558 research outputs found

    An intelligent group decision-support system and its application for project performance evaluation

    Full text link
    Purpose: In any organization there are main goals, with lots of projects designed to achieve these goals. It is important for any organization to determine how much these projects affect the achievement of these goals. The purpose of this paper is to develop a fuzzy multiple attribute-based group decision-support system (FMAGDSS) to evaluate projects' performance in promoting the organization's goals utilizing simple additive weighting (SAW) algorithm and technique for order of preference by similarity to ideal solution (TOPSIS) algorithm. The proposed FMAGDSS deals with choosing the most appropriate fuzzy ranking algorithm for solving a given fuzzy multi attribute decision making (FMADM) problem with both qualitative and quantitative criteria (attributes), and uncertain judgments of decision makers. Design/methodology/approach: In this paper, a FMAGDSS model is designed to determine scores and ranks of every project in promoting the organization's goals. In the first step of FMAGDSS model, all projects are assessed by experts based on evaluation criteria and the organization's goals. The proposed FMAGDSS model will then choose the most appropriate fuzzy ranking method to solve the given FMADM problem. Finally, a sensitivity analysis system is developed to assess the reliability of the decision-making process and provide an opportunity to analyze the impacts of "criteria weights" and "projects" performance' on evaluating projects in achieving the organizations' goals, and to assess the reliability of the decision-making process. In addition, a software prototype has been developed on the basis of FMAGDSS model that can be applied to solve every FMADM problem that needs to rank alternatives according to certain attributes. Findings: The result of this study simplifies and accelerates the evaluation process. The proposed system not only helps organizations to choose the most efficient projects for sustainable development, but also helps them to assess the reliability of the decision-making process, and decrease the uncertainty in final decision caused by uncertain judgment of decision makers. Research limitations/implications: Future studies are suggested to expand this system to evaluate and rank the project proposals. To achieve this goal, the efficiency of the projects in line with organization's goals, should be predicted.Originality/value: This study contributes to the relevant literature by proposing a FMAGDSS model to evaluate projects in promoting organization's goals. The proposed FMAGDSS has ability to choose the most appropriate fuzzy ranking algorithm to solve a given FMADM problem based on the type and the number of attributes and alternatives, considering the least computation and time consumption for ranking alternatives. © Emerald Group Publishing Limited

    AN INTERVAL TYPE 2 FUZZY EVIDENTIAL REASONING APPROACH TO PERSONNEL RECRUITMENT

    Get PDF
    Recruitment process is a procedure of selecting an ideal candidate amongst different applicants who suit the qualifications required by the given institution in the best way. Due to the multi criteria nature of the recruitment process, it involves contradictory, numerous and incommensurable criteria that are based on quantitative and qualitative measurements. Quantitative criteria evaluation are not always dependent on the judgement of the expert, they are expressed in either monetary terms or engineering measurements, meanwhile qualitative criteria evaluation depend on the subjective judgement of the decision maker, human evaluation which is often characterized with subjectivity and uncertainties in decision making. Given the uncertain, ambiguous, and vague nature of recruitment process there is need for an applicable methodology that could resolve various inherent uncertainties of human evaluation during the decision making process. This work thus proposes an interval type 2 fuzzy evidential reasoning approach to recruitment process. The approach is in three phases; in the first phase in order to capture word uncertainty an interval type 2(IT2) fuzzy set Hao and Mendel Approach (HMA) is proposed to model the qualification requirement for recruitment process. This approach will cater for both intra and inter uncertainty in decision makers’judgments and demonstrates agreements by all subjects (decision makers) for the regular overlap of subject data intervals and the manner in which data intervals are collectively classified into their respective footprint of uncertainty. In the second phase the Intervaltype 2 fuzzy Analytical hierarchical process was employed as the weighting model to determine the weight of each criterion gotten from the decision makers. In the third phase the interval type 2 fuzzy was hybridized with the ranking evidential reasoning algorithm to evaluate each applicant to determine their final score in order to choose the most ideal candidate for recruitment.The implementation tool for phase two and three is Java programming language. Application of this proposed approach in recruitment process will resolve both intra and inter uncertainty in decision maker’s judgement and give room for consistent ranking even in place of incomplete requirement

    Third Party Logistics Service Selection using Fuzzy Multiple Attribute Decision – Making System

    Get PDF
    This study models the selection of third party logistics service provider (3PL) process considering comprehensive criteria and fuzzy nature of such problems. Criteria are identified and selected with respect to various aspects of logistics management, and existing vagueness in their behaviours and their relational preferences. Multiple attribute decision-making (MADM) approach and fuzzy methodology are applied. Based on a wide review of previous research, a fuzzy MADAM (FMADM) procedure is developed. Accordingly, especial algorithm in applying FMADM to 3PL selection problems is defined. A numerical example supports the developed procedure. Then, a real-world case study is explained and its 3PL selection problem is discussed. Results show reliability and efficiency of the model

    Using Pythagorean Fuzzy Sets (PFS) in Multiple Criteria Group Decision Making (MCGDM) Methods for Engineering Materials Selection Applications

    Get PDF
    The process of materials’ selection is very critical during the initial stages of designing manufactured products. Inefficient decision-making outcomes in the material selection process could result in poor quality of products and unnecessary costs. In the last century, numerous materials have been developed for manufacturing mechanical components in different industries. Many of these new materials are similar in their properties and performances, thus creating great challenges for designers and engineers to make accurate selections. Our main objective in this work is to assist decision makers (DMs) within the manufacturing field to evaluate materials alternatives and to select the best alternative for specific manufacturing purposes. In this research, new hybrid fuzzy Multiple Criteria Group Decision Making (MCGDM) methods are proposed for the material selection problem. The proposed methods tackle some challenges that are associated with the material selection decision making process, such as aggregating decision makers’ (DMs) decisions appropriately and modeling uncertainty. In the proposed hybrid models, a novel aggregation approach is developed to convert DMs crisp decisions to Pythagorean fuzzy sets (PFS). This approach gives more flexibility to DMs to express their opinions than the traditional fuzzy and intuitionistic sets (IFS). Then, the proposed aggregation approach is integrated with a ranking method to solve the Pythagorean Fuzzy Multi Criteria Decision Making (PFMCGDM) problem and rank the material alternatives. The ranking methods used in the hybrid models are the Pythagorean Fuzzy TOPSIS (The Technique for Order of Preference by Similarity to Ideal Solution) and Pythagorean Fuzzy COPRAS (COmplex PRoportional Assessment). TOPSIS and COPRAS are selected based on their effectiveness and practicality in dealing with the nature of material selection problems. In the aggregation approach, the Sugeno Fuzzy measure and the Shapley value are used to fairly distribute the DMs weight in the Pythagorean Fuzzy numbers. Additionally, new functions to calculate uncertainty from DMs recommendations are developed using the Takagai-Sugeno approach. The literature reveals some work on these methods, but to our knowledge, there are no published works that integrate the proposed aggregation approach with the selected MCDM ranking methods under the Pythagorean Fuzzy environment for the use in materials selection problems. Furthermore, the proposed methods might be applied, due to its novelty, to any MCDM problem in other areas. A practical validation of the proposed hybrid PFMCGDM methods is investigated through conducting a case study of material selection for high pressure turbine blades in jet engines. The main objectives of the case study were: 1) to investigate the new developed aggregation approach in converting real DMs crisp decisions into Pythagorean fuzzy numbers; 2) to test the applicability of both the hybrid PFMCGDM TOPSIS and the hybrid PFMCGDM COPRAS methods in the field of material selection. In this case study, a group of five DMs, faculty members and graduate students, from the Materials Science and Engineering Department at the University of Wisconsin-Milwaukee, were selected to participate as DMs. Their evaluations fulfilled the first objective of the case study. A computer application for material selection was developed to assist designers and engineers in real life problems. A comparative analysis was performed to compare the results of both hybrid MCGDM methods. A sensitivity analysis was conducted to show the robustness and reliability of the outcomes obtained from both methods. It is concluded that using the proposed hybrid PFMCGDM TOPSIS method is more effective and practical in the material selection process than the proposed hybrid PFMCGDM COPRAS method. Additionally, recommendations for further research are suggested

    Online Performance Tracking

    Get PDF
    This paper describes the conceptual framework, development process, and theoretical structure for an online performance tracking system. The principle factors influencing online performance tracking are described using the weighted sum model as computational method on measures of performance. Input data for the computational model were obtained directly from a real-time system in an actual organization that directly measured staff performance. In this multicriteria decision-making approach, the criteria weights are computed using the entropy information method and ranking of 15 alternatives (employees) is computed using the weighted sum model. Computational results obtained using the online performance appraisal system are evaluated and discussed relative to the weighted sum model

    Using the hybrid fuzzy goal programming model and hybrid genetic algorithm to solve a multi-objective location routing problem for infectious waste disposal

    Get PDF
    Purpose: Disposal of infectious waste remains one of the most serious problems in the social and environmental domains of almost every nation. Selection of new suitable locations and finding the optimal set of transport routes to transport infectious waste, namely location routing problem for infectious waste disposal, is one of the major problems in hazardous waste management. Design/methodology/approach: Due to the complexity of this problem, location routing problem for a case study, forty hospitals and three candidate municipalities in sub-Northeastern Thailand, was divided into two phases. The first phase is to choose suitable municipalities using hybrid fuzzy goal programming model which hybridizes the fuzzy analytic hierarchy process and fuzzy goal programming. The second phase is to find the optimal routes for each selected municipality using hybrid genetic algorithm which hybridizes the genetic algorithm and local searches including 2-Opt-move, Insertion-move and ?-interchange-move. Findings: The results indicate that the hybrid fuzzy goal programming model can guide the selection of new suitable municipalities, and the hybrid genetic algorithm can provide the optimal routes for a fleet of vehicles effectively. Originality/value: The novelty of the proposed methodologies, hybrid fuzzy goal programming model, is the simultaneous combination of both intangible and tangible factors in order to choose new suitable locations, and the hybrid genetic algorithm can be used to determine the optimal routes which provide a minimum number of vehicles and minimum transportation cost under the actual situation, efficiently.Peer Reviewe

    Dynamics under Uncertainty: Modeling Simulation and Complexity

    Get PDF
    The dynamics of systems have proven to be very powerful tools in understanding the behavior of different natural phenomena throughout the last two centuries. However, the attributes of natural systems are observed to deviate from their classical states due to the effect of different types of uncertainties. Actually, randomness and impreciseness are the two major sources of uncertainties in natural systems. Randomness is modeled by different stochastic processes and impreciseness could be modeled by fuzzy sets, rough sets, Dempster–Shafer theory, etc

    Methodological review of multicriteria optimization techniques: aplications in water resources

    Get PDF
    Multi-criteria decision analysis (MCDA) is an umbrella approach that has been applied to a wide range of natural resource management situations. This report has two purposes. First, it aims to provide an overview of advancedmulticriteriaapproaches, methods and tools. The review seeks to layout the nature of the models, their inherent strengths and limitations. Analysis of their applicability in supporting real-life decision-making processes is provided with relation to requirements imposed by organizationally decentralized and economically specific spatial and temporal frameworks. Models are categorized based on different classification schemes and are reviewed by describing their general characteristics, approaches, and fundamental properties. A necessity of careful structuring of decision problems is discussed regarding planning, staging and control aspects within broader agricultural context, and in water management in particular. A special emphasis is given to the importance of manipulating decision elements by means ofhierarchingand clustering. The review goes beyond traditionalMCDAtechniques; it describes new modelling approaches. The second purpose is to describe newMCDAparadigms aimed at addressing the inherent complexity of managing water ecosystems, particularly with respect to multiple criteria integrated with biophysical models,multistakeholders, and lack of information. Comments about, and critical analysis of, the limitations of traditional models are made to point out the need for, and propose a call to, a new way of thinking aboutMCDAas they are applied to water and natural resources management planning. These new perspectives do not undermine the value of traditional methods; rather they point to a shift in emphasis from methods for problem solving to methods for problem structuring. Literature review show successfully integrations of watershed management optimization models to efficiently screen a broad range of technical, economic, and policy management options within a watershed system framework and select the optimal combination of management strategies and associated water allocations for designing a sustainable watershed management plan at least cost. Papers show applications in watershed management model that integrates both natural and human elements of a watershed system including the management of ground and surface water sources, water treatment and distribution systems, human demands,wastewatertreatment and collection systems, water reuse facilities,nonpotablewater distribution infrastructure, aquifer storage and recharge facilities, storm water, and land use

    AHP-TOPSIS integration extended with Pythagorean fuzzy sets for information security risk analysis

    Get PDF
    Risk analysis (RA) contains several methodologies that object to ensure the protection and safety of occupational stakeholders. Multi attribute decision-making (MADM) is one of the most important RA methodologies that is applied to several areas from manufacturing to information technology. With the widespread use of computer networks and the Internet, information security has become very important. Information security is vital as institutions are mostly dependent on information, technology, and systems. This requires a comprehensive and effective implementation of information security RA. Analytic hierarchy process (AHP) and technique for order preference by similarity to ideal solution (TOPSIS) are commonly used MADM methods and recently used for RA. In this study, a new RA methodology is proposed based on AHP-TOPSIS integration extended with Pythagorean fuzzy sets. AHP strengthened by interval-valued Pythagorean fuzzy numbers is used to weigh risk parameters with expert judgment. Then, TOPSIS with Pythagorean fuzzy numbers is used to prioritize previously identified risks. A comparison of the proposed approach with three approaches (classical RA method, Pythagorean fuzzy VIKOR and Pythagorean fuzzy MOORA) is also provided. To illustrate the feasibility and practicality of the proposed approach, a case study for information security RA in corrugated cardboard sector is executed.No sponso

    A NOVEL TYPE OF FLEXIBLE SOFT ANALYTIC NETWORK PROCESS TO SOLVE THE MULTIPLE-ATTRIBUTE DECISION-MAKING PROBLEM

    Get PDF
      Research and development of scientific and technological products have been changing with each passing day in this new millennium. Decisions related to the production of technical products are the key to affecting the sustainable development and market share of enterprises. However, the decision-making related to the production of technology products contains many different evaluation criteria as well as qualitative and quantitative evaluation attributes. Moreover, the correlation between criteria must be considered so it can be treated as a complex multiple-attribute decision-making (MADM) problem. Moreover, performing a multi-attribute decision evaluation often encounters incomplete or missing information provided by experts, which will lead to difficulties in the solution process. In view of the incomplete or missing information of the assessment data, the traditional analytic network process (ANP) method and decision-making trial and evaluation laboratory ANP (DANP) method will delete the incomplete information during the process of assessment and decision-making, and this will bring about non-objective assessment results. In order to solve the above problems, this study proposes a novel type of flexible soft ANP (SANP) method to solve the MADM problems and uses a practical example of smartphone text entry to prove the effectiveness and suitability of the proposed SANP method
    corecore