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It sometimes happens that a father has an ugly son with nemgidg grace what-
ever, yet love will draw a veil over the parental eyes whiaimtbehold only cleverness
and beauty in place of defects, and in speaking to his fribredsill make those defects
out to be the signs of comeliness and intellect. |, howevln am but Don Quixote’s
stepfather, have no desire to go with the current of custemywould I, dearest reader,
beseech you with tears in my eyes as others do to pardon dookehe faults you
discover in this book; you are neither relative nor friend imay call your soul your
own and exercise your free judgment. You are in your own haus&e you are master
as the king is of his taxes, for you are familiar with the sgyifunder my cloak | kill
the king". All of which exempts and frees you from any kind e$pect or obligation;
you may say of this story whatever you choose without feareifidp slandered for an
ill opinion any more than you will be rewarded for a good one.

— Miguel de Cervantes Saavedra
Don Quixote.






Abstract

The topic for this Thesis is a data analysis method called-hegative Matrix Factor-
ization (NMF). This method can analyze data with no negatieenents e.g. images,
spectra and probabilities. The introduction contains dgonad review of the NMF lit-
erature focusing on the characteristics of the solutiodslaaunderlying cost-functions
to minimize for different NMF variations. One often-usedthu for comparing NMF
is Principal Components Analysis (PCA) that is an analysshod for data containing
both positive and negative elements. The introductionaiosta thorough analysis that
explains why PCA rarely finds the wanted solution of non-tiggalata.

An analysis gives a characterization of data that produoé&gue NMF i.e. data
where NMF gives predictable results. Moreover, we provedt@rruption of data will
result in a minor estimation error when the corruption isonin

There is a description of a novel NMF method that uses Gaugsiacess priors
offers the possibility to specify prior knowledge of theutslt is well known that data
with positive offset makes the NMF non-unique. We preserafine NMF method that
that jointly finds the offset and makes NMF. When NMF are useddarce separation
the requirement of single source training data are oftenrasd essential. We prove

that it in many cases it is sufficient to have knowledge abo¢mwthe sources are
inactive.






Resumeé

Emnet for denne afhandling er en dataanalysemetode katitehigative Matrix Fac-

torization (NMF). Analysemetoden kan bruges pa data hvoikite forekommer neg-

ative elementer som f.eks. billeder, spectra og hyppighédetroduktionen er der en
grundig gennemgang af NMF litteraturen med fokus pa det $lean der er til prob-

lemets Igsninger samt de kost-funktioner der gnskes mieimale forskellige NMF

varianter. Den oftest benyttede metode til sammenlignifgMF er Principal Com-

ponents Analysis (PCA) som er en metode for dataanalysedtks kan arbejde med
positive og negative dataelementer. | introduktionen ereseny grundig analyse af
hvorfor PCA generelt ikke giver det gnskede resultat.

| afhandlingen er der en grundig analyse af hvad der skakkenigere data for at
man kan regne med at NMF kan finde de komponenter der blev dndardata blev
genereret. Ydermere viser analysen at nar NMF bruges pandataler er additiv staj,
sa resulterer det i at der bliver lagt stgj pa de komponemtefindes.

Der er preesenteret en NMF metode hvor det er muligt i en Bagskiramme at
specificere den apriori (forhdnds) viden man har om NMF amaly En af de kendte
faktorer som kan f& NMF til at give uforudsigelige resultage hvis der er et offset i
data. | athandlingen er der praesenteret en NMF metode destendl til at detektere
offsettet og dermed gare det muligt at anvende NMF pa dataenhefiset. Nar NMF
skal anvendes til separation er det normaltvist antageetedngdvendigt at der er
optagelser med kilderne enkeltvist. | afhandlingen er dearealyse som dokumenterer
at det ikke er ngdvendigt at have kilderne enkeltvist da diéis&raekkeligt at der kendes
til tidspunkter hvor kilderne ikke er aktive.
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1. INTRODUCTION 1

1 Introduction

The amount of data available has increased dramaticallytbeelast 50 years and is
now a requirement for automatic unsupervised analysis &ssification to use the
overwhelming amount of data. There is a large group of datarevhll the data ele-
ments are non-negative, and in this Thesis, we will desc¢hibavork with an unsuper-
vised method for non-negative data analysis called NomnegMatrix Factorisation
(NMF).

S——— SN

Figure 1: An easy to understand example of why special non-negativeadetire needed forimage analysis.

Before starting the more technical part of the Thesis, léakis a look at an example
of some face drawings in Figure 1 with the intention of ilhasing the concept. Let us
assume the drawings are given to an unsupervised methoddtysés of the problem.
The figures are composed of three basis objects namely theheeyebrows and the
rest of the face. It can be seen that the hair and the eyebamwiseceither colored black
or gray. The task is to construct algorithms that are ablentbthose three basis objects
and also are able to determine how intense these are in emghndr The problem with
the usual methods that can operate on both positive andiveegata is that they will
find solutions where one basis object is found to be both Imaiiegebrows together and
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yet another basis objects that will be the positive hair seghtive eyebrows together—
which is both meaningless and useless in most applicatlarikis specific example, a
non-negativity constraint of the objects will remove thegibility of making this kind
of unwanted solutions and leaving the wanted solution astifyepossible solution.

The Non-negative Matrix Factorization (NMF) analyzed irsthhesis can be math-
ematically described using matrices. The observationgatteered in a matriR where
each columrR? represents an observation of for example a picture, a sggain or
probabilities. The task for the NMF is to find a set of basisset§w? (basis picture,
basis spectrogram, basis probabilities etc.) such thdt ebservation can seen as a
weighted sum of the basis vectors

R' =) W/H. (1)
J

By gathering the basis vectors in a mat¥& and the weights in a matrid it is possible
to write the problem as
R = WH. )

At this point, the NMF may look like the LU, the QR or any otheatmix factoriza-
tion that are described in all undergrad linear algebratbexiks, e.g. [163], but this
is certainly not the case. Firstly, NMF is despite the nameanfactorizatiod. In all
practical cases the observatiovisc R’} will only be approximated bW e R’ *"
andH € R’ ™,

V~R=WH, 3)

because: < min(n,m) andr < rank(V). Secondly, the NMF differs from the
traditional factorizations as there often are additioraistraint onW and H which
makes the model more data specific.

The rest of the introduction to the Thesis is structured Bevis. The mathematical
fundaments are described in Section 2 and the aspects of MbtFunctions and NMF
theory are described in details in Section 3. Section 4 aealyiow a method for data
that is both positive and negative will perform on non-negatata, and three concrete
applications of NMF are described in Section 5. Finally, Teesis introduction is
concluded in Section 6 where the contributions of this PhBsI$are listed.

2 Fundamentals

Several of the mathematical fundamentals used in this $hafibe described in this
section. The notation used in the Thesis are as follows.

1Because NMF is not a factorization some authors has arguetidarame non-negative matrix approxi-
mation.
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Font Variable Type Operator  Explanation

x  Scalar Il 7 Frobenius norm

x  Column vector II]] Euclidian norm

x  Row vector || Element-wise absolute

X  Matrix <,<,>,> Element-wise less than etc.
X{ 7'th colomn andj’th row XT Transpose oKX

1 Vector with 1 enlemnts Ry Non-negative real

The rest of the section is structured as follows. Firstlynsavell known eigen-
value decomposition and singularvalue decompositionlteefm linear algebra are
described in Section 2.1, followed by a repetition of thelemius-Perron Theory in
Section 2.2. Finally, a novel generalization of block diaglomatrices and a property
of this are given in Section 2.3.

2.1 The Spectral Theorem and Singular Value Decomposition

The Spectral Theorem and the Singular Value Decomposi&D] are two of the
highlights of linear algebra. In words, the réapectral Theorem states that any sym-
metric matrix is diagonalizable when the correct orthorarbasis is used.

The proofs of the SVD and the Spectral Theorem take sevegalspand are there-
fore omitted in here. The proof is available in several limagebra textbooks e.g. [13,
Theorem 7.13 and 7.46]

Theorem 1 (The Real Spectral Theorem)For a square matrixA € R™*" there ex-
ist an orthonormal matrixU = [uy,---,u,] € R™*" and a diagonal matrixA =

[Al 0
0 ' An

if and only if A is symmetric.

€ R™*™ such that

A = UAUT, 4)

When the eigenvalues; are real, they are always written in a decreasing order,
A1 > --- > \,. The decompositiolh = UAUT7 is referred to as the Eigen-Value
Decomposition (EVD). Another useful decomposition is teSwhich shows that all
matrices can be diagonalized.

2There is also a spectral Theorem for complex vector spacesoriplex vector spaces, more matrices
are diagonalizable with orthonormal basis.
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Theorem 2 (Singular Value Decomposition)To any matrixA € R™*" there exist
matrix X € R’1*™ on the form:
a1 0
] ; ®)

0 Omin(n,m)

> =

whereo; > -+ > 0pin(n,m), SUCh that
A=UTxv, (6)
whereU € R**"™ andV € R™*™ are orthonormal.

The following Lemma shows that there are a strong connedt@ween the two
decompositions.

Lemma 3 If UTXV is the SVD ofA € R"*™ thenV and U consist of the eigenvec-
tors of AT A and AAT respectively. The non-zero eigenvalueAdfA and AAT will
be the squared singular values Af

Proof. The proof is carry out by insertind = U7XV and verifying that bottE”>
andX X7 are diagonal ll

2.2 Frobenius-Perron Theory

The Frobenius-Perron theory deals with the eigenvectaistiaa eigenvalues of non-
negative and positive matrices. The matrices in this se@me symmetric to shorten
the proofs even though the Theorems are valid without ttearaption. For a detailed
analysis of the Frobenius-Perron Theory we refer to [122)e Teason for bringing
this analysis is two folded. Firstly, the Frobenius-Perttogory will later in this Thesis
(Section 4.2) be the starting point for analyzing the resaftPrincipal Components
Analysis (PCA) when applied to used on non-negative dateor@#y, dose the theory
seams to be unknown for most of the NMF community with [27] ae of the few
exceptions.

The following Lemma will be used in the proof of the FroberResrron Theorems.

Lemma4 Letv € R", max(v) > 0 andx € R"}.
a. then|xTV| <xT|v|
b. ifx > 0thenv > 0if and only if|XTV‘ =x"|v|

Proof. The statements follows directly from the triangle ineqtyatif the absolute
value. B
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Theorem5 If A € R*" andA” = A then)\; = max; |\;| andu; € R7.

Proof. Letv’ be the eigenvector corresponding to the eigenvalue wige&irabsolute
value ). Without loss of generality, let us assume that one element @ positive,
the norm ofv’ is one and therefore

JAV'[| = || = max|A,| = max [|Ab]| = max [Ab] > [AW]|. (@)
¢ Ibl|=1 [Ib]]=1

b

It is known from Lemma 4.a thaA |v’| > |Av’| and in combination with Equation 7
it can be concluded thaAv’| = A |v’| and moreover

NIV =XV = [AV] = [A V]| = AV ®

The largest eigenvaluk, therefore equalg\’| and has the nonnegatiye’| as the cor-
responding eigenvectoll

The following Theorem shows that strictly positivity of a e is inherit to the
first eigenvector and that the positivity also ensures thafitst eigenvalue is strictly
larger than the other eigenvalues.

Theorem 6 If A € R7*™ andAT = A > 0 then); > max; 1 |A;| andu; > 0.

Proof. From Theorem 5 it is known that; > max;; |A;| and thatu; € R’}. Since
Aiu; = Au; > 0 it can be concluded that; must be strictly positive. All the other
eigenvectors are orthogonal tq and can therefore not be non-negative. Lemma 4.b
can be used to conclude that fio 1

A Jul

> |Au| 9)

A= max [|AV] 2 || A Juil|| > Aw] = |l (10)

[[vil=1

It follows that \; must be larger than the absolute value of the other eigeesall

2.3 Separable Linear Problems

In this section a generalization of block diagonal matriaess analysed. For simplic-
ity,the matrix dimensions are left out. It is implicitly asaed that the block dimensions
match up such tha{tX;}T (2] = vIby + vIb,. When a matrixA € R"*™ is block
diagonal, it means that it can be written as

A=[% Al (11)

Many matrix operations like inversion, eigenvalue decosijan and singular value
decomposition can be performed block wise, which is usefubwver the computa-
tional complexity. A block diagonal matrix can be perceiasda concatenation of two
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independent matrix problems. Looking at block diagonalrives this way leads to a
generalization of matrices that are a concatenating of $elaied linear operators.

Definition 7 A matrix A is called ageneralized block diagonal matrii there exist
permutations?; andP5 such thafP; AP, is block diagonal.

The following Lemma characterizes a non-negative germz@dlblock diagonal ma-
trices.

Lemma8 Let A € R}*™ be a matrix where there are no zero columns andblet
denote a vector which elements are either 1 or 0 and has at mas 0 and one 1
element. Moreover, lebc be a vector whose elements are the complementaty of
meaning thab® = 1 — b . ThenA is generalized block diagonal if and only if there
exist anb such thatAb and Ab¢ are orthogonal.

Proof.
= If A is generalized block diagonal thén= P7 [ 1] will be a solution because

(Ab)" Ab° = (P[4 2] P.PT [3]) Py [ 2] P.PY [9] (12)

A,

= (% &))" (% 2119 (13)
=17 (41" [R2]1 (14)
=1"01 =0. (15)

< If there is anb such thatAb and Ab¢ are orthogonal then chod®, andP, such
that

P,Ab=[7] , P,Ab = [2] , b="P,[}], (16)

wherer > 0 andr* > 0. By inserting we getthd®; AP, [ ] = [§] andP, AP, [9] =
[ 2] and thereford; AP, must be on the form 4" 0 ]. B

In Section 4.1 it will be of interest wheA” A are generalized block diagonal. It
turns out that there is a simple characterization that deterwhenA” A are general-

ized block diagonal.

Lemma 9 An non-negative matriA with no zero columns is an generalized block
diagonal if and only ifA” A is an generalized block diagonal matrix.

Proof. = If P{AP, = [ ] then
PIATAP, — PIATRTPAP, - [4 217 (% 2] = [M2 0] @

< From Lemma 8 it is known that any vectbrwith 1 and 0 elements only, will make
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Ab and Ab¢ non-orthogonal. WheA b and Ab¢ are non-orthogonal they must have
a common positive element and this common positive elemiiitievmaintained when
multiplying by A”. Therefore,A” Ab and A7 Ab¢ will not be orthogonal and by
Lemma 8 it can be concluded thAf” A is not a generalized block diagonal matrill

3 NMF Fundamentals

For a century, Principal Component Analysis (PCA) [136]e(&ection 4) has been
used to make rank reduction of matrices. Less than 2 decades suboptimal PCA-
like algorithm was proposed in [130] where it was possiblefmse a non-negativity
restriction on the components. This was done in [129] uniteenme Positive Matrix
Factorization (PMF) within the area of environmental sceenThe PMF was applied
within this application area, but was not used in other ate=fere the renaming of
the method to Nonnegative Matrix Factorisation (NMF) in4l€hat proposed a new
“easy-to-understand” algorithm and applied it in two veiffedent areas namely face
images and semantic text. In this Section, the differertags of NMF are explained
together with some general properties of NMF. For a shoktendew of NMF methods
and algorithms we refer to [18, 133]. Examples of NMF appiarawill be given in
Section 5.

3.1 Traditional NMF

NMF algorithms factorize a non-negative matiVx € R’}*™ into two non-negative
matricesW € R}*" andH € R’*". Often it is only possible to decompose a matrix
R that is an approximation t&

V~R=WH. (18)

Later in this Thesis there will be discussions about howeckns estimate®’ andH’
pair is to the generatin§v andH matrices. In this discussion, it is fruitful to use the
following viewpoint

h,
R wit =[] |
h

] = wahy, (19)
d=1

whereR is seen as the sum ofouter products. The outer products will sometimes be
referred to as the components. There has been derived nusnef&MF algorithms
for different distance measures betw&érmandR.. Most of these distance measures are
element-wise measures i.e.

=r

m

DR|V) =Y Y amy vy, (20)

n’'=1m’'=1
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with [72] being one of the few exceptions. Most NMF algorithuomses the two error
functions investigated in [105] (Euclidian and Kullbackibler). An overview of the
papers that deals with these functions can be seen in thosvialj table.

Name d(z|ly) Applied Algorithms Property

Euclidian (z — y)? [8, 10-12, 19, 41, [21, 26, 33— [43, 47]
57, 88, 91, 104, 109, 35, 37, 66, 90,
115, 124, 125, 131, 105, 113, 114,
132, 142, 147, 158, 129, 148, 177,
160, 172, 175, 176, 181]
180, 183, 185, 186,

192]
Kullback- mlog%—x—i—y [6, 9, 20, 22, 24, [36, 37, 54, [45, 46,
Leibler 31, 32, 59, 67-71, 55, 105, 108, 61, 147,

77-80, 86, 132, 135, 113, 127, 149, 150]
144, 155, 158, 172, 181, 189]
187, 191]

The Euclidian distance minimization can be seen as a maxitikelihood esti-
mator where the difference is due to additive Gaussian noidee generalized ver-
sion of Kullback-Leibler divergenéecan be shown to be equivalent to the EM algo-
rithm [45, 61] and maximum likelihood for Poisson proced4€s].

Some papers deals with groups of divergence like Bergmasrgiwnce [42, 162]
Csiszar'sy divergence [39, 162], alpha divergence [106, 189], Youmtig&rgence
[162], and the interpolating cost function [99].

3.2 Sparse NMF

From the very first NMF paper [129] the possibility of seekspecial NMF solutions
were mentioned. The most popular special type of solutioedte sparse NMF so-
lutions i.e. NMF where one or both &V andH has many zero entries. One of the
advantages of NMF that was reported in [104] is that NMF tetlod®make part based
and sparse solutions. Before looking into cost functiomssfmrse NMF, some of the
arguments of sparse models are given below:

Occam’s razor Sparse models are in some ways more simple model, and itdutns
that simple models often outperform the more complex models

Prior knowledge In many applications it is prior knowledge that the undextydata
is sparse and it is therefore natural to make NMF look for sucldels—see
Section 5 for examples.

3Also called I-divergence
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Data fitting Sparse NMF becomes more vector quantization likeH Ifs maximum
sparse it only has one non-zero element in each column ahd\8JE is a vector
quantifier [62]. By making NMF more like a vector quantizee tolumn vectors
of W get closer to the data and therefore, hopefully, describ&slubtter.

a b C

Figure 2: lllustration of why there is no sparse solution if the ungiexd NMF not sparse. The green area
represenfR’ with the outer border boundary being vectors with at leagt zero element. The blué/
area is all weighted averaged of the column vectorS\inwith the outer boundary being averaged where
one of the weight is zero. The Orange area is the column verto¥s In (a) an non-sparse problem is
shown. Becaus®V are not sparse the W-space does not intersect with the bguafithe positive space,
and becausél is not sparse the W-space does not intersect with the V-sgad@) H is sparse and the
W-space does therefore intersects with the V-space, bheatame time the distance between the W-space
and the boundary of the positive space increase€c)IW is sparse and the W-space do therefore intersect
with the boundary of the positive space, but at the same timdigit@nce between the border of the W-space
and the V-space increased.

Now after arguing for the sparse NMF it is worth mentioningttthere also is one big
counter argument to sparse NMFRfis generated by non-sparse matri8¥s> 0 and
H > 0 then there are no spar®%¥’ andH’ such thalR = W’'H’. The argument for
this can be seen in Figure 2. As explained in the figure cajitisreither a matter of a
sparséW (Figure 2.C) or a sparsH (Figure 2.B). In many applications it is not clear
why the authors chos& to be sparse instead Bf and vice versa. A counter argument
to the analysis above is to look what happens when a not spiieis used—with
traditional NMF it is random which of the possible solutidrat is found, whereas the
sparse NMF always gives the same output.

Most sparse NMF algorithms are formed by adding a penalty terget an error
function on the form

E(W,H) = D(WH]||V) + A\C(H), (1)
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whereC(-) is the penalty function an® is a normalized version cW. In some
studies e.g. [83H is both normalized and used in the penalty function. In spbifglF
most penalty functions are element wise,

C(H) = c(H)). (22)

]

An overview of penalty functions are shown in the followiradpke.

Name c(x) Reference

Lonorm  1(z #0) [5,19]

Ly norm |z| [14,16,51,72,81,82,85,92,95,112, 113,117, 146,
151, 154]

Lynorm 2?2 [7,17, 60, 87,90, 92, 134, 156, 158, 168, 190]

L, norm |z|® [16, 156]

Another way of making sparse NMF is by a Lagrange multipligoraach where the
level of sparsity fixed and the NMF is minimized with this leeé sparsity [7, 72, 76,
83, 164]. At first it look, it seams very different to add a pepéerm in the cost func-
tion and select the level of sparsity (the value of the pgrtalim), but it turns out that
the solutions are the same. The argument is as follows. ket fivenA

(W', H'] = argmin(E(W,H))
W, H

and thereby resulting in the rate= C'(H’). Now its easy to se that
[W',H'] = argmin(D(WH|V))
W.H
C(H)=y

and therefore can the choice dbe seen as a choice of rate
A flavor of NMF referred to as Local Non-negative Matrix Fatzation (LNMF)
[53] has the penalty term

C(W.H) = [W1]* — X'|[H 1| (23)

and is therefore an example of sparse NMF with not-elemaetpénalty term [23, 49,
53,110, 133, 178, 188, 188].

There is also a method for obtaining NMF with small estimatéoror and sparse
‘W andH by adding a constant smoothing mat&ixThe smoothing matrix can thereby
contain the non-sparseness of b¥thandH:

V ~ R =WSH. (24)
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This method presented in [133] is called NonSmooth Nonmegdlatrix Factoriza-
tion (NSNMF) [92, 96, 97, 133]. An generalisation of NSNMF evh there are dif-
ferent smoothing matrix for each component are describeé2h under the name
Transformation-invariant NMF.

3.3 Structured NMF

In some applications, it is known that the solution has oti@racteristics or structure
than general sparseness. Some of these applications andlgbtithms are described
in the following.

Affine NMF
One such application is the Swimmer Database (see Sectlyrinbroduced in [48]
where it was prove that traditional NMF cannot find the “cotfelecomposition be-
cause all the column vectors M has a constant part. To deal with NMF problems
having an offset, an nmf algorithm called Affine NMF was intuced [101] where an
extra term is added

V~R=WH +wg17. (25)

In Affine NMF W andH are updated using a sparse NMF method [51] aids up-
dated using a traditional NMF method [104]. Further detallsut Affine NMF can be
found in paper D.

Smooth NMF

In some NMF problems it is known that the rowsHh are smooth. An example of
this is the spectrum of music instruments (see Section Sh@&revit is known that the
spectra changes slowly over time [155]. In the very first NMip@r from 1994 [129]
the possibility of making NMF algorithms that give smootkvreectors ofH was men-
tioned. From that paper it has taken almost one decade biferirst smooth NMF
algorithm [170] was proposed in 2003. In this paper, a petaiy of the form

CH) =) [Hj-H; [, (26)
i.J
is used. Later the penalty function
C(H) = [|I- T)H| %, @7)

whereT is a matrix, that calculates a weighted averaged, was peailtosnake smooth
NMF [29]. Smooth NMF algorithms have superior performane®ther NMF algo-

rithms in several application [18, 29, 30, 152, 170, 172 ]1When looking for smooth
NMF algorithms it is worth noticing that in some articlekdifor example [87, 134],
the sparse NMF wittL, regularization are called smooth.
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Harmonic NMF

Another structured NMF algorithm is the Harmonic NMF [5031467] for note tran-
scription. The Harmonic NMF uses the prior knowledge thae®have a known har-
monic structure by forcing most elementswi to zero.

General structured NMF framework

In the last years, there has been a growing interest in a pilti interpretation of
NMF [3, 45, 46, 54, 55, 61, 69, 111, 125, 131, 132, 147, 148, 179, 182, 183].

A general framework for specifying the structure of a stuuett NMF is presented

in [152] (found in Appendix B) by which it is possible to perfo NMF with a cho-

sen marginal distributiop(H; ;) and a chosen correlation between a re-parameterized
version of the elements iIW andH.

3.4 NMF Extensions

Plenty of work has been done to generalize the NMF framewBramples of this is
the Non-negative Tensor Factorization, convolutive NMEB saemi-NMF.

Non-negative Tensor Factorization

The tensor version of NMF called Non-negative Tensor Fazdton (NTF) was started
whilst NMF was still called PMF [128]. Later, there has beead® a tensor product
version of almost all NMF cost functions [38, 40, 56, 74, 76,98, 107, 157, 184].

Convolutive NMF

Another generalization of NMF is the convolutive NMF whehe ttolumn of W are
exchanged with matrices. By doing ttW consist of basis matrices instead of basis
vectors [15, 93, 94, 153, 159, 161, 171].

Semi-NMF

Another way of changing the NMF is by discarding the non-tigija constraint.
There are several NMF algorithms that work on negaWv§l47, 148, 152] and there
are semi-NMF algorithms where the non-negativity constre only restricted tdH

[44, 111]. The semi-NMF also relates to non-negative PCA[121] wherdd is non-
negative and wher®& has orthonormal columns and also relates to the non-negativ
ICA [138-140] whereH is non-negative and wheM is orthonormal.

3.5 Isthe NMF Problem Solvable?

The NMF theory is as old as the factorization it self. In 199 paper investigated when
the LU-factorization of a non-negative matrix is also nagative [119]. In 1974, it
was investigated when an nmf exist with= rank(V") [165] and later an analysis of
the minimum possible for which there exist an nmf was given in 1999 [166].
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The first article to analyze the uniqueness of NMF was [48]062followed by
[123] in 2005, [25] in 2007 and this author’s papers [100,]1f0R2nd in paper A and
paper E. The remaining of this section will contain a shogruiew of the uniqueness
results of NMF.

When talking about a unique NMF it is assumed that there exgsband truthWw
andH such thaR = WH is the decomposition of interest. All other decompositions
are denoted®® = WH. The only type of matrices that are non-negative and have a
non-negative inverse are matrices on the f&im whereP is a permutation an® is a
diagonal matrix [122, Lemma 1.1]. This naturally leads te definition of uniqueness
that is directly or indirectly used in the NMF literature.

Definition 10 A matrix R = WH has aunique NMF if any solutonR = WH
fulfills that W = WPD andH = D~!P~'H whereP is a permutation and is a
diagonal matrix.

The permutation and scaling ambiguity with regard to the Niqueness defi-
nition are also known from other areas such as Blind Sourpar@éon (BSS). It is
trivial to verify that unique NMF problems exists—an examiglé = R = WH = II.
Whenrank(R) = r the non-uniqueness can be described by an invertible m@trix
whereW = WQ andH = Q 'H, but if rank(R) # r this might is not be the
case [25, 100, 165].

To verify that an nmf is unique it is necessary to jointly istigate the conditions
on W andH [100], but there are a results of a condition fore the madrindividually
as described in the following.

Definition 11 A matrix W is calledboundary closef for all j # i there exist & such
that
0=W; (28)
0# W (29)

Theorem 12 If the NMF of R = WH is unique then bottW andH” are boundary
close

The proof of Theorem 12 follows directly from the proof of Them A.10 on
page A7. The Theorem is also presented in [123, Theorem 2jendree needs to be
aware of a minor error in the formulation. The most loose d@which is sufficient
for unique NMF is given by the following two definitions.

Definition 13 A matrix W is calledsufficiently spreadf for all j there exist & such
that for all 7 # j

0=Wi (30)
0# W/, (31)
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Definition 14 A matrix W is calledstrongly boundary closé W is boundary close
and there exist a permutatidA such thatW = WP, for which alli < r there exist a
set{ky,- -, k.—;} fulfilling

1. Wi =o0forall j <r—i
J
Wit e W,
2. and the matrix Do is invertible.

Theorem 15 If W is sufficiently spreadand H” is strongly boundary clos¢hen the
NMF of R = WH is unique.

Theorem 15 is the same as Theorem A.15 on page A1l where tbé qao be
found®. In many examples, thgtrongly boundary closecondition will be a sufficient
condition for both matrices, but in order to constructs seghmples it is necessary
to evaluate the “condition number” [65, p. 81] of the matsi¢e the item 2 of Defini-
tion 14. Example 3 on page A9 illustrates the connection betvthe condition number
and uniqueness aftrongly boundary closeW andH. The final theoretical comment
in this section is that wheR is unique then the non-uniquenessWf andH can be
bounded by bounding the difference betwderandV as given in Theorem A.16 on
page Al12 also in [100]. Using the wordings from the “Inversetfiems” area one can
say that Theorem A.16 shows that the NMF problem is “wellgaisis defined in [73].

4 Principal Component Analysis and Non-negative Data

There has been published several papers where NMF outperfe€A [9, 23, 6772,
74,85, 104, 115, 179]. In this section, Frobenius-Perreotphwill be used to analyze
the outcome of Principal Component Analysis (PCA) when thseovation is non-
negative. This analysis shows that PCA will output only oneefy positive component
and the remaining components will contain both positive m@ghtive elements.

In PCA a set of vectors,--- ,v,, € R" is projected to a--dimensional space
such that most variance is obtained. In other words PCA firdataix P pc4 € R™*"
with orthonormal row vectors that fulfils

Ppoa = argmax |[PV|[%. (32)
PGRTXH
pPP7=1

4The definition in Appendix A looks different from the onesgjivin this section because those definition
are given for sets and therefore are more general than thetidefrhere that are matrix specific.
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Note, there are many solution to the maximization probleher€&fore arg max means
thatP pc 4 is just one of the optimal matrices. The following Theorerows that it is
easy to find on@® p¢ 4 using the Singular Value Decomposition (SVD).

o1 0
Theorem 16 LetU = [uy, -+ ,u,] € R™*", ¥ = _ e R™™ and
0 Tmin(n,m
kl ( )
K= [ . | € R™*™ pe the SVD oV,
k.,
V = USK. (33)
Then
Pprca :UZ = [uy,- - 7u,«]T :argmaXHPVH?,. (34)
PcR™*™
PPT=1
Proof.

Since a rotation do not change the Frobenius norm (EquaéparsdP U also has
orthonormal row vectors (Equation 37) we get

max |[PV|[% = max |[PUSK|?, (35)
PE]R'V‘Xm PeRan
PPT=1 PPT=I
= max |PUX|7 (36)
PeR’r‘X’n
PP =1
= max [[P2} (37)
PERTXTI,
PP =1
=Y o7 (38)
=1
The proof is concluded by testif®pc 4
2
IPpcaVly = |[u,- -, u,] " USK]|. (39)
2
= [y, u US|, (40)
2
=[x o=, (41)
h
=> o} (42)
=1
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This closed form solution of PCA makes it one of the most used algorithms for
rank reduction. By using the SVD it is easy to calculate thsilteof ther-dimension
representation, since

PpcaV = UIUZK (43)
= [10] ZK (44)

-l

the r-dimension representation consist of scaled versionseo$ithgular vectors .
Another characterization of PCA is its ability to find the ik approximation for
A%

= ETKT7 (45)

argmax |V — V||p = argmax ||V — USK| » (46)
rank(V)<r rank(V)<r
= argmax |[UUTVK” - 2)K||» (47)
rank(V)<r
= argmax |[UTVK” — 3|p (48)
rank(V)<r
=U | argmax “V—EH K (49)
rank(V)<r 4
U5 K (50)
=U, %, K,. (51)

This formulation of PCA has the same form as the NMF. Theefone could argue
that PCA is an NMF without the non-negative constrainfltgf and 3, K,.. Before
introducing more advanced algorithms to ensure the noativegess otJ,. andX, K.

it is interesting to investigate if there are non-negatis&adnatrices that naturally will
lead to non-negative principal components. The analyglsdiiollowing section shows
that this is not the case.

4.1 SVD of Non-negative Matrices

In this section, a Frobenius-Perron like analysis is apgiethe SVD. From Lemma 3
it is known that the singular vectors & are eigenvectors A7 A and AAT. In
the following, we will firstly investigate the Frobenius+iRen further for symmetric
matrices and secondly apply the conclusions to the SVD.

5There is only a closed for solution of PCA from the programméesvgoint. There is no closed form
solution to find the SVD and therefore no closed form solubRCA from an algorithmic point of view.



4. PRINCIPAL COMPONENT ANALYSIS AND NON-NEGATIVE DATA 17

Theorem 17 If A € R*™ > 0, symmetric, and is not an generalized block diagonal,
then\; > max;» |A;| andu, is positive.

Proof. Let AT = A not be a an generalized block diagonal matrix anduldde
one of the vectors with the largest absolute eigenvaluealze of the largest absolute
eigenvalue we know thgiAu| > A |u| and from Lemma 4.a we know thaAu| <
A |u] and thereforéAu| = A |u| . With no loss of generality it is assumed that the
zero elements im (if there are such) are grouped at the emd; [3] whereu has only
non-zero elements.

An analysis of the sub-block{sﬁ; A‘ZT} of A shows thatA is block diagonal if there

Az
are zeros ina

(20 A%] 18] =23 (52)
v

Asfa] =[Asd| = 0 (53)
v

A5 =0. (54)

There cannot be any zero elementsuirbecause a zero elementinwill lead to a
generalized block diagon@l—which contradict with our starting assumption.

Now that it is known that1 has no zero elements, lets split it in the positive elements
and the negative elements,= [ '}? ], where bothu, andu, are strictly positive. An
analysis of the sub blocks & shows that

Al A u, u,
(A& ] =2 ) (55
\
|A1up — Agun‘ :Al\up| —+ A2|—un| = Alup + Agun (56)
\
A;=00rA,=0. (57)

Repeating the steps above it can be shown tat= 0 whenA, # 0. Whenu has
both negative and positive elemenssjs therefore a generalized block diagonal matrix.
|

Theorem 18 Let V be a non-negative matrix without zero rows or zero columrs an
not generalized block diagonal, then the singular vectansesponding to the largest
singular value will have positive elements.

Proof. Lemma 3 states that the singular vectors\baire eigenvectors 6VV7” and
VTV, and Lemma 9 states that wh&his not generalized block diagonal then neither
areVVT norVTV. The use of Theorem 17 on those matrices concludes the plibof.
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Corollary 19 LetV be a non-negative matrix without zero rows or zero columrts an
not generalized block diagonal thdd and K from the SVDV = U7 XK will both
only have one non-negative column.

Proof. Theorem 18 state thdl and K have a strictly positive column vector and
because the matrices are orthonormal, the other columnisranesnegative elements—
and are therefore not non-negativll.

4.2 PCA on Non-negative Matrices

Theorem 18 and Corollary 19 show directly that there is a lprobwith using PCA

for non-negative matrices—namely, that only the first congmdris non-negative. If
data is constructed by a sum of non-negative componentoassh Equation 18 then
PCA will not find any components that are close to the genggatomponents. The
first element will be an averaged element and the other eleméh be both positive

and negative. The following example shows that PCA gathetiseaenergy in the first
component when data is constructed using Equation 18.

Example 1 GenerateW andH from a uniform 11D and an exponential IID and anal-
yse how PCA performs 6WH.

Different matrix sizes have been evaluated, but the resdtideen oserved to be
consistent for all sizes. The first PCA component almostritesdR = WH by itself
and the following components accounts for less thnof the total energy each. This
is in contrast to the constructing components where theggnisreven distributed over
the component.

The average component energy over 1000 realizations witbrentially generated
matrices wherer = m = 100 andr = 20 are shown in Figure 3. The components are
normalized so the total component energy sums to one. Tleedoblis are the energy
of the normalized PCA component and the red squares are tbgein the sorted
normalized constructing components. From Figure 3 it casd&en that the PCA com-
ponents do not have the same energy distribution as thercotisg components. This
shows how different the two solutions are.

5 NMF Applications

5.1 Swimmer Database

The Swimmer Database was introduces in [48] as an examplenohainique NMF
problem. The database consist of 288 ( 32 pixel) black-and-white pictures of a
‘stick-man’ with 4 limbs that can be in one of 4 positions andasso’ as shown in
Figure 4. Each of the 256 picture is a column vector in the da#ix such thaR €
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Figure 3: The average of normalized singular valueSWiH from 1000 realizations. BothV € R%0*2°
andH € R3°*'% are generated with exponential I1D.

R1%24%2% "n the paper that introduce the Swimmer database the modet ois set
to 16 [48]. It is possible to decompo¥eusing this model order by letting each limb in
each positions be a basis vector and put on the torso to ohe &iribs in all positions,
but these basis will not be a good description of the pictutagthe later use of the
Swimmer database is the model order set to 17 [33, 64, 74,183,157, 193] in the
hope that the algorithms can find the 16 limbs and the torsasis bectors.

It has been shown that this NMF problem is very difficult toveohnd many NMF
algorithms fails to find the correct 17 basis vectors [33, 28,133, 157]. Two dif-
ferent strategies have been able to solve the problem. @ategy is to look for non-
overlapping basis vectors and because the 17 basis veceroa-overlapping, this
gives the correct result as reported in [64, 193]. Anothecessful strategy is to use
the Affine NMF [101] method that was described briefly in Saet8.3 and detailed in
Appendix D.

5.2 Face Images

Faces images are one of the most used applications for NMwasdne of the exam-
ples that was given in the first paper named NMF [104]. The fa@ges are in most
cases passport like images that are cropped and scalechstitihet eyes, mouth etc. are
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Figure 4: Samples of the Swimmer database

in the same position. Each image is a column vectdviand the columns in thereby
becomes basis faces. There are several different applicatien using face images,
e.g. face recognition, classification and illustratinggmse [37, 104, 190].

An overview of the databases and the use of NMF on the datalzasbe seen in
the following table.

Face database Reference

AR [120] [67, 68]

Cambridge ORL [2] [53, 66, 84, 91, 95-97, 110, 113, 114, 178]
CBCL [1] [21, 66, 74, 75, 84, 95, 99, 99, 113-117, 133, 157]
Cohn-Kanade [89] [23]

FERET [137] [178, 191]

JAFFE [118] [23]

XM2VTS [121] [145, 188]

Other and unknown  [4, 5,9, 28, 37, 58, 76, 90, 104, 149, 190]

5.3 Music

In the last decade there has been a growing interest in mifsicriation retrieval and
since 2000 there has been the ISMIR (The International Cenées on Music Informa-
tion Retrieval and Related Activities) conference thatlaitd a community for music
research with a yearly competition MIREX (Music Informati®etrieval Evaluation
eXchange).

One of the tasks within the music area is to analyze frequspegtra of music sig-
nals and perform instrument separation or note transerip®lenty of papers describe
how to use NMF on music frequency spectra starting with [138hen using NMF
on musicV;; is the absolute value of the spectra at ife frequency bin at thg'th
time index. The NMF ofV results in aW where the columns are basis vectors for
one instrument playing one note andathat indicate when the notes are active. The
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music NMF papers can be split in to two major groups. The firstig use NMF to
make source separation of instruments or notes [9-12, 56,/633, 94, 103, 153, 168,
169, 171-173, 175, 176] by using Equation 19 and the secanggioes music tran-
scription [3, 31, 32, 50, 63, 143, 158-160]. When performmgscription, the column
vectors inW need to be classified as a note and the elemertksrieed to be classified
as active or not active.

It is known that the additive NMF model is only an approximatfor both ampli-
tude and power spectra, but the more sparse the constregctingonents are the better
will the approximation be. It is also known that independasmwer spectra in ensemble
are additive, which is an argument for using this type of sjpe@ counter argument is
that it has also been reported that the amplitude spectfarper better than the power
spectra [151]. The additive model error is the inspiratim131, 132] that incorporate
this error in the cost function.

6 Contributions

The NMF is a relative new factorization for analyzing largenqtity of data. There has
been published an overwhelming number of papers in the éstde but only a couple
of the papers investigate when the factorization will prcela reliable result. Paper A
and E investigate what data that gives a reliable NMF. Ofteempeople use NMF, it
is known that the solution has a certain structure. In Pap& &nd D NMF methods

that looks for solutions with special structure are proploggext, the contribution of

the individual papers are listed.

Paper A This paper investigates the uniqueness of NMF. Several r@eems show
that it is possible to characterize the conditions underctvain nmf is unique.
In most NMF applications eitheR or (W, H) is corrupted with noise and a
Theorem shows that the estimation error is small when theerisismall. Finally
this papers looks into stochastic properties of generd¥hgndH that will make
the NMF unique.

Paper B In this paper is a general method for making NMF that se@ksand H
with special characteristic. The method makes it possibldetermine both the
marginal distribution of the source elements and the caticgl between the ele-
ments. The method can be combined with any cost function avjitobabilistic
interpretation. The theoretical fundation of the metho@#issian processes.

Paper C There are plenty of papers that use NMF to perform blind sogeparation
under the assumption that it is possible to train the modeteeosources indi-
vidually. In this paper a method for training source modeheseveral sources
are presented. The proposed method only needs to informaltiout when the
sources are inactive which makes it possible to performingtnt separation in
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for example modern music. A Theorem shows that the methodsaorder mild
assumptions, and the theoretical findings is backed up bylations on music
data.

Paper D In this paper NMF is generalize to incorporate an explicisetf The pro-
posed method is able to find the correct decomposition onlateuidata and
when the method is used on face images where it constructyea pact-based
decomposition than the reference NMF methods. The affine NiMEhod has
the same computational complexity as the reference methods

Paper E This paper presents some of the preliminary work that redut Paper A.
The scope of the paper is to illustrate the novel definitidved &ire used in the
NMF uniqueness Theorems. When the performance of NMF arelaiatlthe
elements inW andH are often generated as a stochastic process. The article
argues for looking at real NMF data as be generated the samanelooks for
the statistical properties of the stochastic process tiakesiINMF unique.

Thesis In the Thesis itself an overview of most of the NMF literatiggiven. Several
papers have used PCA as a reference method when they pregéntiiNthe
Thesis it is analysed how PCA perform on non-negative datee réason for
this is twofold. Firstly, it is possible to show why PCA raygberform well,
when it is used on non-negative data, and secondly we wamtttoduce the
Frobenius-Perron Theory (the theory about eigenvaluemshvectors of non-
negative matrices) for the NMF community where it is appéanse unknown.
We strongly believe that the Frobenius-Perron Theory carease the general
knowledge of the NMF theory and methods.
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1. INTRODUCTION A3

Abstract

We investigate the conditions for which non-negative mdtctorization (NMF) is

unique and introduce several theorems which can determire¢her the decomposition
is in fact unique or not. The theorems are illustrated by smEvexamples showing the
use of the theorems and theire limitations. We have showrifthadata matrix is a

unique NMF matrix corrupted by additive noise this leads twogsy estimation of the
noise free unique solution. Finally, we use a stochastiww&NMF to analyse which
characterization of the underlying model will result in a IRMvith small estimation
errors.

1 Introduction

Large quantities of positive data occur in research areels a8 music analysis, text
analysis, image analysis and probability theory. Beforduddve science is applied
to large quantities of data it is often appropriate to redda& by preprocessing, e.g.
by matrix rank reduction or by feature extraction. Printipamponent analysis is an
example of such preprocessing. When the original data isnegative, it is often
desirable to preserve this property in the preprocessimg.ekample, elements in a
power spectrogram, probabilities and pixel intensitiesusth still be non-negative after
the processing to be meaningful. This has led to the congirucf algorithms for rank
reduction of matrices and feature extraction generatingmegative output. Many of
the algorithms are related to the non-negative matrix faaton (NMF) algorithm
proposed by Lee and Seung [2, 3]. NMF algorithms factorizemmegative matrix
V € R}™ into two non-negative matricé® € R}*" andH € R’

Va~R=WH. 1)

There are no closed-form solutions to the problem of find¥cgandH given aV, but
Lee and Seung [2, 3] proposed two computationally efficiegar@thms for minimizing
the difference betweeW andWH for two different error functions. Later, numerous
other algorithms have been proposed (see Berry et al. [4]).

An interesting question is whether the NMF of a particulatnwas unique. The
importance of this question depends on the particular egjidin of NMF. There can be
two different viewpoints when using a model like NMF—eithene can believe that
the model describes nature and that the variaiWeandH have a physical meaning or
one can believe that the model can capture the part of inteves though there is not
a one-to-one mapping between the parameters and the modehephysical system.
When using NMF, one can wonder whetAérs a disturbed version of some underlying
‘WH or whether the data is constructed by another model. Orhearatords, does a
ground truthW andH exist. These questions are important in evaluating whether
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not it is a problem that there is another NMF soluti®¥;H’, to the same data, i.e.
V~R=WH=WH. (2)

If NMF is used even though the data is not assumed to be gexdngt(1), it may not
be a problem that there are several other solutions. On ter band, if one assumes
that there exists a ground truth, it may be a problem if thadeh@s not detectable, i.e.
if it is not possible to findW andH from the data matri®/.

The first article on the subject was the correspondence eeterman and Thomas.
Berman [5] asked the question which in NMF terminology wobtd Find a simple
characterization of the class of non-negative matriRefer which an NMF exists. As
we shall see, the answer by Thomas [6] can be transferredaitNMF uniqueness
theorem.

The first article investigating the uniqueness of NMF is Domand Stodden [7].
They use convex duality to conclude that in some situatiomsresthe column vectors
of W “describe parts”, and for that reason are non-overlappnutiaereby orthogonal,
then the NMF solution is unique.

Simultaneously with the development of NMF, Plumbley [8]riked with non-
negative independent component analysis, where one ofrtiiBems is to estimate
a rotation matrixQ from observation€)s, wheres is a non-negative vector. In this
setup Plumbley investigates a property for a non-negatidependent and Identically
Distributed (1ID) vectors such thatQ can be estimated. He shows that if the elements
in s are grounded and a sufficiently large set of observation ésl,uthenQ can be
estimated. The uniqueness constraint in [8] is a statistmadition ofs.

The result in [8] is highly relevant for the NMF uniquenes®da the fact that in
most cases new NMF solutions will have the fofMiQ and Q 'H as described in
Section 3. By using Plumbley’s result twice, a restrictegjuaness theorem for NMF
can be constructed.

In this paper, we investigate the circumstances under wMr of an observed
non-negative matrix is unique. We present novel necessatguatficient conditions for
the uniqueness. Several examples illustrating these ttonsliand their interpretations
are given. Additionally, we show that NMF is robust to additnoise. More specifi-
cally, we show that it is possible to obtain accurate estmafW andH from noisy
data when the generating NMF is unique. Lastly, we consiteigenerating NMF as
a stochastic process and show that particular classes bfocesses almost surely
result in unique NMFs.

This paper is structured as follows. Section 2 introducesnibtation, some def-
initions, and basic results. A precise definition and tworabterisations of a unique
NMF are given in Section 3. The minimum constraint&&gfandH for a unique NMF
are investigated in Section 4. Conditions and examples ofigue NMF are given in
Section 5. In Section 6, it is shown that in situations whesise is added to a data
matrix with a uniqgue NMF it is possible to bound the error & #stimates oW and
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H. A probabilistic view on the uniqueness is taken in Sectiomte implication of the
theorems is discussed in Section 8, and Section 9 conclhdgmper.

2 Fundamentals

We will here introduce convex duality that will be the framaw of the paper, but first
we shall define the notation to be used. Non-negative reabeusrare denoted &, ,
Il = denotes the Frobenius norm, asehn(-) is the space spanned by the columns of
a matrix. Each type of variables has its own font. For instaacscalar is denoted
a column vector is denotet, a row vector is denotesl, a matrix is denoteX, a set
is denotedY, and a random variable is denotéd. Moreoverx] is thei'th index of
the vectorx?. When a condition for sets is used to describe a matrix, itferriag to
the set of column vectors in the matrix. The NMF is symmeid¥” andH so the
theorems for one of the matrices may also be used for the othtix.

In the paper, we make a geometric interpretation the NMFlambd that used in
both [6] and [7]. For that, we need the following definitions.

Definition A.1 Thepositive sparis given byspan™ (b!,--- ,b?) = {v =), b'a;|a €
R4}

In some literature, the positive span is called the conigdl h

Definition A.2 A setA is called asimplicial coneif there is a set3 such that4d =
span™ (B). Theorder of a simplicial coneA is the minimum number of elements3n

Definition A.3 Thedualto a setA, denoted4*, is given byd* = {v|vTa > Oforall a € A}.

The following lemma is easy to prove and will be used subseifyueFor a more
general introduction to convex duality, see [9].

Lemma A.4
a. If X =spant(bl,--- b?) theny € X* if and only ify”b" > 0 for all n.

b. If X =spant(BT)andB” = [b!,- .. b isinvertible thent* = span® (B~1)
c. IfY C XthenXx* C y*.

d. If Y andX are closed simplicial cones ard C X, thenX™* C Y*.
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3 Dual Space and the NMF

In this section our definition of unique NMF and some geneoalditions for unique
NMF is given. As a starting point let us assume that BafrandH have full rank i.e.
r =rank (R).

Let W’ andH’ be any matrices that fulfiR = WH = W’'H’. Thenspan (W) =
span (R) = span (W’). The column vectors oW and W’ are therefore both bases
for the same spaces and as a result there exists a basis ahift @ € R"™*" such
that W/ = WQ. It follows thatH’' = Q~'H. Therefore all NMF solutions where
r = rank (R) are of the formR = WQQ~'H. In these situations, the ambiguity of
the NMF is theQ matrix. Note that ifr > rank (R) the above arguments do not hold
becauseank (W) can differ fromrank (W’) and therebypan (W) # span (W').

Example 1 The following is an example oﬂﬁix“ matrix of rank3, where there are
two NMF solutions but n@Q matrix to connect the solutions

1100
[5939}:3: R I -1 R. @)
T S = 2

We mention in passing that Thomas [6] uses this matrix tatithte a related problem.

Lemma A.5 (Minc [10, lemma 1.1] ) The inverse of a non-negative matrix is non-negative
if and only if it is a scaled permutation.

Lemma A.5 shows that all NMF solution on the fo®WWQ and Q 'H whereQ
is a scaled permutation are valid, and thereby that NMF oaly lze unique up to a
permutation and a scaling. This leads to the following dédiniof uniqgue NMF in this
paper.

Definition A.6 A matrixR has aunique NMF if the ambiguity is a permutation and a
scaling of the columns iNV and rows inH.

The scaling and permutation ambiguity in the uniquenesasitiefi is a well-known
ambiguity that occurs in many blind source separation gl With this definition
of uniqgue NMF, it is possible to make the following two chagaizations of the unique
NMF.

Theorem A.7 If » = rank (R), an NMF is unique if and only if the positive orthant is
the onlyr-order simplicial coneQ such thatpant (W) C Q C span™ (H)*.

Proof. The proof follows the analysis of th@ matrix above in combination with
Lemma A.4.b. The theorem can also be proved by following tepssof the proof in
Thomas [6].
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Theorem A.8 (Donoho and Stodden [7])The NMF is unique if and only if there is
only oner-order simplicial coneQ such thatspan*(R) € Q C P, whereP is the
positive orthant.

Proof. It follows directly from the definitions. M The first characterization is in-
spirited by [6] and the second characterization is impliditoduced in [7]. Note that
the two characterizations of the unique NMF analyze the Iproldrom two different
viewpoints. Theorem A.7 takes a knowM andH pair as the starting point and looks
at the solution from the “inside”, i.e. thedimensional space of row vectorsW and
column vectors irH. Theorem A.8 looks at the problem from the “outside”, i.ee ith
dimensional column space &.

4 Matrix Conditions

If R = WH is unique then botW andH have to be unique respectively, i.e. there
is only one NMF of W andH namelyW = WI andH = IH. In this section, a
necessary condition foW andH is given and a sufficient condition is shown.

The following definition will be shown to be a necessary ctindifor both the set
of row vectors inW and column vectors il.

Definition A.9 A setS of vectors in]Ri is calledboundary closef for all j £ i and
k > 0 there is an element € S such that

S; < ks;.

In the case of closed sets, the boundary close conditiorais th= 0 ands; # 0.
In this section the sets will be finite (and therefore closbd) in Section 7 the general
definition above is needed.

Theorem A.10 The set of row vectors iNV have to be boundary close for the corre-
sponding NMF to be unique

Proof. If the set of row vectors ifW are not boundary close there exist indexes i

andk > 0 such that thg'th element is always more thantimes larger than théth

element in the row vectors iW. Let Q = span™(q',--- ,q") where
n_ [ e +kel ifn=i

= { e otherwise “)

ande™ denotes the'th standard basis vector. This set fulfils the conditipan™ (W) C

Q C P and therefore by Theorem A.7 we conclude that the NMF caneotigue. ll
That not only the row vectors &V with small elements determine the uniqueness can
be seen from the following example.
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Example 2 The following is an example wheW is not unique buW = [, W | is
unique.
Let - 011
W = [1 0 1} .
110

Here W is boundary close but not unique sin®é = WI = IW. The uniqueness of

W = [3 w 1] can be verified by plotting the matrix as shown in Figure 1, ahgerve

that the conditions of Theorem A.7 are fulfilled.

===Desired Solution
== Border of H"

B span(W)

Figure 1: A three dimensional space is scaled such that the vectors tre hyper plane{p| 111)p=1}.

By the mapping to the hyper plane, a plandihis mapped to a line and a simplicial cone is mapped to an
area. In the figure, it can be observed that the dashed teégdgkired solution) is the only triangle (third
order simplicial cone) that contains the shaded area (pesifian ofW) while being within the solid border
(the dual ofH). The NMF can be concluded to be unique by Theorem A.7.

In three dimensions, as in Example 2, it is easy to investigdtether a boundary
closeW is unique — ifW = W'H’ thenH’ can only have two types of structure:
Either the trivial (desired) solution whel# = I or a solution where only the diagonal
of H' is zero. In higher dimensions, the number of combinationsaof-trivial solu-
tions increases and it becomes more complicated to inagstagl possible non-trivial
structures. For example, W is the matrix from Example 2, then the matrix

WY g

g

is boundary close and can be decomposed in several ways, e.g.

W= [¥I=[Vle =00V 3
Instead of seeking necessary and sufficient conditions fanique W, a sufficient

condition not much stronger than the necessary is giverisgrsufficient condition we
only focus on the row vectors &V with a zero (or very small) element.
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Definition A.11 A set of vectorsS in Ri is called strongly boundary closef it is
boundary close, and there existsza> 0 and a numbering of the elements in the
vectors such that for ak > 0 andn € {1,--- ,d — 1} there ared — n vectors froms,
{st, -, s?7"} that fulfil:

1. s} <kY,.,s! forall jand

7

2. ko([bY, -+ ,b?"]) < z, wherer,(-) is the “condition number” of the ma-
trix defined as the ratio between the largest and smallegfugan values [11, p.
81], b’ = P,s’ andP,, ¢ R¢"*4 is a projection matrix that picks thé — n
last element of a vector iR,

Theorem A.12 If span® (W7 is strongly boundary close, théW is unique.

The proof is quite technical and is therefore given in the épgix. The most important
to notice is that the necessary condition in Theorem A.1Gladufficient conditions in
Theorem A.12 are very similar. The first item in the stronghybdary close definition
states that there has to be several vectors that has theahal The second item
ensures that the vectors with small value are linear indégretrin the last elements.

5 Uniqueness oR

In this section, a condition for uniqU€ is analyzed. First, Example 3 is used to inves-
tigate when a strongly boundary clo®é andH pair is unique. The section ends with
a constraint foW andH that results in a unigue NMF.

Example 3 This is an investigation of uniquenesskivhenW andH are given as:
1 a00

p39+1] ®

W =H", (6)

where0 < o < 1. BothW andH are strongly boundary close and theparameter
can be calculated as

Z:Iﬂ?g([bl, ,bdfn]) (7)
= ([14)) = 12 @

The equation above shows that smablwill result in a z close to one and an close
to one results in a large.. In Figure 2, the matrixR = WH is plotted fora €
{0.1, 0.3, 0.5, 0.7}. The dashed line is the desired solution and is repeatedlin al
figures. It is seen that the shaded argan™ (W) is decreasing when increase,
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and the solid bordespan® (H)* increases when increases. For aln-values, both
the shaded area and the solid border intersect with the dhshangle. Therefore, it
is not possible to get another solution by simply increaserfehse the desired solution.
The figure shows that the NMF is unique fere {0.1, 0.3} and not unique forx €
{0.5, 0.7} where the alternative solution is shown with a dotted linbatlthe NMF
are not unique forx € {0.5, 0.7} can also be verified by selecting tligto be the
symmetric orthonormal matrix

Q=Q'=q'=_[7 a:] ©)

3L2 2 -1

and see that botWQ and Q~'H are non-negative. Ifi = 0.3 then the matrixR. is
given by

109 60 30 9 30 100
1 60 109 100 30 9 30
— 30 100 109 60 30 9 (10)
- 100 9 30 60 109 100 30 | -
30 9 30 100 109 60
100 30 9 30 60 109

This shows thaR needs no zeros for the NMF to be unique.

Aa

(©)a = 0.3

©)aa=0.5 d)a=0.7

Figure 2: The figure shows data constructed as in Example 3 plotted isahme manner as in Figure 1 i.e.
the dashed triangle is the desired solution, the solid Bribé border of the dual df and the shaded area
is the positive span oW. It can be seen that the NMF is unique whermquals0.1 or 0.3 but not whenx
equals0.5 or 0.7. In the cases where the NMF is not unique an alternativeisalig shown with a dotted
line.
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In the example abovéWV equalsH” and thereby fulfils the same constraints. In
many applications, the meaning W andH differ, e.g. in music analysis where the
column vectors oW are spectra of notes atdl is a note activity matrix [12].

Next, it is investigated how to make an asymmetric uniqueresstraint.

Definition A.13 A set of vectors ifR? is called sufficiently spreadif for all j and
k > 0 there is an element € S such that

S; > k Z S;.
i#]
Note that in the definition for sufficiently spread thi¢h element is larger than

the sum in contrast to the strongly boundary close definitibere the;j'th element is
smaller than the sum.

Lemma A.14 The dual space to a sufficiently spread set is the positieaatt

Proof. A sufficiently spread set is non-negative and the posititkamt is therefore
part of the dual set for any sufficiently spread set. hdie a vector with a negative
element in thg'th element and select

Zi;ﬁj |bz|

k =
—b;

11)

Then there is an in any sufficiently spread set such tlsat> k Zi# s; and therefore

sTh = Sjbj + Zsibi < Sjbj + (Z Si) (Z |bL|)
i#j i#£] i#]
= —bj(—s; +k Y _s;) <0. (12)
i#j

Theb is therefore not in the dual to any sufficiently spread #it.

In the case of finite sets, the sufficiently spread conditsathé same as the require-
ment for a scaled version of all the standard basis vectdoe foart of the sufficiently
spread set. It is easy to verify that a sufficiently spreadatset is strongly boundary
close and that the parameter is one.

Theorem A.15 If a pair [WT, H] is sufficiently spread and strongly boundary close,
then the NMF oR = WH is unique.

Proof. Lemma A.14 states that the dual set of a sufficiently spretais $lee positive
orthant,
span® (H)* = P = span™ (I)*. (13)
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Theorem A.12 state thdWVT is unique and by using Equation 13 and Theorem A.7 we
conclude thaR. = WH is unique.

Theorem A.15 is a stronger version of the results of DonolibStndden [7, Theo-
rem 1]. The theorem in [7] also assumes tHais sufficiently spread but the condition
for W is stronger than the strongly boundary close assumption.

6 Perturbation Analysis

In the previous sections, we have analyzed situations wiere has been a unique

solution. In this section, it is shown that in some situaditile non-uniqueness can be
seen as estimation noise 8% andH. The error function that describes how close an
estimatedW’, H)' pair is to the truéW, H] pair is

Jowan (W, H) = win(|W - W/(DP)||, + [[H— (DP)"'H|,), (14)
whereP is a permutation matrix anBD is a diagonal matrix.

Theorem A.16 Let R = WH be a unique NMF. Given some> 0 there exists a
d > 0 such that any non-negativé = R + N where||N|| . < ¢ fulfils

J(W,H) (W/7 HI) <, (15)

where
W' H' = argmin |V — WH'| ... (16)
W/ERiXT7H/eR1Xm

The proof is given in the appendix. The theorem states tlla¢ibbservation is cor-
rupted by additive noise then it will result in noisy estimatof W andH. Moreover,
Theorem A.16 shows that if the noise is small then it will tegusmall estimation
errors.

Example 4 This example investigates the connection between theiasldibise inV
and the estimation error oRV andH. The column vectors iNV are basis pictures of
a man, a dog and the sun as shown in Figure 3 a-c. In Figure 3astim of the three
basis pictures are shown. The matiikis the set of all combinations of the pictures,
ie.

Theorem A.15 can be used to conclude that the NMR ef WH is unique because
bothWT andH are sufficiently spread and thereby also strongly boundioye

1In this section the Frobenius norm is used in (14) and (16) tkenheorem A.16 concrete. Theo-
rem A.16 is also valid with the same proof if any continuous roésrused instead of the Frobenius norm in
those equations.
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N . ]

c d

Figure 3: The three basis pictures: (a) a dog, (b) a man and (c) the sam,Eixample 4 individually and
summed (d).
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- * -Additive Noise
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Figure 4: The graph shows the connection between the norm of the aelditior |N|| » and estimation
error of the underlying model (v 1) (W', H’). The two noise matrices from ExampleM, andN ,,,
are plotted. In this example, the curves are aligned for smat®and for larger errors the model erdsn,;
results in much larger estimation errors.

In the example, two different noise matric@®,, and N,,;, are used. ThéNy
matrix model noisy observation and has elements that ardaanuniform IID. The
N, matrix contains elements that are minus one in the positidrereR has elements
that are two and zero elsewhere i.Bl;; is minus one in the positions where the dog
and the man are overlapping. In this case the error mal\y; simulates a model
mismatch that occurs in the following two types of real wathtta. If the data set
is composed of pictures, the basis pictures will be oveitagoand a pixel inV will
consist of one basis picture and not a mixture of the oveiftappictures. If the data
is a set of amplitude spectra, the true model is addition ehglex values and not,
addition of the amplitudes.

The estimation error of the factorizatiofw w)(W'H') is plotted in Figure 4,
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when the norm of the error matrix jgi.e. V.= WH + ﬁu- An estimate of the
F

[W' H'] pair, is calculated by using the iterative algorithm for B@nius norm min-
imizing by Lee and Seung [3]. The algorithm is run for 500atens and is started
from 100 different positions. The decomposition that mizefiv — W'H'|| . is cho-
sen, andJw m) (W’ H’) is calculated numerically. Figure 4 shows that when the
added error is small, it is possible to estimate the undaedyparameters. When the
norm of added noise matrix increases, the behaviour of tleertwise matricesN y
and N, differ. For N, the error of the estimate increases slowly with the norm of
the added matrix while the estimation error d,,; increases dramatically when the
norm is larger thar2.5. In the simulation we have made the following observatian th
can explain the difference in the performance of the two tfpeoise. WheN y is
used, the basis pictures remain noisy versions of the manjalg and the sun. When
N, is used and the norm is larger thans, the basis pictures are the man excluding
the overlap, the dog excluding the overlap and the overlapoti#er way to describe
the difference is that the rank &, is one and the disturbanc is in one dimension,
whereN y is full rank and disturbanc is in many dimensions.

Corollary A.17 LetR = WH be a unique NMF an& = WH whereW = W +
Nw andH = H+ Ng. GivenR ande > 0 there exists @ > 0 such that if the largest
absolute value of botlNy; and N g is smaller thary then

J(VV,I:I) (W/, Hl) < €, (17)
whereW’, H' are any NMF ofV.

Proof. This follows directly from Theorem A.16.H The corollary can be used in
situations where there are small elementd¥handH but no (or not enough) zero
elements — as in the following example.

Example 5 LetR = WH, whereW, H is generated as in Example 3. Let all elements
in bothNy, and Ny be equal tog. In Figure 5,V is plotted whery = 0.3 andn =
{0.01, 0.05, 0.10, 0.15}. In this example neither the shaded area nor the solid border
intersects with the desired solution. Therefore, it is guesto get other solutions by
simply increasing/decreasing the desired solution.ref {0.01, 0.05} the corners of
the solutions are close to the corners of the desired solutishen; = 0.1, the corners
can be placed most places on the solid border and still forneagle that contains the
shaded area. When= 0.15 the corners can be anywhere on the solid border.

7 Probability and Uniqueness

In this section, the row vectors &V and the column oH are seen as results of two
random variables. Characteristics of the sample spacep(ibsible outcomes) of a
random variables that leads to unique NMF will be invesgdat
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(@)n = 0.01 (b) n = 0.05

©)n=0.10 (d)n=0.15

Figure 5: Data constructed as in Example 5 plotted in the same manner guireR i.e. the dashed triangle
is the desired solution, the solid line is the border of thaldéi H and the shaded area is the positive span of
‘W. In all the plots,« equals).3 andn equals 0.01, 0.05, 0.1 and 0.15.

Theorem A.18 Let the row vectors oW be generated by the random variahi&;
and the column vectors @ be generated by a random variabl&y. If the sample
space ofZyy is strongly boundary close and the sample space?ef is sufficiently
spread, then for alt > 0 andk < 1 there existVe and Me such that

p(I]g,irr’L(HDPQ —I||p) < 6) >k, (18)

whereQ is any matrix such thaWWQ and Q~'H are non-negative and the data size
R € R} ™™ is such thatr > Ne andm > Me.

Proof. If the data is scaledD;RDs, it does not change the non-uniqueness of the
solutions if it is measured by thg matrix. The proof is therefore done on the normal-
ized versions oW andH. Let %y and % be the normalized version oy, and
273 . There exist a finite sef® andH of vectors in the closure a¥%, and#}; that
are strongly boundary close and sufficiently spread. By TdmoA.15 it is known that
V = WH is unique. By increasing the number vectors sampled f#gmand#/;, for
any¢ > 0 there will be two subset of the vecto®/’ andH’, that with a probability
larger that anye < 1 will fulfil

¢ >||W-W|_ +|H-H

I I
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It is possible to use Corollary A.17 on this subset. The faat imiting rgi}r}(HDPQ —

I||7) is equivalent to limiting (17) when the vectors are nornmedifinishes the proof.
|

Example 6 Let all the elements il be exponential 11D and therefore generated with
a sufficiently spread sample space. Additionally, let eashin W be exponential [ID

plus a random vector with the sample spa{c@) , ((1)) , (é)} and thereby strongly

boundary close. In Figure 6, the above variables are showrtte following four
matrix sizeR. c {RloxlO7 R40><407 R100><1007 R500><500}_

(C) RI[100x100] (d) RI[500x500]

Figure 6: The figure shows data constructed as in Example 6 plotted isahee manner as the previous
figure with the exception that each row vectoNdf is plotted instead of the positive span of the vectors. The
size of R is shown under each plot.

8 Discussion

The approach in this paper is to investigate when non-nggateads to uniqueness
in connection with NMFV ~ R = WH. Non-negativity is the only assumption for
the theorems, and the theorems therefore cannot be useguasesnt for a NMF to be
non-unique if there is additional information abddt or H. An example where there
are stronger uniqueness results is the sparse NMF algootitioyer [13] built on the
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assumption that the row vectorsh have known ratios between tlig norm and the
L, norm. Theis et al. [14] have investigated uniqueness ingtigtion and shown
strong uniqueness results. Another example is data matnith an added constant on
each row. For this situation the Affine NMF algorithm [15] caake NMF unique even
though the setup violates Theorem A.10 in this paper.

As shown in Figure 4, the type of noise influences greatly enetiior curves. In
applications where noise is introduced because the additadel does not hold, as for
example wherV is pictures or spectra, it is possible to influence the nojsmaking
a non-linear function on the elements¥f Such a non-linear function is introduced
in [16] and experiments show that it improves the resultshéotetical framework to
finding good non-linear functions will be interesting to éstigate.

The sufficiently spread condition defined in Section 5 hasnaportant role for
uniqgue NMF due to Lemma A.14. The sufficiently spread assiamjig seen indirectly
in related areas where it also leads to unique solutionsjre[§] where the grounded-
ness assumption leads to variables with a sufficiently sisample space. If the matrix
H is sufficiently spread then the columnsWs will occur (almost) alone as columns
in V. Deville [17] uses the “occur alone” assumption, and themldficiently spread
assumption, to make blind source separation possible.

9 Conclusion

We have investigated the uniqueness of NMF from three diffeviewpoints,
e unigueness in noise free situations,

e the estimation error of the underlying model when a matrithwinique NMF is
added with noise and

e the random processes that lead to matrices where the uimderhodel can be
estimated with small errors.

By doing this we have shown that it is possible to make manyhard useful charac-
terisations that can be used as a theoretical underpinamgsfng the numerous NMF
algorithms. There are several open issues in all the theepaints that, if addressed,
will give a better understanding of Non-negative Matrix feaization.

10 Appendix

Proof. [Proof of Theorem A.12] The theorem state tWat = WI is a unique NMF.
To proof this it is shown that the condition for Theorem A.7ffilled. The positive
orthant is self duall(= I') and thereby C P whereQ is anr order simplicial cone
that containspan™ (WT). Let the set of row vectors iW be denotedV . An r order



A18 Publication A

simplicial cone, likeQ, is a closed set, and it therefore needs to contain the @asfur
W denoted byV. The two items in the definition A.11 of strongly boundarysgcan
be reformulated fo¥V that contains the border:

1. s) =0forallj
2. the vectorgb®, --- ,b?™"] are linearly independent.

The rest of the proof follows by induction. 4= 2 thenWW = P and therefore unique.
Let therefore- > 2. There are- — 1 linearly independent vectors W that has zero as
the first element and — 1 of the basis vectors therefore have zero in the firs elements.
In other words, is there only one basis vector with a non-fiesb element. Let’s us
call this vectorb'. For allj > 1 there is a vector in) that is non-negative in the first
element and zero thgth element, so all the elements st except the first have to be
zero. The proof is completed by seeing that if the first elan®enemoved from the
vectors inW, it is still strongly boundary close and the problem is there ther — 1
dimensional problemll

Proof. [Proof of Theorem A.16] Leg be the open set of alV’, H’ pairs that are close
to W andH

G ={[W . H|Jwm(W H)<e}. (19)

LetG be the set of all non-negatité, H pairs that are not i and wherenax(W, H) <
/1 + max(R). The uniqueness @& ensures that

HRfWﬁL>& (20)

for all [W,H] € G. The fact that the Frobenius norm is continuodsis a closed
bounded set and the statement above is positive ensure that

_min _(HR —~WH| )=0¢ >0, (21)
[W,H]eG

.
since a continuous function attains its limits on a closeshoied set [18, Theorem 4.28]).
The W, H pairs that are not i and wherenax(W,H) > /1 + max(R) can either
be transformed by a diagonal matrix into a matrix pair frgmWD,D~'H] € G,

having the same produc¥(H) or it can be transformed into a pair where b&thand
H have large elements, i.e.

max(WH) > /1 + max(R)2 =1+ max(R),

and thereb;HR - VV}VIHF > 1.

Selectd to be bed = min (1,4")/2. The error of the desired solutidR = WH
can be bounded bV — R||, = |N|| < d. Let'V be any matrix constructed by a
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non-negative matrix pair frorg. Because of the way is selecte(ﬂ\u/ — RHF > 20.
By the triangle inequality, we get
[V =i, +1v-Ris 2 |V -]
F F
[V =9l 2 [v-r], -1V -ri
F F
>20—0=0>|V-R|p.

All solutions that are irg therefore have a larger error thaH and will not be the
minimizer of the error.ll
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Abstract

We present a general method for including prior knowledga mon-negative matrix
factorization (NMF), based on Gaussian process priors. \Wesueme, that the non-
negative factors in the NMF are linked by a strictly increagsfunction to an underlying
Gaussian process, specified by its covariance functions @lows us to find NMF

decompositions, that agree with our prior knowledge of tisérithution of the factors,

such as sparseness, smoothness, and symmetries. The meathotnstrated with an
example from chemical shift brain imaging.

1 Introduction

Non-negative matrix factorization (NMF) [1, 2] is a recengtimod for factorizing a
matrix as the product of two matrices, in which all elememnésreon-negative. NMF has
found widespread application in many different areas iticlg pattern recognition [3],
clustering [4], dimensionality reduction [5], and spektmaalysis [6, 7]. Many physical
signals, such as pixel intensities, amplitude spectrapandrence counts, are naturally
represented by non-negative numbers. In the analysis dalimix of such data, non-
negativity of the individual components is a reasonablestamt. Recently, a very
simple algorithm [8] for computing the NMF was introducechid has initiated much
research aimed at developing more robust and efficientitigus.

Efforts have been made to enhance the quality of the NMF bingddrther con-
straints to the decomposition, such as sparsity [9], splaitalization [10, 11], and
smoothness [11, 12], or by extending the model to be corivel(t3, 14]. Many ex-
tended NMF methods are derived by adding appropriate @ntrand penalty terms
to a cost function. Alternatively, NMF methods can be dativea probabilistic setting,
based on the distribution of the data [6, 15-17]. These @um@s have the advantage
that the underlying assumptions in the model are made éixplic

In this paper we present a general method for using prior ledye to improve the
quality of the solutions in NMF. The method is derived in albilistic setting, and it
is based on defining prior probability distributions of tlaetbrs in the NMF model in
a Gaussian process framework. We assume that the nonveetgtiors in the NMF
are linked by a strictly increasing function to an undenly®aussian process, specified
by its covariance function. By specifying the covariancéhef underlying process, we
can compute NMF decompositions that agree with our prionkedge of the factors,
such as sparseness, smoothness, and symmetries. We rfeproposed method as
non-negative matrix factorization with Gaussian procegs® or GPP-NMF for short.
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2 NMF with Gaussian Process Priors

In the following we derive a method for including prior infoation in an NMF decom-
position by assuming Gaussian process priors (for a gemgratluction to Gaussian
processes, see e.g. Rasmussen and Williams [18].) In ovnagp the Gaussian pro-
cess priors are linked to the non-negative factors in the NW& suitable link function.
To set up the notation, we start by deriving the standard NMfhod as a maximum
likelihood (ML) estimator and then move on to the maximum atpdori (MAP) es-
timator. Then we discuss Gaussian process priors and uteod change of variable
that gives better optimization properties. Finally, wecdiss the selection of the link
function.

2.1 Maximum Likelihood NMF
The NMF problem can be stated as

X =DH+ N, 1)

where X € RX*L js a data matrix that is factorized as the product of two elgme
wise non-negative matriced) € RY*M and H € RY'*", whereR ., denotes the
non-negative reals. The matri¥ € R% >’ is the residual noise.

There exists a number of different algorithms [8, 15-17,219-for computing this
factorization, some of which can be viewed as maximum lii@did methods under
certain assumptions about the distribution of the dataekample, least squares NMF
corresponds to i.i.d. Gaussian noise [17] and KullbaclsleziNMF corresponds to a
Poisson process [6].

The ML estimate ofD and H is given by

{Dwmv, Hyr} = argmin Lx|p (D, H), (2)
D ,H>0
whereL x| p (D, H) is the negative log likelihood of the factors.
Example 7 (Least squares NMF)An example of a maximum likelihood NMF is the

least squares estimate. If the noise is i.i.d. Gaussian wéfiancec%;, the likelihood
of the factorsD and H can be written as

- 2
pl)ﬁD,H(X\DvH) = (\/Tl)KLeXP <|X2UIZH|F) . 3)
TON N

The negative log likelihood, which serves as a cost fundtaonptimization, is then

1
£Xip,u(D, H) < o—||X — DHI|%, @
N



2. NMF WITH GAUSSIAN PROCESS PRIORS B5

where we use the proportionality symbol to denote equalibjext to an additive con-
stant. To compute a maximum likelihood estimatddofind H, the gradient of the
negative log likelihood is useful

1
VHL?‘D}H(D, H) = %DT(DH - X), (5)
and the gradient with respect tB, which is easy to derive, is similar because of the
symmetry of the NMF probleng

The ML estimate can be computed by multiplicative updateslased on the gra-
dient [8], projected gradient descent [19], alternatiregtesquares [20], Newton-type
methods [21], or any other appropriate constrained opétioa method.

2.2 Maximum a Posteriori NMF

In this paper, we propose a method to build prior knowledge ihe solution of the
NMF problem. We choose a prior distributi¢h, (D, H) over the factors in the
model, that captures our prior beliefs and uncertaintiehefsolution we seek. We
then compute the maximum a posteriori (MAP) estimate of #utofs. Using Bayes
rule, the posterior is given by

Px|p,n(X|D,H)Pp y(D,H)
Px (X) .
Since the numerator is constant, the negative log postisritie sum of a likelihood

term that penalizes model misfit, and a prior term that peealsolutions that are un-
likely under the prior

Pp.ax (D, H|X) = (6)

Lp.ux(D,H)x Lxpu(D,H)+ Lpyu(D,H). (7)
The MAP estimate oD andH is

{Dyap, Huap} = argmin Lp g x (D, H), (8)
D.H>0

and it can again be computed using any appropriate optiioizatgorithm.

Example 8 (Non-negative sparse codingfn example of a MAP NMF is non-negative
sparse coding (NNSC) [9, 22], where the prior #his i.i.d. exponential, and the prior
on D is flat with each column constrained to have unit norm

PYEC(D, H) = [[ Xexp (—=AH,;), || Dxl| =1k, 9)
i,
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where|| Dy|| is the Euclidean norm of the'th column of D. This corresponds to the
following penalty term in the cost function

LYEO(D,H) < A\ H; ;. (10)
i,J
The gradient of the negative log prior with respectfibis then
VLR = A (11)

and the gradient with respect tb is zero, with the further normalization constraint
given in Equation (9)

2.3 Gaussian Process Priors

In the following, we derive the MAP estimate under the assionpthat the non-
negative matrice® and H are independently determined by a Gaussian process [18]
connected by a link function. The Gaussian process franmepavides a principled
and practical approach to the specification of the prior @bdlty distribution of the
factors in the NMF model. The prior is specified in terms of tiuactions: i) a co-
variance function that describes corellations in the facémnd ii) a link function, that
transforms the Gaussian process prior into a desiredhisitvh over the non-negative
reals.

We assume thab and H are independent, so that we may write

Lpu(D,H)=Lp(D)+ Lu(H). (12)

In the following, we consider only the prior fdi, since the treatment db is equiva-
lent due to the symmetry of the NMF problem. We assume thaétisean underlying
variable vectorh € R which is zero mean multivariate Gaussian with covariance
matrix X3,

Pu(R) = (27S4[2) 2V exp (;hTE;1h> , (13)
and linked toH via a link function,f,: Ry — R
h= fh(vec(H))7 (14)

which operates element-wise on its input. The (-) function in the expression stacks
its matrix operand column by column. The link function sltbhé strictly increasing,
which ensures that the inverse exists. Later, we will furdssume that the derivatives
of f andf,j1 exist. Under these assumptions, the prior ak#rs given by (using the
change of variables theorem)

it (H) =Py (fu(vec (H) ) |7 (f1 (vee (D) )| (15)
x exp <—;f,,, (vec (H)) "S5 fi (vec (H))) H|f,’L (vec (H))|,, (16)
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whereJ (-) denotes the Jacobian determinant gfds the derivative of the link func-
tion. The negative log prior is then

Ly(H) o %fh (vec (H))TE,jlfh (vec (H)) — Zlog’f,’L (vec (H)) }Z a7

This expression can be combined with an appropriate likelihfunction, such as the
least squares likelihood in Equation (4), and be optimizeyield the MAP solution;
however, in our experiments, we found that a more simple ahdst algorithm can be
obtained by making a change of variable as explained next.

2.4 Change of Optimization Variable

Instead of optimizing over the non-negative factédsand H, we introduce the vari-
ablesd andn), which are related t@ and H by

D = gq(6) =vec ™ (f;1(CJ0)), H =gp(n)=vec ' (f, " (Cim). (18)

where thevec™! (+) function maps its vector input into a matrix of appropriaiees
The matriceC,; andC)}, are the matrix square roots (Cholesky decompositions)eof th
covariance matrice®, andX;, such thad andn are standard i.i.d. Gaussian.

This change of variable serves two purposes. First of alffounad that optimizing
over the transformed variables was faster, more robusigasgbrone to getting stuck in
local minima. Second, the transformed variables are nattcaned to be non-negative,
which allows us to use existing unconstrained optimizatiathods to compute their
MAP estimate.

The prior distribution of the transformed variabjes

= - ——
B, (1) = P (on(n)) 17 ()| = e (<5n7n) 9

and the negative log prior is

1
L,(n) o §nTn- (20)

To compute the MAP estimate of the transformed variablesmwst combine this
expression for the prior (and a similar expression for thermf §) with a likelihood
function, in which the same change of variable is made

1 1
Lsnx(8,m) = Lxp,u(94(8), 9n(n)) + §5T5 + §7IT7I« (21)
Then the MAP solution can be found by optimizing odesindn

{0mar, Mvar} = ar% min Ls , x (8, M), (22)
sMn

and, finally, estimates dD and H can be computed using Equation (18).
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Example 9 Least squares non-negative matrix factorization with Gasien process
priors (GPP-NMF)
If we use the least squares likelihood in Equation (4), thet@aor distribution in Equa-
tion (21) is given by
. 1, -

LSRN0 =5 (081X —ga@an (- + 876 +nTn)  (23)
The MAP estimate of and n is found by minimizing this expression, for which the
derivative is useful

VL5 X8, m) =
o3 (vee (9u(8) (0a(@)an(m) — X)) © (;)(CTm)) Cu . (24)

where® denotes the Hadamard (element-wise) product. The devivatith respect to
4 is similar due to the symmetry of the NMF problefin.

2.5 Link Function

Any strictly increasing link function that maps the non-atrge reals to the real line
can be used in the proposed framework; however, in ordente d&etter probabilistic
interpretation of the prior distribution, we propose a diengrinciple for choosing the
link function. We choose the link function such trf%‘tl maps the marginal distribution
of the elements of the underlying Gaussian process vécioto a specifically chosen
marginal distribution of the elements &f. Such an inverse function can be found
asf, '(h;) = Py (Py(h;)) whereP(-) denotes the marginal cumulative distribution
functions (cdf).

Since the marginals of a Gaussian process are Gauddjdh,) is the Gaussian
cdf, and, using Equation (13), the inverse link functioniiseg by

fi (ki) = PRt (; + %@ (\/’;U» (25)

wheres? is thei'th diagonal element oE;, and®(-) is the error function.

Example 10 (Exponential-to-Gaussian link function) If we choose to have exponen-
tial marginals in H, as in NNSC described in Example 8, we selegtas the expo-
nential cdf. The inverse link function is then

i) =508 (5 - 50 (2. 20
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where) is an inverse scale parameter. The derivative of the invMarkéunction, which
is needed for the parameter estimation, is given by

2
exp ()\ fit(hs) — h2) . (27)

(fi 1) (hi) = 20"

1
V2mo; A
|

Example 11 (Rectified-Gaussian-to-Gaussian link function Another interesting non-
negative distribution is the rectified Gaussian given by

p(x):{ 2wsel(’)( ) w20 (28)

, <0

Using this pdf in Equation (25), the inverse link function is

(k) = V250! ( @(;U)) (29)

and the derivative of the inverse link function is

-1 )2 2
(fh—l)/(hL) _ %G‘Xp (fh (hz) N hz > . (30)

252 202

2.6 Summary of the GPP-NMF Method
The GPP-NMF method can be summarized in the following steps.

1. Choose a suitable negative log likelihood functibrp (D, H) based on
knowledge of the distribution of the data or the residual.

2. For each of the non-negative factdbsand H, choose suitable link and covari-
ance functions according to your prior beliefs. If necegsdiraw samples from
the prior distribution to examine its properties.

3. Compute the MAP estimate éfandn by Equation (22) using any suitable un-
constrained optimization algorithm.

4. ComputeD and H using Equation (18).
Our Matlab implemention of the GPP-NMF method is availabiiéne [23].
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3 Experimental Results

We will demonstrate the proposed method on two examples afitsy example, and
second an example taken from the chemical shift brain ingpliferature.

In our experiments we use the least squares GPP-NMF dedanittexample 9 and
the link functions described in Example 10-11. The specfinaization method used
to compute the GPP-NMF MAP estimate is not the topic of thjggpaand any uncon-
strained optimization algorithm could in principle be uskdour experiments we used
a simple gradient descent with line search to perform a tdtBD00 alternating updates
of § andn, after which the algorithm had converged. For details ofitiq@ementation,
see the accompanying Matlab code [23].

3.1 Toy Example

We generated &00 x 200 data matrix,Y’, by taking a random sample from the GPP-
NMF model with two factors. We chose the generating covagannction for bothy
andn as a Gaussian radial basis function (RBF),

. £\ 2
6(i,5) = exp (—“,f) , (31)
where; andj are two sample indices, and the length scale parametehwkiermines
the smoothness of the factors, wats = 100. We set the covariance between the two
factors to zero, such that the factors were uncorrelated. tHteomatrix D we used
the rectified-Gaussian-to-Gaussian link function witk= 1, and for H we used the
exponential-to-Gaussian link function with = 1. Finally, we added independent
Gaussian noise with variane&, = 25, which resulted in a signal-to-noise ratio of
approximately—7 dB. The generated data matrix is shown in Figure 1.

We then decomposed the generated data matrix using foeretiff methods:

1. LS-NMF: Standard least squares NMF [8]. This algorithm does nowatiega-
tive data points, so these were set to zero in the experiment.

2. CNMF: Constrained NMF [6, 7], which is a least squares NMF algarithat
allows negative observations.

3. GPP-NMF: Correct prior: The proposed method with correct link-functions,
covariance matrix, and parameter values.

4. GPP-NMF: Incorrect prior: To illustrate the sensitivity of the method to prior
assumptions, we evaluated the proposed method with iretopréor assump-
tions: We switched the link functions, such that forwe used the exponential-
to-Gaussian, and faH we used the rectified-Gaussian-to-Gaussian. We used an
RBF covariance function witf3? = 10 and3? = 1000 for D and H respec-
tively.
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The results of the decompositions are shown as recongirdeta matrices in Fig-
ure 1. All four methods find solutions that visually appeafitahe underlying data.
Both LS-NMF and CNMF find non-smooth solutions, whereas te GPP-NMF re-
sults are smooth in accordance with the priors. In the GPR=MNth incorrect prior,
the dark areas (high pixel intensities) appear too wideérfitlst axis direction and too
narrow in the section axis direction, due to the incorrettirsg of the covariance func-
tion. The GPP-NMF with correct prior is visually almost efjt@the true underlying
data.

Noisy data Underlying data
100
: - e » "
50} . 20
. ‘d $ 0
1 & i - 15
CNMF
100— 10
‘m' "“‘ m‘*;'\f‘ngl | i .\‘.‘!p 4'“ ™
50 il bllgt] ? i" 111°
1 = = L 10
GPP-NMF: Incorrect prior GPP-NMF: Correct prior
100 L 4.5
-— — - - . » » "
’ & .
50 ‘ - - -y . i @ L . i 10
1 — W -
1 100 200 100 200

Figure 1: Toy example data matrix (upper left), underlying noise-frea-negative data (upper right), and
estimates using the four methods described in the text. Tleehdat a fairly large amount of noise and the
underlying non-negative factors are smooth in both direstidthe LS-NMF and CNMF decomposition are
non-smooth, since these methods do not model of correlatiothe ifactors. The GPP-NMF, which uses a
smooth prior, finds a smooth solution. When using the correot,ptie soulution is very close to the true
underlying data.

Plots of the estimated factors are show in Figure 2. The faestimated by the LS-
NMF and the CNMF methods appear noisy and are non-smoothreat¢he factors
estimated by the GPP-NMF are smooth. The factors estimgtédueli S-NMF method
have a positive bias, because of the truncation of negasitee drhe GPP-NMF with
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incorrect prior has too many local extrema in thefactor and too few in théd factor
due to the incorrect covariance functions. There are onhomilifference between the
result of the GPP-NMF with the correct prior and the undedyfiactors.

Measures of root mean squared error (RMSE) of the four deositipns are given
in Figure 3. All four methods fit the noisy data almost equalll. (Note that, due to
the additive noise with variance 25, a perfect fit to the ulyiteg factors would result in
a RMSE of5 with respect to the noisy data.) The LS-NMF fits the data waustto the
truncation of negative data points, and the CNMF fits the Hatd, due to overfitting.
With respect to the noise free data and the underlying factibe RMSE is worst for the
LS-NMF and best for the GPP-NMF with correct prior. The GPMfwith incorrect
prior is better than both LS-NMF and CNMF in this case. Thisve$, that in this
situation it better to use a prior which is not perfectly ety compared to using no
prior as in the LS-NMF and CNMF methods, (which corresporda flat prior over
the non-negative reals and no correlations.)

3.2 Chemical Shift Brain Imaging Example

Next, we demonstrate the GPP-NMF method bBirdecoupled! P chemical shift imag-
ing data of the human brain. We use the data set from Ochs[@dglwhich has also
been analyzed by Sajda et al. [6, 7]. The data set, which isrsioFigure 4, consists
of 512 spectra measured on &rx 8 x 8 grid in the brain.

Ochs et al. [24] use PCA to determine, that the data set isuadiely described by
two sources (which correspond to brain and muscle tissubey propose a bilinear
Bayesian approach, in which they use a smooth prior overdhstituent spectra, and
force to zero the amplitude of the spectral shape correspgrid muscle tissue at 12
positions deep inside the head. Their approach producesqatily plausible results,
but it is computationally very expensive and takes seveyat$ito compute.

Sajda et al. [6, 7] propose an NMF approach that is reportamtal produce phys-
ically plausible results. Their method is several ordermafnitude faster, taking less
than a second to compute. The disadvantage of the methodda &zal. compared to
the Bayesian approach of Ochs et al. is, that it provides nchax@sm for using prior
knowledge to improve the solution.

The GPP-NMF approach we propose in this paper bridges thbefagen the two
previous approaches, in the sense that it is a relatively\\isls- approach, in which pri-
ors over the factors can be specified. These priors are sgEkbifithe choice of the link
and covariance functions. We used prior predictive sargpbrfind reasonable settings
of the the function parameters: We drew random samples fnerprior distribution and
examined properties of the factors and reconstructed égtathen manually adjusted
the parameters of the prior to match our prior beliefs. Amgxia of a random draw
from the prior distribution is shown in Figure 5, with the pareters set as described
below.

We assumed that the factors are uncorrelated, so the covariztween factors is
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GPP-NMF:
Correct prior
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Colums of D Rows of H

Underlying data

LS-NMF

CNMF

20 40 60 80 100 50 100 150 200

Figure 2: Underlying non-negative factors in the toy example: Coluninfq(left) and rows ofH (right).
The factors found by the LS-NMF and the CNMF algorithm arespoivhereas the factors found by the
GPP-NMF method are smooth. When using the correct prior, therfatound are very similar to the true
factors.
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I \vF
] I cNvF

[ ] GPP-NMF: Incorrect prior
[ ] GPP-NMF: Correct prior

RMSE

Noisy data Noise free data Underlying factors

Figure 3: Toy example: Root mean squared error (RMSE) with respect to¢igy data, the underlying
noise free data, and the true underlying non-negative facidhe CNMF solution fits the noisy data slightly
better, but the GPP-NMF solution fits the underlying data mhetter.

zero. We used a Gaussian RBF covariance function for thetinoerst spectra, with

a length scale ofy = 0.3 parts per million (ppm), and we used the exponential-to-
Gaussian link function witt\; = 1. This gave a prior for the spectra that is sparse
with narrow smooth peaks. For the amplitude at the 512 vdrelse head, we used a
Gaussian RBF covariance function on the 3-D voxel indicet length scales = 2.
Furthermore, we centered the left-to-right coordinate axthe middle of the brain, and
computed the RBF kernel on the absolute value of this coatéjrso that a left-to-right
symmetry was introduced in the prior distribution. Agaire used the exponential-to-
Gaussian link function, and we chogg = 2 - 10~ to match the overall magnitude
of the data. This gave a prior for the amplitude distributileat is sparse, smooth, and
symmetric. The noise variance was settp = 10® which corresponds to the noise
level in the data set.

We then decomposed the data set using the proposed GPP-Njdittah and,
for comparison, reproduced the results of Sajda et al. [iflguheir CNMF method.
The results of the experiments are shown in Figure 4. An el@wipa random draw
from the prior distribution is shown in Figure 5. The resulishe CNMF is shown in
Figure 6, and the results of the GPP-NMF is shown in Figurehe figures show the
constituent spectra and the fifth axial slice of the spatgtithution of the spectra. The
8 x 8 spatial distributions are smoothed in the illustratiomikir to the way the results
are visualized in the literature.

The results show that both methods give physically plaasidults. The main dif-
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Figure 4: Brain imaging data matrix (top) along with the estimated decasitiom and residual for the CNMF
(middle) and GPP-NMF (bottom) method. In this view the resuite two decompositions are very similar,
the data appears to be modeled equally well and the residweadsnailar in magnitude.

5 0 -5 -10  -15 20
[Ppm]

Figure 5: Brain imaging data: Random draw from the prior distributiothwthe parameters set as described
in the text. The prior distribution of the constituent spadleft) is exponential and smooth and the spatial
distribution (right) in the brain is exponential, smoothddras a left-to-right symmetry.
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s M I\ 4

0.2}

s o @

[ppm]
Figure 6: CNMF decomposition result. The recovered spectra are pdjsiplausible, and the spatial
distribution in the brain for the muscle (top) and brain (bot} tissue is somewhat separated. Muscle tissue
is primarily found near the edge of the skull, whereas brasuig is primarliy found at the inside of the head.

0.2+ '
i kﬂ A oM -'-‘
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“ ]\/\\ A
5 .10 <15 -20

5 0

[Ppm]
Figure 7: GPP-NMF decomposition result. The recovered spectra agesuiilar to the spectra found by
the CNMF method, but they are slightly more smooth. The spasgilbution in the brain is highly separated
between brain and muscle tissue, and it is more symmetric tha®NMF solution.
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ference is that the spatial distribution of the spectraegponding to muscle and brain
tissue is much more separated in the GPP-NMF result, whigdhego the exponential,
smooth, and symmetric prior distribution. By includinggarinformation, we obtain a
solution, where the factor corresponding to muscle tissuckearly located on the edge
of the skull.

4 Conclusions

We have introduced a general method for exploiting prionkiedge in non-negative
matrix factorization, based on Gaussian process priansedi to the non-negative fac-
tors by a link function. The method can be combined with angtayg NMF cost func-
tion that has a probabilistic interpretation, and any @xgstinconstrained optimization
algorithm can be used to compute the maximum a posteriomats.

Experiments on toy data show, that with a suitable seledidine prior distribution
of the non-negative factors, the GPP-NMF method gives mattebresults in terms
of estimating the true underlying factors, both when coragdo traditional NMF and
CNMF.

Experiments on chemical shift brain imaging data show taGPP-NMF method
can be successfully used to include prior knowledge of tleetsal and spatial distribu-
tion, resulting in better spatial separation between specrresponding to muscle and
brain tissue.
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Abstract

In this paper, we propose a novel algorithm for monaural dkource separation based
on non-negative matrix factorization (NMF). A shortcomafgnost source separation
methods is the need for training data for each individualrseu The algorithm pro-
posed in this paper is able separate sources even when there iraining data for
the individual sources. The algorithm makes use of modeisdd on mixed signals
and uses training data where more than one source is actitkeatime. This makes
the algorithm applicable to situations where recordinggted individual sources are
unavailable. The key idea is to construct a structure matrat indicates where each
source is active, and we prove that this structure matrixnbimed with a uniqueness
assumption, is sufficient to ensure that results are egeintato training on isolated
sources. Our theoretical findings is backed up by simulatimm music data that show
that the proposed algorithm trained on mixed recordingsfgrens as well as existing
NMF source separation methods trained on solo recordings.

1 Introduction

Separation of a single source in a monaural recording, ssiéhsingle instrument in
polyphonic music or the cocktail party problem [1] is a diffictask. An unsupervised
approach is to decompose the signal into basic “atoms”, lagxl group these to form
auditory objects—se e.g. [2—6]. Another unsupervised aras to form flexible
source models, and fit these to the mixture—se e.g. [7-9]. Arsiged approach
is to learn source models from isolated recordings of eacincep and use these to
separate the mixture subsequently. These source modeledaased on, e.g., neural
networks [10, 11], factorial hidden Markov models [12, 1@}ctor quantization [14,
15], independent component analysis [16, 17], or non-megatatrix factorization [1,
18].

When a reasonable amount of training data with isolated ssusavailable, super-
vised, model based methods generally yield very good eduitvever, there are many
applications where suitable training data cannot be obtkirfor example in instru-
ment separation where many instruments and singers neger alone. Thus, to use
model based methods to separate sources, it is desirablertodource models directly
from the available mixture.

In this paper, we propose a method for learning models o¥iddal sources di-
rectly from mixture, in a single-channel source separatiamework [18] based on
non-negative matrix factorization (NMF). We show that, encertain conditions, train-
ing on mixtures works equally well as training on isolatedrses. There has been pro-
posed algorithms to learn source models directly from meguby locating areas in the
training data, where only one source is active [19]. Our appin does not require this;
however, we do require areas, in which each sourteigive The proposed algorithm
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is successfully tested on music data.

The paper is structured as follows. In Section 2, we intreddMF and discuss its
computation. Next, in Section 3, we describe a general fnagriefor single-channel
source separation based on NMF. Our proposed method foligasource models di-
rectly from mixed recordings is described in Section 4 arkexnentally evaluated on
music recordings in Section 5. Finally, we conclude with ocomclusions in Section 6
and a detailed description of the simulations in Appendix 1.

2 Non-negative Matrix Factorization

Non-negative matrix factorizationiNMF) is the approximate factorization of a non-
negative matrix,V € R’*™, into the product of two non-negative matricéd] &
R*" andH € R ™

V ~ WH. (1)
In [20] a simple iterative NMF algorithm has been proposkds tinimizes
E(W.H) = |V - WH]|, @

where ||-|| . denotes the Frobenius norm. Further, they have proven {Bat,each
iteration reduces the objective function. In addition te Brobenius norm, numerous
NMF cost functions have been suggested [22, 23], and mafsrelift algorithms for
computing the NMF have been proposed—for an overview, sde [2dch effort has
been put into finding solutions that are sparse, starting thié sparse NMF method
proposed by [25] Many papers from different areas report that sparse NMérihgns
outperform traditional NMF algorithms, which indicatestliata in those papers are
sparse—se e.g. [1, 25-28]. We believe that there are twomsdeo the success of
sparse NMF. Firstly, the NMF research has started in areasenit is known that
there are understandable underlying data (which often ssparse underlying data).
Secondly, if the underlying data is not sparse at all (no elemare close to zero) the
NMF is not unique [29].

In this paper, we will use the sparse NMF formulation of [273ttis based on the
following cost function

1 _
C(W.H) = 5 [V - WH|, +AY_H, 3)
1,7
v VA W'Il
ani, S 1,...,', 4

whereW,, is then'th column vector inW, and the parameter controls the trade-off
between sparsity dil and approximation errof; (W, H).

1In some literature NMF is also called non-negative matrix apipnation and positive matrix factoriza-
tion.
2In the work of Hoyer, the method is called non-negative speoskng.
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Algorithm 1 NMF source separation
1. For each sourcey, compute NMF of isolated training data,

!/ ! U
V! ~ W/ H,.

StoreW?, and discard),.
2: ComputeH,,--- . Hy

N H;
vy - wn o |
n=1 Hy

3: ReturnV,, = W/ H,, as an estimate of théth source.

3 Source separation using NMF

A supervised approach [18] to source separation is destiibdlgorithm 1. In
the first step of the algorithm, training data, consistingsofated recordings of each
source, are used to build a model of each source. Step 1 ihgiiethm has only to be
calculated once for each source, and the computational leaitypof this step is thus
not crucial. For the cost function in Equation 3, Step 2 indlgorithm can be com-
puted efficiently using quadratic programming. To ensuat theW’ in Algorithm 1
Step 1 can be used for separation, it is desirable that theasdW’ is unique up to a
permutation and a scaling—for further analysis of uniqusié&dNMF see [29]. In [29]
a NMF is called unique if all factorisations are on the form

V= W H (5)
N — N——
=WD-1P-1 =PDH
whereP andD is a permutation and a scaling, respectively. So using dhnisibology,
Algorithm 1 will produce reproducible results if i/, are unique.

4 Learning source models from mixed sources

To explain the new algorithm, we start by reformulating thstfstep in Algorithm 1.
If all training data are gathered in one matrix, Sy = [v; - Vi ], Step 1 can be
computed for all instruments by solving

H) 0
V 2~ WH =[w; - WH[ ] (6)
0 H’y
Implementing step one of Algorithm 1 in this manner is conagiohally inefficient, but
it makes it clear, that prior knowledge of zerosHi makes it possible to fin®v’, for
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Algorithm 2 Structured NMF source separation

1. Gather all training data in a data matrix
Vtrm',n = [Vl e VJ\I]-
Let H' be a structured matrix, and solve
Vt'r‘ain ~ [W/1 e vWEV]Hlv
maintaining the structure iH. Store[W7 --- W/, ] and discardd’.
2: ComputeH,,--- . Hy
N H;
V&Y V,=WH=[w W] [ : ]
n=1 H‘N

3: ReturnV,, = W/ H,, as an estimate of thé&th source.

each source. In the following, we call a matiK with zeros in patterns structured
H’ matrix, and we refer to NMF, witetructuredH, asstructured NMFE The following
theorem shows, that most matriddswith structure can be used to indentify the model

for each source.

Theorem C.1 Let
V - [Vl VN] :WH: [Wl WN][
be a unique NMF, wher#l} = 0 for all », and let

H o Hy
V=WH-=[w, . WN}[ ]
Y AR

be any NMF ofV, whereH” = 0 for all n. If there are non # m such thatH”" has a

row of zeros then

(a) W, H” = W, H"  for all n andm.

m m?

(b) For all n, there is a permutation matrix®,,, and a diagonal scaling matrix),,,

such thatW,, = W,,P,,D,,.
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Proof. The NMF of WH is unique, and therefol = WD~'P~! andH = PDH.
The proof is concluded by realizing that the permutaffomust be block diagonal,

P 0]
0 Py
in order forA” = 0 for all n and therefore
P.:D; 0
PD = [ ] (8)
0] PnyDyn

|

In terms of modelling sources, the theorem states, thatéfwsants to estimaté’
source models, and haétraining recordings, each with one source missing, therethe
is a unique solution, if all source components are activdlitraining files where it is
not missing. Theorem C.1 leads naturally to Algorithm 2. fra@ing data used in step
1 of Algorithm 2 does not need to be isolated recordings ofi@acl, and Theorem C.1
shows, that if the assumptions are fulfilled, the result ésshme as for Algorithm 1.
Note that step 2 and 3 of Algorithm 2 is the same as in Algorithm

5 Results

We have constructed three tests, in which we compare Alguorit and 2. Throughout
the test, Algorithm 1 always has solo recordings for thentrgj where as Algorithm 2
always use mixture recordings. The first is a simulation shitnat both algorithms can
separate three and four artificial sources. The secondstest @&xample of instrument
tone separation in a single channel recording of musicasand the third test is an
example of instrument separation in a single channel réogrof mixed polyphonic
music.

In the first test, artificial sources are separated. The #ldtas a square matrix, and
each source hg2, 4,6} components. In Figure 1, the estimation error is shown fer Al
gorithm 1 (trained on individual training data for each s@)rand Algorithm 2 (trained
on mixed training data). For a detailed description of thgesinent, see Appendix 1.
From the simulation it can be seen, that when the amount afidaufficient, the two
algorithms perform equally well. In the second test, Algon 2 is used on amplitude
spectra of three instruments form the lowa Music Databa8k [BachV’, consist of
two instruments that both plays one note. In this test theagesl cosine of the angles
between the basis vectors calculated using Algorithm 2 laathasis vectors calculated
using solo recordings abo¥e99, which in practise means that they are equal. Figure 2
shows an example & ,...,, = [V1, V2, V3] and there corresponding three basis spec-
tres are shown in figure 3. It can be seen that the basis vemtersstimated almost
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Figure 1: The mean error of separation (@) three sources an) four sources, using Algorithm 1 (dashed
lines) and Algorithm 2 (solid lines). The simulation is comgaiwith different model orders and size of
training datam = n.

Frequency in Hz

Time in sec

Figure 2: The amplitude spectrograM of a bas, a flute and a piano that plays together two and two.

correct even though the spectres are heavily overlappingan also be seen that the
small errors occur at a frequency in a basis vector when #re thre a lot of energy in
both the other basis vectors at that frequency. A reasohifoigthat the NMF problem
might not be unique and the non-uniqueness is that it is plest raise the energy of
one basis vector by decreasing the other basis vectors \Wheartes starts and stops at
the same time.

In the third test, Algorithm 2 is used on amplitude spectranafi music. The instru-
ment models were trained on three 10-second training figed) with two instruments
playing. These models were used to separate the threerrestta from a 10-second
evaluation file, as shown in Figure 4. In this test, the mixaighe instruments is
performed in the time domain, which makes the amplitudetsp@on-additive, due to
phase differences, when there is overlap between the apétthis simple experiment,
it is possible to separate the three instruments with mirtefacts. In the estimated pi-
ano the artefacts do not sound like an instrument but in theated drum signal, it is
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Figure 3: The estimated basis spectras of the bas (top), flute (middiepiano (bottom) from Figur 2.

possible to hear the bas in the background and in the estinbate signal there is the
piano in the background. It is possible to download the sdiles from our website
(http://kom.aau.dk/ hla/structuredNMF).

6 Conclusion

An algorithm for source separation based on training sonrodels on mixed audio
recordings was presented. In contrast to existing algosththe proposed algorithm
uses training data where more than one source is active hwhakes the algorithm
applicable to situations, where individual recordingsafrges are unavailable.

The proposed algorithm is based on the non-negative matctoffization (NMF),
and can be used with most NMF algorithms. The novel idea & plaper is to con-
struct a structure matrix, that indicates where each sdaraetive, and the proof that
this structure matrix, together with a uniqueness assumpit enough to ensure, that
results are equivalent to training on isolated sources.tiéeretical results are backed
up by simulations that show that the proposed algorithmoper$ as well as existing
NMF source separation methods, when sufficient training tadvailable.

1 Simulation details

In the first testW, H,,..;, andH,.,; are generated as uniform IID values raised to the
power of 8. All NMF calculation in this simulation use the spaNMF algorithm [27]
with A = 0.001, 200 iterations and 20 different starting points. The eplotted in
Figure 1 is a Monte Carlo simulation of the mean square erfdrebween the test
sources and the estimated test sources. There are used 26 Waro runs in the
simulation. In order to make the plot more dense, the errdivisled by the number of
basis vectors to compensate for different amplitudes of the matrices.
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Figure 4: The figure shows the spectrograms of the separation of a MIDlowmisce with a piano (top),
a bas (middle) and a drum (bottom). The left column shows thenagi and the right column shows the
spectrogram of each instruments.

In the second test, notes with the length of one to three siscaere used and the
data was downsampled to 11.025 kHz. In the third test wasaimpkng frequency of
the sound files id4.1 kHz. The algorithm setup for both music tests is the spars&NM
with A = 0.1, 500 iterations, one starting point and the amplitude spgcam of the
music is calculated using d@.4 ms) Hanning window and0% window overlap. To
estimate the instrument time signal the phase of the mixecdtspgram is used directly.
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Abstract

We generalize the non-negative matrix factorization (NNMEherative model to in-
corporate an explicit offset. Multiplicative estimatiotgarithms are provided for the
resulting sparse affine NMF model. We show that the affine hhedémproved unique-
ness properties and leads to more accurate identificationiging and sources.
Keywords:  Non-negative matrix factorization, NMF, BSS, Sparse NMF

1 Introduction

Non-negative matrix factorization (NMF) has become a paptdol for data analysis.
An often stated reason for NMF is that it leads to ‘parts bamggatesentations, hence,
facilitates data analytic interpretation. However, umigess is important for the parts
based representations to be meaningful. The NMF genenaitddel is based on lin-
ear mixing of positive sources by positive coefficients. Phsitive sources may have
offsets which can lead to non-uniqueness, we therefore fpreqgose a model based
on affine mixing i.e., mixing with an offset. The NMF learning algorithm igasght-
forwardly generalized to handle the augmented model. W shat the affine model
indeed has improved uniqueness properties and thus leadgraccurate identifica-
tion of mixing and sources.

NMF algorithms are used to factorize a nonnegative matrixc RV*M in two
nonnegative matriceld’ € RV*P andH € RP*M

D
VaR=WH; Vij~Ri; =Y WiaHa; 1)
d=1

Following the seminal papers by Lee and Seung [1, 2], a lepsires or a Kullback-
Leibler inspired cost are used. Our observations in thigpapn be applied to both.
For simplicity we will concentrate on the Euclidian costlietfollowing,

E(W,H) = ||V - WHI[}., )

where||-||  is the Frobenius norm. Lee and Seung [2] have shown that tloeviog
update rule will decrease(W, H)

wTv

H<—H®7W71R (3
veT

W(—W@W , (4)

where® and@ are element wise multiplication and division. This updatie is used
as a reference and is shown in panel (B) of figures 1, 3, 4, 5and 6
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2 Sparse NMF

Hoyer [3] introduced sparse NMF and Eggert [4] proposed dflewing cost function
where only the normalized version Bf has impact on the cost

1 —
B(W,H) = 5 [V - WH|, + " H1 (5)
J— W,
W, = ,nef{l,...,N} (6)
[Wall

wherelV,, is the n’th column vectoriid” and1 is a column vector where all elements
are one. The length of can be deduced by the context. The scalas a positive
parameter that controls the tradeoff between sparsenddsaofd approximation of’
by the product oiV, H. Eggert [4] argues for using the following multiplicativpdate

Wy
® —————

WTR+ )\
S Hpn (Vi + W (R TW,,)

M Hppon (R + W (Vi) TW,)

m=1

H+—H (7)

W, — W, ® 8)

These update rules are used in panel (C) of figures 1, 3, 4, 6.and

The normalization of}” and the sparse nature éf critically constrains the solu-
tion and can improve uniqueness and lead to more accurateagss. However, the
constraints may not be consistent with the form of the miximacess and the statistics
of the source signal#. In particular offsets in one or more rows Bfwill counteract
the sparse model. If the generative model incorporategieeldioise it is not clear that
simple subtraction of the minimal value of each row/iwill lead to a correct recovery
of the generatingV, H. If the noise is, e.g., Gaussia¥,can be negative in the native
representation, hence, one cannot estimate the ‘truestoffs

2.1 Affine Sparse NMF

The above sparse NMF methods do not handle offsets, howeieincorporated as
follows with W, € RV>1

Va~R=WH+WyT. (9)
Using this augmented signal model the sparse cost functi&@guation 5 becomes
1 _
E(W,H.Wy) = 5 |V = WH=Wol" | + \1"H1 (10)

Following Eggert [4] the update rule fé&¥ and H remains as given in Equation 7 and
8 using the new definition oR and the update rule fdi, (that in not normalized) is
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Figure 1: Simulated data wher&’ € R2*2000 s generated according to Equation 9. Each columi of
is plotted as a dot. In (A) the generatimy and W, are shown. In (B) and (C) the standard NMF and
sparse NMF each find three vectors that can describe theBiattaalgorithms find one vector that is a linear
combination of the trué¥, and W, and finds two vectors that are very close to the fiig. In (D) the
‘Affine sparse NMF’ method correctly estimates the structdrde 1 matrix.

the standard NMF update rule in Equation 4

17v
Wo — Wo ® 1R (11)

The affine sparse NMF results are shown in panel (D) of figur8s4, 5 and 6.

3 Results

How does the augmented sparse affine NMF model data? To atti@euestion we
first visualize synthetic data as generated by the proposelinand we show existing
methods fail to reconstruct the correct parameters of themgg¢ive model. We then go
on to show that two commonly used data sets have the chasticeof the proposed
model and that the proposed algorithm performs better tharekisting algorithms
on the data. In order to get a ‘fair’ comparison the standakéFNand sparse NMF
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Figure 2: The variation of the relative least squares error of the NEéonstruction of¥’. The error is
plotted as a function of the amount of dafd ). The simulated data was generated udihg- 10 components
and an off set. The ‘zero offset’ methods are based on the singpigstic that data is first preprocessed to
have minimum value zero in each row.

both have one column more than the sparse affine NMF methdd.efiBures that the
maximum rank ofR is the same for all methods.

Simulated Data In Figure 1 there ard/ = 2000 elements inV/. The data is
generated as in Equation 9. The element&afre exponentially distributed. The true
W vectors and the column vectors Bfare shown in Figure 1 panel (A). Figure 1 (B—
D) shows the three different algorithms estimatdiof The standard NMF (B) finds
W such that the data is in the positive spanlf The W estimated by the sparse
NMF algorithm (C) also spans data but the column vectord/opoint more directly
towards data. Although these methods estim&tedan reproducé’, they do not find
the correct structurd¥’). The proposed method (D) findd& that is close to the true
Ww.

A quantitative evaluation of the different algorithms’ie®tte is presented in Fig-
ure 2. Data is generated as in Equation 9 where the elemefitsasfdiV;, are uniform
i.i.d. The elements off are first generated as exponential i.i.d. samples and them ea
column is normalized to unit sum. In this way the elementé&linlescribe how much
each column vector dfi” contribute towardd’. In all simulationsN = 100, D = 10.
We have run the simulation with different amounts of datangxas (column i) M.

In the evaluation/ is analysed as 11(=D +1) outer prodLEtfl):O V(@ =V, where
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v = Wi aHg ;. The error in the figure is the relative least squares err¢ine¥ (4

2]

estimate for each data set size
S [V = RO
Mo V[

For completeness we have included in the performance di@iua modification of
the standard method in which data is first subtracted wittstzon offsets to achieve
zero minimum value in each of th¥ variables ofl’. The simulation shows that the
standard NMF and the sparse NMFs do not find the Wuand H. The constant offset
subtraction improves the performans but is outperformedhieysparse affine NMF
succeeds. Notis that the two latter methods is favoured bykg that(HT), = 1.

The Swimmer Database The “Swimmer Database” was introduced by Donoho
and Stodden [5] to discuss the uniqueness issues we hawsedria this presentation.
The point was that even if NMF can repres&hit may not necessarily find the righ’.
The database consist of 258(x 32 pixel) black-and-white pictures of a ‘stick-man’
with 4 limbs that can be in one of 4 positions. All pictures éa/torso’ that represent
an offset as discussed in this paper. The pictures in theelatan be constructed by
17 (= 4 x 4 + 1) non-overlapping basis pictures. In Figure 3 (A) examptesifthe
database are shown. The algorithms described in sectioa tested on the data set
and a subset of the 17 basis pictures are shown in Figure 3(Ba1ly the proposed
method is able to find the 17 non-overlapping basis pictutes standard NMF and
Sparse NMF all let the torso be a part of all basis pictureg SWwimmer simulation is
further analyzed in Figure 4. The 1024 @82 x 32) dimensional column vectors i
andW are mapped onto a two dimensional subspace to show thatrtletuse of the
swimmer database is in fact equivalent to that of Figure thérplot it is seen that only
the affine sparse NMF finds the true basis vectors.

Business Card Data SetOur final example is based on a set of business card im-
ages of faculty of Aalborg University’s Department of Ekectic Systems. The photog-
rapher has manually centered and scaled the pictures. Gluegs are scaled 89 x 40
pixel and the color map is chosen such that white is zero amtkbs maximum. An
‘AAU watermark’ logo has been added to all pictures in theablase. A subset of the
pictures are shown in Figure 5(A) and a subset of the 25 bagises estimated by the
three algorithms is shown in Figure 5(B-D). In this simwdatthe sparse affine NMF
algorithm estimates more sparse basis pictures and mast fiagires describe one
physical object only.

A two dimensional subspace (axes formed by a picture with’"laad an picture
with the AAU-logo) of the images in Figure 5 are shown in Figér As above we find
that none of the standard NMF'’s nor sparse NMF basis vecgssribe the AAU logo
without also capturing ‘hair’. The basis pictures for theposed method however are
found close to the axes meaning that they either captureoh#ie AAU’ logo.

12)
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Figure 3: Subset of A: The Swimmer database B: Basis pictures usingatdNMF. C: Basis pictures using
sparse NMF. D: Basis pictures using sparse affine NMF.

4 Discussion and conclusion

Non-negative matrix factorization is widely applied besawf the ability to create
‘parts based’ representations, hence, facilitating miodetpretation. However, unique-
ness is important for the parts based representations tebaingful. Lack of unique-
ness can happen in several ways, e.g., due to an offset Végt@as discussed here.
Another mechanism resulting in lack of uniqueness is if thigpert of the process cre-
ating a row ofH does not include? = 0, i.e., if there is an offset in the row variable
of H. The H, offset can be seen asl#, offset with the constraint thal/, is in the
positive span of the column vectorsiii

R=W(H + Hol") = WH + Wy1", Wy = WH, (13)

Hence, theH offset issue is a special case of the model we have discussedlIhthe
resultingWW, is in the positive span of the columns1df, they can be interpreted &5
offsets.

In this work we have defined the augmented non-negativerlimgang model - the
sparse affine NMF. We have presented three case storiesch i@ new sparse affine
NMF algorithm outperforms the standard algorithms and eensolution in estimation
of the underlying structure of the data.
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Figure 4: A two dimensional subspace of the column vector¥ifdots) andiV (vectors) are shown for the
Swimmer database. The ‘x-axis’ is a picture which is zero inupper part and uniform random values in
the lower part. The ‘y-axis’ is constructed the same way bt wie zeros in the lower part.
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Figure 5: (A): Subset of the Picture database with 197 pictures (B -A3jubset of the basis pictures using
standard NMF, sparse NMF and sparse affine NMF. The standdfeéiiakes very noisy basis pictures. The
sparse NMF produce basis pictures where the ‘AAU watermankisible in around0% of the pictures, and
in addition a lot of the pictures do not represent a singlé¢ @lathe picture. The sparse affine NMF has only
one picture with the watermarki(p) and most pictures represent only one part of the picture.
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Figure 6: The business card images plotted in two dimensions to shovdétatand solutions have pattern
like the ones in Figure 1. The x—axis is the an image of the AAgb|aand the y—axis is an image vector
capturing the ‘hair’ region.
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Abstract

In this paper, two new properties of stochastic vectors ateoduced and a strong
uniqueness theorem on non-negative matrix factorizat{diMF) is introduced. It is
described how the theorem can be applied to two of the commplication areas of
NMF, namely music analysis and probabilistic latent seritaambalysis. Additionally,
the theorem can be used for selecting the model order andpiduesisy parameter in
sparse NMFs.

Keywords:  Non-negative matrix factorization (NMF), sparse NMF, non-negativitydel se-
lection.

1 Introduction

Large quantities of positive data occur in different reskareas such as music analysis,
text analysis, image analysis and probability theory. Beéteductive science is applied
to large quantities of data it is often appropriate to rediag by preprocessing, e.g.,
by rank reduction or by feature extraction. Principal comga analysis is an example
of such preprocessing. When the original data is non-negittiis often desirable
that this property is preserved in the preprocessing. Famgle, elements in a power
spectrogram, probabilities and pixel intensities shotilil ls'e non-negative after the
processing to be meaningful. This has lead to the construct algorithms for rank
reduction of matrices and feature extraction that makesaenegative output. Many of
the algorithms are on the form of non-negative matrix faztdion (NMF) proposed by
Lee and Seung [1, 2]. The NMF algorithms factorize a non-tieganatrix € R"*™
into two non-negative matricdy € R"*" andH € R"*™

Va~R=WH; Vi, ~R;, = Z Wi aHa 1)
d=1

wherel; ; denotes the i'th element in the j'th column. There are noexde®rm solu-
tions to the problem of findin§/” and H given aV/, but Lee and Seung [1, 2] proposed
two computationally efficient algorithms for minimizingehlifference betweel and
W H for two different error functions. Later, numerous othegaalthms have been
proposed (see Berry et al. [3]).

An interesting question is whether there exists only one Ndflla matrix. The
importance of this question depends on the particular egidin of the NMF. There
can be two different starting points when using a matherabtiwdel like the NMF
— either one can believe that the model describes naturehandhie variables have a
physical meaning, or one can believe that the model can i@&fita part of interest, or
its behavior, even though there is not a one to one mappingeleet the parameters,
model and the physical system. When using NMF, one can wondetherlV =
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W H + G, whereG is a noise source, or whether data is constructed by anoth@elm
Or, in other words, does a ground trdfh and H exist. These questions are important
in evaluating whether or not it is a problem that there areioMMF solutions to the
same data, i.e.,

V~R=WH=WH. 2

If NMF is used even though the data is not assumed to be gedebgt equation 1,
it may not be a problem that there are several other soluti@rsthe other hand, if
one assumes that there exist a ground truth, it may be a pnablbat model is not
detectable, i.e., it is not possible to fifld and H from data.

In this paper, we analyze under which circumstances thdyeexists exactly one
NMF of a matrix. In doing this, it is assumed that there exésteuelV and H and the
conditions onl/ and H that results in a unigue NMF are explored. Here, the elements
of W and H are viewed as stochastic variables and it is shown that tierfaation
is unique under mild conditions. The theorems in this pagaisiwith the situation
whereV is constructed a¥ = W H, i.e., the noise free situation. To the best of
our knowledge, the only papers that deals with the issue wfuemess of NMF are
the paper by Donoho and Stodden [4] and the paper by Theis [&].aDonoho and
Stoddens paper deals with two different situations; onera/bié = V or H = V
and another wher&/’,, s # 0 = W, o = 0 for all d # d. The paper by Theis
et al. deals with the specific situation where the vecs= [Hg1,- - - ,Hd,m]T
has known ratios between tlig norm and theL, norm, ||Hyl|, /|| H4ll,. This paper
takes another approach by assuming #fvaand i are generated from a process and
identifies the statistical properties of the process th&amthe NMF unique. The work
reported here is inspired by Plumbley [6] showing that it dsgible to make unique
blind source separation (BSS) if the source are non-negaitidependent and have
zero as the largest lower limit. The theorems in this papedarived by combining the
ideas of Plumbley with the ideas of Donoho and Stodden.

The remaining part of this paper is organized as follows. éot®n 2, some ba-
sic definitions are introduced and a fundamental propertyhfe detection of negative
matrix elements is presented. Then, the main results onrilggieness of NMFs are
presented an analyzed in Section 3. In Section 4, we give saaraples of the appli-
cation of the theorems to real data analysis, where afteromelade on our work in
Section 5.

2 Sufficiently Spread Data

Prior knowledge of non-negativity of a data set can be useddaoce a rotation ambi-
guity to a permutation ambiguity under some circumstangé® only rotation where
all matrix elements are non-negative are a permutationf #ds possible to detect
negative values in a matrix, a rotation ambiguity can berigtetl to a permutation
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ambiguity. Plumbley [6] shows that if the stochastic valeahn a vector are indepen-
dent, the probability for: = As having a negative element will be grater than zero if
is grounded. In other words, if the rotation matrlxs not a permutation, then there is
a positive probability for having a negative elementin

Definition E.1 A stochastic variable; is called grounded ip(s; < k) > 0 for all
k> 0.

Definition E.2 A stochastic vectog € R™ is called sufficiently spread if all the ele-
ments are non-negative and for al> 0 and;j € {1,--- ,n} thenp(—es;+3_, ., si <
0) > 0.

In the BSS problem considered in [6], the assumption of irdepnce of the stochastic
variables was necessary for other parts of the algorithre.fdthowing theorem shows
that a stochastic vector being sufficiently spread is a macgsnd sufficient condition
for the detection of negative elements in a matrix.

Theorem E.3 Lets € R™ be a stochastic vectoy, € R™ andU be any matrix with:
rows. Then the following are equivalent:

1. p(min(Us) < 0) > 0 if and only if there is at least one negative elemert/of
2. p(u”'s < 0) > 0if and only if there is at least one negattive element.of

3. sis sufficiently spread.

Proof. The proof follows the same steps as the proof of Theorem 1]ifl{én words,

a vector is sufficiently spread if it is possible that any ed@tcan be much larger than
all the other elements in the vector. Below are some exampheses is sufficiently
spread (A — D) and some examples wheig not sufficiently spread (E — H).

Ex. A. Lets; to s, 1 be exponential independent and identically distributéd)(&nd
lets, = 1.

Ex. B. Lets; andss be uniformly 11D on the interva(0, 1) andss = 1 — ss.
Ex. C. Lett € R" be sufficiently spread and= t..

]

Ex. D. Lett € R™ be sufficiently spread? a permutation matrix) a diagonal matrix
with positive elements and= P Dt.

Ex. E. Lets; tos,—1 be uniformly 1ID on the interval0, 1) and lets,, = 1.

Ex. F. Lett € R™ be uniformly IID on the interva(l,2), n > 2, p € {1,--- ,n} be
uniformly distributeds,, = ¢, — 1 ands, = ¢, for all ¢ # p.
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0 1 1
Ex. G. Lett € R™ be sufficiently spreadd = |1 0 1| ands = At.
1 1 0

Ex. H. Lett € R™ be sufficiently spreadd € R"*" be a matrix with more than one
non-zero element in one row and= At.

The vector in example A are sufficiently spread since the egptal distribution has
no upper limit in contrast to the uniform distribution thashan upper limit and are
used in example E. Example B show that the elementscam be dependent and suffi-
ciently spread at the same time, and example G and H showsdiepenot sufficiently
spread vectors. Examples C and D show that rescaling of aagtic vector has no
influence on sufficient spreadness. Examples F illustratedtstochastic vector can
not be sufficiently spread if only one element at a time candsedo zero.

3 Uniqueness and NMF

In this section, NMF is analyzed. We assume that Bétland H have full rank, e.g.,
r = rank (V). Let W’ and H' be any matrices of the same sizel&isand H respec-
tively that fulfil V = WH = W/H'. Then

span (W) = span (V) = span (W'), (3)

wherespan() is the space spanned by the column vectors. The column geaftdV
andW’ are therefore both bases for the same space and there axiatsy such that
W' = WQ. ltis straightforward to show thai’ = Q—!H. All NMF solutions where
r = rank (V) are therefore on the fortd = WQQ~! H and the ambiguity of the NMF
can therefore be described by tfematrix. We note that if- > rank (V'), the above
argument does not hold sinepan (1) may not equakpan (W’) (see Thomas [7]).
It is possible for an NMF to be unique when> rank (V'), but we are here only
concerned with the situation where= rank (V).

Lemma E.4 If a matrix and its inverse are both non-negative, then therimas a
scaled permutation.

Corollary E.5 An NMF solutionW and H can only be estimated uniquely up to a
permutation and a scaling.

Corollary E.5 leads to the following definition of unique NMF

Definition E.6 A NMF is called unique if the ambiguity is a permutation andalsg
of the columns il and rows inH.
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In the following each row ofV and each column aff will be seen as stochastic vectors.
It will be assumed that it is possible to increase the siz€& aind thereby increase the
number of rows iNlW and columns inf. If V is a spectrogram, this is the same as
using more data (increasing) and using a higher spectral resolution (increasing
Using the previous theorems, it can be shown that if the rastore inW and column
vectors inH are sufficiently spread and statistically independent @petdent in a
nondeterministic way), the NMF factorization is unique.edhem E.3 ensures thgt
must have non-negative elements 67 = WQ to be non-negative, and thgr—*
must have non-negative elements féf = Q' H to be non-negative. Additionally,
Lemma E.4 states that if the elementgbandQ ! are non-negative, thef is a scaled
permutation matrix and therefore the factorization is ueiq

In some practical situations, it is not reasonable to asshatéoth the row vectors
in W and column vectors it/ are sufficiently spread. A looser condition is therefore
introduced next:

Definition E.7 A positive stochastic vectere R™ is called boundary close if
p(i < k:) >0
Is]
forall j € {1,--- ,n}andk > 0.

It can be verified that the sufficiently spread property implhe boundary close prop-
erty by choosing < k, whereby we get

% §ﬁ§72j¢isj<e<k (4)
sl = si Si
U
S5 Zj;éi Sj
p(”S” <k) >p(78i <e) )
:p(—sie+Zsj<0)>0. (6)
i

If the elements in a vector are IID, the boundary close prtypierequivalent to the
sufficiently spread property. When the elements are not HB tivo definitions differ.
If a vector is boundary close, all elements can be very snifalvector is sufficiently
spread, all elements except one can be very small. On thepeesides is boundary
close in example A — D because it is sufficiently spread. Exar&ps not boundary
close of the same reasons that it is not sufficiently sprezdmiple F is boundary close.
Example G is also boundary close, butif= 0 thensy = s3. Later, in Theorem E.8,
this will be called “boundary close in a deterministic wayfi. example H there is not
enough information to conclude éfis boundary close or not. A realization of a vector
that is sufficiently spread is depicted in Figure 1 to thedefdl a boundary close vector
is shown to the right.
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Figure 1: A three dimensional space is scaled such that the vectons #re hyper plane{p : [111]p = 1}.
The big dots in the corners are the standard basis vectotisdédhree dimensional space. To the left, where
a sufficiently spread vector is shown, it can be seen thatdteefdls out the area around the corners. To the
right, where a boundary close vector is shown, it can be desrtlie data is close to the lines that connects
the corners.

Theorem E.8 If the row vectors i} are strongly boundary clodethe column vectors
in H are sufficiently spread antd’ and H are independent. Then, given< 1 and
k > 0, there existn andn such that any NMF-solutio”’ and H’ will fulfill:

. —1
p(gl}gllW’DP—Wllp+\!(DP) H —H| ) <k)>p @)
whereP is a permutation matrix and is a diagonal matrix.

Theorem E.8 states that the NMF is unique if the row vectoi&iare boundary close
and the column vectors ifl are sufficiently spread.

Recently, it has been argued that some real world data hasharent offset that
leads to non-uniqueness for traditional NMF algorithms fdwever, in [8], this offset
was taken into account and an algorithm that can find the nartstg NMF even if
the data contains an offset was proposed. If the parts of trehthat does not fulfill
Theorem E.8 has a known structure, it is still possible to fivedtruelV and H .

It is worth noting that the theorem specify the uniquenedsif from a solution
W', H' and not directly froml/. This might seam as a limitation for the theorem,
but it can also be used directly to suggest new algorithmsgglaieed in the following
Section.

1strongly boundary close is the same as being boundary cloae iton-deterministic way. The extra
condition is somewhat technical and is not restrictive ircpca, and the exact definition is therefore left out.
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4 Some Applications

We now proceed to describe how the information of a uniquetinsl can be used to
estimate parameters such as the number of constructingrseadr a sparsity param-
eter. When an NMF solution results inle that has boundary close row vectors and
in an H having sufficiently spread column vectors, it can be deteechithat the solu-
tion is unique. Since sufficiently spread is the hardest itmmd it will typically be the
one that is not fulfilled. Hojer [9] introduced the sparse NMRere the update rule of
NMF is changed in order to obtain an NMF that has a spafseneaning that/ has
few non-zero coefficients. From Theorem E.8 it follows thatiaimum number of ze-
ros are needed in bolly and H for the factorization to be unique. Especiallyneed

a lot of zeros in order to be sufficient spread. Algorithmg fimal NMF with sparsed

are therefore expected to have a higher probability fornétig unique factorizations.
Many sparse NMF algorithms have a sparsity parameter thatrdmes the trade-off
between sparsity off and the approximation error. One example of this is the gpars
NMF algorithm of Eggert and Kérner [10], whekedetermines the tradeoff in the error
function defined as

E(W,H) = % |V - WH| + AT H1 ®)

W, = 2
Tl

yjed{l,...,n}, 9)

whereW; is thejth column vector oft” and1 is a column vector where all elements
are one. Based on Theorem E.8, a natural criterion for setfeof the sparsity param-
eter can be made; selektas the smallest value that makes the solution unique. In a
similar manner, a natural selection of a model order, r,ésahes that makes the NMF
unique. In a third application, Theorem E.8 can be used folrN#igorithm compari-
son, i.e., it can be used as a basis for selecting the algotitht makes unique solution.
Next, two examples are given showing how Theorem E.8 can ée tssargue that a
data set has a unique NMF. Smaragdis and Brown [11] use NMpadlgphonic music
transcription wheré/ is the amplitude spectrogram. In this setup it is fair to assu
that there exist & where the column vectors are the amplitude spectrum of d&rins
ment that play one note and a correspondihthat describe the identity of the notes. It
can be seen from their experiments tiatis boundary close. In music, it happens that
there is a single note that is playing and in that cdss sufficiently spread. If an NMF
is found for large set recordings of polyphonic music anddiieect order is selected,
the solution is therefore expected to be unique. Anothemgkais probabilistic latent
semantic analysis (PLSA) [12], which is a text analyzing moetthat gather informa-
tion of several documents in a "bag of words" matrixwhereV; ; describes how many
times theitth keyword occurs in thgtth document. In PLSAY is decomposed into
two positive matrixes using an NMF like algorithm. Each e¢ohuin W can be seen as
a topic and in all topics there will be keywords that does roaiuo andiV is therefore
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boundary close. If there are documents that only cover guie,t& will be sufficiently
spread. The NMF on a "bag of words" matrix is therefore exgmbtd be unique.

5 Conclusion

Uniqueness of non-negative matrix factorizations havenkselyzed by combining
results of Donoho and Stodden [4] and Plumbley [6]. A new @i for a stochastic
vector called sufficiently spread has been introduced ahdstbeen shown that this
condition is a sufficient and necessary for the dection ofgatiee value in a matrix.
A weaker condition, called boundary close, has also beenduted, and a theorem
that states that the factorization is unique if the row viexto W is boundary close
and the column vectors i are sufficiently spread has been described. The theorem
is valid when there is no prior knowledge @f and H. In situations where there is
prior knowledge, an NMF can be unique even when the conditioa not fulfilled. An
analysis shows that NMF on a bag of word matrix and on musiditudp spectrograms
are expected to be unique. The theorem can be used as anatiqianhy the sparse
NMF methods tend to result in unique factorizations. Thetems make it possible to
evaluate the uniqueness of a factorization and can thembgdd for choosing sparsity
parameter, model order and NMF algorithm.
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