1,118 research outputs found

    Algorithmic Applications of Baur-Strassen's Theorem: Shortest Cycles, Diameter and Matchings

    Full text link
    Consider a directed or an undirected graph with integral edge weights from the set [-W, W], that does not contain negative weight cycles. In this paper, we introduce a general framework for solving problems on such graphs using matrix multiplication. The framework is based on the usage of Baur-Strassen's theorem and of Strojohann's determinant algorithm. It allows us to give new and simple solutions to the following problems: * Finding Shortest Cycles -- We give a simple \tilde{O}(Wn^{\omega}) time algorithm for finding shortest cycles in undirected and directed graphs. For directed graphs (and undirected graphs with non-negative weights) this matches the time bounds obtained in 2011 by Roditty and Vassilevska-Williams. On the other hand, no algorithm working in \tilde{O}(Wn^{\omega}) time was previously known for undirected graphs with negative weights. Furthermore our algorithm for a given directed or undirected graph detects whether it contains a negative weight cycle within the same running time. * Computing Diameter and Radius -- We give a simple \tilde{O}(Wn^{\omega}) time algorithm for computing a diameter and radius of an undirected or directed graphs. To the best of our knowledge no algorithm with this running time was known for undirected graphs with negative weights. * Finding Minimum Weight Perfect Matchings -- We present an \tilde{O}(Wn^{\omega}) time algorithm for finding minimum weight perfect matchings in undirected graphs. This resolves an open problem posted by Sankowski in 2006, who presented such an algorithm but only in the case of bipartite graphs. In order to solve minimum weight perfect matching problem we develop a novel combinatorial interpretation of the dual solution which sheds new light on this problem. Such a combinatorial interpretation was not know previously, and is of independent interest.Comment: To appear in FOCS 201

    Graph matching with a dual-step EM algorithm

    Get PDF
    This paper describes a new approach to matching geometric structure in 2D point-sets. The novel feature is to unify the tasks of estimating transformation geometry and identifying point-correspondence matches. Unification is realized by constructing a mixture model over the bipartite graph representing the correspondence match and by affecting optimization using the EM algorithm. According to our EM framework, the probabilities of structural correspondence gate contributions to the expected likelihood function used to estimate maximum likelihood transformation parameters. These gating probabilities measure the consistency of the matched neighborhoods in the graphs. The recovery of transformational geometry and hard correspondence matches are interleaved and are realized by applying coupled update operations to the expected log-likelihood function. In this way, the two processes bootstrap one another. This provides a means of rejecting structural outliers. We evaluate the technique on two real-world problems. The first involves the matching of different perspective views of 3.5-inch floppy discs. The second example is furnished by the matching of a digital map against aerial images that are subject to severe barrel distortion due to a line-scan sampling process. We complement these experiments with a sensitivity study based on synthetic data

    Structural graph matching using the EM algorithm and singular value decomposition

    Get PDF
    This paper describes an efficient algorithm for inexact graph matching. The method is purely structural, that is, it uses only the edge or connectivity structure of the graph and does not draw on node or edge attributes. We make two contributions: 1) commencing from a probability distribution for matching errors, we show how the problem of graph matching can be posed as maximum-likelihood estimation using the apparatus of the EM algorithm; and 2) we cast the recovery of correspondence matches between the graph nodes in a matrix framework. This allows one to efficiently recover correspondence matches using the singular value decomposition. We experiment with the method on both real-world and synthetic data. Here, we demonstrate that the method offers comparable performance to more computationally demanding method

    Space-Efficient Interior Point Method, with Applications to Linear Programming and Maximum Weight Bipartite Matching

    Get PDF

    kLog: A Language for Logical and Relational Learning with Kernels

    Full text link
    We introduce kLog, a novel approach to statistical relational learning. Unlike standard approaches, kLog does not represent a probability distribution directly. It is rather a language to perform kernel-based learning on expressive logical and relational representations. kLog allows users to specify learning problems declaratively. It builds on simple but powerful concepts: learning from interpretations, entity/relationship data modeling, logic programming, and deductive databases. Access by the kernel to the rich representation is mediated by a technique we call graphicalization: the relational representation is first transformed into a graph --- in particular, a grounded entity/relationship diagram. Subsequently, a choice of graph kernel defines the feature space. kLog supports mixed numerical and symbolic data, as well as background knowledge in the form of Prolog or Datalog programs as in inductive logic programming systems. The kLog framework can be applied to tackle the same range of tasks that has made statistical relational learning so popular, including classification, regression, multitask learning, and collective classification. We also report about empirical comparisons, showing that kLog can be either more accurate, or much faster at the same level of accuracy, than Tilde and Alchemy. kLog is GPLv3 licensed and is available at http://klog.dinfo.unifi.it along with tutorials
    • …
    corecore