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Prediction of Important Factors for Bleeding in Liver Cirrhosis Disease Using Ensemble Data
Mining Approach
Reprinted from: Mathematics 2020, 8, 1887, doi:10.3390/math8111887 . . . . . . . . . . . . . . . . 17
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Dragan Pamučar, Fatih Ecer, Goran Cirovic and Melfi A. Arlasheedi
Application of Improved Best Worst Method (BWM) in Real-World Problems
Reprinted from: Mathematics 2020, 8, 1342, doi:10.3390/math8081342 . . . . . . . . . . . . . . . . 55

Ali Hamzenejad, Saeid Jafarzadeh Ghoushchi, Vahid Baradaran and Abbas Mardani
A Robust Algorithm for Classification and Diagnosis of Brain Disease Using Local Linear
Approximation and Generalized Autoregressive Conditional Heteroscedasticity Model
Reprinted from: Mathematics 2020, 8, 1268, doi:10.3390/math8081268 . . . . . . . . . . . . . . . . 75
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Preface to ”Dynamics under Uncertainty: Modeling
Simulation and Complexity”

Dear Colleagues,

The dynamics of systems have proven to be very powerful tools in understanding the behavior

of the different natural phenomena throughout the last two centuries. However, the attributes of

natural systems are observed to deviate from their classical state due to the effect of different types of

uncertainties. Actually, randomness and impreciseness are the two major sources of uncertainties in

natural systems. Randomness is modeled by different stochastic processes, and impreciseness could

be modeled by fuzzy sets, rough sets, Dempster–Shafer theory, etc.

Generally, symmetry, asymmetry, and antisymmetry are basic characteristics of binary relations

used when modeling dynamical systems. Moreover, the notion of symmetry appeared in many

articles about fuzzy sets, rough sets, Dempster–Shafer theory, etc. which are employed in the

dynamical systems. Hence, the behavior of dynamical systems with uncertain variables, parameters,

and functions has attracted academic attention in the recent past. Similarly, the study of the dynamics

manifested in complex networks, or an interaction network of individuals, became popular in the last

few decades. The study of collective dynamics in complex interaction networks has been proven to be

useful to understand collective dynamic phenomena such as the emergence of cooperation between

rational agents, synchronization of signal, like a flashlight or fireflies, rumor spreading, or conscious

forming in a social network. Different methods of statistical mechanics are also successfully applied to

study such complex systems and to understand the emergence of different collective behavior. When

randomness and imprecision coexist in a system, the system is called a hybrid uncertain system. In

such a system, the overall uncertainty is an aggregation of both types of uncertainties. However, in the

context of modeling the behavior of complex natural systems, it is extremely important to analyze the

effect of appropriate uncertainty to understand the predictability of different phenomena. Examples

of such uncertain dynamical systems can be found in different levels of the universe ranging from

the interaction of quantum particles to the complex interaction of biochemical molecules, such as

signaling in the brain, or even complex social interactions like forming opinions.

Potential topics included but not limited to the following:

• Stochastic dynamics, SPDE

• Random dynamical systems

• Rough path analysis, random matrix

• Uncertain dynamics, fuzzy dynamics, rough dynamics

• Network analysis of complex dynamics

• Hybrid uncertainty analysis

• Simulation and complexity of dynamics under uncertainty

Dragan Pamucar, Dragan Marinkovic, Samarjit Kar

Editors

ix
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This issue contains the successful invited submissions [1–11] to a Special Issue of
Mathematics on the subject area of “Dynamics under Uncertainty: Modeling Simulation
and Complexity”.

The dynamics of systems have proven to be very powerful tools in understanding
the behavior of different natural phenomena throughout the last two centuries. However,
the attributes of natural systems are observed to deviate from their classical state due to
the effects of different types of uncertainties. In actuality, randomness and impreciseness
are the two major sources of uncertainties in natural systems. Randomness is modeled by
different stochastic processes, and impreciseness could be modeled by fuzzy sets, rough
sets, the Dempster–Shafer theory, etc.

Hence, the behavior of dynamical systems with uncertain variables, parameters, and
functions has attracted academic attention in the recent past. Similarly, the study of the
dynamics manifested in complex networks, or an interaction network of individuals, has
become popular in the last few decades. The study of collective dynamics in complex
interaction networks has been proven to be useful in understanding collective dynamic
phenomena such as the emergence of cooperation between rational agents, synchroniza-
tion of signals as seen in a flashlight or fireflies, rumor spreading, or conscious forming
of a social network, etc. Different methods of statistical mechanics are also successfully
applied to the study such complex systems and to understand the emergence of different
collective behaviors. When randomness and imprecision coexist in a system, the system
is called a hybrid uncertain system. In such a system, the overall uncertainty is an aggre-
gation of both types of uncertainties. However, in the context of modeling the behavior
of complex natural systems, it is extremely important to analyze the effect of the appro-
priate uncertainty to understand the predictability of different phenomena. An example
of such uncertain dynamical systems could be sited in different levels of the universe,
ranging from the interaction of quantum particles to the complex interaction of biochemical
molecules, such as signaling in the brain, or even in complex social interactions, such as
while forming opinions.

This Special Issue includes the most important forecasting techniques applied to the
modeling simulation and complexity in dynamic systems, such as, fuzzy multi-criteria
techniques, artificial intelligence, the Dempster–Shafer approach, and heuristics.

Response to our call had the following statistics, Figure 1.
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Figure 1. Special Issue statistics.

The geographical distribution of the authors (published papers) is presented in Table 1.

Table 1. Publications by country.

Countries Countries

Serbia 7
Bosnia and Herzegovina 2

China 2
South Africa 2

Turkey 2
Vietnam 2

Chile 1
India 1

Saudi Arabia 1
Spain 1
Iran 1
UK 1

Published submissions are related to road traffic risk analysis [1], dual-rotor sys-
tems [2], multi-criteria decision making [3,5,6,8,9], MIMO discrete-time systems [4], the
classification and diagnosis of brain disease [7], data mining [10], and empathic build-
ing [11].

This Special Issue presents 11 models, which are briefly presented in the next section.
Stanković et al. [1] proposed fuzzy Measurement Alternatives and Ranking according to the
COmpromise Solution (fuzzy MARCOS) method for road traffic risk analysis. In addition,
they used the fuzzy PIvot Pairwise RElative Criteria Importance Assessment—the fuzzy
PIPRECIA method— to determine the weights of the criteria on the basis of which road
network sections were evaluated. Fu et al. [2] investigated the non-probabilistic steady-
state dynamics of a dual-rotor system with parametric uncertainties under two-frequency
excitations. Žižović et al. [3] presented a new method for determining weight coefficients
by forming a non-decreasing series at criteria significance levels (the NDSL method).
Li et al. [4] investigated the problems of state feedback and the static output feedback
preview controller for uncertain discrete-time multiple-input multiple-output systems
based on the parameter-dependent Lyapunov function and the linear matrix inequality
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technique. Pribićević et al. [5] developed a new multi-criteria methodology that enables the
objective processing of fuzzy linguistic information in the pairwise comparison of criteria,
and they called it the fuzzy DEMATEL-D method. Žižović et al. [6] presented a new
MADM method in their research called RAFSI (Ranking of Alternatives through Functional
mapping of criterion sub-intervals into a Single Interval), which successfully eliminates the
rank reversal problem. Hamzenejad et al. [7] introduced a new robust algorithm using three
methods for the classification of brain disease: (1) the Wavelet-Generalized Autoregressive
Conditional Heteroscedasticity-K-Nearest Neighbor method; (2) the Wavelet-GARCH-
KNN method; and (3) the Wavelet Local Linear Approximation. Pamučar et al. [8] presented
an improved Best Worst Method for determining criteria weights in multi-criteria decision
making. Ulutaş et al. [9] proposed a multiple-criteria decision-making approach for the
selection of the optimal equipment for performing logistics activity. For defining the
objective weights of the criteria, they applied the correlation coefficient and the standard
deviation, and for the final ranking of the alternatives, they utilized the MARCOS method.
Aleksić et al. [10] developed a prediction model that determines the most important
factors for bleeding in liver cirrhosis. Salmeron and Ruiz-Celma [11] proposed an artificial
intelligence-based approach to detect synthetic emotions based on Thayer’s emotional
model and Fuzzy Cognitive Maps.

We found the submissions and selections of papers for this issue very inspiring and
rewarding. We also thank the editorial staff and reviewers for their efforts and help during
the process.

Author Contributions: Conceptualization, D.P., D.M. and S.K.; methodology, D.P. and D.M.; formal
analysis, S.K.; investigation, D.P.; supervision, D.M. and D.P. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: Empathic buildings are intelligent ones that aim to measure and execute the best user
experience. A smoother and intuitive environment leads to a better mood. The system gathers
data from sensors that measure things like air quality, occupancy, noise and analyse it for the better
experience of the users. This research proposes an artificial intelligence-based approach to detect
synthetic emotions based on Thayer’s emotional model and Fuzzy Cognitive Maps. This emotional
model is based on a biopsychological approach to the analysis of the humans’ emotional state. In this
research, Fuzzy Grey Cognitive Maps are used, which are an extension of the fuzzy cognitive maps
using the grey systems theory to model uncertainty. Fuzzy Cognitive Grey Maps (FGCMs) have
become a very valuable theory for modeling high-uncertainty systems when small and incomplete
discrete data sets are available. This research includes experiments with a couple of synthetic case
studies for testing this proposal. This proposal provides an innovative way for simulating synthetic
emotions and designing an empathic building.

Keywords: empathic building; fuzzy grey cognitive maps; Thayer’s emotion model; artificial emo-
tions; affective computing

1. Introduction

Autonomous systems have been designed to interact with one or more targets in an
environment primarily without human intervention [1,2]. Some systems are capable of
operating in an environment with high-level objectives and others that do not require any
human involvement [3,4]. The complexity of this type of system with a high degree of
autonomy makes the result of their interaction with the environment uncertain and it is not
possible to ensure the desired behavior [5]. For this reason, approaches such as Off-Line
Reinforcement Learning arise, which train agents in a controlled environment.

Regardless of the technique used for the design of autonomous systems, usually highly
specialized tasks may require the inclusion of affective behaviors to improve their perfor-
mance [6]. The role of emotions in human reasoning, daily activities, and decision-making
is really critical. In other words, emotions have a huge impact on human intelligence.
If their emotions are not working properly, then human beings will not make decisions
properly. Therefore, there is a strong interrelation between embedding emotions in systems
and making systems that include intelligence. Artificial emotion is an emerging research
subject and aims to make machines have artificial emotions [7].

According to [8], affective forecasting studies have shown that people are biased in
making both random and systematic errors when anticipating their own future emotional
states. Because of the divergence between experienced and anticipated reactions, it is worth
examining artificial intelligence methods to avoid these problems.

Empathic building is an intelligent building that aims to measure and execute the best
user experience. A smoother and intuitive environment lead to a better mood. The system
gathers the relevant data from IoT sensors that measure things like air quality, occupancy,
noise and analyze it for the better experience of the users.

5
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The main contribution of this paper is to propose Fuzzy Cognitive Grey Maps (FGCMs)
as an innovative technique to predict artificial emotions in systems with a certain degree
of autonomy in complex environments with high uncertainty. In addition, the dynamic
analysis mapping of the FGCM uses Thayer’s model of emotion within an emotional space.
They define the categories of emotions in a matrix with four quadrants. This proposal
translates said matrix to a two-dimensional Cartesian coordinate according to its valence
and excitation.

The remainder of the paper is organized as follows. Section 2 presents the theoretical
background. Section 3 shows the FGCMs fundamentals. Section 4 describe the method-
ological proposal. The next section details the experimental approach with two case studies
and conclusions are finally shown.

2. Theoretical Background

Affective Computing seeks to bring computers and effective humans closer together.
Affective computing tries to assign systems the human-like capabilities of emotions’ obser-
vation, interpretation and generation [9]. As the authors explained previously, emotions
have a huge impact on human physical states, beliefs, motivations, activities, decisions,
and even wishes. An appropriate balance of emotions makes human beings having flexibil-
ity and creativity in solving problem [10].

Affective computing focuses on the recognition and processing of human emotions.
Emotion processing is useful for analyzing human reactions, eliciting behavioral intentions,
and generating reasonable responses from systems. Over the last years emotions’ research
has become a multi-disciplinary research field with a growing interest [11]. Moreover,
emotions play a fundamental role in human-machine interaction. The simulation or
automatic detection of emotional states aims to improve the interaction between humans
and machines. Therefore, such simulation or detection would allow systems to perform
alternative operating paths in accordance with current human emotions.

It could be worthy in a lot of real-life applications as a fear-type emotion recognition
for audio-based surveillance systems [12], real-life emotion detection within a medical
emergency call centre [13], semi-automatic diagnosis of psychiatric diseases [14] detection
of children’s emotional states in a conversational computer games [15], and so on.

On the other hand, relevant advances were made in speech synthesis as well [16].
Biosignals (e.g.: electrocardiogram (ECG or EKG), electroencephalogram (EEG), electromyo-
gram (EMG) and electrooculogram (EOG) and so on), face and body images are options to
detect emotional states [17,18]. However, those kinds of methods are more invasive, and so
complex for applying in a lot of real applications [11]. This research proposes a non-invasive
soft computing-based method for simulating emotions in real-world applications.

So far, there are a lot of emotion-based theories, such as the OCC model [19] and
Thayer’s emotion model. The OCC model comprises a classification of twenty-two emotion
kinds within a hierarchy. The hierarchy includes three branches, namely emotions con-
cerning the consequences of events, actions of agents, and aspects of objects. The emotions
identified in the OCC model are the following: joy, hope, relief, pride and gratitude, like
distress, fear, disappointment, remorse, anger and dislike [20].

Furthermore, some branches mix to form a set of composed emotions, specifically
emotions concerning consequences of events. According to the OCC model, all emotions
can be grouped in terms of the event that provokes each emotion. Scenarios that drive
emotions can be folded into three kinds. The first scenario’s kind that drives emotions is
the consequences of events. The second kind of scenario that generates emotions is the
actions of the agents. The third one that provokes emotions is the appearance of objects.

Thayer’s emotional model is the affective framework that supports this research. Next,
the fundamentals of that model are shown.

6
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2.1. Thayer’s Emotion Model

Thayer’s model [21] is based on mood analysis as a biopsychological concept [22].
Thayer considers mood as an affective state highly related to psychophysiological and
biochemical elements. Moreover, individual cognitive actions and casual events perform a
critical role in its sudden understanding.

Thayer’s emotion model is frequently used to avoid the ambiguity of adjectives [23].
Thayer’s model organizes the major categories of emotions in a matrix according to their
arousal (how calming versus exciting) and valence (how negative versus positive). The emo-
tion categories can be separated into the four quadrants of the common two-dimensional
cartesian coordinate system (Figure 1), valence (x), excitement (y). The origin models the
lack of emotions.

Figure 1. Emotional model.

Three emotions are located in each quadrant. The first quadrant (valence and posi-
tive arousal) is made up of emotions: excited, happy and excited. The second quadrant
(negative valence and positive arousal) includes the emotions annoying, angry, and ner-
vous. The third quadrant emotions (valence and negative arousal) are sadness, boredom,
and sleepiness. Finally, the last quadrant (positive valence and negative arousal) contains
the emotions calm, peace and relaxation. According to this, the emotional space is made
up of twelve emotions.

The distance to the origin reflects the intensity of the emotion. Emotions closer to
the source are less intense, while those further away from the source represent more
intense emotions.

2.2. Emotional-Based AI Systems

Research has been done to develop emotional systems in various settings, such as
emotions in music, art, and so on. The authors present some efforts below.

Marreiros et al. [20] designs a Ubiquitous Group Decision Support System (u-GDSS)
that enables asynchronous and distributed computational services. One of the most in-
teresting elements of this research is a multiagent-based simulator of emotional group
decision-making. Zhou et al. [24] incorporates affective computing, emotion ontology
within an emotion-aware service-oriented architecture. This framework allows us to pub-
lish emotion-sensitive services. Sharada & Ramanaiah [25] proposes an intelligent agent

7
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framework based on a neuro-fuzzy system to process the events. The emotion generation
is based on a hopfield network.

Setiono et al. [26] proposes a game design with affective computing where the experi-
ence of the players is improved through the collection and understanding of the player’s
emotions. Han et al. [27] proposes a human-centric lifelong learning framework where the
added value is affective computing. The results of their research prove that the incorpo-
ration of affective computing greatly improves the conventional alternatives. Kratzwald
et al. [28] proposes a personalized learning transfer approach that uses sentiment analysis
to achieve significant performance improvements.

In addition, Fuzzy Cognitive Maps have also been used as an interface between emo-
tions, mood and behavior of human beings. Salmeron [29] builds emotional robots that op-
erate in near real-time and improve their sensitivity. Salmeron & Lopez [30], Salmeron [31]
presents a FCM-based proposal for generate synthetic emotions. This is the starting point
of this research. FCMs have several valuable elements for the generation of synthetic
emotions, such as flexible and adaptive reasoning and a high abstraction level [32,33].
Furthermore, this technique has been widely used to model and analyze complex dynamic
systems [34–36]. As cognition tool, an FCM is easy to use and it can model knowledge and
reasoning in an efficient way.

3. Fuzzy Grey Cognitive Maps
3.1. Fundamentals

Grey Systems Theory (GST) is a so interesting set of solving problem tools within
environments with high uncertainty, under discrete small and incomplete data sets [37].
GST was created to analyze small data samples with poor information quality. GST has
found successful applications in energy, transportation, military science, business, meteo-
rology, medicine, agriculture, industry, and others.

Fuzzy Grey Cognitive Map is based on FCMs and GST, and it has become a very wor-
thy theory for solving problems within domains with high uncertainty [38]. FGCMs offer
an intuitive way to model and reason about concepts without loss of precision. An advan-
tage of FGCMs is that non-technical decision-makers can understand all the problems in a
given scenario using decision models represented as causal graphs. Furthermore, an FGCM
allows locating the most critical factor that impacts the expected target or output concept.

The FGCM nodes are representing relevant concepts for the problem. The influence
between nodes concepts are modeled by directed edges. An edge linking two nodes
represents the grey causal impact of the causal concept on the effect concept. As FCMs,
the FGCM models are represented by a (grey) adjacency matrix (A±).

A± =

c1 . . . cn

c1
...

cn







̟±
11 . . . ̟±

1n
...

. . .
...

̟±
n1 . . . ̟±

nn







(1)

FGCMs can be considered as a special type of dynamic system that includes feedback,
where the effect of the change in one node can impact other nodes, which successively can
impact the concept that initiates the change. A FGCM models unstructured knowledge
through causalities through grey concepts and grey relationships between them based on
FCM [38–43].

Because FGCMs are hybrid methods that combine grey systems theory and neural
networks, the state of each node (concept) is measured by its grey weight as follows

̟±
ij = [̟ij, ̟ij] | ̟ij ∧ ̟ij ∈ [−1,+1] ∨ [0,+1] (2)
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where i is the pre-synaptic (cause) node and j is the post-synaptic (effect) one. Note that if
the FGCM is unipolar, then upper ̟ and lower ̟ weights belong to range [0,+1]. However,
if the FGCM is bipolar, then upper and lower weights belong to range [−1,+1].

FGCM dynamics begins with an initial grey vector state c±(0), which models a
proposed initial imprecise stimuli. The initial grey vector state with n nodes is denoted as

c±(0) =
(

c±1 (0), c±2 (0), . . . , c±n (0)
)

=
(

[c1(0), c1(0)], [c2(0), c2(0)], . . . , [cn(0), cn(0)]
)

(3)

The updated nodes states are computed in an iterative inference process with an
activation function (usually sigmoid or hyperbolic tangent function) [38,44,45], which
maps monotonically the grey node value into a normalized range [0,+1] or [−1,+1],
depending of the selected function. Note that grey arithmetic is detailed as [38]. Each
single node would be updated as follows

c±j (t + 1) ∈ f±
(

∑
n
i=1 ̟±

ij · c±i (t)

)

∈
[

cj(t + 1), cj(t + 1)
]

(4)

If the nodes has memory of the previous state the updating equation is as follows

c±j (t + 1) ∈ f±
(

c±i (t)⊕
n

∑
i=1

̟±
ij · c±i (t)

)

(5)

where ⊕ is the summation of grey numbers.
The most used activation function in FGMCs is unipolar sigmoid function when the

nodes’ value maps in the range [0, 1]. If f±(·) is a sigmoid, then the i component of the
grey vector state at t + 1 iteration

(

c±(t + 1)
)

after the iterations would be as follows

c±i (t + 1) ∈

[

(

1 + e−λ·ci(t)

)−1

,
(

1 + e−λ·ci(t)

)−1
]

. (6)

Morever, the activation function f±(·) would be the hyperbolic tangent when the
nodes’ states map in the range [-1, +1]. It is computed as follows

c±i (t + 1) ∈

[

e2·λ·ci(t) − 1
e2·λ·ci(t) + 1

,
e2·λ·ci(t) − 1
e2·λ·ci(t) + 1

]

(7)

The nodes’ states evolve along the FGCM dynamics and it could lead to three differ-
ent scenarios.

• If the stability is reached, the FGCM inference process stop. It achieves a steady
pattern of nodes’ states, the so-called grey fixed-point attractor, or grey hidden pattern.
This steady grey vector state shows the impact of the initial grey vector state on the
final state of each FGCM grey node.

• In addition, the grey vector state could keep cycling between some fixed states.
This situation is known as the limit grey cycle.

• A third possible state with a continuous activation function would be a grey chaotic
attractor. It is when, instead of a steady-state, the FGCMs keep generating different
grey vector states for each iteration.

FGCM includes greyness as an uncertainty measurement. Higher values of greyness
mean that the results have a higher uncertainty degree. It is computed as follows

φ(c±i ) =
ℓ(c±i )

ℓ(ψ)
(8)
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where ℓ(c±i ) = ci − ci is the absolute value of the length of grey node c±i state value,
and ℓ(ψ) is the absolute value of the range in the information space, denoted by ψ. It is
computed as follows

ℓ(ψ) =

{

1 i f {c±i , ̟±
i } ⊆ [0, 1] ∧ {c±i , ̟±

i } 6⊆ [−1,+1]

2 i f {c±i , ̟±
i } ⊆ [−1,+1]

(9)

3.2. FGCM Advantages over FCM

FGCMs have several advantages over conventional FCM [32,33,38,41,46,47]. A FGCM
allows us to calculate the desired steady states managing the uncertainty and hesitation
existing in the raw data (for instance, due to source noise) for the causal relationships
between nodes, as well as within the states of the initial nodes.

Unlike FCMs, FGCM states have weights with grey numbers. In this way, FGCMs are
able to model multi-meaning uncertainty in the relationships between concepts.

FGCM is an FCM generalization and it is considered closer to human decision-making
than FCM is. It handles the inner hesitancy and uncertainty in complex systems by includ-
ing greyness in edges and nodes. Indeed, the FGCMs’ reasoning process output includes a
degree of greyness expressed in grey values representing the certainty of the results.

FGCMs are also able to model more types of relationships than an FCM can. For ex-
ample, FGCMs can run successfully models with edges where the intensity is just partially
known or even is not known at all (e.g., ̟±

ij ∈ [−1,+1]).
It is important to consider that, even in the case the dynamics of an FCM would finish

with the same vector state as one FGCM after the whitenization, FGCMs still handle better
the grey uncertainty and inner fuzziness of human emotions.

4. Proposal
Methodology

Figure 2 shows the flowchart of our methodological proposal. The starting points are
the input data. It includes three kinds of input data. Firstly, the environment is a set of
variables representing the influence of the environment over the affective state. Moreover,
the mood and the temperament are input data because each individual has its own mood
and temperament with the differences between them detailed before.

The effective engine is composed of FGCM-based models for building synthetic
emotions. The reactions have influence over the mood. Afterwards, the higher state is
selected and the arousal and the valence are computed. The affective state is computed
using arousal and valence. If the system keeps running, the process is executed again. Note
that the environment data is changing over time and it has an impact on the affective state.

Figure 2. Architecture of the proposal.
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5. Experiments and Discussion

With the intention of testing the proposal, this research analyzes two case studies of
an artificial experiment. The objective is the simulation of the emotions of an autonomous
system produced by the environmental conditions in a hospital facility.

It should be noted that the objective of the model is not to design a real-world emo-
tional system, but only to test the FGCM approach for simulating synthetic emotions of
people in the queue in a theoretical empathic building. For that reason, the authors have
designed an FGCM-based emotional model shown in Figure 3. The concepts in this model
are detailed in Table 1. Nodes c±1 and c±2 model arousal and valence respectively. They are
the output concepts because those nodes are used to identified the emotions.

In each case of this experiment, the authors have designed a different initial vector
state. In ths test case, the initial grey vector state c±1 (0) models the initial grey state values
of the events at a given time of the process. As a result of the FGCM dynamics the final grey
vector c±(t) models the achieved steady state. The steady grey vector c±(t) is the steady
vector in the convergence region. The steady state of nodes c±1 and c±2 , their greyness and
the detected emotion are analysed.

Moreover, the authors analyze the FGCM dynamics in both cases with different
settings. The setting is composed by the memory and slope. If the nodes do not have
memory, then the updating equation is Equation (5). If the nodes have memory, then
the updating equation is Equation (4). The activation function is the hyperbolic tangent
because the emotional model needs negative values. The slope is the λ parameter of the
Equation (7). According to literature [48], the slopes applied for both activation functions
are 1, 3, and 5.
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Figure 3. Fuzzy Cognitive Grey Map (FGCM)-based experimental model.
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Table 1. FGCM nodes and description.

Node (c±i ) Label Description

c±1 Arousal State of being awake or reactive to stimuli

c±2 Valence
The intrinsic attractiveness (positive valence) or
aversiveness (negative valence) of an emotion

c±3 Reward/Punishment Reward is related with the queue’s purpose

c±4 Stress
A person’s response to a stressor such as noise or
uncomfortable temperature

c±5 Waiting expectations Waiting time

c±6 Noise Environmental noise

c±7 Uncomfortable Temperature higher or lower than comfortable

c±8 Scarce service time Waiting time for each person

c±9 Few queue length People in the queue

5.1. Experiment 1

For the first synthetic case study, the initial grey vector state is shown in Equation (10).
Table 2 shows the results of this experiment with the different settings. Figure 4 show a
graphical representation of the emotions achieved with each setting.

c±1 (0) = ([0, 0], [0, 0], [.2, .2], [0, 0], [0, 0], [.2, .3], [−.2,−.1], [.1, .3], [.3, .4]) (10)

Table 2. Results of experiment 1.

Steady State Greyness

m f±(·) Slope c1 c2 Emotion c1 c2

F tanh 1 [0.0, 1 × 10−6] [−1 × 10−6, 0.0] neutral 6.3 × 10−7 3.78 × 10−7

F tanh 3 [0.0, 1 × 10−5] [−6 × 10−6, 0.0] neutral 5.03 × 10−6 3.02 × 10−6

F tanh 5 [0.0, 0.1360] [-0.0819, -0.0] ligth nervous 6.8 × 10−2 4.10 × 10−2

T tanh 1 [0.0380, 0.1766] [0.1308, 0.4200] ligth pleased 6.93 × 10−2 1.45 × 10−1

T tanh 3 [0.3275, 0.9073] [0.8188, 0.9958] med-strong happy 2.90 × 10−1 8.85 × 10−2

T tanh 5 [0.7331, 0.9990] [0.9953, 0.9999] strongly happy 1.33 × 10−1 2.36 × 10−3

Note that m means memory, F false and T true. Higher values of greyness are highlighted.

The achieved emotion with hyperbolic tangent as activation function is strongly
related with the selected setting, especially the memory of the updating function. If the
function has no memory (Equation (4)), then the emotion is almost neutral. However, if the
function has memory (Equation (5)), then the emotion goes from pleased to happy as the
slope increases.

The lower values of greyness for nodes c±1 and c±2 are achieved without memory
(Equation (4)), and 1.0 as slope. The higher value of greyness for node c±1 is achieved
with memory (Equation (5)), and 3.0 as slope. The higher value of greyness for node c±2 is
achieved with memory (Equation (5)), and 1.0 as slope.

5.2. Experiment 2

For the second synthetic case study, the initial grey vector state is shown in Equation (11).
Table 3 shows the results of this experiment with the different settings. Figure 5 show a
graphical representation of the emotions achieved with each setting.
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c±2 (0) = ([[.0, .0], [.0, .0], [.0, .0], [−.7,−.6], [.2, .3], [−.1, .0], [.0, .0], [.6, .7], [−.4,−.1]]) (11)

The values of arousal (c±1 ) and valence (c±2 ) with hyperbolic tangent as activation
function allow to compute peaceful and neutral as the achieved emotions. The achieved
emotion is strongly related to the selected setting, especially the memory of the activation
function. If the updating function has no memory (Equation (4)), then the emotion is mostly
neutral. However, if the activation function has memory (Equation (5)), then the emotion is
peaceful increasing intensity when the slope increases.

The lower values of greyness for nodes c±1 and c±2 are achieved without memory
(Equation (4)), and 1.0 as slope. The higher value of greyness for node c±1 is achieved
with memory (Equation (5)), and 1.0 as slope. The higher value of greyness for node c±2 is
achieved with memory (Equation (5)), and 1.0 as slope.

Table 3. Results of experiment 2.

Steady State Greyness

m f±(·) Slope c1 c2 Emotion c1 c2

F tanh 1.0 [−1 × 10−6, 0.0] [0.0, 1 × 10−6] neutral 6.61 × 10−7 3.96 × 10−7

F tanh 3.0 [−1 × 10−5, 0.0] [0.0, 6 × 10−6] neutral 5.21 × 10−6 3.13 × 10−6

F tanh 5.0 [-0.1360, 0.0] [0.0, 0.0820] almost neutral 6.80 × 10−2 4.10 × 10−2

T tanh 1.0 [-0.4135, -0.1936] [0.1794, 0.6163] medium peaceful 1.10 × 10−1 2.18 × 10−1

T tanh 3.0 [-0.9966, -0.9274] [0.8990, 0.9999] strongly peaceful 3.46 × 10−2 5.04 × 10−2

T tanh 5.0 [-1.0, -0.9993] [0.9978, 1.0] strongly peaceful 3.26 × 10−4 1.09 × 10−3

Note that m means memory, F false and T true. Higher values of greyness are highlighted.
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Figure 4. Experiment 1.
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Figure 5. Experiment 2—Hyperbolic tangent.

6. Conclusions

This paper shows an FGCM-based system for synthetic emotions. FGCM is a grey
graph for modeling causal reasoning within complex problems with high uncertainty.
This research proves that it is possible to generate or simulate emotions obtained from
sensors’ raw data.

Note that this research is not an empirical one. An FGCM-based proposal based on
sensors’ raw data, concepts and output nodes is shown. Indeed, the aim is not to model a
real-world system, but this research proposes an FGCM-based theoretical proposal so that
ongoing research of real-world practitioners can apply to generate or simulate synthetic
emotions within their own applications or systems.

The experiments’ results prove that the outlet of this proposal is strongly related to the
setting applied. According to the results, FGCMs with memory nodes are the best option for
emotion modeling, and the lower slopes target emotions with less intensity. As a limitation,
FGCMs are strongly related with their own setting and validation is not straightforward.
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Abstract: The main motivation to conduct the study presented in this paper was the fact that due to
the development of improved solutions for prediction risk of bleeding and thus a faster and more
accurate diagnosis of complications in cirrhotic patients, mortality of cirrhosis patients caused by
bleeding of varices fell at the turn in the 21th century. Due to this fact, an additional research in this
field is needed. The objective of this paper is to develop one prediction model that determines most
important factors for bleeding in liver cirrhosis, which is useful for diagnosis and future treatment
of patients. To achieve this goal, authors proposed one ensemble data mining methodology, as the
most modern in the field of prediction, for integrating on one new way the two most commonly used
techniques in prediction, classification with precede attribute number reduction and multiple logistic
regression for calibration. Method was evaluated in the study, which analyzed the occurrence of
variceal bleeding for 96 patients from the Clinical Center of Nis, Serbia, using 29 data from clinical
to the color Doppler. Obtained results showed that proposed method with such big number and
different types of data demonstrates better characteristics than individual technique integrated into it.

Keywords: ensemble techniques; data mining; classification and discrimination; linear regression;
applied mathematics general; prediction theory; theory of mathematical modeling; medical applications

1. Introduction

Determination of relevant predictors in many fields of human life is important research challenge,
including medicine. Research described in this paper is motivated from the fact that from one side,
the liver disease causes about 3.5% of all deaths, which is a big number from approximately two million
deaths per year worldwide, and that bleeding of varices is most common complication for successful
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treatment of liver cirrhosis [1]. On the other side, fact that the development of improved computer
solutions for prediction of factors of bleeding, at the beginning of the 21th century, enables significantly
more comprehensive, accurate, and fast diagnosis. Namely, the best way to determine esophageal
varices is through gastrointestinal endoscopy. Since less than 50% of cirrhotic patients have varices
and endoscopy is a nonconforming intervention, this way, a noninvasive methodology for predicting
patients with the highest risk of bleeding and then applying endoscopy is the right choice [2]. In that
way, good prediction indirectly reduces mortality of cirrhosis patients caused by bleeding of varices,
so that further researches in this area impose itself as a serious challenge [3].

Basic idea of authors in research proposed in this paper was to apply concept of the classification
algorithm, as one of a group of machine learning algorithms, so that a two-class classifier classifies the
results into two classes, which is in each classification procedure completely defined with suitable
2 × 2 confusion matrix that content number of a true and false positive classification attempts and
true and false negative classification attempts and could be applied in prediction of significant
factors for bleeding in liver cirrhosis. Namely, concepts of diagnostic sensitivity and specificities
are commonly used in the field of laboratory medicine [4]. Diagnostic test results are classified as
positive or negative, where positive results imply the possibility of illness, whereas negative results
indicate higher probability of absence of the illness. However, most of these tests are conducted by the
instruments with high but not perfect accuracy, thus introducing certain errors in the diagnosis results
and causing false positive and false negative results. Diagnosis sensitivity that is also known as true
positive rate represents the possibility to detect ill patients actually, and it is defined as the number
of true positive over the total number of ill patients, including the true positive and false negative
patients. Hence, proper detection should discover patients with positive results within ill patients.
On the other hand, specificity that is also known as a true negative rate represents possibility to detect
healthy patients, and it is defined as the number of true negative patients over the total number of
healthy patients, including the true negative and false positive ones. Thus, proper determination
should also provide negative result for healthy patients. Assuming that determination provides only
positive result, then the sensitivity will be 100%, but in that case, healthy patients would be falsely
identified as ill [5]. In theory of statistic, experiments can be used to affirm hypotheses on differences
and relationship between two or more groups of variables, and such experiments are called tests,
or they can be used to determine influence of variables on dependent variable(s), such multifactor
experiments are called valuations, [6] and such one is applied in the presented case study in this
paper. Data mining approach, where belongs classification methodology, has been widely used in
different fields of human life, such as economics [7], justice [8], medicine [9], etc. Data mining has also
been applied for solving various problems, especially in diagnosis in medicine [10] and in the field
of diagnosis of liver cirrhosis as in [11]. Bioinformatics and data mining have been the research hot
topics in the computational science field [12–16]. Data mining is generally a two stage methodology
that in the first stage involves the collection and management of a large amounts of data, which in
second stage is used to determine patterns and relationships in collected data using machine learning
algorithms. [17–20].

It is known that esophagus bleeding is not only the most frequent but also the most severe
complication in cirrhotic patients that directly threatens patient’s life [21–24]. Because of this fact,
the main objective of this paper is to analyze as many factors as possible, which cause this bleeding,
and specifically in this study, we have determined 29 factors, which belong to different types of data,
from clinical and biochemical view, obtained via endoscopic and ultrasound data to the color Doppler
data. In this way, we aimed to be as comprehensive as possible and determine and rank these factors
as risk indicators of varices bleeding. Consequently, due to high mortality ratio caused by bleeding of
varices, considering the bleeding risk assessment is crucial for proper therapy admission. The case
study, we included 96 cirrhotic patients from the Clinical Center of Nis, Serbia. This mentioned
study studied risks of initial varices in cirrhosis patients, as well as risks of early and late bleeding
reoccurrence. As the main result of this study, authors proposed model which predicts the assessment of
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the significance of the individual parameters for variceal bleeding and survival probability of cirrhotic
patients, which is in addition to the above adequate therapy very important and for determination of
patient priority on the liver transplant waiting lists. Namely, in literature and practice connected with
the problem of bleeding in liver cirrhosis, we can find research gap between request that for considering
this problem, it is necessary to include more different types of parameters and, e.g., uncomfortable
endoscopy, which, in turn, may be cost ineffective because less than 50% of a cirrhosis patients are with
varices, from the medical standpoint from one side [25]. From the other mathematical side, we have
the research gap between the need to include as many factors as possible in the consideration of
bleeding problems in liver cirrhosis, which, in turn, cause the undesirable occurrence of noise in the
data and, consequently, the need to reduce their number provided that the accuracy of the prediction is
maintained [26]. Due to this fact, it is becoming more common request for using more noninvasive
factors as possible, which is commonly solved using data mining technique. We can find more articles
that deals with using different techniques of data mining for determination of risk indicators in different
complications in disease liver cirrhosis [27–29] and risk for variceal bleeding as in [30,31]. Because
two main methodologies of data mining approach are used in this paper, data mining classification
technique with feature selection and logistic regression for prediction of variceal bleeding in cirrhotic
patients, it is necessary to present the state of the art closely observed on the subject methodology,
which solves the considered problem. This enabled authors to produce one new ensemble data mining
model whose validity is proven by the results obtained in the case study. In literature, we find few
papers that deals with machine learning approaches, which studied general complications in liver
cirrhosis disease as, e.g., in [32,33], also on prediction of esophageal varices [34–38], and we found
different forms of their integration but we did not find integration that we propose in this paper.

Authors as the subject of the paper set the answer to the research question, i.e., proof of the
hypothesis, that it is possible to integrate classification method with attribute reduction also and
regression into one ensemble method, which has better characteristics than each of them individually
applied. To confirm the hypothesis and answer the research question, the authors used the results
obtained with application of their novel proposed model in the case study described in previous
paragraph of this section.

The remaining of this paper is organized as follows. After Section 1 Introduction, which after
short explanation of motivation for authors to work on this paper, describes in four paragraphs the
concept, objectives and existing research gap, contribution, and the organization of the paper and gives
author’s review of world literature which deal with bleeding problems in liver cirrhosis as well as with
application of classification and logistic regression in prediction models, the other sections continues.
Next, Section 2 Materials and Methods is part of paper that presents the background, which enables
solving of the considered problem to be solved in this paper, introducing the methodology adopted in the
proposed solution. In Section 3 Results are presented results obtained with proposed new methodology
at concrete case study performed in the Clinical Center of Nis, Serbia. In Section 4 Discussion, authors
discuss possibilities of theirs proposed approach and especially to clinical interpretation of the results,
and in the end of this paper are conclusion remarks in Section 5 Conclusions.

2. Materials and Methods

2.1. Materials

2.1.1. Determination of Relevant Predictors of Bleeding Problems

The aim of this paper is to apply the integrated data mining methodology to the prediction on
risk indicators of bleeding of varices using comprehensive analyze of different types of the clinical,
biochemical, endoscopic, ultrasound, and color Doppler data [36]. As mentioned previously, the study
included 96 cirrhotic patients. In order to conduct the case study more efficiently, two groups of
patients were formed according to whether they previously had bleeding. The group of patients with
episodes of bleeding of varices was divided into two subgroups, namely, patients with and without
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endoscopic sclerosis of esophagus varicosity. Clinical and biochemical parameters (Child–Pugh and
MELD score) were analyzed along with endoscopic parameters (size, localization, and varicosity
appearance) and ultrasound and color Doppler parameters. So big number of 29 considered factors
in which 5 different type of parameters are used, because of the high mortality rate due to bleeding
of varices, it is necessary to have precise risk assessment of bleeding for timely implementation
of therapeutic interventions and also to assess precise prognosis and survival rate of patients with
cirrhosis, which is important for appropriate therapy of patients and good patient prioritization on the
waiting list for liver transplantation.

Benedeto-Stojanov et al. in [37] considered the bleeding problem in cirrhotic patients with the
aim to evaluate the survival prognosis of patients with liver cirrhosis using the Model of End-stage
Liver Disease (MELD) and Child–Pugh scores and to analyze the MELD score prognostic value in
patients with both the liver cirrhosis and the bleeding of varices. Benedeto-Stojanov et al. studied
in [38] the bleeding of varices as the most common life-threating complication of a cirrhotic patient
with the aim to analyze the sources of gastroesophageal bleeding in cirrhotic patients and to identify
the risk factors of bleeding from esophageal varices. Durand and Valla in [39] introduced a MELD
score that was originally designed for assessing the prognosis of cirrhotic patients that underwent the
transjugular intrahepatic portosystemic shunt (TIPS) and defined it as a continuous score relying on
three objective variables. In the case of TIPS, MELD score has been proven as a robust marker of early
mortality across a wide spectrum of causes of cirrhosis, but even though, 10–20% of patients have been
still misclassified. In [40], authors described their developed Rockall risk scoring system for predicting
the outcome of upper gastrointestinal (GI) bleeding, including bleeding of varices with the aim to
investigate the mortality rate of first bleeding of varices and the predictability of each scoring system.
Kleber and Sauerbruch studied in [41] the hemodynamic and endoscopic parameters as well as liver
function and coagulation status and patient’s history regarding the bleeding incidence. The following
parameters were found to be correlated with an increased risk of bleeding: the first year after diagnosis
of varices, positive history of bleeding of varices, presence of varices with large diameters, high blood
pressure or a red color sign, concomitant gastric varices or development of a liver cell carcinoma.
Authors concluded in [42] that using MELD score-based allocation, many current transplant recipients
have shown advanced end-stage liver disease with an elevated international normalized ratio (INR).

The relationship between abnormalities in coagulation tests and the risk of bleeding has recently
been investigated in patients with liver disease. In [32], we can notice that risk factors for mortality
and rebleeding following acute variceal hemorrhage (AVH) were not well enough and completely
established, and they tried to determine risk factors for emergence of mortality in 6-week and rebleeding
within 5 days in cirrhotic patients and AVH.

2.1.2. Methods of Aggregation in Classification and Prediction Models

Boosting as an ensemble algorithm is one of the most important recent technique in classification
methodology. Boosting sequentially applies classification algorithm to readjust the training data and
then takes a weighted majority of the votes of a series of classifiers. Even being simple, this strategy
improves performances of many classification algorithms significantly. For a two-class problem,
boosting can be viewed as an approximation to additive modeling on the logistic scale using the
maximum Bernoulli likelihood as a criterion [43]. Over the past few years, boosting technique has
appeared as one of the most powerful methods for predictive analytics. Some implementations of
powerful boosting algorithms [44] can be used for solving the regression and classification problems,
using continuous and/or categorical predictors [45,46]. Finally, using predictive analytics with gradient
boosting in clinical medicine is discussed in [47].

We can find a different kind of mentioned ensemble algorithm in prediction of most important
factors using other methodologies as well as aggregation methods in decision-making problem,
e.g., [48,49].
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In computer science, e.g., a logistic model tree (LMT) represents a classification model which has
an associated supervised training algorithm in which logistic regression and decision tree learning are
combined [50].

2.2. Methods

2.2.1. Classification Method for Relevant Predictor Determination

Classification is frequently studied methodology in field of machine learning. Classification
algorithm, as a predictive method, represents a supervised machine learning technique and implies the
existence of a group of labeled instances for each class of objects and predicts the value of a (categorical)
attribute (i.e., class) based on the values of other attributes, which are called predicting attributes [51].
The algorithm tries to discover relationships between the attributes in order to achieve accurate
prediction of the outcome. The prediction result depends on the input and discovered relationships
between the attributes. Some of the most common classification methods are classification and decision
trees (e.g., ID3, C4.5, CART, SPRINT, THAID, and CHAID), Bayesian classifiers (e.g., Naive Bayes and
Bayes Net), artificial neural networks (Single-Layer Perceptron, Multilayer Perceptron, Radial Base
Function Network, and Support Vector Machine), k-nearest neighbor classifier (K-NN), regression-based
methods (e.g., Linear Regression and Simple Logistic), and classifiers based on association rules
(e.g., RIPPER, CN2, Holte’s 1R, and C4.5) [52]). Selection of the most appropriate classification algorithm
for a certain application is one of crucial points in data mining-based application and processes.

Consider a classifier that classifies the results into two classes, positive and negative.
Then, the possible prediction results are as shown in Table 1.

Table 1. The confusion matrix of a two-class classifier.

Predicted

Positive Negative

True
Positive TP FN

Negative FP TN

It should be noted that in Table 1, TP + FN + FP + TN =N where N is the total number of members
in the considered set to be classified. The matrix presented in Table 1 is called a 2 × 2 confusion matrix.
As presented in Table 1, there are four results, true positive (TP), false positive (FP), true negative (TN),
and false negative (FN). It is important to notice that these numbers are counts, i.e., integers, not ratios,
i.e., fractions. Based on the possible results that are presented in Table 1, for a two-class classifier,
the accuracy, precision, recall, and F1 measure can be, respectively, calculated as:

Accuracy = (TP + TN)/N (1)

Precision = TP/(TP + FP) (2)

Recall(Sensitivity) = TP/(TP + FN) (3)

Specificity = TN/(TN + FP). (4)

Method based on the Receiver Operating Characteristic (ROC) curves are widely used in evaluation
of prediction performance of a classifier. These represent on the OX axe, the rate of false positive cases
and on the OY axe, the rate of true positive cases [53].

The ROCs of five classifiers denoted as A–E are displayed in Figure 1. A discrete classier output
only a class label. Also, a discrete classier produces an (FP_Rate and TP_Rate) pair, which corresponds
to a single point in the ROC space, where FP_Rate represents false positive rate and TP_Rate represents
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true positive rate. A binary classifier is represented by a point on the graph (FP_Rate and TP_Rate),
as follows [54]:

• Point (0,1) of the ROC plot represents perfect, ideal prediction, where the samples are classified
correctly as positive or negative;

• Point (1,1) represents a classifier that classifies all cases as positive;
• Point (1,0) represents a classifier that classifies all samples incorrectly.

 

 

 
 

 
 

Figure 1. The Receiver Operating Characteristic (ROC) graph of five discrete classifiers.

Generally, in the ROC space, a point is classified more accurately when its true positive rate is
higher and false positive rate is lower. In the ROC graph, classifiers appearing on the left-hand side of
the ROC graph, which are near the y-axis, are considered as conservative. Namely, these classifiers make
positive classifications only based on a strong evidence, so there can be only a few false positive errors,
but there is also a low true positive rate as well. On the other hand, classifiers on the upper right-hand
side of the ROC graph are considered as liberal. These classifiers make positive classifications based
on weak evidence, so they classify almost all positives correctly, but they often have high false positive
rate. For instance, in Figure 1, classifier A is more conservative than classifier B.

Decision trees or rule sets only make a decision on one of two classes a sample belong to in the
case considered in this paper. When a discrete classifier is applied to a sample set, it yields to a single
confusion matrix, which in turn corresponds to one ROC point. Thus, a discrete classifier produces
only a single point in ROC space. On the other hand, the output of Naive Bayes classifier or neural
networks is a probability or a score, i.e., a numeric value that represents the degree to which a particular
instance is a member of a certain class [55].

Many classifiers scan yield to incorrect results. For instance, logistic regression provides
approximately well-calibrated probabilities; in the Support Vector Machine (SVM) and similar methods,
the outputs have to be converted into reasonable probabilities; regression analysis establishes a
relationship between a dependent or outcome variable and a set of predictors. Namely, regression,
as a data mining technique, belongs to supervised learning. Supervised learning partitions data into
training and validation data sets, so regression model is constructed using only a part of the original
data, that is, training data.

The classification performance of a classifier can be evaluated using:

• a user-defined data set,
• the n-fold cross validation division of the input data set,
• division of the input data set into the training and test sets.
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The data are divided into two sets, training set and test set. The training set is used to train a
selected classification algorithm, and test set is used to test the trained algorithm. If the classifier
classifies most instances in the training set correctly, it is considered that it can classify correctly some
other data as well. However, if many samples are incorrectly classified, it is considered that the
trained model is unreliable. In addition to training and testing as a common approach to efficient use,
model validation is most often used [56] to:

- select the best model from multiple candidates
- determine the optimal configuration of model parameters
- avoid over- or underfitting problems.

In summary, the classification model is defined by its true positive rate, false positive rate,
precision, F1 measure, and confusion matrix, which represent basic parameters of precision evaluation
of the implemented classifier.

2.2.2. Calibration Method

Calibration is applicable in the case a classifier output is the probability value. Calibration
refers to the adjustment of the posterior probability output by a classification algorithm towards
the true prior probability distribution of target classes. In many studies [57–59], machine learning
and statistical models were calibrated to predict that for every given data row the probability
that the outcome is 1. In classification, calibration is used to transform classifier scores into class
membership probabilities [11,60]. The univariate calibration methods, such as logistic regression,
exist for transforming classifier scores into class membership probabilities in the two-class case [61].
Logistic regression represents a statistical method for analyzing a dataset including one or more
independent variables that determine an outcome, which is measured with a dichotomous variable,
where there are only two possible outcomes, i.e., it contains only the data coded as 1, which is positive
result (TRUE, success, pregnant, etc.), or 0, which is negative result (FALSE, failure, nonpregnant, etc.).

Logistic regression generates the coefficients, and the corresponding standard errors and
significance levels, to predict a logit transformation of the probability of presence of a characteristic of
interest, which can be expressed as:

logit(p) = b0 + b1X1 + b2X2 + b3X3 + . . .+ bkXk, (5)

where p denotes the probability of presence of the characteristic of interest. The logit transformation is
defined as the logged odds as follows:

odds =
p

1− p
=

probability of presence of characteristics
probability of absence of characteristics

(6)

logit(p) = ln(
p

1− p
). (7)

Logistic regression selects parameters that increase the probability of observing sample values,
instead of selecting parameters that minimize the sum of square errors (as in ordinary regression).
The regression coefficients are coefficients b0, b1, . . . , bk in the regression Equation (8). In the logistic
regression, coefficients indicate the change (an increase when bi > 0, or a decrease when bi < 0) in
the predicted logged odds of the characteristic of interest for a one-unit change in the independent
variables. When the independent variables that are denoted as Xa and Xb in (8) are dichotomous
variables (e.g., smoking and sex), then the influence of these variables on the dependent variable can
be compared by matching their regression coefficients ba and bb. By applying the exponential function
on the both sides of the regression Equations (7) and (5), considering Equation (6) as well, Equation (7)
can be rewritten as the following equation:
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odds =
p

1− p
= eb0 × eb1x1 × eb2x2 × eb3x3 × . . .× ebkxk . (8)

Thus, according to (8), when a variable Xi increases by one, while all other factors remain
unchanged, then the odds will increase by a factor eb

i, which is expressed as:

ebt(1+xt) − ebtxt = ebt(1+xt)−btxt = ebt+btxt−btxt = ebt . (9)

The odds ratio (OR) of an independent variable Xi is notated as factor eb
i, and it denotes a relative

amount by which the odds of the outcome increase (OR greater than 1) or decrease (OR less than 1)
when the value of the independent variable is increased by one.

2.2.3. Aggregation Method of Boosting using Classification and Calibration

Boosting as ensemble algorithm, which often uses more different supervised machine learning
algorithms with minimum two from decision trees, classification and regression algorithm has become
one of the most powerful and popular approaches in knowledge discovery and data mining field. It is
commonly applied in science and technology when exploring large and complex data for discovering
useful patterns is required, which allows different ways of modeling knowledge extraction from the
large data sets [62].

In supervised learning, feature selection is most often viewed as a search problem in a space of
feature subsets. In order to conduct our search, we must determine a starting point, a strategy for
traversing trough the space of subsets, a function for evaluation, and a criterion to stop. This formulation
allows that a variety of solutions can be developed, but usually two method types are considered, called
filter methods and wrapper methods. Filter methods use an evaluation function that relies solely on
data properties. Due to that fact, it is independent on any particular algorithm, and wrapper methods
use inductive algorithm to estimate the value of a given subset. In our approach, there method types are
combined: filter (information gain, gain ratio, and other four classifiers) and wrapper (search guided
by the accuracy) [63].

As mentioned previously, the ROC analysis has been used in medicine, radiology, biometrics,
and other areas for many decades, and recently, it has been increasingly used in machine learning and
data mining research. In this study, the authors used the areas under the ROC curves to identify the
classification accuracy of more classifiers, which is most important for proposed model to order the
minimal number of attributes enough to give maximum value on the ROC curve [64].

In addition, most popular calibrating methods use isotonic regression to fit a piecewise-constant
nondecreasing function. Isotonic regression is a useful nonparametric regression technique for fitting
an increasing function to a given dataset. An its alternative is to use a parametric model and that most
common model called univariate logistic regression. The model is defined as:

l = log(p/(1− p)) = a + bf, (10)

where f denotes a prediction score and p denotes the corresponding estimated probability for predicted
binary response variable y. Equation (10) shows that the logistic regression model is essentially a linear
model with intercept a and coefficient b, so it can be rewritten as:

p =
1

1 + e−(a+bf)
. (11)

Assume fi is prediction score on the training set, and let yi ∈”{0, 1} be the 2009 true label of the
predicted variable. The parameters a and b are chosen to minimize the total sum

∑
i

l(p, yi).

For example, in paper [35], which deals with prediction of risk of bleeding of varices using
25 attributes, we can find one aggregation of six classification’s algorithms and six feature selection
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classifiers and that three from wrapper and three from filter group proposes model, which gives best
solution than each of aggregated methods individually.

In this paper, authors propose model which:

- integrates classification (choosing the best of 5 selected)
- uses attribute reduction (choose from 5 proposed classifiers the one that reaches the maximum

ROC value with the least number of attributes)
- than uses regression (which performs a fine calibration of the obtained results) as one boosting

method, which has better characteristics and gives better results than any of those integrated
into it, when they are individually applied. To confirm the hypothesis and answer the research
question, the authors used the results provided by the case study described in Section 2.1 Material
of this paper uses the procedure of obtaining significant bleeding predictors and setting great
importance for further treatment and prevention of bleeding, which is summarized in Algorithm 1.

Algorithm 1: Procedure of obtaining significant predictors of bleeding in cirrhotic patients.

1. Determine an optimal classification algorithm with the highest value of ROC among enough number of
minimum five algorithms, each from different class of classifiers, e.g., Naive Bayes, J48 Decision Trees,
HyperPipes, Ada LogitBoost, and PART.

2. Perform attribute ranking according to the informativeness of the attribute that provides information on
the presence of a certain attribute in a particular class. Using enough number of classifiers for attribute
selection we proposed minimum of five classifiers, i.e., chi-square attribute evaluation, gain-ratio
attribute evaluation, information-gain attribute evaluation, relief attribute evaluation, and symmetrical
uncertainty attribute evaluation, to determine the feature subset methods and determine the set of
attribute ranks R = {r1, r2, . . . , rn}, where n is the starting number of attributes.

3. Compute a subset A′ = {a1, a2, . . . , am} of the starting set A = {a1, a2, . . . , an}, m < = n of attributes as the most
“useful” amongst. The ROC value is obtained by the optimal classification algorithm determined in Step 1.

4. Univariate logistic regression is used to calculate and the odds ratio for each attribute. Thus, a set of
attributes with diverse distribution of attributes ranks is obtained OR = {or1, or2, . . . , ork}.

5. Over acquired subset of attributes A’ = {a1, a2, . . . , am} in Step 3 with the set of attribute ranks R = {r1, r2,
. . . , rn} acquired in Step 2 performs the attribute rank calibration. Attribute calibration is performed on
the basis of OR = {or1, or2, . . . , ork} distribution of attribute influences acquired in Step 4.

The calibration process is given in Algorithm 2.

Algorithm 2: The pseudocode of the calibration process used most significant predictors of death income in
cirrhotic patients part.

//Set the great importance for further treatment and prevention of bleeding for 15
predictive//variables
for i = 1 to (n − 1) inclusive do:
/* if odds ratio value pair is out of order */
if OR[i] > OR [i + 1] then
/* swap attributes in subset A′ and remember something changed */
swap (A[i], A[i + 1])
end if
end for

The ignored predictive variables are variables that have the accuracy less than 0.85%.

3. Results

The study from Benedeto-Stojanov and other coauthors in [36] involved 96 subjects, 76 (79.2%)
male and 20 (20.8%) female participants. There were 55 patients without bleeding, of which 44 (80.0%)
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were male and 11 (20.0%) were female. The group of 41 patients with bleeding included 32 (78.0%)
male and 9 (22.0%) female participants. The average age of all patients was (56.99 ± 11.46) years.
The youngest and oldest patients were 14 and 80 years old, respectively.

The data used in the study were obtained by the Clinical Center of Nis, Serbia. The original
feature vector of patient data consisted of 29 features that were predictive variables. As the thirtieth
variable, there was a two-case class variable result (yes/no), which was considered as a dependent
variable. All predictive variables and dependent variable are shown in Table 2, where it can be seen
that they were of numerical data type.

Table 2. List of features used in study.

Attribute Label and Name Description

(A1) sex Gender (male or female)

(A2) age Age (year)

(A3) etiolog Etiology

(A4) bilirub Bilirubin (mg/dL)

(A5) album Albumin (g/dL)

(A6) protrvr Prothrombin time (s)

(A7) inr International normalized ratio (s)

(A8) keratin Creatinine (mg/dL)

(A9) ascites Ascites

(A10) neurpor Neurological dysfunction

(A11) pcsdr Platelet count/spleen diameter ratio

(A12) uhranj Body mass index

(A13) tromb Thrombocytes (109/L)

(A14) veliki Large esophageal varices

(A15) redcols Red color signs

(A16) gastvar Gastric varices

(A17) konggas Congestive gastropathy

(A18) veljetre Liver diameter (mm)

(A19) velslez Spleen diameter (mm)

(A20) dijvport Portal vein diameter (mm)

(A21) dzidavp Portal vein wall thickness (mm)

(A22) dvldvms Lienal +mesenteric superior vein diameter(mm)

(A23) kolcirk1 Collateral circulation

(A24) bpuvp Flow speed in portal vein (m/s)

(A25) bpuvl Flow speed in lienal vein (m/s)

(A26) konindvp Congestion index in the portal vein (cm/s)

(A27) konindvl Congestion index in the lienal vein (cm/s)

(A28) childps Child–Pugh score

(A29) melds MELD score

(A30) krvarenje Bleeding (binominal response-dependent variable Yes, No)

In the case study, five classification algorithms were implemented, i.e., Naive Bayes, J48, Decision
Trees, HyperPipes, Ada LogitBoost, and PART for designing prediction modes. Method of training set
was applied in model for proposed classification algorithms where the authors chose the most famous
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from different groups of classifiers. This method was chosen and training set mode combined with test
as well as 10-cross validation were not used because of a small number of instances in the case study.

The performance indicators of five classification algorithms are given in Table 3, where it can be
seen that the LogitBoost classifier achieved the most accurate prediction results among all the models.

As presented in Table 3, the LogitBoost classifier achieved the F1 measure of 97.9%, accuracy of
98.0% (0.980), and the ROC of 0.999.

Table 3. Performance indicators obtained by the classification algorithms.

Naive Bayes J48 HyperPipes LogitBoost PART

Accuracy 0.900 0.918 0.688 0.980 0.959

Error 0.104 0.083 0.313 0.021 0.042

F1 measure 0.896 0.917 0.671 0.979 0.958

ROC 0.945 0.918 0.814 0.999 0.982

In Table 4, CCI denotes the number of correctly classified inputs, and ICI denotes the number of
incorrectly classified inputs.

Table 4. Accuracy of the LogitBoost algorithm.

CCI (%) ICI (%) TP_Rate FP_Rate

LogitBoost 97.917 2.083 0.979 0.028

The LogitBoost classifier achieved a relatively good performance on classification tasks, due to
the boosting algorithm [65]. Boosting process is based on the principle that finding many rough rules
of thumb can be much easier than finding a single, highly accurate prediction rule. This classifier is
a general method for accuracy improvement of learning algorithms. In the WEKA [66], LogitBoost
classifier is implemented as class which performs additive logistic regression, which performed
classification using a regression scheme as a base learner, and also can handle multiclass problems.

Feature selection is normally realized by searching the space of attribute subsets and evaluating
each attribute. This is achieved by combining attribute subset evaluator with a search method. In this
paper, five filter feature subset evaluation methods with a rank search or greedy search method were
conducted to determine the best feature sets, and they are listed as follows:

(1) Chi-square attribute evaluation (CH),
(2) Gain-ratio attribute evaluation (GR),
(3) Information-gain attribute evaluation (IG),
(4) Relief attribute evaluation (RF) and
(5) Symmetrical uncertainty attribute evaluation (SU).

The feature ranks obtained by the above five methods on the training data are presented in Table 5.
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Table 5. Results of the five ranking methods (bigger number mark highest rank).

CH GR IG RF SU

(A15) 29 29 29 29 29

(A14) 28 28 28 28 16

(A17) 27 27 27 27 27

(A23) 26 25 26 26 9

(A25) 25 24 25 9 11

(A29) 24 26 24 15 1

(A24) 23 11 23 18 22

(A8) 22 22 22 17 25

(A9) 21 23 21 10 18

(A6) 20 20 20 13 26

(A7) 19 19 19 14 2

(A5) 18 18 18 22 21

(A11) 17 13 17 21 7

(A2) 16 16 16 11 28

(A3) 15 15 15 3 10

(A4) 14 14 14 8 23

(A10) 13 21 13 7 15

(A12) 12 17 12 23 19

(A22) 11 9 11 5 13

(A20) 10 7 10 2 8

(A21) 9 10 9 1 12

(A18) 8 6 8 4 4

(A19) 7 8 7 12 14

(A26) 6 2 6 16 3

(A13) 5 12 5 20 20

(A27) 4 5 4 6 5

(A28) 3 4 3 19 17

(A16) 2 3 2 24 6

(A1) 1 1 1 25 24

The ROC value shows relationship between sensitivity, which represents measure of the proportion
of positives that are correctly identified TP, and specificity, which represents measure of the proportion
of negative that are correctly identified, both in executed process of classification. The evaluation
measures with variations of ROC values were generated from an open source data mining tool,
WEKA, that offers a comprehensive set of state-of-the-art machine learning algorithms as well as set of
autonomous feature selection and ranking methods. The generated evaluation measures are shown
in Figure 2, where the x-axis represents the number of features, and the y-axis represents the ROC
value of each feature subset generated by five filter classifiers. The maximum ROC value of all the
algorithms and the corresponding cardinalities that are illustrated in Figure 2 are given numerically in
Table 5. This is quite useful for finding an optimal size of the feature subsets with the highest ROC
values. As given in Table 5, the highest ROC values were achieved by CH and IG classifiers. Although
the CH and IG resulted in the ROC value of 0.999, the IG/CH could attain the maximum ROC value
when the number of attributes reached the value of 15. Thus, it was concluded that IG has an optimal
dimensionality in the dataset of patients.
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Figure 2. ROC value as a function of attribute number.

The top ranking features in Table 5 that were obtained by CH and IG classifiers were used for further
predictive analysis as significant predictors of bleeding, and they were as follows: (A15)—Red color
signs, (A14)—large esophageal varices, (A17)—congestive gastropathy, (A7)—international normalized
ratio, (A23)—collateral circulation, (A24)—flow speed in portal vein, (A9)—ascites, (A8)—creatinine,
(A6)—prothrombin time, (A29)—MELD score, (A2)—age, (A5)—albumin, (A11)—platelet count/spleen
diameter ratio, (A3)—etiology, and (A25)—flow speed in lienal vein.

This study analyzes risks of initial bleeding of varices in cirrhotic patients, and the risks of early
and late bleeding reoccurrence. The obtained results are important for further treatment and prevention
of bleeding from esophageal varices, the most common and life-threatening complications of cirrhosis.
Coauthors in this manuscript, Randjelovic and Bogdanovic, still used the univariate logistic regression
analysis to demonstrate the most significant predictors of bleeding. Results of this analysis obtained
using same input data are given in Table 6 [67].

Table 6. Odds ratio values for bleeding risk factors (univariate logistic regression).

Factor P OR
95% CI for OR

Lower Bound Upper Bound

(A1) 0.816 1.125 0.417 3.033

(A2) 0.166 1.027 0.989 1.065

(A3) 0.606 0.629 0.108 3.662

(A4) 0.204 1.053 0.972 1.140

(A5) 0.962 1.013 0.602 1.703

(A6) 0.393 1.053 0.935 1.187

(A7) 0.421 1.640 0.491 5.470

(A8) 0.290 1.324 0.787 2.228

(A9) 0.631 1.417 0.342 5.865

(A10) 0.291 1.600 0.668 3.830

(A11) 0.020 0.998 0.997 0.999

(A12) 0.060 0.148 0.020 1.081

(A13) 0.023 0.992 0.985 0.999

(A14) <0.001 24.589 7.368 82.060

(A15) <0.001 194.997 35.893 1059.356
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Table 6. Cont.

Factor P OR
95% CI for OR

Lower Bound Upper Bound

(A16) 0.026 4.110 1.187 14.235

(A17) <0.001 10.153 3.479 29.633

(A18) 0.078 0.986 0.970 1.002

(A19) 0.390 1.007 0.991 1.024

(A20) 0.405 0.936 0.800 1.094

(A21) 0.859 0.945 0.509 1.755

(A22) 0.600 0.960 0.826 1.117

(A23) 0.049 1.562 1.002 2.434

(A24) 0.958 1.441 0.030 11.321

(A25) 0.054 0.002 0.001 1.166

(A26) 0.676 0.294 0.001 91.338

(A27) 0.907 1.726 0.040 16.690

(A28) 0.574 1.048 0.890 1.233

(A29) 0.338 1.029 0.971 1.091

After conducting the experiment with the real medical data, important predictors of bleeding
were determined by performing logistic regression analysis.

Univariate logistic regression analysis indicated the most significant predictors of bleeding in
cirrhotic patients: the value of the Child–Pugh/Spleen Diameter ratio, platelet count, as well as the
expression of large esophageal varices, red color signs, gastric varices, and congestive gastropathy
collateral circulation. Approximate values were calculated relative risk (odds ratio—OR), and their
95% confidence intervals. The statistical significance was estimated by calculating the OR Wald
(Wald) values.

The increase in the value of Child–Pugh/Spleen Diameter ratio for one unit resulted in the
reduction in the risk of bleeding by 0.2% (from 0.1% to 0.3%, p < 0.05), while the increase in platelet
count to 1 × 109/L yielded to the decrease in risk of bleeding by 0.8% (from 0.1% to 1.5%, p < 0.05).
Expression of the following factors indicating an increased risk of bleeding: large esophageal varices
24.589 (7.368–82.060, p < 0.001), red color signs 194.997 (35.893–1059.356, p < 0.001), gastric varices
4.110 (1.187–14.235, p < 0.05), congestive gastropathy 10.153 (3.479–29.633, p < 0.001), and collateral
circulation 1.562 (1.002–2.434, p < 0.05).

Following performed univariate logistic regression analysis, it is enabled that previously acquired
set of 15 attributes with attribute rank given in columns one (CH) and three (IG) of Table 5 can be
calibrated using results for OR given in column three (OR) in Table 6. The calibration process is showed
in Table 7. It was carried out so that the mentioned set of 15 attributes from Table 5, which is given in
the first row of Table 7 using extracting those of the 15 attributes for which OR > 1 in Table 6 is given in
the second row of Table 7 and using extracting those of the 15 attributes for which OR < 1 in Table 6 is
given in the third row of Table 7.

According to the results in Table 6, the independent (predictive) variables were A1–A29 attributed to
number p smaller than 0.05, which significantly influenced on dependent, binary variable A30—bleeding.

According to the results in Table 7, we have 15 significant predictors given in first row. On the one
hand, in second row, we have 12 predictors from this 15 with OR greater than one and characteristic
when the predictive variable, bleeding, increased, and the risk that binary variable would acquire
value Yes also increased.
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Table 7. Top ranking feature subsets.

Ranking Subset Attribute

Start top ranking attribute numbers based on ROC
values in the descending order—Table 5

A15, A14, A17, A23, A25, A29, A24, A8, A9, A6, A7, A5, A11, A2, A3.

Top ranking attributes after calibration by OR values
greater than one—Table 6

A15, A14, A17, A7, A23, A24, A9, A8, A6, A29, A2, A5.

Top ranking attributes after calibration by OR values
smaller than one—Table 6

A11, A3, A25.

On the other hand, in third row we have 3 predictors from this 15 with OR smaller than one and
characteristic when the predictive variable increased, and the risk that binary variable would acquire
value Yes decreased.

4. Discussion

In the machine learning and statistics, dimensionality reduction is the process of reducing the
number of random variables under a certain consideration and can be divided into feature selection
and attribute importance determination.

Feature selection approaches [68–70] try to find a subset of the original variables. In this work,
two strategies, namely, filter (Chi-square, information gain, gain ratio, relief and symmetrical
uncertainty) and wrapper (search guided by the accuracy) approaches are combined. The performance
of classification algorithm is commonly examined by evaluating the classification accuracy.

In this study, the ROC curves are used to evaluate the classification accuracy. By analyzing
the experimental results presented in Table 3, it can be observed that the LogitBoost classification
technique achieved better result than the other techniques using training mode of valuation applied
classification algorithms.

The results of the comparative application of different classifiers conducted in described case
study on feature subsets generated by the five different feature selection procedures are shown in
Table 5. The LogitBoost classification algorithm is trained using decision stumps (one node decision
trees) as weak learners. The IG attribute evaluation can be used to filter features, thus reducing the
dimensionality of the feature space [71].

The experimental results presented on Table 8 show that IG feature selection significantly improves
the all observed performance of the LogitBoost classification technique in spite of the fact that decision
tree has inherited ability to focus on relevant features while ignoring the irrelevant ones (refer to
Section 3).

Table 8. Performance of LogitBoost classification before and after information-gain attribute
evaluation/Chi-square attribute evaluation (IG/CH) feature selection.

LogitBoost before
IG/CH Feature Selection

LogitBoost after
IG/CH Feature Selection

Accuracy 0.980 0.990

Error 0.021 0.014

F1 measure 0.979 0.990

ROC 0.999 0.999

The authors performed 10-cross validation of the proposed model using Weka software and
it confirmed the validity of the proposed model defined by the procedures given in the work with
Algorithm 1 and Algorithm 2 as it is given in Table 9.
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Table 9. Performance of LogitBoost before/after IG/CH feature selection using 10-cross validation.

LogitBoost before
IG/CH Feature Selection

LogitBoost after
IG/CH Feature Selection

Accuracy 0.896 0.896

Error 0.104 0.104

F1 measure 0.896 0.896

ROC 0.930 0.948

As we mentioned in Section 3 Results, results of univariate regression on same data set [67] are
used for fine calibration in proposed model. In that paper was considered comparison of use of classic
and gradual regression in prediction of risk of variceal bleeding in cirrhotic patients.

Table 10 shows results obtained using multivariate gradual regression and recognizes only two
factors as significant for risk of variceal bleeding, which are in comparison with results of proposed
model evidently a worse result in terms of requested prediction.

Table 10. Odds ratio values for bleeding risk factors (multivariate logistic regression).

Factor P OR
95% CI for OR

Lower Bound Upper Bound

Red color signs <0.001 116.578 19.744 688.326

Congestive gastropathy 0.037 6.116 1.113 33.611

Constant <0.001 0.010

The regression calibration is a simple way to improve estimation accuracy of the errors-in-variables
model [72].

It is shown that when variables are small, regression calibration using response variables
outperforms the conventional regression calibration.

Expert clinical interpretation of obtained results for risk of bleeding prediction in cirrhotic patients
could be given using decision tree diagram with feature subset of 15 attributes, which is practically
equal to set of 29 attributes in the case without feature selection but more precise and accurate.

The run information part contains general information about the used scheme, the number of
instances, 96 patients, in the case of 15 attributes is shown in Figure 3, i.e., the case of 29 attributes is
shown in Figure 4, and in both cases as well as the attributes names.

 

 

Figure 3. The decision tree with feature subsets (using 15 attributes).

 

 

Figure 4. The decision tree without feature subsets (using 29 attributes).

32



Mathematics 2020, 8, 1887

The output for predicted variable represented by the decision tree given in Figure 3 can be
interpreted using the If-Then 14 rules in Equation (12), as follows:

If (A15 =< 0.0) and (A24 =< 0.12) then A30 = No (39, 75/96). (12)

Authors contribution is demonstrated in obtained result with application of proposed new
ensemble boosting model of data mining, which integrates classification algorithm with attribute
reduction and regression method for calibration and which shows that proposed model has a better
characteristic than each of individually applied model and authors could not find in existing literature.

The authors confirmed originality of the proposed ensemble model by reviewing the state of the art,
generally observed, end especially in the liver disease prediction, which are given in the introduction
of the paper and could be confirmed by observation updated state of the art in both disciplines:

- in the different machine learning methodologies [73–75] and
- in the use of differently constructed ensemble methodologies [76,77].

Advantage of proposed model is, in fact, that it is evaluated on the case study including big
number of different types of considered factors. Finally, one advantage of the proposed model is in the
fact that it could be applied worldwide where it will generate prediction that is suitable according
the specificity of each locality individual so that the paper is suitable for broad international interest
and applications.

In such a way, authors confirmed the hypothesis and answered the research question set in
introduction of this paper and thus contributed to the creation of a tool that can successfully and
practically serve to solve their perceived research gap.

This described study has several limitations that must be addressed:
First, we collected data only from one medical center (as it is given in [78] as Supplementary

Material) that reflects its particularities; the sample would be more representative if it is from many
different localities, so that results can be generalized. Second, we evaluated small size of only 96
patient’s information, although most of the variables were statistically significant. Third, we have
not included all possible factors that could cause bleeding. Finally, we must notice that noninvasive
markers may be useful only as a first step to possibly identify varices for cirrhosis patients and in this
way to reduce the number of endoscopies.

In further work and research authors plan to test proposed model on the data set obtained in
last 10 years in Clinical Center of Nis, Serbia. Authors also intend to include in further research at
least two other clinical centers in Serbia or in the Western Balkans that are topologically distant and
located in different locations with different features (hilly and lowland coastal locality) where the
population has other habits and characteristics and, in this way, to obtain bigger size of cirrhotic
patients and more representative sample for proposed model evaluation. Authors plan also to deal
with determining more precise type and number in each type of classification algorithms and type and
number of classifiers for feature selection used in proposed model. Finally, proposed model can be
suggested for prediction and monitoring of risk of bleeding in cirrhotic patients, e.g., by implementing
as a software tool.

5. Conclusions

Analysis of significance of factors that are influencing an event is a very complex task. Factors can
be independent or dependent, quantitative or qualitative, i.e., deterministic or probabilistic nature,
and there can be a complex relationship between them. Due to the importance of determination of risk
factors for bleeding problems in cirrhotic patients and the fact that early prediction of varices bleeding
in cirrhotic patients in last 20 years help this complication to be reduced, it is clear that it is necessary to
develop an accurate algorithm for selection of the most significant factors of the mentioned problem.

Among all techniques of statistics, operation research, and data mining techniques, in this work,
statistical univariate regression and data mining technique of classification are aggregated to obtain
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one boosting method, which has better characteristics than each of them individually. Data mining is
used to find a subset of the original set of variables. Also, two strategies, filter (information gain and
other) and wrapper (search guided by the accuracy) approaches, are combined. Regression calibration
is utilized to improve estimation performance of the errors in variables model. Application of the
bleeding risk factors-based univariate regression presented in this paper can help decision-making and
higher risk identification of bleeding in cirrhotic patients.

The proposed method uses advantages of data mining decision tree method to make good
beginning classification of considered predictors and then univariate regression is utilized for fine
calibration of obtained results, resulting in developing a high-accuracy risk prediction model.

It is evident that the proposed ensemble model can be useful and extensible to other hospitals
in the world treating this illness, the liver cirrhosis and its consequences as the bleeding of varices
studied in this case.

Supplementary Materials: The following are available online at http://www.mdpi.com/2227-7390/8/11/1887/s1,
Table S1: The data in study described in (Benedeto-Stojanov, 2010) 29 attributes—involved 96 subjects by Clinical
Center of Nis, Serbia.
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Abbreviations

MELD Model of End-Stage Liver Disease
TIPS Transjugular Intrahepatic Portosystemic Shunt
GI Gastrointestinal
INR International normalized ratio
AVH Acute variceal hemorrhage
LMT Logistic model tree
K-NN K-nearest neighbor
TP True positive
TN True negative
FP False positive
FN False negative
ROC Receiver Operating Characteristic
SVM Support Vector Machine
P Probability
OR Odds ratio
CCI Correctly classified inputs
ICI Incorrectly classified inputs
CI Confidence interval
CH Chi-square
GR Gain ratio
IG Information gain
RF Relief attribute evaluation
SU Symmetrical uncertainty
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Abstract: The main goal of this paper is to propose a Multiple-Criteria Decision-Making (MCDM)
approach that will facilitate decision-making in the field of logistics—i.e., in the selection of the
optimal equipment for performing a logistics activity. For defining the objective weights of the criteria,
the correlation coefficient and the standard deviation (CCSD method) are applied. Furthermore,
for determining the semi-objective weights of the considered criteria, the indifference threshold-based
attribute ratio analysis method (ITARA) is used. In this way, by combining these two methods,
the weights of the criteria are determined with a higher degree of reliability. For the final ranking of
the alternatives, the measurement of alternatives and ranking according to the compromise solution
method (MARCOS) is utilized. For demonstrating the applicability of the proposed approach,
an illustrative case study pointing to the selection of the best manual stacker for a small warehouse is
performed. The final results are compared with the ones obtained using the other proved MCDM
methods that confirmed the reliability and stability of the proposed approach. The proposed integrated
approach shows itself as a suitable technique for applying in the process of logistics equipment
selection, because it defines the most influential criteria and the optimal choice with regard to all
of them in a relatively easy and comprehensive way. Additionally, conceiving the determination
of the criteria with the combination of objective and semi-objective methods enables defining the
objective weights concerning the attitudes of the involved decision-makers, which finally leads to
more reliable results.

Keywords: MCDM; the CCSD method; the ITARA method; the MARCOS method; stackers; logistics

1. Introduction

Logistics has long been considered a key factor in economic development, spatial integration,
and market integration in the developed world [1]. During the 1960s, logistics as a concept of the
integration of the process of the distribution of goods gained its place in the theory and practice
of business management. Within the logistics sector, there are three basic approaches: physical
distribution management, materials management, and business logistics. The important issue that
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logistics is faced with is certainly the question of the selection of adequate equipment for dealing with
material resources.

The efficiency of the performance of logistics activities strongly depends on the use of optimal
equipment in the warehouse or for the transportation of the goods. Bad choices could lead to the
damage or contamination of goods, delays in delivery, and an increase in costs [2]. Furthermore,
the selection of equipment directly influences the performance of the company, so this kind of decision
could be considered as strategic and of great importance [3]. In the case of manufacturing equipment
selection, the selection of the equipment needed for performing logistics activities requires defining
the crucial features of the equipment, comparing them with the equipment offered on the market,
and selecting the most suitable one [4]. The costs are considered as the most influential criterion in
equipment selection, but they could not be treated as the only one.

Decisions regarding equipment purchasing affect various criteria that are often mutually opposing.
Besides this, making a decision based on only one or a few criteria as well as making a decision based
on previous experience and intuition will not lead to a reasonable decision. The use of techniques
based on mathematics and statistics increases the reliability of the decision and contributes to the
assurance of the selection that is made. The utilization of the Multiple-Criteria Decision-Making
(MCDM) method could be a suitable means for the facilitation of a decision process regarding logistics
equipment selection.

Recently, the field of Multi-Criteria Decision-Making (MCDM) has been rapidly evolving, thanks
to the large number of scientific publications dealing with the adoption of individual decisions based
on employed techniques and methods that belong to the specified domain [5]. MCDM is quite a
suitable tool for solving complex decision-making problems because of its ability to evaluate different
alternatives using a specific set of criteria [6].

The main aim of this paper is to develop a novel integrated MCDM-based approach for equipment
selection in a logistics system. The correlation coefficients (CC) and standard deviations (SD)—
i.e., the CCSD method [7]—will be applied for determining the objective weights of the criteria. Besides
that, the indifference threshold-based attribute ratio analysis method (ITARA) [8], as a semi-objective
method, will be also applied for determining the weights of the criteria. Therefore, the weights of the
criteria will be determined by applying a combined CCSD-ITARA approach in order to make an objective
determination of criteria significance where the subjectivity—i.e., perspective of the decision-makers—
is included to a moderate degree. When it comes to the ranking of the alternatives, the measurement of
alternatives and ranking according to the compromise solution method (MARCOS) [9] will be applied.
The applicability of the proposed approach will be demonstrated through the illustrative case study,
pointing to the selection of a suitable type of stacker for purchasing. The proposed approach enables
the facilitation of the selection process regarding the purchasing of logistics equipment, which is a
manual stacker in the considered case. Thus, the practitioners could observe all the involved criteria
and, based on them, select the most appropriate alternative. Scientifically, the proposed combination
of methods is completely new, and its possibilities have not been fully tested yet. In this case, it is used
for the facilitation of decision and selection processes in the logistics field, but its potential could be
further explored in other areas as well.

The rest of the paper is organized as follows: In Section 1, introductory considerations are given.
A literature review is presented in Section 2. Section 3 demonstrates the methodology. An illustrative
case study is described in Section 4. Finally, at the end of the manuscript the conclusions are given.

2. Literature Review

Decision-making is a process as old as humanity itself. Every day, each of us usually makes a
large number of decisions. However, one of the problems that arise is to choose from the multitude
of possible solutions the solution by which we will achieve the desired goal to the greatest degree,
taking into account the objective limitations, which, to a greater or lesser extent, limit our freedom
of judgment [10–12]. As could be inferred, the decision process involves the synergy of action
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of the human factor, mathematical methods, and IT tools [13]. In each study on the issue of
decision-making, attention is focused on three general concepts—namely, the decision-making process,
the decision-maker, and the decision itself—with the constant attempt to find a suitable way to make
an appropriate decision. Intending to facilitate the decision process, scholars have proposed various
methods that belong to the MCDM field.

MCDM has been developed as an integral part of operational research in order to create
mathematical tools aimed at supporting the subjective evaluation of criteria by decision-makers [14,15].
MCDM is created in such a way that facilitates the selection of the most desirable alternative,
the classification of the alternatives into a smaller number of categories, and the ranking of these
alternatives following subjective requirements [16,17]. As already mentioned, there are a whole
range of various MCDM techniques that have been applied to solving different types of complex
problems. Each of the developed MCDM methods has its advantages, disadvantages, and limitations.
Additionally, according to the problem that is being solved, it is necessary to consider an adequate
technique [18–20].

Thus, MCDM considers situations in which the decision-maker must choose one of the alternatives
from a set of available alternatives, which are judged based on several often-conflicting criteria [17,20].
The remarkably extensive development of the field of decision-making theory over the past few
decades certainly has contributed to the presence of a multitude of MCDM methods. Perhaps the
best-known and most widely applied MCDM methods are: simple additive weighting (SAW) [21];
the analytic hierarchy process (AHP) [22]; the analytic network process (ANP) [23]; elimination et
choix traduisant la realité (ELECTRE) [24]; the preference ranking organization method for enrichment
evaluation (PROMETHEE) [25]; the technique for order performance by similarity to ideal solution
(TOPSIS) [26]; Višekriterijumska optimizacija i kompromisno rešenje (VIKOR) [27]; the complex
proportional assessment of alternatives (COPRAS) [28]; and so forth.

In order to cope with a wider spectrum of problems, there is a new generation of newly developed
MCDM methods and MCDM-based approaches, such as a new additive ratio assessment method
(ARAS) [29]; multi-objective optimization on the basis of the ratio analysis method (MOORA) [30];
multi-objective optimization by ratio analysis plus full multiplicative form (MULTIMOORA) [31];
the step-wise weight assessment ratio analysis method (SWARA) [32]; the pivot pair-wise relative
criteria importance assessment method (PIPRECIA) [33]; the multi-attributive ideal-real comparative
analysis method (MAIRCA) [34]; the full consistency method (FUCOM) [35]; the evaluation based on
distance from the average solution method (EDAS) [36]; a combined compromise solution method
(CoCoSo) [37]; and so on. It is important to note that some of the aforementioned methods are used for
weight determination and some of them for the ranking of alternatives.

Until now, MCDM methods have been used in the logistics field to contribute to and simplify the
decision process regarding the various issues. A very popular theme that occupied scientific attention
is certainly the question of reverse logistics [38–40]. Thence, the authors examined the problem of the
selection of the logistics center or warehouse location [41,42]. The issue of humanitarian logistics is
resolved by applying different MCDM techniques too [43,44]. The selection of the partners suitable for
performing the logistics activities has been also performed by applying MCDM methods [45,46].

The topic connected to the equipment selection pointed to material handling is also present in the
works of various authors. For example, Mathew and Sahu [47] used four methods for resolving the
problem of equipment selection, and they are: CODAS, EDAS, MOORA, and WASPAS. The authors also
based the selection of the equipment on the fuzzy axiomatic design principles [48]. Suitable equipment
is selected in the fuzzy environment too [49]. Saputro and Rouyendegh [50] used the TOPSIS and
MOMILP methods to find the best solution regarding the equipment for the warehouse. As can be
concluded, there is enough space for observing the issue of the selection of the appropriate equipment
for a logistics center. With that aim, in this paper an integrated approach based on the CCSD, ITARA,
and MARCOS methods is proposed. The main reason for involving the CCSD and ITARA methods
in the procedure of determining the criteria weights relies on the fact that they enable the definition
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of the criteria weights in an objective way but with incorporating a hint of the subjectivity of the
decision-maker. In some cases, it is necessary to incorporate the requirements of the decision-maker
to some suitable extent because the decision-maker knows what his/her possibilities and requests
are. The MARCOS method, which is utilized for the final ranking of the considered alternatives, is a
relatively recently proposed method whose possibilities have not been completely examined until now.
The mentioned method enables the selection of a compromise solution that is optimal for the present
conditions and fulfills all the given criteria to a satisfying degree.

3. Methodology

In this study, an integrated model including the CCSD, ITARA, and MARCOS methods is applied
to determine the best stacker (Figure 1).

Figure 1. The computational procedure of the integrated CCSD-ITARA-MARCOS approach.

42



Mathematics 2020, 8, 1672

The CCSD and ITARA methods are used to determine weights of the criteria, whereas the
MARCOS method is used to rank the alternatives—i.e., in our case, stackers—and to select the best one.

3.1. The CCSD Method

The CCSD method was developed by Wang and Luo [7]. The CCSD method is an objective
weighting method. However, so far the CCSD method has been used for solving a variety of problems,
such as problems in the supply chain [51,52], technological forecasting [53], financial performance
evaluation [54], environmental issues [55], and so forth.

The steps of this method are as follows [7,53]:
Step 1: A decision matrix (G) is constructed. This matrix includes m alternatives, B1, . . . , Bm based

on the n criteria, T1, . . . , Tn.
G =

[
gi j

]
m×n

. (1)

In Equation (1), gi j denotes the performance of the ith alternative on the jth criterion.
Step 2: This matrix is normalized using Equation (2) (for beneficial criteria) and Equation (3)

(for cost criteria).

hi j =
gi j −min

(
gi j

)

max
(
gi j

)
−min

(
gi j

) , (2)

hi j =
max

(
gi j

)
− gi j

max
(
gi j

)
−min

(
gi j

) . (3)

Step 3: The criterion T j is removed to take into account its impact on decision-making.
With criterion T j, the performance value is computed using Equation (4) [56].

di j =
∑n

k=1, k, jhikwk. (4)

In Equation (4), wk denotes the weight of kth criterion calculated using some method for the
subjective criteria weights determination, such as the AHP, SWARA, or PIPRECIA methods.

Step 4: The correlation coefficient (R j) between T j criterion’s value and di j is computed using
Equation (5).

R j =

∑m
i=1

(
hi j − h j

)(
di j − d j

)

√∑m
i=1

(
hi j − h j

)2 ∑m
i=1

(
di j − d j

)2
, (5)

where:

h j =

∑m
i=1 hi j

m
, (6)

d j =

∑m
i=1 di j

m
. (7)

Step 5: In order to determine the objective weights (w jC) of criteria, a non-linear optimization
model is written as:

Minimize J =
∑n

j=1

(
w jC −

σ j

√
1−R j

∑n
k=1 σk

√
1−Rk

)2

,

s.t. ∑n
j=1w jC = 1.

(8)

In Equation (8), σ j denotes T j criterion’s standard deviation, and it can be calculated using
Equation (9).

σ j =

√
1
m

∑m
i=1

(
hi j − h j

)2
. (9)
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The non-linear model indicated in Equation (8) is solved using MS Excel Solver (Microsoft corp.,
Redmond, WA, USA), Lingo 16 (Lindo Systems, Chicago, IL, USA), and MATLAB (The MathWorks,
Inc., Natick, MA, USA).

3.2. The ITARA Method

The ITARA method was recently developed by Hatefi [8] and is a semi-objective method for
determining the weights of criteria. The steps of the ITARA method are as follows [8]:

Step 1: A decision matrix (G) is constructed. This matrix was indicated in Equation (1).
Step 2: Normalized values and NIT j (Normalized Indifference Threshold) are obtained using

Equations (10) and (11), respectively.

ei j =
gi j∑m

i=1 gi j
, (10)

NIT j =
IT j∑m

i=1 gi j
. (11)

In Equation (11), IT j denotes the Indifference Threshold of the jth criterion.
Step 3: Normalized values are sorted in ascending order, then they are named ρi j in such a way

that ρi j ≤ ρi+1, j.
Step 4: The distance (γi j) between ρi+1, j and ρi j is computed as follows.

γi j = ρi+1, j − ρi j. (12)

Step 5: The difference (εi j) between γi j and NIT j is calculated as follows.

εi j =

{
γi j −NIT j f or γi j > NIT j,
0 f or γi j ≤ NIT j,

∀i ∈M, ∀ j ∈ N. (13)

Step 6: The weights of the criteria (w jI) are computed as follows.

w jI =
v j∑n

j=1 v j
, (14)

where:
v j =

(∑m−1
i=1 εi j

p
)1/p

. (15)

These weights are combined using Equation (16) [57].

w jCO =
w jCw jI∑n

j=1 w jCw jI
. (16)

3.3. The MARCOS Method

The MARCOS method is developed by Stević et al. [9]. Although the method is new, so far it
has been applied for solving different decision-making problems, such as the assessment of project
management software [58], supplier selection [59], the evaluation of human resources [60], road traffic
analysis [61], and so on.

In our study, the MARCOS method is used to rank stackers and to determine the best one.
The steps of this method are as follows [9]:

Step 1: The decision matrix is constructed. This matrix was indicated in Equation (1).
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Step 2: An extended decision matrix (U) is formed.

T1 T2 . . . Tn

U =

AAI

B1

B2

. . .

Bm

AI




gaa1 gaa2 . . . gaan

g11 g12 . . . g1n

g21 g22 . . . g2n

. . . . . . . . . . . .

gm1 gm2 . . . gmn

gai1 gai2 . . . gain




.
(17)

While the ideal solution (AI) is the best alternative, the anti-ideal solution (AAI) is the worst
alternative. These values are computed as follows.

AI = max
(
gi j

)
if j ∈ BN and AI = min

(
gi j

)
if j ∈ CS, (18)

AAI = min
(
gi j

)
if j ∈ BN and AAI = max

(
gi j

)
if j ∈ CS. (19)

In Equations (18) and (19), BN denotes the beneficial criteria and CS presents the cost criteria.
Step 3: The extended decision matrix is normalized using Equations (20) and (21).

yi j =
gai j

gi j
if j ∈ CS, (20)

yi j =
gi j

gai j
if j ∈ BN. (21)

In Equations (20) and (21), yi j is an element of the normalized matrix (Y =
[
yi j

]
m×n

).
Step 4: The normalized values are multiplied by the weights (w jCO) of criteria by using Equation (22)

to identify the weighted matrix (C =
[
ci j

]
m×n

).

ci j = yi j ×w jCO. (22)

Step 5: The utility degrees (Zi) of the alternatives are computed concerning the anti-ideal and
ideal solution, respectively.

Z−i =
Si

Saai
, (23)

Z+
i
=

Si

Sai
, (24)

where:
Si =

∑n
i=1ci j. (25)

Step 6: The utility functions ( f (Zi)) of the alternatives are determined using Equation (26).

f (Zi) =
Z+

i
+ Z−

i

1 +
1− f(Z+

i )
f(Z+

i )
+

1− f(Z−
i )

f(Z−
i )

, (26)

where:

f
(
Z−i

)
=

Z+
i

Z+
i
+ Z−

i

, (27)

f
(
Z+

i

)
=

Z−
i

Z+
i
+ Z−

i

. (28)
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In Equation (27), f
(
Z−

i

)
denotes the utility function concerning the anti-ideal solution.

In Equation (28), f
(
Z+

i

)
presents the utility function concerning the ideal solution.

Step 7: The alternatives are ranked with respect to the final utility function. The alternative with
the highest final utility function is determined as the best one.

4. An Illustrative Case Study

In this study, the best manual stacker will be selected for small warehouses. For this, two logistics
experts were asked to identify suitable alternatives for small warehouses and evaluation criteria.
The logistics experts identified eight alternatives and five criteria, which are the Price of Stacker
(PS) (USD), Capacity (CPC) (kg), Lift Height (LH) (mm), Warranty Period (WRP) (Month), and Fork
Length (FL) (mm). All the data are obtained from websites selling stackers. Table 1 indicates the
decision matrix.

Table 1. Decision matrix.

Criteria
Stackers PS CPC LH WRP FL

Stc1 660 1000 1600 18 1200
Stc2 800 1000 1600 24 900
Stc3 980 1000 2500 24 900
Stc4 920 1500 1600 24 900
Stc5 1380 1500 1500 24 1150
Stc6 1230 1000 1600 24 1150
Stc7 680 1500 1600 18 1100
Stc8 960 2000 1600 12 1150

First of all, the CCSD method is applied to the above matrix to determine the objective weights of
the criteria. The results of the CCSD are indicated in Table 2.

Table 2. The results of the CCSD.

Criteria
Weights PS CPC LH WRP FL

w jC 0.1833 0.1942 0.1707 0.2114 0.2404

Then, the value of IT j for each criterion is determined by the experts. These values are indicated
in Table 3.

Table 3. The value of IT j

Criteria PS CPC LH WRP FL

IT j 120 100 100 4 100

The steps of the ITARA method are applied to the decision matrix to achieve the weights of the
criteria. The results of the ITARA method, the results of the CCSD, and the combined weights of
criteria are indicated in Table 4.

Table 4. The results of the ITARA, CCSD, and combined weights.

Criteria
Weights PS CPC LH WRP FL

w jC 0.1833 0.1942 0.1707 0.2114 0.2404
w jI 0.1097 0.3393 0.3698 0.1063 0.0748

w jCO 0.1061 0.3476 0.3330 0.1185 0.0949
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The combined weights are transferred to the MARCOS method. Then, the extended decision
matrix is formed using step 2 of the MARCOS method. Table 5 indicates the extended decision matrix.

Table 5. The extended decision matrix.

Criteria
Stackers PS CPC LH WRP FL

AAI 1380 1000 1500 12 900
Stc1 660 1000 1600 18 1200
Stc2 800 1000 1600 24 900
Stc3 980 1000 2500 24 900
Stc4 920 1500 1600 24 900
Stc5 1380 1500 1500 24 1150
Stc6 1230 1000 1600 24 1150
Stc7 680 1500 1600 18 1100
Stc8 960 2000 1600 12 1150
AI 660 2000 2500 24 1200

Then, the extended decision matrix is normalized using Equations (20) and (21). Table 6 presents
the normalized matrix.

Table 6. The normalized matrix.

Criteria
Stackers PS CPC LH WRP FL

AAI 0.4783 0.5000 0.6000 0.5000 0.7500
Stc1 1.0000 0.5000 0.6400 0.7500 1.0000
Stc2 0.8250 0.5000 0.6400 1.0000 0.7500
Stc3 0.6735 0.5000 1.0000 1.0000 0.7500
Stc4 0.7174 0.7500 0.6400 1.0000 0.7500
Stc5 0.4783 0.7500 0.6000 1.0000 0.9583
Stc6 0.5366 0.5000 0.6400 1.0000 0.9583
Stc7 0.9706 0.7500 0.6400 0.7500 0.9167
Stc8 0.6875 1.0000 0.6400 0.5000 0.9583
AI 1.0000 1.0000 1.0000 1.0000 1.0000

Then, the normalized values are multiplied by weights (w jCO) of the criteria using Equation (22)
to determine the weighted matrix. Table 7 indicates the weighted matrix.

Table 7. The weighted matrix.

Criteria
Stackers PS CPC LH WRP FL

AAI 0.0507 0.1738 0.1998 0.0593 0.0712
Stc1 0.1061 0.1738 0.2131 0.0889 0.0949
Stc2 0.0875 0.1738 0.2131 0.1185 0.0712
Stc3 0.0715 0.1738 0.3330 0.1185 0.0712
Stc4 0.0761 0.2607 0.2131 0.1185 0.0712
Stc5 0.0507 0.2607 0.1998 0.1185 0.0909
Stc6 0.0569 0.1738 0.2131 0.1185 0.0909
Stc7 0.1030 0.2607 0.2131 0.0889 0.0870
Stc8 0.0729 0.3476 0.2131 0.0593 0.0909
AI 0.1061 0.3476 0.3330 0.1185 0.0949

Using Equations (23)–(28), the results of the MARCOS method are obtained. The results of the
MARCOS method and the rankings of stackers are indicated in Table 8.
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Table 8. The results of the MARCOS method.

Results
Stackers Z−

i
Z+

i f
(
Z−

i

)
f
(
Z+

i

)
f(Zi) Rankings

Stc1 1.2199 0.6767 0.3568 0.6432 0.5649 6
Stc2 1.1970 0.6640 0.3568 0.6432 0.5543 7
Stc3 1.3843 0.7679 0.3568 0.6432 0.6410 2
Stc4 1.3331 0.7395 0.3568 0.6432 0.6173 4
Stc5 1.2988 0.7205 0.3568 0.6432 0.6014 5
Stc6 1.1774 0.6531 0.3568 0.6432 0.5452 8
Stc7 1.3567 0.7526 0.3568 0.6432 0.6283 3
Stc8 1.4128 0.7837 0.3568 0.6432 0.6542 1

According to the results of the MARCOS method, the rankings of the stackers are as follows: Stc8,
Stc3, Stc7, Stc4, Stc5, Stc1, Stc2, and Stc6. As can be seen from the input data presented in Table 1,
the parameters connected to the Stc8 are always medium to high, which finally emphasizes this choice
as a compromise and optimal.

In order to confirm the stability and reliability of the proposed model, the gained results are
compared with the results obtained using the following MCDM methods: the weighted aggregated
sum product assessment (WASPAS) method [62], additive ratio assessment (ARAS) [29], and grey
relational analysis (GRA) [63]. The comparison of the gained ranking orders of the alternatives is
shown in Figure 2.

Figure 2. Testing the stability of the proposed approach.

5. Discussion and Conclusions

The selection of equipment for dealing with materials during the logistics process is a very
important task for decision-makers because this choice has a significant impact on the future operation
of a logistics center. This kind of decision could be treated as strategic because the selected type
of equipment could contribute to decreasing costs, shortening the time needed for performing an
activity, and providing a higher security for goods and products. All of the points mentioned lead
to the conclusion that these decisions require an analytical approach that involves all the criteria
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that are important for performing the evaluation process. For that matter, the MCDM methods
could be a suitable and useful tool that facilitates the decision process and enables the making of a
proper decision for the given conditions. For the facilitation of a decision-making process regarding
equipment selection in the logistics field, in this paper we proposed the application of a novel integrated
CCSD-ITARA-MARCOS MCDM model. The usefulness of this integrated model is demonstrated
through the illustrative case study and pointed to the selection of the appropriate manual stacker.
Additionally, two domain experts were involved in the evaluation process in regard to identifying
suitable alternatives—i.e., manual stackers for small warehouses—according to the given set of
evaluation criteria.

In the conducted case study, the weights of the evaluation criteria were determined by applying
and combining the CCSD method and the ITARA method. When it comes to the process of determining
weights, both the methods are convenient and easy to apply. The main difference between these methods
is their orientation. The CCSD method is objective, whereas the ITARA method is semi-objective.
Additionally, the CCSD method does not need a specific normalization method and can include more
data on criteria weights [7], whereas the ITARA method belongs to a group of methods that are based
on measuring data dispersion. The reason for employing objective and semi-objective methods when
it comes to the determination of weights of criteria is that subjective methods often led to a decrease
in the accuracy of evaluation with the increase in the number of criteria [8]. The main advantage
of this combination relies on the fact that the standpoint of the decision-maker is appreciated to a
certain degree. Namely, every decision-maker has a particular attitude regarding the criteria, meaning
that for someone something is more important than to for another. If the significance of criteria is
determined only on an objective basis then the individual dimension is lost. In this case, combining
the objective and semi-objective methods for obtaining the criteria significance reflects the intention of
the preservation of the objectiveness of evaluation together with acknowledging the preferences of
decision-makers without disturbing the reliability of criteria significance determination.

The final ranking order is obtained by utilizing the newly developed MARCOS method.
The MARCOS method primarily is based on testing the reference values of alternatives related
to ideal values [9]. Thus, the given method emphasizes the alternative that represents some kind of
compromise solution regarding the given requirements. The final evaluation and ranking order are
strongly influenced by determining the criteria significance. In the present case, as was previously
stated, the significance of the criteria is determined very thoughtfully and carefully, and all because of
gaining the most reliable results. It is undeniable that the MARCOS method is easy to use and that it
facilitates the decision process, but in combination with the CCSD and ITARA applied for determining
the importance of the considered criteria, the reliability of the performed evaluation and the gained
ranking order increased.

Following the results of the applied integrated model, the stacker designated as Stc8 is the best in
terms of the evaluated criteria. With the aim of testing the proposed approach based on the mentioned
MCDM methods, the obtained results are compared with the results determined using the WASPAS,
ARAS, and GRA methods. In the computing procedures of all three methods, the same weights of
the criteria are involved, which were obtained by applying the CCSD-ITARA. In all observations,
the stacker Stc8 is in first place and represents the best choice for the given conditions. Besides this,
the stacker Stc3 is in the second place, except in the case when is applied in ARAS, when it is in 3rd
place. Thus, in this way the reliability and stability of the proposed approach are completely confirmed.

The proposed integrated CCSD-ITARA-MARCOS model proved to be extremely successful when
it comes to solving problems in a logistics system—i.e., a stacker selection problem. The use of the
CCSD-ITARA-MARCOS model is very beneficial because it is very comprehensive and empowers us
to make confident judgments. However, the applicability of the proposed model should not be limited
only to the logistics field. Its potential and possibilities should be examined in other fields, such as
information technologies, strategy selection, personnel selection, etc. In that way, all the aspects of the
proposed model will be observed and the potential shortages could be resolved.
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The key advantage of the introduced integrated model is its simplicity, ease of use, and objectivity
that appreciates the standpoint of decision-makers to an acceptable degree. However, the main
limitation of the proposed model is that it deals with crisp numbers. The decision-making environment
is characterized by uncertainty and vagueness, so it is very difficult to correctly express the evaluation
criteria through crisp numbers. In other words, the reliability of the performed evaluation decreases
because unexpected changes could cause a situation where, for example, the first ranked alternative is
not acceptable because the conditions have changed. In order to better incorporate uncertainty into the
evaluation process, an extension with fuzzy, grey, and neutrosophic numbers is proposed. In this way,
the proposed model would be improved and the possibility of making impropriate decisions would be
reduced. Furthermore, by involving a greater number of decision-makers, the subjective dimension
could be incorporated to a greater extent and interesting results would be obtained.

Besides the mentioned shortages, the CCSD-ITARA-MARCOS model proved its applicability
and ability to help in the process of decision-making. Overall, the proposed hybrid model is flexible,
adaptable, and effective, and it can help decision-makers solve problems in other areas as well.
Additionally, the model is quite simple and can be easily modified depending on the problem one
wants to solve.
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Abstract: The Best Worst Method (BWM) represents a powerful tool for multi-criteria decision-making
and defining criteria weight coefficients. However, while solving real-world problems, there are
specific multi-criteria problems where several criteria exert the same influence on decision-making.
In such situations, the traditional postulates of the BWM imply the defining of one best criterion
and one worst criterion from within a set of observed criteria. In this paper, an improvement of the
traditional BWM that eliminates this problem is presented. The improved BWM (BWM-I) offers the
possibility for decision-makers to express their preferences even in cases where there is more than
one best and worst criterion. The development enables the following: (1) the BWM-I enables us to
express experts’ preferences irrespective of the number of the best/worst criteria in a set of evaluation
criteria; (2) the application of the BWM-I reduces the possibility of making a mistake while comparing
pairs of criteria, which increases the reliability of the results; and (3) the BWM-I is characterized by its
flexibility, which is expressed through the possibility of the realistic processing of experts’ preferences
irrespective of the number of the criteria that have the same significance and the possibility of the
transformation of the BWM-I into the traditional BWM (should there be a unique best/worst criterion).
To present the applicability of the BWM-I, it was applied to defining the weight coefficients of the
criteria in the field of renewable energy and their ranking.

Keywords: BWM; BWM-I; criteria weights; multi-criteria; renewable energy

1. Introduction

In everyday life, we meet and analyze problems to find an optimal solution, i.e., the task of
optimization. We meet them almost everywhere—in technical and economic systems, in the family,
and elsewhere. The decision-making process and the choice of “the best” alternative is most frequently
based on the analysis of more than one criterion and a series of limitations. When speaking about
decision-making with the application of several criteria, decision-making may be referred to as
multi-criteria decision-making (MCDM) [1,2]. The essence of the problem of MCDM is reduced to
the ranking of an alternative from within the considered set by applying specific mathematical tools
and/or logical preferences. Finally, a decision is made on the choice of the best alternative, taking into
consideration different evaluation criteria. MCDM is an integral part of the contemporary science
of decision-making and the science of management and systems engineering, which has broadly
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been applied in many fields, such as engineering, economics, medicine, logistics, the military field,
and management [3,4].

While solving MCDM problems, the inevitable phase implies the determination of criteria weight
coefficients. Studying the available literature enables us to note that there is no unique division of the
methods for determining criteria weights and that, for the most part, their division has been made per
the authors’ understanding of and needs for solving a real-world problem. According to [5], one of the
classification methods for determining criteria weights is implying their division into objective and
subjective models. Objective models imply the calculation of criteria weight coefficients based on the
criteria value in the initial decision-making matrix. The most well-known objective models include the
Entropy Method [6], the CRITIC method (CRiteria Importance Through Intercriteria Correlation) [7],
and the FANMA method, which is named after the authors of the method [8].

On the other hand, subjective models imply the application of the methodology, implying the
direct participation of decision-makers who express their preferences according to the significance of
criteria. Subjective models differ from each other in the number of participants and the techniques
applied, as well as how the criteria final weights are formed. A big group of subjective models consists
of the models based on pairwise comparisons. Thurstone [9] was the first to introduce the pairwise
comparison method, which represents a structured manner of defining the decision-making matrix.
Pairwise comparisons are used to show the relative significances of m actions in situations when it is
impossible or senseless to assign rates to actions in relation to criteria. One of the most frequently used
methods based on pairwise comparisons is the Analytic Hierarchy Process (AHP) method [10].

Motivation for the Modification of the Traditional Best Worst Method

In the last few years, the Best Worst Method (BWM) has significantly ranked in the field of MCDM
as a model providing reliable and relevant results for optimal decision-making. Rezaei [11] developed
the BWM to overcome some shortcomings of the AHP, which first of all pertain to a large number
of comparisons in criteria pairs. By applying the BWM, optimal values of weight coefficients are
obtained with only 2n-3 comparisons in criteria pairs. A small number of comparisons in pairs remove
inconsistencies during the comparison of criteria. That exerts a further influence on obtaining more
reliable results (in relation to the AHP), since transitivity relations are less undermined, which further
influences a greater consistency of the results. Differently from the AHP, in the BWM, only reference
comparisons implying the defining of the advantages of the best criterion over all other criteria and the
advantage of such other criteria over the worst criterion are realized. This procedure is much simpler
and more accurate, and it eliminates redundant (secondary) comparisons.

The BWM implies that one best criterion and one worst criterion representing reference points
for pairwise comparisons with other criteria are defined in every MCDM problem from within a
set of evaluation criteria. However, in numerous real-world problems, there are situations in which
there is no unique best and/or worst criterion/criteria, but there are two or more best and/or worst
criteria. Such situations are impossible to solve by the traditional BWM [11], but a consensus of the
decision-maker on the defining of the unique best and/or worst criterion/criteria is required instead.
We are going to illustrate this problem with the following example. The decision-maker observes a set
of four criteria put in order according to significance C1 = C2 > C3 > C4, for which weight coefficients
need to be defined. The traditional BWM implies that the decision-maker should adapt (modify)
his/her preferences to the BWM’s algorithm, which implies the defining of the unique best criterion,
about which the comparison of the three remaining criteria will be made. In that manner, objectivity in
the decision-making process is undermined. If, based on a consensus, we were to define that criterion
C1 is the best criterion, then, since the difference between C1 and C2 is minimal, we would take
the smallest value from the 9-degree scale, namely a12 = 2. This means that the weight coefficients
of the criteria C1 and C2 should be in a 2:1 ratio, which does not represent the decision-maker’s
real preference. Solving this problem by applying the traditional BWM, the weight coefficients that
are in an approximate ratio w1 ≈ 2 ·w2 are obtained. In this paper, the authors have developed an
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improved BWM (BWM-I), which enables us to solve a problem such as this or similar problems.
The BWM-I enables us to realistically perceive the decision-maker’s preferences irrespective of the
number of best/worst criteria in a problem. Besides, in the case of a larger number of best/worst criteria,
the number of criteria pairwise comparisons is reduced (decreases) in the BWM-I from 2n-3 to 2n-5.
In that way, the model’s algorithm is simplified, and the reliability of results is increased. In the case
when there is a unique best/worst criterion, the BWM-I transforms into the traditional BWM with 2n-3

comparisons. This flexibility recommends the application of the BWM-I in complex studies in which
criteria and experts’ preferences differ depending on experts’ preferences.

2. Applications of BWM: A Literature Review

In order to calculate weights of evaluation criteria in an MCDM problem, some MCDM methods
can be utilized, such as stepwise weight assessment ratio analysis (SWARA) [12], the analytic
hierarchy process (AHP) [13–15], the analytic network process (ANP), the full consistency method
(FUCOM) [16,17], criteria importance through intercriteria correlation (CRITIC) [18], Entropy [19],
level-based weight assessment (LBWA) [20], and so on. As one of the latest weighting methods,
BWM is based on pairwise comparisons to extract criteria weights. By only conducting 2n-3

comparisons, as mentioned before, the BWM overcomes the inconsistency problem encountered
during pairwise comparisons.

During the past five years, the BWM has already been utilized in numerous real-world problems,
such as energy, supply chain management, transportation, manufacturing, education, investment,
performance evaluation, airline industry, communication, healthcare, banking, technology, and tourism.
Moreover, there are numerous studies in which only the BWM method is used (singleton integration),
as well as the papers employing this method together with other methods (multiple integrations).

Van de Kaa et al. [21] used the BWM to compare three communication factors and [22] applied
the method to the evaluation of technical and performance criteria in supply chain management.
Similarly, [23–25] studied the BWM to determine sustainable criteria weights in sustainable supply
chain management. Both [26,27] applied the BWM to the selection of the mobile phone. In another
study, the BWM was employed to evaluate cars [28]. Ghaffari [29] employed the method to evaluate
the key success factors in the development of technological innovation. In addition, [30] applied
the BWM in the development of a strategy for overcoming barriers to energy efficiency in buildings.
This method is used by [31] to assess the factors influencing information-sharing arrangements.
Furthermore, [24] employed the BWM to evaluate the research and development (R&D) performance of
firms. Yadollahi et al. [32] applied the BWM in order to prioritize the factors of the service experience in
the banking industry. Finally, [33] applied the method to the selection of the bioethanol facility location.

As mentioned above, the BWM has been combined with other robust techniques in order to
obtain better results. For instance, fuzzy information and interval values were utilized to integrate
with the method. To represent uncertainty in the BWM, [34,35] used fuzzy sets in manufacturing
and performance evaluation, respectively. While [36] applied triangular fuzzy sets in performance
evaluation, similarly, [37,38] employed the method with the variants of the Technique for Order of
Preference by Similarity to Ideal Solution (TOPSIS) method in the supply chain management, the energy
sector, and investment, respectively. Furthermore, researchers have integrated the Multicriteria
Optimization and Compromise Solution (VIKOR) method with the BWM. For instance, [39–41] applied
the BWM–VIKOR integration to supplier selection and the green performance of airports, respectively.
In another study, [42] proposed a BWM-interval type-2 fuzzy TOPSIS framework for the selection of
the most proper green supplier. In order to select a location for wind plants, [43] used the BWM and
the MultiAtributive Ideal-Real Comparative Analysis (MAIRCA) integration. Moreover, [44] studied a
rough BWM and Simple Aditive Weighting (SAW) approach to wagon selection. In order to assess firms’
performance in product development, [45] applied the fuzzy BWM and the fuzzy Analytic Network
Process (ANP) methodologies. Another study suggested the fuzzy BWM and the fuzzy COPRAS
methodologies for the analysis of the key factors of sustainable architecture [46]. In order to assess and
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rank foreign companies, [47] proposed the BWM, ELimination Et Choice Translating REality (ELECTRE)
III, and Preference Ranking Organization METHod for Enrichment of Evaluations (PROMETHEE) II
multi-criteria models. Another study by [48] introduced the interval rough BWM-based Weighted
Aggregated Sum Product ASsessment (WASPAS) and Multi-Attributive Border Approximation area
Comparison (MABAC) models for the evaluation of third-party logistics providers. An integrated
model including the BWM, TOPSIS, Gray Relational Analysis (GRA), and Weighted Sum Approach
(WSA) was proposed for turning operations [49]. For web service selection, [50] employed the BWM,
VIKOR, SAW, TOPSIS, and COmplex PRoportional ASsessment (COPRAS). Finally, [51] proposed the
BWM-based MAIRCA multi-criteria methodology for neighborhood selection.

What is common to all these studies is that they apply the traditional algorithm of the BWM,
which implies that one best criterion and one worst criterion are defined through a consensus. In the
literature, there are numerous examples of studies implying the defining of criteria weight coefficients
irrespective of whether there are one best or worst criterion, or several best or worst criteria [52–55].
In such studies, the algorithm of the traditional BWM would not be able to provide objective results,
since it requires the adaptation of experts’ preferences to one best/worst criterion. For that reason,
the BWM-I that eliminates this problem and enables us to define criteria weights through a realistic
perception of experts’ preferences has been developed in this paper. The algorithm of the BWM-I is
presented in the following section.

3. Improved Best Worst Method (BWM-I)

The BWM-I provides decision-makers with the possibility of choosing as many best/worst criteria
as there are in the real decision-making problem. The determination of evaluation criteria weight
coefficients by the application of the BWM-I implies the following steps:

Step 1. Defining a set of evaluation criteria C = {c1, c2, . . . cn}, where n represents the total number
of the criteria.

Step 2. Determining the best and the worst criteria, i.e., as many best and worst criteria as there
are in the decision-making model. Simultaneously, mb and mw denote the number of the best and the
worst criteria in the model, respectively.

Step 3. Determining the advantages of the best criterion/criteria from within the set C over the
other criteria. A 9-degree numeric scale is used to determine the advantage(s). If the criteria C1 and C2

are marked as the best criterion, then an improved best-to-others vector (M-BO) is obtained by the
application of expression (1), namely:

AB = (mbaBB, aB(mb+1), aB(mb+2), . . . , , aBn) (1)

where aBn represents the advantage of the best criterion B over the criterion j, and mb represents the
number of the best criteria in the model, whereas aBB = 1. It is clear that for mb = 1, expression (1)
transforms into a classical best-to-others (BO) vector, as in the traditional BWM.

Step 4. Determining the advantages of all the criteria from within the set C over the worst
criterion/criteria. In order to determine the advantage(s), as in Step 3, a 9-degree numeric scale is used.
If we mark the criterion Cn−1 and the criterion Cn, i.e., mw = 2, as the worst criterion, then a modified
others-to-worst vector (M-OW) is obtained by the application of expression (2), as follows:

AW = (a1W , a2W , . . . , a(n−3)W , a(n−2)W , mwanW) (2)

where a jW represents the advantage of the criterion j over the worst criterion W, mw represents the
number of the worst criteria in the model, whereas aWW = 1. For mw = 1, expression (2) transforms
into a classical OW vector, as in the traditional BWM.

Step 5. Calculating the optimal values of the weight coefficients of the criteria from within the set
C, (w∗1, w∗2, . . . , w∗n). Since the BWM algorithm defining weight coefficients in the case when there is one
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or more than one best and/or worst criterion/criteria (i.e., mb ≥ 1 and mw ≥ 1) is considered here, the
postulates for solving the optimization model must be defined.

The optimal values of weight coefficients are obtained once the condition stipulating that for
each pair wB/w j and w j/wW , it is applicable that wB/w j = aBj and w j/wW = a jW is met. Since we
are considering the case where mb ≥ 1 and/or mw ≥ 1, it is necessary that the mentioned conditions
should be revised, so there is the condition that wB/w j = mbaBj and w j/wW = mwa jW , where the
weight coefficients wB and wW represent the weights of the unique best and the unique worst criteria.
The unique best and worst criteria (CB and CW) represent all the criteria that are marked as the best
and the worst criteria in the set C = {c1, c2, . . . cn}. In addition, since wB/wW = mbaBW/mw, we obtain
wB
wW

mW
mb

= aBW . It arises from the aforementioned factors that the weight coefficient of the unique best
criterion (wB) represents the sum of all the weight coefficients of the criteria that are marked as the best
criteria in the set C = {c1, c2, . . . cn}, i.e.,

wB =
b∑

l=1

wl (3)

where wl represents the weight coefficients of all the criteria in the set C = {c1, c2, . . . cn} that are marked
as the best criteria, whereas b represents the total number of the best criteria from the set C.

The unique worst criterion is defined similarly. The weight coefficient of the unique worst criterion
(wW) represents the sum of all weight coefficients of the criteria that are marked as the worst criteria in
the set C = {c1, c2, . . . cn}, i.e.,

wW =
v∑

k=1

wk (4)

where wk represents the weight coefficients of all the criteria that are marked as the worst criteria in the
set C = {c1, c2, . . . cn}, and v represents the total number of the worst criteria from within the set C. Since
the optimal values of weight coefficients should meet the condition stipulating that the maximum

absolute values of the differences should be
∣∣∣∣ wB
mb·w j

− aBj

∣∣∣∣ and
∣∣∣∣

w j

mw·wW
− a jW

∣∣∣∣, all such absolute values
must be minimized for each j, i.e.,

minmax
j

{∣∣∣∣ wB
mb·w j

− aBj

∣∣∣∣,
∣∣∣∣

w j

mw·wW
− a jW

∣∣∣∣
}

s.t.

wB + wW +
n−(mb+mw)∑

j=1
w j = 1

wB, wW , w j ≥ 0∀ j

(5)

The model presented in (5) is equivalent to the following model.

minξ
s.t.∣∣∣∣ wB
mb·w j

− aBj

∣∣∣∣ ≤ ξ,∀w j , wW∣∣∣∣
w j

mw·wW
− a jW

∣∣∣∣ ≤ ξ, ,∀w j , wB∣∣∣∣ wB
wW

mw
mb
− aBW

∣∣∣∣ ≤ ξ,

wB + wW +
n−(mb+mw)∑

j=1
w j = 1

wB, wW , w j ≥ 0∀ j

(6)

Should mb > 1 and/or mw > 1, then the total number of the criteria in the model is reduced
(decreases) by the introduction of the unique best and the unique worst criteria. Then, we obtain
a smaller number of comparisons, i.e., the total number of comparisons in the model is reduced
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from 2n− 3 (in the traditional BWM) to 2n− 5 (in the BWM-I). It is clear that, should mb = mw = 1,
the models (5) and (6) transform into the classical optimization BWM model [11].

Example 1. If a set of eight criteria C1, C2, . . . , C8 is observed, in which there are two best and two worst criteria;

if we know that the criteria C1 = C2 are marked as the best, then the unique best criterion (CB) that represents

both criteria in model (6) is introduced. If the criteria C7 = C8 are marked as the worst, then the unique worst

criterion (CW) represents the criteria C7 and C8 and in model (6). Then, the total number of the criteria in the

model is reduced to six, since C1 = C2 = CB and C7 = C8 = CW . Thus, the total number of comparisons in

pairs of criteria is reduced from 15 to 13.

Should mb > 1 and/or mw > 1, then, based on conditions (3) and (4), it follows that by solving model (6),

the values of the weight coefficients of the best criterion and the worst criterion increased by the number of the

best and the worst criteria are obtained. Therefore, after solving model (6), the obtained values of the weights wB

and wW need to be divided by mb and mw in order to obtain the final values of the weight coefficients of the best

and the worst criteria. For example, if mb = mw = 2, the final values of the best and the worst (w∗
B

and w∗
W

)

criteria obtained are w∗
B1 = w∗

B2 = wB/mb = wB/2 and w∗
W1 = w∗

W2 = wW/mw = wW/2. The values of the

weights of the remaining criteria remain unchanged, and they are taken from the solution to model (6).

In order to more easily understand the algorithm of the BWM-I, the following part is dedicated to
solving a simple example including five criteria taken from a study by [28]; then, a complex model
implying the defining of the weight coefficients of a total of the 28 criteria grouped into six clusters is
considered in the case study (Section 3).

Example 2. While buying a car, the buyer applies five criteria for the evaluation of the alternative (the car):

Quality (C1), Price (C2), Comfort (C3), Safety (C4), and Style (C5). The buyer has the evaluated criteria per the

algorithm of the traditional BWM, as shown in Table 1.

Table 1. The best-to-others and others-to-worst pairwise comparison vectors.

Best-to-Others Vector Others-to-Worst Vector

Best: C2 and C4 Evaluation Worst: C5 Evaluation

C1 2 C1 4
C2 1 C2 9
C3 4 C3 2
C4 1 C4 9
C5 9 C5 1

Based on the data accounted for in Table 1, it is possible to conclude that the buyer considers the criteria

Price (C2) and Safety (C4) as the most significant, whereas the criterion Style (C5) is rated as the least significant.

The problem that appears here cannot be solved through the application of the traditional BWM, which requires

the defining of the unique best and worst criteria. If we were to insist on the defining of the unique best criterion

(as is required by the traditional BWM), then we would have to revise the BO vector to define a single best

criterion. However, by doing so, we would exert an influence on the buyer’s preferences, i.e., the buyer would not

express his real preferences. Those revised preferences would further exert an influence on a non-objective choice

of alternatives, which should be avoided. If the expert (in this case, the buyer) requires a high degree of rationality

during the evaluation of the criteria, the multi-criteria decision-making methods also need to be used as support

to such rational decision-making in order to meet that very same condition. Therefore, since it was impossible to

apply the traditional BWM, the BWM-I was applied.
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Based on the data from Table 1, we conclude that the number of the best criteria is mb = 2, whereas
the number of the worst criteria is mw = 1. Based on that and expression (4), it is possible to define the
model for the calculation of the optimal values of the weight coefficients of the BWM-I as follows:

minξ
s.t.∣∣∣∣ wB
2·w1
− 2

∣∣∣∣ ≤ ξ,
∣∣∣∣ wB
2·w3
− 4

∣∣∣∣ ≤ ξ,
∣∣∣∣ wB
2·wW

− 9
∣∣∣∣ ≤ ξ,∣∣∣∣ w1

wW
− 4

∣∣∣∣ ≤ ξ,
∣∣∣∣ w3
wW
− 2

∣∣∣∣ ≤ ξ,

wB + ww + w1 + w3 = 1
wB, wW , w1, w3 ≥ 0

(7)

By solving the presented model, the values of the weights wB = 0.7088, wW = 0.0400, w∗1 = 0.1656,
and w∗3 = 0.0856, as well as ξ = 0.140, are obtained. Based on condition (3), we obtain w∗

B1 =

w∗2 = 0.7088/2 = 0.3544, i.e., w∗
B2 = w∗4 = 0.7088/2 = 0.3544. Since mb = 1, wW = w∗5 = 0.0400 is

obtained. So, the optimal values of the weight coefficients w j = (0.1656, 0.3544, 0.0856, 0.3544, 0.0400)T

are obtained characterized by a high consistency ratio:

CR =
ξ

CI
=

0.140
5.23

= 0.026.

Had the model of the traditional BWM [27] been applied to the presented example, optimization
model (8) would have been obtained.

minξ
s.t.∣∣∣∣w2
w1
− 2

∣∣∣∣ ≤ ξ,
∣∣∣∣w2
w3
− 4

∣∣∣∣ ≤ ξ,
∣∣∣∣w2
w4
− 1

∣∣∣∣ ≤ ξ,
∣∣∣∣w2
w5
− 9

∣∣∣∣ ≤ ξ,∣∣∣∣w1
w5
− 4

∣∣∣∣ ≤ ξ,
∣∣∣∣w3
w5
− 2

∣∣∣∣ ≤ ξ,
∣∣∣∣w4
w5
− 9

∣∣∣∣ ≤ ξ,

w1 + w2 + w3 + w4 + w5 = 1
w1, w2, w3, w4, w5 ≥ 0

(8)

By solving model (8), the following vectors of the weight coefficients w j =

(0.1638, 0.3505, 0.0847, 0.3616, 0.0396)T and ξ = 0.1401 are obtained. Based on the results obtained,
we perceive that even though there is the defined condition that both best criteria (C2 and C4) are of
the same significance, the values of the weight coefficients are different (w2 , w4), i.e., w2 = 0.3505 and
w4 = 0.3616. The different values of the weight coefficients of the criteria C2 and C4 are a consequence
of undermining the condition of the transitivity of relations between criteria. This is confirmed by the
value of the consistency ratio (CR), which is CR = 0.026, just as in model (7).

The shown example has demonstrated that the traditional BWM model can be applied to the
determination of the weights of a larger number of the best/worst criteria, but only in the case when the
consistency ratio is ideal, i.e., when CR = 0.00. However, we may realistically expect that more than
one best/worst criterion and the value CR > 0 will appear in solving real-world problems, especially
those with a greater number of criteria. In such cases, the BWM-I is inevitably applied. Given the
fact that the BWM-I is capable of transforming itself into the traditional BWM (in the case when
mb = mw = 1), its application is also logical for a future objective perception of and solving real-world
multi-criteria problems.

4. Case Study: The Application of BWM-I

In this chapter, the application of the BWM-I in solving a renewable energy source evaluation
problem implying the existence of a larger number of the best/worst criteria within the framework
of the dimensions/criteria is presented. The most common criteria for a renewable energy source
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evaluation involve technical, environmental, social, risk, political, and economic aspects. Thus,
we introduce a six-dimensional model in order to define the weights of the drivers for renewable
energy sources, as shown in Figure 1, in which several criteria are considered for each dimension.
The six dimensions are technical (C1), economic (C2), social (C3), environmental (C4), risk (C5), and
political (C6); each dimension comprises three to six criteria. Moreover, the criteria for the evaluation
of renewable energy sources were achieved by reviewing the existing literature [56–64]. Consequently,
the evaluation comprised of six dimensions and 28 criteria. The criteria and their descriptions are
listed in Table 2.

listed in Table 2. 

Figure 1. The local weights of the criteria according to the considered dimensions. 
Figure 1. The local weights of the criteria according to the considered dimensions.

Table 2. The criteria and sub-criteria used in this paper.

Main Criteria Sub-Criteria Code Definition References

Technical (C1)

Efficiency C11
How technology is widespread at the

regional, national, and international levels.
[57–59]

Reliability C12
An energy system’s ability to perform the

required functions
[56,58,60]

Resource reserves C13
The availability of the energy source to

generate energy
[58]

Technology
maturity

C14
The penetration of a specific technology in the

energy mix at the regional, national, and
international levels.

[58,60]

Safety of the
system

C15
The security of the workers and the local

community
[56]
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Table 2. Cont.

Main Criteria Sub-Criteria Code Definition References

Economic (C2)

Investment cost C21
All costs of products and services, except for

the costs of labor or the cost of equipment
maintenance

[56,58–60]

Operation and
maintenance cost

C22
Operating the energy system adequately, as

well as the costs related to the maintenance of
the energy system

[56,58]

Return of
investment

C23 The time required to recover the investment [56,58]

Energy cost C24 The cost of the energy-generating system [60,63]

Operational life C25
The period during which the power plant can

operate before being decommissioned
[56]

R&D cost C26
The expenses incurred for the R&D of

technological innovations
[65]

Social (C3)

Social acceptance C31
The opinions of residents, local authorities,

and other stakeholders on an energy project
[56–58]

Job creation C32 Jobs created per unit of the energy produced [57,58,61]

Social benefits C33
The contribution of an energy system to the

improvement and advancement of local
society

[56,58]

Noise C34
The noise generated during the lifecycle

under
consideration

[62]

Visual impact C35
The aesthetics of the installations of the

energy system
[62]

Environmental (C4)

Greenhouse Gas
(GHG) Emissions

C41
Lifecycle GHG emissions (in the equivalent

emission of CO2) from technology
[58,61,63]

Land use C42
The area used per unit of the energy

produced
[58–61]

Impact on the
environment and

humans
C43

The detriment level of the energy facility to
humans and nature

[58–60,64]

Water use C44
Water consumed per unit of the energy

produced
[60,61]

Climate change C45 The global warming potential [57]

Risk (C5)

Health risk C51 Emissions harmful to human health [66]

Accident risk C52
Accidents of any type during the lifecycle

considered
[57,59,62,66]

Economic risk C53
The risk financial stakeholders should bear

for business in new plants
[60]

Political (C6)

Foreign
dependency

C61
The dependency of countries on international

legislations
[57,58]

Compatibility with
the national energy

policy
C62

The national energy policy related to
renewable energy sources

[58]

Compatibility with
the public policy

C63
Voluntary agreements and general codes of

conduct in line with national priorities
[64]

Government
support

C64
Approving and adapting to renewable

energy sources.
[64]

After defining the set of the evaluation criteria, the following steps of the BWM-I (Steps 3 and
4) imply the formation of the M-BO and M-OW vectors of the dimensions/sub-criteria, as shown in
Table 3.
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Table 3. The best-to-others (M-BO) and modified others-to-worst (M-OW) vectors of the dimensions/
sub-criteria.

Dimensions

Best: C4 Preference Worst: C5 and C6 Preference

C1 3 C1 3
C2 2 C2 4
C3 4 C3 2
C4 1 C4 5
C5 5 C5 1
C6 5 C6 1

Technical sub-criteria

Best: C14 Preference Worst: C12 Preference

C11 4 C11 2
C12 7 C12 1
C13 3 C13 3
C14 1 C14 7
C15 2 C15 4

Economic sub-criteria

Best: C21, C22 and C24 Preference Worst: C23 Preference

C21 1 C21 4
C22 1 C22 4
C23 4 C23 1
C24 1 C24 4
C25 3 C25 2
C26 2 C26 3

Social sub-criteria

Best: C31 Preference Worst: C34 and C35 Preference
C31 1 C31 4
C32 2 C32 3
C33 3 C33 2
C34 4 C34 1
C35 4 C35 1

Environmental sub-criteria

Best: C43 and C45 Preference Worst: C41 and C44 Preference
C41 4 C41 1
C42 2 C42 2
C43 1 C43 4
C44 4 C44 1
C45 1 C45 4

Risk sub-criteria

Best: C51 Preference Worst: C53 Preference
C51 1 C51 3
C52 2 C52 2
C53 3 C53 1

Political sub-criteria

Best: C62 and C63 Preference Worst: C64 Preference
C61 2 C61 2
C62 1 C62 3
C63 1 C63 3
C64 3 C64 1

Table 3 enables us to note that in some M-BO and M-OW vectors, there are several best and
worst criteria. So, based on the M-BO and M-OW dimensions, we notice the existence of one best
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criterion (Environmental—C4), whereas there are two worst criteria (Risk—C5 and Political—C6).
In the Economic Sub-Criteria group, there are three best criteria (Investment cost—C21, Operation and
maintenance cost—C22, and Energy cost—C24) and one worst criterion (Return of investment—C23).
In the Social Sub-Criteria group, there is one best criterion (Social acceptance—C31) and two worst
criteria (Noise—C34 and Visual impact—C35). The Environmental Sub-Criteria group is characteristic,
since it contains two best criteria (Impact on the environment and humans—C43 and Climate
change—C45) and two worst criteria (GHG Emissions—C41 and Water use—C44). In the Political
Sub-Criteria group, there are two best criteria (Compatibility with the national energy policy—C62

and Compatibility with the public policy—C63) and one worst criterion (Government support—C64).
In the remaining sub-criteria groups (the Technical Sub-Criteria and the Risk Sub-Criteria), there are
the unique best and worst criteria, for which reason the traditional postulate of the BWM is used to
define the weight coefficients of these sub-criteria groups.

Based on the M-BO and M-OW vectors (Table 3), the optimization models for the calculation of
the weight coefficients of the dimensions/sub-criteria were defined. A total of seven BWM-I models
were defined, some of which are shown in the next part.

Model 1 (Dimensions)

minξ

s.t.


∣∣∣∣ w4
w1
− 3

∣∣∣∣ ≤ ξ;
∣∣∣∣ w4

w2
− 2

∣∣∣∣ ≤ ξ;
∣∣∣∣ w4

w3
− 4

∣∣∣∣ ≤ ξ;
∣∣∣ w4

2·ww
− 5

∣∣∣ ≤ ξ;
∣∣∣ w1

2·ww
− 3

∣∣∣ ≤ ξ;
∣∣∣ w2

2·ww
− 4

∣∣∣ ≤ ξ;
∣∣∣ w3

2·ww
− 2

∣∣∣ ≤ ξ;

w1 + w2 + w3 + w4 + ww = 1

w j ≥ 0,∀ j = 1, 2, . . . , 5

Model 2 (Technical sub− criteria)

minξ

s.t.


∣∣∣∣ w14
w11
− 4

∣∣∣∣ ≤ ξ;
∣∣∣∣ w14

w12
− 7

∣∣∣∣ ≤ ξ;
∣∣∣∣ w14

w13
− 3

∣∣∣∣ ≤ ξ;
∣∣∣∣ w14

w15
− 2

∣∣∣∣ ≤ ξ;∣∣∣∣ w11
w12
− 2

∣∣∣∣ ≤ ξ;
∣∣∣∣ w13

w12
− 3

∣∣∣∣ ≤ ξ;
∣∣∣∣ w14

w12
− 7

∣∣∣∣ ≤ ξ;
∣∣∣∣ w15

w12
− 2

∣∣∣∣ ≤ ξ;
∑3

j=1 w j = 1

w j ≥ 0,∀ j = 1, 2, 3

. . .

−−−−−−−−−−−−−−−−
Model 6 (Risk sub− criteria)

minξ

s.t.

∣∣∣∣ w51
w52
− 2

∣∣∣∣ ≤ ξ;
∣∣∣∣ w51

w53
− 3

∣∣∣∣ ≤ ξ;
∣∣∣∣ w51

w53
− 3

∣∣∣∣ ≤ ξ;
∣∣∣∣ w52

w53
− 2

∣∣∣∣ ≤ ξ;
∑3

j=1 w j = 1;w j ≥ 0,∀ j = 1, 2, 3

. . .

−−−−−−−−−−−−−−−−
Model 7 (Political sub− criteria)

minξ

s.t.

∣∣∣∣ wB
2·w61

− 2
∣∣∣∣ ≤ ξ;

∣∣∣∣ wB
2·w64

− 3
∣∣∣∣ ≤ ξ;

∣∣∣∣ w61
w64
− 2

∣∣∣∣ ≤ ξ;

w61 + wB + w64 = 1; w j ≥ 0,∀ j = 1, 2, 3

By solving the presented models, the optimal values of the weight coefficients of the
dimensions/sub-criteria are obtained, as shown in Table 4.

Table 4. The optimal values of the weight coefficients of the dimensions/sub-criteria.

Dimensions/Sub-Criteria Code Local Weights Global Weights Rank

Technical C1 0.1674 - 3

Efficiency C11 0.1037 0.0174 17
Reliability C12 0.0586 0.0098 19

Resource reserves C13 0.1584 0.0265 12
Technology maturity C14 0.4278 0.0716 4
Safety of the system C15 0.2514 0.0421 9

Economic C2 0.2823 - 2

Investment cost C21 0.2372 0.0670 5
Operation and maintenance cost C22 0.2372 0.0670 5

Return of investment C23 0.0545 0.0154 18
Energy cost C24 0.2372 0.0670 5

Operational life C25 0.0897 0.0253 13
R&D cost C26 0.1441 0.0407 10
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Table 4. Cont.

Dimensions/Sub-Criteria Code Local Weights Global Weights Rank

Social C3 0.1178 - 4

Social acceptance C31 0.4761 0.0561 8
Job creation C32 0.2893 0.0341 11

Social benefits C33 0.1799 0.0212 16
Noise C34 0.0273 0.0032 25

Visual impact C35 0.0273 0.0032 25

Environmental C4 0.3972 - 1

GHG Emissions C41 0.0617 0.0245 14
Land use C42 0.2729 0.1084 3

Impact on the environment and
humans

C43 0.3019 0.1199 1

Water use C44 0.0617 0.0245 14
Climate change C45 0.3019 0.1199 1

Risk C5 0.0176 - 5

Health risk C51 0.5348 0.0094 20
Accident risk C52 0.2985 0.0053 23
Economic risk C53 0.1667 0.0029 27

Political C6 0.0176 - 5

Foreign dependency C61 0.1945 0.0034 24
Compatibility with the national

energy policy
C62 0.3484 0.0061 21

Compatibility with the public policy C63 0.3484 0.0061 21
Government support C64 0.1086 0.0019 28

In Table 4, the global and local values of the weight coefficients of the criteria are presented.
The global weights of the criteria were obtained by multiplying the weight coefficient of the dimension
with the weight coefficients of the sub-criterion. By solving model (6), the values of ξ∗, which are
ξ∗C1−C6 = 0.6277, ξ∗C11−C15 = 0.2984, ξ∗C21−C26 = 0.3542, ξ∗C31−C35 = 0.3542, ξ∗C41−C45 = 0.8939,
ξ∗C51−C53 = 0.2087, and ξ∗C61−C64 = 0.2087 were obtained. The values of ξ∗ are used to determine the
consistency ratio, as shown in Table 5.

Table 5. The consistency index and the consistency ratio of our modified Best Worst Method (BWM-I).

Criterion Level C1–C6 C11–C15 C21–C26 C31–C35 C41–C45 C51–C53 C61–C64

aBW 5 7 4 4 4 3 3
CI ( maxξ) 2.30 3.73 1.63 1.63 1.63 1.00 1.00

CR 0.27 0.08 0.22 0.22 0.55 0.21 0.21

The analysis of the results of the BWM-I from Table 5 allows us to conclude that the values of the
consistency ratio are satisfactory [27].

According to the findings shown in Table 4, the environmental dimension is determined to be
the most crucial dimension, with the significance of 0.3972, only to be followed by the economic and
technical dimensions, with the comparative weights of 0.2823 and 0.1674, respectively. According to
Figure 1, in the pairwise comparison of the evaluation criteria, both “Impact on the environment and
humans” and “Climate change” ranked as the priority factor from the environmental aspect, only to be
followed by “Land use”. Furthermore, the three criteria (Investment cost, Operation and maintenance
cost, and Energy cost) ranked the first in the ranking related to the economic dimension. “Technology
maturity” and “social acceptance” were the most important criteria in terms of technological and social
dimensions, respectively. Overall, according to the global weights, the most important criteria were
“Climate change” (0.1199), “Impact on the environment and humans” (0.1199), “Land use” (0.1084),
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and “Technology maturity” (0.0716), indicating that the Climate change, Impact on the environment
and humans, Land use, and Technology maturity criteria represent the four most crucial evaluation
criteria for the determination of a suitable renewable energy source.

In order to show the sensitivity analysis of the BWM-I model, in the next section, we simulated
the changes in the input parameters of the BO and OW vectors. In each group of criteria, another
best or worst criterion was added, while the values of the remaining criteria in BO and OW vectors
remained unchanged.

In the Dimensions group, two best criteria were selected (C4 and C2), while the remaining values
of the criteria remained unchanged. In the Technical Sub-Criteria group, two criteria—C12 and
C11—were selected as the worst criteria. In the Economic Sub-Criteria group, in addition to the three
best criteria, the two worst criteria were selected (C23 and C25). In the Social Sub-Criteria group,
two best criteria, C31 and C32, were added to the input BO and OW vectors. In the Risk Sub-Criteria
group, in addition to the best criterion C51 and criterion C52, it was selected as the best criterion. In the
Political Sub-Criteria group, in addition to C64, criterion C61 was also chosen as the worst criterion.
After the implementation of these changes, the results shown in Figure 2 were obtained.
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Figure 2. Results of modified M-BO and M-OW vectors of the dimensions/sub-criteria.

By analyzing the results from Figure 2, we notice that the model is sensitive to changes in the
number of best and worst criteria in the input data. Despite the changes in the input data, the degree
of consistency of the considered models remained within acceptable limits. The authors believe that
the presented analysis shows the stability and robustness of the modified BWM methodology.
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5. Managerial Implications

Integrating some methods into decision-making methodologies will make a significant contribution
to the particular body of knowledge. Furthermore, it is valuable that the existing methods are made
more efficient by completing their deficiencies. In decision theory, MCDM methods are utilized
to solve many real-world problems. Improvement and development of the functionless side of an
existing approach is always appreciated to continuously improve this branch of operations research,
because businesses, politicians, researchers, and industries need such arrangements to make more
reliable decisions.

The aim of this paper is pertinent to the fact that the BWM method, which is one of the new
approaches in the field of MCDM, is ineffective if there is more than one best/worst criterion. Thus,
this work suggests a novel strategy to solve an MCDM problem via some specific modifications to
the main structure of the traditional BWM method. As a result, decision-makers will be able to easily
cope with the problem of more than one best/worst criteria often encountered in real-world problems.
Furthermore, by making fewer pairwise comparisons (only 2n-5), they will not only have to deal with
the problem of inconsistency but also save time. Therefore, it is as well believed that the present article
will give a different point of view for future works.

The presented methodology eliminates deviations in expert preferences that occur as a consequence
of adapting to the traditional BWM algorithm. The previous analysis showed apparent advantages,
so it is expected that the proposed methodology will be accepted by the management when solving
real-world problems. Most decision-makers readily accept tools that are logical and easy to understand.
The BWM-I methodology can be included in the category of easy-to-understand decision-making tools.
In particular, it is expected to be accepted and used by decision-makers who know the algorithm of
the traditional BWM, as well as its advantages and disadvantages. In addition, the use of the BWM-I
methodology as part of the set of tools that make up the decision support system will make it more
acceptable to management structures. This tool will be acceptable for managers who require a more
realistic view of the mutual relations between the criteria, as well as a realistic and rational view of
expert preferences.

A few insights are extracted to increase the applicability of the proposed BWM-I methodology in
real cases. Thereby, the implications are as follows:

• By preferring the BWM-I model, authorities can make more accurate decisions.
• Since the weight of each criterion is found according to the opinions of decision-makers, firms can

improve their evaluation process through the BWM-I approach.
• Firms can create a better competitive advantage over their business competitors by determining

the best alternatives with the BWM-I model.

Knowing that the decision-making process is accompanied by greater or lesser uncertainties
caused by a dynamic environment, such a system eliminates further adjustment and deviation of expert
preferences. As a result of this feature, the demonstrated methodology can help companies establish a
rational, systematic approach to evaluating the internal and external factors that affect their business.
The flexibility of the methodology in terms of reducing the number of pairwise comparisons is also
valuable. It is expected that the flexibility of the BWM-I methodology will enable its application in
complex studies in which criteria and expert preferences differ and in which no consensus is required
in expert preferences.

6. Conclusions

The BWM method represents a very powerful tool for multi-criteria decision-making and defining
criteria weight coefficients. Generally viewed, while solving real-world problems, there are specific
multi-criteria problems in which there are several criteria with the same influence on decision-making.
The traditional postulate of the BWM implies that while defining priority vectors (BO and OW),
one best criterion and one worst criterion should be chosen from within a set of the observed criteria.
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Then, the criteria are compared in pairs by defining the best-to-others (BO) and others-to-worst (OW)
vectors. While defining the BO and OW vectors, the decision-maker may assign the same criteria
preferences while comparing the BO and OW, which means that there may be several criteria with the
same significance. However, the traditional BWM does not permit the defining of several best/worst
criteria that will have the same significance, although it is frequently the case in real-world problems.
As a result of that, by applying the traditional BWM, decision-makers are required to define one
best/worst criterion should they believe that there are two or more best/worst criteria. In that way,
the decision-maker’s preferences are distorted to a certain extent, and no objective results are obtained.
Should the small flexibility of the 9-degree scale be added to that as well, then the obtained values of
criteria weights may significantly deviate from the preferences expressed by the decision-maker.

In this paper, the improvement of the traditional BWM is presented. The improved BWM (BWM-I)
eliminates the shortcomings of the traditional BWM. It offers a possibility for decision-makers to
express their preferences even in the cases when there is more than one best and worst criterion.
The BWM-I was successfully tested on two examples in this paper. In the first example in Section 3,
a case in which there are two best criteria is presented. The algorithm of the traditional BWM
and the BWM-I was also applied to the same example. It was shown that the BWM-I has greater
flexibility in expressing experts’ preferences in relation to the traditional BWM. In the second example
(Section 4), the BWM-I was applied to the defining of the weight coefficients of the criteria in the field
of renewable energy and their ranking. In the presented example, all of the 28 criteria grouped into
the six dimensions were subjected to evaluation. Through a combination of the seven models of the
BWM-I, the advantages of the developed model and the possibilities of the objective processing of
experts’ preferences are demonstrated.

In comparison with the traditional BWM, the proposed BWM-I has several advantages according
to the following:

(1) Due to non-determinedness and imprecision in data, it is realistic that more than one best and/or
worst criterion/criteria with the same significance may appear in experts’ preferences. The BWM-I
enables a realistic expression of experts’ preferences irrespective of the number of the best/worst
criteria in a set of evaluation criteria.

(2) In case more than one best and worst criterion appear (mb > 1 and mw > 1) in the decision-making
process, the application of the BWM-I reduces the number of comparisons from 2n-3 (in the
traditional BWM) to 2n-5 (in the BWM-I). In that manner, the possibility of making a mistake
while conducting a pairwise comparison of the criteria is also reduced, which further exerts an
influence on the greater reliability of results.

(3) The flexibility of the BWM-I is expressed in two ways: (1) the possibilities of the realistic
processing of experts’ preferences irrespective of the number of the criteria with the same
significance (even in the case of the best/worst criteria), and (2) in the case of mb = mw = 1,
the BWM-I transforms into the traditional BWM. This flexibility opens the possibility of applying
the BWM-I in complex studies, in which criteria and experts’ preferences differ within the
framework of the cluster(s)/group of criteria.

Future Research

The proposed BWM-I represents a tool that is capable of being successfully integrated with other
MCDM techniques. The development of the hybrid multi-criteria models for group decision-making
that would be based on the integration of the BWM-I into other MCDM tools represents one of
the future directions of its application. The second logical step for the future improvement of the
BWM-I is its application in an uncertain environment, such as fuzzy, rough, grey, neutrosophic, and so
on [67,68]. In the last few years, numerous linguistic approaches, such as the expansions of linguistic
variables in a neutrosophic environment and the unbalanced linguistic approach, have been developed.
The mentioned approaches have attracted considerable attention to the decision-making field through
the possibility of applying linguistic variables in the decision-making process. Connecting these
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linguistic approaches with the BWM-I and research into the possibility of the linguistic modeling of
preferences are interesting and promising topics in future research.
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Abstract: Regions detection has an influence on the better treatment of brain tumors.
Existing algorithms in the early detection of tumors are difficult to diagnose reliably. In this paper,
we introduced a new robust algorithm using three methods for the classification of brain disease.
The first method is Wavelet-Generalized Autoregressive Conditional Heteroscedasticity-K-Nearest
Neighbor (W-GARCH-KNN). The Two-Dimensional Discrete Wavelet (2D-DWT) is utilized as the
input images. The sub-banded wavelet coefficients are modeled using the GARCH model. The features
of the GARCH model are considered as the main property vector. The second method is the Developed
Wavelet-GARCH-KNN (D-WGK), which solves the incompatibility of the WGK method for the use
of a low pass sub-band. The third method is the Wavelet Local Linear Approximation (LLA)-KNN,
which we used for modeling the wavelet sub-bands. The extracted features were applied separately
to determine the normal image or brain tumor based on classification methods. The classification
was performed for the diagnosis of tumor types. The empirical results showed that the proposed
algorithm obtained a high rate of classification and better practices than recently introduced algorithms
while requiring a smaller number of classification features. According to the results, the Low-Low
sub-bands are not adopted with the GARCH model; therefore, with the use of homomorphic filtering,
this limitation is overcome. The results showed that the presented Local Linear (LL) method was
better than the GARCH model for modeling wavelet sub-bands.

Keywords: Magnetic Resonance Imaging (MRI); wavelet transform; GARCH; LLA; LDA; KNN

1. Introduction

Electromagnetic imaging techniques provide valuable information about the human body. One of
these methods is the Magnetic Resonance Imaging (MRI) of the brain [1]. One major area of research
that has expanded in medical engineering involves diagnostic tools by machine control for a quicker
and easier inference, which can be a great help for physicians in clinical medicine. Therefore, in recent
years, mathematical methods have attracted much attention to the analysis of neural network data [2].
Brain images are considered as interesting subjects in the mathematical application and diagnosis of
brain disorders in a patient [3]. The MRI can be used to examine the status of the brain tissue and
discover whether or not there is a disease [4]. In MRI imaging, the patient is exposed to a strong
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magnetic field, after which radio waves are leaked toward him. The body’s tissues emit another radio
wave in response to this position. By receiving these radio waves emitted from the patient’s body and
by analyzing these waves via a powerful computer, images are created on the device monitor that
show the levels of the target organ parts. The next step involves extracting features.

The Two-Dimensional Wavelet Transform (DWT) and the Principal Component Analysis (PCA)
were the methods that were used to extract the features of the images [5,6]. Then, the classification
methods were used to diagnosis the disease type in the brain [7,8]. Chaplot, et al. [9] used
two-dimensional DWT sub-bands to extract the features in their research on Alzheimer’s Disease
(AD). Additionally, Daubechies filters were used as a filtering technique. The outcome illustrated
that the Support Vector Machine (SVM) with radial base function and the polynomial kernel has
a higher performance than linear neural networks and SVM [10,11]. Hackmack, et al. [12] used
multidimensional complex wavelet transformations, and then linear SVM, to determine multi-scale
brain images. The results showed that low-band scales include more information than high-frequency
values. Maitra and Chatterjee [13] presented a Slantlet deformation—developed DWT—to extract
the containing features of the brain’s images. The Fuzzy C-Meaning (FCM) method has been used to
analyze the brain MRI, based on the characteristics of the image histogram, in order to determine a
healthy subject from Alzheimer’s disease. Ramathilagam, et al. [14] used the c-means fuzzy modified
algorithm to divide the brain MRI image with a T1-T2 weight. Since the c-means standard factor is
intensively sensitive to the noise-induced area during extraction, the authors proposed to repeat the
dist-max algorithm before executing the method.

Rivest-Hénault and Cheriet [15] used a local linear representation to model the brain tissue,
after which regional models were embedded in the framework of the surface set in order to control the
spatial integrity of division. Hussain, et al. [16] classified the images as normal or abnormal using
(Back-Propagation Neural Networks) BPNN feed-forward, with characteristics derived from dynamic
statistics and 2D-DWT. Bhattacharyya and Kim [17] presented an image segmentation technique
for detecting a tumor with MRI images. The existing thresholding techniques produced different
results in each image. Therefore, in order to achieve a satisfactory result in the brain tumor image,
they presented a methodology that found the tumor to be unique. Kim, et al. [18] studied the diagnosis
of Alzheimer’s disease based on the Electroencephalogram (EEG) signal of the brain using genetic
algorithms and neural networks. One of the remarkable points in this study was the ability to
differentiate Alzheimer’s patients from the mild stage of healthy subjects with 82% accuracy using a
single-channel EEG signal [19]. Additionally, in another study, the comparison of the EEG signaling
disorder of healthy people with that of brain tumor patients was calculated by entropy. According
to the results, in low-frequency patients, low-rhythms of EEG signals such as Delta and Theta bands
have a higher power spectrum than for healthy people. Gholipour, et al. [20] described the use of a
completely new automated software algorithm using the standard MRI sequence before and after
Contra T1. The T1 weighs in before and after Contra, and the images are automatically interconnected
and normalized. The volume of tumor growth is automatically calculated. In their study, they were
able to test a method for calculating the size of the tumor when it was enlarged by the collapse of
the cavity and, of course, when the enlarged tumor was covered with semi-autogenous blood in a
cutaneous cavity. It detected an increase in tumor volume among blood products, which rarely reduced
measurements when using other techniques. Their approach seems to overcome many challenges by
assessing the response to increased brain tumors and leading to more validation. Zacharaki, et al. [21]
studied machine-learning algorithms that automatically identify the relevant features and are desirable
for brain tumor differentiation. They studied various machine-learning techniques for classifying the
brain tumor based on the features extracted from conventional MRI and perfusion. Their study was
performed by mutual validation of Leave-One-Out (LOO) exodus on 101 brain tumors, obtained using
a pack evaluation in combination with the best first-order algorithm and K-Nearest Neighbour (KNN)
algorithm classification, reaching 96.9%. When differentiated, it became Glimatic and 94.5% when
distinguished from a low-grade neoplasm. Fritzsche, et al. [22] completed a study of 15 patients
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with brain tumors and 18 patients with Mild Cognitive Impairment (MCI); eight remained stable in
a three-year follow-up, and 15 were healthy individuals. The classification was also improved by
limiting the analysis to the left-brain hemisphere. Devanand, et al. [23], using morphometric mapping
of MRI, evaluated the local changes of the hippocampus grains and entorhinal cortex in predicting
the transformation from a MCI cognitive impairment to an AD brain tumor. In the MCI model,
Cox regression models for the conversion time to conversion converters were made for AD (n = 31)
and 99 non-converted controls for age, sex, and education. In Zöllner, et al. [24], the performances
of reduction features such as the Pearson correlation coefficient, principal components analysis,
and independent component analysis in the classification of Glioma’s disease were analyzed using a
backup vector machine classifier.

Afshar, et al. [25] studied classification using CapsNets for the detection of brain tumors in
order to present a developed architecture with higher accuracy. Their findings indicated that the
presented method could overcome Convolutional Neural Networks (CNNs) successfully. Mohan and
Subashini [26] provided a clinical study of brain tumor imaging related to gliomas. They used related
methods of segmentation and classification. Huang, et al. [27] proposed an algorithm based on the
rough set method. They presented a hybrid method with the use of FCM. Initially, the feature table
was set based on FCM clustering amounts. Then, the relationship among features showed similarity
criteria in each cluster.

In this paper, we presented three algorithms, named WGK, D-WGK, and WLK. The first presented
method is Wavelet-GARCH-KNN (WGK). In this method, we first used a two-stage 2D-DWT to
decompose the input images into sub-bands of wavelets. The reached wavelet coefficients were
features of classification. Then, the GARCH model was used for feature extraction with the use of HH1,
HL1, LH1, and second stage HH2, HL2, LH2. Because of the incompatibility of Local Linear (LL) with
the GARCH model, this sub-band was ignored [28]. To reduce the number of features, the PCA and
PCA + LDA method was then used with the extracted feature brain lesion being classified via KNN
methods. The results are illustrated in the results section. The second presented method is named
Developed Wavelet-GARCH-KNN (D-WGK). In the second method, we overcame the limitation of the
WGK algorithm using homomorphic filtering before a wavelet transformation. Therefore, the LL2
sub-band participated in the GARCH model. Then, similarly to the WGK method, the KNN method
was designated for the classification of brain tumors. The third method was Wavelet-LLA-KNN (WLK).
In this method, all sub-bands of the wavelet decomposition were used for modeling with the LLA
algorithm. The remaining part of the third method was also similar to the WGK and D-WGK method.

2. Methods and Materials

2.1. Image Processing

The modern world of today allows digital images to be analyzed and stored [29]. To get better
results, it is sometimes necessary to make changes to these images. These changes have three main
purposes: processing, analysis, and image perception. For this reason, computer image processing
systems have been developed to perform these operations with better speed and accuracy. In these
systems, four major processes occur pre-processing, image quality enhancement, image transformation,
and classification and segmentation. In these methods, using mathematical science, rules have been
created by computers to simulate human visual elements, and this is an aspect of image analysis that is
used for specific purposes. Computer Vision is the analysis of scientific images in various scientific
branches such as medicine, engineering, molecular imaging, astronautics, security, etc. Modern digital
technology has made it possible to manipulate multidimensional signals from systems ranging from
simple digital circuits to multiple parallel computers [30,31].
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2.2. Discrete Wavelet Transform (DWT)

Let f (x) ∈ L2(R) be the function wavelet expansion related to the wavelet ψ(x) and scaling ϕ(x)
function [20]; we then have:

f (x) =
1
√

M
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k

Wϕ( j0, k)φ j0,k(x) +
1
√

M

J∑

j= j0

∑
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√
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f (x)φ j0 ,k(x) (2)

Wψ( j, k) =
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√
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j
2φ

(
2 jx− k
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2ψ

(
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where f (x) is the input variable as a vector, and ϕ j0,k(x) and ψ j,k(x) are the scaling coefficient and
wavelet coefficient, respectively. x = 0, 1, . . . , M − 1, j = 0, 1, . . . , J − 1, k = 0, 1, 2, ..., M − 1, where M

is the number of samples to be transformed that is equal to 2J, J is the number of transformation
levels, and j0 is a random starting scale. The expansion function is a series of crisp numbers; it is also
called the discrete wavelet transform of f (x). The representation of the discrete function of f (x) can be
written as a weighted summation of wavelet ψ j,k(x) and the scaling coefficient ϕ j0,k(x), as shown in
Equation (1). In this equation, Wφ( j0, k) and Wψ( j0, k) are the approximation coefficient and detail
coefficient, respectively. The expansion coefficients are shown as follows.

Figure 1 shows a two-step wavelet transformation that generates four sub-bands, where ψH,
ψV and ψD indicate deviations along the horizontal, vertical, and diagonals edges, respectively. In this
diagram, 2 ↓ shows a down stampeding indicator. 2D-DWT can be executed with digital filtration
and down samplers. The other sub-bands are generated with discrete 2D scaling functions, with the
use of 1D-FWT on f (x, y) [32]. For the computation of the DWT coefficients, we should consider the
multiresolution refinement equation, as shown in Equations (6) and (7):
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Figure 1. The two-dimensional DWT diagram.
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ψ j,k(x) =
∑

n
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where hφ and hψ are the scaling vector and wavelet vector, respectively. hφ and hψ may be considered
as weights for the summation of Equations (6) and (7). With the inclusion of Equations (6) and (7) into
Equations (2) and (3), the following questions result.

Wφ( j, k) = hφ(−n)Wφ( j + 1, n), (n = 2k, k ≥ 0) (8)

Wψ( j, k) = hψ(−n)Wψ( j + 1, n) j ≥ j0 (9)

The scaling and wavelet coefficient of a certain scale j may be obtained via the convolution of
the scaling coefficients of the next scale j + 1 (with finer detail) with the order-reversed scaling and
wavelet vectors hφ(−n) and hψ(−n). Based on Figure 1, the results of the first level of transformation
for the column of an input image are as follows:
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Generally, 2D- ϕ(x, y), and 3D- ψH(x, y), ψV(x, y), and ψD(x, y) are required to generate a 1D
scaling function ϕ and related wavelet ψ [20].

φ(x, y) = φ(x)φ(y) (13)

ψH(x, y) = ψ(x)φ(y) (14)

ψV(x, y) = φ(y)φ(x) (15)

ψD(x, y) = ψ(x)ψ(y) (16)

2.3. Generalized Autoregressive Conditional Heteroscedasticity

Bollerslev was the first researcher who developed the GARCH method [33]. It can be considered
as being the variance of the time variable, for example, an oscillation. Conditional requires immediate
dependence on past observations, and self-control combines past data at the present time. GARCH
models are statistical methods that are more common in the economy. Engle [34] presented the process
of Autoregressive Conditional Heteroscedasticity (ARCH) to change the conditional variance over
time as a factor of past mistakes that remain based on the conditional constant variance. The GARCH
process (Algorithm 1) is a general form of ARCH and is a time series modeling technique that uses the
last variance to predict future variances.
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Algorithm 1. GARCH

1: Input: yt, P, Q, dist

2: Output: ai, ǫt

3: Step 1: Estimate AR(q):
4: yt = a0 + a1yt−1 + · · · . + aqyt−q + ǫt

5: ǫ̂2
t = â0 +

∑q

i=1 âiǫ̂
2
t−i

6: Step 2: Compute and plot the autocorrelations of ǫ2 by:

7: ρ =
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t=i+1(ǫ̂2
t−σ̂2

t )(ǫ̂
2
t−1−σ̂

2
t−1)∑T

t=1(ǫ̂2
t−σ̂2

t )
2

8: Step 3: null hypothesis states that there are no ARCH or GARCH errors

2.4. Local Linear Approximation

The Local Linear Approximation is calculated via [35]. In this method, the first and second
derivatives are determined so as to generate a fitting function with the observation data.

Let x have three value x(1), x(2), and x(3). An LLA for the derivative of x at the x(2) is calculated
via the mean of the two slopes between x(1)−x(2) and between x(2)−x(3), which can now be calculated
from x(3) and stored in the matrix y of the same order as x(3) where the kth row of y is:

yk1 = xk2, (17)

yk2 =
xk3 − xk1

2τ∆t
, (18)

yk3 =
xk1 − 2xk2 + xk3

(τ∆t)2
. (19)

dx(1− τ)
dt

≈
x(1 + 2τ) − x(1)

2τ∆t
(20)

where the first column of y is the value of x at the moment of measurement indexed in the second
column of x(3), and the second and third columns of y are the approximated first and second derivatives,
respectively, at that same moment of measurement. In this case, τ = 1 since x(1), x(2), and x(3) are
successive measures, and ∆t is the time interval among the measures. The others (for instance x(1),
x(3), and x(5)) can be calculated with τ = 2 being substituted into Equation (20).

2.5. K-Nearest Neighbour Algorithm

KNN is a simple form of machine learning [31,36]. In this algorithm, an article is classified by
the values of its neighbors, which are allocated to k (∈ N+) nearest neighbors [37]. The similarity
of each object in a class is utilized as the weight of the class. In the case of a few of the k nearest
neighbors sharing a category, the per-neighbor weights of that category are included together at that
point, and the obtained weighted entirety is utilized as the probability score of the candidate categories.
A positioned list is obtained for the test archive. By thresholding these scores, twofold category
assignments are obtained.

2.6. Proposed Method

In this paper, we aim to use mathematical methods to diagnose brain diseases. We implemented
three methods for the classification and diagnosis of brain tumors (Algorithm 2). The first presented
method is Wavelet-GARCH-KNN (WGK). In this method, we first used two-stage 2D-DWT to
decompose input images into sub-bands of wavelets. The obtained wavelet coefficients are features of
classification. Then, the GARCH model was used for feature extraction with the use of HH1, HL1,
LH1, and second-stage HH2, HL2, LH2. Because of the incompatibility of LL with the GARCH model,
this sub-band was ignored. To reduce the number of features, the PCA and PCA + LDA method
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was then used, with extracted feature brain lesions being classified with the use of KNN methods.
The results are illustrated in the results section.

The second presented method is named Developed Wavelet-GARCH-KNN (D-WGK). In the
second method, we overcame the limitation of the WGK algorithm by using homomorphic filtering
before a wavelet transformation. Therefore, the LL2 sub-band participated in the GARCH model. Then,
similarly to the WGK method, the KNN method was designated for the classification of brain tumors.

The third method is Wavelet-LLA-KNN (WLK). In this method, all sub-bands of wavelet
decomposition were used for modeling with the LLA algorithm. The remaining part of the third
method was also similar to the WGK and D-WGK method. The results of each algorithm are depicted
in the below sections. The structure and proposed model in this study are shown in Figure 2.

 

 

2D DWT 

Input MRI images 

2D DWT 

GARCH 

Normalizing  

Feature extraction using PCA and 

hybrid PCA and LDA 

LLA 

Homomorphic filtering 

2D DWT 

WLK WGK D-WGK 

Classification and diagnosis of brain 

tumor using KNN 

Figure 2. The block diagram of the proposed method.
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Algorithm 2. Presented

1: Input: ym×m = {m×m} ∈ R2

2: Switch:
3: Case 1: WGK
4: Step 1: Wavelet decomposition for all images
5: Step 2: Calculate GARCH parameters for sub-bands of high-frequency detail of (HH1, HL1, LH1, HL2, LH2)
6: Step 3: Normalization of features
7: Step 4: Feature reduction using PCA and PCA+LDA
8: Step 5: Classification of Features using KNN
9: Case 2: D-WGK
10: Step 1: Apply homomorphic filtering for all images
11: Step 2: Wavelet decomposition for all images
12: Step 2: Calculate GARCH parameters for all sub-bands of high-frequency detail of (HH1, HL1, LH1, HL2,
LH2, LL2)
13: Step 3: Normalization of features
14: Step 4: Feature reduction using PCA and PCA+LDA
15: Step 5: Classification of Features using KNN
16: Case 3: WLK
17: Step 1: Wavelet decomposition for all images
18: Step 2: Calculate LLA parameters
19: Step 3: Normalization of features
20: Step 4: Feature reduction using PCA and PCA+LDA
21: Step 5: Classification of Features using KNN
22: Comparison and analysis

3. Results and Discussion

3.1. Datasets

In this paper, we used seven brain diseases to implement and test the presented methods.
They consist of Alzheimer’s, Alzheimer plus visual agnosia, Glioma, Huntington, Meningioma, Pick,
and Sarcoma. These diseases, in conjunction with normal brain images, include 240 MRI images from
the Harvard medical school website. All images are from T2-weighted MR brain images in the axial
plane and have 256 × 256 pixels. These images were saved in different folders and studied separately.
Therefore, after feature extraction, they were aggregated into a single code folder.

3.2. Two-dimensional Discrete Wavelet Transforms (2D-DWT)

In this paper, we used 2D-DWT to separate the sub-bands of images. In this transformation,
we input images from 256 × 256 pixels to 131 × 131 first-stage sub-bands and 69 × 69 sub-bands.
The example of a wavelet transformation is shown in Figure 3. Additionally, for the second
aforementioned method, we needed homomorphic filtering.
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𝜎 = 5Figure 3. The sub-bands of the wavelet transformation.

The results of the wavelet discretization when using homomorphic filtering (σ = 5) are shown
in Figure 4. The top images show the original image without (with) the filtration, and the first and
second transformation are shown on the left and right sides of the images, respectively. Regarding the
literature studies, the GARCH model was not compatible with LL2 sub-bands [38]. This situation is
obviously shown in Figure 3 (LL2). Because all the brain sections of the images were almost within the
GARCH model in (1, 1), we did not find the model coefficient to be significant for the GARCH (1, 1)
model. In this paper, we overcame this limitation and made the LL2 model be compatible with the
GARCH (1, 1) model. To overcome this condition, we used homomorphic filtration for the main image,
and then the 2D-DWT was performed on it. With this method, we increased the contrast of the LL2
sub-band, as can be seen in Figure 4 (LL2).
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Figure 4. The sub-bands of the wavelet transformation using homomorphic filtering.

3.3. Feature Reduction

In this section, we used nonconvulsive status epilepticus (NCSE) to extract features and classify
them. Via this method, we can classify the features into two classification states: two-classes and
eight-classes. In the two-class state, we classify the features into two classes to diagnosis the normal
and abnormal MRI images. Using this state, we can find patient and inpatient brain images. Moreover,
using the eight-class state, we can classify the brain images into seven different classes in conjunction
with normal brain images.

In this paper, we studied different methods to reduce features, consisting of:

WGK: Using GARCH without LL2 + PCA
WGK: Using GARCH without LL2 + PCA + LDA
D-WGK: Using Homomorphic filtering + GARCH with LL2 + PCA
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WLK: Using LLA + PCA
WLK: Using LLA + PCA + LDA

The results are depicted in Figures 5–8. Figure 5 shows the feature reduction plots used to find the
best number of classes. In this figure, we used two methods, 2D-DWT and GARCH (1, 1), used with
and without LL2 sub-bands. The result shows that with the addition of LL2 to the GARCH method,
the model is developed. Furthermore, the results of the PCA method show that we can use 14 features
for the classification of images.

Furthermore, this enhancement is shown in Figure 6 for the two-class state. Additionally, in this
state, the method is developed, and a number of features are decremented from 6 to 5. This can speed
up the classification method and increase the accuracy of the methods because we used all sub-bands
of the 2D-DWT method for classification with fewer features.

 

 

Figure 5. Normalized cumulative summation of eigenvalues of training data for GARCH (1, 1) with
and without LL2 (Eight-classes).

 

 

N
C
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Figure 6. Normalized cumulative summation of eigenvalues of training data for GARCH (1, 1) with
and without LL2 (two-classes).
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Figure 7. Normalized cumulative summation of eigenvalues of training data for the GARCH and LLA
methods for different PCA and PCA + LDA methods (eight-classes).
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Figure 8. Normalized cumulative summation of eigenvalues of training data for the GARCH and LLA
methods for different PCA and PCA + LDA methods (two-classes).

Figures 7 and 8 show the feature reduction results for the presented LLA and GARCH model
using the PCA and PCA + LDA methods. In the eight-class method (Figure 7), the best number of
features for the GARCH and PCA method was 20, which for GARCH + PCA + LLDA decreased to
10 features. Using the presented method, the LLA + PCA method’s number of features decreased to
7 features. Furthermore, for the LLA + PCA + LDA method, the best number of features should be
three features. The results showed that the last presented method decreased the number of features to
3 so that it would be great for feature reduction.

For a two-class state (Figure 8), this reduction is conspicuously shown. The resolution between
the classes is high, which indicates the ability of LLA + PCA + LDA in incremental inter-class distances
and decremental intra-class distances.
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3.4. The Classification Results

In this paper, we used the k-Nearest Neighborhood (KNN) method to classify the input features.
KNN is a non-parametric method used in data mining, machine learning, and pattern recognition.
The KNN algorithm is one of the ten most used algorithms in various machine learning and data
mining projects in the industry. The KNN algorithm can be used for classification and regression
issues. However, it is often used for classification issues.

The value of K in the KNN method is one of the effective parameters in classification. The mean
classification accuracy was determined for different values of K, which was increased from 1 to 11 in
steps of two for both states. The results are depicted in Figure 9. The results show that, for K ≤ 5,
the classifier has good efficiency. Furthermore, the accuracy of the LLA method in the KNN classifier
is greater than the GARCH method.

 

≤

 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦, 𝑇𝑃𝑅 = 𝑇𝑃𝑇𝑃 + 𝐹𝑁
𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦, 𝑇𝑁𝑅 = 𝑇𝑁𝑇𝑁 + 𝐹𝑃
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Figure 9. The plots of the accuracy of the two- and eight-class methods for different K values.

In the statistics, indicators of sensitivity and specificity are utilized to evaluate the result of the
binary classification (two-class). When the data can be divided into positive and negative groups,
the accuracy of the results of a test that divides the information into these two categories is measurable
and describable using sensitivity and attribute indicators. Sensitivity means a proportion of positive
cases that will test them correctly as being positive. Specificity means the proportion of negative cases
that mark them correctly as being negative.

True Positive (TP): The disease is diagnosed correctly.
False Positive (FP): A healthy person is diagnosed with mistakes.
True Negative (TN): A healthy person is diagnosed correctly.
False Negative (FN): The disease is diagnosed with mistakes.
The sensitivity parameter is calculated by dividing the numbers of TP cases by the sum of TP

cases and FN cases.

sensitivity, TPR =
TP

TP + FN
(21)

In a similar way, the specificity results are the division of TN cases by the sum of FP and TN cases.

speci f icity, TNR =
TN

TN + FP
(22)

Other classification criteria, such as precision, accuracy, and fall-out, are defined as following
Equations (23)–(25).

precision, PPV =
TP

TP + FP
(23)
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accuracy(ACC) =
TP + TN

TP + TN + FP + FN
(24)

f all− out(FPR) =
FP

FP + FN
(25)

The results of the classification using the LLA method are shown in Tables 1 and 2. Table 1 shows
the results of the classification using the presented methods. The results show that the maximum
accuracy belongs to the presented LLA method that conducted the extraction using the combination of
the PCA and LDA methods. Moreover, the minimum one belongs to the GARCH method that used
the PCA feature extraction method.

Table 1. The comparison between the presented methods.

Method Class Images Features Accuracy

Ref. * 6 56 6 91.5
PCA + LDA (WGK) ** 8 80 10 89.4

PCA (WGK) ** 8 80 22 90.1
Proposed PCA + LDA (D-WGK) 8 240 10 90.2

Proposed PCA (D-WGK) 8 240 20 89.3
Proposed PCA + LDA (WLK) 8 240 3 92.5

Proposed PCA (WLK) 8 240 7 91.3

* Marti nez, et al. [39]; ** Kalbkhani, Shayesteh and Zali-Vargahan [38].

Table 2. The results of the classification for eight-class states using PCA + LDA (WLK).

Diseases TPR TNR PPV ACC FPR

Alzheimer 0.933 1 0.903 0.967 0
Alzheimer+ 0.933 1 0.875 0.967 0

Glioma 0.900 1 1 0.950 0
Huntington 0.967 1 0.906 0.983 0
Meningioma 0.967 1 1 0.983 0

Pick 0.867 1 0.839 0.933 0
Sarcoma 0.833 1 0.926 0.917 0

Therefore, we can prioritize the presented methods that follow a maximum sensitivity and
minimum fall-out as PCA + LDA (WLK), PCA (WLK), PCA + LDA (WGK), and PCA (WGK)
(see Figure 10). This shows that the LLA method is better than the GARCH model in terms of
robustness, sensitivity, and accuracy. Moreover, the combination of PCA and LDA produces better
results than single PCA. One of the main reasons that the GARCH model has not produced a good
model is the incompatibility of this method with some images. Table 2 also shows the results of a
classification in the eight-class state, and the results show the acceptable outperformance of most
diseases. The diagnosis of Pick and Sarcoma is somewhat more inaccurate than that of others; this is
because of the complex images of these diseases.

Figure 11 shows the confusion matrix of the presented model of the hybrid PCA, LDA, and LLA
methods for the diagnosis of normal and abnormal images. The main diameter of the matrix shows
the number of images detected correctly. From 210 abnormal images, 18 (8.57%) were recognized as
normal lesions. However, 192 (91.43%) of the abnormal images were diagnosed correctly. Nevertheless,
all the normal images were detected, and 92.5% (accuracy) of all images are were correctly classified,
while 7.5% were incorrectly classed.
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Figure 10. The Receiver Operating Characteristic (ROC) curve of the presented method.
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Figure 11. The confusion matrix for two-classes states using PCA-LDA (LLA).

Figure 12 also shows the confusion matrix of the presented method for the classification in eight
classes. The lower row of the matrix shows the percentages of each disease that were detected correctly
(sensitivity). The maximum detection percentage belonged to normal images, and then Huntington
and Meningioma came second. However, only 93.3% of Sarcomas were diagnosed correctly. In the
end, 92.5% (accuracy) of all images were classified in the proper class, while 7.3% of them could
not be recognized and were incorrectly classed. The red cells show incorrect choices or false ones.
In each column, the sum of the elements equals the number of images of each disease. For example,
for Alzheimer’s (first column), 28 images (from 30) were diagnosed correctly; however, two images
were classified into the Alzheimer plus category.
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Figure 12. The confusion matrix for eight-classes states using PCA-LDA (WLK).

4. The Complexity Analysis

In the proposed method, we used five major approaches. Therefore, we should calculate their
complexity. The complexity of PCA is O (min(p3, n3)), where p shows the number of features, and n is
the data abundance (image size 256 × 256) [40]. Additionally, the complexity of the LDA method for
feature extraction is O

(
np2

)
if n > p. Otherwise, it is O

(
p3

)
. The complexity of 2D-DWT is O

(
4Mn2log2n

)
,

where M is the number of vanishing moments of the mother wavelets that are used. The complexity of
the GARCH (1, 1) method depends on the autocorrelation complexity and is O(n), where, in this case,
n is 256 × 256. Regarding the complexity of the LLA method, we can calculate this as O(n′n), where n′

is of the order of the derivative in the method and where, in this case, n′ = 2. The complexity of the
KNN method is O(npk), where, in this case, k = 1. Therefore, the complexity of the presented method
is as follows: PCA (GARCH) is O

(
min(p3, n3) + n

)
, PCA + LDA (GARCH) is O

(
min(p3, n3) + np2 + n

)
,

PCA (LLA) is O
(
min(p3, n3) + 2n

)
, and PCA + LDA (LLA) is O

(
min(p3, n3) + np2 + 2n

)
; therefore,

the group of the LLA method is somewhat more complex than that of the GARCH group; however,
the result is remarkable and compatible with all of the images.

5. Conclusions

In this paper, a hybrid algorithm for determining the diagnosis of brain disease in MRIs is
presented. Initially, the two-level transformation of the 2D-DWT was calculated as the input images.
The sub-banded wavelet coefficients could be modeled using the GARCH and LLA models. We used
five studies in this paper. After using the 2D-DWT method and the separation of the image into six
sub-bands to model the sub-bands, we used GARCH (1, 1) without using the Low-Low sub-band in
the second wavelet level (use of WGK). Because this sub-band was incompatible with the GARCH
(1, 1) method in terms of overcoming this condition, we used homomorphic filtering before 2D-DWT
(use of D-WGK). The results showed that, by using Homomorphic filtering, the LL2 sub-band with the
maximum image data could be utilized in the GARCH (1, 1) method with high performance. Moreover,
we used the LLA method to model the 2D-DWT sub-bands. In this method, we used all of the
sub-bands to model features (use of WLK). The results showed that using the LLA method, we could
reduce the number of features from 20 to 3. Then, we classified the images using the KNN method.
The results demonstrated the high accuracy and robustness of the presented methods. The results
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showed that the WLK method was better than the WGK and D-WGL models in terms of robustness,
sensitivity, and accuracy. Furthermore, the hybrid of PCA and LDA produced better results than
PCA. One of the main reasons why the GARCH model has not produced a good model relates to the
incompatibility of this method with some images. We overcame this problem in D-WGT with the
use of homomorphic filtering. The results of an eight-class classification (diagnosis of disease type)
showed an acceptable outperformance for most diseases. The diagnosis of Pick and Sarcoma was
somewhat more inaccurate than that of the others; this is because of the complex images of these
diseases. Out of the abnormal images, 8.57% were recognized as normal lesions. However, 91.43% of
abnormal images were diagnosed correctly. Nevertheless, all the normal images were detected with
92.5% accuracy. The maximum detection percentage belonged to normal images, and then Huntington
and Meningioma came second. However, 93.3% of sarcomas were classified correctly. In the end,
92.5% of all images were classified in their proper class, with a 7.3% error. Future work should focus on
increasing the dataset volume for the diagnosis of brain tumors. Furthermore, it could be implemented
for other MRI images, like breast cancer, prostate cancer, and so on. The novel methods of deep
learning could also be enriched with this feature extraction method, which increases process speed
and accuracy.
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Abstract: Multi-attribute decision-making (MADM) methods represent reliable ways to solve
real-world problems for various applications by providing rational and logical solutions. In reaching
such a goal, it is expected that MADM methods would eliminate inconsistencies like rank reversal
issues in a given solution. In this paper, an endeavor is taken to put forward a new MADM method,
called RAFSI (Ranking of Alternatives through Functional mapping of criterion sub-intervals into
a Single Interval), which successfully eliminates the rank reversal problem. The developed RAFSI
method has three major advantages that recommend it for further use: (i) its simple algorithm helps in
solving complex real-world problems, (ii) RAFSI method has a new approach for data normalization,
which transfers data from the starting decision-making matrix into any interval, suitable for making
rational decisions, (iii) mathematical formulation of RAFSI method eliminates the rank reversal
problem, which is one of the most significant shortcomings of existing MADM methods. A real-time
case study that shows the advantages of RAFSI method is presented. Additional comprehensive
analysis, including a comparison with other three traditional MADM methods that use different ways
for data normalization and testing the resistance of RAFSI method and other MADM methods to
rank the reversal problem, is also carried out.

Keywords: multi-criteria optimization; RAFSI method; performance comparison; rank reversal

1. Introduction

Multi-criteria optimization (MCO) methods represent powerful tools for making rational decisions
while being engaged in various types of activities. Studies in MCO problems have particularly been
prevalent in recent decades [1]. The reasons for such developments lie both in theoretical and practical
points of view. In a theoretical sense, MCO is attractive as it studies insufficiently structured problems,
while, in a practical sense, MCO represents a powerful way for choosing adequate actions. Furthermore,
MCO methods are unavoidable for designing appropriate tools to explore diverse systems.

MCO methods can be classified into five groups [2]: (1) methods for determining non-inferior
solutions that determine the set of non-inferior solutions, while it depends on the decision-makers
(DMs) to adopt the final solution based on their preferences. The following methods belong to this
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group: weighting coefficient methods (the restriction method in the criteria functions environment,
as well as the Simplex method), (2) methods with a predetermined preference, which are used to
form synthesizing (resultant) criterion function (it includes almost all multi-attribute decision-making
(MADM) methods, (3) interactive methods in which DMs express their preferences interactively, (4)
stochastic methods where indicators of uncertainty are included in the optimization model, and (5)
methods for emphasizing a subset of non-inferior solutions that narrow down the subset of non-inferior
results, which are achieved by introducing additional elements for making rational decisions.

MADM methods involve sound mathematical steps for processing information to evaluate
alternatives concerning a predetermined set of criteria, which is the main focus of this paper. It is
performed to establish a ranking of solutions and the best choice. Some of the most predominant
representative methods of this group are

• Preference Ranking Organization Method for Enrichment Evaluation (PROMETHEE) [3],
• Više Kriterijumska optimizacija i Kompromisno Rešenje (VIKOR) [4,5],
• Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) [6],
• Analytical Hierarchy Process (AHP) [7],
• Elimination Et Choice Translating Reality (ELECTRE) [8],
• Multi-Attributive Border Approximation Area Comparison (MABAC) [9],
• Complex Proportional Assessment (COPRAS) [10],
• Combinative Distance-based Assessment (CODAS) [11],
• lattice MADM methods [12].

MADM methods play a significant role in solving real-world problems in several areas. Let us
mention some interesting studies, which show the diversity of applications of MADM methods. Orji
and Wei [13] applied a hybrid decision-making trial and evaluation laboratory (DEMATEL)-TOPSIS
model for sustainable supplier selection. Rabbani et al. [14] modified traditional MADM methods
using fuzzy sets and demonstrated their application in logistics. Mahdi Paydar et al. [15] applied
the fuzzy Multi-Objective Optimization Method by Ratio Analysis (MOORA) and Failure Mode and
Effects Analysis (FMEA) methods in the Iranian chemical industry application. Zhou and Xu [16]
used DEMATEL, Analytic Network Process (ANP), and VIKOR methods in sustainable supplier
selection. Lu et al. [17] extended the ELECTRE method using a rough set theory. Si et al. [18]
showed the possibilities of applying picture fuzzy numbers in MADM. Noureddine and Ristic [19]
combined the Full Consistency Method (FUCOM), TOPSIS, and MABAC with the Dijkstra algorithm
for optimizing the transport of dangerous cargo. Badi et al. [20] used a gray-based assessment
model to evaluate healthcare waste treatment alternatives in Libya. Krmac and Djordjevic [21]
applied the TOPSIS method for evaluating the influence of the Train Control Information System on
capacity utilization.

One of the most important problems that occur in most MADM methods with predetermined
preferences is the lack of resistance to rank reversal problems. If unexpected changes in the ranking
of alternatives occur when any non-optimal alternative is added or deleted from the existing set of
alternatives, this indicates serious mathematical issues in the applied MADM method. This problem
can be illustrated with the following example in which three candidates are examined (candidates A,
B, and C) who applied for the same work position. A MADM method is used to rank the candidate
alternatives and the method suggested the following ranking of the candidates: A> B>C. Furthermore,
it is assumed that candidate B (with the second rank) is replaced with a poor candidate D, which
kept candidates A and C unchanged. If this new set of alternatives (A, D, and C) is now ranked by
the same method under the same criteria weights, it is expected that the applied MADM method
would again suggest candidate A as the best solution under the new conditions. However, in actual
practice, some unwanted changes in the ranking order of the alternatives occur for the majority of
the MADM methods [22].
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The rank reversal problem was noticed and presented for the first time by Belton and Gear [22],
who analyzed the use of Analytic Hierarchy Process (AHP) for ranking alternatives. In their research,
they conducted a simple experiment in which three alternatives and two criteria were analyzed. After
the initial ranking of the alternatives, they formed a new set of alternatives by introducing a copy of
the non-optimal alternative. After evaluating this new set of alternatives while keeping the same criteria
weights, inconsistencies were observed as the ranking order of the best alternative was changed. Thus,
they concluded that AHP suffers from rank reversal phenomena. A few years later, Triantaphyllou
and Mann [23] noticed the same problem again in AHP when the worst alternative was replaced by
a non-optimal alternative. Triantaphyllou and Mann [23] also conducted the same experiment on
two other methods, which included the Weighted Sum Model (WSM) and Weighted Product Model
(WPM), and concluded that none of these methods were efficient in solving the rank reversal problem.
Afterward, Triantaphyllou and Lin [24] further tested five MADM methods, including WSM, WPM,
AHP, revised AHP, and TOPSIS in terms of the same two evaluative criteria in the fuzzy environment
and came to the same conclusions. Then, many authors pointed out the rank reversal problem in many
other MADM methods [25–30].

Furthermore, there is a large number of MADM methods already developed in the past few
years, which give successful results for solving practical problems [31]. Nevertheless, most of these
methods are not able to successfully eliminate the rank reversal problem. Among such methods, only
the lattice MADM method can successfully eliminate the rank reversal problem [12]. However, this
method has a complex mathematical algorithm and requires profound knowledge in net theory [32].
The complexity of the lattice algorithm significantly limits its broader use [33]. Moreover, several studies
have shown that the rank reversal problem can be solved when traditional methods are substantially
modified [34–36]. Keeping in mind that MADM methods are often used in the condition of dynamic
changes in the initial decision matrix, authors of this research have paid attention to the development
of a new MADM method, called Ranking of Alternatives through Functional mapping of criterion
sub-intervals into a Single Interval (RAFSI) method that eliminates rank reversal problems. Besides
eliminating the rank reversal problem, RAFSI method is also characterized by simple mathematical
formulations that can be easily used for solving complex problems. RAFSI method integrates three
starting points for making consistent decisions, which encompass (1) defining referential criteria points
including ideal and anti-ideal criteria values, (2) defining relations between the considered alternatives
and ideal/anti-ideal values, and (3) using a new technique for data normalization, based on defining
criteria functions that map criteria sub-intervals into a unique criteria interval.

According to the results shown in this paper, three main advantages of the RAFSI method
distinguish it from the other traditional MADM methods, which include (1) a simple algorithm
of RAFSI method that enables DMs to solve complex problems, (2) use a new data normalization
technique that converts an initial decision matrix into a unique criterion interval, and (3) resistance
of the RAFSI method to rank reversal problems. We are emphasizing this phenomenon since it can
be especially seen in dynamic conditions of decision-making where some alternatives often change
during the process of making decisions, and MADM methods are often used in such conditions. Based
on these advantages of RAFSI method, one of the most important contributions of this paper is to
enrich the MADM research domain by developing a new method, which enables the DMs to make
stable and coherent decisions in dynamic and uncertain environments.

After the introductory discussion on motivation, goals, and contributions, the content of the paper
is presented as follows. In Section 2, the mathematical formulation of the RAFSI method is presented.
Section 3 covers the application of RAFSI method for a real-time case study by considering six
alternatives and five criteria. Results’ validation and performance comparisons are presented in
Section 4. Lastly, Section 5 concludes the paper with future research directions.
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2. RAFSI Method

Let us assume that the DMs have to rank m alternatives on the basis of n criteria C1, C2, . . . , Cn.

Criteria weights (wj, j = 1, 2, . . . . n) meet the following condition
n∑

j=1
w j = 1. Criteria C1, C2, . . . , Cn can

be maximizing type (max) or minimizing type (min). Alternatives Ai(i = 1, 2, . . . , m) are defined by
their respective values (aij) on each criterion (cj). The initial decision matrix is shown as follows.

C1 C2 . . . Cn

N =

A1

A2
...

Am




n11 n12 · · · n1n

n21 n22 · · · n2n
...

...
. . .

...
nm1 nm2 · · · nmn




(1)

The RAFSI method has the following steps.
Step 1: Define ideal and anti-ideal values. For each criterion C j( j = 1, 2, . . . , n), the DM defines

two values aI j
and aN j

, where aI j
represents the ideal value of criterion C j, while aN j

represents an
anti-ideal value of criterion C j. It is clear that aI j

> aN j
for max criteria and aI j

< aN j
for min criteria.

Step 2: Mapping of elements of the initial decision matrix into criteria intervals. In the previous
part, criteria intervals are defined below.

(a) C j ∈
[
aN j

, aI j

]
, when C j belongs to max type criteria and

(b) C j ∈
[
aI j

, aN j

]
, when C j belongs to min type criteria.

In order to make all criteria of the initial decision matrix equal or transfer them into the criteria
interval [n1, n2k], we are forming a sequence of numbers from the k interval in the way where k−1

points are inserted between the highest and the lowest values of the criteria interval.

n1 < n2 ≤ n3 < n4 ≤ n5 < n6 . . . ≤ n2k−1 < n2k (2)

The criteria interval is constant for all criteria and it has n1 and n2k fixed points. Then we can
map sub-intervals of the criteria into criteria intervals using functions f1, f2, f3, that is fs, as shown in
Figure 1.



 
 
 
 
 
 





 

   

   

 

      

aNj

f1 f2 f3

aIj

n1 n4=n5

a

n6

aNj

fs

aIj

n2kn1
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1 6  

( )  
 

Figure 1. Mapping of sub-intervals into the criteria interval.

The map of minimum value aN j
(for max criteria) and aI j

(for min criteria) is n1. Additionally,
the map of maximum value aI j

(for max criteria) and aN j
(for min criteria) is n2k. It is suggested that

the ideal value is at least six times better than the anti-ideal (barely acceptable value), or n1 = 1 and
n2k = 6. However, the DM can use other preferred values such as n1 = 1 and n2k = 9.
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We define a function fs(x), which maps sub-intervals into the criteria interval [n1, n2k] by Formula
(3) below. The endpoints of the interval [n1, n2k] determine the ratio of a barely acceptable alternative
to the ideal alternative. This ratio is set up by the DM.

fs(x) =
n2k − n1

aI j
− aN j

x +
aI j
· n1 − aN j

· n2k

aI j
− aN j

(3)

where n2k and n1 represent the relation that shows the extent to which the ideal value is preferred
over the anti-ideal value, and where aI j

and aN j
represent ideal and anti-ideal values of criteria C j,

respectively.
Expression (3), as a function, can be part of the function, which maps a part of the interval[

aN j
, aI j

]
into interval [n1, n2k]. In this case, all these parts, that is, all functions f1(x), f2(x)..., fn(x),

represent a function fs(x) that maps the entire criterion interval into a defined numerical interval. Thus,
Expression (3) can represent a function that maps a part of an interval, but can also map a complete
criterion interval into the corresponding numerical interval. Therefore, the numbers aI j

and aN j

can represent: (1) values from inside the criterion interval or (2) endpoints of the criterion interval.
The second possibility is used in this paper.

In this way, the standardized decision matrix S =
[
si j

]
m×n

(i = 1, 2, . . . , m, j = 1, 2, . . . , n) is
obtained in which all elements of the matrix are mapped into the interval [n1, n2k]. After functional
mapping of the elements of the initial decision matrix into criteria interval N [n1, n2k], the condition
n1 ≤ si j ≤ n2k is achieved for every I, j.

C1 C2 . . . Cn

S =

A1

A2
...

Am




s11 s12 · · · s1n

s21 s22 · · · s2n
...

...
. . .

...
sm1 sm2 · · · smn




(4)

In the above formula, the elements of the matrix si j are obtained by using expression (3), that is,

si j = fAi

(
C j

)
.

Note the following:

(a) for max type criteria, if there is ax j
where ax j

> aI j
, then we have equality f

(
ax j

)
= f

(
aI j

)

(b) for min type criteria, if there is ax j
where ax j

< aI j
, then we have equality f

(
ax j

)
= f

(
aI j

)

Step 3: Calculate arithmetic and harmonic means. Using expressions (5) and (6), arithmetic and
harmonic means are calculated for minimum and maximum sequence of the elements n1 and n2k.

A =
n1 + n2k

2
(5)

H =
2

1
n1

+ 1
n2k

(6)

Step 4: Form normalized decision matrix Ŝ =
[
ŝi j

]
m×n

(i = 1, 2, . . . , m, j = 1, 2, . . . , n). Using
expressions (7) and (8), elements of the matrix S are normalized, and transferred into the interval [0,1].

(a) for the criteria Cj ( j = 1, 2, . . . , n) max type:

ŝi j =
si j

2A
(7)
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(b) for the criteria Cj ( j = 1, 2, . . . , n) min type:

ŝi j =
H

2si j
(8)

In this way, a new normalized decision matrix is created, as shown below.

C1 C2 . . . Cn

Ŝ =

A1

A2
...

Am




ŝ11 ŝ12 · · · ŝ1n

ŝ21 ŝ22 · · · ŝ2n
...

...
. . .

...
ŝm1 ŝm2 · · · ŝmn




(9)

where ŝi j ∈ [0, 1] represents normalized elements of Ŝ.

For the elements of the normalized decision matrix Ŝ =
[
ŝi j

]
m×n

, which are defined using
Expressions (7) and (8), the following relations can apply.

(a) For max type criteria Cj ( j = 1, 2, . . . , n), we have the following condition.

0 <
n1

2A
≤ ŝi j ≤

n2k

2A
< 1 (10)

Proof of (10):
n2k

2A
=

n2k

2 n1+n2k
2

=
n2k

n1 + n2k
<

n2k + n1

n1 + n2k
= 1

(b) for min type criteria Cj ( j = 1, 2, . . . , n), we have the following condition.

0 <
H

2n2k
≤ ŝi j ≤

H

2n1
< 1 (11)

Proof of (11):

H

2n1
=

2
1

n2k
+ 1

n1

2n1
=

1

n1

(
1

n2k
+ 1

n1

) =
1

1 + n1
n2k

< 1

Additionally, for the boundary values of criteria intervals n1 and n2k, we have the following
equality (12) and (13).

n1

2A
=

H

2n2k
(12)

Proof of (12):
n1

2A
=

H

2n2k
⇒ n1

A
=

H

n2k

n1
A = n1

n1+n2k
2

= 2
n1+n2k

n1

= 2
1+

n2k
n1

= 2
n2k
n2k

+
n2k
n1

= 2

n2k

(
1

n2k
+ 1

n1

) =

2
1

n2k
+ 1

n1
n2k

= H
n2k

n2k

2A
=

H

2n1
(13)
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Proof of equality (13):

n2k
2A = H

2n1
⇒ n2k

A = H
n1

n2k
A =

n2k
n1+n2k

2

= 2
n1+n2k

n2k

= 2
n1
n2k

+1

= 2
n1
n2k

+
n1
n1

= 2

n1

(
1

n2k
+ 1

n1

) = 1
n1

2
1

n2k
+ 1

n1

= H
n1

Step 5: Calculate criteria functions of the alternatives V(Ai). Criteria functions of the alternatives
(V(Ai)) are calculated according to Equation (14) below. Alternatives are then ranked according to
the descending order of the calculated (V(Ai)) values.

V(Ai) = w1ŝi1 + w2ŝi2 + . . .+ wnŝin (14)

3. Case Study and Results

In this section, the application of the newly developed RFIS method is presented by giving
an example that considers the evaluation of six alternatives Ai (i = 1, 2, . . . , 6) in relation to five
criteria C j ( j = 1, 2, . . . , 5

)
. Suppose that the alternatives represent researchers who applied for a job at

a scientific research center. Evaluation of the researchers is performed using five criteria. The criteria
are arranged in two groups: 1) criteria of maximizing type (max): C1, C2, and C5, and 2) criteria
of minimizing type (min): C3 and C4. Criteria weights are estimated by the Level-Based Weight
Assessment (LBWA) model [26] as w j = (0.35, 0.25, 0.15, 0.15, 0.1). The initial decision matrix

(N =
[
ni j

]
m×n

,i = 1, 2, . . . , m, j = 1, 2, . . . , n) is given below.

C1 C2 C3 C4 C5

N =

A1
A2
A3
A4
A5
A6




180 10.5 15.5 160 3.7
165 9.2 16.5 131 5
160 8.8 14 125 4.5
170 9.5 16 135 3.4
185 10 14.5 143 4.3
167 8.9 15.1 140 4.1




max max min min max

Application of RAFSI method is illustrated by following the steps described in Section 2.
Step 1: In the first step, DM defines the set of ideal (aI j

) and anti-ideal values (aN j
) for the considered

criteria. In this example, the following ideal and anti-deal points are defined by consensus.

aI j
= {200, 12, 10, 100, 8}

aN j
= {120, 6, 20, 200, 2}

Step 2: Based on the defined ideal and anti-ideal points, criteria intervals are formed.

(a) for max type criteria: C1 ∈ [120, 200]; C2 ∈ [6, 12] i C5 ∈ [2, 8],
(b) for min type criteria: C3 ∈ [10, 20] i C4 ∈ [100, 200].

To transfer the values of all criteria into a unique interval, a sequence of numbers is chosen where
n1 < n2 ≤ n3 < n4 ≤ n5 < n6 . . . ≤ n2k−1 < n2k. The final points of the sequence n1 and n2k define
the values determining the number of times the ideal value is better than the anti-ideal value. In other
words, points n1 and n2k determine the boundary values of the interval in which all values of the initial
decision matrix are transferred. In this paper, it is assumed that the ideal value is six times better
than the barely acceptable value (anti-ideal value). Now, the functions for criteria standardization
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are defined using expression (3). It helps to transfer the values of the initial decision matrix into
the interval [1, 6]. Therefore, we consider the following functions.

fAi
(C1) =

6−1
200−120 C1 +

200·1−120·6
200−120 = 0.06 ·C1 − 6.50

fAi
(C2) =

6−1
12−6 C2 +

12·1−6·6
12−6 = 0.83 ·C2 − 4.00

fAi
(C3) =

6−1
20−10 C3 +

20·1−10·6
20−10 = 0.50 ·C3 − 4.00

fAi
(C4) =

6−1
200−10 C4 +

200·1−100·6
200−100 = 0.05 ·C4 − 4.00

fAi
(C5) =

6−1
8−2 C5 +

8·1−2·6
8−2 = 0.83 ·C5 − 0.67

Based on the defined functions, the elements of the initial decision matrix are mapped into
the interval [1, 6] and the standardized decision matrix (S =

[
si j

]
6×5

,i = 1, 2, . . . , 6, j = 1, 2, . . . , 5) is
obtained in which all elements are transferred into the interval [1, 6].

C1 C2 C3 C4 C5

S =

A1
A2
A3
A4
A5
A6




4.75 4.75 3.75 4.00 2.42
3.81 3.67 4.25 2.55 3.50
3.50 3.33 3.00 2.25 3.08
4.13 3.92 4.00 2.75 2.17
5.06 4.33 3.25 3.15 2.92
3.94 3.42 3.55 3.00 2.75




max max min min max

The elements of the position Ai-C1 are obtained using the functions fAi
(C1) = 0.06 ·C1 − 6.50:

fA1(180) = 0.06 · 180− 6.50 = 4.75, fA2(165) = 0.06 · 165− 6.50 = 3.81

fA3(160) = 0.06 · 160− 6.50 = 3.50, fA4(170) = 0.06 · 170− 6.50 = 4.13

fA5(185) = 0.06 · 185− 6.50 = 5.06, fA6(167) = 0.06 · 167− 6.50 = 3.94

Replacing the values from the initial matrix into functions fAi
(C2), fAi

(C3), fAi
(C4), and fAi

(C5),
we get the remaining values of elements of si j.

Step 3: Calculating the arithmetic and harmonic means of minimum and maximum elements
n1 = 1 and n2k = 6.

A = (n1 + n2k)/2 = (1 + 6)/2 = 3.5

H = 2
1

n1
+ 1

n2k

= 2
1
6+

1
1
= 1.71

The arithmetic mean for n1 = 1 and n2k = 6 is 3.5, while the harmonic mean is 1.71.
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Step 4: Using expressions (7) and (8) elements of matrix S are normalized and transformed,
depending on whether they belong to min or max type criteria. In this way, we get a new matrix
Ŝ =

[
ŝi j

]
6×5

(i = 1, 2, . . . , 6, j = 1, 2, . . . , 5).

C1 C2 C3 C4 C5

Ŝ =

A1
A2
A3
A4
A5
A6




0.68 0.68 0.23 0.21 0.35
0.54 0.52 0.20 0.34 0.50
0.50 0.48 0.29 0.38 0.44
0.59 0.56 0.21 0.31 0.31
0.72 0.62 0.26 0.27 0.42
0.56 0.49 0.24 0.29 0.39




max max min min max

For example, the element of the matrix Ŝ in position A1–C1 is ŝ11 = 4.75
2·3.5 = 0.68. Moreover, for

the min type criteria, A1–C3 is ŝ13 = 1.71
2·3.75 = 0.23.

Step 5: Using expression (14), criteria functions V(Ai) of the alternatives are calculated, as exhibited
in Table 1. Ranking pre-order of the alternatives is derived as per the descending order of V(Ai) values,
where the alternative with higher V(Ai) values are always preferred.

Table 1. The function criteria and the final ranking of the researchers/alternatives.

Alternative V(Ai) Rank

A1 0.5081 2
A2 0.4522 4
A3 0.4381 5
A4 0.4560 3
A5 0.5299 1
A6 0.4373 6

Based on the above findings, the researcher A5 is selected as the best alternative candidate for
the considered case study.

4. Validation of the Results

4.1. Comparing the Results with Other MADM Methods

For validation, the results of RFIS method are now compared with other traditional MADM
methods like TOPSIS [6], VIKOR [4,5], and COPRAS [10]. The same decision matrix and criteria
weights are used for this performance comparison. The results of this comparison are shown in
Figure 2.
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Figure 2. Comparing RAFSI method with other MADM methods.

The ranking orders as obtained by VIKOR and RAFSI methods are in complete agreement,
whereas, in COPRAS and TOPSIS methods, the rank similarity is observed only for the first two
alternatives {A5, A1}, and the last ranked alternative (A6). For the remaining three alternatives (A2, A3,
and A4), COPRAS and TOPSIS methods suggested different rankings. Such a result is a consequence
of using different data normalization techniques, such as vector normalization (in TOPSIS method)
and additive normalization (in the COPRAS method). To confirm this fact, an experiment is further
conducted, which was comprised of the following two stages.

(1) In the first stage, the COPRAS and TOPSIS methods were slightly modified through the use
of additive data normalization techniques in both methods. It was observed that both
methods gave the same ranking order (Figure 2) for the considered alternatives under additive
data normalization.

(2) In the second stage, data normalization, as suggested in RAFSI method, was also used for
TOPSIS, VIKOR, and COPRAS methods. After using the new normalization technique, identical
rankings were obtained by all the methods. Based on these results, it can be concluded that
the RAFSI method gives credible and reliable results.

4.2. Rank Reversal Problem

One of the ways to check the stability of MADM methods is by introducing new alternatives in
the original set or by eliminating poor alternatives from the set. In such conditions, it is expected
that the MADM method will not show any drastic change in the ranking of the alternatives. This
phenomenon is called the well popular rank reversal problem [13], and considerable attention has
already been paid to it in the literature [21,25]. The resistance of the developed RAFSI method to
the rank reversal problem is now tested through two experiments. In the first experiment, five scenarios
are considered. In each scenario, the worst alternative is eliminated from the set of alternatives,
and the impact of this change on ranking and criteria functions of the alternatives are analyzed. In
the second experiment, the set of alternatives is further expanded by introducing a new alternative,
and the impact of such inclusion on alternatives’ rank is analysed.

The first experiment: After applying RAFSI method, the researchers are ranked according to
the results shown in scenario S0 (the original rank). In the next scenario (S1), the researcher who
achieved the least rank is eliminated. After that, the remaining five candidates are again ranked. Thus,
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a total of five scenarios (S1–S5) are formed, whereby, in each subsequent scenario, the worst-ranked
researcher from the set is eliminated. At the same time, we also analyzed the possibility of any changes
in criteria function values and rankings of the remaining alternatives for each of the newly formed
scenarios. The rankings of the alternatives in all five scenarios are shown in Table 2.

Table 2. The ranking of the alternatives in scenarios.

Alternative S0 S1 S2 S3 S4 S5

A5 1 1 1 1 1 1
A1 2 2 2 2 2
A4 3 3 3 3
A2 4 4 4
A3 5 5
A6 6

From Table 2, it is easy to observe that RAFSI method gives valid results in a dynamic environment.
This is also confirmed by criteria function values of the alternatives (f(Ai)). In all these scenarios,
the criteria functions of the alternatives remained unchanged. TOPSIS, VIKOR, and COPRAS methods
are used in the same condition. All these methods also showed stability and resistance to rank reversal.
However, changes in criteria function values are observed in these methods.

The second experiment: In the second experiment, among the six existing candidates, another
candidate (A7) is added who achieved the same test results as compared to candidate A6. The new
decision matrix is shown below.

C1 C2 C3 C4 C5

N =

A1
A2
A3
A4
A5
A6
A7




180 10.5 15.5 160 3.7
165 9.2 16.5 131 5
160 8.8 14 125 4.5
170 9.5 16 135 3.4
185 10 14.5 143 4.3
167 8.9 15.1 140 4.1
165 8.9 11 120 3.5




max max min min max

After evaluating the new set of candidates by RAFSI, TOPSIS, VIKOR, and COPRAS methods
with the same criteria weights, it was observed that the rankings and criteria functions of certain
alternatives are changed, as shown in Table 3. To compare the results more comprehensively, a parallel
presentation of the results is given using RAFSI, TOPSIS, VIKOR, and COPRAS methods on the new
and old set of alternatives.
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Table 3. Ranking pre-orders for the old and new set of the alternatives.

f (Ai) A1 A2 A3 A4 A5 A6 A7

RAFSI

Original f (Ai) f (A1) = 0.508 f (A2) = 0.452 f (A3) = 0.438 f (A4) = 0.456 f (A5) = 0.530 f (A6) = 0.437
Original rank 2 4 5 3 1 6

New f (Ai) f (A1) = 0.508 f (A2) = 0.452 f (A3) = 0.438 f (A4) = 0.456 f (A5) = 0.530 f (A6) = 0.437 f (A7) = 0.495
New rank 2 5 6 4 1 7 3

VIKOR

Original f (Ai) f (A1) = 0.350 f (A2) = 0.901 f (A3) = 0.924 f (A4) = 0.801 f (A5) = 0.00 f (A6) = 0.928
Original rank 2 4 5 3 1 6

New f (Ai) f (A1) = 0.274 f (A2) = 0.817 f (A3) = 1.000 f (A4) = 0.738 f (A5) = 0.00 f (A6) = 0.920 f (A7) = 0.718
New rank 2 5 7 4 1 6 3

TOPSIS

Original f (Ai) f (A1) = 0.542 f (A2) = 0.464 f (A3) = 0.431 f (A4) = 0.396 f (A5) = 0.704 f (A6) = 0.351
Original rank 2 3 4 5 1 6

New f (Ai) f (A1) = 0.468 f (A2) = 0.400 f (A3) = 0.410 f (A4) = 0.340 f (A5) = 0.593 f (A6) = 0.311 f (A7) = 0.507
New rank 3 5 4 6 1 7 2

COPRAS

Original f (Ai) f (A1) = 0.964 f (A2) = 0.950 f (A3) = 0.951 f (A4) = 0.932 f (A5) = 1.00 f (A6) = 0.930
Original rank 2 4 3 5 1 6

New f (Ai) f (A1) = 0.962 f (A2) = 0.952 f (A3) = 0.957 f (A4) = 0.933 f (A5) = 1.00 f (A6) = 0.933 f (A7) = 0.998
New rank 3 5 4 6 1 7 2
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After analyzing the results of Table 3, we can conclude the following

(1) COPRAS method: The new candidate A7 was ranked second in the ranking order, so it is clear
that all the candidates (except the first ranked) moved one place down in the ranking order.
Furthermore, it is expected that the values of criteria functions f(Ai) for an old set of the alternatives
f(A1), f(A2), . . . , f(A6) would not change, which signifies the function of an f(A7) of the new
alternative would be ranked based on the old values of f(Ai). However, from Table 3, after
introducing the new alternative, a change in f(Ai) values are observed for the COPRAS method.
This fact can cause inconsistencies in ranking order of the alternatives.

(2) TOPSIS method: The introduction of the new alternative resulted in a significant change in
the ranking order as well as changes in f(Ai) values that are also observed. Alternative A7 is
placed in the second position. Therefore, it is clear that the ranks of the other alternatives moved
one place down. However, the same did not happen for alternative A3 as it remained in the fourth
position in both new and old sets of alternatives. Additionally, alternative A2 was third in the old
set, while, in the new set, it is in the fifth position instead of the fourth. These kinds of changes in
alternatives’ ranking are observed with changes in f(Ai) values.

(3) VIKOR method: In this method, similar changes happened as in the previous two methods.
The new alternative A7 is placed in the third position. It is expected that, in the new set of
alternatives, all the alternatives below the third rank would move one place down. However,
some more drastic changes are noticed in the VIKOR method. For example, alternative A3 was in
the fifth rank in the old set, but, in the new set, it is ranked last. Moreover, alternative A6 was last
in the old set of alternatives, while it is in the second to last in the new set of alternatives. These
changes in the ranking order also followed with the changes in f(Ai) values.

(4) RAFSI method: This method showed stability in both sets of alternatives. All the alternatives
kept the same f(Ai) values in both sets. Thus, it can be concluded that the RAFSI method has
shown logical results following the new set of alternatives.

Based on these analyses, we can conclude that rank reversal problems exist in COPRAS, TOPSIS,
and VIKOR methods can lead to irrational results in conditions where we have changeable initial
parameters in the decision matrix. At the same time, we can conclude that the developed RAFSI
method is resistant to rank reversal problems, which contributes to achieving stable and reliable
evaluation results while solving complex real-world problems.

5. Discussion and Conclusions

In this paper, a new MADM method, called RAFSI, is suggested, which shows a high level
of reliability in results. This makes this method suitable for solving real-time MADM problems in
different areas. The mathematical formulation of the RAFSI method does not use traditional data
normalization expression. Instead, a new technique for standardization is suggested that enables data
transformation from the initial decision matrix into any interval, which makes this method suitable
for rational decision making. The mapping of criteria sub-intervals from the initial decision matrix
into a unique criteria interval is done by using criteria functions. After forming a unique criteria
interval, using arithmetic and harmonic means, the criteria interval is transformed into a normalized
criteria interval. This mapping is done depending on the criteria type. Therefore, we can highlight
the following contributions of this paper: (1) the development of a new MADM method for solving real
problems in the business world, (2) presentation of the new method that is based on coherent defining
relations between ideal and anti-ideal criteria values, (3) it eliminates the rank reversal problem and
offers reliable results for making rational decisions, (4) development of a new method for the data
normalization, which can be used in various areas, from MADM to heuristic algorithms and artificial
intelligence-based methods.

The RAFSI method is validated through a comparison of the results with traditional MADM
methods and by checking resistance to rank reversal problems. The performance comparison of
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the results of the RAFSI method is done with TOPSIS, COPRAS, and VIKOR methods. These methods
are chosen because they use different ways of data normalization like vector, linear normalization, and
additive normalization. The goal of comparison with different methods is to confirm the validity of
the new method by concerning traditional MADM methods that have already shown high efficiency
in solving real-world problems. The performance comparison results showed a very high level of
a positive correlation between the results of the RAFSI method and other widely used MCO methods.

After comparing the ranks in the second phase, the validity of resistance of RAFSI, TOPSIS,
COPRAS, and VIKOR methods to rank reversal problem is executed. In these experiments, the change
in the number of alternatives is simulated. In the first experiment, the number of alternatives is reduced
in five scenarios, while, in the second experiment, a set of alternatives is expanded by introducing
one non-optimal alternative. The results showed that the RAFSI method is resistant to the rank
reversal problem. On the other hand, the conventional TOPSIS, COPRAS, and VIKOR methods did
not show satisfying results. The achieved results confirm the validity of RAFSI methods and can be
recommended for using in future research for solving different multi-criteria problems.

The goals of future research should be aimed into the direction of using the RAFSI method for
other real problems as well as combining with objective and subjective criteria weighting techniques.
Furthermore, one of the goals of future research also lies in expanding RAFSI method by using different
uncertainty theories. Using uncertainty theories, it would enable the use of linguistic variables for
rational expression of human preferences. In addition, the use of new data normalization techniques
in heuristic algorithms and other MADM methods can be a future research scope.
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Abstract: The decision-making trial and evaluation laboratory (DEMATEL) method is one of the most
significant multi-criteria techniques for defining the relationships among criteria and for defining the
weight coefficients of criteria. Since multi-criteria models are very often used in management and
decision-making under conditions of uncertainty, the fuzzy DEMATEL model has been extended
in this paper by D numbers (fuzzy DEMATEL-D). The aim of this research was to develop a
multi-criteria methodology that enables the objective processing of fuzzy linguistic information in
the pairwise comparison of criteria. This aim was achieved through the development of the fuzzy
DEMATEL-D method. Combining D numbers with trapezoidal fuzzy linguistic variables (LVs)
allows for the additional processing of uncertainties and ambiguities that exist in experts’ preferences
when comparing criteria with each other. In addition, the fuzzy DEMATEL-D methodology has a
unique reasoning algorithm that allows for the rational processing of uncertainties when using fuzzy
linguistic expressions for pairwise comparisons of criteria. The fuzzy DEMATEL-D methodology
provides an original uncertainty management framework that is rational and concise. In order to
illustrate the effectiveness of the proposed methodology, a case study with the application of the
proposed multi-criteria methodology is presented.

Keywords: D numbers; fuzzy sets; DEMATEL; multi-criteria decision-making; criteria weights

1. Introduction

A dynamic environment in which almost all scientific and professional fields operate requires
the timely and precise management of processes, which involves decision-making at its each stage.
The decisions are made on the basis of a number of inputs that are an integration of qualitative
and quantitative criteria. If a certain number of experts with their different preferences in group
decision-making are added, the problem is complicated in multiple ways. Therefore, it is necessary
to take into account all possible uncertainties that arise in group decision-making in order to gain
better and more accurate output. Certainly, an extremely important stage in a decision-making process
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is determining the significance of the criteria by which the most acceptable solution or ranking of
solutions is defined in a further process of solving multi-criteria problems. Therefore, the aim of this
paper was to develop a new methodology for determining the significance of criteria that takes aspects
of uncertainty and diversity in decision-makers’ preferences into account. Accordingly, an extension
of the fuzzy decision-making trial and evaluation laboratory (DEMATEL) model is performed by D
numbers (fuzzy DEMATEL-D), which is explained in detail in the following section. The DEMATEL
method was developed by Gabus and Fontel [1], and it has thus far been widely applied in its basic
or extended form, as confirmed in the study [2]. The authors carried out a comprehensive review
of the literature published in a period of a decade in terms of developing various extensions of this
method and its applications in different decision-making areas. Taking into account the evident wide
application of this method and the need to adequately handle uncertain situations and determine the
precise weights of criteria, fuzzy set theory is integrated with D numbers. In that way, an overall
synergistic effect is achieved in decision-making processes.

Dempster–Shafer evidence theory [3,4] is an area of artificial intelligence because it processes
and analyzes uncertainties and inaccuracies in information. It is also a convenient algorithm for
reasoning in a dynamic and uncertain environment, which is recommended for use in expert systems.
Since Dempster–Shafer evidence theory (DST) allows for the processing of nonspecific, ambiguous,
and juxtaposed information, numerous researchers favor DST over traditional approaches, such as
Bayesian probability theory [5,6]. In addition to the benefits that DST possesses for solving various
real-world problems, such as network problems [7], decision-making problems [8–10], and risk
theory [11], there are also limitations to DST that represent a kind of barrier to its wider application
for solving real-world problems. One of the most well-known limitations that restricts the wider
practical application of DST is the exclusivity of elements when parsing elements of a subset [12,13].
This limitation is shown through the following example. Giving a diagnosis in medicine is a typical
area that includes different types of uncertainties [12]. Say there is patient with the symptoms of fever,
polypnea, and cough; taking into account the mentioned cases, they are likely caused by the flu (F),
bacterial (B) infection, or an upper respiratory infection (U). There are two independent diagnostic
reports that were submitted by two doctors. The first doctor made a diagnosis that the patient got
F with a possibility of 0.7 and B or U with a possibility of 0.2. The reminder 0.1 possibility is for
an unknown diagnosis: m1(F) = 0.7; m1(B, U) = 0.2 and m1(F, B, U) = 0.1. The second doctor
made a diagnosis which showed: m2(F) = 0.5; m2(B) = 0.3 and m2(F, B, U) = 0.2. The questions
is: What disease does the patient have? The DST in this scenario would show following results:
m (B) = 0.1304; m (B, U) = 0.058, and m (F, B, U) = 0.0290. It can be seen that there is an invisible
hypothesis that the possibility of the unknown is equal to that of {F, B, U}. Based on the presented
results, it can be concluded that the set of all diseases, which are manifested through the considered
symptoms, can be presented as a set {F, B, U}. However, the set {F, B, U} contains only three types
of diseases that are considered in this example. Obviously, this unseen hypothesis is not reasonable.
Such a problem cannot be addressed by applying DST (Figure 1a) because DST implies the exclusivity
of the elements, in our case being diagnosed diseases. This problem can be successfully eliminated by
D numbers [12,13]. After the application of D numbers, D (F) = 0.6147 and D (B) = 0.1054 are obtained.
The result shows that the patient having the flu is the highest probability. In comparison to DST, in the
D numbers theory, the unknown is inherited during the reasoning.

D numbers, as a reliable and effective expression of uncertain information (and according
to Xiao [14]), are good at handling these types of uncertainties. Deng and Jiang [15] developed
a decision-making model to solve the adversarial problem under uncertainty with D numbers.
Their model integrated fuzzy set theory, game theory, and D number theory (DNT). The same
authors in [16] showed the advantages of using D numbers in green supply chain management in a
fuzzy environment.

Overcoming the problem was recognized by Zhou et al. [17], who performed an integration of crisp
DEMATEL and D numbers to identify the critical success factors (CSFs) in emergency management.
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The same method was applied in [18] for the risk identification and analysis of an energy power
system. The advantages of the D-DEMATEL method are reflected when simultaneously considering
ambiguities and subjectivity, which is impossible with classical approaches, as stated by Zhou et al. [17].
By developing an extension of the DEMATEL method with trapezoidal fuzzy numbers (TrFN) and D
numbers in this paper, uncertainties are considered at a higher level with input parameters manifested
through output functions.

O x

(a) Frame of discernment in Dempster-Shafer evidence theory
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Figure 1. The frame of discernment in Dempster–Shafer evidence theory (DST) and in D numbers.

In addition to the needs and aims presented in the introduction, the paper is has several other
sections. Section 2 presents the preliminaries that outline the basics of D numbers and fuzzy theory.
Section 3 is an extension of TrFN DEMATEL with D numbers, while Section 4 shows the application of
the developed methodology with a specific example. Section 5 summarizes the contributions of the
paper, with an overview of further research related to this paper.

2. Background

2.1. D Numbers

D numbers represent an extension of DST with the aim to present more effectively uncertainties in
the information being processed. As shown in Figure 1b, D numbers do not require the exclusivity of
the elements of a set, which significantly broadens the domain of the practical application of D numbers.

Definition 1 ([12]). Let Υ be a finite nonempty set, and a D number is a mapping that D : Υ→ [0, 1] , with:

∑

A⊆Υ

D(A) ≤ 1 and D(∅) = 0 (1)

where ∅ is an empty set and A is any subset of Υ. As stated in the previous section of the paper, the theory

of D numbers does not require the elements of a set Υ to be mutually exclusive. The information presented

by D numbers is called complete information if the condition of
∑

A⊆Υ

D(A) = 1 is filled. If
∑

A⊆Υ

D(A) < 1,

the information is incomplete.

If Υ is a discrete set of elements Υ =
{
b1, b2, . . . , bi, b j, . . . , bn

}
, where bi ∈ R and bi , b j (when i , j),

then we can express D numbers by:

D(b1) = v1, D(b2) = v2, . . . D(bi) = vi, D(b j) = v j, . . . D(bn) = vn. (2)

in addition to expressing D numbers using Equation (2), there is another simplified way to express D numbers:

D =
{
(b1, v1), (b2, v2) . . . (bi, vi), (b j, v j) . . . (bn, vn)

}
. This presentation also satisfies the condition that

vi > 0 and
∑n

i=1 vi ≤ 1.
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Definition 2 ([12]). Let two D numbers D1 =
{
(b1, v1), . . . , (bi, vi), . . . , (bn, vn)

}
and D2 ={

(bn, vn), . . . , (bi, vi), . . . , (b1, v1)
}
(bi, vi), (b j, v j) . . . (bn, vn)

}
be given. Then, we can define the rule for

the combination of D numbers D = D1 ⊙D2 as follows:


D(∅) = 0
D(B) = 1

1−KD

∑
B1∩B2=B

D1(B1)D2(B2), B , ∅

with

KD = 1
Q1Q2

∑
B1∩B2=∅

D1(B1)D2(B2)

Q1 =
∑

B1⊆Θ

D1(B1)

Q2 =
∑

B2⊆Θ

D2(B2)

(3)

Rule (3) is a generalization of Dempster’s rule [8]. If D1 and D2 are defined in the frame of discernment

and if Q1 = 1 and Q2 = 1, then the rule of combining D numbers (Rule (3)) is transformed into Dempster’s

rule. Rule (3) of numbers is an algorithm for the combination and fusion of uncertain information presented in

D numbers.

For a discrete D number D =
{
(b1, v1), (b2, v2) . . . (bi, vi), (b j, v j) . . . (bn, vn)

}
, we can define the

integration operator as follows:

I(D) =
n∑

i=1

divi (4)

where di ∈ R+, vi > 0 i
∑n

i=1 vi ≤ 1.

2.2. Fuzzy Set Theory

Fuzzy set theory is widely used to model uncertainties [19–23]. In some decision-making models,
qualitative assessments are given in natural language. These linguistic variables (LVs) can be presented
by linguistic expressions [24–26].

Definition 3. Let X crisp be a universe of generic elements containing a fuzzy set Ã as a subset. For each

element, let x ∈ X be a number µ
Ã
(x) ∈ [0, 1]; then, we can call the number the grade of membership of x in

Ã [27].

Definition 4. A fuzzy set Ã of the universe of discourse X is convex if and only if for every element, x1, x2 ∈ X,

thus implying that:

µ
Ã
(λx1 + (1− λ)x2) ≥ min

(
µ

Ã
(x1),µÃ

(x2)
)

(5)

where λ ∈ [0, 1].

Definition 5. The trapezoidal fuzzy number Ã can be defined as Ã = (a1, a2, a3, a4), as shown in Figure 2.

µ
Ã
(x) =



x−a1
a2−a1

a1 ≤ x ≤ a2

1 a2 ≤ x ≤ a3
a4−x
a3−a4

a3 ≤ x ≤ a4

0 otherwise

(6)
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Figure 2. Trapezoidal number membership function.

The concept of an LV is very appropriate in activities where the processing of complex or poorly
defined information that cannot be well described by traditional quantitative formulations is needed.
The LVs are expressed by words, sentences, or artificial languages. Each linguistic value can be
presented by a fuzzy set [28]. Linguistic modelling permits experts to express themselves by labels
belonging to a specific linguistic label set [29]. In this paper, experts’ preferences, according to different
criteria, were considered as linguistic variables. LVs can be expressed by positive TrFN, shown in
Table 1, as was the case in our study.

Table 1. Linguistic variables.

Linguistic Variables Trapezoidal Fuzzy Number

Extremely low (EL) (0, 1, 2, 3)
Very low (VL) (1, 2, 3, 4)

Low (L) (2, 3, 4, 5)
Medium low (ML) (3, 4, 5, 6)

Medium (M) (4, 5, 6, 7)
Medium high (MH) (5, 6, 7, 8)

High (H) (6, 7, 8, 9)
Very high (VH) (7, 8, 9, 10)

Extremely high (EH) (8, 9, 10, 10)

Basic arithmetic operations with TrFN Ã1 = (a1, a2, a3, a4) and Ã2 = (b1, b2, b3, b4) are presented
in the next section [30,31]:

(1) Addition:

Ã1 ⊕ Ã2 = (a1, a2, a3, a41) + (b1, b2, b3, b4) = (a1 + b1, a2 + b2, a3 + b3, a4 + b4) (7)

(2) Multiplication:

Ã1 ⊗ Ã2 = (a1, a2, a3, a41) ⊗ (b1, b2, b3, b4) = (a1 × b1, a2 × b2, a3 × b3, a4 × b4) (8)

(3) Subtraction:

Ã1 − Ã2 = (a1, a2, a3, a41) − (b1, b2, b3, b4) = (a1 − b4, a2 − b3, a3 − b2, a4 − b1) (9)

(4) Division:

Ã1 ÷ Ã2 = (a1, a2, a3, a41) ÷ (b1, b2, b3, b4) = (a1 ÷ b4, a2 ÷ b3, a3 ÷ b2, a4 ÷ b1) (10)
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(5) Reciprocal values:

Ã−1
1 = (a1, a2, a3, a4)

−1 = (
1
a4

,
1
a3

,
1
a2

,
1
a1
) (11)

3. TrFN DEMATEL-D Methodology

Due to the imprecision and subjectivity evident in group decision-making, an extension of the
fuzzy DEMATEL methodology was made using D numbers. The use of D numbers makes it possible
to: (1) take the uncertainties that exist in experts’ comparisons of criteria into account and (2) define
the intervals of fuzzy linguistic expressions on the basis of uncertainties and inaccuracies that exist
in experts’ judgment. Numerous multi-criteria models imply the introduction of fuzzy numbers to
express the uncertainties that exist in group decision-making [32–37]. The introduction of D numbers
makes it possible to take additional uncertainties that arise when selecting fuzzy linguistic variables
from a predefined set into account. In addition to fuzzy linguistic variables, D numbers introduce the
probability of choosing a fuzzy linguistic variable, thus increasing the objectivity and quality of existing
data in group decision-making. Since it is a new extension of the fuzzy DEMATEL methodology by D
numbers, the following section details the algorithm which includes six steps:

Step 1: Experts’ analysis of factors: Suppose that there are m experts divided into two homogeneous
expert groups EG1 and EG2, and there are n criteria considered in a comparison matrix. Let the
fuzzy linguistic variables used to compare the criteria be expressed by trapezoidal fuzzy numbers
l = {lb, b = 1, 2, . . . , t}, where t represents the total number of fuzzy linguistic variables.

Each expert group defines the degree of influence of the criterion i on the criterion j.
The comparative analysis of the pair of ith and jth criterion by the expert group is denoted by
the D number

D1
i j
=

{
(l1

i j(1)
, v1

i j(1)
), . . . , (l1

i j(i)
, v1

i j(i)
), . . . , (l1

i j(t)
, v1

i j(t)
)
}

and D2
i j
=

{
(l2

i j(1)
, v2

i j(1)
), . . . , (l2

i j(i)
, v2

i j(i)
), . . . , (l2

i j(t)
, v2

i j(t)
)
}
, (12)

where D1
i j

and D2
i j

represent the D numbers used to express the preferences of EG1 and EG2, respectively,
and t represents the number of fuzzy linguistic variables used to compare the criteria. As a result of
the comparison, two nonnegative matrices of rank n×n are obtained, and each element of the matrix

X1 =
[
D1

i j

]

n×n
and X2 =

[
D2

i j

]

n×n
represents a D number. The diagonal elements of the matrices X1

and X2 have a value of zero because the same factors have no effect. Thus, we can get one matrix

X1 =
[
D1

i j

]

n×n
and X2 =

[
D2

i j

]

n×n
for each expert group.

Step 2: Forming a single fuzzy direct-relation matrix X̃: The transformation of D matrices into a
single matrix of fuzzy linguistic values is carried out through three phases.

Phase 1: In the first phase, the uncertainties presented in the initial experts’ preferences are fused.
Accordingly, applying the rules for the combination of D numbers Di j = D1

i j
⊙D2

i j
, (Equation (3)),

the analysis and synthesis of the data provided by D numbers in expert matrices X1 =
[
D1

i j

]

n×n
and

X2 =
[
D2

i j

]

n×n
are performed.

Phase 2: After implementing the rules for the combination of D numbers, the uncertainties
presented at the intersection of fuzzy linguistic variables (FLVs) (Figure 3) are transformed into unique
fuzzy linguistic variables.

We can define FLVs as the term-set L =
{
lb|b = (0, . . . , B)

}
, where lb is an FLV presented in D1

i j
and

D2
i j

. Each term lb is presented as trapezoidal fuzzy number z̃, i.e., z̃ =
(
z(l), z(m1), z(m2), z(u)

)
, where z(m1)

and z(m2) represent the middle points of the trapezoidal fuzzy number (TrFN), and z(l) and z(u) are the
lower and upper limits, respectively, of the fuzzy interval.
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FLV transformation is performed on the basis of the ratio of the surfaces located at the intersection
Si,i+1 and the corresponding area of the FLVs.

DFLVT(Hi) = D(Hi) + D(Hi, Hi+1)

Si,i+1
Si

Si,i+1
Si

+
Si,i+1
Si+1

(13)

DFLVT(Hi+1) = D(Hi+1) + D(Hi, Hi+1)

Si,i+1
Si+1

Si,i+1
Si

+
Si,i+1
Si+1

(14)

where Si,i+1 represents the intersection between the linguistic variable li and the linguistic variable li+1,
while Si and Si+1 represent the area of the linguistic variable li and li+1, respectively.

After the FLV transformation, we can obtain a single D matrix X =
[
Di j

]
n×n

.
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Figure 3. Fuzzy linguistic variables.

Phase 3: The elements of the D matrix X =
[
Di j

]
n×n

are transformed into a single fuzzy

direct-relation matrix X̃ =
[
x̃i j

]
n×n

, where x̃i j =
(
xi j1, xi j2, xi j3, xi j4

)
represents the elements of the matrix

X̃ expressed by trapezoidal fuzzy numbers. The elements of the matrix X̃ =
[
x̃i j

]
n×n

are obtained by

applying the operator of integration of D numbers (Equation (4)), i.e., x̃i j =
e∑

i=1
livi, where e represents

the number of FLVs contained in the D number.
Step 3: Computing the elements of a normalized fuzzy direct-relation matrix: After forming a

single fuzzy direct-relation matrix X̃ =
[
x̃i j

]
n×n

by applying Equations (16) and (17), we can obtain the
elements of the normalized fuzzy direct-relation matrix (Equation (15)).

N =




0 d̃12 · · · d̃1n

d̃21 0 · · · d̃2n
...

...
. . .

...
d̃n1 d̃n2 · · · 0




(15)

where d̃i j =
(
dL

ij
, dM

ij
, dU

ij

)
represents the normalized values of the matrix X̃ =

[
x̃i j

]
n×n

, which are

obtained by applying Equations (16) and (17):

d̃i j =
x̃i j

s̃
=

(
xi j1

s4
,

xi j2

s3
,

xi j3

s2
,

xi j4

s1

)
(16)

s̃ = max
(∑n

j=1 x̃i j

)
= max

(∑n
j=1 xi j1,

∑n
j=1 xi j2,

∑n
j=1 xi j3,

∑n
j=1 xi j4

)

=
(
max

(∑n
j=1 xi j1

)
, max

(∑n
j=1 xi j2

)
, max

(∑n
j=1 xi j3

)
, max

(∑n
j=1 xi j4

)) (17)

Step 4: Determining the fuzzy number-based total relation matrices: By applying
Equations (18)–(20), we can obtain a total influence matrix T =

[
t̃i j

]
n×n

, where I is an n×n identity matrix.
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Since the matrix N =
[
d̃i j

]
n×n

is presented by trapezoidal fuzzy numbers, we can form four submatrices

N = (N1, N2, N3, N4), where N1 =
[
di j1

]
n×n

, N2 =
[
di j2

]
n×n

, N3 =
[
di j3

]
n×n

, and N4 =
[
di j4

]
n×n

.

In addition, lim
m→∞

(N1)
m = O, lim

m→∞
(N2)

m = O, lim
m→∞

(N3)
m = O, and lim

m→∞
(N4)

m = O, where O

represents the zero matrix.

lim
m→∞

(
I + N1 + N2

1 + . . .+ Nm
1

)
= (I −N1)

−1

lim
m→∞

(
I + N2 + N2

2 + . . .+ Nm
2

)
= (I −N2)

−1

lim
m→∞

(
I + N3 + N2

3 + . . .+ Nm
3

)
= (I −N3)

−1

and

lim
m→∞

(
I + N4 + N2

4 + . . .+ Nm
4

)
= (I −N4)

−1



(18)

The total relation fuzzy matrix T is obtained by computing each of the sub-elements:

T1 = lim
m→∞

(
I + N1 + N2

1 + . . .+ Nm
1

)
= (I −N1)

−1 =
[
ti j1

]
n×n

T2 = lim
m→∞

(
I + N2 + N2

2 + . . .+ Nm
2

)
= (I −N2)

−1 =
[
ti j2

]
n×n

T3 = lim
m→∞

(
I + N3 + N2

3 + . . .+ Nm
3

)
= (I −N3)

−1 =
[
ti j3

]
n×n

and

T4 = lim
m→∞

(
I + N4 + N2

4 + . . .+ Nm
4

)
= (I −N4)

−1 =
[
ti j4

]
n×n



(19)

where N1 =
[
di j1

]
n×n

, N2 =
[
di j2

]
n×n

, N3 =
[
di j3

]
n×n

, and N4 =
[
di j4

]
n×n

. Submatrices T1, T2, T3, and T4

form the single fuzzy total relation matrix T = (T1, T2, T3, T4), which is presented as follows:

T =




t̃11 t̃12 · · · t̃1n

t̃21 t̃22 · · · t̃2n
...

...
. . .

...
t̃n1 t̃n2 · · · t̃nn




n×n

(20)

where t̃i j =
(
t̃i j1, t̃i j2, t̃i j3, t̃i j4

)
is the total assessment of experts’ effect for each criterion i and criterion j,

thus expressing their mutual influence and dependence.
Step 5: Computing the sum of rows and columns of the total relation matrix: Presented by vectors

R and C of rank n × 1, Equations (21) and (22) are:

R =




n∑

j=1

t̃i j




n×1

=
[(∑n

j=1
ti j1,

∑n

j=1
ti j2,

∑n

j=1
ti j3,

∑n

j=1
ti j4

)]

n×1
(21)

C =




n∑

i=1

t̃i j




1×n

=
[(∑n

i=1
ti j1,

∑n

i=1
ti j2,

∑n

i=1
ti j3,

∑n

i=1
ti j4

)]

1×n
(22)

The value Ri represents the sum of the ith raw of the matrix T. The determined value presents the
total direct and indirect effects that the criterion i provides for the other criteria. Meanwhile, the value
of Ci represents the sum of the jth column of the matrix T and shows the effects that the criterion j

receives from the other criteria [37].
Step 6. Determining the weight coefficients of the criterion (w j): This is achieved via Equation (23):

W̃ j =

√(
R̃i + C̃i

)2
+

(
R̃i − C̃i

)2
(23)
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where the values R̃i + C̃i and R̃i − C̃i are obtained using Equations (24) and (25):

R̃i + C̃i =




∑n
j=1 ti j1 +

∑n
i=1 ti j1,

∑n
j=1 ti j2 +

∑n
i=1 ti j2,∑n

j=1 ti j3 +
∑n

i=1 ti j3,
∑n

j=1 ti j4 +
∑n

i=1 ti j4


 (24)

R̃i − C̃i =




∑n
j=1 ti j1 −

∑n
i=1 ti j1,

∑n
j=1 ti j2 −

∑n
i=1 ti j2,∑n

j=1 ti j3 −
∑n

i=1 ti j3,
∑n

j=1 ti j4 −
∑n

i=1 ti j4


 (25)

The normalization of the weight coefficients is carried out by Equation (26):

w j =
W̃ j

∑n
j=1 W̃ j

(26)

where n is the number of criteria and w̃ j is the fuzzy values of the criteria weight. The values of

the criteria weight are in the interval w̃ j =
(
w j1, w j2, w j3, w j4

)
, where the condition 0 ≤ w j1 ≤ w j2 ≤

w j3 ≤ w j4 ≤ 1 is fulfilled for each evaluation criterion. However, the requirement that the sum of the
weight coefficients of the criteria be generally equal to one must be fulfilled. Since these are fuzzy
coefficients of criteria, using Equation (26) allows for the obtainment of the weight coefficients for
which 0 ≤

∑n
j=1 w j1 ≤

∑n
j=1 w j2 ≤

∑n
j=1 w j3 ≤ 1 and

∑n
j=1 w j4 ≥ 1. This fulfills the condition that the

criteria weight are in the interval w j ∈ [0, 1], ( j = 1, 2, . . . , n).

4. Application of TrFN D-DEMATEL Method

This section describes the application of the TrFN D-DEMATEL method for determining the
quality of logistics services in order to obtain an adequate insight into the management processes
of the service provider. The research by Prentkovskis et al. [38] was used to test the methodology
presented. The dimensions that affect the measurement of logistics service quality were taken from
the study [38], and they were evaluated using the TrFN D-DEMATEL methodology. There were five
defined dimensions: reliability (C1), assurance (C2), tangibles (C3), empathy (C4), and responsiveness
(C5). The study involved six experts who evaluated the dimensions. A detailed description of applying
the TrFN D-DEMATEL methodology is presented in the following section.

Step 1: Experts’ analysis of factors.
Six experts participated in the study, and they were divided into two homogenous expert groups:

EG1 and EG2. Expert groups expressed their preferences when comparing dimensions using a
nine-degree fuzzy linguistic scale; see Table 1. Each expert group defined the mutual degree of
influence of the criteria by D numbers; see Table 2.

Table 2 shows the experts’ comparisons of dimensions using D numbers, where the D number D1

represents the experts’ preferences of the EG1 expert group and D2 represents the experts’ preferences
of the EG2 expert group.

Step 2: Forming a single fuzzy direct-relation matrix.
Phase I: In order to obtain aggregated experts’ preferences, a fusion of the uncertainties expressed

in the group experts’ preferences D1 and D2 is performed. For the uncertainty fusion, the rule for the
combination of D numbers Di j = D1

i j
⊙D2

i j
(Equation (3)) is used. Thus, an aggregated D matrix of

experts’ preferences is obtained; see Table 3.
In order to clarify the application of the rules for combining D numbers, the following section

shows the application of the rules for the combination of D numbers for position C2−C1 in the experts’
analysis of dimensions (Table 2).

Based on the data in Table 2, for position C2–C1, we can distinguish two D numbers that
represent the experts’ preferences of homogeneous expert groups: D1 = {(VH,0.2), (VH;EH,0.35),
(EH,0.4)} (where VH is ‘very high’ and EH is ‘extremely high’) and D2 = {(VH,0.25), (VH;EH,0.45),
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(EH,0.1)}. Table 4 provides an analysis of the data on D numbers whose combination was considered,
D = D1

C2−C1 ⊙D2
C2−C1.

Table 2. Experts’ analysis of dimensions.

Dim. C1 C2

C1
D1 = {(0,0.00)}; D1 = {(H,0.3),(H;VH,0.25),(H,0.4)};
D2 = {(0,0.00)} D2 = {(VH,0.3),(VH;EH,0.4),(EH,0.3)}

C2
D1 = {(VH,0.2),(VH;EH,0.35),(EH,0.4)}; D1 = {(0,0.00)};
D2 = {(VH,0.25),(VH;EH,0.45),(EH,0.1)} D2 = {(0,0.00)}

C3
D1 = {(L,0.2),(ML,0.6),(M,0.15)}; D1 = {(ML,0.2),(ML;M,0.2),(M,0.55)};
D2 = {(ML,0.35),(ML;M,0.45)} D2 = {(ML;M,0.3),(M,0.3),(M;MH,0.4)}

C4
D1 = {(EL,0.4),(EL;VL,0.3),(VL,0.3)}; D1 = {(EL,0.4),(EL;VL,0.4),(VL,0.1)};

D2 = {(EL;VL,0.25),(VL,0.35),(VL;L,0.35)} D2 = {(EL;VL,0.5),(VL,0.25),(L,0.2)}

C5
D1 = {(EL,0.25),(VL,0.55),(VL;L,0.15)}; D1= {(L,0.4),(ML,0.25),(ML;M,0.35)};
D2 = {(EL,0.2),(EL;VL,0.5),(VL,0.25)} D2 = {(ML,0.3),(ML;M,0.35),(M,0.3)}

C3 C4

C1
D1 = {(H,0.4),(VH,0.3),(VH;EH,0.3)} D1 = {(MH;H,0.3),(H,0.6),(VH,0.1)}

D2 = {(VH,0.3),(VH;EH,0.3),(EH,0.4)} D2 = {(M,0.3),(MH,0.45),(H,0.25)}

C2
D1 = {(MH,0.3),(MH;H,0.35),(H,0.3)} D1 = {(VH,0.3),(VH;EH,0.4),(EH,0.25)}

D2 = {(MH,0.45),(H,0.45)} D2 = {(VH,0.3),(EH,0.4),(H,0.15)}

C3
D1 = {(0,0.00)}; D1 = {(MH,0.6),(MH;H,0.2),(H,0.2)}
D2 = {(0,0.00)} D2 = {(M,0.25),(MH,0.35),(H,0.4)}

C4
D1 = {(L,0.1),(ML,0.55),(M,0.3)}; D1 = {(0,0.00)};

D2 = {(VL,0.35),(L,0.45),(ML,0.2)} D2 = {(0,0.00)}

C5
D1 = {(MH,0.3),(H,0.25),(H;VH,0.45)}; D1 = {(ML,0.2),(ML;M,0.35),(M,0.4)};
D2 = {(H,0.3),(H;VH,0.25),(VH,0.45)} D2 = {(ML,0.25),(ML;M,0.3),(M,0.4)}

C5

C1
D1 = {(VH,0.5),(VH;EH,0.1),(EH,0.35)};
D2 = {(VH,0.35),(VH;EH,0.2),(EH,0.45)}

C2
D1 = {(MH,0.1),(MH;H,0.3),(H,0.4),(VH,0.15)};

D2 = {(MH;H,0.35),(H,0.25),(VH,0.3)}

C3
D1 = {(MH,0.15),(MH;H,0.2),(H,0.55)};
D2 = {(MH,0.25),(MH;H,0.35),(H,0.35)}

C4
D1 = {(EL,0.4),(EL;VL,0.4),(VL,0.2)};

D2 = {(EL,0.25),(EL;VL,0.35),(VL,0.3)}

C5
D1 = {(0,0.00)};
D2 = {(0,0.00)}

By applying Equation (4), we can calculate the relationships defined by the rule for the combination
of D numbers.

KD =
1

Q1Q2

(
D1

C2−C1(VH) ·D2
C2−C1(EH) + D1

C2−C1(EH) ·D2
C2−C1(VH)

)
= 0.158

Q1 = D1
C2−C1(VH) + D1

C2−C1(VH; EH) + D1
C2−C1(EH) = 0.2 + 0.35 + 0.4 = 0.95

Q2 = D2
C2−C1(VH) + D2

C2−C1(VH; EH) + D2
C2−C1(VH) = 0.25 + 0.45 + 0.1 = 0.80

Thus, we can obtain:

DC2−C1(VH) =
1

1−KD

(
D1

C2−C1(VH)D2
C2−C1(VH) + D1

C2−C1(VH)D2
C2−C1(VH; EH)+

D1
C2−C1(VH; EH)D2

C2−C1(VH)

)
= 0.270

DC2−C1(VH; EH) =
1

1−KD

(
D1

C2−C1(VH; EH)D2
C2−C1(VH; EH)

)
= 0.187

DC2−C1(EH) =
1

1−KD

(
D1

C2−C1(VH; EH)D2
C2−C1(EH) + D1

C2−C1(EH)D2
C2−C1(VH; EH)+

D1
C2−C1(EH)D2

C2−C1(EH)

)
= 0.303
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Table 3. Aggregated D matrix of experts’ preferences.

Dim. C1 C2

C1 D = {(0,0.00)} D = {(VH,0.95)}
C2 D = {(VH,0.27),(VH;EH,0.19),(EH,0.3)} D = {(0,0.00)}
C3 D = {(ML,0.67),(M,0.09)} D = {(ML,0.07),(ML;M5,0.07),(M,0.72)}
C4 D = {(EL,0.14),(EL;L,0.11),(2,0.7)} D = {(EL,0.3),(EL;L,0.3),(L,0.26)}
C5 D = {(EL,0.23),(VL,0.68)} D = {(ML,0.51),(ML;M,0.24),(M,0.2)}

C3 C4

C1 D = {(VH,0.56),(VH;EH,0.19),(EH,0.25)} D = {(MH,0.38),(H,0.63)}
C2 D = {(MH,0.43),(H,0.43)} D = {(VH,0.36),(EH,0.45)}
C3 D = {(0,0.00)} D = {(MH,0.64),(H,0.36)}
C4 D = {(L,0.28),(ML,0.67)} D = {(0,0.00)}
C5 D = {(H,0.46),(H;VH,0.19),(VH,0.34)} D = {(ML,0.25),(ML;M,0.13),(M,0.52)}

C5

C1 D = {(VH,0.49),(VH;EH,0.03),(EH,0.43)}
C2 D = {(MH,0.06),(MH;H,0.18),(H,0.54),(VH,0.08)}
C3 D = {(MH,0.18),(MH;H,0.09),(H,0.59)}
C4 D = {(EL,0.42),(EL;VL,0.17),(VL,0.31)}
C5 D = {(0,0.00)}

Table 4. Intersection table to combine D1
C2−C1 and D2

C2−C1.

D = D1
C2−C1⊙D2

C2−C1 DC2−C1
2(VH) = 0.25 DC2−C1

2(VH;EH) = 0.45 DC2−C1
2(EH) = 0.1

DC2−C1
1(VH) = 0.2 {VH} (0.05) {VH} (0.09) Ø (0.02)

DC2−C1
1(VH;EH) = 0.35 {VH} (0.0875) {VH;EH} (0.1575) {EH} (0.035)

DC2−C1
1(EH) = 0.4 Ø (0.1) {EH} (0.18) {EH} (0.04)

Phase II: After applying the rule for the combination of D numbers, we can obtain a D number
located between the fuzzy linguistic variables VH and EH, and so it is necessary to transform the
uncertainty found between the fuzzy variables VH and EH into unique FLVs. The transformation
of uncertainty is performed by applying Equations (13) and (14). The following section presents the
procedure for the transformation of uncertainty between the fuzzy variables VH and EH. A graphical
display of the fuzzy linguistic variables VH and EH is given in Figure 4.
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Figure 4. Fuzzy linguistic variables VH (very high) and EH (extremely high).

The transformation of FLVs is performed on the basis of the ratio of the surfaces located at the
intersection SVH,EH and the area that covers the fuzzy variables VH and EH, i.e., SVH,EH = 0.5× 2× 1 =
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1.00 and SEH = 0.5 × 3 × 1 = 1.50. Using Equations (13) and (14), we can obtain finite values of D
numbers for the fuzzy variables VH and EH:

DC2−C1(VH) = 0.270 + 0.187 1/2
1/2+1.5/2 = 0.350

DC2−C1(EH) = 0.303 + 0.187 1/1.5
1/2+1.5/2 = 0.410

DB1(MH) = 0.461 + 0.154
1.125/2

1.125/2 + 1.125/2
= 0.538

Thus, we can obtain D number DC2−C1 = {(VH,0.350), (EH,0.410)} which is in the first position
C2−C1. The remaining values of the aggregated D matrix of experts’ preferences are obtained in a
similar way (Table 3).

Phase III: Using Equation (4), the values of the aggregated D matrix of experts’ preferences are
integrated into the corresponding fuzzy values; see Table 5. By this procedure, the uncertainties
expressed by D numbers are transformed into unique trapezoidal fuzzy numbers.

Table 5. Single fuzzy direct-relation matrix.

Dim. C1 C2 C3

C1 (0.00, 0.00, 0.00, 0.00) (6.65, 7.6, 8.55, 9.5) (7.36, 8.36, 9.36, 10)
C2 (5.73, 6.49, 7.25, 7.6) (0.00, 0.00, 0.00, 0.00) (4.7, 5.56, 6.41, 7.27)
C3 (2.37, 3.13, 3.89, 4.65) (3.32, 4.18, 5.03, 5.89) (0.00, 0.00, 0.00, 0.00)
C4 (0.76, 1.71, 2.66, 3.61) (0.41, 1.26, 2.12, 2.97) (2.57, 3.52, 4.47, 5.42)
C5 (0.68, 1.58, 2.48, 3.38) (3.17, 4.12, 5.07, 6.02) (6.44, 7.44, 8.44, 9.44)

C4 C5

C1 (5.63, 6.63, 7.63, 8.63) (7.36, 8.31, 9.26, 9.5)
C2 (6.1, 6.91, 7.71, 8.08) (5.06, 5.91, 6.77, 7.62)
C3 (5.36, 6.36, 7.36, 8.36) (4.91, 5.76, 6.62, 7.47)
C4 (0.00, 0.00, 0.00, 0.00) (0.39, 1.29, 2.19, 3.09)
C5 (3.3, 4.2, 5.1, 6.01) (0.00, 0.00, 0.00, 0.00)

Using Equations (4), (7), and (8), the element C2−C1 of the single fuzzy direct-relation matrix
(Table 5) is obtained as follows:

x̃21 = 0.350 · (7, 8, 9, 10) + 0.410 · (8, 9, 10, 10) = (5.73, 6.49, 7.25, 7.60)

Similarly, we can obtain the remaining elements of the single fuzzy direct-relation matrix (Table 5).
Steps 3 and 4: Computing the elements of the normalized fuzzy direct-relation matrix and total

fuzzy influence matrix.
By applying Equations (16) and (17), we can obtain the elements of the normalized fuzzy

direct-relation matrix; see Table 6.
In the next step, by using Equations (18)–(20), we can obtain the total influence matrix T =

[
t̃i j

]
5×5

;
see Table 7.

Steps 5 and 6: Computing the sum of rows and columns of the fuzzy total relation matrix and
determining the optimal values of the weight coefficients of dimensions.

The optimal values of the weight coefficients of dimensions are defined on the basis of the total
direct/indirect effects that the criterion i provides for other criteria (Ri) and the total direct/indirect
effects that the criterion j receives from other criteria (Ci). The values of Ri and Ci are obtained by using
Equations (21) and (22). After calculating the values of Ri and Ci (Table 8), we can obtain the optimal
values of the dimensions by using Equations (23)–(26).
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Table 6. Normalized fuzzy direct-relation matrix.

Dim. C1 C2 C3

C1 (0.00, 0.00, 0.00, 0.00) (0.25, 0.25, 0.25, 0.25) (0.27, 0.27, 0.27, 0.27)
C2 (0.21, 0.21, 0.21, 0.20) (0.00, 0.00, 0.00, 0.00) (0.17, 0.18, 0.18, 0.19)
C3 (0.09, 0.10, 0.11, 0.12) (0.12, 0.14, 0.14, 0.16) (0.00, 0.00, 0.00, 0.00)
C4 (0.03, 0.06, 0.08, 0.10) (0.02, 0.04, 0.06, 0.08) (0.10, 0.11, 0.13, 0.14)
C5 (0.03, 0.05, 0.07, 0.09) (0.12, 0.13, 0.15, 0.16) (0.24, 0.24, 0.24, 0.25)

C4 C5

C1 (0.21, 0.21, 0.22, 0.23) (0.27, 0.27, 0.27, 0.25)
C2 (0.23, 0.22, 0.22, 0.21) (0.19, 0.19, 0.19, 0.20)
C3 (0.20, 0.21, 0.21, 0.22) (0.18, 0.19, 0.19, 0.20)
C4 (0.00, 0.00, 0.00, 0.00) (0.01, 0.04, 0.06, 0.08)
C5 (0.12, 0.14, 0.15, 0.16) (0.00, 0.00, 0.00, 0.00)

Table 7. Total fuzzy influence matrix.

Dim. C1 C2 C3

C1 (0.16, 0.22, 0.28, 0.35) (0.42, 0.48, 0.54, 0.62) (0.56, 0.62, 0.67, 0.75)
C2 (0.30, 0.35, 0.40, 0.46) (0.18, 0.23, 0.28, 0.35) (0.42, 0.48, 0.53, 0.61)
C3 (0.17, 0.23, 0.28, 0.36) (0.23, 0.29, 0.35, 0.43) (0.20, 0.25, 0.30, 0.38)
C4 (0.06, 0.11, 0.17, 0.24) (0.05, 0.12, 0.19, 0.26) (0.14, 0.21, 0.28, 0.37)
C5 (0.11, 0.18, 0.24, 0.32) (0.21, 0.27, 0.34, 0.42) (0.37, 0.43, 0.48, 0.57)

C4 C5

C1 (0.51, 0.57, 0.63, 0.72) (0.51, 0.56, 0.61, 0.67)
C2 (0.46, 0.51, 0.56, 0.62) (0.39, 0.44, 0.49, 0.56)
C3 (0.36, 0.42, 0.48, 0.56) (0.31, 0.37, 0.42, 0.50)
C4 (0.06, 0.12, 0.17, 0.24) (0.07, 0.14, 0.21, 0.29)
C5 (0.28, 0.35, 0.41, 0.50) (0.14, 0.19, 0.25, 0.32)

Table 8. Ranking the weight coefficients of the dimensions.

Dim. Ri Ci Ri + Ci Ri − Ci

C1 (2.16, 2.45, 2.73, 3.11) (0.80, 1.09, 1.37, 1.73) (4.84, 0.43, −3.01, −2.17) (−1.23, 3.84, −2.15, 4.40)
C2 (1.75, 2.01, 2.26, 2.61) (1.10, 1.40, 1.69, 2.09) (4.70, −0.33, −2.55, −1.72) (−0.76, 3.70, −1.82, 4.12)
C3 (1.28, 1.56, 1.84, 2.23) (1.69, 1.99, 2.28, 2.69) (4.92, −1.41, −2.13, −1.27) (−0.28, 3.85, −1.53, 4.14)
C4 (0.38, 0.71, 1.02, 1.40) (1.68, 1.97, 2.25, 2.64) (4.05, −2.27, −1.30, −0.42) (0.59, 2.99, −0.86, 3.11)
C5 (1.11, 1.42, 1.73, 2.14) (1.41, 1.70, 1.98, 2.35) (4.49, −1.23, −2.01, −1.14) (−0.18, 3.44, −1.40, 3.71)

Wj wj Rank

C1 4.404 0.226 1
C2 4.122 0.211 3
C3 4.144 0.213 2
C4 3.110 0.160 5
C5 3.712 0.190 4

The final values of the weight coefficients of the dimensions are: reliability (w1 = 0.226), assurance
(w2 = 0.211), tangibles (w3 = 0.213), empathy (w4 = 0.160), and responsiveness (w5 = 0.190). Based on
presented results, we can define the final ranking as C1 > C3 > C2 > C5 > C4.

Compared to crisp DEMATEL, the proposed method has two main advantages. The first advantage
of proposed model is the elimination of disadvantage in the DST where the elements in the frame of
discernment are required to be independent. While both evidence DEMATEL [39] and DEMATEL-D
can decrease the subjectivity of expert preferences, the DST is not very applicable for the presentation
of linguistic estimates in conditions where it is required that the elements within the distinction
must be mutually exclusive. As shown In Figure 1a, the variables must have boundaries in DST.
However, it was found that this demand is difficult to be satisfied for LVs such as “F”, “B”, and “U”.
As shown in Figure 1b, the D numbers theory overcomes this poorness and permit overlap between
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LVs, which makes it more applicable for linguistic assessments. Furthermore, in DST, the sum of basic
probability assignment must present the complete information, i.e., the sum of probability must be
1. However, in the D numbers theory, the information can be incomplete, which is more practical
and realistic.

The second advantage of proposed DEMATEL-D model is related to reducing experts subjectivity.
Even though both fuzzy DEMATEL [40] and the TrFN DEMATEL consider fuzziness, the developed
method is more objective than fuzzy DEMATEL because it can reduce the impact of expert subjectivity
by fusing group opinions.

The precedence of the D numbers theory is the ability to integrate group information. Therefore,
in order to perform the verification and validity of the developed method, this study computed the
result in each expert group and compared the opinions of these two expert groups with the final
result, as shown in Table 8. In these three cases (the first group, the second group, and the aggregated
values), C1 was the most significant element but the ranking of the other elements was quite various,
thus showing that the final rank was sensitive to the knowledge of experts. Consequently, the need for
the integration of expert information in various fields using the D numbers theory has been shown.

The D numbers theory is used to fuse the expert preferences in decision-making processes.
Therefore, it is reasonable to expect the aggregate values to be close to the values represented by the
expert preferences. The final values of the criteria obtained using the DEMATEL-D model in this study
were between the results that have been proposed through expert evaluations. This shows us that the
proposed model respects the uncertainties that exist in group decision-making and that the model
gives results that are valid and reasonable.

5. Conclusions

In this paper, the fuzzy DEMATEL methodology was expanded by D numbers to overcome
uncertainties and subjectivities that are inevitable in group decision-making processes, especially
with numerous decision-makers. The integration of fuzzy DEMATEL with D numbers allows for
the consideration of uncertainties that exist in experts’ comparisons of criteria, and that the intervals
of fuzzy linguistic expressions are defined based on the uncertainties and imprecision that exist in
experts’ judgment. The introduction of D numbers makes it possible to take the additional uncertainties
that arise when selecting fuzzy linguistic variables from a predefined set into account. D numbers,
in addition to fuzzy linguistic variables, introduce the probability of choosing a fuzzy linguistic variable,
thus increasing the objectivity and quality of existing data in group decision-making. This can be
proven, for example, by determining the quality of logistics services in order to obtain an adequate
insight into the management processes. Considering that this is a new extension of the fuzzy DEMATEL
method by D numbers, which was demonstrated on a real study, it can be concluded that there is a
justification for the development of the presented methodology. Future research may be based on
the greater application of MCDM methods and D numbers. In addition, it is possible to integrate
rough numbers with D numbers, which could provide a more comprehensive concept for managing
decision-making processes.

Author Contributions: Conceptualization, I.P. and Ž.S.; methodology, I.P.; D.P., and Ž.S.; validation, S.D. and
D.K.D.; writing—original draft preparation, D.P and O.M.; writing—review and editing, D.K.D. and S.D.;
supervision, Ž.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Gabus, A.; Fontela, E. World Problems, an Invitation to Further Thought within the Framework of DEMATEL;
Battelle Geneva Research Centre: Geneva, Switzerland, 1972.

124



Mathematics 2020, 8, 812

2. Si, S.L.; You, X.Y.; Liu, H.C.; Zhang, P. DEMATEL technique: A systematic review of the state-of-the-art
literature on methodologies and applications. Math. Probl. Eng. 2018, 1, 1–33. [CrossRef]

3. Dempster, A.P. Upper and lower probabilities induced by a multivalued mapping. Ann. Math. Stat. 1967, 38,
325–339. [CrossRef]

4. Shafer, G. A mathematical theory of evidence. Technometrics 1978, 20, 242.
5. Yang, J.; Huang, H.-Z.; He, L.-P.; Zhu, S.-P.; Wen, D. Risk evaluation in failure mode and effects analysis of

aircraft turbine rotor blades using Dempster-Shafer evidence theory under uncertainty. Eng. Fail. Anal. 2011,
18, 2084–2092. [CrossRef]

6. Xiao, F. A novel multi-criteria decision making method for assessing health-care waste treatment technologies
based on D numbers. Eng. Appl. Artif. Intell. 2018, 71, 216–225. [CrossRef]

7. Kang, B.; Deng, Y.; Sadiq, R.; Mahadevan, S. Evidential cognitive maps. Knowl. Based Syst. 2012, 35, 77–86.
[CrossRef]

8. Ju, Y.; Wang, A. Emergency alternative evaluation under group decision makers: A method of incorporating
DS/AHP with extended TOPSIS. Expert Syst. Appl. 2012, 39, 1315–1323. [CrossRef]

9. Ma, W.; Xiong, W.; Luo, X. A model for decision making with missing, imprecise, and uncertain evaluations
of multiple criteria. Int. J. Intell. Syst. 2013, 28, 152–184. [CrossRef]

10. Fei, L.; Deng, Y.; Hu, Y. DS-VIKOR: A new multi-criteria decision-making method for supplier selection.
Int. J. Fuzzy Syst. 2019, 21, 157–175. [CrossRef]

11. Sadiq, R.; Kleiner, Y.; Rajani, B. Estimating risk of contaminant intrusion in water distribution networks
using Dempster–Shafer theory of evidence. Civ. Eng. Environ. Syst. 2006, 23, 129–141. [CrossRef]

12. Deng, X.; Hu, Y.; Deng, Y.; Mahadevan, S. Environmental impact assessment based on D numbers. Expert

Syst. Appl. 2014, 41, 635–643. [CrossRef]
13. Deng, X.; Hu, Y.; Deng, Y. Bridge condition assessment using D numbers. Sci. World J. 2014, 2014, 358057.

[CrossRef] [PubMed]
14. Xiao, F. A multiple-criteria decision-making method based on D numbers and belief entropy. Int. J. Fuzzy

Syst. 2019, 21, 1144–1153. [CrossRef]
15. Deng, X.; Jiang, W. D number theory based game-theoretic framework in adversarial decision making under

a fuzzy environment. Int. J. Approx. Reason. 2019, 106, 194–213. [CrossRef]
16. Deng, X.; Jiang, W. Evaluating green supply chain management practices under fuzzy environment: A novel

method based on D number theory. Int. J. Fuzzy Syst. 2019, 21, 1389–1402. [CrossRef]
17. Zhou, X.; Shi, Y.; Deng, X.; Deng, Y. D-DEMATEL: A new method to identify critical success factors in

emergency management. Saf. Sci. 2017, 91, 93–104. [CrossRef]
18. Lin, S.; Li, C.; Xu, F.; Liu, D.; Liu, J. Risk identification and analysis for new energy power system in China

based on D numbers and decision-making trial and evaluation laboratory (DEMATEL). J. Clean. Prod. 2018,
180, 81–96. [CrossRef]
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20. Stojić, G.; Sremac, S.; Vasiljković, I. A fuzzy model for determining the justifiability of investing in a road
freight vehicle fleet. Oper. Res. Eng. Sci. Theory Appl. 2018, 1, 62–75. [CrossRef]

21. Stankovic, M.; Stevic, Z.; Das, D.K.; Subotic, M.; Pamucar, D. A New Fuzzy MARCOS Method for Road
Traffic Risk Analysis. Mathematics 2020, 8, 457. [CrossRef]
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for Improving Service Quality Measurement: Delphi-FUCOM-SERVQUAL Model. Symmetry 2018, 10, 757.
[CrossRef]

39. Li, Y.; Hu, Y.; Zhang, X.; Deng, Y.; Mahadevan, S. An evidential DEMATEL method to identify critical success
factors in emergency management. Appl. Soft Comput. 2014, 22, 504–510. [CrossRef]
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Abstract: We consider the problems of state feedback and static output feedback preview controller
(PC) for uncertain discrete-time multiple-input multiple output (MIMO) systems based on the
parameter-dependent Lyapunov function and the linear matrix inequality (LMI) technique in this
paper. First, for each component of a reference signal, an augmented error system (AES) containing
previewed information is constructed via the difference operator and state augmentation technique.
Then, for the AES, the state feedback and static output feedback are introduced, and when considering
the output feedback, a previewable reference signal is utilized by modifying the output equation.
The preview controllers’ parameter matrices can be achieved from the solution of LMI problems.
The superiority of the PC is illustrated via two numerical examples.

Keywords: AES; PC; MIMO discrete-time system; state feedback and output feedback; parameter
dependence

1. Introduction

In the field of control, there are many effective control methods, for example, optimal control [1],
learning control [2], tracking control [3], and repetitive control [4] and so on. In many practical problems,
future information is always known completely or partially, such as a vehicle driving path, scheduled
flight route of an aircraft, and machining rules of a machine tool. Preview control can fully utilize
the future values of these previewed signals to improve the control performance [5,6]. The preview
control was first proposed by Sheridan in 1966 [7], and Bender [8] applied preview control theory to a
vehicle suspension system. The field of preview control has attracted researchers and has been studied
since the 1970s (see, the papers [9–13]). For a linear constant preview control system, LQR-based
design methods have been most widely studied, e.g., [14–20]. However, the presence of an unknown
disturbance or uncertain system model can cause degraded performance or even loss of closed-loop
stability. To deal with this problem, robust preview control has received considerable attention [21–27].
In recent years, the integration of preview control and other control methods has attracted much
attention. For example, in [28,29], the analysis and design problems of preview repetitive control for
discrete system have been investigated. A fault-tolerant control theory was combined with preview
control in [30,31]. In [32], the preview control concept was added to the Lipschitz non-linear system to
consider the preview tracking control problems. Of course, preview control has attracted researchers
for its applications in varied areas, e.g., wind turbine blade-pitch control [33], autonomous vehicle
guidance [34], robotics [35], and so on.

With the rapid development of computer, electronics and information technology, industrial
systems are becoming larger and more complex. Therefore, it is more interesting to consider the control
problem of MIMO systems. For example, the preview control problem of MIMO systems was studied
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in [36] by combining linear quadratic optimal theory with the AES method. However, the dimension
of an AES is high and the calculation is complex. In addition, through numerical simulations, we find
that the preview control effect is not ideal when the reference signal is a vector, as in [11,13,15,36,37].
The components of the reference signal influence each other, and the influence is often negative.
However, for a high-dimensional reference signal, the AES constructed in [11,13,15,36,37] not only has
a high dimension, but the component signals also share the same preview length.

In this paper, robust PC design methods are proposed for MIMO discrete systems. First,
the construction of an AES including previewable signals is carried out. Then, sufficient conditions of
closed-loop systems and the PC design methods are proposed. The main contributions of our preview
control scheme are summarized as follows: (i) The AES of a MIMO uncertain discrete-time system
is successfully constructed from a new perspective. It not only constructs a lower-dimensional error
system, but it also provides optional preview lengths. (ii) Our desired PC design method can avoid
the negative influence of reference signal components on each other, and then effectively improve
the tracking performance. (iii) Our design additionally allows the system output matrices to be
non-common and have uncertainties. Finally, the simulation results clearly validate the superiority of
the proposed PC.

Notation. A > 0: symmetric and positive definite matrix A. AT denotes the matrix transposition
of A. The symbol ∗ denotes the entries of matrices implied by symmetry. sym(A) means A + AT. I and
0: identity matrix and zero matrix of appropriate dimensions, respectively.

2. Problem Formulation

Consider the uncertain discrete-time system

{
x(k + 1) = A(θ)x(k) + B(θ)u(k),

y(k) = C(θ)x(k) + D(θ)u(k),
(1)

where x(k) ∈ Rn, u(k) ∈ Rm and y(k) ∈ Rq are respectively the state vector, input control vector,
and output vector.

y(k) =
[

y1(k) y2(k) · · · yq(k)
]T

, Ci(θ), and Di(θ) represent the i (i = 1, 2, · · · , q) row of
matrices C(θ) and D(θ), respectively. Then, we can have

yi(k) = Ci(θ)x(k) + Di(θ)u(k) (2)

A1: The uncertain matrices are given by

[
A(θ) B(θ) C(θ) D(θ)

]
=

s∑

j=1

θ j

[
A j B j C j D j

]
(3)

where A j, B j, C j, and D j ( j = 1, 2, · · · , s) are matrices with appropriate dimensions. θ =
[
θ1 θ2 · · · θs

]T
∈ Rs is the parameter vector and satisfies

θ ∈ Θ :=


θ ∈ Rs

∣∣∣∣∣∣∣∣
θ j ≥ 0, ( j = 1, 2, · · · , s),

s∑

j=1

θ j = 1


(4)

A2: Let r(k) =
[

r1(k) r2(k) · · · rq(k)
]T
∈ Rq be the reference signal. Assume that the

component reference signal ri(k) (i = 1, 2, · · · q) is available from current time k to k + hi. The future
values are assumed not to change beyond k + hi, namely,

ri(k + j) = ri(k + hi), ( j ≥ hi + 1)
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where hi is the preview length.

Remark 1. It should be noted that A2 is an assumption about ri(k) (i = 1, 2, · · · , q) rather than r(k). There are

two advantages of A2: (1) Each component ri(k) can have its own preview length hi instead of sharing one

preview length h. (2) It can avoid the negative effects of other signals.

The objective is to design preview controller such that

(i) The output tracks the reference signal without steady-state error, that is,

lim
k→∞

ei(k) = 0 (5)

where ei(k) = yi(k) − ri(k).
(ii) The closed-loop system is robustly stable and exhibits acceptable transient responses for all θ ∈ Θ.

3. Derivation of AES

Here, we derived an AES that contains previewed information. Employing the difference operator
∆ as:

∆δ(k) = δ(k + 1) − δ(k) (6)

and applying the difference operator to (1) and (2), one obtains:

{
∆x(k + 1) = A(θ)∆x(k) + B(θ)∆u(k),
∆yi(k) = Ci(θ)∆x(k) + Di(θ)∆u(k).

(7)

Considering (5)–(7), it is obtained that:

ei(k + 1) = ei(k) + Ci(θ)∆x(k) + Di(θ)∆u(k) − ∆ri(k) (8)

It follows from (6) and (8) that:

x̃i(k + 1) = Ãi(θ)x̃i(k) + B̃i(θ)∆ui(k) + G∆ri(k) (9)

where

x̃i(k) =

[
ei(k)

∆x(k)

]
, Ãi(θ) =

[
I Ci(θ)

0 A(θ)

]
, B̃i(θ) =

[
Di(θ)

B(θ)

]
, G =

[
−1
0

]

From A1, Ãi(θ) and B̃i(θ) can be given by:

Ãi(θ) =




I
s∑

j=1
θ jC

i
j

0
s∑

j=1
θ jA j



=

s∑

j=1

θ j




I Ci
j

0 A j


 =

s∑

j=1

θ jÃi, j (10)

B̃i(θ) =




s∑
j=1

θ jD
i
j

s∑
j=1

θ jB j



=

s∑

j=1

θ j




Di
j

B j


 =

s∑

j=1

θ jB̃i, j (11)

Note that, in (10) and (11), Ci
j

and Di
j

represent the i row of matrices C j and D j, respectively,

where i ∈ {
1, 2, · · · , q

}
, j ∈ {1, 2, · · · , s}.

129



Mathematics 2020, 8, 756

From A2, ri(k), ri(k + 1), · · · , ri(k + hi) are available at time k. Defining

xri(k) =




∆ri(k)

∆ri(k + 1)
...
...

∆ri(k + hi)




, AR,i =




0 1 0

0
. . .

. . .
...

. . .
. . .

0 · · · · · · 0 1
0 · · · · · · 0 0




then, it can be obtained:
xri(k + 1) = AR,ixri(k) (12)

where xri(k) ∈ Rhi+1 and AR,i ∈ R(hi+1)×(hi+1).
Each component ri(k) can have its own preview length hi; therefore, hi can be selected appropriately

as needed.
Based on (8) and (12), we obtain:

x̂i(k + 1) = Âi(θ)x̂i(k) + B̂i(θ)∆ui(k) (13)

where

x̂i(k) =

[
x̃i(k)

xri(k)

]
, Âi(θ) =

[
Ãi(θ) Wi

0 AR,i

]
, B̂i(θ) =

[
B̃i(θ)

0

]
, Wi =




G 0 · · · 0
︸        ︷︷        ︸

hi




System (13) is the AES and the future information of ri(k) is added to System (13).
Based on (10) and (11), Âi(θ) and B̂i(θ) are written as:

Âi(θ) =




s∑
j=1

θ jÃi, j Wi

0 AR,i


 =

s∑

j=1

θ j

[
Ãi, j Wi

0 AR,i

]
=

s∑

j=1

θ jÂi, j (14)

B̂i(θ) =




s∑
j=1

θ jB̃i, j

0


 =

s∑

j=1

θ j

[
B̃i, j

0

]
=

s∑

j=1

θ jB̂i, j (15)

Remark 2. System (13) is the so-called AES. The future information of ri(k) is added to the AES (13) rather

than the future information of r1(k), r2(k), · · · , rq(k). The benefits of this treatment are: (i) the size of the AES

in this paper is smaller. Our proposed AES has 1 + n + (hi + 1) states, whereas the AES in refs. [5,10,11,26,27]

has q + n + (h + 1)q. (ii) Based on the theoretical analysis and numerical simulations, we found that, if we

added the future information of r(k) to the AES as usual, the control effect of the PC is poor.

4. PC Design

Consider the following system
x̂i(k) = Âi(θ)x̂i(k) (16)

Lemma 1. Lemma 1: System (16) is asymptotically stable, if there exists Pi(θ) > 0 and matrices F1i and F2i

with appropriate dimensions such that:

Ωi(θ) =

[
−Pi(θ) − F1iÂi(θ) − Âi(θ)

TF1i
T ∗

F1i
T − F2iÂi(θ) Pi(θ) + F2i + F2i

T

]
< 0

(i = 1, 2, · · · , q)

(17)
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Proof. Consider the Lyapunov function

Vi(k) = x̂i(k)
TPi(θ)x̂i(k)

We have
∆Vi(k) = x̂i(k + 1)TPi(θ)x̂i(k + 1) − x̂i(k)

TPi(θ)x̂i(k) (18)

From (17), the following equation holds:

2
[
x̂i(k)

TF1i + x̂i(k + 1)TF2i

][
x̂i(k + 1) − Âi(θ)x̂i(k)

]
= 0 (19)

where F1i and F2i are matrices with appropriate dimensions.
Obviously, if (17) holds, then it can be concluded that ∆Vi(k) < 0, which implies that System (16)

is asymptotically stable. This completes the proof. �

4.1. State Feedback PC

The state feedback control is presented as follows:

∆ui(k) =




s∑

j=1

γ jKi, j


x̂i(k)(i = 1, 2, · · · , q) (20)

where, Ki, j and γ j (i = 1, 2, · · · , s) are matrices and adjustable variables to be determined, and γ j ≥ 0,
s∑

j=1
γ j = 1. For convenience, we note that Ki(γ) =

s∑
j=1

γ jKi, j.

Substituting (20) into (13), we obtain:

x̂i(k + 1) =
[
Âi(θ) + B̂i(θ)Ki(γ)

]
x̂i(k) (21)

Theorem 1. If there exist matrices Xi(θ) > 0, Yi(γ), and Hi and scalars αi and βi such that

Πi(θ,γ) =
[
−αi

2Xi(θ) − sym(αiÂi(θ)Hi + αiB̂i(θ)Yi(γ)) ∗
−βiHi

T − αi(Âi(θ)Hi + B̂i(θ)Yi(γ)) βi
2Xi(θ) − 2βiHi

]
< 0,

(i = 1, 2, · · · , q)

(22)

then System (21) is asymptotically stable.

Proof. For the closed-loop System (21), from Lemma 1 we know that, if there exists Pi(θ) > 0, F1i and
F2i with appropriate dimensions satisfies:

[
−Pi(θ) − sym(F1i(Âi(θ) + B̂i(θ)Ki(γ))) ∗

F1i
T − F2i(Âi(θ) + B̂i(θ)Ki(γ)) Pi(θ) + F2i + F2i

T

]
< 0 (23)

To obtain LMI conditions [38,39], let

F1i = aiRi, F2i = −biRi (24)

where ai , 0 and bi , 0. Then, by applying a congruence transformations by diag
{
F1i
−1, F2i

−1
}

to

(23) and denoting Ri
−T = Hi, Ri

−TPi(θ)
−1Ri

−1 = Xi(θ), Ki(γ)Ri
−T = Yi(γ), αi = 1/ai, and βi = 1/bi,

we arrive at the condition in Theorem 1. �
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Theorem 2. Given scalars αi and βi, if there exist matrices Xi, j > 0, Yi,d, and Hi such that:

Πi
j,d < 0i, j, d : i ∈ {

1, 2, 3, · · · , q
}
, j, d ∈ {1, 2, 3, · · · , s} (25)

then System (21) is robustly stabilizable via (20), and the control input is given by

∆ui(k) = Ki(γ)x̂i(k) =
s∑

d=1

γdYi,dHi
−1x̂i(k) (26)

In (25),

Πi
j,d =

[
−αi

2Xi, j − sym(αiÂi, jHi + αiB̂i, jYi,d) ∗
−βiHi

T − αi(Âi, jHi + B̂i, jYi,d) βi
2Xi, j − 2βiHi

]

Proof. Multiplying (25) by θ jγd for 1 ≤ j ≤ s and 1 ≤ d ≤ s and summing them, according (14) and (15),
we obtain

Πi(θ,γ) =
s∑

j=1

s∑

d=1

θ jγdΠi
j,d (27)

and, thus, (25) can imply Πi(θ,γ) < 0. From (22), Theorem 2 holds. �

If the system model parameter can be available, the state feedback for System (20) to be designed

∆ui(k) =




s∑

j=1

θ jKi, j


x̂i(k) (28)

The matrices Ki, j ( j = 1, 2, · · · , s) are gain matrices, and we let Ki(θ) =
s∑

j=1
θ jKi, j.

Applying (28) to System (13) yields

x̂i(k + 1) =
[
Âi(θ) + B̂i(θ)Ki(θ)

]
x̂i(k) (29)

Based on Theorems 1 and 2, the following corollaries are presented.

Corollary 1. The System (29) is asymptotically stable if there exist matrices Xi(θ) > 0 and Yi(θ) and scalars

αi and βi ∈ (0, 2), such that:

Πi(θ) =

[
−αi

2Xi(θ) − sym(αiÂi(θ)Xi(θ) + αiB̂i(θ)Yi(θ)) ∗
−βiXi(θ) − αi(Âi(θ)Xi(θ) + B̂i(θ)Yi(θ)) (βi

2 − 2βi)Xi(θ)

]
< 0,

(i = 1, 2, · · · , q)

(30)

Proof. In Theorem 1, let F1i(θ) = aiPi(θ), F2i(θ) = biPi(θ), Pi(θ)
−1 = Xi(θ), Ki(θ)Xi(θ) = Yi(θ),

αi =
1
ai

, βi =
1
bi

, then (30) can be obtained. �

Corollary 2. For known scalars βi ∈ (0, 2) and αi, if there exist matrices Xi,d > 0 and Yi,d such that

Πi
j,d + Πi

d, j < 0, j ≤ d : j, d ∈ {1, 2, 3, · · · , s}, i ∈ {
1, 2, 3, · · · , q

}
(31)

then the System (29) is asymptotically stable, and the control input is given by

∆ui(k) =




s∑

d=1

θdYi,d







s∑

d=1

θdXi,d




−1

x̂i(k) (32)
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In (31),

Πi
j,d =

[
−αi

2Xi,d − sym(αiÂi, jXi,d + αiB̂i, jYi,d) ∗
−βiXi,d − αi(Âi, jXi,d + B̂i, jYi,d) (βi

2 − 2βi)Xi,d

]

The gain matrix Ki, j in (20) is divided as follows:

Ki, j =
[

Ki
e j

Ki
xj

Ki
Rj
(0) Ki

Rj
(1) · · · Ki

Rj
(hi)

]
(33)

Equation (20) is then written as

∆ui(k) =
s∑

j=1

γ j


K

i
e jei(k) + Ki

xj∆x(k) +

hi∑

d=0

Ki
Rj(d)∆ri(k + d)




Therefore, the control input of System (1) is given by

ui(k) = Ki
e

k−1∑

h=0

ei(h) + Ki
xx(k) +

hi∑

d=0

Ki
R(d)ri(k + d) (34)

where Ki
e =

s∑
j=1

γ jK
i
e j

, Ki
x =

s∑
j=1

γ jK
i
xj

, and Ki
R
(d) =

s∑
j=1

γ jK
i
Rj
(d).

4.2. Static Output Feedback PC

To obtain the control law with preview compensation, for System (13), the output equation is
modified as

zi(k) = CZi(θ)x̂i(k) (35)

where

CZi(θ) =




Iqi
s∑

j=1
Ci

j

I(MR,i+1)



=

s∑

j=1

θ jCZi, j (36)

We consider a output feedback controller

∆ui(k) =




s∑

j=1

γ jKi, j


zi(k), (i = 1, 2, · · · , q) (37)

Based on (13), (35), and (37), we obtain the following system:

x̂i(k + 1) =
[
Âi(θ) + B̂i(θ)Ki(γ)CZi(θ)

]
x̂i(k) (38)

Lemma 2. [40]: For appropriately dimensioned matrices F, R, S, and N and scalar β, F + STRT + RS < 0 is

fulfilled if the following condition holds:

[
F ∗

βRT + NS −βN − βNT

]
< 0
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Theorem 3. For given αi, βi, and ρi, the System (38) is asymptotically stable if there exist matrices Xi(θ) > 0
and matrices Qi, Li(γ), Ui, and Hi, such that:

Πi(θ,γ) =




−αi
2Xi(θ) − sym(αiÂi(θ)Hi + B̂i(θ)Li(γ)Qi) ∗ ∗
−βiHi

T − αi(Âi(θ)Hi + B̂i(θ)Li(γ)Qi) βi
2Xi(θ) − 2βiHi ∗

−ρiαiLi(γ)
TB̂i(θ)

T + CZi(θ)Hi −UiQi −ρiαiLi(γ)
TB̂i(θ)

T −ρisym(Ui)



< 0,

(i = 1, 2, · · · , q)

(39)

Proof. Equation (39) is written as




[
−αi

2Xi(θ) − sym(αiÂi(θ)Hi + B̂i(θ)Li(γ)Qi) ∗
−βiHi

T − αi(Âi(θ)Hi + B̂i(θ)Li(γ)Qi) βi
2Xi(θ) − 2βiHi

]

︸                                                                                     ︷︷                                                                                     ︸
F

∗

−ρiαiLi(γ)
TB̂i(θ)

T
[

I I
]

︸                             ︷︷                             ︸
ρiRT

+ Ui︸︷︷︸
N

Ui
−1(CZi(θ)Hi −UiQi)

[
I 0

]

︸                                   ︷︷                                   ︸
S

−ρisym(Ui)︸        ︷︷        ︸
−ρiN−ρiNT




< 0. (40)

According to Lemma 2, (40) can guarantee

[
−αi

2Xi(θ) − αisym(Âi(θ)Hi + B̂i(θ)Li(γ)Qi) ∗
−βiHi

T − αi(Âi(θ)Hi + B̂i(θ)Li(γ)Qi) βi
2Xi(θ) − 2βiHi

]

− sym

([
I

I

]
αiB̂i(θ)Li(γ)Ui

−1(CZi(θ)Hi −UiQi)
[

I 0
])

=

[
−αi

2Xi(θ) − αisym(Âi(θ)Hi) ∗
−βiHi

T − αi(Âi(θ)Hi) βi
2Xi(θ) − 2βiHi

]

− sym

([
I

I

]
αiB̂i(θ)Li(γ)Ui

−1(CZi(θ)Hi −UiQi + UiQi)
[

I 0
])

< 0.

(41)

Letting Ki(γ) = Li(γ)Ui
−1, we have

[
−αi

2Xi(θ) − sym(αiÂi(θ)Hi) ∗
−βiHi

T − αi(Âi(θ)Hi) βi
2Xi(θ) − 2βiHi

]
− αisym

([
I

I

]
B̂i(θ)Ki(γ)CZi(θ)Hi

[
I 0

])
< 0,

and therefore
[
−αi

2Xi(θ) − αisym((Âi(θ) + B̂i(θ)Ki(γ)CZi(θ))Hi) ∗
−βiHi

T − αi((Âi(θ) + B̂i(θ)Ki(γ)CZi(θ))Hi) βi
2Xi(θ) − 2βiHi

]
< 0

From Theorem 1, Theorem 3 holds. �

Theorem 4. For given scalars αi, βi, and ρi and matrix Qi, if there exist Xi, j > 0, Li,d, Hi, and Ui such that

Πi
j,d < 0 (i, j, d : i ∈ {

1, 2, 3, · · · , q
}
, j, d ∈ {1, 2, 3, · · · , s}) (42)

then the System (38) is robust asymptotically stable. The controller is given by

∆ui(k) = Ki(γ)Zi(k) =
s∑

d=1

γdLi,dUi
−1Zi(k) (43)
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In (42),

Πi
j,d =




−αi
2Xi,d − αisym(Âi, jHi + B̂i, jLi,dQi) ∗ ∗
−βiHi

T − αi(Âi, jHi + B̂i, jLi,dQi) βi
2Xi,d − 2βiHi ∗

−ρiαiLi,d
TB̂i, j

T + CZi, jHi −UiQi −ρiαiLi,d
TB̂i, j

T −ρisym(Ui)




Similarly, if the uncertain parameters of the system model are known, we consider the following form of the

parameter-dependent output controller:

∆ui(k) =




s∑

d=1

θdKi,d


zi(k) (44)

where Ki,d (d = 1, 2, · · · , s) are gain matrices, and Ki(θ) =
s∑

d=1
θdKi,d.

Based on (13) and (44), we obtain

x̂i(k + 1) =
[
Âi(θ) + B̂i(θ)Ki(θ)CZi(θ)

]
x̂i(k) (45)

According to Theorem 3 and 4, Corollary 3 and 4 are given as follows:

Corollary 3. For given scalars αi, ρi and βi ∈ (0, 2), a sufficient condition for the proposed controller (44)

that ensures the uncertain discrete-time closed system (45) to be asymptotically stable, if there exist matrices

Xi(θ) > 0, Li(θ), Qi, and Ui(θ) such that Equation (46) hold:

Πi(θ) =




−αi
2Xi(θ) − αisym(Âi(θ)Xi(θ) + B̂i(θ)Li(θ)Qi) ∗ ∗
−βiXi(θ) − αi(Âi(θ)Xi(θ) + B̂i(θ)Li(θ)Qi) (βi

2 − 2βi)Xi(θ) ∗
−ρiαiLi(θ)

TB̂i(θ)
T + CZi(θ)Xi(θ) −UiQi −ρiαiLi(θ)

TB̂i(θ)
T −ρisym(Ui)



< 0,

(i = 1, 2, · · · , q)

(46)

Corollary 4. For given βi ∈ (0, 2), αi, ρi, and matrix Qi, if there exist matrices Xi,d > 0, Li,d and Ui such that

Πi
j,d + Πi

d, j < 0, ( j ≤ d : j, d ∈ {1, 2, 3, · · · , s}, i ∈ {
1, 2, 3, · · · , q

}
) (47)

hold, then the closed-loop System (45) is robustly asymptotically stable, and the controller is given by

∆ui(k) =
s∑

d=1

θdLi,dUi
−1Zi(k) (48)

In (47),

Πi
jd
=




−αi
2Xi,d − αisym(Âi, jXi,d + B̂i, jLi,dQi) ∗ ∗
−βiXi,d − αi(Âi, jXi,d + B̂i, jLi,dQi) βi

2Xi, j − 2βiXi, j ∗
−ρiαiLi,d

TB̂i, j
T + CZi, jXi,d −UiQi −ρiαiLi,d

TB̂i, j
T −ρisym(Ui)




We decompose the gain matrix Ki, j as

Ki, j =
[

Ki
e j

Ki
yj

Ki
Rj
(0) Ki

Rj
(1) · · · Ki

Rj
(hi)

]
(49)

and then (37) is

∆ui(k) =
s∑

j=1

γ j


K

i
e jei(k) + Ki

yj∆y(k) +

hi∑

d=0

Ki
R(d)∆ri(k + d)
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The controller of System (1) can be taken as

ui(k) = Ki
e

k−1∑

h=0

ei(h) + Ki
yyi(k) +

hi∑

d=0

Ki
R(d)ri(k + d) (50)

where

Ki
e =

s∑

j=1

γ jK
i
e j, Ki

y =
s∑

j=1

γ jK
i
yj, Ki

R(d) =
s∑

j=1

γ jK
i
Rj(d)

Remark 3. In light of (34) and (50), it is clear that the preview controller of System (1) consists of three terms.

The first term is the integral action on the tracking error, the second term represents the state feedback or output

feedback, the third term represents the feedforward or preview action based on the future information on ri(k).

Remark 4. If the construction method of AES proposed by [11,13,14,26] is used in this paper. In the other

word, the future information of the reference signal r(k) has been added to augmented state vector. The preview

compensation term in PC will be the form of

h∑

d=0

KR(d)r(k + d) =
h∑

d=0

KR(d)
[

r1(k + d)T r2(k + d)T · · · rq(k + d)T
]T

(51)

It follows from the theoretical analysis and numerical simulations that the future information of r1(k),

r2(k)· · · , rq(k) interacts with each other. This may lead to poor tracking performance.

5. Numerical Example

In (1), let

A(θ) =




1 −0.6 −0.8 −1
0 0 −0.1 0.5

0.2 0 0.9 −0.3
0.1 −0.3 −0.3 0.1



θ1 +




0.9 1.2 0.4 −0.3
0 1 0 0.2
−0.6 0.3 1 0
0.3 −0.5 0 1



θ2

B(θ) =




−0.5 0.1
−0.2 0.1
0.5 0
0 0.5



θ1 +




−0.3 0.2
−0.1 0
−0.6 0.2
0.2 0.5



θ2

C(θ) = θ1

[
0.2 1.2 0.3 0
−0.1 1.5 0.2 0.4

]
+ θ2

[
0.3 0.8 0 0
−0.7 −2 0.5 −0.3

]
, D(θ) = 0.

For s = 2, the scalars are taken as α1 = 4, β1 = 0.6, α2 = 0.8, and β2 = 0.5 and γ1 = 0.3 and
γ2 = 0.7. In this example, we selected the preview lengths as 1O h1 = 6, (h2 = 5), 2O h1 = 2, (h2 = 1),
and 3O h1 = 0, (h2 = 0). By solving the LMIs (25) using the MatLab LMI control toolbox, the gains
were obtained as follows.

When h1 = 2, we had

K1 =

[
0.31429 0.94275 2.01847 −0.33257 −0.82234
−0.36601 1.14616 −1.09108 −1.71517 −3.31321

−0.31382 −0.31125 −0.29639
0.36385 0.34914 0.28267

]
,
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When h1 = 6, we obtained

K1 =

[
0.30753 0.95324 1.98948 −0.34762 −0.82702 −0.30735
−0.45000 1.08942 −1.29829 −1.74390 −3.308732 0.4487631
−0.30500 −0.29540 −0.28696 −0.26726 −0.24118 −0.20619
0.43397 0.36963 0.27278 0.22070 0.18295 0.16303

]
.

When h1 = 0, we had

K1 =

[
0.29017 0.95022 1.99563 −0.37000 −0.83099
−0.37170 1.20180 −1.19541 −1.80608 −3.39788

]

When h2 = 1, we had

K2 =

[
−0.11796 0.80069 1.46557 −0.53132 −0.62061 0.11759 0.11951
−0.12550 0.91854 −0.11027 −1.29944 −2.73462 0.11732 0.12856

]
.

When h2 = 5, we obtained

K2 =

[
−0.11978 0.79657 1.46443 −0.53304 −0.61610 0.11975
−0.12802 0.91029 −0.11878 −1.29739 −2.73190 0.12520
0.11903 0.11962 0.11649 0.11441 0.10747
0.13164 0.13769 0.12484 0.12282 0.11164

]
,

When h2 = 0, we had

K2 =

[
−0.11994 0.81063 1.46822 −0.53765 −0.62579
−0.13216 0.94764 −0.09604 −1.31084 −2.74898

]

The reference signal was selected as

r1(k) =



0, k ≤ 10,
0.05(k− 10), 10 < k < 50,

2, k ≥ 50.
(52)

r2(k) =



0, k ≤ 40,
0.0375(k− 40), 40 < k < 80,

1.5, k ≥ 80.
(53)

The outputs and the reference signals are depicted in Figure 1. Figure 2 plots the control input.
As can be seen in Figures 1 and 2, the existence of the preview compensation accelerated the response
speed, which reduced the tracking error.

To consider the robustness of the proposed PC, the simulations were completed with different θ1

and θ2 as long as they met A1. Here, the simulation results about θ1 = 1 and θ1 = 0 would be given
separately. We depicted the output and control input of system (1) with θ1 = 1 and θ2 = 0 in Figures 3
and 4. Figure 5 plotted the output of System (1) with θ1 = 0 and θ2 = 1. The corresponding input
control is shown in Figure 6. One can see from Figures 3–6 that the PC made the closed-loop system
have a faster dynamic response speed compared with no preview.
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Figure 1. The output response and the reference signals.


   
 


   
 

     

Figure 2. The control input.

 
     

–

0 

0 

Figure 3. The output response of System (1) with θ1 = 0.
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–

 

0 Figure 4. The control input of System (1) with θ1 = 0

1 

1 =

( )r k

Figure 5. The output response of System (1) θ1 = 1.

 

1 =

( )r k

Figure 6. The control input of System (1) with θ1 = 1.
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The construction methods of AES in [11,13,15,26] were employed, or, equivalently, the future
information of r(k) was added to the augmented state vector to derive the AES. For comparison,
we performed simulations for this case in [11,13,15,26] by using the same example. From Figures 1
and 7, it can be seen that the future information of the signal components r1(k) and r2(k) interacted
with each other. This led to poor tracking performance of System (1). In addition, From Figures 1, 2,
7 and 8, we could easily see that our proposed PC provided better tracking performance than those
in [11,13,15,26].

  
    

       
      

  
   
       
      

  
   

    
   

0 

Figure 7. The output response.

  
    

       
      

  
   
       
      

  
   

    
   

0 

Figure 8. The control input.

Output Feedback Case

In System (1), we let
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A(θ) =




1 −0.4 0.8
1 0 0
0 1 0



θ1 +




1.2 −0.6 0.7
1 0 0
0 1 0



θ2,

B(θ) =




1 1
0.3 0.3
0 0



θ1 +




1 1
1.1 1
0 0



θ2, C(θ) = θ1

[
1 0 0
1 0 0

]
+ θ2

[
1 0 0
1 0 0

]
,

D(θ) = 0

Letting α1 = α2 = 4, β1 = β2 = 0.6, and ρ1 = ρ2 = 1 and γ1 = 0.3 and γ2 = 0.7, we had matrices
Q1 = 6(CZ1,1 + CZ2,1) and Q2 = 6(CZ1,2 + CZ2,2). According to Theorem 4, the static output feedback
gain matrices were obtained as follows.

When h1 = h2 = 2, we obtained

K1 =

[
1.26358 −0.40042 −1.26358 −1.26358 −1.26358
−1.32911 −0.14526 1.32911 1.32911 1.32911

]

K2 =

[
1.26358 −0.40042 −1.26358 −1.26358 −1.26358
−1.32911 −0.14526 1.32911 1.32911 1.32911

]

When h1 = h2 = 6, K1 and K2 are given, respectively, by

K1 =

[
1.31567 −0.30661 −1.31567 −1.31567 −1.31567 −1.31567
−1.38506 −0.24404 1.38506 1.38506 1.38506 1.38506
−1.31567 −1.31567 −1.31567
1.38506 1.38506 1.38506

]
,

K2 =

[
1.31567 −0.30661 −1.31567 −1.31567 −1.31567 −1.31567
−1.38506 −0.24404 1.38506 1.38506 1.38506 1.38506
−1.31567 −1.31567 −1.31567
1.38506 1.38506 1.38506

]
,

When h1 = h2 = 0, we obtained

K1 =

[
1.18156 −0.45238
−1.24364 −0.09158

]

K2 =

[
1.18156 −0.45238
−1.24364 −0.09158

]

For the Signal (52) and (53), Figure 9 depicts the output and the reference Signals (52) and (53).
Figure 10 indicates the control input for different preview lengths. From Figures 9 and 10, we found
that the output response could reach a steady state faster when using the output controller with
preview compensation.
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1   

0  1 
–

Figure 9. The output of System (1) with different MR.

1   

0  1 
–

Figure 10. The control input of System (1) with different MR.

For the static output feedback case, two extreme cases, namely, θ1 = 1 and θ1 = 0 have also been
considered. Figures 11 and 12, respectively, show the output response and control input of System (1)
by static output controller under θ1 = 0. When θ1 = 1, Figures 13 and 14 show the response and the
control input curves, respectively. It is evident from Figures 11–14 that the tracking effect was still
remarkable under the reference input preview compensation.

142



Mathematics 2020, 8, 756

1  

1  

Figure 11. θ1 = 0,θ2 = 1, output response of system (1) with different MR.

  

1  Figure 12. θ1 = 0,θ2 = 1, control of system (1) with different MR.

0  

0  

 

Figure 13. θ1 = 1,θ2 = 0, output response of system (1) with different MR.
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0  

 

( )

Figure 14. θ1 = 1,θ2 = 0, control input of system (1) with different MR.

Similarly, for the output feedback case, the simulations were completed when the design methods
in [11,13,15,26] were used. From these simulation results, we could find that the proposed output
feedback PC had more advantages. Simulation and analysis were made separately under different
situations of parameters θ1 and θ2. Considering length limitations, the figures for these results would
not be provided here.

6. Conclusions

The PC problem for MIMO discrete-time systems with polytopic uncertainties was discussed
in this paper. We derived the AES including previewed information on ri(k) by using classical
difference method. The parameter-dependent state feedback and output feedback were proposed and
the conditions of the design methods of PCs were given by using parameter-dependent quadratic
Lyaounov functions and LMI approach. The robust controllers with preview actions using LMIs
were presented.
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Abstract: In this paper, a new method for determining weight coefficients by forming a non-decreasing
series at criteria significance levels (the NDSL method) is presented. The NDLS method includes the
identification of the best criterion (i.e., the most significant and most influential criterion) and the
ranking of criteria in a decreasing series from the most significant to the least significant criterion.
Criteria are then grouped as per the levels of significance within the framework of which experts
express their preferences in compliance with the significance of such criteria. By employing this
procedure, fully consistent results are obtained. In this paper, the advantages of the NDSL model are
singled out through a comparison with the Best Worst Method (BWM) and Analytic Hierarchy Process
(AHP) models. The advantages include the following: (1) the NDSL model requires a significantly
smaller number of pairwise comparisons of criteria, only involving an n − 1 comparison, whereas
the AHP requires an n(n − 1)/2 comparison and the BWM a 2n − 3 comparison; (2) it enables us to
obtain reliable (consistent) results, even in the case of a larger number of criteria (more than nine
criteria); (3) the NDSL model applies an original algorithm for grouping criteria according to the
levels of significance, through which the deficiencies of the 9-degree scale applied in the BWM and
AHP models are eliminated. By doing so, the small range and inconsistency of the 9-degree scale are
eliminated; (4) while the BWM includes the defining of one unique best/worst criterion, the NDSL
model eliminates this limitation and gives decision-makers the freedom to express the relationships
between criteria in accordance with their preferences. In order to demonstrate the performance of the
developed model, it was tested on a real-world problem and the results were validated through a
comparison with the BWM and AHP models.

Keywords: NDSL model; AHP; criteria weights; pairwise comparisons

1. Introduction

The determination of the relative weights of criteria in multi-criteria decision-making models
represents a specific problem that is inevitably accompanied by subjectivities. This procedure is very
significant, since it exerts a great influence on the final decision in the decision-making process [1].
Multi-criteria optimization methods use normalized values of weights, which meet the condition
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that
∑n

i = 1 wi = 1, wi ≥ 0. In many models for perceiving the relative ratios of weights, however,
non-normalized values are used in the form of whole numbers or amounts in percentages [2].
The percentage value of the weight of one criterion denotes a part of the overall preference attributed
to that criterion.

The determination of the values of criteria weights is a special problem in multi-criteria
optimization, so numerous models have been developed to solve it. Multi-criteria optimization
models are well-known for their sensitivity to change in the vector of weight coefficients, so minor
modifications in the values of the mentioned vector can cause a major change in the order of the
significance of alternatives in the model. Therefore, special attention has been devoted to studying
these models in the literature dealing with multi-criteria optimization [3–6].

Studying the available literature allows us to notice that there is no unique classification of
methods used for the determination of criteria weights, and their classification was, for the most
part, performed in compliance with the author’s understanding of and needs regarding the solving
of a concrete practical problem. Therefore, in [7], the classification of criteria weight determination
methods is given, and groups them into objective and subjective approaches. Objective models imply
the calculation of criteria weight coefficients based on the value(s) of the criterion/criteria in the initial
decision-making matrix. The most well-known objective models include the Entropy method [8], the
CRiteria Importance Through Intercriteria Correlation (CRITIC) method [9], and the FANMA method
(named after the authors Fan and Ma) [10].

On the other hand, subjective models include the application of a methodology implying the direct
participation of decision-makers, who express their preferences according to the significance of criteria.
There are several ways in which weights of criteria are obtained through the subjective approach, which
may differ from each other in terms of the number of participants in the process of the determination
of weights, the methods applied, and the manner in which the final criteria weights are formed.
The group of subjective models used to aggregate partial values in multi-attribute analysis methods
includes the trade-off method [11], which enables identification of the decision-maker’s dilemmas
through pairwise comparisons; the swing weight method [12], which involves the construction of two
extreme hypothetical scenarios; the worst (W) and the best (B) method, in which the first scenario (W)
is constructed based on the worst values of all criteria, and the second scenario (B) corresponds to
the best values; the Simple Multi-Attribute Rating Technique (SMART) method [13], which includes a
procedure for the determination of criteria weights based on comparing criteria with the best and the
criteria from within the defined set of criteria; and SMART Exploiting Ranks (SMARTER), which was
developed by [13] and which represents a new version of the SMART method. SMARTER uses the
centroid method for ranking the criteria for the determination of weight coefficients.

Apart from the above-mentioned subjective approaches, there are also approaches exclusively
based on criteria pairwise comparisons, and such approaches are referred to as pairwise comparison
methods. The pairwise comparison method was first introduced by Thurstone [14], and it represents a
structured way of producing a decision matrix. Pairwise comparisons (performed by an expert or a
team of experts) are used to demonstrate the relative significance of m actions in situations in which it
is impossible or senseless to assign marks to actions in relation to criteria. In pairwise comparison
methods, the decision-maker compares the observed criterion/action with other criteria/actions, and
determines the level of significance of the observed criterion/action. An ordinal scale is used to help
determine the magnitude of the preference for one criterion over another. One of the most frequently
used methods based on pairwise comparisons is the method of the Analytic Hierarchy Process
(AHP) [15]. Apart from the AHP, the pairwise comparison methods include the Decision-Making Trial
and Evaluation Laboratory (DEMATEL) method [16]; the Best Worst Method (BWM) [17]; the resistance
to change method [18], which has elements of the swing method and pairwise comparison methods;
and the Step-Wise Weight Assessment Ratio Analysis (SWARA) method [19]. In pairwise comparison
methods, for example, in the AHP, weights are determined based on pairwise comparisons of criteria,
and the results are generated from pairwise comparisons of alternatives with criteria. After that, by
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means of the usefulness function, the final values of alternatives are calculated. A very significant
challenge in pairwise comparison methods arises from a lack of consistency of comparison matrices,
which is frequently the case in practice [20]. Each of these methods has a wide application in the various
areas of science and technology, as well as in solving real-life problems. The AHP method is used
in [21] to make a strategic decision in a transport system. In [22], this method is employed to determine
the significance of criteria in evaluating different transitivity alternatives in transport in Catania. In [23],
the AHP method is using to identify and evaluate defects in the passenger transport system, whereas
in [24], it is applied to select an alternative to the electronic payment system. Stević et al. [25] carried
out site selection of a logistics center by applying the AHP method. In [26], the DEMATEL method is
employed to analyze the risk in mutual relations in logistics outsourcing. Additionally, in [27], the
authors proposed a two-phase model which aims to evaluate and select suppliers using an integrated
Fuzzy AHP and Fuzzy Technique for Ordering Preference by Similarity to Ideal Solution (FTOPSIS)
methods. Integration of the DEMATEL method is not rare, so in [27], along with the Analytic Network
Process (ANP) and Data Envelopment Analysis (DEA), a decision is made on the choice of the 3PL
logistics provider. The SWARA method is used in [28] to select the 3PL in the sustainable network of
reverse logistics and a rough form [29] for the purpose of determining the significance of criteria to
the procurement of railroad wagons. Moreover, the application of the SWARA method can be seen
in [30–46]. BWM is a method that has increasingly been applied in a short period of time [47–70]. Some
authors [55–57,61,67,71–73] see this method as an adequate substitute for the AHP. Its major advantage
is the smaller number of pairwise comparisons (2n− 3) involved compared to the AHP.

Weight coefficients represent a means calibrating decision-making models and the quality
of a decision made directly depends on the quality of their definition. The reason for studying
this problem lies in the fact that each subjective method used for the determination of criteria
weights has both advantages and disadvantages. In this research study, subjective methods based on
pairwise comparisons of criteria, more precisely, the BWM and AHP models, as the highest-sounding
representatives of this group of methods, are analyzed. Their advantages and disadvantages are
analyzed. Based on the identification of the weaknesses of these models, a new approach to the
determination of weight coefficients that involves forming a non-decreasing series at criteria significance
levels (the NDSL model) is proposed. The NDSL model includes the application of an original algorithm
to the grouping of criteria according to significance levels, through which the need to predefine the
ordinal scale for the pairwise comparison of criteria is eliminated. Criteria are grouped according
to significance levels in relation to the most significant criterion. After their grouping according to
significance levels, the numerical values of the significance of the criteria are determined in accordance
with the decision-maker’s preferences. By employing this procedure, results which are fully consistent
and also represent the real relationships defined by experts’ preferences are obtained. The proposed
model eliminates the deviations from experts’ preferences that appear in the AHP model, since the
NDSL’s results are always consistent. We highlight this since an increase in the consistency ratio in the
AHP leads to the distortion of experts’ preferences and the values of weight coefficients deviate from
the optimal values. This is what frequently appears in the mentioned models and most often, it is a
consequence of using the 9-degree scale characterized by limited possibilities of expressing experts’
preferences [74].

This paper has several goals. The first goal of the paper is to present a new model for the
determination of criteria weight coefficients which enables a rational expression of the decision-maker’s
preferences with a minimal number of comparisons—n − 1. The second goal of the paper is to develop
a model for the determination of criteria weight coefficients which always generates consistent results.
The third goal of the paper is to eliminate the 9-degree scale for the expression of experts’ preferences in
pairwise comparison models through defining an original algorithm for comparing criteria according
to the levels of significance. By forming significance levels, the shortcomings of the 9-degree scale,
which include (1) its limited flexibility while expressing experts’ preferences and (2) inconsistencies
during criteria pairwise comparisons, are eliminated [74].
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The rest of the paper is organized in the following manner: in the next section (Section 2),
the mathematical bases of the NDSL model are presented, and the algorithm demonstrating the
performance of the seven steps for defining criteria weight coefficients is presented; in Section 3, the
NDSL model is tested on a real-world problem, and a comparison of the results with those of the BWM
and AHP models is made; conclusive considerations and directions for future research studies are
given in Section 4.

2. Model for Determining Weight Coefficients by Forming a Non-Decreasing Series at Criteria
Significance Levels

Allow us to assume that, in a multi-criteria model, there is a set S containing n evaluation criteria
S = {C1, C2, . . . , Cn}, and that the weight coefficients of the criteria have not been predefined, i.e., that
weight coefficients need to be determined. Allow us also to assume that, in that multi-criteria problem,
the criteria C1, C2, . . . , , Cn are ordered according to their significance (strength). Therefore, the weight
coefficients of the criteria satisfy the relationships in which w1 ≥ w2 ≥ . . . ≥ wn ≥ 0, with the condition
that the criteria weights are normalized and meet the condition stipulating that

∑n
i = 1 wi = 1.

Theorem 1. For a randomly chosen real (natural) number N, which is such that N > n (where n represents the

number of criteria in the multi-criteria model), and if the criterion C1 and the criterion Cx, x ∈ {1, 2, . . . , n}, are

assigned the sum of 2N, then it is possible to determine the number αx, which is such that it fulfils the ratio

between the criteria:

C1 : Cx = (N + αx) : (N − αx). (1)

Proof. The proof of this ratio is obvious, since, for x = 1, we evidently obtain C1 : C1 = (N + α1) :
(N − α1), i.e., we obtain α1 = 0, i.e., we obtain C1 : C1 = N : N, i.e., the ratio C1 : C1 = 1.

If we assume that the ratio C1 : Cx = tx, then we also obtain N+αx
N−αx

= tx ≥ 1, from which it
follows that N + αx = Ntx − αxtx, i.e.,

αx = N · tx − 1
tx + 1

, (2)

where αx represents a non-negative number for the given x ∈ {1, 2, . . . , n}. �

Corollary 1. If the criterion Cx has a greater or equal significance (weight) for the criterion Cy, then the
condition tx ≥ ty is met, from which it follows that αx ≥ αy.

Proof. The proof for Corollary 1 is evident, since it arises from Theorem 1:
If Cx ≥ Cy, then we have C1 : Cx ≥ C1 : Cy. Since C1 : Cx = tx and C1 : Cy = ty, then we have

tx ≥ ty and αx ≥ αy. �

It follows from Corollary 1 that a non-decreasing series of numbers can be attributed to the series
of the criteria ordered according to significance, i.e.,

α1, α2, α3, . . . , αn. (3)

Based on Theorem 1, it is possible to conclude that α1 = 0. Since we have

C1 : C1 = (N + α1) : (N − α1)→ C1(N − α1) = C1(N + α1),

then N − α1 = N + α1 and we have α1 = 0.

150



Mathematics 2020, 8, 745

Additionally, based on Theorem 1, a new series (4) can be formed from the already formed series
of elements (3), i.e.,

N + α1

N − α1
,

N + α2

N − α2
, . . . ,

N + αn

N − αn
. (4)

The non-decreasing series of elements that is presented by the expression (4) represents a series of
ratios of the significance (strength) of the criterion C1 against the other criteria from within the S set of
criteria. Based on the condition (1), the series of elements (4) can be represented as a non-decreasing
series of weight coefficients of the criteria of the multi-criteria model, which is such that

w1 = w1, w2 =
N − α2

N + α2
·w1, w3 =

N − α3

N + α3
·w1, . . . , wn =

N − αn

N + αn
·w1. (5)

Based on the expression (5) and the condition that the sum of all weight coefficients of criteria of

the multi-criteria model is equal to one, i.e.,
n∑

j = 1
w j = 1, the following is obtained:

w1 ·


1 +

n∑

j = 2

N − α j

N + α j


 = 1. (6)

Therefore, it follows from this that the weight coefficient of the most influential (best) criterion is
obtained as

w1 =
1

1 +
n∑

j = 2

N−α j

N+α j

. (7)

It follows from the condition (1) that w1 : wi = (N + αi) : (N − αi), i.e., wi = w1 ·
(N − αi)/(N + αi), from which the weight coefficients of the remaining criteria are obtained:

wi =

N−αi
N+αi

1 +
n∑

j = 2

N−α j

N+α j

; i = 2, 3, . . . , n. (8)

2.1. Forming a Non-Decreasing Series at Criteria Significance Levels

The basic idea of forming a criteria classification level precisely reflects the need to determine the
significance of criteria and eliminate the limitations of using predefined scales for expressing experts’
preferences. The basic limitation of using scales for expressing experts’ preferences in subjective models,
such as the AHP, BWM, and DEMATEL, relates to the small range of values of such scales, as well as
the nonlinearity of the scale (in the AHP). The insufficient range of values makes the development
of an objective expression of experts’ preferences more difficult, which is particularly pronounced
when comparing a larger number of criteria. Therefore, for example, the range of values for the scale
employed in the AHP and BWM is from 1 to 9. Should there be a larger number of criteria (for example,
seven) in the considered problem, experts’ comparisons are made more difficult due to the small
number of values in the scales. The 9-degree scale also implies that the greatest ratio between the
weights of the best (CB) and worst (CW) criteria is limited to 9, i.e., CB:CW = 9:1. If, however, an expert
considers the ratio CB:CW to be greater than 9:1 and the CB:CW = 15:1, then such a preference cannot
be presented. In order for experts to express preferences of this kind by applying the 9-degree scale,
they are forced to distort their preferences, which leads to the deviation of weight values from the
optimal values.

By introducing the level of criteria significance, experts are given a possibility to form as many
criteria significance levels L j, j ∈ {1, 2, . . . , k} as they need for expressing their preferences. Within
the framework of significance levels, criteria are roughly classified according to experts’ preferences.
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Forming significance levels, i.e., grouping criteria according to levels, is performed by adhering to the
following rules:

• Level L1: At the L1 level, the criteria from within the set S whose significance is equal to the
significance of the criterion C1 or up to two times as small as the significance of the criterion C1

should be grouped. The criterion Ci belonging to the L1 level will be presented as Ci ∈ [1, 2), i ∈
{1, 2, . . . , n};

• Level L2: At the L2 level, the criteria from within the set S whose significance is exactly two times
as small as the significance of the criterion C1 or up to three times as small as the significance of
the criterion C1 should be grouped. The criterion Ci belonging to the L2 level will be presented as
Ci ∈ [2, 3), i ∈ {1, 2, . . . , n};

• Level L3: At the L3 level, the criteria from within the set S whose significance is exactly three times
as small as the significance of the criterion C1 or up to four times as small as the significance of the
criterion C1 should be grouped. The criterion Ci belonging to the L3 level will be presented as
Ci ∈ [3, 4), i ∈ {1, 2, . . . , n};

• Level Lk: At the Lk level, the criteria from within the set S whose significance is exactly k times as
small as the significance of the criterion C1 or up to k + 1 times as small as the significance of the
criterion C1 should be grouped. The criterion Ci belonging to the Lk level will be presented as
Ci ∈ [k, k + 1), i ∈ {1, 2, . . . , n}.

After grouping criteria as per the levels L j, j ∈ {1, 2, . . . , k}, experts express their preferences through
a numerical comparison of the criteria by means of the significance of the criteria (αi). Therefore, based
on the value αi, a fine classification of the criteria is conducted within the observed level. The values of
the significance of the criteria (αi) within every level L j, j ∈ {1, 2, . . . , k}, are defined based on experts’
preferences; the final values αi within every level L j need to be defined. In the following part, the
boundary values of the significance of the criteria (αi) within the level L j, j ∈ {1, 2, . . . , k} are defined.

If the significance of the criterion Ci is expressed as αi, where i ∈ {1, 2, . . . , n}, then subset of the
criteria is formed for each criteria level, which together make the criteria set S. Then, it follows that
L j = L1 ∪ L2 ∪ · · · ∪ Lk, and for every level j ∈ {1, 2, . . . , k},

L j =
{
C j1 , C j2, . . . , C js

}
=

{
Ci ∈ S : j ≤ αi < j + 1

}
. (9)

Based on the previously defined relations, it is possible to define the boundaries within which
the values of the significance of the criteria (αi) move for each observed level L j, j ∈ {1, 2, . . . , k}. If
the criterion Ci belongs to the level L j, j ∈ {1, 2, . . . , k} is presented as Ci ∈ [t j, t j + 1), i ∈ {1, 2, . . . , n},
j ∈ {1, 2, . . . , k}, and then, based on the relation (2), we can obtain the following:

• Level L1: For Ci ∈ [1, 2), i.e., for t1 = 1, it follows that αi = 0, whereas for t1 = 2, we obtain
αi = N/3. Therefore, it follows that the values of the significance of the criteria (αi) at the L1

level range in the interval 0 ≤ αi < N/3, i.e., Ci ∈ [1, 2)⇒ 0 ≤ αi < N/3;
• Level L2: For Ci ∈ [2, 3), i.e., for t2 = 2, it follows that αi = N/3, whereas for t1 = 3, we obtain

αi = N/2. The values of the significance of the criteria (αi) at the L2 level range in the interval
N/3 ≤ αi < N/2, i.e., Ci ∈ [2, 3)⇒ N/3 ≤ αi < N/2;

• Level Lk: For Ci ∈ [k, k + 1), i.e., for tk = k, it follows that αi = N · (k− 1)/(k + 1),
whereas for tk = k + 1, we obtain αi = N · k/(k + 2). The values of the significance of
the criteria (αi) at the Lk level range in the interval N · (k− 1)/(k + 1) ≤ αi < N · k/(k + 2), i.e.,
Ci ∈ [k, k + 1)⇒ N · (k− 1)/(k + 1) ≤ αx < N · k/(k + 2) .

Example 1. If we assume that the criteria are grouped at three levels L j, j ∈ {1, 2, 3}, and if we take that N = 50,
then we can define the interval in which the values of the significance of the criterion Ci within the level L j should

range. By applying the previously defined relationships, we obtain the result that the values αi range within the

level L j, j ∈ {1, 2, 3}, in the following intervals:
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1. Level L1: Ci ∈ [1, 2)⇒ 0 ≤ αi < N/3 , then we have Ci ∈ [1, 2)⇒ 0 ≤ αx < 50/3 ;
2. Level L2: Ci ∈ [2, 3)⇒ N/3 ≤ αi < N/2 , then we have Ci ∈ [2, 3)⇒ 50/3 ≤ αx < 25 ;
3. Level L3: Ci ∈ [3, 4)⇒ N · 2/4 ≤ αx < N · 3/5 , then we have Ci ∈ [3, 4)⇒ 25 ≤ αx < 30 .

From the relations presented for the determination of the boundary values of the significance
of the criteria (αi), i.e., from experts’ preferences within the level L j, j ∈ {1, 2, . . . , k}, we may perceive
that the breadth of the interval N · (k− 1)/(k + 1) ≤ αx < N · k/(k + 2) depends on the value of the
real (natural) number N. A broader interval and, simultaneously, a more comfortable scale with fewer
decimal values for expressing experts’ preferences, are obtained for greater values of the number N,
such as N ≥ n2; vice versa, a scale with a larger number of decimal values for expressing experts’
preferences is obtained for smaller values of the number N, such as n < N < n2.

Based on Theorem 1, while performing a comparison of any criterion Ci with the criterion C1

(where C1 is the most influential criterion), the NDSL model ensures that the number 2N is added
to the criteria. Simultaneously, a part greater than or equal to 2N belongs to the criterion C1, as the
most significant criterion, whereas a smaller or equal part belongs to the criterion Ci. If the problem
of defining the number N is observed from an economic standpoint, and if we take N = 50, then this
problem can be observed in ordinary economic terms, i.e., in percentages (p%). If p ≥ 50, then it belongs
to the criterion C1, while (1−p)% belongs to the criterion Ci. Since expressing in percentages is a normal
thing to do during a pairwise comparison, the authors propose that N = 50 should be taken for the
values of the number N for solving real problems.

2.2. Steps of the NDSL Model

Based on the previously demonstrated mathematical bases of the NDSL model, the steps that
should be taken in order to obtain the weight coefficients of criteria are systematized in this section.
In Phase One, a set of evaluation criteria is formed, and the criteria are further ranked in accordance
with experts’ preferences. In Phase Two, the levels of significance of the criteria are formed and the
criteria significance level is determined within each level. Finally, the weight coefficients of the criteria
are calculated in Phase Three. Figure 1 schematically presents the phases through which the NDSL
model is implemented.

The NDSL model includes the calculation of the weight coefficients of criteria through the seven
steps presented in the next part of the paper.

Step 1: Determining the most significant criterion from within the set of criteria
S = {C1, C2, . . . , Cn}. Allow us to assume that the decision-maker has chosen the criterion C1 as the
most significant, and allow us to assume that C1 is a criterion from within the set S = {C1, C2, . . . , Cn},
which is the most significant in the decision-making process.

Step 2: Ranking the criteria from within the defined set of evaluation criteria S = {C1, C2, . . . , Cn}.
Ranking is performed according to the significance of the criteria, i.e., from the most significant criterion
to the criterion of the least significance. In that manner, we obtain the criteria ranked according to the
expected values of weight coefficients:

C1 > C2 > . . . > Cn, (10)

where n represents the total number of the criteria. If it is estimated that there are two or several criteria
with the same significance, instead of the sign “>”, the sign “=” is placed in-between those criteria in
the expression (10).
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Figure 1. The non-decreasing series at criteria significance levels (NDSL) model.

Step 3: Grouping the criteria according to the significance levels. Allow us to assume that
experts have grouped the criteria as per levels in accordance with their preferences, depending on the
significance of the criteria. Grouping criteria as per levels is performed according to the rules defined
in the previous section of the paper, namely:

• Level L1: At the L1 level, the criteria from within the set S whose significance is equal to the
significance of the criterion C1 or up to two times as small as the significance of the criterion C1

should be grouped. The criterion Ci belonging to the L1 level will be presented as Ci ∈ [1, 2), i ∈
{1, 2, . . . , n};

• Level L2: At the L2 level, the criteria from within the set S whose significance is exactly two times
as small as the significance of the criterion C1 or up to three times as small as the significance of
the criterion C1 should be grouped. The criterion Ci belonging to the L2 level will be presented as
Ci ∈ [2, 3), i ∈ {1, 2, . . . , n};

• Level Lk: At the Lk level, the criteria from within the set S whose significance is exactly k times as
small as the significance of the criterion C1 or up to k + 1 times as small as the significance of the
criterion C1 should be grouped. The criterion Ci belonging to the Lk level will be presented as
Ci ∈ [k, k + 1), i ∈ {1, 2, . . . , n}.
By grouping criteria as per levels, rough expert preferences for the criteria from within the set

S = {C1, C2, . . . , Cn} are expressed. The precise definition of experts’ preferences is expressed via the
significance of the criteria (αi). The boundary values of αi as per levels are presented in the next step.

Step 4: Defining the boundary values of the significance of criteria (αi) as per levels. When defining
the boundary values of the significance of criteria, the following relations should be adhered to:

• Level L1: For Ci ∈ [1, 2), the values of the significance of criteria (αi) range in the interval
0 ≤ αi < N/3, i.e., Ci ∈ [1, 2)⇒ 0 ≤ αi < N/3;
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• Level L2: For Ci ∈ [2, 3), the values of the significance of criteria (αi) range in the interval
N/3 ≤ αx < N/2, i.e., Ci ∈ [2, 3)⇒ N/3 ≤ αi < N/2;

• Level Lk: For Ci ∈ [k, k + 1), the values of the significance of criteria
(αi) range in the interval N · (k− 1)/(k + 1) ≤ αi < N · k/(k + 2), i.e.,
Ci ∈ [k, k + 1)⇒ N · (k− 1)/(k + 1) ≤ αx < N · k/(k + 2) .

Step 5: Presenting experts’ preferences as per levels. Based on the defined boundary values αi,
experts express their preferences in accordance with the significance of the criteria. Every criterion
Ci ∈ S within the level L j, j ∈ {1, 2, . . . , k} is assigned the value αi. Therefore, since it is the most
significant criterion, the criterion C1 is assigned the value α1 = 0. The rest of the criteria are assigned
appropriate values αi in compliance with the significances of the criteria. If the criterion Ci has a
greater significance than the criterion Ci+1, then it is considered that αi < αi+1, or if the criterion Ci has
a significance equal to that of the criterion Ci+1, then it is considered that αi = αi+1.

Step 6: Defining the f (Ci) criteria significance functions. The f : S→ R criteria significance
function is defined in that manner. For each criterion Ci ∈ S, it is possible to define a criteria significance
function by applying the following expression:

f (Ci) =
N − αi

N + αi
, (11)

where i ∈ {1, 2, . . . , n}, αi represents the significance of the criterion assigned to the criterion Ci within
the observed level, whereas N represents a real (natural) number.

Step 7: Calculating the optimal values of criteria weight coefficients. If the most influential
criterion is marked as C1, then, by applying the expression (12), it is possible for us to calculate the
weight coefficient of the criterion C1, i.e.,

w1 =
1

1 +
n∑

j = 2
f (C j)

, (12)

where f (C j) represents the criteria significance function.
The weight coefficients of the remaining criteria from within the set S are obtained by applying

the following expression (13):

wi =
f (Ci)

1 +
n∑

j = 2
f (C j)

, (13)

where f (Ci) represents the function of the significance of criteria whose weight coefficient is being
calculated, whereas f (C j) represents the functions of the significance of all criteria (without the function
of the significance of the most significant criterion).

The application of all multi-criteria models is aimed at selecting an alternative with the best final
value of the criteria function. The total value of the criteria function fl (l = 1,2,..,m) alternative l can be
obtained through the transformation of the NDSL model into a classical multi-criteria model by the
application of the expression (14). By applying the simple additive weighted value function (14), which
is the basic model for the majority of MCDM methods, the algorithm of the NDSL model transforms
into a classical multi-criteria model, which can be used to evaluate m alternative solutions as per n

optimization criteria.

fl =
n∑

i = 1

wixi j, (14)

where wi represents the values of the weight coefficients, whereas xi j represents the values of the

alternatives as per the optimization criteria in the decision-making initial matrix X =
[
xi j

]
m×n

.
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3. Application of the NDSL Model

This section is a demonstration of the application of the presented model for solving a real-world
problem. With the aim of understanding the presented algorithm as easily as possible, the application
of the NDSL model for solving the simple problem of evaluating a car, which a large number of people
are faced with every day, is presented. The subject matter of consideration was the problem of selecting
an optimal car from a set of cars by applying a larger number of criteria. For the purpose of this study,
the criteria defined in the study [74] were considered.

The subject matter of consideration was the example in which the car buyer is evaluating
the alternatives by observing the following five criteria: The quality (C1), the price (C2),
convenience/comfort (C3), the safety level (C4), and the interior (C5). If we accept the condition that
N ≥ n2, i.e., N = 25, then we can determine the weight coefficients of the criteria by the NDSL model
as follows:

Step 1: Determining the most significant criterion from within the set of criteria
S = {C1, C2, . . . , C5}. Allow C1 to be selected as the most significant criterion;

Step 2: The criteria from within the set of criteria S = {C1, C2, . . . , C5} are ranked as follows: C2
> C1 = C4 > C3 > C5;

Step 3: Grouping the criteria as per significance levels. The criteria are grouped into sets at four
levels, as follows:

• Level L1:{C2};
• Level L2:{C1, C4};
• Level L3:{C3};
• Level L4, L5, L6, L7: ∅;
• Level L8:{C5}.

At the first level, the criterion C2 is positioned as the most significant criterion, i.e., C2 ∈ [1, 2).
Since it has been estimated that the significance of the remaining criteria is more than two times as
small as that of the criterion C2, they are classified as the other significance levels. At the second level,
there are the criteria C1 and C4, because they have been estimated to have a weight coefficient which
is two to three times as small as that of the criterion C2, i.e., C1, C4 ∈ [2, 3). The criterion C3 is at the
third level, since its weight coefficient is three to four times as small as that of the criterion C2, i.e.,
C3 ∈ [3, 4). The criterion C5 is at the eighth level, since its weight coefficient has been estimated to be
between eight and nine times as small as the weight coefficient of the most significant criterion (C2),
i.e., C5 ∈ [8, 9);

Step 4: Based on the relations for defining the boundary values of the criteria significance (αi), we
can determine the intervals for αi at every significance level, as follows:

Level L1 : αi ∈ [0.00, 8.33);
Level L2 : αi ∈ [8.33, 12.5);
Level L3 : αi ∈ [12.5, 15.0);

Level L8 : αi ∈ [19.44, 20.0).

Step 5: Based on the defined intervals of the criteria significance (αi), the experts’ preferences as
per levels are presented:

Level L1 : α2 = 0
Level L2 : α1 = α4 = 8.33

Level L3 : α3 = 14.9
Level L8 : α5 = 19.5

Based on the presented values of αi, it is possible to conclude the following:

(1) For Level One: Since the criterion C2 is the most significant criterion, it has been assigned the
value α1 = 0.;
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(2) For Level Two: The criteria C1 and C4 have been estimated to have the same significance, which
is exactly twice as small as the significance of the criterion C2, so they have been assigned the
value α1 = α4 = 8.33;

(3) For Level Three: The significance of the criterion C3 has been estimated to be slightly less than
four times as small as the significance of the criterion C2, so it has been assigned the value
α4 = 14.9;

(4) For Level Eight: The significance of the criterion C5 has been estimated to be slightly more than
eight times as small as the significance of the criterion C2, so it has been assigned the value
α4 = 19.5;

Step 6: By applying the expression (11), the functions of the significance of the criteria f (Ci),
i = 1, 2, . . . , 5, were defined as follows:

f (C2) = 1.000
f (C1) = 0.500
f (C4) = 0.500
f (C3) = 0.253
f (C5) = 0.124

Step 7: Since the criterion C2 is defined as the most influential criterion, by applying the expression
(12), it is possible to calculate the weight coefficient of the most significant criterion:

w2 =
1

1 +
5∑

j = 2
f (C j)

=
1

1 + 0.500 + 0.500 + 0.253 + 0.124
= 0.421.

The weight coefficients of the remaining criteria are obtained by applying the following
expression (13):

w1 = 0.500
1+0.500+0.500+0.253+0.124 = 0.210

w4 = 0.500
1+0.500+0.500+0.253+0.124 = 0.210

w3 = 0.253
1+0.500+0.500+0.253+0.124 = 0.106

w5 = 0.124
1+0.500+0.500+0.253+0.124 = 0.052

In that way, the vector of the weight coefficients wi = (0.210, 0.421, 0.106, 0.210, 0.052)T is obtained.

4. Comparison and Discussion

In this section, based on the presented methodology, the advantages of the NDSL model that make
the model a reliable and interesting multi-criteria model are singled out. The advantages of the NDSL
model are presented through a comparison with known methodologies employed for the determination
of criteria weight coefficients. The BWM and AHP methods were singled out for the purpose of the
comparison, since the validity of both methodologies is based on the satisfaction of the condition of
the transitivity of relations and a pairwise comparison. Additionally, other reasons for comparing
the model with the BWM and AHP methods are the quality of the results and the widespread use
of the BWM and AHP models by the scientific community for successfully solving numerous real
world problems. Bearing in mind the fact that the NDSL model is methodologically based on an
assessment of the comparative significance of criteria and satisfaction of the condition of transitivity, a
comparison with the BWM and AHP models is a logical step for conducting a comparison of the results
and validation of the model. In the following part, the application of the BWM and AHP methods is
presented for the same example in which the NDSL model was tested in the previous chapter.

The algorithm of the BWM implies the formation of the Best-to-Others (BO) and the
Others-to-Worst (OW) vector [75]: AB = (2, 1, 4, 2, 8)T and AW = (4, 8, 2, 4, 1)T, respectively.
By applying the BWM, the optimal values of the weight coefficients were obtained, namely,
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w1 = 0.2105, w2 = 0.4211, w3 = 0.1053, w4 = 0.2105, w5 = 0.0526, and a consistency
ratio (CR) CR = 0.00.

Based on the data from [75], a pairwise comparison matrix of the AHP model (Table 1) was formed,
and the values of the weight coefficients of criteria, with a consistency ratio CR = 0.029, were obtained.

Table 1. Criteria pairwise comparison—the Analytic Hierarchy Process (AHP) method.

Criteria C1 C2 C3 C4 C5 Wj

C1 1.000 0.333 3.000 1.000 5.00 0.202
C2 3.000 1.000 5.000 3.000 7.00 0.464
C3 0.333 0.200 1.000 0.333 3.00 0.089
C4 1.000 0.333 3.000 1.000 5.00 0.202
C5 0.200 0.143 0.333 0.200 1.00 0.044

By applying the AHP method, the values of the weight coefficients of criteria similar to those in the
BWM were obtained, but with a significantly larger number of pairwise comparisons. The differences
in the values of the weight coefficients between the AHP and BWM are a consequence of the incomplete
consistency of the results in the AHP model (CRAHP = 0.029 and CRBWM = 0.000). A comparative
presentation of the results of all three approaches is shown in Table 2.

Table 2. A comparative presentation of the results obtained by applying the NDSL, Best Worst Method
(BWM), and AHP methods.

Criteria AHP (wi) BWM (wi) NDSL (wj)

C1 0.202 0.210 0.210
C2 0.464 0.421 0.421
C3 0.089 0.106 0.106
C4 0.202 0.210 0.210
C5 0.044 0.052 0.052

CR 0.029 0.000 -

Table 2 allows us to notice that identical values of the weight coefficients of criteria were obtained
by applying the BWM and NDSL models. By applying the AHP, the values obtained deviate to a
certain extent from the weights of the BWM and NDSL models. The solution obtained by the AHP
model is also acceptable, since the values of the consistency ratio are within the permitted boundaries,
i.e., CR ≤ 0.1. We need to emphasize the fact that, by applying the BWM and NDSL models to this
example, completely consistent results were obtained, which was also confirmed by the calculation
made, i.e., CRBWM = 0.00. Comparing criteria by applying a 9-degree scale (in the BWM), however,
often leads to inconsistent results. Different from the BWM and AHP models, consistent results are
always obtained when using the NDSL model because it applies an original methodology for grouping
criteria as per significance, within which transitivity relations between criteria are retained. In the
next part of the paper, a discussion is presented through a comparison of the NDSL model with the
BWM and AHP models. The discussion aims to point to the limitations of the BWM and AHP models,
which are eliminated by the application of the NDSL model. The discussion is organized through the
following: (1) a comparative presentation of the number of criteria pairwise comparisons needed in
the analyzed models; (2) the impact of the measuring scale on the results of the BWM, AHP, and NDSL
models; (3) the consistency of the results of the analyzed models; (4) the problem of defining the best
and worst criteria in the BWM and NDSL models; and (5) the problem of multi-optimality in the BWM.

In the AHP method, n(n − 1)/2 pairwise comparisons need to be made, whereas the algorithm
of the BWM implies 2n − 3 comparisons. An increase in the number of criteria in the BWM and
AHP models leads to a significant increase in the number of pairwise comparisons, through which
the mathematical formulation of the mentioned models is, to a great extent, made more complex.
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This makes the validation of the results and the impossibility of obtaining satisfactory values of the CR
more complex. On the other hand, in relation to the presented subjective models (the AHP method
and BWM), the NDSL only requires an n − 1 comparison in pairs of criteria, so the mathematical
formulation of the model is made more complex as the number of criteria increases. Apart from that,
the presented methodology enables us to transfer mathematical transitivity as per significance levels,
which produces maximally consistent results for the comparison.

In the case of a larger number of criteria (more than eight), it is difficult to obtain fully consistent
results in the BWM and AHP models. That is a consequence of the small range of the 9-degree scale
used in these models. The 9-degree scale limits the expression of experts’ preferences to a maximum
ratio of 9:1. This limitation further imposes an inconsistency in comparisons. This assertion will be
illustrated by the example of an evaluation of suppliers A, B, and C. If suppliers B and C differ from
each other a little in terms of the quality of the delivery, the company has a possibility to assign them
the values 9 and 8 when comparing them with supplier A. Now, given the fact that there is a small
difference between suppliers B and C, that difference cannot consistently be expressed by means of the
9-degree scale. In that situation, there is no other possibility but to assign the value 1, through which
the same significance is assigned to suppliers B and C [76]. Another example is as follows: should
alternative A be preferable to B, and should B be better than C (mark: 7), once A is compared with C,
the highest available result is 9, which creates an inconsistency. Similar inconsistencies caused by the
9-degree scale also appear in the BWM, but can be eliminated by the implementation of different scales.

These inconsistencies in comparisons are eliminated in the NDSL model. The NDSL model applies
a different logic for criteria comparison, which is performed in two steps. The first step involves
grouping criteria according to the significance levels, whereas in the second step, an expert evaluation
of criteria is carried out through the scale defined for every level individually. By forming a criteria
significance level, the shortcoming of the predefined scale of values is eliminated. The NDSL model
enables us to form the needed number of such levels, which implies that experts have a sufficient
freedom to express the realistic advantages of the most significant criterion in relation to other criteria.

The results of the NDSL model do not require the consistency of the results to be checked because,
in the first step of the model, weight coefficients are ranked in relation to the most significant criterion.
Therefore, transitivity relations between criteria are formed in the first step. Those relations are retained
throughout the model by forming a non-decreasing series as per significance levels, so the results of
the model are simultaneously also always consistent. On the other hand, the BWM and AHP models
require the consistency of solution(s) to be checked and validation of the results obtained. The 9-degree
scale and a large number of comparisons frequently undermine the transitivity between criteria in
both models, which leads to an increase in the CR and the boundary values being exceeded.

5. Conclusions

In this paper, a new model for determining the weight coefficients of criteria in multi-criteria
models by forming a non-decreasing series at criteria significance levels (NDSL) is presented. The NDSL
model involves forming a non-decreasing series based on criteria significance levels. The mathematical
formulation of the NDSL model is systematized in the second section of the paper, and an algorithm,
which is implemented through seven steps, is proposed. With the aim of presenting the applicability
of the new model, its application in decision-making in a real-world problem is demonstrated.
A comparison of the results of the NDSL model and the results of the BWM and AHP models is also
presented in the paper. It was demonstrated through a comparison with the mentioned models that
the NDSL model generates the same results as the existing models and enables elimination of the
weaknesses that exist in the BWM and AHP models.

The NDSL model has several interesting characteristics that make it a robust and interesting
model to apply in multi-criteria decision-making, namely due to the following facts: (1) the NDSL
model requires a significantly smaller number of comparisons in pairs of criteria, only needing an
n − 1 comparison, whereas the AHP requires an n(n − 1)/2 comparison and the BWM requires a 2n − 3
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comparison; (2) the model enables us to obtain consistent results, even in the case of a larger number
of criteria (more than nine criteria); (3) the NDSL model applies an original algorithm for grouping
criteria as per significance levels, through which the shortcomings of the 9-degree scale applied in
the BWM and AHP models are eliminated. In that way, the small range and inconsistency of the
9-degree scale are eliminated; (4) while the BWM includes defining a unique best/worst criterion, the
NDSL model eliminates this limitation and gives decision-makers the freedom to express relationships
between criteria in accordance with their preferences, irrespective of the number of best/worst criteria
in the model.

The NDSL model represents a tool which helps managers cope with their own subjectivity when
prioritizing criteria through a simple and logical algorithm. By employing the presented model, the
appearance of the inconsistency of experts’ preferences is eliminated through an original algorithm
requiring a small number of comparisons (n − 1). The authors believe that this approach gives experts
the opportunity to express their preferences in a natural way, by forming the level of significance of
criteria. Accordingly, it is expected that by forming the criteria significance level, the shortcomings and
limitations that exist in predefined assessment scales are eliminated. For example, when comparing
the best (CB) criterion with the Cx criterion, an expert knows that the CB criterion is 2.5 times more
significant than the Cx criterion. In pairwise comparison methods that use the Saaty scale, such a
relationship cannot be represented directly, since the Saaty scale involves only integer values. Through
the formation of significance levels, the expert is given the opportunity to classify the Cx criterion as
belonging to another level in a logical manner, or based on their preferences, since they already know
that the CB criterion is 2.5 times more important than the Cx criterion. From this, we can conclude
that the experts indirectly form the significance levels of the criteria. However, the mathematical
formulation of existing models for pairwise comparisons requires experts to represent the significance
of criteria by defining relationships over a numerical scale. In this way, criteria are indirectly grouped
into levels of significance. However, such a procedure can lead to a misrepresentation of the significance
of the criterion, which may be due to a misunderstanding of the mathematical apparatus of the method.
Bearing all of the above in mind, the authors believe that this formulation of the interrelation between
criteria enables the rational and logical expression of expert preferences, which further contributes to
objective decision making.

Bearing in mind the mentioned advantages of the NDSL, there is a need for the development
and implementation of software for real-world applications. Through such work, the model will be
brought significantly closer to users and will enable the exploitation of all of the advantages mentioned
in the paper. We also propose the application of the model in other real-world applications in which
the NDSL model would be used with other developed MCDM tools. This limitation has already been
eliminated. The authors developed a software solution in Microsoft Excel software while working on
this study. One of the directions of future research studies should be working towards the extension of
this model through the application of different theories of uncertainty, such as neutrosophic sets, fuzzy
sets, rough numbers, grey theory, and so forth. The extension of the NDSL through the application of
theories of uncertainty will enable the processing of experts’ preferences, even when comparisons are
made based on partly known or even very little-known data. This would enable an easier expression
of the decision-maker’s preferences, simultaneously respecting the subjectivities and shortcomings of
information about certain phenomena.
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73. Pamučar, D.; Gigović, L.; Bajić, Z.; Janošević, M. Location selection for wind farms using GIS multi-criteria
hybrid model: An approach based on fuzzy and rough numbers. Sustainability 2017, 9, 1315. [CrossRef]

74. Asadabadi, M.R.; Chang, E.; Saberi, M. Are MCDM methods useful? A critical review of Analytic Hierarchy
Process (AHP) and Analytic Network Process (ANP). Cogent Eng. 2019, 6, 1–11. [CrossRef]

75. Pamucar, D.; Stevic, Z.; Sremac, S. A New Model for Determining Weight Coefficients of Criteria in MCDM
Models: Full Consistency Method (FUCOM). Symmetry 2018, 10, 393. [CrossRef]

76. Zizovic, M.; Damljanovic, N.; Nikolic, R.; Vujicic, M. Multi-criteria decision making method of minimal
suitable values. Math. Moravica 2016, 20, 99–107. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

164



mathematics

Article

Predicting the Dynamic Response of Dual-Rotor
System Subject to Interval Parametric Uncertainties
Based on the Non-Intrusive Metamodel

Chao Fu 1,2 , Guojin Feng 2 , Jiaojiao Ma 2,3, Kuan Lu 1,*, Yongfeng Yang 1 and Fengshou Gu 2

1 Institute of Vibration Engineering, Northwestern Polytechnical University, Xi’an 710072, China;
fuchao0606@mail.nwpu.edu.cn (C.F.); yyf@nwpu.edu.cn (Y.Y.)

2 Centre for Efficiency and Performance Engineering, University of Huddersfield, Queensgate,
Huddersfield HD1 3DH, UK; G.Feng@hud.ac.uk (G.F.); J.Ma@hud.ac.uk (J.M.); F.Gu@hud.ac.uk (F.G.)

3 School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
* Correspondence: lukuan@nwpu.edu.cn

Received: 12 April 2020; Accepted: 3 May 2020; Published: 7 May 2020
����������
�������

Abstract: In this paper, the non-probabilistic steady-state dynamics of a dual-rotor system with
parametric uncertainties under two-frequency excitations are investigated using the non-intrusive
simplex form mathematical metamodel. The Lagrangian formulation is employed to derive the
equations of motion (EOM) of the system. The simplex form metamodel without the distribution
functions of the interval uncertainties is formulated in a non-intrusive way. In the multi-uncertain
cases, strategies aimed at reducing the computational cost are incorporated. In numerical simulations
for different interval parametric uncertainties, the special propagation mechanism is observed,
which cannot be found in single rotor systems. Validations of the metamodel in terms of efficiency
and accuracy are also carried out by comparisons with the scanning method. The results will be
helpful to understand the dynamic behaviors of dual-rotor systems subject to uncertainties and
provide guidance for robust design and analysis.

Keywords: dual-rotor; multi-frequency excitation; non-intrusive calculation; metamodel

1. Introduction

Risk analyses and optimization of engineering mechanical systems always play an important role
in the design and maintenance [1,2]. To optimize and improve the dynamic performance, a dual-rotor
system is widely employed in modern aero-engines for large surge margin. It is more complicated
than single rotor systems in both the structural and dynamical regimes. Researchers have paid
attention to the vibrations of dual-rotors under faults, such as the imbalance and rub-impact [3–5].
The design and modeling of dual-rotors were also intensively studied over the past few decades [6–9].
The application of rotor-bearing structures in the dual-rotor systems were investigated both theoretically
and experimentally [10]. To improve the fidelity, the differences between 1D and 3D models of dual-rotor
systems were studied [11].

The reported contributions provide guidance for the dynamical assessments of dual-rotor systems.
However, an important feature of practical engineering mechanical systems has been ignored, which
is that the physical parameters of the models and working conditions will behave in an uncertain
way inherently [12–15]. For a complex engineering dual-rotor system, this problem will be more
prominent. In recent literature [16–19], the sources and causes of parametric uncertainties in rotor
systems were explained in detail, especially the complex stiffness of the connecting structures. It is
gradually recognized that the inherent uncertainty should not be overlooked for robust design and
dynamic behaviors prediction. Efforts have already been made to investigate the effects of uncertainties
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in rotor dynamical systems. The polynomial chaos expansion in combination of the harmonic balance
method was used to quantify the effects of different random parametric uncertainties on the linear and
non-linear dynamical characteristics [20–22]. More recently, the Kriging metamodeling was applied to
the prediction of uncertain behaviors of flexible rotor systems [17]. The nonparametric modeling [14]
was also introduced into the uncertainty quantification for a Jeffcott rotor [23] as well as analyses in
terms of the balancing and unbalancing [24]. Considering the random excitations, the power spectral
density of the unbalance response of an aero-engine dual-rotor was analyzed in [25]. The modeling
and stochastic frequency response functions of rotors subject to random uncertainties were studied by
using the Karhunen–Loève decomposition [26].

As can be observed, the widely adopted and employed uncertainty analysis methods mostly
belong to the probabilistic domain. In practical situations, it is generally difficult or too expensive to
gather enough prior data for the uncertain parameters. The interval analysis procedures are more
versatile and easier to implement due to their non-probabilistic characteristics [13]. The Chebyshev
inclusion function proposed by Wu et al. [27] has attracted wide attention in the past few years due to
its simplicity in concept and non-intrusiveness. Several improved forms have been developed and
applied to uncertain mechanical systems [28,29]. Although the interval analysis has been widely used
in structural dynamics of the truss and multibody systems, it has not been applied to the uncertain rotor
dynamics until recent years [30,31]. Some meaningful results have been obtained in these contributions
using the interval models. However, formulations and applications of metamodeling methodologies
based on non-probabilistic descriptions have not attracted sufficient attention. The computational
burden needs also to be reduced. The vibration characteristics of dual-rotor systems subject to
multi-frequency excitation and interval variables remain to be revealed.

This paper presents the non-intrusive metamodeling for the uncertainty quantification of a
dual-rotor system. The major purposes are to calculate the steady-state dynamic responses of such a
system under interval uncertainties and illustrate the effectiveness of the metamodel. First, the dual-rotor
model and its motion equations will be described in Section 2. Then, in Section 3, the formulation of the
metamodel for single and multi-uncertain variables is explained. Next, propagations of uncertainties of
different physical parameters are studied and discussed in Section 4. Finally, the concluding remarks
are drawn in Section 5.

2. Model Description and Motion Equations

A dual-rotor system often consists of a higher pressure (HP) rotor and a lower pressure (LP) rotor,
which are connected by the inter-shaft bearing and rotate at different angular speeds. They can also
be referred to as the inner and outer rotors [8,32]. Figure 1 shows the schematic diagram of a typical
dual-rotor system. The rotors are mounted on massless shafts and supported by three rigid isotropic
bearings with stiffness and damping k1, c1 k2, c2 and k3, c3. The m1, Jd1, Jp1 and m2, Jd2, Jp2 are the
mass, diameter moment of inertia and polar moment of inertia of the HP and LP rotors, respectively.
There are mass imbalances on both of the rotors, denoted by e1 and e2. The angular rotating speeds of
the LP and HP rotors are ω1 and ω2. The span of the system is L and the other locations are measured
by their corresponding distances from the left end Li, i = 1, 2, 3, 4, as shown in Figure 1.
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Figure 1. Configuration of a typical dual-rotor system.

The system can be described by eight degrees-of-freedom (DOFs) and four for each rotor, i.e., two
lateral displacements and two rotational angles [33,34]. It is obtained as

q = [x1, y1, θy1, θx1, x2, y2, θy2, θx2]
T (1)

where subscripts 1 and 2 correspond to the LP and HP rotors. After this, the coordinates of the three
bearing centers can be derived using the eight basic DOFs

{
xb1 = x1 − L1θy1

yb1 = y1 + L1θx1
,
{

xb2 = x1 + (L− L1)θy1

yb2 = y1 − (L− L1)θx1
,
{

xb3 = x2 − (L3 − L2)θy2

yb3 = y2 + (L3 − L2)θx2
(2)

Modeling rotating systems based on the energy analyses is widely employed in the community of
rotor dynamics [34]. For the system under study, the kinetic energy can be calculated as


T = T1 + T2

Ti =
1
2 mi(

.
x

2
i +

.
y

2
i ) +

1
2 Jdi(

.
θ

2
xi +

.
θ

2
yi) + Jpiω

2
i
− Jpiωi

.
θyiθxi, i = 1, 2

(3)

The potential energy is contributed by the three bearings and can be denoted by

{
V = V1 + V2 + V3

Vi =
1
2 ki(x

2
bi
+ y2

bi
), i = 1, 2, 3

(4)

Accordingly, the dissipation energy can be expressed as


D = D1 + D2 + D3

Di =
1
2 ci(

.
x

2
bi +

.
y

2
bi), i = 1, 2, 3

(5)

If the connection of the inner and outer rotors are modeled as a linear spring and its stiffness is kc,
the reacting forces of the inter-shaft bearing are as follows

{
Fx = kc[x1 + (L4 − L1)θy1 − x2 − (L4 − L3)θy2]

Fy = kc[y1 − (L4 − L1)θx1 − y2 + (L4 − L3)θx2]
(6)
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When rotating, the unbalance forces on the two rotors are obtained by


Fu1(t) = [m1e1ω

2
1 cos(ω1t), m1e1ω

2
1 sin(ω1t), 0, 0, 0, 0, 0, 0]T

Fu2(t) = [0, 0, 0, 0, m2e2ω
2
2 cos(ω2t), m2e2ω

2
2 sin(ω2t), 0, 0]T

(7)

The Lagrangian equation considering dissipation effects can be applied to the system as

d
dt



∂T

∂
.
q j


+

∂D

∂
.
q j

− ∂T

∂q j
+
∂V

∂q j
= Q j, j = 1, 2, . . . , 8 (8)

Submitting Equations (1)–(7) into Equation (8) and rearranging the results into matrix form, the
motion equations of the dual-rotor system can be obtained as

M
..
q(t) + C̃

.
q(t) + Kq(t) = F(t) (9)

where M and K are the mass and stiffness matrices of the system, C̃ includes the damping and
gyroscopic effects, F(t) integrates the unbalance forces and the reacting forces in the inter-shaft bearing.
A dot over the displacement vector q denotes derivation with respect to time. The rotational speeds
or frequencies of the inner and outer rotors are incommensurable, making Equation (9) a system
excited by two frequencies. Its solution can be obtained by numerical methods and the fourth order
Runge–Kutta method with variable steps, which will be used in this paper.

3. Non-Intrusive Interval Analysis of the System Based on Meta-Modeling

As a practical problem, the accurate distribution model of the uncertainty is difficult to establish.
In other words, the problem is small sample-sized. Therefore, the interval methods may be more
suitable to implement. However, the intrusive interval methods need to modify the deterministic
solution packages and are complicated in mathematical formulation. The surrogate methods [17,28,30]
popular nowadays should be a good choice. These methodologies are simple in deduction and they
work in a non-intrusive way because the deterministic dynamic problem can be used as a black box.
Importantly, the computational cost of them should be carefully managed to ensure economic and
feasible analyses. In this paper, we establish a simplex metamodel for the dynamic responses of the
dual-rotor system considering non-probabilistic interval uncertainties. The small-range constraint
in the conventional perturbation method is released. Moreover, the surrogates need not to find the
gradient direction of parametric uncertainties to track their propagations, which is essential in the
Taylor-based interval methods. In the latter, the difficulties in obtaining the high order derivative
information will also limit the applications. Without loss of generality, we firstly consider the case
where only one interval parameter is included. The interval parameter can be expressed as

aI = [a, a] = [ac − βac, ac + βac] (10)

where superscript I designates an interval variable, the bars over and under a quantity denote its
upper and lower limits. Notations ac and β are the mid-value and uncertain degree of aI. An interval
character can be completely defined when the lower and upper bounds are given, which are much
easier to obtain than the precise probability model. The following relationships can be further obtained



ac = (a + a)/2
∆a = (a− a)/2
β = ∆a/ac

(11)

Taking the interval uncertainty into consideration, the motion equations of the dual-rotor system
evolve to interval ordinary differential equations (IODEs). Due to the interval input, the system
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outputs should also be interval quantities. Consequently, we can rewrite the displacement vector of
the dual-rotor system in interval form

qI(t) = [q(t), q(t)] =
{
q(a, t)

∣∣∣a ∈ aI
}

(12)

Efforts should be taken to find the distribution limits of the uncertain displacements. Direct interval
arithmetic will introduce enormous errors which make the results meaningless. Here, we consider
Equation (12) as a constraint to the system given in Equation (9) and formulate the metamodel based on
the approximation theories. Equation (10) can be written in another form using the standard interval

aI = ac + ∆a[−1, 1] (13)

It is clear that for any possible value of the uncertain parameter a ∈ aI, we can find an alternative
variable ξ ∈ [−1, 1] which is equivalent to it with linear projection. Therefore, this can be used to
handle the uncertain problem on the standard interval. The actual value of the uncertain parameter
can be obtained using a reverse projection. Therefore, a simplex radial basis is established

Ξ = [1, ξ, ξ2, · · · , ξn, · · · ]T (14)

Based on the polynomial basis, a simplex form metamodel of the uncertain responses of the
dual-rotor can be constructed as

S(ξ) =
∞∑

i

Υiξ
i = ΥΞ, i = 0, 1, 2, . . . (15)

Equation (15) attempts to approximate the actual uncertain system with the weighted sum of a
series of simplex. In practical calculation, it is only possible to consider finite number of terms and we
truncate it to k herein. The weight coefficient vector Υ = {Υi, i = 0, 1, 2, . . .} needs to be determined
to fully formulate the metamodel. To this end, samples of the responses of the dual-rotor should
be drawn. The roots of orthogonal polynomials are effective sample candidates in the parameter
space and they are widely adopted in stochastic and non-probabilistic computations [29,35]. Here, the
Chebyshev roots will be used, which can be calculated as

ϑi = cos[
2i− 1

2(k + 1)
π], i = 1, 2, · · · , k + 1 (16)

Subsequently, the sampled responses from the deterministic system can be obtained by simulations
of the model with the uncertain parameter specified to the samples and others kept to their mid-values.

ãi = ac + βacϑi, i = 1, 2, · · · , k + 1 (17)

q̃i(t) =
{
q(a, t)

∣∣∣a = ãi ∈ aI
}
, i = 1, 2, · · · , k + 1 (18)

Subsequently, Equation (15) evolves to

q̃(ϑ) = ΥΞ̃(ϑ) (19)

169



Mathematics 2020, 8, 736

where q̃ and Ξ̃ are the sample response vector from the dual-rotor and the value matrix of the radius
basis vector at uncertainty sample series ϑ= {ϑi}, i = 1, 2, · · · , k + 1. The Ξ̃ is expressed as

Ξ̃ =




1 ϑ1 ϑ2
1 · · · ϑk

1
1 ϑ2 ϑ2

2 · · · ϑk
2

...
...

. . .
...

...
1 ϑk+1 ϑ2

k+1 · · · ϑk
k+1




(20)

In Equation (19), there are k + 1 unknown weight coefficients and the number of equations is the
same. Thus, the coefficient vector can be directly solved

Υ = q̃(ϑ)[Ξ̃(ϑ)]
−1

(21)

Once the coefficient vector is obtained, the metamodel is fully determined. It is a simplex form
function aimed to represent the actual distribution model of the uncertain dynamic response, which
has unknown mathematical descriptions. As the lower and upper bounds of the system responses are
of interest, the metamodel can be used to derive these values, which should be simple.

For multi uncertain variables, the basic idea is the same but some strategies to reduce the
computation cost should be incorporated. For example, in the case that the dual-rotor contains n

interval uncertainties, the radius basis vector can be rewritten in ascending order as

Ξ = [1, ξ1, · · · , ξn, ξ2
1, ξ1ξ2, · · · , ξ2

n, · · · , ξk
1, ξk−1

1 ξ2, · · · , ξk
n]

T
(22)

The number of elements in Ξ is

N =
(n + k)!

n!k!
(23)

The metamodel is expressed by the weighted sum of terms whose order is no greater than k

S(ξ) =
∑

0≤i1+...+in≤k

Υi1,··· ,inξ
i1
1 ξ

i2
2 · · · ξ

in
n = ΥΞ, i1, · · · , in = 0, 1, . . . , k (24)

whereΥi1,··· ,in is the multi-dimensional coefficient. There will be (k + 1)n samples based on Equation (16)
when all the sample candidates are chosen for every uncertain dimension.

In problems with relatively large number of interval parameters, the computation cost will be
high. It is demonstrated that when the used samples are twice of the unknowns in the metamodel,
the model will be robust and the efficiency is enhanced [36]. In such way, the number of samples kept
will be 2N. The number of unknown coefficients is not the same as that of equations, the least square
method can be introduced to evaluate the regression coefficients

Υ = q̃(ϑ̃)Ξ̃(Ξ̃
T

Ξ̃)
−1

(25)

where q̃(ϑ̃) is the 8 × 2N matrix for the deterministic sample response drawn from the dual-rotor
system based on the uncertain parameter sample sets


ϑ̃ = [ϑ1, ϑ2, · · · , ϑ2N]

ϑ j =
{
ϑi, j}, i = 1, 2, · · · , n

(26)
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In Equation (26), there are 2N sets of samples and each set contains n elements. The matrix Ξ̃ in
Equation (25) represents the values of the radius basis vector calculated at the parameter sample sets

Ξ̃ =




1 ϑ1,1 · · · ϑn,1 ϑ2
1,1 ϑ1,1ϑ2,1 · · · ϑ2

n,1 · · · ϑk
1,1 ϑk−1

1,1 ϑ2,1 · · · ϑk
n,1

1 ϑ1,2 · · · ϑn,2 ϑ2
1,2 ϑ1,2ϑ2,2 · · · ϑ2

n,2 · · · ϑk
1,2 ϑk−1

1,2 ϑ2,2 · · · ϑk
n,2

...
...

. . .
...

...
...

. . .
...

. . .
...

...
. . .

...
1 ϑ1,N · · · ϑn,N ϑ2

1,N ϑ1,Nϑ2,N · · · ϑ2
n,N · · · ϑk

1,N ϑk−1
1,Nϑ2,N · · · ϑk

n,N




2N×N

(27)

in which the first sub index refers to different uncertain variables and the second to the sample sets
expressed in Equation (26). The above deduction is for interval problems involving multiple parametric
uncertainties embedded with computational burden alleviation strategies.

When the explicit meta-model is constructed, the bounds of the dynamic response or the extreme
values of the meta-model can be easily solved. Since it is in simplex form, the scanning method can be
applied to the meta-model to find the bounds efficiently when the dimension of uncertainties is not too
high (no greater than three, for example). It can be expressed as


si = S(ξ̂i), i = 1, 2, . . . , p

q(t) = min([s1, . . . , sp]), q(t) = max([s1, . . . , sp])
(28)

where ξ̂i represents the grid parametric points produced in the scanning and p is the total number of
them. If many uncertainties are involved (greater than three), the max/min values of the meta-function
should be evaluated by the optimization methods, such as the genetic algorithm [28].

4. Results and Discussions

In this section, numerical simulations of the dual-rotor system based on the previous approaches
will be presented. The model has the following values of the physical parameters: m1 = 16.25 kg,
Jp1 = 0.134 kg ·m2, Jd1 = 0.0698 kg ·m2; m2 = 8.4 kg, Jp2 = 0.0793 kg ·m2, Jd2 = 0.0405 kg ·m2;
e1= 3 × 10−5 m, e1= 8 × 10−5 m; L1 = 0.2 m, L2 = 0.24 m, L3 = 0.44 m, L4 = 0.54 m, L = 0.62 m;
c1 = c2 = c3 = 14.69 N · s/m, k1 = k2 = k3 = 5× 106 N/m, kb = 8× 107 N/m. The rotation speed ratio
between the HP and LP rotors is 1.2. In this paper, we use the maximum vibration deflections of the two
rotors at every rotating speed for demonstration, which can be calculated as max(

√
xi

2 + yi
2), i = 1, 2.

The deterministic steady-state dynamic responses of the HP and LP rotors excluding uncertainty
are given in Figure 2. It is observed that the first two peaks appear at 738.4 rad/s and 886.1 rad/s
for both of the rotors and the amplitudes of the LP rotor are higher than the HP rotor. It should be
noted that the simplified model used in the currently study is sufficient for uncertainty propagation
analysis and excludes irrelevant factors that may cause response variability. In order to capture
detailed natural characteristics, however, sophisticated physical models should be developed for the
comprehensive modal analysis of engineering dual-rotor systems. We refer interested readers to [37]
for more information. In the next few sections, different physical parameters are considered uncertain
and their effects are investigated based on the three-order metamodel.

4.1. Effect of Interval Mass Eccentricity

Firstly, we treat the uncertainties in the two eccentricities on the rotors. In an engineering context,
the balancing status often gets worse after assembling the well-balanced rotors. The reason may be
the assembly errors and hardness to measure. Moreover, the imbalance can be influenced by material
degradation and wear. Therefore, the imbalance or mass eccentricity should be considered uncertain
in analysis. We take the uncertain degree to be β = 10%. If e1 = [2.7, 3.3] × 10−5 m, the interval
response can be analyzed using the metamodel established in Section 3 and the results for the LP
rotor are plotted in Figure 3. For comparison, the results for uncertain imbalances on the HP rotor
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are given in Figure 4 when e2 = [7.2, 8.8] × 10−5 m. To provide a reference for the uncertain effects,
the deterministic curves shown in Figure 2 will be added in all the uncertain cases.
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Figure 2. Deterministic steady-state responses of the dual-rotor system.
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Figure 3. Dynamic response of the Lower Pressure (LP) rotor with uncertain imbalance on the LP rotor.
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Figure 4. Dynamic response of the LP rotor with uncertain imbalance on the Higher Pressure (HP) rotor.

A major difference between Figures 3 and 4 is that the response interval occurs at different rotation
speed bands. Uncertainty in either of the two imbalances will not cause significant deviations of the
system responses in the whole speed range. More specifically, the uncertainty in the imbalance on
the LP rotor has effects mainly in the speed range around the second peak, while interval imbalance
on the HP rotor will influence the first resonance area. That is because the mass imbalances on the
two rotors correspond to their respective vibration peaks. Similar characteristics are also found in
the parametric investigations of the dual-rotor systems [8]. This phenomenon indicates the different
sensitivities of the system in different speed ranges to the two imbalances, which is not observed
in single rotor systems. In the respective effective ranges of the two uncertainties, the deterministic
response is symmetrically deviated and the enveloped ranges are related to the magnitude of the
uncertain degree. Due to the presence of uncertainties, the dynamic response of the system can be any
possible values in the response interval.

4.2. Effect of Interval Bearing Stiffness

The stiffness of bearing #1 is taken as an interval quantity to cover its variability [15–18]. Generally, it
is difficult to define the accurate value of the stiffness of a support. In this case, the uncertain degree of the
interval uncertainty is 5%. Subsequently, the stiffness can be expressed as k1 = [4.75, 5.25] × 106 N/m.
The response range of the HP rotor is shown in Figure 5.

As can been seen from Figure 5, the uncertain behaviors of the dual-rotor are totally different
from the cases with uncertain imbalances. The deterministic response curve is significantly deviated
and the lower bound and upper bound are asymmetric. Near the first peak, a slope peak in the upper
bound and a sharp one in the lower bound are found. In addition, the positions of the peaks are shifted
compared with the deterministic one with the lower to the left and the upper to the right. There is an
observable flat band in the upper bound around the second peak. These features are introduced by
the alterations in the intrinsic characteristics caused by the uncertainty. The results also prove that
the dual-rotor is sensitive to the support stiffness of bearing #1. It may be considered a key factor for
design and maintenance of such engineering systems.
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Figure 5. Dynamic response of the HP rotor with uncertain bearing stiffness.

In Figure 5, the reference solutions obtained from the conventional scanning method are also
provided to verify the accuracy of the interval results. The scanning procedure generates evenly
scattered samples in the uncertain parameter interval and then searches for the bounds of all the
response samples. It serves as references similar to the Monte Carlo simulation in the probabilistic
frame [38,39]. The 50-points reference solutions (green dotted line) plotted in Figure 5 agree well with
the results obtained by the metamodel. Subsequently, the accuracy of the metamodel is validated.
To obtain insight, comparisons of the vibration time histogram of the LP rotor at rotation speed
768.7 rad/s obtained from the two methods are illustrated in Figure 6. It is further demonstrated that
the bounds calculated from the metamodel are in accordance with the scanning method in different
time stamps. The peak shifts are observable as well. From the vibration pattern in Figure 6, we can
also identify that the dynamical responses have multiple frequencies which is introduced by the
multi-frequency excitations. It should be noted that, in the metamodel, only order three is used,
which suggests that the deterministic model runs four times. The underlying computational cost is
much lower than the scanning method. The simulations were carried out within MATLAB R2019b
on a computer equipped with 16 GB RAM and Inter® Core™ i7-8550U@1.8GHz. It should be noted
that the actual speed interval calculated is 0–1400 rad/s and only a part of the results are presented in
Figure 5. Moreover, the increment for two consecutive speed steps is small and the initial 300 periods
of the vibration are skipped for every rotational speed to eliminate the transient effects. The above
conditions will cause the calculation time in a single deterministic simulation to be relatively long.
However, the difference of computation time between the two methods can still show their efficiency.
For the steady-state dynamical response calculations, the average CPU time elapsed in the metamodel
was 28.23 min, while it was 351.87 min in the scanning method. It is shown that the computational cost
needed is significantly reduced in the metamodel. The above analyses verify the accuracy and efficiency
of the developed interval method in the uncertain responses prediction of the dual-rotor system.
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Figure 6. Time histogram of the LP rotor with uncertain bearing stiffness.

4.3. Effect of Interval Geometric Length

In this subsection, we assume the geometric length of shaft L1 to be uncertain as a result of different
assemble conditions. The uncertain degree is chosen as 10%. Figure 7 presents the interval responses
of the HP rotor under uncertain shaft length. We can find that the uncertainty has influences on the
whole speed range though the physical parameter is related to the inner rotor. There are trivial peak
shifts as well in both resonance peaks. However, the impacts of the uncertain length are weaker than
the bearing stiffness which suggests that the dual-rotor is insensitive to the length. In the speed range
right after the first peak, the bounds of the response and the deterministic curve overlapped with each
other. This further proves the ability of the metamodel in the prediction of the interval response of the
system evidenced by the fact that the deterministic curve is rigorously enclosed in the narrow range.
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Figure 7. Dynamic response of the HP rotor with uncertain geometric length.
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4.4. Effect of Multi Interval Parameters

This subsection pays attention to the influences of multi uncertain parameters [40,41] on the
dynamic behaviors of the dual-rotor. Consider the uncertainties in the two imbalances and the bearing
stiffness as studied in the previous subsections. The first set of uncertain degrees are 5% for the two
imbalances and 2.5% for the stiffness of bearing #1. We then double their respective uncertain degrees
for the second case. Figure 8 shows the results for the two cases with (a) for the HP rotor and (b) for
the LP rotor. The dynamic response is significantly affected by the multiple uncertain parameters
and larger uncertain degrees lead to wider response ranges. The peak shifts are observed. In the
upper bounds for the HP and LP rotors, there is both a slope peak and a high-amplitude band, but the
locations are switched. The slopes are also in opposite directions. These features correspond to the
influence mechanism of the bearing stiffness on the two rotors since imbalances affect the vibration
amplitudes linearly. We can observe a few trivial instable estimations in the upper bounds of Figure 8,
which are caused by the minor errors of the metamodel as only order three is used.
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Figure 8. Dynamic responses of the dual-rotor with multi uncertain parameters: (a) Interval responses
of the HP rotor; (b) Interval responses of the LP rotor.
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In large-scale dual-rotor systems, the number of uncertain parameters that should be considered
simultaneously may occasionally be very large. Although cost alleviating strategies are already
incorporated, the non-intrusive metamodel used in the current research needs further improvement to
cope with the exponentially growing computation burden. Alternatively, one can undertake sensitivity
analyses using dedicated algorithms or investigations with individual interval parameters based on
the metamodel to capture their respective contributions to the dynamical response variability and then
discard those of trivial importance. Moreover, the dual-rotor system analyzed in this paper is linear.
The nonlinear vibrational responses of such systems under multi interval uncertainties are much more
complicated and difficult to predict, which can occur in the dual-rotors undergoing rub-impact [42], or
the rotating shaft is cracked. The established method is capable of estimating the interval time history
of such nonlinear vibrations. Further evaluation should be completed to verify the effectiveness of the
metamodel when the steady-state frequency response has turning points.

5. Conclusions

The uncertain dynamics of a dual-rotor system under interval uncertainties are studied via
non-intrusive computations. The governing motion equations are established by using the Lagrangian
method. A simplex form metamodel for problems subject to single and multi-uncertain variables is
constructed without modification to the deterministic solver. The calculation accuracy and efficiency
are verified by the scanning method. It is found that the imbalances on the inner and outer rotors only
affect speed ranges near one vibration peak. Peak shifts are observed when the bearing stiffness is
considered an uncertain quantity. Moreover, the response interval of the dual-rotor is relatively small
for the uncertain geometric length. These characteristics also indicate the sensitivities of the dual-rotor
to the physical parameters. The multi-uncertain-variable simulations suggest that the cumulative
uncertainties propagation will significantly influence the dynamics of the dual-rotor system. The main
findings of this paper show some insights into the vibration characteristics of dual-rotor systems
considering the non-probabilistic uncertainties.
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Abstract: In this paper, a new fuzzy multi-criteria decision-making model for traffic risk assessment
was developed. A part of a main road network of 7.4 km with a total of 38 Sections was analyzed
with the aim of determining the degree of risk on them. For that purpose, a fuzzy Measurement
Alternatives and Ranking according to the COmpromise Solution (fuzzy MARCOS) method was
developed. In addition, a new fuzzy linguistic scale quantified into triangular fuzzy numbers (TFNs)
was developed. The fuzzy PIvot Pairwise RElative Criteria Importance Assessment—fuzzy PIPRECIA
method—was used to determine the criteria weights on the basis of which the road network sections
were evaluated. The results clearly show that there is a dominant section with the highest risk for all
road participants, which requires corrective actions. In order to validate the results, a comprehensive
validity test was created consisting of variations in the significance of model input parameters, testing
the influence of dynamic factors—of reverse rank, and applying the fuzzy Simple Additive Weighing
(fuzzy SAW) method and the fuzzy Technique for Order of Preference by Similarity to Ideal Solution
(fuzzy TOPSIS). The validation test show the stability of the results obtained and the justification for
the development of the proposed model.

Keywords: Fuzzy MARCOS; Fuzzy PIPRECIA; traffic risk; TFN; MCDM

1. Introduction

Multi-criteria decision-making (MCDM) methods, [1–4] especially in integration with fuzzy
theory [5–7], are a very powerful and useful tool for reliable decision-making in different fields
of decision-making. The decision-making process, according to Stojić et al. [8], requires the prior
definition and fulfillment of certain factors, especially when it comes to solving problems in complex
areas. The theory of multi-criteria decision-making according to Zavadskas et al. [9] holds a special
place in the field of science. The application of fuzzy MCDM methods contributes to a more
precise determination of an acceptable solution, especially since considering them with respect to
different factors is a very demanding and difficult task. Moreover, this was expressed in group
decision-making processes [10]. The main motivation of this study can be considered in the following
way: determining of risk level at road sections requires the inclusion of a lot of different variables.
After experimental data collection, variables must be assessed in a clear and precise way. For this
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purpose, a new fuzzy linguistic scale was developed with quantification in TFNs. Moreover, a new
fuzzy Measurement Alternatives and Ranking according to COmpromise Solution (Fuzzy MARCOS)
was developed in this paper to evaluate sections of road infrastructure with the aim of determining
the degree of risk on them. The development of new fuzzy MARCOS method and defining a new
linguistic scale based on TFNs represent the main contributions of this paper. The advantages of
the Fuzzy MARCOS method are as follows: consideration of fuzzy reference points through the
fuzzy ideal and fuzzy anti-ideal solution at the very beginning of model formation, more precise
determination of the degree of utility with respect to both set solutions, proposal of a new way of
determining utility functions and its aggregation, possibility to consider a large set of criteria and
alternatives, as demonstrated through a realistic example, too. This paper considers one of four the
most important factors that affect traffic accidents and lead to hazardous situations, and it relates
to the road. There are frequent situations where geometric characteristics can negatively affect
the creation of potential situations and increase the risk for each traffic participant. The geometric
characteristics of the road on particular sections have a major impact on increasing the risk of traffic
accidents. Morency et al. [11] analyzed the extent to which road geometry and traffic volume influence
social inequalities in pedestrian, cyclist and motorcyclist injuries in wealthy and poor urban areas.
Based on their observational study, it was concluded that there were more injured pedestrians, cyclists
and motorcyclists at intersections in poorer areas than in wealthier areas. Nevertheless, studies have
shown that the two most important road factors affecting accident rates are the pavement condition
and the geometric characteristics of the road [12]. Therefore, in this paper, on the basis of causal
factors, the degree of risk was determined on sections of 200 m. In her research, Nenadić [13] carried
out the evaluation of sections, i.e., three locations, based on seven criteria. In contrast to this research,
the optimality criterion was set in such a way that the safest section was considered instead of the
one with the highest risk. In the study performed by Bao et al. [14], the fuzzy methodology was used
for similar purposes. An Improved hierarchical fuzzy TOPSIS model has been defined for evaluating
road safety performance. The evaluation of safety performance indicators (SPIs) was performed
by Khorasani et al. [15] as an MCDM problem in a methodological sense. The TOPSIS method in
combination with other techniques was also used in Haghighat’s research [16] for determining the
safety position of the roads of the Bushehr province.

The rest of the paper is organized as follows. Section 2 provides the preliminaries necessary to
develop the fuzzy MARCOS method. They refer to displaying basic operations with fuzzy numbers
and presenting the steps of the crisp MARCOS method. Section 3 presents the development of the
fuzzy MARCOS method algorithm (Figure 1), which consists of a total of 10 steps. In Section 4 of the
paper, the MCDM model is formed and a detailed calculation of each step of the developed fuzzy
MARCOS method is presented. The calculation of the criterion weight using the fuzzy PIPRECIA
method is also summarized. The following Section 5 presents an overview of validation tests to verify
the stability of the proposed model. Finally, Section 6 provides a brief overview of the most important
tasks accomplished and the contributions of the paper along with future research guidelines.
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                 Figure 1. Algorithm of new developed fuzzy MARCOS method.

2. Preliminaries

A fuzzy number Ã on R to be a TFN if its membership function µÃ(x): R→[0,1] is equal to
Equation (1):

µÃ(x) =



x−l
m−l l ≤ x ≤ m
u−x
u−m m ≤ x ≤ u

0 otherwise

(1)

where l represents the lower and u upper bounds of the fuzzy number Ã and m is the modal value.
The TFN can be marked as Ã = (l, m, u).

The operations of TFN Ã1 = (l1, m1, u1) and Ã2 = (l2, m2, u2) are as follow [17,18]
Addition: Ã = (l1, m1, u1)

Ã1 ⊕ Ã2 = (l1, m1, u1) + (l2, m2, u2) = (l1 + l2, m1 + m2, u1 + u2). (2)

Multiplication:

Ã1 ⊗ Ã2 = (l1, m1, u1) ⊗ (l2, m2, u2) = (l1 × l2, m1 ×m2, u1 × u2). (3)

Subtraction:

Ã1 − Ã2 = (l1, m1, u1) − (l2, m2, u2) = (l1 − u2, m1 −m2, u1 − l2). (4)

Division:
Ã1

Ã2
=

(l1, m1, u1)

(l2, m2, u2)
=

(
l1
u2

,
m1

m2
,

u1

l2

)
. (5)

Reciprocal:

Ã1
−1 = (l1, m1, u1)

−1 =

(
1
u1

,
1

m1
,

1
l1

)
. (6)

The following section provides a brief overview of the crisp MARCOS method defined by
Stević et al. [19]:

Step 1: Designing of an initial decision-making matrix.
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Step 2: Designing of an extended initial matrix, performed by defining the anti-ideal (AAI) and
ideal (AI) solution.

X =

AAI

A1

A2

. . .

Am

AI

C1 C2 . . . Cn


xaa1

x11

xaa2

x12

. . .

. . .

xaan

x1n

x21 x22 . . . x2n

. . . . . . . . . . . .

xm1

xai1

x22

xai2

. . .

. . .

xmn

xain




(7)

(AAI) is the worst alternative, while (AI) is best alternative. Depending on type of the criteria,
AAI and AI are defined by applying Equations (8) and (9):

AAI = min
i

xi j i f j ∈ B and max
i

xi j i f j ∈ C (8)

AI = max
i

xi j i f j ∈ B and min
i

xi j i f j ∈ C (9)

B belongs maximization group of criteria, while C belongs the minimization group of criteria.
Step 3: Normalization of previous matrix (X). N =

[
ni j

]
m×n

are obtained using Equations (10) and (11):

ni j =
xai

xi j
i f j ∈ C (10)

ni j =
xi j

xai
i f j ∈ B (11)

where elements xi j and xai represent the elements of the matrix X.

Step 4: Determination of the weighted matrix V =
[
vi j

]
m×n

Equation (12).

vi j = ni j ×w j (12)

Step 5: Computation of the utility degree of alternatives Ki—Equations (13) and (14).

Ki
− =

Si

Saai
(13)

Ki
+ =

Si

Sai
(14)

where Si (I = 1, 2, . . . , m) represents the sum of the elements of matrix V, Equation (15).

Si =
n∑

i=1

vi j (15)

Step 6: Determination of the utility function of alternatives f(Ki) defined by Equation (16).

f (Ki) =
K+

i
+ K−

i

1 +
1− f(K+

i )
f(K+

i )
+

1− f(K−
i )

f(K−
i )

; (16)

where f
(
K−

i

)
represents the utility function in relation to (AAI), while f

(
K+

i

)
represents the utility

function in relation to the (AI).
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Utility functions in relation to (AI), and (AAI), solution were determined using Equations (17) and (18).

f
(
K−i

)
=

K+
i

K+
i
+ K−

i

(17)

f
(
K+

i

)
=

K−
i

K+
i
+ K−

i

(18)

Step 7: Ranking the alternatives.

3. A New Fuzzy MARCOS Method

Step 1: Creating an initial fuzzy decision-making matrix. MCDM models include the definition of
a set of n criteria and m alternatives.

Step 2: Creating an extended initial fuzzy matrix. The extension is performed by determining the
fuzzy anti-ideal Ã(AI) and fuzzy ideal Ã(ID) solution.

X̃ =

Ã(AI)

Ã1

Ã2

. . .

Ãm

Ã(ID)

C̃1 C̃2 . . . C̃n


x̃ai1

x̃11

x̃ai2

x̃12

. . .

. . .

x̃ain

x̃1n

x̃21 x̃22 . . . x̃2n

. . . . . . . . . . . .

x̃m1

x̃id1

x̃22

x̃id2

. . .

. . .

x̃mn

x̃idn




(19)

The fuzzy Ã(AI) is the worst alternative while the fuzzy Ã(ID) is an alternative with the
best performance. Depending on type of the criteria, Ã(AI) and Ã(ID) are defined by applying
Equations (20) and (21):

Ã(AI) = min
i

x̃i j i f j ∈ B and max
i

x̃i j i f j ∈ C (20)

Ã(ID) = max
i

x̃i j i f j ∈ B and min
i

x̃i j i f j ∈ C (21)

B belongs to the maximization group of criteria while C belongs to the minimization group
of criteria.

Step 3: Creating a normalized fuzzy matrix Ñ =
[
ñi j

]
m×n

obtained by applying Equations (22)
and (23):

ñi j =
(
nl

i j, nm
ij , nu

ij

)
=




xl
id

xu
ij

,
xl

id

xm
ij

,
xl

id

xl
i j


 i f j ∈ C (22)

ñi j =
(
nl

i j, nm
ij , nu

ij

)
=




xl
i j

xu
id

,
xm

ij

xu
id

,
xu

ij

xu
id


 i f j ∈ B (23)

where elements xl
i j

, xm
ij

, xu
ij

and xl
id

, xm
id

, xu
id

represent the elements of the matrix X̃.

Step 4: Computation of the weighted fuzzy matrix Ṽ =
[
ṽi j

]
m×n

Matrix Ṽ is calculated by

multiplying matrix Ñ with the fuzzy weight coefficients of the criterion w̃ j, Equation (24).

ṽi j =
(
vl

i j, vm
ij , vu

ij

)
= ñi j ⊗ w̃ j =

(
nl

i j ×wl
j, nm

ij ×wm
j , nu

ij ×wu
j

)
(24)
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Step 5: Calculation of S̃i fuzzy matrix using the following Equation (25):

S̃i =
n∑

i=1

ṽi j (25)

where S̃i

(
sl

i
, sm

i
, su

i

)
represents the sum of the elements of the weighted fuzzy matrix Ṽ.

Step 6: Calculation of the utility degree of alternatives K̃i by applying Equations (26) and (27).

K̃i
− =

S̃i

S̃ai

=




sl
i

su
ai

,
sm

i

sm
ai

,
su

i

sl
ai


 (26)

K̃i
+ =

S̃i

S̃id

=




sl
i

su
id

,
sm

i

sm
id

,
su

i

sl
id


 (27)

Step 7: Calculation of fuzzy matrix T̃i using Equation (28)

T̃i = t̃i =
(
tl
i, tm

i , tu
i

)
= K̃−i ⊕ K̃+

i
=

(
k−l

i + k+l
i

, k−m
i + k+m

i
, k−u

i + k+u
i

)
(28)

Then, it is necessary to determine a new fuzzy number D̃ using Equation (29)

D̃ =
(
dl, dm, du

)
= max

i
t̃i j (29)

and then, it is necessary to de-fuzzify the number D̃ by using the expression d fcrisp = l+4m+u
6 obtaining

the number d fcrisp.

Step 8. Determination of utility functions in relation to the ideal f
(
K̃+

i

)
and anti-ideal f

(
K̃−

i

)

solution by applying Equations (30) and (31).

f
(
K̃+

i

)
=

K̃−
i

d fcrisp
=




k−l
i

d fcrisp
,

k−m
i

d fcrisp
,

k−u
i

d fcrisp


 (30)

f
(
K̃−i

)
=

K̃+
i

d fcrisp
=




k+l
i

d fcrisp
,

k+m
i

d fcrisp
,

k+u
i

d fcrisp


 (31)

After that, it is necessary to perform defuzzification for K̃−
i

, K̃+
i

, f
(
K̃+

i

)
, f

(
K̃−

i

)
and apply the

following step:
Step 9: Determination of the utility function of alternatives f Ki by Equation (32).

f (Ki) =
K+

i
+ K−

i

1 +
1− f(K+

i )
f(K+

i )
+

1− f(K−
i )

f(K−
i )

; (32)

Step 10: Ranking the alternatives based on the final values of utility functions. It is desirable that
an alternative have the highest possible value of the utility function.

In addition to developing the new fuzzy MARCOS method, a new linguistic scale for evaluating
alternatives has been defined, which is shown in Table 1. A total of nine linguistic terms are defined
and for each term, its triangular fuzzy number.
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Table 1. A newly defined scale for evaluating potential solutions.

Linguistic Term Mark TFN

Extremely poor EP (1,1,1)
Very poor VP (1,1,3)

Poor P (1,3,3)
Medium poor MP (3,3,5)

Medium M (3,5,5)
Medium good MG (5,5,7)

Good G (5,7,7)
Very good VG (7,7,9)

Extremely good EG (7,9,9)

4. Results

In order to determine the degree of risk on the roads in Bosnia and Herzegovina through the
Rudanka-Doboj M-17 section (length 7.4 km), a list of six criteria was formed on the basis of which
the evaluation was carried out. The analysis was conducted in 38 Sections of two-lane main roads
of the first order in Bosnia and Herzegovina as potential alternatives. The following are the starting
points for the potential criteria affecting traffic risk: a longitudinal gradient (upgrade/downgrade)—(C1),
the number of access points on each section (left and right) (C2), the number of traffic accidents with
fatalities (C3), the number of traffic accidents with slightly injured persons (C4), the number of traffic
accidents with seriously injured persons (C5) and the number of traffic accidents with material damage
(C6). The number of traffic accidents for all four classes was taken from the sample for the last four years.

As mentioned above, the Rudanka-Doboj M-17 section covers a total length of 7.4 km and
was divided into 200-m sections that represent alternatives. After forming the MCDM model with
38 alternatives and six criteria in the first step, the fuzzy anti-ideal Ã(AI) and fuzzy ideal Ã(ID)

solutions are defined in the second step on the basis of Equations (20) and (21). Thus, an extended
fuzzy initial decision matrix is formed. Table 2 shows the extended initial fuzzy decision matrix with
linguistic ratings, as well as quantified values in triangular fuzzy numbers.

Table 2. Extended initial fuzzy decision matrix.

Linguistic Ratings Ratings with TFNs

C1 C2 C3 C4 C5 C6 C1 C2 C3 C4 C5 C6

A1 EP VP EP M M MP (1,1,1) (1,1,3) (1,1,1) (3,5,5) (3,5,5) (3,3,5)
A2 VP VP EP EP P VP (1,1,3) (1,1,3) (1,1,1) (1,1,1) (1,3,3) (1,1,3)
A3 MP VP EP EP EP VP (3,3,5) (1,1,3) (1,1,1) (1,1,1) (1,1,1) (1,1,3)
A4 M EP EP M EP VP (3,5,5) (1,1,1) (1,1,1) (3,5,5) (1,1,1) (1,1,3)
A5 VP VP EG EP EP EP (1,1,3) (1,1,3) (7,9,9) (1,1,1) (1,1,1) (1,1,1)
A6 MP EP EP VP P VP (3,3,5) (1,1,1) (1,1,1) (1,1,3) (1,3,3) (1,1,3)
A7 P VP EP MP EP MG (1,3,3) (1,1,3) (1,1,1) (3,3,5) (1,1,1) (5,5,7)
A8 MG VP EP EP P P (5,5,7) (1,1,3) (1,1,1) (1,1,1) (1,3,3) (1,3,3)
A9 EP VP EP EP G VP (1,1,1) (1,1,3) (1,1,1) (1,1,1) (5,7,7) (1,1,3)

A10 G VP EP EP EP P (5,7,7) (1,1,3) (1,1,1) (1,1,1) (1,1,1) (1,3,3)
A11 VP VP EP EP EP VP (1,1,3) (1,1,3) (1,1,1) (1,1,1) (1,1,1) (1,1,3)
A12 M VP EG EP EP EP (3,5,5) (1,1,3) (7,9,9) (1,1,1) (1,1,1) (1,1,1)
A13 M P EP VP EP VP (3,5,5) (1,3,3) (1,1,1) (1,1,3) (1,1,1) (1,1,3)
A14 MP M EP VP EP P (3,3,5) (3,5,5) (1,1,1) (1,1,3) (1,1,1) (1,3,3)
A15 VP MP EP VP EP P (1,1,3) (3,3,5) (1,1,1) (1,1,3) (1,1,1) (1,3,3)
A16 VP VG EP VP EP EP (1,1,3) (7,7,9) (1,1,1) (1,1,3) (1,1,1) (1,1,1)
A17 MP EG EP P EP P (3,3,5) (7,9,9) (1,1,1) (1,3,3) (1,1,1) (1,3,3)
A18 MP VG EG EP EP P (3,3,5) (7,7,9) (7,9,9) (1,1,1) (1,1,1) (1,3,3)
A19 MP G EP MP EP MP (3,3,5) (5,7,7) (1,1,1) (3,3,5) (1,1,1) (3,3,5)
A20 VP VG EP MG P EG (1,1,3) (7,7,9) (1,1,1) (5,5,7) (1,3,3) (7,9,9)
A21 EG G EP EP P VP (7,9,9) (5,7,7) (1,1,1) (1,1,1) (1,3,3) (1,1,3)
A22 MG MP EP VP EP EP (5,5,7) (3,3,5) (1,1,1) (1,1,3) (1,1,1) (1,1,1)
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Table 2. Cont.

Linguistic Ratings Ratings with TFNs

C1 C2 C3 C4 C5 C6 C1 C2 C3 C4 C5 C6

A23 MP M EG VG M EG (3,3,5) (3,5,5) (7,9,9) (7,7,9) (3,5,5) (7,9,9)
A24 VP MP EP EP EP VP (1,1,3) (3,3,5) (1,1,1) (1,1,1) (1,1,1) (1,1,3)
A25 P M EP VP EP EP (1,3,3) (3,5,5) (1,1,1) (1,1,3) (1,1,1) (1,1,1)
A26 MG M EP EP EP VP (5,5,7) (3,5,5) (1,1,1) (1,1,1) (1,1,1) (1,1,3)
A27 M P EP VP EP VP (3,5,5) (1,3,3) (1,1,1) (1,1,3) (1,1,1) (1,1,3)
A28 VP EP EP G M MP (1,1,3) (1,1,1) (1,1,1) (5,7,7) (3,5,5) (3,3,5)
A29 P VP EP VP EP EP (1,3,3) (1,1,3) (1,1,1) (1,1,3) (1,1,1) (1,1,1)
A30 P VP EP VP EP VP (1,3,3) (1,1,3) (1,1,1) (1,1,3) (1,1,1) (1,1,3)
A31 EP VP EP VP EP P (1,1,1) (1,1,3) (1,1,1) (1,1,3) (1,1,1) (1,3,3)
A32 VP P EP M P VP (1,1,3) (1,3,3) (1,1,1) (3,5,5) (1,3,3) (1,1,3)
A33 P P EG VP EP MG (1,3,3) (1,3,3) (7,9,9) (1,1,3) (1,1,1) (5,5,7)
A34 VP EP EP EP EP VP (1,1,3) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,3)
A35 P EP EP EP EP EP (1,3,3) (1,1,1) (1,1,1) (1,1,1) (1,1,1) (1,1,1)
A36 VP VP EP VP P VP (1,1,3) (1,1,3) (1,1,1) (1,1,3) (1,3,3) (1,1,3)
A37 MG VP EP EP P MP (5,5,7) (1,1,3) (1,1,1) (1,1,1) (1,3,3) (3,3,5)
A38 MP VP EP EP EP VP (3,3,5) (1,1,3) (1,1,1) (1,1,1) (1,1,1) (1,1,3)

The scope of values of the observed road sections according to each individual criterion are
as follows. For the first criterion, the scope of the values ranges from 0% to 1.4%, which generally
represents favorable topographic conditions. For the second criterion relating to the total number of
access points, the values range from zero to 23. Considering that there are over 20 access points on
particular sections, a potential danger to traffic participants and an impact on traffic flow complexity
can be noticed. When considering alternatives in relation to the third criterion, it is important to note
that there are a total of five sections, with one fatal accident each. For traffic accidents with minor
traffic injuries, the values are in the range of 0–7, traffic accidents with serious injuries in the range of
0–3 and material damage in the range of 0–19.

After forming the fuzzy initial decision matrix, it is necessary to determine the significance of
input parameters, i.e., their values. For this purpose, the fuzzy PIPRECIA method developed in [20]
was applied. As this is an already exploited method, detailed procedures for calculating the values of
criteria are not shown, but rather, the summarized results by each step (Table 3).

Table 3. Calculation and results of applying the fuzzy PIPRECIA method for determining the
criterion values.

sj kj qj wj DF

C1 (1,1,1) (1,1,1) (0.136,0.182,0.223) 0.181
C2 (1.2,1.3,1.35) (0.65,0.7,0.8) (1.25,1.429,1.538) (0.17,0.261,0.343) 0.259
C3 (0.5,0.667,1) (1,1.333,1.5) (0.833,1.071,1.538) (0.113,0.195,0.343) 0.206
C4 (0.333,0.4,0.5) (1.5,1.6,1.667) (0.5,0.67,1.026) (0.068,0.122,0.229) 0.131
C5 (1.1,1.15,1.2) (0.8,0.85,0.9) (0.556,0.788,1.282) (0.076,0.144,0.286) 0.156
C6 (0.4,0.5,0.667) (1.333,1.5,1.6) (0.347,0.525,0.962) (0.047,0.096,0.214) 0.107

SUM (4.486,5.483,7.346)

sj kj qj wj DF

C1 (0.4,0.5,0.667) (1.333,1.5,1.6) (0.827,1.528,2.885) (0.06,0.165,0.449) 0.195
C2 (1.1,1.15,1.2) (0.8,0.85,0.9) (1.323,2.292,3.846) (0.095,0.247,0.599) 0.281
C3 (1.3,1.45,1.5) (0.5,0.55,0.7) (1.19,1.948,3.077) (0.086,0.21,0.479) 0.234
C4 (0.5,0.667,1) (1,1.333,1.5) (0.833,1.071,1.538) (0.06,0.116,0.24) 0.127
C5 (1.2,1.3,1.35) (0.65,0.7,0.8) (1.25,1.429,1.538) (0.09,0.154,0.24) 0.158
C6 (1,1,1) (1,1,1) (0.072,0.108,0.156) 0.110

SUM (6.423,9.268,13.885)
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Based on the aggregation of the values wj shown in Table 3, the final criterion values are
obtained: w̃1 = (0.098, 0.174, 0.336), w̃2 = (0.133, 0.254, 0.471), w̃3 = (0.100, 0.203, 0.411), w̃4 =

(0.064, 0.119, 0.234), w̃5 = (0.083, 0.149, 0.263), w̃6 = (0.060, 0.102, 0.185).
The elements of the fuzzy normalized matrix (Table 4) were obtained by applying Equation (23)

since all the criteria are of benefit type, i.e., they need to be maximized. An example of normalization is

ñ11 =
(

1.000
9.000 , 1.000

9.000 , 1.000
9.000

)
= (0.111, 0.111, 0.111),

ñ15 =
(

3.000
7.000 , 5.000

7.000 , 5.000
7.000

)
= (0.429, 0.714, 0.714)

Table 4. Fuzzy normalized decision matrix.

C1 C2 C3 C4 C5 C6

AAI (0.111,0.111,0.111) (0.111,0.111,0.111) (0.111,0.111,0.111) (0.111,0.111,0.111) (0.143,0.143,0.143) (0.111,0.111,0.111)
A1 (0.111,0.111,0.111) (0.111,0.111,0.333) (0.111,0.111,0.111) (0.333,0.556,0.556) (0.429,0.714,0.714) (0.333,0.333,0.556)
A2 (0.111,0.111,0.333) (0.111,0.111,0.333) (0.111,0.111,0.111) (0.111,0.111,0.111) (0.143,0.429,0.429) (0.111,0.111,0.333)
A3 (0.333,0.333,0.556) (0.111,0.111,0.333) (0.111,0.111,0.111) (0.111,0.111,0.111) (0.143,0.143,0.143) (0.111,0.111,0.333)

. . .

A23 (0.333,0.333,0.556) (0.333,0.556,0.556) (0.778,1,1) (0.778,0.778,1) (0.429,0.714,0.714) (0.778,1,1)
A24 (0.111,0.111,0.333) (0.333,0.333,0.556) (0.111,0.111,0.111) (0.111,0.111,0.111) (0.143,0.143,0.143) (0.111,0.111,0.333)
A25 (0.111,0.333,0.333) (0.333,0.556,0.556) (0.111,0.111,0.111) (0.111,0.111,0.333) (0.143,0.143,0.143) (0.111,0.111,0.111)

. . .

A36 (0.111,0.111,0.333) (0.111,0.111,0.333) (0.111,0.111,0.111) (0.111,0.111,0.333) (0.143,0.429,0.429) (0.111,0.111,0.333)
A37 (0.556,0.556,0.778) (0.111,0.111,0.333) (0.111,0.111,0.111) (0.111,0.111,0.111) (0.143,0.429,0.429) (0.333,0.333,0.556)
A38 (0.333,0.333,0.556) (0.111,0.111,0.333) (0.111,0.111,0.111) (0.111,0.111,0.111) (0.143,0.143,0.143) (0.111,0.111,0.333)
ID (0.778,1,1) (0.778,1,1) (0.778,1,1) (0.778,0.778,1) (0.714,1,1) (0.778,1,1)

The values of the weighted normalized matrix shown in Table 5 are obtained using
Equation (24): ṽ11 =

(
nl

11 ×wl
1, nm

11 ×wm
1 , nu

11 ×wu
1

)
= (0.111× 0.098, 0.111× 0.174, 0.111× 0.336) =

(0.011, 0.019, 0.037).

Table 5. Fuzzy weighted normalized decision matrix.

C1 C2 C3 C4 C5 C6

AAI (0.011,0.019,0.037) (0.015,0.028,0.052) (0.011,0.023,0.046) (0.007,0.013,0.026) (0.012,0.021,0.038) (0.007,0.011,0.021)
A1 (0.011,0.019,0.037) (0.015,0.028,0.157) (0.011,0.023,0.046) (0.021,0.066,0.13) (0.035,0.106,0.188) (0.02,0.034,0.103)
A2 (0.011,0.019,0.112) (0.015,0.028,0.157) (0.011,0.023,0.046) (0.007,0.013,0.026) (0.012,0.064,0.113) (0.007,0.011,0.062)
A3 (0.033,0.058,0.187) (0.015,0.028,0.157) (0.011,0.023,0.046) (0.007,0.013,0.026) (0.012,0.021,0.038) (0.007,0.011,0.062)

. . .

A23 (0.033,0.058,0.187) (0.044,0.141,0.262) (0.077,0.203,0.411) (0.05,0.092,0.234) (0.035,0.106,0.188) (0.046,0.102,0.185)
A24 (0.011,0.019,0.112) (0.044,0.085,0.262) (0.011,0.023,0.046) (0.007,0.013,0.026) (0.012,0.021,0.038) (0.007,0.011,0.062)
A25 (0.011,0.058,0.112) (0.044,0.141,0.262) (0.011,0.023,0.046) (0.007,0.013,0.078) (0.012,0.021,0.038) (0.007,0.011,0.021)

. . .

A36 (0.011,0.019,0.112) (0.015,0.028,0.157) (0.011,0.023,0.046) (0.007,0.013,0.078) (0.012,0.064,0.113) (0.007,0.011,0.062)
A37 (0.054,0.096,0.261) (0.015,0.028,0.157) (0.011,0.023,0.046) (0.007,0.013,0.026) (0.012,0.064,0.113) (0.02,0.034,0.103)
A38 (0.033,0.058,0.187) (0.015,0.028,0.157) (0.011,0.023,0.046) (0.007,0.013,0.026) (0.012,0.021,0.038) (0.007,0.011,0.062)
ID (0.076,0.174,0.336) (0.103,0.254,0.471) (0.077,0.203,0.411) (0.05,0.092,0.234) (0.059,0.149,0.263) (0.046,0.102,0.185)

The fuzzy matrix S̃i is obtained by applying Equation (25)

S̃ai = (0.062, 0.116, 0.219)
S̃1 = (0.113, 0.276, 0.660)
S̃2 = (0.062, 0.158, 0.515)
S̃3 = (0.084, 0.154, 0.514)

,

S̃ . . . = , (. . . , . . . , . . .)
S̃23 = (0.286, 0.702, 1.466)
S̃24 = (0.092, 0.172, 0.544)
S̃25 = (0.092, 0.267, 0.555)

,

S̃, 36 = (0.062, 0.158, 0.567)
S̃37 = (0.119, 0.258, 0.705)
S̃38 = (0.084, 0.154, 0.514)
S̃ID = (0.412, 0.974, 1.900)
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as follows:

S̃1 =




0.111 + 0.015 + 0.011 + 0.021 + 0.035 + 0.020,
0.019 + 0.028 + 0.023 + 0.066 + 0.106 + 0.034,
0.037 + 0.157 + 0.046 + 0.130 + 0.188 + 0.103



= (0.113, 0.276, 0.660)

Using Equation (26), the matrix K̃i
− is obtained:

k̃−
1
= (0.517, 2.386, 10.607)

k̃−
2
= (0.284, 1.367, 8.270)

k̃−
3
= (0.383, 1.333, 8.264)

,
k̃−, 23

= (1.304, 6.064, 23.546)
k̃−

24
= (0.418, 1.487, 8.745)

k̃−
25
= (0.418, 2.307, 8.920)

,
k̃−, 36

= (0.284, 1.367, 9.105)
k̃−

37
= (0.542, 2.229, 11.329)

k̃−
38
= (0.383, 1.333, 8.264)

as follows:

k̃1
− =

S̃1

S̃ai

=




sl
1

su
ai

,
sm

1

sm
ai

,
su

1

sl
ai


 =

(0.113
0.219

,
0.276
0.116

,
0.660
0.062

)
= (0.517, 2.386, 10.607)

Using Equation (27), the matrix K̃i
+ is obtained:

k̃+
1
= (0.060, 0.284, 1.602)

k̃+
2
= (0.033, 0.163, 1.249)

k̃+
3
= (0.044, 0.159, 1.248)

,
k̃+, 23

= (0.151, 0.721, 3.557)
k̃+

24
= (0.048, 0.177, 1.321)

k̃+
25
= (0.048, 0.275, 1.348)

,
k̃+, 36

= (0.033, 0.163, 1.375)
k̃+

37
= (0.063, 0.265, 1.711)

k̃+
38
= (0.044, 0.159, 1.248)

as follows:

k̃1
+ =

S̃1

S̃id

=




sl
1

su
id

,
sm

1

sm
id

,
su

1

sl
id


 =

(0.113
1.900

,
0.276
0.974

,
0.660
0.412

)
= (0.060, 0.284, 1.602)

In Step 7, the matrix T̃i is calculated using Equation (28):

t̃1 = (0.577, 2.670, 12.210), t̃23 = (1.454, 6.785, 27.103), t̃36 = (0.317, 1.530, 10.481),
t̃2 = (0.317, 1.530, 9.519), t̃24 = (0.466, 1.664, 10.066), t̃37 = (0.605, 2.494, 13.040),
t̃3 = (0.427, 1.492, 9.512), t̃25 = (0.466, 2.582, 10.268), t̃38 = (0.427, 1.492, 9.512),

The elements of the matrix T̃i are obtained as follows:

t̃1 = (0.517 + 0.060, 2.386 + 0.284, 10.607 + 1.602) = (0.577, 2.670, 12.210)

Then, it is necessary to determine a new fuzzy number D̃ using Equation (29) D̃ =
(
dl, dm, du

)
=

max
i

t̃i j and D̃ = (1.454, 6.785, 27.103) is obtained, and then it is necessary to defuzzify the number D̃

by using the expression d fcrisp = l+4m+u
6 obtaining the number d fcrisp = 9.283. The calculation of the

last two steps and the final results obtained using the fuzzy MARCOS method are shown in Table 6.
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Table 6. Calculation of the two last steps and results of applied fuzzy MARCOS.

f(K̃−i ) f(K̃+i ) K- K+ fK- fK+ Ki Rank

A1 (0.006,0.031,0.173) (0.056,0.257,1.143) 3.445 0.466 0.050 0.371 0.181 15
A2 (0.004,0.018,0.135) (0.031,0.147,0.891) 2.337 0.322 0.035 0.252 0.084 29
A3 (0.005,0.017,0.134) (0.041,0.144,0.89) 2.330 0.321 0.035 0.251 0.083 30

....

A23 (0.016,0.078,0.383) (0.14,0.653,2.536) 8.184 1.099 0.118 0.882 1.082 1
A24 (0.005,0.019,0.142) (0.045,0.16,0.942) 2.519 0.346 0.037 0.271 0.097 27
A25 (0.005,0.03,0.145) (0.045,0.249,0.961) 3.095 0.416 0.045 0.333 0.144 20

...

A36 (0.004,0.018,0.148) (0.031,0.147,0.981) 2.476 0.343 0.037 0.267 0.095 28
A37 (0.007,0.029,0.184) (0.058,0.24,1.22) 3.464 0.472 0.051 0.373 0.185 14
A38 (0.005,0.017,0.134) (0.041,0.144,0.89) 2.330 0.321 0.035 0.251 0.083 30

Utility functions in relation to the ideal f
(
K̃+

i

)
and anti-ideal f

(
K̃−

i

)
solution are determined by

applying Equations (30) and (31).

f
(
K̃+

1

)
=

K̃−1
d fcrisp

=
(

0.517
9.283 , 2.386

9.283 , 10.607
9.283

)

f
(
K̃−1

)
=

K̃+
1

d fcrisp
=

(
0.060
9.283 , 0.284

9.283 , 1.602
9.283

)

After that, it is necessary to perform defuzzification for K̃−
i

, K̃+
i

, f
(
K̃+

i

)
, f

(
K̃−

i

)
, which is given in

Table 6.
Determination of the utility function of alternatives f Ki. The utility function of alternatives is

defined by Equation (32).

f (K1) =
K+

1 + K−1

1 +
1− f(K+

1 )
f(K+

1 )
+

1− f(K−1 )
f(K−1 )

=
0.446 + 3.445

1 + 1−0.371
0.371 + 1−0.050

0.050

= 0.181

The ranking represents the sorting of obtained values in descending order, where A23 represents
the most hazardous 200-m section and is dominant over the others.

5. Validation Tests

5.1. Changing the Significance of Input Parameters

In the first phase of validation test, the impact of changing the three most significant criteria C1,
C2 and C3 on ranking results was analyzed. Using Equation (33), a total of 30 scenarios were created.

W̃nβ =
(
1− W̃nα

) W̃β(
1− W̃n

) (33)

The scenarios were formed through three different groups of 10 sets each. In the first group of
scenarios, the first criterion was changed, criterion C2 was changed in the second group and criterion
C3 was changed in the third group. If Equation (33) is observed, W̃nβ represents the fuzzy corrected
value of the criteria C2, C3, C4, C5 and C6, then C1, C3, C4, C5 and C6, i.e., C1, C2, C4, C5 and
C6, respectively by groups. W̃nα represents the reduced fuzzy value of the criteria C1, C2, and C3
respectively by groups, W̃β represents the original fuzzy value of the criterion considered and W̃n

represents the original fuzzy value of the criterion whose value is reduced, in this case, C1, C2 and C3.
In the first scenario, the fuzzy value of criterion C1 was reduced by 5% while the values of

the remaining criteria were proportionally corrected by applying Equation (33). In each subsequent
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scenario, the value of criterion C1 was reduced by 10%, while the values of the remaining criteria were
corrected, so they met the condition

∑n
j=1 wm

J
= 1. These changes, i.e., these 10 scenarios represent the

first group. Scenarios 11–20 represent the second group in which criterion C2 was corrected. The third
group consists of scenarios 21–30 with the change in the value of the third criterion. After forming 30
new vectors of the weight coefficients of the criteria (Table 7), new model results were obtained, as
presented in Figures 1–3.

Table 7. New criterion values across 30 scenarios.

w1 w2 w3 w4 w5 w6

S1 (0.093,0.165,0.319) (0.133,0.257,0.483) (0.1,0.205,0.421) (0.064,0.12,0.24) (0.083,0.15,0.269) (0.06,0.103,0.19)
S2 (0.083,0.148,0.286) (0.135,0.262,0.507) (0.101,0.209,0.442) (0.065,0.123,0.252) (0.084,0.154,0.283) (0.061,0.105,0.199)
S3 (0.073,0.13,0.252) (0.136,0.267,0.53) (0.102,0.213,0.463) (0.066,0.125,0.264) (0.085,0.157,0.296) (0.061,0.107,0.208)
S4 (0.064,0.113,0.218) (0.138,0.273,0.554) (0.103,0.218,0.484) (0.066,0.128,0.276) (0.086,0.16,0.309) (0.062,0.109,0.218)
S5 (0.054,0.095,0.185) (0.139,0.278,0.578) (0.104,0.222,0.505) (0.067,0.13,0.287) (0.087,0.163,0.322) (0.063,0.111,0.227)
S6 (0.044,0.078,0.151) (0.141,0.283,0.602) (0.106,0.226,0.525) (0.068,0.133,0.299) (0.088,0.166,0.336) (0.063,0.114,0.237)
S7 (0.034,0.061,0.118) (0.142,0.289,0.626) (0.107,0.231,0.546) (0.069,0.135,0.311) (0.089,0.169,0.349) (0.064,0.116,0.246)
S8 (0.024,0.043,0.084) (0.144,0.294,0.65) (0.108,0.235,0.567) (0.069,0.138,0.323) (0.09,0.172,0.362) (0.064,0.118,0.255)
S9 (0.015,0.026,0.05) (0.145,0.299,0.673) (0.109,0.239,0.588) (0.07,0.14,0.335) (0.09,0.176,0.376) (0.065,0.12,0.265)
S10 (0.005,0.009,0.017) (0.146,0.305,0.697) (0.11,0.243,0.609) (0.071,0.143,0.347) (0.091,0.179,0.389) (0.066,0.122,0.274)
S11 (0.099,0.177,0.351) (0.126,0.241,0.447) (0.1,0.206,0.429) (0.065,0.121,0.244) (0.083,0.151,0.274) (0.06,0.104,0.193)
S12 (0.1,0.182,0.381) (0.113,0.216,0.4) (0.102,0.213,0.466) (0.066,0.125,0.265) (0.085,0.157,0.298) (0.061,0.107,0.21)
S13 (0.102,0.188,0.411) (0.1,0.19,0.353) (0.103,0.22,0.502) (0.066,0.129,0.286) (0.086,0.162,0.321) (0.062,0.111,0.226)
S14 (0.103,0.194,0.441) (0.086,0.165,0.306) (0.105,0.227,0.539) (0.067,0.133,0.307) (0.087,0.167,0.344) (0.063,0.114,0.243)
S15 (0.105,0.2,0.471) (0.073,0.14,0.259) (0.106,0.234,0.576) (0.068,0.137,0.328) (0.089,0.172,0.368) (0.064,0.117,0.259)
S16 (0.106,0.206,0.5) (0.06,0.114,0.212) (0.108,0.241,0.612) (0.069,0.141,0.349) (0.09,0.177,0.391) (0.065,0.121,0.276)
S17 (0.108,0.212,0.53) (0.046,0.089,0.165) (0.109,0.248,0.649) (0.07,0.145,0.369) (0.091,0.182,0.415) (0.066,0.124,0.292)
S18 (0.109,0.218,0.56) (0.033,0.063,0.118) (0.111,0.255,0.685) (0.071,0.149,0.39) (0.092,0.187,0.438) (0.066,0.128,0.308)
S19 (0.111,0.224,0.59) (0.02,0.038,0.071) (0.113,0.261,0.722) (0.072,0.153,0.411) (0.094,0.192,0.461) (0.067,0.131,0.325)
S20 (0.112,0.23,0.62) (0.007,0.013,0.024) (0.114,0.268,0.758) (0.073,0.157,0.432) (0.095,0.197,0.485) (0.068,0.135,0.341)
S21 (0.098,0.176,0.348) (0.133,0.257,0.487) (0.095,0.193,0.39) (0.064,0.12,0.242) (0.083,0.151,0.272) (0.06,0.103,0.191)
S22 (0.099,0.18,0.371) (0.135,0.264,0.52) (0.085,0.172,0.349) (0.065,0.123,0.259) (0.084,0.155,0.29) (0.061,0.106,0.204)
S23 (0.101,0.185,0.395) (0.136,0.27,0.553) (0.075,0.152,0.308) (0.066,0.126,0.275) (0.085,0.158,0.308) (0.061,0.108,0.217)
S24 (0.102,0.189,0.418) (0.138,0.277,0.586) (0.065,0.132,0.267) (0.067,0.129,0.291) (0.086,0.162,0.327) (0.062,0.111,0.23)
S25 (0.103,0.194,0.441) (0.139,0.283,0.619) (0.055,0.112,0.226) (0.067,0.132,0.308) (0.087,0.166,0.345) (0.063,0.114,0.243)
S26 (0.104,0.198,0.465) (0.141,0.289,0.652) (0.045,0.091,0.185) (0.068,0.136,0.324) (0.088,0.17,0.363) (0.063,0.116,0.256)
S27 (0.105,0.202,0.488) (0.142,0.296,0.684) (0.035,0.071,0.144) (0.069,0.139,0.34) (0.089,0.174,0.382) (0.064,0.119,0.269)
S28 (0.106,0.207,0.512) (0.144,0.302,0.717) (0.025,0.051,0.103) (0.069,0.142,0.357) (0.09,0.177,0.4) (0.065,0.121,0.282)
S29 (0.107,0.211,0.535) (0.145,0.309,0.75) (0.015,0.03,0.062) (0.07,0.145,0.373) (0.091,0.181,0.418) (0.065,0.124,0.295)
S30 (0.108,0.216,0.559) (0.147,0.315,0.783) (0.005,0.01,0.021) (0.071,0.148,0.389) (0.092,0.185,0.437) (0.066,0.126,0.308)

After forming scenarios as described above, results were obtained for each of the groups. Figure 2
shows the obtained ranks of the alternatives and comparison of initial results with the results in the
first group of scenarios, i.e., S1–S10.

The change in the significance of the first criterion affects the ranks of road network sections,
which is, in a way, understandable since there is a large number of alternatives. It is important to note
that alternatives A23, A18, A20, A12, A5 and A16, which take the first, second, third, eighth, ninth and
tenth places, respectively, do not change their positions in any scenario. With the elimination of the
significance of the first criterion, since its value is 0.05 in the tenth scenario, there is a change in ranks
by five positions for some alternatives.
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                 Figure 2. Comparison of initial results with scenarios S1–S10.             
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Figure 3. Comparison of initial results with the second group of scenarios, i.e., scenarios S11–S20.

Figure 3 shows the obtained ranks of the alternatives and comparison of initial results with the
results in the second group of scenarios, i.e., S11–S20. In Figure 3, it can be noticed that there have been
major changes in the ranks of alternatives across scenarios. The reason for this is the fact that the most
significant criterion C2 has been changed, which has a significant impact on the output. However,
alternative A23 remains in the first place, despite the fact that the influence of the most significant
criterion is minimized. Additionally, alternatives A31 and A34 do not change their position and are
ranked 35th and 38th, respectively. Alternative A18 in scenarios S11–S17 retains its second position,
while in the remaining three scenarios (S18–S20), it is in the third place. Alternative A20 is in the third
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position in scenarios S11–S13, fourth in S14-S16 and fifth in S17–S20 scenarios. With the decrease in the
impact of criterion C2, results and ranks change to a maximum of 37%.

Figure 4 shows the obtained ranks of the alternatives and a comparison of initial results with the
results in the third group of scenarios, i.e., S21–S30.
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                         Figure 4. Comparison of initial results with third group of scenarios i.e., S21–S30.

In Figure 4, it can be noticed that there were also some changes in the ranks of the alternatives
across the scenarios. The reason for this is the fact that the second most significant criterion C3 was
changed, which has a slightly lower impact than C2, but is also very important in obtaining the output.
However, alternatives A23, A34 and A35 do not change their ranks and they are still ranked as first,
38th and 37th, respectively. Alternative A20 retains its third position in scenarios S21 and S22, while
holding second place in the remaining scenarios. Alternative A30 changes its position by one place
only in the last S30 scenario.

5.2. Impact of Reverse Rank Matrices

One of the ways to test the validity of the obtained results of the model for decision-making is
to construct dynamic matrices and then analyze the solutions that the model provides under newly
formed conditions. If the solutions show some logical contradictions that are expressed in the form of
undesirable changes in the ranks of alternatives, then one may express concern that there is a problem
with the mathematical apparatus of the applied method. In line with this goal, a test in which the
resistance of the model to the rank reversal problem is considered was conducted.

A change in the number of alternatives was made for each scenario, eliminating the worst
alternative from further consideration. After defining a new set of alternatives, the ranking of the
remaining alternatives is performed under newly formed conditions using the proposed model. In the
test, 35 scenarios were formed in which the change in the elements of the decision matrix was simulated.
As a rule, 37 scenarios should be formed (one less than the total number of alternatives). However,
in this case, we had two newly formed scenarios in which two alternatives were eliminated. In scenario
S7, there are two alternatives A3 and A38 that have the same position, and both alternatives were
eliminated in the next eighth scenario. The same situation is with scenario S14 in which A13 and A27
were eliminated.

Based on the results obtained (Figure 5) and taking into account the complexity of the MCDM
model, it can be concluded that the model is stable. In the first 14 scenarios, there is no change in ranks
for any alternative. Only eight alternatives change their ranks after the fifteenth scenario has been
formed when Alternative A9 is eliminated from the model. It is important to note that after obtaining
the results in S15 when the change occurs, the alternatives retain their ranks until the last scenario.
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                   Figure 5. Results of the test of reverse rank matrix.

5.3. Comparison with Other Approaches

In this section, a validation test is performed involving comparison with two other methods in a
fuzzy form: the Fuzzy SAW [21] and the fuzzy TOPSIS method [22], and the results are presented in
Figure 6.
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Figure 6. Results of comparison with Fuzzy SAW and fuzzy TOPSIS methods.

In this case study, we compared the fuzzy MARCOS technique with MCDM models that have a
linear normalization. When observing the comparisons of the applied methods, it can be seen that in
15 cases, there is no change of ranks. It is of primary importance to note that the first 11 (A23, A18,
A20, A21, A33, A17, A19, A12, A5, A16, and A26) alternatives do not change positions regardless of
the approach taken. In addition, alternatives A8, A32, A3 and A38 do not change their ranks and
are in 17th, 18th and 30th places, respectively. The last two mentioned alternatives share the 30th
position. In addition, compared to the fuzzy SAW method, eight other alternatives do not change their
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ranks, while compared to the fuzzy TOPSIS method, three other alternatives do not change positions.
The biggest difference is with alternative A25, which is ranked 20th applying the fuzzy MARCOS
method and in the 25th position using the fuzzy TOPSIS method. The observed small differences
in ranking of alternatives, between Fuzzy MARCOS results and Fuzzy SAW/Fuzzy TOPSIS results
(see Figure 6) do not limit the usefulness of the study, as it is impossible to know in advance the possible
outcomes of an applied methodology and the extent of possible deviation of the rankings, therefore
making the process is significant for validation.

The advantages of the Fuzzy MARCOS method are as follows: consideration of fuzzy reference
points through the fuzzy ideal and fuzzy anti-ideal solution at the very beginning of model formation,
more precise determination of the degree of utility with respect to both set solutions, proposal of a new
way of determining utility functions and its aggregation, possibility to consider a large set of criteria
and alternatives, as demonstrated through a realistic example, too. Compared with other methods,
this method is simple, effective, and easy to sort and optimize the process.

6. Conclusions

In this paper, a fuzzy MARCOS algorithm was developed to support multi-criteria decision-making,
especially when considering parameters in an uncertain environment. Considering the relationships
of indicators presented through TFNs between the ideal and the anti-ideal solution, it can positively
affect making valid decisions. In addition, this paper defines a new fuzzy linguistic scale for
parameter evaluation by decision-makers. The Fuzzy MARCOS model was tested using the example
of determining the degree of risk on short sections of the first-order main road. A part of the road
network with a length of 7.4 km divided into 38 short sections of 200 m each was analyzed. Thanks to
the previously formed adequate database regarding all necessary parameters, the MCDM model was
created. The results of the proposed model show that the 23rd section, i.e., the section between 4.2 and
4.4 km represents the most hazardous section since the value obtained is drastically higher than the
others are. This result is caused by the fact that this section has an undesirable value considering almost
all factors and an adequate reaction in terms of increasing surveillance and traffic safety on this section
is required. The obtained results in terms of risk can be used for improving road safety. The results can
help decision-makers take into account these indicators as an input parameter for all planning, design
and operational analyzes, as well as indicators for the development of regulatory plans for a given
area in local conditions. For the purpose of validation, an extensive analysis was carried out, which
involves changing the significance of the input parameters, testing the factors of dynamic environment
and comparing the results with two other methods in a fuzzy form. The validation tests support the
development and application of the fuzzy MARCOS method. In order to improve the robustness of
MCDM in fuzzy environment, a new fuzzy MARCOS method was developed in this study, which uses
the ratio method and the reference point method to obtain a scheme of basic comprehensive decision
information. The fuzzy MARCOS method is a powerful tool for optimizing multiple goals. Fuzzy
MARCOS refreshes the MCDM domain by introducing an algorithm for analyzing the relationship
between alternatives and reference points. The Fuzzy MARCOS method integrates the following
points to provide a robust decision: defining reference points (fuzzy ideal and fuzzy anti-ideal values),
determining the relationship between alternatives and fuzzy ideal/anti-ideal values, defining the utility
degree of alternatives in relation to the fuzzy ideal and fuzzy anti-ideal solutions. The results obtained
by the fuzzy MARCOS method are more reasonable due to the fusion of the results of the ratio approach
and reference point sorting approach. The Fuzzy MARCOS method shows the significant stability and
reliability of the results in a dynamic environment. Moreover, it is important to note that in numerous
scenarios, the fuzzy MARCOS method shows stability in processing large data sets, which was proven
in the performed research.

Future research may be based on the integration of particular short sections and their evaluation,
and the development of the MARCOS method with other theories such as neutrophic [23], single-valued
intuitionistic fuzzy numbers [24], grey theory [25] and others. Moreover, the approach of a building
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consensus in group decision making with information granularity [26] or the concept of a granular
fuzzy preference relation where each pairwise comparison is formed as a certain information granule
can be implemented [27].
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writing—review and editing, D.K.D. and D.P.; supervision, M.S. (Miomir Stanković). All authors have read and
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