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Abstract
NonnegativeMatrix Factorization (NMF) has attracted a great deal of attention as an effective
technique for dimensionality reduction of large-scale nonnegative data. Given a nonneg-
ative matrix, NMF aims to obtain two low-rank nonnegative factor matrices by solving
a constrained optimization problem. The Hierarchical Alternating Least Squares (HALS)
algorithm is a well-known and widely-used iterative method for solving such optimization
problems. However, the original update rule used in the HALS algorithm is not well defined.
In this paper, we propose a novel well-defined update rule of the HALS algorithm, and prove
its global convergence in the sense of Zangwill. Unlike conventional globally-convergent
update rules, the proposed one allows variables to take the value of zero and hence can obtain
sparse factor matrices. We also present two stopping conditions that guarantee the finite ter-
mination of the HALS algorithm. The practical usefulness of the proposed update rule is
shown through experiments using real-world datasets.

Keywords Nonnegative matrix factorization · Hierarchical alternating least squares
algorithm · Global convergence

1 Introduction

Dimensionality reduction methods for large-scale and high-dimensional data have been
actively studied in thefields ofmachine learning and signal processing because of their diverse
applications such as feature extraction and visualization (see [8] and references therein). In
recent years, Nonnegative Matrix Factorization (NMF) [2, 32] has attracted a great deal of
attention as an effective dimensionality reduction method for large-scale nonnegative data,
and has been successfully applied to various tasks such as image processing [4, 34], acoustic
signal processing [14, 31], network analysis [18, 22, 50], mobile sensor calibration [12] and
so on. A key difference between NMF and other dimensionality reduction methods such
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Fig. 1 Nonnegative matrix
factorization

as the principal component analysis [51] is that the factor matrices obtained by NMF are
nonnegative and tend to be sparse [32]. Thus NMF can learn a parts-based representation of
the data [32].

Given an M × N nonnegative matrix X , NMF aims to decompose it into two nonnega-
tive factor matrices W and H of sizes M × K and N × K , respectively, so that WHT is
approximately equal to X , where K is much less than min{M, N } (see Fig. 1). The problem
of finding such factor matrices is often formulated as the constrained optimization problem:

minimize f (W , H) = 1

2

∥
∥X − WHT

∥
∥
2
F

subject to W ≥ 0M×K , H ≥ 0N×K ,
(1)

where ‖ · ‖F denotes the Frobenius norm of matrices, and 0I×J is the I × J matrix of all
zeros. For matrices P and Q of the same size, P ≥ Q means element-wise inequality.
The Frobenius norm can be replaced with one of several alternatives such as the I-divergence
[33], the Itakura-Saito divergence [14] and others [52]. Also, one ormore regularization terms
can be added to the objective function in order to enforce desirable properties on the factor
matrices [24, 25, 40, 41]. As with many machine learning methods, the �1-regularization
term is often used in NMF.

Various methods for finding a local optimal solution of the optimization problem (1) have
been developed so far. Note that finding a global optimal solution is difficult in general
because it is known that (1) is NP-hard [49]. Most of the conventional methods update some
or all of the elements of one factor matrix at a time because the objective function f (W , H) is
not jointly convex but convex inW or H . For example, the multiplicative update rule (MUR)
[33], which is widely known as a simple and easy-to-implement method, alternately updates
W and H according to the rule derived from strictly convex functions called the auxiliary
functions [33]. An important advantage of theMUR is that the value of the objective function
decreases monotonically as long as division by zero does not occur. However, division by
zero is certainly possible in the MUR because elements of the factor matrices can become
zero. For this reason, convergence of the factor matrices is not guaranteed. In fact, it was
shown experimentally that theMUR sometimes fails to converge to a stationary point [19]. To
solve this problem, some authors proposed modifiedMURs [16, 35]. For example, Gillis and
Glineur [16] proposed to replace all values less than a positive constant ε with ε after updating
W and H using the original MUR. Their modified MUR was later proved by Takahashi and
Hibi [46] to be globally convergent in the sense of Zangwill [53] (see Definition 1 of the
present paper) to a stationary point of the corresponding optimization problem:

minimize f (W , H) = 1

2

∥
∥X − WHT

∥
∥
2
F

subject to W ≥ ε1M×K , H ≥ ε1N×K ,
(2)

where 1I×J denotes the I × J matrix of all ones. Lin [35] proposed a different kind of
modified MUR and proved its global convergence to a stationary point of (1). However, this
modified MUR is much more complicated than the one mentioned above, and requires a
higher computational cost.
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Another well-known method for solving (1) is the Hierarchical Alternating Least Squares
(HALS) algorithm [6, 7],which ismuch faster than theMUR inmany cases, andmuch simpler
than other fast algorithms [17, 20, 26, 28, 36, 54]. The HALS algorithm updates one column
of the factor matrices at a time according to the rule derived from the partial derivative of the
objective function with respect to the column. The value of the objective function decreases
monotonically if the columns of the factor matrices remain nonzero throughout the iterations
[27]. However, as with the MUR, elements of the factor matrices can become zero and this
may cause division by zero. To solve this problem, some authors proposed modified update
rules for the HALS algorithm [6, 15]. The one proposed by Cichocki et al. [6] takes the
same approach as the modifiedMURs [16]. It replaces all values less than a positive constant
ε with ε after updating each column of the factor matrices using the original update rule.
Although the global convergence to a stationary point of (2) has been proved [29], this update
rule cannot obtain sparse factor matrices for the same reason as stated above. In contrast, the
update rule given by Gillis [15] not only allows variables to be zero but also avoids division
by zero. Furthermore, the value of the objective function decreases monotonically under this
update rule. However, the global convergence to a stationary point of (1) is not guaranteed
because the level set of the objective function is unbounded.

In this paper, we propose a novel update rule for the HALS algorithm, and prove its
global convergence to a stationary point of (1) using Zangwill’s global convergence theorem
[53]. The proposed update rule is a combination of the original update rule, the update rule
of Gillis [15] and a normalization step. The normalization step is elaborately designed to
guarantee not only the boundedness of variables but also the closedness of the point-to-set
mapping representing the proposed update rule. We also present two stopping conditions that
guarantee the finite termination of the HALS algorithm using the proposed update rule. In
addition, the practical usefulness of the proposed update rule is shown through experiments
using real-world datasets.

There are many variants of NMF. For example, NMF with additional constraints such as
orthogonality [9], symmetry [37] and separability [1, 11, 43] have been extensively studied.
These variants are important not only from a theoretical viewpoint but also in practice. In
fact, they have many applications in document clustering, community detection, dictionary
learning and so on. However, we do not consider these variants in this paper because they
need their own specialized algorithms.

The remainder of this paper is organized as follows. In Sect. 2, notations and definitions
used in later sections are presented. In Sect. 3, the conventional update rules of the HALS
algorithm and their convergence property are reviewed. In Sect. 4, a novel update rule of the
HALS algorithm is proposed and its global convergence is proved. In Sect. 5, two stopping
conditions are presented and the finite termination of the HALS algorithm using these stop-
ping conditions is proved. In Sect. 6, some experimental results are presented to show the
practical usefulness of the proposed update rule. Section 7 introduces some variants of the
HALS algorithm to which the proposed update rule can be applied. Section 8 concludes this
work and discusses a possible future direction.

2 Notations and definitions

The sets of integers, nonnegative integers, and positive integers are denoted by Z, Z+ and
Z++, respectively. Similarly, the sets of real numbers, nonnegative real numbers, and positive
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real numbers are denoted byR,R+ andR++, respectively. The I × J matrix of all zeros and
that of all ones are denoted by 0I×J and 1I×J , respectively.

For any vector v = (v1, v2, . . . , vI )
T ∈ R

I , �1- and �2-norms of v are denoted by ‖v‖1
and ‖v‖2, respectively. The notation [v]+ represents the vector of which the i-th element is
given by max{0, vi } for all i . Similarly, for any vector v ∈ R

I and any constant ε ∈ R++,
the notation [v]ε+ represents the vector of which the i-th element is given by max{ε, vi } for
all i .

The feasible region of the constrained optimization problem (1) is denoted by F . That
is, F = R

M×K+ × R
N×K+ . We call (W , H) ∈ R

M×K × R
N×K a stationary point of (1) if it

satisfies the Karush-Kuhn-Tucker (KKT) conditions:

W ≥ 0M×K , (3a)

H ≥ 0N×K , (3b)

∇W f (W , H) ≥ 0M×K , (3c)

∇H f (W , H) ≥ 0N×K , (3d)

∇W f (W , H) � W = 0M×K , (3e)

∇H f (W , H) � H = 0N×K , (3f)

where

∇W f (W , H) = (WHT − X)H,

∇H f (W , H) = (HWT − XT)W ,

and � represents the element-wise product. The set of stationary points of (1) is denoted by
S.

Similarly, the feasible region of the constrained optimization problem (2) is denoted by
Fε . That is,Fε = [ε,∞)M×K ×[ε,∞)N×K .We call (W , H) ∈ R

M×K ×R
N×K a stationary

point of (2) if it satisfies the KKT conditions:

W ≥ ε1M×K , (4a)

H ≥ ε1N×K , (4b)

∇W f (W , H) ≥ 0M×K , (4c)

∇H f (W , H) ≥ 0N×K , (4d)

∇W f (W , H) � (W − ε1M×K ) = 0M×K , (4e)

∇H f (W , H) � (H − ε1N×K ) = 0N×K , (4f)

The set of stationary points of (2) is denoted by Sε .
Many iterative algorithms for solving (1) have been proposed so far. Such an algo-

rithm starts with an initial point (W (0), H (0)) ∈ F and generates a sequence of points
{(W (t), H (t))}∞t=0 ⊂ F that is expected to converge to a stationary point of (1). Following to
Zangwill [53], we define the global convergence of an iterative algorithm for solving (1) as
follows.

Definition 1 (GlobalConvergence)An iterative algorithm for solving (1) is said to be globally
convergent to S if any sequence {(W (t), H(t))}∞t=0 ⊂ F generated by the algorithm has at
least one convergent subsequence and the limit of any convergent subsequence belongs to S.

Note thatDefinition1does notmean the convergenceof thewhole sequence {(W (t), H (t))}∞t=0
to a stationary point. Nevertheless, the notion of global convergence as defined above is of
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great practical importance because the finite termination of the algorithm is guaranteed if we
relax the KKT conditions in a proper way and use them as the stopping condition [29, 46,
47].

Using Zangwill’s global convergence theorem [53], we can obtain a theorem that gives a
sufficient condition for an iterative algorithm for solving (1) to be globally convergent to S.
Before presenting the theorem, we introduce two important notions: point-to-set mappings
and their closedness. We consider every iterative algorithm for solving (1) as an iterative
process of defining a set of candidate points in the next iteration from the point in the current
iteration, and selecting one from the candidate points in some way. Each algorithm is thus
characterized by how to define the set of candidate points, which is represented by a point-
to-set mapping from F to its subsets. For point-to-set mappings from F to its subsets, their
closedness is defined as follows.

Definition 2 (Closed Mapping) A point-to-set mapping A from F to its subsets is said
to be closed on D ⊆ F if, for any sequence {(P (t), Q(t))}∞t=0 ⊂ F that converges to
(P (∞), Q(∞)) ∈ D and any sequence {(U (t), V (t))}∞t=0 ⊂ F such that (U (t), V (t)) ∈
A(P (t), Q(t)) for all t ∈ Z+ and it converges to (U (∞), V (∞)) ∈ F , their limits satisfy
(U (∞), V (∞)) ∈ A(P (∞), Q(∞)).

It is often the case that the set A(W , H) consists of only one point inF for any (W , H) ∈
F . In this case, A can be considered as a point-to-point mapping from F to itself, and the
closedness defined above can be considered as the continuity of A.

Now we are ready to present a theorem that can be obtained as a direct consequence of
Zangwill’s global convergence theorem [53].

Theorem 1 Let A be the point-to-setmapping fromF to its subsets that represents an iterative
algorithm for solving (1). If A satisfies the following conditions then the algorithm is globally
convergent to S.

1. Any sequence {(W (t), H (t))}∞t=0 generated by the mapping A in such a way that
(W (0), H (0)) ∈ F and (W (t+1), H (t+1)) ∈ A(W (t), H(t)) for all t ∈ Z+ is contained in
a compact subset of F .

2. The mapping A does not increase the value of f . To be more specific, for any point
(W , H) ∈ F , the following statements hold true.

(a) If (W , H) /∈ S then f (U, V ) < f (W , H) for all (U, V ) ∈ A(W , H).
(b) If (W , H) ∈ S then f (U, V ) ≤ f (W , H) for all (U, V ) ∈ A(W , H).

3. The mapping A is closed on F \ S.

The global convergence of iterative algorithms for solving (2) and the closedness of point-
to-set mappings from Fε to its subsets can be defined in the same way as above. Also, if we
replace F and S in Theorem 1 with Fε and Sε , respectively, we obtain a theorem that gives
a sufficient condition for algorithms for solving (2) to be globally convergent to Sε .

Zangwill’s global convergence theorem iswell knownas a powerful framework for proving
the global convergence of iterative algorithms. For example, it was used in proving the global
convergence of the concave-convex procedure [45], the decomposition method for support
vector machines [48], and the modified MUR for NMF [47].
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3 HALS algorithm

In this section, we review the HALS algorithm [6] for solving the optimization problem (1)
and some of its variants. We also review their convergence property.

Let the k-th columns ofW and H be denoted bywk and hk , respectively. Then the problem
(1) is rewritten as follows:

minimize
1

2

∥
∥
∥
∥
∥
X −

K
∑

k=1

wkhTk

∥
∥
∥
∥
∥

2

F
subject to wk ≥ 0M×1, hk ≥ 0N×1, k = 1, 2, . . . , K .

(5)

The HALS algorithm, which can be viewed as a special case of the block coordinate descent
(BCD)method [27], updates 2K column vectorsw1,w2, . . . ,wK and h1, h2, . . . , hK one by
one in a fixed order so that the value of the objective function of (5) decreases monotonically.
When updatingwk , the HALS algorithm considers all other variables as constants and solves
the following subproblem:

minimize pk(wk) = 1

2

∥
∥RT

k − hkwT
k

∥
∥
2
F

subject to wk ≥ 0M×1

(6)

where

Rk = X −
K

∑

k̃=1,k̃ �=k

wk̃h
T
k̃
.

If hk �=0N×1, the objective function pk(wk) is strictly convex and minimized at wk=Rkhk/
‖hk‖22. Hence the subproblem (6) has the unique optimal solutionwk = [

Rkhk/‖hk‖22
]

+ [27,
Theorem 2]. Similarly, when updating hk , the HALS algorithm considers all other variables
as constants and solves the following subproblem:

minimize qk(hk) = 1

2

∥
∥Rk − wkhTk

∥
∥
2
F

subject to hk ≥ 0N×1.
(7)

Taking into account the correspondence between variables and constants in (6) and those
in (7), we can say that the subproblem (7) has the unique optimal solution hk =
[

RT
k wk/‖wk‖22

]

+ if wk �= 0M×1. Based on these analyses, the update rule described by

wk ←
[

Rkhk
‖hk‖22

]

+
, (8)

hk ←
[

RT
k wk

‖wk‖22

]

+
(9)

is obtained [7, 23, 27]. In this paper, we call the algorithm based on this update rule the HALS
algorithm [7] though it is also called the rank-one residue iteration algorithm [23].

For the HALS algorithm, the following result is known.

Theorem 2 (Kim et al. [27]) If the columns ofW and H remain nonzero throughout the iter-
ations, every limit point of the sequence

{

(W (t), H (t))
}∞
t=0 generated by the HALS algorithm

belongs to S.
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Note that the global convergence of the HALS algorithm is not guaranteed by this theo-
rem. There are two issues to consider. First, the assumption that the columns of W and H
remain nonzero throughout the iterations may not always be valid. Oncewk becomes zero for
example, hk cannot be updated because the right-hand side of (9) becomes an indeterminate
form. Second, even though the assumption is valid, it may occur that the sequence generated
by the HALS algorithm has no limit point.

A simple way to avoid indeterminate forms is to use

wk ←
[

Rkhk
‖hk‖22

]

ε+
, (10)

hk ←
[

RT
k wk

‖wk‖22

]

ε+
(11)

instead of (8) and (9), where ε is a small positive constant. This update rule was introduced by
Cichocki et al. [6] to avoid the numerical instability, but later proved to be globally convergent
as shown in the following theorem.

Theorem 3 (Kimura and Takahashi [29]) The HALS algorithm using the update rule
described by (10) and (11) is globally convergent to Sε .

Note that the update rule described by (10) and (11) does not perform NMF but positive
matrix factorization [39]. In addition, the limit of any convergent subsequence is not a sta-
tionary point of (1) but one of (2) as shown in Theorem 3. Hence this update rule produces
only dense factor matrices. One may claim that sparse factor matrices will be obtained if we
replace all ε in the factor matrices with zeros and that the pair of the resulting sparse factor
matrices will be close to S. However, it is not clear whether this claim always holds true or
not.

Another simple way to avoid indeterminate forms is to use

wk ← [Rkhk + δwk]+
‖hk‖22 + δ

, (12)

hk ←
[

RT
k wk + δhk

]

+
‖wk‖22 + δ

(13)

instead of (8) and (9), where δ is a positive constant. This update rule is derived from auxiliary
functions of pk(wk) and qk(hk) [15]. Details will be shown in the proof of Lemma 2. For
this update rule, the following result is known.

Theorem 4 (Gillis [15]) Every limit point of the sequence
{

(W (t), H (t))
}∞
t=0 generated by

the HALS algorithm using the update rule described by (12) and (13) belongs to S.

Just like Theorem 2 for the original HALS algorithm, Theorem 4 says nothing about the
global convergence of the update rule described by (12) and (13) to S. The existence of a limit
point is not guaranteed even though the objective function value decreases monotonically
along the sequence

{

(W (t), H(t))
}∞
t=0 generated by the update rule, because the level set of

the objective function f (W , H) is unbounded.
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4 New update rule and its global convergence

In this section, we propose a new update rule of the HALS algorithm and prove that it is
globally convergent to S.

4.1 Proposed update rule

The update rule we propose in this paper is described by

wk ← [Rkhk + δwk]+
‖hk‖22 + δ

, (14)

wk ←
{

wk/‖wk‖2, if wk �= 0M×1,

uk, otherwise,
(15)

hk ← [

RT
k wk

]

+ (16)

where δ is a positive constant and uk is an arbitrary nonnegative unit vector. It is clear
that division by zero never occurs in the proposed update rule. The first formula (14) is the
same as (12). The second formula (15) is the normalization procedure for wk . The third
formula (16) is used instead of (9) because ‖wk‖22 = 1 always holds when hk is updated. The
normalization procedure plays an important role when we prove that any sequence generated
by the proposed update rule is contained in a compact subset of F .

In this paper, we focus our attention on the case where the columns of W are normalized,
but the alternative case where the columns of H are normalized can be dealt with in the same
way. Here we should note that the modified MUR [35] also uses a normalization procedure,
but this is slightly different from ours. It uses 0M×1 instead of uk in (15).

A formal statement of the proposed update rule is presented in Algorithm 1. Note that
Step 4 is added to facilitate the global convergence analysis, though it is not necessary for
practical purpose. Note also that Steps 2 and 3 can be replaced with

wk ←
[

wk +
(

X − WHT
)

hk
‖hk‖22 + δ

]

+
and Step 6 can be replaced with

hk ←
[

hk + (

X − WHT)T
wk

]

+
for an efficient implementation (see Cichocki and Fan [5] for more details) . It is easy to
see that the proposed update rule has the same computational complexity per iteration as
the original update rule. The following theorem establishes the global convergence of the
proposed update rule.

Theorem 5 The HALS algorithm using the update rule shown in Algorithm 1 is globally
convergent to S.

This theorem can be proved by using Theorem 1. Details are shown in the next subsection.

4.2 Proof of Theorem 5

We prove Theorem 5 by using Theorem 1. Let the point-to-set mapping representing Algo-
rithm 1 be denoted by A. Also, let the point-to-set mappings corresponding to Steps 3, 4, 5
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Algorithm 1 Proposed Update Rule for NMF

Input: X ∈ R
M×N+ , (W , H) ∈ F , δ ∈ R++

Output: Updated (W , H) ∈ F
1: Set k ← 1.
2: Set Rk ← X − ∑K

k̃=1,k̃ �=k
wk̃h

T
k̃
.

3: Set wk ← [Rkhk + δwk ]+/(‖hk‖22 + δ).
4: Set hk ← hk‖wk‖2. (This step is not necessary for practical purpose.)
5: If wk �= 0M×1 then set wk ← wk/‖wk‖2. Otherwise set wk ← uk where uk is an arbitrary nonnegative

unit vector.
6: Set hk ← [RT

k wk ]+.
7: If k = K return (W , H) and stop. Otherwise set k ← k + 1 and go to Step 2.

and 6 of Algorithm 1 be denoted by DW
k , SHk , S

W
k and DH

k , respectively. Then A is expressed
as

A = DH
K ◦ SWK ◦ SHK ◦ DW

K ◦ · · · ◦ DH
1 ◦ SW1 ◦ SH1 ◦ DW

1

where ◦ denotes the composition of mappings. The mappings DW
k , SHk and DH

k are given by

DW
k (W , H) = {(U, V ) ∈ F | uk = [Rkhk + δwk]+/(‖hk‖22 + δ),

uk̃ = wk̃ for all k̃ �= k, V = H},
SHk (W , H) = {(U, V ) ∈ F |U = W , vk = hk‖wk‖2, vk̃ = hk̃ for all k̃ �= k},
DH
k (W , H) = {(U, V ) ∈ F |U = W , vk = [Rkwk]+, vk̃ = hk̃ for all k̃ �= k},

and the mapping SWk (W , H) is given by

SWk (W , H) = {(U, V ) ∈ F | uk = wk/‖wk‖2, uk̃ = wk̃ for all k̃ �= k, V = H}
if wk �= 0M×1, and

SWk (W , H) = {(U, V ) ∈ F | ‖uk‖2 = 1, uk̃ = wk̃ for all k̃ �= k, V = H},
otherwise. Note that the set DW

k (W , H) consists of only one point inF , which is represented
as a continuous function of (W , H). The same can be said for SHk (W , H) and DH

k (W , H).
We now prove that the proposed update rule satisfies the second condition in Theorem 1.

Let us begin with the definition and an important property of the auxiliary function [33]
because it plays an important role in our proof.

Definition 3 (Auxiliary Function [33]) For a function g : R+ → R, a two-variable function
ḡ : R+ × R+ → R is called an auxiliary function of g if the following conditions hold:

1. ḡ(x, x) = g(x) for all x ∈ R+,
2. ḡ(x, y) ≥ g(x) for all x, y ∈ R+.

Lemma 1 Let ḡ : R+ × R+ → R be an auxiliary function of g : R+ → R. If the inequality
ḡ(a, b) ≤ ḡ(b, b) holds for nonnegative numbers a and b then g(a) ≤ g(b). In particular, if
ḡ(a, b) < ḡ(b, b) then g(a) < g(b).

Proof If ḡ(a, b) ≤ ḡ(b, b), we have

g(a) ≤ ḡ(a, b) ≤ ḡ(b, b) = g(b). (17)
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The first inequality follows from the second condition in Definition 3 and the equality follows
from the first condition in Definition 3. If ḡ(a, b) is strictly less than ḡ(b, b), it is clear from
(17) that g(a) < g(b). ��

Using Lemma 1, we obtain the following three lemmas.

Lemma 2 The objective function f (W , H) is nonincreasing under the proposed update rule
shown in Algorithm 1.

Proof The objective function is nonincreasing under the composite mapping SWk ◦ SHk for
all k because the value of wkhTk does not change before and after the composite mapping
is performed. Also, the objective function is nonincreasing under DH

k for all k because
hk = [RT

k wk]+ is the unique optimal solution of (7) when ‖wk‖2 = 1. So it suffices for us
to show that the objective function is nonincreasing under DW

k for all k.
When the mapping DW

k is performed, only wk = [w1k, w2k, . . . , wMk]T is updated. We
thus consider all variables other than wk as constants, and show that the value of pk(wk), the
objective function of (6), does not increase. Note that pk(wk) is rewritten as

pk(wk) =
M

∑

m=1

pmk(wmk)

where

pmk(x) = 1

2

∥
∥(r rm)T − hk x

∥
∥
2
2

= 1

2
‖hk‖22x2 − r rmhk x + 1

2
‖r rm‖22 (18)

and r rm is the m-th row of Rk . For the function pmk(x), we define a two-variable function
p̄mk(x, y) as follows:

p̄mk(x, y) = pmk(x) + δ

2
(x − y)2 (19)

where δ is a positive constant used in Algorithm 1. It is clear that p̄mk(x, y) is an auxiliary
function of pmk(x) and strongly convex in both x and y (but not jointly) [15, 42]. For each
value of y, the minimum point x∗ of p̄mk(x, y) in R+ is uniquely determined as

x∗ =
[

r rmhk + δy
]

+
‖hk‖22 + δ

. (20)

Therefore, by Lemma 1, we have

pmk(x
∗) ≤ pmk(y).

Substituting y = wmk into this inequality, we have

pmk

([

r rmhk + δwmk
]

+
‖hk‖22 + δ

)

≤ pmk(wmk)

from which we have

pk

(

[Rkhk + δwk]+
‖hk‖22 + δ

)

=
M

∑

m=1

pmk

([

r rmhk + δwmk
]

+
‖hk‖22 + δ

)
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≤
M

∑

m=1

pmk(wmk)

= pk(wk).

This means that f (W , H) is nonincreasing under DW
k . ��

Lemma 3 A point (W∗, H∗) is a stationary point of (1) if and only ifwk is a stationary point
of (6) with hk = h∗

k for k = 1, 2, . . . , K and hk is a stationary point of (7) with wk = w∗
k

for k = 1, 2, . . . , K.

Proof We omit the proof because it is similar to [29, Lemma 3]. ��
Lemma 4 For any (W , H) ∈ F , the following statements hold true.

1. If (W , H) /∈ S then f (U, V ) < f (W , H) for all (U, V ) ∈ A(W , H).
2. If (W , H) ∈ S then f (U, V ) ≤ f (W , H) for all (U, V ) ∈ A(W , H).

Proof It is clear from Lemma 2 that the second statement holds true. Thus we only have to
consider the first statement. Let (W , H) be any point in F \ S. It follows from Lemma 3
that there exists at least one k such that i) wk is not a stationary point of (6) or ii) hk is not a
stationary point of (7).

In the first case, there exists at least one m such that p′
mk(wmk) < 0 if wmk = 0 and

p′
mk(wmk) �= 0 if wmk > 0, where pmk(x) is given by (18). For such an m, the auxiliary

function p̄mk(x, y) of pmk(x), which is given by (19), satisfies

∂ p̄mk

∂x
(wmk, wmk) = p′

mk(wmk) + δ(wmk − wmk) = p′
mk(wmk)

which is negative if wmk = 0 and nonzero if wmk > 0. This means that x = wmk is not
the unique minimum point of p̄mk(x, wmk). Hence p̄mk(x∗, wmk) < p̄mk(wmk, wmk) where
x∗ is the unique minimum point given by (20). From this inequality and Lemma 1, we have
pmk(x∗) < pmk(wmk) which implies that

pk

(

[Rkhk + δwk]+
‖hk‖22 + δ

)

< pk(wk).

Therefore, f (W , H) strictly decreases under the mapping A.
In the second case, we can show in the sameway as above that f (W , H) strictly decreases

under the mapping A. ��
We next prove that the proposed update rule satisfies the first condition in Theorem 1. To

do so, for any point (W (0), H (0)) in F , we define the set L(W (0),H(0)) as follows:

L(W (0),H(0)) = {(W , H) ∈ F | f (W , H) ≤ f (W (0), H(0)), ‖wk‖2 = 1 for all k}.
Note that this is not a level set of f because of the conditions that ‖wk‖2 = 1 for all k. The
next lemma shows the boundedness of this set.

Lemma 5 The set L(W (0),H(0)) is bounded for any (W (0), H(0)) ∈ F .

Proof Let (W , H) be any point inL(W (0),H(0)). It suffices for us to show that ‖hk‖2 is bounded
for k = 1, 2, . . . , K . Because qk(hk) is convex, the inequality

qk(hk) ≥ qk(v) + ∇qk(vk)
T(hk − v)
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= qk(v) − (

RT
k wk − ‖wk‖22v

)T
(hk − v)

= qk(v) − (

RT
k wk − v

)T
(hk − v)

holds for any v ∈ R
N [3]. Substituting v = RT

k wk + 1N×1, we have

qk(hk) ≥ 1

2
‖Rk − wk(RT

k wk + 1N×1)
T‖2F + 1TN×1(hk − RT

k wk − 1N×1).

Hence, the inequality qk(hk) ≤ f (W (0), H(0)) implies that

1TN×1(hk − RT
k wk − 1N×1) ≤ f (W (0), H (0))

from which we have

‖hk‖2 ≤ ‖hk‖1
≤ f (W (0), H (0)) + 1TN×1R

T
k wk + N

≤ f (W (0), H (0)) + 1TN×1X
T1M×1 + N .

This completes the proof. ��
Using Lemma 5, we obtain the following lemma.

Lemma 6 Any sequence
{

(W (t), H (t))
}∞
t=0 generated by Algorithm 1 is contained in a com-

pact subset of F .

Proof We easily see from Step 5 of Algorithm 1 that ‖w(t)
k ‖2 = 1 for all k and t ∈ Z++,

where w
(t)
k is the k-th column of W (t). Also, it follows from Lemma 2 that f (W (t), H(t)) ≤

f (W (0), H(0)) for all t ∈ Z+. Therefore (W (t), H(t)) ∈ L(W (0),H(0)) for all t ∈ Z++.
Because L(W (0),H(0)) is bounded as shown in Lemma 5, the sequence {(W (t), H(t))}∞t=0 is
contained in a compact subset of F . ��

We finally prove that the proposed update rule satisfies the third condition in Theorem 1.
The next lemma shows the closedness of the point-to-set mappings SW1 , SW2 , . . . , SWK .

Lemma 7 The point-to-set mappings SW1 , SW2 , . . . , SWK are closed on F .

Proof Let {(W (t), H (t))}∞t=0 and {(U (t), V (t))}∞t=0 be any two convergent sequences inF that
satisfy (U (t), V (t)) ∈ SWk (W (t), H (t)) for all t ∈ Z+. Let (W (∞), H(∞)) and (U (∞), V (∞))

be the limits of these two sequences. It is clear from the definition of SWk that ‖u(t)
k ‖2 = 1

for all t ∈ Z+, u(t)
k̃

= w
(t)
k̃

for all k̃ �= k and t ∈ Z+, and V (t) = H(t) for all t ∈ Z+. We

first consider the case where w
(∞)
k �= 0M×1. In this case, SWk (W (∞), H (∞)) consists only of

the point
((

w
(∞)
1 , . . . ,w

(∞)
k−1,

w
(∞)
k

‖w(∞)
k ‖2

,w
(∞)
k+1, . . . ,w

(∞)
K

)

, H (∞)

)

and {(U (t), V (t))}∞t=0 converges to it. We next consider the case wherew
(∞)
k = 0M×1. In this

case, SWk (W (∞), H(∞)) is the set of all (W , H) ∈ F such that ‖wk‖2 = 1, wk̃ = w
(∞)

k̃
for

all k̃ �= k and H = H (∞). Also, (U (∞), V (∞)) satisfies ‖u(∞)
k ‖2 = 1, u(∞)

k̃
= w

(∞)

k̃
for all

k̃ �= k and V (∞) = H (∞). Therefore, we have (U (∞), V (∞)) ∈ SWk (W (∞), H(∞)). ��
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Given a point (W (0), H(0)) ∈ F , we define L1
(W (0),H(0))

, L2
(W (0),H(0))

and L3
(W (0),H(0))

as

follows:

L1
(W (0),H(0))

= {(W , H) ∈ F | f (W , H) ≤ f (W (0), H (0)),

‖wk‖2 ≤ μk and ‖hk‖2 ≤ νk for all k}
L2

(W (0),H(0))
= {(W , H) ∈ F | f (W , H) ≤ f (W (0), H (0)),

‖wk‖2 ≤ μk + σmax(X)νk/δ and ‖hk‖2 ≤ νk for all k},
L3

(W (0),H(0))
= {(W , H) ∈ F | f (W , H) ≤ f (W (0), H (0)),

‖wk‖2 ≤ μk + σmax(X)νk/δ and

‖hk‖2 ≤ νk(μk + σmax(X)νk/δ) for all k}
where

μk = max{1, ‖w(0)
k ‖2},

νk = max{ f (W (0), H(0)) + 1TN×1X
T1M×1 + N , ‖h(0)

k ‖2}
for k = 1, 2, . . . , K and σmax(X) is the largest singular value of X . It is clear that all of
the three sets defined above are compact subsets of F . It is also clear that (W (0), H (0)) ∈
L1

(W (0),H(0))
. Furthermore, the following lemma holds.

Lemma 8 The following statements are true for k = 1, 2, . . . , K.

1. If (W , H) ∈ L1
(W (0),H(0))

then DW
k (W , H) ⊆ L2

(W (0),H(0))
.

2. If (W , H) ∈ L2
(W (0),H(0))

then SHk (W , H) ⊆ L3
(W (0),H(0))

.

3. If (W , H) ∈ L3
(W (0),H(0))

then SWk (W , H) ⊆ L(W (0),H(0)).

4. If (W , H) ∈ L(W (0),H(0)) then DH
k (W , H) ⊆ L1

(W (0),H(0))
.

Proof We first prove the first statement. Suppose that (W , H) ∈ L1
(W (0),H(0))

. Then ‖wk‖2 ≤
μk and ‖hk‖2 ≤ νk hold. Using these inequalities, we have

∥
∥
∥
∥
∥

[Rkhk + δwk]+
‖hk‖22 + δ

∥
∥
∥
∥
∥
2

≤
∥
∥
∥
∥

Xhk + δwk

δ

∥
∥
∥
∥
2

≤ 1

δ
‖Xhk‖2 + ‖wk‖2

≤ σmax(X)

δ
‖hk‖2 + ‖wk‖2

≤ σmax(X)

δ
νk + μk

which means that DW
k (W , H) ⊆ L2

(W (0),H(0))
.

We next prove the second statement. Suppose that (W , H) ∈ L2
(W (0),H(0))

. Then ‖wk‖2 ≤
(σmax(X)νk/δ + μk) and ‖hk‖2 ≤ νk hold. Using these inequalities, we have

‖hk‖2‖wk‖2 ≤ νk

(
σmax(X)

δ
νk + μk

)

which means that SHk (W , H) ⊆ L3
(W (0),H(0))

.
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The third statement is clear from the definition of the point-to-set mapping SWk , and the
fourth statement is clear from the proof of Lemma 5. ��

From Lemma 8, we can restrict the domains of the point-to-set mappings DW
k , SHk , S

W
k ,

DH
k to L1

(W (0),H(0))
, L2

(W (0),H(0))
, L3

(W (0),H(0))
and L(W (0),H(0)), respectively. This means that

we can restrict the domain of the point-to-set mapping A to L1
(W (0),H(0))

. The next lemma

shows the closedness of A restricted to L1
(W (0),H(0))

.

Lemma 9 For any (W (0), H (0)) ∈ F , the point-to-set mapping A restricted to L1
(W (0),H(0))

is closed on L1
(W (0),H(0))

.

Proof It is clear that the composite mapping SHk ◦ DW
k from L1

(W (0),H(0))
to the subsets of

L3
(W (0),H(0))

is closed on its domain for all k. Also, it follows fromLemma 7 and the continuity

of DH
k that the composite mapping DH

k ◦ SWk fromL3
(W (0),H(0))

to the subsets ofL1
(W (0),H(0))

is

closed on its domain for all k. BecauseL3
(W (0),H(0))

is a compact subset ofF , by [53, Corollary

4.2.1], the composite mapping (DH
k ◦ SWk ) ◦ (SHk ◦ DW

k ) from L1
(W (0),H(0))

to the subsets of

L1
(W (0),H(0))

is closed on its domain for all k. Furthermore, since L1
(W (0),H(0))

is a compact

subset of F , by [53, Corollary 4.2.1], we can conclude that A, which is a composition of the
mappings (DH

k ◦ SWk ) ◦ (SHk ◦ DW
k ), restricted to L1

(W (0),H(0))
is closed on its domain. ��

We should note that even if uk in Step 5 of Algorithm 1 is replaced with a constant
nonnegative unit vector such as (1/

√
M)1M×1 and (1, 0, 0, . . . , 0)T we can prove Theorem 5

without changing the definition of the mapping SWk .

5 Stopping conditions

Wehaveproved that theHALSalgorithmusing theproposedupdate rule shown inAlgorithm1
is globally convergent to S in the sense of Definition 1. Therefore, combining this update rule
with an appropriate stopping condition, we can design an algorithm that always stops in a
finite number of iterations. In this section, we consider two approaches for deriving stopping
conditions.

5.1 Relaxed KKT conditions

The first approach, which has already been used in the literature [29, 30, 38, 44, 46, 47], is
to relax the KKT conditions (3) as follows:

{

(∇W f (W , H))mk ≥ −κ1, if wmk ≤ κ2,
∣
∣(∇W f (W , H))mk

∣
∣ ≤ κ1, if wmk > κ2,

m = 1, 2, . . . , M, k = 1, 2, . . . , K , (21)
{

(∇H f (W , H))nk ≥ −κ1, if hnk ≤ κ2,
∣
∣(∇H f (W , H))nk

∣
∣ ≤ κ1, if hnk > κ2,

n = 1, 2, . . . , N , k = 1, 2, . . . , K (22)
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Algorithm 2 HALS Algorithm for NMF using Algorithm 1 and Relaxed KKT Conditions.

Input: X ∈ R
M×N+ , (W (0), H(0)) ∈ F , δ, κ1, κ2 ∈ R++

Output: (W , H) ∈ F satisfying (21) and (22)
1: Set (W , H) ← (W (0), H(0)).
2: If (21) and (22) hold, return (W , H) and stop.
3: Update (W , H) using Algorithm 1, and go to Step 2.

where κ1 and κ2 are positive constants.
The HALS algorithm for NMF using Algorithm 1 and the stopping condition described

by (21) and (22) is shown in Algorithm 2. For this algorithm, the following theorem holds.
The proof is omitted because it is similar to that of Theorem 2 in [46].

Theorem 6 Algorithm 2 stops in a finite number of iterations.

5.2 Projected gradient norm

The second approach is to make use of the projected gradient [36]. To be more specific, the
inequality

ψτ2(W , H) ≤ τ1ψτ2(W
(0), H (0)) (23)

is used as the stopping condition, where τ1 and τ2 are positive constants, and ψτ2(W , H) is
defined as

ψτ2(W , H) =
√

∥
∥GW

τ2
(W , H)

∥
∥
2
F

+ ∥
∥GH

τ2
(W , H)

∥
∥
2
F
.

ThenotationsGW
τ2

(W , H) andGH
τ2

(W , H)denote amodifiedprojected gradientswith respect
to W and H , respectively, which are defined by

(GW
τ2

(W , H))mk =
{

min{0, (∇W f (W , H))mk}, if wmk ≤ τ2,

(∇W f (W , H))mk, if wmk > τ2

and

(GH
τ2

(W , H))nk =
{

min{0, (∇H f (W , H))nk}, if hnk ≤ τ2,

(∇H f (W , H))nk, if hnk > τ2.

Note that our definition of the projected gradient is slightly different from the one used in
the literature [20, 26, 27, 36], which corresponds to the case where τ2 = 0. It is clear that
if (W , H) is a stationary point of (1) then (23) is satisfied because ψτ2(W , H) = 0 holds.
Therefore, (23) is considered as relaxed KKT conditions.

The proposed HALS algorithm for NMF using Algorithm 1 and the stopping condition
(23) is shown in Algorithm 3. For this algorithm, the following theorem holds.

Theorem 7 Algorithm 3 stops in a finite number of iterations.

Proof The proof is done by contradiction. We first assume that Algorithm 3 does not stop
for some (W (0), H(0)) ∈ F . Let {(W (t), H(t))}∞t=0 be an infinite sequence generated by
Algorithm 3. Then, we see from Step 1 that ψτ2(W

(0), H(0)) must be positive. Also, by
Theorem 5, this sequence has at least one subsequence that converges to a stationary point
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of (1). Let {(W (ti ), H (ti ))}∞i=0 be one of such subsequences and (W (∞), H (∞)) ∈ F be its
limit. Because the limit is a stationary point of (1), it satisfies

(

∇W f (W (∞), H(∞))
)

mk

{

≥ 0, if w
(∞)
mk = 0,

= 0, if w
(∞)
mk > 0,

m = 1, 2, . . . , M, k = 1, 2, . . . , K ,

(

∇H f (W (∞), H (∞))
)

nk

{

≥ 0, if h(∞)
nk = 0,

= 0, if h(∞)
nk > 0,

n = 1, 2, . . . , N , k = 1, 2, . . . , K .

Let us define a positive constant μ as

μ = 1√
MK + NK

τ1ψτ2(W
(0), H (0)).

Because∇W f (W , H) and∇H f (W , H) are continuous onF , the following statements hold
true.

1. For any (m, k) such that (∇W f (W (∞), H (∞)))mk = 0, there exists a positive integer IWmk
such that

∣
∣
∣(∇W f (W (ti ), H (ti )))mk

∣
∣
∣ ≤ μ

for all i ≥ IWmk .
2. For any (m, k) such that (∇W f (W (∞), H (∞)))mk > 0, there exists a positive integer IWmk

such that

(∇W f (W (ti ), H (ti )))mk > 0, w
(ti )
mk ≤ τ2

for all i ≥ IWmk .
3. For any (n, k) such that (∇H f (W (∞), H (∞)))nk = 0, there exists a positive integer IHnk

such that
∣
∣
∣(∇H f (W (ti ), H(ti )))nk

∣
∣
∣ ≤ μ

for all i ≥ IHnk .
4. For any (n, k) such that (∇H f (W (∞), H (∞)))nk > 0, there exists a positive integer IHnk

such that

(∇H f (W (ti ), H(ti )))nk > 0, h(ti )
nk ≤ τ2

for all i ≥ IHnk .

From these statements, we see that
∣
∣
∣(GW

τ2
(W (ti ), H (ti )))mk

∣
∣
∣ ≤ μ, m = 1, 2, . . . , M, k = 1, 2, . . . , K ,

∣
∣
∣(GH

τ2
(W (ti ), H (ti )))nk

∣
∣
∣ ≤ μ, n = 1, 2, . . . , N , k = 1, 2, . . . , K

for all i ≥ I = max{IW11 , . . . , IWMK , IH11, . . . , I
H
NK }. Therefore, the inequality

ψτ2(W
(ti ), H (ti )) =

√

‖GW
τ2

(W (ti ), H(ti ))‖2F + ‖GH
τ2

(W (ti ), H(ti ))‖2F
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Algorithm 3 HALS Algorithm for NMF using Algorithm 1 and Projected Gradient-Based
Stopping Condition

Input: X ∈ R
M×N+ , (W (0), H(0)) ∈ F , δ, τ1, τ2 ∈ R++

Output: (W , H) ∈ F satisfying (23)
1: If ψτ2 (W

(0), H(0)) = 0, return (W (0), H(0)) and stop. Otherwise set (W , H) ← (W (0), H(0)) and
E ← X − WHT.

2: Update (W , H) and E using Algorithm 1.
3: If (23) holds, return (W , H) and stop. Otherwise go to Step 2.

Table 1 Statistics of the datasets
used in the experiments

Features (M) Instances (N ) Classes (K )

Olivetti 4096 400 40

CLUTO (tr41) 7454 878 10

≤ μ
√
MK + NK

= τ1ψτ2(W
(0), H (0))

holds for all i ≥ I . This means that the stopping condition (23) holds in a finite number of
iterations. However, this contradicts the assumption that Algorithm 3 does not stop. ��

6 Numerical experiments

In order to examine the practical performance of the proposed update rule, the authors con-
ducted numerical experiments using the real-world datasets: Olivetti1 and CLUTO2 (tr41).
The former is a dataset of face images, and the latter is that of documents. The statistics
of these two datasets is shown in Table 1. In the experiments, two global-convergence-
guaranteed update rules were applied to the nonnegative matrices obtained from the datasets.
One is Algorithm 1 (denoted as ‘proposed’) and the other is the update rule described by
(10) and (11) (denoted as ‘positive’). These two update rules are compared in terms of the
evolution of the objective function value and the number of unsatisfied inequalities in the
relaxed KKT conditions, and the characteristics of the obtained factor matrices.

Experimental setup is shown in Table 2. The value of δ in the proposed update rule is
set to 10−8 in all experiments, while the value of ε in the positive one is set to 10−4 or
10−8 depending on the experiment. The iteration is terminated when the stopping condition
described by (21) and (22) is satisfied or the number of iterations reaches 500. The values
of κ1 and κ2 in the stopping condition are set to 1.0 and 2ε, respectively, in all experiments.
Note that the finite termination of the positive update rule is guaranteed if κ2 is greater than
ε. This can be proved in the same way as Theorem 7 (see [29] for details). Three different
initial solutions are generated for each dataset in such a way that each element is drawn from
independent uniform distributions on the intervals [0, 1], [0, 0.5] and [0, 0.25] which are
called the ‘large’, ‘medium’ and ‘small’ initial solutions, respectively.

Results of Experiment 1 are summarized in Fig. 2 andTable 3. Figure 2 shows the evolution
of the objective function value and the number of unsatisfied inequalities in (21) and (22).

1 https://scikit-learn.org/0.19/datasets/olivetti_faces.html.
2 http://glaros.dtc.umn.edu/gkhome/views/cluto.
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Table 2 Experimental setup Dataset δ ε κ1 κ2

Experiment 1 Olivetti 10−8 10−4 1.0 2 × 10−4

Experiment 2 Olivetti 10−8 10−8 1.0 2 × 10−8

Experiment 3 CLUTO (tr41) 10−8 10−4 1.0 2 × 10−4

Experiment 4 CLUTO (tr41) 10−8 10−8 1.0 2 × 10−8
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Fig. 2 The evolution of the objective function value (left column) and the number of unsatisfied inequalities
in (21) and (22) (right column) in Experiment 1. The first, second and third rows show the results for the large,
medium and small initial solutions, respectively
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Table 3 Characteristics of the solutions obtained by the proposed and positive update rules in Experiment 1.
The notation ‘positive+replacement’ means that all ε in the factor matrices obtained by the positive update
rule are replaced with zero

Initial solution Large Medium Small

Iterations (proposed) 271 245 234

Iterations (positive) 500 500 83

Objective function value (proposed) 2651.977 2665.153 2650.139

Objective function value (positive) 2619.553 2622.726 2786.625

Variables at the lower bound (proposed) 40017 40850 39429

Variables at the lower bound (positive) 41630 40340 42450

Unsatisfied inequalities (proposed) 0 0 0

Unsatisfied inequalities (positive) 7059 4729 0

Unsatisfied inequalities (positive+replacement) 40639 28311 4

We easily see from the figure that the two update rules decrease the objective function value
in a similar way until one of them satisfies the stopping condition. In contrast, the behavior
of these update rules with respect to the number of unsatisfied inequalities is quite different.
The proposed update rule decreases the number at a similar rate for all the initial solutions,
and satisfies the stopping condition between 200 and 300 iterations. This is because the
normalization process is included in the proposed update rule. The positive update rule
decreases the number very slowly, and cannot satisfy the stopping condition in 500 iterations
for the large and medium initial solutions, while for the small initial solution it decreases the
number very fast and satisfies the stopping condition in less than 100 iterations.

Table 3 shows the characteristics of the solutions obtained by the proposed and positive
update rules. Some important facts are observed in this table. The first one is that a small
objective function value does not necessarily mean that the number of unsatisfied inequalities
is small. In fact, the solution obtained by the positive update rule for the large initial solution
gives the smallest objective function value and the largest number of unsatisfied inequalities.
Also, the solution obtained by the positive update rule for the small initial solution gives the
largest objective function value but satisfies all the inequalities. The second fact is that about
a quarter of the variables are at the lower bound in all cases. Hence the solutions obtained
by the proposed update rule are sparse because the lower bound is zero. In contrast, the
solutions obtained by the positive update rule are dense because the lower bound is a positive
constant ε. The third fact is that the replacement of all ε with zero in each solution obtained
by the positive update rule increases the number of unsatisfied inequalities. In particular,
the replacement changes a solution that satisfies the stopping condition to another one that
does not. It is thus not always possible to find a sparse solution that satisfies the relaxed
KKT conditions using the positive update rule, while we can always do it using the proposed
update rule. This is an advantage of the proposed update rule against the positive one.

Results of Experiment 2 are summarized in Fig. 3 and Table 4 just like Experiment 1. The
evolution of the objective function value and the number of unsatisfied inequalities in (21)
and (22) shown in Fig. 3 are similar to those in Experiment 1 (see Fig. 2), though the values
of ε and κ2 are quite different. The characteristics shown in Table 4 are similar to those in
Table 3 but there is one important difference. The number of unsatisfied inequalities is zero
before and after the replacement of all ε with zero in the solution obtained by the positive
update rule for the small initial solution. This indicates that we can find a sparse solution that
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Fig. 3 The evolution of the objective function value (left column) and the number of unsatisfied inequalities
in (21) and (22) (right column) in Experiment 2. The first, second and third rows show the results for the large,
medium and small initial solutions, respectively

satisfies the relaxed KKT conditions using the positive update rule if the magnitude of the
initial solution and the value of ε are sufficiently small. However, it is difficult in general to
know in advance how small these values should be.

Results of Experiment 3 are summarized in Fig. 4 and Table 5. The evolution of the
objective function value and the number of unsatisfied inequalities in (21) and (22) shown
in Fig. 4 are similar to those in Experiment 1 (see Fig. 2), though the dataset is different.
The characteristics shown in Table 5 are also similar to those in Table 3 but there are two
main differences. One is that a solution with a smaller objective function value satisfies more
inequalities in (21) and (22). The other is that the number of variables at the lower bound in
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Table 4 Characteristics of the solutions obtained by the proposed and positive update rules in Experiment 2

Initial solution Large Medium Small

Iterations (proposed) 271 245 234

Iterations (positive) 500 500 84

Objective function value (proposed) 2651.977 2665.153 2650.139

Objective function value (positive) 2632.812 2612.250 2783.772

Variables at the lower bound (proposed) 40017 40850 39429

Variables at the lower bound (positive) 41912 40942 42430

Unsatisfied inequalities (proposed) 0 0 0

Unsatisfied inequalities (positive) 21481 13133 0

Unsatisfied inequalities (positive+replacement) 45555 34177 0

Table 5 Characteristics of the solutions obtained by the proposed and positive update rules in Experiment 3

Initial solution Large Medium Small

Iterations (proposed) 286 328 271

Iterations (positive) 500 500 182

Objective function value (proposed) 504367.3 504367.3 504367.3

Objective function value (positive) 504440.2 504402.8 504386.0

Variables at the lower bound (proposed) 42377 42377 42378

Variables at the lower bound (positive) 49595 47846 46570

Unsatisfied inequalities (proposed) 0 0 0

Unsatisfied inequalities (positive) 71 2 0

Unsatisfied inequalities (positive+replacement) 5556 1041 49

Table 6 Characteristics of the solutions obtained by the proposed and positive update rules in Experiment 4

Initial solution Large Medium Small

Iterations (proposed) 286 328 271

Iterations (positive) 209 245 182

Objective function value (proposed) 504367.3 504367.3 504367.3

Objective function value (positive) 504367.3 504367.3 504367.3

Variables at the lower bound (proposed) 42377 42377 42378

Variables at the lower bound (positive) 42384 42377 42385

Unsatisfied inequalities (proposed) 0 0 0

Unsatisfied inequalities (positive) 0 0 0

Unsatisfied inequalities (positive+replacement) 0 0 0

each solution obtained by the positive update rule is higher than that in the corresponding
solution obtained by the proposed update rule.

Results of Experiment 4 are summarized in Fig. 5 and Table 6. As for the proposed
update rule, the evolution of the objective function value and the number of unsatisfied
inequalities in (21) and (22) are similar to those in Experiment 3 (see Fig. 4). In contrast,
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Fig. 4 The evolution of the objective function value (left column) and the number of unsatisfied inequalities
in (21) and (22) (right column) in Experiment 3. The first, second and third rows show the results for the large,
medium and small initial solutions, respectively

the behavior of the positive update rule is quite different from that in Experiment 3. The
number of unsatisfied inequalities decreases faster than the proposed update rule for all the
initial solutions, and reaches zero in less than 200 iterations. All the solutions obtained by the
proposed and positive update rules have almost the same objective function value and very
similar numbers of unsatisfied inequalities, as shown in Table 6. In addition, the number of
unsatisfied inequalities is not affected by the replacement of all ε with zero for all the solutions
obtained by the positive update rule. This indicates that we can find a sparse solution that
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Fig. 5 The evolution of the objective function value (left column) and the number of unsatisfied inequalities
in (21) and (22) (right column) in Experiment 4. The first, second and third rows show the results for the large,
medium and small initial solutions, respectively

satisfies the relaxed KKT conditions using the positive update rule if the magnitude of the
initial solution and the value of ε are properly selected.
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7 Applicability of proposed update rule to variants of HALS algorithm

In this section, we introduce some variants of the HALS algorithm to which our update rule
can be applied in order to guarantee the well-definedness and/or the global convergence. First
one is the accelerated HALS algorithm [17]. The idea behind this algorithm is very simple.
In each iteration,W is updated several times while H is fixed, and then H is updated several
times while W is fixed. It was shown through experiments using image and text datasets that
this algorithm significantly outperforms the original HALS algorithm [17]. Now we claim
that the global convergence of this algorithm is guaranteed if Algorithm 1 is incorporated
into it. In each iteration, the algorithm updates all columns of W several times using the
update rule in Step 3, next updates all columns of W and H using Steps 4 and 5 once, and
then updates all columns of H several times using the update rule in Step 6.

The secondone is the fast coordinate descent algorithmwith variable selection [26]. In each
iteration, M rows ofW are updated one by one and then N rows of H are updated one by one.
Each row of W or H is updated by repeating the following two steps until some condition
is satisfied: i) selection of one element based on the potential decrease in the objective
function value, and ii) update of the selected element. It was shown through experiments using
synthetic and real-world datasets that this algorithm is considerably faster than conventional
algorithms [26]. Again,we claim that the global convergence of this algorithm is guaranteed if
Algorithm 1 is incorporated into it. To bemore specific, when each row ofW or H is updated,
the update rule in Step 3 or Step 6 of Algorithm 1 can be used for both the computation of the
potential decrease in the objective function value and the update of the selected element. One
important point is that the normalization procedure in Steps 4 and 5 should be done between
the update of M rows of W and the update of N rows of H .

The third one is the randomized HALS algorithm [13] which is based on the probabilistic
framework for low-rank approximations [21]. In the first step, this algorithm constructs a
surrogate matrix B ∈ R

L×N with K < L � M as follows. First, X is multiplied by a
random matrix � ∈ R

N×L to get Y = X�. Next, a matrix Q ∈ R
M×L with orthogonal

columns is obtained by performing the QR-decomposition of Y . Finally, the surrogate matrix
is obtained by B = QTX . The surrogatematrix B obtained like this is expected to capture the
essential information of X . In the next step, this algorithm solves the optimization problem:

minimize
1

2

∥
∥
∥B − W̃ HT

∥
∥
∥

2

F
subject to QW̃ ≥ 0M×K , H ≥ 0N×K

by an iterative algorithm very similar to the HALS algorithm. It was shown through experi-
ments using hand-written digits and face image datasets that the randomizedHALS algorithm
has a substantially lower computational cost than the deterministic one, and attains almost
the same reconstruction error as the deterministic one [13]. The technique used in our update
rule can be easily applied to this algorithm in order to ensure that it is well-defined.

In addition to these three, there are many other algorithms to which our update rule can
be applied. One example is the distributed HALS algorithm for multiagent networks [10].
This algorithm is based on the update rule given by (10) and (11) to guarantee the global
convergence. By using one of our update rules, this algorithm can find a stationary point of
the original optimization problem (1).
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8 Conclusions

In this paper, we have proposed a novel update rule of the HALS algorithm for NMF, and
proved its global convergence using Zangwill’s global convergence theorem. The proposed
update rule has the same computational complexity per iteration as the update rule in the
original HALS algorithm. In addition, unlike the global-convergence-guaranteed update rules
in the literature [29, 30], the proposed update rule does not restrict the range of each variable
to a subset of R++. This allows us to obtain sparse factor matrices. We have also given two
types of stopping conditions and proved the finite termination of the proposed update rule
combined with these stopping conditions.

One future direction of this work is to extend our results to Nonnegative Tensor Factoriza-
tion (NTF) [7, 55] which is expected to be used in various applications such as recommender
systems [56], while the global convergence property has not yet been analyzed in depth.
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