereas the factor 

I — a, docs not appear at all, these being 
the significant factors.1 

•Breadboard' models of each e.n.i.c. 
(Fig. 4) have been built and tested in the 
laboratory, and found to convert satis
factorily. They have not yet been tested 
exhaustively for stability and drift under 
variable operating conditions and en
vironment. 

B. R. MYERS 21st April 1965 
Department of Electrical Engineering 
University of Notre Dame 
Notre Dame, Ind., USA 
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T A B L E FOR T h e V O L T A G E 
T R A N S F E R FUNCTIONS OF SINGLE-
AMPLIFIER DOUBLE-LADDER 
F E E D B A C K S Y S T E M S 

This letter presenis a Z Ytable from which 
the voltage transfcrfunctionj formulltpie-
loop feedback systems using one opera
tional amplifier may be written down. 
The table is given, together with a recur
rence formula for the voltage transfer 
lL..:tion. Expressions are also given for 
the product terms arising from the table. 

It is well known that the burden of tedious 
calculations required to find the voltage 
transfer functions of networks having 
certain regular forms may be much cased 
or eliminated by the use of tabular forms 
in which the elements are set out in a 
systematic array o l rows and columns. 
One such array for the analysis of a single-
ladder feedback network has been given 
by Aggarwal.' 

In practice, it is often necessary to 
determine the voltage transfer ratio for 

This paper presents a / . 1'table from which 
the voltage transfer ratio £•'£", for net
works of the form of l-'ig. 1 may be 
written down on inspection. 

In this letter it will he assumed that the 
gain M of the amplifier and its input 
impedance are infinite, while its output 
impedance is zero. Further, it is assumed 
that a virtual earth exists at the amplifier 
input (point A) . 

It is. of course, possible in principle to 
find the voltage transfer ratio by direct 
analysis, but this is tedious unless the 
value of n is small. The analysis reveals, 
however, that it is possible to recognise 
the existence of a symmetrical pattern for 
the network elements in the voltage 
transfer functions. The essence of the 
method resides in the recognition of this 
pattern and the arrangement of the ele
ments in a suitable table, which can be 
interpreted in a manner to be described. 

Element numbering 

The series input elements are all de
fined as impedances and have odd suffixes; 
i.e. Z„ where i is an odd integer. The feed
back elements in the upper ladder are 
defined as admittances and have even 
suffixes. The elements in the lower 
ladder, which are connected to earth, are 
defined as admittances with double-
suffix notation. Thus the element from 
point B to earth is written Y a , since 
point B is positioned between the Yi 
admittance and the Z 3 impedance. The 
circuit in Fig. 1 lacks symmetry, in that 
the upper and lower ladders contain 
different numbers and arrangements of 
elements. 

When writing the suffixes to the ele
ments, the following procedure is sug
gested. Begin with the feedback elements 
in the upper ladder and denote these as 
Y>. Y4. ) ' ; „, where n is the order of the 
network. The Z elements should then be 
given the suffixes 1, 3, (2/i — 1), and 
finally the elententsconnectcd to earth in the 
lower ladder should be numbered as pre-

(2n-5) 2n-3 I2n-1) 

l2n-4K2n-3) (2n-2)(2n-l) 

Fig. 1 General double-ladder feedback network 

multiple-loop feedback systems, which 
may be represented by the double-ladder 
network and single amplifier shown in 
r ig . 1. This problem arises frequently in 
the study of RC active filter networks. 

viouslyexplained from y^j to Kim-sxtn-ii . 
In a particular feedback network, some 
of the elements show n in Fig. I may not be 
present. The general procedure should 
nonetheless be adopted and the missing 
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elements subsequently omitted. 

Derivation j)f table 

It is possible to derive a recurrence 
formula to give the voltage transfer func
tion front which the pattern for the table 
can be observed. 

For a complete network with the first 
series clement denoted as Z, and the last 
feedback element as >',, let the transfer 
ratio — EJE, be denoted as GO',/) 
[/odd,/even,'/ < / ; if / > / , C ( / , / ) - 0], 
Initially assume a simple feedback system 
with one series input element and one 
feedback element. Then, extending the 
network towards the input three elements 
at a time (i.e. not disturbing the virtual 
earth), the expression for the current at 
node B (Fig. 1) is given by the following 
recurrence relation: 

Z r ' [ G ( 1,2/;) - G(3, lii)] 
= y , + (Y, + K, 3)G(3, 2/;) 

+ Z 3 - ' [C(3 , In) - G(5,2//)] . (1) 

in which, for example, G(5. 2»i) is the same 
as G( l ,2 / i — 4) with all the suffixes 
increased by 4. Continuing the above 
expression, it becomes 

(ft) Sets of four-component products ill 
two Zs (mil in(/ }'\ 

Al l Z ( . and Z . are multiplied by the sum 
of all the > between k and / and by the 
sum of the elements in the Y, row be
tween / ~ 1 and 2/i; i.e. 

The procedure is carried out until the 
last set for a particular M i l n e of n is 

reached, this having n factors in Zs and 
ii factors in Vs. The last term has only 
one factor. 

/ - 1 

zkz, ( ) ' , - i . ) (5) 
( - / T I 

where k and / are odd. 

(c) Sels of terms in three Zs and three Ys 

Al l ZkZ,Z„, are multiplied by (i) the 
sum of all Vs with suffixes between k and 
/, ( i i) the sum of all Vs with suffixes 
between / and ///. and (iii) the sum of 
V,s, starting at m — 1, to 2//. Here 

k < 1 < m, and all k, I and in are odd, 
beginning with 1, 3, 5, respectively; i.e. 

Concluding remarks 

A general pattern has been derived for 
the terms which appear in the voltage 
transfer functions of single-amplifier 
multiple-loop feedback systems. The Z >' 
table presented has been found exceed
ingly convenient and labour-saving when 
applied to feedback networks intended for 
use as RC active filters. 

2n- 1 2/1-3 . -5 

-5 l=i k - \ ztz,z„ ( r , + y , ( l r l l ) 
</-/+! 

( ^ * — I l ) 

(6) 

(d) Sets of terms in four Zs and four Ys 
Multiply Z^Z,ZmZt by ( i i the sum of 

G( l , 2//) = Z,(Y. - Y, - . . . + r , „ ) - M l - Z^Y, -- Y,,)] G(3, 2n) 
-r [Z , (K , -J- Yis)] G(S, In) -'r t Z , ( } ' 6 -f > ' 6 ; )] G(7, 2//) - f . . . 

+ lAO'<*,-» + YL,„.M3..L,]G(2n - 1,2//) (2) 

The transfer function can now be written down by inspection. 

G( l , 2) = Z,Y, 

G( l , 4) = Z , ( y . - >',) -r [1 - Z I Y , + YA)] G(3, A) 
= z , ( y , -r r t ) -r [ i -r z , ( r 2 - y 2 3 ) ] z 3 y , 

G( I , 6) = Z , ( y , - K, + y . ) + [1 + Z , ( K 3 + y ! 3 ) ] G(3, 6) 

+ Z1(YI + V < S )G(5,6) 

= z ^ y , + YT + Y,) + [i + z , ( K , + y M ) ] { z 3 ( y , 4- y 8 ) 

+ 11 + z s ( y 4 J - y u ) ] + z 5 y , } - z , ( y , + y 4 5 ) z 5 y , . . . (3) 

The following pattern emerges for higher 
values of n: 

There is a set of double product terms 
of the type ZY and a set of four compo
nent products with two factors in Z and 
two factors in Y etc. The last term has /< 
factors in Z and n in Y. In Table 1 the 
Zs and ys are so arranged that the voltage 
ratio - ( £ , / £ , ) can very easily be ob
tained. The forward transfer ratio £ a / £ i 
can, of course, be written down when 
- ( £ , / £ , ) is known. 

Use of the Table 
The procedure for obtaining terms from-

the Table is as follows: 

(a) Sets of double product terms of type Z Y 
Each Z, is multiplied by the sum of the 

elements in the Y, row, beginning with 
}'(,.!> up to Y.„. The values of / are all 

odd, going from 1 to 2/i — 1; i.e. 

all ys with suffixes between k and /» 
(ii) the sum of all ys with suffixes be
tween / and m, (iii) the sum of all Ks with 
suffixes between /// and p, and (iv) the sum 
of y,s, starting with p — I , up to '2n. 
Here k < I < m < p ; all are odd. 

2 / i - t 2/1-3 2/1-5 2/1-7 
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p= 7 m = 5 1=1 k 

m- 1 

s ( y . + y, 

z,z,zmzp 'z ( y , + y„ 
j-k+l 

P-l 

- m + l 
{Yr+ y r l r + 1 1 ) (7) 

Table I 

ZY TABLE 

S (Z, v 
1-1 j-i-t 

where / is odd. 

>',) (4) 

1 1 

1 1 2 
I 

3 1 
4 1 

Series 
element 

Z, -z, z 3 Z 5 j z , ! Z'.n-l 
1 

Upper 
ladder 

>'/ Y, YT ! 

i 

y . : Y„ 

Lower 
ladder 

Y„ Y» ; y , s Y„ ^ ( 2 n - 3 ) ( z n - l ) ! 

i i 

j i 
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Final]}-, erii li of the follcwinp. procedures may be used I•> [icnerato 
from other structures that also exhibit the phenomenon (2). 

Procedure J: Split, any node of 5 in any way and insert a resistor 
and an inductor in parallel combination between the two halves 
of the node. Repeat this procedure as many times as desired on the 
resulting structure. 

Procedure 2: Replace any resistor (inductor) of S by two resistors 
(inductors) in scries. Connect an inductor (resistor) between the 
node joining the two resistors (inductors) and any other node of the 
structure. Repeat the procedure as many limes as desired. 

That Procedure 1 produces structures which exhibit phenomenon 
(2) follows frurn Theorem 7 of Lee1. That Procedure 2 also produces 
such structures follows from the observations that 

1) Inequalities analogous to (7a) and (Sa) can be written for 
the new structure. 

2) The following selection for the column matrices B and C, 

B and C = 

3) 

and subsequent division of (7a) by (Sb), lead;- to a lower 
bound on Isnun/smiaj similar to (9), the only dillerence being 
that h, li, and f, (r J f r j , and rt) are replaced by sums of 
inductances (resistances) of the new structure. 
Maximization of the bound with respect to i i and x 2, and 
subsequent minimization iviih respect to the /,, again leads 
to (2). 

H . B . L E E 
Research Lab. of Electronics 

Mass. Inst. Tech. 
Cambridge, Mass. 

P. J . MURPHY 
Lowell Tech. Inst. 

Lowell, Moss. 

Table for the Voltage Transfer Functions of Single 
Amplifier Double Ladder Parallel Feedback Systems 

This correspondence presents a method whereby the voltage 
transfer functions of single amplifier multiple ladder feedback 
systems may be obtained from a suitable ZY table with a minimum 
of calculation. I t extends an earlier result for single amplifier double 
ladder systems [1] and includes what is believed to be the general case 
for this particular type of feedback system. 

The circuit of order n and rank 2 is shown in Fig. 1. the term 
order referring to the highest order polynomial appearing in the 
transfer function, assuming all passive elements are resistors or 
capacitors. The term rank refers to the number of parallel double 
ladders in the system, in general denoted by m. 

The basic assumptions made are that the gain and input impedance 

ui the amplifier are infinite, its output impedance is zero, and a 
virtual f-tirt 11 p.'int exisu at the point A. 

The eViucnl numbeiinp; is earned out as shown in Y\^. 1, where the 
last subscript of each clement denotes the double ladder to which 
it belongs. 

DERIVATION OF T A B L E 

A recurrence formula for this system may be derived to give the 
voltage transfer function, and the application of this to various 
orders systems leads to the pattern from which the table may be 
derived. 

Using a notation similar to that previously employed, let the 
first series element be denoted as Z 1 0 , where a is the respective 
double ladder suffix, and. the last feedback element as Y/i; the 
latter sullix is always unity, since the system is arranged to have the 
final feedback component in ladder 1. The transfer ratio —Ei/Et 

is denoted as 0'(i, / ) [ i odd, / even, »'</; if »>/ , G(i, / ) = 0]. From 
inspection of the system it can be seen that for both parallel branches 
the network increases symmetrically three elements per node per 
branch until the node (2n — 1) in each ladder is reached. The final 
section can be regarded as the common adding circuit well known in 
analog computation. 

Considering a node such as B, but treating the elements for a 
general node in the symmetrical pattern, i.e., node 2r + l i the 
equation for continuity of current is 

— «2r+i)2Jr'_i = ( e 2 r t l + e2n)l\T + e 2 r t , Y 2 T i l r t l 

+ (C2rtl — e i r ^ Z j V t l J (1) 

dividing by «*, and rearranging gives 

G(2r + 1, 2n), 
^ 2 r - l , 

- G(2r+ 1,2/1), Y2r + 7 2 , . 2 r t , 

, 1 , 1 1 , g(2r + 3. 2n), _ 
+ 7 7 + 7 ~ 2 , 1 

^2r -L ^ 2 r - L J L *»2r + L , 

(2) 

for r = 1,2,3 ... n — 1. These equations are repeated for lower 
ladder with suffix 2. 

The boundary conditions are as follows: 

1) G(l,2n), = G(l,2n) 2 

G(2n- 1, 2n), 
2) + 

(7(1. 2n) say, [ 

G(2n - 1, 2n)2 = Y„ 

3) G(2n + 1, 2n), = G(2n + 1, 2n)2 = 0, 
i.e., virtual earth assumed. 

Mtuiusrrir.t MTcivnl lYt .num 7. It'tx,: RTJRI.-
BTLL'PTI.'LEJ B Y LLIE fc'CIEN";E LLFJTCURCLI Couiwtl. 

-.1 May IS. 1:1 

(3) 

(4) 

(5) 
Using the recurrence relationship; on the appropriate successive 

nodes and substituting the boundary conditions, the transfer 
function can easily be obtained, since from the above i t can be seen 
that there are 2n + 2 equations and 2n + 2 unknowns which will 
result in a soluble set of equations. 

The transfer function can be written down easily on the solution 
of these equations and a pattern of terms in Z and 1" emerges which 
is as follows. 

Numerator 

There is a set of three component products with two factors in 
Z and one in a set of five component products with three factors in 
Z and two in Y, etc. The last term has 2n factors in Z and 2n —1 
factors in Y. 

Denominator 

There is a set of terms which are a function of Z only, a set in oDe 
Y and two Z's, etc. The last term has n factors in Z and n — 1 
factors in ) ' . 

The components are arranged as shown in Table I and the transfer 
voltage ratio — IC\/K% can be read olT immediately. 
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i a w t 

W < . ; ( U - J ) 

L Z Z 3 

Fig. 1. General double-ladder feedback network of rank two. 

T A B L E I 

ZY TABLE 

n 1 2 3 4 

Series 
Element 

1 
Z. i Zn Z„ Zu Zn Zrhi - i), 

Upper 
Ladder 

1 
Y„ Ya Kii Ya Yu 

Lower 
Ladder 

1 
Y,H Ym Ym Ym Yin Y(U _ » (Jn - 1)1 

Ser in 
Element 

2 
Z» Z „ Zn Zi> Z n Zrta - n , 

Upper 
Ladder 

2 
Y„ Yn Ya Yu Y„ 

Lower 
Ladder 

2 
Y,u I'm K«i Ym Ym Y(tM - t) <t» - 1)1 

U S E OF T A B L E 

Following a procedure similar to that outlined in Holt and 
Sewell [1], the terms may be obtained from the table as follows. 

Numerator 

Sets of Terms in Tim Z's and One Y: All Z<, and Z,i are mul
tiplied Ijy the. sir.n of the V/i's and Yl2

:s beginning with >'(> ui up 
to Yi„ and + ,)•. up to }'2„, respectively, w here i , j nre odd. 

by 
Seti of Tirms in Three Z's and Two Y's: All Z„ Z,, are multiplied 

1) all Z P ; and by 
2) the sum of all )Ys with suffixes lying between q and ii 
3) the sum of Y.n'a starting at v + 1 to In plus the sum of 

Y/i's starting at p + 1 up to 2«; 11,7,11 are odd and 17 < v. 

This is repeated again with the branch subscripts interchanged. 

Seta of Terms in Four Z'a and Three K's: AU Z,i Z.i Z«i are mul
tiplied by 

1) all Z * 
2) the sum of all Ws with suffixes between q and v 
3) the sum of all Yi's with suffixes between v and w 
4) the sum of Y/i's starting with w + 1 to In plus the sum of 

Y/t's storting at p + I up to 2n; p,q,v,w are odd and q < v < w. 
This is repeated with branch subscripts interchanged, and there 

is a finai set of terms in this group given as follows. 
AU Zr\ Z,\ are multiplied by 

1) all Z r t Z r f 

2) the sum of all JYs with suffixes between p and q 
3) the sum of all Ki's with suffixes between v and u> 
4) the sum of Y;i's starting with q + 1 to 2n plus the sum of 

Y/t's starting with w + 1 to 2n; p,q,v,w are odd and p < q, 
v < w. 
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This procedure is continued until tlie hist term having 2;i factors in 
Z and 2n — 1 in ) ' is reached. 

Denominator 

Sits of Terms in Zs: This is just the sum of all Z,, and Z,., where 
i is odd. 

Sets of Terms in Tuo Z's and One Y: All Zp, Z,, are multiplied 
by '.he sum of all the Y's lying between suffixes p and q; this is also 
repeated for branch two; p,q are odd and p < q. 

Sets of Terms in Three Z's and Tuo Y's: All Z, i Z,\ ZA are 
multiplied by 

1) the sum of all }"s with suffixes between p and q 
2) the sum of all IVs with suUixes between q and o. 

This is repeated for branch two; p,q,v are odd and p < q < v. 
This procedure is continued until the last term which has n factors 
in Z and 2 iu Y is reached. 

G E N E R A L SYSTEMS 

I t is now possible to consider the general case which is of order n 
and rank m. The recurrence relations are derived in a similar manner, 
the boundary conditions now being 

From the above it can be seen that for each increase in rank of the 

network another Z multiplier appears. The above expressions are 

continued until the last term is reached; in general there are 

mn — (m — 1) terms in the numerator. 

Denominator 

'Verms in Z'. 

1) 

2) 

G(l,2n)„ = G(l,2n) for all m 

g(2n - l ,2n). 
= Y , 

i.e., assume that branch 1 is the highest order ladder. 

3) G(2n + l ,2n)„ = 0 for all m. 

(6) 

(7) 

(8) 
Using these and the recurrence formula of (2) applied to the appro
priate nodes, the transfer function may be derived. 

The table is merely extended downwards by an appropriate 
amount and the Iransfer function read ofT by the pattern developed. 
The general expressions for each group of terms are given below. 

Numerator 

Terms in One Y 

T , - I 
t , odd 

II E Y2,A 
A - 1 / ft-L 2 J - J U + I J 

(9) 

i = order of > l b double ladder, 

Terms in Two Y's 
2n-l 2R.-L SEE 

fc-I p - i * T - I 
P CHJJ k i odd 

^ P M ri ̂ I.fl )l S C I B ~J~ î 2Z ( 2 / + J 

2N, m 

£ E n 
2 N I 

£ rm + (10) 

Terms in Three Y's 

£ £ £ \z*zJf[ztM) 
b-l p - l U \ a - l / 

fl-1 i f odd 
when 6 — c p ,f l odd ( j - ] • • *m 
11 > S > P I I > P 

k<>q 

23 ( ^ 2 1 6 H~ ^ 2 L ( 2 L + L ) B ) ^ ( ^ 2 1 * + ^ 2 1 , 2 1 + 1 ) C ^ ^ 

E K Y „ T + E Y T L . + E E r» 

2«T 

2 M 2 L + L ) B J 

2NRF 

E 
2 ( - * , + I a t ^ - I D + I rf-I 

when b = c K = 0 
1 on 

k, - 1 
* j odd 

(L - 1 • • - M - 1 ) 

(12) 

Terms in Y: 

£ £ £ k.z.4(3 2 , . . ) 
B - L 

O I - 1 
( / - . • • • M - 2 ) 

11 > 0 i • " > A „ _ , 

0-3 
0 odd p odd 

2 1 - p + l 
.,)}] 

2) (13) 

Terms in £K»: 

EE £ 2 « - L 0 - 2 i - 2 r / » - 3 \ 

E E E z^z^z^zJUz^,) 
ff-3 P - 1 r - 1 L \ i - 1 ' 

( / - 1 • 

a, >AI • 

- 3 P odd r odd 
0 odd 
* odd 

E 0 m + y» 
A-, = g, p , r, . (j = 1 

E 0%.. + r,„„M),)} 
(14) 

2 1 - r - M 

ju - 3) 

These, terms continue to follow the general pattern, there being 
in + ; I — 2 of these. 

CONCLUSION 

I t is possible to write down simply the voltage transfer ratios 
for extremely complex feedback sj'steins of the type considered, by 
inspection of a table; this greatly reduces the arduous task of con
ventional analysis. I t is also possible to carry out this analysis in 
general terms using a digital computer, since a program would 
involve only the arithmetic of the subscripts, and reduces error by 
limiting the operations involved to multiplication and summation, 
avoiding any redundant procedures. 
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^ r. — ^ ->rp -̂ ~ 7 T ' " n n T - rv;1~<-_- ^ T" ^ -< 

J . J.» J e w e l l and G . I . i ^ r . t i n g a i e 

1 „ I n t r o d u c t i o n 

I t i s w e l l kr.ov;n i 1 , 2j t h a t the g r e a t e s t s o u r c e of e r r o r i r . a n a l y s i s 
by the n o d a l a d m i t t a n c e m a t r i x approach o c c u r s i n the e v a l u a t i o n of the 
n e c e s s a r y c o f a c t o r s and d e t e r m i n a n t s . I n p a r t i c u l a r , i f numbers of l a r g e 
magnitude a r e m u l t i p l i e d and r o u n d - o f f o c c u r s i n the computer; then when 
t h e s e numbers, e s p e c i a l l y i f they a r e n e a r l y e q u a l , a r e s u b s e q u e n t l y sub
t r a c t e d from e a c h o t h e r , an e r r o r of g r o s s magnitude can r e s u l t . One 
b r u t e f o r c e method of r e d u c i n g t h i s e r r o r i s to r e s o r t to m u l t i p l e l e n g t h 
a r i t h m e t i c on the computer, t h i s u n f o r t u n a t e l y can i n v o l v e complex mach
i n e code programming and a l a r g e machine to e x e c u t e the r e s u l t i n g prog
ram. 

A l s o i f the n o d a l a d m i t t a n c e m a t r i x i s used i t i s not p o s s i b l e to 
t a k e f u l l advantage of the network topology d u r i n g a n a l y s i s . I t i s a g a i n 
a known f a c t t h a t f o r c e r t a i n network t o p o l o g i e s i t i s p o s s i b l e to d e r i v e 
r e c u r r e n c e r e l a t i o n s h i p s [3, 0] to g i v e f a s t and a c c u r a t e a n a l y s i s meth
ods. T h i s i s of p a r t i c u l a r r e l e v a n c e i n i t e r a t i v e s y n t h e s i s where the 

r 1 
a n a l y s i s time tends to be one of the l i m i t i n g f a c t o r s a t the p r e s e n t |_TJ . 

I f an e x a m i n a t i o n of l i n e a r p a s s i v e and a c t i v e systems i s made, one 
a r r i v e s a t the f o l l o w i n g c o n j e c t u r e . 

1 .1 Con.iacture 

Any c h a r a c t e r i s t i c f u n c t i o n (be i t a t r a n s f e r r a t i o , d r i v i n g p o i n t 
o r t r a n s f e r i m m i t t a n c e ) d e s c r i b i n g a l i n e a r p a s s i v e system w i t h no r . h . 
p l a n e z e r o s o r an i d e a l f e e d b a c k system* i n which t h e r e i s no p o s i t i v e 
f e e d b a c k w i l l c o n s i s t o f a r a t i o of p o l y n o m i a l s , i n the f r e q u e n c y v a r i 
a b l e , w i t h p o s i t i v e c o e f f i c i e n t s o n l y . As t h e s e c o e f f i c i e n t s a r e p o s i t i v e 
any s u b t r a c t i v e s t e p i n the d e r i v a t i o n of t h e s e i s both redundant and 
e r r o r i n t r o d u c i n g , not o n l y i s the s t e p of s u b t r a c t i o n redundant but i t 
i m p l i e s redundancy of p r e v i o u s m u l t i p l i c a t i o n and a d d i t i o n s t e p s . Hence, 
f o r the systems u r d e r c o n s i d e r a t i o n , i t s h o u l d be p o s s i b l e to d e r i v e a n a l 
y s i s t e c h n i q u e s which e l i m i n a t e t h e s e redundant s t e p s , thus i m p r o v i n g b o t h 
a c c u r a c y and speed of computation. 

/ 1 . 2 

* An i d e a l f e e d b a c k system i s one 
r e p r e s e n t e d a s a s i m p l e c o n s t r a i n t , 
v o l t a g e o p e r a t i o n a l a m p l i f i e r , which 
c o n s t r a i n t . 

i n which the a c t i v e d e v i c e s can be 
One example o f t h i s i s the i d e a l 
can be r e p r e s e n t e d a s a v o l t a g e 

J . x . S e w e i i i s a t the Department o f E l e c t r o n i c E n g i n e e r i n g , U n i v e r s i t y 
of H u l l . 

C. I-.'i.jhtingale i s a t the Department of E l e c t r i c a l E n g i n e e r i n g , U n i v e r s i t y 
of N e w c a s t l e upon Tyne. 
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?or passive l a d d e r s , techniques v.'hich u t i l i s e the sfsove p r i r . c i t l e 
rave been i n exister.ee f o r some c o n s i d e r a b l e t i r . e \y sr.d v a r i a n t s en the 
method are v: e l l knov.r. [c\ . Hov;ever, f o r many a c t i v e retv.-orks, l i t t l e 
v.-orr: along these l i n e s has beer, done, probably the .tain reason be i n s cue 
to added c o m p l e x i t y v.'hich the a c t i v e device i n t r o d u c e s . Some work has 
been completed assuming the devices are i d e a l j_'3,6j and y i e l d encouraging 
r e s u l t s . 

U n f o r t u n a t e l y i f the a c t i v e device cannot be assumed i d e a l and be 
represented by some simple c o n s t r a i n t , these ideas cannot be used and 
some g e n e r a l method of a n a l y s i s has been used. Thus a l l the d i s a d v a n t 
ages o f a g e n e r a l method r e t u r n . I f , on the o t h e r hand, the system can 
be d i v i d e d i n t o two sub-systems, one o f which r e p r e s e n t s the system when 
a l l devices are assumed i d e a l , and the o t h e r r e p r e s e n t i n g the c o r r e c t i o n 
r e q u i r e d t o produce the a c t u a l system, then a p o s s i b l e s o l u t i o n i s 
o b t a i n e d . 

Suppose the system i s repre s e n t e d by 

Y = Y I © Y c 
where Y i s the a c t u a l system m a t r i x 

Y j i s the i d e a l system m a t r i x 
Y c i s the c o r r e c t i o n m a t r i x . 

The " r i n g sum" i s used t o i n d i c a t e t h a t simple a d d i t i o n of Y j and 
Y c i s not i m p l i e d as they are n o t o f the same order as Y. 

The r e q u i r e d response, c o u l d i n ge n e r a l be found from e v a l u a t i n g 
a p p r o p r i a t e c o f a c t o r s of Y. The response when the devices are assumed 
i d e a l can be determined from Y j by one r f the techniques r e f e r r e d t o 
a l r e a d y . The a c t u a l response can be found by d e t e r m i n i n g the e f f e c t 
which Y c produces on the system and then combining t h i s w i t h the r e s 
ponse due t o Y j . 

I t i s t h e r e f o r e p o s s i b l e t o observe the s i g n i f i c a n c e o f the device 
n o n - i d e a l i t i e s and p a r a s i t i c s , and a t the same time u t i l i s e a high-speed, 
h i g h l y a c c u r a t e procedure f o r the main t a s k o f a n a l y s i s . 

3ecause o f the way i n which the e f f e c t o f Y c i s e v a l u a t e d i t i s n o t 
p o s s i b l e t o ensure comparable speed and accuracy i n t h i s s e c t i o n o f the 
procedure. 

I n the m a j o r i t y of p r a c t i c a l s i t u a t i o n s i t i s o f g r e a t advantage i f 
Y c becomes the n u l l m a t r i x i . e . 

Y = Y j 

Thus i t i s p o s s i b l e t o i n c l u d e the m i n i m i s a t i o n o f Yc or some r e l 
a t e d f u n c t i o n , i n the general m i n i m i s a t i o n procedure r e q u i r e d i n the 
s y n t h e s i s . 

A secondary f e a t u r e of the method, i s concerned w i t h the a n a l y s i s o 
s t r u c t u r e s , which depart from normal t o p o l o g i e s , w i t h o u t recourse t o gen
e r a l .T.-Vthodo. ?o; inr.txnce, i n the case of b r i d g i n g elements i n passive 
l a d d e r ,;nniy;iin i t v:c be r.occc"-.ry to r e s o r t to come goner.nl t c c h n i q u 
ana f o r f e i t the b e n e f i t s of c o n t i n u a n t or cuu.ulant methods. V.'ith t h i s 

( 1 ) 
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tec.r.icue the a r i d r i n g 5lc-r.5r.t3 ccv.id be a s 3 c c i ' . ted v;it'r. the correct!;.', 
m a t r i x .v.*.; tr.e remainder of the c i r c u i t analysed by recurrence methods. 
I t i s a l s o p o s s i b l e 1 0 analyse r . u l t i t s r - i r . a i a m p l i f i e r 3 t r u e t u r e s by 
t r . i s t echnique, the p o s i t i v e feedback being assured as a c o r r e c t i o n tor::.. 

2. The X-t • - -y ::. 01 the C o r r e c t i o n ::atri:-: 

I n the case 0 : a device which can be reduced to sore sir.ple c o n s t 
r a i n t i t i s p o s s i b l e to e l i m i n a t e a colur.r. or row from the acr.ittance 
m a t r i x , f o r one v a r i a b l e i s a d i r e c t f u n c t i o n o f another. The t e r r s 
produced i n the e l i m i n a t i o n of the i n i t i a l rov; cr column can he separated 
i n t o Y c as c o r r e c t i o n elements. These are termed c o r r e c t i o n elements 
s i n c e i f i d e a l o p e r a t i o n a l a m p l i f i e r s were being used they would be zero. 

U n f o r t u n a t e l y i t i s not always p o s s i b l e t o reduce a device t o simple 
c u r r e n t o r v o l t a g e c o n s t r a i n t s w i t h o u t c o n s i d e r a b l e d i f f i c u l t y ( i . e . i t 
i s necessary t o produce an e q u i v a l e n t c i r c u i t ) . Even i n the case of a 
t r a n s i s t o r , very complex e q u i v a l e n t c i r c u i t s are proposed which r e q u i r e 
a computer program o f f a i r c o m p l e x i t y to determine them. 

As i t i s p o s s i b l e t o produce a Y m a t r i x f o r any l i n e a r device which 
i s n o n - i d e a l , e i t h e r by measurement or by mathematical means v i a the 
manufacturers data, i t w i l l be assumed t h a t t h i s r e p r e s e n t a t i o n i s s u f f i c 
i e n t . The terms of such an admittance m a t r i x w i l l i n g e n e r a l be r a t i o n a l 
f u n c t i o n s . I t i s thus necessary t o assume t h a t admittance m a t r i c e s to be 
considered have r a t i o n a l f u n c t i o n s as t h e i r elements. Obviously the 
passive elements w i l l never c o n t r i b u t e any term l a r g e r than a 2nd o r d e r 
p o l y n o m i a l over a 1 s t o r d e r one. 

'•'hen the device i s l i n e a r but not i d e a l some method o f s i m u l a t i n g 
the i d e a l c o n s t r a i n t i s r e q u i r e d . T h is i s accomplished by p i v o t a l cond
e n s a t i o n . I f a p i v o t or a number o f p i v o t s i s chosen such t h a t the dev
i c e i s e f f e c t i v e l y removed from the m a t r i x , the e x t r a terms produced by 
condensation ere separated i n t o Y c and the o r i g i n a l passive terms are 
r e t a i n e d i n Y j . V/hen the network c o n t a i n s a number o f devices the cond
e n s a t i o n s t e p i s repeated u n t i l they are a l l removed. Thus the system 
m a t r i x has been p a r t i t i o n e d i n t o two new m a t r i c e s Y j , Y c o f o r d e r 
n = N - na where na i s the number of p i v o t s r e q u i r e d t o remove the dev
i c e s , and X i s the number o f nodes i n the network. 

i . e . Y = T Y T
 1 0 

T I ( 2 ) 

. C : Y O J 
The method i s not r e s t r i c t e d t o a m p l i f i e r s , but may be used f o r 

systems c o n t a i n i n g X.I.Cs., g y r a t o r s or any l i n e a r network d e v i c e . How
ever, as most devices are f a b r i c a t e d from o p e r a t i o n a l a m p l i f i e r s i t s 
major use w i l l be concerned w i t h such a c t i v e elements. 

3. The Development of the C o r r e c t i o n ? u n c t i o n X a t r i x 

I t i s now necessary t o determine the e f f e c t o f the terms o f the 
c o r r e c t i o n m a t r i x Y c on the system, response f u n c t i o n , or c h a r a c t e r i s t i c 
i mmittances. There are a number o f p o s s i b l e ways of doing t h i s , and 
these are o u t l i n e d as f o l l o w s . 

/3.1 
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t h i s gives : = f _ + f (:.s, 

•,%-'.'. ere f. i s some response f u n c t i o n . 
f_ i s the i d e a l response f u n c t i o n 
:\ i s the c o r r e c t i o n f u n c t i o n 

The d e t e r m i n a t i o n of I T ar.d f„ i s e a s i l y demonstrated by c o n s i d e r i n g 
the method o f e v a l u a t i n g e q u a t i o n 3, which i s a g e n e r a l statement of a 
s p e c i f i c problem f o r which the s o l u t i o n i s known [6j . A s i n p i e proof o f 
the g e n e r a l technique f o l l o w s . 

Vhooy..-. 

The determinant |x + X -f . „ . . X"j where the 1,2, ...n are 
s u f f i c e s not powers, can be c a l c u l a t e d by s u r g i n g i n d i v i d u a l d eterminants 
which themselves c o n s i s t of a l l p o s s i b l e combinations o f columns o f the 
X 1 m a t r i c e s . 

I'iore e x p l i c i t l y l e t ( x ? ) 1 , (jg^Op (z^)j D e ^he : " i r s t , second and 
t h i r d colurr.nn o f any of tho n m a t r i c e s X', ...Xn, whore p nay or may not 
equal c and/or r . 

Then l e t the m a t r i x formed by assembling the t h r e e v e c t o r s be c a l l e d per x * 

Then the theorem s t a t e s , 
n 

l ? f , l = £lr*'| <5> 
( a l l p o s s i b l e p, q, r f o r p, q, r = 1, ...n) 

The r e s u l t i s e a s i l y seen u s i n g the t e n s o r n o t a t i o n . L e t 2 i j k be 
the f u n c t i o n o f i j k such t h a t f o r i p j = k £ikj = - 1 a c c o r d i n g t o 
whether i , k , _ j i s an even or odd permutation o f 1,2,3, (Otherwise £ijk = o ) . 

Then by a w e l l xnown formula 

j x j = e i j k x.. x 2 . x 3 k 

Thus ! £ x r ' 

oecom.es 

examination of the equation ( 5 ; f o r r , s , t = 1 , ...n shows ' i t to be equiv
a l e n t t o the r i g h t hand side of (5/ which proves the theorem. 

tit x l i x 2 j 'c3k 

http://oecom.es
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o f p i v o t a l condonon t i c n nr.: "char, t o cor.tir.ue r e d u c t i o n of the r e s u l t i n g 

preference to f i r . ; / oth-?r because i . - -ha case vrher. a c o r r e c t ! o r . f u n c t i o n 
;.u u r i ' . - i 3 r e q u i r a c , ^.-^ 1 3 i,;.c oaper_or metnoc, s r r . C G ^— c c i a c t c r s are 
e v a l u a t e d , f o u r are r e q u i r e d i n the g e n e r a l case, thus the amount of com; 
u t a t i o n i s m u l t i p l i e d j . 

The ge n e r a l p i v o t a l condensation formula f o r a det e r m i n a n t i s 
,' . 

where X i s a det e r m i n a n t formed from terms o f the type 
y i j y ? i , ? j - y ? i , j y i , ? j . 

? o r a m a t r i x the formula i s 

the terms of the m a t r i x X are formed as above. 

'./hen Y = A + 3 say, these formulae now become: 

n-1,n-1 ,(7) 
n-2 
^ n-2 

4 <n-

u -n-1,n-1 p j - . - j L A a i n _ i j n _ i ^ 

^ n-2 

i s an n-1 x n-1 m a t r i x formed by t a k i n g a l l the p o s s i b l e combin
a t i o n s of rov;s or columns from 3, b a c k - s u b s t i t u t i n g these i n A and d e v e l 
o p i n g new terms of the form 

y i j y ? i , ? j - y p i . j y , j , ? j . 
.J 

A3 / 

s= 
n-2 ..—c 

^ab,s v/here p = ^_ ^ 1 

;re <, i s tne numoer 01 times any p a r t i c u l a r 
anuears i n the expansion. 

_r. tne case o: tr.e i a e a - ana c o r r e c t i o n m a t r i c e s , tne zero oack-suo-
: i t u t i o n step i s o m i t t e d to produce a c o r r e c t i o n f u n c t i o n m a t r i x . The 



tormuiae remain, ur.cr.s. 
. • _ - -

.--3 w i _ _ oo appreci 1: »ou .re:.. \.-/ _„ i s necessary to c o r s i c o r c. t o : 
o f ^ combinations of b a c k - s u b s t i t u t i o n e v a l u a t i o n s i n general 

r c o r r e c t i o n : u n c t i o n case. r n i s i s a o r o h i b i t -

- — o 

i v e l y l a r g e nur.oer as n oecomes l a r g e , one i s tne major cisadvantage 
t h i s p a r t i c u l a r method. 

I n most networks i t i s h i g h l y 
nected t o an a c t i v e d e v i c e , thus i t i s most probable t h a t t h e r e w i l l be a 
number o f rows and columns o f Y c which o n l y c o n t a i n zero. As the present 
p o l i c y i s to back s u b s t i t u t e columns, i t ought to be p o s s i b l e to reduce 
the number o f combinations considered by e l i m i n a t i n g the zero columns 
from Y c, t h i s a l s o reduces storage space. The o r i g i n a l column numbering 
has o f course t o be r e t a i n e d i n a c o u n t e r . 

3ecause the number of combinations i s reduced a d i f f e r e n t d i v i s o r i s 
r e q u i r e d than t h a t i n e q u a t i o n ( a ) . Obviously no term i n a zero column 
can be used as a p i v o t . I f nc i s the number of non-zero columns, back 
s u b s t i t u t i o n of a reduced Y m a t r i x w i l l y i e l d 

nc 
~r combinations. Thus the number o f excess combinations 

r=0 

, nc 

produced v/hen zero columns are b a c k - s u b s t i t u t e d i s 
n nc 

n <w nc 

r=0 ' r=0 
The number o f excess terms i n v o l v i n g an apj_ p j or a b p ^ p j term i s 

n nc 
i nc 2. cT - Z c 

r=0 r=0 

Thus i f o n l y columns which are n o t zero are b a c k - s u b s t i t u t e d then the 
m a t r i x (b) becomes 

T ^ n - l ,n-1 ~ ^ ; U P 1 , ? J + V . P J ; £, LA3 

c 
;c n ^ • 1 I I l . U 

r=0 

2 ? 
r.-2 

r-

r=0 

Lying these formulae c o n s i d e r a b l e r e d u c t i o n i n commutation wi 

2 7 4 
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ir.cr;'-so i r . r. the ir.crj::.\o i n ;k3c = f o l l o w s ar. e x t o r . - r . t i a l curve-. 

. . . . „ * J . U ^ o ' . . 

;or.sicer : = A, + A 2 ~ •••• + 

rev; ma »nx Y' ^ r . - ' / x vr. - '• ) ...ay 05 f err.ee. a c c o r d i n g to the r u l e 

X 

k = 1 
m m-1 

/ 1, ^ L V i * ^ A. j + V d. 3 ... Wd 3 ^ 

j = i + 1 i = 1 y 
VJ's are •.•/eights c a l c u l a t e d as shown l a t e r . 
hj_ i s any m a t r i x X ± reduced by one o r d e r . 
A-j_j i s any m a t r i x X-j_ w i t h a p i v o t column or row from X j s u b s t i t u t e d 

and reduced by one ord e r . 
3^ i s any m a t r i x reduced by one o r d e r . 
3 j i i s any m a t r i x °X^ w i t h a p i v o t column or row from 'A± s u b s t i t u t e d 

and reduced by one o r d e r . 
The v a l i d i t y o f t h i s r u l e may be e s t a b l i s h e d i n the f o l l o w i n g way, 

take the case of m = 2, i f the elements o f the Y' m a t r i x are examined i t 
i s found t h a t they can be w r i t t e n down as the s e r i e s : 

° . 
Y ' i i j j = (x, x 2 t i , j > - z j t i . p j , x ^ p i . j ^ r 

r = 0 
c 

+ ( x ^ p i . p j ; x 1 i . i , j ) - x 1 i i , p j j x 1 ( p j , j j ) r 
r = 0 
q 

•- 7^ ( x 2 i ? i , ? : j x 1 \ i , j ) - x 2 ( i , p j j x, 4 ? i , j P r 
r = 0 
c 

(> : 2 ( , ? i . ? i j x 2 L i , j ; - x 2 ( i , p j ; x t p i . ^ r 
r = 0 

n-2 
n-2 

r = 0 
I f the terms are c o l l e c t e d , the expression can then be simply w r i t t e n 

i n terms of the .:. and 3 m a t r i c e s above. ?or m > 2 the procedure i s r e p 
eated over a l l p a i r s o f m a t r i c e s . 

combinations, ano t h i s i s t r u e f o r a l l r., hence i t i s not necessary t o 
c o n s i d e r the l a r g e number of combinations n o r m a l l y r e q u i r e d . 

http://err.ee
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.?cr ;er.er£.j. t r c o _ c . T . c: re r a c i n g .-. + t.'.e we:_g._.t3 .. j_ as.-.urn 3 tho 
value of u n i t y . I r . a case :aea omission of c e r t a i n back-subs t i t u t i o r . o 
are r e q u i r e d , i t i s necessary to determine r e l e v a n t w e i g h t i n g f u n c t i o n s , 

. •: T V l 2 T "3521 x 7 c 3 2 1 ) 
I f the zero hack s u b s t i t u t i o n i s o m i t t e d , one set of terms o f the 

type A-. w i l l be m i s s i n g ; now i n g e n e r a l t h e r e are 
n - 1 

o f these terms. 

i e n c e : 
W. = 1 -

"> n-1 
t c 
r=0 r 

Once the m a t r i x [A + 3 j n _ - , -| h £ S been s y n t h e s i s e d , f u r t h e r reduc
t i o n i s achieved by standard p i v o t a l condensation on the s i n g l e m a t r i x . 
4. Stor?:;"G Requirements and Pro-rani L i m i t a t i o n s 

j'or the two main methods considered i t i s necescary t o determine the 
storage requirements f o r each method. 
4.1 T o t a l B a c k - S u b s t i t u t i o n 

I n a l l c a l c u l a t i o n s i t i s assumed t h a t : 
Y - l i x ); x (np + 2 + n d ) . A r r a y Y = network m a t r i x 
(np = max. o r d e r of numerator Y) 
(nd = max. o r d e r of denominator Y) 
2 - (N - r.a) x (K - na) x (npc + 2 + nd c ) . A r r a y C = c o r r e c t i o n 

m a t r i x . ( c ) 
npc = max. o r d e r of numerator C 
ncc = max. o r d e r of denominator C 
Y1 - (X - na) x (X - na) x (npn + 2 + ndn). A r r a y Y1 = i d e a l system 

m a t r i x . ( l o ) 
npn = max. o r d e r of numerator Y1 
ndn = max. o r d e r of denominator Y1 
The working a r r a y Y".< has t o c o n t a i n the terms produced by s u b s t i t u 

t i o n , 
Y'.T - (X - na) x (X - na) x (npw + 2 + ndw) 

where now and new are computed as f o l l o w s : 
npw.. = 2(npw.. ^ -t- ndw_. _̂  ) 
ndw = 4 r.dw_.._( 

i = 1, 2,...(X - na - 2) new = npc ndw = ndc 
o o 

where npc and ndc are s i m i l a r l y c a l c u l a t e d 
n p e i = 2 n p c i i _ i + n d c i _ i + nd 
n d c i = 2 ( n d c i _ ! +nd) + n p c i i _ ! 

and n p c i i . i = max.(np + n d c i _ i , + n p c i _ i ) 



YC - 2 x 2 (2 + [npwN_ n a_2 + npifl-na-3 + n d i N _ n a - 3 l 

+ [ndWN_ n a_2] [2TNC (N -na) - 3 ] ) 

..-ua 

r.di = -£.:<. {r.r.r. + r.cc. r.oc + ndn/ r.oi . = r . t i . , -r r.c*. . 
o " 1 1 - . 1 - , 

u p i Q = r.dr. + n i c n d i i = r . d i ^ , + n p w ^ 

i = 1,2, (N - r . £ - 3) 
4.2 X i n i r a l 3 s c > - 3 v b 3 t i t u t i c r . 

The two a r r a y s G, Y1 are as i n equations ( s ) , ( l O ) . 
Y1 - working a r r a y f o r tne 1 node r e d u c t i o n . 
Yi - (X-na) x (X-na) x ( 2 b p o + ndc] + 4 ndc + 2) 
YV," - (X-na) x (X-na) x (npw + 2 4- ndw) 

where npw and ndw are computed as f o l l o w s : 
npa^ = max. J r.pa. 1 + 4ncc; 2(npc + ndc) + nda^ , 
nda = nda^_, + 4 ndc 

i = 1,2,3 
r.pa = 2(nun -r ndn/' nda = 4 ndn o o 
npvK = 2(npv.' ._, T ndw^ ^ ) 
ndw,. = 4 ndw._, 

i = 1,2...(X - na - 3) 
where now = noa„, ndw = nda_, ' o - y o 3 

YC - 4(2 -r n?i._ , + nt>wv , + n d i v . + ndw,. ,) * A-na-4 ' X-na-3 X-na-4 iM-na-3 
4.3 C o r — r i s e n o f S t o r a g e R " u i r e m % r t s 

T o t a l B a c k - S u b s t i t u t i o n X i n i m a l 3 a c k - S u b s t i t u t i o n 
X = 4, np = 1, npn = 1 

na = 1, r.d = 0, ndn = 0 1 ,1 SO 1 ,1 82 
.." = 5, np = 1 , npn = 1 

na = 1, nd = 0, ndn = 0 S,"'0o 6,536 
X = 5, up = 1 , npn = 1 

na = 1, nd = 3, ndn = 0 61,500 33,666 
X::tra storage w i l l be necessary i n both methods, f o r working areas 

and polynomial h a n d l i n g . 
I t can be seen t h a t as the number of nodes increase the demand or. 

s t o r e g e space becomes severe. This i s p a r t i c u l a r l y e v i d e n t i n the t o t a l 
b a c k - s u b s t i t u t i 0 n m e t h o d. 
5. X- rrlr: -yr.:. C o r r e c t i o n T u n c t i o n X a t r i x 
5.1 C o r r e c t i o n 7-jr.cticr. X a t r i " 

I n most circumstances i t i s u s u a l l y a d v i s a b l e to d e r i v e c o r r e c t i o n 
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technique o u t l i n e d i n s e c t i o n 3. The common f a c t o r i s r e t a i n e d o u t s i d e 
the main a r r a y , thus the oraer o f tae i n d i v i d u a l elements i s l e s s than i n 
tae normal method. ".-.'..en the matri:-: has f i n a l l y reached 2 :•; 2 dimensions 
the accumulated f a c t o r i s then m u l t i p l i e d i n t o the a r r a y . Hence o n l y a 
2 x 2 a r r a y has i t s 3 r d dimension equal to the sum of the maximum o r d e r s 
o f the polynomials i n v o l v e d . This i s to be c o n t r a s t e d w i t h the a l t e r n a t 
i v e s i t u a t i o n where the f i r s t two dimensions of the a r r a y would be n. 
5.2 C o r r e c t i o n j u n c t i o n 

l a some cases i t i s not p o s s i b l e t o d e r i v e a c o r r e c t i o n f u n c t i o n mat
r i x w i t h f i n i t e parameters. This can occur, f o r examale, an. a network 
where the a c t i v e element has a connection to the o u t p u t node, e.g., a 
m u l t i - l o o p feedback network w i t h a v o l t a g e o p e r a t i o n a l a m p l i f i e r . I n such 
circumstances i t may be r e q u i r e d to d e r i v e a c o r r e c t i o n f o r the v o l t e g e 
t r a n s f e r r a t i o ; t h i s i s achieved by r e d u c i n g the m a t r i x to 3 x 3, nnd then 
e v a l u a t i n g the a p p r o p r i a t e c o f a c t o r s and employing Cramers Rule. 
6. A n a l y s i s of he I d e a l System 

The method employed here depends l a r g e l y upon the system under i n v e s 
t i g a t i o n , the requirements f o r such a method have been c i t e d e a r l i e r . 

A system which has been of c o n s i d e r a b l e i n t e r e s t r e c e n t l y i s the 
m u l t i - l o o p feedback one j_7j , the ZY methods j,5,o] are a p p l i c a b l e to t h i s 
c l a s s of networks. A program A L A u t i l i s i n g these techniques has been 
w r i t t e n i n A l g o l and i s s u i t a b l e f o r i n c l u s i o n i n a c o r r e c t i o n f u n c t i o n 
a n a l y s i s . 

The development of o t h e r a n a l y s i s procedures a p p l i c a b l e i n a c o r r e c t 
i o n f u n c t i o n approach i s the s u b j e c t of f u r t h e r work. 
7. Use o f ororram 

As the major l i m i t a t i o n i s du- t o storage space a v a i l a b l e on the 
computer, a bloc k s t r u c t u r e i s employed to minimise the storage demanded 
a t any one time by the program. Sven so, a KD?9 w i t h 16K s t o r e w i l l o n l y 
p e r m i t t h i s computation on c i r c u i t s w i t h a maximum o f 5 nodes. I t may be 
p o s s i b l e t o improve the storage demands by employing magnetic tape storage 
and segmentation, t h i s u n f o r t u n a t e l y w i l l tend t o slow down the computat
i o n . 

Of the two programs used, i t i s obvious t h a t the one u s i n g the A i n i -
mal B a c k - S u b s t i t u t i o n Method i s s u p e r i o r b o t h i n time taken f o r e x e c u t i o n 
and f o r storage requirements. A l l examples have t h e r e f o r e been computed 
w i t h t h i s program. 

An example o f a 2nd order m u l t i - l o o p S u t t e r w o r t h c i r c u i t ( P i g . 1 } v.a.s 
examined whan tho a c t i v e device ( i d e a l l y an i n f i n i t e g a i n v o l t a g e a m p l i f 
i e r ) departs from i d e a l . The i d e a l a n a l y s i s u s i n g program A L A took 4 sees, 
of computing time and the c o r r e c t i o n f u n c t i o n approx. 2 mins. u s i n g the 
.-.Igol c o m p i l e r . The graphs, Figure 2, show the i d e a l response and two 
c o r r e c t e d responses f o r d i f f e r e n t a m p l i f i e r s . 
6. Conclusions 

A g e n e r a l technique f o r t a k i n g account of n o n - i d e a l i t i e s of a c t i v e 
devices i n network a n a l y s i s has been presented. This enables the use o f 
f a s t and accurate r e c u r s i v e procedures i n the e v a l u a t i o n of an i d e a l r e s 
ponse and c o r r e c t i o n terms are s u p p l i e d subsequently. This technique pro
v i d e s a u s e f u l a n a l y s i s method f o r i t e r a t i v e s y n t h e s i s where speed i s 
v i t a l . For the c o r r e c t i o n terms, which are e s s e n t i a l l y n u m e r i c a l and 
r e q u i r e a Ionger time f o r e v a l u a t i o n , i t may be p o s s i b l e to compute these, 
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C e r t a i n l y the e v a l u a t i o n of t i e i d e a l response f u n c t i o n i s very a c c u r a t e 
as no redundant a l g e b r a i c steps are performed. There w i l l bo r o u n d - o f f 
e r r o r due to m u l t i p l i c a t i o n but t h i s i s n o t accentuated by subsecuent 
s u b t r a c t i o n s . I t i s never p o s s i b l e to completely e l i m i n a t e c o m p u t a t i o n a l 
e r r o r s . The e v a l u a t i o n of the c o r r e c t i o n terms i s s u b j e c t to the conven
t i o n a l sources o f e r r o r , but as these terms are u s u a l l y of s m a l l magnitude 
and m i n i m i s a t i o n o f them i s u s u a l l y i n t e n d e d , any e r r o r s here are o f sec
ondary importance. 
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Matrix Tables for the Generalized 
5=Terminaf Amplifier 

Summary: The paper considers the admittance matrices of the generalized 
5-terminal amplifier and shows that the more commonly used amplifiers 
are special cases of the model. It is noted that the single operational 
amplifiers are equivalent when included in a network. 

The admittance matrices of a number of familiar amplifier networks 
are listed in the tables. 

By 

J. I. SEWELL, 
B.Sc, Ph.D.j 
AND 
F. W. STEPHENSON, 
B.Sc., Ph.D.t 

1. Introduction 
Voltage operational amplifiers are familiar active 

elements in electronics. Their characteristics have 
been relatively simple to attain using valves and, 
latterly, transistors. 

The present design practice allows the engineer to 
produce other forms of operational amplifiers such 
as the transimpedance, transadmittance and current 
types. 

The paper considers these different configurations 
from a matrix standpoint. The admittance matrices 
of the various amplifiers are listed and their properties 
are discussed. It is noted that networks made up from 
operational amplifiers have transfer characteristics 
which do not depend upon the particular type of 
amplifier used. 

In the final Section of the paper, the admittance 
matrices for a number of familiar feedback sections 
are presented. 

2. The 5-terminal Active Device 
For the device shown in Fig. 1, it is assumed that 

the internal feedback terms are zero over the range of 
frequencies of interest. The definite admittance 
matrix can be written down immediately. It is logical 
to use the definite admittance matrix as in the majority 
of practical cases node 5 is grounded, hence this may 
be treated as the reference node. The matrix is shown 
in Fig. 2. 

I o 

5 

Fig. 1. 5-terminal active device. 

t Department of Electronic Engineering, The University of 
Hull. 
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In the majority of cases it is reasonable to assume 
that the common-mode input admittance y12 = 
y21 -> 0. Similarly, the common-mode output 
admittance j> 3 4 = y 4 3 -> 0. Hence, in the tables 
developed, these terms are assumed to be zero. If in 
a particular case this is not true then the appropriate 
terms should be included. 

3. Amplifier Admittance Matrices 
3.1. The Amplifier ABCD Parameters 

Using the amplifier driving point admittances it is 
of value to derive the remaining admittance entries 
in terms of certain parameters and these admittances. 
It is found that only four extra parameters are needed: 
open-circuit voltage gain A, short-circuit current 
gain B, transfer admittance C, transfer impedance D. 

Thus, in the case of a voltage amplifier the forward 
transfer admittance ynl = —Ay„„ or, for a current 
amplifier, ynl = —Byll. For the transadmittance 
amplifier the only parameter which appears is the 
transfer admittance C. The forward transfer admit
tance of a transimpedance amplifier whose transfer 
impedance is D, is ynl = — Dyny„„, since the amplifier 
is assumed to be completely non-reciprocal. 

3.2. The Matrix Tables 
These tables are derived from the matrix of Fig. 2 

by assuming the arbitrarily assigned voltage polarities 
as shown in Fig. 1. Tables 1 to 4 give the matrices 

1 2 3 4 

1 >'n -yi2 0 0 

2 - } ' 2 \ 0 0 

3 — >'3 1 ~>'3 2 J'3 3 - J b 4 
4 ->'AI -y*2 -y*3 

Fig. 2. Admittance matrix for the 5-terminal active device 
shown in Fig. 1. 
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2 3 3 

for practical and operational cases, the parameter K 
is a constant which tends to infinity. 

Included in these tables are the matrices for the 
common amplifier configurations, which are obtained 
by eliminating certain nodes. 

An interesting point to note is that the single 
operational amplifiers are equivalent when included 
in a network. This can be shown by simple trans
formation.' 

The hybrid amplifiers are given in Tables 5 to 7. 
If there is 1 : 1 conversion from voltage to current, 
then A = C. 

3.3. A Comparison of the Different Types of Amplifiers 
In the physical realization of the various opera

tional types it is obvious that some will be easier to 
construct than others. With modern techniques using 
f.e.t.s it is possible to obtain extremely high input 
resistances (10 1 1 ft) and, for a limited frequency 
range, v t , - » 0 . The realization of very low output 
impedances ( < 100 fl) is common practice and appli
cation of suitable feedback can produce very low 
values indeed. Thus y22 -* oo, at least in comparison 
with surrounding network elements, provided denor-

malization is suitably performed. The voltage opera
tional amplifier is therefore a practical proposition 
and in fact is the most common type at the present 
time. 

The realization of extremely high input admittances 
is not particularly difficult with a common-base 
circuit or with suitable feedback. But zero output 
admittances present a somewhat more difficult 
problem, although circuits approaching this (output 
resistances of the order of 50 MQ pr even 1000 MC2) 
are not unknown. 2 This makes the current operational 
amplifier quite feasible, although, perhaps, rather 
more complex than the above. 

The transimpedance operational type is probably 
the most suitable of all, i.e. zero input impedance 
and zero output impedance, both of which can be 
realized fairly accurately and simply. 

The amplifier which presents the most practical 
problems in construction is the transadmittance one, 
which requires high input resistance and high output 
resistance. Although realization of this type is not at 
all beyond present techniques. 

With regard to usage, if the forward gain parameter 
(voltage, current, impedance, admittance) of an 

Table 1 Admittance matrices for the voltage type amplifier 

Configuration General amplifier Operational amplifier 

1 2 3 4 1 2 3 . 4 

1 0 0 0 0 0 0 0 0 

General 2 0 0 0 0 0 0 0 0 
3 - ^ 3 3 Ayi3 J\33 0 K2 -K2 K 0 
4 Ayiir -Ay'44 0 v 4 4 K2 -K2 0 K 

1 0 0 X 0 0 0 X 0 

Difference 2 0 0 X 0 0 0 X 0 
3 X X X X X X X X 
4 Ay^ - Ayxlr X K2 -K2 X K 

1 0 X 0 0 0 X 0 0 

Paraphase 2 X X X X X X X X 
3 -<<>'3 3 X .)'3 3 0 -K2 X K 0 
4 Ay** X 0 > 4 4 K2 X 0 K 

1 0 X X 0 0 X X 0 

Single in/out 2 X X X X X X X X 
3 X X X X X X X X 
4 A)u4 X X v 4 4 K2 X X K 
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Table 2 Admittance matrices for the current type amplifier 

Configuration General amplifier Operational amplifier 

1 2 3 4 1 2 3 4 
1 >'n 0 0 0 K 0 0 0 

General 2 0 0 0 0 K 0 0 
3 - B y u ^ 2 2 0 0 - K 2 K2 0 0 
4 Byll -S.V2 2 0 0 K2 - K 2 0 0 
1 yw 0 X 0 K 0 X 0 

Difference 2 0 J'22 X 0 0 K X 0 
3 X X X X X X X X 
4 By ii X 0 K2 - K 2 X 0 
1 X 0 0 K X 0 0 

Paraphase 2 X X X X X X X X 
3 X 0 0 - K 1 X 0 0 
4 By u X 0 0 K2 X 0 0 
1 X X 0 K X X 0 

Single in/out 2 X X X X X X X X 
3 X X X X X X X X 
4 By u X X 0 K2 X X 0 

Table 3 Admittance matrices for the transadmittance type amplifier 

Configuration General amplifier Operational amplifier 

1 2 3 4 1 2 3 4 
1 0 0 0 0 0 0 0 0 

General 2 0 0 0 0 0 0 0 0 
3 - c C 0 0 -K K 0 0 
4 c -C 0 0 K -K 0 0 
1 0 0 X 0 0 0 X 0 

Difference 2 0 0 X 0 0 0 X 0 
3 X X X X X X X X 
4 c -c X 0 K -K X 0 

• 1 0 X 0 0 0 X 0 0 
Paraphase 2 X X X X X X X X 

3 - C X 0 0 -K X 0 0 
4 C X 0 0 K X 0 0 
1 0 X X 0 0 X X 0 

Single in/out 2 X X X X X X X X 
3 X X X X X X X X 
4 C X X 0 K X X 0 
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Table 4 Admittance matrices for the transimpedance type amplifier 

Configuration General amplifier Operational amplifier 

1 2 3 4 1 2 3 4 
I 3'n 0 0 0 K 0 0 0 

General 2 0 3*22 0 0 0 K 0 0 
3 ~ AVu3*33 -Dy223'33 3'3 3 0 - K 3 K3 K 0 
4 Av 11 3*44 " " AV2 2 3'44 0 3*44 K3 - K 3 0 K 

1 3*11 0 X 0 K 0 X 0 
Difference 2 0 3*2 2 X 0 0 K X 0 

3 X X X X X X X X 
4 AV 11 3*44 " - £ 3 * 2 2 3*44 X 3*44 K3 ' - A : 3 X K 

1 3*n X 0 0 K X 0 0 
Paraphase X X X X X X X X 

3 -Dyi 13*33 X 3*33 0 - A : 3 X K 0 
4 A V l l 3 *44 X 0 3*44 A: 3 X 0 K 

1 3*11 X X 0 K X X 0 
Single in/out 2 X X X X X X X X 

3 X X X X X X X X 
4 Dy n >>44 X X 3*44 K3 X X K 

Table 5 Admittance matrices for an amplifier with hybrid input admittances 

Type General amplifier Operational amplifier 

1 2 3 4 1 2 3 4 
1 3*11 0 0 0 K 0 0 0 

Voltage output 2 0 0 0 0 0 0 0 0 
3 - AVu3*33 3̂'3 3 3'3 3 0 - K 3 K2 K 0 
4 Dy u 3*44 - ^3*44 0 3*44 K3 - K 2 0 K 

1 0 0 0 0 0 0 0 0 
Voltage output 2 0 3*2 2 0 0 0 K 0 0 

3 -^3'33 3̂*2 2^33 3*3 3 0 - K 2 K3 K 0 
4 ^3*44 " -Dy22yiA. 0 3*44 K2 - K 3 0 K 

1 3'ii 0 0 0 K 0 0 0 
Current output 2 0 0 0 0 0 0 0 0 

3 -By u c 0 0 - K 2 K 0 0 
4 By,, -c 0 0 K2 -K 0 0 
1 0 0 0 0 0 0 0 0 

Current output 2 0 3'2 2 0 0 0 K 0 0 
3 - c By 22 0 0 -K K2 0 0 
4 c -By22 

0 0 K - K 2 0 0 
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Table 6 Admittance matrices for an amplifier with hybrid output admittances 

Type General amplifier Operational amplifier 

1 2 3 4 1 2 3 4 

1 0 0 0 0 0 0 0 0 

Voltage input 2 0 0 0 0 0 0 0 0 
3 -C c 0 0 -K K 0 0 
4 Ay 44. — Ay 44 0 ^44 K2 -K2 0 K 

1 0 0 0 0 0 0 0 0 

Voltage input 2 0 0 0 0 0 0 0 0 
3 ~Ay3i Ayi3 

0 >"3 3 -K2 K2 0 K 
4 c -C 0 0 K -K 0 0 

1 0 0 0 K 0 0 0 

Current input 2 0 }'n 0 0 0 K 0 0 
3 ~Dyuy33 Dy22y}3 ^33 0 -K3 K3 K 0 
4 Byn -By 2 z 0 0 K2 -K2 0 0 

1 yn 0 0 0 K 0 0 0 

Current input 2 0 yu 0 0 0 K 0 0 
3 -By n By 22 0 0 -K2 K2 0 0 
4 DyXiy^ --£>y22y44. 0 V44 K> -K3 0 K 

Table 7 Admittance matrices for a complete hybrid amplifier 

Type General amplifier Operational amplifier 

1 2 3 4 1 2 3 4 

1 0 0 0 0 0 0 0 0 
Complete 2 0 yiz 0 0 0 K 0 0 
hybrid 3 - C By 2 2 0 0 -K K2 0 0 

4 ^ 4 4 " -Dy22y44. 0 ^44 K1 -K3 0 K 

1 .Vu 0 0 0 K 0 0 0 
Complete 2 0 0 0 0 0 0 0 0 
hybrid 3 - £ . ) ' 3 3 C 0 0 -K2 K 0 0 

4 ^ l l J ' 4 * — Ay 44 0 J'44 K> -K2 0 K 

- 1 0 0 0 0 0 0 0 0 
Complete 2 0 3'2 2 0 0 0 K 0 0 
hybrid 3 - ^ 3 3 Dy22y 33 >'3 3 0 -K2 K3 K 0 

4 c -By 2 2 0 0 K -K2 0 0 

1 > ' l l 0 0 0 K 0 0 0 
Complete 2 0 0 0 0 0 0 0 0 
hybrid 3 -Dy^y^ Ay 3 3 J'3 3 0 -K3 K2 K 0 

4 By -C 0 0 K2 -K 0 0 
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amplifier is extremely large and approaching infinity 
then the values of the input and output admittances 
are immaterial. 

4. Network Matrices 
In this Section a number of familiar amplifier 

configurations are considered, together with their 
respective matrices. 

4.1. Basic Feedback Network 
The circuit shown in Fig. 3 has the definite admit

tance matrix shown in Table 8. For a conventional 
voltage operational amplifier 

es y4* (>U4 + Y 2 ) ( y i l + Yl + Y2)+ Y2(Ay„- Y2) 
(1) 

This expression reduces to the more familiar one: 

1* = _ Y> 
e> Y2 

if y l l t \/A -» 0, where A denotes the amplifier gain 

(2) 

4.2. Non-inverting Amplifier I 
Figure 4 and Table 9 show the circuit and definite 

admittance matrix respectively. 
In the derivation of the matrix it was assumed 

that 
AtA. = -A24=-A and yl2 = y21 

If we further assume that 
y^^co and y u , ) > i 2 - > 0 

then 
e±_ 
e.~ Y, 

if A p 1. 

(Y^Y2)A = ' + Y A 
^ + Y2(l+A) \ Y j 

4.3. Non-inverting Amplifier If 
The network shown in Fig. 5 illustrates a further 

method of obtaining a non-inverted relationship 
between input and output voltages. From Table 10, 
if we let 

and 
Y, = Y2 = y 3 = y 4 = y 

then 
e A = YjY + y^A) 

*s [(2Y+Y5){2Y + y t t + Y { y " A ~ Y ) 

2Y 

Now, if yAi and A -> oo, then 
e±=2Y 

Y5 

252 

Y(y4iA+Y)] 
(4) 

•(5) 

H 5 

Fig. 3. Basic feedback network. 

Table 8 
Admittance matrix for a basic feedback network 

Y} Y,Y2 

yu + Y: + Y2 yu + Yt + Y, 

Y^Ay^-YJ 
y^ + Yt + Y, 

j iy**+Y2) 
YMy4A- Y2) + yn + Yi + Y2 

Fig. 4. Non-inverting amplifier (I). 

Table 9 Admittance matrix for the non-inverting 
amplifier (I) (Fig. 4) 

y\2 
y,2Y2 

yii+yl2 + Yi + Y2 ! yu+yl2+Yt + Y2 

-y^A (y**+Y2) 
, yn^y^A- Y2) , Y2(y„A-Y2) 

yu+yu + Yi + Yi i + yu+y12 + Yi + Y2 

Fig. 5. Non-inverting amplifier (II). 
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Table 10 Admittance matrix for the non-inverting amplifier (II) (Fig. 5) 

y, 2 ', „ f . , . y 3 > , 

i • , 
\ yu+yi2 + Y2 + Y3 

- Y1 y 4 + 

y\2 

Y,< + 

{Yt + y^A) 
Y12(y**A- y 3 ) 

y n + y i 2 + y2 + v3 

v 4 4 + y 4 + y 3 + 
y 3 ( > ' 4 4 ^ - y 3 ) 

>1 1 + ^ 2 + ^ 2 + ^ 3 

f y 2 2 + y i 2 + y i + y 4 + y 5 

y\2 

3 ' n + . v i 2 + y 2 + y J i 

Table 11 
Admittance matrix for the voltage follower (Fig. 6) 

y* + 

' -(y**A + Y4) 

,vii +yn + Y2 + y 3 J I v i i + y12 + y> + Y3 

Y3yi2 

f>-22+yi2+y.+y4+y5" 

L }'u +yu+ Y2+Y}J 

yn -yiz 

if 
then 

-{)'**<* +yi2) ' y**{l+A) + yi2 

This network can be used as a positive integrator.3 

y, = 1/2K and Ys = pC 

(6) 

Fig. 6. Voltage follower. 

(iii) Node 4 off-diagonal elements: 

' S j . 4 

1 y.i + f y 
= 1-/1 

pCR 

4.4. Voltage Follower 
The circuit and its matrix are shown in Fig. 6 and 

Table 11 respectively. 

4.5. Summing Network 
The familiar summing network is shown in Fig. 7 

and its admittance matrix is shown in Table 12. In 
general, the matrix elements may be calculated from 
the following expressions : 

(i) Diagonal elements (except _y44): 
y* 

...(9) 

(10) 

y s „.s„ = Y„ (7) 

yn + f Y, 
i=i 

y 4 4 is listed in Table 12. 

4.5. Differential Output Network 
A configuration suitable for, say, a dual integrator 

is shown in Fig. 8 and its matrix is given in Table 13. 
As , -* 0 and j y 4 4 -» oo 

* 4 _ ~ Yi A14 
e~s y 1 + y a ( i + / i 1 4 ) 

. ( i i ) 

J ' u + Z Y, 

(ii) Off-diagonal elements (except those including 
node 4): 

Ysj. sk — •(8) 

If A, 4 > 1, then 

Also, if y33 -* co 

> ' " + i y 
c 3 _ 

-y> 

y . ^ i 

.(12) 

es Y 2 ( I + A 1 3 ) + Y 1 

.(13) 
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Table 12 Admittance matrix for the summing amplifier network (Fig. 7) 

Si s„ 4 

y 2 

v 1 
! - y t Y2 

- YT Y„ - ^ Y, 

-> 11 1 1 ' 
i j 

.' n • X >i j'n + Z >/ 

- Y , Y 2 \ Y ! ~Y2YN 

yu+lY, y-n+lY, 

s 

3 

y„ - y 2 y „ 

>>u + E y, j'u + E ^ 

>-u + E Yt 

Table 13 Differential output network 

y. y>2 

Yt + Yz + y^ 

Yl(y^AlA-Y2) 
Yt + Y2+yn 

3 

0 

y33 

4 
y ,y 2 

Yl + Y2 + yil 

y 2 + > 4 4 

^ 4 4 ^ , 4 - y 2 ) 

y. + y2+>-u 

Fig. 8. Differential output network. 

If Al3 1, then 

e3 Yx .(14) 

If y 2 = pC and yi = l/R, then the network can 
be used as a dual integrator giving positive and 
negative integrals of the input signal. 

Y„Yf 

>'n + E y . ' 

y ^ j > 4 4 - y / ) 

>'n + Ey.-

0-44+y / ) 
+ y / ( ^ 4 4 - y / ) 

S , o -

J n - I 0 -

s n o-

Fig. 7. Summing network. 
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Accumulant theory and applications 
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The increase in demand for synthesis of active networks by digital computer has 
accentuated the problem of producing fast and accurate analysis procedures. The 
accumulant method is one technique which is applicable to multiple-loop feedback 
systems and meets the time and accuracy requirements. 

Modern optimization techniques used in iterative synthesis often require the 
computation of partial derivatives; the accumulant method permits these to be 
calculated analytically with great ease. The derivatives also find application in 
sensitivity studies. 

Using accumulant techniques it is possible to divide a large analysis problem into 
smaller ones, thus reducing the store required at any one instant in the computer. 

Various algebraic properties of accumulants are examined and appropriate proofs 
furnished. 

1. Introduction 

I n recent years there has been an increasing interest in the derivation of 
algorithmic methods of analysis for various networks. This has been brought 
about by the demand for faster and more accurate analysis techniques for use 
on computers. General analysis methods are either not sufficiently accurate 
(Skwirzynski 1965) or occupy so much computer store to make them impractic
able. These difficult ies are accentuated when iterative synthesis is considered, 
and a t h i rd factor, the t ime occupied by the analysis step, becomes a major 
concern. 

Many opt imizat ion procedures used in automatic synthesis require the 
computation of the par t ia l derivatives of the error func t ion each cycle of itera
t ion . W i t h many methods this is not par t icular ly eas\ : to accomplish, and i f 
numerical different iat ion is being used inaccuracies are inevi tably present. 

Analysis met hods which w i l l meet the abovedemands are quite wellestablished 
for passive networks (Bart le t t 1930, Herrero and Wil loner 1966). B u t active 
networks have not received as much attention, although some progress has been 
made in the case of m u l t i -loop feedback networks (Ho l t and Sewell 1966). These 
techniques do satisfy the accuracy, t ime and storage demands cited above but the 
computation of part ial derivatives, though possible, is not s t ra ightforward and 
requires extra programming of the computer. 

The accumulant method enables the accurate and speedy analysis of a m u l t i 
loop structure and permits an analytic assembly of the derivatives. 

2. Formulation of the H matrix 

For passive ladder networks, it has been shown (Herrero and Wil loner 1966) 
t ha t i f a hybr id ma t r ix is considered, instead of an admittance or impedance 
matr ix , then a simple method of evaluation of the characteristic funct ions 
results. A similar method is applicable to mul t i - loop feedback systems of the 
single and double ladder type. 
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Consider fig. 1 and using the variables shown, it is possible to assemble 
equations for voltages and currents as the mat r ix eqn. (1) : 

Z x 1 0 0 

- 1 ]'„ 1 0 

1 Z 3 1 0 

o - i y 4 i o 

0 1 

0 

— 1 * 2.Y-4 1 ^ 2.V-4 

0 - 1 Z t v _ , 0 

o o - i y i A ._ 2 . 

e 2 

h 

c2.\'-4 

'2.V-3 

_ c 2. \ — 

^ is the number of nodes in the network. 
I t is easily shown tha t various characteristic funct ions can be obtained, giving : 

voltage gain G21 = 
1 

. • j ri ( ^ 1 ^ 2 . V - 2 ) 
i npu t impedance Z n — j^ TF :! 

( ^ 2 • ' 2 . V - 2 ) 

1 
forward transfer impedance Z 1 2 = 

(2) 

2.V-2^ 

Fig. 1 

e 0 Z ! e 2 Z j % 

I 
I 

Single ladder multiple-loop feedback system. 

The terms in brackets are called accumulants, i n this case they are referred 
to as single accumulants. They are similar to cumulants (Herrero and Wil loner 
1966) but because the f o r m of the H mat r ix is sl ightly modified, different pro
perties result. 
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I f the double ladder feedback network of fig. 2 is considered, the hybr id 
ma t r ix takes the f o r m : 

r Zl 1 0 

- l r , + r 2 3 i 

o -1 z 3 

o o 

0 

1 

- 1 Y i + Y i s 

0 

Y 2 

0 

YA 

~ 1 -^2.V-4l -^2.V-4 

+ 1 2.V-4, 2.Y-3 

0 - 1 Z 2 . v _ , 

0 

0 

0 — 1 ^2A'=2 _ 

This mat r ix leads to double accumulants. 

Fig. 2 

— [ 

Y 

'2N-4 

Double ladder multiple-loop feedback system. 

3. The relationship between single accumulants and the Eider form 
I t is well known tha t the determinants of the matrices which lead to simple 

continuants and cumulants are s imply evaluated by a method due to Euler 
(Bar t le t t 1930). Single accumulants can be evaluated by a similar technique, 
which is now outlined. 

Consider the hyb r id mat r ix of a single ladder feedback system : 

« 1 1 0 0 

— 1 (/,, 1 0 . a2 

0 - 1 « 3 1 0 0 

0 - 1 « 4 I 0 . « 4 

1 an-2 1 an-2 

0 - 1 0 

0 0 - 1 a„ 

where a, is an 
admittance or 

impedance. 
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This can be separated into the sum of two matrices : 

H = HX + H, 

H = 

«1 1 0 

- 1 1 0 

0 - 1 1 

0 - 1 ° 4 

- 1 

0 - ] 

0 

a„-2 1 0 

1 a„ 

0 0 0 

n 0 0 

0 0 0 

0 0 0 

0 

0 

"a 

• 1 

0 

Now | II | = | H1 + H2 j can be evaluated by a back-substitution method 
(Sewell and Nightingale 1969). As even- column of H2 is zero, apart f r o m the 
final one. 

\H\ = \H1\ + 

1 0 0 

- 1 1 0 a2 

0 - 1 « 3 1 0 0 

0 0 - 1 « 4 1 0 o 4 

1 a ( 1_ 2 I a n-2 

0 - l a 

0 -

H - l 

- 1 

- 1 

0 

When n is even 

n odd: 
1^1=1^1-1 , 

1^1 = 1^1 
H1 is of the correct fo rm for evaluation by the Euler method. The case when 

n is odd corresponds precisely to tha t of odd cumulants. When n is even — 1 is 
present, this cancels the + 1 which appears in the evaluation of even-order 
cumulants. Accumulants are normal ly of even order. 

I t must be noted tha t this is only t rue for complete accumulants, i f , as is 
shown later, even-order split accumulants or par t ia l accumulants occur, these 
must be treated as normal cumulants. The exception to this being the split or 
par t ia l accumulant which contains the f inal element, this comes f r o m a ma t r ix 
which can be split in to the f o r m of Hl + H2 and is evaluated as above. 

The algebraic properties of single accumulants are the same as those of 
cumulants (Herrero and Willoner 1966). 
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4. The algebra of double accumulants 
The algebra of double accumulants is somewhat more complex than that of 

the single accumulants. the most important properties are now investigated. 

4.1. Rule for expansion 
Le t 

K a„) ©(*>! bH_2) = 

I « , + &, 1 0 

0 - 1 1 0 

0 0 - 1 a, + bx 1 

0 

C „ _ 2 + b)i-2 1 ° ; i - 2 

- 1 a „ _ , 0 

where a., ( i odd) are series impedances, 
a,- (i even) are feedback admittances, 
bj (i even) are shunt admittances to earth, 

(a, aM) bn_2) = {a1—a„) 
771 

+ 2 &2i ( « 1 « 2 f - l ) ( « 2 l + l « « ) -

1=1 
771 777 — ] 

+ 2 2 bOJ b2j (a1 a ^ j ) ( a 2 i + 1 fl,^) ( a , , + 1 -

+ . . . 
+ (b2bt. . • bn_2)(a1a3. . •(tn^aH_lan). 

n-2 
m • 

(wis even). 
Proof 

( f l j an) © {b1 bn__2) results f r o m the sum of two matrices: 
A B 

a1 1 0 

- 1 a, 1 0 

0 - 1 flg 1 0 

0 

a2 

0 

0 - 1 cr4 1 0 . 

- 0 0 

+ 

0 b2 0 

0 0 0 

0 6 4 0 

0 

0 

0 

0 
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Using a back-substi tution method, zero substi tut ion in A w i l l , by reasoning 
given earlier, yield the f i rs t t e rm of the expansion. When a single finite b 
column is substituted, a determinant of the fol lowing f o r m results : 

« 1 1 0 0 

- 1 

0 

ai 

- 1 

1 

« 3 1 

Co 

0 - 1 a t - I 0 0 

0 - 1 1 «.• 

0 0 ai+l 

- 1 

0 

a,l-l 1 

The evaluation of this yields (aY J bt (a^ an), thus the second term 
results as a sum over a l l i (i is even). 

The t h i r d term follows when combinations of two finite b columns are 
considered. 

The f inal t e rm occurs when all the f ini te 6 columns are substituted. 

4.2. Rule for splitting 

K ar> ar+l a n ) ® ( b l K br+l K - i ) 

= ( « 1 d r ) ( ° W l
 an) + K a r - l ) ( « r - 2 « « ) 

m 

+ 2 b2i { ( « ! « r ) ( « r - l a 2 i - l ) + ( « 1 a-r-l) ( « r + 2 « 2 i - l ) } 

i = « r + l)/2) 

X { ( « 2 i + 1 « „ ) } 

( r / 2 ] - l 

+ 2 « 2 i - l ) } {(a»+l « r ) ( « r - l O . ) 
1 = 1 

+ K + l « r - l ) ( O r + 2 «<») } 

»l Hi — 1 

+ 2 2 & 2 . M K a r ) ( « r + l « 2 i - l ) + (ai « r - l ) ( « r + 2 «2 , - l ) } 
J = i +1 i = l(r+l)/2] 

X { ( « 2 i + l a 2 , - l ) ( « 2 j - l « » ) } 

m ( r / 2 ) - l 

+ 2, Z , b2ib2i K « ! ( - l ) { ( « B + l - « r ) K + l %- l ) 
J = [ ( r + l ) / 2 ] < = 1 

+ ( « 2 f + l « r - l ) ( « > + 2 O y - i ) } x { ( f f l y + i " * ) } 

l r /2] - l [ r / 2 J - 2 

+ 2 2 b 2 i h j ( « i « 2 i - i ) ( « 2 i - f i 
j=i+l i=l 

X + i « > ) ( « > + ! « „ ) + ( « 2 > + l « r - l ) ( « r + 2 (<n)} 

+ . . . 
, ( ( l - 2 ) / 2 \ , » / 2 , 

+ n K n « 2 y - ! « „ • 

V i = l ' \ i = l 
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Proof 

This follows simply by applying (4.1) and the rule for spl i t t ing eumulants 
(Herrero and Wil loner 1966). 

4.3. Expansion by the an term 

(«i «„) ®{h bn_2) 

= K o„ + (a1 a„_ 2) 
m 

+ 2 K (O, . « 2 i - l ) { K - l + ( « 2 i + l « „ - 2 ) } 
£ = 1 

m »! - 1 

+ 2 S&a&fyK au-i)lfl*+i a 2 j - i ) 
; '=i + l i = l 

x {(«iy+i + (% + i a » - 2 ) } 
+ . . . 

, <n -2 ) /2 \ / i / 2 \ 

+ ̂  I I b2ijlJJ^V-l J«n-

Proof 

This follows by applying the rule for expanding cumulants by the final term 
to the expansion of (4.1). 

4.4. Bides for partial derivatives 

Le t si = K aH) © (&! bn_.2) 

4.4.1. Differentiation by an ar term 

da = a r _ l ) ( f l r + 1 a , , ) 

m 

+ 2 M « i «>_i)(«y+ 1 «2i_i)(oa+i a J 
! = ( ( r + l ) / 2 ] 

[r /21-1 

+ 1 b 2 i ( a l a 2 i - l ) ( « 2 / + l « r - l ) ( a r + l 0 „ ) 

1 = 1 

»i »( —1 

+ 1 I M 2 ; ( « l « Y - l ) ( « r - l a 2 i - l ) ( « 2 i + l a i j - l ) ( a V + l «n) 

j = i + l !=[<r-M)/2 | 

HI | r / 2 ] - l 

+ 1 I M 2 ; ( f ' i « 2 i - i ) ( » 2 t + i a r _i) (a r + i « 2 ; - l ) 
x ( « 2 , + i a n ) 

( r / 2 ] - l [ r / 2 ! - 2 

+ 1 2 M 2 > ( « 1 « 2 / - l ) ( « 2 i - M « 2 , - l ) ( « 2 > + l - « r - l ) ( a r - r l a n ) 

; ' = i - f l 1 = 1 

+ . . . 
, ( H - 2 ) / 2 \ / i i / 2 \ a I 1 71/2 \ 

+ n y n « y - - k , v + i i , 
\ , = i ' v=i « r I o,i j=i ) 

S ; ' is the Kronecker delta. 
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Proof 

Apply rule 4.3 to 4.2 gives : 

(«1 « r - « r - M « „ ) © (bi br! br_i >>tl_.2) 

= {(«! 0 r + ("l a , - z ) } K - l « , . ) + ( « 1 « r - l ) ( « r - 2 - " " J 

/ft 

+ I M[(« l O r - l K + K «r-l)]( f lr-l 
i' = [<r-l)/2] 

"2i —1' 

+ ( « 1 C f r - 1 ) ( r t ' r - 2 « 2 i - l ) } X { ( « 2 i + l « , , ) } 
( r / 2 ! - l 

+ 2 « 2 i - l ) { [ ( « 2 , - l « r - l ) « r + ( « 2 f + l « r - 2 > ] («r-M « « ) 
1 = 1 

+ ( « 2 . ^ 1 « r - l ) ( « r - 2 <*»)} 
m [r/21-1 

+ 2 2 b Z i h j ( a l « 2 i - l ) { [ ( « 2 i - l « r - 2 ) ] 
;' = [(r+l) /2 | £ = 1 

x ( a r + 1 a.2;._!) + (a,,..! ar-i)(ar^_ a2j_x)} 

x ( « 2 J + i a J 
[ r / 2 1 - l [r/21-2 

+ I 2 b2ib2J(a1 a 2 i - i ) K - i « 2 > - i ) { [ K ; + i «y-iK-
j = i + l i = l 

+ («2>+l a r - 2 ) ] ( f V l « J + ( a 2 ; + l « r - l ) ( « r - 2 « » ) } 

m ;n — 1 

+ 2 2 6 2 i 6 2 j { [ ( « l a r - l ) « r + ( a - l Or-a) ](«> + ! a 2 i_i) 
;' = i + l i = l(r + l)/21 

+ K a>+l)(«r+2 0 2 i - l ) } ( a 2 i - . - l a 2j - l )K>+l -
+ . 

+ (<l!-2)/2 \ / n / 2 \ 

n 6 2 i ) ( n « 2 ; - i ) « , r 

Different ia t ion w. r . t . ar leads to the formula given. 
Notice must be taken, however, i n the evaluation of the accumulants. As 

dji/jdar = I Cr |, where Cr is the co -factor of the ar te rm, when r is even the ar te rm 
appears i n two columns of the / / m a t r i x , thus dstfjdaris the sum of two co-factors, 
one of these is un i ty . Thus evaluation follows the rules for cumulants. H o w 
ever, when a b2i column is substi tuted (4.1) and r<n — 2, 2i>r this u n i t y co-
factor now becomes zero. When r = n— 2, 2i < r, the two co-factors are an_1 an 

and 1 because 2 i > n —2. Otherwise the split accumulants are evaluated as 
indicated earlier. 

4.4:2. Differentiation by a br term (r is always even) 

g^- = («i « T - I ) K + i c„) 

r /2-1 

+ 2 6 2i(«l « 2 i - l ) ( « 2 / + l «r-l)(«r+l «») 
i = l 

m - 1 

+ 2 6 2 > ( « 1 °r-l)(«r+l fl2;-l) K + l «») 
J=[(r+l)/2] 

+ . . . 
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Proof 

Consider the expansion of (4.1), differentiat ing w. r . t . br leads directly to the 
above expression. 

4.5. Other algebraic rules 

I t is possible to extend the algebra to include rules for other manipulations, 
however this is f a i r ly s traightforward, and the ones developed are sufficient in 
the present context. 

5. Evaluation of accumulants by recurrence formula 
A similar fo rmula to tha t which is used for continuants (Bart let t 1930) is 

also applicable here. 
lr/2) 

I f Cn = (a, an), then Cr = aT Cr_, + C,_ 2 - £ V 

C2 = a1a2 + 1, 

C3 = a3 {a1a2 + ]) + a1, 

ill/2) 
Cn = anCn_l + C n _ 2 - I82s". 

8=1 

6. Analysis of multi-loop feedback and feed-forward networks 
Mult i - loop feedback networks having one or more feed-forward paths have 

proved to be useful (Ho l t and Sewell 1965). I f the hyb r id mat r ix for fig. 3 is 
assembled according to the method given, i t w i l l be found to be non-square. 
However, i f the network is fed f r o m a voltage source i t is possible to produce a 
square mat r ix . I n this case i t w i l l only be possible to consider voltage transfer 
functions. 

I f the currents through the feed-forward paths are wr i t t en as : 

eo Y f f i , 

the H mat r ix equation takes the f o r m 

Zl I 0 

- 1 F 2 + Y m 1 0 

0 - 1 Z3 1 

0 - 1 Y,+ Y 

0 

eo ^ f f i 

e0 ^ / / 2 . V - 4 

0 

f f i 

0 

0 

+ Y 

- 1 

0 

2.V-4 

/ / 2 .V 

0 h 
Y 2 e2 

0 *3 

Y* e \ 

1 3 T2.Y-4 

- 4 
e 2 . V - 4 

1 I 9 V - 9 



488 Accumulant theory and applications 

Fig. 3 

2N - ! 

Multiple-loop feedback system with feed-forward. 

Evalua t ing the appropriate co-factors yields the voltage transfer funct ion : 

Y, A ' - l 

G21 = - ' 2 . Y - 2 

(_l)2.v-i+ ^ Y j m & x Z»_x)®{Ym 

i=i 
X ( - l ) 2 - V - 2 i + l 

: \ Z , Y 2 X ) ©( Y m 3"//<2.v-4)") 

//<2i-2>/ 

For a double ladder the expression is : 

i = l U J / / 2 1 / / ( 2 i -2 ) ) ' 
( T 9 , = 

— i \ v ) e ! ( ; ; 3 " ^ ( 2 . Y - 2 X 2 . V - l ) ) \ 

^ / / ( 2 - Y - 4 ) ) 1 

7. Conclusions 
Computer programmes have been wr i t t en using the algebra of accumulants, 

and have been found to be fast and accurate. The main advantage of accumu
lants is tha t par t ia l derivatives can be computed w i t h ease, thus presenting an 
ideal analysis method for inclusion in i terative synthesis. The derivatives are 
also of value i n sensit ivity work. 

The spl i t t ing technique enables a large structure to be dissociated into a 
number of small analysis problems and thus alleviating the demand fo r large 
storage on a machine at any particular instant. 

The method is also suitable for l i teral analysis by computer. 
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A general method for interconnecting active eir'ciilators is described. Various 
circuits which are derived from the genera] system possess properties which an? of 
significance in active filter synthesis. 

1. Introduction 

It has been demonstrated recently (Rollett 1968} how versatile active 
multi-port circulators can be, when used in conjunction with resistors and 
capacitors to produce active filter networks. This communication attempts 
to establish a general interconnection system for multi-port circulators. 

2. General configuration 

Consider the following system 

Gc, 

i=i . . . n. 
Gcn overall circulator admittance matrix. I t is skew-symmetric and of 

order mn. 6'c0 = 0. n is the number of parallel systems. 
Gcc/j individual admittance matrix of the j t h circulator in the /'th path, 

order mi}. 
nt number of individual circulators in the ith parallel path. 

K t j phase relation matrix. I n order to specify the phase relationship 
between the ports of a circulator, the basic phase pattern of an 
odd order circulator is assumed for the Gcc^ matrix. The K ( j 

matrix is a diagonal one containing + 1, — 1 and written as 
{1, — 1 . . . 1), it is also of order mi}. 

ecu a constant which determines the circulation sequence and assumes 
the value + 1 or — 1 according to whether the circulator exhibits a 
positive or negative sequence respectively. 

The constants S are shift parameters used to maintain correct order and 
sequence in the matrix addition. Their value determines how many un
connected nodes (zero rows and columns) are to be added into the matrix. 

.S'(

r indicates a shift of the Gci_l matrix to the right, i.e. zero rows and 
columns added to the left-hand side of Gci_v 

S/ indicates a left shift of Gc(_v 

S ( j

r ' , are similarly defined but operate on the Gcc(j matrix. 

T Communicated by the Author. 



T o p r e v e n t t h e g e n e r a t i o n o f a s i n g u l a r s e t o f s y s t e m e q u a t i o n s t h e f o l l o w i n g 

c o n s t r a i n t s m u s t b e o b e y e d : 

•V . ; - i = *V = n , a x (" 'l .y-i : 

T h e e q u a t i o n g i v e n a b o v e w i l l g e n e r a t e a l a r g e n u m b e r o f p o s s i b l e w a y s 

t o c o n n e c t c i r c u l a t o r s . . S o m e o f t h e s e h a v e r e l e v a n c e i n p r a c t i c a l s y s t e m s : 

t h e o n e s d i s c u s s e d s u b s e q u e n t l y r e p r e s e n t a f e w o f s i g n i f i c a n c e . 

2 . 1 . Two circulators in parallel, one of negative circulation sequence 

7i = 2, n l = ] , fto = l , K 1 1 = K z l = I {I — i d e n t i t y m a t r i x . T h e c i r c u l a t o r s a r e 

o f o d d o r d e r a n d a s s u m e d e q u a l ) « n = + I , « 2 1 = — 1, 

1 1 . . . 1" 
0 - 1 . . . - 1 
1 0 . . . 1 . 

1 - 1 . . . 0 _ 

T h i s i s a n i n t e r e s t i n g c o n f i g u r a t i o n , a s i t r e p r e s e n t s a c i r c u l a t o r w i t h a 

r e d u c e d c i r c u l a t i o n c o n d u c t a n c e . S i n c e i n d u c t o r s p r o d u c e d b y t h e s e s y s t e m s 

a r e i n v e r s e l y p r o p o r t i o n a l t o t h e c i r c u l a t i o n c o n d u c t a n c e s q u a r e d , t h i s s y s t e m 

p r e s e n t s a m e t h o d o f p r o d u c i n g i n c r e a s e d i n d u c t a n c e v a l u e s w i t h o u t l o s s o f 

Q. W i t h a s i n g l e c i r c u l a t o r , r e d u c t i o n i n Q o c c u r s w i t h r e d u c t i o n i n gc b e c a u s e 

t h e e f f e c t s o f a m p l i f i e r p a r a m e t e r s a r e n o l o n g e r n e g l i g i b l e . 

W i t h gCCn = gcr.n a n u l l m a t r i x r e s u l t s , g i v i n g r i s e t o a s i n g u l a r s y s t e m o f 

l i t t l e s i g n i f i c a n c e . F o r gCCn > gCCiil a c i r c u l a t o r o f p o s i t i v e s e q u e n c e a n d r e d u c e d 

c o n d u c t a n c e i s o b t a i n e d ; s i m i l a r l y for gCCn > gVCll o n e o f r e d u c e d c o n d u c t a n c e 

b u t n e g a t i v e s e q u e n c e r e s u l t s . I n n o r m a l a p p l i c a t i o n s ( i . e . i m p e d a n c e i n 

v e r s i o n ) t h e t w o l a t t e r p r o d u c e i d e n t i c a l r e s u l t s . 

P r a c t i c a l i n v e s t i g a t i o n s o f t h i s r e d u c e d c o n d u c t a n c e p r o p e r t y h a v e b e e n 

c a r r i e d o u t , u s i n g t h i r d - o r d e r ( 3 - p o r t ) c i r c u l a t o r s c o n t a i n i n g o p e r a t i o n a l 

a m p l i f i e r s ( R o l l e t t a n d G r e e n a w a y 1 9 6 8 ) . E n c o u r a g i n g r e s u l t s h a v e b e e n 

o b t a i n e d , a l t h o u g h c a r e h a s t o b e e x e r c i s e d i n s e l e c t i n g t h e r e s i s t a n c e s w h i c h 

d e t e r m i n e t h e g i x o f t h e i n d i v i d u a l c i r c u l a t o r s . 

A n o t h e r i n t e r e s t i n g a s p e c t o f t h i s c o n f i g u r a t i o n i s t h e p r o s p e c t o f p r o d u c i n g 

a b a l a n c e d c i r c u l a t o r f r o m t w o u n b a l a n c e d o n e s . T h e m a t r i x o f a b a l a n c e d 

c i r c u l a t o r i s s k e w - s y m m e t r i c w i t h i d e n t i c a l e n t r i e s ; i f , h o w e v e r , t h e c i r c u l a t o r 

i s u n b a l a n c e d b u t s t i l l r e c i p r o c a l b e t w e e n t h e p o r t s , t h e m a t r i x r e m a i n s s k e w -

s y m m e t r i c b u t t h e e n t r i e s a r e n o t e q u a l . A s e c o n d c i r c u l a t o r m a y b e u s e d i n 

t h e a b o v e c o n n e c t i o n t o e n s u r e i d e n t i c a l c o n d u c t a n c e s a t . a n d b e t w e e n , a l l t h e 

p o r t s . 

«V = 5 , ' = . C r — V / _ r 
-11 — ° 1 1 — ° 2 1 . = , v = ° 

~ 0 I - 1 . . - r " 0 -

- 1 0 1 . . I 1 

9'tCll 1 - 1 0 . . . - I - 1 

1 - 1 1 . . 0 - 1 

2.2. Two circulators in parallel, one of negative sequence, and ] -port overlap 

T h e s i g n i f i c a n c e o f t h i s c o n n e c t i o n i s d e m o n s t r a t e d s i m p l y u s i n g t h i r d -

o r d e r c i r c u l a t o r s : 
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n = 2, iny = '.i, »1=\. n.,= \. •)))., = %, K n = I. K.,l = J. 

•V = ' * i i ' = °- -SV : "• S.J=\. .SoL' = 0. S.2l

r=\ 

' v . = './••• i 

- 1 
I 

( I 

I f 9ccn ~(J^n = a n t * capacitors are connected across ports 2. 3 as indicated 
in the figure, the admittance matrix becomes 

0 - 9 c 0 

~9r 0 f'r 
9c 0 sC2 -<Jr 
0 9c 0 

Eliminating nodes 2. 3 from this matrix by pivotal condensation reveals a 
floating inductor between nodes 1, 4, and hence a method for producing an 
ungrounded inductor from two grounded capacitances. 

O 
I 

a a 

•c, sc 2 

• f w r ^ — o 
4 

Realization of a floating inductance from two grounded capacitances. 

3. Conclusions 

There are many possible configurations which remain to be investigated, 
the few shown here demonstrate interesting effects which result from inter
connected circulators. One higher order combination examined has the 
parameters : 

H = 2 , H , = 1. /»j = -t. )(., = 1. / » 2 = 3, K.n = I. ocu= + \, a 2 1 = + l . 

K u = { \ , 1, - l , , v = .s' n' = ,sv = s 2 ' = o, s 2 1 ' = o, v = i -

This circuit demonstrates an improved circulation conductance for one section 
of the resultant circulator. I t may be of use in higher-order circulator filter 
networks. With the higher-order configurations attention to the phase 
relation matrices is necessary to maintain stability. 
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Symbolic Analysis for Computer-Aided 
Circuit Design—The Interpol at ive Approach 

J . K . F I D L E R A N D J . I . S E W E L L 

Abstract—Symbolic analysis using direct matrix and interpolation-
formula methods are discussed. The techniques accommodate passive 
networks and active networks containing general frequency-dependent 
devices, themselves represented by rational-function matrices. Subse
quently, this leads to the development of partitioned analysis. The 
suppression of numeric common factors and the determination of the 
order of complexity of the network are synonymous problems, and 
simple algorithmic solutions emerge. Simple rules for the choice of 
sample points leading to accurate analysis are given. Implementation 
yields a very fast computer-analysis method capable of accuracies com
parable with other current techniques. 

I N T R O D U C T I O N 

TH E I N C R E A S E D application of the computer in design
ing electrical networks has emphasized the need for 

efficient analysis programs which are particularly useful in 
iterative synthesis. In this area of work, symbolic analysis, in 
which the network functions are obtained as functions of s, 
the complex frequency variable, with either literal or numeric 
coefficients, becomes quite attractive. 

The traditional approach to symbolic network analysis using 
topological techniques has the inevitable time-consuming tree-
generation problem for nontrivial networks. The straight
forward manipulation of polynomial matrices is also unsatis
factory due to the generation of common factors [1], [2], 
although progress has been made in suppressing these [3] , [4] . 
Eigenvalue techniques [5] also offer much promise in ihis 
area. Interpolative symbolic analysis, originally proposed for 
passive networks [1] , [6J, [7] , presents an alternative ap
proach. This technique involves the determination of the co
efficients of the describing polynomials by subjecting the net
work to random excitations v/hich lead to either the inversion 
of a purely numeric matrix or the evaluation of an interpola
tion formula. The computer implementation provides a very 
fast analysis. 

In the analysis of real active networks, device modeling 
presents a complex problem. However, provided the device 
can be regarded as linear, a matrix can always be made to fit 
the device characteristics, although in general this matrix will 
contain symbolic rational-function entries. 

F O R M U L A T I O N O F S Y N T H E T I C A N A L Y S I S 

The general network to be considered contains resistors, 
capacitors, inductors, and general active devices. A general 

Manuscript received February 21, 1973; revised May 15, 1973. 
J . K. Fidlcr is with the Department of Electrical Engineering Science, 
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J . 1. Scwcll is with the Department of Electronic Engineering, Uni

versity of Hull, Hull, Yorks., England. 

active element is one which may have any degree of frequency 
dependence and can itself only be described by a symbolic 
rational-function matrix. An entry of the nodal admittance 
matrix Y will have the form 

.v !•/(*) = 
<*//(*)' 

Suppression of the internal nodes will yield a terminal matrix 
Y r with entries 

'dm 
where r signifies a reduced matrix. The problem then is to de
termine the coefficients of these polynomials. 

A fundamental theorem of algebra states that a polynomial 
of mth degree is uniquely defined by the value at m + 1 values 
of its argument. Thus if a network matrix determinant or co-
factor is evaluated at m + 1 frequencies, the resultant de
terminant values completely define the corresponding mth-
degree network-function polynomial. If a sample value kp 

(complex) is substituted for s in Y, y j j ( k p ) will have a finite 
complex value and application of pivotal condensation to this 
matrix will reduce it to an appropriate size Y r ( k p ) evaluated at 
kp. This process is repeated for m + 1 frequencies s = k p , 
p = 0 • • • m, where m is the maximum order of the poly
nomials in the final reduced matrix. 

I f F ( s ) = a m i m + a m _ , s m ~ 1 +• • • + a , s + a 0 , t h e n 

[K][A]=[A] (1) 

where [A] is a vector of functional values, [A] is a vector of 
the required coefficients, and [K] is the (m + 1) X (m + 1) 
Vandermonde matrix of sample points. 

By exploiting the standard form of the Vandermonde 
matrix, a solution for the coefficient vector may be obtained 
directly from 

Ml - [ A T ] - ' [ A ] . (2) 

An algorithm by Traub [8] has been used for the inversion 
of [K] and it provides a fast and, for samples within certain 
bounds, accurate solution. The numerators and denominators 
of the rational functions of the reduced matrix are assembled 
by repeating this process. 

The main advantage which accrues from such a strategy is 
that once [K] has been inverted, it may be used for a variety 
of analyses, providing the sample frequencies chosen remain 
the same. A second point is that the accuracy of the inverse 
matrix can be improved subsequently at will. By using an 



F I D L E R AND S E W E L L : A N A L Y S I S FOR COMPUTER-AIDED DESIGN 739 

iterative technique [9] for a small number of cycles (not more 
than 6), improvements of 3-4 orders of magnitude in the error 
of the inverse, for matrices of up to order 30, have been 
achieved. The only drawback is the increase in time required 
for this extra process, the overall analysis time being more 
than doubled. 

A second method can be derived by manipulation of (1) to 
give the Lagrange interpolation formula [10]: 

F(s) •t{ A(*,) n 
( = 0 
i*r 

( S-fe, 

I " (3) 

For ease of computation in either (2) or (3) it would seem 
reasonable to assign real values to the sample frequencies kh 

and hence, only real arithmetic is requirec' throughout. Several 
workers have adopted this latter approach [7] , but it has been 
the experience of the present authors that while, in some cases, 
satisfactory results may be obtained, there are situations where 
the error introduced into the coefficients becomes significant 
to the extent that in certain examples the results are totally 
meaningless. The error incurred is found to be quite sensitive 
to the locations of the sample frequencies on the real axis. 
This may be shown as follows: 

Let 

A ( k i ) = A ( f c 0 ) + e , , e 0 = 0 

where the quantities e f indicate the difference between the 
ith determinant value A(fc,) and a reference value, arbitrarily 
assigned to A (£,>). 

Equation (3) now becomes 

m f S . T U - ki) 11 m 

= 0 

{ - h i m -

(m - I )/2 
F(s) = £ 

r=0 

(s + O , ) 

n 
( = 0 

S J + 2(7, J + of + U)f V 

(a , + Oj)7 - u)} + CJ/ + /2co r (a r t a,j J 
(S) 

In the case of imaginary samples which have particular relevance 
in frequency-selective networks, further simplification is possi
ble, giving, for m odd, 

F(s) 

The first term on the right-hand side of (4) expresses the 
interpolation of a constant function, and therefore must con
tribute to the a 0 coefficient. The remaining coefficients a, are 
thus solely determined by the second term in (4). The indica
tion is therefore that the coefficients a, rely mainly on the 
differences between determinant values e,-, and if these differ
ences are of the same order as the roundoff error incurred in 
the determinant computation, gross coefficient error will 
ensue. The sample frequencies should therefore be chosen at 
the points where the network function is undergoing change, 
that is, in active areas of the j-plane. 

In the general case, the computation of (2) or (3) for com
plex samples may seem somewhat daunting; however, if the 
samples are chosen in as many complex-conjugate pairs as 
possible, the property of network functions that A ( s ) = A(s) 
may be recognized, the bar denoting complex conjugate. Thus 
the number of determinant evaluations will be reduced, re
quiring \(m + 1) for m odd and ({ml2) + 1) for m even. 
Taking m as odd, (3) becomes 

^ ( m - O f f 

r=0 L I 
[A(M.)1 + - / m [ A ( M 

1 J(m-i) 

>)i n 

l (w?-^) j j - (6) 

An equation for n even may be derived, but it is computa
tionally more cumbersome. In practice, (6) is used for both m 
odd and even, in the latter case selecting the next highest (odd) 
integer for m. Although this overspecifies the interpolation, it 
is easily shown that the required number of determinant 
evaluations is not increased. 

It will be noted that the only complex arithmetic required 
in (6) is that involved in the computation of the quantities 
A ( / C J / ) . This is just the type of computation made in the more 
conventional discrete frequency analysis, and so techniques 
used in maintaining high accuracy in such calculations may be 
employed here. Since the limits in the summations and 
products of (6) have been roughly halved, error propagation 
will be further reduced. 

It has been pointed out [11] that a similar reduction process 
can be derived for the direct inversion approach. If F( s ) is 
evaluated at sample value +fy giving Ay and at -kj giving Aj, 
adding and subtracting the polynomial equations yields 

« ( » « 
A) + A / _ Km-0/21 

L 
1=0 

2k, / = 0 

(7) 

(8) 

Taking m + 1 distinct samples, (7) and (8) become 

[Z<'>] = [K^][A^] 

[ Z ™ ] = [A: ( J ) ] [A&] 

where [A^] and [A^] ate column vectors of even and odd 
coefficients, respectively, and [AT^] and [ K ( 2 ) ] are Vander-
monde matrices of samples. 

"/hen m is odd, [Af*1'] = [K^\, and when m is even, this 
identity can be assured by increasing m by unity. Hence, 

[AM] = [*<«>]- ' [ZW] 

[ A m ] = [*•<'>]-'[Z<2>]. 

The Vandermonde matrix is approximately half the size 
((m + l)/2, m odd; (ml2) + l ,m even) of thai required in (2), 
and again, only one inversion is required. If imaginary samples 
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are used, A(-/co) = AO'CJ), then [ Z ( 1 ) ] and can be 
formed with half the number of determinant evaluations. 

As the samples in [K^1^] are now either all positive or nega
tive, this contravenes the rules for maximum accuracy as 
described later, although halving the order does improve the 
accuracy. 

E V A L U A T I O N O F S A M P L E D R E S P O N S E S A N D O R D E R 

O F C O M P L E X I T Y 

In the work on passive networks [1], [6] , [7] the nodal 
matrix was considered as a polynomial matrix. Now, however, 
a general element of Y(s) consists of a numerator and de
nominator polynomial which independently contribute to 
n'ij{s) and df/(s); hence, it is necessary to retain the individual 
numeric values i / / (fc p ) and for the same reason. If 

straightforward reduction is now used to determine A ( f c p ) , 
then difficulties will arise due to the buildup of numeric com
mon factors. It is obvious that these common factors occur 
for the same reasons as the algebraic ones in the inversion of 
matrices in symbolic analysis [4] , and an adaptation of the 
factor suppression techniques used in that work is appropri
ate here. 

A new term at any stage in a pivotal condensation process 
is given by 

, _nijnkkdikdkj ~ n,knkjd,jdkk d k k 

y'' d t j d k k d l k d k l n k k 

where k is the pivot node. Now d k k cancels; hence, 

n'ij = n,jnkkdik d k j - n t k n k j d i j d k k d'y = d j j d , k d k ) n k k . 

A further stage of reduction gives 

= n'ijn'k-l,k-\d't,k-\d'k-\,j- "'<,*-I - i , It-1 
dli^d'l/dlic-td'it-t, »_|. 

Forming the quotient y"j = ""//d/" reveals a considerable can
cellation of terms. First, a change in subscript k to k + 1 and 
k - 1 to k aids computer formulation; if y k k is the current 
pivot, then 

1) the pivotal denominator d k k always cancels; 

2) the previous pivotal numerator/ijt+i,it-n cancels; 
3) the terms d f k t i , £ /*+I, /»^*+i ,t> a n d d k k+i cancel. 

This leads to the following reduction algorithm: 

n'a = ( n , j n k k d i k d k j - n l k n k j d l j d k k ) l ( n k + l i k t l d r ) 

d'ij = d l i d i k d k j / d r 

where 

dr - dit k * i d k + , _ / dk », _ k d k i k • i. 

The nodes are usually ordered such that the suppression 
process selects the largest value of k for the first pivot. Then 
the initial conditions are = 1 and operations involving 
dr do not take place. After the final step of reduction, it is 
necessary to multiply the denominators by nk m i n k m i n , as 
the n k k factor in the formation of d'y has been suppressed in 

anticipation of cancellation at the next stage, which of course 
does not occur. 

Obviously, numeric common factors in themselves do not 
lead to problems as severe as those arising from algebraic ones, 
but they are directly related to the latter in connection with 
the calculation of the polynomial order, which must be 
evaluated precisely. In the absence of a satisfactory method 
for calculating the order of complexity of networks containing 
complex (rational-function) active devices, an algorithm has 
been developed to determine m from the known orders of the 
polynomial in the nodal matrix. The basic order of the poly
nomials in the data is stored in an integer array of equivalent 
dimensions to the nodal rational-function array. At each stage 
of the pivotal reduction, simple manipulation of the integer 
array will yield the order of the required polynomials. 

P R O G R A M O P E R A T I O N 

Programs utilizing both approaches have been written and 
used on an I C L 1905 E and a PDP-10 in both batch process 
and conversational modes. Considerable experience has been 
gained in the analysis of both active and passive networks 
using these techniques. Polynomials, with wide-ranging co
efficients, of order up to 39 are currently being generated with 
coefficients accurate to at least 4 significant figures. To com
pute the complete 2 X 2 admittance matrix in rational form 
for a fourth-order active multiloop circuit takes 3 s and a 
seventh-order passive elliptic filter (8 = 60° ) takes 7 s with a 
loss of only 1 significant figure. A better than 50-percent im
provement in time over the conventional techniques was ob
tained in the analysis of a network yielding a third/fourth-order 
rational transfer function when evaluated at only 8 frequency 
points. 

The accuracy of the results is controlled to a large extent by 
the choice of samples. The conjugate pair /co-axis interpola
tion formula has been found to be relatively insensitive to this 
choice owing to the reduced computational effort required. 
In some cases it has been found that samples distributed 
evenly over both sides of the real or imaginary axis yield 
optimum results. This may be a good default choice when 
more specific information is not available concerning the ap
proximate behavior of the circuit undergoing analysis. 

In the matrix implementation, the sample-point selection 
controls the accuracy of inversion of the Vandermonde matrix. 
In Traub's method [8] the samples are always considered as 
symmetrical, and practice has shown that for both real and 
imaginary samples this criterion is again required. It has been 
found that as the order of the functions increases, the need to 
choose sensible sample points increases too. 

P A R T I T I O N E D A N A L Y S I S 

In the iterative synthesis situation there may be sections of 
the network whose parameters are constant throughout the 
optimization routine, and therefore it seems redundant to re
peat the analysis of these sections at each step of iteration. 
Decomposing the networks into sections provides a solution 
to this and to the problem of large networks beyond the scope 
of a medium-sized computer. Another problem is that active 
devices quite often have large-gain parameters which in 
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straightforward reduction cause numerical overflow after a 

number of steps. A solution is provided by appropriate choice 

of subnetworks ensuring suitable embedding for the active 

elements. A similar reason for choosing a partition to improve 

the analysis occurs when the network has widely ranging 

element values. 

This symbolic analysis method can be adapted for parti

tioned analysis', as the results of one analysis are in rational-

function form, these may be used as data for further analyses. 

The procedure is to suppress all the internal nodes in each 

section using the methods outlined; the resultant rational 

matrices are then summed and the final nodes eliminated. 

There is a limit to the number of partitions for optimum 

analysis, as there is obviously a point beyond which more 

effort is being expended in separating and recombining the 

network than in actual analysis. Networks having less than 

six nodes require more time for partitioned analysis. Studies 

indicate that an optimum also occurs when each partition con

tains approximately the same number of nodes. With some 

simple networks such as RC ladders with 20 nodes, experi

ments indicate up to 85-percent improvement in analysis 

time. Further, this technique allows a different choice of 

samples for each partition. Hence, one section can be analyzed 

using complex samples, another using an imaginary set, and 

yet another with a real set. 
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Letters to the Editor 

A Note on the Computation of Large-Change Sensitivities 

TOM DOWNS 

Abstract- A method of efficiently computing large-change sensitivities 
is described. The approach is more general than an existing method in 
that it is directly applicable to several network functions. 

One measure of derivative sensitivity for a network function F with 
respect to a network element e is given by the following: 

e&F 

~F~Ze' (1) 

First-derivative sensitivity is usually useful as a guide only in cases 
where very small changes in element values are made. For larger 
changes, we may define the finite-change sensitivity function 
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j F _ eAF 

' ~ F&e 
(2) 

where AF is the change in F resulting from a finite change Ae in e. 
It was shown recently [ 1) that if F is represented by the ratio N/D, 

&F = §e m 

where D' is the derivative of D with respect to e. 
Equation (3) may be used to provide simple methods fur the evalua

tion of the change A f in the network function F due to a finite change 
Ae I.; the network element e. 

In [ 2 ] , a method of computing the change in a response voltage due 
to a finite change in a network element was described. The network 
was current driven, and therefore the function of interest was transfer 
impedance. For a single input current flowing from the reference node 
into node k, the voltage at node m is given by 

mk ' 

where A is the determinant of the nodal admittance matrix and A » m is 
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1 2 3 4 

F, • 63 .94 KHZ 
(67 391 

• M E A S U R E D 
I I P R E O I C T E D 

F, -34 34 KHZ 
(36.43) 

• IN PHASE 
- OUT OF PHASE 

F s -25.97 KHZ 
(25.74) 

F„-22.14 KHZ 
121.89) 

1 2 3 4 

S E C T I O N NUMBER 

Fig. 2. Modes of a four-section ladder oscillator. 

is substituted into (1). We avoid these cases, and at the same 
time satisfy (6) by choosing N such that N + 1 is a prime 
number. 

These results were verified by constructing a ladder oscillator 

with C = 1000 p F , L = 14.6 m H , and using operational 
amplifiers and diodes to approximate J(v,). F o r N = 4, the 
individually observed standing wave patterns and mode fre
quencies, as shown in Fig. 2, were in close agreement with 
theoretical values obtained from (3), (4), and (7). A l l standing 
wave modes were observed for ;V = 1, 2, 4, and 6, i.e., for 
N + 1 a prime number, but not for TV = 3, 5, 7, and 8. 

The ladder oscillator presented here differs from other 
multimode oscillators [8], [9] in that its mode of oscillation can 
be ascertained from the relative phase of the node voltages 
without measuring the frequency. T h e oscillator has also been 
realized as an active RC circuit by replacing the inductors with 
gyrators and capacitors [10]. 
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Correction lo "Symbolic Analysis for Computer-Aided Circuit Design—The Interpolative Approach" 

J . K . F I D L E R AND J . I . S E W E L L 

In the above paper, 1 on p. 739, (5) should be replaced with 

( Im [&(k,)] R e [Pr] - I m [Pr] R e [ A ( M ] ) f r - o,) + (Re [ A ( M ] R e [Pr] + Im [ A « r f ) ] I m [Pr])a>A 

w r ( R e 2 [Pr] + I m 2 [/>,]) j 

( m - l ) / 2 

r = 0 

<"-J>/2 1 
. [ I (* 2 - l",* + 0>,J) (5) 

1 = 0 J 
l*r 

where 

i = 0 

and in (6) on the same page the minus sign between (s2 - cu, 2) should be plus, such that the last bracket of that expression reads 

(i 2 + rVVU-V - cor

2). 

Manuscript received January 16, 1974. 
' J. K. Fidler and J. I. Sewell, IEEE Trans. Circuit Theory, vol. CT-20, pp. 738-741, Nov. 1973. 
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A„-2.1 = d„i2 + / 7 „ _ j / i „ _ , i 3 + H„.2A„-U2 

*u = ^ 3 , n - i + M 2 „ + Hi<*i,«-v (24) 

The general form for (24) is 

j = n - \,n - 2,• • - , I , A- = 2,3,-• -,n + 1 - j. (25) 

Equations (21), (22), and (25) are used to obtain the 
continued fraction inversion. 

V . C O N C L U S I O N 

Two general formulas have been derived for the continued 
fraction expansion and inversion of the Cauer third form. 
The algorithms established are the generalized Routh 
algorithm and these formulas are most appropriate to 
digital computer programs. 
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Symbolic Analysis of Networks by Partitioned 
Polynomial Interpolation 

C . F R I D A S A N D J . I . S E W E L L 

Abstract—A method Is given for Improving the accuracy of the 
coefficients of network polynomials of high order produced by symbolic 
analysis on a computer, By partitioning the polynomials into sets of 
coefficients the order of the individual matrices involved is reduced and 
so is the error when these are inverted. The problem is reduced to the 
Inversion of only two Vandermonde matrices. Considerable increases in 
accuracy arc demonstrated. 

I N T R O D U C T I O N 

A T T H E present time there is considerable interest in 
symbolic analysis which generally implies the 

analysis of networks by computer to yield the characteriza
tion of the network functions as rational functions of the 
frequency variable s with numeric coefficients. Techniques 
evolved so far fall into the groups of topological, eigenvalue 
[1], matrix inversion [2], and interpolative methods 
[3], [4] . It is also possible to generate polynomials with 
literal coefficients and an efficient method for semiliteral 
analysis has recently been announced [5]. 

As the complexity of the network increases, so do the 
orders of the resultant polynomials, and the problem of 
coefficient accuracy arises. In fact, although the polynomial 

Manuscript received May 18, 1973. 
The authors arc with the Department of Electronic Engineering, 

University of Hull, Hull HU6 7 R X , England. 

orders may be correct, gross coefficient errors are not 
uncommon when the system order exceeds fifteen. 

One method which has been successfully applied to the 
analysis of high-order systems is to partition the network 
[6] , and the results show improvement in accuracy and 
speed of analysis. 

The technique to be described now involves polynomial 
partitioning in an attempt to increase accuracy and speed of 
symbolic analysis on a computer. 

P O L Y N O M I A L I N T E R P O L A T I O N A N D P A R T I T I O N S 

Following the interpolative approach [4] and considering 
any required polynomial 

f(s) = a0 + a{s + o 2 i J + • • • + a ^ T 

subjecting the network to m + 1 samples of the variable 
(complex) will enable the coefficients a; to be determined 

from 
F = a A (1) 

where A is the column vector of coefficients, F the column 
vector of sampled responses, and a the [m + 1) x (w + 1) 
Vandermonde matrix of samples. A may be found by 
direct inversion or interpolation formulas. In direct 
inversion, error in the determination of A comes from two 
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sources; first the evaluation of elements of F the control of 
which is discussed elsewhere, and second in the formation 
of a'1. There are numerous methods [7] which exploit the 
special form o r the Vandermonde matrix to produce good 
inversion techniques; however, there is generally a tradeoff 
between speed and accuracy. It is apparent that as order 
increases, then both of these parameters suffer. It is also 
possible to improve the accuracy of the inverse using an 
iterative method [4], but again there is a penalty on speed. 

Consider the system equation divided into p parts of 
equal order h = (m + l)/p such that h < 15. If h is not 
integer, add unity to the order, this only has the effect of 
producing a zero leading coefficient. Then for part q, (1) 
yields 

As,) 

T 
1 5 I + 1 

.1 S l + 6 - l SUh-l 

(2) 

The sample matrix is not square since all the coefficients can 
only be determinea with all the samples. However, on 
partitioning the coefficients into sets containing h each, (2) 
becomes 

m 

. / ( S f + * - l ) . 

T 
1 

s,1 s l " Co 

S | + l 
A - I 

3 I + 1 a\ 

S t + A - 1 S f + A - 1 3 ( + A - 1 . . " A - I 

s i 
5 ( + 1 

C A + 1 

J l + 1 
s l + 1 

J i + 2 
s i 
,.(1 + 2 

4 ( + 1 

- 2 A - 1 n 
sl 
R 2 A - 1 

s i + 1 

* 
l + A - I 

R A+'l 
5 i + A - 1 

3 1 + A -
-.2A- 1 

s i + A - l _ 

S ( p - I ) A J ( P - 1 ) * + 1 s ( p - l ) * + 2 

JP- 1)*+ I 
J i + 1 

. ( p - l ) A ( p - l ) A - n 
L J i + A - l J i + A - 1 

a ( p - l ) A 
3 ( | > - 1 ) A + 1 

_ ( ( . - l ) A + 2 
* l + 1 

( p - l ) A + 2 
4 i + A - I 

which can be rewritten as 

F , = a,A0 + D q \ A l + • • • + C r ' ^ r i 

where 

Z) , ' = d iag 

crc Vandermonde matrix of samples s : , s U i t - • •,s,+h-l 

Ak column vector of coefficients ak,ak + i,- • •,ak + l l - l 

Fq column vector of sampled responses f(s^)yf{si+,), 

" • . / " ( • S l + A - l ) -

Hence for q = • -,p — 1 and i = qh + 1,1 = 0,1,- • •, 
/( — 1,(1) becomes 

V . J 
D0

la0 

o r 1 * , 

A0 

v . . 

(3) 

To solve for the coefficients a general matrix inversion 
routine would be required. However, if Dq = bqI, t being 
the unit matrix and bq some complex constant, then (3) 
becomes 

F = £ C 4 (4) 

where Z — diag (a0,ai,-• ',ap-i) and C is a modified 
Vandermonde matrix. The problem is the selection of 
samples such that (4) is invertiblc in a Vandcrmonde sense. 
Now the general element of Dq is sr

ih; hence j r * * = bq; 
take the Ath positive root as j , * = b^1". Therefore 
sr = ft,1 V 2 " " * \ r = 0,1,- • •, h - 1. One obvious solution 
is to locate these samples on a circle of radius giving 
6, = p , V * « \ where p, is the radius used for the set of 
coefficients q and c/>, is some initial angle for that same set. 
This yields a threefold choice in the method for determining 
bqVq; the radius can be changed between coefficicrt sets, 
with <pq constant, the initial set angle can be changed with 
pq constant, and a mixture of these two can be used. 
Therefore a general entry of C is D,k = p,*V ; *«""/, and it 
is possible to compute A from A = C~iZ~1F using 
Vandermonde matrix inversion only, as I - 1 = diag 
(o-0~ >,al • • ,a~l j) and a, is Vandermonde too. 

A still further improvement can be achieved. If the 
change in bq is simple, then as the samples of a0 are 
J-,*!, 1 • V A - I those of o, can be kqs0,kqsl,- • • fi^^t or 
a , = c0Kq where Kq = diag (\,kq,kq

2,-• • ,*$"'), k, being a 
complex quantity. T h u s c , " 1 = A - , " 1 ^ " 1 a n d £ " ' can be 
obtained by inverting only one Vandcrmonde matrix. 

This method has removed some degree of arbitrariness 
concerning the sample locations in the complex plane. 
Certain further constraints govern the choice of circular 
sample locations. Time savings can be made in computing 
the sampled responses svhen conjugate samples are used, 
and with pq = constant V, this property can only be 
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Fig. 1. Coefficient error distribution for a 29th-order polynomial. 

realized when = 0, which is restricted to one set of 
coefficients. On the other hand when = OV? and p, is 
varied, then this property is true in each set. However, as 
is shown later, there is not complete liberty in varying pq. 
Some compromise is obviously true for the variable pq and 

situation. 

P R O G R A M A P P L I C A T I O N 

The technique can be used in the analysis of all the 
networks to which the interpolative approach has been 
applied, that is, passive networks and active ones containing 
general active devices with any order of frequency depen
dence. To investigate the accuracy of the method a 29th-
order RC ladder was analyzed and the coefficients of one of 
the polynomials compared vvith those produced by a 
continuant method which can be assumed to produce 
maximum accuracy for such a network. With constant 
and variable, Fig. 1 shows the coefficient error for 
complete analysis with different sample radii. With a 
relatively large radius large error occurs in the lower 
coefficients and the opposite is true for a small radius. 
Unity radius yields the medium-order coefficients to 
maximum accuracy. The coefficient errors for the straight
forward matrix inversion with real samples is also shown 
for comparison. An improvement is obtained when one 

T A B L E I 
COMPARATIVE COMPUTER PROGRAM REQUIREMENTS 

KETVORX PARAMETER LINEAR 
S«<PLES 

CIRCULAR SAMPLES 
WITH PARTITION 

30-N0DE TIME (SECS. ) 39 TO 30-N0DE 

STORE (WORDS) 2 I K 

llO-HODE TIME (SECS. ) 7 2 1 13 llO-HODE 

STORE (WORDS) 27K 2 2 K 

complete analysis is computed with p, = 1 + 5 (<5 « 1) 
and one with p, = 1 — <5, each contributing a set of 
coefficients with maximum accuracy. Useful results have 
been obtained with <j>q constant and p, variable, but it is 
obvious that for maximum accuracy p, can only be varied 
over a limited range of values. 

Table I shows relative time and storage requirements on 
an I C L 1905E. The linear samples correspond to samples on 
the real axis for the straightforward Vandermonde matrix 
inversion; computation time is for the complete 2 x 2Y 
matrix. The trend of the graphs of Fig. 1 is applicable in 
these examples. 

When the circular sample points are used, computation 
time is increased mainly because of the complex arithmetic. 
The main conclusion is that polynomial partitioning does 
improve the coefficient accuracy very significantly and also 
has the effect of reducing the storage requirement, but with 
some penalty in speed. 

I f polynomial partitioning is coupled with network 
partitioning it appears that the time and accuracy bounds 
for high-order networks can be successfully overcome. 

R E F E R E N C E S 

[1] I . Kaufman, "On poles and zeros of linear systems," IEEE Trans. 
Circuit Theory, vol. CT-20, pp. 93-101, Mar. 1973. 

[2] T. Downs, "Inversion of the nodal admittance matrix for active 
networks in symbolic form," Electron. Lett., vol. 6, pp. 690-691, 
Oct. 1970. 

[3] C . F . Kurth, "A simple calculation of the determinant polynomial 
of general networks," IEEE Trans. Circuit Theory (Corresp.), 
vol. CT-14, pp. 234-235, June 1967. 

(4) J . K . Fidlcr and J . I . Sewell, "Symbolic analysis for computer aided 
circuit design.—the interpolative approach," IEEE Trans. Circuit 
Theory, vol. CT-20, pp. 738-741, Nov. 1973. 

[5] G . E . Aldcrson and P. M. Lin, "Computer generation of symbolic 
network functions—A new theory and implementation," IEEE 
Trans. Circuit Theory, vol. CT-20, pp. 48-56, Jan. 1973. 

[6] J . I. Sewell and C . Fridas, "General synthetic analysis of active 
networks," in Proc. 2nd Internal. Sytnp. on Network Theory, 
Herceg-Novi, Yugoslavia, July 1972, pp. 61-69. 

[7] J . F . Traub, "Associated polynomials and uniform methods for the 
solution of linear problems," SI AM Rev., vol. 8, pp. 277-301, 
July 1966. 



3 1 6 

PAPER 19 



Network partition methods for use in symbolic 
analysis by interpolation 

C. P H R Y D A S and J . I. S E W E L L 
(Department of Electronic Engineering, University of Hull, Hull, HV6 7RX, England) 

Symbolic analysis of networks of high order and complexity is not a straightforward process. The problems encountered 
are usually enormous demands for computer storage and time together with inaccurate results. A number of methods 
are presented which can drastically reduce the computer requirements and in some cases keep the computational error 
to a minimum. The principle of the methods is to partition the networks into a number of parts, and techniques of 
division and recombination ure developed. 

(Received in revised form on 19th January 1976) 

In recent years a variety of techniques for the symbolic 
analysis of networks have been developed. These generally 
fall into the categories, topological, eigenvalue 1, matrix in
version 2 , state space 3 and interpolative 4 . T h e analysis has 
been extended to produce polynomials with completely 
l i teral s , semi-litera) s and numerical coefficients in both pas
sive and active networks. More recently 6 , requirements in 
tolerance, statistical, and stability analysis have demanded 
the production of the whole inverse matrix. This is a more 
difficult problem to tackle generally, and the difficulties 
encountered with the symbolic analysis of large networks 
are sufficient to justify restricted attention to their solu
tion alone although partition methods are of value in the 
above analysis areas. Any form of symbolic analysis will 
require more computer time than straightforward numeri
cal methods, hence speed is a vital concern. 

As the order of the network is increased, inevitable prob
lems with the computer requirements for speed and stor
age are encountered. The computation error apparent in 
the results also gives considerable cause for concern. Some 
techniques have been developed which do improve the per
formance for higher order networks and these include par
titioned polynomial interpolation 1 and use of the Fast 
Fourier Trans form 8 . However, with large increase in net
work complexity, these difficulties still increase in severity 
and sparse matrix methods and network partition techni
q u e s 1 0 provide ways of tackling the problem. 

The principle and advantages of partitioning large net
works is not new and has been amply explored in frequency 
and time domain analysis since the early days of K r o n . Nol 
only can large networks be considered, but, especially in 
the case of electronic circuits such as integrated amplifiers 
in which many sections are duplicated, the symbolic solu
tion of these circuiis can be stored and called as required. 
Many networks are ill-conditioned, and by partitioning and 
suitable normalization, various difficult sections with dras
tic component difference from the norm can be accommo
dated. T h e application to symbolic analysis is not as 
straightforward as initially anticipated' because of the 
interruption of common factor suppression mechanisms 4 . 
However, the improvements due to partitioning can 
amount to 90% increases in speed for some networks and 

it would therefore seem necessary to overcome the effects 
which impede true partitioning in symbolic work. 

One solution to the elimination of common factors on 
partition uses an artificial loading technique 1 0 . The methods 
outlined now obviate the need for any artificial elements. 

NETWORK PARTITION 

In Figure 1 let N represenr a network with a nodal admit
tance matrix Y ; rhe sets 5, /, E containing all internal and 
external nodes respectively, hence S = I U E. The nodes 
are numbered in such a way so that if X, £ E, and /ly £ / , 
then A, < uy V i, j. Dividing N into d parts in an arbitrary 
way, Nj, i = 1,2, • • •, d, then the setsS, , /,', £ , may be de
fined as for N. Clearly, 5,- C S, / , C / and £,• C / , V i . 

Let C;y be a set defining the common nodes between 
N j , Nji thus Cjj = E , n Ej. Define n, u, € as the total num
ber of elements in S, I, E respectively, and similarly u, , 
e, for S{, /,, £;. 

A straightforward analysis of N can be achieved as indi
cated previously". A n improved condensation formula for 
evaluating the sampled responses is: 

"I; = ( ' U j ' ^ k ^ k j ~ d°4k"ik"kjV"k*lJ<+\ 

n n n . 

<rda (n n<& <» 

where d^ is the denominator of rhe gh entry of the nodal 
admittance matrix, 

k = ii , n - 1, H - 2, • • • , e + 1 and i, / = 1, 2, • • • , k — 1 

T h e terms n'ijld,j and 'hj/djj are the new and old numera
tor and denominator, entries of the admittance matrix. The 
pivotal condensation formula needs to be applied w — e + 1 
times and the reduction procedure to be repeated for every 
sample point (a value of the complex frequency). Sparse 
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Nodes, f 

/ Active network,N 

Nooes 

FIGURE 1. General network N 

matrix methods and optimal ordering of pivots can be used 
at this stage to improve the accuracy. 

When analysing a necwork by partition the network may 
be divided into an arbitrary number of parts, but for sim
plicity a two part division, Figure 2, is considered. Let NA, 
Ng be the two subnetworks and y^.yfj be the general en
tries of the nodal admittance matrices and Yg respec
tively. 

Thus, if yij is the general entry of Y, then 

Similarly, the following relations are valid: 

(a) y f j = 0 Viand i S ( S B - C A B ) with i^j 

(b) y f j = 0 V/'and i € (SA - C A B ) with i « / 

( c ) y f j , y f j m a v t a ^ e a n v values for {/, ; } C C A B 

In cases (a) and (b) the entries of Y are formed entirely 
from Ng and N\ respectively, whereas for case (c) both 
subnetworks may contribute. 

Set yjj = njj/djj, then equation (2) becomes 

d- d? ' ij 1/ ij 

n - = rAdB + nBd^ d- = d*dB- (3) 
IJ i] i] IJ t j ' IJ 'J IJ 

The first stage of analysis would be completed when all 
nodes in lg are eliminated. Where 

l B = {», n - 1, n — 2, • • • n — )1B + l } 

Using the entries given by equation (3) in the reduction 
formula gives: 

n- • = {n*dB + d*nB)n d-d • - (d*dB)d n n "IJ y ' i j u t ] " t ] , t ] , ' n n m n j K L ' i j t j ' ' i n ' m nj' 

d' = (d*dB-)d- d -"ij v ij i]' m nj 

But, 

Thus, 

Re arranging equation f3't gives 

1. 2. 
il 

Next, elimination of node n — 1 produces 

"B 

' ij 

u "JL. 
d'.'fi >.!= 1. (4) 

Clearly, for k node eliminations, [n, n — 1, u — I, • • 
n — k -t- 1} C Jg, equation (4) would be of the form 

<J 
'n-k + \,n-k+\ 

( « » - ) 8 

( 4 > S 

; j = I . 2 . - - k 

(5) 

When all the internal nodes of S'B are eliminated, the inter
mediate state of the semi-reduced system has the form: 

Y; = \ A P g * \g (6) 

where Y; is an intermediate admittance matrix, YJj the 
reduced matrix of Yg and pg the last previous pivotal 
numerator, i.e. 

PB = ( » t l * i , n _ * + i ) B -

An important observation is that equation (5) may also be 
produced by analysing NB independently and computing 
PB-

The next stage of analysis may be executed by eliminat
ing the internal nodes IA , which is the set IA = {» — iiB, 
n — tig — 1, • - , n — fig — fiA + 1} . On eliminating the 
kth node \n 1A , >i — fiB — k + 1, the new matrix entries are 
given by: 

, r" B ** l „ k \ A ln"-B\B 

U ) p b + \ t * i i n " z U ^ ) A 

(7) 

•j 

i , 2, , « - Ms " 

On eliminating all the nodes in IA, we have 

A. 

"ij 

(8) 

Nodes , t 

Nodes 

* \ Nodes 
\ 

Nodes 

FIGURE 2. Two part division networks 
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FIGURE 3. General partition structure 

where 

PA ~ ^ ' n - M ^ + l . n - ^ + l ' 

the last pivotal numerator. 
The new intermediate system, derived from equation 

(8), would then be of the form 

Y , = * A P B

+ n p A <9> 

with P = PAPB t n e (dummy) last pivotal numerator, Y ; 
is a new admittance matrix. 

The third and final stage may be concluded by eliminat
ing all the interconnecting nodes, C^g, using the fu l l re
duction formula. On completion the required terminal 
matrix Y r is produced in symbolic form. 

The procedure may be generalized for the multiple par
tition structure as displayed in Figure 3. Assume a d part 
division of N and let /V] be the first subnetwork to be 
selected. With \ j as the first intermediate matrix and 
analysing /V, independently, the following system may be 
constructed 

Y ? = Y W i 2 Y' (10) 

where p ] is the last pivotal numerator of the analysis of N i . 
Rearranging equation (10) gives 

'/= ( v wi2 Y i ) + p i Y 2 ' 
i=3 

Selecting A'2 as the next subnetwork, analysis will yield 

d 

<} = (YWl2 Y , ) P 2 + P l Y 2 
i=3 

Generally, after analysis of the &th part, the system may 
be given by 

k J 

1=1 i=**i 

( i n 

where 

PK = J | p,-and * = 1, 2, • • • , d - 1. 

1=1 

When k - d — 1, the last intermediate matrix is given by 

d 

(12) 

Elimination of all the interconnecting nodes results in Y r . 
Therefore in general, for network partition purposes, a 

network may be described by its symbolic terminal matrix 
and its last pivotal numerator. Once these two parameters 
are known, subnetworks may be considered arbitrarily and 
the analysis procedure yields a solution without the normal 
common factors. 

POL YNOMIAL INTERCONNECTION METHODS 

Double coupling 

The principle of this partition methdd is to select one sub
network, and perform symbolic analysis. Then select a new 
one, analyse this, and combine the two independent solu
tions. The resultant interconnected system may be analysed 
by eliminating all the interconnecting nodes between the 
two parts. The result is the symbolic terminal matrix of the 
network consisting of these two subnetworks. A third part 
is selected and the process is repeated. This iterative method 
may be described by 

H * + i = H i p f c + , + P J K Y S + 1 * = 1 .2 . 

H l = Y L 

, d - l , 

where is the admittance matrix of the kth interconnected 
system, H% is the reduced matrix and p£ the last pivotal 
numerator. 

When k = d - 1. 

Elimination of the interconnecting nodes of Nj would 
generate H£ which is the required solution Y r . 

with P = p\p2 the last (dummy) pivotal numerator. 
Rearranging 

\ j = \ \ p 2 + Y ' 2 p , . p , p , 2 Y i 

Simultaneous coupling 

The difference between this method and the previous one 
is that both the internal nodes of the new part and the 
interconnecting nodes with the current interconnected sys
tem are eliminated in one step instead of in two separate 
ones. 
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Define the admittance matrix of the kih intercon
nected svstem bv 

G f c = G * - l + P k - i 1 k Y,,,A = 1, 2, .d. 

0 , P n = 1, 

where P^ is the last pivotal numerator of the reduced sys
tem Gt . 

If k - 1, then G] = Y | . The first stage of analysis is to 
eliminate all internal nodes of A/j producing the matrix 
G^ and the polynomial p\. Next, with k = 2, G2 = + 
P 1 Y 2 . Elimination of nodes in I2 and the interconnecting 
nodes C j 2 gives G2 and pi- The procedure continues until 
k = d, when the required solution is given by Y r = Grj. 

The network partition method relying on artificial load
i n g 1 0 can be derived from the theory of simultaneous coup
ling. Let Yfc be the contribution of the kth subnetwork to 
that part of the admittance matrix G j which is affected by 
both the previous combined system and the new part. Thus; 

G * - G l _ I + P * _ , ( Y k - Y t + Y t ) 

and 

where 

= G,„ F * - l . and Y t •• Y , - Y ; 

Thus, the admittance F$ of the &th combined system 
may be formed from the current analysis, the last pivotal 
numerator and the augmented matrix Y^. The intercon
necting elements of the kth part determine the form Y^ 
and thus their role is now more significant, so complicating 
the partitioning process. 

THE NUMERICAL IXTERCOXXECTIOX METHOD 

General!)', the analysis of relatively simple networks bv the 
interpolative approach is efficient and quite accurate. But 
for very high orders and ill-conditioned systems the accuracv 
would tend to degrade after the solutions are interconnected. 

Instead, numerical interconnection can be used when the 
terminal matrix Y r wil l be given numerically for every fre
quency point. The results would be more accurate bur 
generally more effort is required and only the frequencv 
domain response can be determined. 

THE SYMBOLIC INTERCONNECTION METHOD 

It is possible to directly express the symbolic terminal 
matrix of a two part interconnected system in terms of the 
two individual solutions and hence substitution will produce 
the general partitioned analysis. 

For simplicity, consider two subnetworks NA, A/ f l with 
only one interconnecting node. Y ^ , Y f l are their terminal 
matrices and pA, pB the last pivotal numerators. If Y f is the 
admittance matrix of the interconnecting system then 

(13) 

with P - pApB as the dummy last pivotal numerator. 
If y f j and y® are the general entries of Y ^ and Y f i , respec

tively, if node 1 is inpur and node 2 output, then 

VUPB 

0 

0 

AIPA 

AIPA 

AIPB 

A\PA 

yriPB +yBuPA 

(14) 

Elimination of the interconnecting node gives Yj j , of which 
yjj is its general entry. 

For the general case^y = n-ld-
in terms of y$, yf- and pA,pB as: 

and all y- may be given 

"11 = P B

N n d u + A i ^ A A x A v d u = D n d ? i 

Independent coupling 

In this method, each subnetwork is analysed independently 
producing Yf and p, from Y,-. A single interconnected sys
tem may be constructed with an admittance matrix Y ; 
given by 

d 

;=i 

where 

d 

P U P 
i=i 

the last dummy pivotal numerator of the above system. 
On elimination of all the interconnecting nodes, Y r = Yf. 

"12= - « 1 2 B 1 2 . d12 = d U d \ 2 

"21 = - n i \ n i v d i \ = ^ l ^ f l 

"22 = PA^\AI + d B \ \ d B \ l d l 1"22"22. ^22 = D U d 2 2 

where 

< = A A l d n 4 l " d n 4 A 2 » l l V p A > 

° i i = d * A A A x 

and similarly for DBj. 
The terms D ^ j , NB

1,Df1 may be obtained f rom the 
individual analyses of and .V s in the same way as njy, 
d f j , nfj, d f j are obtained. 

It is possible to continue the analysis in an iterative man 
ner by considering n-, d- as the solution of a single part 
and selecting a new part. However, the terms N J J , D J J and 
p for the analysed interconnected system need to be com-
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puted. A further application of the pivotal condensation 
formula yields 

. \ n - " i ] « 2 2 l ' l 2 ' ' 2 l ' v l l " 2 2 " 2 2 ' M 2 ' ! 2 1 A n 

and 

P = p f l « 2 2 ' ' l l + P,\n1\d22 

The major error at this stage is polynomial division and 
as this is not encountered in the formation of Yjj, computa
tion error is expected to be kept to a minimum. In fact, the 
accuracy of the interconnection polynomials is only slightly 
inferior to that of the fundamental ones. 

An attempt to generalize symbolic interconnection to 
cater for a number of interconnection nodes has encoun
tered problems with the enormous number of polynomial 
combinations required. 

COMPARISON OF THE NETWORK 
PA R TITION METHODS 

The number of arithmetic operations required to be exe
cuted in each method of analysis is a good indicator of the 
relative efficiency. Since the straightforward symbolic 
analysis is the basis of all partition methods, it is also con
sidered as the basis for estimating the computing time. 

I f T is the estimated computing time, then 

T = (effort to load the numerical nodal admittance 
matrix for all samples) 

+ (effort to compute all the polynomial responses) 
+ (effort to invert the Vandemonde matrix) 
+ (effort to compute the polynomial coefficients) 

Assuming an n-node, e-terminal network having Nc con
ductances, NK resistors, NQ capacitors, NL inductors, with 
R as the total number of coefficients of the polynomials 
representing the active devices, then from the Appendix 

T = (m + 1X12R + 32Q + 1 UNR + 12SNL + 84/V c + 

6 8 N C ) 

+ 25(m + l ) l» (n - l )(2n - 1) - e(e - 1)(2<? - 1)) 

+ 11 m(m + 1) 

+ 26e2(m -r l ) 2 (15) 

where m is the maximum order and Q is the total number 
of entries of all matrices entered as data. 

To facilitate comparison a very simple RC ladder network 
has been selected. Equation (15) then reduces to 

T= 1 3 » 4 + 178n 2 - \62>i, 

since i V c = Nc = m = n — 1, c = 2. It is to be noted that the 
complex conjugate 4 and passivity properties have been used. 
Now assume the network is divided into d identical sub
networks each of r nodes;then for 

Independent coupling: 

T A = 13(r - l)d4 + 13(3r - 2)d} + (13 3r 2 - 1 lOr + I6)d2 

+ (13r 4 + 178r 2 + 80r - l\i)d + 110, 

Double coupling: 

T„ = 44<r - l ) 2 , j 3 + (66r 2 + 152r + 55 ) i / 2 + (798>2 + 

1242r + 6S6)d - (133r 2 + 3 32r). 

Simultaneous coupling: 

T c = 44(t - l ) 2 , * 3 + (7r 4 - 13r3 + 98r 2 - 29r - 204)<i2 

+ (6r 4 + 26r 3 + 75r 2 - 57r + 159W - (39» 3 + 40r 2 

- 14r), 

Symbolic interconnection: 

T D = (9 r 2 - 8r - \ )d2 + (13r 4 + 169r 2 - U6r)d -

(18r + 2) 

The degree of approximation in the estimated computer 
time is displayed in Figure 4. The actual times are taken 
from computations on an ICL 1905E, and the difference 
between actual and estimated is accounted for as routine 
machine calling times. Figure 5 shows the relative merits of 
the various partition methods and the following conclusions 
may be drawn: 

(i) Tearing the network into relatively large subnetworks 
may not produce the best results. 

(ii) The analysis speed may fall with the increase in the 
number of parts. 

(iii) There exists an optimum number of parts for which 
the computation time is a minimum. 

(iv) It is possible to analyse large networks within practical 
limits. 

Conclusions (ii) and (iii) may not be immediately appa
rent for the symbolic interconnection technique but they 
can be verified by observing the continuously decreasing 
separation of the curves for equal increases in the number of 
parts. The curves wil l cross each other for very large net
works. This phenomenon is due to the relatively low effort 
required for interconnection. 

In Figure 6 the existence of an optimum number of 
parts is displayed. Comparing the network partition methods 

io", • 1 

0 

Actual 

10 

Estimated 

10 

I 

0 I I 1 ' 1 1 1 

10 15 20 25 30 35 4 0 
Number of nodes 

FIGURE 4. Actual and estimated computing times for 
straightforward analysis 
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Number of ports 

Symbolic interconnection 

Independent coupling 

Double coupling 

Simultoneous coupling 

2 0 0 24 0 280 

Number of nodes 

4 0 0 4 4 0 

FIGURE 5. Performance characteristics of the partition methods 

it may be seen that the symbolic interconnection has the 
greatest speed, while the independent coupling method 
takes the second place for a relatively small number of 
parts. The performance of independent coupling rapidly 
deteriorates for a large number of parts. 

The first three network partition techniques have similar 
accuracy, especially when polynomial partitioning 7 is used. 
However, the symbolic interconnection method shows very 
considerable increases in accuracy. As no interpolation is 
required for the computation of polynomials of the inter
mediate interconnected systems, the error is reduced to a 

Symbolic interconnection 

S 10 

__Double coupling 

Simultaneous coupling 

Independent coupling 

2 6 10 14 18 22 26 30 
Number of parts 

FIGURE 6. Speed comparison of the partition methods for 
a 61 node RC-ladder 

minimum. Typical error performance of symbolic inter
connection is shown in Figure 7. The high accuracy property 
of this method is a very attractive feature and it is hoped 
that a similar characteristic wil l be repeated for the general 
multiple node symbolic interconnection case. 

The comparative performances of the partition methods 
when applied to a conventional high input-impedance 
amplifier circuit, Figure 8, are given in Table 1; a two part 
division is used. The times quoted are those experienced 
in computing the overall 2 X 2 admittance matrix in sym
bolic form. Because of the relatively low order of the net
work, the improvements due to partition are less dramatic 
than encountered with higher order circuits. This is parti
cularly true of the symbolic interconnection case whose 
performance easily exceeds the other methods for higher 
order networks. 

More impressive results have been obtained in the analy
sis of larger active networks, for instance, partitioned analy
sis (double coupling) of the SN 72741 amplifier improved 
the analysis time by 70% to 4 sees. For medium sized net
works up to 100 nodes the partitioned methods work quite 
efficiently. An active network with 144 nodes proved about 
the present limit, the restrictions on network complexity 
come mainly from accuracy problems in the resultant poly
nomial coefficients. Very large polynomials generally have 
a wide range of coefficient magnitudes and the smaller ones 
are easily submerged by the consequences of a finite word 
length. Further errors occur in the evaluation of the 
sampled tesponses in very high order systems, although 
numerical methods for controlling these are available. 
Simple inversion of the Vandermonde matrix would often 
lead to serious errors due to ill-conditioning. A number of 
methods are known for overcoming this; two alternatives'' * 
have been used in this work. 
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Mogmtude 

0 20 4 0 60 80 100 120 140 160 
Coefficient index 

FIGURE 7. Error distribution for the symbolic intercon
nection method (22-part division of a 146 node ladder) 

Obviously when large networks are considered there are 
problems with the amount of data required. Efforts have 
been made to reduce the user participation needed, some 
thought is required concerning the sections to be partitioned, 
but once the nodes in each part are specified, the remaining 
process is fully automatic. New subnetwork nodes can be 
chosen as required. The library concept has been used to 
great advantage, symbolic matrices for transistors, amplifiers 
or subnetworks which occur frequently are computed and 
stored. Both internal and external library facilities are 
available. This has proved especially useful in the analysis 
of large integrated circuits. 

CONCLUSION 

It has been shown that it is possible to perform efficient 
symbolic analysis of general active networks by partitioning 
the network into a number of parts. Al l the methods dis
cussed avoid the generation of common factors without 
recourse to an artificial loading technique used earlier. 

The network partition technique has special significance 
in computing sensitivities, as intermediate results of current 
work is showing. Because of the large number of variables 
that would be involved in completely literal symbolic analy
sis of high order networks, such analysis is not contemplated. 

TABLE 1. Com oarative performance parameters o[ pay'i-
lion methods in attiplifier analysis 

Figure of 
Merit 

Computer Straight
Require forward/ 

Method Parameter ments Partition 

Straightforward Time (s) 9 _ 
Store ( k words) 13.2 

Double Time (s) 5 1.80 
coupling Store (k words) 13.6 0.97 

Simultaneous Time (s) 7 1.29 
coupling Store (k words) 11.9 1.11 

Independent Time (s) 4 2.25 
coupling Store (k words) 16.0 0.85 

Symbolic Time (s) 6 1.50 
interconnection Store (k words) 17.1 0.77 

But the partition methods can be easily applied to semi-
literal analysis to some advantage. 

It would seem that the difficulties in symbolic analysis 
caused by speed, storage and error problems for high order 
networks, can be contained so that successful analysis of 
active and passive networks can be achieved. 

For extremely large networks the polynomials would be 
of such high order and the computation error of such magni 
tude that symbolic analysis could hardly be envisaged. 
Conventional methods for numerical analysis at each fre
quency will always be faster in determining numerical res
ponses of one type or another. For these networks, such 
methods together with partitioning and sparse matrix tech
niques should be used. 

Financial support of the Science Research Council is 
acknowledged. 
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A P P E N D I X 

ESTIMA TION OF COMPUTING TIME 

The pivotal condensation formula is used in reducing the 
numerical nodal admittance matrix to its terminal form. At 
an intermediate stage, say, when reducing the kth order 
matrix to one of order (k — 1) the formula is applied 
(k — l ) 2 times. 

I f T m £ is the effort required to reduce a matrix from 
order n to order e, which is equivalent to an H-node e-
terminal network for m + 1 samples, then 

n 

rcond = ( " + l ) 2 (*"1)2 

repetitions of the reduction formula 

1 
= - (m + 1)[«(» - l ) (2n - 1) - e(e - l)(2e - 1)] 

6 

For passive netwotks the nodal admittance matrix is 
symmetric; using this properly gives 

C. Phrydas and J. I Sewell 

n 

k=e + l 

repetitions of the reduction formula 

= 4 ( ' « + 1 ) [ » 0 < 2 - 1) - eic2 - 1)1 
6 

Translating these- into equivalent addition operations, 
assuming the computing time for subtraction is equal to 
that for addition, multiplication is 2.2 X (addition) and 
division 4.4 X (addition) reveals that one execution of the 
condensation formula suitable for complex arithmetic 
requires the equivalent of 148 additions. Thus, 

r c o n d = 25(m + l ) [n(n - lX2n - 1) - e(e - 1X2<? - 1 )l 

additions for active netwotks 

and 

T c o n d p = 25(m + 1 ) [« (« 2 - 1) - e(c2 - 1)] additions. 

Computation of the polynomial responses usually takes 
most of the total analysis time. But other operations such 
as matrix loading, (generation of the nodal admittance 
matrix at each sample), Vandermonde matrix inversion, and 
computation of the polynomial coefficients cannot be 
neglected when an accurate estimate of computational 
effort is being sought. 

Again in terms of equivalent additions the matrix loading 
effort for all samples 

= (m + 1)(112<VR + \2SNL + 8 4 N C + 6 8 N C + 32Q + 12K) 
additions, 

effort for Vandemonde matrix inversion using a Fast Fourier ' 
Transform version 

= 1 lm(m + 1) additions, 

and effort for final computation of all polynomial coeffi
cients (matrix multiplication) 

= 2de\m + l ) 2 additions. 

Thus, the total effort 

T = (m + 1)(12R + 32£> + \12NR + 128/V t + 8 4 N C + 

6 8 N G ) 

+ 25(m + l ) [ n ( n - l ) (2n - 1) - e(e - \)(2e - 1)1 

+ 1 lm(m + l ) 2 + 26e2(m + l ) 2 equivalent additions. 
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Symbolic network sensitivities using partition methods)-

C. P H B Y D A S t and J . I . S E W E L L J 

Straightforward symbolic analysis methods have been frequently used to generate 
the sensitivities of the network functions with respect to the elements. With these 
techniques the computer requirements tend to become excessive for large networks. 
A network partition and interconnection method has been developed in an attempt 
to increase the efficiency of analysis and has been applied successfully. The network 
is divided into an arbitrary number of parts with an arbitrary interconnection. 
First- and second-order derivatives are considered. 

1 . Introduction 
The sensitivities of ne twork responses to element var ia t ions are ve ry 

i m p o r t a n t i n c i rcu i t design and therefore e f f ic ien t means fo r the i r computa
t i o n have been sought. A popular method has made use of the a d j o i n t 
ne twork concept ; i t is qui te fas t and applicable i n b o t h t ime and frequency 
domains (Director and Rohrer 1969 a, b ) . M a t r i x inversion techniques are 
an i m p o r t a n t a l ternat ive (Sud 1975) b u t generally require repe t i t ion a t each 
f requency po in t . Large change sensitivities (Goddard et al. 1971) are also 
valuable and have f o u n d appl ica t ion i n stat is t ical design (But le r 1971). 

D i f f e r e n t i a l sensitivities i n symbolic f o r m (Cutteridge and D i M a m b r o 
1970, 1971) tend to be more general and e f f ic ien t t h a n the single f requency 
po in t techniques. The use of in te rpo la t ion is evident i n these techniques. 
Since improvements to the accuracy of the in te rpo la t ive methods have been 
made (Fridas and Sewell 1974, Singal and Vlach 1974) they hold greater 
appeal. S t i l l f u r t h e r increases in accuracy are possible using an i te ra t ive 
correct ion procedure (Fridas and Sewell 1975). 

P a r t i t i o n methods have been employed to good effect (Fridas and Sewell 
1976) in the analysis of high order active networks . General improvement 
i n speed and accuracy were experienced. I n this w o r k the ne twork p a r t i 
t i o n i n g methods are developed to produce f i r s t - and second-order sensitivities. 

2. Differential sensitivities 
L e t ,Ar be a linear act ive ne twork w i t h n nodes, of which e are t e rmina l 

nodes, and hav ing a nodal admit tance m a t r i x Y, F i g . 1. I n the usual nota
t i o n G, T, C represent the conductance, inverse inductance and capacitance 
components of Y. A is an active device m a t r i x whose entries are ra t iona l 
func t ions in s : 

Y = G + .4 + - + sC = - [V + s(G + A) + s2C\ 
s s 
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N 

Figure 1. General network A'. 

The ne twork performance can be represented by the t e rmina l admit tance 
ma t r i x Y r of order e (often 2V obtained f r o m } ' by e l imina t ion of al l the 
internal nodes of J '. A general en t ry of } ' r is 

J \YD\ D 

where Y { j and Y D are appropriate co-factor matrices. As A7,-- = f ( y r s ) , where 
yrs is a general en t ry of Y, then 

^ = I I ^ ^ 2 . V i , j = 1, 2 . . . e and k = \ , 2 ... V (1) 

where xs is a ne twork element, of which there are V in number. The t e r m 
cyrsjcxk is easily computed, cA'^jcy^ is more d i f f i c u l t to determine. A s imi lar 
expression applies to the denominator 

-" t i m 

cxk. r = 1 , f i tyr„ cxk. 

The second-order derivat ives fo l low : 
r 2 V " " " " r 2 V ru rv I I I I 

c ; r , . r . T , , . = 1 „ = , p . | , = | cyrxcym cxk cx( 

" " ? V r2?/ 
+ y y i ^ _ L 4 ^ ! vA- = i , 2 ... V - \ 

, = i » = i r ( / r , cxk.cx, 

\/l = k+ 1, A- + 2 . . . K (3) 

c*D 
A similar expression results fo r . I n comput ing ent ry sensitivities i t 

is obvious tha t a passive component may cont r ibute to only one or fou r en t ry 
terms. 
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2.1. Computation of entry sensitivities 
Let 

^ = c J i 
H f r , 

and 
?D 

— = c„" 

where Ci}, C'1 are ad jo in t matrices, whose entries are determined in general by 
the fo l l owing procedure : 

«,/> = { V ' - ' » n , , " - ' - » i A « ' - ' > } / n < ' - 2 V + , , A + I . j = l . 2 - ^ 
6 , / ' ) = { 6 / y

, r - 1 » » a - ( r - 1 , - » f t

, r - I « * - y ( r - , , } / " ( , ' - 2 , * - + i . ^ i . J = l . 2 - » 

fo r & = ra, n — l , . . . e + l ; i = 1, 2 . . . & — 1 and r=n—k+ 1. 
I n i t i a l l y n,./°» = n , 7 ; 6 f / °» = 8,7 (Kronecker delta) ; a*-1 > „ + l i = 1. When 

r = n — e these operations are hal ted and n i j

{ r ) = n i j 
(n -e ) 

Now let 
rf<D = n . n - e - l > t 

,/. = •„...<»-«>, j = 1, 2 . . . n 

„ . . ' ( 0 ) = n . . ( « - o and &,./«»» = 6 f / " - f > 

« I y < ' > = { » 1 y « - l V - ' , r - I ) - « « - ' , r - 1 V ( r - 1 , } / r f * - + i 
6 l V ' ' '» = {6 / / ' ' - iS . , ' f r -> ' -n ( 7 . ' < ' - 1 V ( r - l , } /^ + i 

k = n — I , n — 2 . . . e + 1 ; i = fr + 1, fe + 2 . . . w ; j = 1, 2 . . . n and r = n — k. 
The ad jo in t matrices w i l l be of order n — e + 1 b u t fo r u n i f o r m i t y and ease 

of p rogramming the higher order is retained and borders of zero rows and 
columns retained. Hence if = ? i l - / t " ~ e _ 1 ) and 6, 7" = bij'in~e~'l) and p,q = 
1, 2 . . . e 

c k P 9 = b»j"< j = e+l,e + 2 ...n 
<V" = °> i = 1, 2 . . . e : jV<7 
C " 9 = 6 " 

Cjj1"1 = 0, i= I , 2 ... e and M ^ ; j = 1, 2 . . . n 

c>/p ,={^•/\ );'-'^•;'^/'}K•^l. (:• f-l' (o^ *,j=«+1, e + 2 . . . * 

S i " ' = K " n n - V 6 „ / } K + i . e + 1 ' < 0 ) . i = e+l,e + 2...n 

C//"1 = 0, i = e + 1, e + 2 ... w ; j = 1, 2 . . . e ; j ^ q 

Fina l l y 

Cjj'1 = c0- = 0, i = l , 2 . . . / i : J = 1, 2 ... e 
c / / = V > i, j = e+\, e + 2 ... n 

The polynomials of } ' r , C'J and C'rf are therefore determined by in te rpo la t ion 
at an appropriate number of samples. Hence a classical sens i t iv i ty measure 

can then be computed fo r each response f u n c t i o n w i t h respect to the desired 
elements. 
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3. Network partition and sensitivities 

The ne twork .,(" can be d iv ided into a number of subnetworks w i t h 
a rb i t r a ry interconnections. A double coupling method (Fridas and Sewell 
1976) is chosen; the process selects two connected subnetworks J ' t t , 
Fig . 2. Each subnetwork is analysed independently, the solutions combined 
and a solut ion f o r the interconnected subsystem produced. A new subnetwork 
is selected, analysed, combined w i t h the previous solut ion and a new inter
connected subsystem fo rmed . This is repeated over a l l subnetworks. 

N N 8 

Figure 2. The subnetworks s , B and their interconnection. 

I f Y A > Y B are the t e rmina l admit tance matrices of ^V'A, A"B a f te r inter
pola t ion and X A > X B are the sets of elements in each par t respectively. Def ine 
the matrices A V A B as 

Y A = - ^ A A and Y B = ^ - A B 

PA PB 

where pA,pB are the last p ivo ta l numerators generated when analysing 
Jir\, v¥B. Then the augmented m a t r i x Y j of the interconnected system 
jr\ is 

} ' / = A A P B + A B P A ( 5 ) 

A typ ica l numera tor en t ry of Y , w i l l be 

nVI = nuu^Ph + n a

t B j B p A (6) 

i, j = 1, 2 . . . e, ; i A , j A = 1, 2 . . . ex : i B , jB = 1 ,2 . . . e B , where e„ c A , e B are the 
number of terminals .J•"t, , \ \ . J ' B respectively. 

Le t the func t ions in the reduced m a t r i x be AV/Z) and al l the f i r s t - and 
second-order der ivat ives w i t h respect to x ^ X j are required where Xt = X A V J X B . 

I t is k n o w n tha t in par t i t ioned analysis the last p i v o t a l numerator required 
to be removed as a common factor in the f i r s t stage of reduct ion of the com
bined system is P=pApB. Assume tha t Y t is reduced to its t e rmina l m a t r i x 
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w i t h P being removed a p p r o p r i a t e l y ; hence Xu• = p-<»i~ei >A*f.' and / ) = 
p -< , i , - e , - i \£ ) ' Direct d i f f e r en t i a t i on w i l l give 

= L L - f ^ (7) 
?.T, P> CXk P CXk

 ( ' 

c2N^ _ _L_ c 8 A T

t / t f d N i } oP dNif cP 

dxkcxt P1 dxkcx, P \ cxk c x , cxt dxK. 

Nu cP cP Nu c2P 

P i cxk oxi P dxkdx{ 

where t = nI — el. 
Simi lar expressions f o r the der ivat ives of D can be determined. Fo l lowing 

the der ivat ions of the Append ix gives 

3iV..' "' ?N•.' tin 1 

4 ^ = i z 4 ^ - ^ - (9) 

dxk , f i , = ! on,/ dxk 

£ £ £< - / 9 ^ / \ f d n r / \ f d n p / dxkdx, r = 1 s = 1 p = i 9 = 1 ydnjdnp/J\ dxk ) \ dxt 

and the der ivat ives of Z) are produced s imi la r ly . 
N o w i f Z r s

I J and Z r s

D are the general entries of a d j ( Y / J ) and a d j { Y j D ) 
respectively i t can be shown t h a t the common fac tor P can be ext rac ted as 

Zn" = P^Z„'" and ^ = P ' - V 2 ) (11) 

Hencing combin ing eqns. (7), (8), (9), (10), (11) and set t ing 

and b y Jacobi 's theorem 

d*Ni}" _ 1 fdNt/'dNi/' dNti* dNu' 

dnr/dnpQ' P*Ni} V dnr/ dnvqi dn^ 
gives 

ax, p £ V A d x k ) p fok 

OXkdxt P N i i r - l . - 1 « = 1 j V ^ r s ' 3 w p / S w r / ^ p / , 

3xA. y \ 3x, 

P r = 1 4 = i \ ^rJ ) \ ^ x k ^ X l ) P \ S x k dxl dxx dxk 

N u / d P \ / d P \ Ntl d2P 

- ' ' ' - ' ' ^ ( W t e J - ' - F S ^ , 1 3> 
Again , s imilar expressions obta in f o r the derivat ives of D. 



30 C. Phrydas and J. I. SeweH 

The der ivat ives of X jj" or D" can be produced by m u l t i p l y i n g the corres
ponding der ivat ives of Xi}' and D' by the appropriate power of P. However, 
large powers of P can cause problems on the computer and i t is therefore 
expedient to compute the derivat ives of Xjj" and D" d i rec t ly by t ak ing the 
fac tor P i n to account in the i n i t i a l stage of the analysis of A"t. 

D i f f e r e n t i a t i o n of eqn. (6) completes the necessary algebra. Terms of the 
f o r m 

are produced f o r elements i n the ne tworks J ' \ and A'B. 
The f i r s t - and second-order derivat ives as we l l as the ne twork func t ions 

can be computed f r o m the analyses of subnetworks. The ne twork f u n c t i o n 
numerators , last p i v o t a l numera tor and their der ivat ives are a l l tha t are 
required. The process may be repeated for an a r b i t r a r y number of parts . 

4. Results 

The pa r t i t i oned method fo r de r iv ing f i r s t - and second-order ne twork 
sensitivities has been appl ied to bo th passive and act ive networks . M a i n l y 
f o r comparison purposes a 30-node RC ladder was chosen and the sensitivities 
of the 2-port admi t tance func t ions w i t h respect to a number of t h ° elements 
computed . Us ing a s t r a igh t fo rward technique w i t h o u t p a r t i t i o n and com
p u t i n g f i r s t - and second-order sens i t iv i ty polynomials of the above func t ions 
w i t h respect to six elements required 105 sec and 16-4 K words of store on 

PARTITION 
LINE 

O «15V 

r V V V -
75kf? 

l/Ps ® 250 39kO 
30pF 

0 / P 
75kfl 

50fi 

® 
5k0 IkO 50k0 kQ 

0 - 1 5 V 

Figure 3. The SN 72741 operational amplifier. 
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an 1CL 19048. P a r t i t i o n i n g and using four sections w i t h eight nodes in 
each only needed 22 sec of computer t ime but 18-2 K words of store, the 
interconnecting process being responsible for the extra storage needed. The 
same problem using a 3-part d ivis ion required 33 sec and 18-6 K store. 
Similar performance ratios are experienced when more elements are considered 
in the sens i t iv i ty analysis and for higher-order networks. Storage problems 
determine the upper bound on ne twork order and number of elements 
considered. 

Figure 3 shows a t y p i c a l active ne twork which has been analysed by these 
means ; the c i rcui t is t ha t of the SN 72741 operat ional ampl i f i e r . To produce 
the f i rs t -order sens i t iv i ty func t ions f o r one element required 17 sec and 12-8 K 
store, the repet i t ion of the calculat ion f o r the f i rs t -order sensitivities of up 
to seven elements only needed 18 sec and 12-8 K store. 

The accuracy of the computed coefficients is t yp i ca l of in te rpola t ive 
methods. I t can be improved by p a r t i t i o n a l po lynomia l in te rpo la t ion (Fridas 
and Sewell 1974) or the F F T (Singal and Vlach 1974). I t e r a t i ve improve
men t techniques can be employed, and of par t icu lar significance here are 
those concerned w i t h i m p r o v i n g the accuracy of the a d j o i n t m a t r i x (Fadeev 
and Fadeeva 1963). 

Appendix 

L e t u = f ( x 1 , x2, xn) where xi = x j ( t 1 , t 2 , . . . , t m ) and t k . are independent 
variables. 

Assuming the con t inu i ty of derivat ives involved gives (Sokoln ikoff 1939) 

I L - V d f d x < i A n 

d t k r f h ^ d t b

 ( A l ) 

E q u a t i o n (9) fol lows d i rec t ly f r o m (A 1). 
D i f f e r e n t i a t i n g eqn. (A 1) w i t h respect to t,, gives 

d t k o t , d t , dXf d t k 

\ d X f d t , d t k c.r,- c t k d t , 

? / \ CXj " cf c2x 

r . r , \ 3 t J c t k

 + ,?i e x , d t k c t . 

y IL ™l\ f f i 4. y f L -1 C
2 X : 

c.r,- i - i ct,) ctk , = 1 cx( dtkcl. 

j = i V '• = ! [ c X j C X j c t , c X j c X j C t , ) J c t k i f i dXf d t k d t , 

file:///dXfdt
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since in ne twork analysis 

ex, 
^ = 0, V>,J 

E q u a t i o n (1G) has been derived f r o m eqn. (A 2) and the properties 

Ml= I « l 7 | ^ l 7 | ( - i ) ^ = t aij\Au\(-iy+i i=i j=i 
and 

8 2 U I 8 2 U | 
= 0 

w h i c h impose constraints on the summat ion parameters. 
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From: MOS Switched-Capacitor F i l t e r s : A nalysis and Design, IEEE Press 1984, Selected Reprints 

Analysis of Active Switched-Capacitator Networks 

JOHN 1. S E W E L L 

Abstract-It is shown that amplifiei .natrices can be included in the 
nodal equation formulation for the analysis of switched-capacitor 
networks. This avoids any requirements for equivalent circuits and 
enables a straightforward application to computer analysis. For ideal 
operational amplifiers constraint theory is shown to be applicable. 

The theory and design of switched-capacitor (SC) networks is receiv
ing much attention at the present time. The analysis of SC networks is 
proceeding along a number of avenues, the basic ones being nodal tech
niques [1] , and equivalent circuit methods [2 | , [3]. The second 
method has some aDpeal from the practical insight view, but involves 
the determination and application of equivalent circuits that are not 
exactly simple. The nodal analysis requires a large number of equa
tions, 2n, where n is the number of nodes, but these can be assembled 
in a logical manner and the method is particularly attractive for com
puter analysis of SC networks since many standard matrix methods can 
be employed. 

For a passive network, containing only capacitances and, switches 
with half cycle operation, the In X 2n definite nodal matrix Y is deter
mined from 

(1) 

/ = YV. 

The nomenclature of 11 ] is retained, / ' 7 ° being the vectors of even 
and odd phase currents; V e , V° are the even and odd nodal voltage 
vectors; Se, S" the even and odd switching matrices; 1° the even 
and odd network current matrices; C the capacitance nodal admittance 
matrix; and z" 1 = e~n where r is half the clock period. The Y matrix 
is always symmetric for a passive network, and the main diagonal terms 
are positive, but in contrast to the ordinary definite admittance matrix 
the signs of all off diagonal terms are not necessarily negative. Some 
rows and columns are zero so, by definition, these and the correspond
ing variables can be eliminated; however, it is wise to examine the inclu
sion of active devices before executing this step. 

When active devices are present in the network, assemble the nodal 
matrix for the passive part YP as indicated. Now an ordinary ampli
fier will be operational during the even and odd switching phases and 
therefore will contribute equally to even and odd equations hence 

[/f"H~°~i vl [v°] 

The Y A matrix, for instance, may be any of those quoted for various 
types of amplifier [4) or indeed the admittance matrix of any active 
device. Addition of the active and passive matrices will yield the com
plete nodal matrix 

As expected, Y is not symmetric for an active network. 
Some simple rules for the assembly of the matrices now emerge. 

When writing down the switching matrices Se, S" all port voltages must 
be retained as independent variables and all voltages at amplifier ter
minals must remain as independent variables. When constructing the 
current matrices I', 1° the currents at either the network ports or the 
amplifier terminals must not become zero. 

After the assembly of the Y matrix, inspection will show the corre
sponding rows and columns that are zero, these are now eliminated 
to produce a reduced matrix Y R. It is then possible to determine, by 
cofactor methods, the appropriate transfer functions from YR. For 
general analysis it is probably more informative to apply pivotal con-

Manuscript received October 9. 1979. 
The author is with the Department of Electronic Engineering, Uni

versity of Hull. Hull HU6 1RX, England. 

Fig. 1. Switched-capacitor tossy differentiator. 

densation to K# and obtain the four-port y-matrix 

/ f y\i y\n y\% yf 

K y%\ y'n'n AS A& 
/'? ylf vot 

yw y f f y1S y? 

>°n. y°n\ AS y°n°n. V - n -
where node 1 is input and node n is output. In practical networks quite 
a number of the ^-parameters will be zero. Cleaily the input admit
tance during even phase switching is 

-y\l 

Similarly the voltage transfer functions, for even sampling input and 
output 

- m 
yf ~ AS, 

for even sampling input and odd sampling output 

yjL -A$_ 
y f ' .... 

provided, of course, these functions exist practically. The number of 
characteristic functions available in an SC network is obviously poten
tially greater than in a conventional active network. 

When ideal operational amplifiers are the active elements in the net
work it is possible to utilize conventional constraint theory [5] in the 
analysis. Consider an ideal voltage amplifier with voltage gain -m and 
connected between nodes i , / , hence 

; -m Vj or V, = 
-V, 

in an SC network the constraint becomes Vf = -V°lm, Vf = -Vflm 
hence the column i(odd) is divided by m and subtracted from K,(o<Jd), 
column i(odd) is then discarded and similarly with columns i(even) and 
I {even). The rows involving i f and / / are redundant, since these ex
press the current outputs from a voltage source, and are, therefore, 
discarded. The matrix YC once more is square, but cofactor techniques 
have now to be used in evaluating the required characteristic functions 
as there is no longer a direct relationship between the rows and columns 
of the matrix and the network nodes. Of course, when m — ~ the pro
cess merely amounts to striking out columns i(odd), i(even) and rows 
j{odd) J (even). 

Reprinted from Proc. / £ £ £ , v o l . 68, pp. 292-293, Feb. 1980. 
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by Vk = m(Vi - V,). Hence K^/m = Vf • 
when m - ~ , = f / , f ° = V° thus c 

When a difference amplifier is present then this may be characterized 
Vf and V%lm = K," - Vf and 

i column i(even) is added to col
umn /(even) and the former discarded; column i(odd) is added to col
umn j(odd) and the former discarded. Again, the current outputs from 
the voltage source are arbitrary, hence rows k(even) and k(pdd) are 
discarded. At the present time, the application of different amplifiers 
in SC networks in not considered especially practical for capacitor 
grounding reasons since no virtual earth exists at the input. 

Consider the circuit of the lossy differentiator shown. Take the pas
sive network alone, then following the rules given: 

"1 0 0 0" "1 0 0 0" 

0 1 0 0 0 1 1 0 
s° = 1° = 

0 1 0 0 0 0 0 0 

.0 0 0 1. .0 0 0 1. 

"l 0 0 o" "1 0 0 0" 

0 1 0 0 0 1 0 0 
s e = 1' = 

0 0 0 1 0 0 0 0 

0 0 0 1_ .0 0 1 1. 

" c , - c , 0 0" 

- c , Ci + C 3 0 -c3 

c = 
0 0 c 2 0 

_ 0 - c 3 
0 

Substituting in (1) gives: 

With even input sampling V , = 0, / i = 0 so remove column and row 
1 {odd) and from the remaining matrix 

-
" Alt 

C r d - z " 2 ) 

" C 3 - z - ! ( C 3 - Ci) 

which is the transfer function of a lossy differentiator. 
For odd input sampling V\ = 0, l \ - 0, so remove column and row 

Heven) and from the remaining matrix 

_ - C l ( i - z - ' \ C 3 - C 2 ) ) 
C 3 ( l - ; - 2 | C 3 - c 2 \ ) 

- £ l 
c3 

which, of course, is an inverting amplifier. 
Matrix techniques can be applied to the analysis of active SC net

works in a straightforward manner and afford a powerful approach for 
examination of the many performance functions of these networks. 
They have special significance in computer analysis since the task of 
generating equivalent circuits is avoided completely. 

c , - c , 0 0 

- c , c , + c 3 0 - c 3 

0 0 0 0 

0 0 c 3 

- z " ' C , * - ' c , 0 0 

- z - ' ( C , + C 3 ) 0 - z " ' ( C 2 -

0 0 0 0 

0 0 - i - ' c , 

c 3 ) 

i - ' C , 

r ' c , 

o 

0 

c , 

- C i 

0 

0 

z " ' C , 0 

- z - ' ( C , + C 3 ) 0 

0 0 

- z - ' ( C 2 - C 3 ) 0 

- C , 0 

C, + C2 + C 3 0 

0 0 

- C 3 0 

0 

- c 3 

«? 

I f 

*? 

/ 4 . 

/ f 
/ f 
' f 
A° 

/ ? 

/ ? 

Eliminate zero columns and rows 3(even), 3(o{j,d'), to give YR. Apply 
the amplifier constraints, hence remove columns 2(even), 2(odd) and 
rows 4 (even), A(odd) to give matrix Yc 

"if C , 0 - z - ' C , 0 > f " 

n - C , - C 3 z - ' C , z " ' C 3 

n - z - ' C , 0 C, 0 I f 

A z - ' C , - z - ' ( C , - C j ) - C , - C 3 . 
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well be replaced by Ihe double d.f.t processes. 5 However, this 
is not a matter for consideration, because the main purpose of 
this letter is to show how to apply the sampling theorem to 
s.a.w. filter analysis. The discussion can be applied easily to 
other time-consuming s a w. filter analysis, such as equivalent 
circuit analysis or bulk spurious response analysis, as long as 
t m ,„ and are determinable beforehand. 

If y22 is assumed to be a real constant, normalised to unity, 
then in a switched network the frequency-dependent current 
term during any lime interval n is given by 

T. K O D A M A 

Toshiba Research & Development Centre 
Toshiba Corporation, Kawasaki, 210 Japan 

25lh April I9R0 
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where T is the sampling period. This becomes 

1 . -' 1 6 

IV*""'" I etb°""<'V(x)dT di 

Tb, J p- lh . /S .H I f I » . / » i l . j , ' f I ) d r J , 

"° f f - ( 6 o / t , M » - 0 K ( t ) d T + I V ( t ) dl 
Tb 

Tb0 

° K ( r ) dx f m d t 

INCLUSION OF AMPLIFIER FINITE GAIN 
A N D B A N D W I D T H IN ANALYSIS OF 
SWITCHED-CAPACITOR FILTERS 

Indexing terms: Amplifiers, Switched-capacitor networks 

The exact mathematical solution of the amplifier finite gain 
and bandwidth problem in switched-capacitor filter networks 
is presented. The theory is incorporated into a computer 
analysis program and typical results for a filter circuit are 
included. 

The analysis and design of switched-capacitor (s.c.) networks is 
developing very rapidly. A matrix method for the analysis of 
active s.c. networks' affords a straightforward technique, parti
cularly suited to implementation as a computer program. Ideal 
operational amplifiers have been considered, and finite but real 
amplifier admittance parameters are easily accommodated. 
The effects of frequency-dependent amplifier parameters, 
especially the gain, are very important and will be considered 
here. 

F o r simplicity, take an s.c. network containing capacitances, 
operational amplifiers, and switches with half cycle operation 
(2-phase nonoverlapping clock); then the 2n x 2n definite 
nodal matrix V is determined from: 

25 

or / = [?, + YA)V. 
/ ' , P and V', V 2 are the phase-1 and phase-2 currents and 

voltages; V p is the passive part matrix assembled in an accepted 
manner. 2 Because of frequency-dependent amplifier par
ameters, the active matrix YA will not have the simple form as 
indicated previously ' 

For a typical operational amplifier, the gain can be ex
pressed as m = - a 0 / ( f e 0 + bi s), a single pole in the s-domain. 
A simple voltage amplifier has a YA matrix given by 

0 0 

Let a 0 / f c 0 T = a, 60/^1 = 0. a n c ' since an s.c. network is a 
discrete system 

/ „ = - « £ e - " - - " V ( . ) + a £ V(i) 
1=0 « «= 0 

+ «"£' e-""-<-"V{i)-0L "X V(i) 
i = p i = P 

Applying the convolution theorem of the ^-transformation' 
yields 

_ -aV(z) aV(z) az-'Vjz) _ az^V(z) 
{ ' ~ 1 - z-'e~'T + 1 - z " 1 1 - z - ' e - ' T 1 - J " ' 

( z " 1 - z - l e - , r ) V ( z ) 

= a r - z ^ e - - » — 

This may be written as Ihe sum of even and odd terms of a 
series: 

/(z) = o d V ' - z->e->T)V{z) £ z - ' U - 1 " 7 

l j = p 

" I 
+ £ z-ai* n e - ( 3 ; + 11(7-

or in closed form 

, M - + ^IzlUDTJl VIA 
y ' ~ (1 - z - 2 e - 2 " " ) (1 - z ' 2 e - l e T ) [ ' 

Now / = / ' + / 2 , and V = V + V 1 , so splitting the current 
equation into direct-phase and delayed-phase components 
gives 

-, a z - ' ( l - z-'e-2»T)V'{z) _ Z L ! ) ^ ^ 
(I - z 2 e - 2 » T ) (1 - z~2e~2>T) 

(1 - z - ^ - 1 ' 7 ) (1 - 7 - 2 e - 2 " r ) 
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Each amplifier with a frequency-dependent gain will produce 
terms of this nature which contribute entries to all four parti
tions of YA. 

This theory has been incorporated into an analysis program 
for s c. networks. Analysis of a number of active s.c. filter 
networks gives results which correspond to practical circuits 
using amplifiers of finite gain and bandwidth. 
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Fig. 1 Response of third-order elliptic lowpass s.c. filter 

Typical computed responses obtained for a third-order ellip
tic s.c. filter4 with a clock frequency of 100 k H z are shown in 
Fig. 1. The increasing distortion of the transfer function due to 
the amplifier limitations is clearly apparent. 
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lenses of a particular radius and refractive index so as to 
approach optimum coupling. Also, the highly spherical quality 
of such microspheres 7 eliminates the type of curvature control 
problem involved in fabricating a lens at the end of the 
fibre 1 3 However, the small microsphere lens size (typically 
70-100 fim). combined with the need to centre the lens ac
curately (typically to within several micrometres) brings about 
difficulties in lens mounting. 

The method reported previously for mounting microsphere 
lenses is the laser-light assisted alignment technique of Khoe el 
a/. 8•* In this technique, a laser beam is launched into a fibre 
and the output emission pattern is viewed on a screen. A 
microsphere lens is brought to the output end and is then 
positioned with high-accuracy micropositioners until the pat
tern becomes centred on the same point as the original pattern 
It is then glued onto the fibre end. 

This process is complicated, and it is quite difficult to hold 
the microsphere lens. We report here a simple, accurate and 
production-oriented technique for lens mounting. A typical 
microsphere lens attached to a fibre end is shown in F ig . 1. In 
the mounting procedure, the end of the fibre is first properly 
cleaved and cleaned, and adhesive is applied to it by dipping. 

Fig. 1 Photograph of mounted microsphere lens 

With the aid of micromanipulators and a low-power micro
scope, the fibre end is roughly centred over a microsphere lens 
and lowered so that the epoxy contacts the lens. The epoxy 
then holds on to the lens by surface tension so that it is picked 
up as the fibre moves upwards. Due to the combination of 
adhesive surface tension and gravity, the lens moves until it is 
on, or very close to, the fibre axis. Thus the technique can be 
described as self-centring. 

SIMPLE SELF-CENTRING TECHNIQUE FOR 
M O U N T I N G MICROSPHERE COUPLING 
LENS ON A FIBRE 

Indexing terms: Optical fibres. Optical transmission 

A simple and accurate self-centring method of mounting a 
microsphere coupling lens on a fibre endface is described. In 
over 85% of cases tried, the lenses were centred on the fibre 
axis to within 3 um. The lenses yield a laser-fibre coupling 
efficiency of about 65%. 

The light power which can be launched into an optical fibre 
from a diode laser by simple butt coupling is small, being 
limited by the fibre acceptance angle. Several coupling 
techniques have been reported which increase the coupling 
efficiency.' 6 Of these, the microsphere lens glued onto the 
fibre endface provides one of the highest coupling efficiencies. 6 

The high efficiency arises in part from the ability to select 

10 

09 

08 

3-
8 07 -

D 
E 06 -
o 
c 

-18 -12 -6 0 6 12 18 
lens offset,urn [j^] 

Fig, 2 Calculated dependence of normalised coupling efficiency on lens 
offset. Curves for offset parallel and perpendicular to laser junction plane 
are shown 
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plastic, namely Delryn. was used to provide the required ex
pansion as shown in Fig 4. The dielectric disc is suspended on 
a stainless-steel screw to allow initial height adjustment The 
length of (he Delryn section was computed for A/ = 40 MHz 
over the temperature range - 50 to + 100°C. From Fig 3f>. 40 
MHz compensation requires d to vary from 0 to 0 1 mm. The 
length L is then calculated from the formula 

L = 
A T 

L = 7 2 mm 

where a = coefficient of linear expansion = 9 x 10~ 5 /°C for 
Delryn. 

The circuit in Fig. 2 has a total frequency change of only 16 
MHz over the temperature range - 50 to + 100°C, in compari
son with an uncompensated value of 48 MHz. 

The degree of compensation can be altered by using either 
different materials or different dimensions for the differential 
expansion system and different physical sizes and dielectric 
constants for the disc. Thus trapalt diodes with different 
frequency/temperature characteristics can be accommodated 
in the design. 

micrometer 

dielectric 
Spacing d 

conductor 

4 5 6 7 8 
spacing d. p m ( « l 0 ? ) 

Fig. 3 
a Calibration rig 
h Frequency change against spacing 

A similar arrangement of suspended dielectric disc but with
out the differential expansion system provides a convenient 
method of mechanically tuning the oscillator frequency. This 
could be incorporated at another point on the delay line and 
would then be totally independent of the compensation 
system * 
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The first and third terms of the next equation for I(z) have 
an e~*T multiplier; this results in a common multiplier z~' 
being removed from the remaining equations for 7(z). The 
final equations are therefore: 
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Digital active network analysis 
F.G.A. Coupe, B . S c , Ph.D., and J.I. Sewell, B .Sc , Ph.D., C.Eng., M.I.E.E., Sen. Mem.I.E.E.E. 

Indexing terms: Active networks. Filters. Analogue<iigiial conversion 

Abstract: An analysis technique is presented and developed which enables analogue active networks and 
digital filters to be combined into a new type of neiwork. ihe digital active network. The poiemial 
effects of limit cycle noise aic extensively considered and for a practical example both the results of 
computer analysis and actual measurements aje given. 

1 Introduction 

Analogue active networks and their associated mathematics 
have been very extensively investigated in recent years, as 
have digital filters and sample data systems in general. This 
paper derives techniques for combining both topics in 
order to make a new range of circuit realisations, digital 
active networks. 

A simple approach to this new technique could be to 
feed a digital fil ter with A' input ports f rom N voltage 
sensors and feed the filter outputs to A' current 
generators. By strapping the voltage sensor inputs to the 
current generator outputs, one type of A'-port digital active 
network can be created. However, this does not meet 
the initial criterion of truly mixing analogue active 
networks with digital filters, and hence it is necessary to 
analyse the whole concept very carefully. 

Digital active network theory may be used to extend 
greatly the theory of digital filters by enabling analogue 
components to be mixed wi th these filters, and by showing 
how the digital equivalent can be designed of gyrators, 
circulators, impedance convenors, impedance inverters and 
so on. The exact nature of every possible application 
cannot be explored in this paper. 

However, i t is the purpose of this paper to present a 
coherent analysis of digital active networks through which 
detailed applications may be designed. Conversely it 
is clear that there must be a theoretical basis which can 
describe what happens in a digital active network and so 
a coherent theory is a better start than an approximate 
design method. 

2 Digital transadmittance amplifiers 

In order to make an A'-port digital active network it is most 
convenient to choose the admittance matrix as a starting 
point because of the ease wi th which transadmittance 
amplifiers (analogue or digital) may be designed. 

Digital transadmittance amplifiers (d.t.a.) may be 
conveniently defined to fol low their analogue counterparts, 
a block diagram being shown in Fig. 1. The presence of 
analogue-to-digital (a.d.) and digital-to-analogue (d.a.) 
convenors is not obligatory as charge-coupled (c.c.d.) or 

"scaler z.o h [digital 
H filer 

I Hz) 

da. 
converter. 

current 
generator 

Fig. 1 Block diagram of digital amplifier 
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bucket-bridge (b.b.d.) devices could be used. However, they 
are included because they modify the stability of a digital 
admittance matrix. The overall transfer function of the 
d.t.a. may be defined as the pulse transfer function (p.t .f .) 
of the d.t.a., namely 

y(z) = I(z)IV(z) 

= gf(?) 0 ) 

where g is the scaling constant and / ( z ) is the digital-
filter transfer function. 

The scaling constant can be implemented as a 4-quadrant 
digital multiplier i f sign reversal is required or defined by 
the reference voltage input to the d.a. convenor; this 
latter option wil l normally restrict the scaling to 2-quadrant 
operation. 

Fig. 2 shows the block diagram of an arbitrary sampled 
analogue admittance. By definition 

/(s) = H(s) K * ( 5 ) (2) 

where H(s) is the analogue Laplace-domain transfer 
function and V*(s) the sampled Laplace input voltage. 
In order to analyse the output state at the sampling 
instants it is expedient to hypothetically sample, thus 

which is conventionally rewritten 

(3 ) 

(4) 

However, the sampling of a Laplace variable may be written 
t h u s 1 ' 2 ' 3 

= — I V(s+jrWt) (5) 

where T, is the sampling period and thus the sampling 
process has modified the units of V*(s) by dividing by time. 
Thus, to correct for this, eqn. 4 must be rewritten as 

/*(*) = TeH*(s)V*(s) 

This point has been mentioned but not derived.' 

(6) 

Ms) 

v(ti 

V(s) 

_ v"(t) 
H (s) 

i(t) 

V*(s) l(s) 

Fig. 2 Sampled analogue admittance 
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Now H(s) may be defined generally: 

m - 'f— 

S b:S' 

and defined using eqn. 5: 

1 
— £ / / ( i + / n v s ) 
/<• r = - o 

1.7} 

(8) 

When n > m, the series for H*(s) is divergent and hence 
H*(s) cannot be found; H(s) may be said to be untrans-
formable. 

By the same definition 

1 
T. I 

i 
{H(s+jrw,)\ 

(9) 

When n>m, the series for {l/H(s)}* is now convergent, 
and hence l/H(s) is transformable. 

Now consider the product of two Laplace transfer 
functions Hx (s) and H2 (s) where 

H{s) = H2(s)H2(s) (10) 

I f H*(s) and H2(s) can be found then H*(s) can also be 
found. However, i f either cannot be found then neither 
can H(s) be found. 

Now the network in Fig. 2 has been arbitrarily defined 
such that H(s) is an admittance, but it may be rearranged as 
in Fig. 3 to become an impedance and hence eqn. 6 can be 
rewritten as 

Thus the Z-transform may be written 

1 
T 
1 8 1 

•nz) 

en) 

(12) 

(13) 

This result is important in the analysis which follows. 

3 Digital admittance matrix 

A digital admittance matrix may be formed by intercon
necting digital amplifiers such that each digital amplifier 
simulates an element of an admittance matrix. As each 
digital amplifier would normally contain an a.d. and d.a. 
converter, a considerable simplification can be made 

v"(s) 

Its) 

1 

H (s) 

\ 

v(t) 

l"(s) 

1 

H (s) V(s) 

by using only one a.d. convenor at each porl which 
feeds each digital amplifier in any given column, further
more the output of each digital amplifer in any given row 
can be added before d.a. conversion. Another simplification 
would be to multiplex the d.a. convenor used in the 
voltage sensing a.d. convenor for use as the current 
generating d.a. convenor. 

A digital admittance matrix lias been defined as the 
pulse transfer function of each element of the analogue 
admittance matrix. Now by definition each element of the 
analogue admittance matrix convolves with either a 
sampled or unsampled port voltage: 

I(s) = Yl(s)V(s) + Y2(s)V*{.s) (14) 

where each variable is now defined as a matrix. 
As Y2(s) represents the transfer functions of the 

digital amplifers present it is intrinsically possible to find 
Y2(s) and hence Y2(z). Now in order to analyse the 
state of the ;V output currents at the sampling instants 
it is convenient to introduce hypothetical samplers which 
wil l sample both the input voltage and output current 
at each port. Thus eqn. 14 becomes 

/ • t o = l Y t W ^ y + iYAnvwy 
= T.[YHS) + Y;(S)]V*(S) (15) 

I f Y'(s) can be found then the Z-transform of eqn. 15 
produces the digital admittance matrix Y(z): 

Y{z) = TsZ{Y{s)} (16) 

If any element of K,(s) cannot be transformed then 
Y(s) must be manipulated to produce a transformable 
admittance matrix. Eqn. 13 showed that the inverse of the 
transform of the inverse could be used instead. This may 
be applied to Y(s) by dividing through the row containing 
the untransformable element by that element and may be 
repeated as may times in a row as necessary. 

This may be done in matrix form by defining a 
diagonal matrix wi th elements consisting of the products of 
the untransformable elements in Y\ (s): 

0-

0 0 -

0 

0 
• s i 

i 
(17) 

where the general element^,- may be defined: 

K, = (product of untransformable elements in ith row) 

Now, by definition, 

Yds) = I ' u ^ ' l ' u . i 08) 

However, the term Y'y K, (s) is transformable because 
dividing through by the untransformable elements yields an 
entirely transformable matrix. Thus eqn. 14 becomes 

and, after hypothetical sampling, 

Fig. 3 Sampled analogue impedance 
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Each sampled term may now be Z-transformed to give the 
digital admittance matrix: 

Hence .-!.\>(rl is superseded by a voltage-transfer vector 
QN(:) where 

¥(•) -[Z\Y-i}]-l[Z\Y-dY{_s)\] (21) 

The digital impedance matrix may be similarly derived by 
rearranging eqn. 20 before taking the Z-transform: 

Z(z) rs[z\Y^r(sY,]' \Z\Y-, 122) 

and this is clearly the inverse of eqn. 21 . 
In order to use conventional definitions, Ziz) is used to 

mean the digital impedance matrix, and may be 
distinguished from the process of taking the Z-transform 
such as Z{K"()} by the type of brackets used. Hence 
whatever mixture of analogue components and digital 
amplifiers has been chosen, it is always possible to find 
the digital admittance and impedance matrices, providing of 
course that one or other is not singular. 

4 Limit cycle noise 

I f the digital amplifiers within a digital active network 
incorporate amplitude quantisation because of a.d. and 
d.a. convenors then this effecl may be conventionally, 
represented as uncorrelated noise inputs to each digital 
amplifer. 5 Hence quantisation noise wil l also be present 
as a noise current at the output of each digital amplifier, 
and these noise currents may excite the whole digital active 
network to show limit cycle oscillations. 

For the purpose of tliis analysis all N a.d. convertors in 
an arbitary /V-port digital active network will be assumed to 
be identical, that is they have the same number of equal 
sized quantisation steps which are also aligned. If these 
quantisation levels are not aligned then quantisation noise 
can be serious, but the amplitude of any noise effect at 
any frequency can be predicted and enough bits used in the 
a.d. convertors to reduce these effects to an 
acceptable level. 

Consider an admittance matrix Y N ( s ) consisting of only 
those elements of Y(s) derived from digital amplifiers 
which include amplitude quantisation. Thus the noise 
output current l N ( s ) wil l be 

M s ) = YN(s)V%(s) 

By taking the Z-transform 

l N ( : ) = Y N ( z ) V N ( i ) 

(23) 

(24) 
Now l N ( z ) will excite the whole digital active network 
by way of the digital impedance matrix: 

V 0 ( z ) = Z ( z ) Y N ( z ) V s ( z ) (25) 

and thus a voltage transfer matrix AN{z) may be defined: 

AN(z) = Z(z)YN(z) (26) 

Now the elements of the column vector V N ( z ) will all be 
equal by the present definition. Furthermore the elements 
of I o(-) ; |re also inputs to the sai.'e digital amplifier. Thus 
V N ( z ) will become a column vector with all elements set 
to I . and scaled by an r jn . s . voltage l ' s related to the 
quantisation step size A I ': 

/ (±vy 
V , 2 

(27) 

<h<:) "< / ( - ) (28) 

and (//(:) is the/th element of QN(- ). 
Now the whole digital active network will display limit-

eye!: oscillations i f at any frequency 

VhU)I > 1 (29) 

r may take any value within the Nyquist range that 
maximises \qfa)\. However, the necessary value to cause 
oscillation must lie between 1 and 2 because although the 
noise will have been amplified by <?,(-), it will not have 
exceeded another quantisation boundary. Thus 

\qj(z)\ > k (30) 

where 1 < k < 2. 
I f the a.d. convertors are accurately aligned then k takes 

its maximum value and eqn. 30 may be rewritten 

(31) 

Any mismatch in the a.d. convertors will reduce the value 
of k causing the digital active network to be potentially 
more unstable. A special case occurs i f every element of 
Y(s) is derived from a digital amplifer: 

Y N ( z ) = Y(z) (32) 

and hence 

AN(z) = U (33) 

where U is the identity matrix; U is used to avoid con
flicting with the current vector / . Thus under these 
conditions eqn. 31 can never be satisfied because 

l (34) 

Hence a digital active network constructed solely from 
digital amplifiers cannot show limit cycle noise providing 
that a.d. convertors are identical and aligned. 

The limit cycle oscillation analysis has considered only 
the effect of amplitude quantisation producing amplified 
quantisation noise. The actual amplitude depends on the 
absolute size of AN and thus, for a given dynamic range, 
a large number of quantisation levels is preferable. The 
presence o f numerical round-off in the other stages o f the 
digital amplifier wil l also affect the limit-cycle 
c r i t e r i o n . 6 , 7 ' 8 , 9 However, coefficient accuracy wil l only 
be a problem in digital active networks 1 0 i f the coefficients 

hypothetical; 
samplers 1 

digital-
amplifier 

array 

—Ore
l's 

Fig. 4 Digital-amplifier array 
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3 4 5 

in each element come from digital filters rather than 
from analogue circuit components, because the latter have 
values which cannot be rounded off . 

j , - e x p ( - s r j | 
/2O) = ~S: 1 e x p ( - s A ; r s ) 

5 Element resolution 

In a digital amplifier the presence of an amplitude quantiser 
introduces an uncertainty into any attempted measurement 
of the transadmittance. Hence the overall amplifier 
operation may be written as 

]j + AI = ( y u + Ayu)( Vj + A10 (35) 

for the element >>,-,-. The fractional error in ytj will be 

A j ' r j 

•^7 

_ A / A K 
(36) 

However, by definition A F < £ l.s.b. and thus / wil l not 
change, making A/ = 0. Hence 

AV 
(37) 

Now by definition {g + sCi) and sCz cannot be trans
formed and thus Y v may be written as 

Thus the inverse is 

(g + sC, I 0 

0 s C 

1 

1 + sC, 

Further 

0 

1 

sC2 

(40) 

(41) 

{1 -exp(-sTs)} 
Z^ T , ^ ^ e x P ( - s K ' r » ) sfe + sC,) 

{1 -exp(-sTs)} 
- «2 7- exp ( - sA. 2 r s ) 

s 2 C 2 

1 

However, Vj/AV is the number of quantisation levels M in 
the a.d. convertor and thus 

M 
(38) 

Hence no digital amplifier transadmittance may be 
1 

measured to an accuracy greater than —• 
M 

6 Example: digital gyrator 

A 2-port capacitively loaded digital gyrator forms a suitable 
example to illustrate the analysis o f a digital active 
network, and i t is shown in Fig. 5. The basic equations 
describing the gyrator may be written down: 

/ , ( s ) = fe + sC, )K, (*) + / , ( * ) V2*(s) 

A ( s ) = -Mn)V*^) + sC2V2(s) 

where 

(' - exp (-sTs) 
fx(') = g 1 r exp (-sK,Ts) 

• ? ( s r > / \ — < " f , ( s ) 
V digital y 

amplifiers 

Eqn .4 l may be Z-transfonned 10 give 

0 
- a 1 

i 1 
0 

YUM 
C, \z-oc 

C2 z - 1 

where 

a = e x p ( - £ ? / C , ) 

Eqn. 42 similarly gives 

J (42) 

(43) 

(44) 

( 3 9 ) 

_ I 

C2 ' z - \ 

(45) 

Thus Y(z) may now be obtained 

Y{z) 

(1 - a ) z -

-«2 7"sz" 

Fig. 5 Two-port capacitively loaded digital gyrator 
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and by inversion Table 1: Component values for digital gyrator example 

Z(z) = T, 

> > + K : + 1 ( z - l ) ( I - a ) 

c, 
(z - a ) 

. c,cV C 2 

where 

M{z) = zK>+K'(z 

M(2) 

l ) ( z - a ) + T , 
(1 -a)gig2 

gC2 

(47) 

(48) 

The digital gyrator as defined is a mixture of analogue 
components and digital amplifiers, and thus it is possible 
that limit-cycle oscillations may be present wi th certain sets 
of component values. Thus the voltage-transfer vector 
(see Section 4) must be derived. 

Y N ( z ) may be written down thus 

0 

-g-iZ 

g\Z 

0 
(49) 

and thus the noise-voltage-transfer matrix AN(z) wil l be 

tf,*2(l-a)z £ , z K > + 1 ( z - l ) 

gC2 

~g2K 

c , 

g\giTj 
C , C 2 

M[z) 

(50) 

* z * > * ' ( 2 - l ) + * , * l ( , ~ a ) z 

Thus the voltage-transfer vector QN(z) may be written 

~g7 
QN(.Z) 

gCi 

- (z — a)z K i + 1 , Z\SiT^ 

c,c2 

(50 

M(z) 

In order to determine whether limit-cycle oscillations can 
be present theoretically, the two elements of the above 
vector must be evaluated for a range of frequencies, for 
values o f z, and for various values o f the components 
g,g\ ,g2,Cx and C2. 

In order to verify the theoretical analysis the two 
elements z M and z 2 ] of the digital impedance matrix were 
studied for a particular set of component and parameter 
values shown in Table 1 by computer program and practical 
experiment. 

Parameter Parameter meaning Value 

** sampling frequency 26-6 kHz 
sampling period 18-75(is 

c, port-1 shunt capacitance 9-6 uF 
C, port-2 shunt capacitance 10uF 
9, .9. transconductances 10mS 
R. port-1 shunt resistance 50,100.200, 300 

400, 500 P. 
If, , K fractional delay 1 

7 Computer analysis 

The denominator {M(z)} of the digital impedance matrix in 
eqn. 48 was analysed to find the pole positions, and the 
modulus of the roots nearest the unit circle are listed in 
Table 2. Gearly these roots wi l l lie within the unit circle 
and hence the digital gyrator wi l l be stable. 

Table 2 also shows the resonant frequency and the 
magnitude of z n and z 2 , at that frequency. Figs. 6 and 7 
show the frequency responses for the magnitudes of z n 

and z 2 , as a continuous line. From the prediction in eqn. 
31 no limit cycle noise is to be expected with the shunt 
resistor set to 50 or 100 ft. A noise voltage will occur, 
however, when the gyrator is excited by an external signal 
generator with the shunt resistance set to 100 ft, but this 
wil l not be self sustaining. 

Table 3 shows the limit-cycle noise-voltage peak gains 
at the two ports o f the digital gyrator together with the 
expected r.m.s. noise voltage. This assumes a quantisation 
step size of 125mV which gives an r jn .s . noise voltage 
of 3 6 1 mV. With the shunt resistance set to 5 0 f t no 
peak in either voltage gain was discernible. No account 
has been taken o f the filtering effect of the resonance of 
the capacitively loaded digital gyrator. 

8 Practical experiment 

A digital machine was constructed (Fig. 5) which consisted 

900 r computed 
R s = 5O0n 

R»=500n 

R«=tOnn R.=400rt 

Ft. = 300n R. =300fl 

R = 200A R = 20011 

R s = 50n 
Rs=ioon 

R.=wn 

0 0 1000 2500 
logc(frequency). Hz 

Fig. 6 Computed and measured frequency response for z, 

Table 2: Results from computer analysis of digital gyrator 

Sampling period = 18-75 us Shunt resistance, SI 

50 100 200 300 400 500 
modulus of largest denominator root 
resonant frequency, Hz 
Zu peak impedance, 12 
Ztl peak impedance, n 

0-9812 
162-11 

52-46 

0 9908 
162 11 
107-00 

0-9957 
162-11 
22646 
227 97 

0-9973 
162-11 
362-08 
358€4 

0-9981 
162-11 
51726 
509-79 

0-9986 
162-11 
697 07 
685-13 
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Table 3: Predicted limit cycle noise atr.plitude 

Shunt resistance, P. 

50 100 200 300 400 500 

port-1 voltage gain _ 1 5209 3 1389 5 0019 7 1406 9.6166 
port-1 r.m.s. noise voltage, mV - 54 9 1 13-3 180 5 257 7 347 0 
port-2 voltage gain - 1 0474 2 4929 4-2852 6 3671 8-7841 
port-2 r.m.s. noise voltage, mV - 37-8 90 0 154-6 229-8 317 0 

900 

800 
computed 

700 
R i = 500D 

600 

500 
q 

R s =4000 

300 
Rs=300fl 

200 R s = 200fl -
R^roon^ 

0 
K) DO WOO 2500 

log 0 (frequency). Hz 

Fig. 7 Computed and measured frequency response for z } ] 

of two cross-coupled identical digital amplifiers. Each 
digital amplifier contained a 5-bit voltage-sensing a.d. 
convertor, or 4-quadrant digital multiplier and a 10-bit 
current generating d.a. convertor. The relevant parameters 
and component values are shown in Table 1. 

The digital amplifiers were aligned by setting the 
input to the 4-quadrant multiplier to maximum and 
adjusting the current generating d.a. convertor refer, nee 
voltage until a transconductance of lOmS was obtained. 
The a.d. convertor was multiplexed between the two 
amplifiers but because of circuit complexities two 
separate d.a. convertors were used. 

The frequency responses for the magnitude of the 
digital-input impedance z n and forward-transfer 
impedance z 2 i were measured and are plotted in Figs. 6 
and 7 as a broken line. The measured frequency responses 
have taken into account the limit cycle oscillations present 
when «„ = 200, 300, 400 and 500 fi. These osculations 
were found as theory predicted. 

9 Conclusions 

The main advantage of digital active networks are that they 

extend digital filters to include both passive analogue 
components and active analogue circuit configurations. 
They do not enhance, strictly, analogue active networks 
because the presence of even one sampling stage in a 
network means that digital-filter analysis techniques must 
be employed. 

The extension to digital filters is fundamental, because 
whereas a digital filter may be regarded as processing the 
complete signal, the digital active network partitions the 
signal into measures o f voltage and current. Hence the 
conventional analogue concept of impedance, admittances 
etc. can be extended to make digital impedances, digital 
admittances etc. This does not apply to ordinary 
digital filters. 

Hence with the advent of digital active networks, digital 
filters are now able to perform all the funcitons and have all 
the properties of their analogue counterparts. 
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COMPACT MATRIX SCHEME FOR USE IN 
COMPUTER ANALYSIS OF SWITCHED-
CAPACITOR NETWORKS 

Indexing terms: Circuit theory and design, Switched-capacitor 
networks. Computer analysis 

The matrices that normally occur in the analysis of multi
phase switched-capacitor networks are quite large and very 
sparse. A technique is presented which reduces the matrix 
order and increases the fill. Storage requirements are mini
mised and the arithmetic handling of large arrays is reduced 
without recourse to sparse matrix procedures. 

For the analysis of multiphase switched-capacitor (SC) net
works a number of basic matrix representations are possible. 
The modified nodal approach (MNA) does have advantages 
deriving from the structure of the matrix, but will generally 
require manipulation to avoid singularities and sparse tech
niques to improve the numerical routines. Here a definite 
nodal admittance method 1 ' 3 is favoured since it allows simple 
reduction in order and increased f i l l techniques to be im
plemented. Network parameters can be computed in a 
straightforward manner by condensation and cofactor tech
niques. 

For a multiphase SC network, the Tc periodic clock signal 
(the total period over which all the switching sequences are 
completed), is divided into p basic time intervals of length 
T = Tejp. During each basic time interval no switch signal is 
varied. Let / ' , V' (1 < / < p) be the nodal current and voltage 
vectors for each basic time interval, and for the kth clock 
interval define l[ = ({kp + (i - 1)}T) and V\ = V({kp + 
(i — 1)} T). Then, for one complete cycle, 

cess. The nodes in the reduced mairi.x are renumbered lo gen
erate a minimal sel A/' for lime interval i. Repeating this for 
all the lime intervals introduces a global minimal set of nodes 
A f s and a minimal sel of equations. For a network . I with \ 
physical nodes, the total number of relevant nodes in a time 
interval is m1 = .\: - n's. where n[ is the number of swiiches 
closed during interval i. then Af = {1. 2. 3 ... m'), and the 
lotal number of rows or columns in )' is m = , m'. For 
sensitivity and other studies it is essential not to lose the orig
inal node identities, so an index vector is used to record all 
movements of rows and columns. The complete index vector is 
a concatenation of the interval index vectors and simply maps 
the definite capacitance matrix t ' i n to all the Y''. 

However, it is apparent that Y will still be a very sparse 
matrix. Sparse techniques could be used, but these can be 
avoided by the following method. Note that all the on-
diagonal partitions of Y are frequency independent and that 
all off-diagonal portions have a multiplier and are fre
quency dependent. Commence with interval p and remove, by 
pivotal condensation, all nodes apart from the input and 
output nodes and any others to be retained for sensitivity 
calculations and the like. This yields a matrix of the form 

Y" 0 0 ... 0 :-'Y;-'-' -r'Y!' 
- 1 y i 1 Y" 0 0 0 0 
0 z-'Y" >"' 0 0 0 

6 0 0 - . - - '> ' ' - ' •'-' Y ' ' 0 
0 0 0 ... 0 -:-'Y;-'-' Y" 

where Y'l indicates a reduced matrix. This process is repeated 
down to interval 2 and yields 

K - I C r " 
-r'r;' 

- i i"" . - -
1 - IL--

f is much more compact than Y, of lower order and greater 
density. In fact Y need never be created, the submatrices of f 
can be generated sequentially when needed and the space 
reused for other submatrices in the successive condensation 
steps. For transfer function calculations only array storage of 
[ m m + 2(p — l ) ] 2 -t- [ m " 1 ] 2 is required, compared with m1 for 
Y. 

Ordinary operational amplifiers without frequency depen
dence can be accommodated very easily.3 Since the operation 
of both is continuous and without storage, a typical current 
equation becomes 

r((n + 1)T) = £ 3 { | / - ( ( n + 1 ) r ) _ y>-.(„r)} 

'l = 
IC] 

11 = ^-{VI-v\) 

where C is the definite capacitance matrix of the network; it is 
very easy to write down by inspection and is easily assembled 
in a program. Let Y'J = [ C J ] / T relate the currents during 
interval i and voltages during interval j. 

Applying the i-transformation gives the matrix 

Y" 
-:-'Y! 

1 

1 

0 1 0 I. 

1 0 I-

1 

-• J-

0 
0 

1 

X 

. - 1 Y1' 

0 
V" 
V' 

0 I -
1 

1 V " 1 
r : T 

.. 1 
; 1 

0 1 0 y[ 
0 

4 -
1 0 

\- - + 
i o i -

- (- -
~'Y~' 

— -L — 
" ' 1 Y" ~ V' 

or / = YV. 
The C' are of lower order than C in general and can be 

derived from it by contraction representing the switching pro-

+ lYA]Vi({n+l)T) 

The definite matrix Y A contains all the conductance terms due 
to the amplifiers in the network. Only the Y" submatrices will 
contain terms from Y A and their inclusion via the index vector 
follows the pattern outlined. 

Having assembled f , the sampled transfer functions are 
computed, first by further pivotal condensation of internal 
nodes from the top left-hand submatrix. Multiple sampled 
transfer functions exist, p2 in theory, in practice only a limited 
number of these may be of importance, but a general program 
must have the capability of computing all the accessible trans
fer functions or whichever ones are specified by a user. Consi
der one input time interval excitation and compute all the 
transfer functions with respect to output voltages at all the 
time intervals. This is accomplished by setting to zero all the 
unwanted input excitations, other than /;„ and V\„, say. Re
moving all the rows and columns corresponding to these en
tries gives a reduced matrix r' R . 

v 
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By this stage YR is small, and application of Cramer's rule is 
quite efficient giving the transfer function H'' = (A'^/A'j) V j. 

The calculation of A'j is required once. The process is repea
ted for transfer functions with respect to all input time inter
vals. The frequency loop is deferred until this stage when the 
size of matrix is an absolute minimum; this leads to compu
tations of maximum speed and accuracy. Scaling of matrices is 
used throughout to ensure maximum accuracy. 

This routine has been implemented in the program S C N A P 
2. and improvements in speed by a factor of 3 over that ex
perienced with program S C N A P " on 2-phase S C circuits have 
been achieved. O n an I C L 1904s computer analysis of multi
phase examples yielded encouraging performance figures, for a 
5th-order elliptic filter5 (four time slots, 20 nodes), 56K store 
and 0-3 s/frequency point, and for a 7th-order Chebyshev 
filter6 (six time slots, 31 nodes), 6 0 K store and 0-8 s/frequency 
point. Comparative figures from the same program mounted 
on an I B M 360/195 show speed increases by a factor of 10 but 
at some cost to storage. 

F o r amplifiers with frequency dependence the matrices no 
longer retain features that permit a compact formulation. 
More general routines have to be used and no simple time-
saving techniques can be invoked. 
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F I R S T - O R D E R T H E O R Y O F T H E F I V E -
P O R T S Y M M E T R I C A L S T A R J U N C T I O N 

Indexing terms: Microwave circuits and systems, Reflec-
tometers 

It is shown that, from the three conditions of (a) five-fold 
symmetry, (fcl reciprocity and (c) freedom from loss, useful 
constraints can be found on the elements of the scattering 
matrix of a symmetrical five-port star junction. These con
straints can be used to set limits to the possible positions q, 
of the centres of the ^-circles when the five-port junction is 
used as an element in a six-port refleclometer. 

Introduction: Hansson and Riblet 1 have demonstrated that a 
five-port symmetrical star junction can be used as a key com
ponent in a six-port reflectometer of the kind described by 
Engen in an excellent review article. 2 The basic properties of 
such junctions have been known for many years, and were 

elegantly derived by Montgomery ei al.s from symmetry con
siderations. 

The principal result is that, if the five-port junction is com
pletely matched, power entering any one port will be equally 
shared amongst the other four ports if they are terminated by 
matched loads. Moreover, the phase difference between a port 
adjacent to the source port and a port not adjacent to the 
source is 120\ 

In the reflectometer application, the five-port is connected 
as shown in Fig. I. 

Fig. ! 5-port junction in 6-pon refleclomeler instrument 

The unknown is connected to port 3 and its reflection coef
ficient P, is determined by the intersection of three circles 
whose radii are found from the powers P2, Pt and Ps normal
ised to the forward power P6. 

If the junction is perfect, if the power meters are perfectly 
matched, and if the directional coupler D C is perfect the 
centres of the circles will be at — 2 and at 2 exp [ + j(n/3)] in 
the complex reflection-coefficient plane. A change in the refer
ence planes, maintaining symmetry, will simply rotate the 
three centres around the origin without changing their relative 
positions. 

We ask how far from these ideal positions the centres may 
move if the five-port whilst remaining symmetrical, reciprocal 
and loss-free, is not perfectly matched, again assuming a per
fect directional coupler and perfectly matched power meters. 
We assume, therefore, that its scattering matrix can be written 
in the form 

[S] = 

y a p p 
a y a fi 
P a y a 
P p a y 
a p P a 

(1) 

from which the unitary matrix condition gives the following 
equations: 

| y | 2 + 2 | « | 2 + 2|p>| 2 = l ] 

ya* + ay* + aP* + Pa* + PP* = 0 

yP* + Py* + ap* + pa* + aa* = 0 I 

(2) 

The ideal values of a and p are 

*o = I exp | 

Po = l e x P I 

•('!) 

• H ) (3) 

We now assume that a and P depart slightly from the values 
given by eqn. 3 and write 

a = a0 + da 

P = Po + W (4) 

and treat Sa, dp and y { = | >• | exp (j<t>)} as small quantities. 
With suitably redefined reference planes, and neglecting 
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Circuits and Systems Letters. 
Improved z Plane Polynomial liiterpolaUve Analysis 

of Switcbed-Capacitor Networks 

D. G. JOHNSON AND J. I . SEWELL 

Abstract —The accuracy of interpolated polynomials in z is considerably 
improved using a transformed sampling plane and the F F T . This is further 
enhanced when the transformation is coupled with partitioned polynomial 
interpolation. One solution to the problem of over-interpolation also fol
lows. 

Polynomial interpolation schemes have been employed success
fully in the past to the analysis of continuous networks, active 
and passive. A number of current computer programs for analy-
sising switched capacitor networks [ l j , [2] have adopted similar 
routines in the z plane. 

I f a typical transfer function is / / ( z ) = N(z)/D(z) the indi
vidual polynomials of type 

F ( z ) = t a i z > 
;-o 

can be determined by interpolating with n + 1 samples { z , } and 
n + 1 correspondingly sampled responses F(z,). The process cor
responds to solving A=*o~>F where a is the Vandermonde 
matrix of samples { z , } . Now o " 1 can be formed using a Traub 
technique [3]. Alternatively any standard interpolation method 
(Langrange, etc.) could be used for the process. The samples { z , ) 
can be chosen anywhere in the complex plane, with some prefer
ence for a circular array, which generally gives best accuracy. It 
transpires [4] that i f a circle of unity radius and centre {0,0} is 
used, then o " 1F is exactly equivalent to performing an FFT. This 
has many computational attractions, as much effort has been 
invested in providing extremely fast and accurate FFT routines. 

However, two problems arise with the application of the FFT 
to the analysis of SC networks. The first is due to the very 
compact pole-zero locations associated with standard filter func
tions when displayed in the z plane. These tend to congregate in 
a small segment within the unit circle, a process which is exag
gerated with increase in function order and complexity. Bandpass 
functions generally present the most severe case. A useful test 
network for evaluation purposes is a sixth-order bandpass filter, 
whose pole-zero locations are shown in Fig. 1. For maximum 
accuracy of the z polynomial coefficients, the system should be 
sampled in the region close to the poles and zeros, where the 
function is most sensitive to small changes in pole-zero position. 
Clearly, for a set of sample points uniformly distributed around 
the unit circle there wil l be some points distant to the left of the 
singularities and hence the response vectors associated with these 
will be almost coincident and certainly form a mechanism for 
numerical inaccuracies. The error function shown in Fig. 2 is the 
difference between the response of the filter computed by a 
standard frequency analysis program SCNAP 2 and that from the 
polynomials produced by basic FFT interpolation. This displays 

Manuscript received December 21, 1983 This work was supported by the 
Science and Engineering Council. 
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Fig. 1. Pole-zero plot for 6lb ordeT SC bandpass filter. 

the result of the error mechanism and is really not acceptable. 
Table 1 shows the peak magnitude error for a number of filters, 
f rom which an ominous trend is clearly visible. 

Consider the two planes w and z, Fig. 3. These are related by 
Z - 1 = M>T where r is the radius of a new sampling circle 
centered on {1,0}. Performing an FFT with a normal set of 
samples from the unit circle in w and a corresponding set of 
sampled responses derived from the circle in z wil l yield 

n 

H w ) = ° T , a ' i w ' -
i - 0 

Replacing w by (z - l ) / r gives 

n * ) - i a ; ( z - i ) « r - i . 
i - 0 

Equating coefficients with 

gives 

with 

F(z)-
; = o 

£ « * r - * c ( * ) ( - ! ) < * + '> 

i n -
k \ / i \ { k - i ) \ . 

the set of pseudo coefficients {a-} is, therefore, easily convertible 
into the actual set of coefficients { a , } . Of course the frequency 
response can always be evaluated from F(w) anyway. The results 
of applying this technique to the same filter are given in columns 
1-3 of Table I I and show the routine to be very effective. 

Whilst the reduction in error is/ significant, it is possible to 
improved the performance even further. High order systems are 
likely to feature several compact groups of poles-zeros, particu
larly bandpass structures. To really enhance accuracy, consider 
the possibility of employing a number of sample circles of 

0098-40>»/M/0700-0666$01.00 ©1984 IEEE 
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' OB > 

C DB>X 1 

Fig. 2. Frequency response and magnitude error function from inicrpolativc 
analysis. 

T A B L E I 
PEAK MAGNITUDE ERROR FOR VARIOUS FILTERS WITH BASIC F F T 

T A B L E II 
ERRORS FOR BANDPASS FILTER WITH VARIOUS F F T 

INTERPOLATION SCHEMES 

different radii selected to describe the sensitive regions. This can 
be achieved most effectively by partitioned polynomial interpola
tion [5]. 

Take a sample circle centered on z = l with radius r0 and 
consider a set of / samples around that circle say Z 0 , these yield 
a set of sampled responses Fa, A new set of / samples, simply 
related by Z, = 6 ,Z 0 ( i * 0) with b, as a complex constant, will 
yield a new set of samples responses Fj. In general for p parti
tions, there will be p sets of sample points and p sets of sampled 
responses giving: 

•P-\ 

AT.1" 
P 1 j 

^ 0 

where A is the vector of required coefficients, A0 = 
( a „ a , + 1 , - • •, a 2 / _ , } , - D. = 

diag{z, 7 , z , / + 1 , - • •, z ( j + ! , , _ [ } ' a n d ot is a Vandermonde matrix of 
the i th set of samples Z f . Let 0, = C^,, hence zi = C~'eJ2"k/' = 
r.ej2«k/i w h e r e A r - 0 , 1 , 2 , - - S o Cf = r/. Also 6 ( = r , / r 0 

then o, = o 0 B ( , where = d iag{ l , bitbf,- • - ,b'~l). Hence: 

Co 
C, 

Co2 

c, 2 

r 2 

^0 

c r 

Bo' 
1 

> - t 

Fig. 3. w and z planes with sampling circles. 

each On" 'F, involves the transformed FFT as outlined. The inver
sion of the [C] matrix presents few problems since its order is 
equal to the number of partitions which is usually quite small, 
and as it is a Vandermonde matrix a Traub technique can be 
used. The calculation of B~1 is trivial. 

The two final columns of Table I I show the further improve
ments in accuracy with partitioned polynomial interpolation, a 
scheme with 2 partitions in the numerator and 4 in the denomina
tor providing the best results. 
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The partitioned polynomial approach also provides a solution 
to a second problem with the FFT, that is overinterpolation. As 
the number of samples presented to an FFT routine must satisfy 
2", it wil l generally be necessary to round up to the nearest 
integer satisfying this condition. This means having to evaluate 
the system response more times than necessary. Worst cases 
occur for orders of 2" (requiring 2" + 1 sample points) which 
must be rounded up to 2" + 1 , giving 2" - 1 over evaluations and 
almost doubling the computer time for system evaluations. By 
using a partitioned polynomial approach considerable savings 
can be made, particularly with higher order functions and when 
the order lies in the lower part of some FFT band order. I n 
general i f the order n satisfies 2 ' < n +1< ( 2 , + 1 - T~') for some 
integer i, then partitioning the system requires fewer function 
evaluations than the basic FFT. In some instances quite consider
able savings can be made. 

The application of a transformed sample plane and polynomial 
partitioning to interpolative analysis of SC filters demonstrates 
improvements in accuracy and the number of function evalua
tions on even moderate order networks. I t is expected that in 
analysis of high-order SC networks these routines should produce 
significant improvements in accuracy and computer time. This is 
a subject of further work. 
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suffers by a very serious problem of slow convergence [3]. The 
problem is overcome by the algorithm proposed in [4], which 
determines Dp by an extensive use of the adaptive predictor. 
Further improvements are, however, possible by using the con
strained version of the predictor [5], as will be shown in the 
present letter. The resulting algorithm is faster than that pro
posed in [4] and allows a reduced computational cost. 

In the following we will use the notations: 
1) DN is the tap vector of the predictor filter of order N, i.e., 

(i) 
where d0 = 1 and f denotes transposition. The value of DN will 
be adaptively computed by the method proposed in [6]. 

2) P(z) is the polynomial transfer function of the filter, i.e., 

P(0= I dkz- (2) 
*-o 

The roots of P(z) give an estimate of the frequencies of the 
sinusoids of the process. These roots take on the form e ~-,2*/, 
t = 1,2,-•-, A/, since we will use N = 2M and P(z) is con
strained to have its roots on the unit circle. 

3) DB H ( z ) is the tap vector of the constrained predictor of 
order 2H [5J. It results 

'B.H -
D 2 H - 1 

0 

0 
d; (3) 

where the prime denotes the reversion of the components of 

4) Dp(z) is the tap vector which satisfies the constraint re
quired by Thompson's method [2], i.e.. 

N 

* - 0 
(4) 

Harmonic Retrieval by FIR Digital Filters 
G. ORLANDI AND G. MARTIN EL LI 

Abstract —A new algorithm is proposed for determining the F I R filter 
for estimating the frequencies of a process consisting of sinusoids in white 
noise. The algorithm is based on an extensive use of the constrained 
predictor and is characterized by a very fast convergence. 

The use of finite impulse response (FIR) filters for the spectral 
analysis of a process is well known. When the process to be 
analyzed consists of M sinusoids in white noise, the frequencies 
/ , of the sinusoids are estimated by the roots of the polynomial 
transfer function of the filter. On the basis of the theory devel
oped by Pisarenko [ I ] , Thompson proposed an iterative method 
for determining the taps of the filter. The method [2] consists of 
m i n i m i z i n g the output power of the filter under the constraint 
that the length of its tap vector Dp be equal to 1. The rninimiza-
tion is carried out by an iterative gradient procedure, which 
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The new algorithm we propose is based on the following expres
sion for the tap vector Dp (not normalized): 

DP = DBM+ X > , K , 
i - t 

M-i M-i 

VL = f o — - o 1 o _ - _ o l 

M M 

•1 ,2 , - ,M-l 

(5) 

where DBJ, i =1,2,- • •, M is obtained by (3) with H *= i . Such a 
formulation results in a very simple expression for the output 
power W of the filter in the ideal case of an infinite number of 
samples, i.e., 

W= 2 £ 2*-i(l-*2w)+ E a t e i - i O - K a ) 
i - l 

(6) 

where £ 2 , - 1 is the output power of the predictor of order 21 - 1 ; 
K2j is the (2/)th reflection coefficient of the predictor of order 
2 M ; £ 0 is the input power. As a consequence of (6), the value of 
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ABSTRACT 

Techniques f o r the a n a l y s i s o f switched-cap-
a c i t o r (SC) networks by computer means a r e w e l l 
developed, p a r t i c u l a r l y i n the time and frequency 
domains. S y m b o l i c methc is have been d e r i v e d f o r 
i d e a l SC networks (no r e s i s t a n c e s or f i n i t e a m p l i 
f i e r b a n d w i d t h s ) . For networks of p r a c t i c a l s i z e 
s y mbolic a n a l y s i s to produce t o t a l l y l i t e r a l c o e f 
f i c i e n t s i s out o f the q u e s t i o n , but p o l y n o m i a l s 
with n u m e r i c a l c o e f f i c i a n t s and s e m i - l i t e r a l c o e f 
f i c i e n t s a r e f e a s i b l e r e s u l t s . These have c o n s i d 
e r a b l e a t t r a c t i o n i n o p t i m i s a t i o n and f i n e graph
i c a l work. I n the i d e a l c a s e the i n v e r s e of a 
r a t i o n a l m a t r i x H(3) i s r e q u i r e d ; whereas the 
more g e n e r a l c a s e , which i n c l u d e s a l l r e s i s t i v e 
e f f e c t s , w i l l i n v o l v e the i n v e r s e o f a r a t i o n a l 
m a t r i c e s i n both continuous and d i s c r e t e v a r i a b l e s 
H ( s , z ) . A g e n e r a l scheme has been developed f o r 
the s y m b o l i c a n a l y s i s of both i d e a l and n o n - i d e a l 
SC networks. 

R e w r i t e a s [. . .] 
- ? i 

O 

I f \k\ t 0 t h e n a s e q u e n c e f o r t h e I n v e r s e o f t h e s y s t e m s » t r l x 

c a n be d e t e r m i n e d b y a K a d e r n e t h o d [4-] 

l e t d = |A| , N = adj A ( a d j A = d A " 1 ) o 1 -o -o -o o -
-1 d 1= t r 

*1 = A" [ d x I - B N j 

V I - [» »k-l] -k = - L [ V - B V i ] 
(3) 

SYMBOLIC ANALYSIS OF IDEAL SC NETWORKS 

One method f o r e f f e c t i n g the s y m b o l i c a n a l y s i s 
of SC networks ( i d e a l and n o n - i d e a l ) employs a top
o l o g i c a l f o r m u l a t i o n [ l ] . Here a compact MNA form
u l a t i o n has been u t i l i s e d , w i t h s w i t c h i n g i n t r o 
duced v i a c o n t r a c t i o n and a compaction scheme ^2^ 
for m u l t i p h a s e networks. T o t a l l y a r b i t r a r y m u l t i 
phase s w i t c h i n g arrangements can be accommodated. 
I n s t a n d a r d MNA form £3] : 

where I s t h e p r e s e n t s t a t e m a t r i x , t h e p r e v i o u s s t a t e m a t r i x , 

the p r e s e n t s t a t e e x c i t a t i o n v e c t o r and X p r e s e n t s t a t e r e s p o n s e v e c t o r . 

d = B N adj B 

where n i s determined by rank B_. T h i s g i v e s a max
imum v a l u e f o r n, i n p r a c t i c e t he degree i s u s u a l l y 
l e s s and zero c o e f f i c i e n t s may be su p p r e s s e d . 

Then 

H (z) = [A 
- l - i - l J N z ' L 

3 Bj i=0 -1 = 

i=o d.z 

1=0 - i 

D <z) 

(4) 

where D(z) i s the denominator common to a l l terms 
and m <̂  n. 

I f IAI = 0 and | B | = 0 then d e f i n e a new v a r i 
a b l e 2= z + e where e = c o n s t a n t , o f such a v a l u e 
to ensure t h a t the m a t r i x p e n c i l £ EB+A} i s r e g u l a r . 
A Kader sequence w i l l then produce N (a)and D (z) . 
A p p l i c a t i o n o f P a s c a l ' s t r i a n g l e w i l l e f f e c t z •» z 
and r e t u r n the c o e f f i c i e n t s o f N (z) and D ( z ) . 

CH2114-7/85/0000-1165W1.00 © 1985 IEEE 
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SYMBOLIC ANALYSIS OF NON-IDEAL SC NETWORKS 

The more g e n e r a l case of s y m b o l i c a n a l y s i s , 
when s w i t c h r e s i s t a n c e (on and o f f ) and f i n i t e 
a m p l i f i e r bandwidth a r e taken i n t o account, i s 
s l i g h t l y more i n v o l v e d taut u t i l i s e s the above a l g 
o r i t h m to g r e a t a f f e c t . The MNA d i f f e r e n t i a l 
e q u a tions i n g e n e r a l i s e d s t a t e space form f o r 
node v o l t a g e s v ( t ) and branch c u r r e n t s i ( t ) i n 
tiiae s l o t A, a r e : k 

( t ) ~ 
V c 0 v ( t ) j ( t ) Ln e q u a t i o n j ( t ) 

r 
+ = y («) 

i ( t ) o 0 0 e ( t ) - In ) 

where G, 

(5) 

conductance m a t r i x , C - c a p a c i t a n c e 

m a t r i x , the o t h e r m a t r i c e s p r o v i d e loop and node 
l i n k s . I n compact form 

G, x ( t ) + C i ( t ) = U ( t ) ^ e - - e - — . . (6) 

The s i n g u l a r n a t u r e of needs t o be r e c o g 
n i s e d i n the extended s t a t e t r a n s i t i o n m a t r i x . 
An a l t e r n a t i v e approach i s t o use the sta n d a r d 
s i n g u l a r p e r t u r b a t i o n r u l e . 

C v ( t ) = - G k y ( t ) - A i ( t ) + 2 ( t ) 
. (7) 

e I i ( t ) = - B . v ( t ) — -k- D i ( t ) + e ( t ) 

w i t h 0 <E<<1 a r e g u l a r s t a t e space f o r m u l a t i o n 
r e s u l t s [ 6 , 7 , 8 ] . 

X ( t ) + C (E) x<t) u(t) . . . (8) 

Both f o r m u l a t i o n s have been examined and c o n c l u s 
i o n s r e g a r d i n g the a c c u r a c y o f the s t a t e t r a n s i t 
i o n m a t r i x determined. 

The f i n a l nodal v o l t a g e s and branch c u r r e n t s 
a t the end o f t i m e s l o t + 8.T w i t h s i n u s o i d a l ex
c i t a t i o n s a r e g i v e n by fj>] : 

x ( t , ^,+iT) k+1 

J 

E 

(9) 

j t U T = P k x ( t k + i T ) - | j e j ! l t k + l - P k e j n t ^ M k { j n ] 

where ( ^ ( j t l ) = [ ^ k e
 + 3ncQ * a n d E K

 i s t h e s t a t e 

t r a n s i t i o n m a t r i x a p p r o p r i a t e to e i t h e r f o r m u l a t i o n 
above. U s i n g t h e a t r a n s f o r a t i o n and s u b s t i t u t i n g 8 - j(5, v ^ - e ^ 1 1 * * 

g i v e s 

I i n i T - i 

1-

1 r. c o c p a c t f o r m e q u a t i o n ( 1 0 ) b e c o o e 3 

[ p l ( s ) ] x < « ) - [pei(3,«)] u S H I 

a n d x ( « ) - [ P M S ) ] - 1 [ w t s . s j ] u s ( a ) 

Ttie f r e q u e n c y domain r e s p o n s e f o l l o w s i j a s s d l a t e l y f r o m s u b s t i t u t i o n 

w h e r e * k + 1 - e~^ uH*l 

and o^l.) - ( 2 sin [o I t ^ j - t ^ l /i] e 1" "H-n'Si 1 / J « J"Vn) / T t , 

I t w i l l be noted t h a t the form o f the m a t r i x 
[pi (3)J i s v e r y s i m i l a r to t h a t of the o r i g i n a l 
i d e a l SC system m a t r i x i n equation ( 1 ) , so the 
Kader sequence of eq u a t i o n s (3) a p p l i e s d i r e c t l y 
i n f i n d i n g 

m 

I NP.s 1 NP(a) 

DP ( Z ) 

M 1. N 

The i n v e r s e M, <s) = [G, + sC 1 * i s a l s o 
-K (_ ke ej 

o b t a i n a b l e from a Kader sequence. I n t h i s i n s t a n c e 
i s g e n e r a l l y s i n g u l a r and may w e l l be s i n g 

u l a r a l s o . However a s h i f t of v a r i a b l e to ensure 
a r e g u l a r m a t r i x p e n c i l i s used to overcome any 
s i n g u l a r i t y problems. The r e s u l t a n t form w i l l be 

(s) 

I (NM.) ks 1 (s) 
i = l 

I ( d m . ) , / DMk 

1=1 
(s) 

m <_ n 
s u b s t i t u t i o n i n eq u a t i o n (11) g i v e s e q u a t i o n ( 1 3 ) . 
Computation of frequency response f o l l o w s i n a 
s t r a i g h t f o r w a r d manner. 

STATE TRANSITION MATRIX APPROXIMANT 

I n o r d e r t o compute the t r u e dynamic behaviour 
of the SC network i t i s e s s e n t i a l to have a good 

p r o c e s s and i f c a r e i s not taken, c o n s i d e r a b l e con
c e r n can a r i s e as to the v a l i d i t y of the P k com
puted . 

i s ) 

I n g e n e r a l , i t has been found t h a t an a p p l i 
c a t i o n of the I approximant [9] g i v e s s t a b l e and 
a c c u r a t e r e s u l t s i n an economic time. 
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- — 

- 2 

1 
" D P ( 2 ) 

X 
-P 

_ _ 

NP , ( a ) HP . (a) 

. WP_ ( z ) 

- P KM ( s ) KM (9) 

For t he r e g u l a r s t a t e space form 

K = 1 I K--k — . i 
At i = l 

(C)G. ke 
(14) 

where At i s the time s t e p and a^, K_ a r e e a s i l y 
predetermined |[lo] . The o r d e r of approximation N 
i s a l s o determined as i n , and may r e q u i r e H=l0-
For the g e n e r a l i s e d s t a t e space d e s c r i p t i o n i t can 
be shown t h a t 

At i = l 

N " I -1 
i / A C At e ke 

. . (15) 

The MNA equ a t i o n s f o r the n o n - i d e a l SC n e t 
work produce a s t i f f system, l a r g e l y due to the 
v a l u e s of s w i t c h G and G „,.. I t has been found on o f f 
t h a t e q u a t i o n (15) normally g i v e s the b e s t answers 
and t h e r e f o r e the g e n e r a l i s e d s t a t e space MNA 
f o r m u l a t i o n has been adopted. I n c i d e n t a l l y i f a 
NAM d e s c r i p t i o n i s used the s i z e of the m a t r i x i s 
s m a l l e r and s l i g h t l y b e t t e r c o n d i t i o n e d , t h i s may 
have r e l e v a n c e i n the a n a l y s i s of l a r g e SC n e t 
works . 

RESULTS AND CONCLUSIONS 

«• FDSAXi SJTTTCBSB 

10 11 12 13 M 15 
H2 X19 3 

A program SCNAP 3 w r i t t e n i n F o r t r a n 77 has 
been used to a n a l y s e a v a r i e t y of SC f i l t e r n e t 
works both f o r the i d e a l and n o n - i d e a l s i t u a t i o n s . 
The r e s u l t s compare v e r y f a v o u r a b l y w i t h those 
produced by frequency domain programs. F i g 1 shows 
t y p i c a l r e s u l t s f o r a 5th order SC e l l i p t i c low-
pass f i l t e r w i t h both i d e a l and n o n - i d e a l s w i t c h e s . 

The i n i t i a l s t e p to produce the v a r i o u s poly-
nomiaIs i s o b v i o u s l y the most time consuming p a r t 
of the a n a l y s i s . The advantages f o l l o w a f t e r t h i s , 
s i n c e many p o i n t s of frequency a n a l y s i s can be 
computed by s i m p l e polynomial e v a l u a t i o n . T h i s 
has s i g n i f i c a n t i m p l i c a t i o n s i n n o i s e a n a l y s i s . 
Other d i r e c t a p p l i c a t i o n s a r e i n o p t i m i s a t i o n and 
p a r t i t i o n e d a n a l y s i s of l a r g e SC f i l t e r networks. 

Pig. 1. F i f t h Order I l l l p t l c Lowpa«« SC PI1 t a r 

REFERENCES 

Tanaka, M. and Mori, S . : " T o p o l o g i c a l f o r m u l a 
t i o n s f o r the c o e f f i c i e n t m a t r i c e s of s t a t e 
e q u a t i o n s f o r s w i t c h e d c a p a c i t o r networks", 
I . E . E . E . T r a n s CAS, Vol CAS-29, No. 2, pp 106-
115, 1982. 

Johnson, D.G., S e w e l l , J . I . and Meakin, A.D.: 
" I n t e r p o l a t i v e a n a l y s i s o f s w i t c h e d c a p a c i t o r 
networks", I . E . E . Colloquium on Design S o f t 
ware, Colloquium D i g e s t , pp 6/1 - 6/7, 1984. 

-1 1 6 7 -



3 5 9 

3. Vande r w a l l e , J . , De Man, H.J. and Rabaey, J . : 
"Time, frequency and 3-domain m o d i f i e d nodal 
a n a l y s i s of s w i t c h e d c a p a c i t o r networks", 
I . E . E . E . T r a n s CAS, V o l CAS-28, No.3, pp 186-
195, 1981. 

4. Kader A., " I n v e r s i o n of polynomial network 
m a t r i c e s w i t h p a r t i c u l a r r e f e r e n c e to sen
s i t i v i t y a n a l y s i s " Proc. I . E . E . , P a r t G, No.4 
pp 170-172, 1981. 

5. Rabaey, J . , V a n d e r w a l l e , J . and De Man, H.: 
"On the frequency domain a n a l y s i s of s w i t c h e d 
c a p a c i t o r networks i n c l u d i n g a l l p a r a s i t i c s " , 
Proc. ISCAS, Chicago, pp 868-871,1981. 

6. Verghese, G.C., Levy, B.C. and K a i l a t h , T.: 
"A g e n e r a l i s e d s t a t e space f o r s i n g u l a r 
systems", I . E . E . E . T r a n s AC, V o l . AC-26, 
No.4 pp 811-829, 1981. 

7. Cobb, D., " D e s c r i p t o r v a r i a b l e systems and 
optimal s t a t e r e g u l a t i o n " , I . E . E . E . , T r a n s . 
AC, V o l . AC-28, No.5, pp 601-611, 1983. 

8. S i p c o v e c , R.F. , E r i s m a n , A.M., Y i p , F.L., 
and Epton, M.A. : " A n a l y s i s of d e s c r i p t o r 
systems u s i n g n u m e r i c a l a l g o r i t h m s " , I . E . E . E 
T r a n s . AC, V o l . AC-26, No. 1, pp 139-147, 
1981. 

9. Zakian, V. : " P r o p e r t i e s o f I and J approx-
MN MN 

imants and a p p l i c a t i o n s t o n u m e r i c a l i n v e r 
s i o n of L a p l a c e t r a n s f o r m s and i n i t i a l v a l u e 
problems", J.Maths and A p p l i c . , V o l . 50, 
pp 191-222, 1975. 

10. Zakian, V. and Edwards, M.J. : " T a b u l a t i o n of 
c o n s t a n t s f o r f u l l grade I approximants", 
Maths o f Coraput., V o l . 32, No. 142, pp 
519-531, 1978. 

ACKNOWLEDGEMENT 

T h i s work was supported by the S c i e n c e and 
E n g i n e e r i n g R e s e a r c h C o u n c i l . 

- 1 1 6 8 -



3 6 0 

PAPER 33 



3 6 1 

Proc. IEEE International Symposium on Circuits and Systems, San Jose, May 1986. 
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ABSTRACT 

The paper addresses the problem of designing 
software to compute the d e t a i l e d time domain analy
s i s of p o t e n t i a l l y large switched-capacitor (SC) 
networks. Instead oi s i m u l a t i n g side e f f e c t s such 
as clock-feedthrough and o f f s e t s , charge based 
models of the devices are incorporated and charge 
conservation i s ensured throughout by using these 
models, charge s t a t e v a r i a b l e s and t i g h t tolerances. 
To compute the f i n e d e t a i l r e q u i red, the analysis 
times are l i k e l y to be s u b s t a n t i a l . Hence every 
attempt i s made to speed up the routines using i n t e r 
p r e t i v e code generation and sparse matrix techniques. 
The accuracy o f s o l u t i o n i s also important and 
various accuracy c o n t r o l routines are considered. 
Optimal p i v o t i n g techniques and dynamic store manage
ment are u t i l i s e d . The SCHAPNIT program can be 
applied to SC networks of a wide v a r i e t y , w i t h 
f i l t e r i n g and n o n - f i l t e r i n g a p p l i c a t i o n s . Contin
uous-time networks can also be analysed i n an 
e f f i c i e n t manner. 

INTRODUCTION 

With the co n t i n u i n g i n t e r e s t i n switched-capacitor 
(SC) networks and t h e i r wider a p p l i c a t i o n to non-
f i l t e r i n g a p p l i c a t i o n s , the need f o r CAD t o o l s i s of 
prime importance. I n response to t h i s demand many 
d i f f e r e n t analysis techniques and programs emerged 
[ l ] . The i n i t i a l time-domain approaches were soon 
followed by frequency domain methods. These pro
grams perform the analyses assuming a l l c i r c u i t 
elements are i d e a l and are therefore p r i m a r i l y of 
use as to o l s f o r v e r i f i c a t i o n of t h e o r e t i c a l designs 
and e x p l o r i n g various design a l t e r n a t i v e s . Unfortun
a t e l y due t o p r a c t i c a l device n o n - i d e a l i t i e s (e.g. 
f i n i t e a m p l i f i e r GB, f i n i t e switch conductance) , 
f a b r i c a t e d devices deviate from t h e i r t h e o r e t i c a l l y 
p r e d i c t e d performances. These e f f e c t s have been 
crudely modelled by r e p l a c i n g r e s i s t o r s i n macro-
models by switched-capacitor equivalents [ 2 ] , 
i n t r o d u c i n g f i x e d DC sources f o r a m p l i f i e r o f f s e t s , 
or i n the case of clock feedthrough by simple 
ca p a c i t i v e coupling subnetworks [ 3 ] . The major 
advantage of these i d e a l analyses i s that they are 
very e f f i c i e n t , both i n computational speed and 
memory requiretr°nts, and can therefore e a s i l y and 
accurately cope w i t h large networks [ 4 ] . The d i s 
advantage i s th a t they lack the a b i l i t y to model 
ac t u a l non-ideal c i r c u i t behaviour. 

More s o p h i s t i c a t e d mathematical approaches 

employing state space formulations have incorporated 
accurate analysis of l i n e a r r e s i s t i v e e f f e c t s . 
These techniques have demanded large computing times 
and s t i l l only provide a l i m i t e d l i n e a r analysis of 
the SC networks. 

To accurately model the e f f e c t s of clock-feed-
through, clock wave-form v a r i a t i o n d i s t o r t i o n , 
power supply v a r i a t i o n s , r e s i s t i v e parameters, f i n i t e 
a m p l i f i e r GB and switch and a m p l i f i e r o f f s e t s , f u l l 
n o n-linear switch and a m p l i f i e r models ".re r e q u i r e d . 
Currently the moat r e l i a b l e and accurate numerical 
techniques f o r s o l v i n g these nonlinear networks are 
time-domain si m u l a t i o n programs employing s o p h i s t i 
cated numerical i n t e g r a t i o n methods. The major draw
back of t h i s approach i s that i t i s computationally 
i n t e n s i v e and therefore the c h a r a c t e r i s t i c s of the 
equations to be solved should be taken i n t o account 
i n an attempt to reduce or streamline the computa
ti o n s . 

The second important aspect of accurate c i r c u i t 
s i m u l a t i o n i s device modelling, s p e c i f i c a l l y MOSFET 
switches. Accurate models have been developed [ 5 ] , 
[6] tor the DC and dynamic i n t r i n s i c and e x t r i n s i c 
devices. I t i s e s s e n t i a l that device models and 
t h e i r implementation conserve charge to ensure 
accurate and correct s i m u l a t i o n . 

Although a number of e f f i c i e n t schemes already 
e x i s t f o r the time-domain analysis of SC networks, 
a new implementation i s developed here, i n i t i a l l y as 
a t e s t vehicle f o r some of the computational 
techniques and secondly as pa r t of an o v e r a l l s u i t e 
of second generation SC design and analysis programs. 
The equation formulation philosophy, i n t e r p r e t i v e 
code generation, optimal p i v o t i n g techniques and 
dynamic store management are then u l t i l i s e d i n the 
development of the complete non-ideal time-domain 
analysis program. 

IDEAL TIME-DOMAIN ANALYSIS 

The e f f i c i e n t time-domain analysis of i d e a l SC 
networks [ 4 ] , i s based on techniques f o r e f f i c i e n t l y 
assembling and so l v i n g the system of equations 
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The method of e q u a t i o n f o r m u l a t i o n has a d r a m a t i c 
e f f e c t on the size and s p a r s i t y of the r e s u l t i n g 
matrices. To allow the i n c l u s i o n of voltage s o u r c e s 
(dependent and independent), tableau type formula
t i o n methods are desirable f o r t h e i r g e n e r a l i t y and 
s p a r s i t y p r o p e r t i e s . A feature of these methods i s 
the need f o r a p i v o t i n g a l g o r i t h m to ensure t h a t a 
non-zero diagonal i s obtained, which then a l t e r s the 
s t r u c t u r e of the matrices [4] . A comparison 
between the fo r m u l a t i o n methods discussed i n £l] 
as w e l l as the mixed nodal tableau (MNT) [i] on the 
b a s i s of operation counts f o r the LU decomposition 
of the r e s u l t i n g matrices, found the MNA for m u l a t i o n 
[8] to be the best approach. By t r a n s f e r r i n g as much 
of the matrix processing to a pre-processing stage, 
t!.e time-domain response i s obtained very e f f i c i e n t 
l y . Taking i n t o account the block-matrix s t r u c t u r e 
of equation (1), the s p a r s i t y of blocks A i and B i , 
and the form of the MNA equations used to assemble 
equation (1), a h i g h l y e f f i c i e n t block compaction 
algorithm t y p i c a l l y reduces the system of equations 
by 50-90%. This reduced m a t r i x i s then re-ordered 
to achieve a minimal operation count and LU de
composed using a sparse v a r i a n t of Gaussian e l i m i n a 
t i o n . To obtain the time-domain response these LU 
f a c t o r s are used repeatedly i n a forward e l i m i n a t i o n 
and back s u b s t i t u t i o n , therefore t o obtain 
maximum e f f i c i e n c y a code generation scheme [9~\ i s 
used to generate code f o r the s o l u t i o n process. 

NONIDEAL TIME-DOMAIN ANALYSIS 

To ensure charge conservation, i t i s necessary 
to s e l e c t charges as the s t a t e v a r i a b l e s f o r the 
MOSFET capacitances Clo] , leading t o the set of f i r s t 
order nonlinear algebraic d i f f e r e n t i a l equations 

d a j x ) + Gx + f 2 ( x) 
dt — 

w( t ) te[0,T] (2) 

where <l(x) i s the charge f u n c t i o n , <i_(x) = Cx+f^(x) 
18 the nonlinear charge f u n c t i o n 

^2 i s the nonlinear current f u n c t i o n 
x contains the unknown node voltages and 

branch currents 
w( t ) contains the time-dependent e x c i t a t i o n s 

These networks t y p i c a l l y consist of t i g h t l y coupled 
c i r c u i t blocks having a large number of feedback 
loops w i t h widely d i f f e r i n g c i r c u i t time-constants. 
Due to these c h a r a c t e r i s t i c s , the t h i r d generation 
si m u l a t i o n techniques QlJ are not s u i t e d to s o l v i n g 
these networks. To overcome the problem of the 
' s t i f f n e s s ' of the equations, an i m p l i c i t numerical 

i n t e g r a t i o n technique Q2] i s used to d i s c r e t i z e 
e q u a t i o n ( 2 ) . T h i s technique has the added b e n e f i t s 
t h a t i t d i r e c t l y h a n d l e s equation (2) i n i t s i m p l i c i t 
form, tog e t h e r w i t h any a l g e b r a i c e q u a t i o n s . By 
accumulating charges i n the v e c t o r o j x ) and then 
a p p l y i n g the n u m e r i c a l i n t e g r a t i o n to t h i s v e c t o r , 
the r e s u l t i n g method i s more a c c u r a t e and e f f i c i e n t 
than i n d i v i d u a l l y i n t e g r a t i n g the MOSFET t e r m i n a l 
charges. 

The n u m e r i c a l i n t e g r a t i o n technique used i s a 
backward d i f f e r e n c e approximation to the d e r i v a t i v e 
( p r e d i c t o r ) , f o l l o w e d by a c o r r e c t o r based on Gear's 
approach [12j . The o r d e r 1 method i s used as a 
s t a r t e r and t h e r e a f t e r the o r d e r 1 and o r d e r 2 
formulas ar3 used i n a v a r i a b l e - o r d e r , v a r i a b l e 
t ime-step manner. The o r d e r i s l i m i t e d to 2 to a l l o w 
the i n c l u s i o n of PWL n o n l i n e a r i t i e s [l3] . Because 
of the l a r g e number of b r e a k p o i n t s i n the c l o c k 
s i g n a l e x c i t a t i o n common to SC networks and the 
consequent requirements f o r r e s e t t i n g to low o r d e r , 
the h i g h e r o r d e r methods are not i n v o l v e d . The d i s 
c r e t i z a t i o n of e q u a t i o n (2) l e a d s to a s e t of non
l i n e a r e q u a t i o n s 

(3) 
which must be solved at each time-point t n . A 
modified Newton-Raphson alg o r i t h m i s used t o solve 
equation ( 3 ) , which leads to the i t e r a t i o n 

,, k. . k+1 J ( x )Ax n — 
k+1 x —n 

k x —n + Ax k+1 (4) 

k k where J(Xn) i s the Jacobian evaluated at x„. Each 
i t e r a t i o n r e q u i r e s the s o l u t i o n of a set of l i n e a r 
equations. Fortunately the nonzero s t r u c t u r e of 
the Jacobian does not change from i t e r a t i o n to 
i t e r a t i o n . I t i s sparse and normally diagonally 
dominant. Therefore sparse m a t r i x techniques[14] 
can be used t o great e f f e c t . The i t e r a t i o n (4) i s 
terminated when the i t e r a t i o n s s a t i s f y the converg
ence c r i t e r i a . The usual c r i t e r i a i s based on the 
node voltages and nonlinear currents meeting 
s p e c i f i e d e r r o r tolerances. These checks are not 
s u f f i c i e n t t o ensure convergence and may lead t o 
charge nonconservation [lo], Therefore the term i n a l 
nodes of dynamic and non l i n e a r devices are checked 
t o s a t i s f y the convergence c r i t e r i a 

I V ^ 1 — I < E + c max { i v * * 1 ! . Iv"!} 

The t e r m i n a l charges of capacitors and MOSFETS are 
checked t o s a t i s f y 

l Q k + 1 - Qk| < e q + c r max( (|Q. k + 1l, l Q k l | 

and the currents of nonlinear devices are checked 
to s a t i s f y 

i T k + l T k i r i T k > l | i T k , l | I - I | < e i + e r max||I | , | l || 

where e v , e q and are the absolute v o l t a g e , charge 
and current tolerances r e s p e c t i v e l y and e r i s the 
r e l a t i v e tolerance. 

The o v e r a l l a l g o r i t h m f o r s o l v i n g equation (2) i s 
given below. 
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REPEAT 
evaluate the time-dependent excitations 
predict the unknown vector £n+"1 

REPEAT 
e v a l u a t e Che l i n e a r and nonlinear current 

equations 
evaluate the linear and nonlinear charge 

equations 
integrate the charge vector and add to the 

c u r r e n t v e c t o r 
evaluate the partial derivatives and form 

the Jacobian 
LU decompose the Jacobian 
solve the linearised system f o r > r n + i 

UNTIL converged or exceeded maximum number of 
iterations 

I F i t e r a t i o n i i m i t exceeded THEN 
reduce time-step 

ELSE 
check LTE and select new time-step 
I F LTE does not exceed limit THEN 

save the time-point 
update backward information 

END I F 
END I F 

UNTIL time > T 

A major f e a t u r e of SC networks i s the s w i t c h 
c l o c k i n g waveforms. These waveforms are u s u a l l y 
s p e c i f i e d as p i e c e w i s e l i n e a r (PWL) e x c i t a t i o n s . 
Due to the d i s c o n t i n u i t i e s i n the f i r s t d e r i v a t i v e 
of t h e s e e x c i t a t i o n s , convergence problems are 
encountered d u r i n g t r a n s i e n t a n a l y s i s , p o s s i b l y 
even t i m e - p o i n t lockup Q.53. To overcome t h i s , 
source b r e a k p o i n t d e t e c t i o n [ l 5 ] can be used, where
by a t i m e - s t e p i s s e l e c t e d so t h a t the b r e a k p o i n t 
c o i n c i d e s w i t h the mesh p o i n t and the i n t e g r a t i o n 
method can then be r e s t a r t e d from o r d e r 1. 
Although t h i s technique i s r e l i a b l e , i t i s w a s t e f u l 
as a s m a l l t i m e s t e p i s f o r c e d and the i n t e g r a t i o n 
method must be r e s t a r t e d . By r e p r e s e n t i n g the 
c l o c k e x c i t a t i o n s w i t h c u b i c s p l i n e s , which have 
continuous f i r s t and second d e r i v a t i v e s , t h ese 
problems are overcome and e x p e r i m e n t a t i o n i n d i c a t e s 
t h a t the use of s p l i n e s a l l o w s b i g g e r t i m e s t e p s to 
be taken n e a r the c l o c k b r e a k p o i n t s . The i n t e r n a l 
c u b i c s p l i n e r e p r e s e n t a t i o n [ l 6 j can be a u t o m a t i c 
a l l y g e n e r a t e d from a u s e r PVTL s p e c i f i c a t i o n . 

The NR method r e q u i r e s the s o l u t i o n of a s e t of 
simul t a n e o u s l i n e a r e q u a t i o n s a t each i t e r a t i o n . 
These e q u a t i o n s are g i v e n by the J a c o b i a n m a t r i x of 
the system whose s t r u c t u r e does not change d u r i n g 
the i t e r a t i o n s . The m a t r i x i s s p a r s e and c o n s i s t s 
of a l a r g e number of t o p o l o g i c a l e n t r i e s ±1, which 
a r i s e from the UNA c o n s t i t u e n t e q u a t i o n s . To take 
f u l l advantage of these p r o p e r t i e s an i n t e r p r e t i v e 
code g e n e r a t i o n approach [li] i s used. T h i s method 
i n t r o d u c e s e x t r a op-codes to handle the t o p o l o g i c a l 
v a l u e s , t h e r e f o r e e n a b l i n g redundant m u l t i p l i c a t i o n s 
by +1 and -1 to be e l i m i n a t e d . S i n c e o n l y the non
zero o p e r a t i o n s of the Crout a l g o r i t h m are performed 
i n a l o o p - f r e e form, the LU f a c t o r i z a t i o n and 
b a c k s u b s t i t u t i o n s t e p s r e q u i r e d to s o l v e e q u a t i o n s 
are e f f i c i e n t l y performed. The i n t e r p r e t i v e op^code 
i n s t r u c t i o n s e t i s gi v e n i n f i g u r e 1. 

IMPLEMENTATION AND CONCLUSIONS 

The above te c h n i q u e s are b e i n g implemented i n a 
program SCNAPNIT, forming p a r t of an o v e r a l l s u i t e 
of SC design and a n a l y s i s programs (SCNAP s e r i e s I I ) , 
s h a r i n g a common us e r i n t e r f a c e SCNAPIN. T y p i c a l 
modern SC f i l t e r systems i n v o l v e i n e x c e s s of 25 
time s l o t s and over 50 nodes. The a p p l i c a t i o n of 
these techniques to i d e a l a n a l y s i s of such systems 
has demonstrated the e f f i c i e n c y of the approach. 

The n o n - i d e a l time a n a l y s i s program SCNAPNIT i s 
a p p l i e d to two t y p i c a l SC networks and the r e s u l t s 
are shown i n f i g u r e s 2 and 3. The f i r s t example i s 
a 5 th or d e r e l l i p t i c f i l t e r [is] w i t h 6 c l o c k s and 
20 nodes. A complete MOS model i s used f o r the 
s w i t c h e s and the output waveform c l e a r l y shows 
c l o c k feedthrough and continuous I/O e f f e c t s i n two 
c l o c k phases. The second example i s a bandpass 
f i l t e r implemented i n GaAs w i t h a 4-phase c l o c k i n g 
scheme designed to reduce c l o c k - f e e d t h r o u g h . 
Again p r e c i s e d e t a i l of e f f e c t s due to complete 
s w i t c h models can be d i s c e r n e d . A p p l i c a t i o n s of 
t h i s program are not l i m i t e d to SC f i l t e r s , but 
i n c l u d e many new a p p l i c a t i o n s of SC technology, 
f o r example A to D c o n v e r t e r s and SSB g e n e r a t o r s 
o r o t h e r forms of s w i t c h i n g c i r c u i t s ; p r o v i d i n g 
the t o o l s f o r d e t a i l e d s t u d i e s o f n o n - i d e a l c i r c u i t 
b e h a v i o u r . 

Of p a r t i c u l a r importance i n SC f i l t e r d e sign i s 
the study of d i s t o r t i o n e f f e c t s due to s i g n a l 
dependent c l o c k feedthrough, and n o n - l i n e a r i t i e s 
of a m p l i f i e r s , s w i t c h e s and s t r a y - c a p a c i t a n c e s . 
Because of the h a r s h n e s s of these n o n l i n e a r i t i e s , 
a frequency domain approach e.g. V o l t e r r a s e r i e s 
method i s unable to p r o v i d e an a c c u r a t e i n s i g h t 
i n t o d i s t o r t i o n i n these s t r u c t u r e s . A time-
domain approach t o g e t h e r w i t h F o u r i e r A n a l y s i s 
of the s t e a d y - s t a t e response of the network i s the 
most v i a b l e approach to g i v e a f u l l and d e t a i l e d 
d i s t o r t i o n a n a l y s i s . 
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Fig.3a Clock waveforms for bandpass filter 

I n s t r u c t i o n Op-code 
SUM 0 l a 
SUM 1 2a 
SUM - 1 3a 
SUM V ( a ) 4a 
SUM SUM - 1 5 
SUM SUM + 1 6 
SUM SUM - V ( a ) 7a 
SUM SUM + V ( a ) 8a 
SUM SUM - V ( a ) *V(b) 9ab 
V(a) = SUM/PIVOT 10 
V(a) = -SUM 11 
V ( a ) = SUM 12 
PIVOT = V(a) 13a 
PIVOT = SUM 14 
SUM B(a) 15a 
SUM X(a) 16 a 
SUM SUM - X(a) 17a 
SUM SUM + X(a) 18a 
SUM SUM - V ( a ) * X ( b ) 1 9 a b 
X(a) = SUM/V(a) 20a 
X ( a ) = SUM 21 
X(a) = -SUM 22 
STOP 23 

F i g u r e 1 I n t e r p r e t i v e op-codes 

E 

CI 

S 5 11 M M M I 
TIME (SECS) 

Rg.2 Time response of 5th order Nossek filter 
with 500Hz sinusoidal excitation 

? 
I 

nc (sees) 
Rg.3b Impulse response for bandpass filter 

j v 
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Abstract: A new time and frequency domain 
analysis method is presented for nonideal switched 
capacitor networks that is orders of magnitude 
faster than existing techniques. This efficiency is 
achieved by developing a formula t ion such that a 
continuous A C analysis is not required; this 
allows the system to be solved as an entirely dis
crete one. A special compression technique 
reduces the solution of this discrete system to that 
of solving the network in one phase only. This 
final solution step, which ordinari ly requires 0 ( v 3 ) 
operations (v is the matr ix order), is rendered 
more efficient by reducing the system to upper 
Hessenberg f o r m in a preprocessing step, when the 
solution cost is reduced to 0 ( v 2 ) operations. 
Sparse matrix techniques, opt imal ordering and 
interpretive code generation are all used to advan
tage. Performance is compared wi th existing prog
rams. 

1 Introduction 

Interest in the design of switched capacitor (SC) networks 
is being sustained by extension of the range of oper
ational frequencies using gall ium arsenide fabrication, by 
the int roduct ion of large SC systems involving complex 
decimation and interpolation circuits, and by the incor
porat ion of bo th f i l ter ing and non-fi l tering applications. 
I t is also noticeable that SC networks f o r m a very impor
tant special subset of general switched networks and it 
would be attractive i f any analysis scheme is equally 
applicable to the general case, i f possible. 

The history of the development of programs for the 
analysis of ideal SC circuits is well attested and numerous 
programs find support in the field. However, the struggle 
to produce efficient software for the analysis of nonideal 
SC networks (with finite switch resistances R o n , K o f f and 
amplifier GB) has proven to be quite a different story. 

Three broad approaches to the analysis of nonideal 
SC networks are discernable. The derivation of an equiv
alent circuit that could then be incorporated into a tradi
tional continuous time frequency analysis (AC) programs 
[ 1 , 2] was an early suggestion which still finds support. 
This method suffers f r o m general inaccuracies of the 

Paper 6057G (E10), first received 1st September 1987 and in revised 
form 17th February 1988 
Dr. Wolovitz is with Psion Ltd., Psion House, Harcourt Street, London 
W1H IDT, United Kingdom 
Prof. Sewell is with the Department of Electronics and Electrical Engin
eering, University of Glasgow, Glasgow G12 8QQ, United Kingdom 

equivalent circuit and is l imited to baseband analysis 
only. A variant of this approach is to include that analy
tic solution of the time domain response of single pole 
amplifiers in the ideal solution of the SC network [ 3 ] . 
Al though restricted to two-phase second-order sections, 
quite accurate results are often attainable. A similar deri
vation [ 4 ] facilitated the incorporation of such ideas into 
an admittance matr ix formulat ion for computer imple
mentation, though again the calculation of amplifier 
imperfections was only approximate. The technique of 
simulating resistance by bilinear switched capacitances, 
clocked at a high multiple of the switching frequency, is a 
simple and effective brute force approach, but requires 
extravagant computer resources [ 5 ] . 

The second approach tackles the more general situ
ation when switch resistances are included together wi th 
the nonideal amplifiers. The behaviour of such networks 
can only be ful ly described by differential difference equa
tions. General state-space formulations have been pro
posed [ 6 - 8 ] and , although entirely valid, comprehensive 
computer implementation of these appears diff icul t and 
inefficient. The residual importance of these attempts are 
concepts that established a foundation for later develop
ments. 

The most attractive schemes utilise MNA-based 
methods to overcome the crucial problems of equation 
formulat ion attendent on the latter approach [ 9 ] . The 
various computer implementations have demonstrated 
the validity of the method and have been restricted only 
by the approximations inherent in the methods employed 
for computation of the extended state transition matrices 
required [ 9 ] , by difficulties in using symbolic analysis for 
large nonideal SC networks [ 1 0 ] , by the requirement for 
A C analyses in each clock phase at each frequency point, 
or by restricted spectral analysis [11 ] . 

The need for more efficient nonideal SC analysis soft
ware is dictated by two major requirements. I n the 
second phase of SC circuit design, i t is generally neces
sary to perform sensitivity and noise analysis [ 1 2 ] , 
together wi th an emerging desire to undertake various 
forms of circuit optimisat ion; all these demand much 
speedier and more accurate routines than currently avail
able. The present bound on size of network for analysis 
in reasonable time wi th acceptable accuracy occurs at 50 
nodes (v) and 10 time-slots (N), or vN = 500. I t is neces
sary to overcome this size boundary to facilitate the 
design of future SC systems wi th 500 < v N < 1000 or 
even higher. 

The scheme described in this paper is an attempt to 
overcome these various problems. I t utilises the M N A 
formulat ion together wi th an accurate and reliable 
method for calculating the extended state transition 
matrices. A n accurate time and frequency method for 
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transforming the nonideal SC network into a totally dis
crete system is developed and previous restrictions to 
sample and hold inputs [13] are avoided: therefore, fu l l 
spectral analysis is possible. Extended sparse matrix 
methods [14, 15] in conjunction wi th interpretive code 
generation have been employed where appropriate, and a 
wide range of matrix and numerical condit ioning tech
niques are utilised. Finally, the program performance is 
compared wi th a number of standard programs oper
ating under exactly the same conditions. 

2 Definitions 

Consider a periodically switched linear network con
trolled by clock signals <£,<() w i ' h a common switching 
period T , i.e. 

( l ) 

where 4>t is the state of clock i , either on or off . 
Using the definitions in Reference 16, each period T is 

partitioned into N time-slots: 

; (nT + <r t _, , nT + <rk] k=l,...,N (2) 

such that the clock signals (and therefore the network) 
does not vary in IH k . Here k denotes the feth time-slot. 
As shown in Fig. 1, these time-slots are not necessarily of 
equal duration. 

I n . 2 I n . 3 In .N 

ffN = T 

PT.CTQ =nT nT.<r, n T . a 2 n T . ( T 3 n T . c r N _ , n T . < 7 N 

T —«- 1 

_ _ . «-l 
Fig. 1 Definitions for a N-sloi switched linear network 

Define the signals 

„ ( t ) = J"( ') t e / - . » 
' (0 otherwise 

"„.»(') = vk("T + < * » - ! + 0 0 < ! $ r t 

= linT + a k - x k + t) (3) 

vk(nT + a„) = v(nT + ok)~ (4) 

That is, u„, t(t) are functions of time, and vk{nT + ok) are 
sequences of values at the instants just prior to switching. 

Define the Z-transform 

tvk(nT + ak)z-=Vk(z) fc=l,...,N-l 
» = o 

n = 0 
(5) 

and therefore 

X VfAnT + aK)z~" = X M " T + T)z'" 
n = 0 n = 0 

= z ^ z ) - V^O)) = zV^z) (6) 

since K^O) = 0. 

120 

3 Time domain analaysis 

In each time-slot /„ k of the nth switching period 
(nT, (n + 1)T] a periodically switched linear network can 
be represented by the system differential equation 

Ckv„A(t) + Gkv„.k(t) = wn.k(i) k •• N (7) 

where w„,k(') is the vector of excitations; i>„ k(t) is the 
vector of unknown system variables; Ck and Gk are con
stant (v x v) matrices of capacitance and conductance, 
determined using the M N A formulat ion method [ 9 ] . In 
the fol lowing, the range of subscripts for k (k = l JV) 
is dropped for brevity but is assumed throughout unless 
otherwise stated. 

Using the time domain solution method presented in 
the Appendix we approximate the excitation by mth 
order polynomials 

(8) 

where a" k are the coefficients of the polynomial approx
imations of w k (f) in the interval /„ k . For instance, in the 
time domain a square wave can be exactly represented by 
a simple polynomial . Sinusoidal approximations wi l l be 
required for frequency response considerations, and 
because of the small time increments involved (owing to 
the switching frequency) the polynomial approximations 
for sinusoidal signals are very accurate; typically orders 
m = 3 to 9 ensure errors of < 10~ 9 . Substituting expr. 8 
in eqn. 7 gives the new system differential equation 

CkbmJt) + GkvKJt) = X < t f ' 

Fol lowing the steps in the Appendix, the solution of eqn. 
9 is 

v„,k(t) = P^C^.^nT + «,,_,) + fo r? .** , . J r ) (10) 
i = 0 

where 

P t (0 = i ? - 1 { [ s C k + G l ] - ' } 

Bi,k(t)=<?-iLck + G k y l - i 

(11) 

(12) 

vk_l(nT + fft_t) are the init ial conditions. 
A recurrence relation giving the sequence of f inal 

states of the system wi th in each time-slot is obtained by 
substituting t = xk in eqn. 10 

tk(nT + ak) = Pkvk^{nT + + f (13) 
1 = 0 

where 

Pk=rPk(xk)Ck (14) 

= (15) 

The coefficients a" k are obtained by defining 

h - = S ( l 6 ) 

m 
/7 .t = w . . i (« i J (17) 

and then applying eqn. 53, which gives 

< * = f • / „ / " * (18) 
1 = 0 
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Eqn. 13 requires the matrices Pk% given by eqn. 14, and 
the vectors B,• k , given by eqn. 15. Using the definit ion of 
the extended state transition matrix (eqn. 11), and apply
ing an I M N approximant of even order M [27] , then 
eqn. 54 gives 

Pk(zk) * I Re l2KJik\zJvk Ck + G J " ' ] (19) 

Similarly applying the excitation response approximation 
(expr. 55) to eqn. 12 gives 

Mil 
« , . » ( r j * £ R e 

2 K / r t i ! r 

(20) 

Guidelines for selecting the order of polynomial approx
imation m are given in the Appendix and the I M N 
approximant order M and constants of approximation 
Kt and Z, elsewhere [27 ] . The I M N approximant is 
reputed to be stable and accurate over a wide range of 
systems applications and this has certainly proved true in 
the SC network applications outlined here wi th M ^ 10. 

4 ^-domain analysis 

In the general analysis of switched networks it is obvi
ously essential to have an efficient frequency analysis. I t 
would be possible to perform a Fourier transform on a 
time domain solution, but however efficiently this might 
be implemented i t is hardly likely to provide an accept
able solution. Previous attempts [ 6 - 1 0 ] at nonideal 
analysis become very time-consuming at this point of 
transformation in to the Z-domain, pr imari ly because of 
the need for A C analysis in each clock phase at each fre
quency point. Fortunately, w i t h the present 'ormulat ion, 
a fair ly straightforward solution is at hand. 

To obtain the Z-domain series of final states Vk(z) for 
k = 1, . . . , N, we need to take the Z-transform of eqn. 13 
and solve for Vk(z). 

The Z-transform of eqn. 13 is 

Vk(z) = PkVk_i(z) + Y.Wk(z) 

where 

» = 0 | _ i = 0 J 

= i B , l i y l t W k ( z ) z ^ - ' ^ ) 
i • 0 \ l = 0 / 

Eqn. 21 can be writ ten in matr ix fo rm as 

(21) 

(22) 

(23) 

5 Solving the discrete system 

A substantial amount of frequency independent pre
processing can be performed in solving eqn. 23. The 
approach used is based on the method developed in Ref
erence 16 for ideal SC networks. First, all the Pk are fre
quency independent, hence these can be precomputed 
using eqn. 19 and stored. Similarly the Bt k in eqn. 15 are 
independent of frequency and are precomputed using 
eqn. 20 and stored. 

Performing a block Gaussian elimination on eqn. 23 

/ -Pi 
- P J = 

ZfV2(z) 

-PNzI Z l ^ 2 ) _ 

( z / - £ ) ^ z ) Y,Ek-LWk(z) 
k = I 

where 

E=PyPS.1 

Ek = 

PiPx 

Pk* l 
I 

k = 1, . 

k = N 

N - 1 

(25) 

(26) 

Matrices E and Ek are frequency independent and are 
only computed once prior to frequency analysis. The 
mult ipl icat ion by Ek can be distributed over the summa
tion in the excitation T-Wk(z) as a preprocessing step, 
giving 

i = 0 1 = 0 

where 

P>. k = EkBi.k-

Eqn. 24 then reduces to 

< z / - E ) * V z ) - £ Z »"*(*) 

(27) 

(28) 

(29) 

which can be very efficiently solved for ^ z ) using 
methods discussed below. The solutions for Vk(z) for 
k = 1, N — 1 are then obtained by block 
back-substitution, 

yk(z) = PkVk_l(z) + -LWk(z) k = 2, N - 1 (30) 

Using the direct Gauss elimination method to solve eqn. 
29 requires 0 (v 3 ) flops. This cost is excessive for large 
networks, especially when many frequency points are 
evaluated. I t can be reduced to 0 ( v 2 ) flops by trans
forming the system to upper Hessenberg fo rm, which 
only needs to be done once, in a frequency-independent 
step. This method, which has been applied to the fre
quency analysis of linear systems [ 1 7 ] , has also been used 
in SC frequency analysis [ 1 1 ] . 

A general matrix E can always be reduced to Hessen
berg fo rm by stabilised elementary transformations [18 ] 

H= T ' P lEPT (31) 

(24) 

where 7 is a triangular transformation matrix and P is a 
permutation matrix. The transformation matrix T and 
Hessenberg matr ix H can be determined in approx
imately 5/6v 3 flops using real arithmetic throughout. 

Applying the stabilised elementary transformation to 
eqn. 29 gives 

« 
P1\zl - T 1 P l E P T ) T l p-1Vlt(z)= £ X W ; ( z ) (32) 

k= 1 

which may be wri t ten in a simplified f o r m as 

(zl-H)y = b (33) 

where 

H= T ' P ' E P T 

y = T - l p - , V N ( z ) (34) 

b = r ' P " ' f.T.Wk(z) (35) 
*= i 

To fo rm the vector b, the inverse of T is not actually 
calculated as the equivalent operation is accurately and 
efficiently obtained by the process of back-substitution 
using matr ix T. A substantial amount of this calculation 
can be performed as a preprocessing step by rewri t ing 
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eqn. 35 as 

b= xiffju) 
k = I 

where 

(36) 

(37) 
i = 0 1 = 0 

and 

(38) 

Eqn. 33 is solved using the direct L U approach. By 
taking advantage of the structure of the Hessenberg 
matrix, both terms of zero/nonzero and real/complex 
structure, the computation is reduced f r o m 4/3v 3 to 2v 2 

flops. The forward elimination and back-substitution 
steps together require approximately 2v 2 flops. Finally, 
the required solution V^z) is determined by mul t ip ly ing 
y by the transformation matrix, which requires a further 
v 2 flops. The total solution process then requires approx
imately 5v 2 flops, which is a dramatic improvement over 
the direct approach. 

6 Frequency analysis 

To solve the discrete system (eqn. 23) for a particular fre
quency to0, substitute 

z = e J m o T (39) 

Applying Poisson's formula to l.Wk(z) gives 
m m / m 

ZrVk{e*T) = £ I E v „ 
n-0 L i - 0 \ l = 0 

x Wk[nT + ok + lhk - r»)^«, 

= i I \ t B i . K lytim<o - no,) 
' n = 0 L ( = 0 1 = 0 

x exp {J{u> - nw$pk + lhk - t»))J 

Now, it is shown in Reference 16 that 

£ W(m - ncoy-"'-™"** = 2neJa""t 

, - jntaT 

(40) 

(41) 

which is independent of n. Using this result in eqn. 40 
gives 

I Wk(e«°°T) = ^ £ B , k £ y„ **-<•» + "» " «> (42) 
' i = 0 1 = 0 

Applying window functions to the output signals [19] 
and taking into account the s i n x / x sampling effect and 
possibly unequal time-slots, the frequency response of the 
system is given by [ 1 6 ] 

S„= I.Dk.„Vk(ei"°T) 
» = I 

where 

ju>T 

0 - ytlXTN - I 

k it N 

ju)T 

(43) 

(44) 

(45) 

and 

o) = w0 + nw, 

Assembling all the above leads to the fo l lowing overall 
algorithm for the frequency domain analysis: 

(a) Preprocessing independent of frequency and n 
(i) Formulate the matrices Gk and Ck and the 

vectors Wk 

(ii) Calculate Pk matrices using eqns. 14 and 19 
vectors using eqn. 20 for 

0, 

(iii) Calculate 
i = 0 , . . . , m 

(iv) Calculate matrix E using eqn. 25 
(v) Calculate F{ k vectors using eqn. 28 for i = 
. . , m 
(vi) Transform matrix E to upper Hessenberg fo rm 

H using eqn. 31 
(vii) Calculate vectors / , k using eqn. 38 

(f>) Frequency analysis independent of n 
(i) Prepare matrix (e>°">TI - H) 
(ii) Bu i ld RHS of eqn. 33 using eqns. 36 and 37 
(iii) Solve eqn. 33 for V ^ e i a o T ) using the Hessen

berg method 
(iv) Calculate yk(ei°"lT) using eqn. 30 

(c) Spectral analysis 
(i) For selected n calculate weights Dk „ using eqns. 

44 and 45 
(ii) Calculate 5„ using eqn. 43 

8 Results 

The theory developed above was implemented in the 
program Q U I C K S C N A P using 16-digit double-precision 
arithmetic throughout. In the preprocessing section 
maximum use is made of sparse techniques, utilising new 
interpretive code and opt imal ordering algorithms [ 1 5 ] . 
Ful l matrix techniques are used in the frequency response 
calculations. A dynamic storage allocation scheme is used 
throughout. Numerical accuracy has been checked by 
comparison wi th measured results and wi th a selection of 
computed results f r o m other established programs, when 
agreement was better than five significant figures. A rep
resentative sample of large SC networks is references in 
Table 1. 

Table 1: Examples used for comparison 
Description 

1 6th order Chebychev bandpass filter [20] 
2 11 th order elliptic lowpass filter [21 ] 
3 7th order Chebychev lowpass filter [22] 
4 15th order elliptic lowpass. LUD design [23] 
5 SPFT elliptic bandpass filter system [24] 
6 18th order elliptic bandpass filter [25] 

The run statistics for a selection of these programs 
S C N A P N I F and S C N A P I F [ 1 4 ] , S W I T C A P [ 5 ] and 
Q U I C K S C N A P are shown in Tables 2-5. A l l results are 

Table 2: Run statistics for QUICKSCNAP 
Example Number of Number of Pre-Pr. Time/pt. Storage, 

nodes slots sec sec words 

1 28 2 5.55 0.114 16890 
2 41 4 22.7 0.320 39944 
3 30 6 12.4 0.234 27002 
4 69 2 47.6 0.679 95210 
5 86 36 14.52 13.44 824944 
6 77 5 93.4 1.512 145854 
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Table 3: Run statistics for SCNAPNIF 
Example Number of Number of Pre-Pr., Time/pt. Storage, 

nodes slots sec sec words 

small computers. I t is expected that this wi l l provide a 
sound basis for noise and sensitivity analysis, wi th exten
sion to optimisation studies. 

1 28 2 35.7 5.37 39682 
2 41 4 265.0 28.65 100489 
3 30 6 141.0 18.32 71070 
4 69 2 377.0 74.11 230217 
5 86 36 — — — 
6 77 5 1308.0 216.0 368254 

Table 4: Run statistics forSCNAPIF 
Example Number of Number of Pre-Pr., Time/pt, Storage, 

nodes slots sec sec words 

1 28 2 0.64 0.046 51849 
2 41 4 1.94 0.161 57162 
3 30 6 1.32 0.137 53276 
4 69 2 2.33 0.237 74415 
5 86 36 103.0 17.48 456383 
6 77 5 5.88 1.156 410674 

Table 5: Run statistics for SWITCAP 
Example Number of number of Pre-Pr., Time/pt, Storage 

nodes slots - ic sec words 

1 28 2 6.14 0.207 11852 
2 41 4 — — — 
3 30 6 — — — 
4 69 2 25.9 1.621 34188 
5 86 36 — — — 
6 77 5 — — — 

f r o m implementations on a fi\AK I I computer, run 
under V M S . I t can be seen that the storage requirements 
for Q U I C K S C N A P compare favourably wi th other 
programs. For analysis of large nonideal (finite amplifier 
G B and switch R„„ and Rolt) SC networks, Tables 2 and 3 
give a fair comparison against currently available soft
ware, indicating improvements in speed by a factor of 
200. The preprocessing times also show a speedup factor 
of 10, directly attributable to the enhanced sparse tech
niques utilised. Note that Example 5 is beyond the capi-
bi l i ty of program S C N A P N I F . Tables 4 and 5 show 
performance figures produced by programs specifically 
designed for the analysis of ideal SC networks, and it is 
interesting to observe that although Q U I C K S C N A P 
undertakes a complete nonideal analysis, comparison 
shows that its performance lies between S C N A P I F and 
S W I T C A P , being approximately twice as fast as the 
latter. While S W I T C A P can approximate a nonideal 
analysis, the run times are in terms of hours. S W I T C A P 
requires that the network is not disjointed in any clock 
phase, and this explains the l imited selection of successful 
examples in Table 5; although a straightforward f ix is 
possible, this requires modif icat ion of the circuit by the 
user. 

Similar conclusions are apparent f r o m the graphs 
shown in Figs. 2 and 3, which display the relative per
formances of the programs for two-phase SC networks. 

9 Conclusions 

A new analysis scheme has been demonstrated to main
tain accuracy, while providing orders of magnitude 
improvement in speed of analysis. The computational 
cost of the analysis increases linearly w i th the number of 
time-slots and quadratically w i th the number of nodes. 
This affords the user a facility to breach the existing 
vN = 500 boundary, while containing time and storage 
requirements wi th in bounds typical of generally available 

SCNAPN F 

S W i T C A F ( idea l ) 
Q U I C K S C N A P 

S C N A P I F 

10 20 30 40 50 60 70 
n u m b er of n o d e s 

Fig. 2 Comparison of run-times per frequency point 

400 

350 
S C N A P N I F 

300 

250 
in S W I T C A P ( idea l «! 200 

150 O U I C K S C N A P 

<~> 100 

50 

0 
10 20 30 40 50 60 70 

number of nodes 
Fig. 3 Comparison of overall run-times (150 frequency points) 

The frequency analysis algorithms are highly suited to 
vectorisation, which could provide further dramatic 
improvements when implemented on a suitable pro
cessor. 
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12 Appendix: The stepping inverse Laplace 
transform (SILT) method 

Consider the algebraic-differential system 

Cx(t) + Gx(t) = nit) x(0) = X o (46) 

where x(t) is the unknown response vector, w{t) is the 
excitation vector, C and G are constant real matrices. 
The S I L T method provides an attractive solution tech
nique for eqn. 46. The excitation vector is approximated 
by the vector of mth order polynomials, 

Pm(t)= £ o t „ t * (47) 
t = o 

Substituting eqn. 47 into eqn. 46 and taking the Laplace 
transform, 

X(s) = [ sC + G\ - 1 \ c x a + £ ^1 (48) 

The inverse Laplace transform of eqn. 48 is then, 

x(t) = P\t)Cx(0) + £ > t B t ( r ) (49) 
k = 0 

where 

P[t) = ^ ~ i { l s C + G ] - , } (50) 

called the extended state transition (EST) matrix, and 

/ M O ^ - ' j o C + G ] - 1 ^ y j (51) 

called the excitation response (ER) matrix. 
In lumped linear networks, time zero can be arbi

trari ly selected by taking into account the ini t ial condi
tions of the network; therefore, d ividing the time axis 
into equal steps At, where ( = nAt, we have 

x((n + l )Ar) = P\&t)Cx(n&t) + £ a ;B t (Ar ) (52) 
* = o 

where orj are the coefficients of the polynomial approx
imations of w{t) in the interval [nAt , nAf + A f ] . A closed 
f o r m expression for the a j can be derived using the 
Newton-Gregory interpolation formula. After consider
able manipulat ion this becomes 

« I = X>*,«('iAr + —) (53) 

where yki are tabulated constants. These constants are 
easily computed and the constants for orders 1 to 4 are 
shown in Table 6. 

Table 6: Gamma coefficients for orders 1 to 4 

' [ 7 7 ] 

2 1 ~ 2 0 0" 
2 -3 4 -1 

_ 1 -2 1 _ 

3 - 6 0 0 o" 

1 1 18 -9 2 
6 6 -15 12 -3 

_ -1 3 -3 1 _ 

4 " 24 0 0 0 0 

1 -50 96 -72 32 -6 
24 35 --104 114 -56 11 

-10 36 -48 28 -6 
1 -4 6 -4 1 . 

The inverse Laplace transforms (eqns. 50 and 51) are 
computed using a numerical quadrature approximation 
of the Laplace tansform inversion integral [26, 27] . The 
constants for the approximation (Kl and z,), are tabulated 
complex constants and for an I M N approximant of even 
order M these occur in M/2 complex conjugate pairs, 
which allows the computat ion to be halved. Hence the 
extended state transition matrix approximation is 

M/2 
/ f A r ) * £ Re [ 2 K i / A t [ z i / A t C + G ] " ' ] (54) 

t = i 

and the excitation response matrix approximation 

B 4 (Ar) » | f R e [ ^ ^ T W*tC + C T p ' J (55) 

The above computations can be efficiently implemented 
using sparse matrix methods [15 ] . 
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Efficient Sensitivity Analysis for Large Non-ideal Switched 
Capacitor Networks 

Z Q. Shang and J . I . Sewell 
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Abstract - A new sensitivity analysis method in the 
frequency domain is presented for non-ideal switched 
capacitor networks that is more general and efficient than 
the previously published works. There are no restrictions 
on the number of clock phases, circuit configuration and 
input signal type (which can be either continuous or 
sample-and-hotd). By performing a substantial amount of 
frequency independent pre-processing and using adjoint 
network techniques, the computational costs are reduced 
dramatically and a highly efficient method results. The 
method has been implemented in a SC network analysis 
program called SCNAP4. Numerical results of the 
sensitivity analysis of a fifth order elliptic low pass filter 
are given. 

I . INTRODUCTION 

The sensitivity analysis o f ideal SC networks is w e l l 
established and forms part o f the designers standard tool
k i t . The present trend to extend the application o f SC 
networks to h igh frequency front-ends w i t h multi-rate 
clocks raises the serious question o f sensitivity o f the 
c i rcui t structures w i t h respect to non-ideal parameters 
such as switch resistance and f ini te ampli f ier parameters -
gain/bandwidth, input and output impedances; sensitivity 
o f parasitic capacitances is also required. 

A number o f programs can undertake var ious 
frequency and time domain analysis o f non-ideal SC 
networks [1-4] . A range of techniques have been uti l ized 
to increase speed, improve accuracy and cope wi th large 
networks and mult iple clock waveforms [4) . However an 
e f f i c i e n t sensi t ivi ty analysis o f general non-ideal SC 
networks is conspicuously absent. 

The method described, avoids the mult iple solution of 
very large system matrix in the frequency domain and 
requires only one solution o f the system and its adjoint. 
The pre-processing o f a large amount o f frequency 
independent material reduces computation costs and 
0-7803- 1254-6r93JO3.00e 1993 I E E E 

interpretable code generation, polynomial approximation 
o f the excitation, descretization o f the whole system and 
Hessenburg techniques are f u l l y exploited. 

I I . GENERAL SENSITIVITY ANALYSIS METHOD FOR ARBITRARY 
UNEAR NETWORKS 

For an arbitrary linear system, T X - W , where T is 
the system matrix, X is the unknown response vector and 
W denotes the excitation vector. I f the output o f interest 
<t> ( a l inear combination o f the components o f X ) is 
* - d T X , where d is a constant vector and d T denotes the 
transpose, then standard sensitivity theory fol lows: 

The adjoint vector X, is def ined by X] - -d 'T" 1 o r 
T T X , - - d and the sensitivity o f <P wi th respect to the 

(MI* ffT d\V 
vector o f parameter changes h is x] — X - x] — 

dh ah ah 
The computational procedure for the adjoint approach 

can be summarized: 
step 1: Solve fo r X ; 
step 2: Calculate X , ; 

step 3: Formulate dT/ah and aw/ah; 
step 4: Calculate a « / a h . 

The method is clear and straightforward. The advantage 
o f this procedure is that the vectors X and X, are only 
ca lcu la t ed once, i r respect ive o f the number o f 
parameters. The transpose solution X, can be eff ic ient ly 
obtained using similar steps to those used in solving fo r 
X , which does not require another network analysis. 

Unfortunately, fo r non-ideal SC networks, the system 
matrix T in the frequency domain cannot be expressed 
expl ic i t ly in terms o f circuit parameters. Since T is not i n 
analytical f o r m , the partial derivative 3T/3h cannot be 
performed directly. This problem is due to the extended 
state transition matrix (EST) which can only be formed 
by approximat ion techniques w i t h various degrees o f 
accuracy [2-3] . 
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in. SENSITIVITY ANALYSIS ANALYSIS FOR NON-IDEAL SC 
NETWORKS 

For general linear SC networks, the system matr ix 
equation in z domain can be written in the fo rm (4] 

""V,(z)- ' rw,(z)" 
V,(z) - EW2(z) 

z£WN(z) 

(1) 

- P N zl 
or TX = W. Here 

P k = P k C k (2) 

I W k ( z ) = £[ta,kBu]z-" (3) 
o-O i-0 

where 

P ^ r ' l ^ + s C , ] " 1 } (4) 

B i k = £ - ' { [ G l + s C 1 ] - ' A ) (5) 

£"' denotes the inverse Laplace transformation; p k is 
defined as the extended state transition matrix (EST); B; k 

is cal led the exc i ta t ion response mat r ix ; a i k is the 

coeff icient o f the m th order polynomial which is used to 
approximate the excitation; Vk(z) is a vector o f nodal 
voltages and some branch currents; G k is the 
conductance matrix; C k is the capacitance matrix and I 
denotes the ident i ty ma t r ix . I n the computa t ion o f 
frequency response, p k , Bi k are frequency independent, 

so they can be pre-calculated. 
Since p k and B, k are produced by numer ica l 

techniques, the major problem is to determine the partial 
derivatives o f pk and Bt l 

Differentiate (4) w i t h respect to h 

1 
: 2i t j f { ^ l G 1 + s C k r j e " d s 

= £ - ' { | ( G k + s C J -

Define the system matrix in time-slot k as 

M k = G k +sC k 

Because M k M k ' = I 

differentiate (8) w i th respect to h to obtain 

= 0 
3 M k d M k ' 

-M;1 

and rewrite as fo l lows 

Hence 
ap, 
3h 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

The inverse system matr ix M ; 1 and the derivative 
dM k /3h can be calculated easily. Therefore, 3pk/9h can 
now be evaluated by using the l m n [6-7] approximation, 
the same step as used in calculating the extended state 
t rans i t ion ma t r ix p k . S i m i l a r l y , 3B, ,/9h can. be 
evaluated. Both 3pk/3h and 3B l k /3h are frequency 

independent and can be pre-calculated. Hence the 
compu ta t ion o f 3T/3h and 3W/3h f o l l o w in a 
s t ra ightforward manner and the general procedure f o r 
non-ideal sensitivity analysis can be completed. Salient 
features o f the method are: 

(a) I t is completely general. The analysis is not only 
applicable to switched capacitor networks, but also to 
general linear networks. N o restrictions are placed on the 
type o f signal, c ircui t configuration and number o f clock 
phases. Therefore the method is suited fo r mixed-mode 
analysis applications. 

(b) The method is also very e f f i c ien t . A f t e r pre
processing o f a l l f requency independent equa t ion 
components, the sensitivity analysis procedure fo l lows a 
s imi la r pattern used fo r ideal SC network analysis. 
Previous non-ideal SC network sensitivity analysis needed 
three solutions o f the large system equations, here on ly 
two are needed. 

(c) The results of the method are reliable and accurate. 
The only approximation employed in this method is the 
I m n approximant which experience has shown to be 
stable and accurate over wide range o f s y s t e m s 
applications. 

I V . NUMERICAL RESULTS 

The above method fo r sensitivity analysis o f non-ideal 
switched capacitor networks has been implemented in the 
program SCNAP4. A fifth order e l l ip t ic low-pass fou r 
phases SC f i l ter [8] is used as an example and illustrated 
in F i g . l . The sensitivity o f the response wi th respect to 
C | ( a capacitor i n the c i r cu i t ) and G B ) ( the gain 
bandwidth product o f opamp 1) are shown in Fig.2a and 
Fig.2b, respectively. The accuracy o f the results have 
been ver i f i ed by comparison w i t h those produced by 
other techniques. 

V . CONCLUSIONS 

This paper presents a new non-ideal sensitivity analysis 
scheme fo r SC networks. The method is both general and 
ef f ic ient . No restrictions are imposed regarding circui t 
c o n f i g u r a t i o n , number o f clock phases or exci tat ion 
s igna l . T h e i m p l e m e n t a t i o n o f the m e t h o d is 
s t raightforward. Numerical results c o n f i r m the val id i ty 

1406 



3 7 5 

and eff iciency o f the method. 
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ABSTRACT 

A fully general and efficient noise analysis method is 
presented for both switched capacitor and switched-current 
circuits. The fold-back effects and non-ideal effects such as 
parasitic resistive time constant have been taken into 
account. The thermal noise and flicker noise generated by 
MOS transistors are considered. By utilising the adjoint 
network technique, only one system solution is needed for 
noise analysis. In addition, numerical inversion of the 
Laplace transformation, the Hessenberg technique, 
extensive sparse matrix routines and interpretable code 
generation have been used to improve the efficiency of 
noise analysis. The method has been implemented in 
SCNAP4 and numerical results are given in the last section. 

I INTRODUCTION 

Since the early years of last decade, noise analysis for SC 
circuits has been discussed frequently [1-7]. However most 
of the presented techniques are only adequate for small 
circuits. General and efficient methods were seldom 
mentioned. Recently, switched-current circuits have gained 
much attention. Naturally, their noise characteristics are of 
main concern to designers. Generally, two types of noise are 
considered in SC circuits, white noise from switches and 1/f 
noise from operational amplifiers. For switched-current 
circuits, since the MOS transistors operate in saturation 
regions, both thermal and flicker noise exist 

Unlike the traditional analogue case (switch free), the 
folding of wideband white noise from high frequency bands 
to baseband, caused by the sampling nature of switched-
circuits. leads to excessive computational costs. 
Traditionally, in order to calculate the whole noise spectral 
density, the folding transfer functions from each noise 
source to output have to be evaluated. For example, a circuit 
containing m noise sources requires m different system 
solutions at each frequency point. Furthermore, as the noise 
band widths are normally orders of magnitude higher than 
the sampling frequency, a very large number of system 
solutions are needed to cover the wide frequency range for 

taking folding effects into account. Therefore, without 
efficient and general methods, noise analysis is either very 
time consuming or the results tend to be unreliable. 

The method developed in this paper is based on the adjoint 
network technique which had been successfully applied to 
non-ideal sensitivity analysis of switched linear 
networks[8]. For noise analysis, only the adjoint system 
solution is required and the original system solution is no 
longer necessary. The In,n approximation for extended 
transition matrix and Hessenberg technique for solving the 
adjoint system as well as the pre-processing of a large 
amount of frequency independent material reduce 
computation costs dramatically and hence a highly efficient 
method results. By using spectral analysis technique the 
fold-back effects can be accurately evaluated. In the 
following sections, these aspects will be discussed in detail. 

II ADJOINT NETWORK TECHNIQUES 

The task of noise analysis can be divided into two different 
aspects. 

(a) reducing the overall number of system solutions; 

(b) efficient methods for each individual system solution. 

The second aspect has already been considered when 
SCNAP4 was being developed. A solid platform for noise 
analysis has been built successfully. In the following, we 
will focus on the first issue. 

For general linear switched networks, if the system contains 
m noise sources, the problem can be described by 

I -p,1 "Vj(z)- " EWj(z) " 
p 2 I Vj(z) = SW2(z) 

(1) 

- P N zl z£W N(z) 

or 
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TXi=Wi (i=0.1....jn) 

where T denotes the system matrix in z domain, X, and W; 
are unknown and excitation vectors, respectively. 
P k = p k C k , pk is defined as the extended state transition 
matrix, I denotes the identity matrix. 

For the ith noise source, the transfer function from the noise 
source to output can be defined as 

H i ( ( D ) -d , X i (2) 

with d representing a constant vertor. 

Define the adjoint system as, 

T ' X a = - d (3) 

Substitute (1), (3) into (2) gives 

Hi(o)) = - X i W i (4) 

Assuming that there is no correlation between the input 
noise sources, the total noise power spectral density at the 
output is then calculated by superposition 

STM = Jt£|H i((o)| 2S i(co-nco,) (5) 
1 n=0i=l 

where S[(£2) is the ith input noise power spectral density 
and p is the number of bands to be considered. Here the nth 
band is defined as the frequency interval from (n - l)cus/2 
to no)n/2 where <o8 is the sample frequency. Several 
comments can be made at this stage. 

1) It is evident that after solving the adjoint system (eq. (3», 
Hj(o)) can be obtained directly by merely one subtraction 
since each W; contains at most two nonzero entries. Instead 
of m different network analyses, only one adjoint system 
solution is needed for all m noise sources, the original 
system solution can be saved. Therefore computational 
efficiency is achieved. 

2) The adjoint system is solved by using the Hessenberg 
approach which has already been proved very effective in 
frequency domain analysis of switched linear networks. 

3) The folding effects from high frequencies to a specific 
band are evaluated up to a user given noise bandwidth. This 
is based on the fact that the noise is normally bandlirnited 
by op-amp frequency response and time constant effects 
from switch resistances and circuit capacitances. 

Ill NOISE ANALYSIS OF SWITCHED-CURRENT 
CIRCUITS 

The noise behaviour of switched-current circuits has 
received considerable attention since the emergence of 
switched-current techniques [11-13]. It is wise to choose the 
basic switched-current memory ceil, as shown in Figure 1. 
to start with. Both transistors Mi and M 2 operate in 
saturation region, hence generate both flicker noise and 
thermal noise. The flicker noise is modelled as a gate-
referred noise which generates a drain noise current. The 
thermal noise is modelled as a drain-referred noise current 
The thermal noise from switches is treated in the same way 
as that was in SC circuits. By modelling the MOS transistor 
with a macromodel which consists of linear components, 
SCNAF4 can be used directly to analyse switched-current 
circuits. Detailed discussion about the models of MOS 
transistors for switched-current circuits can be found in 
[14]. 

IV NUMERICAL RESULTS 

The noise analysis method presented above has been 
implemented in the program SCNAP4. Two types of noise 
source (voltage and current) are available, they can be either 
flicker noise or white noise. The foldover wideband white 
noise from high frequency bands to baseband can be 
calculated. 

Two examples are given. For SC circuits, a sixth order 
bandpass filter is selected. The op-amp noise components 
are given to be 8QnV/VHz with comer frequency 1kHz. 
The output noise spectrum density is illustrated in Figure 2. 
A close agreement between simulation and results from [S] 
can be noted. The fold back effects are also shown in Fig. 2. 
For switched-current circuits, a third-order elliptic ladder is 
considered. The noise bandwith is about 160MHz and the 
comer frequency is set to lKHz. If the reference noise is 
lnA/vlfz , then the circuit response and noise behaviour 
are illustrated in Figure 3 and Figure 4 respectively. The 
CPU time for analysing these circuits are given in Table 1. 
It is evident that even for circuits with moderate size, 
SCNAP4 is able to give noise analysis results in fairly short 
time. 

V CONCLUSIONS 

This paper presents a general and efficient noise analysis 
method applicable to both SC and SI circuits. Standard 
circuit non-idealities are included and complete folding 
effects for broadband noise are incorporated. An adjoint 
description of the non-ideal network is employed and only 
the solution of this is required. Numerical results compare 
well with practical results measured from integrated 
circuits. The speed of analysis on a relatively model work 
station indicates that noise analysis of large switched 
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systems is feasible and the application to some degree of 
noise optimisation is a realistic possibility. 
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An Adaptive Electronic Circulator 
for Use in Telephones 

R. P. L O D G E AND J . I . S E W E L L , M E M B E R , I E E E 

Abstract—A design for an adaptive three-port electronic circulator 
is presented. The circuit has particular use in telephone work and 
this model can provide isolation when the terminating load varies 
over the range 200 f l - 1 kS). The whole circuit is realizable in micro
electronic form. 

I N T R O D U C T I O N 

TH E U S E of electronic circulators in telephone systems 

has been suggested recently [ 1 ] and an even more 

extensive and ambitious scheme has been outlined [ 2 ] . 

T h e great virtue of the audio circulator is that the design 

is simple [ 3 ] , it is easily extendable to an >i-port version, 

and a large variety of combinations are possible [4 ] . Thus 

the circulator can be used for all the isolation problems 
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encountered in telephone systems and also in the various 

filtering requirements [5 J . 

I t has been demonstrated [ 1 ] that line matching can be 

achieved in a most accurate way. However this refers only 

to the static case and will not apply to dynamic matching 

where there can be changes in line impedance with chang

ing length, quality of line, and terminations. Some form of 

adaptive circulator is obviously needed to overcome such 

difficulties. 

A D A P T I V E C I R C U L A T O R S 

The principles are most easily observed by considering a 

three-port circulator, which is the lowest order of practical 

use in telephone work. In a typical handset application 

[ 2 ] , the microphone is connected to port-1, the subscribers 

line to port-2, and the earphone is fed with a signal propor

tional to the. difference of the signals at these two ports. 

The circulator provides the required isolation on transmit 

and receive. In the transmit mode, the difference signal 

will produce the side-tone and, with ideal matching, uni

form speech level? are ensured. If the circulator impedance 
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Fig. 1. Adaptive circulator realization. 

at port-2 perfectly matches the line, then in the t-insmit 
mode there is theoretically zero voltage at port-3, and in 
the receive mode no signal will appear at port-1. Any mis
match with the line will produce a finite rejection port 
voltage and it might be assumed that this could be used as 
a feedback signal to control a voltage variable resistor 
( W R ) defining the circulation impedance at port-2. 
However a phase-sensitive rectifier would be required to 
derive a correction signal, which will vary the impedance 
in the appropriate direction. 

Fig. 1 shows a better alternative circuit for an adaptive 
circulator. The circulator is balanced when ports-1 and -3 
are terminated in Ro and when the channel resistance of 
the F E T is equal to the load at port-2. If, under these 
conditions, the input voltage atport-1 is V and there are no 
other input signals, the output from operational amplifier 
(OA) 1 is also V. The port-2 voltage is then V/2. The dif
ferential amplifier formed by OA 2 thus has two equal in
puts and, therefore, no signal will appear at port-3. For un
balanced condit ions, when the F E T channel resistance and 
the load are different, there is an output from OA 2 and 
thus the port-3 voltage will be finite. With the gain of 
amplifier 1 double the gain of amplifier 2. a feedback signal 
to the F E T gate is derived by comparing the actual 
port-2 Voltage with the desired value. I t is usually neces
sary to provide some bias, in series with the correction 
signal, to ensure that the F E T channel resistance is 
centered on the mean load resistance. As the r j , charac
teristic is not entirely linear, it is usually necessary to 
apply local feedback to obtain a wider linear range. 
For good third-port rejection, the gain round the cor

rection feedback loop should be as high as possible. 
However, this is restricted by the possibility of oscillation, 
although this may be removed by some form of damping. 

When an input is applied to the second port, simulating 
an incoming line signal, the feedback mechanism is differ
ent. Assuming that there is no input signal at port-1, there 
is no signal at the inverting input of O A 2. The input 
voltage divides between the F E T and the load resistance, 
thus the output of the summing amplifier goes negative to 
a great extent. With a high loop gain and small damping 
factor, the F E T channel becomes cut off and all the signal 
is passed to OA 4. There will now be isolation at port-1 and 
an earphone fed with the difference of the port-1 and -2 
signals will receive the full incoming one. However this 
leads to two problems: the adaptive feature is no longer 
operative as the line feeds the earphone circuit direct; and 
the circulator suffers from voice switching. A fairly con
venient method of overcoming these two difficulties is to 
provide feedback of the signal at port-3 to the inverting 
input of OA 1, isolation in the path is required to prevent 
any feedforward. I n the transmit mode, there is no signal 
at port-3 and operation is as previously described. On re
ceiving an incoming signal at port-2, the extra feedback 
provides an input for amplifier 2 which will ensure that the 
F E T will not now be cut off. Voice switching is eliminated 
and the adaptive property retained. 

P R A C T I C A L C I R C U I T 

A circuit employing the common 741 amplifier as the 
basic amplifier unit was constructed. The rectifiers were 
simply a single diode with a smoothing capacitor; some 
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Fig. 2. Rejection characteristics for input to portal. 

buffering with a voltage follower may prove necessary 
before the summer, again a conventional amplifier circuit. 
The smoothing capacitors also furnish the required damp
ing and 0.22 provides a satisfactory response. 

The r d , ( 0 N ) value of the F E T selected ( B F W 10) was in 
the region of 200 fi. The initial matching range was chosen 
as 200-1000 fi. When the load resistance has some value 
RL, the difference voltage generated is 

V = V,° V i a R L 

2 RL + r j , ( 0 N ) ' 

where rd,(0ti)' is the actual drain-source resistance apparent 
in the circuit and includes any alteration induced by local 
feedback; and V i n is the input voltage at port-1. For the 
signal levels ensuring linear operation of this particular 
circuit, an input voltage of about 30 m V resulted in a 
maximum value of Vd as 5 mV. The gate-source voltage 
required for a channel resistance of 1000 fJ for the B F W 10 
is —2.1 V , thus a differential gain of about 400 is required. 
This is realized by the amplifiers preceding the rectifiers, 
which have adjustable gains to compensate for differing 
voltage drops across the diodes. An added feature is that 
these amplifiers also prevent loading of the F E T and the 
line. 

Fig. 2 shows some typical response curves, when the 
circuit was fed with 30 mV at port-1 and the rejection 
voltage at port-3 is measured. The bias on the F E T gate 
is set to match a 600-ft load at port-2. I t is apparent that 
within a 5-kHz bandwidth, the rejection is best for loads 
in the region about 600 Q. A point of interest is to note that 

there are wider rejection bands for the greater load devia
tions; this is due to better controllability of the larger 
error signals present in these circumstances. Nevertheless 
the circuit will provide third-port rejections of between 
30-40 dB for variations in port-2 terminations over the 
range 200-1000 ft, for a 5-kHz band. The isolation charac
teristics of the circulator when fed with a signal at port-2 
and subjected to load variations at port-2 are shown in 
Fig. 3. The rejection is greater than 44 d B over a 20-kHz 
bandwidth, there being negligible effect due to load change 
from 600 fi until approximately 1 kfi is reached. This can 
be expected since the third stage, which is purely resistive 
and accurately adjusted, is responsible for producing this 
degree of isolation. 

I t is therefore possible to conclude that adaptive 
electronic circulators art: quite suitable for telephone usage. 
Isolation is possible over a good bandwidth, and with more 
careful design, considering the time constants involved in 
rectification, F E T nonlincarity, and feedback loop gain, 
together with better amplifiers, a superior performance 
could be ensured. One disadvantage of the present circuit 
is the need for low input voltages, as is common with most 
V V R applications of F E T ' s , since the signal inevitably 
produces some modulation of the channel resistance. This 
can be overcome by employing more elaborate gate-drain 
feedback circuits and using F E T ' s especially designed for 
W R work. 

The voice-switching problem of the simple circuit is 
overcome by adding an extra feedback path. The circulator 
can be used to match complex impedances, but obviously 
the variable correcting circuits will be more sophisticated. 
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Fig. 3. Rejection characteristics for input to port-2. 

The operating conditions considered here would only 

correspond to unbalanced line working in a telephone 

system. But with duplication of the circulators [ 2 ] normal 

operation is easily accomplished. An added advantage is 

that the whole circulator circuit can easily be realized in 

microelectronic form. 
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A n Improved Adaptive Electronic Circulator for 

Telephone Applications 

H. G A Z I O G L U , D. A. HOMER, AND J. 1. SEWELL, MEMBER, IEEE 

Abstract-A previous attempt at realizing an adaptive circulator for 
telephone applications suffered from limitations due to voice switching 
problems, resistive part matching only, and some difficulties with adap
tive operation for broadband signals. The use of pilot tones enables the 
circuit to be free from voice switching problems and to accomplish a 
close impedance match with that of a telephone line. Analysis of the 
circuit in an adaptive hybrid configuration produces the theoretical 
bounds on performance. Experimental results display the performance 
characteristics of the adaptive circuits and various other hybrid circuits 
on a selection of subscriber lines with a range of terminations. 

I N T R O D U C T I O N 

There is an increasing interest in the inclusion of a variety 
of electronic features in the telephone subscriber's loop. Apart 
from dialing facilities and subscriber carrier systems, studies 
concerned with circuits providing amplif ication [ 1 , 21, active 
hybrids [ 2 , 3 , 4] and adaptive hybrids [5 , b, 7] are being 
actively pursued. The previous attempts at realizing adaptive 
hybrids had a number of limitations, some providing the adap
tive feature only at certain frequencies [51 or over a limited 
frequency band [ 7 ] . T h e adaptive circulator [6 ] provided 
only resistive part matching and although some precautions 
against voice switching were taken, these were not entirely 
satisfactory; the adaptive operation of the circuit with broad
band signals also presented problems. 

The possibilities of adaptively matching line impedance 
changes in the subscriber equipment, at the interface with line 
amplifiers, or at the 4-wire to 2-wire transition points are as
suming increasing importance. The line characteristic is vulner
able to the influence of change in terminations and cable para
meters affected by physical means due to either man or nature. 
The mismatch against static balancing impairs sidetone rejec
tion and reflection characteristics resulting in problems of no 
small significance. 

A further requirement of future developments is to provide 
isolation and matching characteristics by circuits suitable for 
mass production by integrated circuit means. 

T H E A D A P T I V E C I R C U L A T O R 

The basic 3-port circulator is well known (8) and the re
placement of one section by an adaptive one has been reported 
[ 6 ] . Attention here will be confined to a different adaptive 
section which may be used in conjunction with standard sec
tions to form a fully adaptive circulator. 

Consider Fig. 1 and note that the controlling signals are de
veloped from a separate pilot lone and that the impedance 
measuring and adjustment bridge can have both pilot, transmit 
and receive voice signals present in one arm simultaneously. 
The circulator section automatically removes the pilot signal 
from the isolation path and the voice frequencies are filtered 
out in the control path. The line input impedance is simulated 
by an RC c ircuit , Fig. 2; a three element parallel/series circuit 
is considered initially, but results are shown for a five element 
network for more general application. T h e three element net
work will suffice for short lines, but the more complex net
work is necessary for the longer subscriber lines. The possible 
combinations of length and diameter of cables on subscriber 
lines is almost infinite. F o r British Post Off ice lines, the three 
networks given in Fig. 2 represent optimum fits to the fre
quency responses of average overall lengths taken in three 
groups and typical combinations of C u cable of differing diam
eters, a line termination of 600 R was used. Experimentat ion 
will show that these networks provide a suitable median from 
which the adaptive feature can work. 

With the three element circuit it is obvious that a 3-term 
controller could be used. Analysis of such a network demon
strates that the high frequency response is a direct function of 
the series resistance, whereas the low frequency response is 
dependent upon both resistances. T h e break points of the 
simulated line characteristic can be directly controlled by vary
ing the capacitance value. Hence a control loop employing a 
pilot tone well above the voice band, say 10 kHz can be used 
to adjust the high frequency response and another using a pilot 
tone below the voice band, say 12 Hz , can adjust the low fre
quency response. A further pilot tone just outside the band, 
say 5 k H z , can be used to control the capacitance value. How
ever, investigation shows that in practice the high frequency 
asymptote is of little significance, because the major effect is 
out of band and anyway this varies little from line to line and 
with various terminations. A n y influence on the upper break 
frequency can be covered by capacitance control T h e major 
change comes at the low frequency end, manifesting itself as 
quite substantial changes in loop resistance, lower break fre
quency and slope of the impedance characteristic. F o r sim
plicity of analysis a single term controller, operating from a 12 
Hz pilot will be investigated in detail. A dual pilot tone circuit , 
with adaptive parallel R and C elements is of more general 
application for broadband signals, however extension of the 
theory is straightforward. 

With reference to Fig . 1, for the purposes of analysis, it is 
not necessary to consider the pilot tone signal but only the 
components of the transmitted signal E and the received signal 
V. Assuming ideal operational amplifiers, the output signal of 
the circulator section is given by: 
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4 Z j V 

Z n + Z , 
-+ 2E 

Zn + Z, 
( 1 ) 

Now E corresponds to the port-1 voltage, V to the port-2 
voltage, the port-3 voltage will be ED = EA ' /2 , hence: 
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Fig. 1 The adaptive section of a single pilot tone circulator. 
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(a) 

Note that the condition for perfect isolation is Z0 = Z\, and 
the outgoing signal is completely rejected at port-3. Af = 1 
and the incoming signal at port-2 is transferred to port-3 with 
unity gain. 

Substitution of a = X + jY into the expression for the 
magnitude of equation (3) for some constant value AT = K 
gives 

2 7 0 R 

- v W -

0-29 MF 

H I — 
0 21MF 

H I — 

- A V -
« M R 

(b) 

I 7 0 R 

-vw-

0-28MF 

-Hh-

36R 

(c) 

Tig. 2 Optimum balance networks for (a) 1 km line (mixed diameter 
Cu) (b) 4 km line (mixed diameter Cu) (c) 7 km line (mixed diameter Cu) 

2 Z , V 
Ea = + £ 

^ 0 Z l 

za + z. (2) 

which consists of a transmitted component E o T and a com
ponent to be rejected E o R Set a = Z0IZX then the transfer 
and rejection ratios become respectively 

A T = 
2 

V a + 1 

£oR a — 1 

E a + f 

(3) 

(4) 

(X + I ) 2 + Y 2 (5) 

Equat ion (5 ) represents a circle of center ( - 1 , 0 ) and radius 
2/K. Similarly for some constant value of I/AR = R the ex
pression for the magnitude of equation (4) yields 

R 2 I 1 

R 2 - 1 

2 2R 
+ Y 2 = 

_ R 2 - 1_ 
(6) 

which represents a circle in the XY plane with center l(R2 + 
\)I(R2 - 1), 0] and radius 2R/(R2 - 1). Constant transfer 
ratio and rejection ratio circles can be plotted as shown in F i g . 
3. As can be seen infinite rejection is obtained at the point 1 + 
/0 and this corresponds to the condition ZQ = Z j . T h e rejec
tion rapidly decreases as the ratio changes from unity, al
though the transfer gain is relatively insensitive to the change 
and remains close to 0 dB . 

One of the major roles of this circulator is as an adaptive 
hybrid in the telephone set, and most of the experimentation 
has been carried out with that area of operation in mind. If 
the circulator is to be used in the mode already indicated [ 6 ] , 
with the .aouthpiece connected to port-1 and the earpiece fed 
with a signal from across ports-1 and -2 giving a defined side-
tone injection, then the transmission properties of the adaptive 
section are of little consequence as the third section will pro
vide complete isolation anyway. Another connection of the 
circulator is with the mouthpiece again across port-1, the line 
across port-2 and the earpiece across port-3. Now an incoming 
signal is transmitted through the adaptive section and both 
rejection and transmission characteristics of the section are of 
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Fig. 3 Constant rejection and transfer ioci. 

significance. A performance figure can be defined as: 

Substituting a = X + fY and considering constant gain loci 
gives the equation {X - l ) 2 + Y 2 = [ 2 / K R \ 2 which repre
sents a circle with center ( + 1 , 0 ) and radius 2/KR. A set of 
these loci can be plotted. It is therefore possible to determine 
for a specific rejection or performance figure, the accuracy of 
amplitude and phase match required by the adaptive section. 
In practice, the rejection and performance figures are approxi
mately the same. 

For a rejection of 4 0 dB over the whole telephone band the 
conditions are: 

0.98 < | a | < 1.02 
( 8 ) 

- 1 . 1 5 ° < A r g a < 1 .15° 

which imply that the impendance match should be within ± 2 % 
for magnitude and ± 1 . 1 5 for phase. Less stringent require
ments exist for lower rejection specifications; the conditions 
for 26 dB rejection are: 

0.91 < | a | < 1.105 

- 5 . 7 ° < A r g a < + 5 . 7 ° 

a magnitude match of about ± 9 . 7 % and phase match ± 5 . 7 ° . 
The ideal performance of the circuit was examined on a 

computer. A program to simulate the frequency responses of 
lines consisting of a variety of lengths of mixed diameter 
cables with a range of terminations was written, and the re
sults produced agree with the measured ones taken from arti
ficial lines constructed to British Post Off ice standards. This 

program was incorporated into others which simulate the be
havior of the single and dual pilot tone adaptive circulators. 
The results from these programs indicate the possibility of 
approaching the above theoretical limits. 

T H E P R A C T I C A L C I R C U I T 

Fig . 4 shows the complete circuit diagram of the dual pilot 
tone adaptive circulator; all amplifiers are of the 741 opera
tional type. Ports-1 and -3 of the circulator are given 1 k f i 
loads for the test purposes, normal telephone connections have 
already been discussed. The two pilot tones are of 100 m V in 
amplitude; the lower tone is set at 12 H z and the upper at 
5 k H z . Although the choice of these frequencies outside the 
telephone band is reasonably random, some restrictions may be 
imposed by the outside system. F o r instance, there may be 
difficulties with the low frequency pilot tone when encoun
tering the A C coupling found in much m" the telephone plant, 
and it might be necessary to restrict the application to metallic 
facilities. With the high frequency pilot tone the evolving use 
of loop electronics must be recognized and especially with sub
scriber carrier systems the possibility of interference should be 
considered. Filtering of the 12 Hz tone for the low frequency 
control circuit is achieved by a 4th order low-pass Butterworth 
filter of the Sallen-Key type. Rectif iers in both control loops 
are of the active precision type. Because of the location of the 
5 k H z pilot tone with respect to the upper edge of the voice 
band it is necessary to employ a 5 th order high-pass elliptic 
filter in the higher frequency control circuit . The choice of 
matching networks for short, medium and long subscriber lines 
is provided via a switch. Quite good results are obtainable, 
however, by merely using the medium length matching net
work for all applications. Resistance variation is obtained from 
the B F W 10 F E T with shunt feedback to improve linearity. 
Capacitance variation is provided by varying the gain of a 
Miller circuit , again using a F E T . Some care has to be exercised 
in controlling the range of bias on this F E T , since the circuit 



11: E E T R A N S A C T I O N S O N C O M M U N I C A T I O N S . V O L . C O M - 2 7 . NO. 8. A U G U S T 1979 1 2 2 1 

5 * 

w 

8 I 4 s 
M / V 

r 

8 

s LyW S 
HI 

8 

9 

L HI 
* 

60 

T 
v W 

HI 

g 

1 

L j HI 1 

HI 
8 



1222 I E E E T R A N S A C T I O N S O N C O M M U N I C A T I O N S , V O L . C O M - 2 7 . N O . 8, A U G U S T 1979 

5 0 

D u a l p i l o t t o n e c i r c u i t 

P a s s i v e h y b r i d c i r c u i t 

4 0 

6 0 0 R 

S 
CD 

3 0 
100R 

1 0 0 R U 
10 K 6 0 0 R 

Id 2K 

v OK 

2 0 

10 

1 0 0 2 0 0 5 0 0 1K 10K 

F R E Q U E N C Y ( H z ) 
Fig. 5 Adaptive circulator and passive hybrid responses for 1 km 

mixed line: 0.5 km 0.4 mm Cu + 0.5 km 0.32 mm Cu; terminations 
as shown 

inevitably produces a variable resistance in parallel with a 
variable capacitance and this resistance value decreases with 
negative bias. 

Practical measurements were taken using an input signal of 
100 m V and results for the rejection between ports-1 and -3 in 
the dual tone adaptive circulator circuit are compared with the 
performances of some other possible hybrid circuits in Figs. 
5-7. The graphs in Fig . 5 show measured responses of the dual 
tone adaptive circulator and of the conventional passive hybrid 
of the B P O 700 type telephone set, under typical short line 
conditions for a range of terminations. Over the normal tele
phone band and average terminations improvements in rejec
tion are observed. Fig. 6 demonstrates the improvement due to 
the addition of the adaptive feature to the circulator when 
working on a medium length line. T h e results for the non-
adaptive circulator with the passive RC matching circuit are 
computed. There is a moderate improvement for the 600 R 
termination, to be expected since the nominal components of 
the passive matching network are derived for a median 4 km 
line of mixed diameter C u sections with a 600 R termination. 
Quite marked improvements are apparent as the terminations 
are varied, displaying the activity of the adaptive feature. F o r 
the longer lines the line impedance is much higher and the 
F E T ' s are increasingly pressed into a non-linear V V R operating 
mode when the control is not as linear and fine. The measured 
responses displayed in Fig. 7 also snow the poorer perform
ance of the single, low frequency, pilot tone model. In prac

tice, operating conditions can occur that cause line termina
tions to appear largely reactive, this results in some of the re
ject ion curves demonstrating rapidly changing characteristics. 
However, the results obtained for the range of resistance ter
minations used, quite adequately encompass the worst per
formances experienced with both capacitive and inductive 
terminations. It is therefore reasonable to use these responses 
as a good indicator of the average performance with practical 
terminations. T h e best overall performance achieved from a 
dual tone circuit was an average in excess of 34 dB rejection 
over the whole voice band for a line impedance change of 3:1 . 
The characteristics on the whole deteriorate at higher frequen
cies, but since the out of band behavior of the high frequency 
asymptote has been ignored, this trend is to be expected. E x 
periments with the upper pilot tone at 10 k H z indicate a slight 
improvement in performance figures and the circuit also has 
the advantage of relaxing the requirements of the high-pass 
filter for this tone, a feature of some practical importance as a 
3rd order elliptic filter will suffice. 

T h e circuit has been completed by the addition of oscil
lators to provide the pilot tones; these oscillators were of the 
Wien-bridge type. It is an advantage if circuits for inclusion in 
telephone sets do not require an independent power source. 
Experiments in deriving ± 1 5 V supplies from D C power de
livered down the line from a central supply indicate that such 
circuitry could be powered from a local exchange. Some 
studies on the reduction of power consumption have indicated 
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that circuit simplifications are possible. In actual fact, the 
circulator loop can be broken and the third stage eliminated 
without any reduction in the performance factor. 

The overall results obtained indicate that the realization of 
an adaptive hybrid for telephone applications with integrated 
circuit technology is quite feasible. T h e theoretical conditions 
for very high rejection ratios, of the order of 40 dB, are quite 
strict. F o r applications requiring such responses under wide 
variations of line conditions, it will be necessary to employ 
higher grade operational amplifiers in some positions in the 
circuit. Detailed analysis of the control system reveals a stand
ing error responsible for about 3 dB loss in rejection. A rede
sign should be possible here. A more Linear and wider range of 
variation of resistance and capacitance components may be 
afforded by techniques employing multipliers, with very little 
increase in area on an integrated circuit . 
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systems using dynamic channel assignment and having limitations on 
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computer simulation. At low system blocking the traffic carried is 
determined solely by the server limitations while at higher blocking the 
traffic carried is determined by channel limitations. 

Performance characteristics have been investigated for large 
scale mobile radio systems using dynamic channel assign
m e n t . 1 - 9 These systems utilize small radio coverage cells and 
reuse channels within a metropolitan area. In dynamic channel 
assignment systems, channels are assigned to serve calls on the 
basis of instantaneous demand in the system subject only to a 
prescribed channel reuse constraint, i.e., any channel may be 
assigned to any cell in the system provided that the channel 
is not being used within a specified number of cells from that 
cell at the time that the channel assignment is made. T h e speci
fied number of cells required between cells that may use the 
same channel is called the reuse interval. Earl ier s t u d i e s 1 - 4 

assumed that sufficient servers, i.e., radio equipment, were 
available in each cell to handle any statistical f luctuations in 
offered traff ic; the only restriction on the traffic carrying 
ability of the system was on the number of radio channels. 
This permitted the evaluation of the channel assignment al
gorithms independent of server constraints. It was observed 
that the number of servers required was seldom greater than 
the average number of channels available per cell and never 
greater than twice that average n u m b e r . 4 A complete descrip
tion of these earlier studies is included in references 1, 2 , and 
9. The purpose of this correspondence is to indicate the per
formance limitations imposed on these systems by limiting the 
number of servers in each coverage cell . 

The system simulated is described in detail in Reference 1. 
It consisted of a set of square radio coverage areas (cells) 
arranged to completely cover a large square area. It was as
sumed that channels could be simultaneously used in every 
fourth cell (reuse interval of 4 ) . T h e total number of duplex 
radio channels allotted to this dynamic channel assignment/re
assignment system was 160. This provided 10 channels on the 
average in each cell . O f the 160 channels, 128 were assigned on 
a fixed basis with 8 fixed channels per cell . F i x e d assigned 
channels could be used only in the specified cells to which 
they were allocated. T h e 32 remaining channels were assigned 
dynamical ly and could be used in any cell in the system de
pending upon instantaneous demand and subject only to the 
constraints of channel reuse and available servers. The system 
maximized the number of calls occupying fixed channels and 
used the dynamic channels only to handle statistical f luctua
tions in offered traff ic . Calls in progress were transferred from 
dynamic channels to fixed channels whenever possible as de
scribed in Reference 1. Call-attempts were generated in the 
simulation as a Poisson process in time with a specified f ixed 
call-attempt rate in each cell . Ca l l attempts were uniformly 
distributed in space and the attempts in any given cell were 
independent of those in all other cells. Attempts that were 
assigned a channel remained "on" for call durations that were 
distributed exponentially and had a mean duration of 98 
seconds, In this simulation, vehicles making calls were identi
fiable entities whose locations and movements were stored in 
the computer. Active calls crossing cell boundaries were 
treated as new calls in the new cell as described in Reference 1. 
Data were obtained by counting and storing the number of 
actual events which occurred as the simulation ran. 

The curves in Figure 1 show directly the relationship be
tween the traffic carried (expressed as the average number of 
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A METHOD FOR THE EVALUATION OF MULTIRATE 
SIGMA-DELTA SYSTEMS 

David Hossack and J . I . Sewell 
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Abstract - Simulation techniques for sigma-delta based 
systems are discussed. An extension to the next state simulation 
method for block diagrams is presented which allows efficient 
handling of multirate systems. This is achieved by the additional 
definition of clock dependent inputs for each element to define 
how the element behaves in a multirate situation. 

I. INTRODUCTION 

Relatively little has appeared in the literature concerning the 
simulation of sigma-delta converters. It is widely realised that 
simulation using traditional analogue simulation tools is not 
feasible due to the prohibitive C P U time required. Most 
researchers have managed by using purpose written computer 
programs which model the difference equations representing the 
specific sigma delta modulator topology being investigated. The 
program described here allows the user to describe the structure 
of complete sigma-delta modulation systems which may contain 
several sigma-delta ADCs, DACs, sigma-delta based multipliers 
along with the associated filters in a form similar to a SPICE 
deck, but at a signal flow graph level [1]. 

The circuit is described at a system level and consists of a 
network of gains, delays, quantisers, filters etc. The algorithm 
then reduces the network description to a list of function calls 
which can be executed repeatedly to simulate the action of the 
circuit. This is almost as fast as a purpose written program. 
Alternatively, the algorithm could be made to produce a C 
program file for compilation by the computer system's C 
compiler. The resultant program would be almost 
indistinguishable from a well written, purpose written program, 
but would be much quicker to create and easier to modify. 
Sigma-delta systems are usually multirate and this is handled 
efficiently. 

Many non-idealities can be included, such as finite integrator gain 
and saturation, linear and nonlinear settling (slew limiting), 
comparator hysteresis, dc offsets, quantiser level spacing etc. can 
all be modelled [2]. The method is compatible with (can include) 
table based techniques [3]. 

To be most useful, a simulation tool for sigma-delta modulation 
systems must allow many parameters to be swept through a range 
of values, eg.: D C input level, integrator offsets, amplitude and 
frequency of input signal (to determine the variation in SNR), 
number of quantisation levels or the word length of the digital 
filters, gain values (to determine sensitivity due to capacitor 
mismatch, integrator gain and bandwidth). There is also a 
variety of analyses which may be performed on various signals in 
the system (eg. the raw output and the decimated output). A 
flexible approach has been adopted whereby all the signal 
sources, and all the analysis features ( F F T , power spectral 

estimation, least squares function fitting) are all incorporated as 
network elements and treated in the same way as simple elements 
such as gains, delays and quantisers. Most element parameters 
(such as the gain of elements, or the number of levels in a 
quantiser) are taken from inputs, which are usually replaced by a 
constant, but which can be connected to a variable source to 
allow parameter sweeps. 

In the block simulator BLOSIM [4], blocks are interconnected by 
means of first-in-first-out (FIFO) buffers. This makes sample 
rate changes very easy to implement. However there is 
considerable overhead in the buffer management routines which 
limits the application of this technique to the simulation of sigma-
delta systems. Subsequent research has been directed in the field 
of program compilers for multiple processor DSP [5]. The 
sample rates in a sigma-delta modulator system are well defined 
before the simulation commences and are constant (ie. they are 
synchronous). This fact has been used to devise a block diagram 
simulation method which retains many of the advantages of 
B L O S I M (generality, ease of use, hierarchical definition of 
blocks, block libraries, consistency checks etc.) but handles 
synchronous multirate circuits more efficiently. 

The program executes in the four stages shown in Fig 1. The 
network description file is first read and comments stripped out 
and macro definitions expanded. The resulting network of 
elements is then converted to an unordered list of operations. 
Each operation is represented by a data structure containing the 
function to be executed, the input and output nodes, dependent 
and clock dependent nodes, values of any parameters and any 
other information required Lists of pointers to these operations 
are then created by a scheduler which ensures that the operations 
are executed in a valid order, and that only nodes which need to 
be recalculated are actually recalculated in multirate systems. 
Running the simulation then simply involves executing the 
operations in the specified order. 

D. R E P R E S E N T A T I O N O F M U L T I R A T E SYSTEMS 

Three node types are defined: an ordinary node value (eg. the 
input and outputs of gains, delays and quantisers), a signal node 
or list of values (eg. for complete signals, F F T records, F F T 
window functions etc.) and a file node type (eg. for reading in 
input signals, printing out results, communicating with other 
processes such as externally defined elements or graph plotting 
programs). Evaluating a node involves executing all the 
operations with outputs connected to that node. 

Each element as entered by the user, is represented in the 
computer by a number of operations. A single operation may 
have many inputs (the dependent nodes) and a single output, all 
of which may be simple nodal values, complete signals, or files 
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(Fig. 2). The operation also has a number of ciocA-dependem 
nodal inputs, which determine how the operation will behave in 
multirate systems. Elements with several outputs are realised by 
several operations. 

Three rules govern the behaviour of all the operations in a 
multirate system: 
1. A node will only be calculated if any operation contributing to that 

node is known to be active. 
2. An operation will only be active if at least one of its clock 

dependent inputs is connected to a node known to have changed. 
3. To allow for rate changes, it is possible to force a node to be either 

active or not by applying a forced clock to the node. This rule 
overrides the two above. 

The rule for operation ordering is based on the standard 
precedence rule: 
4 a An operation cannot be evaluated until all it's inputs (the dependent 

nodes) are known. 
4 b A node cannot be recalculated until all the active operations directly 

contributing to that node satisfy Rule 4a 

Scheduling Algorithm 

The scheduling must be done in two passes. The first pass 
determines which nodes change and therefore must be 
recalculated, and the second pass then places only the operations 
which are active into a computable order. 

Pass One 
A l l nodes are unknown. 
Apply r u l e 3. T h i s w i l l make some nodes 

known ( e i t h e r t o have changed or no t ) 
and p r o v i d e s a s t a r t i n g p o i n t f o r the 
next s tage. 

Repeatedly apply r u l e s 1 and 2 to determine 
w h i c h o t h e r nodes are known t o be 
a c t i v e . 

Any nodes which cannot be de te rmined are 
deemed i n a c t i v e . 

Now all nodes are known to be either active or not. 
• Pass Two 
A l l nodes which are not a c t i v e are known 

(because they have not changed) . A l l 
o the r s are not ye t known. 

Repeatedly t r y t o eva lua te every node. I f a 
node can be evaluated (Rule 4) then add 
t o the l i s t o f p o i n t e r s t o ope ra t i ons 
a l l the o p e r a t i o n s s a t i s f y i n g Rule 2. 
A c l e a r node o p e r a t i o n must be entered 
a u t o m a t i c a l l y ahead o f these . T h i s 
node i s now known. 

I f any nodes can not be determined, then the 
ne twork c o n t a i n s e i t h e r a de lay f r e e 
loop or has no inpu t - e r r o r . 

The above scheduling algorithm must be invoked once for each 
distinct set of clock states. 

The definition of an operation ensures that the network operation 
is well defined in multirate systems, even when signals at 
different rates are combined. Rate changes can have either a 
mathematical resampling action (ie. output is zero between input 
samples), or have a sample and hold type response, depending 
on the connection of the clock dependent inputs. Each operation 
has six function pointers associated with it (the functions can be 
empty). These define the run time operation during the very first 
and very last clock cycle, immediately prior and immediately after 

each simulation run, and during a warm up period (to allow filter 
transients to die down) and during the actual simulation period. 
The system can be simulated many times in a single program run. 

The user does not need to understand how the network of 
elements entered is transformed into a network of operations and 
the user never comes into contact with the clock dependent 
inputs. The modular approach adopted allows new element 
definitions to be added easily without altering the core of the 
program. 

Some Common Elements Expressed as Operations 

Gain elements including nonlinear gains such as saturation, 
overflow, absolute value, quantisers, piecewise-linear non-
linearities, dB/linear conversion etc. are each represented as a 
single operation (Fig. 3). The left hand clock dependent input 
ensures that the output is recalculated whenever the input 
changes. The right hand clock dependent input ensures that the 
operation is included in any recalculation of the output node, even 
if the input has not changed. Input elements are similar to gain 
elements but with no dependent node. The output of a signal 
source usually has a forced clock applied to provide a starting 
condition for the algorithm. 

The delay element is represented by two operations (Fig. 4). 
This is because the output must be available for calculation before 
the input has been calculated. The definition of a delay element 
effectively "opens up" any loops (loops must contain a delaying 
element) and changes the topology from having loops to a tree 
structure, without any loops. Referring to Fig. 4, 'delay 1' is 
dependent on 'delay 2' and so 'delay 2' is always executed first 
The link between the two operations is not realised using a node 
ensuring that no loops are formed. Note that all this is hidden 
from the user who simply enters an instruction line 'delay xl x2' 
to implement a delay from node x l to node x2. 

Sample-rate changes are implemented by a modified linear gain 
element For both the mathematical resample (Fig. 5), and the 
sample & hold element (Fig. 6), the new sample rate is forced 
upon the output node (making use of Rule 3, above). A 
decimating FIR filter (Fig. 7) is efficiently realised using a 
cascade of a circular buffer operation followed by an FIR 
operation which takes a vector dot product of the vector of 
previous inputs with the filter coefficients. The rate change is 
implemented between the two operations so that the vector 
product is taken only when necessary. This scheme also works 
for non-decimating FIR filters. Interpolating FIR filters are more 
efficiently realised by a poly phase structure [1]. 

More complex elements can have several outputs. The additional 
outputs come from additional operations dependent on the output 
of the main operation. 

Significant memory can be saved when implementing certain 
operations which act on complete signals, eg FFTs, by 
performing the operation in place, where the output data is stored 
in the same memory locations as the input data. The destruction 
of the input data can be delayed by assigning the outputs of all 
operations dependent on the input to the FFT (or other) element 
as dependent nodes to the FFT element This gives the illusion 
of separate input and output nodes even although storage is not 
assigned to both. Elements which can use this technique include 
the FFT, PSD (for conversion of a FFT record to a squared 
magnitude spectrum), log_sig (for conversion to a dB scale) and 
various signal shortening operations to reduce the number of data 
points for graph plotting. 
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HI. THE PROGRAM IN USE 

Fig. 8 shows a simple sigma delta modulator in flow graph form 
suitable for simulation. The nodes must be labelled and entered 
as a net list An input signal must also be included which can be 
built up from a variety of ac and dc sources, or taken from a file. 
The output must also be sent to file (which can be either a 
terminal, disk file, or a UNIX pipe to an external program). 
Normally some form of analysis would be done on the output 
before it is sent to a file. The 'sweep' element is similar to a dc 
source except that its value changes from one simulation to the 
next (but within the same program run). This may be used to 
modulate the input signal (either the amplitude or frequency) or to 
adjust the value of some of the gains, or to adjust the word-
lengths in digital systems. This provides great flexibility and is 
very simple to use. 

Normally, built in, single operation integrators would be used for 
the integrators in Fig. 8. These can include non-ideal effects [2]. 
By quantising the input and modelling numerical overflow 
propeTly. digital systems can be simulated in the same manner. 
Both analogue and digital elements may exist in the same system. 

Determination of SNR. TOP and IMP. 

The SNR, THD and IMD can be estimated by performing a least 
squares fit of a number of reference signals (eg. DC, the input 
signal and its harmonics) onto the output of the modulator [6]. 
This can be done in either in the time or the frequency domain. 
The least squares element has several inputs which are signals 
(the reference signals) and a number of outputs representing the 
signal power, the noise power, the proportion of each reference 
signal in the signal being analysed and the power of each of 
reference signal. These can be then be combined to calculate the 
SNR, THD, IMD as required. Fig. 9. shows the analysis part of 
a network. The user constructs the analysis network in the same 
way as for Fig. 8. Each block represents a single element, which 
may be composed of several operations. The SDM could be that 
of Fig. 8. Its output is stored to form a signal. The multirate 
logic automatically ensures that the least squares estimation, ratio, 
dB conversion, rectangular to polar and print operations are only 
executed only once, after each simulation ran. The great 
flexibility afforded by the above technique arises by not splitting 
the simulation and analysis parts of the program. 

IV. CONCLUDING REMARKS 
A method for efficient simulation of multirate sigma-delta 
systems has been presented. The algorithm has been encoded 
using the ' C language, under the UNIX operating system. The 
program has proved to be very useful and powerful. The 
program has been used to evaluate many different topologies and 
has replicated the results of the purpose written programs used to 
analyse a third order cascade [7], a fourth order single loop ADC 
[8] and a converter with a multibit quantiser but with single bit 
feedback [9]. 
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the forced clock). 
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Abstract - This paper discusses the design of sigma-
delta modulators specifically for digital audio. 
Approximation techniques for the signal transfer function 
and the noise transfer function are described which give 
an audible noise improvement over classical functions. 
The noise transfer function shapes the quantisation noise 
to be least audible to the ear, while the signal transfer 
function is given preemphasis to match the dynamic range 
of the modulator to the dynamic range of typical audio 
sources. These functions are then transformed into 
snitched capacitor networks for the loop filter in an ADC. 
These give a combined improvement of 24 dB in weighted 
SNR for the example modulator, a seventh order, 32 times 
oversampling one bit modulator. 

I . INTRODUCTION 

Sigma-delta modulation has recently become the preferred method 
for conversion between analogue and digital domains for audio 
signals. The main reason for this is the inherently high linearity which 
can be achieved with standard C M O S 1C processes without the need 
for trimming. This paper discusses the design of the loop filter 
transfer functions for higher order modulators which are optimised for 
the particular case of audio. 

Three areas of audio sigma-delta modulator design are described 
here. Firstly, the determination of stable noise transfer functions 
( N T F ) designed using arbitrary approximation methods so as to 
minimise the audible effect of quantisation noise. The possibilities of 
introducing preemphasis into the signal transfer function ( S T F ) are 
then introduced and a direct method for the design of analogue loop 
filters is given. The paper concludes with an example. 

To avoid confusion with standard filler terminology, the terms 
signal band and noise band are used here. The signal band refers to 
the audio region (typically 0 to 20kHz) and is the stop band of the 
N T F and is contained in the pass band of the S T F . The noise band 
refers to all other frequencies. 

I I . NTF and STF DESIGN 

The design of the loop filter starts with the determination of a 
stable denominator. T w o numerators are required for this 
denominator: a high pass function for the N T F and a lowpass function 
for the S T F . These functions can then be transformed to give a single 
loop filter. 

A. NTF/STF denominator design 

The key to the design of stable high order sigma-delta loops is the 
N T F denominator. The poles must be chosen to limit the high 
frequency gain to be around 3 dB [1]. It is also necessary to ensure 
that the coefficient of the highest power in the denominator is unitv -

this ensures that the sigma-delta loop is not delay free [4). There is no 
constraint on where in the unit circle the poles may lie; the constraint is 
that the multipling constant must be unity while the high frequency 
gain must be around +3 dB. A convenient way to satisfy these 
requirements is to use BuUerworth or Inverse Chebyshev high pass 
filter pole positions and to adjust the cutoff frequency to move the 
poles towards or away from the unit circle to adjust the gain to the 
desired value. A simple computerised iteration process can be used to 
achieve this. 

B. NTF numerator design 

The zeros of the N T F can be chosen almost independently from 
the poles because, for reasonable oversampling rates, moving the 
zeros through the signal band has very little effect on the response in 
the noise band. Rather than using classical approximations (either 
Butterworth with all zeros at D C , or inverse Chebyshev with an 
equiripple noise response), the method adopted here involves placing 
the zeros so as to minimise the audible effect of the shaped 
quantisation noise. Fig. 1 shows the typical response of the ear to 
low level sounds. This curve, referred to as the F-curve, was derived 
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from ISO data [2]. To limit high audio frequency noise lo more typical 
levels, this curve is modified so as to flatten out at -40 dB. 

We want to minimise: 

(1) 

N(z) = £ an1, <Jo=l 
with ;=n (2) 

and D(z) is a stable denominator and W(z) is the chosen weighting 

i=n 

function. Thus we want to fit X a ' 2 ' to the constant -1 over the 

signal band, with a frequency dependant weighting function. This is 
achieved by using least squares techniques. Direct solution from the 
normal equations proved to be numerically problematic, but good 
results were obtained using a singular value decomposition method 
[3]. The order of the problem can be halved by forcing the zeros to lie 
of the unit circle: 

For n even: 

fir. X " i ^ " " ' + z ' l t 0 z " + 

n/2 

I 
i=l 

a* = a„ D-+1 < i < n 
2 (3) 

(ie. coefficients are symmetric) 

For n odd: 

fir. £ a.iz"-* - z') to z" - 1 

= -an.i n + i 

Alternatively, the S T F may be modified to include some pre-
emphasis. For audio, this can give some improvement by better 
matching the dynamic range as a function of frequency of the audio 
source material to the A D C . Typically less dynamic range is required 
at high frequencies and this can be traded for more dynamic range at 
low frequencies. The pre-emphasis can be removed by the decimation 
filter to give an overall flat frequency response, but with a frequency 
dependant overload range. It should be noted, however, that "peaky" 
responses imply large Q factors which cause the time-domain 
response from die input to the comparator to exhibit overshooting and 
ringing in response to transient inputs such as step functions. The 
overshoot can take the modulator beyond its stable region. Thus the 
amount of preemphasis that can be applied in practice is limited. 

in. LOOP FILTER REALISATION 

For the case of analogue to digital converters it is possible to 
directly convert the N T F and S T F into the capacitance values used in 
the cascaded switched capacitor (SC) resonator topology . The loop 
filter is formed by a cascade of the first and second order sections 
shown in Fig. 2 [4]. Each section has a cascade input, and feed-ins 
from the signal input and comparator feedback signal. This topology 
can also be used for digital modulators. The capacitor values could be 
determined by solving the difference equations representing the 
network to determine the transfer function in terms of the capacitor 
values and then solving the sets of equations arising by equating 
coefficients of z. This is cumbersome for higher orders and is not 
amenable to automated design by computer. A general design 
procedure is described here. 

For the first order section in Fig 2.: 

Y _ fj z-' 
X " 1 - z - i 

and for the second order section: 

(4) 

. [ L i d 
1 +(b-2)z-i +z-2 

Y ^ fui r ' ( l - z ') 

X 2 1 + (b-2)z> + z- 2 

(6) 

(7a) 

(7b) 

(ie. coefficients are anti-symmetric) 

In both cases the weighting function is: 

W(z) = p(z)Dec(z)| (5) 

where F(z) is the F-curve and Dec(z) is the Decimation filter response. 
The magnitude of Dec(z) can often be assumed to be 1/STF over the 
signal band so as to give an overall flat signal response. 

The functions are evaluated over a mesh of frequencies throughout 
the signal band. If the real decimation filler response is known, then 
the mesh can be carried into the noise band to take into account the 
noise which is aliased back into the signal band. 

C. STF Design 

Only the numerator of the S T F can be designed independently 
from the N T F . A number of possibilities are available. Once choice 
would be a constant (or a constant multiplied by a power of z 1 ) . 
This gives a low pass response with flat response through out the 
audio band with a lot of attenuation at high frequencies. An alternate 
choice would be to place the zeros on top of the S T F poles (which are 
the same as the N T F poles). This is seen to reduce the capacitance 
spread after scaling. However unless an additional summer is used, 
the order of the numerator is constrained to be one less than the 
denominator (for the cascaded resonator topology) and so at least one 
pole must remain uncancelled. For odd n, the result is a smooth first 
order lowpass S T F with cutoff well beyond the signal band. 
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Fig.2 The first and second order secUons used lo build up high order loop 
fillers. 
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As only capacitor ratios are required, the integrating capacitors and 
the coupling capacitors are initially chosen as unit capacitances, 
leaving only the resonance capacitors (b) and the signal and the 
feedback feed-in capacitors unknown (Sj and fj). The final values of 
the unit capacitances will be determined by scaling the network to limit 
maximum signal swings and minimum capacitances. 

Knowing the S T F and N T F , the design of the loop filter is straight 
forward. From Fig 3.: 

N T F : . N n l f _ y . 
Dmf Q" 

D _ N q 
D + N Q

 _ > D 
D « f - N mf 

N„„ 

and: 

c t b - N'tf _ Y . 
D s t f - X -

Nsig 
D + N q N(i g = N t l / 

(8) 

(9) 

Thus from (8), the zeros of the N T F form the poles of the sigma-
della loop filter. The zeros are easily obtained from the N T F 
coefficients because they are known to lie on the unit circle. The loop 
filter therefore has poles on the unit circle and so is not stable and the 
response is quite unlike standard filter responses. The resonance 
capacitors (b in Fig. 2) can be determined directly by equating 
coefficients of the N T F numerator (Nnu"), and the denominator of 
(7b). As in ordinary cascaded biquad filter design, there is a choice 
over section ordering Experience has shown that implementing the 
lowest frequency zeros toward the input lowers the final capacitance 
spread. 

The feedback capacitor values (fj) can be obtained from the 
solution of: 

• I =Mq (10) 

where I is the column vector of unknown capacitances, UQ is the 
column vector of desired loop filter numerator coefficients and the 
columns of A contain the coefficients of the transfer functions from 
each feedback input to the output which are now known as the values 
of the b coefficients have already been determined. The transfer 
function coefficients for A are easily determined from the 
representation of the loop filter given in Fig 4. The seventh order loop 

noise 

ItJtiUDaCK SL output 

Fig. 3 Linear model of sigma-delta loop. Both the NTF and STF are realised 
using the same circuit and so share common poles. 

filter consists of a cascade of one first order section and three second 
order sections. The coefficients fj and Sj are equivalent to the feed-in 
capacitors in Fig.2, and the Dj(z) represent the second order section 
denominators as in (7). Each bj is implemented by a single resonator 
feedback capacitor. Assuming the N T F denominator has highest 
power of z equal to unity, the loop filler will contain the necessary one 
sample delay. Thus the nth order loop filter transfer function has a 
numerator with only n non-zero coefficients as opposed to n +1 for a 
general nth order polynomial. These n coefficients are used to 
determine the n unlcnown feed-in capacitors (fj) by the set of equations 
(10). Since N ^ = N Sjg (9), the same approach can be used to obtain 
the input capacitance values (Sj). 

The loop must then be simulated in the time domain and capacitors 
scaled to limit the maximum internal swings. It is possible to reduce 
capacitance spread by reducing some of the internal signal swings. 
While in the case of ordinary S C filters this is at the expense of 
dynamic range, the action of the noise shaping serves to greatly 
reduce the effect of thermal noise from the integrators and switches 
towards the comparator. Only the noise from the first op-amp and the 
switches around it (and to a lesser extent, the second) are critical to the 
performance of the complete modulator. 
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Fig. 4 Simplified representation for a sevenih order loop filter. 
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This whole procedure (including simulating for the purposes of 
scaling) has been automated and can convert NTFs and S T F s of any 
order into S C loop fillers. The output files are suitable for direct 
analysis and simulation by the S C N A P suiie, S W 1 T C A P and a 
discrete time simulator. The topology and this method are also 
applicable for bandpass systems. 

IV. EXAMPLE 

The example is a very high order (7th). very low oversampling 
ratio (32) modulator. This was chosen to investigate the potential 
performance of very low oversampling one bit modulators. The hit 
rale al the output of this modulator is only a faclor of two over 
ordinary 16 bit pulse code modulation (PCM). 

Fig. 5 shows the N T F and S T F compared to a classical design and 
in Fig 6 the N T F curves have been weighted by the F-curve and 
decimaior response. As a result of the weighting function, the 
optimised response exhibits a zero near the frequency where the ear is 
most sensitive. The weighted SNR curves shown in Fig 7 show 
significant kinks at around -50 dB input signal. This is due to signal 
correlated components in the signal band. However with the 
application of 1st order high pass dither applied in front of the 
comparator (at a level comparable to the maximum signal swing), 
these components disappear with little impact on S N R or dynamic 
range. 

Of the two classical designs shown, the Butterworth one (all N T F 
zeros at D C ) performs better under the F-curve weighting than the 
inverse Chebyshev design. This is because the noise power in the 
Butterworth case is most significant at the high audio frequencies 
where the ear is very insensitive, and has less power in the low audio 
frequency range where the ear is most sensitive. 

The improvement in weighted SNR due to optimum placing of 
N T F zeros was 16 dB and an additional 8 dB improvement gained by 
adding the preemphasis to the S T F . 

The S T F s were given a D C gain of -6 dB so that the modulator 
becomes unstable for inputs above 0 dB (0 dB defined to be power in 
a sinusoid with peak amplitude equal to the quantiser output.) The 
onset of instability can be delected and with proper design it is 
possible lo limit multiple resel cycles from the output to give a cleanly 
overloading system [4]. 

The simulations were all performed using a mullirate discrete time 
simulator [5]. 

V. CONCLUSIONS 

It has been shown that significant audio improvement can be 
achieved in sigma-delta modulator designs by shaping the N T F and 
S T F with non-classical functions. The direct transformation of these 
functions into S C loop fillers has also been illustrated. The methods 
should also be applicable to other application areas where a non-flat 
noise spectrum and/or non-flat overloading characteristics are 
appropriate. 
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Abstract The linear delta modulator is shown to be a special case of the more general 
sigma-delta modulator, in which the signal and noise transfer functions are equal. Thus 
the extensive knowledge of delta-modulator systems may be applied to sigma-delta 
modulators and the more recent research interest in sigma-delta modulators applied to 
further refine delta modulator systems. High order sigma-delta systems may be 
designed which retain the single pole -6dB/octave overloading characteristics, but with 
the advantages of higher order noise shaping. Techniques for adaptive step size, both 
instantaneous and syllabic may be adopted to give companding operation. By damping 
the loop integrators slightly, the cutoff phenomenon may be used to give a noise gating 
effect. 

These techniques have been used for a design study for the integration of a switched 
capacitor speech coder/decoder with a bit rate of 32kbits/s to 64kbits/s. The resulting 
system gives a significant performance improvement with similar complexity compared 
with a linear pulse code (PCM) approach using the same bit rate. In this application, 
there is no requirement for digital decimators and interpolators to process the digital 
data. 

Introduction The recent interest in oversampled sigma-delta modulators has been 
mainly due to the availability of high performance analogue and high density VLSI 
digital IC processes making inherently linear A/D and D/A conversion possible. Earlier 
interest in the closely related oversampled single bit system, the delta modulator, was 
not because of the inherent linearity of the 2 level quantiser, but for its simplicity of 
conveying analogue information digitally with a low bit rate. The motivation for this 
work was to provide a robust and low cost method for digitising and reconstructing 
speech signals on a mixed signal IC process. It is often cheaper in terms of silicon area 
to implement functions in the analogue domain rather than digitally when using an 
analogue process. The use of a process with well defined analogue characteristics is 
mandated by system requirements such as signal coding/decoding, companding, soft 
limiting, signalling tone generation/detection, general purpose ADCs and DACs (used 
for signal strength measurements, battery monitoring, battery temperature monitoring 
etc), power supply regulation and monitoring, power-on reset functions, loudspeaker 
drivers, microphone amplifiers, signal level trims and volume controls. The methods 
described here have been used to design sigma-delta modulators, suitable for speech 
applications with low bit rates, which can be implemented in a cost effective manner on 
a mixed signal IC process. The digital signal format used, an unframed single bit 
between 32 - 64 ksamples/s corresponds to oversampling ratios between four and 
eight. 

Equivalence of Delta and Sigma-Delta Modulators In the basic delta 
modulator, the input is applied after the loop filter, just before the quantiser. The basic 
sigma-delta modulator differs in that the signal is applied in front of the loop filter. In 
general the signal input may be applied anywhere in the noise shaping loop to perturb 
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the system idling and so encode the input. The general sigma-delta loop is shown in 
Figure 1. For a delta modulator N s i g ~ D, while for a basic sigma-delta modulator 
NsiG = N q . The signal transfer function (STF) is defined as the transfer function 
from the signal input to the output and the noise transfer function (NTF) is defined as 
the transfer function between the quantiser and the output (assuming that the quantiser 
has been replaced by a linear gain). 

Optimisation of Signal and Noise Transfer Functions The signal transfer 
function may be designed to match the long term spectrum of the speech input (typically 
between -6dB and -12dB per octave over 300-3kHz) while the noise transfer function 
may be optimised with a higher order function to push noise away from the ears most 
sensitive frequency ranges within the signal band [1]. However with low 
oversampling ratios the noise shaping performance quickly becomes limited by the 
information capacity of the bitstream output [2]. 

Figure 2 shows how the quantisation noise in a third order delta-modulator can be 
rejected at the frequencies where the ear is most sensitive. This modulator gives an 
SNR of 33dB over a 4kHz bandwidth (eight times oversampling). The delta modulated 
signal is reconstructed using an integrator and a lowpass filter to remove most of the 
quantisation noise. 

The loop filter is implemented on silicon using standard switched capacitor filter 
methods. 

Companding Step size adaptation, as used in delta-modulator systems [3], can also 
be used for sigma-delta modulation. This allows the oversampling ratio to be 
significantly reduced while maintaining a single bit output per sample (Figure 3). 
Syllabic companding extracts low frequency envelope information from the encoded bit 
stream using a coincidence detector, which looks for strings of three or four ones or 
zeros in the bit stream, together with a filter of time constant of the order of 10ms. The 
coincidence detector has zero output, except when the last three or four samples are all 
the same. This indicates that the modulator is potentially overloaded and that the step 
size should be increased. The output of the coincidence detector is low pass filtered 
with a cutoff frequency which allows the signal level variations to pass through. The 
filtered coincidence level may be used directly to set the step size. Different 
companding ratios may be implemented by changing the gain or shape of the mapping 
between the filtered coincidence signal and the step size. 

For syllabic companding it is necessary to encode and extract the signal level from the 
bit stream in order to determine the current step size. This is done by considering the 
effective operating point on an un-companded system. Figure 4 shows the limited 
dynamic range of an un-companded second order sigma-delta modulator and Figure 5 
shows the corresponding filtered coincidence levels. The 3-bit algorithm gives a better 
indication cf the operating point over the amplitude region with best SNR performance. 
The coincidence level is used to convey the signal envelope information. Figure 6 
shows the coincidence level and corresponding step size for a companded system, and 
Figure 7 shows how the SNR vs input amplitude curve of Figure 4 has been 
"stretched" out over a wider dynamic range. 

The long time constant required by the syllabic filter is better implemented using simple 
digital methods rather than with switched capacitors. This gives more flexibilty in the 
forming of the current step size from the coincidence filter output. The filter can be 
efficiently implemented using a digital rate multiplier or with bit serial techniques. For 
speech, the attack time constant is made smaller than the decay time constant in order to 
provide a better match to the envelope of syllables. The variable step size required in 
the analogue feedback path can be implemented by using a range of feedback capacitors 
and also by switching the capacitor to the reference several times within a single sample 
period. The non-linear function for mapping coincidence rate to step size may be 
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effected with no additional cost over a linear mapping. 

The use of a coincidence detector is less effective for the third order system. To operate 
the higher order system in its stable region requires that the input is smaller (maximum 
peak -6dB relative to the feedback level) and consequently long trains of ones or zeros 
cannot occur. Syllabic companding can be implemented however, by extracting the 
magnitude of the reconstructed signal and using the magnitude to adapt the step 
size [5], Companding causes the modulator to be used near its optimum operating 
point for wider ranges of signal levels. For high order systems this can assist system 
stability - any tendency to go unstable will be counteracted by an increase in step size. 

An alternate form of companding again looks for patterns in the recent history of the bit 
stream, but adapts the step size immediately relative to its previous size. 

Noise Gating and Offset Cancellation By deliberately damping the loop 
integrators slightly, the modulator can be forced into a ...1010101010... output pattern 
for very small inputs. This contains no base band power and so the back ground 
quantisation noise can be made to disappear in the absence of a speech input. This 
effect is normally considered a defect in sigma-delta systems [4] but is widely used for 
delta-modulator systems [5]. Offset cancellation can be provided in much the same 
way as for (4-law and A-law PCM systems. The bitstream is integrated. Ideally there 
will be an equal number of ones and zeros in the output and any deviation from this is 
fed back to reduce the offset. 

Bit Errors Since each of the bits in the bitstream carries equal weight to all the 
others, analysis of the effect of bit errors is simplified. A single bit error results in an 
impulse of twice the current step size. A single bit error will have negligible effect on 
the step size. Because of the oversampling, most of the energy in the impulse is 
removed by the subsequent filter. The effect of a bit error in a non-oversampled PCM 
system can be far greater, resulting in a full scale impulse with little subsequent 
filtering. 

Conclusions A variety of low bit rate, low complexity, coders have been studied 
with a view to their cost and practicality for integration. Simulations have been 
performed using real speech signal sources to compare performance. Recent work has 
allowed sigma-delta modulators to be optimised for speech applications. A number of 
techniques, originally devised for delta modulation, have also been employed. 
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A B S T R A C T 

The speed at which a digital sigma-delta modulator can 
operate is limited by the latency of the loop filter. A digital 
sigma-delta modulator is presented which overcomes the 
problem of long adder carry propagation delays. The design 
is sixth order and implemented using a single pipelined 
resonator section. 

I N T R O D U C T I O N 

Digital sigma-delta modulators are increasingly being used 
in oversampled digital to analogue converters [ I) . Since the 
modulator operates on oversampled data, the circuitry used 
must be fast. Conventional pipelining techniques cannot be 
applied to increase throughput due to the recursive nature of 
the loop. This paper discusses a technique which overcomes 
this problem. 

A sigma-delta modulator consists of a loop filter and a 
comparator in a feedback loop. I f the comparator is 
considered as an additive noise source, then the transfer 
functions from the input to the output, and from the noise 
source to the output can be determined. These are termed the 
signal transfer function (STF) and noise transfer function 
(NTF) respectively. Proper design of the loop filter ensures 
the modulator is stable. The signal transfer function is 
designed to pass the signals of interest while the noise 
transfer function is designed to reshape the noise spectrum 
appearing at the output so that there is little noise in the 
frequency band of interest. A digital implementation of a 
sigma-delta modulator must perform all the calculations 
required to obtain a single output sample before work can 
start on the next sample. This dependency of the current 
output on the immediately previous one limits the 
application of pipelining techniques to speeding up the loop 
operation. The delay between an input and its corresponding 
output is termed the latency. For high speed operation it is 
important to minimise the latency in feedback loops. 

Recent work has overcome this latency problem for the case 
of high speed infinite impulse response (MR) filters [2]. 
This has been achieved by adopting a redundant number 
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system instead of the two's complement number system 
normally used for digital signal processing applications. 

REDUNDANT N U M B E R SYSTEMS 

In a redundant number system, the individual digits can take 
on more values than the radix of the number system. In this 
paper only the signed binary number representation (SBNR) 
will be used. Valid SBNR digits are - I , 0, and +1 and each 
digit has a significance of two times that of the digit to its 

left (as in normal binary). Thus the numbers 0 , 0 1 , ' 0 1 1 , 
0 1 1 1 all represent the decimal value -1.25. The symbol 1 

is used to indicate a weight of - I . The advantage of the 
redundant number system is that additions can be performed 
without long carry propagation chains. Figure I shows a 
SBNR adder. Each adder cell consists of three subcells A, 
B and C which perform an addition of digits with various 
ranges of values. The final result is in the same SBNR 
format as the input and the carry/borrows can only propagate 
a maximum of two digits. Thus the addition time is 
independent of the word length. A detailed discussion for 
implementing these cells is given in [2]. 

Ideally, in a properly designed sigma-delta modulator, the 
additions wil l never overflow, although this is difficult to 
guarantee. Furthermore, the left most cells may produce 
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Figure I . Fully parallel adder using SBNR arithmetic 
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carry/borrows even when overflow has not occurred. The 

cases of the two most significant digits as ' ' and ' I must 

be recoded as 01 and 0' to limit word length growth. 

Definite overflows and " and possible overflows '0 

and '0 must also be caught and the output set to an 
appropriate saturation level. 

The SBNR adder of Figure I may be used directly to 
construct a high speed sigma-delta modulator. However 
there is a further feature of redundant arithmetic which may 
be exploited. When conventional two's complement 
arithmetic is used in a ystolic type structure, it is the least 
significant bits which are performed first since the more 
significant bits depend on the least significant bits through 
cany propagation. This is not the case with redundant 
arithmetic which allows the order of execution to be reversed 
giving systolic type structures which operate most 
significant digit (msd) first. This is in line with the 
requirements for a sigma-delta modulator where it is only the 
top few digits of the filter output which are required. Data 
skewed msd first has the property that gains of less than one 
may be performed with negative latency. This is illustrated 
in Figure 2. Parallel data enters at the top and is skewed 
such that the digits become available in groups of three. 
However after the right shift by three digits (a divide by 
eight operation), the digit representing the output is 
available before the digit of equal significance has entered at 
the top. Thus the divide by eight operation can be 
considered to have a latency of - 1 . 

SIGMA-DELTA TOPOLOGY 

The sigma-delta modulator topology used in this work is 
based on a loop filter constructed from the cascade of 
integrators and resonators [3]. Figure 3 shows a single 
resonator. The gains si and s2 are for scaling only and are 
initially assumed to be unity. The values of the comparator 
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Figure 2. Parallel to skewed data conversion followed by 
divide by eight operation 

From output of comparator 

Figure 3. Second order resonator used for loop filter 
feedback coefficients (fl and f2) are determined by the 
solution of a set of linear equations involving the desired 
zeros of the open loop filter obtained by algebraic 
manipulation of the NTF [4]. Since the input to the gains 
fl and f2 can only take on the values +1 and - I , no 
multiplier circuit is required. The values of the resonator 
coefficients (b) are directly related to the open loop poles 
which are at the same locations on the z-plane as the NTF 
zeros. This is the only gain for which a full SBNR number 
needs to be multiplied. 

The single delay around the two integrator loop places 
stringent demands on the latency of the integrators. For 
baseband sigma-delta modulators an additional delay can be 
tolerated. The poles move off the unit circle giving the 
NTF zero at a similar frequency as before, but not infinitely 
deep. The depth of the NTF notches is of little consequence 
to the output noise level. 

It can be shown that the magnitude of the coefficient b in 
the feedback loop is small while the feedback coefficients 
tend to be much larger. If the feedback coefficient is 
sufficiently truncated the addition of the two words can be 
achieved by merging the two words rather than by an 
arithmetic circuit. 

SBNR ADDER 

For the example sigma-delta modulator, it was decided that 
the data would be skewed by one pipeline delay every third 
digit, as was illustrated in Figure 2. This allows parallel 
computation of the top three digits which are required in 
parallel by the comparator. Three numbers need to be added 
for each integrator. Rather than cascading two dual input 
adders of the type in Figure I , a two stage design was 
derived using the carry save concept of conventional two's 
complement arithmetic. This is shown in Figure 4. Three 
SBNR numbers are added and the effect of transfer 
propagation limited to the next three more significant digits. 
This adder produces its output after a one clock cycle delay 
from the pipeline cuts indicated. 

SBNR COMPARATOR 

The sigma-delta modulator requires a comparator. In 
conventional two's complement arithmetic, the output of the 
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Figure 4. Three input pipelined adder operating on three at a time skewed data 

comparator is simply the sign bit of the input. However 
this is the result of a long carry propagation chain. In 
SBNR there is no specific sign bit. The sign of the overall 
number is the sign of the left most non-zero digit. Logic is 
required to extract this from a parallel SBNR word. 
Fortunately the comparator performance in sigma-delta 
modulators is non-critical because any errors are reshaped 
with the full noise shaping function of the loop. In practice 
only the top three or four digits need to be examined as the 
additional truncation noise is less significant than the 
quantisation error. 

In the circuit presented, the comparator has one full pipeline 
delay in which to come to its decision and the speed of the 
comparator circuitry is not a limiting factor. 

SBNR S I G M A D E L T A M O D U L A T O R 

A sixth order modulator consisting of a cascade of three 
resonators was designed (Figure 5). The signal transfer 
function was designed with signal band gain of -6dB to 
ensure that a full amplitude input signal (+1 - I ) did not 
cause the modulator to become unstable. The noise transfer 
function was designed with Butterworth poles so that the 
signal transfer function could have a low pass Butterworth 
response and be implemented with a single feed-in 
coefficient into the first integrator. 

Each integrator output in the cascaded resonator topology is 
dependent only on the previous output of the previous 
integrator. This fact is used to calculate the data in the three 
resonators by using a single pipelined resonator with three 

pipeline delays corresponding to a single z"' delay. The 
coefficients to the single resonator are multiplexed and the 
state information for the three resonators contained in the 
pipelines (Figure 6). The multiplexers are arranged such that 
the function of the third resonator is performed first, 
followed by the second and then the first. This is to allow 
the comparator to come to a decision and for the feedback 

coefficients (with sign applied by the comparator output) to 
start entering the adder pipelines as early as possible. The 
single pipeline delay on each of the three inputs of the two 
adders represent the pipeline delay internal to the adder. 

Note that whilst it is convenient to consider the resonator in 
Figure 6 as being multiplexed, this is not truly the case. At 
the same time as one adder is computing the most 
significant digit of the output, other parts of the same adder 
are computing other digits of the other resonators and even 
different digits of the previous values of the same word. The 
multiplexer for adjusting the scaling gain (between 1/32, 1/4 
and 112) and the multiplexer for feeding the output of one 
resonator back into the input for the next must both take the 
skew into account. These multiplexers are actually taking 
different digits from each of their inputs to form the output. 

The number in brackets beside some of the gain blocks 
indicates negative effective latency. These numbers need be 
taken into account when counting pipeline delays around 
loops. Note that there is the correct multiple of three 
pipeline delays around all the resonator loops. However 
there are only five delays around the loop which links the 
output of the resonator back to its input. This ensures that 
the data representing the output of the first resonator arrives 
at the right time to be interpreted as input to the second and 
similarly for data leaving the output of the second resonator 
and entering the third. The output of the final resonator is 
not feed back to the input - during this time the system 
input is sampled and multiplexed into the first integrator. 

The scaling factors were chosen to the nearest power of two 
in order to roughly equalise the signal amplitudes at each of 
the integrator outputs. The resonator coefficients were also 
quantised to powers of two. Because the resonator 
coefficients are small (1/128) two extra pipeline delays 
become available which allows closing the resonator loop 
with only three pipeline delays (corresponding to a single z-
I delay) and so giving NTF zeros which lie exactly on the 
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Figure 5. Block diagram of sixth order sigma-delta modulator 
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Figure 6. Sixth order sigma-delta modulator using single pipelined resonator section 

unit circle. Additional adders could use the three additional 
delays available to place the NTF zero frequencies more 
accurately. It is likely that a low latency SBNR multiplier 
could be used to give programmable NTF zero frequencies 
with arbitrary precision. 

Since the two's complement number system is a subset of 
SBNR there is no hardware overhead in converting input in 
two's complement form to the SBNR form required by the 
first adder. The word length of all SBNR data was 5 integer 
digits and 20 fractional digits and this could be increased 
without decreasing the throughput rate. 

The sixth order system of Figure 6 has been simulated at the 
gate level using a commercial digital simulator. The output 
spectrum (Figure 7) shows the expected sixth order shaping 

.0001 .001 .01 .1 
Frequency (sample rate = 1.0) 

Figure 7. FFT of output of sixth order system 

with an undistcrted single tone. The signal to noise ratio 
from this simulation is 85dB with the input 20dB smaller 
than full scale. The modulator was designed for an 
oversampling ratio of 50. 

This paper has concentrated on using SBNR arithmetic. The 
fact that it was desirable to calculate three digits in parallel 
suggests that a higher radix redundant number system may 
be more suitable and more efficient in hardware. 

CONCLUSIONS 

Features of SBNR arithmetic have allowed the design of a 
sixth order modulator (Figure 6) which produces a new 
sample every third clock cycle, with the clock rate limited by 
a single proprogation delay through the adder of Figure 4. 
Many other design decisions could have been made, ranging 
from fully parallel designs where the order and word length 
could both increase without affecting throughput, to more 
heavily pipelined systems using a single adder. 
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A course in computer-aided 
electronic circuit design for 
undergraduates 
A. G. Martin and J . I. Sewell 

An undergraduate course in electronic circuit design utilizing a computer 
as its main aid is described. Experiences in designing and running such a 
course for thirty students are discussed. The application to the design of 
linear circuits only is outlined, but conclusions indicate that such courses 
are so successful that expansion to other design spheres would be equally 
rewarding. The importance of a controlled introduction to the computer 
as the most significant design tool available is stressed, so that the student 
appreciates the power at his finger-tips and does not become disenchanted 
with the computer as merely a machine which runs programming exercises. 

The problem of including a course which demands the 
use of a computer by undergraduates «i engineering 
curricula has been of interest for some time. It is of course 
essential that the student engineer acquire a respect for 
computational techniques and especially that he develop 
a sense of how best to set a computer to work. 

With computer-aided instruction, as with any means of 
learning, the object must be to create an initial exercise 
which the student thinks he can solve. Once guided on to 
the right path the student should uncover a succession of 
further goals, providing stimulation to learn for himself. 
Open-ended problems of this sort are often met by the 
designer and though design teaching is often omitted from 
engineering courses it can provide a natural slot for 
computer familiarization. 

A well-constructed computer-aided design course 
introduced at an early opportunity can demonstrate the 
power of computational techniques without the student 
first stumbling through the constructed problems of 
introductory programming. As well as stimulation, some 
disincentives must be made apparent, by pointing out that 
inspired paper work produces quicker but fewer results 
and by careful user monitoring to prevent wastage. An 
appropriate moment in an open-ended problem can be 
chosen for introducing time limits so that cut and try has 
to be replaced by planned optimization. 

Design projects 
Electronic design work has been a feature of the under

graduate course at the University of Hull for some time. 
Projects are introduced just before the halfway stage in the 
course, when about 40h of circuit theory and electronics 
course-work have been given. The design laboratory is 
intended to act as a focus to encourage the student to 
consolidate the analytical techniques he has just learned. 

The motivation for learning in such a course is the 
prospect of producing with some independent effort a 

successful circuit in a real design situation. Past experience 
has shown that the point of unreality is reached when, 
having produced a suitable design, the student wishes to 
breadboard his ideas for final proof. Particular points of 
friction occur with designs marginally near the specification 
when neither student nor tutor is sure of the performance. 
The policy of requiring designs to be proved on paper 
because of the impossibility of breadboarding many 
modern designs is rarely convincing. Computer checking 
of designs not only eliminates the breadboard problem 
because it is quicker but also acquaints the embryonic 
designer with a modern technique. I f additionally, as in 
this case, the student is meeting computer aid for the first 
time, an immediate effective demonstration of its versatility 
is achieved. 

A simplified representation of modern circuit-design 
philosophy is given by the design Row chart in Figure 1. 
Some details of certain real-life situations have been 
omitted and the chart is terminated prematurely since no 
details of computer aids for circuit production are in
cluded. However, such material can be found elsewhere and 
anyway it is not particularly significant for a first design 
course. In the time allowed for the design course it is not 
possible to complete the whole scheme, and therefore 
certain steps are omitted or left for the brighter student. 
Hence in the computer-analysis step only a.c. steady-state 
analysis was undertaken by all students. A limited number 
of students did arrive at the stage of undertaking a simple 
tolerance analysis of the circuit on the machine. However, 
this process could not amount to more than investigating 
worst-case effects on circuit response. 

Convincing the student that he can solve the problems 
is a matter of posing suitable problems. The student is 
invited to choose one from the following three: 

1. Transistor pre-amplifier. Design an a.c. pre-amplifier 
which has an input impedance greater than 1 MQ and 
a voltage gain of 20 + 1. The maximum output 
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Figure 1. A basic flow chart for modern circuit design. 

voltage swing is to be less than 1 volt pk-pk and the 
pre-amplifier is intended to drive a high-impedance 
load such as an oscilloscope. The pre-amplifier gain 
must be within the specified limits from 30 Hz to 
100 kHz. 

2. Phase-shift oscillator. Design an RC phase-shift 
oscillator to generate a frequency of 1592 Hz. The 
oscillator is intended to produce a small sinusoidal 
signal which will be fed into a high-input-impedance 
amplifier before output to an external load. 

3. Current-amplifier. Design a transistor amplifier with 
a current gain of 10 having an input impedance of 
less than 100 Cl and an output impedance of greater 
than 10 k f i . 

A measure of reality is introduced by allow ing only two 
transistors, two power supplies 0-30 V d.c. and a virtually 
unlimited supply of resistors and capacitors of standard 
values and tolerances. The student is presented with 
complete manufacturers' data sheets on the transistors 
(Mullard BC 108) and has to decide which have any 
relevance to his situation. The resistor information shows 
all the values available f rom stores with power and toler

ance ratings; similar information on capacitors gives 
values, tolerances, voltage ratings and type of fabrication. 
The component selection which he makes can then be 
criticized on the grounds of availability, cost, too good or 
too poor quality. 

The computer experiment 
The initial stages of the design course progressed from 

the shock of the unfamiliar requirement of innovation, 
through problem selection and the sorting of component 
data and analytical skills, to eventual hand analysis of 
chosen circuit configurations. I t was expected that most 
students would then check their designs and possibly 
correct one or two faults. However, tight time scheduling 
and the prospect of success encouraged a keen nucleus to 
finish early. Line-printer output produced a catalytic 
effect on the work rate of the rest of the class. 

It was found that the average student required about 
12h of class time to produce a prototype circuit ready for 
computer analysis (point A on the flow chart, Figure 1). 
The remaining 12h of the course were required to com
plete the a.c. analysis on the computer, which of course 
revealed more defects than the simple theoretical analysis, 
and to perform the necessary modifications at any or all 
of the steps indicated. 

The circuit-analysis program used was the general 
circuit analysis program GCAP 1 by Redac Software Ltd. 
I t was run under the George 3 operating system, with a 
suitable macroprogram on an I C L 1905E. The macro is 
designed to counter some of the expected problems with 
inexperienced computer users. As classes are of thirty 
students, it would be wasteful to load the program for each 
student. The macro loads the program once, and i f any 
error occurs in a data set, it skips to the next data file and 
so on until the whole batch has been processed. Data input 
is via cards and the output is on a line printer. Two 
supervisory print-outs are also given, one of which lists all 
the students in a particular run for the tutor's record. The 
other print-out provides a detailed analysis of the loading 
and running of each file and hence is valuable in diagnosing 
run-time errors. 

Results of the experiment 
While the computer analysis of voltage and current 

amplifiers only consolidates knowledge already learned, the 
students attempting the design of oscillator circuits are 
faced with new (to the student) conceptions. Previous 
classwork has shown how simple unstable circuits can be 
analysed by hand. A circuit model has to be derived which 
is an accurate representation yet which cannot contain a 
closed loop, since the resulting instability wil l not be 
acceptable to the program. 

A simple but effective technique has been evolved and is 
illustrated by the typical final design shown in Figure 2. 
The method is to break the feedback loop at the point of 
low sensitivity after the emitter follower. In coding the 
circuit for the computer the open loop is given the correct 
loading by repeating enough of the input circuitry, which 
in this case would be the common emitter stage. A reason
able estimate is made for the driving source resistance. 
Straightforward analysis as an amplifier is thus possible 
and the desired result is a gain of unity with a phase shift 
of 0 3 or 360° at the specified frequency. The model depends 
on representing the closed loop as a section of an infinite 
line circuit. 
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Figure 2. Final design of a phase-shift oscillator. The 
resistors marked with an asterisk have 2% tolerance. 
The remainder have 10%. 

In actuality there are sub-steps, in that the first computer 
run provides a more precise output impedance for re-use 
as the driving source impedance. Next the circuit excluding 
the amplifier would be analysed to yield the required gain 
and the loading on the amplifier output. Neither of these 
are usually accurately calculable by approximate hand 
methods. After the feedback and possibly the phase have 
been adjusted, a final run is made to check the response of 
the complete circuit. 

Concluding comments 
Perhaps the best measure of the success of a teaching 

course is the difference between the expected and the actual 
response. Al l students succeeded in making a computer 
analysis of their design, correcting the defects revealed and 
making one or two further analyses. Quite a number, 
about a third of the class, reached the weaned state of 
independent investigation of the properties of their 
circuits. Early expectations were thus far exceeded. 

In retrospect the significant spur to completing the 
initial effort, which takes around 12h, perhaps spread over 
a longer period, were the first returns of computer results. 
One of the jobs of the tutors is then to identify a few 
front-runners, who may not necessarily have shown the 
best previous performance, and to optimize the moment at 
which their efforts come to fruition. 

The object of creating a gradually evolving real design 
environment, where the student no longer tackles lecture 
course problems which often necessarily have unique 
solutions, has to some extent been met. The students are 
forced to re-examine their knowledge and to complete 

their understanding while their designs are in progress. 
One spin-off which might be further developed would be 
to introduce, as the course progresses, the real-life prob
lems of deadlines and organization of time and effort. 

From the flow diagram of Figure 1, it can be seen that 
the course has concentrated on a simplified path through 
the chart. Obviously any course is limited mainly by time 
available, and hence only the design of linear circuits was 
clone. The computer was used only for a.c. analysis and 
to some extent for tolerance analysis. Further extension 
would therefore include d.c. analysis and perhaps a 
Monte Carlo approach for the sensitivity. In the sphere of 
switching circuits it is reasonable to envisage an entire 
course subsequent to the one described. It appears, however, 
that such courses would demand at least 24 or perhaps 36h 
of design laboratory time. Hence, much serious thought 
must be given how to modify existing engineering degree 
courses so that such vital and stimulating exercises may be 
introduced. 

The computer is inextricably involved in the routine of 
design in engineering and can provide 'hat exciting aspect 
of engineering course-work which seems to have been 
somewhat elusive in the last decade. 
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A D E G R E E - E N H A N C E M E N T SCHEME I N ELECTRONIC 
E N G I N E E R I N G 

J. I. SEWELL 

Department of Electronic Engineering University of Hull, England 

1 I N T R O D U C T I O N 

The British educational system has traditionally enjoyed a reputation of 
worldwide acceptance, and in many ways it has considerable export signific
ance. In recent years there has been growing disquiet that the education, 
training and status of our engineers at large, may not be as satisfactory as had 
been so tacitly assumed. The result of initiatives taken by the Institution of 
Electrical Engineers to tackle this problem, in the sphere of electrical and 
electronic engineering education, was the Merriman Report 1 . More recently 
the Finniston Inquiry has made its report on the larger problem of the whole of 
engineering education and training. 

It is an inevitable result of such investigations that certain general princinlps 
are enunciated and some overall goals are stipulated, but the implementation 
of these remains very much a local problem. In practice the translation into 
actuality may prove to be a somewhat painful and major upheaval. However, 
the mere fact that such initiatives cause us to examine our educational methods 
with a critical eye is in itself beneficial. Nowhere is this more true than in 
electronic engineering. Rapidly advancing technology needs to be com
municated to students in the right context and against the right background. It 
is all too easy to add on 'frill-thrilT courses and convince ourselves that we are 
up-to-date. The mature educator must from time to time examine the core 
material in the light of current developments, and seek to develop a coherent 
story so that the freshly-educated engineer is able to comprehend the signific
ance of new developments and assess their significance with respect to im
mediate and future needs. 

It had become increasingly obvious that the preparation of engineers to 
assume the highest levels of design and development roles in industry was 
going to require higher-grade courses at university. It is also true that not all 
students would be able to cope with such courses and it would be unwise to 
produce overqualified graduates for certain positions. Hence the emergence of 
multilevel degree courses of varying length and content. At the present time it is 
not easy to predict the exact nature and style of the various options. But for the 
This paper was first presented at the Conference on Electronic Engineering in Degree Courses — 
Teaching for the 80".s at the University of H u l l . England, in March 1980. 
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sake of stability within departments during the transition period, which may 
last a number of years, some concrete plans have to be made and adhered to. 

Since the degree courses in electronic engineering at the University of Hull 
had traditionally consisted of four years full-time study, it was somewhat 
logical to consider the pursuance of the proposals for 'enhanced' degrees where 
the basic academic unit was four years in length. 

2 B A S I C E L E M E N T S O F E N H A N C E M E N T 
Following the Merriman Report, the I E E . issued a guide 2 outlining the 
contents of degree courses in electrical and electronic engineering, which would 
be the normal route to qualification as a chartered engineer in the future. The 
salient points are listed and the ensuing course proposals are an attempt to 
implement these in the light of local circumstances and resources. 
(i) The complete course will be about five years in duration. 
(ii) The enhanced course will contain 20-30% more academic material than 

existing undergraduate courses. 
(iii) The industrial involvement will be of about 18 months' duration. 
(iv) There will be close links between the educational establishment and 

employers of electronic engineers. A proper integration of practical and 
theoretical studies is sought, with no rigid separation of industrial and 
academic aspects of engineering. 

(v) The course should contain topics such as industrial organisation, com
munication and man-management skills. 

(vi) The major technical components of the course will be supported by 
suitable practical and project work, and contain elements of the design 
approach. 

(vii) The entry grades of A-level (General Certificate of Education, Advanced 
Level) candidates should total nine points or over, equivalent require
ments being demanded for other qualifications. 

Superimposed upon these requirements are extra ones felt to be necessary for 
the complete operation of the courses in the university environment. 
(a) The course should offer some degree of choice of specialisation at the 

highest level possible. 
(b) There should be adequate provision for those students who find the 

enhanced course studies too demanding, and need a safety net of a Pass 
Degree course of non-enhanced standard. 

(c) It is not at all clear that overseas students will wish to complete the full 
enhancement requirements, and provision for a non-enhanced alternative 
is necessary. 

3 P R O P O S E D C O U R S E S T R U C T U R E 
Fig. 1 shows a schematic diagram of the structure of the course. Points to note 
are the escape routes at the end of the second and third years of academic 
work, on to the non-enhanced Pass course. The industrial experience com
ponent is satisfied by periods in industry during the third and fourth years and 



31 

F I RSI 
YEAR 
STUDIE5 

YEAR 

S T U D I E S 

TH I RD 
YEAR 
STUD IE5 

^ O N -
ENHANCED 
3 A S S 
lOOSS i 

FOURTH 

YEAR (3 o p t i o n s ) 
S T J O I E 5 

3 . S c . 
Pass 
N o n -
E n h a n c e d 

B. S c . 
Honou r 
and 
Pass 

F I FTH 
YEAR 

i INDUSTRY 

E n n a n c e d 
D e g r e e 
( l . E n g . 
o r 
D i p l . E n g ? ) 

FIG. J Enhanced degree scheme. 

by a complete year during the fifth year. The fourth year of academic study 
offers three options to the student, who can specialise in communications, 
automatic control or computer engineering. On completion of the fourth year, 
the B.Sc. degree is awarded with the usual gradings of Honours and Pass 
categories. Overseas students and those not wishing to proceed to full enhance
ment may terminate at this point. To complete the enhanced course, students 
must submit a dissertation on their industrial training and experience at the 
end of the fifth year, when the fully enhanced degree will be awarded 
(Dipl.Eng., M.Eng. or whatever). 

The complete details of the academic content of each year are shown in Figs. 
2 and 3. It is perhaps easiest to consider each year as consisting of a block of 
basic subjects, which begin with the foundations of electronic and mathemati
cal studies and develop in natural progression. Hence, in the first year this 
comprises mathematics, combinational logic and integrated logic circuits, 
computer appreciation, electronic circuits, circuit theory, electromagnetics, 
system dynamics, mechanics and engineering drawing. Core subjects in the 
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FIG. 3 Course outline of options available in fourth year of study. 

second year are electronic systems and feedback, electronic devices, introduc
tory telecommunications, network analysis, electromagnetism, digital elec
tronic systems, mathematics, and solid state technology. In the third year these 
are digital electronics, microcomputer systems, telecommunications, systems 
theory, automatic control, aerials, waveguides, transmission lines, optical 
waveguides, mathematics and signals analysis. The fourth year presents three 
options of electronic specialisation with a few subjects common to two or more 
options. 

Added to the basic core are other essential and interlinking features which 
progress from year to year. Fig. 4 shows the practical and project content. The 
proportion of project work is increased steadily year by year until in the fourth 
year each student undertakes a major project investigation which may be 
directly related to an industrial problem. Fig. 5 displays the influence of the 
computer in electronic engineering education. It is necessary now, more than 
ever 3, to ensure the correct balance of these studies. All graduates should feel 
competent in using both general machines for problem solving and the more 
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FIG. 4 Laboratory and project w ork scheme. 
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FIG. 5 Computer education scheme. 
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dedicated system for particular application resulting from microprocessors. 
Hence the teaching of B A S I C not only serves as an introduction to pro
gramming, but has greater significance at a later stage in specific machine 
controlled systems. In the third year there is an interesting balance between 
essential computer mathematics such as numerical analysis and optimisation, 
and microprocessor programming and operating systems. Low level software is 
taught to some options in the fourth year. 

An important feature of the course is the integration of lectures given by 
industrialists. This is shown for the various years in Fig. 6. Some subjects are of 
a general nature whereas others draw upon specialised knowledge available 
only from engineers actively engaged in the industrial scene. A considerable 
amount of liaison already exists in the project work attempted by the fourth 
year students. The design concept features heavily in this area of the course. 

Finally, the business aspects of the course are shown in Fig. 7. Some of these 
subjects are common with the last grouping. Business studies includes such 
subjects as the balance sheet, work trees, cash flow, and marketing; it is com
pleted by a substantial business game on the computer. 

4 C O N C L U S I O N S 
There is a sense in which engineering degree courses have never been easy. 
They have always covered a wide range of introductory subjects and therefore 
the workload imposed on students is usually heavier than in some other 
disciplines. Fortunately these aspects have not proved completely unacceptable 
in the past, since the motivation provided by vocational studies tends to 
prevail. It is essential however, when attempting to implement the proposals for 
enhancement, to maintain a correct balance of subjects in such a manner that 
the student can recognise that his specialised technical knowledge is expanding 
at a rate which exceeds his growing appreciation of general engineering 
ambience. The problem is nowhere more critical than in electronic engineering 
where there is the constant pressure of new technology. But what value is this 
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knowledge if no-one is capable of manufacturing and marketing the product? If 
the student engineer can be educated in a more complete manner, without 
danger of overload, then the future is a bright one, provided he can be sub
sequently employed in a stimulating and demanding industrial environment. 
Unfortunately many modern changes in education have actually resulted in 
diluting the standards of entry, teaching and examination; to go forward 
without care and vigilance by the universities and the professional bodies could 
reduce even the most laudable schemes to little more than a shroud for compro
mise and failure. 
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A degree-enhancement scheme in electronic engineering 

A scheme is outlined which has a five year structure, with a fully integrated academic and industrial 
training programme. The academic content is discussed in detail and includes main core subjects, 
laboratory and project work, computer education, industrial lecturers' input and business elements 
of the course. 

I n cours de degre eleve en ingenierie electronique 
Le schema d'un cours est esquisse, d'une duree de cinq ans, suivant un programme completement 
integre du point de vue academique et apprentissage industriel. Le contenu academique est discute 
en details et comprend les sujets principaux, les laboratoires et projets. 1'informatique, les donnees 
relatives aux conferenciers industriels et les elements commerciaux du cours. 

Ein Projekt zur Graderhohung in der elektronischen Technik 
Das umrissene Projekt hat eine 5-Jahr-Struktur mit einem vollig integrierten akademischen und 
industriellen Ausbildungsprogramm. Der akademische Inhalt wird im einzelnen besprochen; er 
schliesst die hauptsachlichen Stammfacher, Labor- und Projektarbeiten, Computerunterricht, 
Beitriige von Lehrern aus der Industrie und wirtschaftliche Elemente des Kursus ein. 

I n plan de intensificacion gradual en ingenieria electronica 
Se perfila un plan, estructurado en cinco anos, en el que se integra completamente un programa de 
entrenamiento industrial y academico. Se discute con detalle el contenido academico del curso: los 
temas principales. los trabajos de laboratorio y proyecto. la formacion en computadores. las 
intervenciones de los profesores de la industria y los conocimientos elementales sobre negocios. 
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ABSTRACT 

Ladder-based active filters continue to attract attention from designers 
because of their low sensitivity property. In this paper matrix methods for 
ladder-based-filter and equaliser design are outlined, A modified and 
extended canonical realisation is presented and applied to active-RC, SC 
and transconductor-capacitor filter design. A filter and equaliser compiler 
based on the proposed method is described. As an example, a 5th-order 
Elliptic lowpass filter and a 6th-order group delay equaliser have been 
designed. It is shown that the order of the equaliser can be reduced by the 
application of special techniques for the approximation of the filter transfer 
function. The comparison of sensitivity between a cascade of biquadratic 
stages and the ladder-based realisation is given. Lower sensitivities to 
component tolerance for both filter and equaliser are displayed by the 
ladder-based design. The test results of the designed filter and equaliser 
are also given. 

1. INTRODUCTION 

The oldest and probably best known method of active filter design is a cascade approach. 
This commences by factorising a prescribed high-order transfer function into a product of 
second-order terms, which are then realised by an appropriate choice of active biquadratic 
sections. This method offers many attractions; principally it is straightforward to 
implement and various practical circuit requirements are almost automatically satisfied, 
such as dynamic range scaling which can be ensured by simple voltage or current scaling 
in each section, and in SC realisations the capacitance spread is generally quite modest. 
Consequently, many of the filter compilers available[l] adopt this approach as standard. 
However for high order monolithic filters, the cascading of biquadratic sections leads to an 
unacceptably high sensitivity of the response to component parameter variations. It is well 
known that appropriately designed LC ladders have very low sensitivities to component 
tolerance and hence active filters simulating the internal workings of doubly terminated 
RLC ladder prototypes are widely used in high precision integrated filters. Passive ladder 
prototypes for standard lowpass approximations are readily available from filter tables and 
component values of all other types of frequency response (bandpass, bandstop and 
highpass) can be obtained by applying standard frequency transformation and scaling 
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methods. Alternatively, computer programs can be used to generate a passive ladder 
automatically for more general approximations. Various techniques have been introduced 
which allow the expert user to optimise the prototype ladder development in order to 
reduce the component spread and sensitivity of the subsequent active realisation. The 
prototype ladder can often become unrealisable in passive terms, but still have feasible high 
performance active implementations. 

Progress from a prototype ladder to an active realisation can follow "direct" simulation, 
when unwanted elements such as inductance or resistance are replaced by simulated 
elements, or "signal flow graph" simulation which involves the representation of selected 
currents and voltages (or combinations) of the prototype by proportionate voltages, 
currents or charges in the active circuit. A powerful matrix based approach[2] has been 
developed recently and applied to the design of SC, active-RC, and digital ladder filters 
and equalisers. In the case of SC filters this has led to configurations which are far from 
intuitively obvious but which offer improved performance with respect to parameters such 
as settling time and capacitance spread. The matrix approach has also been used to develop 
novel filter structures, ideally suited for transconductor-C realisation[5]. 

This paper presents various solutions to the problem of efficient active realisation of 
ladder-based designs. One difficulty concerning canonic realisation of certain filter 
functions has been recognised previously[6]; here, a general solution and a wide range of 
its implementations are examined. The application of advanced approximation 
techniques[7] also permits minimal realisations and improved performances in 
filter/equaliser design. The filter compiler incorporating these techniques is demonstrated 
and results from a fabricated video filter and group delay equaliser are presented. 

2. REVIEW OF MATRIX BASED FILTER AND EQUALISER DESIGN 
METHODS FOR ACTIVE CIRCUITS 

A passive ladder can be represented by the standard nodal admittance matrix equation 

J = (G+sC+s-lr)V (1) 

Where V is a vector representing the nodal voltages and J is a vector representing the input 
current sources. G,C, and T are admittance matrices formed by the contributions of 
resistors, capacitors and inductors respectively. Equation (1) represents a set of equations 
of second order in the Laplacian variable s. It is well known that a set of linear first order 
algebraic equations can represent a signal flow graph and be realised by active building 
blocks[8]. The matrix method[2] enables direct decomposition of the second order matrix 
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to give two inter-related first order equations, and these first order systems are then directly 
implemented using the active building blocks. 

2.1) Matrix methods for Active-RC Ladder-Based Filter Design 

Either the C or the T matrix can be factorised, leading to left and right decompositions 
respectively. 

Factorise the C into 

C = C , C r (2) 

The following pair of equations is equivalent to (1) 

(s-lr + G) V + C/W = J (3a) 
C r V - s-iW = 0 (3b) 

where W is the vector of intermediate variables.This decomposition is called RC Left 
Decomposition. The actual methods employed to perform the decomposition indicated in 
equation (2) are those commonly known to preserve the sparsity of the matrices: LU, UL 
and the direct methods which decompose any matrix A into AI or IA[2]. 

If r is factorised as 

r = r , r r (4) 

then the RC Right Decomposition method is obtained and the following pair of equations is 
equivalent to (1) 

(C + s-1G)V + s-^/W = s-!j (5a) 
-s-lr rV + W = 0 (5b) 

For the above decompositions, in order to maintain the sparsity of the matrix, no matrix 
inverse is involved. If inverse matrix is used in the design process, some special circuits 
can be obtained. 
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RC Left Inverse Decomposition 

If the auxiliary variables are defined by W = sCV and (3b) is multiplied by C~l then the 
design equations become 

(s-T + G)V + W =J 
V - C-1s-1W = 0 

(6a) 
(6b) 

RC Right- Inverse Decomposition 

Choosing W = s _ 1rV and multiplying (5b) by T"l the system equations become 

(C + s-1G)V + s-1W = s-1J 
-s^v + r^Wr^o 

(7a) 
(7b) 

The equations (3,5,6,7) are equivalent to (1). Each set can be realised by active-RC 
circuits. In these equations the matrix multiplied by s"1 is called integrated matrix and it will 
be observed that in the active-RC circuit realisation, the entries in the integrated matrices 
are realised by resistors and the entries in non-integrated matrices are identified with 
capacitors. It can be shown that equation (6) yields a minimum capacitor realisation while 
(7) produces a minimum resistor realisation[2]. 

2.2) Matrix Methods for SC Ladder-Based Filter Design 

The design of a switched-capacitor filter starts from the prototype system equation (1), 
which after bilinear transformation becomes 

T l + z - 1 2 1-z 
V =J (8) 

Rearranging gives 

—A + <|)B-l-D 
¥ 

V = J(l + z) (9) 

- A + \(/B + D V = J(l + z- 1) (10) 

5 
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where 

A 
A 
B 

= 2C/T + Tr/2 + G for left matrix decomposition 
= 2C/T + Tr/2 - G for right matrix decomposition 
= 2TT 

(11a) 
( l ib) 
(11c) 

D = 2 G 
= l/(l-z 
= z-V(l 

1 

!) 

(Hd) 
(He) 
(Hf) 

The bilinear transformation has the advantage of both stability and exactness. 
Unfortunately, bilinear integrators are sensitive to the stray capacitance and are not 
practically useful. Instead a modified SC ladder-based structure utilising LDI integrators[2] 
can be formed. 

Factorise the matrix A and the SC Left Decomposition is obtained as 

Again, the standard numerical techniques for matrix decomposition of A or B yield a range 
of circuit implementations whose suitability in various applications have been exarnined[2]. 
For the sake of completeness, the two inverse decompositions are shown, though no 
economical SC circuits are known to result from their application. 

SC Left Inverse Decomposition 

(<DB+D)V + A/W = 2J 
A rV + ¥ W = A/-1J 

(12a) 
(12b) 

Factorise the matrix B and the SC Right Decomposition is obtained as 

(A + <DD)V + B/W = J 
-¥B r V + W = -2B/ U 

(13a) 
(13b) 

(<DB + D)V + W = (l+z)J 
V + ^FA-iW = 0 

(14a) 
(14b) 

SC Right Inverse Decomposition 

(A + <DD)V + <DW = J(l+z-1)/(l-z-1) 
- y V + B-1\V = Q 

(15a) 
(15b) 
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Generally the SC Left Decompositions demonstrate excellent properties regarding 
component spread and dynamic range for bandpass designs. However, these structures 
sometimes need more opamps in circuit realisation. They are not suitable for lowpass 
filter design because of a peak in sensitivity at zero frequency. 

The SC Right Decomposition approaches can demand fewer opamps in circuit realisation 
and they demonstrate good sensitivity performance for lowpass designs. Undesirably 
large component spread and poor dynamic range are unfortunately observed for certain 
bandpass designs. 

2.3) Matrix Methods for Transconductor-C Ladder-Based Filter Design 

There are two main types of ladder-based transconductor-capacitor canonical filter 
realisations, these are due to Topological Decomposition and Inverse Decomposition. 
Inverse Decomposition is again divided into Right and Left Inverse Decomposition. The 
building blocks for circuit realisation utilise both conventional transconductors Fig. 1 (a) 
and low impedance input transconductors[9] Fig. 1(b). In Fig. 1(a) the capacitor Cj can 
only realise a bidirectional path when driven by internal nodes. To facilitate the realisation 
of some decompositions, low impedance input transconductors or transconductor/opamp 
stages are required, these also have the added attraction of nullifying the effects of 
parasitic capacitance. 

TC Topological Decomposition 

In the topological decomposition, 

T=ADA T (16) 

where D is a diagonal matrix of the inverse inductance values of the prototype, A is a 
conventional incidence matrix of inductors. The auxiliary variables are defined by: 

W=(sg)-1DATV (17) 

where g is a scaling factor with the dimension of transconductance, often set as g=l/aR 
where the R is the ladder filter terminal resistor and a takes an optimum value close to the 
fractional bandwidth of the filter. 

Substituting (16) and (17) into (1) and rearranging gives 
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s - l g 2 A W + (gC+s-lgG)V = s-!gj 
gD"1W + s- 1 A T V = 0 

(18a) 
(18b) 

If the prototype ladder is equally terminated, the filter can be realised with one value of 
transconductance. In a transconductor-capacitor realisation, the entries in non-integrated 
matrices are realised by capacitors while the components in integrated matrices are 
implemented by transconductances. All non-integrated matrices in the Topological 
Decomposition are symmetrical, so realisation can utilise both conventional and low 
impedance input transconductor structures. The auxiliary voltages W are directly 
proportional to the currents in the inductors of prototype ladder. The topological 
decomposition will generally lead to equivalent leapfrog topologies in active-RC and SC 
and transconductance-capacitor designs, if conventional transconductors are used. In the 
bandpass case, this decomposition cannot be guaranteed to generate stable active circuits 
and alternative decompositions are required[5]. 

TC Right Inverse Decomposition 

The auxiliary variables are defined by 

In (20b), the integrated vector V is premultiplied by the matrix G. Only when the 
prototype ladder has equal resistance at both terminations, would the transconductor-
capacitor filter require one transconductance value in the complete realisation. Because all 
the non-integrated matrices in TC Right Inverse Decomposition are symmetrical, it can be 
realised both using conventional transconductor and low impedance input transconductor 
building blocks. 

TC Left Inverse Decomposition 

The Left Inverse Decomposition results from decomposing the C matrix into two matrices 
as (2). Defining the vector of auxiliary variables by 

w=(s-irv)/ g (19) 

The resulting design matrix equations are: 

g r - 1 w - s - 1 v = o 
s - l g 2 w + ( g C + s-lgG)V = s-igj 

(20a) 
(20b) 
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W = (sCrV)/g (21) 

The general TC Left Inverse Decomposition design equations are obtained by substituting 
(21) into (1) and rearranging: 

g2r-iqw + (s-!g + gr-iG)v = gr- i j (22a) 
-s-1gW + C r V = 0 (22b) 

Only low impedance input transconductors can be used in the realisation of Eq.(22a,b), 
because some of the non-integrated matrices are asymmetric. For C/ = I and C r = C, the 
TC Left-IC Decomposition can be obtained from (22a,b) as: 

g 2 r - l W + ( S - I g + g r - l G ) V = gT- l j (23a) 

-s"1gW + CV = 0 (23b) 

Since r~l and C are generally full and tridiagonal respectively, a relatively large number of 
capacitors is required in the circuit realisation. However since all non-integrated matrices 
( r _ l G and C) are symmetric, they can be implemented using conventional 
transconductors. 

When C/ = C and C r = I , the TC Left-CI Decomposition is obtained: 

g2r-1CW+(s- lg+gr-lG)V = gT- l j (24a) 
-s-!gW+V = 0 (24b) 

This requires fewer capacitors than Left-IC because the only coupling capacitors are those 
of the product matrix F'^C, these coupling paths must be implemented using low 
impedance inputs since P^C is generally asymmetric. A singularly good application [5] 
of this decomposition is for prototypes where C = T, when r~lC=I which is very 
sparse and symmetric, and produces a highly efficient realisation with conventional 
transconductors. 

The important feature of equations (22-24) is that all of the integrated vectors are multiplied 
by a single constant g, this allows the equations to be implemented as a transconductor-
capacitor circuit with a single value of transconductance. 
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2.4) Allpass Ladder-Based Transconductor-Capacitor Design 

The equalisation of group delay is becoming increasingly important with high frequency 
applications such as video communication systems. In analogue systems this equalisation 
is often provided by one or more allpass biquadratic stages. However, where the equaliser 
required is of order greater than two, sensitivity considerations would indicate that it is 
preferable to use a ladder derived circuit. A ladder-based technique has been developed for 
digital implementation[10] and extended to SC realisations[ll]. It is essential to 
incorporate the advantages of this approach into the design of transconductor-C equalisers 
for direct application in high frequency environments. 

Consider allpass transfer functions of the form 

P(-s) H(s) = k 
POO (25) 

where P(s) is Hurwitz polynomial of order n and k = 1 if n is odd order and k = -1 if n is 
even. The polynomial P(s) is separated into odd and even parts: 

P(s) = E(s) + 0(s) (26) 

Define 

Y(s) = . 

E(s) 
0(s) 
O(s) 

if n is even 

if n is odd 
E(s) (27) 

Substituting (26) and (27) into (25) gives 

H(s) = l l ^ l = l " 
1+Y(s) 1+Y(s) ( 2 8 ) 

Since P(s) is Hurwitz, Y(s) can be expanded as a continued fraction, and equation (28) can 
then be realised as the combination of a singly terminated RLC ladder and an active 
summing stage. The singly terminated passive ladder network part can be simulated by a 
transconductor-C circuit using the above matrix decomposition method and the overall 
transconductor-C group delay equaliser structure is shown in Fig.2. 
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3. CANONICAL REALISATION FOR LADDER-BASED DESIGN 

An analogue VLSI design is a multiple criteria optimisation procedure. One objective in 
this procedure is to use a minimum number of active components, since these usually 
occupy relatively large area, consume power, and are sources of noise. With the 
development of personal communication equipment, these considerations will assume even 
more importance in VLSI circuit design. In active-RC and SC filter design, it is generally 
accepted that one-opamp-per-pole realisations are canonical for low sensitivity realisation. 
Circuit configurations with less than one opamp per pole are usually quite sensitive to 
component deviations, and in the SC case, they would usually require more switches, 
capacitors, and clock waveforms. For transconductor-C filter ladder-based realisations 
with conventional transconductors, two extra transconductors are needed for realisation of 
the passive prototype ladder terminations. We define a canonical transconductor-C 
filter with conventional transconductors as a one-transconductor-per-pole 
realisation plus two termination transconductors, each possessing the same 
value of transconductance. A transconductor-C filter with conventional 
transconductors, which has one-transconductor-per-pole and two 
termination transconductors, with a small number (< 3) of different 
transconductance values, is defined as quasi-canonical realisation. If the 
transconductor-C filter is realised using low impedance transconductors, two 
transconductors for the termination realisation can be replaced by capacitance branches. 
Therefore we define a canonical transconductor-C filter with low impedance 
input transconductors as a one-transconductor-per-pole realisation, each 
possessing the same value of transconductance. A transconductor-C filter 
with low impedance input transconductors, which has one-transconductor-
per-pole, with a small number (< 3) of different transconductance values, 
is defined as quasi-canonical realisation. 

Previous work has shown that the problem of finding a canonical ladder-based active filter 
can be solved by finding a canonical ladder prototype[6]. The conditions required for a 
transfer function to be realisable by a canonical doubly-terminated ladder are that 
numerator of the transfer function of a canonical even-order doubly-terminated ladder is an 
odd polynomial, and that the numerator of the transfer function of an odd-order doubly-
terminated ladder is an odd polynomial if ICI is non-singular or an even polynomial if III is 
non-singular. For most filter design problems the numerator of the transfer functions are 
polynomials with purely even or odd terms. So the numerator parity alone determines 
where a given transfer function can be realised by a canonical ladder. The solution is to 
augment the transfer function, unrealisable by canonical ladder, to produce a transfer 
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function which is realisable by canonical ladder, and when the ladder is simulated by an 
active circuit the original transfer function behaviour is then restored by a change in input 
circuitry. If H(s) is a transfer function with all its zeros on the imaginary axis or at infinity, 
then parity manipulation can be effected by s, 1/s, sAs^+coi^). The parity of the modified 
transfer function H'(s) facilitates realisation by a canonical prototype ladder. A system 
realising the original transfer function H(s) can be obtained by multiplying the input vector 
J by the inverse of the modifying function. 

(sC+s-1r + G)V=s"1J (29a) 
(sC+s"1r + G)V=sJ (29b) 

(sC+s-1r + G)V=(s+o)i2s"1)J (29c) 

3.1) Canonical Ladder Simulation By Active-RC Circuits 

In an active-RC circuit realisation, for RC Left Decomposition form, the system (29a-c) 
can be decomposed in the following ways. 

C/W + (s"1r + G)V = s-1J (30a) 
-s-lW + C rV = 0 (30b) 

C/W + (s- 1r + G)V = 0 (30c) 
-s-lW +C r V = C / - l j (30d) 

C/W+(s-1r+G)V=o>i2s-1J (30e) 
- s - i W + C ^ Q - i j (30f) 

Now canonical active-RC networks can be obtained directly from equations (30). These 
circuits use n opamps, where n is the order of original transfer function H(s). The 
coefficients of s"1 on the right-hand-side of the equations are implemented by resistors. 
The different parity arrangements and decompositions available lead to different circuit 
realisation efficiency. Eq.(30a,b) produce the same topological structure as the original 
one, the only difference is that the input capacitance is changed to resistance. Analysis of 
Eq.(30c,d) and (30e,f) shows that canonical realisation generally leads to the introduction 
of extra passive components. However, if UL or IA decompositions are used, the number 
of input branch elements can be minimised. For those two decompositions, only the input 
node is changed in case Eq.(30c,d) or one additional resistor is added in case (30e,f). If 
other decompositions are used, they can introduce up to N (number of nodes in prototype 
ladder) extra input capacitor or resistor branches. 
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For RC Right Decomposition, the systems take the form 

(C + s-1G)V + s ^ W ^ (31a) 
-s- 1r rv + w = -s - 1 r / - 1 j (3ib) 

(C + s-1G)V + s"1r/W = J (31c) 
-s-ir rV + W = 0 (31d) 

(C + s-1G)V + s"1r/W = J (31e) 
- s - i r r v + w = -s- 1rricoi2j (3if> 

Eq.(31c,d) demonstrates a very efficient canonical form with input branches changed from 
resistance to capacitance. The equations of (31a,b) and (31e,f) can only be efficiently 
realised by UL or IA decompositions, since r/~lj produces a vector with only one non
zero entry, which can be produced by one input branch only. 

When RC Left Inverse Decomposition is used, the system is 

W + (s"lr+G)V = s"1J (32a) 
-s- 1 C" 1 W+V = 0 (32b) 

W + (s"1r + G)V=0 (32c) 
-s-1C"1W +V = C-!j (32d) 

W + (s- 1r + G)V = u)i 2s- 1J (32e) 
-s-1C"1W + V = C-1J (32f) 

Equations (32a,b) can be very efficiently realised with the input branch changing from a 
capacitor to a resistor. Realisation of equations (32c, d) would introduce N extra 
capacitors, but without a resistive input branch. The system equations (32e,f) introduce N 
extra capacitors plus the original resistor input branch. In the case of (32c, d) and (32e,f), 
the characteristic minimum capacitor realisation of RC Left Inverse Decomposition would be 
lost. 

For RC Right Inverse Decomposition the system is rewritten as 
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(C + s-iOV + s-iW^O (33a) 
-s-1V + r-lW = - s - 1 r - l j (33b) 

(C + s'1G)V + s-1W = J (33c) 
-s-1V + r-lW = 0 (33d) 

(C + s"1G)V + s-1W = J (33f) 
-s-1V + r-lW = -s - 1 r - 1 o)i 2 J (33f) 

Realisation of equations (33a,b) and (33e,f) would introduce N extra resistors. No 
capacitor input branch is needed in equations(33a,b) while one capacitor input is needed 
for (33e,f) realisation. Tl e minimum resistor feature may be lost in canonical realisation. 
Equations (33c,d) can be efficiently realised with only the change of the original resistive 
input branch to a capacitive one. 

The following example illustrates the improvements possible. A 6th-order elliptic 
lowpass active-RC filter is designed using the canonical design method and left-UL 
decomposition. The simulated circuit response is shown in Fig.3, which exactly agrees 
with the approximation. The circuit realisation contains 6 opamps, 13 capacitors and 11 
resistors. If a canonical design approach were not available, then a 7th-order elliptic active-
RC would be necessary , requiring 8 opamps, 17 capacitors and 14 resistors. 

3.2) Canonical Ladder Simulation by Switched-Capacitor Circuits 

SC Left Decomposition canonical realisations for systems (29a), (29b) and (29c) become 

A/W + (<DB + D)V = 2TOJ (34a) 
-X¥W + A r V = A f lTJ/2 (34b) 

A/W + (<DB + D)V = 0 (34c) 
- ¥ W + A r V = 2A/-1J/T (34d) 

A/W + (<DB + D)V = 2T<Dcoi2j (34e) 

-*FW + A r V = A f 1(Tcoi2/2+2A')J (34f) 

The circuit realisation of Eq.(34a,b) and (34e,f) retains the basic topology with only the 
introduction of 2 more switches and 1 more capacitor. The circuit realisation of Eq.(34c,d) 
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is very efficient, since J has only one non-zero input and if A f 1 is an upper triangular 
matrix, which occurs when UL or IA decompositions are selected, only one input branch is 
required. 

SC Right Decomposition canonical realisation for systems (29a), (29b) and (29c) are 

(A + <M))V + OB/W = TJ/2 (35a) 
-^BrV + W = - 2 W B f 1 J (35b) 

(A + <DD)V + OB/W = 2J/T (35c) 
-^BrV + W = 0 (35d) 

(A + <DD)V + <DB/W = (To)i2/2+2/T)J (35e) 
-¥B r V + W = -2WE[- la>i23 (35f) 

Eqns.(35a,b) and (35e,f) will yield identical topologies, having 2N more switches than a 
realisation based on Eq.(13a,b). However, Eqns.(35c,d) lead to a very efficient circuit 
realisation with N fewer capacitor input branches than demanded by Eqns.(13a,b; e,f)-

The SC Left Inverse Decomposition canonical realisation form can be written as 

W + (OB + D)V = 2T<DJ (36a) 
- ¥ A - i W + V = A-lTJ/2 (36b) 

W + (<DB + D)V = 0 (36c) 
_ v j / A - l w + v = 2A-lj /T (36d) 

W + (<DB + D)V = 2T<D(Di2J (36e) 

-»FA- 1W + V = A-1(T(Di2/2+2/T)J (36f) 

The realisation of Eq.(36c,d) introduces N more capacitors, and Eq.(36a,b) and (36e,f) 
have same topologies which introduce 2(N -1) switches and 2JV capacitors. 

The SC Right Inverse Decomposition canonical realisation forms are 

(A + OD)V + d>W = TJ/2 (37a) 
.v j / V + B-!W = -2WB- 1 ] (37b) 
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(A + 4>D)V + W = 2B"1JAT (37c) 

-4 /V + B " 1 W = § (37d) 

(A + 0>D)V + <DW = (Tcoi 2/2+2/T)J (37e) 

-4 /V + B - 1 W = - 2 W B - 1 0 ) i 2 J (37f) 

Eq.(37c,d) can produce an efficient circuit realisation and Eq.(37a,b) and (37e,f) have 

same topologies which have 2(N -1) more switches and N more capacitors. 

The UL and IA decompositions are recommended for all cases of canonic SC filter 

design, since they minimise the number of the input branches significantly and generally 

produce efficient circuit configurations. 

A typical 8th-order bandpass filter which satisfies the specification of a speech processing 

channel is designed by canonical techniques using the Left-UL decomposition. The 

simulated circuit response is shown in Fig.4 and closely agrees with the approximation. 

The design statistics for different circuit designs is given in Table I, and the sensitivity 

comparison of a ladder-based design and a cascade based design is given in Fig.5. The 

lower curve is the sensitivity characteristics of Left-UL realisation and the upper curve is 

the sensitivity characteristics of Sedra's[12] biquad cascade realisation. The index of 

multiparameter sensitivity is defined as 

S(co) = 8 . 6 8 6 ^ 

2-, 1/2 
aiH(co)| 

|H(CO)| a C i 

/100.0 

where Q is an individual circuit capacitance. 

Left-
UL 

Left-IA Right-
UL 

Right-IB E-F 

Type[13] 

Sedra 

No. Opamps 8 8 8 8 8 8 

No. C 32 32 32 32 28 28 

No. SW 34 34 38 38 34 40 

Total C 340.76 319.87 355.61 409.20 424.72 392.54 

C Spread 57.57 54.31 56.15 53.97 77.26 72.93 

Table I. Statistics of 8th-order SC bandpass filter realisation 
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3.3) Canonical Ladder Simulation by Transconductor-Capacitor Circuits 

a)TC Topological Decomposition 

The design equations for a canonical topological decomposition are 

CV = -s-1[AgW + GV] (38a) 
W = (sg)" 1 [DA T V-JA" 1 ] (38b) 

CV = s-1 [sj - AgW - GV] (38c) 
W = (sg^DATV (38d) 

CV = s" 1 [sj - AgW - GV] (38e) 
W = (sg)"1[DATv-JA-lcoi2] (38f) 

The validity of these equations is dependent upon the matrix A being square and having an 
inverse, which is not usually the case. Even when A is square-invertable, the 
implementation of s '^A'lj in Eq.(38b) and s'^A^coi^J in Eq.(38f) would introduce a 
extra N (dimension of A matrix) transconductors with different transconductance values, 
and this destroys the main advantage of a ladder-based transconductor-capacitor filter. 
However, Eq.(38c,d) will always yield an efficient circuit structure no matter what form 
A matrix assumes. 

b) TC Right Inverse Decomposition 

The canonical realisations are written as 

CV = -s-l(GV + gW) (39a) 
r - 1 W = ( sg ) - l (V-r - l j ) (39b) 

CV = J - s - ^ G V + gW) (39c) 
r - l W = (sg)"1V (39d) 

C V = J - s " 1 ( G V + gW) (39e) 
r - lw = (sg)- 1 (V-coi 2 r" 1 J) (39f) 
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The terms (sg)~lr~lj in Eq.(39b) and (sg)~l(0i2r - l j in Eq.(39f) can only be realised 
by N extra transconductors with different transconductance values. However for 
Eq.(39c,d), an efficient circuit realisation can be obtained. 

c)TC Left Inverse Decomposition 

Only the canonical realisation for Eq.(23) is given here, the other variations on the TC Left 
Inverse Decomposition method give exactly the same results. The canonical equations can 
be written as 

CV = s"1gW (40a) 

g 2p- iw = s-igr-ij - gr-iGv - s-^v (40b) 

CV = s" 1gW+J (40c) 

g2p-1W = - g r - 1 G V - s"1 gV (40d) 

CV = s'1gW + J (40e) 

g 2 r - l W = s - lgr- l (0 i 2 J - gr-iGV - s-!gV (40f) 

The terms s ' lgr - J in Eq.(40b) and s"lgr -l(Oi2j in Eq.(40f) can only be realised by N 
extra transconductors with different transconductance values. Only Eq.(40c,d) can be 
realised by canonical form. 

As an example, we consider the design of an 8th-order Butterworth bandpass 
transconductor-C filter. The transfer function for this filter is of the form 

^ 
H ( S ) " (s 2 +pf)(s 2 + p^(s 2 +pi)(s 2 + pj) 

Because the transfer function has even order denominator with even order numerator, a 
canonical prototype ladder cannot be realised. Actually, the ladder derived from the 
transfer function is shown in Fig.6, which has 5 nodes, so it requires fifth order matrices, 
which in turn would lead to a tenth order transconductor-capacitor filter as shown in Fig.7. 
If a canonical design approach is applied, the transfer function is changed to the form 

^ 
H ( S ) " (s 2 + p 2)(s 2 + pi)(s 2 + p5)(s 2+p5) 
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and a modified ladder is obtained as in Fig.8. This is now a four node network, and using 
any of the design equations (38c,d), (39c,d) or (40c,d), a canonical realisation can be 
implemented. Fig.9 shows the canonical realisation circuit structure of Eq(39c,d). 
Compared to the non-canonical realisation in Fig.7, two transconductors can be 
eliminated. 

3.4) Mixed Variable Representation Approach for Canonical Ladder-Based 
Transcondoctor-Capacitor FiEter Design 

The canonical filter design method above is called Transfer Function Modification 
Approach, in which we focus on finding a canonical ladder prototype, and then using 
matrix design method to obtain a canonical transconductor-capacitor filter. Because the 
limitation of equal transconductance in transconductor-capacitor filter design, a large 
number of designs cannot be realised in canonical form. To overcome the difficulty, an 
alternative canonical design approach called Mixed Variable Representation Approach is 
developed. Instead of finding a canonical ladder prototype, we try to find the best variable 
representation in order to get a canonical transconductor-capacitor design from a non-
canonical ladder prototype. Generally a non-canonical ladder prototype contains more 
nodes than a canonical ladder and this number also exceeds the number of poles being 
realised. Hence when a voltage variable representation is used the size of matrix is 
increased and this leads to more transconductors in a transconductor-capacitor filter 
realisation. It is also noticed that the extra nodes are usually introduced by series L C or LR 
branches. In a Mixed Variable Representation Approach, both voltage and current 
variables are selected in a non-canonical prototype ladder to form vector V, and a compact 
matrix form is obtained. Then the standard matrix design method is used to achieve a 
canonical transconductor-capacitor implementation. The application of this approach and 
the selection of the variables are very much dependent upon the structure of the non-
canonical ladder. To demonstrate the application of the approach, we redesign the 8th-order 
Butterworth filter using the Mixed Variable Representation Approach. Examining the 
circuit in Fig.6, we notice that there are five nodes in the prototype ladder, so using a nodal 
voltage representation would require fifth order matrices in matrix design method, which in 
turn would lead to a tenth order transconductor filter. Instead, we can construct the vector 
V from two nodal voltages (Vi and V3), and the currents through the two L C series 
branches (I2 and I4). We use voltage (VI2 and V14) proportional to the currents and the 
terminating resistance, in order to preserve dimensional consistency. It is not necessary to 
simulate the output voltage (V5) of the passive ladder explicitly, because all of I4 passes 
through the termination resistor and V14 can therefore be treated as the output voltage. For 
the mixed voltage-and-current representation of the eighth order Butterworth bandpass 
ladder the matrices are: 
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Substituting (43a,b,c,d,e) into the left-decomposition equations (23a,b) gives the 
transconductor-capacitor ladder shown in Fig. 10. Again a circuit realisation with eight 
transconductors is obtained, though fewer capacitors are now required. A SPICE 
simulation of the fully differential version is shown in Fig. 11. 

4. FILTER AND EQUALISER DESIGN COMPILER: X F I L T 

The field of filter automation is now fairly mature, however it is still a challenging area 
with the continuing development of VLSI technology. Most filter compilers developed 
today are normally devoted to only one design strategy and technology and are usually 
restricted to the design of cascade biquad or provide very limited ladder-based structures 
( often leapfrog ). These restrictions limit the designer's ability to combine and compare 
techniques and examine the benefits of different topologies. For these reasons, a new 
active filter and equaliser compiler called XFILT[14] has been developed to implement 
passive-RLC, active-RC, switched-capacitor and transconductor-capacitor filters and 
equalisers and incorporates a wide variety of filter structures proposed for ladder-based 
realisations together with more conventional biquad configurations. 

The X F I L T system structure is shown in Fig. 12. A graphical interface utilises standard 
Xll[15] and is provided both as a user friendly interface to the designer and as a system 
manager of all the software in XFILT. It offers a menu-driven interface for checking and 
facilitating the entry of design parameters. The specifications of the filter can be read in 
from menus or existing files. The menu-driven interface can prompt the user for the input 
needed and reject incorrect input. Graphical display is another characteristic of the 
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interface. The graphs of the approximation function and different circuit responses are 
given. A special feature of the XFILT graphical interface is that it provides a graphical 
editor, utilising this the user can specify/modify arbitrary, or classical magnitude and group 
delay templates with a mouse. 

A range of standard approximation functions, Butterworth, Chebyshev, Inverse-
Chebyshev, Elliptic, Bessel and Legendre are available. In the arbitrary magnitude design 
mode, the desired amplitude response of the filter is specified by a pair of piece-wise linear 
boundaries ( a template ) of amplitude against frequency. Approximation routine[7] will 
attempt to fit a response within the upper and lower boundary. The points where the 
approximation touches the upper boundary in the passband and - °° in the stopband are 
referred to as touch points. Manipulation of these touch points in an interactive manner 
facilitates great flexibility in design. For instance, high order touch points in the passband 
can ease group delay equalisation requirements and reduce sensitivity whereas in the 
stopband they can create deep, high order notches for single frequency rejection. A touch 
point editor allows the user to specify the sequence, type (fixed or free) and order of the 
touch points in each band of the characteristic. 

The filter circuit design falls into two structural categories: cascade biquad and passive 
ladder simulation. Ladder simulation requires a passive ladder prototype which can either 
be synthesised internally or read from an external file. There are three ladder prototype 
synthesis modes: expert for experienced designers whereby complete control is exercised 
over the classes and sequence of pole/zero removals; interactive in which only the sequence 
of removals is selected and automatic when no manual intervention is necessary. All 
ladder-based filter structures are derived by matrix decomposition methods given in 
Section 2. In the cascade biquad mode, a variety of designs are available, including type-
E, type-F and all-pass biquads. The structure of the software enables the addition of any 
required biquadratic sections, active-RC, SC and transconductor-C, in an easy manner. 

Analysis facilities for frequency response, group delay, and amplitude sensitivity are 
provided. The embedded general simulator is SCNAP4[16], though SPICE and 
SWITCAP can also be called. 

Because of circuit non-idealities such as finite amplifier gain-bandwidth and switch 
resistance (in SC circuits), the filter response may not correspond precisely with the 
approximation function. To improve the circuit designed, a template-correction based 
optimisation method has been developed. The method is completely general and is 
applicable to SC, active-RC, and transconductor-C filters. The software generates an error 
function based on circuit simulation results and approximation transfer function, this is 
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then used to modify the template. The software automatically produces a new 
approximation and circuit realisation. The main attraction of this approach is the low order 
optimisation space, which always corresponds to the order of the original filter. The 
process is quick and converges for realistic deviations due to practical circuit non-idealities. 

5. LADDER-BASED TRANSCQNDUCTQR-C FILTER AND EQUALISER 
DESIGN EXAMPLE 

For a lowpass video filter with specifications of passband edge frequency 1MHz, stopband 
edge frequency 1.887MHz, passband ripple 0.28dB and stopband attenuation 50.5dB, a 
5th-order elliptic ladder prototype will satisfy the requirements. Using the above matrix 
decomposition method, a fully differential transconductor-C circuit realisation is given in 
Fig.13, where all tranixonductors have the same value, and Fig.14 gives the SPICE 
simulation result of the circuit. The transconductance spread is 1 and the capacitance spread 
is 23.54. If a cascade of biquadratic stages is used, it is not possible to have equal valued 
transconductances, but the alternative equal valued capacitance realisation demands a 
transconductance spread of 7.3xl06! Fig. 15 shows the sensitivity comparison between a 
ladder-based realisation and a cascade biquad configuration, and the obvious advantage of 
ladder-based structure is clearly apparent. 

The filter group delay variation within the passband is l.l|0,s, whereas the original 
specifications require a maximum variation of 0.4|is. An initial 12th-order equaliser 
design, which reduces the group delay variation to 0.13 |is with an equal ripple behaviour, 
was considered. However with the help of XFILT compiler, the maximum group delay 
variation can still be satisfied by utilising a 6th-order equaliser, though the equal ripple 
behaviour no longer applies. The comparative sensitivity analysis for the ladder-based 
equaliser and a typical cascaded biquad equaliser is shown in Fig. 16; the ladder-based 
structure is again significantly better. A fully differential realisation of the 6th-order 
equaliser is given in Fig. 17. The filter and equaliser were fabricated on a 1 micron CMOS 
process, having double polysilicon and double metal and using a 5V power supply. 
Fig. 18 shows the overall amplitude response of the filter and equaliser, the measured 
results are typical ones from the range obtained . It will be noted from the circuit 
response, that there is a loss of attenuation in the stopband including the disappearance of 
the second notch, though the level of stopband attenuation remains within specification. 
This retention of performance is due to deliberately allowing an initial filter approximation 
with a very generous stopband attenuation to absorb process variations and inaccuracies, 
and deterioration due to noise, though the noise level in the passband is typically 
-128dBm. The passband response of the fabricated circuit shows some variation in ripple 
level and corner frequency. Detailed investigation of the equaliser amplitude response 
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shows an arbitrary rippling behaviour over the passband of up to l.ldB, whereas the 
computed amplitude response of the all-pass equaliser shows a completely flat 
characteristic over a wide frequency range. These variations in equaliser response can be 
directly attributed to the accuracy problems in realising the very wide spread in capacitance 
2120:1 (transconductance spread is 1). It was also noted that the dynamic range of the 
equaliser was considerably less than the filter. It is now possible to utilise various signal 
scaling techniques at different stages of transconductance-C ladder-based designs and it 
would be sensible to invoke these in any re-design. The group delay responses. Fig. 19, 
show very effective equalisation within the passband, the initial computed group delay 
variation of the filter is 1.02|as and the equalised value reduces to 0.395|J.s, the actual 
response of the combined circuit shows a variation of only 0.1|is which easily satisfies the 
initial specification. 

Use of X F I L T has enabled further improvements to the equaliser. Simply increasing the 
number of iterations in the group delay approximation stage improves the equal ripple 
nature of the response at no extra cost in circuit terms. A more significant improvement in 
silicon area can be achieved by utilising the arbitrary amplitude approximation facility for 
the filter. The use of a 4th order touch point near the band edge reduces the group delay 
variation of the filter to 0.72|is and thus lowers the equalisation requirements 
considerably. Fig.20(a) gives the passband response of the modified filter and Fig.20(b) 
shows the comparison of modified filter group delay and original filter group delay. A 4th-
order equaliser can now be used. There is a cost of about 4dB loss of attenuation in the 
stopband of the filter. 

6. CONCLUSION 

Efficient ladder-based active filters and equalisers for active-RC, SC, and transconductor-
capacitor are presented. The canonical realisations of these filters are studied. Several 
examples are given to demonstrate that the proposed canonical design method can be used 
to considerable advantage. The XFILT software development has been based on the ladder 
filter design methods given here, together with many cascade designs. A practical video 
filter and equaliser IC implementation example is presented and the test results are given. 
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Fig. 1(a) First order section using a conventional transconductor 
Fig. 1(b) First order section using a low impedance input transconductor 
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F I G U R E CAPTIONS 

Fig. 1(a) First order section using a conventional transconductor 

Fig. 1(b) First order section using a low impedance input transconductor 

Fig.2 Transconductor-capacitor ladder-based group delay equaliser structure 

Fig.3 6th-order Elliptic canonical active-RC lowpass filter response 

Fig.4 8th-order Elliptic canonical SC bandpass filter response 

Fig.5 Sensitivity comparison of SC ladder-based and cascade based filters 

Fig.6 8th-order Butterworth bandpass ladder prototype 

Fig.7 Transconductor-capacitor filter based on prototype in Fig.6 

Fig.8 Modified 8th-order Butterworth bandpass ladder prototype 

Fig.9 Transconductor-capacitor filter based on modified prototype 

Fig. 10 Transconductor-C filter designed by mixed variable representation approach 

Fig. 11 SPICE simulation of 8th-order Butterworth transconductor-C ladder filter 

Fig. 12 XFILT structure block diagram 

Fig. 13 Fully differential 5th-order transconductor-capacitor video filter circuit 

Fig. 14 SPICE simulation of transconductor-C video filter response 

Fig. 15 Passband sensitivity of video filters 

Fig. 16 Video equaliser sensitivity comparison 

Fig. 17 Fully differential 6th-order transconductor-C video equaliser circuit 

Fig. 18 Overall amplitude response of filter and equaliser 

Fig. 19 Filter and equaliser group delay responses 

Fig.20(a) Video filter passband response using a 4th order touch point 

Fig.20(b) 4th-order video equaliser group delay response 
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ABSTRACT 

In this paper, an accurate semi-symbolic analysis 
method based on polynomial interpolation techniques 
for large non-ideal switched linear networks (SC and 
SI) is presented. For the computation of frequency 
responses, the semi-symbolic method demonstrates 
significant improvements in speed over direct 
numerical methods and this increases with circuit size. 
It is shown that semi-symbolic techniques can be used 
in the computation of noise for circuits containing a 
limited number of clock waveform? but the 
performance rapidly deteriorates with network size. 
Examples demonstrate the comparative speed and 
accuracy performance over a range of circiuts. 

1. INTRODUCTION 

The symbolic analysis of linear analogue circuits has 
attracted the attention of many researchers over a 
considerable peroid of time. Many algorithms and 
techniques have been developed and from these 
determinant and flow graph methods appear to be 
favoured in terms of flexiblity and efficiency [1-15]. 
A l l approaches suffer from restrictions inherent to the 
problem, the escalation of computer time and memory 
requirements with increase in circuit size. Two typical 
solutions proposed are expression approximation! 16] 
and hierarchial decomposition[17],some improvements 
have resulted. However, despite all the effort, these 
methods still experience great difficulty with medium 
to large networks. Whilst attention has been focussed 
on continuous-time analogue circuits, some work has 
ben carried out on the symbolic analysis of ideal SC 
networks! 18] and only exploratory investigations have 
been reported into the semi-symbolic analysis of non-
ideal SC networks[19] and noise performance [20]. 

The only realistic scheme for large networks of any 
type is a semi-symbolic one, when polynomials in s or 
z or both, with purely numeric coefficients, are 
generated. It is well known that generation of 
polynomials by interpolation is a very efficient 
technique. However, the generation of polynomials in 
mixed variables (s,z) is really the basic requirement for 
the analysis of non-ideal switched networks (SC or SI). 

and this adds to the complexity of the interpolation 
problem. 

The main contribution of this paper is the generation of 
modified polynomials in a single variable z by 
interpolation, as required for analysis of large non-
ideal switched linear networks. I i is demonstrated that 
high accuracy can be manintained for large networks 
and the application to the computation of frequency 
responses is very attractive. The extension to noise 
computation in switched linear networks is considered. 

2. POLYNOMIAL INTERPOLATION METHOD 

A large non-ideal switched linear network can be 
described by a system of equations the in z domain [21] 

1 - p l " 
P 2 1 

• v , ( = ) -

V 2 ( z ) 

I W , ( z ) " 

Z W 2 ( z ) 

where ?/(=PkCk 

Ck is the capacitance matrix of the kth time-slot and p k 

is the extended state transition matrix. The r.h. side 
contains polynomial approximations to the excitation 
vectors and appropriate sampling weighting factors, the 
vector V contains node voltages and branch currents. 
Since the pk malices and components of the r.h. side 
vector can only be assembled by numerical techniques, 
closed form symbolic solutions for the system 
responses are impossible to obtain. However, a 
polynomial interpolation scheme provides a natural 
solution, this can be summarised as follows: 

for(i=0; i<P; i++) ( /* P is polynomial degree */ 
solve T(Zi)V = W; 
calculate D(Zi) = detT(Zi); 
N(z i ) = D ( z i ) V : 

1 
DFT (FFT) to generate the numerator polynomial: 
DFT(FFT)to generate the denominator polynomial: 
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For a system like (1). the denominator of the transfer 
function can be determined bv 

P , D(.-J.) = det(z (.I- E) where E = P M P w _ r 1 
For continuous-time systems, the above procedures are 
straightforward, in the switched network case some 
care has to be taken. This can demonstrated in a 
simple 2-phase clock system when: 

ja>o{ I -P , 
zl 

H,(z) 

H , ( 2 ) B~<-
(2) 

solving the matrix equation (2) gives 

H,(z)-

H 2 ( z ) 

B,e" 
P ,B 2 f J(0O2 

P 2P, 
B 2 e / M T ' + P 2 B , e ^ ' 

Z I - P 2 P 1 
The denominator polynomial is obtained from 

D(z) = de t ( z I -P 2 P, ) 
and the numerators are determined by 

f"< ( z )U(i"' ( z )] 
{N2(z)) \H2(Z)) 

The numerator and denominator polynomials are then 
generated by interpolation using a DFT(FFT). When 
the frequency response is evaluated from the resultant 
polynomials and compared with directly computed 
results, the error is quite considerable, even for small 
circuits. For a small SC treble tone control filter, the 
error reponse for one of the transfer functions is shown 
in Fig. 1, graph (a). The reason for this is that 

3 -s • r 12 

T — 1 — i — > — 1 — 1 — r 
10 20 30 40 

Frequency! kHz) 

Fig 1. Error of H2(o>) (a) direct interpolation, 
(b) modified interpolation 

fractional powers of z are intoduced by the time-slot 
weighting factors and if the polynomials are re-defined 
to account for this, very high orders result and low 
accuracy follows. There is a simple solution, again 
consider a 2-phase system and separately excite each 
time-slot: 

(3) 
I - P i " "H„(z) -

.H, , (z ) 0 

Then 

I 

- P : 

P. 

H 2 1 

H,,(z) 

H J : ( : ) 

H 2 , J 

L B : 

J<*>: 

(4) 

The error resulting from evaluation of H t interpolated 
polynomials is given in Fig . l . graph (b) and shows a 
great improvement in accuracy. Table 1 shows this 
technique applied to a wide range of SC circuits and 
several deductions can be made. Potentially all 
(M is the number of time slots) need to be interpolated, 
though some are zero in the majority of circuits and 
interpretive code makes most matrix arithmetic 
common. This approach effectively needs M solutions 
of equation (1) at each sample frequency, whereas a 
numerical simulator such as SCNAP4[21] needs one 
solution for each frequency point required. The 
DFT(FFT) process takes much less time than the 
computation of sampled frequency responses. Once 
all transfer functions have been interpolated, repetitive 
expression evaluation is more efficient than direct 
matrix solution, though for multirate circuits the 
efficiency gains decrease because of the increased 
number of transfer functions. The polynomial 
interpolation methods can preserve acuracy even in the 
analysis of quite large circuits. 

3. SYMBOLIC METHOD FOR NOISE 
EVALUATION 

By utilising transpose techniques, all transfer functions 
from each noise source to the output can be obtained by 
solving an adjoint system. The problem can be 
formulated as 

<t>; = d ' T ' W , 
Define the adjoint system as 

T'X° = - d 
The noise contribution of each noise source is then 
calculated by. 

Again, for a simple a 2-phase switched linear network, 
the adjoint system is 

I 
- p ; 

- p i 

zl 

X? dD, 

d£>2 

where D k are sin(x)/x factors. 
After two adjoint system solutions at one sampling 
frequency, noise transfer functions can be interpolated 
from: 

X l _ X l l X I 2 ' U ' 

V X 2 y *-21 

The total noise power spectral density at the output is 
calculated by superposition 

D-



S T(tt>) = 
P m 

I I <D, 
,=0 i =o' 

' S; (co — nco s ) 
10-

where Sj(£2) is the ith input noi^e source power 
spectral density and p is the number of bands to be 
considered. Two circuits were tested and the run time 
statistics are illustrated in Table I I . These show that for 
switched linear networks, the symbolic method for 
noise evaluation is less efficient than its numerical 
counterpart and an examination of the relative 
theoretical computational costs w i l l provide an 
explanation for this. 

4. THEORETICAL COSTS OF EXPRESSION 
EVALUATION AND M A T R I X SOLUTION 

Two basic definitions are utilised. A flop (floating 
point operation) is defined to be the time required for a 
particular computer system to execute the C code 

A + = C * D 
Similarly, a trop (trigonometric function operation) is 
the time required for execute another C code 

A + = B * c o s ( O D ) 
In SCNAP4, the last time-slot matrix solution takes 
about 5 N 2 flops, where N is the matrix dimension. The 
solutions of all other slots require another 2(M - 1)N 2 

flops, this makes a total of (2M + 3)N 2 flops per 
frequency point. Fig 2a shows clearly the (2M + 3)N 2 

dependence of matrix solution approach. For symbolic 
expression evaluation, the network has M 2 transfer 
functions to be calculated, it requires about 2PM 2 

trops where P is the polynomial degree. The P M 2 

dependence of the expression evaluation is shown in 
Fig. 2b 

10' 

10 1 . 

10 1 

10" 

10" 
10 z 10 3 10 4 10 3 1 0 ° 

(2M+3)xNxN 

Fig. 2a (2M + 3 ) N 2 dependence of 
matrix solution approach 

Let a = (2M + 3 ) N 2 , P = Y(2PM 2),where y is a 

computer system related constant. On a SUN-Sparc 
ELC station, one trop takes about nine times longer 
than one flop, therefore y = 9. a and (5 are two useful 

P x M x M 

Fig.2b PM 2 dependence of the 
expression evaluation 

theoretical factors when comparing the computational 
efficiency of numerical and symbolic approaches. 
Generally, a > P which means expression evaluation is 
faster than numerical matrix solution. For instance 
with the treble tone control filter, these two factors can 
be calculated as follows 

a = ( 2 x 2 + 3 ) x 8 2 =448 

P = 9 x ( 2 x 4 x 2 2 ) = 288 
The ratio a : P = 0.09:0.06 which are the values in the 
tf example entry in Table I . Since P increases 
quadratically with respect to the number of time-slots, 
expression evaluation for multirate circuits is expected 
to be less efficient than for 2-phase circuits. 

The total cost situation for noise analysis by expression 
evaluation becomes more significant. I f a circuit has 
m noise sources, the total cost is m/3. Now, in large 
non-ideal switched linear networks where there are 
many switches and other active devices, m is likely to 
be very large, hence the application of symbolic 
techniques to noise analysis is not very feasible. This 
trend can be seen in Table I I , where limited noise 
evaluation at only 100 frequency points compares 
poorly with full SCNAP4 noise analysis [22]. 

5. CONCLUSIONS 

An application of a semi-symbolic analysis method to 
large non-ideal switched-linear networks is presented. 
Accuracy and speed are compared with an equivalent 
numerical simulator. Noise calculation utilising 
symbolic expression evaluation approach is proposed, 
but it is shown to be of limited efficiency. 
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circuit circuit No.of polyn. sample DFT expr. cal. SCNAP4 peak err 
name size slots degree (sec)^ (sec) (100 pts) (100 pts) (dB) 
spft 112 24 20 241.14 16.42 23.61 89.06 le-8 
lplO 60 16 15 24.26 4.46 7.25 17.99 le-9 

nosl 1 48 4 15 1.17 0.33 0.59 3.47 le-5 
b P8 43 2 11 0.20 0.06 0.15 1.70 le-9 
bp6 36 2 10 0.15 0.04 0.06 1.18 le-6 
nos5 24 4 8 0.27 0.12 0.31 0.88 le-11 
bp2 15 2 5 0.05 0.03 0.05 0.23 le-10 

tf 8 2 4 0.03 0.01 0.06 0.09 le-14 
int 5 2 2 <0.01 0.01 0.04 0.07 le-14 

Table I . Performance of the polynomial interpolation method 

circuit circuit No.of polyn. sample DFT symbolic. SCNAP4 
name size slots degree (sec) (sec) (sec) (sec) 

tf 8 2 4 0.04 0.07 >1.03 0.09 
bp6 36 2 10 0.80 1.59 >7.74 2.11 

Table I I . Run lime statistics of symbolic method for noise evaluation. 
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ABSTRACT 

A systematic approach for ladder based switched-
current (SI) filter design is described. Low sensitivity 
and low parameter spread SI circuits realised by both 
existing and novel structures can be derived from the 
proposed approach The method can be applied to all the 
filter types and is well suited for computer aided 
implementation. Techniques to improve dynamic range 
and reduce circuit parameter spread are also presented. 
A lOth-order bandpass filter is used to demonstrate the 
utility of the approach. 

1. INTRODUCTION 

In recent years much research has been directed towards 
the development of switched-current filters. In this 
paper, we present a systematic approach for ladder SI 
filter design. The method can produce eight different 
realisation structures from one prototype ladder, all 
maintain the low sensitivity property, but demonstrate a 
range of maximum ratios of transistor aspect ratios and 
the sums . The designer can sleet the smallest maximum 
ratio of transistor aspect rauos to maintain accuracy in 
realisation and the minimum sum to obtain low power 
and small area realisations. The familiar leapfrog SI 
design method used by many filter designers is shown to 
be a special case within the general structures. The 
approach is an exact simulation of a prototype ladder and 
does not involve any approximation [1-2]. The bilinear 
transformation is adopted, but use of bilinear integrators 
is avoided, this leads to simplification of existing circuit 
structures [3-4]. The approach is totally general and 
applicable to any filter type (lowpass, bandpass, 
bandstop, highpass and allpass) without recourse to 
special techniques [5-6]. Moreover, the approach is very 
suitable for computer aided implementation and has 
already been implemented in a filter design system. 

2. M A T R I X BASED SWITCHED-CURRENT 
FILTER DESIGN 

A passive ladder can be represented by the matrix 
equation 

(sC + s~T + G ) V = J (i) 

where V and J are vectors representing the nodal 
voltages and input current source and G, C and V are 
matrices representing the contributions of conductors, 
capacitors and inductors respectively. To improve circuit 
realisation efficiency, alternating signs are introduced in 
V i.e, let V = [ V i -V2 V3 -V4 ] . This ensures that 
all the entries in (1) are positive. Since the operational 
blocks in SI circuits process currents, all prototype 
variables must be transformed to current variables using 
a scaling resistor (chosen to be 1 Q for convenience). 
The equation (1) then can be represented as 

(sC + s~'r + G)I = J (2) 
After bilinear transformation 

2 1 - z"1 

T l + z"' 
equation (2) becomes 

2 1-z"' T l + z" 
C + 

T l + z" 2 1 
r + G 

(3) 

I = (l + z-')J (3) 

Multiplying the system through by ( l+z~ ' ) / ( l -z" ' ) and 
some manipulation gives 

- A + y f + D I = (l + z- ')J 

where 

<t>= 

1-z -
1 

1 - z -
2 T 

A = - C + - r - G 
T 2 

(4) 

(4a) 

(4b) 

(4c) 

B = 2TT (4d) 
D = 2G (4e) 

The operators \|/ and <]> can now be realised by SI 
building blocks. However equation (4) is still a second 
order equation. To implement an SI filter, equation (4) 
needs to be decomposed into two first order equations by 
the introduction of a vector of intermediate variables. A 
typical second-generation SI memory cell based first 
order SI building block as shown in Fig.l is used in the 
implementation of each first order equation. It has a 
transfer function: 

mailto:sewell@elec.glasgow.ac.uk
mailto:luyue@elec.glasgow.ac.uk


(5) 

(a)Typical circuit (b) Block symbol 
Fig.l SI Filter First Order Building Block 

In practice, any enhanced type memory cell can be 
employed to form a first order building block, such as 
cascode, regulated cascode, folded cascode, or class AB 
memory cells. 

2 . 1 . L E F T M A T R I X D E C O M P O S I T I O N 
APPROACH 

Either the A or the B matrix can be factorised, leading to 
left and right decomposition respectively. Factorise the 
matrix A into 

A = A ] A r (6) 
The eqn.(4) can be expressed as 

AiX = -(\(fB+D)I+(l+z- 1)J (7a) 
A r I = <)>X (7b) 

For convenience in circuit realisation, let W=-X. and 
equation (7) becomes 

A|W = (\|/B+D)I-(l+z- 1)J ySa) 
A r I = -$W (8b) 

where W is the vector of intermediate variables. Using 
the building block in Fig. l , equations (8) can be realised 
by SI circuits. The one-to-one correspondence between 
the circuit elements and the matrix entries indicates that 
the efficiency of the SI implementation is related to the 
sparsity of the system matrices. To maintain the sparsily 
of the matrices, the well known LU, UL, or the direct 
methods which decompose matrix A into AI„ or I U A 
( I u is the identity matrix ) can be used. A standard 
representation of the circuit produced by left 
decomposition of a typical 6th-order matrix system is 
shown in Fig.2. 

ITT I E 
G3 

Fig.2 6th-order Left Decomposition SI Structure 

Four relevant left decompositions follow: 

Lcft-LU Decomposition 
Let A = LU (where L and U arc the lower and upper 
triangular matrices respectively) then Eq.(8) becomes 

LW = (v|/B+D)I-(l+z-i).I (9a) 
UI = -<t>W (9b) 

Left-UL Decomposition 
If A is decomposed as A = UL. the system design 
equations are 

UW = (i|)B+D)I-(l+z-').l (10a) 
LI=-<)>W (10b) 

Left-IA Decomposition 
For the case A = I U A , the design equations are 

W = (\)/B+D)I-(l+z- 1)J (Ha) 
A I = -<{>W ( l i b ) 

Left-Ai Decomposition 
If A = A I U . the following equations are obtained 

AW = (yB+D)I-( l+z" 1 )J (12a) 
I=-<|>W (12b) 

After matrix scaling, the input current J i in Fig.2 can be 
represented as 

J l=k( l+z- ' ) J i n (13) 

where J j n is prototype ladder input current and k is a 
constant. The schematic diagram for the realisation of J i 
is shown in Fig.3(a) and a suitable circuit realisation is 
given in Fig.3(b). 

M l 

I 
T, 
.St 

1 1 

T, T l J 
1 H 1 

(a) (b) 
Fig.3 Left Decomposition Input Factor SI Realisation 

2.2. R I G H T M A T R I X D E C O M P O S I T I O N 
APPROACHES 

Matrix B can also be factorised as 
B = B i B r (14) 

which leads to a group of right matrix decomposition 
methods. The following pair of equations is equivalent to 
Eq.(4). 

A I = -<t>(Bi\V+DI)+J( 1+r 1 ) / (1 -z- 1) (15a) 
W = \|/Brl (15b) 

From equations (15a) and (15b). a typical 6th-order 
system realisation structure can be obtained as shown in 
Fig.4. 
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Fig.5 6th-order Right Decomposition SI Structure 

Four right decompositi ns follow: 

Righl-LU Decomposition 
If B is decomposed as B=LU, the design equations are 

A I = -((((LW+DD+JO+z-'yO-z-1) (16a) 
W = y U (16b) 

For the lowpass case, the Right-LU Decomposition 
results in identical circuit structures to those derived by 
a leapfrog approach. 

Right-UL Decomposition 
Let B=UL, the system design equal;ons become 

A I = -0(UW+DI)+J( 1 +z- 1)/(1 -z- 1) (17a) 
W = \yL (17b) 

Right-IB Decomposition 
If B=IB, the system design equations are 

A I = -<)>(BW+DI)+J( 1 +z"1)/(1 -r1) (18a) 
W = \)/I (18b) 

Right-Bl Decomposition 
For B=BI . the following design equations are obtained 

A I = -<t>(IW+DI)+J( 1+z"1)/(1-z-1) (19a) 
W = y B (19b) 

The input current J1 in Fig.5 is 

J1 = J , 
l + z~ 
1-z" 

(20) 

This can be realised by any bilinear SI integrator. Fig.5 
is (he realisation structure based on the basic building 
block in Fig. 1. 

3. CIRCUIT SCALING FOR SI FILTERS 

Two kinds of scaling are involved in the mairix design 
approach, these are maximum dynamic range scaling and 
minimum transistor ratio scaling. Scaling within a 
general mairix system is very straightforward, for !ef! 
and right decomposition methods, the equation 

MX = J (23) 

can be utilised. 

Fig.5 Right Decomposition Input Factor SI Realisation 

In the dynamic range scaling phase, a frequency sweep 
analysis of the Filter passband is performed, to determine 
the maximum signal levels of the internal currents. 
Scaling can be done by multiplying column j of M by the 
maximum value of the variable X j for all variables in X. 
This is equivalent to creating a new variable X j /X j m ax -
where Xjmax 

is the maximum value attained by Xj . 
The ratio of maximum to minimum element value in M 
determines the transistor aspect ratios in SI circuit. For 
each row of equation in (21), a minimum entry can be 
found. By dividing each entry in the same row by the 
smallest entry, a scaled equation is obtained. The 
transistor aspect ratio can be reduced as long as the 
maximum and minimum elements are not within the 
same row of equations. 

4. DESIGN EXAMPLE 

The design method for ladder SI filter has already been 
implemented in XFILT[7]. An example of lOth-order 
bandpass filter is given here to show the utility of the 
approach. The filter has 1.5dB passband ripple with 
passband extending from 800kHz to 1.2MHz, 50dB 
stopband attenuation and a sampling frequency of 
10MHz. The matrix entries translate directly to ratios 
of transistor width/length ratios (elsewhere called circuit 
coefficient values or simply g m ratios). Comparative 
design results are shown in Table I , where the Left-UL 
is seen to be the most efficient realisation. By trying the 
all design methods, we can achieve, about 39.04% 
reduction in g m spread and 38.73% reduction in g m 

sum. The simulated Left-UL circuit response is shown 
in Fig.6 and Fig.7 shows the circuit schematic with the 
biasing circuits omitted. To compare the sensitivity 
performance, the total multiparameter sensitivity 
simulation over all gms has been carried out. The 
sensitivity simulation results of a comparative biquad 
realisation, having a maximum g m spread of 63.78, are 
also presented in Fig.8. It is clear that the ladder based 
design demonstrates lower passband sensitivity, 
especially in the vicinity of the corner frequencies. 



Inlegs SWs g m Spread gmSum 
813.04 Left-LU 10 34 16.32 
gmSum 
813.04 

Left-UL 10 34 14.55 727.02 
Left-IA 10 34 21.93 1038.44 
Left-AI 10 34 18.83 909.01 
Right-LU 12 36 16.11 830.77 
Right-UL 12 36 18.00 923.38 
Right-IB 12 36 23.87 1186.68 
Right-BI 12 36 16.11 836.49 

Table I . Comparative design results for lOth-order 
bandpass SI filters 

5. CONCLUSION 

A new approach to realise exact ladder based SI filters 
has been presented. The bilinear transformation is used 
in the design procedures. Eight different SI ladder based 
structures can be obtained from one prototype ladder. 
Therefore it provides SI filter designers with a choice of 
circuit realisations based on different requirements such 
as power, area, maximum transistor aspect ratios, 
sensitivity or noise performance. Techniques to improve 
dynamic range and reduce circuit parameter spread are 
also presented. The proposed approach is well suited for 
a computer implementation and is already incorporated 
into the XFILT filter design system. 
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A B S T R A C T 

Strategies and algorithms for multirate SC and SI filter 
design are presented in this paper. By using analogue 
multirate signal processing techniques, much more 
efficient SI or SC circuit realisations can be obtained. 
The paper shows how multirate systems can be 
synthesized within the filler design system XFILT. 

1. I N T R O D U C T I O N 

Analogue multirate signal processing techniques have 
developed in order to address some of the problems 
encountered in the progress towards sin^e chip 
realisation of communication front-end systems and the 
extension to high frequency applications. The main aim 
of multirate SC systems is to relax the specifications 
of the anti-aliasing filters and the speed of some 
amplifiers, and also reduce the total capacitance and 
spread in narrow bandpass filters[l-3]. The interest in 
multirate SI systems is driven by similar arguments 
regarding containment of parameter spread and sum, and 
pre-filtering requirements. 

2. M U L T I R A T E S Y S T E M S T R U C T U R E 

interpolator. Fig.3. 

ViD 
AoU>aTuuiog SampM Data SmootAiDg 

FSlsr Filter 

Voul 

Fig.l An analogue sampled-data filter system 

The typical structure of an analogue sampled-data filter 
system, is illustrated in Fig.l . Traditionally only one 
clock frequency was employed in these systems. To 
improve system performance and reduce the cost, the 
sampled data filter can be a cascade of several sampled 
data filters using different sampling frequencies, as 
shown in Fig.2. Most popularly, the sampled data filter 

Via 
Aoti-iliaat 

Fiur 
SinMDiU 

Fttur! 
Signal [Mi 

RlWn 

Fig.2 Multirate System With Multistage Filters 

following the anti-aliasing filter becomes a decimaior 
and the final sampled data filter becomes an 

Sill iMDiti SnwtiiDg 

DmoSer Fttir lBtrpdtter Hhr 

V«jl 

Fig.3 Multirate System With a Decimator and Interpolator 

To obtain much further reductions of the area, 
component spread and speed requirements; a multistage, 
multirate decimator and interpolator structure was 
developed. Fig.4. This structure also yields considerable 
savings in power consumption^]. 

Fkr team I ! 
ispHDt 

Flkr 

Fig.4 Multirate System With Multistage Decimator 
and Interpolator 

Alternatively, another structure shown in Fig.5 can 
also be used to optimise the system performance. 

tapMMi 
rib lltr 

Fig.5 Another multirate system 

The decimators and interpolators have numerous 
implementations and the sampled data filter realisations 
divide into ladder-based and biquad configurations, each 
with a variety of circuit implementations in SC and SI. 
The scope for optimisation at the system level is quite 
apparent and the multirate extensions to X F I L T [5] 
attempt to address this. 

3. M U L T I R A T E S Y S T E M D E S I G N 
S T R A T E G I E S 

Various strategies for decomposing the design into 
multirate and multistage sections are known. An 
alternative scheme can be developed by consdering 
Fig.6 where a decimator implements a sampling rate 
decrease from M F S to F s and an interpolator 
implements a sampling rate increase from F s to L F S . 
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Fig.6 Multirate system design example 

The transfer function of any decimator or interpolator 
can be expressed as 

H ( - ) b 0 +b 1 z- '+b 2 z- 2 +. . .+b K z- K 

d / l ' l + a,z _ 1 +a 2 z~ 2 +.. .+a N z~ N (1) 

where the unit delay period corresponds to the high 
sampling period 1/MF S in decimator case or 1/LFs in 
the interpolator case. A well known modification of the 
original z-transfer function (1) leads to [6]. 

H d / i ( z ) : 

N ( M - I ) 

(bo + ^z" 1 +b 2 z- 2 +. . .+b K z- K ) X c i z " ' 

l + d , z - 1 M

+ d , z - 2 M

+ . . . + d v z ' = K " ' 
(2) 

Hd/i(z) can be decomposed into two parts. Decompose 
Hd/i(z) as: 

Hd/i(z) = Hi(z)H2(z) (3) 
where 

N ( M - n 

H,(z )= (b 0 +b,z ' '+b 2 z~ z +. . .+b K z~ K ) J^z 
i=0 

(4) 
and 

H 2 ( z ) = 
U d 1 z - 1 M

+ d 2 z - 2 M

+ . . . + d N z - N M 

(5) 

H((z) is of FIR transfer function form with sampling 
frequency MF C and can be realised by a FIR decimator 
structure. H2(z) is of the IIR transfer function form 
with sampling frequency F s and can be realised by an 
HR decimator. 

The transfer function for the whole sampled data system 
is 

H(z) = H D ( Z ) H S D W H I ( Z ) (9) 

where H D ( Z ) represents the decimator transfer function. 
HSD(Z) f ° r middle filter transfer function and H](z) for 
the interpolator transfer function. For the decimator and 
interpolator, the transfer function can also be expressed 

as low sampling frequency and high sampling frequency 
pans. 

and 
Hl(z) = Hn0w(z)Hlhigh(z) (10) 

HD<z) = HDlow(z)HDhigh(z) (" ) 

Therefore the whole system transfer function can be 
expressed as 

H(z) = HDhigh(z)HDlow(z)HsD(z)Hllow(z)Hihigh(z) 
(12) 

Instead of following the traditional way by designing 
the decimator, SD filter and interpolator in straight 
cascade, a new design methodology is proposed 
consisting of two FIR filters with the higher sampling 
frequency and one IIR filter with the lower sampling 
frequency whose transfer function is 

HF(Z) = HDIow(z)Hsc(z)Hllow(z) (13) 

Correction of sin(x)/x effects is generally required in 
multirate designs and this is readily facilitated by 
XFILT within one section . 

4. M U L T i R A T E F I L T E R D E S I G N 
E X A M P L E 

4.1 SI BANDPASS FILTER DESIGN 

A simple example will illustrate the improvements that 
can be obtained in SI filter design. A video frequency 
bandpass filter with a passband from 4.25MHz to 
6.8MHz, stopbands from 0.1 Hz to 3.75MHz and from 
7.25MHz to 60MHz. passband ripple 2dB and stopband 
attenuation 30dB, can be realised by an 8th-order 
elliptic filter using a cascade of four SI biquads with a 
single sampling frequency of 72MHz. Two critical 
parameters in the circuit realisation of SI filters are gm 
spread (deriving from the spread of transistor aspect 
ratios) and g m sum. A small g m spread will maintain 
the accuracy of Filter response and a small g m sum will 
lead to a lower power consumption. The design results 
are given in Table 1. To reduce the spread of transistor 
aspect ratio and gm sum, a multirate multistage 
structure is adopted as shown in Fig.7, where the 
lowpass filter has a 72MHz sampling frequency and the 
highpass filter has a sampling frequency of 36MHz. 
The lowpass filter also has an anti-aliasing function up 
to 67MHz. The lowpass filter is realised by cascaded 
biquads and has a g m sum of 547.81 units and a g m 

sprvjd of 26.19. The highpass filter is a ladder derived 
structure and has a gm sum of 437.42 and a g m spread 
of 19.79. The overall multirate SI system has a gm 
sum of 985.23 and a g m spread of 26.19. The 
multirate design technique has reduced the g m sum by 
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40.0% and the g m spread by 86.4%. The overall 
frequency response is given in Fig.8. 

Vin Lowpass Higbpass 
--72MHz- 3€MHz 

Fig.7 Multirate bandpass SI filter system 

gmSpread gmSum 
Single Rate 192.78 1651.73 

Multirate 26.19 985.23 
Table I. SI Filter Design Results 
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Fig.8 SI multirate bandpass filter response 

4.2. NARROW BANDPASS BASEBAND FILTER DESIGN 

The design of a narrow band SC bandpass filter is often 
complicated by large capacitance spread. One solution 
is shown in Fig.9. The centre bandpass filter with low 
sampling frequency will reduce capacitance ratio but 
give rise to unwanted alias and image frequency-
translated components at low frequencies, which have 
to be attenuated using an anti-aliasing filter and an anti-
imaging filter, respectively, with increased selectivity. 

The design example [4] here is a bandpass filter with 
maximum ripple 0.28dB, desired midband frequency is 
20kHz, and corresponding -3dB bandwidth is 480Hz. It 
is required that a minimum rejection of 40dB of the 
alias signals up to 300kHz. Below 300kHz, the 
frequency bands of the input continuous-time spectrum 
thai relate to the desired system passband have to be 
attenuated, also by a minimum of 40dB. 

Input Decimator 
SC Filter 

fs:80kHl 

Interpolator 
M=4 

fs:320kHz 

SC Filter 

fs:80kHl 
L=4 

fs:.U0kHz 

Fig.9 Baseband bandpass filter system 

Table II shows the comparison of three different design 
results. Design 1 is a traditional design using a single 

rate clock of 320kHz. Design 2 obtains an optimum 
total capacitance and capacitance spread, with a 
reduction of 8dB of the signal handling capability of the 
SC filter[4] and Design 3 is without loss of signal 
handling capability[4]. Design 4 is a multirate system 
produced by XF1LT. here the SC bandpass filter is 
realised by a ladder structure and the decimator and 
interpolator are implemented by cascading F-dampcd 
biquads. From Table II it can be seen that multirate 
systems have significant advantages over a single rate 
system in capacitance spread. Design 4 also leads to 
64.86% and 39.19% reductions in capacitance spread 
and total capacitance respectively. Figs. 10(a) and (b) 
give the filter responses around midband and over a 
wide frequency band. The cosl of a multirate structure is 
the introduction of more opamps, switches and clock 
waveforms. 

Total C C 
Spread 

OPs No. 
C 

No. 
SW 

No. 
Clock 

WF 
Design 1 717.35 221.23 6 25 32 2 
Design 2 972.50 87.80 12 57 75 9 
Design 3 1002.3 151.10 12 57 75 9 
Design 4 436.36 77.73 14 57 72 4 

Table 2. Comparison of Baseband Bandpass Filter 
Design 
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Fig.10 Frequency response of baseband filter 

4.3 SINGLE-PATH FREQUENCY-TRANSLATED 
SWTTCHED-CAPACTTOR BANDPASS FILTER SYSTEM 

The single-path frequency-translated (SPFT) approach is 
a paricularly effective solution to the very narrow band 



filler problem. The basic design performance 
parameters for a typical 80Hz bandwidth filter at 20 
kHz are quoted from [1] and shown in Table 3. where 
Design 1 is a single rate realisation, and Design 2 a 
multirate implementation. The parameters of the 
scheme produced by XFTLT are given as Design J."and 
the overall system is shown in Fig.l 1. 

[npul 
Flltr DtdDBtcr lotopcietor 

Pltir Flltr M=12 SC Filer Pltir 

ft:U&Hi 16UU' 

Fig.l 1 SPFT Bandpass Filter System 

The first and last filters are simple 2nd order bandpass 
sections, the decimator and interpolator both have 
bandpass characteristics and the centre filter is ladder 
derived. Only 4 clock waveforms are used and the 
whole structure is strays-free. 
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Fig. 12 SPFT system response 

5 . C O N C L U S I O N 

In this paper, some strategies and algorithms for 
multirate SC and SJ_ filter design by XF1LT have been 
presented. Several design examples demonstrate the 
utility of the multirate X F I L T in producing improved 
solutions to difficult filter problems. 
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