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Chapter 1

Non-negative mixtures

M. D. Plumbley, A. Cichocki and R. Bro

1.1 Introduction

Many real-world unmixing problems involve inherent non-negativity constraints.
Most physical quantities are non-negative: lengths, weights, amounts of radi-
ation, and so on. For example, in the field of air quality, the amount of a
particulate from a given source in a particular sample must be non-negative;
and in musical audio signal processing, each musical note contributes a non-
negative amount to the signal power spectrum. This type of non-negativity
constraint also arises in, e.g. hyperspectral image analysis for remote sensing,
positron emission tomography (PET) image sequences in medical applications,
or semantic analysis of text documents.

Often we lose this non-negativity constraint when, for example, we subtract
the mean from the data, such as when we perform the usual pre-whitening
process for independent component analysis (ICA). However, we need to be
aware that doing this may lose us important information that could help find the
solution to our unmixing problem. Even where the non-negativity constraint
is not inherently part of the problem, analogies with biological information
processing systems suggest that this is an interesting direction to investigate,
since information in neural systems is typically communicated using spikes, and
the spike rate is a non-negative quantity.

In this chapter we discuss some algorithms for the use of non-negativity
constraints in unmixing problems, including positive matrix factorization (PMF)
[71], non-negative matrix factorization (NMF), and their combination with other
unmixing methods such as non-negative ICA and sparse non-negative matrix
factorization. The 2-D models can be naturally extended to multiway array
(tensor) decompositions, especially Non-negative Tensor Factorization (NTF)
and Non-negative Tucker Decomposition (NTD).
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Figure 1.1: Basic NMF model X ≈ AS

1.2 Non-negative Matrix Factorization

Suppose that our sequence of observation vectors xt, 1 ⩽ t ⩽ T is approximated
by a linear mixing model

xt ≈ Ast =
∑

n

ansnt

or in matrix notation

X ≈ AS = A VT =
∑

n

anv
T
n (1.1)

where X = [xpt] is a data matrix of observations xpt for the p-th source at the
t-th sample, A = [apn] = [a1,a2, . . . ,aN ] ∈ ℝ

P×N is a mixing matrix giving the
contribution of the n-th source to the p observation, and S = [snt] is a source
matrix giving the value for the n-th mixture at the t-th sample (Fig. 1.1) and
for convenience we use V = ST = [v1,v2, . . . ,vN] ∈ ℝ

T×N.
In this chapter, we are interested in the conditions where the sources S

and/or the mixing contributions A are non-negative. The problem of find-
ing A and S given only the observed mixtures X when both A and S and are
non-negative first analyzed by Leggett [59] under the name curve-resolution and
later by Paatero and Tapper [71] as the positive matrix factorization (PMF). Al-
though the method was commonly used in certain fields, it was later re-invented
and popularized by Lee and Seung as the non-negative matrix factorization
(NMF) [56]. In the ten years since the Lee and Seung paper appeared in Na-
ture, there have been hundreds of papers describing algorithms and applications
of NMF1.

In “plain” NMF we only assume non-negativity of A and S. Unlike blind
source separation methods based on independent component analysis (ICA) we
do not assume that the sources sn are independent, although we will introduce
other assumptions or constraints on A or S later. We notice that this symmetry
of assumptions leads to a symmetry in the factorization: for (1.1) we could just
as easily write

XT ≈ STAT (1.2)

1While the terms curve-resolution and PMF pre-date NMF, we will prefer NMF in this

chapter due to its widespread popular use in the source separation literature
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so the meaning of “source” and “mixture” are somewhat arbitrary.
The standard NMF model has been extended in various ways, including

Semi-NMF, Multi-layer NMF, Tri-NMF, Orthogonal NMF, Non-smooth NMF
and Convolutive NMF. We shall explore some of these extensions later (Section
1.3).

1.2.1 Simple gradient descent

Let us first develop a simple alternating gradient descent method to solve the
standard NMF problem (1.1) for A and S given the observations X. Consider
the familiar Euclidean distance cost function

JE = DE(X;AS) = 1
2∥X−AS∥2F = 1

2

∑

pt

(xpt − [AS]pt)
2 (1.3)

where [M]pt is the (p, t)-th element of the matrix M. For a simple gradient
descent step for S, we wish to update S according to

S← S− � ∂JE
∂S

(1.4)

where � is a small update factor and [∂JE/∂S]nt = ∂JE/∂snt, or as individual
terms

snt ← snt − �nt
∂JE
∂snt

(1.5)

where we now allow �nt to take on different values for each combination of (n, t).
In order to calculate the partial derivative, consider that our cost function

JE = 1
2∥X−AS∥2F = 1

2 trace((X−AS)T(X−AS)) (1.6)

obtains an infinitesimal change JE ← JE + ∂JE due to an infinitesimal change
to S,

S← S+ ∂S. (1.7)

Differentiating (1.6) w.r.t. this infinitesimal change ∂S = [∂snt] we get

∂JE = − trace((X−AS)TA∂S) (1.8)

= − trace((ATX−ATAS)T∂S) (1.9)

= −
∑

nt

[ATX−ATAS]nt∂snt (1.10)

and hence

∂JE
∂snt

= −[ATX−ATAS]nt = −([ATX]nt − [ATAS]nt). (1.11)

Substituting (1.11) into (1.5) we get

snt ← snt + �nt([A
TX]nt − [ATAS]nt) (1.12)
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or gradient update step for snt = [S]nt. Due to the symmetry between S and
A, a similar procedure will derive

apn ← apn + �pn([XST]pn − [ASST]pn) (1.13)

as the gradient update step for apn = [A]pn. A simple gradient update algorithm
would therefore be to alternate between applications of (1.12) and (1.13) until
convergence, while maintaining the non-negativity of the elements apn and snt,
i.e. we would actually apply

snt ← [snt + �nt([A
TX]nt − [ATAS]nt)]+ (1.14)

where [s]+ = max(0, s) is the rectification function, and similarly for apn.

1.2.2 Multiplicative updates

While gradient descent is a simple procedure, convergence can be slow, and
the convergence can be sensitive to the step size. In an attempt to overcome
this, Lee and Seung [57] applied multiplicative update rules, which have proved
particularly popular in NMF applications since then.

To construct a multiplicative update rule for snt, we can choose �nt such that
the first and third terms on the RHS of (1.12) cancel, i.e. snt = �nt[A

TAS]nt
or �nt = snt/[A

TAS]nt. Substituting this back into (1.12) we get

snt ← snt
[ATX]nt
[ATAS]nt

(1.15)

which is now in the form of a multiplicative update to snt. Repeating the process
for apn we get the update rule pair

apn ← apn
[XST]pn
[ASST]pn

snt ← snt
[ATX]nt
[ATAS]nt

. (1.16)

An alternative pair of update rules can be derived by starting from the
(generalized) Kullback-Leibler divergence,

JKL = DKL(X;AS) =
∑

pt

(
xpt log

xpt
[AS]pt

− xpt + [AS]pt

)
(1.17)

which reduces to the usual KL divergence between probability distributions
when

∑
pt xpt =

∑
pt[AS]pt = 1. Repeating the derivations above for this

(1.17) we obtain the gradient descent update rules

apn ←
[
apn + �pn(

∑

t

snt xpt/[AS]pt −
∑

t

snt)

]

+

(1.18)

snt ←
[
snt + �nt(

∑

p

apn xpt/[AS]pt −
∑

p

apn)

]

+

(1.19)
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and the corresponding multiplicative update rules

apn ← apn

∑
t snt xpt/[AS]pt∑

t snt
snt ← snt

∑
p apn xpt/[AS]pt∑

p apn
. (1.20)

(In practice, a small positive � is added to the denominator of each of these
updates in order to avoid divide-by-zero problems.)

In fact we can obtain even simpler update equations if we introduce a sum-
to-1 constraint on the columns of A

�n ≜
∑

p

apn = 1. (1.21)

We can always obtain this from any factorization AS by mapping A′ ← AΛ,
S′ ← SΛ−1 where Λ = Diag(�1, . . . , �N ) is the N ×N diagonal matrix with the
sums of the columns of A as its diagonal entries.

We can impose this constraint after (1.20) with a further update step

apn ←
apn∑
p apn

(1.22)

which in turn makes the division by
∑

t snt in (1.20) redundant, since it will
appear inside both the numerator and denominator of (1.22). So, using this
together with the constraint

∑
p apn = 1 in the right hand equation in (1.20),

we get the simpler update equations

apn ← apn
∑

t

snt(xpt/[AS]pt)

apn ←
apn∑
p apn

snt ← snt
∑

p

apn(xpt/[AS]pt)

(1.23)

which is the algorithm presented in [56].
These multiplicative update rules have proved to be attractive since they

are simple, do not need the selection of an update parameter �, and their mul-
tiplicative nature and non-negative terms on the RHS ensure that the elements
cannot become negative. They do also have some numerical issues, including
that it is possible for the denominators to become zero, so practical algorithms
often add a small offset term to prevent divide-by-zero errors [2]. There are also
now a number of alternative algorithms available which are more efficient, and
we shall consider some of these later.

1.2.3 Alternating Least Squares (ALS)

Rather than using a gradient descent direction to reduce the Euclidean cost
function JE in (1.3), we can use a Newton-like method to find alternately the S

and A that directly minimizes JE.
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Let us first consider the update to S for a fixed A. Writing the derivative
in (1.11) in matrix form we get

∂JE
∂S

= −(ATX−ATAS) (1.24)

which must be zero at the minimum, i.e. the equation

(ATA)S = ATX (1.25)

must hold at the S that minimizes JE. We can therefore solve (1.25) for S,
either using S = (ATA)−1ATX, or through more efficient linear equation solver
methods such as the Matlab function linsolve. Similarly for A we minimize
JE by solving (SST)AT = SXT for A.

Now these least squared solutions do not themselves enforce the non-
negativity of S and A. The simplest way to do this is to project the resulting
optimal values into the positive orthant, producing the resulting sequence of
steps:

S← [(ATA)−1ATX]+ (1.26)

A← [XST(SST)−1]+ (1.27)

where [M]+ sets all negative values of the matrix to zero. While the removal
of the negative values by projection onto the positive orthant means that there
are no theoretical guarantees on its performance [49], this procedure has been
reported to perform well in practice [91, 2].

Rather than using ad hoc truncation of least squares solutions it is also
possible to use the NNLS (non-negativity constrained least squares) algorithm
of Hanson and Lawson [32]. This is an active-set algorithm which in a finite
number of steps will give the least squares solution subject to the non-negativity
constraints. In the context of the ALS algorithm, the original algorithm can be
speeded up substantially by using the current active set as a starting point. In
practice, the active set does not change substantially during iterations, so the
cost of using the NNLS algorithm in this way is typically less than unconstrained
least squares fitting. Further speed-up is possible by exploiting the structure of
the ALS updates [7].

Recently algorithms have been introduced to reduce the computational
complexity of these ALS algorithms by performing block-wise or separate
row/column updates instead of updating the whole matrices of the whole factor
matrices A and S each step [15, 16, 21]. We will return to these large-scale
NMF algorithms in Section 1.4.3.

1.3 Extensions and Modifications of NMF

The basic NMF method that we have introduced in the previous section has
been modified in many different ways, either through the introduction of costs
and/or penalties on the factors, inclusion of additional structure, or extension
to multi-factor and tensor factorization.
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1.3.1 Constraints and Penalties

It is often useful to be able to modify the standard NMF method by imposing
certain constraints or penalties to favour particular types of solutions. For
example, in (1.21) we have already seen that Lee and Sung [56] included sum-
to-1 constraint on the columns an of A

∑

p

apn = 1

as an option as part of their method, to remove the scaling redundancy between
columns an of A and the rows of S. Since all the elements apn are non-negative,
apn ⩾ 0, we notice also that

∑
p apn =

∑
p ∣apn∣ ≡ ∥an∥1, so this also imposes a

unit ℓ1 norm on each of the columns of A.

1.3.1.1 Sparseness

Hoyer [42] introduced a modification to the NMF method to include a sparseness
penalty on the elements of S, which he called non-negative sparse coding. He
modified the Euclidean cost function (1.3) to include an additional penalty term:

DESS(X;AS) = 1
2∥X−AS∥2F + �

∑

nt

snt (1.28)

for some weight � ⩾ 0. Hoyer also required a unit ℓ1 norm on the columns of
A, ∥an∥1 = 1.

From a probabilistic perspective, Hoyer and Hyvärinen [44] pointed out that
(1.28) is equivalent to a maximum log-likelihood approach where we assume
that the noise E = X −AS has a normal distribution, while the sources have
an exponential distribution, p(snt) ∝ exp(−snt).

Hoyer showed that this new cost function was nonincreasing under the S

update rule

snt ← snt
[ATX]nt

[ATAS]nt + �
(1.29)

which is a very simple modification of the original Lee-Sung multiplicative up-
date rule (1.15). A similar rule was not available for the update to A, so he
instead suggested a projected gradient method

apn ← [apn − �([ASST]pn − [XST]pn)]+

apn ← apn/∥an∥2
(1.30)

so that the complete algorithm is to repeat (1.30) and (1.29) until convergence.
Hoyer and Hyvärinen [44] demonstrated that NMF with this sparsity penalty

can lead to learning of higher-level contour coding from complex cell outputs
[44]. Sparsity constraints are also useful for text mining applications [74].

As an alternative way to include sparseness constraints in the NMF method,
Hoyer [43] also introduced the idea of maintaining a fixed level of sparseness for
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the columns of A and rows of S, where this is defined as

sparseness(u) =

√
N − ∥u∥1/∥u∥2√

N − 1
(1.31)

where N is the number of elements of the vector u. This measure of sparse-
ness (1.31) is defined so that a vector uS with a single non-zero element has
sparseness(uS) = 1, and a vector uNS with all N components equal (disregard-
ing sign changes) has sparseness(uNS) = 0.

The idea of the method is to iteratively update A and S while maintaining
fixed levels of sparseness, specifically sparseness(a) = SA for the columns of
A, and sparseness(s) = SS for the rows of S. (An additional unity ℓ1 norm
constraint on the rows of S, ∥sn∥2 = 1, is used to avoid scaling ambiguities.)

Updating with these sparseness constraints is achieved with a sequence of
projected gradient updates

an ← PA [an − �A([ASST]∙n − [XST]∙n)] (1.32)

sn ← PS [sn − �S([ATAS]n∙ − [ATX]n∙)] (1.33)

where [M]∙n is the n-th column vector of M, [M]n∙ is the n-th row vector
of M, and PA [⋅] and PS [⋅] are special projection operators for columns of A
and rows of S respectively which impose the required level of sparseness. The
projection operator PA [a] projects the column vector a so that it is (a) non-
negative, (b) has the same ℓ1 norm ∥a∥2, and (c) has the required sparseness
level, sparseness(a) = SA. Similarly, the projection operator PS [s] projects
the row vector s so that it is (a) non-negative, (b) has unit ℓ1 norm ∥s∥2 = 1,
and (c) has the required sparseness level, sparseness(s) = SS. These projection
operators are implemented by an iterative algorithm which solves this joint
constraint problem: for details see [43].

Hoyer demonstrated that this method was able to give parts-based repre-
sentations of image data, even when the images were not so well aligned, and
where the original NMF algorithm would give a global representation [43].

1.3.1.2 “Smoothness”

Another common penalty term is so-called “smoothness” constraint, obtained
by penalizing the (squared) Frobenius norm of e.g. A [76]:

∥A∥2F =
∑

pn

a2pn. (1.34)

The name “smoothness” is perhaps a little misleading: it does not refer to any
“blurring” or “smoothing” between e.g. neighbouring pixels in an image, it
merely refers to the penalization of large values apn, so the resulting matrix is
less “spiky” and hence more “smooth”.

If we add this non-smoothness penalty (1.34) into the Euclidean cost function
(1.3) we obtain a new cost function

J = D(X;AS) = 1
2∥X−AS∥2F + 1

2�
∑

pn

a2pn (1.35)
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which will act to reduce the tendency to produce large elements in A. From
a probabilistic perspective we can regard this as imposing a Gaussian prior on
the elements apn of A. This modifies the derivative of J w.r.t. A, giving

∂J

∂apn
= −([XST]pn − [ASST]pn) + �apn (1.36)

giving a new gradient update step of

apn ← apn + �pn([XST]pn − [ASST]pn − �apn) (1.37)

and again using �pn = apn/[ASST]pn we obtain the multiplicative update

apn ← apn
[XST]pn − �apn

[ASST]pn
(1.38)

for which J in (1.35) is non-increasing [76]. To ensure apn remains non-negative
in this multiplicative update, we can set negative values to a small positive �.
(If we were simply to set negative elements to zero, the multiplicative update
would never be able make that element non-zero again if required.)

Similarly, we can separately or alternatively apply such a non-smoothness
penalty to S, obtaining a similar adjustment to the update steps for snt.

1.3.1.3 Continuity

In the context of audio source separation, Virtanen [94] proposed a temporal
continuity objective along the rows (t-direction) of S (or alternatively, along the
columns of A, as in Virtanen’s original paper [94]). This temporal continuity is
achieved by minimizing a total variation (TV) cost to penalize changes in the
values of snt in the t (“time”) direction

CTV t(S) =
1
2

∑

nt

∣sn,(t−1) − sn,t∣ (1.39)

where t is summed from 2 to T . Total variation has also been applied for image
reconstruction in the Compressed Sensing literature, where it is used in a 2-
dimensional form [62], and an earlier approach for smoothness (in this sense)
was developed and showcased in spectroscopy [5].

The derivative of CTV t is straightforward:

∂sntCTV t(S)

∂snt
=

⎧
⎨
⎩

−1 if sn,t < sn,(t−1) and sn,t < sn,(t+1),

+1 if sn,t > sn,(t−1) and sn,t > sn,(t+1),

0 otherwise.

(1.40)

(apart from the boundary cases t = 1 and t = T ) so this can be incorporated
into a steepest-descent update method for S.

Chen and Cichocki [11] introduced a different smoothness measure based
on the difference between snt and a “temporally smoothed” (low-pass-filtered)
version

s̄n(t) = �s̄n(t− 1) + �sn(t) (1.41)
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where � = 1 − �, and we write sn(t) ≡ snt to clarify the time dimension. We
can write this in matrix notation for the rows sn of S as

s̄n = Tsn, T =

⎡
⎢⎢⎢⎣

� 0 ⋅ ⋅ ⋅ 0
�� � ⋅ ⋅ ⋅ 0
...

. . .
. . .

...
�T−1� . . . �� �

⎤
⎥⎥⎥⎦ (1.42)

where T is a T × T Toeplitz matrix that we can simplify to retain only e.g. the
diagonal and first 4 subdiagonals by neglecting terms in �k� for k > 4.

By incorporating a cost

R =
1

T
∥sn − s̄n∥22 = ∥(I−T)sn∥22 (1.43)

and a unit-variance (fixed ℓ1-norm) constraint on the rows sn, they obtain a
modification to the Euclidean cost (1.3)

J = 1
2∥X−AS∥2F +

�

2T

∑

n

∥(I−T)sn∥22 (1.44)

where � is a regularization coefficient, and hence a new multiplicative update
step for S as

snt ← snt
[ATX]nt

[ATAS]nt + �[SQ]nt
(1.45)

where Q = 1
T
(I−T)T(I−T).

1.3.2 Relaxing the non-negativity constraints

We can consider relaxing or replacing the non-negativity constraints on the
factors. For example, if we remove all non-negativity constraints from (1.1) and
instead impose an orthogonality and unit norm constraint on the columns of
A, minimizing the mean squared error (1.3) will find the principal subspace, i.e.
the subspace spanned by the principal components of S.

1.3.2.1 Semi-NMF

In Semi-NMF [23] we assume that only one factor matrixA or S is non-negative,
giving for example X ≈ AS where S is non-negative, but A can be of mixed
sign.

To achieve uniqueness of factorization we need to impose additional con-
straints such as mutual independence, sparsity or semi-orthogonality. This
leads, for example to non-negative ICA, non-negative sparse coding, or non-
negative PCA.
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1.3.2.2 Non-negative ICA

Suppose that we relax the non-negativity on A, and instead suppose that the
rows sn of S are sampled from N independent non-negative sources s1, ⋅ ⋅ ⋅ , sN .
In other words, we suppose we have an independent component analysis (ICA)
model, with an additional constraint of non-negativity on the sources sn: we
refer to this as non-negative independent component analysis (NNICA).

If we wish, we can always solve NNICA using classical ICA approaches, then
change the sign of any negative sources [14]. However, we can also consider the
NNICA model directly. Suppose we whiten the observation vectors x to give

z = Wx (1.46)

so that z has identity covariance E{zzT} = I, but do this whitening without
subtracting the mean z of z. Then to find the independent components (factors)
s it is sufficient to look for an orthonormal rotation matrixQ such thatQQT = I

such that the resulting output y = Qz = QWx is non-negative [78]. This leads
to simple algorithms such as a non-negative PCA method [79, 81] related to the
nonlinear PCA rule for standard ICA [67], as well as constrained optimization
approaches based on the Lie Group geometry of the set of orthonormal matrices
[80].

1.3.3 Structural factor constraints

In certain applications, the factors A and S may have a natural structure
that should be reflected in the parametrizations of the factors. For example,
Smaragdis [87, 88] and Virtanen [95] introduced a Convolutive NMF model,
whereby our model becomes

xpt ≈
∑

n,u

apn(u)sn,t−u (1.47)

which we can write in a matrix convolution form as (Fig. 1.2)

X =
U−1∑

u=0

A(u)
u→

S (1.48)

where the
u→⋅ matrix notation indicates that the contents of the matrix are

shifted u places to the right

[
u→

S ]nt = [S]n,t−u. (1.49)

Finding non-negative A(u) and S from (1.47) is also known as non-negative
matrix factor deconvolution (NMFD).

Schmidt and Mørup [86] extended the convolutive model to a 2-dimensional
convolution

xpt ≈
∑

n,q,u

ap−q,n(u)sn,t−u(q) (1.50)
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X ≈ ×
A(0)

0→

S

1 T

S

1 L T

×
A(1)

1→

SS

2

+

+ ...

×
A(U−1)

(U−1)→

S
S

+

K

1 N

...

L+ 1

L+ U

= T

Figure 1.2: Convolutive NMF model for Non-negative Matrix Factor Deconvo-
lution (NMFD)

which we can write in a matrix convolution form as (Fig. 1.3)

X =

Q−1∑

q=0

U−1∑

u=0

q↓

A(u)
u→

S(q) (1.51)

where the
q↓⋅ matrix notation indicates that the contents of the matrix are shifted

q places down

[
q↓

A]pn = [A]p−q,n. (1.52)

Alternatively, if we change notation a little to write

an(p− q, u) ≡ ap−q,n(u) sn(q, t− u) ≡ sn,t−u(q) (1.53)

we could write (1.51) as

X =

N∑

n=1

Xn (1.54)

where

[Xn]pt =

Q−1∑

q=0

U−1∑

u=0

an(p− q, t− u)sn(q, u) ≡ an(p, t) ∗ sn(p, t) (1.55)

with ∗ as a 2-D convolution operator. So this can be viewed as a sum of N
elementary 2D “objects” sn(p, t) convolved with “filters” an(p, t), or vice-versa.
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Figure 1.3: Two-dimensional convolutive NMF model (NMF2D)



20 CHAPTER 1. NON-NEGATIVE MIXTURES

This type of 1-D and 2-D convolutive model has been applied to the analysis
of audio spectrograms. For example, Smaragdis [87] used the 1-D model to
analyze drum sounds, on the basis that drum sounds produce a characteristic
time-frequency pattern that repeats whenever the drum is “hit”. On the other
hand, Schmidt and Mørup [86] applied the 2-D model to analysis of spectrograms
of pitched sounds on a log-frequency scale. Here a time shift (u) corresponds
to onset time of the note, while the frequency shift (q) corresponds to adding
a constant log-frequency offset, or multiplying all pitches in the “object” by a
constant factor.

In a more general case, we can consider transform-invariant factorization [97]

X =
∑

u

A(u)T(u)(S) (1.56)

where {T(u), u = 1, . . . , U} is a set of matrix transformation functions. This
can include 1-D and 2-D convolutions (if u ranges over a 2-D set) but could
represent more general transforms.

As a further generalization, Schmidt and Laurberg [85] introduce the idea
that the matrices A and S can be determined by underlying parameters. Their
model is given by

X ≈ A(a)S(s) (1.57)

where a and s are parameters which determine the generation of the matrix-
valued functions A(a) and S(s). In their paper they model a and s as Gaussian
processes.

1.3.4 Multi-Factor and Tensor Models

The standard NMF model (1.1) is sometimes known as Two-Way Factor Model,
being a product of two matrices. There are many different ways to extend this
to models with three or more factors, or to models which include tensors as
factors, i.e. where each element has more than two indices. For example, we
could have order 3 tensors, which have elements xijk with 3 indices, instead of
the usual matrices which have elements xij with 2 indices (i.e. our usual matrices
are order 2 tensors) [36].

1.3.4.1 Multi-layer NMF

In multi-layer NMF the basic matrix A is replaced by a set of cascaded (factor)
matrices. Thus, the model can be described as [17, 13]

X ≈ A1A2 ⋅ ⋅ ⋅AKS. (1.58)

Since the model is linear, all the matrices Ak (k = 1, 2, . . . ,K) can be merged
into a single matrix A if no any additional constraints are imposed upon the
individual matrices Ak. However, we impose usually sparsity constraints for
each individual matrix Ak and then multi-layer NMF can be used to consider-
ably improve the performance of standard NMF algorithms due to distributed
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structure and alleviating the problem of local minima. To improve the perfor-
mance of the NMF algorithms (especially, for ill-conditioned and badly-scaled
data) and to reduce the risk of getting stuck in local minima of a cost func-
tion due to non-convex alternating minimization, we use multi-stage procedure
combined with a multi-start initialization, in which we perform a sequential de-
composition of non-negative matrices as follows. In the first step, we perform
the basic approximate decomposition X ≈ A1S1 using any available NMF al-
gorithm with sparsity constraint imposed to matrix A1. In the second stage,
the results obtained from the first stage are used to build up a new input data
matrix X ← S1, that is, in the next step, we perform a similar decomposition
S1 ≈ A2S2, using the same or different update rules. We continue our decom-
position taking into account only the last obtained components. The process
can be repeated for an arbitrary number of times until some stopping criteria
are satisfied. Physically, this means that we build up a distributed system that
has many layers or cascade connections of K mixing subsystems. The key point
in this approach is that the update process to find parameters of matrices Sk

and Ak (k = 1, 2, . . . ,K) is performed sequentially, i.e. layer-by-layer, where
each layer is randomly initialized with different initial conditions.

Tri-NMF also called the three factor NMF can be considered as a special
case of the multi-layer NMF and can take the following general form [23]:

X ≈ AMS (1.59)

where non-negativity constraints are imposed to all or to the selected factor
matrices. Note that if we do not impose any additional constraints to the
factors (besides non-negativity), the three-factor NMF can be reduced to the
standard (two-factor) NMF by imposing the following mapping A ← AM or
S←MS.

However, the three-factor NMF is not equivalent to the standard NMF if we
apply additional constraints or conditions. For example, in orthogonal Tri-NMF
we impose additional orthogonality constraints upon the matrices A and S,
ATA = I and SST = I, while the matrix M can be an arbitrary unconstrained
matrix (i.e., it has both positive and negative entries). For uni-orthogonal Tri-
NMF only one matrix A or S is orthogonal. Non-smooth NMF (nsNMF) was
proposed by Pascual-Montano et al. [73] and is a special case of the three-
factor NMF model in which the matrix M is fixed and known, and is used for
controlling the sparsity or smoothness of the factor matrix S and/or A.

1.3.4.2 Non-negative Tensor Factorization

In early work on matrix factorization without non-negativity constraints,
Kruskal [55] considered “three way arrays” (order 3 tensors) of the form
(Fig. 1.4)

xptq =
∑

n

apnsntdqn =
∑

n

apnvtndqn = (1.60)
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Figure 1.4: Three-Way PARAFAC Factor model

which can be written in matrix notation using the frontal slices of data tensor
as

Xq ≈ ADqS = ADqV
T (1.61)

where [Xq]pt = xptq represent frontal slices ofmX and Dq is the N×N diagonal
matrix with elements [Dq]nn = dnq. This model is known as the PARAFAC
or CANDECOMP (CANonical DECOMPosition) model [36]. A non-negative
version of PARAFAC was first introduced by Carroll et al. [9] and Krijnen &
ten Berge [54]. Later, more efficient approaches were developed by Bro (1997)
[4] based on the modified NNLS mentioned earlier and Paatero [70] who general-
ized his earlier 2-way positive matrix factorization (PMF) method to the 3-way
PARAFAC model, referring to the result as PMF3 (3-way positive matrix fac-
torization). The non-negatively constrained PARAFAC is also sometimes called
non-negative tensor factorization (NTF). In some cases NTF methods may in-
crease the number of factors and add complexity. However, in many contexts
they do not lead to an increase in the number of factors, (they maintain them)
and quite often they lower the complexity - because NNLS is cheaper than LS in
iterative algorithms. In addition, this approach can result in a reduced number
of active parameters yielding a clearer “parts-based” representation [63]. Non-
negatively constrained PARAFAC has been used in numerous applications in
environmental analysis, food studies, pharmaceutical analysis and in chemistry
in general [6].

Later Welling and Weber [96] also discussed a factorization of an order R
tensor xi1,...,iR into a product of r order 2 tensors

xp1,...,pR
≈

N∑

n=1

a(1)p1,n
a(2)p2,n

⋅ ⋅ ⋅ a(R)
pR,n (1.62)

subject to the constraint that the parameters are non-negative. They called the
result positive tensor factorization (PTF) or non-negative tensor factorization
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Figure 1.5: PARAFAC2/NTF2 factor model

(NTF). NTF can be presented in vector-matrix form as follows

X ≈
N∑

n=1

a(1)n ∘ a(2)n ∘ ⋅ ⋅ ⋅ ∘ a(R)
n = I×1 A(1) ×1 A(2) ⋅ ⋅ ⋅ ×R A(R) (1.63)

where ∘ denotes outer product and ×r denotes r-mode multiplication of tensor
via matrix and I is R-order identity tensor (with one on the superdiagonal).
Welling and Weber develop update rules for NTF which are analogous to the
Lee and Sung [57] multiplicative update rules.

Ding et al [24] also considered adding orthogonality constraints to the 3-way
factor model (1.60). They showed that this additional constraint leads to a
clustering model, and demonstrated its application to document clustering.

A further extension of these tensor models is to allow one or more of the
factors to also be a higher-order tensor. For example, the PARAFAC2 model
[35, 48] includes an order 3 tensor in the factorization (Fig. 1.5):

xptq ≈
∑

n

apnsntqdnq. (1.64)

In matrix notation we can write (1.64) as

Xq ≈ ADqSq (1.65)

with Xq and Dq as for the PARAFAC/PMF3 model above, and [Sq]nt = sntq.
In addition to eqn. (1.64), the PARAFAC2 model includes extra constraints on
the Sq matrices to obtain a unique solution. The first non-negative algorithm
for PARAFAC2 was introduced in [5]. Cichocki et al. [20, 19] call the model
in eqn. (1.64) NTF2 to distinguish it from the PARAFAC-based non-negative
tensor factorization (NTF) model (1.60).
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Figure 1.6: Three-way Tucker model

Fitzgerald et al [26] combined convolutive NMF models (NMFD/NMF2D)
with tensor factorization, leading to shift-invariant non-negative tensor factor-
ization. They applied this to musical audio source separation, where the tensor
X is of order 3, representing spectrograms with frequency p, time t and channel
q.

Another multi-way model is the Tucker model (Fig. 1.6)

xpqt ≈
∑

lmn

glmnaplstmbqn (1.66)

which in its general form is

xp1,p2,...,pR
≈

∑

n1,...,nR

gn1,...,nR
ap1,n1

× ⋅ ⋅ ⋅ × apR,nR
(1.67)

where the Tucker core gn1,...,nr
controls the interaction between the other fac-

tors. Tucker models have also been implemented in non-negative versions, where
it is sometimes called Non-negative Tucker Decomposition (NTD). The first im-
plementations of non-negative Tucker as well as a number of other constraints
were given in [47] and in [5]. Several researchers have recently applied non-
negative Tucker models to EEG analysis, classifications and feature extractions,
and have demonstrated encouraging results [63, 50, 51, 75].

1.3.5 ALS Algorithms for Non-negative Tensor Factoriza-
tion

The almost all existing NMF algorithms can be relatively easily extended for
R-order non-negative tensor factorization by using the concept of matricizing
or unfolding. Generally speaking, the unfolding of an R-th order tensor can be
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understood as process of the construction of a matrix containing all the r-mode
vectors of the tensor. The order of the columns is not unique and in this book
it is chosen in accordance with Kolda and Bader [53]. The mode-r unfolding
of tensor X ∈ ℝ

I1×I2×⋅⋅⋅×IR is denoted by X(r) and arranges the mode-r fibers
into columns of a matrix.

Using the concept of unfolding an R-order NTF can represented as set of
the following non-negative matrix factorizations

X(r) ≈ A(r)Z(−r), (r = 1, 2, . . . , R) (1.68)

where X(r) ∈ ℝ
Ir×I1⋅⋅⋅Ir−1Ir+1⋅⋅⋅IR
+ is r-mode unfolded matrix of the R-order

tensor X ∈ ℝ
I1×I2×⋅⋅⋅×IR
+ and

Z(−r) =
[
A(R) ⊙ ⋅ ⋅ ⋅ ⊙A(r+1) ⊙A(r−1) ⊙ ⋅ ⋅ ⋅ ⊙A(1)

]T
∈ ℝ

N×I1⋅⋅⋅Ir−1Ir+1⋅⋅⋅IR
+

(1.69)
where ⊙ denotes of Khatri-Rao product [53].

Using this model we can drive a standard (global) ALS update rules:

A(r) ←
[
X(r)Z

T
(−r)

(
ZT

(−r)Z(−r)

)−1
]

+

, (r = 1, 2, . . . , R). (1.70)

By defining the residual tensor as

X(n) = X−
∑

j ∕=n

a
(1)
j ∘ a

(2)
j ∘ ⋅ ⋅ ⋅ ∘ a

(R)
j

= X−
N∑

j=1

(
a
(1)
j ∘ a

(2)
j ∘ ⋅ ⋅ ⋅ ∘ a

(R)
j

)
+
(
a(1)n ∘ a(2)n ∘ ⋅ ⋅ ⋅ ∘ a(R)

n

)
,

= X− X̂+
(
a(1)n ∘ a(2)n ∘ ⋅ ⋅ ⋅ ∘ a(R)

n

)
, (n = 1, 2, . . . , N) (1.71)

we can derive local ALS updates rules [75]:

a(r)n ←
[
X

(n)
(r)

(
a(R)
n ⊙ ⋅ ⋅ ⋅ ⊙ a(r+1)

n ⊙ a(r−1)
n ⊙ ⋅ ⋅ ⋅ ⊙ a(1)n

)]
+
, (1.72)

for r = 1, 2, . . . , R and n = 1, 2, . . . , N and with normalization (scaling) a
(r)
n ←

∣∣a(r)n /a
(r)
n ∣∣2 for r = 1, 2, . . . , R − 1. The local ALS update can be expressed in

equivalent tensor notation:

a(r)n ←
[
X(n) ×1 a

(1)
n ⋅ ⋅ ⋅ ×r−1 a

(r−1)
n ×r+1 a

(r+1)
n ⋅ ⋅ ⋅ ×R a(R)

n

]
+
, (1.73)

(r = 1, 2, . . . , R) (n = 1, 2, . . . , N). (1.74)

In similar way we can derive global and local ALS updates rules for Non-
negative Tucker Decomposition [21, 75].
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1.4 Further Non-negative Algorithms

In Section 1.2 we briefly developed three simple and popular algorithms for
NMF. It is arguably the very simplicity of these algorithms, and in particular
the Lee-Seung multiplicative algorithms (1.16) and (1.23) which have led to the
popularity of the NMF approach.

Nevertheless, in recent years researchers have gained an improved under-
standing of the properties and characteristics of these NMF algorithms. For
example, while Lee and Seung [57] claimed that their multiplicative algorithm
(1.16) converges to a stationary point, this is now disputed [31], and in any case
Lin [61] also points out that a stationary point is not necessarily a minimum.
For more on these alternative approaches, see e.g. [12, 90, 2, 61, 19].

In addition, there has previously been interest in the effect of non-negative
constraints in neural network learning (e.g. [29, 34, 89]), Another approach is
the use of geometric constraints, based on looking for the edges or bounds of
the scattering matrix [3, 38, 1]. Recent work has also investigated alternative
algorithms specifically designed for large-scale NMF problems [15, 21]. In this
section we will investigate at some of these alternative approaches.

1.4.1 Neural Network approaches

Given an input X = [xpt], representing a sequence of input vectors x1, . . . ,xT ,
we can construct a simple linear “neural network” model

Y = BX (1.75)

where B is a Q × P linear weight matrix and Y = [yqt] is the output from
neuron q for sample t. We can write (1.75) in its pattern-by-pattern form as

y(t) = Bx(t) t = 1, 2, . . . (1.76)

Without any non-negativity constraints, the network (1.75) has been widely
studied for the task of principal component analysis (PCA) or PCA subspace
analysis (PSA): see e.g. [66, 41]. For example, Williams [98] described his Sym-
metric Error Correction (SEC) network, based on the idea of reducing the mean
squared error reconstruction. A similar method was suggested independently
by Oja and Karhunen [68] to find the principal subspace of a matrix. For the
learning algorithm in the SEC network, the weight matrix B is updated on a
pattern-by-pattern basis according to

B(t+ 1) = B(t) + �(t)[x(t)− x̂(t)]yT(t) (1.77)

where x̂(t) = BTy(t) is considered to be an approximate reconstruction of the
input x using the weights B. Alternatively, the following batch update rule can
be used:

B(t+ 1) = B(t) + �(t)[X− X̂]YT (1.78)
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where X̂ = BTY is the approximate reconstruction. With m ⩽ n outputs, and
without any non-negativity constraints, update rule (1.77) finds the minimum
of the mean squared reconstruction error

JE = DE(X; X̂) = 1
2∥X− X̂∥2F (1.79)

and hence finds the principal subspace of the input, i.e. the space spanned by
the principal eigenvectors of XXT [99].

Harpur and Prager [34] suggested modifying this network to include a non-
negativity constraint on the output vector y, so that its activity is determined
by

yq(t) = [bT

qx(t)]+ (1.80)

where bq = (bq1, . . . , bqP )
T, and use this non-negative Y to form the reconstruc-

tion X̂ in (1.78). They showed that this recurrent error correction (REC) net-
work, with the non-negativity constraint on the output, could successfully sep-
arate out individual horizontal and vertical bars from images in the ‘bars’ prob-
lem introduced by Földiák [28], while the network without the non-negativity
constraint would not.

Harpur noted that this recurrent error correction (REC) network might be
under-constrained when fed with a mixture of non-negative sources, illustrating
this for n = m = 2 [33, p68]. He suggests that this uncertainty could be
overcome by starting learning with weight vectors inside the ‘wedge’ formed by
the data, but points out that this would be susceptible to any noise on the input.
Plumbley [77] attempted to overcome this uncertainty by incorporating anti-
Hebbian lateral inhibitory connections between the output units, a modification
of Földiák’s Hebbian/anti-Hebbian network [27].

Charles and Fyfe [10], following on from earlier work of Fyfe [29], investigated
a range of non-negative constraints on the weights and/or outputs of a PCA
network. Their goal was to find a sparse coding of data, with most values are
zero or near zero [69]. With non-negative constraints on the outputs, they noted
that update equation (1.78) is a special case of the nonlinear PCA algorithm [46],
and so their learning algorithm minimizes the residual error at the input neurons.
They also tested their network on the ‘bars’ problem, using various nonlinearities
(threshold linear, sigmoid and exponential) as well as pre-processing to equalize
the input variances E(x2i ). They found that performance was most reliable with
non-negative constraint on weights bqp as well as the outputs yq(t).

1.4.2 Geometrical Methods

1.4.2.1 Edge Vectors

Several non-negative methods have been inspired by a geometric approach to
the problem. Much of the earliest work in NMF in the seventies and eighties
was based on such approaches (see e.g. [3] and references therein). Consider
the 2-dimensional case P = N = 2. If the sources snt are non-negative, we can
often see this clearly on a scatter plot of x1t against x2t (Fig 1.7). This scatter
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Figure 1.7: Scatter plot for observations of weighted non-negative sources.

plot suggests that we could identify the underlying generating factors by looking
for the edges in the distribution [38]. For example, suppose sample t′ of source
p′ = 2 were zero, i.e. s2,t′ = 0. Then we immediately have

xpt′ = ap,1s1,t′ (1.81)

meaning that we can solve for the basis vector a1 = (a1,1, a2,1) apart from a
scaling ambiguity [37]. This condition occurs along the edge of the scatter plot,
so if we find observed vectors xt on both of these edges, so-called edge vectors,
then we can estimate the original mixing matrix A, and hence the source matrix
S.

This approach has been generalized to more than two dimensions using the
concept of an extremal polyhedral cone, finding a few spanning vectors that
fix the edges of the data [93] (see also the review by Henry [39]) and Henry
[40] introduces a related extreme vector algorithm (EVA) that searches for N -
dimensional edges in the data. The geometrical can also give insights into issues
of uniqueness of NMF, which has been investigated by Donoho and Stodden [25]
and Klingenberg et al [52].

1.4.2.2 Bounded pdf approaches

Some geometrical algorithms have also been introduced for cases where the
sources have an additional constraint of being bounded from above as well as
bounded from below (as in the non-negative case).

Puntonet et al [83, 84] developed separation algorithms for sources with
such a bounded pdf. Their algorithm operates as each data vector arrives,
updating the weights to minimize an angular proximity, and they also consider
adjustments to their algorithm to cope with noise, which might give rise to
observed data vectors which lie outside the basis vectors [84, 82] In contrast
to normal ICA-based measures, which require independent sources, they found
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that their approach can be used to separate non-independent bounded sources.
For good separation, Puntonet et al. [84] note that it is important to obtain
critical vectors that map to the edges of the hyperparallelpiped, analogous to
the edge vectors in the geometrical NMF/PMF methods.

Yamaguchi, Hirokawa and Itoh [101, 45] independently propose a similar
approach for bounded data. They proposed an algebraic method for ICA of
images pairs, based on the extremum points on a scatter diagram. This uses
the upper- and lower-boundedness of source image values, and does not use
independence. They also note that the algorithm relies on critical vectors at
the apexes of the scatter diagram, so signals with low pdf at their extrema will
be more difficult to separate.

Finally, Basak and Amari [1] considered the special case of bounded source
signals with uniform pdf. After pre-whitening, the data will fills a hypercube.
The hypercube is rigidly rotated using a matrix exponential B = exp(�Z) to
generate special (determinant 1) orthogonal matrices B ∈ SO(N) with a local
learning rule used to bring data points into the unit hypercube by minimizing a
1-norm distance outside of this unit hypercube. This leads to a type of nonlinear
PCA-type learning rule [46] with nonlinearity g(y) = sgn(y) if y is outside the
hypercube.

1.4.3 Algorithms for large-scale NMF problems

For large scale NMF problems, where the data matrix X is very large, the
computation complexity and memory required for standard NMF algorithms
can become very large. Recently new algorithms have been introduced which
reduce these through e.g. block-wise or row/column-wise updates.

1.4.3.1 ALS for large-scale NMF

If the data matrix X is of large dimension (P ≫ 1 and T ≫ 1), but where the
number of non-negative componentsN is relatively small, (N ≪ P andN ≪ T ),
we can reduce the computational complexity and memory allocation by taking
a block-wise approach, where we select only very few rows and columns of the
data matrix X. In this approach, instead of performing a single large-scale
factorization X ≈ AS we sequentially perform two (much smaller dimensional)
non-negative matrix factorizations:

XR ≈ AR S (1.82)

XC ≈ A SC (1.83)

where XR ∈ ℝ
R×T and XC ∈ ℝ

P×C are data matrices constructed from the
preselected rows and columns of the data matrix X ∈ ℝ

P×T , respectively. Anal-
ogously, we can construct the reduced matrices: AR ∈ ℝ

R×N and SC ∈ ℝ
N×C

by using the same indices for the columns and rows as those used for the con-
struction of the data sub-matrices XR and XC , respectively.

There are several strategies to choose the columns and rows of the input
data matrix. The simplest scenario is to randomly select rows and columns
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from a uniform distribution. Another heuristic option is to choose those rows
and columns that provide the largest lp-norm, especially the Chebyshev-norm,
p =∞.

This approach can be applied to any NMF algorithm. In the special case, for
squared Euclidean distance (Frobenius norm), instead of alternately minimizing
the cost function JE = ∣∣X −A S∣∣2F , we can minimize sequentially set of two
cost functions:

JES = ∣∣XR −AR S∣∣2F for fixed AR (1.84)

JEA = ∣∣XC −A SC ∣∣2F for fixed SC (1.85)

This leads to the following ALS updates rules for large-scale NMF [15, 21]

S← [(AT

RAR)
−1AT

RXR]+ (1.86)

A← [XCS
T

C(SCS
T

C)
−1]+. (1.87)

1.4.3.2 Hierarchical ALS

An alternative fast local ALS algorithm, called Hierarchical ALS (HALS), se-
quentially estimates the individual columns an of A and rows sn of S instead of
directly computing the whole factor matrices A and S in each step2. The HALS
algorithm is often used for multi-layer models (see Section 1.3.4.1) in order to
improve performance.

The basic idea is to define the residual matrix [5, 18, 30]:

X(n) = X−
∑

j ∕=n

aj s
T
j = X−A S+ ans

T
n , (n = 1, 2, . . . , N) (1.88)

and to minimize the set of squared Euclidean cost functions:

J
(n)
EA = ∣∣X(n) − an sTn ∣∣2F for fixed sn (1.89)

J
(n)
EB = ∣∣X(n) − an sTn ∣∣2F for fixed an (1.90)

subject to constraints an ≥ 0 and sn ≥ 0 for n = 1, 2, . . . , N . In order to
estimate the stationary points, we simply compute the gradients of the above
local cost functions with respect to the unknown vectors an and sn (assuming
that other vectors are fixed) and equalize them to zero:

∂J
(n)
EA

∂an
= an sTn sn −X(n) sn = 0 (1.91)

∂J
(n)
EB

∂sn
= an aTn sn −X(n) T an = 0. (1.92)

2The HALS algorithm is “Hierarchical” since we sequentially minimize a set of simple cost

functions which are hierarchically linked to each order via residual matrices which approximate

rank-one bilinear decomposition.
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Hence, we obtain the local ALS algorithm:

an ←
1

sTn sn

[
X(n)sn

]
+

(1.93)

sn ←
1

aTn an

[
X(n) Tan

]
+
. (1.94)

In practice, we usually normalize the column vectors an and sn to unit length
vectors (in l2-norm sense) at each iteration step. In such case the above updates
local ALS updates rules can be further simplified by ignoring the denominators
and imposing a vector normalization after each iterative step, to give a simplified
scalar form of the HALS updated rules:

apn ←
[
∑

t

vtnx
(n)
pt

]

+

, apn ← apn/∣∣an∣∣22 (1.95)

vtn ←
[
∑

p

apnx
(n)
pt

]

+

(1.96)

where x
(n)
pt = xpt−

∑
j ∕=n apj btj . The above updates rules are extremely simple

and quite efficient and can be further optimized for large scale NMF [15, 16, 21].

1.5 Applications

NMF has been applied to a very wide range of tasks such as air quality analysis,
text document analysis, and image processing. While it would be impossible to
fully survey every such application here, we will select a few here to illustrate
the possibilities, and as pointers for further information.

1.5.1 Air Quality and Chemometrics

As discussed by Henry [39] in the field of air quality, sjk represents the amount of
a particulate from source j in sample k, and so must be non-negative. Similarly,
aij is the mass fraction of chemical constituent (or species) i in source j, which
again must be positive. This leads to an interpretation of (1.1) as a chemical
mass balance equation, where xik are the total amount of species i observed
in sample k. This is known as a multivariate receptor model [37] where aij are
called the source compositions, and sjk are called the source contributions.

In geochemistry, this model could also represent the composition of geological
samples modelled as a mixture of N pure components. In chemeometrics, the
spectrum of a mixture is represented as a linear combination of the spectra
or pure components. Again, the nature of the physical process leading to the
observations require that all of these quantities are non-negative [39].
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1.5.2 Text analysis

Text mining usually involves the classification of text documents into groups or
clusters according to their similarity in semantic characteristics. For example,
a web search engine often returns thousands of pages in response to a broad
query, making it difficult for users to browse or to identify relevant information.
Clustering methods can be used to automatically group the retrieved documents
into a list of meaningful topics. The NMF approach is attractive for document
clustering, and usually exhibits better discrimination for clustering of partially
overlapping data than other methods such as Latent Semantic Indexing (LSI).

Preprocessing strategies for document clustering with NMF are very similar
to those for LSI. First, the documents of interest are subjected to stop-word
removal and word streaming operations. Then, for each document a weighted
term-frequency vector is constructed that assigns to each entry the occurrence
frequency of the corresponding term. Assuming P dictionary terms and T
documents, the sparse term-document matrix X ∈ ℝ

P×T is constructed from
weighted term-frequency vectors, that is

xpt = fpt log

(
T

Tp

)
(1.97)

where fpt is the frequency of occurring the p-th term in the t-th document,
and Tp is the number of documents containing the p-th term. The entries of X
are always non-negative and equal to zero when either the p-th term does not
appear in the t-th document or appears in all the documents.

The aim is to factorize the matrix X into the non-negative basis matrix A

and the non-negative topic-document matrix X ∈ ℝ
N×T
+ where N denotes the

number of topics. The position of the maximum value in each column-vector in
S informs us to which topic a given document can be classified. The columns
of A refer to the cluster centres, and the columns in S are associated with the
cluster indicators. A more general scheme for simultaneous clustering both with
respect to terms and documents can be modeled by Tri-NMF.

The application of NMF to document clustering has also been discussed by
many researchers. For example B. Xu et al. [100] propose to use orthogonality
constraints in their Constrained NMF algorithm, where the orthogonality of
lateral components is enforced by the additional penalty terms added to the KL
I-divergence and controlled by the penalty parameters.

In language modelling, Novak and Mammone [65] used non-negative ma-
trix factorization as an alternative to Latent Semantic Analysis for language
modelling in an application directed at automatic speech transcription of biol-
ogy lectures. Tsuge et al [92] also applied (NMF) to dimensionality reduction
of document vectors applied to document retrieval of MEDLINE data. They
minimize either Euclidean distance or Kullback-Leibler divergence of the recon-
struction, showing that NMF gave better performance than the conventional
vector space model.
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1.5.3 Image processing

Image analysis often includes non-negativity, corresponding to e.g. the non-
negative amount of light falling on a surface and a non-negative reflectance of
an illuminated surface. In their now-classic paper, Lee and Seung [56] showed
that NMF could discover a “parts-based” representations of face images. The
found parts like the eyes and mouth would be represented by different NMF
basis images, unlike other analysis approaches such as PCA which would tend
to produce global basis images which covered the whole face image. However,
this parts-based representation may be strongly dependent on the background
and content colour, and may not always be obtained [43].

The non-negativity constraint also arises in, for example, hyperspectral im-
age analysis for remote sensing [72, 60, 64] where A is considered to model
the amount of substances at each pixel, with S the spectral signatures of those
substances.

Buchsbaum and Bloch [8] also applied NMF to Munsell colour spectra, which
are widely used in colour naming studies. The basis functions that emerged
corresponded to spectra representing familiar colour names, such as “Red”,
“Blue”, and so on.

NMF has also been applied to sequences of images. Lee et al [58] applied
NMF to dynamic myocardial PET (positron emission tomography) image se-
quences. They were able to extract basis images that corresponded to major
cardiac components, together with time-activity curves with shapes that were
similar to those observed in other studies.

1.5.4 Audio analysis

While audio signals take both positive and negative samples when represented as
a raw time series of samples, non-negativity constraints arise when represented
as a power or magnitude spectrogram. Due to the time-shift-invariant nature
of audio signals, convolutive NMF models (Section 1.3.3) are suitable for these.
The have been used to discover e.g. drum sounds in an audio stream [87], and
for separation of speech [88] and music [95]. To allow for pitch-invariant basis
functions, Schmidt and Mørup [86] extended the convolutive model to a 2-
dimensional convolution using a spectrogram with a log-frequency scale, so that
changes in fundamental frequency become shifts on the log-frequency axis.

1.5.5 Gene expression analysis

NMF has also been increasingly used recently in analysing DNA microarrays.
Here the rows of X represent the expression levels of genes, while the columns
represent the different samples. NMF is then used to search for “metagenes”,
helping for example to identify functionally related genes. For a recent review
of this area, see e.g. [22]
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1.6 Conclusions

In this chapter we have briefly presented basic models and associated learning al-
gorithms for non-negative matrix and tensor factorizations. Currently the most
efficient and promising algorithms seem to be those based on the alternating
least squares (ALS) approach: these implicitly exploit the gradient and Hessian
of the cost functions and provide high convergence speed if they are suitably
designed and implemented. Multiplicative algorithms are also useful where the
data matrix and factor matrices are very sparse. We have also explored a range
of generalizations and extensions of these models, and alternative approaches
and algorithms that also enforce non-negativity constraints, including special al-
gorithms designed to handle large scale problems. Finally we touched on a few
applications of non-negative methods, including chemometrics, text processing,
image processing and audio analysis.

With non-negativity constraints found naturally in many real-world signals,
and with the improved theoretical understanding and practical algorithms pro-
duced by recent researchers, we consider that the non-negative methods we have
discussed in this chapter are a very promising direction for future research and
applications.
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