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It sometimes happens that a father has an ugly son with no redeeming grace what-
ever, yet love will draw a veil over the parental eyes which then behold only cleverness
and beauty in place of defects, and in speaking to his friendshe will make those defects
out to be the signs of comeliness and intellect. I, however, who am but Don Quixote’s
stepfather, have no desire to go with the current of custom, nor would I, dearest reader,
beseech you with tears in my eyes as others do to pardon or overlook the faults you
discover in this book; you are neither relative nor friend but may call your soul your
own and exercise your free judgment. You are in your own housewhere you are master
as the king is of his taxes, for you are familiar with the saying, "Under my cloak I kill
the king". All of which exempts and frees you from any kind of respect or obligation;
you may say of this story whatever you choose without fear of being slandered for an
ill opinion any more than you will be rewarded for a good one.

— Miguel de Cervantes Saavedra
Don Quixote.





Abstract

The topic for this Thesis is a data analysis method called Non-negative Matrix Factor-
ization (NMF). This method can analyze data with no negativeelements e.g. images,
spectra and probabilities. The introduction contains a profound review of the NMF lit-
erature focusing on the characteristics of the solutions and the underlying cost-functions
to minimize for different NMF variations. One often-used method for comparing NMF
is Principal Components Analysis (PCA) that is an analysis method for data containing
both positive and negative elements. The introduction contains a thorough analysis that
explains why PCA rarely finds the wanted solution of non-negative data.

An analysis gives a characterization of data that produces unique NMF i.e. data
where NMF gives predictable results. Moreover, we prove that a corruption of data will
result in a minor estimation error when the corruption is minor.

There is a description of a novel NMF method that uses Gaussian process priors
offers the possibility to specify prior knowledge of the result. It is well known that data
with positive offset makes the NMF non-unique. We present anaffine NMF method that
that jointly finds the offset and makes NMF. When NMF are used for source separation
the requirement of single source training data are often assumed essential. We prove
that it in many cases it is sufficient to have knowledge about when the sources are
inactive.
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Resumé

Emnet for denne afhandling er en dataanalysemetode kaldet Non-negative Matrix Fac-
torization (NMF). Analysemetoden kan bruges på data hvor der ikke forekommer neg-
ative elementer som f.eks. billeder, spectra og hyppigheder. I introduktionen er der en
grundig gennemgang af NMF litteraturen med fokus på det kendskab der er til prob-
lemets løsninger samt de kost-funktioner der ønskes minimeret i de forskellige NMF
varianter. Den oftest benyttede metode til sammenligning af NMF er Principal Com-
ponents Analysis (PCA) som er en metode for dataanalyse der både kan arbejde med
positive og negative dataelementer. I introduktionen er der en ny grundig analyse af
hvorfor PCA generelt ikke giver det ønskede resultat.

I afhandlingen er der en grundig analyse af hvad der skal karakterisere data for at
man kan regne med at NMF kan finde de komponenter der blev anvendt da data blev
genereret. Ydermere viser analysen at når NMF bruges på datahvor der er additiv støj,
så resulterer det i at der bliver lagt støj på de komponenter der findes.

Der er præsenteret en NMF metode hvor det er muligt i en Bayesiansk ramme at
specificere den apriori (forhånds) viden man har om NMF analysen. En af de kendte
faktorer som kan få NMF til at give uforudsigelige resultater er hvis der er et offset i
data. I afhandlingen er der præsenteret en NMF metode der er istand til at detektere
offsettet og dermed gøre det muligt at anvende NMF på data medet offset. Når NMF
skal anvendes til separation er det normaltvist antaget at det er nødvendigt at der er
optagelser med kilderne enkeltvist. I afhandlingen er der en analyse som dokumenterer
at det ikke er nødvendigt at have kilderne enkeltvist da det er tilstrækkeligt at der kendes
til tidspunkter hvor kilderne ikke er aktive.
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1. INTRODUCTION 1

1 Introduction

The amount of data available has increased dramatically over the last 50 years and is
now a requirement for automatic unsupervised analysis and classification to use the
overwhelming amount of data. There is a large group of data where all the data ele-
ments are non-negative, and in this Thesis, we will describethe work with an unsuper-
vised method for non-negative data analysis called Non-negative Matrix Factorisation
(NMF).

Figure 1: An easy to understand example of why special non-negative methods are needed for image analysis.

Before starting the more technical part of the Thesis, let ustake a look at an example
of some face drawings in Figure 1 with the intention of illustrating the concept. Let us
assume the drawings are given to an unsupervised method for analysis of the problem.
The figures are composed of three basis objects namely the hair, the eyebrows and the
rest of the face. It can be seen that the hair and the eyebrows can be either colored black
or gray. The task is to construct algorithms that are able to find those three basis objects
and also are able to determine how intense these are in each drawing. The problem with
the usual methods that can operate on both positive and negative data is that they will
find solutions where one basis object is found to be both hair and eyebrows together and
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yet another basis objects that will be the positive hair and negative eyebrows together—
which is both meaningless and useless in most applications.In this specific example, a
non-negativity constraint of the objects will remove the possibility of making this kind
of unwanted solutions and leaving the wanted solution as theonly possible solution.

The Non-negative Matrix Factorization (NMF) analyzed in this Thesis can be math-
ematically described using matrices. The observations aregathered in a matrixR where
each columnRi represents an observation of for example a picture, a spectrogram or
probabilities. The task for the NMF is to find a set of basis objectswi (basis picture,
basis spectrogram, basis probabilities etc.) such that each observation can seen as a
weighted sum of the basis vectors

Ri =
∑

j

WjHi
j . (1)

By gathering the basis vectors in a matrixW and the weights in a matrixH it is possible
to write the problem as

R = WH. (2)

At this point, the NMF may look like the LU, the QR or any other matrix factoriza-
tion that are described in all undergrad linear algebra textbooks, e.g. [163], but this
is certainly not the case. Firstly, NMF is despite the name not a factorization1. In all
practical cases the observationsV ∈ R

n×m
+ will only be approximated byW ∈ R

n×r
+

andH ∈ R
r×m
+ ,

V ≈ R = WH, (3)

becauser ≪ min(n,m) and r ≪ rank(V). Secondly, the NMF differs from the
traditional factorizations as there often are additional constraint onW andH which
makes the model more data specific.

The rest of the introduction to the Thesis is structured as follows. The mathematical
fundaments are described in Section 2 and the aspects of NMF cost functions and NMF
theory are described in details in Section 3. Section 4 analyses how a method for data
that is both positive and negative will perform on non-negative data, and three concrete
applications of NMF are described in Section 5. Finally, theThesis introduction is
concluded in Section 6 where the contributions of this PhD Thesis are listed.

2 Fundamentals

Several of the mathematical fundamentals used in this Thesis will be described in this
section. The notation used in the Thesis are as follows.

1Because NMF is not a factorization some authors has argued forthe name non-negative matrix approxi-
mation.
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Font Variable Type

x Scalar
x Column vector
x Row vector
X Matrix
X

j
i i’th colomn andj’th row

1 Vector with 1 enlemnts

Operator Explanation

‖·‖F Frobenius norm
‖·‖ Euclidian norm
|·| Element-wise absolute

<,≤, >,≥ Element-wise less than etc.
XT Transpose ofX
R+ Non-negative real

The rest of the section is structured as follows. Firstly, some well known eigen-
value decomposition and singularvalue decomposition results from linear algebra are
described in Section 2.1, followed by a repetition of the Frobenius-Perron Theory in
Section 2.2. Finally, a novel generalization of block diagonal matrices and a property
of this are given in Section 2.3.

2.1 The Spectral Theorem and Singular Value Decomposition

The Spectral Theorem and the Singular Value Decomposition (SVD) are two of the
highlights of linear algebra. In words, the real2 spectral Theorem states that any sym-
metric matrix is diagonalizable when the correct orthonormal basis is used.

The proofs of the SVD and the Spectral Theorem take several pages and are there-
fore omitted in here. The proof is available in several linear algebra textbooks e.g. [13,
Theorem 7.13 and 7.46]

Theorem 1 (The Real Spectral Theorem)For a square matrixA ∈ R
n×n there ex-

ist an orthonormal matrixU = [u1, · · · ,un] ∈ R
n×n and a diagonal matrixΛ =[

λ1 0

...
0 λn

]
∈ R

n×n such that

A = UΛUT , (4)

if and only ifA is symmetric.

When the eigenvaluesλi are real, they are always written in a decreasing order,
λ1 ≥ · · · ≥ λn. The decompositionA = UΛUT is referred to as the Eigen-Value
Decomposition (EVD). Another useful decomposition is the SVD, which shows that all
matrices can be diagonalized.

2There is also a spectral Theorem for complex vector spaces. Incomplex vector spaces, more matrices
are diagonalizable with orthonormal basis.
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Theorem 2 (Singular Value Decomposition)To any matrixA ∈ R
n×m there exist

matrixΣ ∈ R
n×m
+ on the form:

Σ =

[
σ1 0

...
0 σmin(n,m)

]
, (5)

whereσ1 ≥ · · · ≥ σmin(n,m), such that

A = UT ΣV, (6)

whereU ∈ R
n×n andV ∈ R

m×m are orthonormal.

The following Lemma shows that there are a strong connectionbetween the two
decompositions.

Lemma 3 If UT ΣV is the SVD ofA ∈ R
n×m thenV andU consist of the eigenvec-

tors ofAT A andAAT respectively. The non-zero eigenvalues ofAT A andAAT will
be the squared singular values ofA.

Proof. The proof is carry out by insertingA = UT ΣV and verifying that bothΣT Σ

andΣΣT are diagonal.

2.2 Frobenius-Perron Theory

The Frobenius-Perron theory deals with the eigenvectors and the eigenvalues of non-
negative and positive matrices. The matrices in this section are symmetric to shorten
the proofs even though the Theorems are valid without this assumption. For a detailed
analysis of the Frobenius-Perron Theory we refer to [122]. The reason for bringing
this analysis is two folded. Firstly, the Frobenius-Perrontheory will later in this Thesis
(Section 4.2) be the starting point for analyzing the results of Principal Components
Analysis (PCA) when applied to used on non-negative data. Secondly, dose the theory
seams to be unknown for most of the NMF community with [27] as one of the few
exceptions.

The following Lemma will be used in the proof of the Frobenius-Perron Theorems.

Lemma 4 Letv ∈ R
n, max(v) > 0 andx ∈ R

n
+.

a. then
∣∣xT v

∣∣ ≤ xT |v|

b. if x > 0 thenv ≥ 0 if and only if
∣∣xT v

∣∣ = xT |v|

Proof. The statements follows directly from the triangle inequality of the absolute
value.
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Theorem 5 If A ∈ R
n×n
+ andAT = A thenλ1 = maxi |λi| andu1 ∈ R

n
+.

Proof. Let v′ be the eigenvector corresponding to the eigenvalue with largest absolute
valueλ′. Without loss of generality, let us assume that one element of v′ is positive,
the norm ofv′ is one and therefore

‖Av′‖ = |λ′| = max
i
|λi| = max

‖b‖=1
‖Λb‖ = max

‖b‖=1
‖Ab‖ ≥

∥∥∥A |v′|
∥∥∥. (7)

It is known from Lemma 4.a thatA |v′| ≥ |Av′| and in combination with Equation 7
it can be concluded that|Av′| = A |v′| and moreover

|λ′| |v′| = |λ′v′| = |Av′| =
∣∣∣A |v′|

∣∣∣ = A |v′| . (8)

The largest eigenvalueλ1 therefore equals|λ′| and has the nonnegative|v′| as the cor-
responding eigenvector.

The following Theorem shows that strictly positivity of a matrix is inherit to the
first eigenvector and that the positivity also ensures that the first eigenvalue is strictly
larger than the other eigenvalues.

Theorem 6 If A ∈ R
n×n
+ andAT = A > 0 thenλ1 > maxi6=1 |λi| andu1 > 0.

Proof. From Theorem 5 it is known thatλ1 ≥ maxi6=1 |λi| and thatu1 ∈ R
n
+. Since

λ1u1 = Au1 > 0 it can be concluded thatu1 must be strictly positive. All the other
eigenvectors are orthogonal tou1 and can therefore not be non-negative. Lemma 4.b
can be used to conclude that fori 6= 1

∣∣∣A |ui|
∣∣∣ > |Aui| (9)

λ1 = max
‖v‖=1

‖Av‖ ≥
∥∥∥A |ui|

∥∥∥ > ‖Aui‖ = |λi| . (10)

It follows thatλ1 must be larger than the absolute value of the other eigenvalues.

2.3 Separable Linear Problems

In this section a generalization of block diagonal matricesare analysed. For simplic-
ity,the matrix dimensions are left out. It is implicitly assumed that the block dimensions

match up such that
[
v1
v2

]T [ b1

b2

]
= vT

1 b1 + vT
2 b2. When a matrixA ∈ R

n×m is block
diagonal, it means that it can be written as

A =
[
A1 0

0 A2

]
. (11)

Many matrix operations like inversion, eigenvalue decomposition and singular value
decomposition can be performed block wise, which is useful to lower the computa-
tional complexity. A block diagonal matrix can be perceivedas a concatenation of two
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independent matrix problems. Looking at block diagonal matrices this way leads to a
generalization of matrices that are a concatenating of two isolated linear operators.

Definition 7 A matrixA is called ageneralized block diagonal matrixif there exist
permutationsP1 andP2 such thatP1AP2 is block diagonal.

The following Lemma characterizes a non-negative generalized block diagonal ma-
trices.

Lemma 8 Let A ∈ R
n×m
+ be a matrix where there are no zero columns and letb

denote a vector which elements are either 1 or 0 and has at least one 0 and one 1
element. Moreover, letbc be a vector whose elements are the complementary ofb

meaning thatbc = 1 − b . ThenA is generalized block diagonal if and only if there
exist anb such thatAb andAbc are orthogonal.

Proof.
⇒ If A is generalized block diagonal thenb = PT

2

[
1
0

]
will be a solution because

(Ab)
T

Abc =
(
P1

[
A1 0

0 A2

]
P2P

T
2

[
1
0

])T
P1

[
A1 0

0 A2

]
P2P

T
2

[
0
1

]
(12)

=
([

A1 0

0 A2

] [
1
0

])T [A1 0

0 A2

] [
0
1

]
(13)

=1T
[
A1
0

]T [ 0

A2

]
1 (14)

=1T 01 = 0. (15)

⇐ If there is anb such thatAb andAbc are orthogonal then choseP1 andP2 such
that

P1Ab =
[

τ
0

]
, P1Abc =

[
0

τc

]
,b = P2

[
1
0

]
, (16)

whereτ > 0 andτ c > 0. By inserting we get thatP1AP2

[
1
0

]
=
[

τ
0

]
andP1AP2

[
0
1

]
=[

0

τc

]
and thereforeP1AP2 must be on the form

[
A1 0

0 A2

]
.

In Section 4.1 it will be of interest whenAT A are generalized block diagonal. It
turns out that there is a simple characterization that determine whenAT A are general-
ized block diagonal.

Lemma 9 An non-negative matrixA with no zero columns is an generalized block
diagonal if and only ifAT A is an generalized block diagonal matrix.

Proof. ⇒ If P1AP2 =
[
A1 0

0 A2

]
then

PT
2 AT AP2 = PT

2 AT PT
1 P1AP2 =

[
A1 0

0 A2

]T [A1 0

0 A2

]
=
[

A
T
1 A1 0

0 A
T
2 A2

]
(17)

⇐ From Lemma 8 it is known that any vectorb with 1 and 0 elements only, will make
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Ab andAbc non-orthogonal. WhenAb andAbc are non-orthogonal they must have
a common positive element and this common positive element will be maintained when
multiplying by AT . Therefore,AT Ab andAT Abc will not be orthogonal and by
Lemma 8 it can be concluded thatAT A is not a generalized block diagonal matrix.

3 NMF Fundamentals

For a century, Principal Component Analysis (PCA) [136] (see Section 4) has been
used to make rank reduction of matrices. Less than 2 decades ago a suboptimal PCA-
like algorithm was proposed in [130] where it was possible toinpose a non-negativity
restriction on the components. This was done in [129] under the name Positive Matrix
Factorization (PMF) within the area of environmental science. The PMF was applied
within this application area, but was not used in other areasbefore the renaming of
the method to Nonnegative Matrix Factorisation (NMF) in [104] that proposed a new
“easy-to-understand” algorithm and applied it in two very different areas namely face
images and semantic text. In this Section, the different variants of NMF are explained
together with some general properties of NMF. For a shorter overview of NMF methods
and algorithms we refer to [18, 133]. Examples of NMF application will be given in
Section 5.

3.1 Traditional NMF

NMF algorithms factorize a non-negative matrixV ∈ R
n×m
+ into two non-negative

matricesW ∈ R
n×r
+ andH ∈ R

r×m
+ . Often it is only possible to decompose a matrix

R that is an approximation toV

V ≈ R = WH. (18)

Later in this Thesis there will be discussions about how close an estimatedW′ andH′

pair is to the generatingW andH matrices. In this discussion, it is fruitful to use the
following viewpoint

R = WH =
[
w1,··· ,wr

]
[

h1...
hr

]
=

r∑

d=1

wdhd, (19)

whereR is seen as the sum ofr outer products. The outer products will sometimes be
referred to as the components. There has been derived numerous of NMF algorithms
for different distance measures betweenV andR. Most of these distance measures are
element-wise measures i.e.

D(R‖V) =
n∑

n′=1

m∑

m′=1

d(Rm′

n′ ‖Vm′

n′ ), (20)
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with [72] being one of the few exceptions. Most NMF algorithms uses the two error
functions investigated in [105] (Euclidian and Kullback-Leibler). An overview of the
papers that deals with these functions can be seen in the following table.

Name d(x‖y) Applied Algorithms Property

Euclidian (x− y)2 [8, 10–12, 19, 41,
57, 88, 91, 104, 109,
115, 124, 125, 131,
132, 142, 147, 158,
160, 172, 175, 176,
180, 183, 185, 186,
192]

[21, 26, 33–
35, 37, 66, 90,
105, 113, 114,
129, 148, 177,
181]

[43, 47]

Kullback-
Leibler

x log x
y
− x + y [6, 9, 20, 22, 24,

31, 32, 59, 67–71,
77–80, 86, 132, 135,
144, 155, 158, 172,
187, 191]

[36, 37, 54,
55, 105, 108,
113, 127, 149,
181, 189]

[45, 46,
61, 147,
150]

The Euclidian distance minimization can be seen as a maximumlikelihood esti-
mator where the difference is due to additive Gaussian noise. The generalized ver-
sion of Kullback-Leibler divergence3 can be shown to be equivalent to the EM algo-
rithm [45, 61] and maximum likelihood for Poisson processes[147].

Some papers deals with groups of divergence like Bergman divergence [42, 162]
Csiszar’sϕ divergence [39, 162], alpha divergence [106, 189], Young’sdivergence
[162], and the interpolating cost function [99].

3.2 Sparse NMF

From the very first NMF paper [129] the possibility of seekingspecial NMF solutions
were mentioned. The most popular special type of solutions are the sparse NMF so-
lutions i.e. NMF where one or both ofW andH has many zero entries. One of the
advantages of NMF that was reported in [104] is that NMF tendsto make part based
and sparse solutions. Before looking into cost functions for sparse NMF, some of the
arguments of sparse models are given below:

Occam’s razor Sparse models are in some ways more simple model, and it turnsout
that simple models often outperform the more complex models.

Prior knowledge In many applications it is prior knowledge that the underlying data
is sparse and it is therefore natural to make NMF look for suchmodels—see
Section 5 for examples.

3Also called I-divergence
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Data fitting Sparse NMF becomes more vector quantization like. IfH is maximum
sparse it only has one non-zero element in each column and such NMF is a vector
quantifier [62]. By making NMF more like a vector quantizer the column vectors
of W get closer to the data and therefore, hopefully, describes data better.

W

positive
space

V

a

W

positive
space

V

b

W

positive
space

V

c

Figure 2: Illustration of why there is no sparse solution if the underlying NMF not sparse. The green area
representRn

+ with the outer border boundary being vectors with at least one zero element. The blueW
area is all weighted averaged of the column vectors inW with the outer boundary being averaged where
one of the weight is zero. The Orange area is the column vectorsin V. In (a) an non-sparse problem is
shown. BecauseW are not sparse the W-space does not intersect with the boundary of the positive space,
and becauseH is not sparse the W-space does not intersect with the V-space. In (b) H is sparse and the
W-space does therefore intersects with the V-space, but at the same time the distance between the W-space
and the boundary of the positive space increased. In(c) W is sparse and the W-space do therefore intersect
with the boundary of the positive space, but at the same time thedistance between the border of the W-space
and the V-space increased.

Now after arguing for the sparse NMF it is worth mentioning that there also is one big
counter argument to sparse NMF. IfR is generated by non-sparse matricesW > 0 and
H > 0 then there are no sparseW′ andH′ such thatR = W′H′. The argument for
this can be seen in Figure 2. As explained in the figure captionit is either a matter of a
sparseW (Figure 2.C) or a sparseH (Figure 2.B). In many applications it is not clear
why the authors choseW to be sparse instead ofH and vice versa. A counter argument
to the analysis above is to look what happens when a not sparseNMF is used—with
traditional NMF it is random which of the possible solution that is found, whereas the
sparse NMF always gives the same output.

Most sparse NMF algorithms are formed by adding a penalty term to get an error
function on the form

E(W,H) = D(WH‖V) + λC(H), (21)
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whereC(·) is the penalty function andW is a normalized version ofW. In some
studies e.g. [83]H is both normalized and used in the penalty function. In sparse NMF
most penalty functions are element wise,

C(H) =
∑

i,j

c(Hj
i ). (22)

An overview of penalty functions are shown in the following table.

Name c(x) Reference

L0 norm 1(x 6= 0) [5, 19]
L1 norm |x| [14, 16, 51, 72, 81, 82, 85, 92, 95, 112, 113, 117, 146,

151, 154]
L2 norm x2 [7, 17, 60, 87, 90, 92, 134, 156, 158, 168, 190]
Lα norm |x|α [16, 156]

Another way of making sparse NMF is by a Lagrange multiplier approach where the
level of sparsity fixed and the NMF is minimized with this level of sparsity [7, 72, 76,
83, 164]. At first it look, it seams very different to add a penalty term in the cost func-
tion and select the level of sparsity (the value of the penalty term), but it turns out that
the solutions are the same. The argument is as follows. Let for a givenλ

[W′,H′] = arg min
W,H

(
E(W,H)

)

and thereby resulting in the rateγ = C(H′). Now its easy to se that

[W′,H′] = arg min
W,H

C(H)=γ

(
D(WH‖V)

)

and therefore can the choice ofλ be seen as a choice of rateγ.
A flavor of NMF referred to as Local Non-negative Matrix Factorization (LNMF)

[53] has the penalty term

C(W,H) = ‖W1‖2 − λ′‖HT 1‖2 (23)

and is therefore an example of sparse NMF with not-elementwise penalty term [23, 49,
53, 110, 133, 178, 188, 188].

There is also a method for obtaining NMF with small estimation error and sparse
W andH by adding a constant smoothing matrixS. The smoothing matrix can thereby
contain the non-sparseness of bothW andH:

V ≈ R = WSH. (24)
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This method presented in [133] is called NonSmooth Nonnegative Matrix Factoriza-
tion (NSNMF) [92, 96, 97, 133]. An generalisation of NSNMF where there are dif-
ferent smoothing matrix for each component are described in[52] under the name
Transformation-invariant NMF.

3.3 Structured NMF

In some applications, it is known that the solution has othercharacteristics or structure
than general sparseness. Some of these applications and NMFalgorithms are described
in the following.

Affine NMF
One such application is the Swimmer Database (see Section 5.1) introduced in [48]
where it was prove that traditional NMF cannot find the “correct” decomposition be-
cause all the column vectors inV has a constant part. To deal with NMF problems
having an offset, an nmf algorithm called Affine NMF was introduced [101] where an
extra term is added

V ≈ R = WH + w01
T . (25)

In Affine NMF W andH are updated using a sparse NMF method [51] andw0 is up-
dated using a traditional NMF method [104]. Further detailsabout Affine NMF can be
found in paper D.

Smooth NMF
In some NMF problems it is known that the rows inH are smooth. An example of
this is the spectrum of music instruments (see Section 5.3) where it is known that the
spectra changes slowly over time [155]. In the very first NMF paper from 1994 [129]
the possibility of making NMF algorithms that give smooth row vectors ofH was men-
tioned. From that paper it has taken almost one decade beforethe first smooth NMF
algorithm [170] was proposed in 2003. In this paper, a penalyterm of the form

C(H) =
∑

i,j

∣∣Hi
j −Hi

j−1

∣∣ , (26)

is used. Later the penalty function

C(H) = ‖(I−T)H‖2F , (27)

whereT is a matrix, that calculates a weighted averaged, was proposed to make smooth
NMF [29]. Smooth NMF algorithms have superior performance to other NMF algo-
rithms in several application [18, 29, 30, 152, 170, 172, 173]. When looking for smooth
NMF algorithms it is worth noticing that in some articles, like for example [87, 134],
the sparse NMF withL2 regularization are called smooth.
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Harmonic NMF
Another structured NMF algorithm is the Harmonic NMF [50, 143, 167] for note tran-
scription. The Harmonic NMF uses the prior knowledge that tones have a known har-
monic structure by forcing most elements inW to zero.

General structured NMF framework
In the last years, there has been a growing interest in a probabilistic interpretation of
NMF [3, 45, 46, 54, 55, 61, 69, 111, 125, 131, 132, 147, 148, 174, 179, 182, 183].
A general framework for specifying the structure of a structured NMF is presented
in [152] (found in Appendix B) by which it is possible to perform NMF with a cho-
sen marginal distributionp(Hi,j) and a chosen correlation between a re-parameterized
version of the elements inW andH.

3.4 NMF Extensions

Plenty of work has been done to generalize the NMF framework.Examples of this is
the Non-negative Tensor Factorization, convolutive NMF and semi-NMF.

Non-negative Tensor Factorization
The tensor version of NMF called Non-negative Tensor Factorization (NTF) was started
whilst NMF was still called PMF [128]. Later, there has been made a tensor product
version of almost all NMF cost functions [38, 40, 56, 74, 75, 96–98, 107, 157, 184].

Convolutive NMF
Another generalization of NMF is the convolutive NMF where the column ofW are
exchanged with matrices. By doing thisW consist of basis matrices instead of basis
vectors [15, 93, 94, 153, 159, 161, 171].

Semi-NMF
Another way of changing the NMF is by discarding the non-negativity constraint.
There are several NMF algorithms that work on negativeV [147, 148, 152] and there
are semi-NMF algorithms where the non-negativity constraint is only restricted toH
[44, 111]. The semi-NMF also relates to non-negative PCA [126, 141] whereH is non-
negative and whereW has orthonormal columns and also relates to the non-negative
ICA [138–140] whereH is non-negative and whereW is orthonormal.

3.5 Is the NMF Problem Solvable?

The NMF theory is as old as the factorization it self. In 1972,a paper investigated when
the LU-factorization of a non-negative matrix is also non-negative [119]. In 1974, it
was investigated when an nmf exist withr = rank(V ) [165] and later an analysis of
the minimum possibler for which there exist an nmf was given in 1999 [166].
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The first article to analyze the uniqueness of NMF was [48] in 2003 followed by
[123] in 2005, [25] in 2007 and this author’s papers [100, 102] found in paper A and
paper E. The remaining of this section will contain a short overview of the uniqueness
results of NMF.

When talking about a unique NMF it is assumed that there exist aground truthW
andH such thatR = WH is the decomposition of interest. All other decompositions
are denotedR = W̃H̃. The only type of matrices that are non-negative and have a
non-negative inverse are matrices on the formPD whereP is a permutation andD is a
diagonal matrix [122, Lemma 1.1]. This naturally leads to the definition of uniqueness
that is directly or indirectly used in the NMF literature.

Definition 10 A matrix R = WH has aunique NMF if any solutionR = W̃H̃

fulfills that W̃ = WPD andH̃ = D−1P−1H whereP is a permutation andD is a
diagonal matrix.

The permutation and scaling ambiguity with regard to the NMFuniqueness defi-
nition are also known from other areas such as Blind Source Separation (BSS). It is
trivial to verify that unique NMF problems exists—an exampleis I = R = WH = II.
Whenrank(R) = r the non-uniqueness can be described by an invertible matrixQ

whereW̃ = WQ and H̃ = Q−1H, but if rank(R) 6= r this might is not be the
case [25, 100, 165].

To verify that an nmf is unique it is necessary to jointly investigate the conditions
onW andH [100], but there are a results of a condition fore the matrices individually
as described in the following.

Definition 11 A matrixW is calledboundary closeif for all j 6= i there exist ak such
that

0 = Wi
k (28)

0 6= W
j
k (29)

Theorem 12 If the NMF ofR = WH is unique then bothW andHT are boundary
close.

The proof of Theorem 12 follows directly from the proof of Theorem A.10 on
page A7. The Theorem is also presented in [123, Theorem 2] where one needs to be
aware of a minor error in the formulation. The most loose condition which is sufficient
for unique NMF is given by the following two definitions.

Definition 13 A matrixW is calledsufficiently spreadif for all j there exist ak such
that for all i 6= j

0 = Wi
k (30)

0 6= W
j
k (31)
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Definition 14 A matrixW is calledstrongly boundary closeif W is boundary close
and there exist a permutationP such thatŴ = WP, for which all i < r there exist a
set{k1, · · · , kr−i} fulfilling

1. Ŵi
kj

= 0 for all j ≤ r − i

2. and the matrix




Ŵ
i+1
k1

··· Ŵ
r
k1

...
...

...
Ŵ

i+1
kr−i

··· Ŵ
r
kr−i


 is invertible.

Theorem 15 If W is sufficiently spreadandHT is strongly boundary closethen the
NMF ofR = WH is unique.

Theorem 15 is the same as Theorem A.15 on page A11 where the proof can be
found4. In many examples, thestrongly boundary closecondition will be a sufficient
condition for both matrices, but in order to constructs suchexamples it is necessary
to evaluate the “condition number” [65, p. 81] of the matrices in the item 2 of Defini-
tion 14. Example 3 on page A9 illustrates the connection between the condition number
and uniqueness ofstrongly boundary closeW andH. The final theoretical comment
in this section is that whenR is unique then the non-uniqueness ofW andH can be
bounded by bounding the difference betweenR andV as given in Theorem A.16 on
page A12 also in [100]. Using the wordings from the “Inverse Problems” area one can
say that Theorem A.16 shows that the NMF problem is “well-posed” as defined in [73].

4 Principal Component Analysis and Non-negative Data

There has been published several papers where NMF outperforms PCA [9, 23, 67–72,
74, 85, 104, 115, 179]. In this section, Frobenius-Perron theory will be used to analyze
the outcome of Principal Component Analysis (PCA) when the observation is non-
negative. This analysis shows that PCA will output only one purely positive component
and the remaining components will contain both positive andnegative elements.

In PCA a set of vectorsv1, · · · ,vm ∈ R
n is projected to ar-dimensional space

such that most variance is obtained. In other words PCA finds amatrixPPCA ∈ R
r×n

with orthonormal row vectors that fulfils

PPCA = arg max
P∈R

r×n

PP
T =I

‖PV‖2F . (32)

4The definition in Appendix A looks different from the ones given in this section because those definition
are given for sets and therefore are more general than the definitions here that are matrix specific.
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Note, there are many solution to the maximization problem. Therefore,arg max means
thatPPCA is just one of the optimal matrices. The following Theorem shows that it is
easy to find onePPCA using the Singular Value Decomposition (SVD).

Theorem 16 Let U = [u1, · · · ,un] ∈ R
n×n, Σ =

[
σ1 0

...
0 σmin(n,m)

]
∈ R

n×m and

K =

[
k1

...
km

]
∈ R

m×m be the SVD ofV,

V = UΣK. (33)

Then
PPCA = UT

r = [u1, · · · ,ur]
T = arg max

P∈R
r×m

PP
T =I

‖PV‖2F . (34)

Proof.
Since a rotation do not change the Frobenius norm (Equation 36) andPU also has

orthonormal row vectors (Equation 37) we get

max
P∈R

r×m

PP
T =I

‖PV‖2F = max
P∈R

r×n

PP
T =I

‖PUΣK‖2F (35)

= max
P∈R

r×n

PP
T =I

‖PUΣ‖2F (36)

= max
P∈R

r×n

PP
T =I

‖PΣ‖2F (37)

=

r∑

i=1

σ2
i (38)

The proof is concluded by testingPPCA

‖PPCAV‖2F =
∥∥[u1, · · · ,ur]

T UΣK
∥∥2

F
(39)

=
∥∥[u1, · · · ,ur]

T UΣ
∥∥2

F
(40)

=
∥∥[I 0

]
Σ
∥∥2

F
(41)

=

r∑

i=1

σ2
i (42)
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This closed form solution of PCA5 makes it one of the most used algorithms for
rank reduction. By using the SVD it is easy to calculate the result of ther-dimension
representation, since

PPCAV = UT
r UΣK (43)

=
[
I 0

]
ΣK (44)

=

[
σ1

...
σr

][
k1

...
kr

]
= ΣrKr, (45)

ther-dimension representation consist of scaled versions of the singular vectors inK.
Another characterization of PCA is its ability to find the best rankr approximation for
V

arg max
rank(V̂)≤r

‖V̂ −V‖F = arg max
rank(V̂)≤r

‖V̂ −UΣK‖F (46)

= arg max
rank(V̂)≤r

‖U(UT V̂KT −Σ)K‖F (47)

= arg max
rank(V̂)≤r

‖UT V̂KT −Σ‖F (48)

= U

(
arg max
rank(V̂)≤r

∥∥∥V̂ −Σ

∥∥∥
F

)
K (49)

= U
[
Σr 0

0 0

]
K (50)

= UrΣrKr. (51)

This formulation of PCA has the same form as the NMF. Therefore, one could argue
that PCA is an NMF without the non-negative constraint ofUr andΣrKr. Before
introducing more advanced algorithms to ensure the non-negativeness ofUr andΣrKr

it is interesting to investigate if there are non-negative data matrices that naturally will
lead to non-negative principal components. The analysis inthe following section shows
that this is not the case.

4.1 SVD of Non-negative Matrices

In this section, a Frobenius-Perron like analysis is applied to the SVD. From Lemma 3
it is known that the singular vectors ofA are eigenvectors ofAT A andAAT . In
the following, we will firstly investigate the Frobenius-Perron further for symmetric
matrices and secondly apply the conclusions to the SVD.

5There is only a closed for solution of PCA from the programmers viewpoint. There is no closed form
solution to find the SVD and therefore no closed form solutionof PCA from an algorithmic point of view.
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Theorem 17 If A ∈ R
n×n
+ ≥ 0, symmetric, and is not an generalized block diagonal,

thenλ1 > maxi6=1 |λi| andu1 is positive.

Proof. Let AT = A not be a an generalized block diagonal matrix and letu be
one of the vectors with the largest absolute eigenvalue. Because of the largest absolute
eigenvalue we know that|Au| ≥ A |u| and from Lemma 4.a we know that|Au| ≤
A |u| and therefore|Au| = A |u| . With no loss of generality it is assumed that the
zero elements inu (if there are such) are grouped at the end,u =

[
û
0

]
whereû has only

non-zero elements.
An analysis of the sub-blocks

[
A1 A

T
2

A2 A3

]
of A shows thatA is block diagonal if there

are zeros inu
[

A1 A
T
2

A2 A3

] [
û
0

]
=λ
[
û
0

]
(52)

⇓
A2|û| =|A2û| = 0 (53)

⇓
A2 =0. (54)

There cannot be any zero elements inu because a zero element inu will lead to a
generalized block diagonalA—which contradict with our starting assumption.

Now that it is known thatu has no zero elements, lets split it in the positive elements
and the negative elements,u =

[
up

−un

]
, where bothup andun are strictly positive. An

analysis of the sub blocks ofA shows that
[

A1 A2

A
T
2 A3

] [
up

−un

]
=λ
[

up

−un

]
(55)

⇓
|A1up −A2un| =A1|up|+ A2|−un| = A1up + A2un (56)

⇓
A1 = 0 or A2 = 0. (57)

Repeating the steps above it can be shown thatA3 = 0 whenA2 6= 0. Whenu has
both negative and positive elements,A is therefore a generalized block diagonal matrix.

Theorem 18 Let V be a non-negative matrix without zero rows or zero columns and
not generalized block diagonal, then the singular vectors corresponding to the largest
singular value will have positive elements.

Proof. Lemma 3 states that the singular vectors ofV are eigenvectors ofVVT and
VT V, and Lemma 9 states that whenV is not generalized block diagonal then neither
areVVT norVT V. The use of Theorem 17 on those matrices concludes the proof.



18 INTRODUCTION

Corollary 19 Let V be a non-negative matrix without zero rows or zero columns and
not generalized block diagonal thenU andK from the SVDV = UT ΣK will both
only have one non-negative column.

Proof. Theorem 18 state thatU andK have a strictly positive column vector and
because the matrices are orthonormal, the other columns must have negative elements—
and are therefore not non-negative.

4.2 PCA on Non-negative Matrices

Theorem 18 and Corollary 19 show directly that there is a problem with using PCA
for non-negative matrices—namely, that only the first component is non-negative. If
data is constructed by a sum of non-negative components as shown in Equation 18 then
PCA will not find any components that are close to the generating components. The
first element will be an averaged element and the other elements will be both positive
and negative. The following example shows that PCA gathers all the energy in the first
component when data is constructed using Equation 18.

Example 1 GenerateW andH from a uniform IID and an exponential IID and anal-
yse how PCA performs onWH.

Different matrix sizes have been evaluated, but the result has been oserved to be
consistent for all sizes. The first PCA component almost describesR = WH by itself
and the following components accounts for less than2% of the total energy each. This
is in contrast to the constructing components where the energy is even distributed over
the component.

The average component energy over 1000 realizations with exponentially generated
matrices wheren = m = 100 andr = 20 are shown in Figure 3. The components are
normalized so the total component energy sums to one. The blue dots are the energy
of the normalized PCA component and the red squares are the energy in the sorted
normalized constructing components. From Figure 3 it can beseen that the PCA com-
ponents do not have the same energy distribution as the constructing components. This
shows how different the two solutions are.

5 NMF Applications

5.1 Swimmer Database

The Swimmer Database was introduces in [48] as an example of anon-unique NMF
problem. The database consist of 256 (32 × 32 pixel) black-and-white pictures of a
‘stick-man’ with 4 limbs that can be in one of 4 positions and a‘torso’ as shown in
Figure 4. Each of the 256 picture is a column vector in the datamatrix such thatR ∈
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Figure 3: The average of normalized singular values ofWH from 1000 realizations. BothW ∈ R
100×20
+

andH ∈ R
20×100
+ are generated with exponential IID.

R
1024×256
+ . In the paper that introduce the Swimmer database the model orderr is set

to 16 [48]. It is possible to decomposeR using this model order by letting each limb in
each positions be a basis vector and put on the torso to one of the limbs in all positions,
but these basis will not be a good description of the pictures. In the later use of the
Swimmer database is the model order set to 17 [33, 64, 74, 101,133, 157, 193] in the
hope that the algorithms can find the 16 limbs and the torso as basis vectors.

It has been shown that this NMF problem is very difficult to solve and many NMF
algorithms fails to find the correct 17 basis vectors [33, 48,74, 133, 157]. Two dif-
ferent strategies have been able to solve the problem. One strategy is to look for non-
overlapping basis vectors and because the 17 basis vectors are non-overlapping, this
gives the correct result as reported in [64, 193]. Another successful strategy is to use
the Affine NMF [101] method that was described briefly in Section 3.3 and detailed in
Appendix D.

5.2 Face Images

Faces images are one of the most used applications for NMF andwas one of the exam-
ples that was given in the first paper named NMF [104]. The faceimages are in most
cases passport like images that are cropped and scaled such that the eyes, mouth etc. are
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Figure 4: Samples of the Swimmer database

in the same position. Each image is a column vector inV and the columns in thereby
becomes basis faces. There are several different application when using face images,
e.g. face recognition, classification and illustrating purpose [37, 104, 190].

An overview of the databases and the use of NMF on the databasecan be seen in
the following table.

Face database Reference

AR [120] [67, 68]
Cambridge ORL [2] [53, 66, 84, 91, 95–97, 110, 113, 114, 178]
CBCL [1] [21, 66, 74, 75, 84, 95, 99, 99, 113–117, 133, 157]
Cohn-Kanade [89] [23]
FERET [137] [178, 191]
JAFFE [118] [23]
XM2VTS [121] [145, 188]
Other and unknown [4, 5, 9, 28, 37, 58, 76, 90, 104, 149, 190]

5.3 Music

In the last decade there has been a growing interest in music information retrieval and
since 2000 there has been the ISMIR (The International Conferences on Music Informa-
tion Retrieval and Related Activities) conference that hasbuild a community for music
research with a yearly competition MIREX (Music Information Retrieval Evaluation
eXchange).

One of the tasks within the music area is to analyze frequencyspectra of music sig-
nals and perform instrument separation or note transcription. Plenty of papers describe
how to use NMF on music frequency spectra starting with [158]. When using NMF
on musicVij is the absolute value of the spectra at thei’th frequency bin at thej’th
time index. The NMF ofV results in aW where the columns are basis vectors for
one instrument playing one note and aH that indicate when the notes are active. The
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music NMF papers can be split in to two major groups. The first group use NMF to
make source separation of instruments or notes [9–12, 56, 63, 77, 93, 94, 103, 153, 168,
169, 171–173, 175, 176] by using Equation 19 and the second group does music tran-
scription [3, 31, 32, 50, 63, 143, 158–160]. When performing transcription, the column
vectors inW need to be classified as a note and the elements inH need to be classified
as active or not active.

It is known that the additive NMF model is only an approximation for both ampli-
tude and power spectra, but the more sparse the constructingcomponents are the better
will the approximation be. It is also known that independentpower spectra in ensemble
are additive, which is an argument for using this type of spectra. A counter argument is
that it has also been reported that the amplitude spectra performs better than the power
spectra [151]. The additive model error is the inspiration for [131, 132] that incorporate
this error in the cost function.

6 Contributions

The NMF is a relative new factorization for analyzing large quantity of data. There has
been published an overwhelming number of papers in the last decade but only a couple
of the papers investigate when the factorization will produce a reliable result. Paper A
and E investigate what data that gives a reliable NMF. Often when people use NMF, it
is known that the solution has a certain structure. In Paper B, C and D NMF methods
that looks for solutions with special structure are proposed. Next, the contribution of
the individual papers are listed.

Paper A This paper investigates the uniqueness of NMF. Several new Theorems show
that it is possible to characterize the conditions under which an nmf is unique.
In most NMF applications eitherR or (W, H) is corrupted with noise and a
Theorem shows that the estimation error is small when the noise is small. Finally
this papers looks into stochastic properties of generatingW andH that will make
the NMF unique.

Paper B In this paper is a general method for making NMF that seeksW and H

with special characteristic. The method makes it possible to determine both the
marginal distribution of the source elements and the correlation between the ele-
ments. The method can be combined with any cost function witha probabilistic
interpretation. The theoretical fundation of the method isGaussian processes.

Paper C There are plenty of papers that use NMF to perform blind source separation
under the assumption that it is possible to train the models of the sources indi-
vidually. In this paper a method for training source models when several sources
are presented. The proposed method only needs to information about when the
sources are inactive which makes it possible to perform instrument separation in
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for example modern music. A Theorem shows that the method works under mild
assumptions, and the theoretical findings is backed up by simulations on music
data.

Paper D In this paper NMF is generalize to incorporate an explicit offset. The pro-
posed method is able to find the correct decomposition on simulated data and
when the method is used on face images where it constructs a more part-based
decomposition than the reference NMF methods. The affine NMFmethod has
the same computational complexity as the reference methods.

Paper E This paper presents some of the preliminary work that resulted in Paper A.
The scope of the paper is to illustrate the novel definitions that are used in the
NMF uniqueness Theorems. When the performance of NMF are simulated the
elements inW andH are often generated as a stochastic process. The article
argues for looking at real NMF data as be generated the same way and looks for
the statistical properties of the stochastic process that makes NMF unique.

Thesis In the Thesis itself an overview of most of the NMF literatureis given. Several
papers have used PCA as a reference method when they present NMF. In the
Thesis it is analysed how PCA perform on non-negative data. The reason for
this is twofold. Firstly, it is possible to show why PCA rarely perform well,
when it is used on non-negative data, and secondly we want to introduce the
Frobenius-Perron Theory (the theory about eigenvalues andeigenvectors of non-
negative matrices) for the NMF community where it is appearsto be unknown.
We strongly believe that the Frobenius-Perron Theory can increase the general
knowledge of the NMF theory and methods.
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1. INTRODUCTION A3

Abstract

We investigate the conditions for which non-negative matrix factorization (NMF) is
unique and introduce several theorems which can determine whether the decomposition
is in fact unique or not. The theorems are illustrated by several examples showing the
use of the theorems and theire limitations. We have shown that if a data matrix is a
unique NMF matrix corrupted by additive noise this leads to anoisy estimation of the
noise free unique solution. Finally, we use a stochastic view of NMF to analyse which
characterization of the underlying model will result in a NMF with small estimation
errors.

1 Introduction

Large quantities of positive data occur in research areas such as music analysis, text
analysis, image analysis and probability theory. Before deductive science is applied
to large quantities of data it is often appropriate to reducedata by preprocessing, e.g.
by matrix rank reduction or by feature extraction. Principal component analysis is an
example of such preprocessing. When the original data is non-negative, it is often
desirable to preserve this property in the preprocessing. For example, elements in a
power spectrogram, probabilities and pixel intensities should still be non-negative after
the processing to be meaningful. This has led to the construction of algorithms for rank
reduction of matrices and feature extraction generating non-negative output. Many of
the algorithms are related to the non-negative matrix factorization (NMF) algorithm
proposed by Lee and Seung [2, 3]. NMF algorithms factorize a non-negative matrix
V ∈ R

n×m
+ into two non-negative matricesW ∈ R

n×r
+ andH ∈ R

r×m
+ :

V ≈ R = WH. (1)

There are no closed-form solutions to the problem of findingW andH given aV, but
Lee and Seung [2, 3] proposed two computationally efficient algorithms for minimizing
the difference betweenV andWH for two different error functions. Later, numerous
other algorithms have been proposed (see Berry et al. [4]).

An interesting question is whether the NMF of a particular matrix is unique. The
importance of this question depends on the particular application of NMF. There can be
two different viewpoints when using a model like NMF—either,one can believe that
the model describes nature and that the variablesW andH have a physical meaning or
one can believe that the model can capture the part of interest even though there is not
a one-to-one mapping between the parameters and the model, and the physical system.
When using NMF, one can wonder whetherV is a disturbed version of some underlying
WH or whether the data is constructed by another model. Or, in other words, does a
ground truthW andH exist. These questions are important in evaluating whetheror
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not it is a problem that there is another NMF solution,W′H′, to the same data, i.e.

V ≈ R = WH = W′H′. (2)

If NMF is used even though the data is not assumed to be generated by (1), it may not
be a problem that there are several other solutions. On the other hand, if one assumes
that there exists a ground truth, it may be a problem if that model is not detectable, i.e.
if it is not possible to findW andH from the data matrixV.

The first article on the subject was the correspondence between Berman and Thomas.
Berman [5] asked the question which in NMF terminology wouldbe: Find a simple
characterization of the class of non-negative matricesR for which an NMF exists. As
we shall see, the answer by Thomas [6] can be transferred intoa NMF uniqueness
theorem.

The first article investigating the uniqueness of NMF is Donoho and Stodden [7].
They use convex duality to conclude that in some situations where the column vectors
of W “describe parts”, and for that reason are non-overlapping and thereby orthogonal,
then the NMF solution is unique.

Simultaneously with the development of NMF, Plumbley [8] worked with non-
negative independent component analysis, where one of the problems is to estimate
a rotation matrixQ from observationsQs, wheres is a non-negative vector. In this
setup Plumbley investigates a property for a non-negative Independent and Identically
Distributed (IID) vectors such thatQ can be estimated. He shows that if the elements
in s are grounded and a sufficiently large set of observation is used, thenQ can be
estimated. The uniqueness constraint in [8] is a statistical condition ofs.

The result in [8] is highly relevant for the NMF uniqueness due to the fact that in
most cases new NMF solutions will have the formWQ andQ−1H as described in
Section 3. By using Plumbley’s result twice, a restricted uniqueness theorem for NMF
can be constructed.

In this paper, we investigate the circumstances under whichNMF of an observed
non-negative matrix is unique. We present novel necessary and sufficient conditions for
the uniqueness. Several examples illustrating these conditions and their interpretations
are given. Additionally, we show that NMF is robust to additive noise. More specifi-
cally, we show that it is possible to obtain accurate estimates ofW andH from noisy
data when the generating NMF is unique. Lastly, we consider the generating NMF as
a stochastic process and show that particular classes of such processes almost surely
result in unique NMFs.

This paper is structured as follows. Section 2 introduces the notation, some def-
initions, and basic results. A precise definition and two characterisations of a unique
NMF are given in Section 3. The minimum constraints ofW andH for a unique NMF
are investigated in Section 4. Conditions and examples of a unique NMF are given in
Section 5. In Section 6, it is shown that in situations where noise is added to a data
matrix with a unique NMF it is possible to bound the error of the estimates ofW and
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H. A probabilistic view on the uniqueness is taken in Section 7. The implication of the
theorems is discussed in Section 8, and Section 9 concludes the paper.

2 Fundamentals

We will here introduce convex duality that will be the framework of the paper, but first
we shall define the notation to be used. Non-negative real numbers are denoted asR+,
‖·‖F denotes the Frobenius norm, andspan(·) is the space spanned by the columns of
a matrix. Each type of variables has its own font. For instance, a scalar is denotedx,
a column vector is denotedx, a row vector is denotedx, a matrix is denotedX, a set
is denotedX , and a random variable is denotedX . Moreover,xj

i is thei’th index of
the vectorxj . When a condition for sets is used to describe a matrix, it is referring to
the set of column vectors in the matrix. The NMF is symmetric in WT andH so the
theorems for one of the matrices may also be used for the othermatrix.

In the paper, we make a geometric interpretation the NMF similar to that used in
both [6] and [7]. For that, we need the following definitions.

Definition A.1 Thepositive spanis given byspan+(b1, · · · ,bd) = {v =
∑

i b
iai | a ∈

R
d
+}.

In some literature, the positive span is called the conical hull.

Definition A.2 A setA is called asimplicial coneif there is a setB such thatA =
span+ (B). Theorder of a simplicial coneA is the minimum number of elements inB.

Definition A.3 Thedual to a setA, denotedA∗, is given byA∗ = {v|vT a ≥ 0 for all a ∈ A}.

The following lemma is easy to prove and will be used subsequently. For a more
general introduction to convex duality, see [9].

Lemma A.4
a. If X = span+(b1, · · · ,bd) theny ∈ X ∗ if and only ifyT bn ≥ 0 for all n.

b. If X = span+(BT ) andBT = [b1, · · · ,bd] is invertible thenX ∗ = span+(B−1)

c. If Y ⊆ X thenX ∗ ⊆ Y∗.

d. If Y andX are closed simplicial cones andY ⊂ X , thenX ∗ ⊂ Y∗.
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3 Dual Space and the NMF

In this section our definition of unique NMF and some general conditions for unique
NMF is given. As a starting point let us assume that bothW andH have full rank i.e.
r = rank (R).

LetW′ andH′ be any matrices that fulfil,R = WH = W′H′. Thenspan (W) =
span (R) = span (W′). The column vectors ofW andW′ are therefore both bases
for the same spaces and as a result there exists a basis shift matrix Q ∈ R

r×r such
thatW′ = WQ. It follows thatH′ = Q−1H. Therefore all NMF solutions where
r = rank (R) are of the formR = WQQ−1H. In these situations, the ambiguity of
the NMF is theQ matrix. Note that ifr > rank (R) the above arguments do not hold
becauserank (W) can differ fromrank (W′) and therebyspan (W) 6= span (W′).

Example 1 The following is an example of aR4×4
+ matrix of rank3, where there are

two NMF solutions but noQ matrix to connect the solutions
[

1 1 0 0
1 0 1 0
0 1 0 1
0 0 1 1

]
= R = R︸︷︷︸

W

I︸︷︷︸
H

= I︸︷︷︸
W′

R︸︷︷︸
H′

. (3)

We mention in passing that Thomas [6] uses this matrix to illustrate a related problem.

Lemma A.5 (Minc [10, lemma 1.1] ) The inverse of a non-negative matrix is non-negative
if and only if it is a scaled permutation.

Lemma A.5 shows that all NMF solution on the formWQ andQ−1H whereQ

is a scaled permutation are valid, and thereby that NMF only can be unique up to a
permutation and a scaling. This leads to the following definition of unique NMF in this
paper.

Definition A.6 A matrixR has aunique NMF if the ambiguity is a permutation and a
scaling of the columns inW and rows inH.

The scaling and permutation ambiguity in the uniqueness definition is a well-known
ambiguity that occurs in many blind source separation problems. With this definition
of unique NMF, it is possible to make the following two characterizations of the unique
NMF.

Theorem A.7 If r = rank (R), an NMF is unique if and only if the positive orthant is
the onlyr-order simplicial coneQ such thatspan+(WT ) ⊆ Q ⊆ span+(H)∗.

Proof. The proof follows the analysis of theQ matrix above in combination with
Lemma A.4.b. The theorem can also be proved by following the steps of the proof in
Thomas [6].
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Theorem A.8 (Donoho and Stodden [7])The NMF is unique if and only if there is
only oner-order simplicial coneQ such thatspan+(R) ⊆ Q ⊆ P, whereP is the
positive orthant.

Proof. It follows directly from the definitions. The first characterization is in-
spirited by [6] and the second characterization is implicitintroduced in [7]. Note that
the two characterizations of the unique NMF analyze the problem from two different
viewpoints. Theorem A.7 takes a knownW andH pair as the starting point and looks
at the solution from the “inside”, i.e. ther dimensional space of row vectors inW and
column vectors inH. Theorem A.8 looks at the problem from the “outside”, i.e. then
dimensional column space ofR.

4 Matrix Conditions

If R = WH is unique then bothW andH have to be unique respectively, i.e. there
is only one NMF ofW andH namelyW = WI andH = IH. In this section, a
necessary condition forW andH is given and a sufficient condition is shown.

The following definition will be shown to be a necessary condition for both the set
of row vectors inW and column vectors inH.

Definition A.9 A setS of vectors inR
d
+ is calledboundary closeif for all j 6= i and

k > 0 there is an elements ∈ S such that

sj < ksi.

In the case of closed sets, the boundary close condition is that sj = 0 andsi 6= 0.
In this section the sets will be finite (and therefore closed), but in Section 7 the general
definition above is needed.

Theorem A.10 The set of row vectors inW have to be boundary close for the corre-
sponding NMF to be unique

Proof. If the set of row vectors inW are not boundary close there exist indexesj 6= i
andk > 0 such that thej’th element is always more thank times larger than thei’th
element in the row vectors inW. LetQ = span+(q1, · · · ,qr) where

qn =

{
ei + kej if n = i
en otherwise

(4)

anden denotes then’th standard basis vector. This set fulfils the conditionspan+(WT ) ⊆
Q ⊂ P and therefore by Theorem A.7 we conclude that the NMF cannot be unique.
That not only the row vectors ofW with small elements determine the uniqueness can
be seen from the following example.
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Example 2 The following is an example wherēW is not unique butW =
[

W̄
3 1 1

]
is

unique.
Let

W̄ =
[

0 1 1
1 0 1
1 1 0

]
.

HereW̄ is boundary close but not unique sincēW = W̄I = IW̄. The uniqueness of
W =

[
W̄

3 1 1

]
can be verified by plotting the matrix as shown in Figure 1, andobserve

that the conditions of Theorem A.7 are fulfilled.

 

 

Desired Solution

Border of H*

span+(W)

Figure 1: A three dimensional space is scaled such that the vectors are in the hyper plane:{p
∣∣[1 1 1]p = 1}.

By the mapping to the hyper plane, a plane inR
3 is mapped to a line and a simplicial cone is mapped to an

area. In the figure, it can be observed that the dashed triangle (desired solution) is the only triangle (third
order simplicial cone) that contains the shaded area (positive span ofW) while being within the solid border
(the dual ofH). The NMF can be concluded to be unique by Theorem A.7.

In three dimensions, as in Example 2, it is easy to investigate whether a boundary
closeW is unique – ifW = W′H′ thenH′ can only have two types of structure:
Either the trivial (desired) solution whereH′ = I or a solution where only the diagonal
of H′ is zero. In higher dimensions, the number of combinations ofnon-trivial solu-
tions increases and it becomes more complicated to investigate all possible non-trivial
structures. For example, if̄W is the matrix from Example 2, then the matrix

W̃ =
[
W̄ 0

0 W̄

]

is boundary close and can be decomposed in several ways, e.g.

W̃ =
[

I 0

0 W̄

] [
W̄ 0

0 I

]
=
[
W̄ 0

0 I

] [
I 0

0 W̄

]
=
[

I 0

0 I

] [
W̄ 0

0 W̄

]
.

Instead of seeking necessary and sufficient conditions for auniqueW, a sufficient
condition not much stronger than the necessary is given. In this sufficient condition we
only focus on the row vectors ofW with a zero (or very small) element.
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Definition A.11 A set of vectorsS in R
d
+ is called strongly boundary closeif it is

boundary close, and there exists az > 0 and a numbering of the elements in the
vectors such that for allk > 0 andn ∈ {1, · · · , d− 1} there ared− n vectors fromS,
{s1, · · · , sd−n} that fulfil:

1. sj
n < k

∑
i>n s

j
i for all j and

2. κ2

([
b1, · · · ,bd−n

])
≤ z, whereκ2(·) is the “condition number” of the ma-

trix defined as the ratio between the largest and smallest singular values [11, p.
81], bj = Pnsj andPn ∈ R

d−n×d is a projection matrix that picks thed − n
last element of a vector inRd.

Theorem A.12 If span+(WT ) is strongly boundary close, thenW is unique.

The proof is quite technical and is therefore given in the Appendix. The most important
to notice is that the necessary condition in Theorem A.10 andthe sufficient conditions in
Theorem A.12 are very similar. The first item in the strongly boundary close definition
states that there has to be several vectors that has the smallvalue. The second item
ensures that the vectors with small value are linear independent in the last elements.

5 Uniqueness ofR

In this section, a condition for uniqueV is analyzed. First, Example 3 is used to inves-
tigate when a strongly boundary closeW andH pair is unique. The section ends with
a constraint forW andH that results in a unique NMF.

Example 3 This is an investigation of uniqueness ofR whenW andH are given as:

H =
[

α 1 1 α 0 0
1 α 0 0 α 1
0 0 α 1 1 α

]
(5)

W = HT , (6)

where0 < α < 1. BothW andH are strongly boundary close and thez parameter
can be calculated as

z = κ2

([
b1, · · · ,bd−n

])
(7)

= κ2

([
α 1
1 α

])
=

1 + α

1− α
. (8)

The equation above shows that smallα will result in a z close to one and anα close
to one results in a largez. In Figure 2, the matrixR = WH is plotted forα ∈
{0.1, 0.3, 0.5, 0.7}. The dashed line is the desired solution and is repeated in all
figures. It is seen that the shaded areaspan+ (WT ) is decreasing whenα increase,
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and the solid borderspan+ (H)
∗ increases whenα increases. For allα-values, both

the shaded area and the solid border intersect with the dashed triangle. Therefore, it
is not possible to get another solution by simply increase/decrease the desired solution.
The figure shows that the NMF is unique forα ∈ {0.1, 0.3} and not unique forα ∈
{0.5, 0.7} where the alternative solution is shown with a dotted line. That the NMF
are not unique forα ∈ {0.5, 0.7} can also be verified by selecting theQ to be the
symmetric orthonormal matrix

Q = QT = Q−1 =
1

3

[−1 2 2
2 −1 2
2 2 −1

]
, (9)

and see that bothWQ andQ−1H are non-negative. Ifα = 0.3 then the matrixR is
given by

R =
1

100




109 60 30 9 30 100
60 109 100 30 9 30
30 100 109 60 30 9
9 30 60 109 100 30
30 9 30 100 109 60
100 30 9 30 60 109


 . (10)

This shows thatR needs no zeros for the NMF to be unique.

(a) α = 0.1 (b) α = 0.3

(c) α = 0.5 (d) α = 0.7

Figure 2: The figure shows data constructed as in Example 3 plotted in thesame manner as in Figure 1 i.e.
the dashed triangle is the desired solution, the solid line is the border of the dual ofH and the shaded area
is the positive span ofW. It can be seen that the NMF is unique whenα equals0.1 or 0.3 but not whenα
equals0.5 or 0.7. In the cases where the NMF is not unique an alternative solution is shown with a dotted
line.
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In the example above,W equalsHT and thereby fulfils the same constraints. In
many applications, the meaning ofW andH differ, e.g. in music analysis where the
column vectors ofW are spectra of notes andH is a note activity matrix [12].

Next, it is investigated how to make an asymmetric uniqueness constraint.

Definition A.13 A set of vectors inRd is called sufficiently spreadif for all j and
k > 0 there is an elements ∈ S such that

sj > k
∑

i6=j

si.

Note that in the definition for sufficiently spread thej’th element is larger than
the sum in contrast to the strongly boundary close definitionwhere thej’th element is
smaller than the sum.

Lemma A.14 The dual space to a sufficiently spread set is the positive orthant.

Proof. A sufficiently spread set is non-negative and the positive orthant is therefore
part of the dual set for any sufficiently spread set. Letb be a vector with a negative
element in thej’th element and select

k =

∑
i6=j |bi|
−bj

. (11)

Then there is ans in any sufficiently spread set such thatsj > k
∑

i6=j si and therefore

sT b = sjbj +
∑

i6=j

sibi ≤ sjbj +
(∑

i6=j

si

)(∑

i6=j

|bi|
)

= −bj(−sj + k
∑

i6=j

si) < 0. (12)

Theb is therefore not in the dual to any sufficiently spread set.
In the case of finite sets, the sufficiently spread condition is the same as the require-

ment for a scaled version of all the standard basis vectors tobe part of the sufficiently
spread set. It is easy to verify that a sufficiently spread setalso is strongly boundary
close and that thez parameter is one.

Theorem A.15 If a pair [WT , H] is sufficiently spread and strongly boundary close,
then the NMF ofR = WH is unique.

Proof. Lemma A.14 states that the dual set of a sufficiently spread set is the positive
orthant,

span+(H)∗ = P = span+(I)∗. (13)
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Theorem A.12 state thatWI is unique and by using Equation 13 and Theorem A.7 we
conclude thatR = WH is unique.

Theorem A.15 is a stronger version of the results of Donoho and Stodden [7, Theo-
rem 1]. The theorem in [7] also assumes thatH is sufficiently spread but the condition
for WT is stronger than the strongly boundary close assumption.

6 Perturbation Analysis

In the previous sections, we have analyzed situations wherethere has been a unique
solution. In this section, it is shown that in some situations the non-uniqueness can be
seen as estimation noise onW andH. The error function that describes how close an
estimated[W′,H]′ pair is to the true[W,H] pair is

J(W,H)(W
′,H′) = min

P,D

(
‖W −W′(DP)‖F +

∥∥H− (DP)−1H′∥∥
F

)
, (14)

whereP is a permutation matrix andD is a diagonal matrix.

Theorem A.16 Let R = WH be a unique NMF. Given someǫ > 0 there exists a
δ > 0 such that any non-negativeV = R + N where‖N‖F < δ fulfils

J(W,H)(W
′,H′) < ǫ, (15)

where
[W′,H′] = arg min

W′∈R
n×r
+ , H′∈R

r×m
+

‖V −W′H′‖F . (16)

The proof is given in the appendix. The theorem states that ifthe observation is cor-
rupted by additive noise then it will result in noisy estimation of W andH. Moreover,
Theorem A.16 shows that if the noise is small then it will result in small estimation
errors1.

Example 4 This example investigates the connection between the additive noise inV
and the estimation error onW andH. The column vectors inW are basis pictures of
a man, a dog and the sun as shown in Figure 3 a-c. In Figure 3 d, the sum of the three
basis pictures are shown. The matrixH is the set of all combinations of the pictures,
i.e.

H =
[

1 0 0 0 1 1 1
0 1 0 1 0 1 1
0 0 1 1 1 0 1

]
.

Theorem A.15 can be used to conclude that the NMF ofR = WH is unique because
bothWT andH are sufficiently spread and thereby also strongly boundary close.

1In this section the Frobenius norm is used in (14) and (16) to make Theorem A.16 concrete. Theo-
rem A.16 is also valid with the same proof if any continuous metric is used instead of the Frobenius norm in
those equations.
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a b

c d

Figure 3: The three basis pictures: (a) a dog, (b) a man and (c) the sun, from Example 4 individually and
summed (d).
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Model Mismatch
Additive Noise

Figure 4: The graph shows the connection between the norm of the additive error‖N‖F and estimation
error of the underlying modelJ(W,H)(W

′,H′). The two noise matrices from Example 4,NN andNM ,
are plotted. In this example, the curves are aligned for small errors and for larger errors the model errorNM

results in much larger estimation errors.

In the example, two different noise matrices,NN and NM , are used. TheNN

matrix model noisy observation and has elements that are random uniform IID. The
NM matrix contains elements that are minus one in the positionswhereR has elements
that are two and zero elsewhere i.e.NM is minus one in the positions where the dog
and the man are overlapping. In this case the error matrixNM simulates a model
mismatch that occurs in the following two types of real worlddata. If the data set
is composed of pictures, the basis pictures will be overlapping and a pixel inV will
consist of one basis picture and not a mixture of the overlapping pictures. If the data
is a set of amplitude spectra, the true model is addition of complex values and not,
addition of the amplitudes.

The estimation error of the factorizationJ(W,H)(W
′,H′) is plotted in Figure 4,
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when the norm of the error matrix isµ i.e. V = WH + N

‖N‖
F

µ. An estimate of the

[W′,H′] pair, is calculated by using the iterative algorithm for Frobenius norm min-
imizing by Lee and Seung [3]. The algorithm is run for 500 iterations and is started
from 100 different positions. The decomposition that minimize‖V −W′H′‖F is cho-
sen, andJ(W,H)(W

′,H′) is calculated numerically. Figure 4 shows that when the
added error is small, it is possible to estimate the underlying parameters. When the
norm of added noise matrix increases, the behaviour of the two noise matrices,NN

andNM , differ. For NN , the error of the estimate increases slowly with the norm of
the added matrix while the estimation error forNM increases dramatically when the
norm is larger than2.5. In the simulation we have made the following observation that
can explain the difference in the performance of the two typeof noise. WhenNN is
used, the basis pictures remain noisy versions of the man, the dog and the sun. When
NM is used and the norm is larger than2.5, the basis pictures are the man excluding
the overlap, the dog excluding the overlap and the overlap. Another way to describe
the difference is that the rank ofNM is one and the disturbanc is in one dimension,
whereNN is full rank and disturbanc is in many dimensions.

Corollary A.17 Let R = WH be a unique NMF andV = W̃H̃ whereW̃ = W +
NW andH̃ = H+NH . GivenR andǫ > 0 there exists aδ > 0 such that if the largest
absolute value of bothNW andNH is smaller thanδ then

J(W̃,H̃)(W
′,H′) < ǫ, (17)

whereW′, H′ are any NMF ofV.

Proof. This follows directly from Theorem A.16. The corollary can be used in
situations where there are small elements inW andH but no (or not enough) zero
elements – as in the following example.

Example 5 LetR = WH, whereW, H is generated as in Example 3. Let all elements
in bothNW andNH be equal toη. In Figure 5,V is plotted whenα = 0.3 andη =
{0.01, 0.05, 0.10, 0.15}. In this example neither the shaded area nor the solid border
intersects with the desired solution. Therefore, it is possible to get other solutions by
simply increasing/decreasing the desired solution. Forη = {0.01, 0.05} the corners of
the solutions are close to the corners of the desired solution. Whenη = 0.1, the corners
can be placed most places on the solid border and still form a triangle that contains the
shaded area. Whenη = 0.15 the corners can be anywhere on the solid border.

7 Probability and Uniqueness

In this section, the row vectors ofW and the column ofH are seen as results of two
random variables. Characteristics of the sample space (thepossible outcomes) of a
random variables that leads to unique NMF will be investigated.
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(a) η = 0.01 (b) η = 0.05

(c) η = 0.10 (d) η = 0.15

Figure 5: Data constructed as in Example 5 plotted in the same manner as in Figure 1 i.e. the dashed triangle
is the desired solution, the solid line is the border of the dual of H and the shaded area is the positive span of
W. In all the plots,α equals0.3 andη equals 0.01, 0.05, 0.1 and 0.15.

Theorem A.18 Let the row vectors ofW be generated by the random variableXW

and the column vectors ofH be generated by a random variableXH . If the sample
space ofXW is strongly boundary close and the sample space ofXH is sufficiently
spread, then for allǫ > 0 andk < 1 there existNǫ andMǫ such that

p

(
min
D,P

(‖DPQ− I‖F ) < ǫ

)
> k, (18)

whereQ is any matrix such thatWQ andQ−1H are non-negative and the data size
R ∈ R

n×m
+ is such thatn > Nǫ andm > Mǫ.

Proof. If the data is scaled,D1RD2, it does not change the non-uniqueness of the
solutions if it is measured by theQ matrix. The proof is therefore done on the normal-
ized versions ofW andH. Let YW andYH be the normalized version ofXW and
XH . There exist a finite sets̄W andH̄ of vectors in the closure ofYW andYH that
are strongly boundary close and sufficiently spread. By Theorem A.15 it is known that
V̄ = W̄H̄ is unique. By increasing the number vectors sampled fromYW andYH , for
anyǫ′ > 0 there will be two subset of the vectors,W′ andH′, that with a probability
larger that anyk < 1 will fulfil

ǫ′ >
∥∥W̄ −W′∥∥

F
+
∥∥H̄−H′∥∥

F
.
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It is possible to use Corollary A.17 on this subset. The fact that limitingmin
D,P

(‖DPQ−
I‖F ) is equivalent to limiting (17) when the vectors are normalized finishes the proof.

Example 6 Let all the elements inH be exponential IID and therefore generated with
a sufficiently spread sample space. Additionally, let each row inW be exponential IID

plus a random vector with the sample space
{(

0
1
1

)
,
(

1
0
1

)
,
(

1
1
0

)}
and thereby strongly

boundary close. In Figure 6, the above variables are shown for the following four
matrix sizeR ∈ {R10×10, R40×40, R100×100, R500×500}.

(a) R
[10×10] (b) R

[40×40]

(c) R
[100×100] (d) R

[500×500]

Figure 6: The figure shows data constructed as in Example 6 plotted in thesame manner as the previous
figure with the exception that each row vector ofW is plotted instead of the positive span of the vectors. The
size ofR is shown under each plot.

8 Discussion

The approach in this paper is to investigate when non-negativity leads to uniqueness
in connection with NMF,V ≈ R = WH. Non-negativity is the only assumption for
the theorems, and the theorems therefore cannot be used as argument for a NMF to be
non-unique if there is additional information aboutW or H. An example where there
are stronger uniqueness results is the sparse NMF algorithmof Hoyer [13] built on the
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assumption that the row vectors inH have known ratios between theL1 norm and the
L2 norm. Theis et al. [14] have investigated uniqueness in thissituation and shown
strong uniqueness results. Another example is data matrices with an added constant on
each row. For this situation the Affine NMF algorithm [15] canmake NMF unique even
though the setup violates Theorem A.10 in this paper.

As shown in Figure 4, the type of noise influences greatly on the error curves. In
applications where noise is introduced because the additive model does not hold, as for
example whenV is pictures or spectra, it is possible to influence the noise by making
a non-linear function on the elements ofV. Such a non-linear function is introduced
in [16] and experiments show that it improves the results. A theoretical framework to
finding good non-linear functions will be interesting to investigate.

The sufficiently spread condition defined in Section 5 has an important role for
unique NMF due to Lemma A.14. The sufficiently spread assumption is seen indirectly
in related areas where it also leads to unique solutions, e.g. in [8] where the grounded-
ness assumption leads to variables with a sufficiently spread sample space. If the matrix
H is sufficiently spread then the columns inW will occur (almost) alone as columns
in V. Deville [17] uses the “occur alone” assumption, and thereby sufficiently spread
assumption, to make blind source separation possible.

9 Conclusion

We have investigated the uniqueness of NMF from three different viewpoints,

• uniqueness in noise free situations,

• the estimation error of the underlying model when a matrix with unique NMF is
added with noise and

• the random processes that lead to matrices where the underlying model can be
estimated with small errors.

By doing this we have shown that it is possible to make many novel and useful charac-
terisations that can be used as a theoretical underpinning for using the numerous NMF
algorithms. There are several open issues in all the three viewpoints that, if addressed,
will give a better understanding of Non-negative Matrix Factorization.

10 Appendix

Proof. [Proof of Theorem A.12] The theorem state thatW = WI is a unique NMF.
To proof this it is shown that the condition for Theorem A.7 isfulfilled. The positive
orthant is self dual (I = I−1) and therebyQ ⊆ P whereQ is anr order simplicial cone
that containsspan+ (WT ). Let the set of row vectors inW be denotedW . An r order
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simplicial cone, likeQ, is a closed set, and it therefore needs to contain the closure of
W denoted byW̄. The two items in the definition A.11 of strongly boundary close can
be reformulated forW̄ that contains the border:

1. sj
n = 0 for all j

2. the vectors
[
b1, · · · ,bd−n

]
are linearly independent.

The rest of the proof follows by induction. Ifr = 2 thenW̄ = P and therefore unique.
Let thereforer > 2. There arer− 1 linearly independent vectors in̄W that has zero as
the first element andr − 1 of the basis vectors therefore have zero in the firs elements.
In other words, is there only one basis vector with a non-zerofirst element. Let’s us
call this vectorb1. For all j > 1 there is a vector inW̄ that is non-negative in the first
element and zero thej’th element, so all the elements inb1 except the first have to be
zero. The proof is completed by seeing that if the first element is removed from the
vectors inW̄, it is still strongly boundary close and the problem is therefore ther − 1
dimensional problem.
Proof. [Proof of Theorem A.16] LetG be the open set of allW′, H′ pairs that are close
to W andH

G =
{
[W′,H′]

∣∣J(W,H)(W
′,H′) < ǫ

}
. (19)

Let Ḡ be the set of all non-negativĕW, H̆ pairs that are not inG and wheremax(W̆, H̆) ≤√
1 + max(R). The uniqueness ofR ensures that

∥∥∥R− W̆H̆

∥∥∥
F

> 0, (20)

for all [W̆, H̆] ∈ Ḡ. The fact that the Frobenius norm is continuous,Ḡ is a closed
bounded set and the statement above is positive ensure that

min
[W̆,H̆]∈Ḡ

(
∥∥∥R− W̆H̆

∥∥∥
F
) = δ′ > 0, (21)

since a continuous function attains its limits on a closed bounded set [18, Theorem 4.28]).
TheW̆, H̆ pairs that are not inG and wheremax(W̆, H̆) >

√
1 + max(R) can either

be transformed by a diagonal matrix into a matrix pair fromḠ, [W̆D,D−1H̆] ∈ Ḡ,
having the same product (̆WH̆) or it can be transformed into a pair where bothW̆ and
H̆ have large elements, i.e.

max(W̆H̆) >
√

1 + max(R)
2

= 1 + max(R),

and thereby
∥∥∥R− W̆H̆

∥∥∥
F

> 1.

Selectδ to be beδ = min (1, δ′)/2. The error of the desired solutionR = WH

can be bounded by‖V −R‖F = ‖N‖F < δ. Let V̆ be any matrix constructed by a
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non-negative matrix pair from̄G. Because of the wayδ is selected
∥∥∥V̆ −R

∥∥∥
F
≥ 2δ.

By the triangle inequality, we get
∥∥∥V̆ −V

∥∥∥
F

+ ‖V −R‖F ≥
∥∥∥V̆ −R

∥∥∥
F∥∥∥V̆ −V

∥∥∥
F
≥
∥∥∥V̆ −R

∥∥∥
F
− ‖V −R‖F

> 2δ − δ = δ > ‖V −R‖F .

All solutions that are inḠ therefore have a larger error thanWH and will not be the
minimizer of the error.
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1. INTRODUCTION B3

Abstract

We present a general method for including prior knowledge ina non-negative matrix
factorization (NMF), based on Gaussian process priors. We assume, that the non-
negative factors in the NMF are linked by a strictly increasing function to an underlying
Gaussian process, specified by its covariance function. This allows us to find NMF
decompositions, that agree with our prior knowledge of the distribution of the factors,
such as sparseness, smoothness, and symmetries. The methodis demonstrated with an
example from chemical shift brain imaging.

1 Introduction

Non-negative matrix factorization (NMF) [1, 2] is a recent method for factorizing a
matrix as the product of two matrices, in which all elements are non-negative. NMF has
found widespread application in many different areas including pattern recognition [3],
clustering [4], dimensionality reduction [5], and spectral analysis [6, 7]. Many physical
signals, such as pixel intensities, amplitude spectra, andoccurence counts, are naturally
represented by non-negative numbers. In the analysis of mixtures of such data, non-
negativity of the individual components is a reasonable constraint. Recently, a very
simple algorithm [8] for computing the NMF was introduced. This has initiated much
research aimed at developing more robust and efficient algorithms.

Efforts have been made to enhance the quality of the NMF by adding further con-
straints to the decomposition, such as sparsity [9], spatial localization [10, 11], and
smoothness [11, 12], or by extending the model to be convolutive [13, 14]. Many ex-
tended NMF methods are derived by adding appropriate constraints and penalty terms
to a cost function. Alternatively, NMF methods can be derived in a probabilistic setting,
based on the distribution of the data [6, 15–17]. These approaches have the advantage
that the underlying assumptions in the model are made explicit.

In this paper we present a general method for using prior knowledge to improve the
quality of the solutions in NMF. The method is derived in a probabilistic setting, and it
is based on defining prior probability distributions of the factors in the NMF model in
a Gaussian process framework. We assume that the non-negative factors in the NMF
are linked by a strictly increasing function to an underlying Gaussian process, specified
by its covariance function. By specifying the covariance ofthe underlying process, we
can compute NMF decompositions that agree with our prior knowledge of the factors,
such as sparseness, smoothness, and symmetries. We refer tothe proposed method as
non-negative matrix factorization with Gaussian process priors, or GPP-NMF for short.
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2 NMF with Gaussian Process Priors

In the following we derive a method for including prior information in an NMF decom-
position by assuming Gaussian process priors (for a generalintroduction to Gaussian
processes, see e.g. Rasmussen and Williams [18].) In our approach, the Gaussian pro-
cess priors are linked to the non-negative factors in the NMFby a suitable link function.
To set up the notation, we start by deriving the standard NMF method as a maximum
likelihood (ML) estimator and then move on to the maximum a posteriori (MAP) es-
timator. Then we discuss Gaussian process priors and introduce a change of variable
that gives better optimization properties. Finally, we discuss the selection of the link
function.

2.1 Maximum Likelihood NMF

The NMF problem can be stated as

X = DH + N , (1)

whereX ∈ R
K×L is a data matrix that is factorized as the product of two element-

wise non-negative matrices,D ∈ R
K×M
+ andH ∈ R

M×L
+ , whereR+ denotes the

non-negative reals. The matrixN ∈ R
K×L is the residual noise.

There exists a number of different algorithms [8, 15–17, 19–21] for computing this
factorization, some of which can be viewed as maximum likelihood methods under
certain assumptions about the distribution of the data. Forexample, least squares NMF
corresponds to i.i.d. Gaussian noise [17] and Kullback-Leibler NMF corresponds to a
Poisson process [6].

The ML estimate ofD andH is given by

{DML,HML} = arg min
D,H≥0

LX|D,H(D,H), (2)

whereLX|D,H(D,H) is the negative log likelihood of the factors.

Example 7 (Least squares NMF)An example of a maximum likelihood NMF is the
least squares estimate. If the noise is i.i.d. Gaussian withvarianceσ2

N , the likelihood
of the factorsD andH can be written as

pLS
X|D,H(X|D,H) =

1
(√

2πσN

)KL
exp

(
−||X −DH||2F

2σ2
N

)
. (3)

The negative log likelihood, which serves as a cost functionfor optimization, is then

LLS
X|D,H(D,H) ∝ 1

2σ2
N

||X −DH||2F , (4)
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where we use the proportionality symbol to denote equality subject to an additive con-
stant. To compute a maximum likelihood estimate ofD and H, the gradient of the
negative log likelihood is useful

∇HLLS
X|D,H(D,H) =

1

σ2
N

D⊤(DH −X), (5)

and the gradient with respect toD, which is easy to derive, is similar because of the
symmetry of the NMF problem.

The ML estimate can be computed by multiplicative update rules based on the gra-
dient [8], projected gradient descent [19], alternating least squares [20], Newton-type
methods [21], or any other appropriate constrained optimization method.

2.2 Maximum a Posteriori NMF

In this paper, we propose a method to build prior knowledge into the solution of the
NMF problem. We choose a prior distributionpD,H(D,H) over the factors in the
model, that captures our prior beliefs and uncertainties ofthe solution we seek. We
then compute the maximum a posteriori (MAP) estimate of the factors. Using Bayes
rule, the posterior is given by

pD,H|X(D,H|X) =
pX|D,H(X|D,H)pD,H(D,H)

pX(X)
. (6)

Since the numerator is constant, the negative log posterioris the sum of a likelihood
term that penalizes model misfit, and a prior term that penalizes solutions that are un-
likely under the prior

LD,H|X(D,H) ∝ LX|D,H(D,H) + LD,H(D,H). (7)

The MAP estimate ofD andH is

{DMAP,HMAP} = arg min
D,H≥0

LD,H|X(D,H), (8)

and it can again be computed using any appropriate optimization algorithm.

Example 8 (Non-negative sparse coding)An example of a MAP NMF is non-negative
sparse coding (NNSC) [9, 22], where the prior onH is i.i.d. exponential, and the prior
onD is flat with each column constrained to have unit norm

pNNSC
D,H (D,H) =

∏

i,j

λ exp (−λHi,j) , ||Dk|| = 1 ∀k, (9)
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where||Dk|| is the Euclidean norm of thek’th column ofD. This corresponds to the
following penalty term in the cost function

LNNSC
D,H (D,H) ∝ λ

∑

i,j

Hi,j . (10)

The gradient of the negative log prior with respect toH is then

∇HLNNSC
D,H = λ, (11)

and the gradient with respect toD is zero, with the further normalization constraint
given in Equation (9).

2.3 Gaussian Process Priors

In the following, we derive the MAP estimate under the assumption that the non-
negative matricesD andH are independently determined by a Gaussian process [18]
connected by a link function. The Gaussian process framework provides a principled
and practical approach to the specification of the prior probability distribution of the
factors in the NMF model. The prior is specified in terms of twofunctions: i) a co-
variance function that describes corellations in the factors and ii) a link function, that
transforms the Gaussian process prior into a desired distribution over the non-negative
reals.

We assume thatD andH are independent, so that we may write

LD,H(D,H) = LD(D) + LH(H). (12)

In the following, we consider only the prior forH, since the treatment ofD is equiva-
lent due to the symmetry of the NMF problem. We assume that there is an underlying
variable vector,h ∈ R

LM , which is zero mean multivariate Gaussian with covariance
matrixΣh

ph(h) =
(
2π|Σh|2

)− 1
2 NL

exp

(
−1

2
h⊤Σ−1

h h

)
, (13)

and linked toH via a link function,fh: R+ → R

h = fh

(
vec (H)

)
, (14)

which operates element-wise on its input. Thevec (·) function in the expression stacks
its matrix operand column by column. The link function should be strictly increasing,
which ensures that the inverse exists. Later, we will further assume that the derivatives
of fh andf−1

h exist. Under these assumptions, the prior overH is given by (using the
change of variables theorem)

pH(H) = ph

(
fh

(
vec (H)

)) ∣∣∣J
(
fh

(
vec (H)

))∣∣∣ (15)

∝ exp

(
−1

2
fh

(
vec (H)

)⊤
Σ−1

h fh

(
vec (H)

))∏

i

∣∣f ′
h

(
vec (H)

)∣∣
i
, (16)
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whereJ (·) denotes the Jacobian determinant andf ′
h is the derivative of the link func-

tion. The negative log prior is then

LH(H) ∝ 1

2
fh

(
vec (H)

)⊤
Σ−1

h fh

(
vec (H)

)
−
∑

i

log
∣∣f ′

h

(
vec (H)

)∣∣
i
. (17)

This expression can be combined with an appropriate likelihood function, such as the
least squares likelihood in Equation (4), and be optimized to yield the MAP solution;
however, in our experiments, we found that a more simple and robust algorithm can be
obtained by making a change of variable as explained next.

2.4 Change of Optimization Variable

Instead of optimizing over the non-negative factorsD andH, we introduce the vari-
ablesδ andη, which are related toD andH by

D = gd(δ) = vec−1
(
f−1

d (C⊤
d δ)

)
, H = gh(η) = vec−1

(
f−1

h (C⊤
h η)

)
, (18)

where thevec−1 (·) function maps its vector input into a matrix of appropriate size.
The matricesCd andCh are the matrix square roots (Cholesky decompositions) of the
covariance matricesΣd andΣh, such thatδ andη are standard i.i.d. Gaussian.

This change of variable serves two purposes. First of all, wefound that optimizing
over the transformed variables was faster, more robust, andless prone to getting stuck in
local minima. Second, the transformed variables are not constrained to be non-negative,
which allows us to use existing unconstrained optimizationmethods to compute their
MAP estimate.

The prior distribution of the transformed variableη is

pη(η) = pH

(
gh(η)

)
|J
(
gh(η)

)
| = 1

(2π)
LM
2

exp

(
−1

2
η⊤η

)
, (19)

and the negative log prior is

Lη(η) ∝ 1

2
η⊤η. (20)

To compute the MAP estimate of the transformed variables, wemust combine this
expression for the prior (and a similar expression for the prior of δ) with a likelihood
function, in which the same change of variable is made

Lδ,η|X(δ,η) = LX|D,H

(
gd(δ), gh(η)

)
+

1

2
δ⊤δ +

1

2
η⊤η. (21)

Then the MAP solution can be found by optimizing overδ andη

{δMAP,ηMAP} = arg min
δ,η

Lδ,η|X(δ,η), (22)

and, finally, estimates ofD andH can be computed using Equation (18).
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Example 9 Least squares non-negative matrix factorization with Gaussian process
priors (GPP-NMF)
If we use the least squares likelihood in Equation (4), the posterior distribution in Equa-
tion (21) is given by

LLS-GPP
δ,η|X (δ,η) =

1

2

(
σ−2

N ||X − gd(δ)gh(η)||2F + δ⊤δ + η⊤η
)

(23)

The MAP estimate ofδ and η is found by minimizing this expression, for which the
derivative is useful

∇ηLLS-GPP
δ,η|X (δ,η) =

σ−2
N

(
vec
(
gd(δ)⊤(gd(δ)gh(η)−X)

)
⊙ (f−1

h )′(C⊤
h η)

)⊤
Ch + η, (24)

where⊙ denotes the Hadamard (element-wise) product. The derivative with respect to
δ is similar due to the symmetry of the NMF problem.

2.5 Link Function

Any strictly increasing link function that maps the non-negative reals to the real line
can be used in the proposed framework; however, in order to have a better probabilistic
interpretation of the prior distribution, we propose a simple principle for choosing the
link function. We choose the link function such thatf−1

h maps the marginal distribution
of the elements of the underlying Gaussian process vectorh into a specifically chosen
marginal distribution of the elements ofH. Such an inverse function can be found
asf−1

h (hi) = P−1
H

(
Ph(hi)

)
whereP(·) denotes the marginal cumulative distribution

functions (cdf).
Since the marginals of a Gaussian process are Gaussian,Ph(hi) is the Gaussian

cdf, and, using Equation (13), the inverse link function is given by

f−1
h (hi) = P−1

H

(
1

2
+

1

2
Φ

(
hi√
2σi

))
(25)

whereσ2
i is thei’th diagonal element ofΣh andΦ(·) is the error function.

Example 10 (Exponential-to-Gaussian link function) If we choose to have exponen-
tial marginals inH, as in NNSC described in Example 8, we selectPH as the expo-
nential cdf. The inverse link function is then

f−1
h (hi) = − 1

λ
log

(
1

2
− 1

2
Φ

(
hi√
2σi

))
, (26)
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whereλ is an inverse scale parameter. The derivative of the inverselink function, which
is needed for the parameter estimation, is given by

(f−1
h )′(hi) =

1√
2πσiλ

exp

(
λf−1

h (hi)−
h2

i

2σ2
i

)
. (27)

Example 11 (Rectified-Gaussian-to-Gaussian link function) Another interesting non-
negative distribution is the rectified Gaussian given by

p(x) =

{
2√
2πs

exp
(
− x2

2s2

)
, x ≥ 0

0 , x < 0
(28)

Using this pdf in Equation (25), the inverse link function is

f−1
h (hi) =

√
2sΦ−1

(
1

2
+

1

2
Φ

(
hi√
2σi

))
, (29)

and the derivative of the inverse link function is

(f−1
h )′(hi) =

s

2σi

exp

(
f−1

h (hi)
2

2s2
− h2

i

2σ2
i

)
. (30)

2.6 Summary of the GPP-NMF Method

The GPP-NMF method can be summarized in the following steps.

1. Choose a suitable negative log likelihood functionLX|D,H(D,H) based on
knowledge of the distribution of the data or the residual.

2. For each of the non-negative factorsD andH, choose suitable link and covari-
ance functions according to your prior beliefs. If necessary, draw samples from
the prior distribution to examine its properties.

3. Compute the MAP estimate ofδ andη by Equation (22) using any suitable un-
constrained optimization algorithm.

4. ComputeD andH using Equation (18).

Our Matlab implemention of the GPP-NMF method is available online [23].
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3 Experimental Results

We will demonstrate the proposed method on two examples, first a toy example, and
second an example taken from the chemical shift brain imaging literature.

In our experiments we use the least squares GPP-NMF described in Example 9 and
the link functions described in Example 10–11. The specific optimization method used
to compute the GPP-NMF MAP estimate is not the topic of this paper, and any uncon-
strained optimization algorithm could in principle be used. In our experiments we used
a simple gradient descent with line search to perform a totalof 1000 alternating updates
of δ andη, after which the algorithm had converged. For details of theimplementation,
see the accompanying Matlab code [23].

3.1 Toy Example

We generated a100 × 200 data matrix,Y , by taking a random sample from the GPP-
NMF model with two factors. We chose the generating covariance function for bothδ
andη as a Gaussian radial basis function (RBF),

φ(i, j) = exp

(
− (i− j)2

β2

)
, (31)

wherei andj are two sample indices, and the length scale parameter, which determines
the smoothness of the factors, wasβ2 = 100. We set the covariance between the two
factors to zero, such that the factors were uncorrelated. For the matrixD we used
the rectified-Gaussian-to-Gaussian link function withs = 1, and forH we used the
exponential-to-Gaussian link function withλ = 1. Finally, we added independent
Gaussian noise with varianceσ2

N = 25, which resulted in a signal-to-noise ratio of
approximately−7 dB. The generated data matrix is shown in Figure 1.

We then decomposed the generated data matrix using four different methods:

1. LS-NMF: Standard least squares NMF [8]. This algorithm does not allow nega-
tive data points, so these were set to zero in the experiment.

2. CNMF: Constrained NMF [6, 7], which is a least squares NMF algorithm that
allows negative observations.

3. GPP-NMF: Correct prior: The proposed method with correct link-functions,
covariance matrix, and parameter values.

4. GPP-NMF: Incorrect prior: To illustrate the sensitivity of the method to prior
assumptions, we evaluated the proposed method with incorrect prior assump-
tions: We switched the link functions, such that forD we used the exponential-
to-Gaussian, and forH we used the rectified-Gaussian-to-Gaussian. We used an
RBF covariance function withβ2 = 10 andβ2 = 1000 for D andH respec-
tively.
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The results of the decompositions are shown as reconstructed data matrices in Fig-
ure 1. All four methods find solutions that visually appear tofit the underlying data.
Both LS-NMF and CNMF find non-smooth solutions, whereas the two GPP-NMF re-
sults are smooth in accordance with the priors. In the GPP-NMF with incorrect prior,
the dark areas (high pixel intensities) appear too wide in the first axis direction and too
narrow in the section axis direction, due to the incorrect setting of the covariance func-
tion. The GPP-NMF with correct prior is visually almost equal to the true underlying
data.

Noisy data Underlying data

LS-NMF CNMF

GPP-NMF: Incorrect prior GPP-NMF: Correct prior

100 2001 100 200

-10

-5

0

5

10

15

20

1

50

100

1

50

100

1

50

100

Figure 1: Toy example data matrix (upper left), underlying noise-free non-negative data (upper right), and
estimates using the four methods described in the text. The data has a fairly large amount of noise and the
underlying non-negative factors are smooth in both directions. The LS-NMF and CNMF decomposition are
non-smooth, since these methods do not model of correlations inthe factors. The GPP-NMF, which uses a
smooth prior, finds a smooth solution. When using the correct prior, the soulution is very close to the true
underlying data.

Plots of the estimated factors are show in Figure 2. The factors estimated by the LS-
NMF and the CNMF methods appear noisy and are non-smooth, whereas the factors
estimated by the GPP-NMF are smooth. The factors estimated by the LS-NMF method
have a positive bias, because of the truncation of negative data. The GPP-NMF with
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incorrect prior has too many local extrema in theD factor and too few in theH factor
due to the incorrect covariance functions. There are only minor difference between the
result of the GPP-NMF with the correct prior and the underlying factors.

Measures of root mean squared error (RMSE) of the four decompositions are given
in Figure 3. All four methods fit the noisy data almost equallywell. (Note that, due to
the additive noise with variance 25, a perfect fit to the underlying factors would result in
a RMSE of5 with respect to the noisy data.) The LS-NMF fits the data worstdue to the
truncation of negative data points, and the CNMF fits the databest, due to overfitting.
With respect to the noise free data and the underlying factors, the RMSE is worst for the
LS-NMF and best for the GPP-NMF with correct prior. The GPP-NMF with incorrect
prior is better than both LS-NMF and CNMF in this case. This shows, that in this
situation it better to use a prior which is not perfectly correct, compared to using no
prior as in the LS-NMF and CNMF methods, (which corresponds to a flat prior over
the non-negative reals and no correlations.)

3.2 Chemical Shift Brain Imaging Example

Next, we demonstrate the GPP-NMF method on1H decoupled31P chemical shift imag-
ing data of the human brain. We use the data set from Ochs et al.[24], which has also
been analyzed by Sajda et al. [6, 7]. The data set, which is shown in Figure 4, consists
of 512 spectra measured on an8× 8× 8 grid in the brain.

Ochs et al. [24] use PCA to determine, that the data set is adequately described by
two sources (which correspond to brain and muscle tissue.) They propose a bilinear
Bayesian approach, in which they use a smooth prior over the constituent spectra, and
force to zero the amplitude of the spectral shape corresponding to muscle tissue at 12
positions deep inside the head. Their approach produces physically plausible results,
but it is computationally very expensive and takes several hours to compute.

Sajda et al. [6, 7] propose an NMF approach that is reported also to produce phys-
ically plausible results. Their method is several orders ofmagnitude faster, taking less
than a second to compute. The disadvantage of the method of Sajda et al. compared to
the Bayesian approach of Ochs et al. is, that it provides no mechanism for using prior
knowledge to improve the solution.

The GPP-NMF approach we propose in this paper bridges the gapbetween the two
previous approaches, in the sense that it is a relatively fast NMF approach, in which pri-
ors over the factors can be specified. These priors are specified by the choice of the link
and covariance functions. We used prior predictive sampling to find reasonable settings
of the the function parameters: We drew random samples from the prior distribution and
examined properties of the factors and reconstructed data.We then manually adjusted
the parameters of the prior to match our prior beliefs. An example of a random draw
from the prior distribution is shown in Figure 5, with the parameters set as described
below.

We assumed that the factors are uncorrelated, so the covariance between factors is
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Figure 2: Underlying non-negative factors in the toy example: Columns of D (left) and rows ofH (right).
The factors found by the LS-NMF and the CNMF algorithm are noisy, whereas the factors found by the
GPP-NMF method are smooth. When using the correct prior, the factors found are very similar to the true
factors.
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Figure 3: Toy example: Root mean squared error (RMSE) with respect to thenoisy data, the underlying
noise free data, and the true underlying non-negative factors. The CNMF solution fits the noisy data slightly
better, but the GPP-NMF solution fits the underlying data muchbetter.

zero. We used a Gaussian RBF covariance function for the constituent spectra, with
a length scale ofβ = 0.3 parts per million (ppm), and we used the exponential-to-
Gaussian link function withλd = 1. This gave a prior for the spectra that is sparse
with narrow smooth peaks. For the amplitude at the 512 voxelsin the head, we used a
Gaussian RBF covariance function on the 3-D voxel indices, with length scaleβ = 2.
Furthermore, we centered the left-to-right coordinate axis in the middle of the brain, and
computed the RBF kernel on the absolute value of this coordinate, so that a left-to-right
symmetry was introduced in the prior distribution. Again, we used the exponential-to-
Gaussian link function, and we choseλh = 2 · 10−4 to match the overall magnitude
of the data. This gave a prior for the amplitude distributionthat is sparse, smooth, and
symmetric. The noise variance was set toσ2

N = 108 which corresponds to the noise
level in the data set.

We then decomposed the data set using the proposed GPP-NMF algorithm and,
for comparison, reproduced the results of Sajda et al. [7] using their CNMF method.
The results of the experiments are shown in Figure 4. An example of a random draw
from the prior distribution is shown in Figure 5. The resultsof the CNMF is shown in
Figure 6, and the results of the GPP-NMF is shown in Figure 7. The figures show the
constituent spectra and the fifth axial slice of the spatial distribution of the spectra. The
8× 8 spatial distributions are smoothed in the illustration, similar to the way the results
are visualized in the literature.

The results show that both methods give physically plausible results. The main dif-
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Figure 4: Brain imaging data matrix (top) along with the estimated decomposition and residual for the CNMF
(middle) and GPP-NMF (bottom) method. In this view the results of the two decompositions are very similar,
the data appears to be modeled equally well and the residuals are similar in magnitude.
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Figure 5: Brain imaging data: Random draw from the prior distribution with the parameters set as described
in the text. The prior distribution of the constituent spectra (left) is exponential and smooth and the spatial
distribution (right) in the brain is exponential, smooth, and has a left-to-right symmetry.
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Figure 6: CNMF decomposition result. The recovered spectra are physically plausible, and the spatial
distribution in the brain for the muscle (top) and brain (bottom) tissue is somewhat separated. Muscle tissue
is primarily found near the edge of the skull, whereas brain tissue is primarliy found at the inside of the head.
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Figure 7: GPP-NMF decomposition result. The recovered spectra are very similar to the spectra found by
the CNMF method, but they are slightly more smooth. The spatial distribution in the brain is highly separated
between brain and muscle tissue, and it is more symmetric than theCNMF solution.



4. CONCLUSIONS B17

ference is that the spatial distribution of the spectra corresponding to muscle and brain
tissue is much more separated in the GPP-NMF result, which isdue to the exponential,
smooth, and symmetric prior distribution. By including prior information, we obtain a
solution, where the factor corresponding to muscle tissureis clearly located on the edge
of the skull.

4 Conclusions

We have introduced a general method for exploiting prior knowledge in non-negative
matrix factorization, based on Gaussian process priors, linked to the non-negative fac-
tors by a link function. The method can be combined with any existing NMF cost func-
tion that has a probabilistic interpretation, and any existing unconstrained optimization
algorithm can be used to compute the maximum a posteriori estimate.

Experiments on toy data show, that with a suitable selectionof the prior distribution
of the non-negative factors, the GPP-NMF method gives much better results in terms
of estimating the true underlying factors, both when compared to traditional NMF and
CNMF.

Experiments on chemical shift brain imaging data show that the GPP-NMF method
can be successfully used to include prior knowledge of the spectral and spatial distribu-
tion, resulting in better spatial separation between spectra corresponding to muscle and
brain tissue.
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Abstract

In this paper, we propose a novel algorithm for monaural blind source separation based
on non-negative matrix factorization (NMF). A shortcomingof most source separation
methods is the need for training data for each individual source. The algorithm pro-
posed in this paper is able separate sources even when there is no training data for
the individual sources. The algorithm makes use of models trained on mixed signals
and uses training data where more than one source is active atthe time. This makes
the algorithm applicable to situations where recordings ofthe individual sources are
unavailable. The key idea is to construct a structure matrixthat indicates where each
source is active, and we prove that this structure matrix, combined with a uniqueness
assumption, is sufficient to ensure that results are equivalent to training on isolated
sources. Our theoretical findings is backed up by simulations on music data that show
that the proposed algorithm trained on mixed recordings performs as well as existing
NMF source separation methods trained on solo recordings.

1 Introduction

Separation of a single source in a monaural recording, such as a single instrument in
polyphonic music or the cocktail party problem [1] is a difficult task. An unsupervised
approach is to decompose the signal into basic “atoms”, and then group these to form
auditory objects—se e.g. [2–6]. Another unsupervised approach is to form flexible
source models, and fit these to the mixture—se e.g. [7–9]. A supervised approach
is to learn source models from isolated recordings of each source, and use these to
separate the mixture subsequently. These source models canbe based on, e.g., neural
networks [10, 11], factorial hidden Markov models [12, 13],vector quantization [14,
15], independent component analysis [16, 17], or non-negative matrix factorization [1,
18].

When a reasonable amount of training data with isolated sources is available, super-
vised, model based methods generally yield very good results; however, there are many
applications where suitable training data cannot be obtained—for example in instru-
ment separation where many instruments and singers never occur alone. Thus, to use
model based methods to separate sources, it is desirable to learn source models directly
from the available mixture.

In this paper, we propose a method for learning models of individual sources di-
rectly from mixture, in a single-channel source separationframework [18] based on
non-negative matrix factorization (NMF). We show that, under certain conditions, train-
ing on mixtures works equally well as training on isolated sources. There has been pro-
posed algorithms to learn source models directly from mixtures, by locating areas in the
training data, where only one source is active [19]. Our approach does not require this;
however, we do require areas, in which each source isinactive. The proposed algorithm
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is successfully tested on music data.
The paper is structured as follows. In Section 2, we introduce NMF and discuss its

computation. Next, in Section 3, we describe a general framework for single-channel
source separation based on NMF. Our proposed method for learning source models di-
rectly from mixed recordings is described in Section 4 and experimentally evaluated on
music recordings in Section 5. Finally, we conclude with ourconclusions in Section 6
and a detailed description of the simulations in Appendix 1.

2 Non-negative Matrix Factorization

Non-negative matrix factorization1 (NMF) is the approximate factorization of a non-
negative matrix,V ∈ R

n×m
+ , into the product of two non-negative matrices,W ∈

R
n×r
+ andH ∈ R

r×m
+

V ≈WH. (1)

In [20] a simple iterative NMF algorithm has been proposed, that minimizes

E(W,H) = ‖V −WH‖2F , (2)

where‖·‖F denotes the Frobenius norm. Further, they have proven [21],that each
iteration reduces the objective function. In addition to the Frobenius norm, numerous
NMF cost functions have been suggested [22, 23], and many different algorithms for
computing the NMF have been proposed—for an overview, see [24]. Much effort has
been put into finding solutions that are sparse, starting with the sparse NMF method
proposed by [25]2. Many papers from different areas report that sparse NMF algorithms
outperform traditional NMF algorithms, which indicates that data in those papers are
sparse—se e.g. [1, 25–28]. We believe that there are two reasons for the success of
sparse NMF. Firstly, the NMF research has started in areas where it is known that
there are understandable underlying data (which often means sparse underlying data).
Secondly, if the underlying data is not sparse at all (no elements are close to zero) the
NMF is not unique [29].

In this paper, we will use the sparse NMF formulation of [27] that is based on the
following cost function

C(W,H) =
1

2

∥∥V −WH
∥∥2

F
+ λ

∑

i,j

Hi,j (3)

Wn =
Wn

‖Wn‖
, n ∈ {1, . . . , r}, (4)

whereWn is then’th column vector inW, and the parameterλ controls the trade-off
between sparsity ofH and approximation error,E(W,H).

1In some literature NMF is also called non-negative matrix approximation and positive matrix factoriza-
tion.

2In the work of Hoyer, the method is called non-negative sparsecoding.
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Algorithm 1 NMF source separation
1: For each source,n, compute NMF of isolated training data,

V′
n ≈W′

nH′
n.

StoreW′
n and discardH′

n.
2: ComputeH1, · · · ,HN

V ≈
N∑

n=1

Vn = W′H = [ W′

1···W′

N ]

[
H1

...
HN

]

3: ReturnVn = W′
nHn as an estimate of then’th source.

3 Source separation using NMF

A supervised approach [18] to source separation is described in Algorithm 1. In
the first step of the algorithm, training data, consisting ofisolated recordings of each
source, are used to build a model of each source. Step 1 in the algorithm has only to be
calculated once for each source, and the computational complexity of this step is thus
not crucial. For the cost function in Equation 3, Step 2 in thealgorithm can be com-
puted efficiently using quadratic programming. To ensure that theW′ in Algorithm 1
Step 1 can be used for separation, it is desirable that the estimatedW′ is unique up to a
permutation and a scaling—for further analysis of uniqueness of NMF see [29]. In [29]
a NMF is called unique if all factorisations are on the form

V = W′
︸ ︷︷ ︸
=WD−1P−1

H′
︸ ︷︷ ︸
=PDH

, (5)

whereP andD is a permutation and a scaling, respectively. So using this terminology,
Algorithm 1 will produce reproducible results if allV′

n are unique.

4 Learning source models from mixed sources

To explain the new algorithm, we start by reformulating the first step in Algorithm 1.
If all training data are gathered in one matrix, sayV′ = [ V′

1 ··· V
′

N ], Step 1 can be
computed for all instruments by solving

V′ ≈W′H′ = [ W′

1 ··· W
′

N ]

[
H

′

1 0

...
0 H

′

N

]
. (6)

Implementing step one of Algorithm 1 in this manner is computationally inefficient, but
it makes it clear, that prior knowledge of zeros inH′ makes it possible to findW′

n for
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Algorithm 2 Structured NMF source separation
1: Gather all training data in a data matrix

Vtrain = [V1 · · ·VM ].

Let H′ be a structured matrix, and solve

Vtrain ≈ [W′
1 · · · ,W′

N ]H′,

maintaining the structure inH. Store[W′
1 · · ·W′

N ] and discardH′.
2: ComputeH1, · · · ,HN

V ≈
N∑

n=1

Vn = W′H = [ W′

1···W′

N ]

[
H1

...
HN

]

3: ReturnVn = W′
nHn as an estimate of then’th source.

each source. In the following, we call a matrixH′ with zeros in patterns astructured
H′ matrix, and we refer to NMF, withstructuredH, asstructured NMF. The following
theorem shows, that most matricesH with structure can be used to indentify the model
for each source.

Theorem C.1 Let

V = [ V1 ··· VN ] = WH = [ W1 ··· WN ]

[
H

1
1 H

1
N

...
H

N
1 H

N
N

]

be a unique NMF, whereHn
n = 0 for all n, and let

V = ŴĤ = [ Ŵ1 ··· ŴN ]

[
Ĥ

1
1 Ĥ

1
N

...
Ĥ

N
1 Ĥ

N
N

]

be any NMF ofV, whereĤn
n = 0 for all n. If there are non 6= m such thatHm

n has a
row of zeros then

(a) WnHn
m = ŴnĤn

m, for all n andm.

(b) For all n, there is a permutation matrix,Pn, and a diagonal scaling matrix,Dn,
such thatŴn = WnPnDn.
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Proof. The NMF ofWH is unique, and thereforêW = WD−1P−1 andĤ = PDH.
The proof is concluded by realizing that the permutationP must be block diagonal,

P =

[
P1 0

...
0 PN

]
, (7)

in order forĤn
n = 0 for all n and therefore

PD =

[
P1D1 0

...
0 PNDN

]
. (8)

In terms of modelling sources, the theorem states, that if one wants to estimateN
source models, and hasN training recordings, each with one source missing, then there
is a unique solution, if all source components are active in all training files where it is
not missing. Theorem C.1 leads naturally to Algorithm 2. Thetraining data used in step
1 of Algorithm 2 does not need to be isolated recordings of each and, and Theorem C.1
shows, that if the assumptions are fulfilled, the result is the same as for Algorithm 1.
Note that step 2 and 3 of Algorithm 2 is the same as in Algorithm1.

5 Results

We have constructed three tests, in which we compare Algorithm 1 and 2. Throughout
the test, Algorithm 1 always has solo recordings for the training where as Algorithm 2
always use mixture recordings. The first is a simulation shows that both algorithms can
separate three and four artificial sources. The second test is an example of instrument
tone separation in a single channel recording of musical notes and the third test is an
example of instrument separation in a single channel recording of mixed polyphonic
music.

In the first test, artificial sources are separated. The data,V ′, is a square matrix, and
each source has{2, 4, 6} components. In Figure 1, the estimation error is shown for Al-
gorithm 1 (trained on individual training data for each source) and Algorithm 2 (trained
on mixed training data). For a detailed description of the experiment, see Appendix 1.
From the simulation it can be seen, that when the amount of data is sufficient, the two
algorithms perform equally well. In the second test, Algorithm 2 is used on amplitude
spectra of three instruments form the Iowa Music Database [30]. EachV′

n consist of
two instruments that both plays one note. In this test the averaged cosine of the angles
between the basis vectors calculated using Algorithm 2 and the basis vectors calculated
using solo recordings above0.99, which in practise means that they are equal. Figure 2
shows an example ofVtrain = [V1,V2,V3] and there corresponding three basis spec-
tres are shown in figure 3. It can be seen that the basis vectorsare estimated almost
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Figure 1: The mean error of separation of(a) three sources and(b) four sources, using Algorithm 1 (dashed
lines) and Algorithm 2 (solid lines). The simulation is computed with different model ordersr and size of
training datam = n.
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Figure 2: The amplitude spectrogramV of a bas, a flute and a piano that plays together two and two.

correct even though the spectres are heavily overlapping. It can also be seen that the
small errors occur at a frequency in a basis vector when the there are a lot of energy in
both the other basis vectors at that frequency. A reason for this is that the NMF problem
might not be unique and the non-uniqueness is that it is possible to raise the energy of
one basis vector by decreasing the other basis vectors when the tones starts and stops at
the same time.
In the third test, Algorithm 2 is used on amplitude spectra ofmidi music. The instru-

ment models were trained on three 10-second training files, each with two instruments
playing. These models were used to separate the three instruments from a 10-second
evaluation file, as shown in Figure 4. In this test, the mixingof the instruments is
performed in the time domain, which makes the amplitude spectra non-additive, due to
phase differences, when there is overlap between the spectra. In this simple experiment,
it is possible to separate the three instruments with minor artefacts. In the estimated pi-
ano the artefacts do not sound like an instrument but in the estimated drum signal, it is
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Figure 3: The estimated basis spectras of the bas (top), flute (middle) and piano (bottom) from Figur 2.

possible to hear the bas in the background and in the estimated bas signal there is the
piano in the background. It is possible to download the soundfiles from our website
(http://kom.aau.dk/ hla/structuredNMF).

6 Conclusion

An algorithm for source separation based on training sourcemodels on mixed audio
recordings was presented. In contrast to existing algorithms, the proposed algorithm
uses training data where more than one source is active, which makes the algorithm
applicable to situations, where individual recordings of sources are unavailable.

The proposed algorithm is based on the non-negative matrix factorization (NMF),
and can be used with most NMF algorithms. The novel idea in this paper is to con-
struct a structure matrix, that indicates where each sourceis active, and the proof that
this structure matrix, together with a uniqueness assumption, is enough to ensure, that
results are equivalent to training on isolated sources. Thetheoretical results are backed
up by simulations that show that the proposed algorithm performs as well as existing
NMF source separation methods, when sufficient training data is available.

1 Simulation details

In the first testW, Htrain andHtest are generated as uniform IID values raised to the
power of 8. All NMF calculation in this simulation use the sparse NMF algorithm [27]
with λ = 0.001, 200 iterations and 20 different starting points. The errorplotted in
Figure 1 is a Monte Carlo simulation of the mean square error of between the test
sources and the estimated test sources. There are used 20 Monte Carlo runs in the
simulation. In order to make the plot more dense, the error isdivided by the number of
basis vectorsr to compensate for different amplitudes of the matrices.
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Figure 4: The figure shows the spectrograms of the separation of a MIDI music piece with a piano (top),
a bas (middle) and a drum (bottom). The left column shows the estimate and the right column shows the
spectrogram of each instruments.

In the second test, notes with the length of one to three seconds were used and the
data was downsampled to 11.025 kHz. In the third test was the sampling frequency of
the sound files is44.1 kHz. The algorithm setup for both music tests is the sparse NMF
with λ = 0.1, 500 iterations, one starting point and the amplitude spectrogram of the
music is calculated using a (46.4 ms) Hanning window and50% window overlap. To
estimate the instrument time signal the phase of the mixed spectrogram is used directly.
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Abstract

We generalize the non-negative matrix factorization (NMF)generative model to in-
corporate an explicit offset. Multiplicative estimation algorithms are provided for the
resulting sparse affine NMF model. We show that the affine model has improved unique-
ness properties and leads to more accurate identification ofmixing and sources.
Keywords: Non-negative matrix factorization, NMF, BSS, Sparse NMF

1 Introduction

Non-negative matrix factorization (NMF) has become a popular tool for data analysis.
An often stated reason for NMF is that it leads to ‘parts based’ representations, hence,
facilitates data analytic interpretation. However, uniqueness is important for the parts
based representations to be meaningful. The NMF generativemodel is based on lin-
ear mixing of positive sources by positive coefficients. Thepositive sources may have
offsets which can lead to non-uniqueness, we therefore herepropose a model based
on affine mixing, i.e., mixing with an offset. The NMF learning algorithm is straight-
forwardly generalized to handle the augmented model. We show that the affine model
indeed has improved uniqueness properties and thus leads tomore accurate identifica-
tion of mixing and sources.

NMF algorithms are used to factorize a nonnegative matrixV ∈ R
N×M in two

nonnegative matricesW ∈ R
N×D andH ∈ R

D×M

V ≈ R = WH; Vi,j ≈ Ri,j =

D∑

d=1

Wi,dHd,j (1)

Following the seminal papers by Lee and Seung [1, 2], a least squares or a Kullback-
Leibler inspired cost are used. Our observations in this paper can be applied to both.
For simplicity we will concentrate on the Euclidian cost in the following,

E(W,H) = ‖V −WH‖2F , (2)

where‖·‖F is the Frobenius norm. Lee and Seung [2] have shown that the following
update rule will decreaseE(W,H)

H ← H ⊗ WT V

WT R
(3)

W ←W ⊗ V HT

RHT
, (4)

where⊗ and (·)
(·) are element wise multiplication and division. This update rule is used

as a reference and is shown in panel (B) of figures 1, 3, 4, 5 and 6.
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2 Sparse NMF

Hoyer [3] introduced sparse NMF and Eggert [4] proposed the following cost function
where only the normalized version ofW has impact on the cost

E(W,H) =
1

2

∥∥V −WH
∥∥2

F
+ λ1T H1 (5)

Wn =
Wn

‖Wn‖
, n ∈ {1, . . . , N} (6)

whereWn is the n’th column vectorinW and1 is a column vector where all elements
are one. The length of1 can be deduced by the context. The scalarλ is a positive
parameter that controls the tradeoff between sparseness ofH and approximation ofV
by the product ofW,H. Eggert [4] argues for using the following multiplicative update

H ← H ⊗ WT V

WT R + λ
(7)

Wn ←Wn ⊗
∑M

m=1 Hm,n(Vn + Wn(Rm)T Wn)
∑M

m=1 Hm,n(Rn + Wn(Vm)T Wn)
(8)

These update rules are used in panel (C) of figures 1, 3, 4, 5 and6.
The normalization ofW and the sparse nature ofH critically constrains the solu-

tion and can improve uniqueness and lead to more accurate estimates. However, the
constraints may not be consistent with the form of the mixingprocess and the statistics
of the source signalsH. In particular offsets in one or more rows ofV will counteract
the sparse model. If the generative model incorporates additive noise it is not clear that
simple subtraction of the minimal value of each row inV will lead to a correct recovery
of the generatingW,H. If the noise is, e.g., Gaussian,V can be negative in the native
representation, hence, one cannot estimate the ‘true’ offset.

2.1 Affine Sparse NMF

The above sparse NMF methods do not handle offsets, however,it is incorporated as
follows with W0 ∈ R

N×1

V ≈ R = WH + W01
T . (9)

Using this augmented signal model the sparse cost function in Equation 5 becomes

E(W,H,W0) =
1

2

∥∥V −WH−W01
T
∥∥2

F
+ λ1T H1 (10)

Following Eggert [4] the update rule forW andH remains as given in Equation 7 and
8 using the new definition ofR and the update rule forW0 (that in not normalized) is
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Figure 1: Simulated data whereV ∈ R
2×2000 is generated according to Equation 9. Each column ofV

is plotted as a dot. In (A) the generatingW andW0 are shown. In (B) and (C) the standard NMF and
sparse NMF each find three vectors that can describe the data.Both algorithms find one vector that is a linear
combination of the trueW0 andW1 and finds two vectors that are very close to the trueW0. In (D) the
‘Affine sparse NMF’ method correctly estimates the structure of theW matrix.

the standard NMF update rule in Equation 4

W0 ←W0 ⊗
1T V

1T R
(11)

The affine sparse NMF results are shown in panel (D) of figures 1, 3, 4, 5 and 6.

3 Results

How does the augmented sparse affine NMF model data? To answerthis question we
first visualize synthetic data as generated by the proposed model, and we show existing
methods fail to reconstruct the correct parameters of the generative model. We then go
on to show that two commonly used data sets have the characteristics of the proposed
model and that the proposed algorithm performs better than the existing algorithms
on the data. In order to get a ‘fair’ comparison the standard NMF and sparse NMF
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Figure 2: The variation of the relative least squares error of the NMF reconstruction ofW . The error is
plotted as a function of the amount of data (M ). The simulated data was generated usingD = 10 components
and an off set. The ‘zero offset’ methods are based on the simpleheuristic that data is first preprocessed to
have minimum value zero in each row.

both have one column more than the sparse affine NMF method. This ensures that the
maximum rank ofR is the same for all methods.

Simulated Data. In Figure 1 there areM = 2000 elements inV . The data is
generated as in Equation 9. The elements ofR are exponentially distributed. The true
W vectors and the column vectors ofV are shown in Figure 1 panel (A). Figure 1 (B–
D) shows the three different algorithms estimate ofW . The standard NMF (B) finds
W such that the data is in the positive span ofW . The W estimated by the sparse
NMF algorithm (C) also spans data but the column vectors ofW point more directly
towards data. Although these methods estimatedW can reproduceV , they do not find
the correct structure (W ). The proposed method (D) finds aW that is close to the true
W .

A quantitative evaluation of the different algorithms’ estimate is presented in Fig-
ure 2. Data is generated as in Equation 9 where the elements ofW andW0 are uniform
i.i.d. The elements ofH are first generated as exponential i.i.d. samples and then each
column is normalized to unit sum. In this way the elements inH describe how much
each column vector ofW contribute towardsV . In all simulationsN = 100,D = 10.
We have run the simulation with different amounts of data examples (column inV ) M .
In the evaluationV is analysed as 11(=D +1) outer product

∑D
d=0 V (d) = V , where
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V
(d)
i,j = Wi,dHd,j . The error in the figure is the relative least squares error oftheV (d)

estimate for each data set size

∑D
d=0

∥∥V (d) −R(d)
∥∥2

F∑D
d=0

∥∥V (d)
∥∥2

F

(12)

For completeness we have included in the performance evaluation a modification of
the standard method in which data is first subtracted with constant offsets to achieve
zero minimum value in each of theN variables ofV . The simulation shows that the
standard NMF and the sparse NMFs do not find the trueW andH. The constant offset
subtraction improves the performans but is outperformed bythe sparse affine NMF
succeeds. Notis that the two latter methods is favoured by knowing that(HT )0 = 1.

The Swimmer Database. The “Swimmer Database” was introduced by Donoho
and Stodden [5] to discuss the uniqueness issues we have adressed in this presentation.
The point was that even if NMF can representV it may not necessarily find the rightW .
The database consist of 256 (32 × 32 pixel) black-and-white pictures of a ‘stick-man’
with 4 limbs that can be in one of 4 positions. All pictures have a ‘torso’ that represent
an offset as discussed in this paper. The pictures in the dataset can be constructed by
17 (= 4 × 4 + 1) non-overlapping basis pictures. In Figure 3 (A) examples from the
database are shown. The algorithms described in section 2 are tested on the data set
and a subset of the 17 basis pictures are shown in Figure 3(B–D). Only the proposed
method is able to find the 17 non-overlapping basis pictures,the standard NMF and
Sparse NMF all let the torso be a part of all basis pictures. The Swimmer simulation is
further analyzed in Figure 4. The 1024 (= 32 × 32) dimensional column vectors inV
andW are mapped onto a two dimensional subspace to show that the structure of the
swimmer database is in fact equivalent to that of Figure 1. Inthe plot it is seen that only
the affine sparse NMF finds the true basis vectors.

Business Card Data Set. Our final example is based on a set of business card im-
ages of faculty of Aalborg University’s Department of Electronic Systems. The photog-
rapher has manually centered and scaled the pictures. The pictures are scaled to30×40
pixel and the color map is chosen such that white is zero and black is maximum. An
‘AAU watermark’ logo has been added to all pictures in the database. A subset of the
pictures are shown in Figure 5(A) and a subset of the 25 basis pictures estimated by the
three algorithms is shown in Figure 5(B–D). In this simulation the sparse affine NMF
algorithm estimates more sparse basis pictures and most basis pictures describe one
physical object only.

A two dimensional subspace (axes formed by a picture with ‘hair’ and an picture
with the AAU-logo) of the images in Figure 5 are shown in Figure 6. As above we find
that none of the standard NMF’s nor sparse NMF basis vectors describe the AAU logo
without also capturing ‘hair’. The basis pictures for the proposed method however are
found close to the axes meaning that they either capture hairor the AAU’ logo.



D8 Publication D

(A) (B)

(C) (D)

Figure 3: Subset of A: The Swimmer database B: Basis pictures using standard NMF. C: Basis pictures using
sparse NMF. D: Basis pictures using sparse affine NMF.

4 Discussion and conclusion

Non-negative matrix factorization is widely applied because of the ability to create
‘parts based’ representations, hence, facilitating modelinterpretation. However, unique-
ness is important for the parts based representations to be meaningful. Lack of unique-
ness can happen in several ways, e.g., due to an offset vectorW0 as discussed here.
Another mechanism resulting in lack of uniqueness is if the support of the process cre-
ating a row ofH does not includeH = 0, i.e., if there is an offset in the row variable
of H. TheH0 offset can be seen as aW0 offset with the constraint thatW0 is in the
positive span of the column vectors inW

R = W (H + H01
T ) = WH + W01

T , W0 = WH0 (13)

Hence, theH offset issue is a special case of the model we have discussed here: If the
resultingW0 is in the positive span of the columns ofW , they can be interpreted asH
offsets.

In this work we have defined the augmented non-negative linear mixing model - the
sparse affine NMF. We have presented three case stories in which the new sparse affine
NMF algorithm outperforms the standard algorithms and a naive solution in estimation
of the underlying structure of the data.
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Figure 4: A two dimensional subspace of the column vectors inV (dots) andW (vectors) are shown for the
Swimmer database. The ‘x-axis’ is a picture which is zero in theupper part and uniform random values in
the lower part. The ‘y-axis’ is constructed the same way but with the zeros in the lower part.
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(A) (B)

(C) (D)

Figure 5: (A): Subset of the Picture database with 197 pictures (B – D):A subset of the basis pictures using
standard NMF, sparse NMF and sparse affine NMF. The standard NMF makes very noisy basis pictures. The
sparse NMF produce basis pictures where the ‘AAU watermark’ is visible in around50% of the pictures, and
in addition a lot of the pictures do not represent a single part of the picture. The sparse affine NMF has only
one picture with the watermark (W0) and most pictures represent only one part of the picture.
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Figure 6: The business card images plotted in two dimensions to show thatdata and solutions have pattern
like the ones in Figure 1. The x–axis is the an image of the AAU logo, and the y–axis is an image vector
capturing the ‘hair’ region.
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Abstract

In this paper, two new properties of stochastic vectors are introduced and a strong
uniqueness theorem on non-negative matrix factorizations(NMF) is introduced. It is
described how the theorem can be applied to two of the common application areas of
NMF, namely music analysis and probabilistic latent semantic analysis. Additionally,
the theorem can be used for selecting the model order and the sparsity parameter in
sparse NMFs.
Keywords: Non-negative matrix factorization (NMF), sparse NMF, non-negativity, model se-

lection.

1 Introduction

Large quantities of positive data occur in different research areas such as music analysis,
text analysis, image analysis and probability theory. Before deductive science is applied
to large quantities of data it is often appropriate to reducedata by preprocessing, e.g.,
by rank reduction or by feature extraction. Principal component analysis is an example
of such preprocessing. When the original data is non-negative it is often desirable
that this property is preserved in the preprocessing. For example, elements in a power
spectrogram, probabilities and pixel intensities should still be non-negative after the
processing to be meaningful. This has lead to the construction of algorithms for rank
reduction of matrices and feature extraction that makes a non-negative output. Many of
the algorithms are on the form of non-negative matrix factorization (NMF) proposed by
Lee and Seung [1, 2]. The NMF algorithms factorize a non-negative matrixV ∈ R

n×m

into two non-negative matricesW ∈ R
n×r andH ∈ R

r×m

V ≈ R = WH; Vi,j ≈ Ri,j =

r∑

d=1

Wi,dHd,j , (1)

whereWi,j denotes the i’th element in the j’th column. There are no closed-form solu-
tions to the problem of findingW andH given aV , but Lee and Seung [1, 2] proposed
two computationally efficient algorithms for minimizing the difference betweenV and
WH for two different error functions. Later, numerous other algorithms have been
proposed (see Berry et al. [3]).

An interesting question is whether there exists only one NMFof a matrix. The
importance of this question depends on the particular application of the NMF. There
can be two different starting points when using a mathematical model like the NMF
– either one can believe that the model describes nature and that the variables have a
physical meaning, or one can believe that the model can capture the part of interest, or
its behavior, even though there is not a one to one mapping between the parameters,
model and the physical system. When using NMF, one can wonder whetherV =
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WH + G, whereG is a noise source, or whether data is constructed by another model.
Or, in other words, does a ground truthW andH exist. These questions are important
in evaluating whether or not it is a problem that there are other NMF solutions to the
same data, i.e.,

V ≈ R = WH = W ′H ′. (2)

If NMF is used even though the data is not assumed to be generated by equation 1,
it may not be a problem that there are several other solutions. On the other hand, if
one assumes that there exist a ground truth, it may be a problem if that model is not
detectable, i.e., it is not possible to findW andH from data.

In this paper, we analyze under which circumstances there only exists exactly one
NMF of a matrix. In doing this, it is assumed that there existsa trueW andH and the
conditions onW andH that results in a unique NMF are explored. Here, the elements
of W andH are viewed as stochastic variables and it is shown that the factorization
is unique under mild conditions. The theorems in this paper deals with the situation
whereV is constructed asV = WH, i.e., the noise free situation. To the best of
our knowledge, the only papers that deals with the issue of uniqueness of NMF are
the paper by Donoho and Stodden [4] and the paper by Theis et al. [5]. Donoho and
Stoddens paper deals with two different situations; one where W = V or H = V
and another whereWn,d 6= 0 ⇒ Wn,d′ = 0 for all d′ 6= d. The paper by Theis
et al. deals with the specific situation where the vectorsHd = [Hd,1, · · · ,Hd,m]T

has known ratios between theL1 norm and theL2 norm,‖Hd‖1
/
‖Hd‖2. This paper

takes another approach by assuming thatW andH are generated from a process and
identifies the statistical properties of the process that makes the NMF unique. The work
reported here is inspired by Plumbley [6] showing that it is possible to make unique
blind source separation (BSS) if the source are non-negative, independent and have
zero as the largest lower limit. The theorems in this paper are derived by combining the
ideas of Plumbley with the ideas of Donoho and Stodden.

The remaining part of this paper is organized as follows. In Section 2, some ba-
sic definitions are introduced and a fundamental property for the detection of negative
matrix elements is presented. Then, the main results on the uniqueness of NMFs are
presented an analyzed in Section 3. In Section 4, we give someexamples of the appli-
cation of the theorems to real data analysis, where after we conclude on our work in
Section 5.

2 Sufficiently Spread Data

Prior knowledge of non-negativity of a data set can be used toreduce a rotation ambi-
guity to a permutation ambiguity under some circumstances.The only rotation where
all matrix elements are non-negative are a permutation, so if it is possible to detect
negative values in a matrix, a rotation ambiguity can be restricted to a permutation
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ambiguity. Plumbley [6] shows that if the stochastic variables in a vectors are indepen-
dent, the probability forx = As having a negative element will be grater than zero ifs
is grounded. In other words, if the rotation matrixA is not a permutation, then there is
a positive probability for having a negative element inx.

Definition E.1 A stochastic variablesj is called grounded ifp(sj < k) > 0 for all
k > 0.

Definition E.2 A stochastic vectors ∈ R
n is called sufficiently spread if all the ele-

ments are non-negative and for allǫ > 0 andj ∈ {1, · · · , n} thenp(−ǫsj +
∑

i6=j si <
0) > 0.

In the BSS problem considered in [6], the assumption of independence of the stochastic
variables was necessary for other parts of the algorithm. The following theorem shows
that a stochastic vector being sufficiently spread is a necessary and sufficient condition
for the detection of negative elements in a matrix.

Theorem E.3 Let s ∈ R
n be a stochastic vector,u ∈ R

n andU be any matrix withn
rows. Then the following are equivalent:

1. p(min(Us) < 0) > 0 if and only if there is at least one negative element ofU .

2. p(uT s < 0) > 0 if and only if there is at least one negattive element ofu.

3. s is sufficiently spread.

Proof. The proof follows the same steps as the proof of Theorem 1 in [6]. In words,
a vector is sufficiently spread if it is possible that any element can be much larger than
all the other elements in the vector. Below are some exampleswheres is sufficiently
spread (A – D) and some examples wheres is not sufficiently spread (E – H).

Ex. A. Let s1 to sn−1 be exponential independent and identically distributed (IID) and
let sn = 1.

Ex. B. Let s1 ands2 be uniformly IID on the interval(0, 1) ands3 = 1− s2.

Ex. C. Let t ∈ R
n be sufficiently spread ands = t

‖t‖ .

Ex. D. Let t ∈ R
n be sufficiently spread,P a permutation matrix,D a diagonal matrix

with positive elements ands = PDt.

Ex. E. Let s1 to sn−1 be uniformly IID on the interval(0, 1) and letsn = 1.

Ex. F. Let t ∈ R
n be uniformly IID on the interval(1, 2), n > 2, p ∈ {1, · · · , n} be

uniformly distributed,sp = tp − 1 andsq = tq for all q 6= p.
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Ex. G. Let t ∈ R
n be sufficiently spread,A =




0 1 1
1 0 1
1 1 0


 ands = At.

Ex. H. Let t ∈ R
n be sufficiently spread,A ∈ R

n×n be a matrix with more than one
non-zero element in one row ands = At.

The vector in example A are sufficiently spread since the exponential distribution has
no upper limit in contrast to the uniform distribution that has an upper limit and are
used in example E. Example B show that the elements ins can be dependent and suffi-
ciently spread at the same time, and example G and H shows dependent not sufficiently
spread vectors. Examples C and D show that rescaling of a stochastic vector has no
influence on sufficient spreadness. Examples F illustrate that a stochastic vector can
not be sufficiently spread if only one element at a time can be close to zero.

3 Uniqueness and NMF

In this section, NMF is analyzed. We assume that bothW andH have full rank, e.g.,
r = rank (V ). Let W ′ andH ′ be any matrices of the same size asW andH respec-
tively that fulfil V = WH = W ′H ′. Then

span (W ) = span (V ) = span (W ′), (3)

wherespan() is the space spanned by the column vectors. The column vectors of W
andW ′ are therefore both bases for the same space and there exists amatrixQ such that
W ′ = WQ. It is straightforward to show thatH ′ = Q−1H. All NMF solutions where
r = rank (V ) are therefore on the formV = WQQ−1H and the ambiguity of the NMF
can therefore be described by theQ matrix. We note that ifr > rank (V ), the above
argument does not hold sincespan (W ) may not equalspan (W ′) (see Thomas [7]).
It is possible for an NMF to be unique whenr > rank (V ), but we are here only
concerned with the situation wherer = rank (V ).

Lemma E.4 If a matrix and its inverse are both non-negative, then the matrix is a
scaled permutation.

Corollary E.5 An NMF solutionW and H can only be estimated uniquely up to a
permutation and a scaling.

Corollary E.5 leads to the following definition of unique NMF.

Definition E.6 A NMF is called unique if the ambiguity is a permutation and a scaling
of the columns inW and rows inH.
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In the following each row ofW and each column ofH will be seen as stochastic vectors.
It will be assumed that it is possible to increase the size ofV and thereby increase the
number of rows inW and columns inH. If V is a spectrogram, this is the same as
using more data (increasingH) and using a higher spectral resolution (increasingW ).
Using the previous theorems, it can be shown that if the row vectors inW and column
vectors inH are sufficiently spread and statistically independent (or dependent in a
nondeterministic way), the NMF factorization is unique. Theorem E.3 ensures thatQ
must have non-negative elements forW ′ = WQ to be non-negative, and thatQ−1

must have non-negative elements forH ′ = Q−1H to be non-negative. Additionally,
Lemma E.4 states that if the elements ofQ andQ−1 are non-negative, thenQ is a scaled
permutation matrix and therefore the factorization is unique.

In some practical situations, it is not reasonable to assumethat both the row vectors
in W and column vectors inH are sufficiently spread. A looser condition is therefore
introduced next:

Definition E.7 A positive stochastic vectors ∈ R
n is called boundary close if

p
( sj

‖s‖ < k
)

> 0

for all j ∈ {1, · · · , n} andk > 0.

It can be verified that the sufficiently spread property implies the boundary close prop-
erty by choosingǫ < k, whereby we get

sj

‖s‖ ≤
sj

si

≤
∑

j 6=i sj

si

< ǫ < k

︸ ︷︷ ︸
⇓

(4)

p
( sj

‖s‖ < k
)

> p
(∑

j 6=i sj

si

< ǫ
)

(5)

= p
(
− siǫ +

∑

j 6=i

sj < 0
)

> 0. (6)

If the elements in a vector are IID, the boundary close property is equivalent to the
sufficiently spread property. When the elements are not IID, the two definitions differ.
If a vector is boundary close, all elements can be very small.If a vector is sufficiently
spread, all elements except one can be very small. On the previous sides is boundary
close in example A – D because it is sufficiently spread. Example E is not boundary
close of the same reasons that it is not sufficiently spread. Example F is boundary close.
Example G is also boundary close, but ifs1 = 0 thens2 = s3. Later, in Theorem E.8,
this will be called “boundary close in a deterministic way”.In example H there is not
enough information to conclude ifs is boundary close or not. A realization of a vector
that is sufficiently spread is depicted in Figure 1 to the leftand a boundary close vector
is shown to the right.
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Figure 1: A three dimensional space is scaled such that the vectors are in the hyper plane:{p : [1 1 1]p = 1}.
The big dots in the corners are the standard basis vectors forthe three dimensional space. To the left, where
a sufficiently spread vector is shown, it can be seen that the data fills out the area around the corners. To the
right, where a boundary close vector is shown, it can be seen that the data is close to the lines that connects
the corners.

Theorem E.8 If the row vectors inW are strongly boundary close1, the column vectors
in H are sufficiently spread andW and H are independent. Then, givenp < 1 and
k > 0, there existm andn such that any NMF-solutionW ′ andH ′ will fulfill:

p
(

min
D,P
‖W ′DP −W‖F +

∥∥(DP )−1H ′ −H
∥∥

F

)
< k

)
> p (7)

whereP is a permutation matrix andD is a diagonal matrix.

Theorem E.8 states that the NMF is unique if the row vectors inW are boundary close
and the column vectors inH are sufficiently spread.

Recently, it has been argued that some real world data has an inherent offset that
leads to non-uniqueness for traditional NMF algorithms [8]. However, in [8], this offset
was taken into account and an algorithm that can find the constructing NMF even if
the data contains an offset was proposed. If the parts of the model that does not fulfill
Theorem E.8 has a known structure, it is still possible to findthe trueW andH.

It is worth noting that the theorem specify the uniqueness ofNMF from a solution
W ′, H ′ and not directly fromV . This might seam as a limitation for the theorem,
but it can also be used directly to suggest new algorithms as explained in the following
Section.

1Strongly boundary close is the same as being boundary close inan non-deterministic way. The extra
condition is somewhat technical and is not restrictive in practice, and the exact definition is therefore left out.
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4 Some Applications

We now proceed to describe how the information of a unique solution can be used to
estimate parameters such as the number of constructing vectorsr or a sparsity param-
eter. When an NMF solution results in aW that has boundary close row vectors and
in anH having sufficiently spread column vectors, it can be determined that the solu-
tion is unique. Since sufficiently spread is the hardest condition, it will typically be the
one that is not fulfilled. Hojer [9] introduced the sparse NMFwhere the update rule of
NMF is changed in order to obtain an NMF that has a sparseH, meaning thatH has
few non-zero coefficients. From Theorem E.8 it follows that aminimum number of ze-
ros are needed in bothW andH for the factorization to be unique. EspeciallyH need
a lot of zeros in order to be sufficient spread. Algorithms that find NMF with sparseH
are therefore expected to have a higher probability for returning unique factorizations.
Many sparse NMF algorithms have a sparsity parameter that determines the trade-off
between sparsity ofH and the approximation error. One example of this is the sparse
NMF algorithm of Eggert and Körner [10], whereλ determines the tradeoff in the error
function defined as

E(W,H) =
1

2

∥∥V −WH
∥∥2

F
+ λ1T H1 (8)

W j =
Wj

‖Wj‖
, j ∈ {1, . . . , n}, (9)

whereWj is thejth column vector ofW and1 is a column vector where all elements
are one. Based on Theorem E.8, a natural criterion for selection of the sparsity param-
eter can be made; selectλ as the smallest value that makes the solution unique. In a
similar manner, a natural selection of a model order, r, is the ones that makes the NMF
unique. In a third application, Theorem E.8 can be used for NMF algorithm compari-
son, i.e., it can be used as a basis for selecting the algorithm that makes unique solution.
Next, two examples are given showing how Theorem E.8 can be used to argue that a
data set has a unique NMF. Smaragdis and Brown [11] use NMF forpolyphonic music
transcription whereV is the amplitude spectrogram. In this setup it is fair to assume
that there exist aW where the column vectors are the amplitude spectrum of an instru-
ment that play one note and a correspondingH that describe the identity of the notes. It
can be seen from their experiments thatW is boundary close. In music, it happens that
there is a single note that is playing and in that caseH is sufficiently spread. If an NMF
is found for large set recordings of polyphonic music and thecorrect order is selected,
the solution is therefore expected to be unique. Another example is probabilistic latent
semantic analysis (PLSA) [12], which is a text analyzing method that gather informa-
tion of several documents in a "bag of words" matrixV , whereVi,j describes how many
times theit’th keyword occurs in thejt’th document. In PLSA,V is decomposed into
two positive matrixes using an NMF like algorithm. Each column inW can be seen as
a topic and in all topics there will be keywords that does not occur andW is therefore



E10 Publication E

boundary close. If there are documents that only cover one topic, H will be sufficiently
spread. The NMF on a "bag of words" matrix is therefore expected to be unique.

5 Conclusion

Uniqueness of non-negative matrix factorizations have been analyzed by combining
results of Donoho and Stodden [4] and Plumbley [6]. A new condition for a stochastic
vector called sufficiently spread has been introduced and ithas been shown that this
condition is a sufficient and necessary for the dection of a negative value in a matrix.
A weaker condition, called boundary close, has also been introduced, and a theorem
that states that the factorization is unique if the row vectors in W is boundary close
and the column vectors inH are sufficiently spread has been described. The theorem
is valid when there is no prior knowledge ofW andH. In situations where there is
prior knowledge, an NMF can be unique even when the conditions are not fulfilled. An
analysis shows that NMF on a bag of word matrix and on music amplitude spectrograms
are expected to be unique. The theorem can be used as an explanation why the sparse
NMF methods tend to result in unique factorizations. The theorems make it possible to
evaluate the uniqueness of a factorization and can thereby be used for choosing sparsity
parameter, model order and NMF algorithm.
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