1,599 research outputs found

    Unsymmetric Lanczos model reduction and linear state function observer for flexible structures

    Get PDF
    This report summarizes part of the research work accomplished during the second year of a two-year grant. The research, entitled 'Application of Lanczos Vectors to Control Design of Flexible Structures' concerns various ways to use Lanczos vectors and Krylov vectors to obtain reduced-order mathematical models for use in the dynamic response analyses and in control design studies. This report presents a one-sided, unsymmetric block Lanczos algorithm for model reduction of structural dynamics systems with unsymmetric damping matrix, and a control design procedure based on the theory of linear state function observers to design low-order controllers for flexible structures

    The symmetric heavy-light ansatz

    Full text link
    The symmetric heavy-light ansatz is a method for finding the ground state of any dilute unpolarized system of attractive two-component fermions. Operationally it can be viewed as a generalization of the Kohn-Sham equations in density functional theory applied to N-body density correlations. While the original Hamiltonian has an exact Z_2 symmetry, the heavy-light ansatz breaks this symmetry by skewing the mass ratio of the two components. In the limit where one component is infinitely heavy, the many-body problem can be solved in terms of single-particle orbitals. The original Z_2 symmetry is recovered by enforcing Z_2 symmetry as a constraint on N-body density correlations for the two components. For the 1D, 2D, and 3D attractive Hubbard models the method is in very good agreement with exact Lanczos calculations for few-body systems at arbitrary coupling. For the 3D attractive Hubbard model there is very good agreement with lattice Monte Carlo results for many-body systems in the limit of infinite scattering length.Comment: 38 pages, 13 figures, revised manuscript includes results for 1D, 2D, and 3

    Solving large sparse eigenvalue problems on supercomputers

    Get PDF
    An important problem in scientific computing consists in finding a few eigenvalues and corresponding eigenvectors of a very large and sparse matrix. The most popular methods to solve these problems are based on projection techniques on appropriate subspaces. The main attraction of these methods is that they only require the use of the matrix in the form of matrix by vector multiplications. The implementations on supercomputers of two such methods for symmetric matrices, namely Lanczos' method and Davidson's method are compared. Since one of the most important operations in these two methods is the multiplication of vectors by the sparse matrix, methods of performing this operation efficiently are discussed. The advantages and the disadvantages of each method are compared and implementation aspects are discussed. Numerical experiments on a one processor CRAY 2 and CRAY X-MP are reported. Possible parallel implementations are also discussed

    Diagonalization- and Numerical Renormalization-Group-Based Methods for Interacting Quantum Systems

    Full text link
    In these lecture notes, we present a pedagogical review of a number of related {\it numerically exact} approaches to quantum many-body problems. In particular, we focus on methods based on the exact diagonalization of the Hamiltonian matrix and on methods extending exact diagonalization using renormalization group ideas, i.e., Wilson's Numerical Renormalization Group (NRG) and White's Density Matrix Renormalization Group (DMRG). These methods are standard tools for the investigation of a variety of interacting quantum systems, especially low-dimensional quantum lattice models. We also survey extensions to the methods to calculate properties such as dynamical quantities and behavior at finite temperature, and discuss generalizations of the DMRG method to a wider variety of systems, such as classical models and quantum chemical problems. Finally, we briefly review some recent developments for obtaining a more general formulation of the DMRG in the context of matrix product states as well as recent progress in calculating the time evolution of quantum systems using the DMRG and the relationship of the foundations of the method with quantum information theory.Comment: 51 pages; lecture notes on numerically exact methods. Pedagogical review appearing in the proceedings of the "IX. Training Course in the Physics of Correlated Electron Systems and High-Tc Superconductors", Vietri sul Mare (Salerno, Italy, October 2004

    Wave packet propagation by the Faber polynomial approximation in electrodynamics of passive media

    Full text link
    Maxwell's equations for propagation of electromagnetic waves in dispersive and absorptive (passive) media are represented in the form of the Schr\"odinger equation iΨ/t=HΨi\partial \Psi/\partial t = {H}\Psi, where H{H} is a linear differential operator (Hamiltonian) acting on a multi-dimensional vector Ψ\Psi composed of the electromagnetic fields and auxiliary matter fields describing the medium response. In this representation, the initial value problem is solved by applying the fundamental solution exp(itH)\exp(-itH) to the initial field configuration. The Faber polynomial approximation of the fundamental solution is used to develop a numerical algorithm for propagation of broad band wave packets in passive media. The action of the Hamiltonian on the wave function Ψ\Psi is approximated by the Fourier grid pseudospectral method. The algorithm is global in time, meaning that the entire propagation can be carried out in just a few time steps. A typical time step is much larger than that in finite differencing schemes, ΔtFH1\Delta t_F \gg \|H\|^{-1}. The accuracy and stability of the algorithm is analyzed. The Faber propagation method is compared with the Lanczos-Arnoldi propagation method with an example of scattering of broad band laser pulses on a periodic grating made of a dielectric whose dispersive properties are described by the Rocard-Powels-Debye model. The Faber algorithm is shown to be more efficient. The Courant limit for time stepping, ΔtCH1\Delta t_C \sim \|H\|^{-1}, is exceeded at least in 3000 times in the Faber propagation scheme.Comment: Latex, 17 pages, 4 figures (separate png files); to appear in J. Comput. Phy

    Krylov-space approach to the equilibrium and the nonequilibrium single-particle Green's function

    Full text link
    The zero-temperature single-particle Green's function of correlated fermion models with moderately large Hilbert-space dimensions can be calculated by means of Krylov-space techniques. The conventional Lanczos approach consists of finding the ground state in a first step, followed by an approximation for the resolvent of the Hamiltonian in a second step. We analyze the character of this approximation and discuss a numerically exact variant of the Lanczos method which is formulated in the time domain. This method is extended to get the nonequilibrium single-particle Green's function defined on the Keldysh-Matsubara contour in the complex time plane. The proposed method will be important as an exact-diagonalization solver in the context of self-consistent or variational cluster-embedding schemes. For the recently developed nonequilibrium cluster-perturbation theory, we discuss the efficient implementation and demonstrate the feasibility of the Krylov-based solver. The dissipation of a strong local magnetic excitation into a non-interacting bath is considered as an example for applications.Comment: 20 pages, 5 figures, v2 with minor corrections, JPCM in pres
    corecore