216 research outputs found

    Single-channel source separation using non-negative matrix factorization

    Get PDF

    Non-negative mixtures

    Get PDF
    This is the author's accepted pre-print of the article, first published as M. D. Plumbley, A. Cichocki and R. Bro. Non-negative mixtures. In P. Comon and C. Jutten (Ed), Handbook of Blind Source Separation: Independent Component Analysis and Applications. Chapter 13, pp. 515-547. Academic Press, Feb 2010. ISBN 978-0-12-374726-6 DOI: 10.1016/B978-0-12-374726-6.00018-7file: Proof:p\PlumbleyCichockiBro10-non-negative.pdf:PDF owner: markp timestamp: 2011.04.26file: Proof:p\PlumbleyCichockiBro10-non-negative.pdf:PDF owner: markp timestamp: 2011.04.2

    A novel update rule of HALS algorithm for nonnegative matrix factorization and Zangwill’s global convergence

    Get PDF
    Nonnegative Matrix Factorization (NMF) has attracted a great deal of attention as an effective technique for dimensionality reduction of large-scale nonnegative data. Given a nonnegative matrix, NMF aims to obtain two low-rank nonnegative factor matrices by solving a constrained optimization problem. The Hierarchical Alternating Least Squares (HALS) algorithm is a well-known and widely-used iterative method for solving such optimization problems. However, the original update rule used in the HALS algorithm is not well defined. In this paper, we propose a novel well-defined update rule of the HALS algorithm, and prove its global convergence in the sense of Zangwill. Unlike conventional globally-convergent update rules, the proposed one allows variables to take the value of zero and hence can obtain sparse factor matrices. We also present two stopping conditions that guarantee the finite termination of the HALS algorithm. The practical usefulness of the proposed update rule is shown through experiments using real-world datasets

    Non-negative Matrix factorization:Theory and Methods

    Get PDF

    Advances in independent component analysis and nonnegative matrix factorization

    Get PDF
    A fundamental problem in machine learning research, as well as in many other disciplines, is finding a suitable representation of multivariate data, i.e. random vectors. For reasons of computational and conceptual simplicity, the representation is often sought as a linear transformation of the original data. In other words, each component of the representation is a linear combination of the original variables. Well-known linear transformation methods include principal component analysis (PCA), factor analysis, and projection pursuit. In this thesis, we consider two popular and widely used techniques: independent component analysis (ICA) and nonnegative matrix factorization (NMF). ICA is a statistical method in which the goal is to find a linear representation of nongaussian data so that the components are statistically independent, or as independent as possible. Such a representation seems to capture the essential structure of the data in many applications, including feature extraction and signal separation. Starting from ICA, several methods of estimating the latent structure in different problem settings are derived and presented in this thesis. FastICA as one of most efficient and popular ICA algorithms has been reviewed and discussed. Its local and global convergence and statistical behavior have been further studied. A nonnegative FastICA algorithm is also given in this thesis. Nonnegative matrix factorization is a recently developed technique for finding parts-based, linear representations of non-negative data. It is a method for dimensionality reduction that respects the nonnegativity of the input data while constructing a low-dimensional approximation. The non-negativity constraints make the representation purely additive (allowing no subtractions), in contrast to many other linear representations such as principal component analysis and independent component analysis. A literature survey of Nonnegative matrix factorization is given in this thesis, and a novel method called Projective Nonnegative matrix factorization (P-NMF) and its applications are provided

    Faktorizacija matrik nizkega ranga pri učenju z večjedrnimi metodami

    Full text link
    The increased rate of data collection, storage, and availability results in a corresponding interest for data analyses and predictive models based on simultaneous inclusion of multiple data sources. This tendency is ubiquitous in practical applications of machine learning, including recommender systems, social network analysis, finance and computational biology. The heterogeneity and size of the typical datasets calls for simultaneous dimensionality reduction and inference from multiple data sources in a single model. Matrix factorization and multiple kernel learning models are two general approaches that satisfy this goal. This work focuses on two specific goals, namely i) finding interpretable, non-overlapping (orthogonal) data representations through matrix factorization and ii) regression with multiple kernels through the low-rank approximation of the corresponding kernel matrices, providing non-linear outputs and interpretation of kernel selection. The motivation for the models and algorithms designed in this work stems from RNA biology and the rich complexity of protein-RNA interactions. Although the regulation of RNA fate happens at many levels - bringing in various possible data views - we show how different questions can be answered directly through constraints in the model design. We have developed an integrative orthogonality nonnegative matrix factorization (iONMF) to integrate multiple data sources and discover non-overlapping, class-specific RNA binding patterns of varying strengths. We show that the integration of multiple data sources improves the predictive accuracy of retrieval of RNA binding sites and report on a number of inferred protein-specific patterns, consistent with experimentally determined properties. A principled way to extend the linear models to non-linear settings are kernel methods. Multiple kernel learning enables modelling with different data views, but are limited by the quadratic computation and storage complexity of the kernel matrix. Considerable savings in time and memory can be expected if kernel approximation and multiple kernel learning are performed simultaneously. We present the Mklaren algorithm, which achieves this goal via Incomplete Cholesky Decomposition, where the selection of basis functions is based on Least-angle regression, resulting in linear complexity both in the number of data points and kernels. Considerable savings in approximation rank are observed when compared to general kernel matrix decompositions and comparable to methods specialized to particular kernel function families. The principal advantages of Mklaren are independence of kernel function form, robust inducing point selection and the ability to use different kernels in different regions of both continuous and discrete input spaces, such as numeric vector spaces, strings or trees, providing a platform for bioinformatics. In summary, we design novel models and algorithms based on matrix factorization and kernel learning, combining regression, insights into the domain of interest by identifying relevant patterns, kernels and inducing points, while scaling to millions of data points and data views.V času pospešenega zbiranja, organiziranja in dostopnosti podatkov se pojavlja potreba po razvoju napovednih modelov na osnovi hkratnega učenja iz več podatkovnih virov. Konkretni primeri uporabe obsegajo področja strojnega učenja, priporočilnih sistemov, socialnih omrežij, financ in računske biologije. Heterogenost in velikost tipičnih podatkovnih zbirk vodi razvoj postopkov za hkratno zmanjšanje velikosti (zgoščevanje) in sklepanje iz več virov podatkov v skupnem modelu. Matrična faktorizacija in jedrne metode (ang. kernel methods) sta dve splošni orodji, ki omogočata dosego navedenega cilja. Pričujoče delo se osredotoča na naslednja specifična cilja: i) iskanje interpretabilnih, neprekrivajočih predstavitev vzorcev v podatkih s pomočjo ortogonalne matrične faktorizacije in ii) nadzorovano hkratno faktorizacijo več jedrnih matrik, ki omogoča modeliranje nelinearnih odzivov in interpretacijo pomembnosti različnih podatkovnih virov. Motivacija za razvoj modelov in algoritmov v pričujočem delu izhaja iz RNA biologije in bogate kompleksnosti interakcij med proteini in RNA molekulami v celici. Čeprav se regulacija RNA dogaja na več različnih nivojih - kar vodi v več podatkovnih virov/pogledov - lahko veliko lastnosti regulacije odkrijemo s pomočjo omejitev v fazi modeliranja. V delu predstavimo postopek hkratne matrične faktorizacije z omejitvijo, da se posamezni vzorci v podatkih ne prekrivajo med seboj - so neodvisni oz. ortogonalni. V praksi to pomeni, da lahko odkrijemo različne, neprekrivajoče načine regulacije RNA s strani različnih proteinov. Z vzključitvijo več podatkovnih virov izboljšamo napovedno točnost pri napovedovanju potencialnih vezavnih mest posameznega RNA-vezavnega proteina. Vzorci, odkriti iz podatkov so primerljivi z eksperimentalno določenimi lastnostmi proteinov in obsegajo kratka zaporedja nukleotidov na RNA, kooperativno vezavo z drugimi proteini, RNA strukturnimi lastnostmi ter funkcijsko anotacijo. Klasične metode matrične faktorizacije tipično temeljijo na linearnih modelih podatkov. Jedrne metode so eden od načinov za razširitev modelov matrične faktorizacije za modeliranje nelinearnih odzivov. Učenje z več jedri (ang. Multiple kernel learning) omogoča učenje iz več podatkovnih virov, a je omejeno s kvadratno računsko zahtevnostjo v odvisnosti od števila primerov v podatkih. To omejitev odpravimo z ustreznimi približki pri izračunu jedrnih matrik (ang. kernel matrix). V ta namen izboljšamo obstoječe metode na način, da hkrati izračunamo aproksimacijo jedrnih matrik ter njihovo linearno kombinacijo, ki modelira podan tarčni odziv. To dosežemo z metodo Mklaren (ang. Multiple kernel learning based on Least-angle regression), ki je sestavljena iz Nepopolnega razcepa Choleskega in Regresije najmanjših kotov (ang. Least-angle regression). Načrt algoritma vodi v linearno časovno in prostorsko odvisnost tako glede na število primerov v podatkih kot tudi glede na število jedrnih funkcij. Osnovne prednosti postopka so poleg računske odvisnosti tudi splošnost oz. neodvisnost od uporabljenih jedrnih funkcij. Tako lahko uporabimo različne, splošne jedrne funkcije za modeliranje različnih delov prostora vhodnih podatkov, ki so lahko zvezni ali diskretni, npr. vektorski prostori, prostori nizov znakov in drugih podatkovnih struktur, kar je prikladno za uporabo v bioinformatiki. V delu tako razvijemo algoritme na osnovi hkratne matrične faktorizacije in jedrnih metod, obravnavnamo modele linearne in nelinearne regresije ter interpretacije podatkovne domene - odkrijemo pomembna jedra in primere podatkov, pri čemer je metode mogoče poganjati na milijonih podatkovnih primerov in virov

    Multiway Array Decomposition Analysis of EEGs in Alzheimer’s Disease

    Get PDF
    Methods for the extraction of features from physiological datasets are growing needs as clinical investigations of Alzheimer’s disease (AD) in large and heterogeneous population increase. General tools allowing diagnostic regardless of recording sites, such as different hospitals, are essential and if combined to inexpensive non-invasive methods could critically improve mass screening of subjects with AD. In this study, we applied three state of the art multiway array decomposition (MAD) methods to extract features from electroencephalograms (EEGs) of AD patients obtained from multiple sites. In comparison to MAD, spectral-spatial average filter (SSFs) of control and AD subjects were used as well as a common blind source separation method, algorithm for multiple unknown signal extraction (AMUSE). We trained a feed-forward multilayer perceptron (MLP) to validate and optimize AD classification from two independent databases. Using a third EEG dataset, we demonstrated that features extracted from MAD outperformed features obtained from SSFs AMUSE in terms of root mean squared error (RMSE) and reaching up to 100% of accuracy in test condition. We propose that MAD maybe a useful tool to extract features for AD diagnosis offering great generalization across multi-site databases and opening doors to the discovery of new characterization of the disease

    Proximity Operators of Discrete Information Divergences

    Get PDF
    Information divergences allow one to assess how close two distributions are from each other. Among the large panel of available measures, a special attention has been paid to convex φ\varphi-divergences, such as Kullback-Leibler, Jeffreys-Kullback, Hellinger, Chi-Square, Renyi, and Iα_{\alpha} divergences. While φ\varphi-divergences have been extensively studied in convex analysis, their use in optimization problems often remains challenging. In this regard, one of the main shortcomings of existing methods is that the minimization of φ\varphi-divergences is usually performed with respect to one of their arguments, possibly within alternating optimization techniques. In this paper, we overcome this limitation by deriving new closed-form expressions for the proximity operator of such two-variable functions. This makes it possible to employ standard proximal methods for efficiently solving a wide range of convex optimization problems involving φ\varphi-divergences. In addition, we show that these proximity operators are useful to compute the epigraphical projection of several functions of practical interest. The proposed proximal tools are numerically validated in the context of optimal query execution within database management systems, where the problem of selectivity estimation plays a central role. Experiments are carried out on small to large scale scenarios
    corecore